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General Chairs’ Preface

On behalf of the Organizing Committee, we were delighted to welcome attendees to
the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD
2023), held in Osaka, Japan, on May 25–28, 2023. Since its inception in 1997, PAKDD
has long established itself as one of the leading international conferences on data mining
and knowledge discovery. PAKDD provides an international forum for researchers and
industry practitioners to share their new ideas, original research results, and practical
development experiences across all areas of Knowledge Discovery and Data Mining
(KDD). PAKDD 2023 was held as a hybrid conference for both online and on-site
attendees.

We extend our sincere gratitude to the researchers who submitted their work to the
PAKDD 2023 main conference, high-quality tutorials, and workshops on cutting-edge
topics. We would like to deliver our sincere thanks for their efforts in research, as well
as in preparing high-quality presentations. We also express our appreciation to all the
collaborators and sponsors for their trust and cooperation.

We were honored to have three distinguished keynote speakers joining the confer-
ence: EdwardY. Chang (Ailly Corp), TakashiWashio (OsakaUniversity), andWeiWang
(University of California, Los Angeles, USA), each with high reputations in their respec-
tive areas. We enjoyed their participation and talks, which made the conference one of
the best academic platforms for knowledge discovery and data mining. We would like
to express our sincere gratitude for the contributions of the Steering Committee mem-
bers, Organizing Committee members, Program Committee members, and anonymous
reviewers, led by Program Committee Co-chairs: Hisashi Kashima (Kyoto University),
Wen-Chih Peng (National Chiao Tung University), and Tsuyoshi Ide (IBM Thomas J.
Watson Research Center, USA). We feel beholden to the PAKDD Steering Committees
for their constant guidance and sponsorship of manuscripts.

Finally, our sincere thanks go to all the participants and volunteers. We hope all of
you enjoyed PAKDD 2023 and your time in Osaka, Japan.

April 2023 Naonori Ueda
Yasushi Sakurai



PC Chairs’ Preface

It is our great pleasure to present the 27th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD 2023) as the Program Committee Chairs. PAKDD
is one of the longest-established and leading international conferences in the areas of
data mining and knowledge discovery. It provides an international forum for researchers
and industry practitioners to share their new ideas, original research results, and prac-
tical development experiences from all KDD-related areas, including data mining, data
warehousing, machine learning, artificial intelligence, databases, statistics, knowledge
engineering, big data technologies, and foundations.

This year, PAKDD received a record number of 869 submissions, among which 56
submissions were rejected at a preliminary stage due to policy violations. There were
318 ProgramCommitteemembers and 42 Senior ProgramCommitteemembers involved
in the reviewing process. More than 90% of the submissions were reviewed by at least
three different reviewers. As a result of the highly competitive selection process, 143
submissionswere accepted and recommended to be published, resulting in an acceptance
rate of 16.5%. Out of these, 85 papers were primarily about methods and algorithms and
58 were about applications. We would like to thank all PC members and reviewers,
whose diligence produced a high-quality program for PAKDD 2023. The conference
program featured keynote speeches from distinguished researchers in the community,
most influential paper talks, cutting-edge workshops, and comprehensive tutorials.

We wish to sincerely thank all PCmembers and reviewers for their invaluable efforts
in ensuring a timely, fair, and highly effective PAKDD 2023 program.

April 2023 Hisashi Kashima
Wen-Chih Peng

Tsuyoshi Ide
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BAARD: Blocking Adversarial Examples
by Testing for Applicability, Reliability

and Decidability

Xinglong Chang1(B), Katharina Dost1, Kaiqi Zhao1, Ambra Demontis2,
Fabio Roli3, Gillian Dobbie1, and Jörg Wicker1

1 The University of Auckland, Auckland, New Zealand
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Abstract. Adversarial defenses protect machine learning models from
adversarial attacks, but are often tailored to one type of model or attack.
The lack of information on unknown potential attacks makes detecting
adversarial examples challenging. Additionally, attackers do not need
to follow the rules made by the defender. To address this problem, we
take inspiration from the concept of Applicability Domain in cheminfor-
matics. Cheminformatics models struggle to make accurate predictions
because only a limited number of compounds are known and available
for training. Applicability Domain defines a domain based on the known
compounds and rejects any unknown compound that falls outside the
domain. Similarly, adversarial examples start as harmless inputs, but
can be manipulated to evade reliable classification by moving outside the
domain of the classifier. We are the first to identify the similarity between
Applicability Domain and adversarial detection. Instead of focusing on
unknown attacks, we focus on what is known, the training data. We pro-
pose a simple yet robust triple-stage data-driven framework that checks
the input globally and locally, and confirms that they are coherent with
the model’s output. This framework can be applied to any classification
model and is not limited to specific attacks. We demonstrate these three
stages work as one unit, effectively detecting various attacks, even for a
white-box scenario.

Keywords: Adversarial Defense · Anomaly Detection · Applicability
Domain · Evasion Attacks · White-box Adaptive Attacks

1 Introduction

Machine learning algorithms have shown promising results in many mission-
critical fields, such as virtual drug screening [1] and autonomous driving [12].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 3–14, 2023.
https://doi.org/10.1007/978-3-031-33374-3_1
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Unfortunately, despite their high accuracy on benign examples, they are vulner-
able to adversarial attacks, where malicious users exploit the classifiers’ weakness
by manipulating the input data [7]. Starting from a benign data point, attack-
ers craft a small perturbation that allows them to achieve the desired outcome:
misclassification of the input example. For example, by adding a small artifact
to a stop sign, a self-driving vehicle can be fooled into misclassifying the stop
sign as a speed limit sign, with the risk of causing a car crash [12].

Adversarial detectors extract features from unlabeled examples and use them
to identify adversarial examples based on certain thresholds [21]. Existing detec-
tors often suffer from the following issues: First, many detectors focus on detect-
ing adversarial examples with only minimal perturbations [20] and tend to fail
to detect stronger ones. Second, many defenses are built on a single assumption
or one attack, i.e., adversarial examples lead to overly confident predictions from
the classifier [11]. However, attackers are not constrained by such assumptions,
as they can easily bypass such a detector by altering their strategy. Third, most
defenses are tailored to a specific machine learning architecture and do not gen-
eralize to other models [23]. There is a lack of flexible detectors that can detect
unseen attacks on various classifiers.

In cheminformatics, models are trained on a finite number of compounds
because the data-collecting process is expensive and time-consuming. However,
the chemical space is vast and diverse in its properties, so models trained on one
part of the space may not work on others. Hence, models typically struggle to
generalize unseen compounds. To avoid false predictions, Applicability Domain
(AD) is a concept that defines a domain in which a model can perform reliably.
Compounds that are outside this domain are rejected, as the model cannot make
reliable predictions on them [1]. Similar to cheminformatics, adversarial detec-
tors only have the information for known attacks. However, new attacks come
out so frequently that it is impossible to cover all attacks. In this paper, instead
of defending against previously unseen attacks, we focus on what the classifier
can reliably predict, the training data. Inspired by the idea of a triple-stage
AD originally introduced by Hanser et al. [9], we propose the Baard frame-
work, Blocking Adversarial examples by testing for Applicability, Reliability
and Decidability.

To identify unknown attacks, Baard investigates the example from three
different perspectives, utilizing the training data in the following ways: 1. Appli-
cability Stage uses the training data to validate the input globally; 2. Reliability
Stage confirms that the example can be backed up by training data locally; and
3. Decidability Stage checks the model’s output to ensure it is coherent with the
input. These three stages work as one unit to inspect the model’s interpretation
of an unlabeled example. As shown in Fig. 1, Baard rejects the example if there
is an inconsistency between the input and the model’s prediction.

We summarize our contributions as follows:

– We are the first to demonstrate the effectiveness of linking two previously
unlinked fields: the Applicability Domain in cheminformatics and adversarial
detection in machine learning.
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Fig. 1. An overview of Baard. Baard analyzes an example x, the classifier f(·), and
its prediction ŷ together by checking the Applicability, Reliability, and Decidability.
Each stage outputs a score. The scores are used to train a logistic regression model to
predict whether x is benign or adversarial.

– Inspired by the Applicability Domain, we propose the Baard framework
(Blocking Adversarial examples by testing Applicability, Reliability, and
Decidability), which utilizes training data to systematically detect adversarial
examples from three different perspectives.

– By designing an adaptive white-box attack targeting Baard, we show that
it is difficult to penetrate all three stages, even under the worst scenario.

– We demonstrate Baard is highly portable. This simple yet effective frame-
work can detect adversarial examples with various constraints on a wide range
of classifiers, including classifiers that have been neglected previously despite
being vulnerable to attacks, such as support vector machines and decision
trees.

We introduce the adversarial threat model, attacks and detectors relevant to
this paper in Sect. 2. Sect. 3 and 4 present the Baard framework and demon-
strate its effectiveness, respectively. Sect. 5 concludes this paper.

2 Background

This paper focuses on detecting evasion attacks, where the attacker crafts mali-
cious inputs by adding perturbations to existing examples which can deceive
the classifier to make unexpected predictions [7]. Evasion attacks are the most
common adversarial attacks since it is easier for a malicious user to interact with
the model at inference time.

Evasion Attacks. One of the earliest attacks on neural network (NN) models
is the Fast Gradient Sign Method (FGSM) [8], a single-step attack that forms the
adversarial example as: x′ = x − ε · sign(�x�(x, y)) where x is a benign input,
y is the targeted label, �(x, y) is the loss function used by the classifier, and
hyperparameter ε controls the amount of perturbation. Auto Projected Gradient
Descent (APGD) [6] is the latest improved version of Projected Gradient Descent
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(PGD) [15]. PGD is a multi-step variant of FGSM. It achieves a higher success
rate by iteratively solving the optimization problem. Improving on PGD, APGD
dynamically adjusts the number of iterations to ensure minimal perturbation
while maintaining the success rate. Directly optimizing on the input space can
be difficult, since NN models are highly non-linear. Instead of optimizing on the
input space, the Carlini and Wagner Attack (CW) [5] transforms the image from
the pixel space to the simpler tanh space. Not only NN models are vulnerable
to adversarial attacks, the Decision Tree Attack (DTA) [18] exploits the data
structure of a decision tree. The algorithm makes minimal changes at each node
and keeps traversing from the leaf to the root until the prediction from the
classifier deviates from the legitimate class.

Detection. Detecting adversarial examples with indistinguishable perturbations
(hard to recognize by human) has been studied extensively [20]. One common
assumption is that if the adversarial perturbation is small enough, the legitimate
class can be restored by adding or removing noise. Detectors, such as Feature
Squeezing (FS) [22] and the Positive and Negative representation (PN) detector
[13] are motivated by image reconstruction techniques. FS is a defense motivated
by using image filters to restore adversarial examples. He et al. [10] pointed out
that strong adversaries can easily bypass FS. The PN detector assumes an adver-
sary cannot simultaneously deceive a classifier trained on both the original and
color-negative images. Such techniques have clear limitations, a detector that uses
images’ properties cannot be generalized to other data types.

Another direction is to combine neighborhood relationship and noise gener-
ation. Region-based Classification (RC) [3] replaces the classifier with a region-
based classifier by generating noisy samples centered at the example, and a
decision is made via majority voting. Similar to RC, the Odds are odd (Odds)
[19] detector assumes that adversarial examples are less robust to noise than
benign examples. The assumption is that latent outputs significantly change
when adding noise to an adversarial example. Local Intrinsic Dimensionality
(LID) [14] is another neighbor-based algorithm that uses the intrinsic dimension
metric by combining latent outputs from all hidden layers of a NN. The statistics
are learned by comparing benign, noisy, and adversarial examples. ML-LOO [23]
computes Leave-One-Out feature attribution maps on multiple hidden layers of
a NN, and uses them to distinguish between benign and adversarial examples.
Many detectors are based on certain assumptions of one type of attack. If the
attacker’s goal is to bypass the system, such a constraint may not apply [4]. A
detection that is tailored to one attack is not robust against white-box attacks,
where the attacker knows a particular defense is placed [21].

3 BAARD: Blocking Adversarial Examples

This paper connects cheminformatics’ Applicability Domain with adversarial
detection in machine learning. The goal of AD is to reject chemical compounds
that the classifier cannot reliably predict. Therefore, AD analyzes the feature



BAARD: Blocking Adversarial Examples 7

space and the classifier together to define a tight region around the training
instances but omits the rest of the space [17]. Adversarial examples are per-
turbations of legitimate example, and remain similar to the original example.
However, adversarial examples are designed to cause misclassifications leading
to inconsistencies between the predicted labels of the adversarial example and its
legitimate neighbors. This observation leads us to believe that the idea used in
AD can effectively detect adversarial examples. Baard consists of three stages
as shown in Fig. 1. The rest of this section explains the working of each stage
and their effectiveness when combined together.

Applicability Stage. In chemistry, this stage checks the compound to confirm
it is appropriate for the model to make a prediction [9]. Here, we know the model
is trained on the training data, so we check the input feature space by comparing
it with the training data globally. We conduct a Z-test by computing mean and
standard deviation of input features for each class from the training data. Given
an example x, the Z-score is defined by zx,ŷ := (x − μXtrain,ŷ)/σXtrain,ŷ, where
μXtrain,ŷ and σXtrain,ŷ are the mean and standard deviation for examples in the
training data that have the same label as the model’s prediction ŷ, and zx,ŷ has
the same dimension as x. Because we are only interested in the extrema and
Z-test is two-tailed, we define the Applicability Score as: S1 score := max(|zx,ŷ|).
The Applicability Stage inspects each feature of the new, unlabeled example,
individually. It outputs a high score if any feature is significantly different from
the training samples that match the classifier’s predicted label.

Reliability Stage. Given a compound, this stage quantifies the relevance of
information available to the model in chemistry. We implement this stage by
examining the input locally using the compound’s neighbors in the training set.
Unlike the previous stage, which considered each input feature independently,
this stage accounts for all features together using the neighborhood relationship.

Adversarial examples aim to minimize the perturbation while forcing the
model to make classification errors [8]. This moves the legitimate input closer
to the decision boundary, causing the predicted label to change and potentially
placing the example far away from its new in-class neighbors. The reliability
test is based on the distances between adversarial examples and their neighbors.
These distances are often higher than the distances between legitimate examples
and their neighbors.

Choosing an appropriate distance metric is essential when measuring nearest
neighbors. The Euclidean distance (L2-norm) is well suited for low-dimensional
space, but Cosine similarity has shown more robust results in high-dimensional
sparse features [13]. Cosine similarity between two feature vectors A and B is
defined as: SC(A,B) :=

∑n
i=1 AiBi/[(

∑n
i=1 A2

i )
1
2 (

∑n
i=1 B2

i )
1
2 ], where n is the

dimension of the feature vector, and SC ∈ [−1, 1]. If SC is close to 1, A and
B are positive co-linear vectors. If SC = 0, they are independent vectors, and
if SC ≈ −1, they are strong opposite vectors. This means neither minimal nor
maximal indicates A and B are close. To properly present the distance between
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Algorithm 1. Baard Stage 2 – Reliability Stage
Input: x: unlabeled example, ŷ: its prediction, (X, Y ): training set, kS2: number of

neighbors, and mS2: sample size.
Output: S2 score ∈ [0, 2π]
1: Xŷ ← Random sampling {(x1, y1), . . . , (xmS2 , ymS2)}, where xi ∈ X, yi ∈

Y , and yi = ŷ
2: D(x, Xŷ) ← Compute angular distances between example x and subset Xŷ

3: S2 score ← mean(top k(D(x, Xŷ), kS2)) � Compute the mean of top kS2 distances
4: return S2 score

two features using cosine similarity, we compute the angular distance D, which
is defined as: D(A,B) := arccos(SC(A,B))/π.

Algorithm 1 provides the pseudocode for this stage. It takes two hyperpa-
rameters: the number of nearest neighbors k ∈ N, and the sample size m that
limits the computational expense. For an unlabeled example x, the S2 score is
the mean distance of the k-nearest neighbors of x within a subset of training
data where examples have the same label as the prediction ŷ. Because the angu-
lar distance is within [0, 2π], the S2 score shares a similar scale as the S1 score.
To reduce the computational cost, we randomly sample m instances from the
training examples where the legitimate labels are the same as ŷ.

Decidability Stage. This stage confirms whether the model’s output is coher-
ent with the evidence from previous stages. Machine learning models operate
under the assumption that similar examples have similar labels. Hence, a trained
model can generalize to new and previously unseen examples. However, this is
often violated when the model tries to predict maliciously crafted adversarial
examples. The prediction of an adversarial example often conflicts with the pre-
dictions of its neighbors. As shown in Fig. 1, we use the local neighborhood
relationship to check adversarial examples based on this property.

Algorithm 2 uses the same distance metric as in previous stages. The critical
difference is that the entire training data are used regardless of their labels. We
apply the Softmax function so the model outputs probability estimates. Given
an example, we run a Z-test on its probability estimates based on its k neighbors.

Combining All Stages. A single stage may be effective on a certain type of
attack, but no stage alone can cover all attacks. The Applicability and Reliability
Stages both check the feature space but from different perspectives. Once we
collect enough evidence from the input space, the Decidability Stage checks the
output to ensure the model’s output is coherent with the evidence. We fit a
Logistic Regression model using the scores from Baard on a hold-out training
set to distinguish adversarial examples from legitimate inputs.

While being fast and memory-efficient, this approach has two issues when
dealing with image data. 1. When the feature space is sparse, the S1 score
becomes noise-sensitive. 2. The score varies under transformations, such as trans-
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Algorithm 2. Baard Stage 3 – Decidability Stage
Input: x: unlabeled example, ŷ: its prediction, (X, Y ): training set, kS3: number of

neighbors, and mS3: sample size.
Output: S3 score

1: S ← Random sampling {x1, . . . ,xmS3} where xi ∈ X
2: D(x, S) ← Compute angular distances between example x and subset S
3: X ′ ← top k(D(x, S), kS3) � Find top k-nearest neighbors.
4: P ′ ← Softmax(f(X ′)) � Compute probability estimates for neighbors.
5: μP ′ , σP ′ ← mean(P ′), std(P ′) � Compute mean and standard deviation vectors.

6: z ← | Softmax(f(x))−μP ′
σP ′ |

7: return zŷ � zŷ is the value of z index at ŷ.

lation and rotation. Images are commonly modeled by convolutional neural net-
works, because the convolutional layers can learn internal representation in a
two-dimensional space. Hence, these latent outputs represent the extracted fea-
ture space learned by the model. We overcome the above issues by using the
latent outputs after the convolutional layers but before the fully connected layer.
Note that tabular data does not suffer from the same issues. Moreover, anything
related to the training data can be calculated beforehand to speed up the algo-
rithm at inference time.

4 Experiments

We evaluate Baard by analyzing its parameters, deconstructing it, and test-
ing it against attacks in both white-box and gray-box settings. We repeat the
experiments five times to ensure robustness. To ensure reproducibility, all data,
pre-trained classifiers, hyperparameters, additional results, and code are avail-
able at https://github.com/changx03/baard.

4.1 Experimental Setup

Data and Classifiers. We test Baard on both image and tabular data. We
acquire MNIST and CIFAR10 with default train-test split from PyTorch for
image datasets. We use the model from Carlini and Wagner [5] for MNIST and
ResNet18 from PyTorch for CIFAR10. The pre-trained models are available in
our repository. We remove the misclassified examples and sample 1000 images for
generating adversarial examples and another 1000 for validating the detectors
from the test set. We acquire all tabular data from the UCI ML repository1. All
tabular data use a 60-20-20 split. The SVM and Decision Trees (DT) models
for tabular data use the default parameters. Additional datasets are tested and
included in our repository.

1 Source: https://archive.ics.uci.edu/ml.

https://github.com/changx03/baard
https://archive.ics.uci.edu/ml/index.php
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Fig. 2. Tuning hyperparameters for Baard at the minimal adversarial perturbation.
We first search for the optimal k, then tune the sample size m.

Attack Algorithms. We evaluated Baard and other detectors under various
attacks that are covered in Sect. 2, including PGD [15], APGD [6], CW-L2

[5], and DTA [18]. We additionally include the results for FGSM [8], Boundary
Attack [2], and DeepFool [16] in our repository. We define the adversary’s goal
to have examples misclassified as any class except the true one so all attacks are
untargeted. To test attack strengths, when there are multiple L-norm constraints,
we test both L∞ and L2 norm constraints. For each attack, we have considered a
wide range of attack strengths. For instance, the parameter ε in APGD controls
the amount of perturbation allowed [6]. We set the minimal value to where the
attack has at least 95% success rate. The minimal ε for APGD is set to 0.22 and
4.0 for L∞ and L2 on MNIST, 0.01 and 0.3 on CIFAR10, respectively. In Table 1,
these values are used as the “Low” ε, and the “High” is set to at least double
the “Low” where there is a visible artifact on the example, but the legitimate
label is still recognizable.

Evaluation Metrics. We report the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC) curve as the performance metric. In
practice, a single threshold may be selected based on the False Positive Rate
(FPR). Hence, we also report TPRs when thresholds are chosen based on 5%
FPRs (TPR@5FPR) when comparing different detectors.

4.2 Detection Results

Parameter Analysis. We treat each stage as an individual detector when
tuning the hyperparameters. Since each stage’s performance directly links to k
and the sample size m is for speeding up the algorithm, we first find the optimal
k while using the entire training set, then use the optimal k to tune m.

The values of kS2 and kS3 are different. As shown in Fig. 2, kS2 in the Reliabil-
ity Stage becomes stable after the initial fluctuation. Reliability prefers a smaller
kS2 value, as it checks the closest representation of x in the training samples with
the same label as ŷ. Because Decidability finds neighbors from all training sam-
ples, a greater value of kS3 is preferred. Once kS2 and kS3 are chosen, the optimal
mS2 and mS3 should be the minimum value while maintaining the detector’s
performance. Because the Reliability Stage uses the in-class training subset, the
possible sample size is smaller than the Decidability Stage. Our results show that
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Fig. 3. Baard’s performance under decomposition against adversarial attacks with a
full range of perturbations.

the detector’s performance is sturdy after initial turbulence, suggesting that the
sub-sampling has minimal impact on the overall performance. The experiment
concludes that Baard requires minimal tuning. We set k to 5 and 100 and m
to 1000 and 5000 for the Reliability and Decidability Stages respectively for all
image datasets.

Ablation Study. We decompose Baard to investigate how each stage con-
tributes to the overall performance. Figure 3 shows AUCs at various adversarial
perturbations. Since attacks under a L∞ constraint result in a significant devia-
tion on the feature space [23], we find neither the S1 nor S2 score alone can detect
such attacks. In Fig. 3d, the Decidability Stage’s AUC (orange dotted line) goes
lower than 50% when ε ≥ 0.6, indicating that the correlation between the S3
score and the detector’s performance flip when ε increases. It means the classi-
fier becomes more confident with the misclassified predictions when ε increases,
leading to smaller S3 scores. Meanwhile, the S1 score becomes larger since the
attack makes significant changes to the input. A low AUC on one stage indicates
that stage alone is insufficient as a detector. However, by combining all stages,
the results show Baard is effective on a wide range of adversarial perturbations.

Fig. 4. Apply our Adaptive White-
box Targeted L2 Attack to CIFAR10;
When extreme parameters are used, it
transforms a benign example into the
target.

White-Box Evaluation. We address
the robustness of Baard against adap-
tive white-box attacks. To simultaneously
attack the classifier and Baard, the
attacks’ loss function is L∗ := L + LS1+
LS2 + LS3, where L is the term for
the evasion attack: L := −CrossEntropy
(f(x′), ytarget), and the rest of the terms
are the losses for each stage. Because none
of the stages are differentiable, a common
approach is to apply gradient approxima-
tion [11]. Tramer et al. [21] pointed out
that gradient approximation tends to fail when the loss function includes multi-
ple indifferentiable terms, a more robust approach is to find a target xtarget that
can pass the detector and use it as a reference. Hence, we propose an Adaptive



12 X. Chang et al.

Fig. 5. Baard’s performance against Adaptive White-box Targeted attacks. The accu-
racy indicates the classifier’s performance under such attacks.

White-box Targeted (AWT) attack as follows: we find the nearest neighbor from
the training data based on the same feature space Baard uses, as xtarget, and
then minimize the difference between x and xtarget to bypass S1 and S2. To avoid
f(·) making over confident predictions, we use f(xtarget) as a reference to bypass
S3. The new loss function becomes L∗ := −�(f(x), f(xtarget)) − c�(x,xtarget),
where both terms use the Mean Squared Error (MSE) loss and the hyperparam-
eter c controls the ratio on how much x moves toward to xtarget. As shown in
Fig. 4, if we relax the perturbation constraint ε and dial c to an extreme, the
adversarial example becomes indistinguishable from the target.

We present the evaluation of Baard against our AWT attacks in Fig. 5 with
c set to 1. The attack can successfully deceive the classifier and bypass S1 or
S3, but not all stages. Previous works show similar algorithms are effective on
detectors with multiple loss functions, such as the Odds detector [21]. We find
such attacks are ineffective on Baard, as three stages work together, which are
robust against AWT attacks under both L2 and L∞ constraints.

Gray-Box Benchmark. To benchmark the performance of Baard against
other detectors in Sect. 2, we use the same hold-out set to train logistic regres-
sion models for each dataset based on the features extracted from the detector.
Table 1 presents both the AUC and TPR values obtained by varying the thresh-
old of the regressors’ outputs. Baard performs consistently well across differ-
ent classifiers under attacks with various strengths, showing outstanding perfor-
mance on attacks with high perturbations. One outlier is the APGD attack with
an L2 constraint at a low ε on CIFAR10, where most detectors are weak, except
FS and Odds. However, FS and Odds are tuned explicitly for low perturbations
and completely fail to detect attacks with high perturbations. RC can apply
to any classifier in theory, but it only performs well in CW2. Meanwhile, the
detectors tailored to images and neural networks cannot apply to SVM and DT
classifiers. No detector performs reliably on the PGD attacks on the Breast Can-
cer dataset. However, Baard is substantially faster than detectors with similar
performance, such as LID, Odds, and ML-LOO. In conclusion, Baard is the
most versatile detector tested that can reliably detect adversarial examples with
various constraints on a wide range of classifiers.
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Table 1. Performance of detectors. The AUC scores (%) on the left are computed from
logistic regression. The right side shows the corresponding TPR at 5% FPR. “Low”
and “High” indicate perturbations allowed for the attack.

Attack CW2 CW2

Image
Data

             Perturbation

Detector
Low High Low High Low High Low High

RC 72.9 51.6 50.8 51.5 99.9 49.0 0.0 0.0 0.0 100.0

FS 99.7 74.0 73.7 68.1 100.0 99.3 1.7 26.1 3.3 100.0

LID 60.6 98.1 43.4 80.8 62.8 17.5 91.8 6.6 43.3 14.3

Odds 98.9 99.7 96.5 96.4 95.7 97.8 100.0 81.4 79.5 76.5

ML-LOO 99.8 100.0 93.2 100.0 60.0 99.2 100.0 70.9 100.0 10.8

PN 89.7 62.1 55.3 54.3 97.1 64.9 7.0 9.7 4.9 89.0
BAARD 97.0 98.4 92.8 96.8 96.0 84.4 92.8 61.2 82.6 77.0

RC 49.6 54.8 55.9 54.7 99.4 4.7 0.0 12.1 0.0 98.5

FS 95.7 70.7 95.1 82.5 90.7 75.7 24.7 78.8 42.5 6.9

LID 82.2 99.2 63.4 98.7 40.7 44.0 96.5 22.3 94.2 13.0

Odds 98.0 67.4 97.2 80.9 96.1 95.2 0.2 95.5 2.6 83.1

ML-LOO 67.0 99.6 58.6 99.2 66.4 28.0 98.9 16.8 97.5 10.8
PN 76.6 54.2 75.4 58.1 66.8 18.1 7.5 17.0 9.7 10.8

BAARD 81.6 100.0 70.2 99.2 89.0 35.4 100.0 16.4 96.1 85.2

Tabular
Data

Attack

(Model)

DTA

(DT)

DTA

(DT)
RC 79.7 99.0 86.4 46.0 100.0 63.4

FS, LID, etc. - - - - - -

BAARD 96.5 100.0 95.9 87.0 100.0 89.9

RC 65.0 75.2 97.2 0.0 0.0 82.6
FS, LID, etc. - - - - - -

BAARD 77.7 52.0 96.8 21.8 7.6 85.8

Breast

Cancer

MNIST

(CNN)

CIFAR10

(ResNet18)

PGDinf

(SVM)

PGDinf

(SVM)

Banknote

AUC-ROC (%) TPR@FPR5 (%)
APGDinf APGD2 APGDinf APGD2

100.0

75.0

50.0

25.0

0.0

100.0

87.5

75.0

62.5

50.0

5 Conclusion and Future Work

In this paper, we connected two previously unlinked domains: the Applicability
Domain (AD) in cheminformatics and adversarial detection in machine learning.
By sharing solutions to similar problems, both areas can benefit. We proposed
Baard, a novel adversarial detection framework inspired by AD. Our experi-
ments showed its robustness against various adversarial evasion attacks, includ-
ing those with strong perturbations. Baard is portable and versatile enough
to work with any classifier, removing the need for redesigning a defense. Our
framework overcomes challenging issues in the field while maintaining compa-
rable performance. In future research, we will explore how the insights we have
gained from adversarial detection can be transferred into cheminformatics.
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Abstract. How can we detect traffic disturbances from international
flight transportation logs, or changes to collaboration dynamics in aca-
demic networks? These problems can be formulated as detecting anoma-
lous change points in a dynamic graph. Current solutions do not scale
well to large real world graphs, lack robustness to large amount of node
additions / deletions and overlook changes in node attributes. To address
these limitations, we propose a novel spectral method: Scalable Change
Point Detection (SCPD). SCPD generates an embedding for each graph
snapshot by efficiently approximating the distribution of the Laplacian
spectrum at each step. SCPD can also capture shifts in node attributes
by tracking correlations between attributes and eigenvectors. Through
extensive experiments using synthetic and real world data, we show that
SCPD (a) achieves state-of-the-art performance, (b) is significantly faster
than the state-of-the-art methods and can easily process millions of edges
in a few CPU minutes, (c) can effectively tackle a large quantity of node
attributes, additions or deletions and (d) discovers interesting events in
large real world graphs. Code is publicly available at https://github.com/
shenyangHuang/SCPD.git.

Keywords: Anomaly Detection · Dynamic Graphs · Spectral Methods

1 Introduction

Anomaly detection is one of the fundamental tasks in analyzing dynamic
graphs [5,16,17], with applications ranging from detecting disruptions in traffic
networks, analyzing shifts in political environments and identifying abnormal
events in communication networks. In this work we focus on identifying anoma-
lous time points where the graph structure deviates significantly from the normal
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Fig. 1. SCPD utilizes the spectral density (approximated by Density of States (DOS))
to summarize the graph at each time point, change in DOS often indicate a change
in graph distribution. The DOS becomes skewed after the number of communities
decreases from ten to two in the SBM [10] hybrid experiment (see Sect. 5). The DOS
is plotted for step 75 and 76 while the inset plots show the adjacency matrix of the
graph.

behavior, also known as change point detection [12,13]. Detecting anomalies in
dynamic graphs offers several challenges: real world graphs are often very large,
their size can drastically evolve over time (e.g. nodes appearing and disappearing
in social network graphs where nodes represent users) and complex information
is associated with nodes in the graph (e.g., profile of users summarized as a set
of attributes for each node).

Prior work on change point detection are limited by one or more of the
following issues. 1). Lack of scalability : modern networks often contains millions
of edges and nodes, thus computationally intensive algorithms [12,14] can be
difficult to apply on graphs with more than hundreds of nodes. 2). Overlooking
attributes: many networks also contain a diverse set of node attributes which
evolve over time. No prior work has considered the evolution of node attributes
and its relation with the graph structure. 3). Difficulty with evolving sizes: real
networks grow over time with new nodes often forming a large portion of the
network. Methods such as [6,23] track a fixed set of nodes sampled from the
initial time step, and are thus limited to detect changes happening within the
initial set of nodes. Other approaches such as [12,13] summarize each snapshot
with a vector dependent on the size of the snapshot. Therefore, as the graph
grows, truncation on the summary vector is required to ensure a uniform vector
size for all snapshots.
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To address the above limitations, we propose Scalable Change Point Detec-
tion (SCPD), a novel change point detection method which detects both struc-
tural and node attribute anomalies in dynamic graphs. SCPD utilizes the distri-
bution of eigenvalues (also known as the spectral density) of the Laplacian matrix
as a low dimensional embedding of each graph snapshot. As change points induce
a shift in graph distribution, they also cause changes in the spectral density. We
leverage the Density of States (DOS) [4] framework to efficiently approximate
the spectral density, allowing SCPD to scale to dynamic graphs with millions of
nodes. Figure 1 illustrates the key idea of SCPD: to discretize the spectral den-
sity, the range of eigenvalues is divided into k bins and the number of eigenvalues
within each bin is computed. As such, the number of bins k is not dependent on
the size of the network. Therefore, SCPD can easily adapt to the evolving size
of a dynamic graph. The main characteristics of SCPD are:

– Accurate: We show that SCPD achieves state-of-the-art performance in
extensive synthetic experiments and can identify a number of major wars from
the co-authorship network MAG-History of the History research community
(while existing methods fail to adapt to the evolving size of this network).

– Scalable: SCPD has a linear time complexity with respect to the number of
edges and is highly scalable. For example, on the MAG-History dataset with
2 million edges, SCPD runs in 29 s on a stock laptop with CPU.

– Attributed: To the best of our knowledge, SCPD is the first method to incor-
porate node attributes into change point detection for dynamic graphs. On
our original COVID-flight dataset, SCPD leverages the country code of air-
ports (nodes) to identify traffic disturbances due to flight restrictions specific
to countries such as China and US.

2 Related Work

In this section, we review methods for change point and event detection. We
compare compared SCPD to other approaches in Table 1. Note that current
methods focuses on graph structural anomalies while SCPD is the first method
to incorporate node attributes and satisfies all the desired properties.

Event Detection Idé and Kashima [13] uses the principal eigenvector of the
adjacency matrix to represent the graph at each snapshot (called activity vec-
tor). Koutra et al. [14] formulated dynamic graphs as high order tensors and
proposed to use the PARAFAC decomposition [3,9] to obtain vector represen-
tations for anomaly scoring. SPOTLIGHT [6] was proposed to spot anomalous
graphs containing the sudden appearance or disappearance of large dense sub-
graphs.

Change Point Detection Wang et al. [23] modeled network evolution as a
first order Markov process and use MCMC sampling to design the EdgeMoni-
toring method. Recently, Huang et al. [12] proposed Laplacian Anomaly Detec-
tion (LAD) which uses the exact singular values of the Laplacian matrix of
each snapshot as the signature vector. SCPD employs a similar anomaly detec-
tion pipeline to LAD and also utilizes spectral information from the Laplacian
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Table 1. SCPD is the only scalable method that detects both events and change points
and also being the only method that accounts for attributes.
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Activity vector [13] � � � �

TENSORSPLAT [14] � �

EdgeMonitoring [23] � �

SPOTLIGHT [6] � � �

LAD [12] � � � �

SCPD [this paper] � � � � � �

matrix. However, computing Singular Value Decomposition (SVD) limits LAD
to small graphs while SCPD is scalable to millions of nodes and edges.

Network Density of States Dong et al. [4] borrowed tools from condensed
matter physics and added adaptation such as motif filtering to design an efficient
approximation method for spectral density in large networks. Huang et al. [11]
proposed a graph kernel which combines local and global density of states of
the normalized adjacency matrix for the graph classification task. ADOGE [18]
is an embedding method for exploratory graph analysis and graph classification
on static graphs. To the best of our knowledge, our proposed SCPD is the first
method to model spectral density for dynamic graphs.

3 Problem Formulation and Notations

We consider an undirected, weighted, dynamic graph G with node attributes
(optional), as a sequence of graph snapshots, {Gt}T

t=1. Each Gt = (Vt, Et,Xt)
represents the graph at time t ∈ [1 . . . T ], where Vt, Et are the set of nodes and
edges respectively, and Xt ∈ R

|Vt|×Na is the attribute matrix, where Na is the
number of attributes. An edge (i, j, w) ∈ Et connects node i and node j at time
t with weight w. We use At ∈ R

|Vt|×|Vt| to denote the adjacency matrix of Gt.
Attribute Change Point Detection The goal of change point detection is to

identify anomalous time steps in a dynamic graph, i.e. snapshots with graph
structures that significantly deviate from the normal behavior. This often
requires an anomaly score function measuring the graph structural difference
between the current snapshot and the average behavior observed previously. In
this work, we examine both events, one time change to the graph structure and
change points, permanent alterations on the graph generative process. To the
best of our knowledge, we are also the first work to incorporate node attributes
in change point detection. In addition to detecting change points in the graph
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structure, the goal of attribute change point detection is to also identify time
steps in which the alignment between node attributes and graph structure devi-
ates significantly from the norm. For example, in a network with communities, if
the distribution of an attribute conditioned on the community drastically change,
we say that an attribute change point has happened.

4 Scalable Change Point Detection

To detect anomalous snapshots, we embed each graph snapshot into a low dimen-
sional embedding called the signature vector based on the spectral density. Then,
the normal behavior of the graph in the past is summarized into a vector. Lastly,
we compare the signature from the current step with that of the past behavior
and derive an anomaly score.

Designing Signature Vector Identifying change points require the comparison
between multiple graph snapshot. In general, it is difficult to compare graphs
directly as shown in the graph isomorphism problem [24]. Therefore, we want to
embed each graph snapshot into a low dimensional vector, called the signature
vector and facilitate comparisons between vectors rather than graphs. In this
work, we choose the (global) density of states (DOS) of the Laplacian matrix as
the signature vector as it has the following desirable property: 1.)scalable, DOS
can scale to graphs with millions of nodes and edges, 2.)independent of graph
size, DOS produces a fixed sized embedding independent of the number of nodes
or edges in the graph, 3.) incorporates attributes, the local DOS can be used to
model the alignment between node attributes and eigenvectors thus can be used
to model attribute change points.

We use DOS to approximate the distribution of the Laplacian eigenvalues.
The Laplacian eigenvalues captures many graph structures and properties [21]
and have shown strong empirical performance for anomaly detection [12]. For
example, the number of zero eigenvalues of the Laplacian matrix is equal to the
number of connected components of the graph [22] and the eigenvectors of the
Laplacian matrix provide an effective way to represent a graph in a 2D plane [8].
In addition, the eigenvalues of the Laplacian and their multiplicity reflect the
geometry of many fundamental graphs such as complete graphs, star graphs and
path graphs. However, computing all Laplacian eigenvalues of a graph requires
O(|V| · |E|) which is only practical for small graphs, while computing DOS is
scalable to large graphs. Later in this section, we show how to compute DOS
efficiently and in Sect. 5 and 6, we demonstrate that DOS has state-of-the-art
performance in change point detection.

Computing Anomaly Score After computing the signature vectors for each
timestamp, now we explain how to detect anomalous snapshots. We assume
that when an anomaly arrives, it would be significantly different from recent
snapshots. Therefore, we extract the “expected” or “normal” behavior of the
dynamic graph from a context window of size w from the past w signature
vectors. To obtain unit vectors, L2 normalization is performed on the set of the
signature vectors σt−w−1, . . . , σt−1. Then, we stack the normalized vectors to
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form the context matrix Cw
t ∈ R

k×w of time t, where k is length of the signature
vector. We compute the left singular vector of Cw

t to be the summarized normal
behavior vector σ̃w

t (which can be seen as a weighted average over the context
window). Smaller context window can detect more sudden or abrupt changes
while a longer window can model gradual and continuous changes. Therefore,
we use a short window with size ws and a long window with size wl to detect
both events and change points.

Now we can compute the anomaly score at time t as Zt = 1 − σ�
t σ̃w

t

‖σt‖2‖σ̃w
t ‖2

=
1 − σ�

t σ̃w
t = 1 − cos θ where cos θ is the cosine similarity between the current

signature vector σt and the normal behavior vector σ̃w
t . In this way, Z ∈ [0, 1]

and when Z is closer to 1, the current snapshot significantly different from the
normal behavior thus more likely to be an anomaly. The Z scores from windows
of size ws and wl are then aggregated by the max operation. To emphasize the
increase in anomaly score, we compute the difference in anomaly score with the
previous step with Z∗

t = min(Zt − Zt−1, 0). Finally, the points with the largest
Z∗ are selected as anomalies. We show the Z∗ score in all figures in this work.

Approximating Spectral Density For clarity, we drop the t subscript in this
Section. The Laplacian matrix L ∈ R

|V|×|V| is defined as L = D − A where
D ∈ R

|V|×|V|, A ∈ R
|V|×|V| are the diagonal degree matrix and the adja-

cency matrix. In this work, we use the symmetric normalized Laplacian Lsym =
D− 1

2 LD− 1
2 = I − D− 1

2 AD− 1
2 to present the graph at each snapshot. Consider

the eigendecomposition of Lsym = QΛQT where Λ = diag(λ1, . . . , λ|V|) and
Q = [q1, . . . ,q|V|] is an orthogonal matrix. We can now define Density of States
or the spectral density as,

Definition 1 (Density of States (DOS)). the global density of states or spec-
tral density induced by Lsym is:

μ(λ) =
1

|V|
|V|∑

i=1

δ(λ − λi) (1)

where δ is the Dirac delta function and λi is the i-th eigenvalue.

Intuitively, μ(λ) measures the portion of eigenvalues that are equal to λ. In
practice, we discretize the range of λ into equal sized intervals and approximate
how many λ falls within each interval. Therefore, across all intervals, the shape of
the distribution of eigenvalues are approximated. We use the Kernel Polynomial
Method (KPM) [4] to approximate the density function through an finite number
polynomial expansion, in the dual basis of the Chebyshev basis and the spectrum
is adjusted to be in [−1, 1] for numerical stability. To incorporate attributes, we
also consider Local Density of States:

Definition 2 (Local Density of States (LDOS)). For any given input vector
v ∈ R

N , the local density of states is:

μ(λ;v) =
|V|∑

i=1

|vT qi|2δ(λ − λi) (2)
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where v is an input vector, λi, qi are the i-th eigenvalue and eigenvector.

The term vT qi acts as a weight on the ith bin of the spectral histogram. To
incorporate node attributes, we set v = x where x ∈ R

|V| is an attribute vector.
This can be interpreted as the alignment between the node attribute vector and
the graph structure of the group of nodes with such attribute. As the alignment
is measured in each eigenvalue interval (similarly to DOS), we obtain a LDOS
embedding of size k for each attribute and each possible category. By tracking
this embedding over time, one can capture anomalous evolution specific to the
given attribute. Here, categorical attributes are one-hot encoded, and numeri-
cal attributes are normalized by the sum. We use the Gauss Quadrature and
Lanczos (GQL) [4] method to approximate the LDOS with attribute vectors.

Computational Complexity For unattributed dynamic graphs, SCPD has the
complexity of O(Nz · Nm · |E|) for a given snapshot with |E| edges. Nz, Nm are
hyperparameters in the KPM computation representing the number of probe
vectors and Chebychev moments respectively. For all experiments, we set Nz =
100, Nm = 20. We also use k = 50 equal sized bins in the range of eigenvalues.

For attributed dynamic graphs, we use the GQL method to compute LDOS
for attribute change point detection. GQL method performs the eigendecompo-
sition of a tridiagonal matrix with O(|V|2) worst case complexity. Note that in
practice, such computation is very fast [18]. Therefore, for a given attribute on a
dynamic graph, SCPD’s time complexity is O(η · |E|+ |V|2) for a given snapshot.
In practice, SCPD is very fast only costing 5 seconds to run on the COVID flight
network with close to 1 million edges and 5 node attributes with an AMD Ryzen
5 1600 Processor and 16GB memory.

5 Synthetic Experiments

In this section, we conduct experiments with the Stochastic Block
Model (SBM) [10] and the Barabási-Albert (BA) model [1] as synthetic graph
generators and plant 7 ground truth anomalies for all experiments. We report
the Hits@n metric same as in [12] and the execution time over 5 trials.

SBM Hybrid Experiment We follow the Hybrid setting in [12]. SBM [10] is
used to generate equal sized communities with pin being the intra-community
connectivity and pout being the cross-community connectivity. Change points
are the merging or splitting of communities in the dynamic graph and events are
one-time boosts in cross-community connectivity pout. Figure 1 shows that SCPD
perfectly identifies all the events and change points on a dynamic SBM graph.
We also visualize the signature vectors (the computed DOS or distribution of
eigenvalues) as a heatmap. The events (time point 16,61,91,136) corresponds to
an energetic burst in the signature vector. And the change points correspond to
the shifts in the distribution of Laplacian eigenvalues. Interestingly, the width
of the distribution seem to correlate with the number of communities Nc.

BA Experiment We evaluate SCPD performance in a different graph distri-
bution, the BA model. In this experiment, the change points correspond to the
densification of the network (parameter m, increased number of edges attached
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Table 2. SCPD can efficiently operate on large graphs while achieving the state-of-
the-art performance. Each dynamic graph has 151 time steps. The results are Hits@7
averaged over 5 trials and the mean and standard deviations are reported. We consider
a method not applicable (N/A) if the computation takes longer than 5 d.

Generator SBM BA

Experiment Hybrid Evolving Size Change Point

Total Edges (millions) 0.8 m 56.9 m 1.0 m 0.6 m 5.5 m

SCPD (ours) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

LAD [12] 1.00 ± 0.00 N/A 1.00 ± 0.00 1.00 ± 0.00 N/A

SPOTLIGHT [6] 0.31 ± 0.06 0.57 ± 0.00 0.20 ± 0.07 0.06 ± 0.07 0.11 ± 0.11

SPOTLIGHTs 0.71 ± 0.00 0.71 ± 0.00 0.31 ± 0.06 1.00 ± 0.00 1.00 ± 0.00

EdgeMonitoring [23] 0.06 ± 0.11 0.00 ± 0.00 0.14 ± 0.00 0.06 ± 0.07 0.17 ± 0.11

from a new node to an existing node). SCPD is able to detect all change points
in the BA model and the most drastic change in DOS happens when m changes
from one to two and the graph becomes connected. This is because the number
of zero eigenvalues in the Laplacian matrix corresponds to the number of con-
nected components in the graph thus when the graph is connected, the smallest
eigenvalue intervals become less energetic.

SBM Attribute Experiment We want to demonstrate SCPD’s ability to detect
anomalous evolution of the node attributes in a dynamic graph. A SBM model is
used to construct communities for nodes while each node has a binary attribute.
The attributes within a community can be either homogeneous or heterogeneous.
In a homogeneous community, all nodes have the same attribute while half of
all communities have label one while the other half have label two. In a hetero-
geneous community, each node has 0.5 probability being either one or two and
the node attribute is no longer dependent on community structure. The change
points are time points where the node attributes change to homogeneous or het-
erogeneous. SCPD is able to recover all change points (16,61,91 and 136) related
to node attributes and detect both the change from homogeneous communities
to heterogeneous ones as well as the reverse.

SBM Evolving Size Experiment We examine SCPD’s ability to adapt to the
evolving size of a dynamic graph (with a SBM as the graph generator). Initially,
there are two communities with 300 nodes each. Later on, additional nodes are
added and forming a total of 4 communities. Some change points involves only
nodes from the initial step while some involves only newly added nodes. Only
SCPD and LAD is able to correctly detect all anomalies while SPOTLIGHT and
EdgeMonitoring can only detect changes local to the initial set of nodes. This
shows that SCPD can effectively adapt to the evolving size of dynamic graph.

Summary of Results Table 2 compares the performance of SCPD with state-
of-the-art methods on synthetic experiments. The SBM attribute experiment is
not included as only SCPD can incorporate node attributes. The considered base-
lines include LAD [12], SPOTLIGHT [6] and EdgeMonitoring [23]. The original
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Fig. 2. Compute time comparison between different methods on the SBM hybrid exper-
iment with varying number of edges.

SPOTLIGHT (with RRCF [7] detector) and our own variant, SPOTLIGHT with
sum predictor, called SPOTLIGHTs are both included. Across all experiments,
SCPD has the best overall performance. With the default RRCF anomaly detec-
tion pipeline, SPOTLIGHT [6] performs poorly on the BA model and middling
performance on the SBM hybrid experiment. With the simple sum predictor
introduced by us, SPOTLIGHTs is a much closer competitor with strong per-
formance on the BA model and improved performance on the SBM hybrid exper-
iment. However, SPOTLIGHTs is still not able to detect changes in the evolving
size experiment and overall outperformed by SCPD. EdgeMonitoring [23] has
low performance in the synthetic experiments due to its dependency on node
ordering as well as the assumption that only a small percentage of edges would
be resampled in a dynamic graph. The closest competitor to SCPD is LAD [12].
However, computing all the eigenvalues in LAD is prohibitively expensive on
large graphs thus reported as not applicable.

In Fig. 2, we compare the computational time across different methods in the
SBM hybrid experiment. The most expensive is LAD as it has worst case com-
plexity cubic to number of nodes thus having poor trade-off between performance
and efficiency. In contrast, both SCPD and SPOTLIGHT has complexity linear
to the number of edges. However, SCPD outperforms SPOTLIGHT across all
experiments shown in Table 2. Therefore, SCPD has the best trade-off between
compute time and performance. Lastly, EdgeMonitoring has sublinear complex-
ity to the number of edges however its performance is not ideal.

6 Real World Experiments

We empirically evaluate SCPD on two real world dynamic networks and cross
reference anomalies detected by SCPD with significant events.

MAG History Co-authorship Network MAG-History is a co-authorship
dynamic network extracted from the Microsoft Academic Graph (MAG) [2,20]
by identifying publications which are marked with the”History” tag. The pro-
cessed dataset is an undirected dynamic graph from 1837 to 2018. There are 2.8
million projected edges across all time steps and 0.7 million nodes in total. To
compute the DOS embedding for this dataset, SCPD only takes 30 s.
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Fig. 3. SCPD detects significant historical events from the MAG-History dataset.

Fig. 4. a). SCPD detects the week of 03.17 and 03.24 as structural anomalies in the
global flight network in 2020. On 03.17, the European Union closed its borders to
travellers thus causing wide spread disruption in international flights. b). SCPD detects
closure of flight routes to China due to COVID interventions at beginning of Feb 2020.
The anomaly score and case numbers are normalized.

Figure 3 shows the anomalies detected by SCPD. Interestingly, many of the
anomalies correspond to important historical events such as the American Civil
War (1861–1865), Adolf Hitler’s rise to power (1934), Second World War (1939–
1945), First Kashmir War (1947–1948) and Korean War (1950–1953). The rela-
tion between the change in co-authorship graph structure and these historical
events can be an interesting direction for future work. In Comparison, both
variants of SPOTLIGHT miss the second world war as a top anomaly while
EdgeMonitoring’s output is noisy and many data points sharing high anomaly
scores.

COVID Flight Network the COVID flight network1 [15,19] is a dynamic air
traffic network during the COVID-19 pandemic. The nodes are airports and
each edge is an undirected timestamped tracked flight with the frequency as
edge weight. We examine the period from 01-01-2020 to 07-27-2020. We use a
full week as the duration of each snapshot to reduce the noise and variability

1 https://zenodo.org/record/3974209/#.Yf62HepKguU.

https://zenodo.org/record/3974209/#.Yf62HepKguU
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from daily flights. Figure 4a shows the graph structural anomalies detected by
SCPD using the DOS embeddings as signature vectors. The two weeks with the
highest anomaly scores are 03-17-2020 and 03-24-2020. On 03–17, the European
Union adopted a 30-day ban on non-essential travel to at least 26 European
countries from the rest of the world (see here). On 03–11, the US President
banned travel from 26 European countries. SCPD detects the disruptions by
travel bans in the flight network. In comparison, SPOTLIGHT detects the week
of 02–11 corresponding to flight restrictions on China while EdgeMonitoring also
detects mid March as anomalies.

Figure 4b shows SCPD’s anomaly scores when the node attribute is set to be
an indicator vector for which nodes are Chinese airports. The detected anoma-
lies lie mainly in February and early March because the COVID outbreak was
first detected in China in January 2020. On 01-31-2020, the Trump administra-
tion suspended entry into the United States by any foreign nationals who had
traveled to China in the past 14 d (see here). Therefore, the anomaly observed
by SCPD on the week of 02-04-2020 is likely the directed result of the imposed
travel restriction. Note that Fig. 4b shows that the peak of new daily cases in
China2 corresponds to peak in anomaly score, likely because of reduced domestic
and international flights at that time. SCPD captures both the structural and
attribute anomalies in the flight network.

7 Conclusion

In this work, we proposed a novel change point detection method: SCPD, to
detect anomalous changes in the graph structure as well as node attributes in
a dynamic graph. SCPD approximates the distribution of Laplacian eigenvalues
as an embedding for the graph structure and Local DOS embeddings to measure
the alignment between node attributes and the eigenvectors of the Laplacian at
different frequency intervals. On synthetic experiments, SCPD achieves state-of-
the-art performance while running efficiently on graphs with millions of edges.
On two real world datasets, SCPD is able to capture structural and attribute
change points corresponding to significant real world events.
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Abstract. Outlying Aspect Mining (OAM) is the task of identifying a
subset of features that distinguish an outlier from normal data, which is
important for downstream (human) decision-making. Existing methods
are based on beam search in the space of feature subsets. They need to
compute outlier scores for all examined subsets, and thus rely on simple
outlier scoring algorithms.

In this paper, we propose SOAM, a novel OAM algorithm based on
Sum-Product Networks (SPNs), a class of probabilistic circuits that can
accurately model high-dimensional distributions. Our approach needs to
fit an SPN only once, and leverages the tractability of marginal inference
in SPNs to compute outlier scores in feature subsets. This way, com-
puting outlier scores in subsets is fast, while being based on a flexible
and accurate density estimator. We empirically show that SOAM clearly
outperform the state-of-the-art method in search-based OAM, and even
outperforms recent deep learning-based methods in the majority of
the investigated cases. (Available at github.com/stefanluedtke/Sum-
Product-Network-OAM).

Keywords: Outlying Aspect Mining · Outlier Interpretation ·
Sum-Product Network

1 Introduction

The identification of uncommon or anomalous samples (outliers) in a dataset is
an important task in data science. Many outlier detection methods have been
proposed, including classical methods based on notions of distance or density
[8,18] as well as deep learning-based methods (see [12] for a review).

A less well investigated, but natural question is that of outlying aspect mining
[3,17,22]: Given a sample classified as an outlier, which properties (“aspects”) of
the sample are the cause for this classification, i.e., which properties are specif-
ically anomalous? This task has also been called outlier interpretation [9,24]
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or outlying subspace detection [25]. Figure 1 shows an example of OAM for the
Wisconsin Breast Cancer dataset: Here, the green outlier (malignant case) has
unusual texture and the red outlier has unusual shape, which can be relevant for
downstream tasks like therapy decisions.

Fig. 1. Two explanations generated for outliers in the WBC dataset. Contours illustrate
the (marginal) density of the SPN. Left: Features that best explain outlyingness of the
green sample. Right: Feature that best explain outlyingness of the red sample. (Color
figure online)

Most existing OAM methods are based on beam search to identify feature
subsets in which the outlier score of a sample is maximal [3,17,22,23]. They
require to compute outlier scores for each feature subset that is visited during
beam search, which can be computationally very costly. Therefore, they use
simple outlier scores, e.g. based on Kernel Density Estimators [3] or isolation
scores in Nearest Neighbor Ensembles (iNNE) [17].

In this paper, we show that Sum-Product Networks (SPNs) [16] can be used
for OAM in a natural way: SPNs are probabilistic models which can accurately
model high-dimensional, mixed discrete-continuous distributions, while provid-
ing tractable marginal inference. For OAM, we only need to train an SPN once on
the dataset, and can then compute outlier scores in feature subsets via marginal
inference in the SPN. This way, computing outlier scores in subsets is fast, but
based on a flexible and accurate density estimator. We call the resulting OAM
method SOAM (SPN-based Outlying Aspect Mining).

Additionally, runtime of outlier score computation in SPNs does not depend
on the feature subset size. Thus, in addition to the usual forward beam search,
it becomes possible to use a backward selection search that starts with a large
feature subset and prunes it iteratively. We find that both search strategies are
complementary: Forward search achieves best results for low-dimensional data,
and backward elimination is best for high-dimensional data.

We evaluate SOAM on a number of synthetic and real-world OAM tasks,
and compare it with two types of methods: Search-based OAM which works fully
unsupervised (like SOAM), and deep learning-based methods, which require out-
lier labels as additional inputs during training. SOAM outperforms the state-of-
the-art search-based OAM method [17], and even outperforms the deep learning-
based explanation methods [9,24] in the majority of the investigated cases.
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2 Preliminaries and Related Work

2.1 Outlier Detection and Outlying Aspect Mining

Outlier Detection is the following unsupervised learning task: Given a dataset
{x(1), . . . ,x(n)}, classify each sample as either normal or outlier. Outlier detec-
tion algorithms usually compute a scoring function f : X → R, which can be
used for outlier classification by classifying all samples with f(x) > t as outliers,
for a fixed threshold t.

There are different outlier detection methods that explicitly or implicitly
define f . Classical methods include, for example, isolation forests [8], local outlier
factor [2] or one-class support vector machines [18]. More recently, deep neural
networks have been used for this task [12]. Most relevant to this paper are
probabilistic methods, which assume that normal data was generated from a
distribution p(x; θ) with parameters θ. An outlier is a sample which is unlikely
to be drawn from p(x; θ). That is, they use the scoring function f(x) = −p(x; θ).
Parametric as well as non-parametric density estimators have been considered
for p(x; θ), e.g., Gaussian mixtures [15] or Kernel Density Estimation [19].

Outlying Aspect Mining. (OAM) is the task of retrieving a subset of features in
which a sample is specifically anomalous [3,17,23,25]. More formally, let D ⊆
{1, . . . , n} be a set of indices, and let xD denote the projection of x onto the
subspace indicated by D. OAM is the task of identifying D, such that f(xD) is
maximized for a given sample x.

The naive approach of computing f(xD) individually for each subspace
D ⊆ {1, . . . , n} quickly becomes infeasible due to the combinatorial explosion
in |D|. Therefore, existing OAM methods [3,17,23,25] usually perform a greedy
beam search that iteratively adds dimensions to D, and focus on simple scoring
functions f . For example, [3] use a kernel density estimator (KDE) to compute
outlier scores for each visited subspace. [23] build on this work, replacing the
KDE with a faster, grid-based density estimator.

To select the best subspace, simply returning the subspace D where f(xD) is
maximized is not usually not appropriate, because scoring functions for different
dimensionalities are usually not directly comparable [22]. Thus, dimensionality-
unbiased scores like z-score normalization

z(x,D,X) =
f(xD) − μ(XD)

σ(XD)
(1)

w.r.t. the training dataset X or a rank transformation have been proposed [3].
They allow to compare scores between different dimensionalities, thus allowing
to identify a subspace D in which xD is most outlying, relative to other samples.

OAM via Explainability Methods. In contrast to search-based OAM methods,
feature subsets that best explain the outlyingness of sample can also be obtained
via algorithm-agnostic, local explainability methods. Several methods tailored
towards the outlier detection task have been proposed [9,24]: COIN [9] learns a
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classifier ensemble that separates outliers from clusters of nearby normal data
and use the classifier weights as feature importance. ATON [24] trains a neural
network, consisting of an embedding layer and a subsequent self-attention layer.
From the attention weights, feature importance weights can be obtained, which
can be converted to an explaining feature subset by thresholding.

In both methods, the training data needs to contain outlier labels. When
these labels are computed by an outlier detection algorithm, they explain the
decisions of that outlier detector.

To emulate the OAM task, it is customary to apply the explanation methods
to the ground truth outlier labels. This way, explanations are not negatively
influenced by incorrect outlier labels, posing the most fair comparison to OAM
algorithms. This procedure has, for example, been used by the authors of COIN
and ATON to compare their methods to OAM methods [9,24].

2.2 Sum-Product Networks

Representation. A Sum-Product Network (SPN) [16] is a rooted directed acyclic
graph representing a probability distribution over a sequence of random variables
(RVs) X = X1, . . . , Xn. Each node represents a distribution pN over a subset
Xφ(N) ⊆ X, where φ(N) ⊆ {1, . . . , n} is called the scope of the node N . In
the following, ch(N) denotes the children of node N . An SPN contains tree
types of nodes: Leaf nodes, product nodes and sum nodes. A product node
represents a factorized distribution p(Xφ(N)) =

∏
C∈ch(N) pC(Xφ(C)). A sum

node represents a mixture distribution pN (Xφ(N)) =
∑

C∈ch(N) wC pC(Xφ(C))
with mixture weights wC . A leaf node directly represents a (tractable) univariate
or multivariate distribution. Decomposability (children of product nodes have
pairwise disjoint scopes) and completeness (children of sum nodes have identical
scope) ensure that an SPN actually represents a valid probability distribution.
By definition, the distribution represented by an SPN is the distribution defined
by its root node. Early research on SPNs focused on categorical distributions
or simple parametric leaf distributions like Gaussians [16]. More recently, SPNs
with piecewise polynomial leaf distributions have been used to model continuous
and mixed data [10].

Inference. The appealing property of SPNs is that any marginal distribution
p(X′=x′) for a subset X′ ⊂ X can be computed efficiently. Intuitively, this is
possible because summation over the marginalized RVs can be “pushed down”
into the leaf nodes of the SPN [14]. Thus, marginal inference reduces to marginal-
ization of the leaves and evaluating the internal nodes of the SPN once. As leaves
are usually chosen such that marginal inference in leaf distributions is possible
in constant time, marginal inference is linear in the number of nodes of the SPN.
Specifically, when the leaf distributions are univariate, the value of marginalized
leaves can simply be set to 1.

Learning. Early learning algorithms focused on structure learning [4,10,21].
Most prominently, LearnSPN [4] is a greedy structure learning algorithm, which
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creates a tree-structured SPN in a top-down fashion. It recursively tests for
independence of RVs (in which case it creates a product node and recurses), and
otherwise clusters the data into subsets, creates a corresponding sum node and
recurses. [10] proposed an extension of LearnSPN which also works for continu-
ous and mixed domains. Recently, [13] proposed a learning algorithm which first
initializes a random SPN structure and then learns parameters via EM. This
way, parameter learning can leverage fast, parallel GPU computations.

3 Outlying Aspect Mining via SPNs

The central challenge in OAM is to efficiently compute f(xD) for subspaces D.
For probabilistic outlier detection methods, this task is equivalent to computing
a marginal distribution f(xD) = −p(xD; θ). Such a marginal is obtained by
integrating over all RVs X \ XD. More formally, let D̄ = {1, . . . , n} \ D, and
denote D̄ = {D̄1, . . . , D̄k}. The outlier score in subspace D is given by

f(xD) = −p(xD; θ) =
∫

xD̄1

. . .

∫

xD̄k

p(x; θ) dxD̄1
. . . dxD̄k

(2)

Explicitly computing such marginals is intractable for many expressive density
estimators. Instead, the strategy taken by existing OAM methods [3,23] is to
project the training samples to the subspace D, and estimate the parameters of
the model p(xD; θ) from those samples.

We propose to use an SPN to represent the joint density p(x; θ). Time
complexity of evaluating a marginal probability in Eq. 2 is linear in the num-
ber of nodes of the SPN [16], independently of the number of RVs that are
marginalized—and irrespective of the number of original training samples, in
contrast to approaches that perform parameter estimation for each subspace.

In addition, SPNs are flexible and powerful density estimators, reaching state-
of-the-art performance in several density estimation tasks. Thus, they should be
able to accurately model p(x; θ), opening up the potential for increased OAM
performance, compared to conventional OAM methods that have to rely on
simple density estimators.

We call the resulting method SOAM (Sum Product Network-based Outly-
ing Aspect Mining). In the following, we discuss search strategies as well as
dimenionality selection strategies utilized in SOAM in more detail.

Search Strategies. As computing outlier scores for all 2n − 1 feature subspaces
quickly becomes infeasible with increasing number of features n, a search strat-
egy that only explores promising subspaces is required. Forward beam search,
which greedily adds features has been used for this task before [22]. More specif-
ically, the beam search keeps a set of B hypotheses (subspaces). In each step and
for each hypothesis, it greedily adds that feature to the hypothesis that maxi-
mizes the outlier score of the sample in the extended feature set. Search is carried
out until a maximum depth S. The search algorithm is shown in Algorithm 1.
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Algorithm 1. forwardBeamSearch(x,S,B,θ)
Input: Outlier x of dimensionality n, maximum explanation size S, beam width B,
distribution parameters θ (e.g., as an SPN)
Output: For each k ∈ {1, . . . , n}, a subspace D of size k in which xD is most
anomalous
D1 ← argLowest(B, D, θ,x) � Store B most outlying dimensions

D
(best)
1 ← argLowestDensities(1, D, θ,x) � Overall most outlying dimension,

needed as return value later
for k ∈ {2, . . . , S} do

Dk ← {}
for D

(i)
k−1 ∈ Dk−1 do � For all hypotheses, get all candidate subspaces of size k

Dk ← Dk ∪ {D
(i)
k−1 ∪ d | d ∈ D}

end for
Dk ← argLowest(B, Dk, θ,x)

D
(best)
k ← argLowestDensities(1, Dk, θ,x)

end for
return D

(best)
1 , . . . , D

(best)
S

function argLowest(B, Dk, θ,x) � B subspaces from Dk where x is least likely
L ← {p(xd; θ) | d ∈ Dk}
return {d | d ∈ Dk, rank(p(xd; θ), L) ≤ B}

end function

At depth k, each hypothesis consists of k features, and n − k features need
to be explored (where n is the overall number of features). Thus, up to depth k,
∑k

i=1 n − k < nk feature subspaces are explored per hypothesis. In SPNs, com-
puting an outlier score (a marginal probability density) amounts to evaluating
the SPN (with N nodes) once, resulting in an overall time complexity of beam
search-based explanation of O(N nS), where S is the maximum search depth.

Intuitively, beam search works well when a sample that has high outlier score
in a feature set of size k also has a high outlier score in one of the subsets of
size k − 1. When this is not the case, beam search can fail to find reasonable
explanations, as pointed out by [24].

To alleviate this problem, we propose a top-down, backward elimination
search strategy to identify outlying subspaces. Instead of greedily adding dimen-
sions, the search algorithm starts with the full feature set, and then greedily
removes one feature at a time, so that in resulting feature subspace, the outly-
ingness of the sample is maximal (compared to all other subspaces of that size).
The algorithm is shown in Algorithm 2. Intuitively, when a sample is an outlier in
k-dimensional subspace, it cannot be a complete inlier in any (k+1)-dimensional
subspace. Thus, starting from high dimensionality and only removing features
can lead to more accurate results than bottom-up beam search.

At iteration k of backward elimination, the feature subset consists of n − k
features. For each of the n− k subsets of size n− k − 1, an outlier score needs to
be computed. The algorithm runs for n iterations, resulting in

∑n
k=0(n−k) < n2
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Algorithm 2. backwardElimination(x,θ)
Input: Outlier x of dimensionality n, distribution parameters θ (e.g., as an SPN)
Output: For each k ∈ {1, . . . , n}, a subspace D of size k in which xD is most
anomalous
Dn ← {1, . . . , n}
for k ∈ {n − 1, . . . , 1} do

dk ← argmax
d∈D

p(xDk\d; θ)

Dk−1 ← Dk \ {dk}
end for
return D1, . . . , Dn−1

explored subsets. Thus, overall runtime complexity of backward elimination is
O(n2 N), where N is the number of nodes of the SPN.

Dimensionality Selection. Both beam search and backward elimination result in
an outlier score for each visited feature subset. As a last step, one of the subsets
needs to be selected as most outlying. Simply selecting the subset with lowest
outlier score might not be optimal, because scores for different dimensionalities
are usually not directly comparable. Specifically, the densities p(xD; θ) will typ-
ically be smaller for larger dimensionality of xD. [22] introduce dimensionality-
unbiasedness as a desideratum for outlier scores to allow for such comparison.
Dimensionality-unbiasedness can be achieved, for example, by z-score transfor-
mation (see Eq. 1). However, such transformations are computationally ineffi-
cient as outlier scores need to be computed for all samples instead of only the
query sample.

Instead, we propose to use the elbow method to select the optimal feature
subset size (which has been, for example, used for determining the optimal num-
ber of clusters in k-means clustering [1]): In real datasets, we often observe a
large difference between the minimal log density of all examined feature subsets
of size k and k+1 for a given sample. In this case, we assume the subspace of size
k + 1 as most outlying for that sample. More concretely, we compute differences
between subsequent lowest log density, and then return the lowest-dimensional
subspace where the difference is larger than a threshold κ. When a difference
of at least κ never occurs, we return the single feature with lowest univariate
density.

4 Experimental Evaluation

Goal of the experiments was to evaluate the performance of SOAM, compared
to state-of-the-art OAM methods. Specifically, we evaluated the F1 score of
retrieved outlying subspaces on a number of synthetic and real-word datasets.
Additionally, we compared the forward beam search (SOAMf ) and backward
elimination (SOAMb) search strategies for SOAM. Experiments regarding the
dimensionality selection strategies (elbow method, z-score transformation) and
runtime are shown in the supplementary material.
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4.1 Data Sets

Synthetic Datasets. We used 21 synthetic datasets1 created by [6]. Each dataset
consists of 10, 20, 30, 40, 50, 75 or 100 features (3 datasets per number of
features) and contains 1000 samples, 19 to 136 of which are outliers. The datasets
were created in such a way that each outlier is easily detectable in a pre-defined,
2- to 5-dimensional feature subset (which varies between outliers), but is an inlier
in any lower-dimensional projection of the data.

Real-World Datasets. Additionally, we evaluated OAM performance on nine
real-world datasets2 provided by [24]. To cope with the lack of ground-truth out-
lying subspaces, they created explanation labels as follows: First, each dataset
was reduced to its ten first principal components. Then, for each dataset and
each feature subset of that dataset, three outlier detection algorithms (Isolation
Forests [8], COPOD [7] and HBOS [5]) were applied to the subspace. The expla-
nation label of an outlier was defined to be the feature subset where the outlier
score is maximal (w.r.t. the algorithm). From the available twelve datasets, we
selected those nine datasets where at least one of the three outlier detection
algorithms could achieve more than 0.5 ROC AUC, to ensure that the notion of
outliers was sensible.

4.2 Experiments

We compared SOAM to the following state-of-the-art OAM algorithms:

– SiNNE [17] is the latest contribution in a line of search-based OAM algo-
rithms including [22,23]. Instead of its predecessors, the approach uses a
dimensionality-unbiased outlier score function that does not require post-hoc
normalization. It has been empirically shown to outperform other search-
based OAM methods [17].

– COIN [9] is an explainability method which fits a set of classifiers to a labeled
dataset to separate outliers from clusters of nearby normal data, and uses the
weights in the classifiers as feature importance values.

– ATON [24] is a state-of-the-art neural network model for outlier explantion
based on attention.

Note that COIN and ATON are explanation methods, i.e., in contrast to the
OAM methods SOAM and SiNNE, they require outlier labels as additional input.
Here, we supply COIN and ATON with the ground truth outlier labels during
training (which are available for these benchmark datasets), similar to [9,24], to
allow for the most fair comparison to OAM methods.

We used implementations of SiNNE, COIN and ATON provided by [24]3. We
used the SPFlow library [11] for fitting and inference in SPNs, and the LearnSPN
algorithm [4] for SPN structure learning.
1 Available at www.ipd.kit.edu/mitarbeiter/muellere/HiCS.
2 Available at github.com/xuhongzuo/outlier-interpretation.
3 github.com/xuhongzuo/outlier-interpretation.

www.ipd.kit.edu/mitarbeiter/muellere/HiCS
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Table 1. OAM performance (F1 score of retrieved relevant subspaces and F1 score
rank) for synthetic datasets. SiNNE did not finish in less than 5,000 s for D ≥ 30. Note
that COIN and ATON were additionally supplied with outlier ground truth labels
during training, which was not required by SOAM and SiNNE.

D SOAMf SOAMb SiNNE ATON COIN

10 0.867 (2) 0.799 (5) 0.86 (3) 0.806 (4) 0.933 (1)

20 0.668 (1) 0.646 (4) 0.65 (3) 0.589 (5) 0.667 (2)

30 0.562 (2) 0.676 (1) 0.54 (3) 0.497 (4) 0.427 (5)

40 0.399 (2) 0.634 (1) – 0.348 (3) 0.261 (4)

50 0.351 (2) 0.682 (1) – 0.3 (3) 0.227 (4)

75 0.355 (2) 0.698 (1) – 0.205 (3) 0.158 (4)

100 0.267 (2) 0.611 (1) – 0.154 (3) 0.118 (4)

Mean 0.496 (2) 0.678 (1) – 0.414 (3) 0.399 (4)

All SPN learning hyperparameters were set to fixed values across all exper-
iments and datasets: We used Gaussian leaf distributions for real features and
categorical leaf distributions for categorical features. During row splits, the data
was partitioned via EM for Gaussian Mixture Models, using 2 mixture compo-
nents. The Randomized Dependence Coefficient was used as independence test,
setting α = 0.6. For beam search, we used a fixed beam width of 10, and set
the elbow threshold to κ = exp(1). This choice of SPN hyperparameters was
based on [21]. Optimization of these hyperparameters on a validation set could
improve SOAM performance further, but was not attempted here as these fixed
parameters already achieved good performance.

In all cases, the entire dataset was used for fitting the models. SOAM and
SiNNE models were trained with fully unsupervised data, while COIN and
ATON additionally required the ground truth outlier labels. Outlier explana-
tion labels (i.e., for each outlier, the outlying subspaces) were only used for
evaluation.

5 Results

Synthetic Data. We first evaluated the quality of the explanations (in terms of
F1 score of retrieved dimensions) on the synthetic datasets. We evaluated both
forward beam search and backward elimination search.

Table 1 shows F1 scores of the different OAM methods. For each data
dimensionality D, mean F1 scores of the three datasets of that dimensionality
are reported. Both SOAM variants outperformed the state-of-the-art methods
(except for D = 10), with an increasingly large difference in F1 for increasing D.
With regards to the two search strategies, it can be seen that backward elimi-
nation outperformed beam search for higher-dimensional cases. SOAMb (SOAM
with backward elimination search) is the only method where F1 score did not
decrease substantially for larger data dimensionality, achieving good OAM per-
formance even for D = 100. We suspect that this is due to the fact that beam
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Table 2. OAM performance (F1 score of retrieved relevant subspaces and F1 score
rank) for real-world datasets. The three rows for each dataset correspond to the three
ground truth explanation labels. Note that COIN and ATON were additionally supplied
with outlier ground truth labels during training, which was not required by SOAM and
SiNNE.

dataset SOAMf SOAMb SiNNE ATON COIN

arrhythmia 0.742 (1) 0.726 (2) 0.564 (4) 0.676 (3) 0.367 (5)

0.635 (1) 0.577 (3) 0.499 (4) 0.596 (2) 0.398 (5)

0.695 (2) 0.751 (1) 0.473 (4) 0.557 (3) 0.273 (5)

ionosphere 0.644 (1) 0.488 (4) 0.482 (5) 0.622 (3) 0.629 (2)

0.59 (2) 0.452 (5) 0.454 (4) 0.671 (1) 0.573 (3)

0.658 (1) 0.564 (4) 0.433 (5) 0.618 (3) 0.647 (2)

letter 0.701 (1) 0.519 (5) 0.668 (2) 0.665 (3) 0.562 (4)

0.641 (2) 0.388 (5) 0.614 (3) 0.664 (1) 0.554 (4)

0.778 (1) 0.752 (2) 0.616 (3) 0.545 (4) 0.403 (5)

optdigits 0.754 (1) 0.45 (5) 0.654 (3) 0.671 (2) 0.607 (4)

0.725 (1) 0.472 (5) 0.622 (3) 0.672 (2) 0.593 (4)

0.887 (1) 0.871 (2) 0.58 (3) 0.557 (4) 0.298 (5)

pima 0.589 (2) 0.538 (5) 0.588 (3) 0.673 (1) 0.553 (4)

0.632 (2) 0.515 (5) 0.557 (4) 0.65 (1) 0.586 (3)

0.747 (1) 0.656 (2) 0.441 (4) 0.531 (3) 0.415 (5)

satimage 0.604 (2) 0.612 (1) 0.429 (5) 0.585 (3) 0.429 (4)

0.661 (2) 0.59 (3) 0.41 (5) 0.664 (1) 0.539 (4)

0.746 (2) 0.823 (1) 0.442 (4) 0.541 (3) 0.247 (5)

wbc 0.718 (1) 0.63 (2) 0.57 (4) 0.604 (3) 0.56 (5)

0.552 (2) 0.447 (5) 0.499 (3) 0.601 (1) 0.461 (4)

0.679 (1) 0.659 (2) 0.502 (5) 0.579 (4) 0.639 (3)

wineRed 0.436 (3) 0.366 (5) 0.505 (2) 0.661 (1) 0.429 (4)

0.432 (4) 0.367 (5) 0.493 (2) 0.652 (1) 0.45 (3)

0.491 (1) 0.407 (4) 0.361 (5) 0.481 (2) 0.408 (3)

wineWhite 0.526 (3) 0.454 (4) 0.531 (2) 0.619 (1) 0.436 (5)

0.469 (4) 0.428 (5) 0.528 (2) 0.605 (1) 0.497 (3)

0.569 (1) 0.529 (2) 0.388 (4) 0.479 (3) 0.38 (5)

Mean 0.641 (1) 0.557 (3) 0.515 (4) 0.609 (2) 0.479 (5)

search is susceptible to missing relevant dimensions when their number increases
(and the beam width stays constant), whereas backward elimination is more sta-
ble w.r.t. dimensionality.

Real Data. Next, we evaluated OAM performance on the real-world datasets
processed by [24]. The results for ATON, COIN and SiNNE were taken directly
from the paper introducing ATON [24]. Table 2 shows the empirical results. For
these datasets, SOAMf (with forward search) outperformed the state-of-the-art
in 17 out of 27 cases (63 %). Here, forward beam search generally outperformed
backward elimination, which is consistent with results for the synthetic data: As
these datasets were preprocessed to be at most 10-dimensional, forward beam
search with a beam width of 10 was still able to identify explanations correctly.

Overall, the empirical results are encouraging: For the high-dimensional syn-
thetic data, SOAM achieved a new state-of-the-art, and for the low-dimensional
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real-world data, our approach still outperformed state-of-the-art methods in 63%
of the cases (and did not require outlier labels, in contrast to COIN and ATON).

6 Discussion and Conclusion

In this paper, we proposed an OAM method that utilizes an SPN as density
estimator. SPNs are accurate, flexible density estimators, in contrast to density
estimators previously used for OAM. Due to the tractability of marginal inference
of SPNs, OAM is still efficient. We empirically showed that our approach can
retrieve subspaces where samples are most outlying more accurate than existing
methods, clearly outperforming state-of-the-art OAM methods, and even outper-
forming deep learning-based methods (which require outlier labels as additional
inputs) in the majority of the cases. Specifically, in contrast to existing meth-
ods, the proposed backward elimination search, enabled by used of SPNs, can
maintain a high accuracy when the data dimensionality increases.

Here, we only investigated OAM for tabular data. Applying SPNs to the
closely related task of image anomaly localization [20] is a possible next step.
For this task, efficient SPN training algorithms and implementations suitable for
image data, like the recently proposed Einsum Networks [13], are an attractive
option.
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Abstract. Anomaly detection is widely used in network intrusion detec-
tion, autonomous driving, medical diagnosis, credit card frauds, etc.
However, several key challenges remain open, such as lack of ground truth
labels, presence of complex temporal patterns, and generalizing over dif-
ferent datasets. This paper proposes TSI-GAN, an unsupervised anomaly
detection model for time-series that can learn complex temporal patterns
automatically and generalize well, i.e., no need for choosing dataset-
specific parameters, making statistical assumptions about underlying
data, or changing model architectures. To achieve these goals, we convert
each input time-series into a sequence of 2D images using two encoding
techniques with the intent of capturing temporal patterns and various
types of deviance. Moreover, we design a reconstructive GAN that uses
convolutional layers in an encoder-decoder network and employs cycle-
consistency loss during training to ensure that inverse mappings are accu-
rate as well. In addition, we also instrument a Hodrick-Prescott filter in
post-processing to mitigate false positives. We evaluate TSI-GAN using
250 well-curated and harder-than-usual datasets and compare with 8
state-of-the-art baseline methods. The results demonstrate the superi-
ority of TSI-GAN to all the baselines, offering an overall performance
improvement of 13% and 31% over the second-best performer MERLIN
and the third-best performer LSTM-AE, respectively.

Keywords: Anomaly detection · time series · unsupervised learning ·
generative adversarial networks

1 Introduction

Anomaly detection aims to identify sub-sequences of various lengths that are
considered abnormal within a context represented by data. Accurate and auto-
mated anomaly detection is crucial to a wide range of applications including
network security, smart manufacturing, autonomous driving, and digital health-
care. Time-series data is ubiquitous in almost all application domains; hence,
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time-series anomaly detection has been actively studied for years, especially
recently using machine learning. However, it remains a very challenging task
for three key reasons: (i) labels for abnormal data are often rare, preventing
proper training of supervised learning models; (ii) real-world time-series data
is often subject to noise and characterized by complex temporal patterns that
are difficult to identify; (iii) different datasets have different properties and thus
often require a specific choice of parameters (e.g., using domain knowledge) for
anomaly detectors to work well, making them hard to generalize.

To address these challenges, we propose a novel generative adversarial net-
work (GAN) architecture called TSI-GAN for unsupervised time series anomaly
detection. First, we encode the input time series to images to capture the tem-
poral correlation and various types of deviance present in the time series, which
explains part of our approach, TSI, which stands for Time Series to Images. This
encoding also allows us to leverage GAN’s outstanding performance on tasks of
image generation [6] and image-to-image translation [9]. Second, we design a
GAN with two critics and two generators that consist of convolutional layers
in order to reconstruct the encoded images and obtain effective reconstruction
errors. The purpose of the GAN is to learn a generalized distribution of normal
samples such that it produces reconstruction errors that are (i) large on anoma-
lous inputs and (ii) small on normal data even in the presence of noise and time
non-stationarity. We also take a fully nonparametric approach throughout our
design pipeline and as a result our model does not make any assumptions about
the underlying data and does not require choosing parameters for each dataset,
or altering model architectures like [25].

In addition, GAN-based methods typically sample a random latent and opti-
mize it using gradient descent as a separate step during inference to find the
latent representation that would yield an accurate inverse mapping for each
sample [11,18]. This is highly inefficient on large datasets and impractical for
real-time applications as proven by [25]. In contrast, we train an encoder-decoder
network in our GAN with cycle consistency loss to obtain the latent representa-
tion of the inverse mapping automatically and immediately, making our inference
almost instantaneous.

Third, as a further enhancement we address false positives (alarms), which
are often a pain point in existing anomaly detection methods. To this end, we
post-process the reconstruction errors using the Hodrick-Prescott filter [7] and
then combine the errors from two encoding channels using a weighted sum. This
way, we obtain a reliable anomaly score vector which leads to reduced false
positives.

In summary, this paper makes the following contributions:

– We introduce TSI-GAN, a novel convolutional cycle-consistent GAN architec-
ture that learns to reconstruct 2D-encoded complex 1D time-series data and
produces reliable reconstruction errors for detecting non-trivial time series
anomalies without any labels, and in real-time.

– We address the challenge of model generalization by taking a fully nonpara-
metric approach throughout our design pipeline. As a result, our method
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makes no assumptions about underlying data and requires no manual param-
eter choice, or changing model architectures.

– We mitigate false alarms as a common issue in anomaly detection, by post-
processing the reconstruction error using a filtering technique and a weighting
strategy.

– We benchmark TSI-GAN against eight state-of-the-art baseline methods on
250 well-curated and harder-than-usual datasets. The results validate our
approach as the best performer overall, with a large winning margin over
other methods.

Our results are fully reproducible, with code open-sourced at https://github.
com/LabSAINT/TSI-GAN.

2 Related Work

Due to the importance of anomaly detection in many applications, research in
this field has been active for years. While statistical methods are traditionally
applied, machine learning and especially deep learning-based approaches have
recently received increasingly more attention due to their attractive performance.
These methods can generally be classified into:

Proximity-based methods classify a data point as a point anomaly or
a sub-sequence as a collective anomaly when its locality is sparsely populated.
These methods can be further classified into cluster-based methods such as k-
means clustering [3], distance-based methods such as k-nearest neighbors [1],
and density-based methods such as DBSCAN [2]. The main drawback of these
methods when applied to time series anomaly detection is that they require the
number of anomalies to be known a priori and are unable to capture temporal
patterns. Time-series discord discovery [24] is a recently proposed distance-based
method that identifies very unusual subsequences in a time series. Under this
category, Nakamura et al. introduced MERLIN [13], which is considered to be the
state-of-the-art for anomaly detection in univariate time series and is included
as a baseline in our experiments.

Prediction-based methods try to predict future values of a time series
and classify a data point as an anomaly if the predicted value differs from the
real data by more than a specified threshold. Time series forecasting methods
such as ARIMA [15] can be used, but they often require extensive examina-
tion and preprocessing of data and are sensitive to parameters. Several deep-
learning approaches have been proposed to overcome these limitations. For exam-
ple, Hundman et al. [8] proposed an LSTM model with dynamic thresholding
(LSTM-DT) to make predictions and reduce false positives.

Reconstruction-based methods learn a latent low-dimensional represen-
tation of the input time-series data and try to reconstruct the input based on
the representation. The assumption is that anomalies will lose information when
mapped to the latent space and thus will not be reconstructed accurately, pro-
ducing a larger reconstruction error. Hence, reconstruction error is measured at
each time step and thresholding techniques are applied to detect the anomalies.

https://github.com/LabSAINT/TSI-GAN
https://github.com/LabSAINT/TSI-GAN
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Several deep learning approaches have been proposed including LSTM-based
Autoencoder (LSTM-AE) [14], Dense Autoencoder (DENSE-AE) [17], DONUT
[22] which uses a Variational Autoencoder (VAE), and GAN-based methods
[5,11,18]. TadGAN [5] presents a recent study using GAN to perform this task
and it is considered to be state-of-the-art in terms of GAN-based methods.

However, TadGAN uses 1-D representation and requires the sampling interval
of input data to be known for data preprocessing; otherwise, anomalies that do
not have extreme amplitude (either high or low relative to other points) will
not be detected. This is a notable limitation because most anomalies in the
real world are complicated rather than just simple amplitude spikes or dips.
Another related work is T2IVAE [23], which transforms time series to images
and uses VAE to reconstruct the input time series. However, VAEs are prone to
overfitting and often reconstruct anomalous samples quite accurately, resulting
in unreliable reconstruction errors. Even though T2IVAE attempts to reduce
this risk by employing an adversarial training strategy in the last five training
epochs, the overfitting effect remains rather prominent.

We take a GAN-based approach instead of VAE because we find that GAN
is strongly averse to the overfitting phenomenon when it comes to infrequent
anomalous samples and unlike TadGAN we 2D encode the input time series and
use CNN layers in our GAN to learn feature maps as if learning from images.
This way, we are able to encode temporal information/correlation and capture
various types of deviance and thus obtain more accurate and reliable anomaly
scores based on reconstruction errors.

There are also commercial tools including Microsoft Azure Anomaly Detec-
tor [16] and LinkedIn Luminol [12]. Azure uses spectral residual (SR) from the
saliency detection domain [16] and CNN to learn a discriminating threshold. The
output is a sequence of labels indicating if a particular timestamp is anomalous.
Luminol uses the Bitmap detector algorithm [20] which divides input time series
into chunks and calculates the frequency of similar chunks to calculate anomaly
scores. These commercial tools are included as baselines in our experiments as
well.

3 Encoding Time-series to Images

The core idea behind encoding the time-series to images is that if any time
step is anomalous, then the row and column corresponding to that time step
in the encoded image will be significantly different from other normal pixels
(see Fig. 1) and thus could be easily detected by a reconstruction-based model.
Consider an input time series X̊ = {x1, x2, ..., xT }, where T is the time series
length. We use a sliding window with window size W and step size S to divide
X̊ into N overlapping sub-sequences, X̊k = {xk+1, xk+2, . . . , xk+W }, where k =
0, . . . , N − 1 and N = �T−W

S �. We set W = 64 and S = 1 and convert each
window of size 64 into a two-channel image of size 64 × 64 × 2, using two time-
series encoding techniques: Gramian Angular Field (GAF) [19] and Recurrence
Plot (RP) [4].
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Fig. 1. Illustration of normal (top row) and anomalous (bottom row) windows encoded
by GAF and RP, for an example time-series.

3.1 Gramian Angular Field (GAF)

Given a sub-sequence X̊k = {xk+i}Wi=1 at time step k, GAF rescales all the
observations into the interval [−1, 1] and calculates X̄k = {x̄k+i}Wi=1, where

x̄k+i =
(xk+i − max(X̊k)) + (xk+i − min(X̊k))

max(X̊k) − min(X̊k)

Next, we represent each rescaled X̄k using polar coordinates, as radius r =
tk+i/W where tk+i ∈ N is the timestamp, and angular φ = arccos(x̄k+i) ∈ [0, π].
This polar conversion produces a one-to-one mapping with a unique inverse
function and preserves absolute temporal relation (as opposed to Cartesian
coordinates). Thus, we can identify the temporal correlation at different time
intervals by calculating the trigonometric sum between each point within the
sub-sequence:

XGAF
k = (X̄k)T ⊗ X̄k −

(√
I − (X̄k)2

)T

⊗
√

I − (X̄k)2

where XGAF
k is a W × W matrix, I is the unit row vector [1, 1, ..., 1] (X̄k is a

row vector too), and ⊗ represents outer product.

3.2 Recurrence Plot (RP)

A recurrence plot (RP) [4] is an image that represents the distance between
observations extracted from a sub-sequence time series. Given a sub-sequence
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window X̊k = {xk+i}Wi=1, we calculate a RP matrix XRP
k of dimension W × W

where each element at row a and column b is defined as

xRP
k,(a,b) = Θ(ε − ‖xk+a − xk+b‖), ∀a, b ∈ {1, · · · ,W} (1)

where Θ(·) : R → {0, 1} is a Heaviside function, and ε is a predefined distance
threshold. In this work, instead of using binary representation, we use raw dis-
tances ‖xk+a − xk+b‖ (without the need for choosing ε or Θ(·)) to construct the
RP matrix; the resulting 2D image will thus have more granularity scales of the
distances. In order to align RP images with GAF images on the same scale, we
scale the RP matrix into the range [−1, 1] before further processing.

3.3 Combining Two Channels

After encoding the series using GAF and RP, respectively, we treat them as two
channels and stack them along the channel axis to obtain:

Xk = Stack(XGAF
k ,XRP

k )

Since we have divided the original time series X̊ into N overlapping sub-sequence
windows of size W , and encoded each window as a 2-channel image of shape
[W × W × 2], we thus finally obtain a sequence of images X = {Xk}Nk=1.

4 The TSI-GAN Model

4.1 Model Architecture

Reconstruction-based anomaly detection methods learn a model that maps input
data (in our case, an image with two channels) to the latent low-dimensional
space and then reconstructs the input using the latent representation. The objec-
tive is to train a model that captures a generalized latent representation of the
normal patterns, such that anomalies will not be reconstructed accurately and
hence result in a larger reconstruction error. In our proposed method, we learn
two mapping functions, E : X → Z and G : Z → X , where X represents the
input domain, Z represents the latent domain for which Gaussian distribution
N (0, 1) is used. For any given input image at time step k, denoted by Xk, the
model tries to reconstruct it as Xk → E(Xk) → G(E(Xk)) ≈ X̂k.

The entire model architecture is presented in Fig. 2. We model the above
mapping functions as Generators, where E acts as an encoder which maps the
input image to the latent space using convolution layers, and G acts as a decoder
which transforms the latent representation to a reconstructed input image using
transposed convolution. We use two Critics Cx and Cz: Cx regulates the decoder
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G by trying to distinguish real images X from the reconstructed images G(E(x));
Cz regulates the encoder E by trying to liken the latent representation E(x) to
the Gaussian noise z. The L2-norm will be used in our cycle consistency loss
which we describe later in Sect. 4.2.

4.2 Loss Function and Training Strategy

We use two loss functions: (1) Wasserstein loss, to match the distribution of
generated images with the distribution of input images, and (2) cycle consistency
loss, to ensure the desired mapping route Xk → Zk → X̂k.

Wasserstein Loss: We train the generator G and its critic Cx with Wasserstein
loss:

min
G

max
Cx∈Cx

LX(Cx,G) � Ex∼PX
[Cx(x)] − Ez∼PZ

[Cx(G(z))] (2)

Similarly, for Encoder E and its Critic Cz, the loss function is defined as:

min
E

max
Cz∈Cz

LZ(Cz, E) � Ez∼PZ
[Cz(z)] − Ex∼PX

[Cz(E(x))] (3)

where Cx and Cz are the set of all the 1-Lipschitz functions.
We also add a gradient penalty regularization term to both (2) and (3) to

ensure a 1-Lipschitz continuous Critic so that Wasserstein Loss validly approxi-
mates the Earth Mover’s Distance [10]. The complete architecture is presented
in Table 1 and Fig. 2.

Fig. 2. TSI-GAN model architecture: E is the encoder
and G the decoder; Cx and Cz are the critics.

Cycle Consistency Loss:
The GAN model described
above is able to map Xk to
a desired Zk. However, the
inverse mapping of Zk back
to X̂k is not guaranteed by
training with just Wasser-
stein losses alone. This is
because those losses only
ensures distribution similar-
ity but not instance simi-
larity. To this end, Schlegl
et al. [18] proposed an iter-
ative approach where they
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sample a random latent and optimize it using gradient descent as a separate
step during inference to find the best Zk that would generate G(E(Xk)) that is
most similar to the input image Xk. However, this method suffers from large
search space and is inefficient for large datasets and real-time applications, as
shown by Zenati et al. [25]. Hence, we use cycle-consistency loss [26] to train the
generators E and G:

min
E

LCL(E) � Ex∼PX
‖x − G(E(x))‖2 + Ez∼PZ

‖z − E(G(z))‖2 (4)

For G we only use the forward consistency loss, as the backward consistency loss
(i.e., Ez∼PZ

‖z−E(G(z))‖2) has been integrated into (4) and thus is not necessary
for G:

min
G

LCL(G) � Ex∼PX
‖x − G(E(x))‖2. (5)

Final Objective. Combining the objectives (2), (3), (4), (5) we arrive at the
final objective:

min
{E,G}

max
{Cx∈Cx,Cz∈Cz}

LX(Cx,G) + LZ(Cz, E) + LCL(E) + LCL(G) (6)

4.3 Post-processing and Anomaly Detection

Unlike other anomaly detection methods, we added a post-processing procedure
to achieve a more reliable detector, as follows. We then extract the reconstruction
error for each channel as εgaf and εrp (refer lines 1–5 in Algorithm 1). Calculat-
ing thresholds directly on the raw reconstruction error will lead to many false
positives. To mitigate this, we smooth the reconstruction error to suppress fre-
quently occurring minor error peaks which are usually caused by normal behav-
ior rather than anomalies. We use the Hodrick-Prescott filter [7] because of its
excellent capability of removing short-term fluctuations in data since we are only
concerned with peaks that persist for a sustained period of time. It extracts a
smooth trend r from a given sequence ε of length N by solving:

min
r

(
N∑

k=1

(εk − rk)2 + λ
N−1∑
k=2

[(rk+1 − rk) − (rk − rk−1)]2
)
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Algorithm 1: Anomaly Detection using TSI-
GAN
// Compute reconstruction errors

1 for k = 1, ..., N do

2 X̂k ← G(E(Xk))

3 X̂GAF
k , X̂RP

k ← extract GAF & RP channels from

X̂k

4 εgafk ← ∑W
i=1

∑W
j=1(X

GAF
k,i,j − X̂GAF

k,i,j )2

5 εrpk ← ∑W
i=1

∑W
j=1(X

RP
k,i,j − X̂RP

k,i,j)
2

// Post-processing to obtain anomaly scores

6 for ch ∈ {gaf, rp} do

7 εch ← HP(εch) // Hodrick-Prescott filter

8 peaksch ← find peaks(εch)

9 σch ← (peaksch[0]−peaksch[1])
peaksch[0]

+ 1

10 score vec ← σgaf × εgaf + σrp × εrp

// Detect anomalies

11 mean ← mean(score vec)
12 for k = 1, ..., N do

13 if score veck > mean then
14 predk = true
15 else

16 predk = false

17 Group consecutive predk’s into {seqi}Li=1

// Pruning to reduce false alarms

18 {mi} ← max({seqi})
19 {mi} ← sort({mi}, descending = true)

20 sort {seqi} in the same order of {mi}
21 for i = 1, ..., L do
22 pi ← (mi−1 − mi)/mi−1

23 if pi < θ then
24 reclassify {seqj}Lj=i as normal

25 break;

After smoothing εgaf
and εrp, we find the
local (neighborhood)
peaks in each chan-
nel and sort them in
descending order to cal-
culate a confidence level
σ ∈ [1, 2] for each chan-
nel:

σ =
peaks[0] − peaks[1]

peaks[0]
+1,

where peaks[0] and
peaks[1] are the first
and the second highest
peaks in the smoothed
reconstruction errors,
respectively. The idea
is that when the dif-
ference between these
two peaks is large, that
channel is assumed to
be more confident about
its detection of the ano-
maly and hence weighed
higher in the final ano-
maly score. This score
is defined by combining
the two reconstruction
errors εgaf and εrp using
their respective confi-
dence level (see line 10
in Algorithm 1). Here it
is defined as a vector (of
length N) because each

of the N windows will have an anomaly score. For the weight σ, if there are
multiple anomalies, the difference between peaks[0] and peaks[1] will be small
and thus σ will be smaller than the other channel if the other channel detects
a single outlier, which is desired since outliers are rare by definition and thus
single outliers are more likely than multiple. Otherwise, if both channels detect
multiple, they will be weighted by similar σ’s.

After obtaining the anomaly score for each window, we calculate the mean
anomaly score over all the windows and any window that exceeds this threshold
is flagged as an anomaly. Following that, consecutive anomalous windows will
be grouped together to form a sequence (i.e., collective anomaly). Finally, we
use an anomaly pruning approach (lines 17–25 in Algorithm 1) introduced by
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Hundman et al. [8], to further mitigate false positives. The above post-processing
and detection procedures are formulated in Algorithm 1.

5 Performance Evaluation

5.1 Datasets

We use the UCR 2021 anomaly detection dataset1 which contains 250 sub-
datasets collected from a variety of sources. Unlike commonly used datasets such
as Yahoo, Numenta, and NASA which are found to have numerous flaws [21]
including incorrect ground truth labels, triviality of the anomalies, and unrealis-
tic anomaly density, this UCR dataset is carefully curated, harder to detect and
is much more reliable. Moreover, this dataset contains a combination of point,
collective, and contextual anomalies as well as amplitude, seasonal, and trend
anomalies, which offers a good variety for evaluation.

Table 1. Architecture of our proposed TSI-
GAN. Transp. Conv: Transposed Convolution;
BN: Batch Normalization; LN: Layer Normal-
ization respectively; LReLU: LeakyReLU; Lrn.
rate: learning rate.

Operation Kernel Strides Units BN? Activation

Encoder
Convolution 7 × 7 3 × 3 48 � ReLU
Convolution 5 × 5 3 × 3 96 � ReLU
Convolution 4 × 4 2 × 2 192 � ReLU
Convolution 2 × 2 1 × 1 z dim × −
Decoder

Transp. Conv 2 × 2 1 × 1 192 � LReLU
Transp. Conv 4 × 4 2 × 2 96 � LReLU
Transp. Conv 5 × 5 3 × 3 48 � LReLU
Transp. Conv 7 × 7 3 × 3 2 × Tanh

Critic X
Convolution 7 × 7 3 × 3 48 LN LReLU
Convolution 5 × 5 3 × 3 96 LN LReLU
Convolution 4 × 4 2 × 2 192 LN LReLU
Convolution 2 × 2 1 × 1 1 × −
Critic Z

Fully Conn. 50 LN ReLU
Fully Conn. 25 LN ReLU
Fully Conn. 1 × −

Hyperparams.
z dim 100 Lrn. rate (α) 1e-4 Iterations 5000

Optimizer RMSProp Wt decay (λwd) 1e-4 BatchSize 128

We choose a total of 6 cat-
egories from this dataset and
each category contains 4–13 orig-
inal sub-datasets; each original
sub-dataset comes with a dis-
torted duplicate by adding arti-
ficial fluctuations. Therefore, the
number of sub-datasets is dou-
bled. The only exception is the
Noise category in which the
sub-datasets are chosen from
multiple other categories with
Gaussian noise added. A brief
description of each category is
as follows: AirTemperature con-
sists of hourly air tempera-
ture between 03/01 and 03/31
from 2009 to 2019, collected
from CIMIS station 44 in River-
side, CA. PowerDemand consists
of Italian power demand data
between1/1/1995 and 5/31/1998.

1 UCR 2021 anomaly detection dataset: https://bit.ly/3V2n6FY.

https://bit.ly/3V2n6FY


TSI-GAN 49

Table 2. Statistics of Datasets used in our experiments.

Property Dataset

AirTemperature PowerDemand InternalBleeding EPG NASA T-1 Noise All datasets

# Sub-datasets 14 8 26 12 10 16 250

# Data Points 98208 239448 194992 359304 113488 629494 19353766

# Anomalous Points 398 1688 3018 1292 644 3134 49363

# (% tot.) 0.004% 0.007% 0.015% 0.003% 0.005% 0.004% 0.002%

InternalBleeding consists of the arterial blood pressure measurements of pigs.
EPG is collected from an insect known as Asian Citrus Psyllid, recorded using an
Electropalatography (EPG) apparatus. NASA T-1 is collected from NASA Mars
Science Laboratory (MSL) dataset that consists of spacecraft telemetry signals.
Detailed statistics of each category and all the datasets is presented in Table 2.

5.2 Performance Metrics

In real-world application scenarios, most anomalies happen in the form of collec-
tive anomalies and hence we use the window-based rules introduced by Hund-
man et al. [8]: (1) If an anomalous window overlaps any predicted window, a
true positive (TP) is recorded; (2) If a predicted window does not overlap with
any anomalous window, a false positive (FP) is recorded; (3) If an anomalous
window does not overlap with any predicted window, a false negative (FN) is
recorded. Based on this set of rules, we calculate Precision and F1-Score as the
performance metrics.

5.3 Experimental Results

Table 3 reports the average F1-Score on the original and distorted datasets for
each category, and in the last column, the F1-Score and Precision averaged over
all the 250 datasets.

Table 3. Average F1-Score on original and distorted datasets for each category, as
well as F1-Score and Precision averaged over all the 250 datasets.

Model
AirTemperature PowerDemand InternalBleeding EPG NASA T-1 Noise All 250 datasets

Orig. Distor. Orig. Distor. Orig. Distor. Orig. Distor. Orig. Distor. F1 Precision

TSI-GAN 1.0 0.833 0.667 0.667 0.846 0.474 0.5 0.556 0.933 0.267 0.479 0.468 0.445

MERLIN 0.054 0.18 0.04 0.071 0.926 0.721 0.354 0.191 0.613 0.6 0.49 0.414 0.402

LSTM-AE 0.389 0.611 0.375 0.583 0.654 0.308 0.222 0.444 0.533 0.333 0.208 0.355 0.301

DONUT 0.611 0.444 0.083 0.1 0.59 0.564 0.278 0.167 0.333 0.533 0.458 0.351 0.325

LSTM-DT 0.778 0.833 0.25 0.5 0.615 0.449 0.222 0.222 0.6 0.6 0.271 0.32 0.289

DENSE-AE 0.194 0.111 0.0 0.0 0.231 0.077 0.222 0.222 0.2 0.0 0.271 0.159 0.136

TadGAN 0.0 0.133 0.0 0.0 0.282 0.24 0.233 0.189 0.267 0.2 0.171 0.131 0.092

Azure 0.181 0.199 0.083 0.196 0.099 0.176 0.167 0.167 0.007 0.017 0.084 0.05 0.037

Luminol 0.022 0.021 0.078 0.089 0.118 0.046 0.037 0.088 0.009 0.014 0.019 0.049 0.021
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Fig. 3. Comparing all anomaly detection methods
against MERLIN in terms of F1 score averaged across
all 250 datasets, expressed as a percentage of improve-
ment.

Overall, it is observed
that TSI-GAN achieves
an F1-Score of 0.468 and
Precision of 0.445, out-
performing all the base-
line methods. More specif-
ically, TSI-GAN offers an
improvement of 13% and
31% on F1-score over
the second and the third
best methods, MERLIN
(0.414) and LSTM-AE
(0.355), respectively. We
note that 85–95% of the
improvement was attri-
buted to GAN, while 5-
15% was attributed to
post-processing. When the
individual categories are
considered, TSI-GAN performs the best on AirTemperature, PowerDemand,
EPG for both original and distorted datasets and wins over other methods by
a significant margin; it also offers competitive performance on other categories
(InternalBleeding, NASA-T1 Distorted, and Noise) as well.

Using MERLIN as a benchmark, we measure the performance difference
between each method and MERLIN in Fig. 3. It indicates that TSI-GAN is
the only one that offers a positive performance improvement while all the other
methods underperform MERLIN.

Among all the deep learning-based methods, LSTM-AE performs the best,
with an average F1-Score of 0.355; DONUT comes in second with a slightly lower
score of 0.351. We examine the possible reasons for their shortfall as compared
to TSI-GAN and how our approach overcomes them. As we mentioned earlier,
autoencoder-based methods carry the risk of overfitting anomalies during train-
ing, by reconstructing anomalous samples just as accurately as normal samples.
DONUT which employs VAE has this tendency as can be seen in Fig. 4. This
is also a plausible reason for the underperformance of other autoencoder-based
models such as LSTM-AE.

In contrast, TSI-GAN uses an adversarial training strategy which makes our
model largely immune to this behavior. However, while TadGAN and many
others alike also use adversarial learning, they are unable to capture anomalies
that are not amplitude spikes or dips unless dataset-specific parameters such as
sampling interval are known. The reason is that they do not instrument feature
engineering to capture anomalies that deviate in seasonality, trend, etc., and
therefore tend to only detect extremely high or low amplitude points in the
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Fig. 4. Illustration of TSI-GAN vs. DONUT vs. TadGAN when applied to an example
time series. The translucent red interval depicts the ground-truth anomaly. (Color
figure online)

Table 4. Training and Inference time of TSI-GAN

AirTemperature PowerDemand

# of Samples Total time Per-window time # of Samples Total time Per-window time

Training 7996 251 s 0.06 s 29772 246 s 0.01 s

Inference 4083 10 s 0.002 s 11862 27 s 0.002 s

input as can be observed in Fig. 4. It is the main reason why TadGAN only
performs well on datasets in which all anomalies are either amplitude spikes or
dips; such anomalies, however, are trivial to detect as pointed out by [21]. On the
other hand, TSI-GAN uses GAF and RP encoding which substantially enhances
its ability to detect various types of non-trivial deviance, as can be observed in
Fig. 4.

Time Efficiency. We report the training and inference time of TSI-GAN in
Table 4. The times are measured on a NVIDIA RTX 3070 GPU with 8GB of
VRAM along with AMD Ryzen 7 5800H @ 3.20 GHz CPU.

We can see that the training time remains almost constant irrespective of
the number of training samples, the reason is that we train for iterations and
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not epochs. More importantly, the inference time per window is only two mil-
liseconds, which signifies that TSI-GAN is well suited for use on rapidly arriving
streaming data.

6 Conclusion

In this paper, we introduce TSI-GAN, a novel convolutional cycle-consistent
GAN architecture that learns to reconstruct 2D-encoded time-series data and
produces effective and reliable reconstruction errors for detecting time series
anomalies. We also address the challenge of mitigating false alarms by post-
processing the reconstruction error using a filtering technique and computing
a reliable score by combining two channels. Our extensive experimental results
demonstrate that TSI-GAN outperforms 8 state-of-the-art baseline methods over
250 non-trivial datasets that are well-curated. We also provide an in-depth anal-
ysis of the baselines’ limitations and how our model addresses them. TSI-GAN
is unsupervised and generalizes well without the need for parameter calibration,
enabling it to be applicable to many applications that involve time series.
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Abstract. Ensuring fairness in anomaly detection models has received
much attention recently as many anomaly detection applications involve
human beings. However, existing fair anomaly detection approaches
mainly focus on association-based fairness notions. In this work, we tar-
get counterfactual fairness, which is a prevalent causation-based fair-
ness notion. The goal of counterfactually fair anomaly detection is to
ensure that the detection outcome of an individual in the factual world
is the same as that in the counterfactual world where the individual had
belonged to a different group. To this end, we propose a counterfactually
fair anomaly detection (CFAD) framework which consists of two phases,
counterfactual data generation and fair anomaly detection. Experimen-
tal results on a synthetic dataset and two real datasets show that CFAD
can effectively detect anomalies as well as ensure counterfactual fairness.

Keywords: Anomaly Detection · Counterfactual Fairness

1 Introduction

Anomaly detection, which aims to detect samples that are deviated from the nor-
mal ones, has a wide spectrum of applications. Recently, deep anomaly detection
models, powered by complex deep neural nets, have made promising progress in
effectively detecting anomalies. Besides effectiveness, researchers recently notice
the importance of taking the societal impact of anomaly detection into considera-
tion as many anomaly detection tasks involve human individuals. Fairness as one
fundamental component to build trustworthy AI has received much attention.
Recent studies have shown that anomaly detection models can incur discrimina-
tion against certain groups. For example, a deep anomaly detection model could
overly flag black males as anomalies [16]. In the scenarios of credit risk analysis,
anomaly detection models predict more females as anomalies [15].

Several fair anomaly detection models have been proposed, which ensure
no discrimination against a particular group based on the sensitive feature
[1,3,14–16]. However, these approaches mainly focus on achieving association-
based fairness notions like demographic parity. Recent studies have demonstrated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 55–66, 2023.
https://doi.org/10.1007/978-3-031-33374-3_5
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the importance of treating fairness as causation-based notions that concern the
causal effect of the sensitive feature on the model outcomes [2,8,11]. Counter-
factual fairness is one important causation-based fairness notion [9]. It considers
that a model is fair if, for a particular individual, the model outcome in the fac-
tual world is the same as that in the counterfactual world where the individual
had belonged to a different group. To the best of our knowledge, no studies have
been conducted to ensure counterfactual fairness in anomaly detection.

In this work, we focus on counterfactual fairness for anomaly detection with
the goal to ensure that the detection outcomes remain consistent in both the
factual and counterfactual worlds. Achieving counterfactual fairness for anomaly
detection is challenging. First, we can only observe the factual data. The coun-
terfactual data are unobservable and cannot be obtained by simply changing the
sensitive feature of the factual data. This is because the data generation is gov-
erned by an underlying causal mechanism where any intervention on one feature
will subsequently affect the values of other features. Second, in anomaly detec-
tion, we can only observe factual normal data. Building a detection model which
ensures the detection results be unchanged for individuals across the factual and
counterfactual worlds while also preserving high anomaly detection performance
imposes additional challenges.

To tackle the above challenges, we propose a Counterfactually Fair Anomaly
Detection (CFAD) framework. We do not require the knowledge of the causal
graph and structural equations but only assume that the data generation fol-
lows a generalized linear Structural Causal Model (SCM). We use an autoencoder
as the base anomaly detection model where the anomaly score of a sample is
derived based on the reconstruction error of the autoencoder. Then, we propose
a two-phase approach. In the first phase, motivated by [12] which leverages the
graph autoencoder for causal structure learning from observed data, we develop
an approach to generate counterfactual data based on a graph autoencoder. In
the second phase, we apply adversarial training [6,10] on a vanilla autoencoder
to achieve counterfactual fairness for anomaly detection. The idea is to ensure
that the hidden representations of factual and counterfactual data derived from
the encoder cannot be distinguished by a discriminator. As a result, the recon-
struction error, i.e., anomaly score, will not differ much between the factual and
counterfactual data, leading to similar detection results for both factual and
counterfactual data.

2 Preliminary

Structural Causal Model (SCM). Our work adopts Pearl’s Structural Causal
Model (SCM) [13] as the prime methodology for defining and measuring coun-
terfactual fairness. Throughout this paper, we use the upper/lower case alphabet
to represent variables/values.

Definition 1. An SCM is a triple M = {U, V, F} where

1) U is a set of exogenous variables that are determined by factors outside the
model. A joint probability distribution P (u) is defined over the variables in U .
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2) V is a set of endogenous variables that are determined by variables in U ∪V .
3) F is a set of deterministic functions {f1, . . . , fn}; for each Xi ∈ V , a

corresponding function fi is a mapping from U ∪ (V \ {Xi}) to Xi, i.e.,
Xi = fi(Xpa(i), Ui), where Xpa(i) ⊆ V \{Xi} called the parents of Xi, and
Ui ⊆ U .

An SCM is often illustrated by a causal graph G where each observed variable
is represented by a node, and the causal relationships are represented by directed
edges →. In this graphical representation, the definition of parents is consistent
with that in the SCM.

Inferring causal effects in the SCM is facilitated by the do-operator which
simulates the physical interventions that force some variable X ∈ V to take a
certain value x. For an SCM M, intervention do(X = x) is equivalent to replac-
ing original function in F with X = x. After the replacement, the distributions
of all variables that are the descendants of X may be changed. We call the SCM
after the intervention the submodel, denoted by M[x]. For any variable Y ∈ V
which is affected by the intervention, its interventional variant in submodel M [x]
is denoted by Y [x].

Counterfactuals. Counterfactuals are about answering questions such as for two
variables X,Y ∈ V , whether Y would be y had X been x in unit (or situation)
U = u. Such question involves two worlds, the factual world represented by M
and the counterfactual world represented by M[x], and hence cannot be answered
directly by the do-operator. When the complete knowledge of the SCM is known,
the counterfactual quantity can be computed by the three-step process:

1) Abduction: Update P (u) by evidence e to obtain P (u|e).
2) Action: Modify M by performing intervention do(x) to obtain the submodel

M[x].
3) Prediction: Use modified submodel M[x] with updated probability P (u|e) to

compute the probability of Y = y.

3 Counterfactually Fair Anomaly Detection

3.1 Counterfactual Fairness

We start by defining counterfactual fairness in the context of anomaly detection.
Following the typical anomaly detection setting, we assume a training set D =
{d(n)}N

n=1 which consists of N normal samples/individuals and a test set that
consists of both normal samples and anomalies. Each sample is given by d(n) =
{s(n), x(n)} where S denotes a binary sensitive variable and X = {Xi | i = 1 : m}
denotes all other variables (i.e., profile attributes). We then use Y to denote the
anomaly label. For representation, we use S = {s+, s−} to denote advantage and
disadvantage groups respectively, and use Y = {0, 1} to denote normal samples
and anomalies respectively. The goal is to learn a detection model for computing
an anomaly score g(x(n)) based on the profile attributes for each individual n,
which can be used to judge whether it is an anomaly.
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Fig. 1. Framework of CFAD

To define counterfactual fairness, similar to [9], for each individual d(n) we
consider its instance in the counterfactual world Ms by flipping the value of
its sensitive variable to the opposite s (i.e., s+ becomes s− and vice versa),
denoted by d

(n)
cf = {s, x

(n)
cf } where x

(n)
cf represents the profile attributes in the

counterfactual world. Note that x
(n)
cf may not be the same as x(n) due to the

causal relation between S and X in the underlying data generation mechanism.
Then, counterfactual fairness is defined as:

Definition 2. An anomaly detection model is counterfactually fair if for each
individual n we have g(x(n)) = g(x(n)

cf ).

3.2 Overview of Counterfactually Fair Anomaly Detection (CFAD)

The goal of CFAD is to train an anomaly detection model on D that can: (1)
effectively detect anomalies, and (2) ensure counterfactual fairness. To achieve
this goal, CFAD consists of two phases, counterfactual data generation and fair
anomaly detection. Counterfactual data generation is to generate a counter-
factual dataset Dcf = {d

(n)
cf }N

n=1 of D in which each counterfactual sample is
generated by the submodel which flips the value of the sensitive variable to its
counterpart. To this end, we assume a generalized linear SCM and develop a
novel graph autoencoder for data generation. In the second phase, we make use
of a standard autoencoder for anomaly detection where the anomaly score is
derived based on the reconstruction error. To achieve fairness, we develop an
adversarial training framework to train the autoencoder by taking the factual
and counterfactual data as inputs. The idea is to make the hidden representa-
tions of the autoencoder not encode the information of the sensitive variable so
that intervening the sensitive variable would not change the detection outcome.
Figure 1 shows the framework of CFAD.

3.3 Phase One: Counterfactual Data Generation

We assume that the data generation follows a generalized linear SCM, which is a
common assumption in gradient-based causal discovery. To ease representation,
we also assume that S has no parents in the SCM. Our method can easily extend
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to cases where S has parents by keeping the values of S’s parents unchanged
in the counterfactual world since the intervention on S has no influence on its
parents. Thus, W.L.O.G. the structural equation of each variable Xi in X can
be written as follows.

Xi = A1,i · f(S) +
∑

Xj∈Xpa(i)\{S}
Aj,i · f(Xj) + Ui, (1)

where f(·) can be any linear/nonlinear function and Aj,i is an element in the
adjacency matrix A ∈ R

(m+1)×(m+1) which indicates the weights of the general-
ized linear SCM. Each sample d(n) = {s(n), {x

(n)
i | i = 1 : m}} satisfies Eq. (1).

Following the Abduction-Action-Prediction process, from Eq. (1), we have

u
(n)
i = x

(n)
i − A1,i · f(s(n)) −

∑

Xj∈Xpa(i)\{S}
Aj,i · f(x(n)

j ).

Meanwhile, by performing intervention to flip s(n) to its counterpart s, the
structural equation of counterfactual variable Xi[s] in the submodel M[s] of
Eq. (1) is given by

Xi[s] = A1,i · f(s) +
∑

Xj∈Xpa(i)\{S}
Aj,i · f(Xj [s]) + Ui. (2)

Note that S is fixed to s by the intervention and Ui is not affected by the
intervention. Denoting the counterfactual of d(n) by d

(n)
cf = {s, {x

(n)
i [s] | i = 1 :

m}}, it should satisfy Eq. (2). Thus, we have

x
(n)
i [s] = A1,i · f(s) +

∑

Xj∈Xpa(i)\{S}
Aj,i · f(x(n)

j [s]) + u
(n)
i ,

which leads to

x
(n)
i [s] = A1,i ·f(s)+

∑

Xj∈Xpa(i)\{S}
Aj,i ·f(x(n)

j [s])+x
(n)
i −A1,i ·f(s(n))−

∑

Xj∈Xpa(i)\{S}
Aj,i ·f(x(n)

j ). (3)

Finally, we compute the value of x
(n)
i [s] according to Eq. (3) following the topo-

logical order and derive d
(n)
cf from the observational data.

The challenge in the above derivation is how to estimate function f(·) and
adjacency matrix A of the SCM. Next, we develop a causal structure discovery
approach based on the graph autoencoder as proposed in [12].

Causal Structure Discovery. We estimate the adjacency matrix of the SCM
defined in Eq. (1) by a graph autoencoder model with parameters {θ1, φ1, Â}.
Specifically, an encoder is first adopted to derive the hidden representation of a
sample d(n), i.e., h(n) = Eθ1(d

(n)), where Eθ1(·) is parameterized by a multilayer
neural network. Then, the message passing operation is applied on the hidden
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representation, i.e., h′(n) = ÂT h(n), where Â is a parameter matrix. Finally, a
decoder is used to reconstruct the original input from h′(n), i.e.,

d̂(n) = Dφ1(h
′(n)) = Dφ1(Â

T Eθ1(d
(n))),

where Dφ1(·) is parameterized by a different multilayer neural network. Note
that both the encoder Eθ1(·) and the decoder Dφ1(·) work in a variable-wise
manner in order to preserve the order of the message passing in the SCM. To
train the graph autoencoder model, the objective function is defined as:

LGAE(A, θ1, φ1) =
1

2N

N∑

n=1

‖d(n) − d̂(n)‖22 + λ‖Â‖1 s.t. tr(eÂ�Â) − m − 1 = 0,

where the constraint tr(eÂ�Â) − m − 1 = 0 is to ensure acyclicity in the graph.
After training, matrix Â will be a good estimation of the adjacency matrix A.

One challenge in applying the graph autoencoder to our work is that,
although the graph autoencoder can accurately estimate the adjacency matrix
Â, it does not produce a good reconstruction of the input sample, which implies
that it does not accurately estimate the function f(·) in the SCM. In order to
generate the counterfactual data, the reconstructed sample with high fidelity is
critical. Hence, we improve the graph autoencoder by adding another decoder
that focuses on data reconstruction, where the trained matrix Â and the encoder
Eθ1(·) are reused in this step.

In particular, we similarly feed each sample d(n) to trained encoder Eθ1(·)
to obtain the corresponding hidden representation. Then, in order to be consis-
tent with the structural equations Eq. (1), different from [12] where the mes-
sage passing operation is applied in the representation space, we first use a new
variable-wise decoder Dφ′

1
to transform the hidden representation back to the

original data space, and then aggregate the message from the neighbors based
on matrix Â. As a result, the reconstruction process of each sample is given by
the following equation.

d̂(n) = ÂT Dφ′
1
(Eθ1(d

(n))).

The objective function is to reconstruct the input with Â and θ1 fixed:

LD(φ′
1) =

1
2N

N∑

n=1

d∑

i=1

‖d
(n)
i − d̂

(n)
i ‖22.

After training, we obtain the approximated mapping function f̂ = Dφ′
1
◦ Eθ1 .

Generating Counterfactual Data. Given estimated adjacency matrix Â and
function f̂ , for each sample d(n), we generate its counterfactual d

(n)
cf following the

Abduction-Action-Prediction process. We first intervene s(n) to its counterpart
s and compute f̂(s). Then, we sort all variables in X in a topological order and
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compute x̂
(n)
i [s] iteratively according to Eq. (3) where A and f are replaced by

their estimators Â and f̂ . Finally, we obtain D̂cf = {d̂
(n)
cf }N

n=1, where d̂
(n)
cf =

{s, {x̂
(n)
i [s] | i = 1 : m}}.

3.4 Phase Two: Fair Anomaly Detection

We use the autoencoder as the base model for anomaly detection, which is trained
to minimize the reconstruction errors of normal samples. It is worth noting
that a fully-connected autoencoder model is used here which is different from
the variable-wise autoencoder used in the previous section for counterfactual
data generation. Meanwhile, to achieve counterfactual fairness, we leverage the
idea of adversarial training to make the hidden representations derived by the
autoencoder not encode the information of the sensitive variable. To this end,
we develop a pre-training and fine-tuning framework to ensure the effectiveness
of anomaly detection as well as counterfactual fairness. The reason for adopting
the pre-training and fine-tuning training approach instead of the end-to-end
training is that some counterfactual samples in D̂ could be anomalies. If we
include all samples in D̂ to train the autoencoder model, the performance of
anomaly detection can be damaged. Hence, we use samples in D to pre-train the
autoencoder model. Then, during fine-tuning, we slightly update the autoencoder
so that the effectiveness of anomaly detection and counterfactual fairness can be
balanced. Finally, we do not use the sensitive variable and only use the non-
sensitive variables X to train the anomaly detection model.

To be more specific, in the pre-training phase, given the training set with
normal samples D, an encoder first maps each sample x(n) to a hidden repre-
sentation z(n) = Eθ2(x

(n)), and then a decoder aims to reconstruct the original
input from the hidden representation x̂(n) = Dφ2(z

(n)). The objective function
is to minimize the reconstruction error of normal samples:

LAE(θ2, φ2) =
1

2N

N∑

n=1

‖d(n) − Dφ2 ◦ Eθ2(x
(n))‖22.

After pre-training the autoencoder model, in order to achieve counterfactual
fairness, we further incorporate the adversarial training strategy to further fine-
tune the autoencoder model so that the hidden representation z(n) derived by
the encoder is free of the information of the sensitive variable. To this end, for
each sample d(n) = {s(n), x(n)} and its counterfactual sample d̂

(n)
cf = {s, x̂

(n)
cf },

we first derive the hidden representations, z(n) and z
(n)
cf , respectively, by feeding

them to the encoder Eθ2 . Then, a discriminator Cψ is applied on z(n) and z
(n)
cf to

predict whether the hidden representations are from observed or counterfactual
samples, which is a binary classification task. We parameterize the discriminator
Cψ by a multilayer neural network with the sigmoid function as the output layer
and use the negative of the standard cross-entropy loss for binary classification
tasks as the objective function to train the discriminator:

LC(θ2, ψ) =
1
N

N∑

n=1

[log(Cψ(z(n))) + log(1 − Cψ(z(n)cf ))].
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The discriminator is trained to accurately separate the hidden representations
of observed and counterfactual samples. Meanwhile, to make the hidden repre-
sentation derived from the encoder invariant to the change of sensitive attribute,
the adversarial game is to train the encoder Eθ2 to fool the discriminator Cψ

but still be good for reconstructing the original input. As a result, the objective
function can be defined as a minimax problem:

min
θ2,φ2

max
ψ

LAE(θ2, φ2) + λLC(θ2, ψ), (4)

where λ is a hyper-parameter to balance the reconstruction error and adversarial
loss. Besides minimizing the reconstruction error LAE, the encoder also tries
to maximize the cross-entropy loss for the discriminator LC(θ2, ψ). Once the
discriminator is unable to distinguish the hidden representations from factual
or counterfactual data, we expect that both factual and counterfactual samples
have similar reconstruction errors.

After training, the anomaly score for a new sample d = {s, x} is computed
based on the reconstruction error:

g(x) = ‖x − Dφ2 ◦ Eθ2(x)‖22.
If the anomaly score g(x) > τ , where τ is a hyperparameter of the model, we
label the sample as anomalous, i.e., ŷ = 1.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experiments on a synthetic dataset and two real-
world datasets, Adult and COMPAS. Table 1 summarizes the statistics of three
datasets.

Table 1. Statistics of datasets.

Synthetic Adult COMPAS

Training Test Training Test Training Test

Normal (Y=0) 12000 4000 12000 4000 2000 1283

Abnormal (Y=1) N/A 400 N/A 800 N/A 384

Synthetic Dataset. We first build a synthetic dataset with 21 variables where
we can obtain the ground truth of counterfactuals. We first randomly generate
the adjacency matrix A of a causal graph using the Erdős-Rényi model [17]
where one node is defined as a root node for representing the sensitive variable S.
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Fig. 2. Adjacency
matrix A

Fig. 3. Results on
data generation.

Fig. 4. Learned causal graphs.

Figure 2 shows the generated adjacency matrix A. The value of S is randomly
generated with binarized value {-1, 1} to indicate sensitive and non-sensitive
groups. Then, similar to [12], the rest 20 variables are generated based on the
following data generating procedure: X = 3AT cos(X + 1) + U , where U is
a standard Gaussian noise. Finally, one leaf node is selected as the decision
attribute Y for determining anomalies. Specifically, for each sample, if the value
of Y is greater than 0.85 quantile or smaller than 0.01 quantile, we label this
sample as an anomaly, i.e., Y = 1. If the value of Y is between 0.3 and 0.7
quantiles, we label the sample as normal, i.e., Y = 0. Meanwhile, for both
training and test sets, for 50% of the samples, their corresponding counterfactuals
have labels that are different from the factual ones.

Adult Dataset. Adult is a real-world dataset with 14 features [5]. We treat
“gender” as the sensitive attribute and samples with “income > 50k” as anoma-
lies. We normalize all continuous features and binarize all categorical features.
Figure 4a shows the causal graph on Adult learned in Phase One of our app-
roach. Meanwhile, as we do not know the ground truth of counterfactuals, we
use the generated counterfactual samples for measuring counterfactual fairness.

COMPAS Dataset. COMPAS is another real-world dataset [4], which con-
sists of 8 features. We consider “race” as the sensitive attribute, where “African-
American” and “Caucasian” are the disadvantage and advantage groups, respec-
tively, and treat “recidivists” as anomalies. Similar to Adult, we normalize all
continuous features and binarize all categorical features. Figure 4b shows the
learned causal graph.

Baselines. We compare CFAD with the following baselines: 1) Principal Com-
ponent Analysis (PCA), which is a dimensional reduction based anomaly detec-
tion approach; 2) One-class SVM (OCSVM), which is a one-class classification
model that can detect outliers based on the observed normal samples; 3) Iso-
lation Forest (iForest), which is a widely used tree-based anomaly detection
model; 4) Autoencoder (AE), which is trained on normal data and widely-used
for anomaly detection based on the deep autoencoder structure; 5) Deep Cluster-
ing based Fair Outlier Detection (DCFOD) [15], which adopts the adversarial
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training to achieve the group fairness in anomaly detection; 6) Fairness-aware
Outlier Detection (FairOD) [14], which is also an autoencoder-based anomaly
detection approach with fairness regularizers.

Evaluation Metrics. We evaluate the performance of anomaly detection based
on Area Under Precision-Recall Curve (AUC-PR), Area Under Receiver Oper-
ating Characteristic Curve (AUC-ROC), and Macro-F1. We evaluate coun-
terfactual fairness by computing the changing ratio of the samples whose detec-
tion outcomes are different from those for their corresponding counterfactuals,

i.e., changing ratio =
∑N

n=1 1[ŷ(n) �=ŷ
(n)
cf ]

N , where 1[·] is the indicator function.

Implementation Details. Regarding baselines, we use Loglizer [7] to evalu-
ate PCA, OC-SVM, and iForest. We implement FairOD and DCFOD based on
public source code [15]. By default, the threshold τ for anomaly detection is set
based on the 0.95 quantile of reconstruction errors (AE, FairOD, and CFAD) or
distance to the normal center (DCFOD) in the training set. Our code on CFAD
is available online1.

4.2 Experimental Results

Counterfactual Data Generation. We first evaluate the performance of coun-
terfactual data generation in the synthetic dataset by comparing CFAD with
GAE [12] in terms of Euclidean distance between the generated and ground-
truth samples. As shown in Fig. 3, on the factual data, CFAD achieves a much
lower reconstruction error compared with GAE. More importantly, for counter-
factual data generation, CFAD is much better compared with GAE. It indicates
that by incorporating a variable-wise decoder Dφ′

1
for data generation, CFAD

can generate counterfactual samples with high fidelity.

Table 2. Anomaly detection on synthetic and real datasets with threshold τ = 0.95. For
AUC-PR, AUC-ROC, and Macro-F1, the higher the value the better the effectiveness;
for Changing Ratio, the lower the value the better the fairness.

Method Synthetic Dataset Adult Dataset COMPAS Dataset

AUC-PR AUC-ROC Macro-F1 Changing Ratio AUC-PR AUC-ROC Macro-F1 Changing Ratio AUC-PR AUC-ROC Macro-F1 Changing Ratio

PCA 0.992 0.999 0.908 0.478 0.238 0.582 0.476 0.261 0.365 0.642 0.595 0.268

OC-SVM 0.776 0.953 0.477 0.399 0.282 0.638 0.482 0.285 0.337 0.593 0.488 0.376

iForest 0.190 0.693 0.570 0.271 0.312 0.658 0.570 0.279 0.311 0.567 0.564 0.415

AE 0.957 0.996 0.883 0.461 0.349 0.640 0.608 0.590 0.344 0.616 0.581 0.407

DCFOD 0.383 0.832 0.721 0.212 0.249 0.623 0.533 0.071 0.260 0.569 0.466 0.067

FairOD 0.580 0.873 0.689 0.261 0.222 0.621 0.531 0.131 0.265 0.548 0.493 0.068

CFAD 0.947 0.996 0.930 0.199 0.319 0.589 0.576 0.057 0.314 0.596 0.539 0.049

Anomaly Detection. We further evaluate the performance of anomaly detec-
tion in terms of effectiveness as well as fairness. Table 2 shows the evaluation
results. We report the mean value after five runs.
1 https://github.com/hanxiao0607/CFAD.

https://github.com/hanxiao0607/CFAD
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Synthetic Dataset. CFAD can well balance the effectiveness and fairness in
anomaly detection with high AUC-PR, AUC-ROC, and Macro-F1 and a low
changing ratio. AE can achieve good performance on anomaly detection, but
its changing ratio is high. DCFOD and FairOD, which achieve group fairness in
anomaly detection, both have relatively low changing ratios, but their effective-
ness in anomaly detection is not satisfactory.

Real Datasets. We have similar observations on the Adult and COMPAS
datasets. CFAD achieves good performance in both effectiveness and fairness.
For baselines that have no fairness component, their performance is good in
terms of the effectiveness in anomaly detection, but they all have high chang-
ing ratios. Similarly, although DCFOD and FairOD have relatively low changing
ratios, their effectiveness is much worse than other approaches.

Fig. 5. Trade-off between effectiveness and fairness.

Trade-off Between Effectiveness and Fairness. We further investigate the
trade-off between effectiveness and fairness by varying the threshold as dif-
ferent quantiles of reconstruction errors or distances in the training set. We
plot the effectiveness and fairness of each threshold setting of four approaches
CFAD, AE, DCFOD, and FairOD in Fig. 5, where the x-axis is the changing
ratio (counterfactual fairness), the y-axis indicates the Macro-F1 score (effec-
tiveness), and each dot in the line indicates the result from one threshold. The
dots from right to left indicate the performance based on quantiles including
{0.8, 0.85, 0.9, 0.95, 0.97, 0.98, 0.99, 0.995, 0.999}. Ideally, we expect an anomaly
detection model can achieve a high Marco-F1 score with a low changing ratio,
which is the top left corner of the figure.

As shown in Fig. 5, CFAD performs best when the effectiveness trades off
with fairness, as CFAD is closest to the top left corner of the figure. Specifi-
cally, on the Synthetic dataset, CFAD achieves much higher Macro-F1 values
(effectiveness) with similar changing rates (fairness) compared with DCFOD
and FairOD. Meanwhile, for most of the thresholds chosen based on quantiles,
CFAD has higher Macro-F1 and lower changing ratios compared with AE. On
the Adult and COMPAS datasets, CFAD can have higher Macro-F1 values and
lower changing ratios compared with DCFOD and FairOD.



66 X. Han et al.

5 Conclusions

In this work, we have developed a counterfactually fair anomaly detection
(CFAD) framework, which is able to effectively detect anomalies and also ensure
counterfactual fairness. The core idea of CFAD is to generate counterfactual data
governed by a learned causal structure based on the proposed graph autoencoder
model. Then, by using a vanilla autoencoder as the anomaly detection model,
an adversarial training strategy is adopted to ensure the representations derived
by the autoencoder without the information of sensitive attributes. After that,
counterfactual fairness is achieved by having similar reconstruction errors for
both factual and counterfactual samples. The experimental results show that
CFAD can achieve counterfactually fair anomaly detection while well-balancing
the trade-off between effectiveness and fairness.
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Abstract. Real-world networks typically display a complex structure
that is hard to explain by a single model. A common approach is to
partition the edges of the network into disjoint simpler structures. An
important property in this context is locality—incident vertices usually
have many common neighbors. This allows to classify edges into two
groups, based on the number of the common neighbors of their incident
vertices. Formally, this is captured by the common-neighbors (CN) met-
ric, which forms the basis of many metrics for detecting outlier edges.
Such outliers can be interpreted as noise or as a substructure.

We aim to understand how useful the metric is, and empirically ana-
lyze several scenarios. We randomly insert outlier edges into real-world
and generated graphs with high locality, and measure the metric accu-
racy for partitioning the combined edges. In addition, we use the metric
to decompose real-world networks, and measure properties of the parti-
tions. Our results show that the CN metric is a very good classifier that
can reliably detect noise up to extreme levels (83% noisy edges). We
also provide mathematically rigorous analyses on special random-graph
models. Last, we find the CN metric consistently decomposes real-world
networks into two graphs with very different structures.

Keywords: Noise · Clustering · Networks

1 Introduction

The structure of real-world processes across a large variety of scientific domains,
such as biology, ecology, sociology, or technology, typically results in highly com-
plex networks [3,14]. These networks display many structural properties, such as
high heterogeneity (many different vertex degrees) and high locality (vertices that
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share a large common neighborhood are likely to be connected), which seem to
play a crucial role for reasoning about the networks [4]. Thus, it comes as no sur-
prise that these properties are utilized in order to decompose complex networks
into simpler ones. A prominent approach for this task is graph clustering [18].

Graph clustering aims to partition the vertices of a network into sets such
that vertices from the same set have a similar value based on some metric, for
example, the nearest neighbors of each vertex [22]. An important special case of
clustering, also typically performed as a pre-processing step in clustering [6], is
outlier detection [1], which aims to separate vertices with suspicious metric values
from the rest. Algorithms for outlier detection vary in the amount of information
they utilize. Some settings consider graphs annotated with features [10,13,15].
Other settings work exclusively with the structure of the network, that is, its
vertices and edges [20]. Many approaches define a metric for vertices [9].

An alternative approach is to classify the edges of a network instead of its
vertices [2]. In this setting, outlier detection is the opposite of link prediction [12].
Results for edge outlier detection are scarce, with the article by Zhang, Kiranyaz,
and Gabbou [21] being the most extensive one. The authors consider different
edge metrics based on the common-neighbors (CN) metric, which counts the
number of shared vertices of the two vertices incident to a given edge. The
authenticity of an edge is determined by how largely its metric score differs from
the expected score of an edge, assuming the outlier-free graph follows a certain
random-graph distribution. This approach is evaluated on real-world networks
with randomly added edges. Although the real-world networks do not necessarily
match the theoretical assumptions required for the authenticity of an edge, the
authors show that their different metrics typically achieve an area-under-ROC-
curve value of at least 0.85. This shows these metrics are rather robust to noise,
making edge outlier detection a promising tool for noise detection in networks.

Contribution. Motivated by the good performance of the metrics by Zhang,
Kiranyaz, and Gabbou [21], we focus on the usefulness of the pure CN metric for
edge outlier detection, that is, we use the CN metric without any assumptions
about the underlying graph model. Our intention is to use the CN metric in
order to partition the edge set of a graph into two sets, each of which represents
the connections of a different graph. Ideally, the two resulting graphs differ in
locality, a very defining graph property, as we remarked above. If one of the
resulting graphs is close to a (random) noise graph, then our setting resembles
noise detection in graphs. However, it is more general than that, as we do not
require any of the graphs to follow a noise model.

Setting. We consider mixed graphs, which are the superposition of two graphs
defined over the same set of vertices but with different edge sets. One of the two
graphs that make up the mixed graph is the base graph, which we consider to
be the graph that consists of no outlier edges. The other graph is the overlay
graph. We apply the CN metric to the mixed graph and evaluate how well it can
separate the base graph from the overlay graph.
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Methodology. We evaluate the performance of the CN metric empirically in
three different settings (Sect. 4). In the first setting (Sect. 4.1), both the base
and the overlay graph follow well-established random-graph distributions. As
base graphs, we use graphs that place their vertices randomly with respect to
a geometry: random geometric graphs [16] and hyperbolic random graphs [11].
These models have a high locality, the second one also high heterogeneity. For
the overlay graph, we use the Erdős–Rényi model [8], that is, we add edges
independently, each with the same probability. As this model does not make use
of locality, the separation should work well.

In the second setting (Sect. 4.2), we exchange the base graph for real-world
networks. The overlay graph still follows the Erdős–Rényi model. Thus, the edges
of the overlay graph remain to not follow any locality. Here, we aim to see how
sufficient the natural locality of real-world networks is for a good separation.

In the final setting (Sect. 4.3), the mixed graph is a real-world network, i.e.,
we have no ground truth information anymore. The aim is to see how well the
CN metric separates a real-world network into two distinct graphs. To this end,
we vary the threshold that determines when an edge is classified as an outlier,
and we compare graph properties in the resulting base and overlay graphs.

Results. For all three settings, the CN metric performs very well. For the first
setting (Sect. 4.1), the CN metric achieves an area-under-ROC-curve (AUC)
value of at least 0.96—in many cases of at least 0.98. These results hold even
for extreme scenarios where the amount of random/outlier edges is 5 times the
amount of edges in the base graph. This shows that the CN metric is immensely
robust with respect to non-local noise.

For the second setting (Sect. 4.2), the quality depends more on the base graph,
with some settings having a (still rather high) AUC value of 0.80, whereas others
have a value of over 0.90. This shows the locality of real-world networks is high
enough such that non-local noise is well detected. However, our experiments
indicate the quality also depends on other graph properties like graph density.

For the final setting (Sect. 4.3), the number of components as well as the
global clustering coefficient (GCC) of the two resulting graphs indicate that the
CN metric does indeed classify non-local edges as overlay edges, as the GCC of
the base graph increases with the removal of overlay edges, and the number of
connected components also quickly increases.

In addition to our empirical results, we prove mathematically rigorously what
the expected CN score of an edge in mixed graphs is, with respect to whether
the edge was present in the base graph (Theorem 1) or only in the overlay graph
(Theorem 2). In these analyses, we assume that the base graph is a random
geometric graph and the overlay graph an Erdős–Rényi graph, which we assume
to be sparse. We find that the expected difference between the CN score of an
edge in the mixed graph that is already present in the base graph versus the
score if the edge is only present in the overlay graph is in the order of magnitude
of the expected vertex degree of the base graph. Thus, a higher expected vertex
degree of the base graph makes it easier to detect outliers.
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Conclusion. Our results indicate that the CN metric is very well suited for
classifying real-world networks into two distinct, simpler networks. Neither the
CN metric nor the classification method require any problem-specific knowledge.
Especially, the CN metric is highly robust to noise. This all suggests that the
simple CN metric is a very good tool for handling the detection of outlier edges.

2 Preliminaries

Let N denote the set of all natural numbers (incl. 0). For all m,n ∈ N, let
[m..n] := [m,n] ∩N, and let [n] := [1..n]. We consider undirected, simple graphs
G = (V,E), with vertices in V and edges in E. For all v ∈ V , we denote the
(exclusive) neighborhood of v by ΓG(v) = {u ∈ V | {u, v} ∈ E}. Further, let(
V
2

)
:= {{u, v} | u, v ∈ V ∧ u �= v} denote the set of all unordered pairs over V .

2.1 Setting

We consider mixed graphs G = (V,E) that are the superposition a base graph
Gb = (V,Eb) and an overlay graph Go = (V,Eo), that is, E = Eb ∪ Eo. We say
that G is composed of Gb and Go.

We consider the common-neighbors (CN) metric. For a graph G = (V,E), the
CN metric (over G) is the function cnG :

(
V
2

) → [0..|V | − 2] that maps each pair
of vertices to the size of their shared neighborhood. That is, for all {u, v} ∈ (

V
2

)
,

it holds that cnG({u, v}) = |ΓG(u)∩ΓG(v)|. Note that u and v are not accounted
for, as u /∈ ΓG(u) and v /∈ ΓG(v). We call cnG({u, v}) the CN score of {u, v}.

2.2 Random-Graph Models

We consider various formal random-graph models, which we introduce in the fol-
lowing. In addition to those, we also consider (deterministic) real-world networks,
which we explain in Sect. 4.2. For all of the following models, when we introduce
a graph, it actually represents a random element following a distribution over
the set of all graphs that can be constructed as described. This distribution is
defined implicitly via the random choices for how the vertices and/or edges are
drawn. We do not introduce special notation for such a distribution.

Random Geometric Graphs. A random geometric graph (RGG) is a graph
G = (V,E) with V ⊂ [0, 1]2 together with a radius r ∈ [0, 1/

√
2]. The vertices of

an RGG lie in the unit torus, that is, for all u, v ∈ V , the distance between u and v
is wrapping around the borders, formally, dist(u, v) :=

√|u1 − v1|2o + |u2 − v2|2o,
where, for all i ∈ [2], it holds that |ui − vi|o := min{|ui − vi|, 1 − |ui − vi|}.

The vertices of an RGG are placed independently and uniformly at random
into the unit torus, that is, the probability for a vertex to be placed in an area
of size A ∈ [0, 1] is A. After placing the vertices, the edges are determined
deterministically by connecting two vertices if and only if their distance is at
most r. That is, E = {{u, v} ∈ (

V
2

) | dist(u, v) ≤ r}. Since a vertex u is
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connected to another vertex v if and only if v is in a circle of radius r around u,
the expected degree of u is (|V | − 1)πr2.

Erdős–Rényi Graphs. An Erdős–Rényi graph (ER) is a graph G = (V,E)
together with an edge probability p ∈ [0, 1]. In contrast to an RGG, the vertices
of an ER have no geometric interpretation and can be anything. The edges
of G are all drawn independently, each with probability p. That is, for each
{u, v} ∈ (

V
2

)
, it holds that Pr[{u, v} ∈ E] = p. Since a vertex u is connected to

another vertex v with probability p, the expected degree of u is (|V | − 1)p.

Hyperbolic Random Graphs. A hyperbolic random graph (HRG) is a graph
G = (V,E) together with a power-law exponent β ∈ (2, 3) and a radius R. All
vertices are positioned in a disk of radius R in the hyperbolic plane according
to a probability distribution based on β, and two vertices are connected by an
edge if and only if their hyperbolic distance is at most R. The expected average
degree can be controlled via R, while β determines the exponent of the power-law
degree distribution. The resulting graphs have high heterogeneity and locality.

Randomness in Mixed Graphs. When we consider mixed graphs G composed
of a base graph Gb and an overlay graph Go, we make sure that at most one model
determines how vertices are placed. This guarantees that no random choices
conflict with each other, so G is well-defined. Since Gb and Go have their own
edges, the randomness in drawing the edges cannot conflict with each other.

3 Theoretical Results

We consider mixed graphs G = (V,E) composed of an RGG Grgg = (V,Ergg)
with radius r ∈ [0, 1/4] as base graph and an ER Ger = (V,Eer) with edge
probability p ∈ [0, 1] as overlay graph. We mathematically analyze the CN score
of an edge e ∈ E, depending on whether e is present in the base graph or not
(Sect. 3.2). Our main results are Theorems 1 and 2, which show together that
for p = o(1) (with respect to |V |), that is, the overlay graph is not dense, the
expected difference of the CN score of e with respect to whether it is present
in the base graph or not is in the order of nr2, which is the same order as the
expected vertex degree in an RGG. Thus, the higher the expected vertex degree
of the base graph, the further the CN scores in the mixed graph differ from edges
present in the base graph and those only present in the overlay graph.

Before we introduce and discuss the results, we discuss important properties
relevant to the results. These revolve around the probabilities for vertices to lie
at a certain distance with respect to two given vertices u and v, whose CN score
we are interested in. We omit proofs due to space restrictions.

3.1 Probabilities of Vertex Placements

Let u and v be vertices from a mixed graph G = (V,E) based on an RGG
Grgg = (V,Ergg) of radius r ∈ [0, 1/4] and an ER Ger = (V,Eer) with edge
probability p ∈ [0, 1]. In order to determine how much the CN score of u and v
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changes from Grgg to G, we calculate how likely it is for other vertices to have
edges to u and v, both in Ergg and in Eer. In the following, we first determine
the probability of a vertex being connected to both u and v in Grgg. Then, we
determine the probability of a vertex that is not a common neighbor of u and v
in Grgg to be a common neighbor in G.

Common Neighbors in the Base Graph. In this setting, the shared area of
the two circles of radius r around u and v is important. We call this area μ(u∩v),
and we remark it is the probability of a vertex to be in ΓGrgg(u) ∩ ΓGrgg(v), as
they are drawn uniformly at random. Based on this, we derive the expectation
of μ(u ∩ v) with respect to whether u and v are themselves connected.

Lemma 1. Let Grgg = (V,Ergg) be an RGG with radius r ∈ [0, 1/4]. Further-
more, let {u, v} ∈ (

V
2

)
and let R := {{u, v} ∈ E}. Then

E[μ(u ∩ v) | R] =
4π − 3

√
3

4
r2 and E[μ(u ∩ v) | R] =

3
√

3πr2

4(1 − πr2)
r2. (1)

Common Neighbors in the Mixed Graph. We consider the probability of
a vertex w to be a common neighbor of u and v in G, given that it is not a
common neighbor in Grgg. This happens because of one of the following reasons.

1. w ∈ ΓGrgg(u): In this case, w /∈ ΓGrgg(v). Since w ∈ ΓG(u) ∩ ΓG(v), there is
an edge in Eer \ Ergg.

2. w ∈ ΓGrgg(v): This case is symmetric to the previous one when exchanging u
with v, as all vertices are handled symmetrically in RGGs.

3. w ∈ ΓGrgg(u) ∪ ΓGrgg(v): In this case, there are two edges in Eer \ Ergg.

The following lemma determines the probability of w falling into one of these
three cases.

Lemma 2. Let G = (V,E) be a mixed graph composed of an RGG Grgg =
(V,Ergg) with radius r ∈ [0, 1/4] as base graph and an ER G = (V,Eer) with
edge probability p ∈ [0, 1] as overlay graph. Furthermore, let {u, v} ∈ (

V
2

)
and

w ∈ V \{u, v}. Last, let O denote the event {w /∈ ΓGrgg(u)∩ΓGrgg(v)}, and let R

denote the event {{u, v} ∈ Ergg}. Then, abbreviating a := (3
√

3)/4,

Pr[w ∈ ΓG(u) ∩ ΓG(v) ∧ O | R] = pr2
(
2a − (π + a)p

)
+ p2 and (2)

Pr[w ∈ ΓG(u) ∩ ΓG(v) ∧ O | R] = pπr2
(

2(1 − p) − (2 − p)
ar2

1 − πr2

)
+ p2. (3)

3.2 The CN Score of Different Edges

Using the probabilities from Sect. 3.1, we derive the expected CN score of an
edge in the mixed graph. The following theorem assumes that the edge is already
present in the base graph. Afterward, we consider the case that the edge is only
present in the overlay graph. At the end, we conclude.
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Theorem 1. Let G = (V,E) be a mixed graph over n ∈ N≥2 vertices composed
of an RGG Grgg = (V,Ergg) with radius r ∈ [0, 1/4] as base graph and an ER
G = (V,Eer) with edge probability p ∈ [0, 1] as overlay graph. Furthermore, let
{u, v} ∈ E, let NG = cnG({u, v}), let NGrgg = cnGrgg({u, v}), let q denote the
left expected value from Eq. (1), let s denote the probability from Eq. (2), and
let R denote the event {{u, v} ∈ Ergg}. Then

E[NG | R] = E[NGrgg | R] + (n − 2)s and E[NGrgg | R] = (n − 2)q.

The following theorem shows how the CN score changes if the edge is only in
the overlay graph. It looks similar to Theorem 1 but considers other probabilities.

Theorem 2. Let G = (V,E) be a mixed graph over n ∈ N≥2 vertices composed
of an RGG Grgg = (V,Ergg) with radius r ∈ [0, 1/4] as base graph and an
ER G = (V,Eer) with edge probability p ∈ [0, 1] as overlay graph. Further, let
{u, v} ∈ E, let NG = cnG({u, v}), let NGrgg = cnGrgg({u, v}), let q denote the
right expected value from Eq. (1), let s be the probability from Eq. (3), let R
denote the event {{u, v} /∈ Ergg}, and let K denote the event {{u, v} ∈ Eer}.
Then

E[NG | R,K] = E[NGrgg | R,K] + (n − 2)s and E[NGrgg | R,K] = (n − 2)q.

Let qrgg and srgg, respectively, denote q and s from Theorem 1, and let qer
and ser be defined analogously with respect to Theorem 2. If (qrgg + srgg)
and (qer + ser) are sufficiently separated, then so are the respective CN scores
for edges in the mixed graph that are present in the base graph or only in
the overlay graph, which makes separating these two edge types not difficult.
By Lemma 1, it holds that qrgg − qer =

(
π − 3

√
3/

(
4(1 − πr2)

))
r2 = Θ(r2),

which is non-negative for all r ∈ [0, 1/4]. Similarly, by Lemma 2, we get that
srgg−ser = −(2−p)pr2(π−(3

√
3)/4−π2r2)/(1−πr2) = −Θ(pr2), which is non-

positive for all r ∈ [0, 1/4] and all p ∈ [0, 1]. Due to the difference of the signs,
a general comparison is difficult. However, assuming that the overlay graph is
sparse, that is, p = o(1), we see that (qrgg + srgg) − (qer + ser) = Θ

(
r2

)
. Thus,

the difference in the expected CN score of edges present in the base graph and
those only present in the overlay graph is Θ

(
r2n

)
, which is in the same order

as the expected vertex degree of an RGG. Thus, an increased average degree in
the base graph results in a larger expected difference in scores.

4 Empirical Results

We present empirical findings on the quality of the CN metric for different sce-
narios. We first consider scenarios where we know both the base graph and the
overlay graph. As base graph, we consider two random graph models (Sect. 4.1)
as well as real-world networks (Sect. 4.2). Last, we consider the case where the
mixed graph is a real-world network, and we partition its edges according to the
CN metric (Sect. 4.3). We briefly explain how we carry out our study.
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Fig. 1. (Top) The AUC score for an RGG as base graph and an ER as overlay graph.
We fix the number of vertices to 5 000 and the expected average degree of the base
graph k ∈ {10, 25, 50}. The overlay edge factor varies from 0.5 to 5, and we display 50
samples per configuration. (Bottom) The AUC score for an HRG as base graph and an
ER as overlay graph. We fix the number of vertices to 5 000, expected average degree of
the base graph k = 25, and vary the power-law degree exponent β ∈ {2.2, 2.6, 2.9}. The
overlay edge factor varies from 0.5 to 5, and we display 50 samples per configuration.

AUC Metric. When evaluating the quality of the CN metric for separation of
the two known edge sets, we measure the well-established area-under-the-ROC-
curve (AUC) score. This measure is commonly used for classification models and
provides an aggregate measure for the true-positive and false-positive rate of a
binary classifier across all possible thresholds. We treat our scenario as a binary
classification task, with base edges being positive. The AUC essentially is the
probability that a random positive example has a higher score than a random
negative example, i.e., that the CN score of a random base edge is higher than
that of a random overlay edge. A random metric would yield an AUC score
of 0.5, while a perfect metric would yield 1.0.

Experimental Setup. Our Python implementation uses the libraries Net-
worKit [19] and igraph [7] for generating and analyzing graphs. They provide
implementations for random graph models and graph properties. All experiments
were run on a system with an Apple M1 chip and 16 GB RAM. However, note we
do not consider run times, and all experiments were finished in minutes. All code
and data is published at https://github.com/PFischbeck/cn-noise-experiments.

4.1 Graph Model as Base Graph

We consider two graph models as base graph, which are known to be highly
clustered due to the use of an underlying geometry in the generation process.
As base graph, we consider RGGs as well as HRGs (see Sect. 2.2 for details).
As overlay graph, we consider ERs with an expected number of edges relative
to the number of edges in the base graph. For example, an overlay edge factor

https://github.com/PFischbeck/cn-noise-experiments
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Fig. 2. The distribution of the CN scores for an RGG with 5 000 vertices and varying
expected degree k as base graph, and an ER as overlay graph with overlay edge factor 5.
The color shows whether the edges are from the base (red) or overlay graph (blue).
(Color figure online)

of 2 means that there are twice as many overlay edges as there are base edges,
in expectation. For a fixed model configuration and overlay edge factor, we take
50 samples and display them as box plots.

Random Geometric Graphs. For RGGs as base graph, we fix the number
of vertices to 5 000 and vary the expected average degree to be 10, 25, and 50.
Figure 1 (top) shows the resulting AUC scores for varying overlay edge factors.

One clearly sees that in all scenarios, the AUC score is very high, staying
above 0.98. As one would expect, an increased overlay edge factor leads to lower
scores, as the overlay edges make it harder to tell the two edge sets apart. The
dependence on the average degree seems to consist of two parts. First, there is an
increase of the AUC score for increased average degree, as predicted in Sect. 3. In
addition, for higher average degree, the increase in overlay edges has a reduced
effect on the AUC score. Recall that the number of overlay edges is relative to
the number of base edges and thus also scales with increased average degree.

In order to understand this behavior better, we also provide a view on the
distribution of scores for the two edge partitions. We fix an overlay edge factor
of 5 and look at one sample for all three considered average degrees. Figure 2
shows the score distribution for these configurations.

As the average degree is increased, the CN scores increase for both base and
overlay edges. However, they also increase their variance, and thus their overlap
increases. Nonetheless, the high average degree still makes it easy to distinguish
between the high number of edges outside of the overlap for k = 50.

Hyperbolic Random Graphs. For HRGs as base graph, we fix the number
of vertices to 5 000, expected average degree k = 25, and vary the power-law
degree exponent to be 2.2, 2.6, and 2.9. Figure 1 (bottom) shows the resulting
AUC scores for varying overlay edge factors.

Across all three configurations, the AUC score is relatively high, although
not as high as for the RGGs as base graph (Fig. 1 (top)). Recall that a lower
power-law exponent corresponds to a more heterogeneous degree distribution,
leading to many low-degree and few high-degree vertices. For base graphs with
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Table 1. The real-world networks we use as base graph, with their number of vertices n,
their number of edges m, and global clustering coefficient (GCC).

Graph n m GCC

advogato 6 k 43 k 0.11

bio-WormNet-v3-benchmark 2 k 79 k 0.72

ca-HepPh 11 k 118 k 0.66

ia-digg-reply 30 k 86 k 0.02

soc-brightkite 57 k 213 k 0.11

web-indochina-2004 11 k 48 k 0.57

low power-law exponent, edges connected to low-degree vertices have low CN
scores, making them harder to differentiate from the overlay edges. This leads
to a lower AUC score. Further, a higher overlay edge factor yields a lower AUC
score. This is because the CN score of overlay edges is increased by other over-
lay edges. As the power-law exponent increases, the variance of the AUC score
decreases.

4.2 Real-World Network as Base Graph

We consider various real-world networks as base graph, with an ER as overlay
graph. The real-world networks are shown in Table 1. They are part of the Net-
workRepository collection [17], and we use them in a cleaned format [5]. The
networks are from different contexts (including biological, social, and web net-
works) and vary both in graph size and in their locality. We measure locality via
the global clustering coefficient (GCC), which can be interpreted as the proba-
bility that a triplet of vertices with at least two edges also has the third edge.
Thus, it is an indicator for how clustered or local a graph is.

For every real-world network, we add an ER overlay graph with the same
number of vertices as the base graph, and we vary the overlay edge factor from
0.5 to 5. We take 50 samples per configuration (recall that the ER overlay graph
is random), and we consider the resulting AUC score of the CN scores.

The AUC scores for almost all real-world networks are at a high level, even
with 5 times as many overlay edges as base edges. In addition, for most graphs,
the AUC score remains constant as the overlay edge factor varies. The exceptions
are the graphs bio-WormNet-v3-benchmark and ca-HepPh. Both graphs have
few vertices and high clustering, which might lead to higher CN scores for overlay
edges, both via other overlay edges and base edges.

Overall, there is a strong relation between the graph clustering (via the global
clustering coefficient) and the AUC score of the CN metric. The ia-digg-reply
network has a very low GCC and low AUC scores. Based on our experiments,
we think the metric quality depends on several graph properties, including clus-
tering, degree heterogeneity, graph density, and number of low-degree vertices.
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Fig. 3. The number of connected components and the global clustering coefficient
of the base graph (red) and overlay graph (blue) when splitting the edges of the
soc-brightkite network according to the CN metric. The ratio rsplit defines that
the rsplit · |E| edges with lowest CN score are classified as overlay edges. (Color figure
online)

The results are under the assumption that the real-world base graphs do not
contain any overlay edges themselves, which cannot be known. In order to better
understand this real-world edge set, we also consider real-world networks as the
mixed graph in the following section.

4.3 Real-World Graph as Mixed Graph

In the experiments above, we had control over the base and overlay graph and
thus were able to evaluate the quality of the CN score based on this ground
truth. However, when partitioning a given graph without ground truth, we have
to turn to other properties. In particular, if this metric does indeed help partition
the given graph into a local, clustered structure and a global, random structure,
this should be reflected in the properties of the two partition sets. We investigate
this here. To this end, we take the real-world network soc-brightkite and treat
it as a mixed graph. We measure the CN scores of its edges and sort the edges
according to this score, with ties solved uniformly at random. For a fixed ratio
rsplit, the rsplit · |E| edges with the lowest score are classified as overlay edges,
while the remaining edges are classified as base edges. We build the base graph
and overlay graph according to this edge partitioning, and we measure the global
clustering coefficient as well as the number of connected components of the two
parts. Figure 3 shows the resulting values for varying ratio rsplit.

As the split ratio increases, the number of components of the base graph
quickly rises, with an average of roughly two vertices per component for rsplit =
0.3. On the other hand, the number of components of the overlay graph quickly
decreases, which indicates that the edges classified as overlay edges are in fact
global in the sense that they often connect previously disconnected components.

Also, as more edges are classified as overlay edges, the global clustering com-
ponent of the base graph increases, indicating the overlay edges are indeed non-
local, leaving local edges responsible for high clustering untouched. This is also
seen in the very low clustering coefficient of the overlay graph even for rsplit = 0.9.
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5 Conclusion

We have taken a closer look at the common-neighbors (CN) metric—a metric
that forms the basis of many approaches and techniques in outlier detection and
graph clustering. Considering a scenario of mixed graphs made up of a base
graph with high locality and an overlay graph representing noise, we have shown
empirically that the simple CN metric is very accurate and robust for partition-
ing the edge set, even in the presence of much noise. In addition, the metric
can handle real-world networks and partition them into two edge sets of dif-
fering properties, helping understand the underlying structures. Our theoretical
analysis also gives indications to why the metric works for simple graph models.

A better understanding of this foundational metric is the basis for under-
standing and designing improved metrics in the fields of outlier detection and
graph clustering. We have shown how the metric relates to locality and clus-
tering, and our work indicates interesting related questions. In particular, it
would be helpful to further analyze the metric for more complex graph models,
including different noise models. In addition, it would be valuable to determine
the other factors besides locality that influence the quality of the CN metric,
including the degree distribution or density.
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Abstract. This paper studies an effective unsupervised deep learning
model for multivariate time series anomaly detection. Since multivari-
ate time series usually have problems of insufficient labeling and highly-
complex temporal correlation, effectively detecting anomalies in multi-
variate time series data is particularly challenging. To solve this problem,
we propose a model named Wasserstein-GAN with gradient Penalty and
effective Scoring (WPS). In this model, Wasserstein Distance with Gra-
dient Penalty helps to capture the data regularities between generator
output and real data, thus improving the training stability. Meanwhile,
an effective scoring function that consists of reconstruction error, discrim-
ination error, and prediction error is designed to evaluate the accuracy
of the abnormal prediction and recall. The experimental results show
that compared with the suboptimal baseline model, our proposed WPS
obtains 17.68% and 10.41% improvement in prediction precision and F1
score, respectively.

Keywords: Multivariate Time Series · Anomaly detection · Deep
Learning · Generative Adversarial Network · Internet of Things

1 Introduction

The evolution of theBigData era and the emergence of the Internet ofThings (IoT)
created a large volume of time-series data. This information is derived via net-
worked sensors and actuators in smart buildings, factories, power plants, and data
centers. These continuous monitoring data are required to detect anomalies and
confirm that the working environment remains normal. Anomalies are defined as
time steps that reflect abnormal patterns of system behavior. Anomaly detection
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is often used for mission-critical purposes because it allows staff to take action to
investigate and resolve the underlying problem before it causes a disaster.

As better effective in multivariate time series analysis, deep learning-based
anomaly detection methods have attracted more research interest increas-
ingly [17]. Among them, Generative Adversarial Networks (GANs) [9], which
have achieved excellent results in areas such as graphics, have also led to a
steady focus on GAN-based time series anomaly detection algorithms [3,10,12].
The main idea behind GANs is to let the generator network constantly correct
the generated synthetic data, which is more similar to the training data under
the supervision of the discriminator network, to fit the real data as accurately
as possible. Through the adversarial training process between the generator and
discriminator networks, the generator can achieve strong generation performance
by learning to produce the distribution of data samples that closely resemble real
data. However, the GANs usually suffer from training instability caused by van-
ishing gradient and mode collapse since the insufficient expression of distribution
distance based on the Jensen-Shannon (JS) divergence [3,10,12]. In addition, due
to the anomalies’ sparsity and temporal data’s noise, the anomalies’ pattern may
be similar to the normal one, which becomes hard to distinguish.

Subtle anomalies are still challenging in anomaly detection [17]. This phe-
nomenon is more prominent in some complex systems with solid connections
between different data sources, latent noise, and the sparsity of anomalies, mak-
ing the abnormal pattern more difficult to distinguish and detect. Therefore,
the existing detection techniques still suffer from a high false alarm rate. This
case is more common for data with multiple dimensions closely related, such as
cloud centers, which will impose a considerable burden on staff in production
environments [4]. It illustrates the importance and urgency of reducing the false
alarm rate while ensuring the detection recall of multivariate time series data.

In our model, we overcome the problem of the GAN-based method by Wasser-
stein Distance with Gradient Penalty (GP). It could correctly measure the dis-
tance between the data distribution of the real and generated samples. Addi-
tionally, we consider a new LSTM-based factor as a predictor of participation in
anomaly scoring to enhance the robustness of the generative adversarial archi-
tecture.

In summary, our key contributions to this work are:

– Our proposed method accurately measures the distance of distributions
between the data from the generator and the real sample according to the
Wasserstein Distance versus GP, which greatly improves the training stabil-
ity and mitigates the pattern collapse problem of the GAN-based time series
anomaly detection model.

– We use an enhanced co-optimization strategy that combines three kinds of
errors to recognize subtle anomalies and reduce the false alarm rate.

– Extensive experiments manifest that WPS outperforms the suboptimal model
by 17.68% and 10.41% in precision and F1 on three public datasets and
show more in addressing the problem of unsupervised multivariate time series
anomaly detection in cloud systems.
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2 Related Work

Anomaly detection challenges often employ unsupervised machine learning algo-
rithms due to the rarity and difficulty of acquiring labels. Classic methods are
mainly proximity-based [2,6,15,20,21], using distance measures to quantify the
similarity between objects with the advantages of low computational cost and
rapidity. However, these methods usually require a priori knowledge and the
number of anomalies and cannot capture temporal correlations. Therefore, we
mainly discuss the implementation of multivariate time series anomaly detec-
tion based on deep learning, which can be classified into prediction-based and
reconstruction-based methods.

Prediction-Based and Reconstruction-Based Methods. Prediction-based meth-
ods [11,19] learn feature representations by predicting the current data instances
using the representations of the previous instances within a temporal window as
the context [17]. The residual between the predicted and real value of test data
computes the anomaly score. When the difference between the predicted input
and the original input of a data point exceeds a certain threshold, the data point
is identified as an anomaly. Reconstruction-based methods [1,16,18,22,24] learn
a model to capture the latent structure (low-dimensional representations) of the
given time series data and then create a synthetic reconstruction of the data to
compare the differences with the real data to calculate the reconstruction error
score [17]. The heuristic for using this technique in anomaly detection is that the
learned feature representations are enforced to learn essential data regularities
to minimize reconstruction errors; anomalies are difficult to reconstruct from
the resulting representations and thus have large reconstruction errors [17]. The
methods [4,5,7,13,14,23] based on Generative Adversarial Networks (GANs) [9]
are the latest development of deep learning-based unsupervised anomaly detec-
tion, which gained popularity due to their promising performance. However, the
limitation of these methods is that the vanishing gradient and mode collapse
caused by JS divergence still exists. It is caused by the distance between the
data distribution generated by the generator and the real sample distribution
cannot be calculated correctly. We address this issue by using Wasserstein dis-
tance with GP.

Co-Optimization Strategy. Some studies observed the limitation of single
anomaly determination strategy and started using a co-optimization strategy
to improve anomaly detection accuracy. For example, MAD-GAN [13] and
TanoGAN [5] combine discrimination and reconstruction errors to find sub-
tle anomalies. MTAD-GAT proposes a co-optimization strategy that combines
the prediction and reconstruction errors output by RNN networks to achieve
improved anomaly detection precision and reduce false positives. However, they
both made only preliminary explorations in this area. To achieve this goal, we
adopt an enhanced co-optimization strategy combining three error types: recon-
struction, discrimination, and prediction.
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3 Methodology

3.1 Unsupervised Time Series Anomaly Detection

Given a time series x = [x1, x2, . . . , xT ] denote a multivariate time-series of
length T , where xt ∈ R

M is its value at time t and M is the number of features
in the input indicates the total number of sensors within the same entity in
a realistic system. xi denotes the entries with indices a point of multivariate
time series. To prepare a training dataset X ∈ R

N×S , x1:T is split into N time
series of length S. We write xi,1:S to denote the ith time series in X. Similarly,
z = [z1, z2, . . . , zT ] is a set of multivariate sub-sequences taken from a random
space to represent white noise.

3.2 WPS Model

Fig. 1. The WPS architecture. The generator and discriminator get better fitting per-
formance of data distribution by the Wasserstein distance with gradient penalty.

Overall Architecture. The WPS, which is the overall architecture illustrated
in Fig. 1, consists of the generative adversarial architecture and the simultaneous
training predictor. For the generative adversarial architecture, with the input
data xi,1:S , i = 1, . . . , N , the generator G(·;θ) with parameter θ reconstructs the
values for time steps in [t0 + 1, t0 + τ ] conditioning on the sum of xi,t0+1:S , and
z, where t0+τ = S. τ is the number of time steps G(·;θ) is trained to reconstruct.
That is, x̂t0+1:S = G (xt0+1:S + z;θ). The discriminator D(·;ω) with parameter
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ω then validates the closeness between the output value of G(·;θ) and the true
value of target range. For the predictor, given an input time series xi,1:S , i =
1, . . . , N , our model P (·;η) with parameter η predicts the values for time steps
in [t0 + 1, t0 + τ ] conditioning on xi,1:t0 , where t0 + τ = S. τ is the number of
time steps P (·;η) is trained to predict. That is, x̂′

t0+1:t0+τ = P (xi,1:t0 ;η). The
time ranges [1, t0] and [t0 + 1 : S] are referred to as the conditioning range and
target range, respectively.

Wasserstein GAN. It is believed that the process of Generative Adversarial
Networks(GAN) [9] involves the generator (G) and the discriminator (D) in order
to force the distribution of generated data to be close to the actual distribution.
This can be considered as two agents playing a mini-max game with a value
function V (D,G). In the classic GAN, the JS divergence can’t correctly com-
pute the proximity between the not intersecting real and generated distribution,
which usually leads to weak performance. As an alternative to classical GAN,
the Wasserstein GAN (WGAN) [3] provides an approach capable of addressing
vanishing gradients and mode collapse. The Wasserstein distance is represented
in Fig. 2(a).

Fig. 2. Wasserstein distance between two distributions and its relation to their moving
plan matrix υ (a) and the distance between the generated distribution and the real dis-
tribution during the adversarial training, n denotes the number of training epochs (b).

Marking the two distribution’s moving plan matrix as υ ∈ RI×J , the Wasser-
stein distance is the minimal effort required to transform one distribution to
another. Matrix elements with the brightest colors reflect more motion from
matrix element P to matrix element Q. Despite having an equal area of 1, P and
Q differ in their shape. A further illustration of the relationship can be found
in Fig. 2(a), where xq is a column-wise summation of υ, while xp is a row-wise
summation. The values of all the elements in matrix υ add up to 1. The Wasser-
stein distance, a method of finding an υ that minimizes the transformation cost,
is found by finding an optimal υ. Plan υ has an average distance B(·) as

B(υ) =
∑

xp,xq

υ (xp, xq) ‖xp − xq‖ (1)
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The function of Wasserstein distance W (·) formulated as

W (P,Q) = min
υ∈Π

B(υ) (2)

Figure 2(b) illustrates that the Wasserstein distance accurately measures the
distance between Pr and Pg distributions at the beginning of the confrontation
training. Once JS divergence intersects, this distance remains the same. That’s
why classic GAN training is erratic, with mode collapse occurring in such situ-
ations.

Gradient Penalty. Gulrajani et al. [10] find that WGAN may produce low-
quality data samples by the discriminator’s use of weight cropping. To overcome
this disadvantage, the penalty term proposed forces the discriminator to keep the
gradient norm of the discriminator to stay close to 1. The alternative approach
further solves the vanishing gradient problems in WGAN, and the objective
function is as follows.

L = E
x̃∼Pg

[D(x̃)] − E
x∼Pr

[D(x)] + λ E
x̄∼Px̄

[

(‖∇x̄D(x̄)‖2 − 1)2
]

(3)

where x̄ = εx + (1 − ε)x̃ and ε ∼ U [0, 1]. The Gradient Penalty (GP) coefficient
λ determines the stringency of the control constraint.

Adversarial Training. We use Wasserstein distance with GP instead of JS
divergence in our method. In the adversarial training phase, our model first
updates the discriminator and then updates the generator with the validates
from the discriminator. The object of the generator is to generate high-quality
dummy samples that are as similar as possible to the original time series. The
generator is trained with the updated loss function as

LG = − 1
N

N
∑

i=1

D(x̂i,t0+1:S) (4)

The discriminator is trained with the updated loss function expressed as

LD =
1

N

N∑

i=1

D (x̂i,t0+1:S) − 1

N

N∑

i=1

D (xi,t0+1:S) + λ
1

N

N∑

i=1

((‖∇x̄iD (x̄i)‖2 − 1
)2)

(5)

where x̄i = εxi,t0+1:S + (1 − ε)x̂i,t0+1:S and ε ∼ U [0, 1].

Simultaneous Predictor Training. The predictor is trained in parallel with
the generative adversarial architecture. In each epoch, the predictor gets the
conditioning range data as input to predict the target range data same as the
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generator and discriminator get. Here we are using Mean Square Error (MSE)
Loss, so the predictor objective function is

LP =
1
N

N
∑

i=1

‖ xi,t0+1:S − x̂′
i,t0+1:S ‖2 (6)

3.3 Anomaly Scoring

The anomaly scores are obtained by the model processing the test dataset.
Anomalies are those with anomaly scores higher than the threshold. We inte-
grate the reconstruction error (Rscore) of the generator, the discrimination error
(Dscore) of the discriminator, and the prediction error (Pscore) of the predictor
as the anomaly score (ADscore), and are formulated as follows.

Rscore =
N

∑

i=1

‖ xi,t0+1:S − G (xt0+1:S + z) ‖2 (7)

Dscore =
N

∑

i=1

(−D(G (xt0+1:S + z)) + 1) (8)

Pscore =
N

∑

i=1

‖ xi,t0+1:S − P (xi,1:t0) ‖2 (9)

ADscore = αRscore + βDscore + γPscore (10)

In this equation, α + β + γ = 1 is utilized to parameterize the empirically
set trade-off between Rscore, Dscore, and Pscore. During anomaly detection,
anomalies are identified by anomaly scores and specific thresholds.

4 Experiment

4.1 Experimental Setup

Datasets. We use three publicly available datasets to verify the effectiveness of
our model, namely SMD (Server Machine Dataset) [22], SMAP (Soil Moisture
Activate Passive satellite), and MSL (Mars Science Laboratory rover). SMD is
real-time data from 28 cloud platform servers running, including 38 dimensions.
SMAP and MSL are spacecraft datasets collected by NASA [11], including 55 and
25 dimensions, respectively. For our experiments, we select 50,000 data points
from the training and test sets of SMD, and 20,000 data points from the training
and test sets of MSL and SMAP.
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Evaluation Metrics. Since our datasets are unbalanced, we adopt the standard
evaluation metrics that contain Precision (Pre), Recall (Rec), and F1 Score (F1)
in anomaly detection tasks, which are suitable for unbalanced data. We use the
approach from [22] to search the threshold that calculates the best F1-score,
which iterates all possible anomaly thresholds and picks the optimal one.

Baselines. We compare multiple unsupervised methods in multivariate time
series anomaly Methods. Local Outlier Factor (LOF) [6] assigns to each object
a degree of being an outlier; the degree depends on how isolated the object is
concerning the surrounding neighborhood, clustering the high degree points as
anomalies. MADGAN [13] is the first method to apply GAN on multivariate
time series anomaly detection combined LSTM network. In our implementation,
the RNN layer has been replaced by the MLP layer (Multilayer Perceptron) for
simplicity and facility. USAD [4] is a fast and low-cost anomaly detection model
based on encoder-decoder adverse architecture, which uses two-phase adversarial
training to obtain a more stable training process and adjustable parameters to
amplify stumble anomalies. OmniAnomaly [22] is a prior-driven stochastic model
for multivariate time series anomaly detection that directly returns the posterior
reconstruction probability of the multivariate time series input. The log of the
probability serves as the channel-wise score, which is summed across channels
to get the anomaly score [8].

Implementation. Our method was implemented by Pytorch. Considering the
temporal information in the sequence data, we normalize the multivariate time
series data by MinMaxScaler and then use sliding windows to divide it into
subseries. We set the historical window size for the predictor to 6 to predict the
value at the next timestamp. The kernel size of the 1-D convolution layer in
the discriminator was set to 3 with a padding of 1. The dimensions of MLP for
the generator and discriminator are half those of the input time series. Adam
optimizer was used to train the generator, discriminator, and predictor models,
and the learning rate was initialized to 1e−4 for the generator and discriminator
and 2e-3 for the predictor. We set the hidden dimensions of the LSTM layer as 64.
In the anomaly detection phase, we empirically set the ADscore of α, β as 0.35,
0.15, and γ as 0.5 after a series of explorations and tests. The training epochs
of all models are set as 15. Our experiments were conducted on a server with an
NVIDIA 2080Ti graphics card, an Intel Core i9-10900K CPU at 3.70GHz, and
32GB of RAM.

4.2 Baseline Comparisons

We compare multiple proximity-based and reconstruction-based methods as
baselines. Based on precision, recall, and F1 scores, Table 1 presents the anomaly
detection performance of WPS and baselines on three datasets. Among all meth-
ods, LOF and MADGAN perform the least. A multivariate time series anomaly
detection requires interdependence modeling, which LOF lacks due to its design
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Table 1. Experimental results of our model and the baseline methods. The best per-
formance is presented as bold, and the second best as underlined.

Method SMD (subset) SMAP (subset) MSL (subset) overall

Pre Rec F1 Pre Rec F1 Pre Rec F1 mean(Pre) mean(Rec) mean(F1)

LOF 0.6678 0.2626 0.3770 0.5795 1.0000 0.7338 0.8446 0.8588 0.8517 0.6973 0.7071 0.6541

MADGAN 0.6305 0.8959 0.7401 0.2305 1.0000 0.3747 0.8078 0.8634 0.8347 0.5563 0.9198 0.6498

USAD 0.6795 0.9115 0.7786 0.2837 1.0000 0.4420 0.7677 0.9282 0.8404 0.5770 0.9466 0.6870

OmniAnomaly 0.8740 0.9716 0.9202 0.5006 1.0000 0.6672 0.6974 0.8028 0.7464 0.6907 0.9248 0.7779

WPS 0.9920 0.9355 0.9639 0.6777 1.0000 0.8079 0.9516 0.8084 0.8742 0.8738 0.9146 0.8820

for handling multivariate data without temporal information. Also, its lower
recall is intolerable in practical application scenarios. The recall of MADGAN
is at a decent level. However, its potential vanishing gradient and mode collapse
problems typical of GAN-based models severely affect its precision and F1 score
performance. Thanks to two-phase stability adversarial training and parameter
settings that can be adjusted for anomaly detection sensitivity, USAD achieves
the highest recall among all baselines. However, its precision and F1 score are
still unsatisfactory. It is due to its use of only the basic autoencoder instead
of a more efficient method that can capture temporal correlations as the core
component of the model. OmniAnomaly is the suboptimal method. By learning
resilient representations of multivariate time series data based on LSTM-VAE,
it has the capacity to cope with explicit temporal dependency among stochastic
variables. Part of its poor performance could be attributed partly to the use of
static scoring functions [8]. Our model significantly achieves an overall improve-
ment of 17.68% in precision and 10.41% in the best F1 scores on these three
datasets compared to the suboptimal model. We also notice that our model’s
best F1 scores in the SMD (96.39%) dataset are more remarkable than in SMAP
and MSL (80.79%, 87.42%). In datasets like SMD, the closer feature dependence
leads the anomalies more challenging to detect. This points out that our app-
roach may be more appropriate to be applied to datasets with multiple tightly
related dimensions.

4.3 Convergence Analysis

To validate the effectiveness of Wasserstein distance and GP in mitigating the
vanishing gradient and mode collapse problems of the GAN-based model, we
compared the convergence of WPS, MADGAN, and WPS(w/o GP) on the SMD
dataset. To visualize the fluctuation of the convergence, we normalized the aver-
age training Mean Square Error (MES) by MinMaxScaler. As shown in Fig. 3(a),
the average training MSE of MADGAN converges to a constant value after a
brief decrease on the SMD subset, and then the fluctuations become more dra-
matic as the epoch increases. It is a typical manifestation of the mode collapse
and vanishing gradient problems in the GAN-based model, which uses JS diver-
gence. In contrast, our model shows a continuous and steady decrease after the
rapid drop in the average training MSE. We also validate the convergence in
WPS and WPS(w/o GP), a variant of GAN based on JS divergence. We calcu-
late the average training MSE from the SMD subset at each training epoch, as
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Fig. 3. Convergence analysis of WPS on SMD compared with MADGAN (a) and
WPS(w/o GP) (b).

Fig. 3(b) shows. Similar to Fig. 3(a), WPS decreases steadily, without fluctua-
tion, as the training phase progresses during the initial training epochs. Both of
them strongly validate the effectiveness of Wasserstein distance and GP used in
our model to alleviate the vanishing gradient and mode collapse problems, thus
improving the convergence efficiency of the model.

4.4 Ablation Experiments

Table 2. Ablation experiments results. The best performance is presented as bold, and
the second best as underlined.

Method SMD (subset) SMAP (subset) MSL (subset) overall

Pre Rec F1 Pre Rec F1 Pre Rec F1 mean(Pre) mean(Rec) mean(F1)

WPS 0.9920 0.9355 0.9639 0.6777 1.0000 0.8079 0.9516 0.8084 0.8742 0.8738 0.9624 0.8820

w/o DS 0.9186 0.9365 0.9274 0.5278 1.0000 0.6909 0.9392 0.8084 0.8689 0.7952 0.9586 0.8291

w/o PS 0.9059 0.8922 0.8990 0.5982 1.0000 0.7486 0.4731 0.8930 0.6185 0.6591 0.7884 0.7554

w/o GP 0.8010 0.9250 0.8590 0.4498 1.0000 0.6205 0.4826 0.8930 0.6266 0.5778 0.8025 0.7020

We undertake ablation analysis to evaluate the significance of various models in
WPS and the results shown in Table 2. The necessity of the different components
is analyzed as follows.

Effect of Discrimination Error. Without the discriminating error, the vari-
ants of WPS, i.e., WPS(w/o DS), reduced by 4.47% on F1 and 6.83% on Pre
compared to our method. It indicates that discriminator validation can aid in
recognizing anomalies during the anomaly scoring stage. It is also an essential
factor that using the one-dimensional convolutional layer enhances the represent
extractability of the discriminator.

Effect of Prediction Error. In this variant, i.e., WPS(w/o PS), we remove
the prediction error, resulting in a significant decrease in F1(12.34%) and
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Pre(19.38%). The two-layer LSTM of the predictor can explain this result. More-
over, t his Recurrent Neural Network (RNN) has a memory function to char-
acterize temporal information, mainly to get a more accurate representation of
features.

Effect of Wasserstein Distance with Gradient Penalty. The WPS(w/o
GP) uses the classic GAN architecture employing JS divergence. Compared to
our model, the variant model depicts the most substantial decreases of 12.78%
and 20.81% on F1 and Pre. It shows that GP and Wasserstein distance combine
to produce distributions closer to real data during the training process. This
leads to significant improvements in performance.

5 Conclusion

In this work, we proposed our Predictive Wasserstein Generative Adversarial
Network with GP (WPS) approach, which stably converges in the training stage
in anomaly detection and can recognize subtle abnormal patterns with the assis-
tance of a parallel training predictor. We use an enhanced co-optimization strat-
egy that combines three errors to obtain more accurate anomaly scores, boosting
the model’s ability to find subtle anomalies. On datasets from different domains,
WPS greatly outperforms the baseline in terms of accuracy, training stability,
and false alarms. Future work can consider real-time prediction and the inter-
pretability of anomalies to further improve the practicality of the approach.
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Abstract. As there is a need for interpretable classification models in
many application domains, symbolic, interpretable classification models
have been studied for many years in the literature. Rule-based models
are an important class of such models. However, most of the common
algorithms for learning rule-based models rely on heuristic search strate-
gies developed for specific rule-learning settings. These search strategies
are very different from those used in neural forms of machine learning,
where gradient-based approaches are used. Attempting to combine neu-
ral and symbolic machine learning, recent studies have therefore explored
gradient-based rule learning using neural network architectures. These
new proposals make it possible to apply approaches for learning neural
networks to rule learning. However, these past studies focus on unordered
rule sets for classification tasks, while many common rule-learning algo-
rithms learn rule sets with an order. In this work, we propose RL-Net,
an approach for learning ordered rule lists based on neural networks. We
demonstrate that the performance we obtain on classification tasks is
similar to the state-of-the-art algorithms for rule learning in binary and
multi-class classification settings. Moreover, we show that our model can
easily be adapted to multi-label learning tasks.

Keywords: Interpretability · Pattern Set Mining · Rule Learning ·
Binary Neural Networks

1 Introduction

Organizations are increasingly using Machine Learning models to help decision-
making. For many application domains (such as medicine, health care, criminal
justice, and education), interpretability is essential in addition to predictive per-
formance. Therefore, white-box models are preferable to black-box models in
these scenarios.

Rule-based classification models are an important class of interpretable mod-
els, which provide symbolic white-box models that are expressed as simple IF-
THEN rules. A distinction can be made between rule sets and rule lists. In a
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rule list, the rules have an order, and the first rule of which all conditions in the
IF-part are satisfied is used to perform a prediction. An advantage of this app-
roach is that the resulting models are also interpretable on classification tasks
with more than two classes: one rule is used to perform the prediction. Models
based on rule sets typically rely on voting, where all rules vote for classes, or
they only work for two classes. This makes these methods less interpretable. For
this reason, we focus on rule lists in this work.

Roughly speaking, two classes of approaches for learning rule-based models
can be distinguished. A common strategy for rule learning relies on pattern
mining. Traditional pattern mining is formulated as the problem of computing
Th(L, ϕ,D) = {π ∈ L|ϕ(π,D) is true}, where D is the dataset, L is a language
of patterns, and ϕ is a constraint, often based on support [9,10]. The size of the
search space of this problem is exponential in the size of L.

The number of all patterns satisfying the constraints is usually too large.
Thus, patterns are often post-processed in a step-wise procedure to become useful
[10]. In the first step, the patterns that meet the constraints are enumerated.
In the second step, some patterns are selected and combined. Again, we have
another search space of exponential size, in this case in the size of Th(L, ϕ,D).

Most methods adopt heuristics to select and combine the patterns, which
is commonly the case for associative classification proposals, such as CBA [12]
and CMAR [11]. These methods solve one particular instance of the pattern
set mining problem, which consists in computing Th(L, ϕ, ψ,D) = {Π ⊆
Th(L, ϕ,D)|ψ(Π,D) is true}, where ψ expresses constraints that have to be sat-
isfied by the overall pattern set [9,10]. The major drawback of the step-wise
procedure is that it does not scale well.

The second class of methods scales better. Instead of first mining patterns,
these approaches learn the rules themselves also using heuristics; typically, they
use a heuristic to iteratively add the most promising condition to a rule. A
well-known representative of this class is the RIPPER [5] algorithm. While, as
a consequence, these approaches find rules more quickly, the heuristics are often
specific to one learning task and may have as effect that the algorithm overlooks
good rules.

In many application domains of machine learning, recent advances in learning
deep neural networks have led neural network techniques to become the state-of-
the-art. Search strategies in the neural network literature are very different, and
are often based on the use of gradient descent techniques. The success of neural
methods has had as effect that many learning problems have now been phrased
and solved using these gradient descent techniques. However, traditional neural
networks are not interpretable models.

Therefore, the research community has been looking for strategies to com-
bine symbolic forms of Artificial Intelligence with techniques based on neural net-
works, leading to techniques for neuro-symbolic AI. In the case of rule learning,
this could lead to a combination of the interpretability of rule-based models with
the search strategies employed when learning neural networks. Recently,Qiao et al.
[14] and Fischer & Vreeken [7] developed pattern set mining strategies that rely on
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binarized neural networks. Adopting a neural network trained with gradient
descent methods has several advantages. Indeed, all advances in the area of neural
networks have the potential to be leveraged for pattern set mining. This includes
stochastic well-developed gradient descent algorithms, well-developed loss func-
tions, well-developed regularization concepts, sophisticated development frame-
works, and powerful computing platforms. However, none of these approaches
studied how to learn ordered rule models for a wide range of learning tasks, includ-
ing multi-class and multi-label classification tasks, and it is not clear how well neu-
ral network-based techniques would work on this task.

In this work, we focus on such problems by extending the Decision Rules
Network (DR-Net) proposal of Qiao et al. [14]. We incorporated the possibilities
of (a) using hierarchy among the rules, hence adding the possibility of learning
classifiers based on rule lists in addition to rule sets, and (b) solving multi-class
classification problems. Furthermore, the consequent part of the rules (i.e., the
class labels) is fixed in DR-Net, so all learned rules have the same consequent.
We instead learn the class label of each rule together with the condition. Lastly,
our proposal can easily be tweaked to solve multi-label classification problems.

This paper is organized as follows: Sect. 2 gives an overview of the related
work. Section 3 presents the architecture of our proposed interpretable Rule
Learning neural Network (RL-Net). The datasets used, the models for com-
parison, the experimental protocol, as well as the obtained results, are presented
in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Related Work

The use of neural networks to learn rule-based classifiers is still in its early stages.
A first example is the work of Beck and Fürnkranz [2,3] which learns rule sets

to perform binary classification using a network structure. However, the network
weights are learned using a greedy heuristic instead of a differentiable approach.

Yang et al. [16] presented the Deep Neural Decision Tree (DNDT) method
that mimics the structure of a decision tree using a neural network architecture.
In this proposal, the weights are trained with a gradient descent algorithm.
The splitting value for each attribute and the rule labels are learned during the
training. The model is thus suitable for binary and multi-class classification.
The key limitation of their proposal is that it is not scalable w.r.t the number
of features. In their experiments, they could only find an accurate single tree for
datasets with at most 12 features. Moreover, the limitation of a tree structure
makes it impossible to learn arbitrary rule lists.

The Explainable Neural Rule Learning (ENRL) method [15] also learns rules
in a differentiable manner coupled with a neural network structure. The Explain-
able Condition Module (ECM) is the building block of the method. It comprises a
feature, an operator, and a value, learning atomic propositions such as age ≥ 18.
Based on the atomic propositions, ENRL adopts a complete binary tree topology
to express multiple rules, and the problem of seeking appropriate rules is trans-
formed into a neural architecture search. ENRL creates an ensemble of trees,
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and the final decision is made by a voting mechanism, which makes this method
less interpretable. Also, it is limited to binary classification.

The Decision Rules Network (DR-Net) method [14] learns rule sets for binary
classification. The model is composed of three layers: the input layer, the Rules
layer, and the OR layer. The Rules layer learns the rules. The number of neurons
in this layer is a user-defined parameter that sets the maximum number of rules.
Its regularization term controls the length of the rules. The OR layer chooses
which rules to use and which to ignore. Its regularization term controls the
number of rules that will be used in the classifier. The network training is done
in two alternating phases, one for the Rules layer and one for the OR layer. This
method does not identify rule lists, but rule sets.

As can be seen, most existing methods focus on binary classification, and
none of them can find arbitrary rule lists. In this work, we contribute to a
neural network for learning rule-based classifiers that are fully interpretable,
and suitable for binary and multi-class classification. Our proposal takes full
advantage of the advances in neural network literature.

3 Approach

This section introduces the details of our contribution.

3.1 RL-Net

Our Rule Learning neural Network (RL-Net) was conceived to learn interpretable
rule lists that can perform multi-class classification. It can also be easily tweaked
to be used in multi-label experiments. RL-Net employs the structure of a neural
network as well as its gradient optimization learning methods.

The network is composed of four layers, as depicted in Fig. 1. The first layer
is the input layer that receives the dataset’s features. It is connected to the
rule layer, where the rule conditions are learned. The next layer expresses the
hierarchy among the rules, which is necessary to learn a rule list instead of a
rule set. Finally, the output layer assigns a specific class label to each rule.

Each layer is presented in more detail in what follows. The method imple-
mentation can be found in our GitHub repository on https://github.com/
luciledierckx/RLNet.

Input Layer. We assume that the features that are fed to the network are
binary. As discussed in the rule layer description, there is no need to duplicate
the input dataset to express the negation of a feature because the network can
express that by itself. The number of nodes in this layer is equal to the number
of binarized features of the dataset.

Rule Layer. This layer mimics the behavior of logical ANDs. It is composed of
r nodes, where r is a user-defined parameter that specifies the number of rules
to be learned. This layer and the input layer are the same as in DR-Net [14],

https://github.com/luciledierckx/RLNet
https://github.com/luciledierckx/RLNet
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Fig. 1. Global architecture of RL-Net for learning a rule list composed of three rules
and the default rule (else) for an input dataset consisting of five binary features and
three class labels. Green (resp. red) weights represent weights with a positive (resp.
negative) value. The edges in bold represent the edges with the highest weight for each
node in the hierarchy layer. Connections between neurons that are not represented are
non-trainable zero weights.

while the next ones are different. Each weight of this layer can either be negative,
zero, or positive to represent the fact of using a feature in the rule (+), using
the negation of that feature (−), or not considering that feature for the rule (0).
As it is not simple to learn discrete weights with a gradient descent algorithm,
the ternary weights WT are obtained by an element-wise product of two other
matrices:

WT = WS ◦ WH (1)

The weights in the matrices WS and WH are floating-point numbers. The weights
in WS will converge to a positive or a negative value during the training, thus
deciding if we use the positive form of a given attribute or its negation. The
weights in WH are referred to as hidden weights. They will decide whether an
attribute is used in a rule or is ignored. We ensure that these weights converge
to 1 or 0 thanks to the method discussed by Louizos et al. [13] to approximate
binary random variables with a Bernoulli distribution. To these hidden weights,
a sparsity-based regularization [13] is added to push the weights toward zero
and, therefore, obtain shorter rules.

The neurons of the rule layer have to mimic the behavior of a logical AND,
that outputs true (1) when all rule conditions are met or false (0) otherwise.
This is done in two steps, as proposed in [14].

In the first step, a neuron from the rule layer performs the following operation:

y =
∑

wi · xi −
∑

wi>0

wi + 1, (2)

where wi ∈ WT and xi ∈ {0, 1} is the value of the binary feature i. In this
formulation, the bias has a dynamic value that depends on the number of positive
weights for the neuron. Note that y = 1 can only be obtained when all positive
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weights are related to inputs equal to 1 and all negative weights are related to
inputs equal to 0. Thus, the output computed by equation (2) is within (−∞, 1].

The second step is the binarization of the output computed by (2), which is
given by b(x) = 1 if x = 1 and b(x) = 0 otherwise.

We would like to highlight that we attempted to avoid using the two sets
of weights, WS and WH , but the results were much worse, which validates the
design of the Rules layer in DR-Net.

Hierarchy Layer. This layer expresses the hierarchy among the different rules
such that a rule Rk can be activated only if all previous rules R1, R2, ..., Rk−1

were not. The structure of this layer was inspired by [1] and adapted to a neural
network architecture. The weights of this layer are set in the initialization and
are not trainable, as illustrated in Fig. 1. The activation of a neuron of this layer
is given by a ReLU function. The neuron k in the rule layer represents the rule
Rk in the rule list. It is connected to a neuron l of the hierarchy layer by an edge
with weight wkl, where wkl is 1 when l = k, −1 when l < k, and 0 otherwise.

The last neuron of the hierarchy layer represents the default rule (else). It
is the only neuron of this layer that uses a bias with a value equal to 1. This
ensures that the default rule will be applied when none of the previous rules are
applicable. Thus, the number of nodes in this layer is equal to r+1. As the input
values of the hierarchy layer are binary (0 or 1), its output will also be binary.

Output Layer. The last layer of our network learns the label associated with
every rule condition. The number of neurons in this layer is equal to the num-
ber of class labels in the input dataset. The weights are free, but we add L2-
regularization. The activation function is the softmax. As only one rule at a time
is active, only the label with the highest activation (i.e., with the highest weight
for the active rule) is considered at prediction time. Thus, the learned rules are
fully interpretable.

3.2 Training and Tuning of RL-Net

Standard neural network techniques are applied in the training of RL-Net.
Indeed, we used the Adam optimization algorithm with the cross-entropy loss
function. A callback on the validation loss is also applied.

As observed in standard neural networks, the performance of RL-Net for
strongly imbalanced datasets can be improved by using a class-balanced version
of the loss. Therefore, a balanced version of the loss is used in the first eb epochs,
where eb is a user-defined parameter. This parameter can be set to zero for
datasets for which there is no need for a balanced loss.

Other important parameters of RL-Net refer to the hidden weights WH .
These weights are initialized using a normal distribution with mean μ and vari-
ance σ2, which directly impacts the probability of using (or not) an attribute in
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a rule. Thus, the choice of these parameters influences the length (specificity) of
the rules in the initialization, making the search for a good local optimum more
or less hard. Other hyper-parameters that must be tuned are the learning rate,
the weight of the sparsity-regularization term of the rule layer, as well as the
weight of the L2-regularization of the output layer.

3.3 RL-Net for Multi-label Classification

The RL-Net architecture was conceived for multi-class classification, but one
of its advantages is that it can easily be transformed into a basic multi-label
classifier with two minor changes. The first modification is that the activation
of the output layer must be the sigmoid activation instead of the softmax. The
second one concerns the loss function, which must be designed for multi-label
classification, such as binary cross-entropy loss, focal loss, Huber loss, multi-label
margin loss, MSE loss, and L1 loss. For our experiments, we choose the binary
cross-entropy loss.

4 Experiments

Our experiments were designed to answer the following research questions: How
does RL-Net compare against its basis, DR-Net, for binary classification? How
does RL-Net compare against state-of-the-art rule-based classifiers, RIPPER and
CART, for binary and multi-class classification? Are the simple changes in RL-
Net for multi-label classification enough to achieve a satisfactory performance?

4.1 Datasets

We selected 7 binary and 6 multi-class datasets for our experiments, among
which all binary datasets used in the DR-Net paper [14]. We also chose 2 multi-
label datasets to perform a first evaluation on multi-label classification. The
datasets all come from the UCI Repository [6] except heloc1, house2, yeast3,
and scene(See footnote 3).

From the DR-Net paper [14], we used adult census (adult), magic gamma
telescope (magic), fico heloc (heloc), and home price prediction (house). To
these, we added internet advertisements (ads), king-rook vs. king-pawn (chess),
and mushroom (mushroom). For multi-class classification, we chose car evalua-
tion (car), nursery (nursery), contraceptive method choice (contraceptivemc),
page blocks classification (pageblocks), pen-based recognition of handwritten
digits (pendigits), and sensorless drive diagnosis (drive). We kept the differ-
ent classes of the multi-class datasets untouched except for nursery where we
merged the class “very recom” and “recommend” as they represented respec-
tively 2.531% and 0.015% of the class distribution. The multi-label experiments
were made with the yeast (yeast) and scene (scene) datasets.
1 https://community.fico.com/s/explainable-machine-learning-challenge.
2 https://www.openml.org/d/821.
3 https://www.uco.es/kdis/mllresources/.

https://community.fico.com/s/explainable-machine-learning-challenge
https://www.openml.org/d/821
https://www.uco.es/kdis/mllresources/
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Table 1. Characteristics of the different datasets: The column #Attributes binarized
presents the number of attributes after the different preprocessing steps while all the
other columns are computed from the unprocessed dataset.

Binary and multi-class datasets #Rows #Attributes #Attributes binarized Proportion of each class

Adult 48842 14 128 0.24, 0.76

Magic 19020 10 90 0.35, 0.65

House 22784 16 132 0.70, 0.30

Heloc 10459 23 147 0.48, 0.52

Mushroom 8124 22 111 0.52, 0.48

Chess 3196 36 38 0.52, 0.48

Ads 3279 1559 1577 0.86, 0.14

Nursery 12960 8 26 0.33, 0.03, 0.33, 0.31

Car 1728 7 21 0.70, 0.22, 0.04, 0.04

Pageblocks 5473 10 88 0.90, 0.06, 0.01, 0.02, 0.02

Pendigits 10992 16 135 10 classes with equal proportions

Contraceptivemc 1473 9 34 0.43, 0.35, 0.23

Drive 58509 48 432 11 classes with equal proportions

Multi-label datasets #Rows #Attributes #Attributes binarized #Labels Cardinality Density Distinct

Yeast 2417 103 927 14 4.237 0.303 198

Scene 2407 294 2646 6 1.074 0.179 15

4.2 Data Preprocessing

Regarding the data used for training, the first step was to remove the data sam-
ples for which the percentage of missing values was ≥ 40%. Next, we removed the
features for which the percentage of missing values was ≥ 40%. The remaining
missing values were replaced by the most frequent value in the case of categori-
cal attributes, and by the mean value for numerical features. Lastly, we applied
the same feature binarization as the one implemented for the DR-Net. This
binarization applies one-hot encoding to the categorical attributes, and quantile
discretization to the numerical ones followed by ordinal scaling [8].

The main properties of each dataset before and after the preprocessing are
presented in Table 1. The preprocessed datasets are the input for all methods
used in our experiments. In that way, we can be sure that any observed difference
in performance comes from the model itself and not from the data preprocessing.

4.3 Algorithms

We compare RL-Net with two state-of-art rule-based classifiers, CART [4] and
RIPPER [5], as well as with DR-Net, which is the basis for RL-Net. We used
CART from the scikit-learn library and RIPPER from Weka (JRip). We used
the authors’ implementation of DR-Net.

4.4 Protocol

Some of the datasets (namely adult, pendigits, yeast, and scene) have a pre-
defined test set. In this case, it was used as the test dataset. Otherwise, we
created a test dataset by selecting 25% of the data samples in a stratified fashion.
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For RL-Net and DR-Net, we tuned the hyper-parameters using stratified 10-
fold cross-validation. The number of rules ranges from 2 to 20 in our experiments,
but we fixed it to 10 in the hyper-parameter tuning for a matter of time. For both
algorithms, we tuned the following hyper-parameters: the number of epochs, the
learning rate, and the weight of the sparsity-regularization term. The batch size
was set to 5% of the dataset size.

For RL-Net, we also tuned the weight of the L2-regularization of the output
layer, the number of epochs for the balanced loss eb, and the mean value μ of
the normal distribution used for the initialization of the hidden weights WH .

We compare the algorithms using the same number of rules. Therefore, we
do not need to train the OR layer of DR-Net. Accordingly, we set the weight of
the OR layer regularization term to zero, and the network training was focused
on the Rules layer. For CART, the number of rules is controlled through the
user-defined parameter max leaf nodes. There is no user-defined parameter to
control the number of rules in RIPPER’s implementation. However, the minimal
weights of instances within a split parameter influences the number of rules in
the classifier. So, we varied this parameter to find the desired number of rules.

For CART, we also tuned the criterion using stratified 10-fold cross-
validation.

The remaining hyper-parameters of all algorithms were left to their default
values. For ease of reproduction, all details about the hyper-parameter tuning
are available in our GitHub repository.

4.5 Results

Figure 2 shows the performance of RL-Net and its competitors in terms of accu-
racy. We set the number of rules from 2 to 20 as our focus is on obtaining
interpretable models. RL-Net and DR-Net were run 10 times for each dataset
because these methods can get stuck in a poor local optimum depending on
the random initialization. The results of these runs are exhibited in a box-plot
format.

The binary classification performance is presented in Figs. 2(a)-(g). When we
compare RL-Net to DR-Net, we see that it is not possible to say that one of them
always performs better than the other. It actually depends on the dataset. For
some datasets, such as adult, mushroom, and chess, RL-Net has higher accuracy,
for others like ads, it is the other way around. In some other cases, the best-
performing method depends on the number of rules considered, such as for magic,
house, and heloc. RL-Net has a large performance variability on heloc and ads
datasets (with a maximal variability of 10%). In contrast, DR-Net has a large
performance variability on the chess dataset (with a maximal variability of 35%).
This variability is a drawback of neural networks with such non-standard layers,
but it does not stop both networks from achieving competitive performance when
the learning does not get stuck in a poor local optimum. RIPPER’s performance
is generally better than the two neural network approaches, but the difference is
not large. RL-Net outperforms CART in a wide range of cases. The performance
of the CART decision tree is the most affected when the number of rules is low.
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Fig. 2. Performance of our RL-Net (blue), the DR-Net (orange), Ripper (green), and
CART (red) versus the number of rules, on binary datasets (a to g), multi-class datasets
(h to m), and multi-label datasets (n to o). (Color figure online)
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Indeed, the length of the rules in the tree is limited by the maximum number of
rules, while it is not the case for the other algorithms.

Figures 2(h)-(m) present the results for multi-class classification. RL-Net can
achieve performance as high as RIPPER for nursery, car, pendigits, and drive
datasets. RIPPER outperforms RL-Net for the pageblocks dataset, and when
using 2 to 4 rules for the contraceptivemc dataset. Concerning CART, RL-Net
can achieve identical performances even though some runs get stuck in poor local
optimums as for the binary case. From these results, we can thus clearly see that
RL-Net works well on multi-class classification.

The results for multi-label classification are presented in Figs. 2(n)-(o). In
addition to CART, we also compare our results with a baseline that, for each
class label, predicts the most frequent value (true or false). For both datasets,
RL-Net has a lower performance than CART. For the yeast dataset, RL-Net
follows CART’s performance but scores 1 to 1.5% lower. RL-Net’s result for
two rules is similar to the baseline one, but RL-Net’s performance improves
with the number of rules, being up to 1.2% better. For the scene dataset, RL-
Net can obtain a lower performance than the baseline when it gets stuck in a
poor local minimum, but it clearly outperforms the baseline. However, CART
is considerably better than RL-Net for the scene dataset. From these results,
we note that using RL-Net for multi-label classification has potential, but its
performance is not state-of-the-art yet. This experiment is a proof of concept,
indicating that exploring this direction could yield good results.

5 Conclusion

Building on the interest in combining neural and symbolic machine learning, in
this work we explored gradient-based rule learning using neural network archi-
tectures. We implemented and presented our RL-Net method to learn binary
and multi-class rule lists using a neural network approach. We showed that
with minor adaptations RL-Net can be used to learn multi-label classifiers. We
compared our proposal to some other state-of-the-art algorithms for binary and
multi-class classification. We also evaluated the potential of RL-Net for learn-
ing multi-label tasks. From our results, we concluded that RL-Net is a proper
method for learning fully interpretable binary and multi-class classifiers. It does
not always achieve the highest performance, but it is never far from the best.
Regarding multi-label classification, some additional work should be done to
increase RL-Net’s performance, but our network architecture is easily compati-
ble with this task, indicating that RL-Net has potential in the integration of rule
learning with other neural network-based approaches. Future works include mak-
ing the method less susceptible to a bad initialization, improving the method for
multi-label classification, and integrating RL-Net further with other research in
the neural network literature, such as transfer learning, semi-supervised learning,
or active learning.
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Abstract. Causal relation extraction is essential in the causality discov-
ery of natural language processing. The development of causal relation
extraction from the model-driven is staggering, so we resort to the data-
driven method. More causal information is necessary because most cur-
rent datasets only label the locations of causal entities or events, which
may restrict the learning capacity of models. In this paper, we introduce a
novel benchmark causal strength classification and corresponding dataset,
Causal Strength Bank (CSB), consisting of a Chinese dataset (C-CSB) and
an English dataset (E-CSB) which merge causal strength, causal polarity,
and causal entity. To ensure credibility, we select four canonical English
datasets and clean Wikipedia passages for the Chinese corpus. The cor-
pus is then annotated and cross-checked by professional annotators in two
stages, ensuring the accuracy of CSB. We evaluate various baseline meth-
ods on CSB and show that causal strength information benefits causal
relation extraction, demonstrating the value of the proposed dataset. Our
dataset is available at https://github.com/yuanxs21/CSB-dataset.

Keywords: Causality extraction · Causal strength classification ·
Benchmark dataset

1 Introduction

Causal relation extraction is a branch of relation extraction task whose goal is
to identify the causality in the texts and locate the position of causal objec-
tives. It is critical for commonsense reasoning, question answering, and decision
support. These years, copious datasets and models are proposed to improve the
performance of general models on the task [1–7]. Regretfully, either well-defined
datasets or model-based methods focus on extracting causal entities or events
from texts, which can merely identify the existence of causality. They all ignore
the strength and polarity between causal objectives, which can help models learn
to describe causality precisely.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 111–122, 2023.
https://doi.org/10.1007/978-3-031-33374-3_9
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Previous datasets such as SemEval-2010 Task 8 [3], Event Storyline [2], and
CausalTime Bank [8] have focused on the general relationship between two enti-
ties, and have aggregated time cues or other order clues to enhance model per-
formance. However, existing models show hesitant results around a fixed level
or only a slight improvement. Additionally, the proportion of causality samples
in these datasets is small, which limits their ability to support deep learning
models that require large amounts of training data.

Fig. 1. Sentences annotated with both causal entities and strength labels from E-CSB,
we highlight the causal strength of a sentence with blue style and causal entities with
red italic. (Color figure online)

Many causal relation extraction models aim to solve problems in distinct
datasets, such as the RHNB [5] divide causal connectives of SemEval-2010 Task
8 into other classes as a new category feature; similar to RHNB, Dual-CET [6] is
a cause-effect network to discover co-occurrence patterns and evolution rules of
causation. Still, the adaptability of such well-designed models to other datasets
is weak. With time clue, [9] is a common inference framework to extract causal
entities in CausalTime Bank. However, such a complex model cannot apply to
time-independent contexts. Some models also focus on self-annotated data, [4]
extracting cause-effect pairs in web texts annotated by a template; [7] devising
a multi-head attention network to discover implicit causality from web texts.
Various models are with data-caused problems, and we thus solve these problems
by proposing a new dataset type in this work.

Extracting causal relationships is a meaningful exercise [10]. However, more
causal information should be considered, and the causal strength is critical. In the
first sentence of Fig 1, only “earthquake” and “death” are labeled; no more causal
message. Among these cases, we can figure that “death” caused by “earthquake”
and the “questions” raised by “slowdown” conveys different causal strengths.
Furthermore, the “death” caused by “earthquake” states a severe negative effect,
while the pair of “jobs” and “economy” apparently is positive. Those samples
express different causal polarities. Although [11] computes the causal strength
by the co-occurrence of words in a whole corpus, the statistical method considers
no context. [12] extends it by increasing the expression number of a single word
but is still limited by hard-statistic methods. Many works show that the strength
information about causal relationships would advance the causal studies [11,12].
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There is an isolation between causality extraction and causal strength for
now. However, we find that the two tasks may boost the performance of each
other. Suppose we could utilize both causal strength and entity information.
Albeit these two aspects in sentences are crucial for more detailed causality
obtaining, no appropriate dataset is available in this research as far as we know.
Considering the above, we introduce a novel benchmark dataset in this paper.
We collect several datasets and define a set of rules to annotate each sentence’s
causal strength and polarity. Eventually, we get a brand new dataset Causal
Strength Bank(CSB), consisting of the English Causal Strength Bank(E-CSB)
and Chinese Causal Strength Bank(C-CSB) with 3 strength and 2 polarity cat-
egories, 7 classes in total.

We conduct several experiments to demonstrate the effectiveness of our
benchmark and dataset. Because a multi-task model is more capable of aggre-
gating relevant information for various tasks than a single-task model [14], we
conduct a multi-task experiment on E-CSB to show the improvement of causal
relation extraction coming from causal strength. Experiments based on multi-
task learning architecture perform better than single causality extraction, high-
lighting our dataset’s significance. Our main contributions can be summarized
as follows:

– We develop a new task named causality strength classification, whose goal is
to classify the causality strength expressed by sentences and design a set of
annotation rules for a causal strength dataset.

– We build a novel causal strength classification dataset by collecting and anno-
tating the raw corpus of Chinese and English from reliable sources, and we
analyze the dataset from different perspectives.

– We design and conduct single-task and multi-task learning experiments with
baseline models on the datasets; results show that causal strength classifica-
tion is beneficial for causal relationship extraction.

2 Related Work

Although the popularity of causal strength is not on par with causality extrac-
tion, there are still some standard datasets and influential models in causal effect
estimation from texts.

Datasets. [15] present a commonsense knowledge base, Weltmodell, including
lots of causal knowledge, and it is automatically generated from over 3.5 mil-
lion English language books. CausalNet [11] is a framework that automatically
harvests a network of causal-effect terms from a prominent web corpus.

Models. Methods based on statistics compute a score to represent the causality
strength for given causes and effects, like PMI [16], utilizing mutual information
and lexicography. [17] first introduces the PMI method into commonsense causal
strength estimating on a substantial amount of web texts. Beyond the CausalNet,
[11] modify the PMI with sufficient and necessary causality. [12] created a list of
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multi-word to extend [11] method, which considered a multi-word expression as
a unit of an event as well as a single word.

However, estimating the causal effect in texts by statistical methods is defi-
cient for prior knowledge. We consider it a critical thing that introduces human
judgment of a specific causality into the causal relation extraction task. Thus we
present a new dataset for causal effect estimating research.

3 The Causality Strength Datasets

In this work, our initiative is to facilitate causality discovery research for more
accuracy and detail. Therefore, we present a new benchmark named the causal
strength classification task and a new fine-grained dataset containing more causal
information, i.e., the causal strength and polarity. There are three challenges dur-
ing the dataset development process: data scarcity, data dirty, and data labeling.
We manage these problems by collecting corpus, data process, and manually
annotating, which is quite different from the former works [11,12]. In addition,
we also report analyses of the dataset from different perspectives.

3.1 Data Collection and Processing

Extending the existing relation extraction datasets is an ideal way to precisely
measure causal relationships in texts. We notice that researchers worldwide pre-
fer datasets of English for relation extraction. Comparatively, Chinese has not
received enough attention in research as the world’s most spoken language. As
a result, Chinese datasets are substantially smaller in number and scope than
English datasets. To enhance the study of causality in English while compen-
sating for the lack of corpus in Chinese, we collect and process data from the
Chinese and English corpora by distinct strategies.

Fig. 2. Examples with causal strength label from C-CSB, we highlight the causal
strength before a sentence with blue style.

A few widely used relation extraction datasets with labeled causal enti-
ties/events are available. To take full advantage of them, we pick out some
curated ones from them since the sentences have varying degrees of causality
and a polarity message. Considering the quality and popularity, we integrate the
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SemEval-2010 Task 8, CTB, ESC, and SemEval-2020 Task 5 [13] as our
raw English corpus. Then, all sentences with labeled causal relations are sent to
invited annotators, who would deeply reannotate based on the original version.
As for sentences labeled with other relationships, we choose another strategy to
tackle.

There is no authoritative dataset for the Chinese corpus, so we build it from
zero. First, we fetch the Wikipedia official corpus1, since it has dedicated per-
sonnel to review and maintain each entry, and we believe the knowledge descrip-
tions of Wikipedia are objective and reliable. Another reason is that Wikipedia
covers topics broadly, which may stimulate information fusion among data in
different areas. In the processing, we first employ the Wikipedia Extractor2 to
standardize the texts in the wiki-corpus and obtain traditional Chinese text
files. After that, we convert its format into simplified Chinese and utilize the
OpenCC3. To figure out sentences that deliver causal relations, possibly from
the simplified Chinese corpus, we also build a causal trigger word vocabulary to
filter them. As the Wikipedia corpus consists of numerous documents and the
length is relatively long, we split the documents and confine each sentence within
120 Chinese characters, ensuring the sentences are complete. Then sentences that
probably convey causal relation are delivered to annotators.

3.2 Data Labeling

We use a two-step annotation process to ensure accuracy and reliability. Causal
strength is annotated with four categories: none, normal, moderate, and strong.
We also add binary polarity labels to describe the effect of causal relationships,
with _pos indicating a positive impact and _neg indicating a negative impact.
Examples of negative impacts include unnatural death, pollution, and extinction
caused by human activity.

We refer to international safety accident-level standards to distinguish differ-
ent levels of negative causal strengths in our labeling procedure. For accidents
resulting in fewer than three deaths, injuries to fewer than ten people, or eco-
nomic damages of less than one million dollars, annotators label corresponding
sentences as normal_neg. Accidents resulting in more than three but fewer than
ten deaths, or causing economic damages of more than one million dollars but less
than five million dollars, are labeled as moderate_neg. Severe accidents resulting
in ten or more deaths, more than 50 serious injuries, or direct economic damages
exceeding $50 million are labeled as strong_neg.

We also label positive causality strengths, which lack a clear distinction like
safety accidents. To establish a reference point, we exploit the opposite of safety
accidents and consider the impact range of benefits produced by causes that lead
to positive outcomes. We categorize a generally favorable event as normal_pos
if it benefits fewer than 10 people. Annotators label a cause as moderate_pos if

1 https://dumps.wikimedia.org/.
2 http://medialab.di.unipi.it/wiki/Wikipedia_Extractor.
3 https://github.com/BYVoid/OpenCC.

https://dumps.wikimedia.org/
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
https://github.com/BYVoid/OpenCC
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it affects more than 10 but less than 50 people and leads to some improvements.
Causes that have a significant positive impact on more than 50 people or promote
human society’s progress are labeled as strong_pos.

The data is divided into equal parts for each annotator based on their primary
language (5 for Chinese and 7 for English). Annotators individually label their
assigned parts and then label two additional parts completed by others. After
this, each sentence has three labels. In the third phase, annotators make the
final decision on each sentence, and if the three labels are within a variation of 1
and have the same polarity, we take their average as the final label. Otherwise,
we have the other two annotators review the sentence, and if it remains heavily
ambiguous, we discard it.

Non-causal sentences are labeled with the none category using a dedicated
script. The individual causal strengths and polarities are then combined to pro-
duce final causal strength labels, such as pos_strong or neg_moderate, for each
example in the dataset. The final English Causal Strength dataset (E-CSB)
includes 8,293 sentences, while the Chinese Causal Strength dataset (C-CSB)
comprises 6,240 sentences. Examples from both datasets are provided in Fig. 1
and Fig. 2 and can be used for tasks such as causal relation extraction and causal
strength classification.

3.3 Dataset Analysis

To facilitate further research by interested researchers in this field, we compre-
hensively analyze the datasets from 3 perspectives: label distribution, lengths of
sentences, and the number of conjunction in each classification.

Fig. 3. Labels distribution of E-CSB and C-CSB.

Label Distribution. There are a total of 7 types of labels. The labels in E-CSB
are extremely imbalanced at first. Therefore, we randomly select 4,000 sentences
of other relations in SemEval-2010 Task 8, then annotate them with none and
add them to E-CSB. This operation mitigates the imbalance in E-CSB; the final
causal strength distribution of the dataset is in Fig 3. However, the overall data
volume of pos_ tags is still less than that of neg_ tags, which may base on the
fact that the mass media is good at attracting attention with negative news.
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Fig. 4. Lengths of sentences in (a) E-CSB and (b) C-CSB.

Sentence Length. Sentence length refers to the number of words in a sentence.
Because of the perplexity in natural language understanding, the longer a sen-
tence is, the more difficult it is to understand. In computational linguistics, it
also affects computational complexity, influencing the performance of a model. In
both E-CSB and C-CSB, we count information on sentence lengths, discovering
that most sentences are between 100 and 200 characters long, and the sizes of
only very few sentences are beyond 400 or 200. The sentence length information
of E-CSB and C-CSB is in Fig. 4.

Table 1. The types of conjunctions in the E-CSB and their number show that most
of them can express the logical progression of cause and effect in a given context.

Conjective As Because For However If Since So While

Number 884 341 1,038 107 471 156 658 204

Numbers of Conjunctions. Conjunctive play a crucial role in the causality expres-
sion of texts. Contexts of conjunctions carry entities/events with a causal rela-
tionship and can also indicate a sentence’s complexity. We show the conjunctive
information in Table 1. The types of conjunctions include transition, sequence,
causality, juxtaposition, etc. For example, in an article, for and as frequently
lead to the causes of previous events, and the causality represented by this nar-
rative approach is implicit.

Aside from the above, we also look into the domains of the datasets. We dis-
cover that the contents of CSB mainly focus on medical, historical, and author-
itative news reports, demonstrating the datasets’ diversity and complexity.

4 Method

Single-task Learning The concept of single-task learning is presented in contrast
to multi-task learning. Most famous machine learning models typically focus on
optimizing for a particular metric, and as the name implies, it involves learning
only one task at a time. Based on the single-task learning strategy, we implement
several representative baseline models to conduct experiments on the above two
tasks and observe the performance of these models on these two tasks.
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Multi-task Learning. Multi-task learning is a branch of transfer learning closer
to real-world scenarios. Suppose there are m learning tasks {τi}mi=1. All the tasks
or a subset of them are related; the purpose of multi-task learning is to learn m
tasks simultaneously to level up the performance of learning a model for each
task τi by using the knowledge in other tasks [14]. By integrating intrinsically
linked tasks, multi-task learning can dig out internal connections among these
tasks. If we design the architecture of these tasks properly, they will provide
additional information mutually.

Fig. 5. Multi-task model for causal strength classification and relation extraction.

Joint Causal Strength and Entity Extraction Model. The model architecture is in
Fig. 5. The left part of the joint model aims to extract cause and effect entities,
while the right part intends to classify the causal strength of given sentences. The
left consists of a pre-trained BERT [18], an LSTM [21] layer, and a Conditional
Random Field (CRF) [22] layer, and the right part is the same as the left except
for the CRF. For both the two parts, we employ BERT as the base model to
obtain high-quality word representations and use LSTM to encode texts in low-
dimension vector space. For the left, between the LSTM layer and the CRF layer,
the outputs of the LSTM layer in the right part will be concatenated with the
intermediate variables of the LSTM in the left, and the concatenation then will
be sent to the CRF.

The observed sequence is the word sequence, and the output labels are the
Causal BIO attributes corresponding to each word. The model will classify each
term by the same number of feature functions and globally optimized values.
The prediction process is to compute the score of the tags with each feature,
and the label with the highest score is the predicted result.
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5 Experiment

Our experiments include both single-task and multi-task settings. In the single-
task experiments, we evaluate the performance of several classic models on
causal relation extraction and causal strength classification tasks. In the multi-
task experiments, we examine the potential of causal strength information in
improving causality extraction. Specifically, we conduct experiments on E-CSB
to demonstrate how causal strength can enhance the accuracy of causality dis-
covery.

Table 2. Experimental results on causal relation extraction task, we take the precision,
recall, and F1 (%) as metrics.

Model Precision Recall F1

BiLSTM 73.93 59.05 65.66
BiLSTM+CRF 66.21 64.52 65.34
BERT 73.28 75.47 74.36
BERT+BiLSTM 74.06 74.62 74.34
BERT+CRF 77.64 73.50 75.51
BERT+BiLSTM+CRF 76.25 74.81 75.52

5.1 Datasets and Evaluation Metrics

As we present a new dataset, we must evaluate its effectiveness and positive
influence on causality discovery research. In the experiments, we split the dataset
into training and validation sets in the ratio of 9:1. For metrics, we adopt the
accuracy, precision, recall, and F1 metrics of the causal relation extraction task.
As for the causal strength classification task, accuracy is the only metric.

5.2 Baselines

Causal Strength Classification. We take the classic machine learning models as
baselines in the causal strength classification experiments to observe the perfor-
mance of our proposed task with different feature extraction methods.

SVM. Support vector machine (SVM) is a classic model in text classification
and is effective in many classification tasks [19]. We modify the original SVM
structure to fit the requirement of our experiment.

TextCNN. The model [20] assumes each word in a sentence can be denoted
by a vector. Hence, a sentence is a matrix, allowing convolution operations to
perform on the matrix-like image data.

BiLSTM. LSTM’s success lies in adding an input gate, a forget gate, and an
output gate based on the traditional RNN models. We adopt the BiLSTM model
[21], integrating the sequence information of front and back directions.
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Table 3. Experimental results on Chinese and English causal strength classification
task, we take the accuracy (%) as metric.

Models C-CSB E-CSB

SVM 74.32 78.11
TextCNN 80.41 83.39
BiLSTM 83.24 86.65
BERT 87.52 91.54

BERT. It abandons the RNN architecture, effectively solving the long-term
dependency problem in NLP. We feed the hidden state of the CLS token to a
linear classifier to predict the causal strength in the experiments.

Causal Relation Extraction. Since we present BERT and BiLSTM in the base-
lines of causality strength classification, here we introduce the joint models in
causal relation extraction. To be noticed, we use CRF in the relation extraction
models because of its stable performance on the sequence labeling task.

BiLSTM+CRF. In this model, [23] feeds the outputs of BiLSTM into the CRF
module to get the result of text sequence labeling. This model extracts target
expressions from opinionated input sentences and categorizes each sentence.

BERT+CRF. It integrates BERT and CRF, fine-tuning after BERT pre-
training, adding the CRF layer, and obtaining the sequence with a higher prob-
ability in the causal relation extraction based on sequence labeling.

BERT+BiLSTM. The outputs of the pre-trained-BERT model pass through a
3-layer BiLSTM as hidden states that may extract contextual information from
a given sentence, and we obtain causal sequence labeling results at last.

BERT+BiLSTM+CRF [24] start by extracting text features with BERT,
then apply BiLSTM to learn contextual information with BiLSTM and feed the
outputs of the Bi-LSTM in CRF to obtain global optimum sequences with CRF.

Table 4. Results of single-task and multi-task experiments on E-CSB.

Task Type Precision Recall F1

Single- 76.25 74.81 75.52
Multi- 77.54 76.32 76.93

5.3 Results and Discussion

Table 2 shows extraction results, which reveal that the BERT+BiLSTM+CRF
model achieves limited improvements over BERT+BiLSTM since BERT is too
strong to display minor differences between BiLSTM and CRF. Table 3 displays
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the causal strength classification experiment results, which show that all models
perform better in E-CSB than in C-CSB, which may come from the scale of data.
Furthermore, we conduct multi-task experiments on E-CSB in nearly the same
setting as single-task experiments. The results of causal relationship extraction
in the multi-task learning framework are in Table 4. The multi-task model out-
performs single-tasking by 1.41 on the F1 metric, while it improves by 1.29 and
1.51 on precision and recall, respectively. Multi-task models perform better on
all selected metrics than single-task models, demonstrating the significance of
the causal strength classification task.

6 Conclusion and Future Work

In this paper, we propose a new Causal Strength Bank (CSB) dataset that
includes causal strength information and introduce two novel tasks for Chinese
and English causal strength classification. Our experiments demonstrate that
the proposed dataset can improve causal relation extraction from texts. We also
analyze the dataset from multiple perspectives to facilitate relevant research.
However, due to its relatively small size, future work could involve expanding
the dataset or creating additional benchmark datasets to further validate our
findings. Our work contributes to the field of natural language processing by
providing a new dataset for causal strength classification, and we hope it inspires
further research in this area.
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University of Defense Technology under Grant (ZK22-11).
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Abstract. With ever rising energy demands along with continuing pro-
liferation of clean energy sources, the expanding analytic needs of the
modern power sector can no longer be met by prevailing physical-based
models and require new automatic solutions for planning, monitoring,
and controlling tasks. In turn, artificial intelligence (AI) offers many
necessary tools to develop such novel solutions. In this paper we take the
first step towards bringing the utility of Topological Graph Neural Net-
works to power distribution grid planning and resilience quantification.
We develop new Graph Convolutional Networks coupled with a zigzag
topological layer for classification of distribution grid expansion plans.
We also introduce bootstrap over the extracted zigzag persistence rep-
resentations of the distribution grids which allows us to learn the most
characteristic, or hereditary topological signatures over multiple graphs
from the same family and, as a result, to improve classification perfor-
mance both in terms of accuracy and stability. Our numerical experi-
ments show that the new Bootstrapped Zigzag Persistence Based Graph
Convolutional Networks (BZP-GCN) yields substantial gains in compu-
tational efficiency compared to the traditional methodology to assess the
quality of investment and planning of distribution grids. Furthermore,
BZP-GCN outperforms by a significant margin 6 state-of-the-art models
in terms of classification accuracy.

Keywords: Graph neural networks · zigzag persistence · power
distribution grid

1 Introduction

Extreme events, such as floods, windstorms or earthquakes have severely harm
the power grid infrastructure, which resulted in long-term interruptions of elec-
tric power service [1]. Due to the potential security and socioeconomic conse-
quences of these disaster-driven power outages, governments and policy makers
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started to include power grid resilience as part of regional and national adap-
tation plans [10]. When planning and regulating the power sector to accom-
modate these resilience objectives, a main challenge, particularly in distribution
grids, is related with the High Impact Low Probability (HILP) nature of extreme
events. Traditionally, security concerns in power distribution have been focused
exclusively on reliability events, such equipment failures, maintenance, errors in
system operation, etc. Due to the routine characteristic of these outages, relia-
bility metrics are based on expected values (e.g., expected value of loss of load),
and pay insufficient attention to HILP events due to their very small (almost
negligible) probability of occurrence. To account for these events and effectively
capture the power resilience, uncertainty realizations populating the right tail
of the loss of load distribution should be taken into account, which can be done
by employing metrics such as Value at Risk (VaR) or Conditional Value at
Risk (CVaR) [24]. Another characteristic of reliability metrics is that they are
designed for an ex-post statistical evaluation of the grid performance. In fact,
when dealing with a large number of routine events, it is possible to say that dis-
tribution grid A is more reliable than distribution grid B, after observing several
years of outages. However, in practice, the same principle cannot be applied to
resilience against extreme events, again due to the HILP nature. Hence, in the
process of developing (utilities) and approving (regulators) new resilience plans,
we need new ex-ante methodologies of evaluating power grids. A possibility to
perform these ex-ante evaluations of distribution grid expansion plans is through
simulation-based methods [24]. However, for real size systems, these methods can
take a prohibitive amount of time, as need to solve several optimization models
to simulate the behaviour of the grid under multiple circumstances.

This opens an opportunity for artificial intelligence (AI) tools. Deep learning
(DL) algorithms for automatic graph classification might be particularly suitable
for this type of ex-ante applications, with the potential to dramatically decrease
computational times in relation to simulation-based methods. Such reduction
can be achieved by strategically extracting the most relevant topological infor-
mation from distribution grid plans pre-computed plans as an alternative to
observing and modelling detailed intra-hour stochastic events. Applications of
such semi-supervised DL tools for graph classification, particularly, based on
the graph neural network (GNN) architectures, have already been proven suc-
cessful in a broad range of knowledge domains, from bioinformatics to social
sciences to transportation systems [27]. Nonetheless, utility of GNNs for clas-
sification of power systems remains substantially under-explored. Most impor-
tantly it is still yet to be understood whether such GNN-based classification
algorithms can properly replicate resilience metrics (such as the CVaR of the
loss of load) and hence can be used in future applications to evaluate distribu-
tion grid plans. Motivated by these fundamental challenges at the intersection of
AI and distribution grid planning, we introduce a novel approach to automatic
classification of electricity system plans, namely, Graph Convolutional Networks
(GCNs) with the power-based, bootstrapped zigzag topological layer. That is, we
enhance GCNs by integrating the most characteristic, or hereditary topological
signatures recorded over multiple power system plans. We extract such topo-
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logical signatures by bridging the concept of zigzag persistence from algebraic
topology with the notion of bootstrap inference from statistics. Zigzag persis-
tence is the emerging methodology in computational topology, allowing us to
simultaneously evaluate properties of graphs (or other topological spaces) with
inclusions going in different directions [5,6]. Despite the recent results showing
its utility in diverse areas of study such as ecology, biochemistry, and traffic ana-
lytics [9,15,26], zigzag persistence has never been applied for analysis of power
grid networks and remains a largely unexplored concept in the data mining com-
munity. The key novelty of our contributions can be outlined as:

– We develop a novel classification algorithm for electricity system plans, based
on a new GCN architecture with a bootstrapped zigzag topological layer
– Bootstrapped Zigzag Persistence Based Graph Convolutional Networks
(BZP-GCN).

– We propose a new methodology to learn the most characteristic, or heredi-
tary topological signatures over multiple graphs from the same graph family,
namely, bootstrapped zigzag persistence representations.

– In our expansive numerical experiments, we show that BZP-GCN yields sub-
stantial gains in computational efficiency compared to the stochastic opti-
mization benchmarks from the power system community and also outper-
forms 6 state-of-the-art models from deep learning community by a significant
margin in terms of graph classification accuracy.

2 Related Work

Graph Neural Networks for Power System Analysis. A wide variety of
GNNs have been proposed in recent years for classification of non-Euclidean
structures. However, applications of GNNs in power system analysis remain
scarce for both transmission and distribution systems, with only few papers
considering GNNs for distribution networks. Such representative approaches
include recurrent GCN by [14] for multi-task transient stability assessment of
power transmission systems, optimal power flow (OPF) optimization problem
in transmission systems [23], node classification in transmission systems [8], and
forecasting transmission system responses to contingencies [4]. One of such GNN
applications to distribution systems include [7] who develop a GCN model for the
task of fault location in distribution systems, and prove that GCN-based model
is more robust to measurement errors compared with ML approaches. Compared
to these existing techniques, our approach brings multiple new research direc-
tions. First, we represent graphical properties of power distribution grid by local
topological signatures and define GCN based on bootstrapped zigzag persistence.
This is a novel application of GCN not only in power system analysis but graph
learning, in general. Our BZP-GCN is inspired by current GCNs but is carefully
designed to capture local topological information from a bootstrapped sequence
of multiple power distribution grids. Second, zigzag persistence and, generally,
tools of topological data analysis, have never been applied to distribution power
systems.
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Methods for Distribution Grid Planning. The first phase of distribution
grid planning is calculation of an expansion plan. Unlike the transmission and
bulk power systems, in electrical distribution industry this process is often empir-
ical, based on codes, electrical installation rules, and an ongoing discussion with
the regulators. One of the recent approaches in the power system community is
to improve this process via mathematical optimization. For instance, Nazemi et
al. [22] presents a linear programming method to optimize investments in stor-
age devices so as to make the distribution system more resilience when facing
earthquakes. The optimization model of [19] aims to identify investments in gen-
eration and network expansion while considering reliability. Moreover, Munoz et
al. [20] formulates a mixed-integer optimization problem to optimize the port-
folio of investments in substations, lines, and transformers to decrease the loss
of load costs. This class of models has the advantage of prescribing analytical
optimal planning solutions for relatively small power networks under specific
circumstances. However, due to their nature, these models struggle to provide
generalizable and standardized industry solutions for large scale planning of dis-
tribution grids. The other family of grid planning methods are simulation-based.
This aim at evaluating the performance of a system (or a future system) under
different scenarios, to guarantee that a given grid planning solution – either
obtained empirically or via mathematical optimization – is technically and eco-
nomically feasible. Reliability indices are often assess through these simulation
methods [3]. In resilience applications, advanced simulation approaches include
Monte Carlo methods based on probabilistic models of the events combined with
fragility curves to simulate network failures and their HILP consequences using
CVaR of loss of load [12]. These simulations usually require the evaluating every
single state of the system, including determining how the system would respond
optimally to a loss of load in each time, across multiple scenarios. This pro-
cess is cumbersome as solving a (non-parallelizable) sequence of optimization
problems for large-scale systems various times requires a huge computational
effort and a great deal of time. Within this context, we propose to replace this
simulation-based evaluation with a topological GCN-based method that com-
putes our resilience metric (CVaR) in a highly computational efficient manner.
A fast and efficient evaluation method to assess the resilience of distribution
grids, under potential candidate expansion plans, can hugely benefit regulators
in their decision making process.

3 Methods

Our goal is to explore utility of GCN-based methods to classify distribution grid
expansion plans in terms of resilience performance. In particular, our analysis
aims at assessing the ability to approximate explicit risk-based resilience metrics,
such as the CVaR of load loss, through the new topological descriptors of the
distribution networks using GNNs. Let G = (V, E , A) denote a distribution grid,
where V is a set of nodes, E is a set of edges, A ∈ R

N×N is a symmetric
adjacency matrix with |V| = N nodes, and X ∈ R

N×d is a node feature matrix



BZP-GCN 127

(here d is the dimension of node features). In a distribution grid, each node
represents either a bus or a substation, and each edge is a distribution line
between nodes. Distance among two nodes in G is denoted by Auv, with Auv = 0
if there exists no path connecting nodes u and v. Moreover, compared with graph
theoretical analysis of electric distribution system, we make a clear distinction
among substations (nodes of the distribution system that serve as a connection
to the main transmission grid) and buses (nodes of the distribution system that
may have a power load) in order to fully understand the relationship between
the resiliency of a distribution system and node (bus or substation) attributes.

3.1 Base Resilience Evaluation Method

Methods that assess reliability and resilience are designed to evaluate the capabil-
ity of the power grid to withstand multiple scenarios of outages while effectively
supplying load. To account for pre-defined sets of scenarios of routine failures and
HILP events, the resilience evaluation computes the distribution of total system
loss of load (sum of loss of load across all nodes of the system) and then calculates
the CVaR of this distribution. This process is usually carried out via Sequential
Monte Carlo Simulation (SMCS) methods, which performs simulations of loss of
load over annual time horizons. More specifically, to compute the annual CVaR
of loss of load, we need to simulate the operation of the distribution system for
several scenarios (e.g., 2000 scenarios), where each scenario corresponds to 365 d
(one year) and the system is operated for each hour of each day. Each annual
scenario, due to its respective failures, will then have an associated annual loss
of load. Given the amounts of loss of load associated with all the scenarios, we
can calculate the annual CVaR of loss of load. This procedure can take 24 h for
a 54-Bus system as the one discussed in the case study to evaluate the annual
CVaR of loss of load for a single candidate expansion plan. Hence, one of the
main contributions of this paper is to replace the computationally expensive
simulation by a method based on GCN that can quickly classify distribution
grids according to their corresponding ranges of annual CVaR of loss of load.

3.2 Zigzag Persistent Homology

Persistent homology allows us to assess evolution of salient data shape patterns
along various geometric dimensions. By shape here we broadly understand data
properties which are invariant under continuous transformations, i.e., ones that
do not alter “holes” in the data, e.g., crumpling, bending, and twisting. The main
idea is to select some suitable scale parameter ε and then to study graph G not as
a single object but as a nested sequence of graphs, or filtration G1 ⊆ . . . ⊆ Gn = G,
induced by monotonic changes of the parameter ε. For instance, suppose that
G is an edge-weighted graph (V, E , w), with w : E �→ R. Then, for each εj ,
j = 1, . . . , n, we can set G≤εj

= (V, E , w−1(−∞, εj ]), resulting in the induced
edge-weighted filtration. Alternatively, for each εj , we can consider only induced
subgraphs of G with maximal degree of εj , yielding a degree sublevel set filtration.
(For more choices of graph filtrations see [13].) Armed with this construction,
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we can track which shape patterns such as independent components and cycles
(dis)appear as scale ε varies, and also record their lifespans. Topological features
with longer lifespan are said to persist and are likelier to deliver important
information on the structural organization of G. To make the process of pattern
counting more systematic and efficient, we build an abstract simplicial complex
K(Gj) on each Gj . Due to its computational costs, one of the most widely adopted
choices here is Vietoris-Rips complex.

This framework allows us to extract and study the key shape descriptors
from a single graph G. However, what if we observe not one but multiple graphs
{G1, . . . ,GK}? If these graphs belong to the same family G, how can we track
shape signatures which are not just individualistic but most characteristic, or
“hereditary” for G? For instance, when we study cyber-physical networks which
are designed according to the same engineering principles, we can expect that
some properties will occur across many systems, thereby opening a path for
transfer learning. We propose to address this problem using the concept of zigzag
persistence and bootstrap. Based on quiver representations, zigzag persistence
generalizes ordinary persistence to tracking characteristics of graphs (or other
topological spaces) with inclusions going in different directions [5,6]. Here, we
focus on assessing compatibility of persistent shape signatures across unions of
graphs

G1 → G1 ∪ G2 ← G2 → G2 ∪ G3 ← · · · Gk ∪ Gk+1 ← .

That is, we record indices in the above sequence at which topological features
(dis)appear, for some given scale ε†. If for the given ε† topological feature ρ (e.g.,
p-dimensional cycle where 0 ≤ p ≤ dimK(G)) is first recorded in K(Gj), we say
that the feature’s birth is j, and if ρ first appears in K(Gj ∪ Gj+1), we record its
birth as j+1/2. In turn, if ρ is last seen in K(Gj), we record its death as j, while if
it is last seen in K(Gj ∪Gj+1), we say that its death is at j+1/2. Collecting births
and deaths over the set J of all observed topological features for a given ε†, we
get a zigzag persistent diagram (ZPD), i.e., a multiset Dε† = {(bρ, dρ) ∈ R

2|bρ <
dρ, ρ ∈ J}. Our hypothesis is that if we select multiple graph subsets of the same
cardinality from the same graph family G, e.g., {Gi1 , . . . ,Gim

}, {Gk1 , . . . ,Gkm
},

and {Gl1 , . . . ,Glm}, we shall expect to observe that certain shape patterns (i.e.,
p-dimensional cycles) tend to manifest with similar persistence across all subsets
of graphs. Such graph subsets can be selected using the statistical notion of
bootstrap, while the extracted zigzag persistent features for each graph subset
can be summarized via zigzag persistent images (i.e., the concept inspired by [9]).

Definition 1 (Bootstrapped Zigzag Persistence Image (B-ZPI)). Let
G∗(b) = {Gib1 , . . . ,Gibm

} ∈ G be a bootstrapped subsample of graphs from the
graph family G and b = {1, . . . , B}. Let ε† > 0 be a fixed scale and Dε†(G∗(b)) be
the associated zigzag persistence diagram ZPD for G∗(b). Now, we first map the
transformed ZPD T (Dε†(G∗(b))) to an integrable function φ : R2 �→ R which is a
weighted sum of Gaussian functions φDε† (G∗(b))(z) =

∑
z∈T (Dε† (G∗(b))) f(μ)gμ(z),

where z = (zx, zy) ∈ R
2, f(·) is a non-negative weighting function, and gμ(·) is
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a Gaussian function with mean μ ∈ R
2 and variance σ2. Then the bootstrapped

zigzag persistence image B-ZPI for G∗(b) is obtained by integrating φDε† (G∗(b))(z)

over each grid box, i.e., B-ZPI(b) =
∫∫

φDε† (G∗(b))(zx, zy)dzxdzy. Finally, a col-
lection

Bε† = {B-ZPI(1),B-ZPI(2), · · · ,B-ZPI(B)}, B ∈ Z
+

is called a bootstrapped distribution of zigzag persistence images for a scale ε†.

We can then use mean, median, quantiles and other parameters of Bε† for
extracting the most characteristic, or hereditary shape features of the graph fam-
ily G as well as for quantifying the associated uncertainty. Furthermore, Bε† can
be used for formal statistical inference and hypothesis testing on particular p-
dimensional cycles persistently re-occurring across {G∗(1), . . . ,G∗(B)}, which is
a more fundamental mathematical problem which we leave for future research.

3.3 Bootstrapped Zigzag Image Representation Learning
with Graph Convolutional Nets

Bootstrapped Zigzag Persistence Based Graph Convolutional Net-
works. Inspired by the message passing nature of GNNs, we propose a new
model called Bootstrapped Zigzag Persistence Based Graph Convolutional Net-
works (BZP-GCN), because the bootstrapped zigzag persistence based graph
convolutional layer is able to incorporate the sequential topological information
from the sequence of power networks to the static power network representation.
After �-th iteration, the node representation in graph Gi can be defined as

h
(�)
i,v = fMLP

(
⊕

(
AGG

(
h
(�−1)
i,u ,∀u ∈ N (v)

)
, h

(�−1)
i,v

))
,

where ⊕ denotes the concatenation of two vectors, AGG(·) is the aggrega-
tion function that aggregates the output of each neighbor (e.g., max, sum and
average), N (v) refers to 1-hop neighbors of node v, fMLP denotes the multilayer
perceptrons. Neighborhood vector h

(�)
i,v incorporates node feature information

from node v’s neighborhood into the representation. Finally, we denote the sig-
nal convolved matrix as H

(�)
i ∈ R

N×dout for graph Gi, where dout is the number
of output channels. To encode the topological information of a sequence of data
objects, we propose the bootstrapped zigzag persistence representation learning
(BZPRL) module that uses CNN-based model fcnn to learn topological features
of bootstrapped distribution of zigzag persistence images, i.e., Bε†,i ∈ R

B×p×p.
The operations can be formulated as

S
(�)
i,(b) = fGMP

(
f (�)
cnn

(
B-ZPI(b)i

))
, b = 1, 2, . . . , B

where B-ZPI(b)i ∈ R
1×p×p represents the b-th B-ZPI of resolution p for graph Gi,

and the global max pooling layer fGMP is applied to get a representation vec-
tor of the image-level feature S

(�)
i,(b) ∈ R

dout . To fuse the multi-view information
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(i.e., bootstrapped zigzag persistence representations) and aggregate the indi-
vidual learned zigzag persistence representation into a global representation, the
final bootstrapped zigzag persistence representation is the average of B zigzag
persistence representations S̄

(�)
i = 1

B

∑B
b=1 S

(�)
i,(b). Next, to aggregate the graph

structural information and topological-sequential information, we map the aver-
aged bootstrapped zigzag persistence representation S̄

(�)
i to the representation

vectors H
(�)
i . The aggregating operation can be formulated as Q

(�)
i = H

(�)
i S̄

(�)
i .

The core ideas behind the new graph representation are to (i) aggregate the local
topological information from a sequence of power grid networks in bootstrapped
zigzag persistence images and (ii) aggregate graph structural information from
graph convolution, and topological information via bootstrapped zigzag persis-
tence representation learning. Figure 1 provides an overview of the design of
bootstrapped zigzag persistence-based graph convolutional layer.

Fig. 1. The architecture of the BZP-GCN framework.

4 Experimental Studies

4.1 Datasets and Baselines

We consider learning CVaR of Annual Loss of Load through multi-class classi-
fication. Each of these classes represent a “degree” of system risk in relation to
HILP events. The resulting classification could be then converted into regulatory
planning standards, allowing to systematically compare resilience between dif-
ferent plans of the same grid and potentially across grids in similar geographical
conditions [18]. Following a standard statistical practice [21], we perform binning
into classes based on quantile ranges of annual CVaR of loss of load (kWh), i.e.,
3 classes (i.e., low-, moderate-, and high-risk), 4 classes (i.e., low-, moderate-,
middle-, and high-risk), and 5 classes (i.e., low-, moderate-, high-, very high-,
and extreme high-robustness). The proposed methodology has been applied to
two distribution system, namely 54-Bus System I and 54-Bus System II, which
are modified versions of the 54-Bus system described in [19]. In the 54-Bus Sys-
tem I, we have 72 lines (50 existing and 22 candidate lines), 4 substation nodes
and 50 load nodes. In the 54-Bus System II, we have 72 lines (52 existing and
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Table 1. Average accuracy (%) comparison with baseline methods; ( ) denotes standard
deviations.

Model 3 classes 4 classes 5 classes

54-Bus System I 54-Bus System II 54-Bus System I 54-Bus System II 54-Bus System I 54-Bus System II

RF [17] 73.1 (3.2) 69.9 (8.6) 70.2 (3.6) 63.3 (3.7) 63.5 (6.8) 61.3 (8.5)

WL subtree [25] 92.3 (3.4) 81.6 (9.3) 80.9 (2.3) 73.0 (7.3) 82.9 (6.2) 71.0 (9.8)

GCN [16] 91.9 (3.4) 81.1 (9.3) 85.0 (3.3) 72.2 (7.2) 81.2 (5.5) 71.7 (6.2)

Graph U-Net [11] 93.0 (3.5) 81.0 (9.0) 86.5 (3.7) 73.0 (6.1) 82.7 (5.1) 72.2 (9.9)

DCNN [2] 76.1 (7.0) 74.2 (8.1) 74.3 (5.9) 63.9 (5.1) 66.1 (10.2) 63.0 (9.9)

DGCNN [28] 92.1 (5.7) 80.1 (10.2) 88.6 (2.3) 72.6 (8.8) 83.2 (6.9) 72.2 (10.9)

BZP-GCN (ours) ∗∗∗96.5 (2.8) 85.8 (8.0) ∗∗92.3 (3.0) 77.9 (8.6) ∗88.1 (5.0) 76.9 (10.1)

20 candidate lines), 2 substation nodes, 50 load nodes and 2 non-load nodes. To
obtain our training data, we have generated several possible expansion plans for
the two aforementioned systems (200 for the 54-Bus System I and 74 for 54-Bus
System II). These expansion plans have been generated by selecting different
subsets of the available candidate lines. Then, for each expansion plan of each
system, we have simulated 2000 scenarios of annual operation, with hourly reso-
lution. For each hour of each scenario, we have simulated independent Bernoulli
trials for the availability of line segments of the distribution grid, considering
the rate of routine failures (single-line failures) as 0.4 times per year and the
rate of HILP failures (failures involving more than one line segment) as 0.01
times per year. By means of this simulation, we can attain the CVaR of annual
loss of load for each expansion plan as described in Sect. 3.1. We compare our
BZP-GCN model with widely used classification models, including (i) Random
Forest [17] (RF); (ii) Weisfeiler-Lehman subtree kernel [25] (WL subtree ker-
nel); (iii) Graph Convolutional Networks [16] (GCN); (iv) Graph U-Net [11]; (v)
Diffusion-convolutional neural networks [2] (DCNN); (vi) Deep Graph CNN [28]
(DGCNN).

Table 2. Ablation studies on 54-Bus System I (3 classes) and 54-Bus System II (3
classes) datasets.

Dataset Architecture Overall Accuracy

54-Bus System I BZP-GCN 96.5 (2.8)

BZP-GCN w/o BZPRL ∗∗95.0 (3.9)

ZP-GCN ∗96.0 (3.5)

54-Bus System II BZP-GCN 85.8 (8.0)

BZP-GCN w/o BZPRL ∗∗∗83.8 (10.5)

ZP-GCN ∗∗84.0 (9.1)

4.2 Experimental Settings

We use the Adam optimizer for 500 epochs to train BZP-GCN. For both 54-Bus
Systems, BZP-GCN consists of 5 layers whose hidden feature dimension is 128,
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and each layer consists of two MLP blocks. The learning rate is 0.01 the dropout
is set as 0.5, and the batch size is set as 32. In bootstrapped zigzag persistence
representation learning, the CNN based model consists of 2 CNN layers. For the
54-Bus System I and 54-Bus System II, the filter size, kernel size, and stride is
set to be 8, 2, 2 respectively. We set the size of global average pooling and global
max pooling as 3×3. For bootstrapped distribution of zigzag persistence images,
we set B = 3. The best results are in bold font. We also perform a one-sided
two-sample t-test between the best result and the best performance achieved
by the runner-up, where ∗, ∗∗, ∗ ∗ ∗ denote significant, statistically significant,
highly statistically significant results, respectively. We implement our proposed
BZP-GCN model using Python and Pytorch on NVIDIA GeForceX 3090 (24
GB memory). Our data and code is publicly available at https://github.com/
bzpgcnpakdd/BZP-GCN.git.

4.3 Overall Results

The results on 54 bus systems, averaged over 10 cross-validation runs, are sum-
marized in Table 1. As shown in Table 1 suggests the following key findings: (i)
BZP-GCN surpasses all state-of-the-art baselines in terms of classification per-
formance over all considered scenarios across all datasets; (ii) BZP-GCN deliv-
ers the relative gains with respect to the next best approach from 3.8% (for 3
classes of the 54-Bus System I and Graph U-Net as the competitor) to 6.7%
(for 4 classes of the 54-bus System II and WL subtree as the competitor); (iii)
BZP-GCN yields substantial reductions in computational costs with respect to
the stochastic optimization methods adopted by the power system community
and the second lowest running time among deep learning models. This proves
BZP-GCN to be the most competitive approach for the automatic expansion
plan classification both in terms of computational costs and accuracy among the
considered ML tools; and (iv) as expected, performance of all models deterio-
rates with an increase of a number of classes; however, the number of classes is
not a key aspect of this problem. In fact, in real world applications, it is expected
that power resilience will be expressed in a small number of classes so that it
can be incorporated into planning standards and regulatory proceedings.

4.4 Ablation Experiments

We now verify the effectiveness of the BZPRL module in BZP-GCN and the sin-
gle zigzag persistence based graph convolutional networks (ZP-GCN, i.e., only
considering one zigzag persistence image instead of bootstrapped zigzag persis-
tence images) on 54-Bus System I (3 classes) and 54-Bus System II (3 classes).
Table 2 shows that (i) BZP-GCN achieves the best performance in classifica-
tion tasks on all datasets; (ii) BZPRL module shows a high utility for encoding
topological information for graph representation learning; and (iii) bootstrapped
zigzag persistence images enhance stability of the results. In addition, the results
show that BZP-GCN equipped with BZPRL achieves statistically significant
improvements over BZP-GCN w/o BZPRL and ZP-GCN under paired t-test.

https://github.com/bzpgcnpakdd/BZP-GCN.git
https://github.com/bzpgcnpakdd/BZP-GCN.git
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5 Discussion

We have developed a new GCN-based architecture coupled with a zigzag topolog-
ical layer for classification of distribution grid expansion plans which allows us to
leverage the extracted most hereditary topological signatures over multiple dis-
tribution grid plans. The experiments have shown that the proposed BZP-GCN
outperforms state-of-the-arts methods on distribution grid benchmarks. More-
over, the computational time of BZP-GCN to classify different grid plans (in
the order of seconds) is encouraging, especially when compared with prevailing
simulation based CVaR evaluation methodologies that may take several hours to
compute. These findings indicate that BZP-GCN demonstrates a high potential
to be successfully incorporated into the traditional expansion and planning algo-
rithms to improve the computational times of the existing large scale simulation
models for evaluation of distribution grid planning. As such, BZP-GCN forms a
promising alternative to deliver automatic, computationally efficient, and stan-
dardized resilience analysis of the distribution networks, exclusively based on
the grid topology and the grid assets. In the future, we will explore sensitivity of
the BZP-GCN in face of operational plans that incorporate distribution assets
(such as reclosers and sectionalizers) that can enhance resilience by introducing
operational changes to the grid topology itself.
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Abstract. Label distribution learning (LDL) is an effective tool to tackle label
ambiguity since it allows one instance to be associated with multiple labels in dif-
ferent degrees. Therefore, the more complex but informative label space makes it
challenging to directly model the relationship between original features and label
distributions. In this paper, an algorithm called Label Distribution Learning with
Discriminative Instance Mapping (LDLDIM) is proposed to select a discrimina-
tive instance pool (DIP) to map the original features into a more discriminative
space. First, we design a criterion that incorporates label information to quantify
the discriminative power of each instance. Second, we select several instances
with the highest discriminative ability to construct the DIP, and map the instances
to the discriminative space through the DIP. By exploiting label information, this
criterion enables the selected DIP to ensure that instances that are close (far away)
in label space remain close (far away) in the discriminative space. Finally, mul-
tiple regressions for prediction are trained on the label distributions and the new
features that are obtained by distance mapping with DIP. Experiments and com-
parisons on 16 datasets illustrate that our algorithm outperforms 6 state-of-the-art
LDL methods in most cases.

Keywords: Label distribution learning · Instance mapping · Discriminative
ability

1 Introduction

In Single-Label Learning (SLL) and Multi-Label Learning (MLL), the hard labels are
usually used to describe the instances, i.e., 0(−1) is for the irrelevant labels and 1 is for
the relevant labels [21]. However, such a rough description cannot fully tackle the label
ambiguity of the relative importance of each label to the instances [6].

Therefore, a paradigm named Label Distribution Learning (LDL) is proposed,
which appropriately accommodates the different importance of each label to instances.
Instead of investigating “which label can describe the instance?”, LDL further han-
dles the label ambiguity problem by focusing on “how much does each label describe
the instance?” [7]. Figure 1 reveals the difference between SLL, MLL and LDL. For
SLL, the label of the image is identified as that of the largest semantic region (i.e., the
building). For MLL, all relevant labels take the same value 1. For LDL, the values of
all relevant labels together form a description vector whose sum is 1. Each element
represents the relative importance of the corresponding label to the image.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Fig. 1. A practical example of the difference between SLL, MLL and LDL.

Due to its unique label form, LDL can be used to tackle some informative real-world
applications with more label ambiguity. Take the facial expression emotion recognition
as an example, the expression of one person is frequently a mix of several basic emo-
tions (e.g., happiness, sadness, surprise, fear, anger and disgust) [23]. Hence, the soft
labels belongingness of LDL can model this kind of problem easily. During past few
years, LDL has attracts a lot of attention and been mainly applied in many real-world
tasks successfully, such as facial age estimation [8,10,20], head-pose estimation [9],
beauty sensing [15], bone age assessment [3] and facial expression emotion recogni-
tion.

As mentioned earlier, LDL algorithms output a vector consisting of the descrip-
tion degree of each label to the sample. It further leads to a more complex but infor-
mative label space than SLL and MLL. Hence, many researchers tend to utilize label
correlation. For example, LDLLC [11] encodes label correlation as a Pearson correla-
tion coefficient to incorporate into the objective function. LDL-SCL [22] encodes local
label correlations as additional features by computing instance distances from cluster
centers. LDL-LDM [16] simultaneously mines global and local label correlations by
learning label distribution manifold. Although, label correlations provide more infor-
mation for the decision-making process of the LDL model. It does not directly enhance
the discriminative power of the original features.

In this paper, we propose a mapping-based LDL method called LDLDIM to obtain
a more discriminative feature space and learn label distributions based on it. Instead of
adding customized regularization term or selecting some original features, we leverage
the discriminative instances to map instances to a new features space. Therefore, we
focus on selecting the optimal instances to build the DIP. Specifically, we design a
criterion using the relationship between pairwise samples in label space. It can measure
the discriminative power of the DIP, that is, to quantify the ability to map instances that
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Fig. 2. Discriminative instance mapping. Each pie represents an instance, and the fan-shaped
areas of different colors correspond to different labels, where the value represents the description
degree of the corresponding label. Red circles represent the instances that are selected into the
DIP. (Color figure online)

are close (far) in the label space to also close (far) in the discriminative space. Following
the theoretical work [18], the criterion is further derived as a function that measures
the discriminative ability of each instance. With this function, several instances with
the highest discriminative ability are selected to construct the optimal DIP. Moreover,
the representation of an instance in the discriminative space is the concatenation of its
distances to all instances in the DIP. As shown in Fig. 2, after mapping by the DIP,
instances with similar (dissimilar) label distributions will be close (far) to each other in
the discriminative space.

The main contribution of this paper can be summarized as follows:

1) We propose an LDL algorithm with discriminative instance mapping to transform
original features into a discriminative space to learn label distributions.

2) We design a criterion to measure the discriminative ability of candidate instance by
exploiting the relationship of pair-wise label distributions.

3) We select several highest discriminative instances to construct the DIP to make all
instances maximally distinguishable in the new mapping space.

The remainder of the paper is laid out as follows: in Sect. 2, we review some LDL
algorithms that are proposed in recent years. In Sect. 3, the details of LDLDIM is
described. In Sect. 4, the proposed algorithm is compared with several state-of-the-art
LDL methods. In Sect. 5, we make a conclusion about LDLDIM.

2 Related Works

During the past few years, a lot of efforts have been made to develop LDL algorithms.
These algorithms can be classified into three groups based on their main strategies:
Problem Transformation (PT), Algorithm Adaptation (AA) and Specialized Algorithm
(SA).

The algorithms based on PT are accomplished by transforming LDL tasks into
a series of weighted single-label tasks. This kind of degradation-based strategy has
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been wildly applied in MLL and multi-instance learning, such as MLSVM [2] and
MIBoosting [19]. For LDL tasks, two classic single-label classifiers SVM and Bayes
are adopted, i.e., PT-SVM and PT-Bayes [7]. PT-SVM computes the description degree
of each label by an improved implementation of Platt’s posterior probabilities, while
PT-Bayes achieve the same goal by applying Bayes rule. The algorithms based on AA
are developed by extending existing SLL approaches to accommodate the form of label
distribution. For example, AA-kNN [7] is extended on the basis of k-NN. DLDL [6]
utilizes deep convolutional neural networks to tackle LDL problems. The algorithms
based on SA try to design models that directly output label distributions. For example,
Geng et al. proposed SA-IIS [7], which takes the maximum entropy model [1] as the
output model, and adopts a strategy similar to Improved Iterative Scaling (IIS) [4] to
complete the optimization.

Due to the label form of LDL is naturally more complex than that of SLL and
MLL, it is difficult to achieve satisfactory results by directly constructing the feature-
label mapping function like above algorithms. Therefore, some methods attempt to take
label correlation into consideration. LDLLC [11] employs Pearson’s correlation coeffi-
cients to measure the correlations between any two instances and use it to regularize the
distance between corresponding parameter columns. However, Jia et al. [12,22] pro-
pose that local label correlations are more prevalent than global ones in most cases.
They design a clustering based method to encode the local label correlations into addi-
tional features for each instance. Moreover, they further customize a loss term for these
features to regularize the distance between predicted label distributions and the mean
vectors of each cluster. Instead of investigating the label space, others tend to manipu-
late the feature space. LDLSF [14] applies l1-regularization on the parameter matrix to
make it sparse, and it can figure out which features are discriminative for which labels.

3 Approach

3.1 Notations

We use X = {xi}Ni=1 ∈ R
q to denote the q-dimensional input space and Y =

{y1, y2, . . . , yL} as the L-dimensional label space, where N is the number of instances
and L is that of labels. The instance xi ∈ X is associated with a label distribution
Di = [d1i , d

2
i , . . . , d

L
i ] ∈ D and D = {Di}Ni=1. Each dji represents the description

degree to xi for a label yj . The label distributions should satisfy the basic definition
of LDL [7]:

∑L
j=1 dji = 1, dji > 0, which means the labels in Y can fully describe

all instances. The discriminative instance pool (DIP) is represented by P ⊂ X , and
|P| = k.

3.2 Discriminative Instance Pool

We aim to find an optimal DIP P∗ ⊆ X which can be used to generate the new discrim-
inative space. Therefore, P needs to have the ability to distinguish all instances through
mapping [18]. Accordingly, we design an evaluation criterion F(P) to measure the
distinguishing ability of P , and the optimal DIP P∗ can be found as:

P∗ = arg max
P⊆X

F(P) s.t. |P| = k, (1)
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where | · | represents the cardinality of P and k is the number of selected instances.
In order to obtain DIP with the highest discriminative power, we consider two goals

when constructing criterion F(·). The first one is the connectivity between the instances
that have similar label distributions. The second one is the separation between those
that have dissimilar label distributions. That is to say, the DIP should ensure that the
instances that are close (far away) in the label space remain close (far away) in the
discriminative feature space. Consequently, the evaluation criterion F(·) is formulated
as:

F(P) =
∑

i,j

α(xi,xj)Qij , (2)

where α(xi,xj) denotes the distance of xi to xj in the discriminative feature space
and Qij is the corresponding element in the matrix Q which embeds the structural
information of the label distributions. For universality, Q is defined as:

Qij =

⎧
⎪⎪⎨

⎪⎪⎩

−1
|A| · edis(Di,Dj)

, dis(Di,Dj) ≤ τ ;

1
|B| · edis(Di,Dj)

, dis(Di,Dj) > τ,

(3)

in which τ is a threshold for judging whether two label distributions is similar or
not and dis() represents the Euclidean distance. |A| and |B| denote the number of
instance-pairs that have similar label distributions and dissimilar ones, i.e., A =
{(i, j)|dis(Di,Dj) ≤ τ} and B = {(i, j)|dis(Di,Dj) > τ}. Accordingly, Eq. (2)
implies the aforementioned two goals, i.e., the connectivity and separation.

We now give a more detailed form of α(xi,xj) as:

α(xi,xj) = ‖xP
i − xP

j ‖22 = ‖IxX
i − IxX

j ‖22, (4)

where xX
i is obtained by mapping based on all instances:

xX
i = [dis(xi,x1), dis(xi,x2), . . . , dis(xi,xN )]T. (5)

The definition ofxP
i is similar to that of xX

i , but uses the DIPP as the mapping instance
set:

xP
i = [dis(xi,p1), dis(xi,p2), . . . , dis(xi,pk)]T, (6)

where pi denotes the i-th instance in P . I ∈ R
N×N is an diagonal indicator matrix

whose diagonal elements indicate whether the corresponding instance belongs to the
DIP. In other words, if xi belongs to the DIP, then Iii = 1, otherwise 0.

Substitute Eq. (4) into Eq. (2), the criterion F(P) is rewritten as:

F(P) =
∑

i,j

‖IxX
i − IxX

j ‖22Qij (7)

In order to facilitate the subsequent derivation, a constant coefficient 1
2 is added to Eq.

(7), and the final formulation of the criterion is defined as:
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F(P) =
1
2

∑

i,j

‖IxX
i − IxX

j ‖22Qij

=
∑

i,j

xX
i ITI(xX

i )TQi.j −
∑

i,j

xX
i ITI(xX

j )TQi,j

=
∑

i

xX
i ITI(xX

i )T
∑

j

Qi,j −
∑

i,j

xX
i ITI(xX

j )TQi,j

=
∑

i

xX
i ITI(xX

i )TGi,i −
∑

i,j

xX
i ITI(xX

j )TQi,j

= tr(ITV X G(V X )TI) − tr(ITV X Q(V X )TI)

= tr(ITV X (G − Q)(V X )TI)

= tr(ITV X Z(V X )TI)

=
∑

pi∈P
(φi)TZφi,

(8)

where V X = [xX
1 ,xX

2 , . . . ,xX
N ], G is a diagonal matrix generated from Q whose ele-

ment Gi,i =
∑

j Qij , Z is a Laplacian matrix generalized from Q, Z = [Zij ]N×N =
G − Q. φi = [dis(pi,x1), dis(pi,x2), . . . , dis(pi,xN )]T ∈ {R}N×1.

Consequently, we can quantify the discriminative ability σi of each instance in X :

σi = (φi)TZφi. (9)

We sort the σ of each sample from high to low, and select the first k instances to con-
struct the optimal DIP P that satisfies the following conditions:

∀pi ∈ P,xj ∈ X , σi > σj , |P| = k. (10)

3.3 Output Model

With the optimal DIP, we map instances from the original feature space to the dis-
criminative space via the Eq. 6. xi in discriminative space is represented as xP

i =
[dis(xi,p1), dis(xi,p2), . . . , dis(xi,pk)]T. Furthermore, we utilize V P = [xP

1 ,
xP
2 , . . . ,xP

N ] to denote the mapped instance set. With V P and D, a model consists of
L regressions (R1,R2, . . . ,RL) is trained, each of which is for one label.

For a test instance xm, we use the optimal P to map it into the discrimina-
tive space. The mapped vector is computed as xP

m = [dis(xm,p1), dis(xm,p2),
. . . , dis(xm,pk)]T. With xP

m and the trained multiple regressions R1,R2, . . . ,RL,
The i-th component of the predicted label distribution [d1m, d2m, . . . , dLm] can be obtained
by:

dim = Ri(xP
m). (11)

Algorithm 1 sets out the pseudocode of the LDLDIM. Among them, steps 1 to 8 are the
process of obtaining the optimal DIP. Steps 9 to 12 are the process of mapping instances
to discriminant space using DIP. Steps 13 to 15 are the process of training L regressors
using the discriminative features and the true label distributions.
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Algorithm 1. LDLDIM
Input: the input space X , the label distributions D, the number of labels L, the size of DIP k.
Output: trained regression models R1, R2, . . . , RL, the DIP P .
1: Initialize P, V P , σ = ∅.
2: Compute Q according to Eq. (3);
3: Compute Z according to Eq. (8);
4: for (xi ∈ X ) do
5: Compute σi with Eq. (9);
6: σ = σ ∪ {σi};
7: end for
8: Obtain the DIP P according to Eq. (10);
9: for (xi ∈ X ) do
10: Compute xP

i according to Eq. (6);
11: V P = V P ∪ {xP

i };
12: end for
13: for (i ∈ [1..L]) do
14: Train Ri using V P and [di

1, d
i
2, . . . , d

i
N ];

15: end for
16: return R1, R2, . . . , RL and P .

4 Experiments

4.1 Datasets

The experiments are undertaking on 10 yeast datasets (Yeast-alpha∼Yeast-spoem),
1 genetic dataset (Human Gene), 3 facial expression datasets (Emotion6, SJAFFE,
SBU_3DFE), 1 image dataset (Natural Scene), and 1 movie rating dataset (Moive).
Table 1 shows their statistics and some detailed information can be found in [7] and
[13].

4.2 Evaluations

Following [22], 2 commonly used metrics are employed, one of which measures the
distance between two label distributions: Euclidean ↓, while the another measures the
similarity between them: Intersection ↑. Notably, ↓ indicates a lower value of the met-
rics, the better the performance, and ↑ indicates a higher value of the metrics, the better
the performance.

4.3 Parameter Analysis

For LDLDIM, there are two parameters that need to be manually set, namely the thresh-
old τ for judging whether two label distributions are similar and the size of DIP k. In
order to make the above parameters have certain adaptability, we tend to set them in a
proportional way. The threshold is set to r1 · max{dis(Di,Dj)} and size k is set to
�r2 · N�. Figure 3 shows the performance of the algorithm under different parameter
settings, each result is obtained using 5 times 5 cross validation (5CV ). The results
are normalized to better exhibit the performance gap. It can be seen that each dataset
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Table 1. Statistics of 16 LDL datasets, where N is number of instances, n is number of features,
and L is number of classes.

Datasets N n L

Yeast-alpha 2,465 24 18

Yeast-cdc 2,465 24 15

Yeast-cold 2,465 24 4

Yeast-diau 2,465 24 7

Yeast-dtt 2,465 24 4

Yeast-elu 2,465 24 14

Yeast-heat 2,465 24 6

Yeast-spo 2,465 24 6

Yeast-spo5 2,465 24 3

Yeast-spoem 2,465 24 2

Human Gene 30,542 36 68

Emotion6 1,980 168 7

SJAFFE 213 243 6

SBU_3DFE 2,500 243 6

Natural Scene 2,000 294 9

Movie 7,755 1,869 5

has different threshold requirements, but in general, the threshold needs to be small
(r1 is around 0.1). For DIP size, Yeast-alpha and Yeast-cdc only need a small DIP
(r2 = 0.1) to guarantee sufficient performance, which indicates that the feature-label
relations of these two datasets is not particularly complicated. In contrast, that of Yeast-
dtt is slightly more complicated, which calls for a larger DIP (r2 = 0.5). Furthermore,
Yeast-cold, SJAFFE, and SBU_3DFE have more complex feature-label relations and
therefore require the largest DIP (r2 = 0.9) for best results.

4.4 Baselines and Settings

We compare the proposed LDLDIM to 6 state-of-the-art algorithms, including AA-
kNN [7], EDL [23], LDLSF [14], LDL-SCL [22], LDL-LDM [16], LDL-HR [17]. The
parameter settings of above algorithms are set to the recommend ones in their corre-
sponding papers.

4.5 Performance Comparison

The experiments are undertaking on 16 datasets with 2 metrics. Table 2 and Table 3
report the detailed experimental results of 7 comparing algorithms on all data sets,
where the best performance among the comparing algorithms on each measure is
marked in bold. Accordingly, LDLDIM ranks first on 12 out of 16 datasets under
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Fig. 3. The performance of LDLDIM for different r1 and r2 (under Intersection ↑).
Table 2. The performance comparison of LDLDIM and baselines. Each result is obtained through
5 time 5CV under Euclidean ↓. The best results are in bold.

Datasets AA-kNN EDL LDLSF LDL-SCL LDL-LDM LDL-HR LDLDIM

Yeast-alpha .0279±.0006 .0260±.0011 .0235±.0001 .0234±.0003 .0235±.0001 .0412±.0003 .0229±.0001.0229±.0001.0229±.0001

Yeast-cdc .0301±.0009 .0283±.0006 .0280±.0003 .0281±.0008 .0284±.0002 .0422±.0002 .0277±.0001.0277±.0001.0277±.0001

Yeast-cold .0724±.0027 .0771±.0018 .0683±.0001 .0696±.0003 .0693±.0005 .0694±.0001 .0671±.0009.0671±.0009.0671±.0009

Yeast-diau .0567±.0019 .0597±.0010 .0529±.0001.0529±.0001.0529±.0001 .0552±.0008 .0551±.0004 .0575±.0001 .0530±.0002

Yeast-dtt .0512±.0019 .0508±.0022 .0480±.0001 .0493±.0017 .0489±.0002 .0486±.0001 .0474±.0003.0474±.0003.0474±.0003

Yeast-elu .0297±.0010 .0289±.0005 .0279±.0005 .0279±.0005 .0282±.0001 .0365±.0001 .0275±.0003.0275±.0003.0275±.0003

Yeast-heat .0624±.0020 .0629±.0016 .0593±.0001 .0596±.0016 .0599±.0002 .0609±.0001 .0577±.0001.0577±.0001.0577±.0001

Yeast-spo .0879±.0030 .0843±.0029 .0822±.0019 .0815±.0006.0815±.0006.0815±.0006 .0830±.0001 .0830±.0001 .0816±.0002

Yeast-spo5 .1231±.0007 .1191±.0001 .1173±.0003 .1193±.0002 .1165±.0011 .1176±.0001 .1147±.0002.1147±.0002.1147±.0002

Yeast-spoem .1291±.0001 .1274±.0001 .1230±.0001 .1229±.0002 .1257±.0018 .1251±.0001 .1204±.0004.1204±.0004.1204±.0004

Huamn Gene .1036±.0044 .0887±.0021 .0864±.0001 .0858±.0016.0858±.0016.0858±.0016 .0866±.0002 .0943±.0001 .0860±.0001

Emotion6 .4551±.0134 .4502±.0029 .4048±.0007.4048±.0007.4048±.0007 .4111±.0018 .4349±.0030 .8897±.0072 .4109±.0014

SJAFFE .1264±.0024 .1216±.0061 .1162±.0017 .1160±.0012 .1257±.0042 .1209±.0015 .1157±.0019.1157±.0019.1157±.0019

SBU_3DFE .1633±.0007 .1510±.0018 .1485±.0001 .1459±.0001 .1433±.0022 .1423±.0003 .1417±.0009.1417±.0009.1417±.0009

Natural Scene .4322±.0009 .5223±.0098 .4198±.0029 .4002±.0021 .4068±.0015 .4173±.0007 .3750±.0007.3750±.0007.3750±.0007

Movie .1805±.0004 .1765±.0115 .1714±.0021 .1687±.0005 .2174±.0007 .1729±.0002 .1649±.0005.1649±.0005.1649±.0005

Mean Rank 6.38 5.69 2.63 3.00 4.13 4.94 1.25
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Table 3. The performance comparison of LDLDIM and baselines. Each result is obtained through
5 time 5CV under Intersection↑. The best results are in bold.

Datasets AA-kNN EDL LDLSF LDL-SCL LDL-LDM LDL-HR LDLDIM

Yeast-alpha .9561±.0012 .9570±.0022 .9619±.0005 .9622±.0005 .9615±.0002 .9307±.0004 .9625±.0001.9625±.0001.9625±.0001

Yeast-cdc .9538±.0013 .9571±.0008 .9577±.0005.9577±.0005.9577±.0005 .9572±.0013 .9567±.0003 .9344±.0003 .9576±.0001

Yeast-cold .9370±.0024 .9332±.0016 .9408±.0001 .9396±.0013 .9398±.0005 .9344±.0003 .9417±.0001.9417±.0001.9417±.0001

Yeast-diau .9378±.0022 .9347±.0010 .9403±.0001 .9395±.0011 .9394±.0006 .9365±.0001 .9417±.0001.9417±.0001.9417±.0001

Yeast-dtt .9557±.0017 .9560±.0018 .9580±.0001 .9573±.0015 .9576±.0002 .9581±.0001 .9589±.0001.9589±.0001.9589±.0001

Yeast-elu .9557±.0014 .9569±.0007 .9588±.0001 .9585±.0005 .9580±.0001 .9455±.0001 .9591±.0001.9591±.0001.9591±.0001

Yeast-heat .9368±.0018 .9366±.0017 .9401±.0001 .9402±.0014 .9396±.0003 .9384±.0001 .9416±.0001.9416±.0001.9416±.0001

Yeast-spo .9096±.0034 .9128±.0028 .9154±.0001 .9153±.0019 .9156±.0006 .9144±.0001 .9160±.0002.9160±.0002.9160±.0002

Yeast-spo5 .9040±.0005 .9070±.0001 .9084±.0002 .9068±.0001 .9089±.0008 .9081±.0001 .9104±.0002.9104±.0002.9104±.0002

Yeast-spoem .9087±.0001 .9099±.0001 .9111±.0001 .9151±.0002 .9111±.0013 .9115±.0001 .9148±.0002.9148±.0002.9148±.0002

Huamn Gene .7451±.0036 .7810±.0018 .7844±.0005 .7854±.0013.7854±.0013.7854±.0013 .7848±.0005 .7555±.0001 .7850±.0001

Emotion6 .5494±.0008 .5252±.0032 .5857±.0008.5857±.0008.5857±.0008 .5836±.0018 .5427±.0030 .2442±.0072 .5808±.0003

SJAFFE .8769±.0025 .8816±.0063 .8863±.0019 .8861±.0011 .8761±.0042 .8706±.0018 .8871±.0020.8871±.0020.8871±.0020

SBU_3DFE .8466±.0006 .8551±.0018 .8569±.0001 .8594±.0001 .8619±.0017 .8628±.0003 .8647±.0008.8647±.0008.8647±.0008

Natural Scene .5601±.0013 .3662±.0074 .5812±.0013 .6170±.0011 .6038±.0020 .5802±.0013 .6219±.0007.6219±.0007.6219±.0007

Movie .8224±.0004 .8228±.0094 .8314±.0004 .8322±.0015 .7860±.0007 .7912±.0002 .8379±.0005.8379±.0005.8379±.0005

Mean Rank 6.00 5.63 2.88 2.94 3.94 5.31 1.31

Fig. 4. CD diagrams of the Bonferroni-Dunn test. Algorithms that have no connection to
LDLDIM are considered to have significant performance differences from LDLDIM (CD = 2.014
at 0.05 significance level).

Euclidean ↓ and first on 13 out of 16 under Intersection ↑. For those datasets where
LDLDIM do not achieve the best results, its performance is not far behind the top-
ranked algorithms. The last row of each metric exhibits the mean ranks of each algo-
rithm.

Furthermore, we apply the post-hoc Bonferroni-Dunn test [5] to verify whether the
LDLDIM achieves competitive performance against the compared algorithms. The crit-
ical difference (CD) diagram at the 0.05 significance level is reported in Fig. 4. The
mean rank of each algorithm is marked along the axis (lower ranks to the right). In
addition, the algorithm whose mean rank is within one CD to that of the LDLDIM is
connected with a thick line. It can be seen from the Fig. 4 that LDLDIM is significantly
better than the algorithms AA-kNN, EDL, LDL-LDM and LDL-HR.
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4.6 DIP Selection Result

To observe which instances are highly discriminative, we selected two datasets and
visualized the sample distribution of their DIPs. For each dataset, the DIP size k is fixed
to �0.1 · n�. Then, we calculate the discriminative power of each sample by the Eq. 9.
Sorting from high to low discriminative ability, select the first k samples to construct
DIP. After identifying all DIPs, we use Principal Component Analysis (PCA) to reduce
the dimensionality of all instances to 2 and mark instances belonging to DIPs and others
with different colors. As shown in the Fig. 5, the instances selected into DIP for each
data set are marked in orange, and the remaining instances are marked in green. The
results in the figure show that in different data sets, the closer to the edge of the data set
is generally more discriminative.

Fig. 5. DIP selection result on SJAFFE and SBU_3DFE. The instances in the DIP are marked in
orange and the remaining instances are in green. (Color figure online)

5 Conclusion and Further Works

In this paper, a novel algorithm called LDLDIM that aims to map all instances into a
more discriminative feature space is proposed. To obtain a suitable mapping, we design
a criterion to quantify the discriminative power of instances. This criterion exploits
the relationship information of pairwise instances in label space. Then we select a few
optimal instances to build the DIP and map all the instances. Therefore, in the new dis-
criminative feature space, instances with similar label distributions will be close to each
other, which makes the instances easier to distinguish. Experimental results on 16 real-
world datasets with 6 comparing algorithms exhibits the effectiveness of LDLDIM. In
the future, we will try to come up with more specific measures of instance discrimina-
tive power, and will also improve the instance mapping method.
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Abstract. Artificial Neural Networks (ANN) models – a form of discrim-
inative models – are the workhorse of deep learning research, and have
resulted in a remarkable performance on a range of applications on a large
variety of datasets. On tabular datasets, ANN models are preferable when
learning from large quantities of data as non-parametric models such as
Random Forest and XGBoost cannot be easily used due to their inherent
in-core data processing (i.e., they require loading all the data in memory).
The applicability and effectiveness of ANN models, however, come with
a price. They have been shown to be susceptible to adversarial attacks,
which can greatly compromise their performance and trust in their uti-
lization. There has been a surge in research in developing effective defence
strategies for adversarial attacks on ANN models, e.g., Madry, D2A3, etc.
Recently, it has been shown that generative models are more robust to
adversarial attacks than discriminative models. A natural question is –
can generative models be used as a defence for discriminative models
against adversarial attacks? This work addresses this question, where we
study the power of generative models in warding off adversarial attacks
for discriminative models. In this work, we propose an effective defence
model – gD2A3 – that exploits the generative-discriminative equivalence
of some ANN models. It uses the learned probabilities from a generative
model to initialize the input layer parameters of a standard ANN model,
and utilizes L2 regularization of the input layer parameters as a defence
mechanism. We show that our proposed model leads to better results
than the state-of-the-art method D2A3 by conducting a thorough empir-
ical study on a variety of datasets with two major adversarial attacks.
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1 Introduction

At the heart of deep learning is a parametric model in the form of an Artificial
Neural Network (ANN), which is trained by optimizing a differentiable objective
function. The error is propagated back through the network, and each parameter
of the model is updated in an iterative gradient-descent optimization manner. This
end-to-end training process, as it is known, is efficient as it can process notably
large quantities of data in a strictly online or batch-processing manner. However,
this gradient-based learning has a fundamental weakness – it opens the door to
adversarial attacks [2]. The idea behind adversarial learning is that any malicious
entity, with access to model parameters (weights), can obtain the respective gradi-
ents so that it can modify the input to achieve the desired output [8,13]. E.g., for an
input x to a given model f(x), r is an adversarial noise if f(x + r) �= f(x), where
|r|≤ ε, for some (typically small and imperceptible) allowed perturbation size ε.
Adversarial learning (attack and defence methods) is studied in great detail in the
context of structured data such as images [4,9]. However, its application to tabular
data is somewhat under-explored1. In the last few years, there has been a surge of
research in developing effective defence strategies for adversarial attacks on ANN
models, e.g., Madry, D2A3, etc. On tabular datasets, it is shown that D2A3 leads
to state-of-the-art results. Recently, it is shown that generative models are more
robust to adversarial attacks than discriminative models. Can generative models
be used as part of a defence strategy in discriminative models? If yes, how does
this impact the results? We will address these questions in this work, as we pro-
pose a novel defence strategy that utilizes a novel combination of generative and
discriminative learning, to achieve state-of-the-art results.

There is a long history of generative and discriminative models and learning
in machine learning. Generative models optimize the log-likelihood objective
function (LL(θ) =

∑N
i=1 P(y(i),x(i))), whereas discriminative models optimize

conditional log-likelihood (CLL(θ) =
∑N

i=1 P(y(i)|x(i))). Their equivalence in
terms of the number of parameters to optimize is well established in the case of
naive Bayes and logistic regression models [7]. There has been some work that
discusses the robustness of generative and discriminative models [3] and claims
that generative models are more robust to adversarial attacks than discriminative
models. The work has been conducted in the context of image datasets. In fact,
a variant of naive Bayes – the Latent Variable Model (LVM) model – is used in
the study. We share the inspiration and insights from [3], as we exploit the use
of generative models for adversarial defence. However, our work differs as our
focus is on the integrating of generative models with discriminative models to
ward off adversarial attacks on discriminative models.

Why Generative Models are Robust to Adversarial Attacks? – Before,
we delve into why generative models are robust to adversarial attacks, let us take
a step back and discuss the role of discretization in formulating a defence strategy.
Note, the state-of-the-art defence strategy, D2A3 [12], relies on the discretization
1 By tabular data, we mean, a dataset in tabular format with discrete or categorical

features such that the correlation among features is unknown.
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of data at training time and adversarial training. For the sake of simplicity, we
will only focus on the discretization part. The numeric input to the model is
first discretized, and the discretized data is fed to the model for training. At
testing time, the adversarial sample is first discretized and the discretized value
is fed to the model. The effectiveness of this defence strategy stems from the bin
number not changing between the original and adversarial samples. E.g., the age
of a person says 23 if maliciously changed to 25 will be allocated to the same
bin, say 3 as a result of discretization. However, if the bins are changed, for
example, the value 29 is changed to 31, and the bin value is changed from say 3
to 4, this can result in altering the output of the model and hence performance
degradation. Discretized data has limited degrees of freedom, which means that
when an adversarial sample is discretized, there are two possibilities:

– First, it leads to a data point (feature values) that is already seen in the
training data, and

– Second, it leads to a data point (feature values) that is different from the
training data.

Now, let us analyse these two cases from the context of a generative model. A
generative model aims to learn the parameters that quantify the distribution of
any given data. It can be seen that in the former case, the distribution of the
data (as parameterized by a generative model) is not changed, and the model
already has learned how to handle even the adversarial datum. In the latter
case, the probability of the data will be so small under the generative model
that it will have minimal impact on the classification. In a nutshell, probabilities
are less prone to changes in the data, resulting in making generative models
more robust to adversarial attacks. Now that we have established the robustness
of generative models, let us discuss how they can be incorporated during the
learning of a discriminative model (especially deep ANNs).

A simple way to exploit the generative model’s parameters (i.e., probabilities)
is through pre-training of a generative model, followed by feeding these proba-
bilities as an input to a discriminative model. The intuition is that even though
the adversarial sample has resulted in changing the bin number, the resulting
probability of obtaining that datum (or feature values) based on the generative
model, can play its part. E.g., if the age attribute is changed to 98 which is then
assigned to bin number 10 – now if P(Age == 10|other feature values) is used
as an input to the discriminative model, it can derive the importance of that
feature. If it is very small, say 0.00001, the impact of that adversarial manipu-
lated feature is somewhat mitigated. Our proposed algorithm gD2A3 – generative
model inspired D2A3 – relies on this strategy of inputting the log of probabilities
as an input to the discriminative model. It also relies on regularization, which is
commonly used for controlling for over-fitting in discriminative models. However,
we will show that regularization in gD2A3 leads to a mechanism that can control
the magnitude of the defence against any adversarial attack. E.g., a strong regu-
larization can lead us to generative parameters, i.e., probabilities learned in the
pre-training step.
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The main contributions of this work are as follows:

– We have proposed a novel method – gD2A3 – that is based on utilizing the
robustness of generative models for incorporating a defence mechanism in a
discriminative model. It makes use of regularization to control the magnitude
of defence during discriminative learning.

– For shallow models, we show that gD2A3 can result in an innovative combi-
nation of generative and discriminative learning. This is desirable, e.g., if one
believes that an attack is happening, one can revert to a generative model
during discriminative learning.

– We perform extensive analysis on 10 typical datasets and show that our
method can lead to better results than the state-of-the-art method – D2A3.

The rest of this paper is organized as follows. We discuss some preliminary and
related work in Sect. 2. The details of our proposed method are given in Sect. 3.
We provide an experimental evaluation of our proposed method in Sect. 4. We
conclude in Sect. 5 with pointers to future work.

2 Related Work and Preliminaries

Defence methods against adversarial attacks on tabular data are still limited in
the current literature. A commonly used defence method for adversarial attacks
on continuous data is Madry [5]. It leverages adversarial training to minimize the
adversarial risk of the model. TRADES [11] is another commonly used defence
method for continuous data which minimizes the regularized surrogate loss
instead of directly training adversarially. The current state-of-the-art defence
method for adversarial attacks on tabular data is D2A3 [12]. The D2A3 approach
leverages discretization with adversarial training as the defence method and
achieves extremely encouraging results.

Let us discuss the major attacks methods that are common for tabular
datasets:

– LowProFool [1] is a white-box attack method in the tabular domain for gener-
ating imperceptible adversarial perturbations. It is based on minimizing the
addition of (imperceptible) adversarial noise on the features via a gradient
descent approach. The gradients of the adversarial noise are used to guide
the updates towards a distinct target class to the clean sample. It is the
state-of-the-art white-box attack method on tabular data [1].

– DeepFool [6] is another white-box attack method, and it works by adding
adversarial noise to the clean sample by estimating the distance between the
sample and the model decision boundary. The limitation of DeepFool is that
the adversarial noise can be large.

Let us discuss the basics of generative and discriminative models, and delve
into one formulation that innovatively combines the two models. A standard
discriminative model is of the form of logistic regression (LR) – which takes
the form

PLR(y|x) =
eβy+

∑n
j=1 βxj |y

∑C
c=1 eβc+

∑n
j=1 βxj |c

. (1)
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On the other hand, a standard generative model is Naive Bayes (NB) – which
takes the form:

PNB(y|x) =
θy +

∏n
j=1 θxj |y

∑C
c=1 θc +

∏n
j=1 θxj |c

. (2)

Naive Bayes and logistic regression are generative and discriminative counter-
parts [7], i.e., there is equivalence and correspondence on the number of param-
eters but they differ in how these parameters are optimized. A notable work
here is that of [10], which combines the two models i.e., naive Bayes and logistic
regression in a single framework known as WANBIA-C – which takes the form:

PWC(y|x) =
eβy log θy+

∑n
j=1 βxj |y log θxj |y

∑C
c=1 eβc log θc+

∑n
j=1 βxj |c log θxj |c

. (3)

Equation 3 provides an excellent way of leveraging generative parameters during
the learning of discriminative parameters. E.g., one can learn the generative
parameters (θθθ) by maximizing the log-likelihood and fixing them. Later one
can optimize the discriminative parameters (βββ), by optimizing the traditional
conditional log-likelihood. Our proposed gD2A3 method in this work is inspired by
the WANBIA-C formulation, as it formalizes the integration of generative models
in discriminative models that are deep (and not shallow like logistic regression).

3 Proposed Technique

In this section, let us discuss our proposed gD2A3 method for defending against
adversarial attacks. As we discussed earlier, it is based on integrating the param-
eters of a generative model during the training of a discriminative model. In fact,
we discussed one such integration in Sect. 2, when we discussed WANBIA-C – a
formulation that is applicable to only shallow discriminative models. A natural
question is: how can one exploit the WANBIA-C trick with deep discriminative
models? Our proposed method, gD2A3, relies on the utilization of an embedding
layer in a deep discriminative model (ANN). It learns a higher-order generative
model such as a Bayesian Network in the form of k-dependence Bayesian Esti-
mator classifier (KDB). The probabilities learned from the generative model are
used to initialize the embedding layer. Note the embedding layer is not learnable,
i.e., learnable = False is set during discriminative training. The output of the
embedding layer is fed to the hidden layers of the ANN model, which constitutes
the learnable part of the model during discriminative training. The output of
the embedding layer is also regularized, to control the magnitude of the defence
against any adversarial attack. In the following let us delve into the two salient
features of gD2A3.
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3.1 Pre-conditioning Layer

We denote the embedding layer in gD2A3 as a pre-conditioning layer. A pre-
trained generative model of the form of KDB is utilized in this layer2. We have
used KDB as a representative generative model because of the following reasons:

– Firstly, the model is easy to learn. The structure is based on mutual infor-
mation between attributes and the class, as well as the conditional mutual
information between two features and the class. The structure and parameters
can be learned in two passes through the data.

– Secondly, the model incorporates naive Bayes (e.g., k = 0 in KDB is naive
Bayes), and therefore, integration with shallow models (such as logistic regres-
sion) is straightforward.

– Finally, our conjecture is that the higher-order probabilities that KDB provides
offer more robustness to adversarial attacks than plain naive Bayes.

In the following, let us formalize the form for our pre-conditioning layer. In KDB,
the target feature denoted as Y is the parent of every feature. The feature Xi

will take no more than k parents except the target feature Y , and it will have
associated probabilities of the form:

P(Xi = xi|Π(Xi) = π(Xi)), (4)

where Π(Xi) returns the parent features of Xi, and π(Xi) denotes the values of
each parent feature. E.g., if Xj ,Xl and Y form the parents of Xi, then we have:

(Π(Xi) = π(Xi)) ≡ (Xj = xj ,Xl = xl, Y = y) . (5)

Furthermore, for every value of feature Xi – if Xi takes k parents – we have
an associated set of size Zi of probabilities, where Zi =

∏k
f=1|Xf |. Here

|·| denotes the cardinality of the feature. As an illustration, the feature EL
(Education-Level) has two parents, say City, Age. Suppose, there is a total
of 10 cities and 5 age groups in the dataset, this means that for every value of EL,
we have an associated set of ZEL = 10 × 5 probabilities, which can be flattened
to obtain a vector of size Zi = 50. In other words, EL = ‘Bachelor-Degree’
or EL = ‘Masters’ or EL = ‘PhD’, is represented as a 50-dimensional vector
of probabilities. Here, the size (Zi) of the resultant vector is dependent on the
value of k (i.e., how many parents a feature has). In the pre-conditioning layer
of gD2A3, the embedding layer is of size Zi for feature Xi, to establish a one-
to-one correspondence of KDB probabilities with that of the embedding layer’s
parameters. The embedding layer parameters (βββ) are initialized with the log of
the KDB probabilities as:

βXi=xi|Xj=xj ,...,Y =y = log P(Xi = xi|Xj = xj , .., Y = y) (6)

As we described earlier, once the parameters of the embedding layer are initial-
ized, they are frozen and not updated in the training process to follow.
2 Note, the training time for KDB, typically with small order values of k due to the

computational cost, i.e., k = 0, k = 1, is negligible compared to training the deep
learning model.
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3.2 Utilizing Generative Model During Discriminative Training

The pre-conditioning layer in gD2A3 is connected to a dense hidden layer leading
to a deep ANN. One can, however, connect the output of the pre-conditioning
layer to an output layer – this leads to a shallow model of the form as described
in Eq. 3. In gD2A3, the output of the pre-conditioning layer is also regularized.
However, instead of regularizing towards zero, it regularizes the parameters of
the layer towards 1 as shown in the following equation:

CLL(βββ) = log(P(y|x)) + λ‖βββ(1) − 1‖2, (7)

where βββ(1) represents the parameters associated with the first layer after the
pre-conditioning layer in gD2A3. It can be seen that when λ is large, and hence
βββ(1) converges to 1, the input to the ANN is the output of the generative model
(i.e., KDB probabilities). However, when λ is small, our model learns some set of
weights on the input probabilities. Thus, λ can be seen as a mechanism to control
the magnitude of the defence. A large value will result in resorting to the output
of the generative model (a strong defence, but it can impact the performance if
no attack is happening), whereas, a small value will let the ANN learn weights (a
weak defence, but the performance can be better if no attack is happening).

3.3 Algorithm

Let us summarize the working of our proposed gD2A3 model:

– First, it learns a KDB model, and learns the structure as well as parameters
(probabilities). The value of k is a hyper-parameter, default is 0. The proba-
bilities are denoted as θθθ.

– Second, it initializes the weights of the pre-conditioning layer denoted as βββ(0)

with pre-trained KDB probabilities, i.e., βββ(0) ← θθθ. βββ(0) is set to non-learnable
in the discriminative training process to follow.

– Third, it optimizes an objective function of the form Eq. 7 optimizing param-
eters βββ(1), . . .βββ(D), where D denotes the number of layers in the deep ANN.

– Finally, the weights of the first layer βββ(1) are regularized towards 1 to control
the magnitude of the defence against adversarial attacks.

A simple illustration of this process is shown in Fig. 1.

4 Experimental Results

In this section, we empirically verify the effectiveness of our proposed gD2A3
model. We will test its efficacy for both shallow as well as deep models. By
shallow, we mean a model that has no hidden layers – i.e., the output of the
pre-conditioning layer is directly connected to the output layer, whereas a deep
model has hidden layers present between the pre-conditioning and output layers.
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Fig. 1. Initialization of input layer based on pre-trained weights.

4.1 Experiment Setup

Dataset. We have used a total of 10 UCI classification datasets in our experi-
ments. Out of the 10 datasets, 4 have more than 50K samples and are denoted
as Large, whereas 3 datasets have between 5 and 50K samples and are denoted
as Medium. The remaining 3 datasets have less than 5K samples and are denoted
as Small. The statistics of the data are summarized in Table 1. We have used
equal frequency discretization with 10 bins to convert numerical attributes to
categorical attributes.

Adversarial Attack Setting and Evaluation Metric. We have made use
of 2 commonly used white-box attack methods, which are common for tabular
datasets, i.e. Deepfool and LowProfool. For each attack method, the architec-
ture and the parameters of the target model are available, and the adversarial
samples are directly generated. The maximum number of iterations for Deepfool
and LowProfool is 50, which is the same as the default setting in their original
implementation

Regarding the evaluation metrics, we have made use of an accuracy measure,
which generally determines the level of resistance of a defence mechanism against
an adversarial attack. The term standard accuracy is used for the normal case
i.e., to quantify accuracy without an adversarial attack and the term robust
accuracy is used to quantify accuracy for the case when an attack occurs.

4.2 Generative vs. Discriminative Models

Let us perform a preliminary experiment to compare the robustness of generative
and discriminative models. We will use naive Bayes (NB) and logistic regression
(LR) as examples of generative and discriminative models. We manipulated the
data to perform two kinds of attacks, i.e., LowProFool and DeepFool. It can
be seen from Table 2 that generative models are robust to adversarial attacks
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Table 1. Description of datasets (m, n, c denotes the number of instances, features
and classes respectively for each dataset).

Dataset m n c Size Dataset m n c Size

Census-income 299285 41 2 Large Magic 19020 10 2 Medium

SkinSegmentation 245057 3 2 Large Page-blocks 5473 10 5 Medium

Higgs 98050 28 2 Large Abalone 4177 8 3 Small

Connect-4 67557 42 3 Large Vowel 990 13 11 Small

Adult 48842 14 2 Medium Vowel-context 990 11 11 Small

Table 2. Comparison of Generative Model (NB) and Discriminative Model (LR) on all
datasets.

Dataset Model Robust Accuracy

(no defence) LowProFool DeepFool

Census-income LR 0.0422 0.0422

NB 0.739 0.739

SkinSegmentation LR 0.0562 0.0562

NB 0.869 0.869

Higgs LR 0.3235 0.3237

NB 0.5937 0.5937

Connect-4 LR 0.2477 0.2477

NB 0.6845 0.6845

Adult LR 0.1297 0.13

NB 0.7925 0.7925

Magic LR 0.1547 0.1545

NB 0.6652 0.6495

Page-blocks LR 0.0192 0.0197

NB 0.828 0.746

Abalone LR 0.1902 0.8070

NB 0.7044 0.7066

Vowel LR 0.4444 0.5388

NB 0.7333 0.7333

Vowel-context LR 0.5611 0.4666

NB 0.7388 0.7388

with a performance far superior to their discriminative counterpart, LR. This
preliminary result is encouraging for our proposed defence strategy gD2A3, as it
relies on the use of a generative model in its defence.

4.3 Analysis on Deep Model

In this work, we will use the state-of-the-art method D2A3 as the baseline. The
deep model used in this work consists of 3 hidden layers with each layer consisting
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Table 3. Performance Comparison for
gD2A3 in Deep Model.

Models λ Standard Robust Accuracy (Avg)

Accuracy (Avg) DeepFool LowProFool

gD2A3 10−3 0.8809 0.8673 0.8407
gD2A3 10+3 0.8841 0.8771 0.8482

D2A3 – 0.8330 0.8210 0.8080

Table 4. Performance Comparison for
gD2A3 in Shallow Model.

Models λ Standard Robust Accuracy (Avg)

Accuracy (Avg) DeepFool LowProFool

gD2A3 10−3 0.8180 0.8056 0.7950
gD2A3 10+3 0.8120 0.8053 0.7890

D2A3 – 0.7836 0.7494 0.7456

of 10 nodes. In particular, for both gD2A3 and D2A3, we use the same model
structure, except that gD2A3 has an additional Pre-conditioning Layer. The
magnitude of the defence is controlled by the regularization parameter λ, which
is varied in this part of the experiment to investigate the trade-off between
generative and discriminative models.

Table 3 shows this comparison of gD2A3 with D2A3, providing an average of
results on 10 datasets. It is encouraging to see that our gD2A3 performs better
than the current state-of-the-art D2A3 for both the Deepfool and LowProFool
methods with the two regularization settings. Notably, gD2A3 performs better
with higher λ, which suggests that it avails the output of the generative model
as an effective defence against adversarial attacks. Comparing the gap between
standard accuracy and robust accuracy, it can be seen that higher λ corresponds
to a smaller gap between standard and robust accuracy. In summary, the results
on gD2A3 with the deep model are extremely encouraging and suggest that the
use of generative models can be an extremely effective defence against adversarial
attacks on tabular data.

4.4 Analysis on Shallow Model

For sake of completeness. Let us see if our proposed formulation works for shallow
models as well. For this experiment, we used an LR model with both gD2A3 and
D2A3. Table 4 depicts the comparison of gD2A3 with D2A3 by reporting averaged
results on 10 datasets. Like deep models, gD2A3 outperforms D2A3 on shallow
models as well. However, one difference is that, gD2A3 now performs better with
a smaller value of λ. This is an interesting result. We conjecture that shallow
models could be inherently more robust to adversarial attacks than deep models,
and so require far less reliance on generative parameters to ward-off attacks. A
detailed analysis of shallow and deep learning models is warranted. However, it
is outside the scope of this work and is left as future work. In summary, we can
conclude from the results that our approach is as effective in providing defence
against adversarial attacks on shallow models as it is on deep models.

4.5 Ablation Study on Data Size and Feature Order

We further conduct an ablation study on data size and feature-order (k in KDB)
for gD2A3.
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Table 5. Ablation Study on Data size for gD2A3.

Models λ Deep Shallow

Large Medium Small Large Medium Small

DF LPF DF LPF DF LPF DF LPF DF LPF DF LPF

gD2A3 10−3 0.8584 0.8494 0.9026 0.8936 0.8438 0.7764 0.8371 0.82 0.8971 0.8943 0.6722 0.6621

gD2A3 10+3 0.8599 0.8539 0.9039 0.8973 0.8733 0.7914 0.8376 0.8168 0.8978 0.8974 0.6697 0.6433

D2A3 – 0.8571 0.8555 0.8932 0.8431 0.7006 0.7095 0.8358 0.8358 0.7885 0.7740 0.5616 0.5634

Table 6. Ablation Study on Feature-order, i.e., k in gD2A3.

Models λ Deep Shallow

k = 0 k = 1 k = 0 k = 1

DF LPF DF LPF DF LPF DF LPF

gD2A3 10−3 0.8673 0.8407 0.8720 0.7537 0.8056 0.7950 0.8464 0.8390

gD2A3 10+3 0.8771 0.8482 0.8718 0.7711 0.8053 0.7890 0.8444 0.8323

D2A3 – 0.8210 0.8080 0.8561 0.8224 0.7494 0.7456 0.7991 0.7722

Table 5 reports results on the deep and shallow models for three collections
of datasets – Large, Medium and Small. It can be seen that gD2A3 works bet-
ter with higher regularization λ value for most of the cases, except for small
datasets with shallow models (as discussed in the last section). The results here
are encouraging, as we can see that higher regularization can bring a stronger
defence to the models.

Table 6 shows the comparison of the results for two values of k (KDB) in gD2A3.
In general, for both k = 0 and k = 1, gD2A3 wins with higher regularization for
the deep model and lower regularization for the shallow model. For the deep
model with k = 1, the dimension is large for most of the data, and therefore
affords more opportunity for adversarial attacks for LowProFool – which targets
the features specifically.

5 Conclusion and Future Work

In this work, we studied if generative models can be used as a defence mech-
anism against adversarial attacks on discriminative models such as deep ANNs.
Our proposed formulation, gD2A3, leverages Bayesian Networks as a generative
model and proposes a Pre-conditioning Layer. This pre-conditioning layer
incorporates the weights learned in the pre-trained generative model. The first
layer of the ANN after the pre-conditioning layer relies on regularization to control
the magnitude of the defence by pulling the input towards that of the genera-
tive model’s output. It results in blending generative models in discriminative
training. We show empirically on 10 datasets that gD2A3 leads to better results
on the majority of datasets than the existing state-of-the-art method D2A3. For
future work, we will focus on the following directions:

– Currently, the generative models (probabilities) are static – that is, with new
adversarial examples, they are not updated. As we mentioned earlier, the
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real benefit of generative models will stem from the fact that they can adapt
to a newly forged adversarial distribution, and therefore, a moving average
estimate of probabilities is extremely desirable.

– We are interested in studying the robustness of gD2A3 to adversarial attacks
based on the network depth (shallow vs. deep). Currently, it is not clear if
the attack’s success rate depends on the depth of the model.
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Abstract. Currently, representation-based learning is widely used in
image classification because of its good mathematical interpretability.
However, when the number of training samples available is small, the
performance of the general representation-based model is bad. For this
reason, we propose a new weak correlation-based discriminative dictio-
nary learning (WCDDL) method, which learns a weakly correlated class-
specific structured dictionary by narrowing the correlation between each
sub-dictionary representation. WCDDL can reduce the impact of sparse
training samples in decreasing the classification accuracy to a certain
extent. Experimental results show that our proposed method can achieve
better classification performance compared to existing representation-
based algorithms even when training samples are sparse.

Keywords: Dictionary learning · Image classification · Weak
correlation

1 Introduction

Image classification has long been a core task in the field of computer vision,
with the aim of distinguishing different classes of images based on their features.
In recent years, image classification algorithms have received a lot of attention
because of their usefulness in many application areas (e.g., face recognition [21],
handwritten digit recognition [15], hyperspectral remote sensing imagery classi-
fication [10]). Presently, a large number of image classification algorithms have
been proposed. The mainstream classification algorithms can be broadly classi-
fied into two categories: non-parametric and parametric methods. The former is
mainly representation-based, say the nearest neighbor classifier, and the latter
consists of a lot of methods, including support vector machine (SVM) and neu-
ral network (NN). This study focuses on representation-based methods for their
mathematical interpretability.
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As the earliest representation-based method, the nearest neighbor classifier
considers the simply representation for a given point using its nearest neigh-
bors and ignores the degree of representation. Therefore, researchers have devel-
oped more representation-based methods, such as sparse representation-based
classifier (SRC) [8] and collaborative representation-based classifier (CRC) [19].
Generally, representation-based methods linearly represent a test sample using
the given training samples and classify it by measuring the residuals between it
and its class representations. During the representation process, SRC uses each
class of training samples to linearly represent test samples, whereas CRC adopts
all training samples to represent test samples. When the number of training
samples in each class is small, the SRC representation can lead to a degrada-
tion of classification performance. However, CRC can avoid this situation well,
which makes researchers prefer CRC. Therefore, some CRC extensions have
been proposed, such as collaborative-competitive representation-based classifier
(CCRC) [18], double competitive constraints-based collaborative representation
for classification (DCCRC) [6], weighted discriminative collaborative competitive
representation (WDCCR) [5], and Probabilistic CRC (ProCRC) [4]. Although
the classification performance of CRC-based methods seems to be good, their
computational time increases as the amount of data increases. To maintain the
classification performance and reduce the computational effort, it is considered
to learn the information features of samples through dictionaries and apply them
in the classification method.

Back in 2006, Aharon et al. [1] proposed a dictionary learning method, the K-
SVD algorithm, which is a generalization of K-means. Although K-SVD trains
a dictionary with superior performance and performs well in image recovery
and image compression, it is not suitable for image classification tasks because
it does not utilize the label information of data. In view of the shortcoming,
Zhang et al. [20] proposed a discriminative K-SVD (D-KSVD) algorithm based
on K-SVD. D-KSVD adds a new label term to the original objective function by
introducing label information, which makes it possible to maintain the perfor-
mance of the dictionary while making it applicable to image classification tasks.
Jiang et al. [9] proposed label consistent KSVD (LC-KSVD) by adding a new
label consistency constraint (discriminating sparse coding errors) to the objec-
tive function of D-KSVD, associating each dictionary atom in the dictionary
with its corresponding specific label and forcing samples in the same class to
have similar sparse representations.

The dictionaries learned by above methods are all shared ones, which can
adequately capture the main features needed for facial images when the intra-
class variation of facial images is small. However, the representation capability
of the shared dictionary would be decreased when images in the same class have
a great intra-class distance owing to various factors during the shooting process.
To remedy it, class-specific dictionary learning algorithms have been proposed,
including Fisher discrimination-based dictionary learning (FDDL) [17], discrimi-
native dictionary learning via Fisher discrimination K-SVD [22], and probabilis-
tic collaborative dictionary learning [12]. Class-specific dictionary learning can
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learn dictionaries with better representation performance for sufficient data with
large intra-class distances; thus, the uncertainty of dictionary atoms will increase
if a few training samples are used to learn the complete information of each class,
which eventually leads to the degradation of classification performance.

In this paper, we propose a new weak correlation-based discriminative dictio-
nary learning (WCDDL) method. WCDDL first learns a structured dictionary
by all training samples to ensure that the structured dictionary has a good
reconstruction performance for test samples and then effectively associates each
sub-dictionary with its corresponding class using the properties of class-specific
structured dictionaries. In this way, each class-specific sub-dictionary has a good
reconstruction ability for the training samples of that class. To address the issue
of weak dictionary discriminative ability brought by sparse training samples in
each class, WCDDL incorporates a term, called the weak correlation term, which
is used to weaken the correlation between sub-dictionaries. Different from the
methods in [11,21] increasing the number of training samples to preserve the
classification performance, WCDDL increases the inter-class distance by apply-
ing the weak correlation term so that a small number of samples can distinguish
classes.

2 Proposed Method

This section presents WCDDL. Before explaining our proposed algorithm, we
describe its learning framework. The goal of WCDDL is to learn a structured
dictionary based on a given data set and apply the well-learned dictionary to
classify unseen data points.

Let the given training sample set be H = {(y1, �1), . . . , (yn, �n)}, where yi ∈
Rm is the ith training sample, �i ∈ {1, . . . , C} is the label of yi, and n and
C are the numbers of samples and classes. For the cth class, we denote its
sample matrix as Yc = [yc1 , . . . ,ycnc

] ∈ Rm×nc , where ci ∈ {1, . . . , n}, and
nc is the number of training samples in the cth class. Note that n =

∑C
c=1 nc.

Then, the entire training sample matrix is Y = [Y1, . . . ,YC ] ∈ Rm×n. Let
D = [D1, . . . ,DC ] ∈ Rm×(r×C) be the structured training dictionary, where
Dc ∈ Rm×r is the sub-dictionary corresponding to the cth class, and r is the
number of atoms in the sub-dictionaries.

During the classification procedure, a test sample y ∈ Rm can be represented
by a linear combination of atoms of the structured dictionary D. That is y ≈
Dx =

∑C
c=1 Dcxc, where x = [x1, . . . ,xC ]T ∈ R(r×C)×1 is the coefficient vector

of the dictionary D for sample y, and xc = [xc
1, . . . , x

c
r] ∈ Rr is the coefficients

vector of the cth sub-dictionary for the sample y.
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2.1 Dictionary Learning Algorithm

In our WCDDL, the structured dictionary can be obtained by solving the fol-
lowing optimization problem:

f(D,X) = min
(D,X)

r(Y,D,X) + λg(D,X) (1)

where X = [x1, . . . ,xn] ∈ R(r×C)×n is the coefficient matrix with respect to
the training sample matrix Y, and xi is the coefficient vector of sample yi,
r(Y,D,X) is the reconstruction term, g(D,X) is the weak correlation term,
and λ > 0 is the regularization term.

The purpose of reconstruction term r(Y,D,X) is to learn a structured dic-
tionary that extracts feature information from samples. In [17], r(Y,D,X) is
defined as

r(Y,D,X) =
C∑

c=1

r(Yc,D,Xc) (2)

where r(Yc,D,Xc) is used to learn the sub-dictionary of the cth class, and Xc

is the coefficient matrix with respect to Yc. Further, this reconstruction term
can be decomposed as

r(Y,D,X) =
C∑

c=1

⎧
⎨

⎩
‖Yc − DXc‖22 + ‖Yc − DcXc

c‖22 +
C∑

j=1,j �=c

‖DjXj
c‖22

⎫
⎬

⎭

(3)
where Xc

c is the coefficient matrix with respect to Yc for the cth class. In (3), the
first term ‖Yc −DXc‖22 allows us to learn a dictionary that represents each sam-
ple well approximately; the second term ‖Yc − DcXc

c‖22 uses the sub-dictionary
Dc to represent samples in the cth class as much as possible provided that the
trained dictionary can represent the test samples approximately; the third term∑C

j=1,j �=c ‖DjXj
c‖22 improves the discriminative property of the second term by

reducing the representation ability of classes except the cth class.
To compensate for the decrease of dictionary representation ability induced

by small training samples, we introduce the weak correlation term [5], which has
the following form:

g(D,X) =
C∑

c=1

g(Dc,Xc)

=
C∑

c=1

C∑

j=1,j �=c

‖DcXc
c + DjXj

c‖22

=
C∑

c=1

C∑

j=1,j �=c

‖DcXc
c‖22 + ‖DjXj

c‖22 + 2(DcXc
c)

T (DjXj
c)

(4)

By (4), we can see that minimizing (DcXc
c)

T (DjXc
c) is equivalent to minimizing

g(D,X), which can be regarded as the correlation between dictionary represen-
tations of class c and class j. In other words, the minimization of g(D,X) is
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to weaken the correlation between dictionary representations. When this term
keeps shrinking, the correlation between dictionary representations of class c
and class j would also keep decreasing. In this way, we can make a distinction
between classes only by extracting a small amount of category information when
the training samples are sparse.

2.2 Solution

Now, we consider the solution to (1), using an alternating iterative method that
is to alternatively update the structured dictionary D and the sparse coefficient
matrix X.

First, we fix the structured dictionary D and update the coefficient matrix
Xc class by class. The specific objective function used to update Xc is as follows:

f(Xc) = min
Xc

‖Yc − DXc‖22 + ‖Yc − DcXc
c‖22

+
C∑

j=1,j �=c

‖DjXj
c‖22 + λ

C∑

j=1,j �=c

‖DcXc
c + DjXj

c‖22
(5)

In order to solve (5), we use a soft threshold function [14] for updating Xc, which
is widely used in sparse signal reconstruction tasks. The soft threshold function
has the form as follows:

S(β) = sign(β) � (|β| − λ1w)+ (6)

where the variable β could be a scalar, vector, or matrix, � denotes the element
multiplication of two vectors or matrices, λ1 > 0 is the weight factor, w ∈ R is
the threshold parameter that controls the magnitude of each change in β, sign(·)
is the sign function, and (·)+ = max(·, 0). In addition, we need to find the partial
derivative of f(Xc) with respect to Xc. That is

∂f(Xc)
∂Xc

= − 2DT (Yc − DXc) − 2DT
c (Yc − DcXc

c) + 2
C∑

j=1,j �=c

DT
j DjXj

c

+ 2
C∑

j=1,j �=c

(Dc
c
T + Dj

c

T
)(DcXc

c + DjXj
c)

(7)

Let β = Xc − λ
2

∂f(Xc)
∂Xc

. We use the soft threshold function (6) to iteratively
update the coefficient matrix for each class with the following equation:

Xt
c = S(Xt−1

c − λ

2
∂f(Xt−1

c )
∂Xt−1

c

), c = 1, . . . , C (8)

where t is the current iteration number, and Xt−1
c is the coefficient matrix of

the cth class generated in the (t − 1)th iteration. We keep iterations until Xc

converges or t reaches the predetermined maximum number of iterations.
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After updating the coefficient matrix X, we fix it unchanged and update the
structured dictionary D, for which we also use a class-by-class update scheme.
The optimization problem with respect to only D is

f(Dc) = min
Dc

‖Yc − DXc‖22 + ‖Yc − DcXc
c‖22 +

C∑

j=1,j �=c

‖DjXj
c‖22

+ λ

C∑

j=1,j �=c

‖DcXc
c + DjXj

c‖22
(9)

Let Y′ = Yc − ∑C
j=1,j �=c DjXj

c, so (9) can be rewritten as

f(Dc) = min
Dc

‖Y′ − DcXc
c‖22 + ‖Yc − DcXc

c‖22 +
C∑

j=1,j �=c

‖DjXj
c‖22

+ λ
C∑

j=1,j �=c

‖DcXc
c + DjXj

c‖22
(10)

Similarly, the partial derivative of fDc
with respect to Dc must be calculated

for optimizing (10). We make the partial derivative of fDc
with respect to Dc

equal to zero and then obtain

∂f(Dc)
∂Dc

= − 2Xc
c
T (Y′ − DcXc

c) − 2Xc
c
T (Yc − DcXc

c)

+ 2λ
C∑

j=1,j �=c

Xc
c
T (DcXc

c + DjXj
c) = 0

(11)

Since each column in the coefficient matrix Xc
c
T is linearly independent, it is a

column-full rank matrix. By arranging (11), we have

Y′ − DcXc
c + Yc − DcXc

c − λ

C∑

j=1,j �=c

(DcXc
c + DjXj

c) = 0 (12)

Rearranging (12), we can further obtain

2Yc − (λ + 1)
∑C

j=1,j �=c DjXj
c

2 + λC
= DcXc

c (13)

Let Y′′ =
2Yc−(λ+1)

∑C
j=1,j �=c DjX

j
c

2+λC . Then (13) can be rewritten in the following
form:

Y′′ = DcXc
c (14)

We use the K-SVD method to get Dc in (14) and then obtain the structured
dictionary D.

We keep repeating iterations to calculate the above formula until the coeffi-
cient matrix and dictionary converge or satisfy our maximum number of itera-
tions.
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2.3 Classification Algorithm

After we obtain the well-trained structured dictionary D, we consider the label
prediction for a given test sample. Let ytest ∈ Rm be an arbitrary test sample.
To estimate its class label, we first compute the coefficient vector xtest according
to the structured dictionary D. The objective function for solving the coefficient
vector is as follows:

xtest = arg min
x

{‖ytest − Dx‖22 + λ1‖x‖1
}

(15)

To solve (15), we use the orthogonal matching tracking algorithm (OMP) [13]
to find the optimal solution vector xtest.

To predict the label of ytest, we make the dictionary representation Dcxc
test

of ytest as the residual operation to obtain the representation residual ec of the
cth class. The residual of the cth class is calculated as follows:

ec = ‖ytest − Dcxc
test‖22 + λ2‖xtest − mc‖22 (16)

where 0 < λ2 < 1 is the weight factor, mc is the mean vector of coefficient
vectors of the cth class. In (16), the first term ‖ytest −Dcxc

test‖22 is mainly used
to calculate the residuals, and the second term ‖xtest −mc‖22 is used to estimate
how similar the coefficient vector is to the representation coefficient vector of cth
class. If ‖xtest −mc‖22 is small, then the representation coefficient vector of ytest

is close to the representation coefficient vector of the cth class sample. Finally,
the label of the test sample ytest is predicted by

�test = arg min
c=1,...,C

ec (17)

3 Experiments

The goal of this section is to validate the feasibility and efficiency of the proposed
algorithm. First, we briefly introduce the facial datasets used for experiments
and then, compare the classification accuracy of different representation-based
models on different datasets, including K-SVD [1], D-KSVD [20], FDDL [17],
LC-KSVD [9], and Label embedded dictionary learning (LEDL) [16].

3.1 Datasets

In our experiments, two public facial datasets are introduced here, Yale [3,7]
and ORL [2], which are widely used to validate representation-based algorithms.
The description of these datasets is given as follows:

– Yale: This database is a facial dataset that contains 165 face images from
15 people, each with 11 face images. These human images have different
facial expressions: center light, with glasses, happy, left light, without glasses,
normal, right light, sad, sleepy, surprised, and blinking. Fig 1(a) shows some
specific examples of the Yale dataset.
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– ORL: The ORL database is also a facial dataset that contains 400 face images
from 40 people, each with 10 face images. These images were acquired at
different times of day, under different lighting, with different facial expres-
sions (eyes open/closed, smiling/not smiling) and facial details (with/without
glasses). Figure 1(b) provides some specific examples from the ORL dataset.

Fig. 1. Some image samples from (a) Yale and (b) ORL databases.

3.2 Performance Comparison

For comparison, we randomly divide both Yale and ORL datasets into a training
set and a test set. Compared models are first trained on the training set and then
tested on the test set to provide the classification performance. Each dataset is
divided in the following way: p images from each class are taken as the training
samples and the remaining images in this class are regarded as the test samples,
where p takes values in the set {2, 3, 4, 5, 6, 7, 8} and the divided dataset is called
pTrain. The randomness of division may have a certain influence on experimental
results. To eliminate the randomness, we perform 50 random division for each
pTrain and report the average results over 50 trails.

Classification Performance. Table 1 presents experimental results on Yale,
where the highest values among compared methods are highlighted in bold.
First, We can clearly observe that the performance of all compared algorithms
gradually decreases when the number of training samples decreases, which is
inevitable. Second, we can see that WCDDL has a good performance on seven
divided datasets compared to other algorithms. When the number of training
samples is small, WCDDL performs much better than other methods. For exam-
ple, the proposed WCDDL has a classification accuracy of 72.6% on 2Train in
which each class consists of only two samples for training. In this case, our
method improves the accuracy by 10.4% compared to the second-best algorithm
FDDL. For the case of 8Train, WCDDL is 6.9% higher in accuracy than the
second-best LEDL. Relatively speaking, the improvement of WCDDL on smaller
datasets is more obvious. Note that WCDDL is designed on the basis of FDDL.
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In detail, our method replaces the discriminative coefficient term in FDDL with
the weak correlation term. Findings indicate that WCDDL is much better than
FDDL, which means that the weak correlation term works well.

Table 2 shows experimental results on ORL, where the highest values among
the six methods are in bold. Similar conclusions can be obtained by experimen-
tal results in Table 2. More training samples induce better classification per-
formance, and the classification accuracy of WCDDL is also higher than other
representation-based algorithms under different training set divisions. On the
ORL dataset, WCDDL ranks first in seven divisions, followed by LEDL. With
the increase of training samples, the gap between WCDDL and LEDL in accu-
racy is closing all the time. In other words, the advantage of WCDDL is that it
deals with sparse training samples better.

Table 1. Mean accuracy obtained by compared methods on Yale with various divided
datasets.

Divided dataset K-SVD D-KSVD LC-KSVD FDDL LEDL WCDDL

2Train 58.1± 3.9 48.0± 6.2 41.9± 6.2 62.2± 4.7 24.0± 5.0 72.6± 3.8

3Train 62.9± 4.1 52.5± 5.4 42.9± 4.9 66.4± 3.6 54.0± 5.1 78.6± 2.8

4Train 66.4± 3.9 56.1± 5.6 66.8± 3.7 69.7± 3.4 63.7± 4.3 86.3± 2.6

5Train 69.1± 4.6 57.8± 6.2 70.4± 4.7 73.9± 3.5 64.9± 4.7 89.8± 2.9

6Train 80.7± 4.4 57.4± 6.4 77.1± 3.7 74.0± 3.9 78.9± 4.7 91.2± 3.0

7Train 82.6± 4.8 57.5± 7.5 82.5± 4.7 75.7± 4.9 82.6± 5.1 91.7± 2.4

8Train 82.3± 4.9 60.0± 7.2 82.8± 5.0 77.7± 5.1 84.8± 5.5 91.7± 3.5

Table 2. Mean accuracy obtained by compared methods on ORL with various divided
datasets.

Divided dataset K-SVD D-KSVD LC-KSVD FDDL LEDL WCDDL

2Train 72.8± 3.1 48.4± 3.7 63.1± 2.5 71.0± 2.8 74.8± 3.5 79.3± 3.1

3Train 79.3± 2.4 56.1± 4.5 79.5± 2.7 75.7± 2.2 82.6± 2.0 86.1± 2.0

4Train 88.1± 2.2 55.6± 4.4 87.8± 1.9 78.2± 2.2 88.8± 1.8 91.9± 1.6

5Train 91.1± 2.0 52.6± 5.1 90.8± 2.0 79.8± 2.8 91.8± 1.8 94.2± 1.7

6Train 92.6± 2.2 56.7± 4.4 92.4± 2.2 80.5± 3.1 92.8± 2.2 95.3± 1.8

7Train 93.7± 1.8 57.7± 6.5 94.0± 1.8 81.5± 3.2 94.4± 1.7 96.5± 1.5

8Train 94.2± 2.3 72.7± 6.6 94.0± 2.5 82.9± 3.3 94.8± 2.3 96.5± 1.7

Representation Visualization. Owing to the relationship between WCDDL
and FDDL, we further compare them by observing their structured dictionary
and reconstructed images. After training a model, we can obtain the structured
dictionary D and coefficient matrix X and then reconstruct unseen images with
D and X.
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Figures 2(a) and 2(b) are the dictionary and reconstructed samples gener-
ated by FDDL, respectively. By observing Fig. 2, we can see that the structured
dictionary trained by FDDL extracts the overall facial features; thus, so FDDL
achieves good visualization results in the subsequent reconstruction of images.

Figure 3(a) shows the first two classes of atoms of the structured dictio-
nary obtained by WCDDL, and Fig. 3(b) plots the first two classes of sam-
ples reconstructed by WCDDL. By comparing the dictionary and reconstructed
images obtained by FDDL and WCDDL, we find that the visualization result
of WCDDL is not good as that of FDDL. The proposed WCDDL aims to learn
the distinguished features of different classes and reduce the correlation between
dictionary representations of different classes. Thus, the samples we reconstruct
are very close in the same class and differ more between classes.

Fig. 2. Visualization of FDDL on Yale, (a) structured dictionary D, and (b) recon-
structed images.

Fig. 3. Visualization of WCDDL on Yale, (a) structured dictionary D, and (b) recon-
structed images.

4 Conclusion

In this study, image classification is implemented by the proposed WCDDL.
To solve the issue of poor dictionary classification capability induced by sparse
training samples, we introduce a weak correlation term to reduce the relation
between any two classes. To evaluate WCDDL, we conduct extensive experiments
using two common facial datasets. Experimental results show the classification
advantage of our approach in particular for sparse training samples. On the Yale
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dataset, WCDDL is higher than the second-best method by 10.4% when there
are only two training samples for each class. At the same time, we also validate
the efficiency of the weak correlation term by comparing FDDL and WCDDL.
Our work can be not only applicable to face classification, but also be extended
to other classification tasks, such as scene classification and handwriting recog-
nition.

Of course, there still have some issues with our current approach. For exam-
ple, the dictionary update in WCDDL takes a two-stage approach, where the
iterative update for the coefficient matrix is time-consuming. Thus, we may take
a simpler and more efficient update approach to improve the overall performance
of the model in the future. Therefore, how to further improve the classification
performance and reduce the computational time when the training sample set is
sparse will be our future research goal.
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Abstract. Kernel similarity function allows a Support Vector Machine
(SVM) classifier to learn the maximum margin hyperplane in a higher
dimensional space where two classes are linearly separable without explic-
itly mapping the data. Most existing kernel functions (e.g., RBF) use spa-
tial positions of two data instances in the input space to compute their
similarity. These kernels are data distribution independent and sensitive
to data representation (i.e., units/scales used to measure/express data).
Since this can be unknown in many real-world applications, a careful selec-
tion of a suitable kernel is required for a given problem. In this paper, we
present a new kernel function based on probability data mass that is both
data-dependent and scale-invariant. Our empirical results show that the
proposed SVM kernel outperforms popular existing kernels.

Keywords: SVM classification · Kernel functions · Data-dependent
kernel · Scale-invariant kernel · Information-theoretic similarity

1 Introduction

Support Vector Machine (SVM) classifier learns the separating hyperplane that
maximises the margin between data points belonging to different classes [3].
Because data in many real-world applications have complex structures and
classes are often not linearly separable in the input space, the idea of ‘kernel
trick’ allows learning the maximum margin hyperplane in a higher dimensional
space where the classes are linearly separable without explicitly projecting the
data. To achieve this, it requires special type of measures/functions to compute
pairwise similarity of data. They are called kernel similarity functions, often
referred to as ‘kernels’ in the SVM classification context. Most commonly used
kernels such as Radial Basis Function (RBF) and Laplacian use spatial distance
of two points in the input space to compute their kernel similarity. As discussed
by Aryal et al. (2020) [2], such a distance-based notion of similarity may not be
effective in real-world problems as it is:
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1. Data-independent : The similarity of two instances solely depends on their
spatial positions and it is not affected by the distribution of other data. Unit
distance between two points has the same degree of similarity everywhere
in the space regardless of the density distribution. Psychologists [6] have
argued that the two points in a sparse region are considered more similar
than the other two points with the same geometric distance but located in
dense regions. For example, two Caucasian persons are judged as less similar
in Europe than in Asia because there are many Caucasian people in Europe
compared to those in Asia, i.e., density is higher.

2. Sensitive to data representation: Because geometric model relies on the spatial
positions of data points in the input space, they are sensitive to how data
are represented/expressed. The distance between the two points can change
significantly if the same data is represented/expressed differently by non-
linear scaling. In real-world applications, data come from various sources and
can be measured/expressed in different forms. For example, sample variability
can be measured as standard deviation (σ) or variance (σ2) and credit risk
of customers can be measured as Income-to-Debt ratio or Debt-to-Income
ratio. When data are given for analysis, mostly we are given only data values
(numbers) and we may not know how they are represented, let alone the most
appropriate representation.

These are the reasons as to why a kernel function that works well in one problem
or dataset does not work well for others. Thus, kernel function has to be selected
carefully for a given problem.

Recently, some data-dependent (dis)similarity measures [1,2,5,9] have been
proposed. Among them, only the mp-dissimilarity [2] is fully data-dependent and
invariant to the change in data representation. It is data-dependent because the
similarity of two objects in each attribute/feature is estimated as the probability
data mass between them. Two instances in dense regions are less similar or
more dissimilar to each other than the two instances with the same spatial
distance but located in sparse (low-density) regions. It captures the essence of
the human perceptual notion of similarity suggested by psychologists. It is robust
to data representation as it does not use feature values directly in the similarity
calculations, it just uses the number of data points between the two data points
under consideration in each feature. As the ranking is preserved or reversed even
in the case of non-linear scaling of data, data mass between any two points is
not changed. It has been shown to produce better and more consistent results
across a wide range of datasets in the k-nearest neighbors (k-NN) classification
and content-based information retrieval problems (CBIR) [2]. However, in its
current form, it cannot be used as a kernel function in the SVM classification
because the self-similarity of data instances is not constant.

In this paper, we extend a variant of mp-dissimilarity, namely m0-dissimilarity,
into a kernel function and use it in the SVM classification framework. We
call the new kernel function as Probability Mass-based Kernel (PMK). Like
m0-dissimilarity, PMK is both data-dependent and scale-invariant. Our empir-
ical results show that PMK consistently outperforms widely used state-of-the-
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art (SoTA) data-dependent and data-independent kernel functions, making it
the optimal choice kernel function in practical real-world problems, particu-
larly in domains where data are captured from various sources using different
devices/sensors.

2 PMK: Probability Mass-based Kernel

2.1 Notations and Preliminaries

Let D be a collection of N labelled training instances, where each instance
x = 〈x1, x2, · · · , xM 〉 is represented by an M -dimensional vector of its values of
the M selected features; and L be a N -dimensional vector of their class labels.
In this paper, we focus on numeric data, i.e., each xi ∈ R (R is a real domain). In
the training process, a SVM classifier learns the maximum margin hyperplane
separating different classes using the similarity matrix of all (x,y) pairs in D
based on a kernel function K(x,y) and label vector L. In the testing phase, to
predict a class label of an unseen test instance q, the vector of its kernel simi-
larities with training instances in D is used. Thus, the choice of kernel function
K(x,y) is central to learning a good SVM classifier.

2.2 m0-dissimilarity

The m0-dissimilarity of x and y is estimated as [2]:

m0(x,y) =
1
M

M∑

i=1

log
( |Ri(x,y)|

N

)
(1)

where, Ri(x,y) = [min(xi, yi),max(xi, yi)] is a region covering x and y in dimen-
sion i; and |Ri(x,y)| = |{z ∈ D : min(xi, yi) ≤ zi ≤ max(xi, yi)}|, where | · |
represents cardinality.

It is data-dependent because |Ri(x,y)| depends on how many other instances
fall between xi and yi. It is scale-invariant because the number of data points
falling between xi and yi does not change due to linear or non-linear scaling
of data as the ranking is either preserved or reversed. Because, (i) |Ri(x,x)|
and |Ri(y,y)|, and (ii) |Ri(x,x)| and |Rj(x,x)|, can be different depending on
the probability masses at xi, yi, and xj ; the self-dissimilarity of data instances
based on m0-dissimilarity are not constant, i.e., m0(x,x) and m0(y,y) can
be different. However, self-dissimilarity is minimal for any instance x, i.e.,
m0(x,x) ≤ m0(x,y) for ∀y �= x. Because of non-constant self-(dis)similarity,
it cannot be used as a kernel function in SVM.

It is computationally expensive to compute |Ri(x,y)| as it requires a range
search, especially in the case where either or both of them are unseen and N
is large. However, as suggested in [2], it can be approximated quickly by con-
verting a continuous-valued domain in each dimension i into an ordinal dis-
crete domain by discretizing the range of data values into b � N intervals/bins
(hi,1, hi,2, · · · , hi,b). By storing the frequency of each bin from D in the pre-
processing step, |Ri(x,y)| can be approximated quickly based on the frequencies
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of the bins where x and y falls and bins in between as |Ri(x,y)| =
∑u

a=l |hi,a|,
where hi,l and hi,u are the bins in which min(xi, yi) and max(xi, yi) fall. In each
dimension i, data frequencies between all pairs of bins can be pre-computed and
stored as a b× b matrix. Then, |Ri(x,y)| can be computed as a table look-up by
finding bins where they fall. Because Equal-Width Discretisation (EWD), where
bins are of the same width, is sensitive to unit/scales of data and outliers, Equal-
Frequency Discretisation (EFD), where bins have the same frequency where pos-
sible, is used. As it may not be possible in practice to have the same frequency
in each bin because of duplicate values, bins may have different frequencies.

2.3 Proposed New Kernel Function

Based on m0-dissimilarity (Eq. 1), we define a new Probability Mass-based
Kernel similarity function, referred to as ‘PMK’ in short, as:

KPMK(x,y) =
2 ∗ m0(x,y)

m0(x,x) + m0(y,y)
(2)

Unlike m0(x,y) which is a measure of dissimilarity, KPMK(x,y) is a similar-
ity of x and y and it is in the range of [0, 1]. The self-similarity of data instances
is always maximal and the constant of 1. Now it can be used as a kernel function
to learn a SVM classifier. Like m0(x,y), it is both data-dependent and invariant
to units/scales of data.

The proposed kernel function has a probabilistic interpretation. It can be
viewed as the multi-dimensional extension of Lin’s Information Theoretical Sim-
ilarity Measure [7] for ordinal data, where the similarity of two one-dimensional
ordinal values x and y is estimated as:

slin(x, y) =
2 × log

∑max(x,y)
z=min(x,y) P (z)

log P (x) + log P (y)
(3)

where, P (x) is the probability of x and it is estimated using the frequency of
value x, f(x), as P (x) = f(x)/N ; and

∑max(x,y)
z=min(x,y) P (z) is the probability mass

in the range between and including x and y, R(x, y).
In the literature, the similarity of two instance x and y in a multidimensional

space using Lin’s approach is estimated by aggregating their similarities in each
dimension based on Eq. 3:

slin(x,y) =
1
M

M∑

i=1

2 × log
∑max(xi,yi)

zi=min(xi,yi)
P (zi)

log P (xi) + log P (yi)
(4)

Aryal et al. (2020) [2] used Lin’s similarity measure defined in Eq. 4 in mul-
tidimensional continuous spaces using the same discretisation as done for m0-
dissimilarity discussed above. The similarity of x and y in each dimension i is
estimated based on Eq. 3 using probability masses in one-dimensional regions
Ri(x,y), Ri(x,x), and Ri(y,y). Lin’s measure is applied in each dimension sep-
arately and the one-dimensional similarities are aggregated to compute the final
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Table 1. An example of data distribution in two dimensions of a multi-dimensional
dataset [2]

Dim Inst1 Inst2 Inst3 Inst4 Inst5 Inst6 Inst7 Inst8 Inst9 Inst10

· · · · · · · · · · ·
· · · · · · · · · · ·
i 2 2 1 1 1 1 1 1 1 1

j 2 2 2 2 2 2 2 2 1 1

· · · · · · · · · · ·
· · · · · · · · · · ·

similarity in the multidimensional space. A more natural extension of Lin’s app-
roach in multidimensional space would be to define an M -dimensional region
R(x,y) that encloses x and y which has the length of Ri(x,y) in each dimen-
sion i, and estimate the probability mass in the region. The similarity of x and
y can be estimated as:

s′
lin(x,y) =

log P (R(x,y))
log P (R(x,x)) + log P (R(y,y))

(5)

To have a reasonable estimate of P (R(x,y)) in a high-dimensional space, a
large amount of data is required. It is not realistic in many application domains.
However, we can get a good approximation of it with Naive Bayesian assumption
that dimensions are independent as P (R(x,y)) ≈ ∏M

i=1 P (Ri(x,y)) and Eq. 5
can be written as:

s′
lin(x,y) =

log
∏M

i=1 P (Ri(x,y))

log
∏M

i=1 P (Ri(x,x)) + log
∏M

i=1 P (Ri(y,y))
(6)

Replacing the log of products with the sum of logs, P (Ri(x,y)) =
|Ri(x,y)|/N and using Eq. 1, Eq. 6 results in the PMK defined in Eq. 2.

One fundamental difference between PMK and the traditional Lin’s approach
(Eq. 4) is that the similarity of x and y in dimensions where xi = yi is always
1 in the latter irrespective of P (xi), whereas that is not the case in PMK as
it considers the log P (xi) in the calculation. Considering P (xi) can be useful
because sharing rare values can provide more information about the similarity
of x and y than sharing a very frequent value. To understand this, let’s look at
an example dataset shown in Table 1 [2], Inst1 and Inst2 have the same values
in dimensions i and j, but their value in dimension i is less common (has lower
probability) than their value in dimension j. In the case of Lin’s approach as
used in the literature, their similarities in dimensions i and j contribute equally
to the overall similarity. But, as suggested by psychologists, they provide differ-
ent amount of information about the similarity of Inst1 and Inst2. Common
rare value in dimension i provides more information compared to sharing fre-
quent value in dimension j. Many instances can have the same value in many
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Fig. 1. Contour plots of kernel similarities of points in a 2-dimensional space with the
centre (0.5, 0.5) under Normal and Uniform data distributions.

Fig. 2. Decision boundaries of SVM classifiers using PMK and RBF kernel in two
2-dimensional two-class synthetic datasets with different class densities.

dimensions in high-dimensional problems as data often lies in a low-dimensional
manifold. Therefore, measure like PMK that considers P (xi) can perform better
than those which do not.

To demonstrate the difference between data-dependent and data-independent
kernel similarity, we present the contour plots of kernel similarities of points in a
2-dimensional space to the centre (0.5, 0.5) using PMK and RBF kernels given
two datasets of 5000 points generated from normal and uniform distributions
in Fig. 1. Dark orange represents the regions of high similarity, while dark blue
represents the region of low similarity. It shows the data-dependent behaviour
of PMK as it adapts the contours to underlying data distribution. But, the
most widely used RBF kernel produces exactly the same contour regardless of
underlying data distribution.

To show the effect of PMK in SVM classification, we present decision bound-
aries learned by SVM using PMK and RBF kernels in two 2-dimensional two-
class synthetic datasets with classes of different density distribution in Fig. 2.
In both datasets, the decision boundaries of RBF are pushed towards sparse
classes. As a result, it maximises correct predictions for the dense classes, more
samples from sparse classes are misclassified. However, in the case of PMK, the
decision boundaries are pushed towards dense classes in both cases. This result
suggests that PMK can better differentiate classes with varying densities rather
than favouring dense class.
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2.4 Positive Definiteness of the PMK Kernel

The basic notion in non-linear SVM is the existence of a mapping of the input
pattern into a higher dimensional space, that more readily allow for a shattering
(separation) of the different classes. In practice the mapping need not be explic-
itly defined, but is implicit via the kernel function. For a given kernel function
K(x,y) to correspond to a higher dimensional mapping, it must be positive def-
inite and satisfies the Mercers condition, i.e. for any arbitrary function f(x), the
following condition must be satisfied

∫
dx

∫
dy f(x)K(x,y)f(y) ≥ 0 (7)

Unless the kernel function is relatively simple, e.g. polynomial, Gaussian, it is not
analytically tractable to show if (7) is satisfied or not. This is certainly the case
with our proposed PMK kernel, which is dependent on the data distribution. We
adopted an experimental approach to show that the kernel is positive definite
by checking the eigenvalues of the pairwise kernel similarity matrix (aka Gram
matrix). We randomly generated datasets with 5000 points from three types of
distributions: (i) normal; (ii) uniform; and (ii) a mixture of five Gaussians. We
considered spaces with two, five and ten dimensions. For each distribution and
dimensionality, we generated three different datasets resulting in 27 synthetic
datasets. We also tested for Gram matrices of real-world datasets as shown in
Table 2. In all cases, with both synthetic and real-world datasets, eigenvalues are
non-negative.

3 Empirical Evaluation

We used 21 real-world datasets sourced from the UCI Machine Learning Repos-
itory [4] having varying sizes (from 699 to 43680), varying numbers of classes
(from 2 to 100) and varying numbers of attributes (10 to 6826). The properties of
these datasets are provided in the first four columns of Table 2. For each dataset,
a 10-fold cross-validation was conducted and reported the average accuracy over
10 folds. Support Vector Classifier (SVC) of the Scikit-Learn Machine Learning
Library [8] was used as an SVM classifier.

3.1 Comparison of SVM with PMK and Other Kernels

We compared PMK with five state-of-the-art (SoTA) data-independent and
data-dependent kernel functions: (i) Isolation Kernel (IK); (ii) Radial Basis Func-
tion (RBF); (iii) Laplacian (Lap.); (iv) Lin’s measure as defined in the literature
by aggregating Lin’s similarity in each dimension (Lin); and (v) Laplacian ker-
nel on the rank transformation of data (Lap.R). Lap.R is considered because
using kernels on the rank transformation of data is the simplest way of making
them invariant to the change in data representation. As rank transformation of
data can be computationally expensive, we discretised data as done in PMK and
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Table 2. Average classification accuracy of SVM classifier over a 10-fold cross-
validation. The best average accuracy and best average rank are boldfaced.
N :#Instances, M : #Dimensions, and K: #Classes in a dataset.

Data[Ref] N M K PMK IK RBF Lap Lin Lap.R

Breast Cancer [4] 699 10 2 0.800 0.727 0.799 0.768 0.675 0.767

Gtzan [2] 1000 230 10 0.782 0.697 0.799 0.783 0.650 0.774

Hba [2] 1500 187 15 0.780 0.665 0.720 0.761 0.710 0.765

Steel Plate [4] 1941 27 7 0.751 0.777 0.745 0.778 0.724 0.717

Rejafada [4] 1996 6826 2 0.982 0.958 0.956 0.966 0.952 0.954

Mfeat [4] 2000 649 10 0.990 0.980 0.986 0.983 0.927 0.937

Cardio [4] 2126 23 3 0.993 0.992 0.995 0.989 0.779 0.925

Hydraulic [4] 2205 43680 4 1.000 0.996 0.723 0.554 0.954 0.993

Segment [4] 2310 19 7 0.980 0.976 0.977 0.986 0.959 0.820

Fbis [2] 2463 2000 17 0.890 0.690 0.800 0.849 0.670 0.660

Madelon [4] 2600 500 2 0.625 0.555 0.590 0.606 0.520 0.622

Malware [4] 2955 1087 4 0.995 0.985 0.978 0.993 0.962 0.994

Page Blocks [4] 5473 10 5 0.987 0.977 0.971 0.974 0.900 0.888

First Order [4] 6118 51 5 0.565 0.580 0.562 0.535 0.425 0.520

Satimage [4] 6435 36 7 0.926 0.907 0.917 0.927 0.900 0.888

Musk [4] 6598 166 2 0.998 0.990 0.994 0.992 0.846 0.941

Taiwan Bank [4] 6819 96 2 0.967 0.969 0.970 0.972 0.934 0.950

Isolet [4] 7797 617 26 0.970 0.977 0.975 0.572 0.787 0.962

Corel [2] 10000 67 100 0.503 0.415 0.400 0.492 0.494 0.150

Ismis [4] 12495 191 6 0.938 0.921 0.974 0.972 0.939 0.221

Gas sensory [4] 13910 128 6 0.994 0.996 0.993 0.995 0.991 0.976

Avg. Acc. 0.876 0.841 0.847 0.830 0.795 0.783

Avg. Rank. 1.799 3.427 3.094 2.714 5.189 4.713

used bin ranks. Among the contending kernels: (i) Lin and Lap.R are both data-
dependent and robust; (ii) IK is data-dependent but not robust; and (iii) RBF
and Lap are neither data-dependent nor robust. It is interesting to note that
though Lin and Lap.R are data-distribution dependent when xi �= yi, they do
not consider data distribution in the case of xi = yi. In a way, they are partially
data-dependent.

The SVM cost parameter ‘C’ and parameters of kernel functions are tuned
in each train-test fold through five-fold cross-validation: C in {0.01, 0.1, 10, 100};
Number of Bins (b) for PMK, Lin and Lap.R in {25, 50, 75, 100, (log2 N + 1)};
Subsample size (ψ) for IK in {2m|m = 2, 3, 4, 5, 6, 7, 8}; and γ for RBF, Lap and
Lap.R in {0.01, 0.1, 1, 10, 100}. The forest size parameter in IK was set to the
default value of 100 as suggested by the authors of [9]. Because IK is a random
method, for each fold, we did 10 runs and took the average accuracy.
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Table 3. Average classification accuracy of SVM with PMK and other SoTA classifiers.
RF, XGB, LMNN and ITML did not complete due to the ’out of memory’ errors (n/a)
on three large/high-dimensional datasets.

Data SVMpmk RF XGB LMNNknn ITMLsvm LMNNsvm

Breast Cancer 0.800 0.963 0.986 0.966 0.958 0.962

Gtzan 0.782 0.729 0.734 0.725 0.700 0.740

Hba 0.780 0.725 0.731 0.677 0.704 0.741

Steel Plate 0.751 0.768 0.763 0.721 0.720 0.752

REJAFADA 0.982 0.976 0.993 0.961 0.957 0.956

Mfeat 0.990 0.987 0.981 0.985 0.969 0.984

Cardio 0.993 0.905 0.908 0.775 0.910 0.920

Hydraulic 1.000 n/a n/a n/a n/a n/a

Segment 0.980 0.975 0.977 0.955 0.921 0.968

Fbis 0.890 0.823 0.847 0.710 0.560 0.557

Madelon 0.625 0.733 0.843 0.553 0.474 0.605

Malware 0.995 0.989 0.992 0.972 0.977 0.974

Page Blocks 0.987 0.980 0.972 0.966 0.958 0.965

First Order 0.565 0.585 0.583 0.538 0.542 0.500

Satimage 0.926 0.916 0.918 0.911 0.895 0.924

Musk 0.998 0.977 0.985 0.976 0.996 0.997

Taiwan Bank 0.967 0.925 0.822 0.811 0.923 0.930

Isolet 0.970 0.966 0.734 0.957 0.967 0.952

Corel 0.503 0.502 0.611 0.424 0.350 0.250

Ismis 0.938 n/a n/a n/a n/a n/a

Gas sensory 0.996 n/a n/a n/a n/a n/a

The average classification accuracies over a 10-fold cross-validation run of
SVC classifiers with different kernels are provided in Table 2. PMK produced
the best classification results in 11 datasets followed by Lap. in 4 datasets, and
RBF and IK in 3 datasets each. Lin and Lap.R did not produce the best result
in any dataset. The average accuracy and the average rank show that PMK
produced better and more consistent results across different datasets with the
best average rank of 1.799 followed by Lap. (2.714) and RBF (3.094).

3.2 Comparison of SVM with PMK Against Other SoTA Classifiers

Table 3 reports the classification results of SVM with PMK and the SoTA classi-
fication algorithms of Random Forest (RF), eXtreme Gradient Boosting (XGB),
and Large Margin Nearest Neighbor (LMNNknn). One way of making SVM with
data-independent kernels (e.g., RBF kernel) data-dependent is to transform data
into some latent space using data-dependent techniques like metric learning and
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Fig. 3. Synthetic Datasets

Fig. 4. Average classification accuracy of PMK and RBF kernels over a 10-fold classi-
fication with different transformations of data.

use SVM in the latent space. We used SVM classification with RBF kernel on
latent spaces resulted by Large Margin Nearest Neighbor (LMNN) and Informa-
tion Theoretic Metric Learning (ITML), represented as ITMLsvm and LMNNsvm

in Table 3, respectively. The results show PMK had the best accuracy results in
16 datasets followed by XGB in 3 datasets and RF in 2 datasets. For SVM using
PMK and in cases of LMNN and ITML with SVM using RBF kernel, we tuned
the cost and kernel parameters as mentioned earlier. For RF and XGB, we tuned
the number of estimators and learning rate parameter in the range of {100, 200,
400, 600, 800, 1000} and {0.01, 0.08, 0.1, 0.2, 0.3}, respectively. For the met-
ric learning method of LMNN (both SVM and k-NN), we tuned the number of
neighbors (k) in the range of {5, 10, 15, 20, 25, 50}.

3.3 Robustness Towards Scales of Measurement

To understand the robustness of PMK with respect to the change in units/scales
used to represent data, we evaluated the performances of PMK and RBF in SVM
classification in three two-class two-dimensional synthetic datasets namely Gaus-
sian, Circle, and Jain, shown in Fig. 3. We created four variants of each dataset
using non-linear scaling of data based on logarithm, inverse, square root and
square, where each feature value x was transformed to log x, x−1,

√
x and x2

respectively. Since, x−1 and log x are not defined for x = 0, all the transforma-
tions were applied on x′ = c(x + δ) as discussed in [2,5], where δ = 0.0001 and
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Fig. 5. Average classification accuracy of RF, XGB and k-NN classifiers in Hydraulic
dataset with reduced dimensions.

Fig. 6. Average classification accuracy of RF, XGB and k-NN classifiers in Rejafada
dataset with reduced dimensions.

c = 100. Data values in both dimensions are normalised to be in the range of
[0, 1] before and after the transformations. The average accuracy over a 10-fold
cross-validation run of PMK and RBF on the three synthetic datasets and their
scaled variants are shown in Fig. 4. As shown in the figure, PMK performed
consistently (i.e., same average accuracy was obtained for all five variants) due
to its scale-invariant characteristic, while the accuracies of RBF fluctuated when
data representations were changed and it performed poorly for the case of x−1

in particular. Since RBF uses Euclidean distance, the similarity between two
objects is affected by the non-linear scaling of the data.

3.4 Dimensionality Reduction Using Kernel PCA

We also evaluated the effectiveness of the proposed PMK kernel for dimension-
ality reduction using kernel PCA (kPCA). We used Hydraulic and Rejafada,
two datasets with dimensionalities more than 5000. We reduced the number of
dimensions to 5%, 10% and 20% of the original input dimensions and used three
classifiers - RF, XGB and K-NN (k = 10). The average classification accuracies
over a 10-fold cross-validation run of the three classifiers using reduced dimen-
sions based on kPCA with PMK, IK and RBF and simple PCA are shown in
Fig. 5 and Fig. 6. In all cases, dimensionality reduction based on kPCA using
PMK produced better classification results and kPCA using IK produced the
worst classification results.
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4 Concluding Remarks

Most widely used kernel functions in SVM classifier learning such as RBF and
Laplacian are data-independent and sensitive to units/scales of data. They may
not produce good results in practical real-world problems, where data have com-
plex structures and unknown units/scales of measurement. We may not know
the units/scales of data when they are given for pattern extraction, often only
values/numbers are provided. Therefore, kernels that are adaptive to data dis-
tribution (data-dependent) and robust to the variation in the units/scales used
to represent data (scale-variant) are preferred. In this paper, we present one
such kernel based on probability data mass called PMK which is both data-
dependent and scale-invariant. We show that PMK produces better and more
consistent results than existing data-independent and data-dependent kernels
across a wide range of datasets from various real-world applications.
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Office of Scientific Research under award number FA2386-20-1-4005.
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Abstract. In this paper, we carefully revisit the issues of conventional
few-shot learning: i) gaps in highlighted features between objects in sup-
port and query samples, and ii) losing the explicit local properties due to
global pooled features. Motivated by them, we propose a novel method
to enhance robustness in few-shot learning by aligning prototypes with
abundantly informed ones. As a way of providing more information, we
smoothly augment the support image by carefully manipulating the dis-
criminative part corresponding to the highest attention score to consis-
tently represent the object without distorting the original information.
In addition, we leverage word embeddings of each class label to pro-
vide abundant feature information, serving as the basis for closing gaps
between prototypes of different branches. The two parallel branches of
explicit attention modules independently refine support prototypes and
information-rich prototypes. Then, the support prototypes are aligned
with superior prototypes to mimic rich knowledge of attention-based
smooth augmentation and word embeddings. We transfer the imitated
knowledge to queries in a task-adaptive manner and cross-adapt the
queries and prototypes to generate crucial features for metric-based few-
shot learning. Extensive experiments demonstrate that our method con-
sistently outperforms existing methods on four benchmark datasets.

Keywords: Few-shot classification · Data augmentation · Attention
mechanism

1 Introduction

There are various fields of computer vision tasks in real life [18,26,34], and deep
neural networks (DNNs) have achieved tremendous performance in those fields
[10,17] e.g., classification, segmentation, and object detection with the help of
abundant large-scale annotated datasets. However, they are not always available
due to the high cost of human annotations and the lack of the data itself. To
address the issues, few-shot learning (FSL) aims to categorize samples from novel
classes given only a few labeled samples by mimicking human abilities [2,31].
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Metric-based prototype learning has shown promising results in FSL [28,29,
31]. CNN-based feature extractors embed images into a common feature space.
Distance metrics are then applied to match query embeddings with prototypes
of support embeddings and assign a category of the closest prototype to classify
queries. Theoretically, the robust matching procedure aims to capture relevant
features between query samples and prototypes.

Recent approaches employ the self-attention mechanism to capture relevant
features [5,37]. However, global pooled features that follow the last global aver-
age pooling layer of the CNN feature extractor induce spatially implicit attention
and result in traditional limitations of losing important spatial information and
being sensitive to object poses in low-data regimes. Moreover, cluttered back-
grounds and significant intra-class variations shift global pooled features of the
same category further away in the metric space [20,33,38], leading to unrobust
prototype matching. Several works [13,16] remove the global pooling layer to
preserve explicit spatial features. Nevertheless, a discrepancy problem presented
as a gap of emphasized features between query and support samples prevents
the model from focusing on relative features and learning robust prototypes [19].

Some current approaches utilize available class label information to obtain
crucial features [3,36,39]. These approaches make it possible to reduce the noise
of prototypes by giving consistency to support samples. However, such augmen-
tation is not available for query samples as they are considered test samples,
resulting in extending fundamental differences between feature spaces of seman-
tic and visual modality. Thereby, significant gaps between query and modality
mixed support samples should be reduced.

In this paper, we propose Attentive Information Guided Alignment (AIGA)
that aims to achieve model robustness by closing the gap among information
differences of network branches. The overall model has three branches that
handle information-rich prototypes, support prototypes, and queries. For the
information-rich branch, working as a supervisor, attention-based smooth aug-
mentation makes a variation of crucial common parts of objects, mitigating the
dissension between query and support samples. In addition, we leverage auxiliary
semantic knowledge by utilizing class embeddings to compensate for the limited
data of FSL. Including the support branch, we utilize an explicit attention mod-
ule that learns spatial and channel information of objects. The gap among proto-
types is closed by alignment losses that distill knowledge from information-rich
prototypes to non-augmented ones. Queries adapt to non-augmented prototypes
with rich augmentation knowledge in a task-adaptive manner.

The main contribution of our work can be summarized as follows:

• We propose AIGA for robust prototype learning in metric-based few-shot clas-
sification. Our model aims to reduce the gap among information differences
during the training procedure, e.g., attention-based smooth augmentation and
auxiliary semantic knowledge.

• We propose to utilize the parallel explicit spatial and channel attention mod-
ules with a prototype alignment mechanism and to transfer the knowledge
task-adaptively from prototype to query feature, leading to cross-adapting
between refined prototypes and query features.

• Extensive experiments and ablation studies verify the effectiveness of AIGA.
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Fig. 1. The overall architecture of AIGA. xs′, xs and xq pass through the shared feature
extractor and are generated as z′

p, zp and zq. Class embeddings are concatenated with
z′
p and explicit attention modules generate ẑ′

p and ẑp. They are aligned by Laln and zq
is task-adaptively refined to ẑq. Finally, ẑp and ẑq are cross-adapted, resulting in the
few-shot classification loss Lfsl. ⊗ denotes an element-wise product operation.

2 Related Work

FSL approaches fall into two main streams, i) optimization-based methods and
ii) metric-based methods. Optimization-based approaches aim to learn better
initialized models that can quickly adapt to novel samples with a few gradient
steps [7,24,27]. We follow metric-based approaches that aim to match queries
with prototypes representing the ground-truth labels of queries in the metric
space by capturing relevant features of query and support samples [28,29,31].

To capture the relevant features, FEAT [37] proposes an embedding adapta-
tion as a set-to-set transformation based on Transformer [30], but only in support
samples, not query samples. CAD [5] extends FEAT to adapt support and query
samples to each other. A single shared attention module replaces query values
with each other to mutually reweight the features through attention scores. CAN
[13] and RENet [16] generate the cross-correlational maps to produce adaptively
refined spatial features. Other works present feature map reconstruction tasks
[33,38] and mutual nearest neighbors [20] to fully utilize local features.

Some FSL approaches leverage auxiliary semantic knowledge to compensate
for the lack of data. AM3 [35] and SEGA [36] utilize word embeddings of class
labels to generate visual-semantic prototypes. ECKPN [3] utilizes label embed-
dings as class-level knowledge and combines them with corresponding visual
knowledge via message-passing to guide the inference of query samples. ArL
[39] concurrently learns relative object similarity with semantic soft labels and
prediction of the absolute semantic label to better leverage semantic knowledge.
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3 Proposed Method

3.1 Problem Formulation

Given two split datasets: {base set: Db and novel set: Dn}, Cb and Cn classes
for each dataset are disjoint as Cb ∩ Cn = ∅. The goal is to train the model with
Db generalizable to Dn, which has been unseen during the training.

In N -way K-shot meta-training, an episode that mimics the test process ran-
domly selects N classes from Cb and K support samples and K ′ non-overlapping
query samples for each class from Db. Thereby, the episode consists of a support
set S = {(xs

i , y
s
i )}NK

i=1 and a query set Q = {(xq
j , y

q
j )}NK′

j=1 . The meta-test goes
through the same procedure for Cn and Dn. Following the Prototypical Networks
[28], we extract features zs

i , z
q
j from images xs

i , x
q
j through feature extractor fθ

and obtain a prototype pc representing each class c, and the probability distri-
bution of xq

j using a distance function d(·) as follows:

pc =
1

|Sc|
∑

(xs
i ,ys

i )∈Sc

f(xs
i ), c = 1, ..., N, (1)

pθ(yj = c|xq
j) =

exp(−d(fθ(x
q
j), pc)∑

k exp(−d(fθ(x
q
j), pk)

. (2)

The basic loss Lfsl for training the classification model is:

Lfsl =
1

|Q|
∑

(xi,yi)∈Q

−log pθ(yi|xi). (3)

3.2 Query-Prototype Cross-Adaptation

We introduce cross-adaptation between queries and prototypes to reduce the
gap among branches and provide attention priority for augmentation. CAD [5]
proposed self-attention-based cross-attention for all query and support samples.
Although relevant features could be captured between query and support sam-
ples, it stacks the gap of differences between highlighted features, hindering the
robustness of the model.

Instead, we leverage FEAT [37] to generate task-specific features of queries
and prototypes. FEAT utilizes self-attention only to prototypes for this pur-
pose, but we also apply it to queries to obtain each task-relevant feature of the
prototypes and queries. Then, we leverage cosine similarity to obtain relevant
features between the prototypes and queries to reduce the gap mentioned above
and enhance the robustness.

3.3 Information-Rich Prototypes

Attention-based Smooth Augmentation. We generate smooth-augmented
support samples based on attention scores to capture the relevant areas of the
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Fig. 2. Attention-based smooth augmentation. The first row shows the augmentation
results and the second row represents attention maps. Ours complements the shortcom-
ings of previous methods, leading to augmentation object-friendly rather than coarse.

object. By manipulating areas with high attention scores, we try not to focus
only on a part of the object and not to interfere with robust prototype learning.

We sort the attention scores of self-attention of prototypes in cross-adaptation
and augment the support samples in the order of the top n%. Specifically, the
temporary attention mask M̄ consists of [0, 1] and is thresholded by the top
n% attention scores. However, if M̄ is directly multiplied by the image, there
is an issue that information is significantly different from neighboring pixels
due to the loss of information in the masked part [19], as shown in the second
column of Fig. 2. This vulnerability of DNNs to perturbations has been widely
researched to prevent unpredictable phenomena in the field of explainability
and robustness [9,22]. As another way of perturbation, Gaussian blur masking
alleviates dramatic differences among pixels. However, it is insufficient to provide
additional effects as it is similar to the original attention map.

Therefore, we introduce smooth augmentation that complements both meth-
ods by subtracting the Gaussian blurred sample from the original one with
attention-based threshold to obtain the augmented support sample xs′. This
augmentation relieves information in over-emphasized areas of the image. It
spreads attention to the entire area of the target object, forming a more natural
boundary with the surrounding pixels than simply masking with zero.

Auxiliary Semantic Knowledge. In the circumstance of a limited dataset,
recent works [3,36,39] utilize class embeddings to feed additional information.
While our approach is similar in terms of leveraging semantic knowledge to enrich
information, we utilize it to train the superior branch that plays the role of the
advisor during alignment. We extract class embeddings wc ∈ R

c′ from the pre-
trained word embedding model and concatenate wc along channels of support
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Fig. 3. Illustration of the explicit attention module with prototype alignment mecha-
nism. Detailed descriptions are in the related section.

feature maps. The process for enriching advisor prototypes is as follows:

z′
p = τ(

1
K

∑

xs∈Sc

f(xs − (Ψ(xs) � M̄)), wc), (4)

where τ(·), Ψ(·), and � denote the concatenation, Gaussian blur, and element-
wise product operation, respectively.

3.4 Explicit Spatial and Channel Attention Module

Explicit attention modules consist of two branches for information-rich and sup-
port prototypes. Each branch consists of explicit spatial and channel attention
modules, as shown in Fig. 3.

We build a stack of convolutional layers for the explicit spatial attention
modules that emphasize salient regions from a spatial point of view. The channels
of prototypes are compressed in one dimension to generate spatial attention maps
denoted as As and A′

s for the support and information-rich prototype. We also
introduce the channel attention module to find which patterns are informative in
given features. A convolutional layer and SELayer [14] squeeze spatial dimensions
and generate Ac and A′

c. Then a refined support prototype is finally obtained:

ẑp = zp � As � Ac. (5)

A refined information-rich prototype ẑ′
p is obtained in the same way.

We design a prototype alignment mechanism consisting of two losses to align
support prototypes with information-rich prototypes so that the former mimics
the latter knowledge. The prototype feature alignment loss Lproto reduces the
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gap between prototypes by fitting the probability distribution of each feature as
follows:

Lproto = − exp(ẑp)∑
exp(ẑp)

log
exp(ẑ′

p)∑
exp(ẑ′

p)
. (6)

In addition, the logit alignment loss Llogit aligns the global logit of prototypes
via a shared global classifier fcls that classifies all classes in the base set:

Llogit = − exp(fcls(ẑp))∑
exp(fcls(ẑp))

log
exp(fcls(ẑ′

p))∑
exp(fcls(ẑ′

p))
, (7)

so the final prototype alignment loss is defined as: Laln = Lproto + Llogit.

Task-Adaptive Query Alignment. We align query features to support proto-
types in a task-adaptive manner. Intuitively thinking, it is desirable to directly
align query features on information-rich prototypes to obtain rich augmenta-
tion knowledge. However, there is a risk of distortion due to differences between
visual-semantic and visual-only features. Thus, we indirectly transfer the knowl-
edge to query features using the channel attention of support prototypes:

ẑq = zq � Ac. (8)

We feed this newly adapted feature as input to cross-adaptation and recursively
operate during the training.

4 Experimental Evaluation

4.1 Datasets

We utilize four benchmarks of few-shot classification for a fair evaluation. mini-
ImageNet [31] is a subset of ImageNet [6] consisting of 100 classes with 600
images per class. According to the standard setting [24], we split 100 classes
into 64 base, 16 validation, and 20 novel classes, respectively. tieredImageNet
[25] is a larger hierarchical subset of ImageNet with 20/6/8 superclasses con-
sisting of 351/97/160 subclasses for base, validation, and novel, respectively.
CUB-200-2011 [32] is a fine-grained dataset of 200 classes of birds containing
a total of 11788 images. We split the dataset into 100/50/50 classes, following
[12]. CIFAR-FS [1] consists of 64/16/20 classes with 600 images per class.

4.2 Implementation Details

We adopt ResNet-12 [10] as the feature extractor without taking the last global
pooling layer. It provides feature maps z ∈ R

6×6×640 that preserve spatial infor-
mation. Using the pre-trained word embedding model GloVe [23], we obtain
word embeddings of class labels with 300 dimensions. For N -way K -shot meta-
learning, we set N = 5,K = 1, 5. The model is trained for 200 epochs for meta-
training with 600 tasks per epoch. Each task contains randomly sampled 15 query
samples per class. For evaluation, we report the average classification accuracy
with 95% confidence intervals of 600 randomly sampled test episodes.
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Table 1. Few-shot classification accuracy on miniImageNet and tieredImageNet in the
5-way k-shot setting. † denotes the methods which leverage semi-supervised learning.

Method Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

MathcingNet [31] ResNet-12 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71
ProtoNet [28] ResNet-12 62.39 ± 0.21 80.53 ± 0.14 68.23 ± 0.23 84.03 ± 0.16
Cosine [4] ResNet-12 55.43 ± 0.81 77.18 ± 0.61 61.49 ± 0.91 82.58 ± 0.30
CAN [13] ResNet-12 63.85 ± 0.48 79.44 ± 0.34 69.89 ± 0.51 84.23 ± 0.37
Boosting [8]† WRN-28-10 64.03 ± 0.46 80.68 ± 0.33 70.53 ± 0.51 84.98 ± 0.36
AM3 [35] ResNet-12 65.30 ± 0.49 78.10 ± 0.36 69.08 ± 0.47 82.58 ± 0.31
S2M2 [21] ResNet-34 63.74 ± 0.18 79.45 ± 0.12 – –
DeepEMD [38] ResNet-12 65.91 ± 0.82 82.41 ± 0.56 71.16 ± 0.87 86.03 ± 0.58
FEAT [37] ResNet-12 66.78 ± 0.20 82.05 ± 0.14 70.80 ± 0.23 84.79 ± 0.16
FRN [33] ResNet-12 66.45 ± 0.19 82.83 ± 0.13 72.06 ± 0.22 86.89 ± 0.14
RENet [16] ResNet-12 67.60 ± 0.44 82.58 ± 0.30 71.61 ± 0.51 85.28 ± 0.35
ECKPN [3] ResNet-12 70.48 ± 0.38 85.42 ± 0.46 73.59 ± 0.45 88.13 ± 0.28
PTN [15]† WRN-28-10 82.66 ± 0.97 88.43 ± 0.67 84.70 ± 1.14 89.14 ± 0.71
SEGA [36] ResNet-12 69.04 ± 0.26 79.03 ± 0.18 72.18 ± 0.30 84.28 ± 0.21
CAD [5] ResNet-12 77.56 ± 0.72 87.68 ± 0.57 77.55 ± 0.74 90.73 ± 0.54
HCTransformers [11] ViT-S 74.74 ± 0.17 89.19 ± 0.13 79.67 ± 0.20 91.72 ± 0.11
Ours ResNet-12 82.79 ± 1.04 91.37 ± 0.75 83.51 ± 0.96 93.02 ± 0.71

Table 2. Few-shot classification accuracy on CUB-200-2011 and CIFAR-FS in the
5-way k-shot setting. † denotes the methods which leverage semi-supervised learning.

Method Backbone CUB-200-2011 CIFAR-FS
1-shot 5-shot 1-shot 5-shot

MathcingNet [31] ResNet-12 71.87 ± 0.85 85.08 ± 0.57 – –
ProtoNet [28] ResNet-12 66.09 ± 0.92 82.50 ± 0.58 66.09 ± 0.92 82.50 ± 0.58
Cosine [4] ResNet-34 68.00 ± 0.83 84.50 ± 0.51 60.39 ± 0.28 72.85 ± 0.65
Boosting [8]† WRN-28-10 – – 73.60 ± 0.30 86.00 ± 0.20
S2M2 [21] ResNet-34 72.92 ± 0.83 86.55 ± 0.51 62.77 ± 0.23 75.75 ± 0.13
DeepEMD [38] ResNet-12 75.65 ± 0.83 88.69 ± 0.50 – –
FEAT [37] ResNet-12 73.27 ± 0.22 85.77 ± 0.14 – –
FRN [33] ResNet-12 83.55 ± 0.19 92.92 ± 0.10 – –
RENet [16] ResNet-12 79.49 ± 0.44 91.11 ± 0.24 74.51 ± 0.46 86.60 ± 0.32
ECKPN [3] ResNet-12 77.43 ± 0.54 92.21 ± 0.41 79.20 ± 0.40 91.00 ± 0.50
SEGA [36] ResNet-12 84.57 ± 0.22 90.85 ± 0.16 78.45 ± 0.24 86.00 ± 0.20
CAD [5] ResNet-12 82.95 ± 0.67 90.80 ± 0.51 79.97 ± 0.72 94.13 ± 0.41
Ours ResNet-12 89.03 ± 0.89 93.56 ± 0.54 87.01 ± 0.98 94.40 ± 0.61

4.3 Quantitative Assessment

We first report the results for miniImageNet and tieredImageNet in Table 1.
We observe considerable performance gains without pre-training strategies or
larger backbones e.g., WRN-28-10 and ViT-S. We achieve the new state-of-the-
art compared to existing methods, except for the 1-shot evaluation on tieredIm-
ageNet. However, PTN employs semi-supervised learning that utilizes a number
of unlabeled data. It compensates for the lack of data in FSL, which signif-
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Table 3. Ablation on the effect of each module on miniImageNet.

Augmentation
Mask Blur Smooth Semantic 1-shot 5-shot

– – – – 78.46 ± 0.93 88.11 ± 0.77
✓ – – – 79.22 ± 0.95 88.63 ± 0.78
– ✓ – – 79.57 ± 1.05 88.93 ± 0.77
– – ✓ – 80.14 ± 1.00 89.51 ± 0.73
✓ – – ✓ 81.46 ± 1.06 90.12 ± 0.77
– ✓ – ✓ 81.92 ± 1.06 90.69 ± 0.74
– – ✓ ✓ 82.79 ± 1.04 91.37 ± 0.75

icantly improves performance, especially in the 1-shot case with dramatically
fewer data. Indeed, with the exception of PTN, our method records state-of-
the-art with large margins even in 1-shot evaluation on all datasets including
CUB-200-11 and CIFAR-FS in Table 2. In addition, we outperform the methods
leveraging semantic knowledge e.g., AM3, ECKPN, and SEGA.

5 Ablation Study

5.1 Analysis for Explicit Modules

The first row in Table 3 is the result of applying only explicit attention modules
and the cross-adaptation without augmentation and the alignment mechanism.
It’s slightly inferior to ours but still outperforms existing methods. We observe
that explicit attention modules and task-adaptive query alignment greatly help
cross-adaptation via spatial implicit self-attention. Augmentation improves per-
formance, especially when leveraging auxiliary semantic knowledge, as shown
in rows 5–7. In particular, the improvement at 1-shot is more remarkable than
5-shot. Since the data available in the 1-shot setting is much smaller, the effect
is further maximized when supplemented with additional data. In other words,
it is justifiable and effective to utilize semantic knowledge when data is scarce.
Our method, the last row, reports the best performance. Thus, smoothing the
most distinct regions in support samples to focus the model on the whole part
of the target object and distilling knowledge into query samples to align them
with prototypes are very effective for FSL.
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Fig. 4. t-SNE visualization on miniImageNet at 5-way 5-shot.

5.2 Effect of Augmentation

Here, we compare the effects of different augmentation methods. In Fig. 2, the
attention map of the original image highlights only certain parts of the target
object, making it difficult to match query and support samples. Therefore, we
mask the area with the high attention score as shown in (b), capturing the
whole part of the object better. But sharp differences from surrounding pixels
hinder performance, as shown in Table 3. Instead of masking, we apply Gaussian
blur to that area, resulting in (c). However, there is a limit to performance
improvement because the highlighted area of the original image is only slightly
wider. Our method (d) yields significant performance by subtracting Gaussian
blurred regions from the original image, smoothing the sharp gap between the
augmented portion and surrounding pixels.

5.3 Visualization

The first and second rows of Fig. 4 represent the support and query features
after the feature extractor and cross-adaptation, respectively. The left three are
novel classes, and the other one is all base classes. Our features are well-clustered
regardless of base and novel classes.

6 Conclusion

In this paper, we propose a novel method: Attentive Information Guided Align-
ment (AIGA), with enrichment mechanisms of the advisor branch and alignment
among branches. Attention-based smooth augmentation and auxiliary semantic
knowledge help to generate information-rich prototypes. They contain more dis-
criminative knowledge with explicit attention modules to enhance robustness.
Afterward, we align support prototypes with information-rich ones via prototype
alignment mechanism and also align query samples with support prototypes to
share the rich knowledge in a task-adaptive manner. Queries and support pro-
totypes cross-adapt to capture relevant features for robust matching. We exper-
imentally validate the effectiveness of AIGA and achieve superior performance.
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Abstract. The advances of 5G and the Internet of Things enable more
devices and sensors to be interconnected. Unlike traditional data, the
large amount of data generated from various sensors and devices requires
real-time analysis. The data objects in a stream will change over time
and only have a single access. Thus, traditional methods no longer meet
the needs of fast exploratory data analysis for continuously generated
data. Cluster tendency assessment is an effective method to determine
the number of potential clusters. Recently, there are methods based on
Visual Assessment of cluster Tendency (VAT) proposed for visualising
cluster structures in streaming data using cluster heat maps. However,
those heat maps rely on Euclidean distance that does not consider the
data distribution characteristics. Consequently, it would be difficult to
separate adjacent clusters of varied densities. In this paper, we discuss
this issue for the latest inc-siVAT method, and propose to use a data-
dependent kernel method to overcome it for clustering streaming data.
Extensive evaluation on 7 large synthetic and real-world datasets shows
the superiority of kernel-based inc-siVAT over 4 recently published state-
of-the-art online and offline clustering algorithms.

Keywords: Cluster tendency assessment · VAT · Isolation kernel ·
Clustering · Data stream

1 Introduction

The advanced development of 5G and the Internet of Things enables more
devices and sensors to be interconnected, and those devices continuously gener-
ate massive and high-speed data streams that pose a challenge for real-time data
processing and analysis, due to their dynamicity, velocity and heterogeneity [18].
There are lots of applications based on streaming data analysis such as stock
market modelling, network traffic monitoring, and system outage detection [7].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Clustering, as an unsupervised learning algorithm, aims to partition data objects
into different groups such that similar objects are in the same group. It can be
used to automatically summarize the streaming data to extract meaningful hid-
den patterns and insights. Traditional clustering methods usually work on a
finite amount of data as batch models. However, objects in streaming data will
change over time and only have a single access. Thus, traditional methods no
longer meet the needs of fast exploratory data analysis for streaming data.

Recently, streaming data clustering has become a hot research topic taking
into account restrictions of computational memory and execution time. Many
traditional clustering methods have been modified to use the two-phase frame-
work, i.e., online and offline, to deal with data streams [2]. For example, Den-
Stream [6] is based on DBSCAN [9] and StreamKM++ [1] is an extension of
k-means++ [3]. However, determining the number of clusters in a data set is a
crucial problem for most clustering methods. It is also important to show the
trajectory of cluster changes in a data stream.

Visual Assessment of cluster Tendency (VAT) [4] and the improved VAT
(iVAT) [25] create a reordered dissimilarity matrix for visualisation or a cluster
heat map to show the possible clusters as dark blocks along the diagonal. In the
heat map, each pixel reflects the dissimilarity value between two objects, i.e.,
the higher the similarity value, the darker pixel is. The number of dark blocks
along the diagonal in the heat map represents the number of possible clusters
in the dataset. There are many VAT-inspired methods proposed to visualise
cluster structures in high-volume, high-velocity and high-dimensionality stream-
ing data. Scalable iVAT (siVAT) [10] relies on an intelligent sampling scheme
to retain a small size of samples. inc-iVAT/dec-iVAT [14] are incremental and
decremental algorithms for visualizing the evolving cluster structures in data
streams. Presently, inc-siVAT [18] is developed to visualise long data streams
based on an incremental maxmin random sampling (MMRS) algorithm that can
dynamically update the intelligent samples on the fly.

Nevertheless, existing VAT-based methods usually generate cluster heat maps
relying on Euclidean distance that does not take the data distribution character-
istics into account. If there are clusters close to each other with varied densities,
it may be difficult to separate adjacent clusters, i.e., some objects from one
cluster fall inside a block of another cluster. Thus, it is imperative to utilise a
more adaptive dissimilarity measure for VAT-based methods such that different
clusters are shown in separated blocks with similar dark colours.

A large number of existing studies have shown that the kernel approach can
improve the performance of distance and density-based clustering algorithms,
such as spectral clustering [12] and kernel DBSCAN [17]. In this paper, we
investigate the density bias issue in VAT methods and propose to use a data-
dependent kernel for improving the VAT method on clustering large streaming
data. The contributions of this paper include:

– Investigating the drawbacks of using Euclidean distance in inc-siVAT [18]
for clustering large data streams. Given a cluster heat map, the dense clus-
ters tend to appear with darker blocks, which are easier to be identified and
extracted. This brings about challenges when different clusters with vary-
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ing densities exist in a data set. This results in a kind of density-bias issue
that prevails in most distance or density-based clustering algorithms [27],
i.e., having a bias towards dense clusters (in showing them with more darker
colour blocks in the heat map, as opposed to less denser clusters) when using
Euclidean distance.

– Proposing an improved iVAT framework utilising a newly developed data-
dependent kernel method, i.e., Isolation kernel (IK) [17,22], to significantly
improve both the quality of the cluster heat map visualisation and the intelli-
gent sampling scheme. In order to meet the requirement of real-time update,
we propose to map the new objects into a finite IK feature space and then
use Maximum Mean Discrepancy (MMD) method [5] for the dissimilarity
calculation. In addition, we apply an adaptive cluster extraction strategy to
effectively identify the local meaningful clusters from the cluster heat map.

– Extensively evaluating the performance of IK-based inc-siVAT, which we call
as inc-IKiVAT1, on two synthetic and five real datasets. The results show the
superiority of inc-IKiVAT over 4 recently published state-of-the-art online
and offline clustering algorithms.

This paper is organised as follows: Sect. 2 provides an introduction about the
VAT methods and their extension to streaming data. Section 3 shows the pro-
posed algorithm utilising IK to overcome the drawbacks of inc-siVAT. Section 4
shows the empirical evaluation results, followed by a conclusion in Sect. 5.

2 Relate Work

Many clustering algorithms need the number of clusters to be pre-specified as
input for performing clustering on a given dataset. Cluster tendency assessment
is an effective method to determine the number of potential clusters from the
dataset. Bezdek et al. [4] have proposed the first visual assessment of tendency
(VAT) algorithm that produces a heat map based on a dissimilarity matrix.
Given a dataset O = {o1, . . . , on}, Dn = [dij] is a n by n pairwise dissimilarity
matrix between all oi, oj ∈ O, and dij can be calculated using a dissimilarity
measure. VAT algorithm uses a modified Prim’s algorithm, i.e., a standard min-
imum spanning tree (MST) algorithm, to reorder a pairwise dissimilarity matrix
Dn to D∗

n, and then presents each value in D∗
n as a grey pixel in a cluster heat

map. In a heat map, the darker colour indicates a lower dissimilarity or higher
similarity between two objects. Therefore, different clusters can be shown as
separated dark blocks along the diagonal of the heat map. Since the VAT meth-
ods rely on a minimum spanning tree algorithm, the k aligned clusters can be
identified simply by cutting the largest k − 1 edge [13].

To improve the contrast between different clusters, Wang et al. [25] proposed
an iVat to convert the distance value in D∗

n with a path-based distance, i.e.,:

D′∗
ij = min

p∈pij

max
1≤h≤|p|

D∗
p[h]p[h+1]. (1)

1 The code of inc-IKiVAT is on https://github.com/charles-cao/inc-IKiVAT.

https://github.com/charles-cao/inc-IKiVAT
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where p ∈ pij is an acyclic path in the set of all acyclic paths between oi and oj .
However, neither of the above two methods can be used in large datasets

due to the high computational complexity of O(n3). In order to overcome this
weakness, scalable iVAT (siVAT) [10] used a maxmin random sampling (MMRS)
approach as an intelligent sampling scheme to construct a VAT image from small
representative samples. In addition, Kumar et al. [14] proposed both incremental
and decremental processing for the iVAT method, named inc-iVAT/dec-iVAT.
They utilise a dynamic incremental deletion mechanism based on a sliding win-
dow model. When the window size is fixed to n′, inc-iVAT/dec-iVAT provides
visualization on the last n′ objects in the input stream with a continuous deletion
and insertion process.

In order to visualise evolving structures in a long data stream, inc-siVAT [18]
is developed to visualise long data streams based on MMRS that can dynam-
ically update the intelligent samples on the fly. The MMRS begins by finding
k samples that are furthest from each other in the first data chunk, then the
remaining samples are grouped with their nearest sample, before finally select-
ing n′ smart samples using a proportional random sampling from each group.
inc-siVAT incrementally updates the smart sample to reflect changes in the iVAT
image for visualising a data stream.

Nevertheless, all the above VAT-based methods generate cluster heat maps
relying on Euclidean distance that does not take the data distribution char-
acteristics into account. We will discuss this issue and propose the use of a
data-dependent kernel method to overcome it in the next section.

3 Kernel-Based inc-siVAT

The similarity measure (i.e., Euclidean distance) used in inc-siVAT could produce
a misleading cluster heat map that can not reflect the structure of the given
dataset, especially when there are adjacent clusters with varied densities. There
are two key consequences:

(i) A dark block of a dense cluster in the heat map would contain objects from
adjacent sparse clusters. This is because when clusters are close to each
other, boundary objects from a sparse cluster are likely to belong to an
adjacent dense cluster using the nearest neighbour linking process [23].

(ii) The colour of a sparse cluster block shown in the cluster heat map is much
lighter than that of a dense cluster block. The boundaries between dense and
sparse cluster blocks become blurred, since the pairwise distances between
two objects in these regions are similar.

Figure 1 shows an example on a synthetic dataset with four Gaussian clusters
of different variances. When using Euclidean distance to generate the cluster heat
map on all objects, inc-siVAT will produce the cluster heat map shown in Fig. 1b,
in which the sparsest cluster located at the left top region is split into multiple
dark sub-blocks. Two dense clusters located at the right bottom region likely
belong to a large single block. Although inc-siVAT uses a path-based distance
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Fig. 1. (a) is the scatter plot of a synthetic dataset with four Gaussian clusters. (b) and
(c) shows the cluster heat maps generated by inc-siVAT using two dissimilarity mea-
sures on the dataset shown in (a). On each cluster heat map, the blue boxes represent
the extracted clusters based on MST. The objects from the same cluster have the same
colour and each colour represents a ground truth cluster. The colour bar represents the
true label for each row (as a data object). AMI of the extracted clusters in (b) and (c)
are 0.61 and 0.93, respectively. (Color figure online)

measure to produce a much sharper heat map, it still suffers from extracting
sparse clusters from indistinct blocks. This is a kind of density-bias issue existing
in most distance or density-based clustering algorithms [27], i.e., having a bias
towards dense clusters when using Euclidean distance. Thus, it is imperative
to utilise an adaptive dissimilarity measure for VAT-based methods, such that
different clusters are shown in separated blocks with similar dark colours.

In the last two decades, many kernel methods are developed to improve the
performance of distance and density-based clustering [12]. Recently, Isolation
kernel (IK), as a novel data-dependent similarity measure, has been proposed
to improve density-based clustering [17], kernel regression [20], and time series
anomaly detection [19]. In this paper, we propose to use IK for improving inc-
siVAT on clustering large streaming data.

IK has two crucial properties: (i) two objects in a sparse region are more
similar than two objects of equal inter-point distance in a dense region. This
property enables a distance/density-based clustering algorithm to better sepa-
rate complex clusters with varied densities; and (ii) IK has a finite-dimensional
feature map with binary features that enables an efficient similarity calculation
for streaming data.

The key idea of IK is to use a space partitioning strategy Hψ(O) to split the
whole data space into ψ non-overlapping partitions based on a random sample
of ψ objects from the given dataset O. The similarity between any two objects
x, y ∈ O is the probability of how likely x and y can be split into the same
partition under all partitions, which can be defined as

Kψ(x, y|O) = EHψ(O)[1(x, y ∈ θ[z] | θ[z] ∈ H)], (2)

where 1(·) is an indicator function, and θ[z] is an isolating partition.
Here we implement the partitioning H using a Voronoi diagram generated

from the random subset S ⊂ O with |S| = ψ [17]. The similarity can be estimated
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Fig. 2. Demonstration of Isolation kernel (ψ = 16) on the synthetic data used in Fig. 1:
(a) An example partitioning H in which red points are the 16 subsample objects. (b)
Contours with reference to point (0.5, 0.5).

using the Monte Carlo method, i.e., Kψ(x, y|O) is the percentage of both x, y
falling into the same cell over t independently generated Voronoi diagrams.

Figure 2a illustrates a partitioning result on the synthetic dataset used in
Fig. 1 with the subsample sizes ψ = 16. It can be seen from the result that a
dense region is likely to be split into smaller cells than a sparse region. Thus,
objects in the spare region are more similar to x than points in the dense region
to x with equal distance, as shown in Fig. 2b. As a result, IK can overcome the
density-bias issue of inc-siVAT to produce a much clearer cluster heat map, as
shown in Fig. 1c.

Moreover, Isolation kernel has a finite feature map defined as follows [21]:

Definition 1. For point x ∈ R
d, the feature mapping Φ : x → {0, 1}t×ψ of κψ is

a binary vector that represents the partitions in all the partitioning Hi ∈ Hψ(D),
i = 1, . . . , t; where x falls into only one of ψ hyperspheres in each partitioning
Hi.

To meet the requirement of real-time smart sample update in inc-siVAT,
we propose to continuously map new objects into the finite IK feature map for
fast dissimilarity calculation. Based on the kernel trick, the Maximum Mean
Discrepancy (MMD) [5] between two points x and y is their Euclidean distance
in the feature space, which can be derived as follow:

||Φ(x) − Φ(y)||2 = ||Φ(x)||2 + ||Φ(y)||2 − 2〈Φ(x), Φ(y)〉
= tKψ(x, x|D) + tKψ(y, y|D) − 2tKψ(x, y|D)
= 2t(1 − Kψ(x, y|D)) ∝ −Kψ(x, y|D) (3)

Therefore, to kernelise inc-siVAT, we only need to use IK features of new
objects as the input for inc-siVAT and then leave all procedures of inc-siVAT
unchanged. The overall time complexity of IK-based inc-siVAT remains the same
as the original inc-siVAT algorithm, since the IK feature mapping has linear
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complexity of O(ntψ) [21]. Note that the random subset S used for building IK
can be chosen from the first data chunks or be updated over different chunks. In
the following experiments, S are from the first 2,000 objects for large streams.

To efficiently detect the local dark blocks in a cluster heat map generated
by inc-siVAT, we propose a method called Clusters Extraction from the cluster
heat Map (CEM) based on the local and adjacent comparison. CEM considers
each row from the heat map as a vector of grey pixels, and then splits the top
k − 1 paired adjacent rows with the largest dissimilarity scores. Then the k split
sub-regions on the cluster heat map indicates k clusters.

4 Experiment and Analysis

In this section, we use 2 synthetic and 5 real-world datasets to evaluate IK-
based inc-siVAT. First, we compared different dissimilarity measures and cluster
extraction methods for inc-siVAT. Then, we show the superiority of inc-IKiVAT
(the IK-based inc-siVAT with the cluster extraction method CEM) over 4 recent
state-of-the-art clustering methods.

The properties of the 7 datasets are shown in Table 1. Figure 3 shows scatter
plots of 2 synthetic datasets, which contain clusters of varied densities. Mnist is
from UCI Machine Learning Repository [8]. ImageNet-10, STL-10 and CIFAR-10
are TensorFlow datasets, and we utilised a recently proposed unsupervised deep
learning method [15] to extract the feature representation from these images as
the input for different clustering algorithms. Before the experiments, Min-Max
normalisation is used for each dataset to make all the feature values between 0
and 1. We randomly permuted the order of points in each dataset and streamed
points sequentially for online clustering algorithms.

4.1 Evaluation of inc-siVAT Variations

We compare the clustering results of inc-siVAT with two different dissimilarity
measures, i.e., Euclidean distance and Isolation Kernel, along with two cluster
extraction methods, i.e.,MST [13] and our proposed method CEM. We searched
the best parameter values for each algorithm within a reasonable range. The IK
method has parameter t = 200 and ψ ∈ {21, 22, . . . , 25}. inc-siVAT parameters
range are k′ ∈ {10, 20, 30}, np ∈ {150, 200, 250, . . . , 400}, where k′ is the desired
number of maximin (distinguished) points and np is an approximate (desired)
size of MMRS sample. For cluster extraction methods, the number of clusters
is k ∈ {2, 3, . . . , 50}. For each clustering algorithm, We report the best result in
Adjusted Mutual Information (AMI) [24] over 10 independent trials.

Table 1 shows the best clustering performance of the different variations of
inc-siVAT on 7 datasets. Regarding cluster extraction, CEM achieves better
than or the same performance as MST on all 7 datasets. Furthermore, IK-based
clustering results are better than those based on Euclidean distance with any
cluster extraction method.
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Fig. 3. Synthetic datasets scatter plots.

Table 1. Best performance of different inc-siVAT clustering methods in AMI on 7
datasets. For each dataset, the underlined and the boldfaced are the best performers
within the same measure and over all measures, respectively.

Datasets Euclidean distance Euclidean distance Isolation kernel
#Objects #Features #Clusters MST CEM MST CEM

SCData1 7,000 2 3 0.75 0.84 0.92 1.00
SCData2 100,000 2 7 0.86 0.96 0.92 0.97
Mnist 10,000 784 10 0.07 0.24 0.39 0.57
Imagenet10 13,000 128 10 0.84 0.89 0.88 0.94
Stl10 13,000 128 10 0.66 0.70 0.67 0.72
Dogs 19,500 128 15 0.36 0.44 0.38 0.53
Cifar10 60,000 128 10 0.61 0.71 0.70 0.74
avg. 0.59 0.68 0.69 0.78

We visualize the result of different IK-based and Euclidean distance-based
inc-siVAT on SCData1 and Imagenet10 datasets as shown in Fig. 4. It’s clear
that IK significantly improves the cluster contrast in the cluster heat map pro-
duced by inc-siVAT and the cluster in each block is purer than using distance, as
shown in the colour bars. Therefore, IK enables both cluster extraction methods
to identify clusters much more precisely.

Moreover, we investigate the parameter sensitivity of IK-based inc-siVAT
using two datasets as a demonstration, shown in Fig. 5. The results indicate
that IK-based inc-siVAT usually performs well with ψ = 16 or 32.

4.2 Comparison with Different Clustering Algorithms

In this subsection, we select IK-based inc-siVAT with CEM (inc-IKiVAT) to
compare with 4 recently published clustering algorithms as follows. OnCAD [7] is
an online clustering algorithm, while other three are offline clustering algorithms.

– SEC [16] conducts spectral clustering on the co-association matrix in order
to find the consensus partition and is robust to incomplete basic partitions.
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Fig. 4. (a) and (b) show the t-SNE visualisation results on imagenet10 and stl10
datasets, respectively. (c) - (f) show the clustering results of inc-siVAT using two dis-
similarity measures on the two datasets. On each heat map, the blue and green boxes
represent the extracted clusters using the MST and CEM, respectively. The colour bar
represents the true cluster label for each row (as a data object). (Color figure online)

– OnCAD [7] is an online clustering algorithm that discovers the temporal
evolution of clusters and anomalies in real-time.

– SGL [11] is a k-means-like clustering algorithm based on a graph learning
framework to detect more meaningful clusters.

– GraphLSHC [26] is a large-scale hypergraph spectral clustering that provides
cost-effective solutions to solve the eigenvector problem.
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Fig. 5. The parameter sensitivity with k′ = 30.

Table 2. Best performance of 5 clustering algorithms in AMI on 7 datasets. The
boldfaced are the best performers on each dataset.

Datasets SEC SGL GraphLSHC OnCAD inc-IKiVAT

SCData1 0.50 0.81 0.52 0.71 1.00
SCData2 0.66 0.86 0.84 0.62 0.97
Mnist 0.49 0.63 0.77 0.07 0.57
Imagenet10 0.67 0.88 0.89 0.14 0.94
Stl10 0.50 0.66 0.67 0.16 0.72
Dogs 0.26 0.51 0.51 0.36 0.53
Cifar10 0.49 0.75 0.74 0.39 0.74
avg. 0.51 0.73 0.71 0.35 0.78

Table 3. Runtime comparison in CPU seconds on a machine with four cores CPU
(Intel(R) Core(TM) i5-6300HQ CPU @ 2.30 GHz) and 8GB RAM with Matlab.

Dataset SEC SGL GraphLSHC OnCAD inc-IKiVAT

SCData1 1.82 8.48 0.12 1.68 12.94
SCData2 38.19 123.53 2.68 41.77 267.01
Mnist 130.95 17.16 0.55 23.16 34.64
Imagenet10 17.00 19.85 0.27 34.50 35.10
Stl10 23.12 19.87 0.52 11.26 37.89
Dogs 52.86 37.45 1.12 47.10 56.53
Cifar10 201.38 80.89 1.93 32.95 141.52

Table 2 shows that inc-IKiVAT achieves the highest average AMI score of
0.78, and is better than other cluster extraction methods on all datasets except
Mnist and Cifar10. The run time of different algorithms in Table 3. inc-IKiVAT
has the linear time complexity, e.g., the size of SCdata2 grows tenfold over Mnist,
but the run time of inc-IKiVAT just grows about eight-fold.
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5 Conclusions

We discover that the key drawback of inc-siVAT is due to Euclidean distance
used as the dissimilarity measure for generating the cluster heat map. When
a streaming dataset has adjacent clusters of varied densities, the dark block
in the cluster heat map may contain sample objects from different clusters,
and the cluster boundaries may become unclear. This is because the sampling
and reordering processes in inc-siVAT do not consider the data local density
distributions.

In order to overcome this shortcoming, we propose to use a data-dependent
method, i.e., Isolation kernel, for dissimilarity calculation. We also demonstrate
that, with the adaptive local cluster extraction method CEM, IK-based inc-
siVAT can produce significantly better clustering results than state-of-the-art
online and offline clustering algorithms. In the future, we will develop a more
effective Isolation kernel method to fit the evolving distribution changes.
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Abstract. Model selection is a major challenge in non-parametric clus-
tering. There is no universally admitted way to evaluate clustering results
for the obvious reason that no ground truth is available. The diffi-
culty to find a universal evaluation criterion is a consequence of the ill-
defined objective of clustering. In this perspective, clustering stability has
emerged as a natural and model-agnostic principle: an algorithm should
find stable structures in the data. If data sets are repeatedly sampled
from the same underlying distribution, an algorithm should find similar
partitions. However, stability alone is not well-suited to determine the
number of clusters. For instance, it is unable to detect if the number
of clusters is too small. We propose a new principle: a good clustering
should be stable, and within each cluster, there should exist no stable
partition. This principle leads to a novel clustering validation criterion
based on between-cluster and within-cluster stability, overcoming limi-
tations of previous stability-based methods. We empirically demonstrate
the effectiveness of our criterion to select the number of clusters and
compare it with existing methods. Code is available at https://github.
com/FlorentF9/skstab.
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1 Introduction

Clustering is an unsupervised learning technique aiming at discovering structure
in unlabeled data. It can be defined as the “partitioning of data into groups
(a.k.a. clusters) so that similar [...] elements share the same cluster and the
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members of each cluster are all similar” [3]. These goals are contradictory because
of the non-transitivity of similarity: if A is similar to B, and B is similar to C, A
is not necessarily similar to C. Since clustering is an ill-posed problem, it cannot
be properly solved using this definition, and algorithms often optimize only one
of its aspects. For instance, K-means only guarantees that dissimilar objects
are separated, and on the other hand, single linkage clustering only guarantees
that similar objects will end up in the same cluster. As a consequence, model
selection is a major challenge in non-parametric clustering.

In the sample-based framework adopted in this work, model selection assesses
whether partitions found by an algorithm correspond to meaningful structures of
the underlying distribution, and not just artifacts of the algorithm or sampling
process [29,30]. Practitioners need to evaluate clustering results in order to select
the best parameters for an algorithm (e.g. the number of clusters K) or choose
between different algorithms. Plenty of evaluation methods exist in literature,
but they usually incorporate strong assumptions on the geometry of clusters or
on the underlying distribution.

There is a need for a general, model-agnostic evaluation method. Clustering
stability has emerged as a principle stating that”to be meaningful, a cluster-
ing must be both good and the only good clustering of the data, up to small
perturbations. Such a clustering is called stable. Data that contains a stable
clustering is said to be clusterable” [24]. Hence, a clustering algorithm should
discover stable structures in the data. In statistical learning terms, if data sets
are repeatedly sampled from the same underlying distribution, an algorithm
should find similar partitions. As we do not have access to the data-generating
distribution, perturbed data sets are obtained either by sampling or injecting
noise into the original data. Stability seems to be an elegant principle, but there
are still severe limitations in practice. For instance, stability does not necessar-
ily depend on clustering outcomes but can be solely related to properties of the
data such as symmetries [6]. As outlined in [34], there exist various protocols
to estimate stability. Unfortunately, a thorough study that evaluates them in
practice is lacking.

Contributions. We propose a method for quantitatively and visually assessing
the presence of structure in clustered data. The main contributions of our work
can be stated as follows:

– To our knowledge, this is the first large-scale empirical study on clustering
stability analysis.

– A novel definition of clustering is proposed, based on between-cluster and
within-cluster stability. Based on this definition, we introduce Stadion, the
stability difference criterion, along with an interpretable visualization tool,
called stability paths.

– We show that additive noise perturbation is reliable, and a methodology to
determine the amount of perturbation is proposed.

– We assess the ability of Stadion to select the number of clusters K on a vast
collection of data sets and compare it with state-of-the-art methods.
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2 Related Work

Internal clustering indices measure the quality of a clustering when ground-truth
labels are unavailable. Most criteria rely on a combination of between-cluster and
within-cluster distances. Between-cluster distance measures how distinct clusters
are dissimilar, while within-cluster distance measures how elements belonging to
the same cluster are similar. Unfortunately, this incorporates a prior on the
geometry of clusters [10,11,13,14,27,28,32].

Stability analysis for clustering validation is a long-established technique. It
can be traced back as far as 1973 [31] and from there has drawn increasing
attention [4–6,8,22,34]. Some works concluded that stability is not a well-suited
tool for model selection [29]. In the general case, stability can only detect if
the number of clusters is too large for the K-means algorithm (see Fig. 1). A
partition with too few clusters is indeed stable, except for perfectly symmetric
distributions. More accurately, these works proved that the asymptotic stability
of risk-minimizing clustering algorithms, as sample size grows to infinity, only
depends on whether the objective function has one or several global minima.

Albeit significant theoretical efforts, few empirical studies have been con-
ducted. Each study focuses on specific practical implementations of stability,
but as mentioned in [7,34], a thorough study comparing all protocols in practice
does not exist and a more objective evaluation of these results is warranted.

3 Clustering Stability

A data set X = {x1, . . . ,xN} consists in N independent and identically dis-
tributed (i.i.d.) samples, drawn from a data-generating distribution P on an
underlying space X . Formally, a clustering algorithm A takes as input the data
set X, some parameter K ≥ 1, and outputs a clustering CK = {C1, . . . , CK}
of X into K disjoint sets. Thus, a clustering can be represented by a function
X → {1, . . . , K} assigning a label to every point of the input data set. Some algo-
rithms can be extended to construct a partition of the entire underlying space.
This partition is represented by an extension operator function X → {1, . . . , K}
(e.g. for center-based algorithms, we compute the distance to the nearest center).

Let X and X′ be two data sets drawn from the same distribution and note
CK and C′

K their respective clusterings. Let s be a similarity measure such that
s(CK , C′

K) measures the agreement between the two clusterings. Then, for a given
sample size N , the stability of a clustering algorithm A is defined as the expected
similarity between CK and C′

K on different data sets X and X′, sampled from
the same distribution P,

Stab(A,K) := EX,X′∼PN [s(CK , C′
K)] . (1)

This quantity is unavailable in practice, as we have a finite number of samples,
so it needs to be estimated empirically. Various methods have been devised to
estimate stability using perturbed versions of X.
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Fig. 1. Example data set with three clusters. The labels correspond to the K-means
clustering result for K = 2, 3 and 4. K-means is stable even if K is too small.

The first methods used in literature are based on resampling the original
data set (splitting in half [31], subsampling [8], bootstrapping [15,16], jackknife
[35], etc.). Another method consists in adding random noise either to the data
points [25] or to their pairwise distances [1,33]. For high-dimensional data, alter-
natives are random projections or randomly adding or deleting variables [31].
Once the perturbed data sets are generated, there are several ways to compare
the resulting clusterings. With noise-based methods, it is possible to compare
the clustering of the original data set (reference clustering) with the clusterings
obtained on perturbed data sets, or to compare only clusterings obtained on the
latter. With sampling-based methods, we can compare overlapping subsamples
on data points where both clusterings are defined [15], or compare clusterings
of disjoint subsamples (using for instance an extension operator or a supervised
classifier to transfer labels from one sample to another [22]). Finally, possible
similarity measures include external indices such as the ARI [15,36].

Before discussing in details the mechanisms of stability, we introduce a trivial
example to illustrate its main issue: it cannot detect in general whenever K is
too small. Consider the example presented in Fig. 1 with three clusters. On any
sample from such a distribution, as soon as we have a reasonable amount of data,
K-means with K = 2 always constructs the solution separating the left cluster
from the two right clusters. Consequently, it is stable despite K = 2 being the
wrong number of clusters. This situation was pointed out in [6].

In the case of algorithms that minimize an objective function (e.g. center-
based or spectral), two different sources of instability have been identified [34].
First, jittering is caused by assignment changes at cluster boundaries after per-
turbation. Therefore, strong jitter is produced when a cluster boundary cuts
through high-density regions. Second, jumping refers to the algorithm ending up
in different local minima. The most important cause of jumping is initialization.
Another cause is the presence of several global minima of the objective function.
This happens if there are perfect symmetries in the distribution, which is very
unlikely in real-world data. Examples are provided as supplementary material.

However, practitioners mainly use algorithms with consistent initialization
strategies. For instance with K-means, we keep the best trial over a large num-
ber of runs and use the K-means++ heuristic. This initialization tends to make
K-means deterministic, differently from the random initialization proposed in
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Fig. 2. Diagram explaining sources of instability in different settings, based on theo-
retical results for K-means, with large sample size, assuming K � N and the under-
lying distribution has K� well-separated clusters that can be represented by K-means.
We consider no symmetries, effective initialization and noise-based perturbation, thus
instability (due to jittering) arises when K is too large, and when K is too small
whenever cluster boundaries are in high-density regions.

[9,34], which allows jumping to occur whenever K > K�, where K� is the
true number of clusters. Throughout this work, we consider a setting with large
enough sample size, without perfect symmetries and with consistent initializa-
tion, that we deem to be realistic. Thus, we do not rely on jumping as the main
source of instability even when K > K�, and rather rely on jittering. As a
consequence, we need a perturbation process that produces jittering. We settle
for noise-based perturbation, because as soon as N is reasonably large, resam-
pling methods become trivially stable whenever there is a single global minimum
[6,34]. We summarize important results in the diagram Fig. 2 and provide a sim-
ple example where sampling methods such as [8,22] fail in the supplementary
material. To conclude, in our setting, a noise-based perturbation process causes
jittering, enabling stability to indicate whenever K is too large. On the other
hand, stability cannot in general detect when K is too small. In order to over-
come this limitation, we introduce the concept of within-cluster stability.

4 Between-cluster and Within-Cluster Stability

A clustering algorithm applied with the same parameters to perturbed versions of
a data set should find the same structure and obtain similar results. The stability
principle described by (1) relies on between-cluster boundaries and we thus call
it between-cluster stability. Therefore, it cannot detect structure within clusters.
In Fig. 1, K = 2 is stable, whereas one cluster contains two sub-clusters. This



Selecting the Number of Clusters K with a Stability Trade-off 215

sub-structure cannot be detected by between-cluster stability alone. Obviously,
this implies that stability is unable to decide whether a data set is clusterable
or not (i.e. when K� = 1), which is a severe limitation. For this very reason,
we introduce a second principle of within-cluster stability : clusters should not be
composed of several sub-clusters. This implies the absence of stable structures
inside any cluster. In other words, any partition of a cluster should be unstable.
The combination of these two principles leads to a new definition of a clustering:

Definition 1. A clustering is a partitioning of data into groups so that the
partition is stable, and within each cluster, there exists no stable partition.

A clustering should have a high between-cluster stability and a low within-cluster
stability. Despite its apparent simplicity, implementing this principle is a difficult
task. As seen in the last section, between-cluster stability can be estimated in
many ways. On the other hand, within-cluster stability is a challenging quantity
to define and estimate. We propose a method to estimate both quantities, and
then we detail and discuss our choices.

4.1 Stadion: A Novel Stability-Based Validity Index

Let {X1, . . . ,XD} be D perturbed versions of the data set obtained by adding
random noise to the original data set X. Between-cluster stability of algorithm
A with parameter K estimates the expectation (1) by the empirical mean of the
similarities s between the reference clustering CK = A(X,K) and the clusterings
of the perturbed data sets,

StabB(A,X,K) :=
1
D

D∑

d=1

s (A(X,K),A(Xd,K)) . (2)

Since s is a similarity measure, this quantity needs to be maximized. In order to
define within-cluster stability, we need to assess the presence of stable structures
inside each cluster. To this aim, we propose to cluster again the data within
each cluster of CK . Formally, let Ω ⊂ N

∗ be a set of numbers of clusters. The
k-th cluster in the reference clustering is noted Ck, its number of elements Nk.
Within-cluster stability of algorithm A is defined as

StabW(A,X,K,Ω) :=
K∑

k=1

(
1

|Ω|
∑

K′∈Ω

StabB(A, Ck,K ′)
)

× Nk

N
. (3)

As a good clustering is unstable within each cluster, this quantity needs to be
minimized. Hence, we propose to build a new validity index combining between-
cluster and within-cluster stability. A natural choice is to maximize the difference
between both quantities. We call this index Stadion, standing for stability dif-
ference criterion:

Stadion(A,X,K,Ω) := StabB(A,X,K) − StabW(A,X,K,Ω). (4)

The same partition CK = A(X,K) is used in both terms of (4). Thus, Stadion
evaluates the stability of an algorithm w.r.t. a reference partition.
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How to perturb data? We consider the setting in Fig. 2 that is deemed to be real-
istic. Neither jumping nor jittering will occur if data are perturbed by sampling
processes, as soon as there is enough data. Therefore, only noise-based pertur-
bation is considered here. Among them, we adopt the ε-Additive Perturbation
(ε-AP) with Gaussian or uniform noise, assuming variables are scaled to zero
mean and unit variance. The number of perturbations D can be kept very low
and still gives reliable estimates (an analysis on the influence of D is conducted
in the supplementary material.
How to choose ε? A central trade-off has to be taken into account when per-
turbing the data set. If the noise level ε is too strong, we might alter the very
structure of the data. We propose to circumvent this issue by not choosing a
single value for ε, but a grid of values. By gradually increasing ε from 0 to a
value εmax, we obtain what we call a stability path, i.e. the evolution of stability
as a function of ε. This method has one crucial advantage: it allows to compare
partitions for different values of ε without the necessity of choosing one. How-
ever, it comes with two drawbacks: setting both the fineness and the maximum
value of the grid. In our experiments, the fineness does not play a major role
in the results. A straightforward method to fix a maximum value εmax beyond
which comparisons are not meaningful anymore is as follows. The perturbation
corresponding to εmax is meant to destroy the cluster structure of the original
data. This corresponds to the value where the data are no longer clusterable,
i.e. K = 1 becomes the solution with the best Stadion value. A first guess at
εmax =

√
p (where p is the data dimension) works well in practice. We found

that visualizing the stability paths (see Fig. 3) greatly helps interpreting the
structures found by an algorithm, hence improving the usefulness of results.

How to compare partitions? The similarity measure s chosen to compare two
partitions is the ARI. Note that it is used to compare cluster assignments and
not the ground-truth labels. Its value is in [0, 1], thus Stadion has a value in
[−1, 1], with 1 corresponding to the best clustering and −1 to the worst. A total
of 16 different similarity measures (such as the NMI) were compared (results of
this study are in supplementary material).

How to aggregate the Stadion path? To compute a scalar validity index for model
selection, the Stadion path must be aggregated on the noise strength ε from 0
to εmax. Two aggregation strategies, the maximum (Stadion-max) and the mean
(Stadion-mean), are evaluated in our experiments.

The within-cluster stability is governed by the parameter Ω, which detects
stable structures inside clusters of CK . As these are unknown, averaging several
different values in Ω gives a better estimate. In absence of sub-clusters, all par-
titions will be unstable because cluster boundaries will be placed in high-density
regions. For the opposite reason, in presence of sub-clusters, at least some par-
titions will result in higher stability, thus increasing the within-cluster stability.
The analysis of influence conducted in supplementary material shows that Ω has
low impact on Stadion results and can be set easily.
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An important assumption behind our implementation of within-cluster stabil-
ity is that for non-clusterable structures (e.g. uniform noise), the algorithm will
place cluster boundaries in high-density regions to produce instability through
jittering. This encompasses a wide range of algorithms such as center-based,
spectral or Ward linkage clustering which, for the sake of saving cost, would cut
through dense clouds of points. If this requirement is not fulfilled, further studies
are needed to determine whether this method will work.

5 Experiments

5.1 A Simple Example with Stability Paths

We begin by illustrating our method with K-means and uniform ε-AP on the
example discussed previously (see Fig. 1). Figure 3 displays between-cluster sta-
bility, within-cluster stability and Stadion as a function of the noise strength ε.
For reasonable amounts of noise, the solutions K = 1, K = 2 and K = 3 are
all perfectly stable, showing the insufficiency of between-cluster stability alone
to indicate whenever K is too small. The solutions for K ≥ 4 cut through the
clusters and are thus unstable due to jittering. However, the solutions for K = 1
and K = 2 both have high within-cluster stability, caused by the presence of
sub-clusters, which is not the case for K ≥ 3. By computing a difference, our
criterion Stadion combines this information and is able to indicate the correct
number of clusters (K = 3) by selecting the Stadion path with the highest max-
imum or mean value. Through its formulation, Stadion is acting as a stability
trade-off. The stability paths also give additional insights about the data struc-
ture. For example, we can read from the between-cluster stability path how the
clusters successively merge together as ε increases. Finally, the last graph (called
stability trade-off plot) represents Stadion-mean for different values of K.

5.2 Benchmark of Clustering Validation Methods

Methodology. Importantly, we aim at evaluating clustering validation methods
and not the clustering algorithms themselves. Thus, we evaluate methods on a
large collection of 73 artificial benchmark data sets, most of them extensively
used in literature, with a guaranteed known ground-truth cluster structure. Most
data sets are available in [2,17] and all data will be shared after publication. It
was ensured that the evaluated algorithms are able to obtain good solutions (i.e.,
reasonably close to the ground-truth clustering), for some optimal parameter K.
The data sets also provide various difficulty levels by varying the numbers, sizes,
variances, shapes of clusters and noisy, close-by or overlapping clusters.

To compare the different validation methods, we first report the number of
data sets where each method found K�, which we refer to as the number of
wins. However, only checking whether K� is selected is not always related to
the goodness of the partition w.r.t. ground-truth, as the algorithm does not
necessarily succeed in finding a good partition into K� clusters.
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Fig. 3. Between-cluster stability paths (top left), within-cluster stability paths (top
right), Stadion paths (bottom left) and stability trade-off curve (bottom right) for K-
means on the data set shown in Fig. 1, for K ∈ {1 . . . 6}. ε is the amplitude of the
uniform noise perturbation. The best solution K = 3 is selected either by taking the
maximum or by averaging Stadion over ε until εmax. The trade-off plot represents the
averaged Stadion, between- and within-cluster stability as a function of K.

Thus, we also compute the ARI between the selected partition and the
ground-truth. Let us note YK� = {Y1, . . . , YK�} the ground-truth partition. The
performance of each method is assessed by computing ARI(YK� , CK̂), where K̂
is the estimated number of clusters. In order to compare methods over multiple
data sets, we compute the average ranks, denoted RARI. Since data sets have
different difficulties, their results are not comparable and simply reporting an
average would be meaningless [12]. Thus, comparing their ranks is a more sound
and fair solution.

In this benchmark, three algorithms are considered: K-means, Gaussian Mix-
ture Models (GMM) and Ward hierarchical clustering. For K-means, two ver-
sions of Stadion are evaluated: the first one using the stability computation
described in Sect. 4.1 (referred to as the standard version), and the second one
with an approximation using the extension operator (referred to as the extended
version). As seen in Sect. 3, an extension operator extends a clustering to new
data points. K-means extends naturally by computing the Euclidean distance to
centers. Hence, instead of re-running K-means for each perturbation, we directly
predict the cluster assignments of perturbed data points. GMM allows a similar
extension, by assigning points to the cluster with the highest posterior probabil-
ity. It is the only version considered due to GMM’s computational cost.
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Table 1. Benchmark results on 73 data sets for K-means, Ward and GMM. Average
rank of the ARI between the selected clustering and ground-truth clustering (RARI)
and number of times the ground-truth K� was selected (wins).

K-means Ward GMM

Method RARI wins RARI wins RARI wins

K� (Oracle) 8.11 73 4.77 73 5.05 73

Stadion-max 7.46 50 5.25 54 – –

Stadion-mean 7.70 51 5.80 49 – –

Stadion-max (extended) 7.58 56 – – 5.59 56

Stadion-mean (extended) 8.09 48 – – 6.79 43

BIC – – – – 6.45 48

Wemmert-Gancarski [13] 8.33 53 5.40 54 5.77 52

Silhouette [28] 9.55 46 6.47 45 7.01 45

Lange [22] 10.18 45 6.53 51 6.99 48

Davies-Bouldin [11] 10.21 40 6.45 41 7.29 34

Ray-Turi [27] 10.28 37 6.97 40 7.68 33

Hennig [19] 10.72 37 – – – –

Calinski-Harabasz [10] 11.44 41 7.14 39 7.43 37

Gap statistic (B) [32] 11.49 29 – – – –

X-means [26] 11.56 28 – – – –

Dunn [14] 13.09 26 7.77 33 7.92 34

Hofmeyr [21] 13.20 30 – – – –

Xie-Beni 13.30 22 7.61 34 8.19 28

Gap statistic (A) [32] 13.57 26 – – – –

G-means [18] 13.74 24 – – – –

Ben-Hur [8] 14.34 20 7.86 31 8.85 28

SpecialK [20] 17.07 19 – – – –

Table 1 summarizes results for each algorithm and validation method. We
evaluated K ∈ {1, . . . , 60}. For Stadion, we used uniform noise, D = 10, Ω =
{2, . . . , 10} and s = ARI. We also evaluate the partitions obtained with the
ground-truth K� and a selection of widely used clustering validation indices
(when applicable) [13], the Gap statistic [32] (with alternative versions A and B
implemented in [23]), BIC, X-means [26], G-means [18], the Hennig procedure
[19], stability methods [8,22], and the recent SpecialK [20]. For SpecialK, we used
the default parameters indicated by the authors, but the assumptions made by
the method failed on 11 data sets, explaining the poor results. Unfortunately,
other methods like dip-means or skinny-dip did not have easy-to-use available
implementations and were not included in this study.
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Stadion-max achieves the best results overall. On K-means, it is even ranked
higher than the Oracle in terms of ARI. The second-best performing index is
Wemmert-Gancarski (WG). It was shown in [1] that agglomerative clustering is
not robust to noise, which explains inferior Stadion results with Ward. Moreover,
results are slightly biased in favor of the indices that are only valid for K ≥ 2,
unlike Stadion that will select K = 1 on non-clusterable distributions.

6 Conclusion

In this paper, we tackled some of limitations of cluster stability for model selec-
tion. Our contribution is twofold. First, stability can be well estimated through
additive noise perturbation, solving the limitations of sampling-based stabil-
ity methods. Second, we introduce the Stadion (stability difference criterion),
a novel criterion acting as a trade-off between traditional stability and within-
cluster stability. Furthermore, our method to control the amount of perturbation
provides an interpretable visualization called stability paths.

We evaluated Stadion and methods of the literature on 73 clustering bench-
mark data sets. Performance is superior or on par with internal clustering indices
that were designed with specific cluster geometries in mind, while relying on
more general assumptions. This comes at a computational cost, requiring to
run the algorithm many times. Nevertheless, studies have shown that it can be
drastically reduced by down-sizing the hyperparameters with negligible impact
on performance. Moreover, most theoretical results used here were derived for
K-means, and more work is needed to extend these concepts to other algorithms.

Altogether, model selection remains a challenge and there is yet no theory
nor a methodology that can fulfill this task perfectly. We proposed an empirical
method showing interesting results along with hints to a theoretical background
that could be established in future work. We hope that it will spark much-needed
interest in the research community to further advance this field.
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Abstract. As an important task in multi-view clustering, partially
view-aligned clustering has attracted increasing attention in recent years.
However, previous algorithms have two limitations: (1) they manually
calculate the fixed alignment matrix based on Euclidean distance and
use the fixed matrix for common feature expression. The manual fixed
alignment matrix fails to adequately reflect the similarity of the training
data; (2) the process of learning features is isolated from the downstream
clustering task, thus learned features are unsuitable for the clustering
scenario. In this paper, we propose an adaptive view-aligned and feature
augmentation network (AFAN) to tackle these two issues. First, we pro-
pose an adaptive view-aligned module to calculate the alignment matrix
with the self-attention mechanism. The calculated alignment matrix can
capture data similarity by jointly learning data features and view align-
ment. Second, we introduce a self-augmentation strategy to encourage
the learned features of the same cluster to be crowded together. Exten-
sive experimental results show that AFAN outperforms state-of-the-art
approaches on four benchmark datasets.

Keywords: Partially View-aligned · Clustering · Deep Learning
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Partially view-aligned clustering aims to solve the data inconsistency problem
caused by a portion of data misalignment among views. The problem is called
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Fig. 1. Partially view-aligned problem (PVP) and the solution of PVP.

partially view-aligned problem (PVP) [4]. Figure 1(a) depicts the PVP, where dif-
ferent shapes indicate different categories, different colors indicate different sam-
ples and the solid black line indicates the prior alignment relationships between
the samples. For two views data, only part of the data is aligned, and the corre-
spondence of the other data is unaligned. For example, the samples represented
by blue and orange are aligned and they are connected across views with the
solid black line. The samples represented by yellow and green are unaligned. For
the PVP, we could conduct multi-view clustering on the partial data directly,
but the interaction of unaligned multi-view data is limited, which will decrease
the performance of partially view-aligned clustering. A better strategy is to align
all the data before clustering. Since the goal of the clustering task is to classify
the data into the correct category, the solution of PVP only needs to align one
sample in one view with samples from the same category in other views. As
shown in Fig. 1(b), taking the yellow rectangle in view 1 as an example, the
solution of PVP designs the alignment strategy to establish the yellow rectangle
alignment relationships with the blue and yellow rectangles in view 2.

A few traditional methods have been proposed to alleviate the negative effects
caused by PVP [6,23]. For example, Lampert et al. [6] proposed a weakly-paired
maximum covariance analysis (WMCA) to handle weakly paired data. These
methods have achieved promising results, but they are shallow models that can-
not handle high-dimensional and complex data.

Deep view-aligned strategies use deep neural networks to capture the feature
of high-dimensional and complex data. They are based on Euclidean distance to
manually compute the alignment matrix, which is separated from the network
training. Specifically, PVC [4] calculates the fixed alignment matrix based on
Euclidean distance and then applies the fixed alignment matrix in the training
phase. However, these methods still face two issues: (1) they manually compute
the fixed alignment matrix based on Euclidean distance and use the fixed matrix
for common feature expression. The manual fixed alignment matrix is separated
from the training process and may not be the optimal alignment matrix for align-
ing the data; (2) the process of learning features is isolated from the downstream
clustering task, thus learned features are unsuitable for the clustering scenario.

In this paper, we propose an adaptive view-aligned and feature augmentation
network (AFAN) to tackle these two issues. The AFAN framework is shown
in Fig. 2. First, AFAN employs an adaptive view-aligned module (AVAM) to
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adaptively calculate the alignment matrix with the self-attention mechanism.
Compared with manual calculation, the alignment matrix obtained from AVAM
can capture data similarity by jointly learning data features and view alignment.
Second, AFAN exploits a self-augmentation strategy to encourage the learned
features belonging to the same cluster to be crowded together. Such crowded
features are clustering-friendly [22]. Specifically, we perform feature augmenta-
tion on the constructed nearest neighbor graph, thus encouraging the obtained
sample features to be suitable for the clustering scenario. The main contributions
of this work are summarized as follows:

– We propose a new partially view-aligned clustering method that uses an
adaptive view-aligned module to adaptively calculate the alignment matrix
with the self-attention mechanism. Our method solves the limitation that
Euclidean distance-based alignment matrix fails to adequately reflect the sim-
ilarity of the training data.

– We introduce a self-augmentation strategy to encourage the learned features
belonging to the same class to be crowded together. Such crowded features are
clustering-friendly and are more likely to be assigned to the correct clusters.

– Extensive experiment results on four benchmark datasets have demonstrated
that our method is effective and consistently outperforms state-of-the-art
approaches.

2 Related Work

Multi-view Clustering. With the increase of information collection methods,
data can be collected from different sources, which is called multi-view data.
Multi-view clustering (MVC) can handle multi-view data and make full use of
the consistency and complementary information between different views. Exist-
ing multi-view clustering methods [12,13,19,21] are based on two ideal assump-
tions: completeness of data and correspondence of views. However, in the real
world, it is quite difficult for multi-view data to satisfy the above assumptions
simultaneously, which leads to partial multi-view clustering problems.

Partial Multi-view Clustering. Partial multi-view clustering is divided into
two categories, one solves the partially data-missing problem (PDP) [4] and the
other solves the partially view-aligned problem (PVP).

PDP occurs when some data is missing in some views of multi-view data. In
recent years, many deep methods have been proposed to solve PDP [14,15,17].
These approaches utilize the remaining information in the views and eliminate
the negative effects of missing views.

Unlike PDP, PVP means that only a portion of the data is aligned across
views and the alignment relationships of the other data is unknown. Some tra-
ditional methods have been proposed to solve PVP. Lampert et al. [6] proposed
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Fig. 2. Framework of the proposed adaptive view-aligned and feature augmentation
network(AFAN). AFAN consists of three components: multi-view autoencoder, adap-
tive view-aligned module(AVAM) and self-augmentation strategy. We input the aligned
data Xvi and shuffled data Xvj into the specific autoencoders to obtain the potential
representations Hvi and Hvj . Then, AVAM computes the alignment matrix adaptively
using ˜Hvi and ˜Hvj obtained by transforming Hvi and Hvj . We align and concatenate
Hvi and Hvj to obtain the sample common representation H according to the align-
ment matrix. The self-augmentation strategy uses Hvi and (Hvi)T to construct the

nearest neighbor graph to enhance H. ̂Xvi and ̂Xvj are reconstructed data.

weakly-paired maximum covariance analysis (WMCA) to overcome the limi-
tation of weakly paired data. Zhang et al. [23] proposed a small number of
inter-view constraints instead of mapping to obtain mutual information between
views. Deep partially view-aligned methods that capture high-dimensional fea-
tures of the data are in their infancy. PVC [4] implements the differentiable agent
of the Hungarian algorithm to establish the alignment relationships of unaligned
data. MvCLN [18] proposed a noise-robust contrastive loss. After the MvCLN
is trained, the Euclidean distance matrix is calculated as the alignment matrix.

Compared to existing deep methods, our approach adaptively learns the
alignment matrix throughout the whole network training process and generates
cluster-oriented features for downstream clustering tasks.

3 Proposed Method

In this section, we describe our proposed adaptive view-aligned and feature aug-
mentation network(AFAN). As shown in Fig. 2, AFAN consists of three com-
ponents, i.e., multi-view autoencoder, adaptive view-aligned module (AVAM),
and self-augmentation strategy. In the following sections, we first introduce the
formulation definition of PVP in Sect. 3.1 and then elaborate on the design of
the three parts in Sect. 3.2, Sect. 3.3 and Sect. 3.4.

3.1 Problem Formulation

Given a multi-view dataset with V views and n samples
{
X(v)

}V

v=1
, where

X(v) = {x
(v)
1 , x

(v)
2 , . . . , x

(v)
n }T . The multi-view data X(v) with PVP is divided
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into two parts: aligned data A(v) and unaligned data U (v). Specifically, X(v) ={
A(v), U (v)

}
. We train the network using the aligned data A(v). For any two

views vi and vj , A(vi) keeps the original arrangement, A(vj) is randomly shuffled
to simulate the unaligned data, and the alignment relationships between A(vi)

and A(vj) is known. Our AFAN learns from the aligned data A(v) and then out-
puts the alignment matrix of all data X(v) to establish the cross-view alignment
relationships. Our goal can be expressed by the following formula:

E(vi)
(

X(vi)
)

= W (vi,vj) ∗ E(vj)
(

X(vj)
)

, (1)

where E(·) is the mapping of the encoder, ∗ represents matmul product. = is an
operator, which denotes that the sample features in views vi and vj are aligned
with correct correspondence via W (vi,vj). W (vi,vj) ∈ Rn×n is the alignment
matrix, which reveals the data correspondence between views vi and vj .

3.2 Multi-view Autoencoder

To extract view-specific features, we employ view-specific encoders and decoders.
Inspired by under-complete autoencoder [16], we design the view-specific encoder
E(v) with fully connected layers and the corresponding decoder D(v) for each
view. This approach not only preserves the unique information of each view but
also solves the problem of inconsistent view dimensions.

3.3 Adaptive View-Aligned Module

To automatically learn the alignment relationships among views, we design the
adaptive view-aligned module (AVAM). AVAM uses self-attention to adaptively
compute the alignment matrix. The alignment matrix can capture data similarity
by jointly learning data features and view alignment.

To take advantage of the prior knowledge of the aligned data A(v), we
train the network with the aligned data A(v). Taking two views vi and vj as
an example, we pass unchanged data A(vi) and shuffled data A(vj) through
the view-specific encoders described above to obtain latent representations
H

(vi)
a = E(vi)

(
A(vi)

)
and H

(vj)
a = E(vj)

(
A(vj)

)
, where H

(vi)
a and H

(vj)
a ∈ Rna×d,

na is the number of samples in A(v), d is the feature dimension. Then, we trans-
form H

(vi)
a and H

(vj)
a to obtain H̃

(vi)
a = H

(vi)
a ∗ wQ and H̃

(vj)
a = H

(vj)
a ∗ wK

respectively, where wQ ∈ Rd×dk and wK ∈ Rd×dk are learnable parameters. The
adaptive alignment matrix W

(vi,vj)
a between views vi and vj is defined as follows:

W
(vi,vj)
a = attention(vi, vj) = softmax

⎛

⎜

⎝

˜H
(vi)
a

(

˜H
(vj)
a

)T

√
dk

⎞

⎟

⎠
, (2)
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where W
(vi,vj)
a ∈ Rna×na denotes the alignment relationships between views vi

and vj . W
(vi,vj)
a is a score matrix, whose (i, j)-th entry measures the alignment

ratio given by the i-th instance representation in view vi to the j-th instance
representation in view vj .

Hence, to jointly learn the sample features and view alignment of V views,
we propose the following loss function L1:

L1 =
V

∑

vi=1

∥

∥

∥A(vi) − D(vi)
(

E(vi)
(

A(vi)
))∥

∥

∥

2

2

+
∑

vi �=vj

∥

∥

∥E(vi)
(

A(vi)
)

− W
(vi,vj)
a ∗ E(vj)

(

A(vj)
)∥

∥

∥

2

2
,

(3)

where the former reconstruction loss preserves the local structure and prevents
distortion of the embedding space. The latter loss minimizes the difference
between view vi and the linearly varying view vj to make the representations of
the same data in different views as similar as possible.

To further learn the prior alignment relations of aligned data A(v), we design
the loss function L2 to measures the difference between the learned alignment
matrix W

(vi,vj)
a and the ground-truth alignment matrix W

(vi,vj)
gt ∈ {0, 1}:

L
(vi,vj)

2 = ‖W
(vi,vj)
a − W

(vi,vj)
gt ‖2

2, (4)

By synthesizing the above objectives L1 and L2, our AFAN is designed to min-
imize the following objective function:

L = L1 + μ
∑

vi �=vj

L
(vi,vj)

2 , (5)

where μ>0 is a trade-off hyper-parameter.
For multiple views, we need to select one view as the anchor and compute the

alignment matrix W between other shuffled views and the anchor view respec-
tively. e.g., we take view vi as the anchor and compute the alignment matrix of
view vi and shuffled view vj , vj ∈ {1, 2, . . . , V }, vj �= vi to make view vj align to
view vi.

3.4 Self-augmentation Strategy

To learn cluster-oriented sample features, we introduce a self-augmentation strat-
egy. The self-augmentation strategy maps samples to a feature space where sam-
ple features belonging to the same cluster crowd together.

We apply the self-augmentation strategy to all data X(v) to enhance all
sample representations. Similarly, taking views vi and vj as an example, we take
the unchanged data X(vi) and the shuffled data X(vj) through the multi-view
encoders to obtain the latent representations H(vi) and H(vj), and then compute
the all data alignment matrix W (vi,vj). After that, we use the alignment matrix
W (vi,vj) to concatenate H(vi) and H(vj) as the common representation:

H = H(vi)‖W (vi,vj)H(vj), (6)
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where H is the common representation of the multi-view data X(v), ‖ denotes
concatenate operation.

Note that in this concatenate method, view vi acts as an anchor, and then
view vj is aligned to it through linear changes. So we use H(vi) to build the
k-nearest neighbor graph, where vertex refers to sample features. Specifically,
calculate the cosine similarity between two samples and construct the graph S:

Si,j =

⎧

⎨

⎩

(H(vi))
i,:(H(vi))

T

j,:
∥
∥
∥(H(vi))

i,:

∥
∥
∥
2

∥
∥
∥(H(vi))

j,:

∥
∥
∥
2

, i �= j

0, i = j

, (7)

where
(
H(vi)

)
i,:

and
(
H(vi)

)
j,:

denote the i-th and j-th row of H(vi), Si,j repre-
sents feature similarity between the i-th and j-th samples, ‖ · ‖2 is l2-norm.

Then, we leave the largest k values for each row and column in S and apply
normalization on it to get the adjacency matrix E = D− 1

2 SD− 1
2 .D is the degree

diagonal matrix and Dii =
∑

j Si,j . After that, we use E as the Laplacian matrix
in GCN [7] to propagate feature information. The i-th row sample common
representation in H is updated as follows:

H∗
i,: =

n
∑

j=1

(αI + E)τ
i,jHj,:, (8)

where H∗ is the updated common representation. I is the identity matrix, α and
τ are hyper-parameters. α controls the balance of neighbors’ representations and
the self-ones. τ decides the number of times for feature propagation.

Next, use k-means to cluster H∗ to get the final clustering results. The train-
ing process of our AFAN is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Settings

Datasets. We experiment on four multi-view datasets. Caltech101-20 [8,12]
contains 2386 images from 20 classes. We use HOG and GIST features as two
views. Scene-15 [3] consists of 15 categories and 4485 images. We use two fea-
tures, i.e. PHOG and GIST features. LUse-211 consists of 2100 samples from
21 different categories. We choose CENTRIST and GIST features for our experi-
ments. Leaves [10] contains the binary images of 1584 leaf samples of 99 classes.
We choose Shape and Margin features for experiments.

For the above four multi-view datasets, we randomly divide them into two
parts

{
A(v), U (v)

}V

v=1
with the equal size, where A(v) retains alignment relation-

ships across views to represent aligned data, and U (v) are randomly shuffled to
simulate unaligned data.

1 http://weegee.vision.ucmerced.edu/datasets/landuse.html.

http://weegee.vision.ucmerced.edu/datasets/landuse.html
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Algorithm 1: Training process of AFAN

Input: Dataset
{

X(v)
}V

v=1
=

{

A(v), U (v)
}V

v=1
; Batch size m; Hyper-parameters

μ, k, α and τ .
Output: Clustering results label.

1: Initialization: Pre-train the multi-view encoders and decoders with aligned
data A(v) by Eq. (3).

2: while not converged do
3: Choose a batch of data from unchanged data A(vi) and shuffled data A(vj).
4: Calculate loss L by Eq. (5) and the alignment matrix of this batch

by Eq. (2).
5: Update network parameters via back-propagation.
6: end while
7: Feed all multi-view data X(v) into trained AFAN and obtain data feature

H(v).
8: Calculate all data alignment matrix W by Eq. (2) and calculate common

representation H by Eq. (6).
9: Update feature H to get H∗ by Eq. (8).

10: Obtain clustering results label by perform k-means on H∗.

Compared Methods. We compare AFAN with the following baselines: (1)
Multi-view clustering methods: CCA [2], DCCA [1], DCCAE [17], LMSC [20],
MVC-DMF [24], SwMC [11], AE2-Nets [21]. (2) Partially view-aligned clustering
methods: PVC [4] and MvCLN [18].

In the comparison process, only PVC, MvCLN and our AFAN can solve
PVP, so we use the same two comparison schemes as PVC: (1) for multi-view
clustering methods that cannot handle partially view-aligned data, we first use
PCA to map the original data to the latent space, then apply the Hungarian
algorithm in the latent space to align the unaligned data, and finally execute
these multi-view clustering methods on the aligned data. For PVC, MvCLN and
our AFAN, we perform directly on partially view-aligned data. (2) we directly
execute these multi-view methods that cannot handle partially view-aligned data
on fully-aligned data.

We adopt widely used accuracy (ACC), normalized mutual information
(NMI), and F-measure(F-mea) to measure the performance of all methods.

Settings. For all baselines, we fine-tune them according to the parameter ranges
and experimental details described in the original paper until the performance
is optimal and stable. For our proposed AFAN, we use the Adam optimizer [5]
with the learning rate of 10−3 with weight decay 10−5. The batch size is fixed to
128. For four datasets, we experimentally set the best pre-train epoch from {500,
1000, 1500, 2000} and seek μ in the range {0.001, 0.01, 0.1, 1, 10, 100 1000}. The
encoder dimensions are set to D-1024-1024-20 for Caltech101-20, LUse-21, and
Leaves, and D-2048-1024-128 for Scene-15, where D is the dimension of input
data. We set the decoder with a symmetrical structure and adopt ReLU as the
activation function.
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Table 1. Clustering performance of ACC(%), NMI(%) and F-mea(%), and the best
results are in bold.

Aligned Method Caltech101-20 Scene-15 LUse-21 Leaves

ACC NMI F-mea ACC NMI F-mea ACC NMI F-mea ACC NMI F-mea

Fully CCA 39.52 57.53 33.90 34.38 37.37 29.07 21.43 29.27 15.31 26.54 76.20 18.39

DCCA 41.95 60.72 35.89 35.88 39.90 30.08 30.95 45.93 27.83 32.10 83.22 24.99

DCCAE 44.17 60.83 42.11 36.68 40.56 30.11 27.62 44.21 19.58 27.78 80.96 21.07

LMSC 31.56 32.17 22.18 33.60 32.98 31.09 32.67 36.99 22.50 49.56 72.12 35.55

MVC-DMF 59.72 62.76 38.16 29.70 29.72 26.45 25.19 32.57 15.00 39.67 68.08 26.29

SwMC 52.68 56.87 34.96 27.47 35.71 24.55 14.24 16.92 10.37 67.17 82.68 33.62

AE2 30.09 32.31 19.11 36.16 39.98 34.14 13.46 10.56 10.51 41.90 73.18 41.30

Partially CCA 42.20 60.84 36.15 32.46 35.81 26.00 11.90 25.36 8.23 24.07 76.71 18.88

DCCA 23.60 30.64 21.44 33.24 34.27 28.94 32.86 47.28 28.66 26.54 76.03 22.65

DCCAE 31.68 38.61 26.22 30.28 33.31 27.11 22.38 37.77 18.26 29.63 79.20 25.55

LMSC 26.03 35.65 20.27 22.16 16.46 20.00 18.57 16.40 10.15 32.89 60.50 19.56

MVC-DMF 19.74 21.58 17.43 21.54 19.31 19.78 10.31 4.80 5.82 11.52 42.24 1.49

SwMC 38.94 30.14 21.09 18.73 21.30 15.85 11.52 10.12 9.17 20.01 31.43 2.43

AE2 29.97 47.64 26.16 29.52 28.43 26.45 12.68 9.95 10.56 28.18 60.51 23.16

Partially PVC 48.07 65.39 55.03 37.32 39.33 33.05 30.52 52.50 25.09 47.66 70.86 47.12

MvCLN 44.92 55.61 32.07 37.00 39.40 34.76 28.00 32.66 26.41 38.35 71.44 37.30

AFAN(ours) 51.38 69.19 58.47 38.93 40.15 38.11 36.00 58.92 30.26 57.77 84.11 54.19

4.2 Experimental Results and Analysis

The clustering results are listed in Table 1. Partially represents the compari-
son scheme (1): the multi-view clustering methods are performed on the dataset
preprocessed by the Hungarian algorithm, and the partially view-aligned cluster-
ing methods are performed on the partially view-aligned data. Fully represents
the comparison scheme (2): the multi-view clustering methods are directly per-
formed on the fully view-aligned data. Note that the Caltech101-20 and Scene-15
datasets are the same as PVC, we directly use the experimental results in PVC
on these two datasets.

We observe that: (1) in the first comparison scheme, our AFAN significantly
outperforms other baselines in all four datasets. Particularly, our AFAN outper-
forms the best baseline by 3.31%, 3.8%, 3.44% (Caltech101-20), 1.61%, 0.75%,
3.35% (Scene-15), 5.48%, 6.42%, 3.85% (LUse-21), and 10.11%, 12.67%, 7.07%
(Leaves) on the ACC, NMI and F-mea metrics. This verifies that our AFAN can
perform effective alignment and clustering. There are two reasons. On the one
hand, compared with the method based on Euclidean distance to calculate the
alignment matrix, AFAN can capture the data similarity in the training pro-
cess to adaptively calculate the alignment matrix. On the other hand, the data
features learned by AFAN through the self-augmentation strategy are suitable
for clustering scenarios. (2) in the second comparison scheme, our method still
achieves competitive results even though the input data for the baselines are
fully view-aligned data, while ours is partially view-aligned data.
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Table 2. Ablation studies on Scene-15. “�” (yes) or “×” (no) mean that we use or do
not use the self-augmentation strategy.

Self-augmentation ACC(%) NMI(%) F-mea(%)

× 37.77 39.67 36.93

� 38.9 40.15 38.11

4.3 Ablation Studies

In this section, we conduct ablation studies to validate the effectiveness of our
self-augmentation strategy on the Scene-15 dataset.

We first compare the results of our proposed AFAN with and without the self-
augmentation strategy on ACC, NMI and F-mea. As shown in Table 2, The self-
augmentation strategy improves the clustering performance to a certain extent,
which indicates that it is crucial and beneficial for our proposed AFAN.

Then, we employ the t-SNE [9] technique to visualize the sample embeddings
obtained by our AFAN with and without the self-augmentation strategy. As
shown in Fig. 3, (a) is the visualization result without the self-augmentation
strategy, and (b) is the visualization result with the self-augmentation strategy.
The sample embeddings from the same cluster in (a) are scattered, while they
are compact in (b). We can see that the self-augmentation strategy maps the
data into a clustering-friendly space where distance-based clustering algorithms
(e.g., k-means) are able to classify the data more easily.

Fig. 3. Visualization results of sam-
ple embeddings obtained by our
AFAN with and without the self-
augmentation strategy with t-SNE on
Scene-15 dataset.

Fig. 4. Clustering F-measure(%) of
PVC, MvCLN and AFAN on LUse-21
dataset with varying alignment ratio.
(MvCLN does not work with alignment
ratio = 1.0).

Fig. 5. Clustering performance of AFAN for different u, k, α and τ on Caltech101-20
dataset.
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4.4 Parameter Analysis

The Balance Hyper-parameter μ. As can be seen in Eq. (5), AFAN intro-
duces a hyper-parameter μ. We set μ to vary in the range {0.001, 0.01, 0.1, 1,
10, 100, 1000}. Figure 5(a) shows that AFAN obtains stable clustering results in
the range of μ from 0.001 to 0.1. Finally, we select μ = 0.1 in this range.

The Hyper-parameters k , α and τ of the Self-augmentation Strategy.
To investigate the influence of k in the k-nearest neighbor graph, we report the
performance of AFAN by increasing k from 1 to 30 with an interval of 5. The
results in Fig. 5(b) show that AFAN performs stably when k ranges into [10, 25],
which indicates that our AFAN is robust to the parameter k.

AFAN introduces hyper-parameters α and τ in Eq. (8). We fix the k as 10
and report the performance with a set of α values in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1.0} and τ values in {1, 2, 3, 4, 5}. The performance of AFAN is
shown in Fig. 5(c) and 5(d). We can observe that both α and τ are too large
or too small to be inappropriate. Specifically, for α, AFAN achieves the best
performance when neighbor representations and self-representation are equally
divided, i.e., α = 0.5. For τ , when τ is too small, only the information of the
nearest neighbors can be obtained. When τ is too large, negative information
of samples from other clusters is received, which affects the clustering results.
Finally, we set α = 0.5 and τ = 3 as the hyper-parameter values of the AFAN.

4.5 Alignment Ratio Analysis

In this section, we investigate the performances of PVC, MvCLN and our AFAN
with different alignment ratios. Figure 4 shows clustering F-measure(%) of these
methods on the LUse-21 dataset with varying alignment ratios. We observe that:
(1) the performance of our AFAN generally increases with the alignment rate. (2)
AFAN outperforms PVC and MvCLN basically at all alignment ratio settings.

5 Conclusion

In this paper, we propose an adaptive view-aligned and feature augmentation
network(AFAN) to solve the partially view-aligned problem, which avoids the
limitations of existing partially view-aligned methods. By utilizing an adaptive
view-aligned module, AFAN can adaptively compute the alignment matrix with
the self-attention mechanism. The calculated alignment matrix can capture data
similarity by jointly learning data features and view alignment. By introducing
a self-augmentation strategy, AFAN encourages the learned features belonging
to the same class to be crowded together. Such features are clustering-friendly
and improve the clustering performance. Extensive experiment results on four
benchmark datasets verify the effectiveness of AFAN. In the future, we will
consider extending our approach to other tasks with both missing and unaligned
data.



234 X. Zhang et al.

References

1. Andrew, G., Arora, R., Bilmes, J.A., Livescu, K.: Deep canonical correlation anal-
ysis. In: ICML, vol. 28, pp. 1247–1255 (2013)

2. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering
via canonical correlation analysis. In: ICML, vol. 382, pp. 129–136 (2009). https://
doi.org/10.1145/1553374.1553391

3. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene cat-
egories. In: CVPR, pp. 524–531 (2005). https://doi.org/10.1109/CVPR.2005.16

4. Huang, Z., Hu, P., Zhou, J.T., Lv, J., Peng, X.: Partially view-aligned clustering.
In: NeurIPS (2020)

5. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)
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Abstract. In various domains, such as meteorology or patient data,
events’ durations are stored in a database, resulting in symbolic time inter-
val (STI) data. Additionally, using temporal abstraction techniques, time
point series can be transformed into STI data.Mining STI data for frequent
time intervals-related patterns (TIRPs) was studied in recent decades.
However, for the first time, we explore here how to continuously predict
a TIRP’s completion, which can be potentially applied with patterns that
end with an event of interest, such as a medical complication, for its pre-
diction. The main challenge in performing such a completion prediction
occurs when the time intervals are coinciding, but not finished yet, which
introduces an uncertainty in the evolving temporal relations, and thus on
the TIRP’s evolution process. In this study, we introduce a new struc-
ture to overcome this challenge and several continuous prediction mod-
els (CPMs). In the segmented CPM (SCPM), the completion probability
depends only on the pattern’s STIs’ starting and ending points, while a
machine learning-based CPM (CPML) incorporates the duration between
the pattern’s STIs’ beginning and end times. Our experiment shows that
overall, CPML based on an ANN performed better than the other CPMs,
but CPML based on NB or RF provided the earliest predictions.

Keywords: continuous prediction · early prediction · temporal patterns

1 Introduction

Frequent temporal patterns, whether given by a domain expert or discovered
by mining, were used already for temporal knowledge discovery, clustering, or
classification [5,7]. Being able to continuously estimate, in real-time, whether a
temporal pattern would fully occur, while its components are being revealed, is
desirable, and can be useful in various applications, such as event prediction.
Estimating the probability of the last pattern’s component (e.g., an event of
interest) occurrence, is of great interest. For example, predicting the death of a
patient in the intensive care unit (ICU), based on continuous data, consisting of
a temporal pattern that was observed in the data ending with death.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 239–251, 2023.
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In many real-life data science problems, in which data are gathered from var-
ious sources, the multivariate temporal data are heterogeneous. Some variables
may be sampled regularly but at different frequencies (e.g. sensor measurements)
and some variables irregularly (e.g. variables measured manually or event-driven).
Other temporal variables may be represented by events that may or may not have
varying duration. In this study, we propose to employ the use of temporal abstrac-
tion [6,10] to transform the entire heterogeneous multivariate temporal data into
meaningful symbolic time interval series. A symbolic time interval (STI) is a triplet
of a start time, end time, and a symbol from an ordered alphabet.

Fig. 1. Allen’s seven temporal relations between a pair of STIs.

From STI data, frequent time intervals-related patterns can be discovered
[4,10], which were shown in the past to be useful for knowledge discovery and
as features for classification and prediction [5,7,11]. A time intervals-related
pattern (TIRP) is comprised of a series of STIs and a set that defines all Allen’s
temporal relations (Fig. 1) between each of the pairs of STIs. For example, a
pattern from time intervals data may be that hospitalized patients with COVID-
19 frequently start with symptoms of “fever” and “cough,” and a week later also
begin experiencing shortness of breath, in which case the symptoms have not
ended at the ICU admission time. Note that a TIRP’s definition does not include
the STIs’ durations and their durations can vary among different instances. Using
a frequent TIRP that ends with an event of interest, such as a patient’s death,
may allow for real-time continuous prediction of the completion of the TIRP’s
instance and of the occurrence of the event of interest. For example, the TIRP
illustrated in Fig. 2 is defined by three STIs and three temporal relations, where
the last STI, C, is considered as the event of interest.

Predicting a TIRP’s completion is challenging due to the TIRP’s instances
variability which is reflected by the varying duration of the STIs, as noted earlier,
and the varying duration of the gaps between the instances’ STIs (e.g., in Fig. 2,
between STI B and C). We define for the first time, as far as we know, the
problem of predicting continuously the completion of a TIRP, and introduce
novel models for the TIRP’s continuous completion prediction.
The contributions of the paper are the following:

1. Defining the problem of continuous prediction of a TIRP’s completion.
2. Introducing two novel methods for continuous prediction of a TIRP’s com-

pletion.
3. A rigorous evaluation on real-life datasets, including new metrics to evaluate

the continuous prediction of a TIRP’s completion model.
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2 Background

One of the forms of temporal abstraction is state abstraction, in which based
on given cutoffs the time point values are categorized into symbols, and when
adjacent time points have the same symbol, they are concatenated into a sym-
bolic time interval. Several methods were proposed in the literature to learn
the cutoffs from the data, such as equal width discretization (EWD), symbolic
aggregate approximation (SAX) [6], and more [10].

A symbolic time interval (STI) I = (s, e, sym), is a triplet of start time
s ∈ R≥0, end time e ∈ R≥0, e ≥ s and a symbol sym (sym ∈ Σ) from an
ordered alphabet Σ. A time intervals-related pattern (TIRP) Q is defined as
a pair Q = (IS,R), where IS = {I1, ..., Ik} is a series of k STIs and R =
{r(Ii, Ij) : 1 ≤ i < j ≤ k} is a set that defines all Allen’s temporal relations
(Fig. 1) between each of the (k2 − k)/2 pairs of STIs in IS.

Given STI series data, TIRPs can be discovered for which several TIRP
mining methods were proposed in the past two decades [4,10,11], most of which
use Allen’s temporal relations [1] that include seven temporal relations between
a pair of STIs, as shown in Fig. 1. A TIRP is called frequent if its vertical
support exceeds a predefined minimum threshold. Given a database DB of |DB|
unique entities (e.g., patients), the vertical support V S(DB,Q) of a TIRP Q
is defined as the cardinality of the set DBQ of distinct entities within which
Q holds at least once, divided by |DB| (the total number of entities in DB),
V S(DB,Q) = |DBQ|/|DB|.

Frequent TIRPs are typically used as features for temporal data classifica-
tion or prediction [5], as proposed first in [11]. Liu et al. [7] suggested a TIRPs-
semantic-based probabilistic framework for STI data that can be used to answer
varied semantic-level queries in a unified way, such as predicting future activi-
ties given observed ones. To the best of our knowledge, no previous study has
investigated the task of continuous prediction of a TIRP’s completion.

3 Methods

A model M predicts a TIRP Q’s completion, given a database DB, by estimating
the probability of observing the remaining part of Q, given its observed part at
time tc. An estimation is provided at each current time point tc, and changes
as a given Q’s instance evolves over time. The database DB comprises |DB|
entities (e.g., patients), where each entity contains a series of STIs. We assume
that in a specific STI series, STIs with the same symbols can not overlap.

Let ptc denote a prefix representing the observed part of Q at tc, and stc
denote a suffix representing the remaining part of Q at tc that is expected
to occur. Thus, to estimate the Q’s completion probability, at time point tc,
Pr(Q | tc), the following simple model can be used, which typically represents
the confidence of a rule in sequential patterns:

Pr(Q | tc) = Pr(stc | ptc) =
Pr(ptc , stc)

Pr(ptc)
=

Pr(Q)
Pr(ptc)

. (1)
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The calculation in Formula 1 answers the question: “Out of all the times we saw
ptc , how many times was it followed by stc (i.e., Q has unfolded to completion)?”
Thus, the number of times each ptc of Q occurs in the database and the number of
times ptc is followed by stc should be counted. Since the database DB comprises
multiple entities, and each entity contains a lexicographically ordered STI series,
instances of Q and ptc may be discovered more than once in a single entity. Each
such instance is counted separately in the computation.

Fig. 2. TIRP Q’s completion probability is estimated at any time point (e.g., t2c).

Applying Formula 1 to a relatively simple example sheds light on the chal-
lenges that arise while continuously predicting TIRP’s completion. In Fig. 2, a
TIRP Q = {A overlaps B, A before C, B before C} is shown, together with four
time points t1c , t2c , t3c , and t4c chosen to illustrate partial instances of the pattern
to demonstrate various types of challenges. Calculating the numerator Pr(Q) is
quite straightforward and is done by counting the number of times that A over-
laps B is followed by A before C and B before C (i.e., Q). However, calculating
the denominator Pr(ptc) is more challenging in some cases.

At t4c , the denominator Pr(pt4c) is equal to the probability of seeing A over-
laps B, which results in no uncertainty. Similar computations can be carried
out at time points t1c and t3c , but the situation is more complex since the time
points are located after a starting point and before an ending point of an STI.
Thus since an STI that is not finished yet is involved, ptc and stc cannot be
described with Allen’s temporal relations. Instead, we need to use a different
representation based on STIs’ tieps (Definition 1).

Definition 1. (tiep) A time interval endpoint is a triplet (t, type, sym) consist-
ing of a time stamp t ∈ R≥0, an endpoint type, which can be either starting (+)
or ending (-), and a symbol (sym ∈ Σ) from an ordered alphabet Σ.

Example 1. In Fig. 1, for an STI A = (As, Ae, “A′′), the starting and ending tieps
are defined respectively as A+= (As, +, “A′′) and A+= (Ae, -, “A′′).

A total order on tieps (Definition 1) is defined based on their time stamps,
which are real numbers. Thus, the tieps can be used in inequalities defining tem-
poral relations, while their structure will be exploited in the following sections.

At t1c , the pt1c is “A that has started but not ended yet,” and thus, Pr(A+)
denotes the probability of seeing STI A that has started in DB. In the learning
stage, in the database DB, each STI has its starting and ending tieps, and thus,
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the probability Pr(A+) equals the probability of seeing STI A in DB. Similarly,
at t3c , the pt3c can be represented by the following inequality between the STIs’
tieps: A+<B+<A-.

However, in the learning stage, since STI B has started but not ended yet,
its ending tiep B- has to satisfy t3c < B- in database DB. Thus, the prefix’s tiep
ordering should be extended to pt3c =A+<B+<A-<B- to represent that STI B
ended after B ended. The extended pt3c is equivalent to Allen’s temporal relation
A overlaps B (see Fig. 1). Uncertainty occurs at time point t2c , since pt2c includes
STIs A and B that have already started but not yet ended (i.e., t2c < A- and
t2c < B-), it results in uncertainty about which temporal relation between A and
B will finally unfold. Three different temporal relations are possible: overlaps,
contains, or finished-by, which should be considered and used in Formula 1.

3.1 The Unfinished Coinciding STIs Challenge

Definition 2. (Unfinished STI) An unfinished STI I∗ at time tc is an STI whose
starting tiep I∗+ satisfies 0 ≤ I∗+ ≤ tc and whose ending tiep I∗- satisfies tc < I∗-.

Throughout the text, the asterisk (∗) will indicate that an STI is unfinished.
The start time of an unfinished STI is known at time tc, but its end time is not.
In fact, it is censored: we only know that it is later than tc.

Fig. 3. The evolving temporary temporal relations.

A pair of unfinished coinciding STIs A∗ and B∗ may evolve into three possi-
ble temporal relations. The logic follows from the tieps representation of Allen’s
temporal relations that is presented in Fig. 1. Figure 3.i shows that in the case of
the temporary equals (=̌) temporal relation, their temporal relation may even-
tually evolve into A starts B, or B starts A, or stay at A equals B. The reason
that A starts B and B starts A cannot be distinguished at tc is that the exact
temporal relation is determined by their end times, which are not yet known.
Similarly, the temporary finished-by (fǐ) temporal relation shown in Fig. 3.ii, may
eventually evolve into three possible Allen’s temporal relations: A overlaps B,
A contains B, or stay at A finished-by B.
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3.2 TIRP-Prefixes

A TIRP can be represented by a series of starting and ending tieps instead of a
series of STIs.
To maintain the conjunction of pairwise temporal relations among the STIs, the
set of tieps has to be transformed into a sorted tieps’ series, based on Allen’s
tieps representation (Fig. 1, right column).

A TIRP is divided into TIRP-prefixes (Def. 3) that are part of the TIRP’s
evolution process, which are created based on sub-sequences of the TIRP’s tieps.
In each TIRP-prefix, since the temporal relation between two unfinished STIs
is uncertain, the temporary temporal relation ř is used to express the disjunc-
tion of possible final temporal relations based on the unfinished coinciding STIs
challenge logic explained in Fig. 3.

Definition 3. (TIRP-prefix) Let Q be a TIRP of length k. A TIRP-prefix Q̌ of
Q is defined as a pair Q̌ = (ǏS, Ř), where ǏS is a lexicographical ordered STI
series of ǩ ≤ k finished (ǏSf ) and unfinished (ǏS∗) STIs: ǏS = ǏSf ∪ ǏS∗, and
Ř is the set of all the temporal relations between each of the pairs of STIs in ǏS:
Ř = Řf ∪ Ř∗, where Řf = {r(Ii, Ij) : 1 ≤ i < j ≤ ǩ ∧ ¬(Ii ∈ ǏS∗ ∧ Ij ∈ ǏS∗)}
and Ř∗ = {ř(I∗,i, I∗,j) : 1 ≤ i < j ≤ ǩ ∧ I∗,i ∈ ǏS∗ ∧ I∗,j ∈ ǏS∗}.

Example 2. In Fig. 2, at t2c , it is known that pt2c =A∗+<B∗+, thus the TIRP-
prefix is {A∗ fǐ B∗} and the three following TIRPs may potentially evolve into:
{A overlaps B} or {A finished-by B} or {A contains B}.

Algorithm 1. The TIRP-Prefix’s Extender
Input: px - TIRP-prefix; Output: epx - extended TIRPs

1: unfPairs ← px.Ř∗; eRels ← ∅
2: for each pa in unfPairs do
3: eRels ← eRels ∪ tempLogic(pa)

4: cmb = comb(eRels); epx ← ∅
5: for each c in cmb do
6: cand ← cmb ∪ px.Řf

7: if validTransitionTable(cand) then
8: epx ← epx ∪ cand

9: return epx

In the TIRP-Prefix’s Extender algorithm (Algorithm 1), given a TIRP-prefix
px, generates a set epx of all possible TIRPs that can evolve from px. The TIRP-
prefix’s temporary disjunctions of temporal relations (unfPairs, line 1) are set
based on the rules presented in Fig. 3 by using the tempLogic function (lines 2-3).
Then, the comb function generates a set of all the possible temporal relations
that can be evolved given Ř∗, which is stored in cmb. Then, each cmb is joined
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with the TIRP-prefix non-temporary disjunctions of temporal relations Řf and
assigned to cand. Each cand represents a TIRP that can evolve from px.

However, cand can be a pattern with combinations of temporal relations that
contradict each other. For example, A∗ overlaps B∗ and B∗ overlaps C∗, the
temporal relation between A∗ and C∗ can not be the relations finished-by or
contains, but only overlaps. Thus, Allen’s transition table [1] is used to reduce
the number of generated candidates by avoiding impossible patterns (line 7).
Lastly, the potential evolved TIRPs epx’s instances have to be detected in the
STI database DB by using rather a STIs based [10] or sequence-based [4] rep-
resentation.

3.3 Continuous Prediction Models (CPMs)

In this section we will present the following two continuous TIRP completion
prediction models:

SCPM. The predicted TIRP’s completion probability changes only at time
points where tieps appear. As discussed in detail when Formula 1 was explained,
the probability of TIRP Q completion is Pr(Q)/Pr(ptc), where ptc is a TIRP-
prefix of Q at time tc.

CPML. The durations between consecutive TIRP-prefixes’ tieps were used as
features. For that, naive Bayes (NB) [9], random forest (RF) [2], and artificial
neural network (ANN) [8] classifiers were used.

Fig. 4. Time durations d1, d2, and d3 are based on tieps A+, B+, A-, and tc, which
are used as features for the classifiers to perform the TIRP’s completion prediction.

Records for the classifier were created to represent the evolution of a TIRP
over time. Multiple records were used as input for the classifier to include all the
time stamps for each evolving TIRP-prefix instance. The TIRP’s duration ele-
ments that were not observed until time point tc are set to zero. Each instance’s
record target was set to whether the instance was finally unfolded into a TIRP’s
completion or not. For example, in Fig. 4, the TIRP-prefix instance {A over-
laps B∗} is represented by the time durations between the four consecutive tieps
(f1 = [A+,B+],f2 = [B+,A-],f3 = [A-,B-], and f4 = [B-,C+]), which are used as
features ([f1, f2, f3, f4]) for the classifier. For the instance at tc, the record val-
ues are f1 = d1, f2 = d2, f3 = d3, and f4 = 0.
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The parameters for the models were selected after testing the performance
of each considered combination. The parameters that performed best are the
following: RF - maximum depth of 5, using bootstrap with 100 trees in the
forest; ANN - two 50-neurons hidden layers, a maximum of 20 epochs, a batch
size of 16, learning rate of 0.001 with gradually decreasing with early stopping,
and with the ReLU activation function. NB, RF, and ANN were implemented
with Python 3.6 and the Scikit-Learn package (scikit-learn.org) version 0.22.1.
For parameters we did not specify, we used the package defaults.

3.4 Early Warning Strategies

Early warning strategies are used to decide that the TIRP will likely unfold once
there is a high likelihood of the completion of the TIRP, based on the CPMs’
estimated probabilities.
A decision that the TIRP will be unfolded is made immediately after the proba-
bility exceeds the prediction decision threshold (e.g., the gray point in Fig. 5) or
when the threshold was consistently exceeded for some pre-defined time τ (e.g.,
the blue point in Fig. 5, which is defined with τ of three time stamps).

Fig. 5. The TIRP’s completion probability at any time point is based on the observed
STI series. The prediction decision is made when the completion probability is higher
than the threshold, which is the horizontal dashed line (0.5 in this case), and a time
delay τ has been passed.

4 Evaluation

Our goal was to evaluate the effectiveness of using continuous prediction models
(CPMs) in predicting a TIRP’s completion. The main research questions for this
study were:

RQ1. Which CPM performs better, in terms of prediction performance and
earliness, in predicting the completion of a TIRP?

RQ2. Which value of τ performs best, in terms of prediction performance and
earliness, in predicting the completion of a TIRP?
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4.1 Datasets

We evaluated the proposed models using real-life medical and non-medical
datasets: cardiac surgical patients (CSP) [12], acute hypertensive episodes
(AHE) [5], diabetes (DBT) [10], and elderly first injury fall (EFIF) [3] datasets.
The events of interest were defined as the first occurrence of the following: CSP -
cardiac index lower than 2.5 L/min/m2, AHE - the target onset, DBT - HbA1C
greater than 9%, and EFIF - first fall in elderly with a severe or moderate injury.
Table 1 summarizes the main parameters of each dataset: entities (e.g., patients)
number (#Ent), variables number (#Var), entities’ maximum number of times-
tamps (#Timestamps), time granularity (Granularity), entities with the event
of interest (#EntEvent), where the values in parentheses represent the percent-
age of #EntEvent out of #Ent, and the averaged different number of discovered
TIRPs that ended with the events of interest (#TIRPs).

Table 1. The evaluation datasets’ parameters

Name #Ent #Var #Timestamps Granularity #EntEvent #TIRPs

CSP 329 13 720 minutes 115 (35%) 257

AHE 1,000 4 238 hours 500 (50%) 246

DBT 1,710 12 24 months 239 (14%) 256

EFIF 823 15 144 weeks 121 (15%) 529

4.2 Experimental Setup

The models were evaluated on the ability to predict the completion of a TIRP
that ended with an event of interest. Being able to predict continuously the
completion of a TIRP, means it is possible to predict an event of interest. The
entities’ demographic data were not used, and only the time-based data were
used for the continuous prediction. All the datasets were abstracted into STI
series using SAX [6] with three symbols per variable. Then, TIRPs were discov-
ered from the STI data using the KarmaLego algorithm [10] using Allen’s seven
temporal relations [1]. The patterns were discovered using 15% minimal vertical
support from the entities that contained the event of interest.

Only the discovered patterns that ended with the event of interest were used.
Yet, all entities, with or without the event of interest, were used to learn the
model’s parameters. TIRP-prefixes can be detected more than once in an entity’s
records, in which case each detected instance of the TIRP or its TIRP-prefixes
were considered separately. The TIRP-prefixes instances from the training set
were used to learn the model. To evaluate the models, all instances that started
with the TIRP’s earliest tieps, were used in the experiments. The events’ STIs
were considered instantaneous events, and the beginning of the event of interest
was considered as the TIRP’s completion.

Since each TIRP’s completion was based on a different number of detected
TIRP-prefixes’ instances, the imbalance ratio differed between the patterns. We
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ran the experiments with ten-fold cross-validation, using target stratification.
The instances of a TIRP and its TIRP-prefixes of the same entity appeared
exclusively in the same fold.

Evaluation Metrics. To evaluate the models’ performance, a receiver operat-
ing characteristics (ROC) curve was calculated, together with the corresponding
area under the curve (AUROC). The decisions were made based on a prediction
decision threshold, that was varied between 0 to 1, and the decision time delay
τ was varied using 0, 1, 2, and 3 time units. The ROC was created by varying
the prediction decision thresholds between 0 to 1 (Fig. 5).

The revealed time portion (RTP) refers to the percentage of the instance that
is revealed, at the time of the decision, relative to the entire instance’s duration
(start till its end time – known retrospectively). The revealed time is in percent-
age, since each instance, even of the same TIRP, may have a different duration.
For example, in Fig. 5 the grey dot’s RTP is 70%, where D+ is considered as the
event of interest and thus the instance’s end.

4.3 Experiments and Results

Due to the limited space, each experiment is described first, followed by its
results. The results are based on a total of 1,288 different TIRPs (Table 1). Each
point on the charts represents the mean performance of the different TIRPs in
each dataset, including confidence intervals of 95%.

Preliminary Analysis. In this experiment, we present the performance in
retrospect, analyzing the decision accuracy if the decision was made according
to any of the RTPs (rather than according to the model threshold decision).
Additionally, we wanted to understand whether there is an ideal RTP for a
decision, or the more it reveals is better. The results were computed for all
TIRP-prefixes instances for each RTP, based on the completion probability at
this point.

Figure 6 presents the mean AUROC at various TIRP-prefixes instances’ RTP.
The charts show that the more the instance is revealed, the more accurate pre-
dictions are provided by the models. RF and ANN perform best on all the
datasets, except the EFIF dataset, in which the SCPM performs best above
40% revealed portion, while the CPMs perform worse. Thus, instance unfold-
ment can be predicted better when more information is revealed, but there is
no optimal stage. However, early predictions are also desirable, so there is a
trade-off, as we demonstrate in Fig. 8.
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Fig. 6. The more the instance is revealed, the more accurate the predictions are.
Overall, RF and ANN perform best on all the datasets, except the EFIF dataset.

Continuous TIRP’s Completion Prediction. In this experiment, we eval-
uated the models’ ability to estimate the TIRPs’ instances’ completion, where
the results were computed for all TIRP-prefixes’ instances based on the decisions
made by using the early warning strategies.

To answer RQ1, Fig. 7 presents the mean results of the models in predicting
the TIRPs’ instances completion with different values of τ . The ANN performed
significantly best, except on the EFIF, in which SCPM performed best. This
implies that the duration distributions between TIRP-prefixes’ consecutive tieps
are similar between instances that ended with and without the event of interest
on the EFIF dataset, and this may explain why SCPM performed better. The
NB performed worst in all datasets.

Fig. 7. ANN performed better than the other models with an average of 1.5% AUROC.
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To answer RQ1 and RQ2, Fig. 8 presents the AUROC versus the mean
instances’ RTP of the corresponding decisions, for cases when the TIRP’s com-
pletion was correctly predicted (true positive cases), for different models and
values of τ , which are represented by five different colors and four different
sizes, respectively. While NB provided the earliest predictions for CSP, AHE,
and EFIF, its prediction performances were poor. Also, for CSP, and EFIF,
the SCPM, and ANN provided the latest but most accurate predictions. Except
for the DBT dataset, there is a trade-off between prediction performance and
earliness, where more accurate models need more time to make decisions. It
strengthens the preliminary analysis, which showed the models were more accu-
rate as time passed for each instance (Fig. 6).

Fig. 8. More accurate models need more time to make decisions. Overall, SCPM
provided the latest predictions, and NB and RF provided the earliest predictions.

5 Discussion

In this work, the continuous prediction of a TIRP’s completion was studied for
the first time. This approach can be useful with STI series databases, but what
makes it more important and impactful is its use for heterogeneous multivariate
longitudinal data, after employing temporal abstraction and transforming the
data into STI series. Thus, it can be applied to any type of temporal variable,
while incorporating any of them. The challenges, including the uncertainty of
the evolving temporal relations, were discussed, and the TIRP-prefix represen-
tation and the extender algorithm (Algorithm 1) to overcome this challenge were
described. Based on that, the SCPM and CPML were proposed and a rigorous
evaluation was performed on four real-life datasets. Overall, the CPML based
on an ANN performed better than the other models with an average of 1.5%
AUROC, but CPML based on NB or RF provided the earliest predictions. For
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future work, we intend to gear this methodology for event prediction, by apply-
ing it with multiple instances of various types of TIRPs that end with the event
of interest.
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Abstract. Recent years have seen a shift from a pattern mining process that has
users define constraints before-hand, and sift through the results afterwards, to an
interactive one. This new framework depends on exploiting user feedback to learn
a quality function for patterns. Existing approaches have a weakness in that they
use static pre-defined low-level features, and attempt to learn independent weights
representing their importance to the user. As an alternative, we propose to work
with more complex features that are derived directly from the pattern ranking
imposed by the user. Those features are used to learn weights to be aggregated
with low-level features and help to drive the quality function in the right direction.
Experiments on UCI datasets show that using higher-complexity features leads to
the selection of patterns that are better aligned with a hidden quality function
while being competitively fast when compared to state-of-the-art methods.

1 Introduction

Constraint-based pattern mining is a fundamental data mining task, extracting locally
interesting patterns to be either interpreted directly by domain experts, or to be used as
descriptors in downstream tasks, such as classification or clustering. Since the publica-
tion of the seminal paper [1], two problems have limited the usability of this approach:
1) how to translate user preferences and background knowledge into constraints, and 2)
how to deal with the large result sets that often number in the thousands or even mil-
lions of patterns. Replacing the original support-confidence framework with other qual-
ity measures [14] does not address the pattern explosion. Post-processing results via
condensed representations still typically leaves many patterns, while pattern set mining
[11] just pushes the problem further down the line.

In recent years, research on interactive pattern mining has proposed to alter the min-
ing process itself: instead of specifying constraints once, mining a result set, and then
post-processing it, interactive pattern mining performs an iterative loop [12]. This loop
involves three repeating main steps: (1) pattern extraction in which a relatively small set
of patterns is extracted; (2) interaction in which the user expresses his preferences w.r.t.
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those patterns; (3) preference learning in which the expressed preferences are translated
into a quality assessment function for mining patterns in future iterations.

The most recent proposal to dealing with the question of finding interesting patterns
involves the user, via interactive pattern mining [12] often involving sampling [3], with
LETSIP [4] one of the end points of this development. Other interactive methods have
been proposed, APLE [5], another approach based on active preference learning to
learn a linear ranking function using RANKSVM [8], and IPM [3], an MCMC-based
interactive sampling framework. However, existing approaches have a short-coming:
to enable preference learning, they represent patterns by independent descriptors, such
as included items or covered transactions, and expect the learned function, usually a
regression or multiplicative weight model, to handle relations.

In this paper, we propose a new interactive pattern mining approach that introduces
more complex class of descriptors for explainable ranking, thereby allowing to capture
the importance of item interactions. These descriptors exploit the concept of discrimi-
nating sub-patterns, which separate patterns that are given low rank by the user from
those with high rank. By temporarily adding those descriptors, we can learn weights
for them, which are then apportioned to involved items without blowing up the feature
space. Results on UCI datasets show favourable trade-offs in quality-time of learning.

2 Preliminaries

Pattern Mining. Given a database D, a language L defining subsets of the data and
a selection predicate q that determines whether an element φ ∈ L, the task is to find
the theory T (L,D, q) = {φ ∈ L | q(D, φ) is true}. A well-known pattern mining
task is frequent itemset mining [1]. Let I be a set of n items, an itemset (or pattern)
X is a non-empty subset of I. The language of itemsets corresponds to LI = 2I\∅.
A transactional dataset D is a bag (or multiset) of transactions over I, where each
transaction t is a subset of I, i.e., t ⊆ I; T = {1, ...,m} a set of m transaction indices.
An itemset X occurs in a transaction t, iff X ⊆ t. The cover of X in D is the bag of
transactions in which it occurs: VD(X) = {t ∈ D | X ⊆ t}. The support of X in D is
the size of its cover: supD(X) = |VD(X)|.
Learning from Preferences. An algorithmic template of the Mine, Interact, Learn,
Repeat framework is listed in Algorithm 1. The interactive process proceeds iteratively
for some reasonable number of iterations T , which depends on the task at hand. Let
Φ : LI → R denote the true, unobserved preferences function of the user. The algorithm
maintains an internal estimate ϕt of the true function, where t ∈ [T ] is the iteration
index. At each iteration, it selects a queryX t to be posed to the user. The user’s feedback
is then used (possibly along with all the feedback received so far) to compute a new
estimate ϕt+1 of Φ. Key questions concerning instantiations of the Mine, interact, learn,
repeat framework include 1) feature representations of patterns to be ranked and the
feedback format, 2) learning user’s preferences from feedback, 3) mining with learned
preferences, and crucially, 4) selecting the patterns to show to the user.

a) User Interaction & Pattern Representations. User feedback w.r.t. patterns takes
the form of providing a total order over a (small) set of patterns [4,12], called a query.
User feedback {X1 � X3 � X2}, for instance, indicates that the user prefers X1 over
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Algorithm 1: Template algorithm for interactive pattern mining

1 In: Dataset D, set of patterns X
2 Parameters: Query size k, number of steps T , feature pattern representations F
3 Out: ϕ : Ranking function

4 begin
5 U ← ∅, ϕ0 ← initial function estimates
6 for t = 1, 2 . . . T do
7 select a query X t based on ϕt−1 � Mine

8 ask query X t to the user and get feedback ̂Rt � Interact

9 U ← U ∪ ̂Rt, compute ϕt based on ϕt−1 and U � Learn ϕ

10 return ϕ;

X3, which they prefer over X2 in turn, and so on. Pattern representations determines
how the user characterizes patterns of interest to him. Patterns are commonly repre-
sented using a vector of static features (also called descriptors) F = 〈F1, . . . , Fn〉.
The description of a pattern X w.r.t. F is given by the vector P = 〈P1, . . . ,Pn〉,
wherePi is the value associated to Fi. Examples of features include numerical descrip-
tors like Len(X) = |X|/|I|, Freq(X) = supD(X)/|D|, in which case the cor-
responding Pi is truly in R, or binary descriptors Items(i,X) = [i ∈ X]; and
Trans(ti,X) = [X ⊆ ti], where [.] denotes the Iverson bracket, leading to (partial)
feature vectors ∈ {0, 1}|I| and ∈ {0, 1}|D|, respectively.

b) Learning from Feedback. Evaluating patterns in terms of quality function is a very
natural way of representing preferences. In the object preferences scenario [9], such
a function is a mapping ϕ : X → R that assigns a score ϕ(X) to each pattern X
and, thereby, induces an order on X . As in [4], we use a parametrized logistic func-
tion to measure the interestingness/quality of a given pattern X: ϕlogistic(X;w,A) =
A+ 1−A

1+e−wF·P , whereP the afore-mentioned description of a pattern X ,wF the weight
vector associated to descriptors F reflecting feature contributions to pattern interest-
ingness, and A is a parameter that controls the range of the interestingness measures,
i.e. ϕlogistic ∈ (A, 1). However, setting feature weights manually is tedious, thus we
present in Sect. 3 an algorithm that learns the weights based on easy-to-provide feed-
back with respect to patterns. Given a user feedback U = {X1 � X3 � X2} which
is translated into pairwise rankings {(X1 � X3), (X1 � X2), . . .}, each ranked pair
Xi � Xj corresponds to a classification example (Pi−Pj ,+) of a training dataset. We
use Stochastic Coordinate Descent (SCD) [13] for minimizing logistic loss stemming
from this training dataset, and use the learned weights in ϕlogistic.

3 DiSPaLe: Discriminating Sub-Pattern Feature Learning

We present DISPALE, an instantiation of the framework described by Algorithm 1,
which exploits more complex descriptors in combination with static low-level features
to learn logistic functions. These new descriptors are learned from discriminating sub-
patterns. The sequel describes how discriminating sub-pattern are extracted from the
user-defined pattern ranking and how they are used in the learning component of DIS-
PALE (see Algorithm 2). Table 1b summarizes the different notations used in this paper.
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Algorithm 2: DISPALE (Discriminating Sub-Pattern feature Learning)

1 In: Dataset D, set of patterns X
2 Parameters : Query size k, number of steps T , range A, query retention �, feature pattern representations F
3 Out: ϕ : Ranking function;

4 begin
5 U ← ∅, w0

F ← 0, X 0 ← ∅, ϕ0 = ϕlogistic(w
0
F , A)

6 for t = 1, 2 . . . T do
7 X t ← TOP(X t−1, �) ∪ (SAMPLEPATTERNS(D, ϕt−1) × (k − �))

8 ̂Rt ← RANK(X t), disc ← MINEDISCRIMINATING(X t, ̂Rt), U ← U ∪ ̂Rt

9 〈wt
F , wt

Fdisc
〉 ← LEARNWEIGHTS(U, F ∪ Fdisc)

10 wt
F ← UPDATEWEIGHTS(wt

F , wt
Fdisc

)

11 ϕt ← ϕlogistic(w
t
F , A)

12 return ϕT

3.1 Towards More Expressive and Learnable Pattern Descriptions

Features for pattern representation involve indicator variables for included items or sub-
graphs, or for covered transactions [3,4], or pattern length, etc. The issue is that such
features are treated as if they were independent, whether in the logistic function men-
tioned above, or multiplicative functions [3,12]. While this allows to identify pattern
components that are globally interesting for the user, it is impossible to learn relation-
ships such as “the user is interested in item i1 if item i3 is present but item i4 is absent”.
In addition, the pattern elements whose inclusion is indicated are defined before-hand,
and the user feedback has no influence on them. We therefore propose to learn more
expressive features in order to improve the learning of user preferences. In this work,
we propose to consider discriminating sub-patterns that better capture (or explain) these
preferences. Those features exploit ranking-correlated patterns, i.e., patterns that influ-
ence the user ranking either by allowing some patterns to be well ranked or the opposite.

a) Interclass Variance. As explained above, our goal is to mine sub-patterns that dis-
criminate between patterns that have been given a high user ranking and those that
received a low one. An intuitive way of modelling this problem consists of considering
the numerical ranks given to individual patterns as numerical labels and the mining set-
ting as akin to regression. We are not aiming to build a full regression model but only
to mine an individual pattern that correlates with the numerical label. For this purpose,
we use the interclass variance measure as proposed by [10].

Definition 1. Let X be a query, ̂R the user ranked patterns, XY the subset of patterns
X in X containing the sub-pattern Y , and X Y = X − XY . The interclass variance
of the sub-pattern y is defined by: ICV (Y, ̂R) = |XY | · (μ(X ) − μ(XY ))2 + |X Y | ·
(μ(X )−μ(X Y ))2, where μ(X ) = 1

|X | ·
∑

X∈X r(X), and r(X) is the rank of X in ̂R.

b) Extracting Discriminating Sub-patterns. To find the sub-pattern Y ⊆ X ∈ X
with the greatest interclass variance ICV , we systematically search the pattern space
spanned by the items involved in patterns of the user’s query X . Semantically, this is
the sub-pattern whose presence in one or more patterns X has influenced their ranking.
So, if Y ⊆ X , we can say that the ranking of X at the r(X)th position in ̂R is more
likely to be explained by the presence of sub-pattern Y .
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Algorithm 3: Extracting discriminating sub-patterns

1 Function MineDiscriminating(X , ̂R)
2 ICVmax ← 0, disc ← ∅
3 IX ← {i ∈ X | X ∈ X}
4 S ← IX
5 For each i ∈ IX do
6 If ICV (i, ̂R) ≥ ICVmax then
7 ICVmax ← ICV (i, ̂R), disc ← {i}

8 For each Y ∈ S do
9 While (∃i ∈ IX ∧ ∃X ∈ X st. Y ∪ {i} ⊆ X ∧ i /∈ Y ) do

10 If ICV (Y ∪ {i}, ̂R) ≥ ICVmax then
11 ICVmax ← ICV (Y ∪ {i}, ̂R), disc ← Y ∪ {i} , S ← S ∪ disc

12 return disc

Algorithm 3 implements the function MINEDISCRIMINATING (see Algorithm 2,
line 8), which learns the best discriminating pattern as a descriptor. Its accepts as input
the query X and the ranked patterns ̂R by the user, and returns the sub-itemset with the
highest ICV. Its starts by computing the ICV of all items of the patterns in X (loop 5–
7). Then, it iteratively combines the items to form a larger and finer-grained discrim-
inating sub-pattern (loop 8-11). Obviously, before combining sub-itemsets, we should
ensure that the resulting sub-pattern belongs to an existing pattern X ∈ X (line 9). If
such a sub-pattern exists, we update the value of ICVmax, we save the best discrimi-
nating sub-pattern computed so far and we update with disc the set of sub-itemsets that
can be extended for further improvements (lines 10-11). Finally, the best discriminating
pattern is returned at line 12.

Example 1. Consider a dataset with items I = {1, . . . , 7}. Let’s consider a user query
X = {X1,X2,X3,X4}, with X1 = {5, 7},X2 = {2, 7},X3 = {1},X4 = {4} and
let ̂R = {X2 � X1 � X3 � X4}. For Y = {2}, we have XY = {X2}, X Y =
{X1,X3,X4}, μ(XY ) = 1, μ(X Y ) = 3 and μ(X ) = 2.5. Applying definition 1 gives
ICV (2, ̂R) = 3. After the first loop of Algorithm 3, ICVmax = 4 and disc = {7}.

3.2 Discriminating Sub-patterns as Descriptors

Exploiting discriminating sub-patterns as a new descriptors in DISPALE brings mean-
ingful knowledge to consider during an interactive preference learning. In fact, this
sub-pattern correlated with the user’s ranking emphasizes the items of interest related
to his ranking. Now, we describe how these discriminating patterns can be used in order
to improve the learning function ϕlogistic for patterns.

A direct way of exploiting discriminating sub-patterns consists of adding them as
new descriptors to the initial featuresF during the iterations. However, this will increase
the size of F , introduces additional cost and most probably leads to over-fitting and
generalization issues of the learning function ϕlogistic. Instead, we propose to use the
discriminating sub-pattern disc extracted at each iteration as a temporary descriptor
Fdisc that can be added to F in order to learn a weight wFdisc

(see Algorithm 2, line 9).
We propose three types of discriminating descriptors:
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– FdiscX : a binary descriptor used to assess the presence/absence of disc in a pattern

X ∈ X ; its associated value PdiscX
=

{

1 if disc ⊆ X
0 otherwise

– FdiscT : a numerical descriptor representing the frequency of the discriminating sub-

pattern disc; its associated value PdiscT =
{

supD(disc)/|D| if disc ⊆ X
0 otherwise

– FdiscI : a numerical descriptor representing the relative size of the discriminating

sub-pattern disc; its associated value PdiscI =
{

|disc|/|I| if disc ⊆ X
0 otherwise

By denoting Fdisc the set of discriminating descriptors added to F , we obtain the
following temporary vector of descriptors: 〈F1, . . . , Fn

︸ ︷︷ ︸

F
, FdiscX , FdiscT , FdiscI
︸ ︷︷ ︸

Fdisc

〉.

Given the user-defined pattern ranking ̂Rt at iteration t on query X t, we learn two
weight vectors : the weight vector wt

F associated to F and the weight vector wt
Fdisc

associated to Fdisc. As descriptors Fdisc are added temporary, the weights learned for
wt

Fdisc
are used back to update the weights wt

F in order to be exploited for the next
iteration. This new learning schema can be summarized as follows (see Fig. 1 in [7]):

(i) each pattern X ∈ X t is converted into a vector P = 〈P1, . . . ,Pn,PdiscX
,PdiscT ,

PdiscI 〉, where Pi is the value associated to a feature/descriptor Fi ∈ F ∪ Fdisc.
(ii) new weights wt

Fi
are learned for each descriptor Fi ∈ F ∪ Fdisc. The learned

weights wt
Fdisc

are then used back to update the weights wt
F using a multiplicative

weight method (see Algorithm 2, line 10).
(iii) finally, a new estimateϕt is computed using the newwt

F (see Algorithm 2, line 11).

3.3 Updating the Weights of Feature Pattern Representations

Let disc be the discriminating sub-pattern extracted from the query X t. We propose
two rules to update the weight vector wt

F from the weight vector wt
Fdisc

:

– for binary features Fi ∈ F (items and transactions):
o Fi ≡ items(i, disc), wt

Fi
= fag(wt

Fi
, wt

FdiscX
)

o Fi ≡ Trans(ti, disc) ∧ ti ∈ VD(disc), wt
Fi

= fag(wt
Fi

, wt
FdiscX

)
– for numerical features Fi ∈ F (frequency, length, . . .):

o Fi ≡ Freqency : wt
Fi

= fag(wt
Fi

, wt
FdiscT

)
o Fi ≡ Lenght : wt

Fi
= fag(wt

Fi
, wt

FdiscI
)

The Multiplicative Weights Method [2] is a simple idea which has been repeatedly
discovered in fields as diverse as Machine Learning, and Optimization. The setting for
this method is the following: A decision maker (DM) has a choice of n decisions, and
needs to repeatedly make a decision. The method assigns initial weights to the DM, and
updates these weights multiplicatively and iteratively according to the feedback of how
well an expert performed. Following this idea, we propose, at each iteration, to update
the feature weights wt

F by multiplying them with factors which depend on the learned
weights of discriminating descriptors in that iteration. Intuitively, this updating scheme
tend to focus higher weight on features that better explain patterns ranked by the user
in the long run, thus increasing the probability of being present in patterns of the next
iterations. We propose to multiplicative updating rules:
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Table 1. θ represents an absolute value.

Dataset |D| |I| θ #P
Anneal 812 89 660 149 331

Chess 3 196 75 2 014 155118

German 1 000 110 350 161 858

Heart-cleveland 296 95 115 153 214

Hepatitis 137 68 35 148 289

Kr-vs-kp 3 196 73 2 014 155118

Lymph 148 68 48 146 969

Mushroom 8 124 112 813 155657

Soybean 630 50 28 143 519

Vote 435 48 25 142 095

Zoo-1 101 36 10 151 806

(a) Dataset Characteristics.

Notation Significance

t ∈ [T ] Iteration index

X t User query
̂Rt User-defined feedback on X t

F Vector of feature representations of patterns

Fdisc Vector of discriminating descriptors of patterns

P Pattern description w.r.t (F ∪ Fdisc)

disc Discriminating sub-pattern extracted from ̂Rt

FdiscX
Binary descriptor related to the presence/absence of disc in X

FdiscT Numerical descriptor related to the frequency of disc

FdiscI Numerical descriptor related to the relative size disc

wt
F Weight vector associated to static features F

wt
Fdisc

Weight vector associated to dynamic features Fdisc

η Regularization parameter

ϕlogistic Learned logistic function

(b) Notations.

– by a linear factor: fag(wt
Fi

, wt
Fdisc

) = wt
Fi

× (1 + η · wt
Fdisc

)

– by an exponential factor: fag(wt
Fi

, wt
Fdisc

) = wt
Fi

× expη·wt
Fdisc

where η ∈]0, 1
2 ] is regularization parameter used to control the increase in weights

resulting from this update. In our experiments (see Sect. 4), we compare both updating
rules for learning weights.

Example 2. Let us consider Example 1 and disc = {7}. Let us assume that F rep-
resents items and frequency features and Fdisc = 〈FdiscX , FdiscT 〉. Suppose that
Freq(X1) = 0.54, Freq(X3) = 0.36 and Freq(disc) = 0.63. According to F , X1 =
{5, 7} is represented by the vector P1 = 〈0, 0, 0, 0, 1, 0, 1, 0.54〉, while X3 = {1}
by P3 = 〈1, 0, 0, 0, 0, 0, 0, 0.36〉. Using additionally features Fdisc, we obtain the new
vectorP1 = 〈0, 0, 0, 0, 1, 0, 1, 0.54, 1, 0.63〉 since disc ⊂ X1. Similarly, forX3 = {1},
P3 = 〈0, 0, 0, 0, 1, 0, 1, 0.36, 0, 0〉. Let t = 1, to learn the weights w1

F and w1
Fdisc

, the
user’s feedback is translated into pairwise rankings and distances between vectors Pi

for each pair are calculated (see Sect. 2). After the learning step, we obtain w1
F =

〈−0.33, 0.99, 0,−0.99, 0.33, 0, 1.33, 0.15〉 and w1
Fdisc

= 〈1.33, 0.84〉. Using the linear
factor with η = 0.2, we update the weight w1

F7
associated to item 7 (since 7 ∈ disc) and

the weightw1
FdiscT

associated to frequency as follows:w1
F7

= w1
F7

×(1+η ·w1
FdiscX

) =
1.68; w1

FdiscT
= w1

FdiscT
×(1+η ·w1

discT ) = 0.175. After the updating step, the result-
ing weight vector w1

F = 〈−0.33, 0.99, 0,−0.99, 0.33, 0,1.68,0.175〉.

4 Experiments

a) Evaluation Methodology and Pattern Selection. To experimentally evaluate our
approach DISPALE, we emulate user feedback using a (hidden) quality measure Φ,
which is not known to the learning algorithm. We follow the same protocol used in [4]:
for each dataset, a set P of frequent patterns is mined without prior user knowledge. We
assume that there exists a user ranking ̂R on the set P , derived from Φ, i.e. X � Y ⇔
Φ(X) > Φ(Y ). Thus, the task is to learn a logistic function ϕlogistic to sample frequent
patterns which approximates Φ. We use surprisingness surp as Φ, where surp(X) =
max{supD(X) −

∏|X|
i=1 supD({i}), 0}.
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Fig. 1. Effects of the parameter η of DISPALE on Regretmax, RegretAvg and � = 0. Results
are aggregated over data sets and the three feature combinations (I, IT, ILFT). Regret values are
normalized to the range [0,1] based on the maximum regret value.

To compare the performance of the different approaches, we use cumulative regret,
which is the difference between the ideal value of a certain measure M and its observed
value, summed over iterations for each dataset. At each iteration t, we evaluate the regret
of ranking pattern Xi by Φ as follows: we compute the percentile rank pct.rank(Xi)
by Φ of each pattern Xi ∈ X t (1 ≤ i ≤ k) as pct.rank(Xi) = (DI + DE

2 )/|P| where
DI = |Y ∈ P, Φ(Y ) < Φ(Xi)| and DE = |Y ∈ P, Φ(Y ) = Φ(Xi)|. The percentile
rank over all patterns of X t measures the ability of the learnable function ϕlogistic

to extract interesting patterns, i.e. patterns Xi for which Φ(Xi) is higher. Thus, the
ideal value is 1 (e.g., the highest possible value of Φ over all frequent patterns has the
percentile rank of 1). The regret is then defined as 1−M(1≤i≤k)(pct.rank(Xi)) where
M ∈ {max, Avg} and k = |X t|. We repeat each experiment 10 times with different
random seeds; the average cumulative regret is reported. We ensure that all compared
methods are sampled on the same pattern bases at each iteration.

For the evaluation, we used UCI data-sets, available at the CP4IM repository1. For
each dataset, we set the minimal support threshold such that the size of P is approxi-
mately 145, 000 frequent patterns. Table 1 shows the data set statistics. Each experiment
involves 100 iterations. We compare DISPALE with two state-of-the-art interactive
methods, LETSIP [4], an interactive sampling method to learn a logistic function, and

1 https://dtai.cs.kuleuven.be/CP4IM/datasets/.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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Fig. 2. Effects of the parameter η of DISPALE on Regretmax, RegretAvg and � = 1.

an active preference learning to learn a linear ranking function using RANKSVM. We
address the following two research questions: (i) What effect do DISPALE’s param-
eters have on the quality of learned patterns? (ii) How does DISPALE compares to
LETSIPand RANKSVM?

To select the k patterns to show to the user, we use EFLEXICS [6] to draw the
k weighted random samples proportional to ϕlogistic as in [4] (see Suppl. Mat. [7]
for more details). These patterns are selected according to a TOP(m) strategy, which
picks the m highest-quality patterns. The same procedure is also used in RANKSVM.
Moreover, to help users to relate the queries to each other, we retain the top � patterns
from the previous query and only sample (k−�) new patterns. We use the default values
suggested by [4] for the parameters in EFLEXICS: λ = 0.001, κ = 0.9, A = 0.1 and
TOP(1).

b) Parameter Settings of DISPALE. We evaluate the effects of different parameter
settings on DISPALE: the query size k ∈ {5, 10}, the updating rule and the regular-
ization parameter η. We use the following feature combination: Items (I); Items +
Transactions (IT); and Items + Length + Frequency + Transactions (ILFT).
We consider two settings for �: � = 0 and � = 1. Figure 1 shows the evolution of the
values of Regretmax and RegretAvg for different values of η and for � = 0. Figures 1a
and 1b show that both updating rules (LIN and EXP) ensure the lowest quality regrets
with k = 10 w.r.t. Regretmax. This indicates that our approach is able to identify the
properties of the target ranking from ordered lists of patterns even when the query size
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Table 2. Evaluation of the importance of pattern features and comparison of DISPALE-EXP (η =
0.13) with LETSIPand RANKSVMfor k = 10. Results are aggregated over all datasets. (1):
LETSIP, (2): DISPALE-EXP, (3): RANKSVM. Detailed values of the regret for each dataset and
results of DISPALE-LIN are given in [7].

� = 0 � = 1

Regret: Regretmax Regret: RegretAvg Regret: Regretmax Regret: RegretAvg

Descriptors (1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

I 112.137 114.567 123.130 554.816 553.050 582.303 10.438 11.438 11.465 496.918 499.151 521.634

IT 108.446 91.528 101.635 543.556 492.967 542.595 10.761 11.465 9.192 483.689 449.444 491.014

ITLF 106.006 88.391 100.162 538.848 487.537 540.844 11.275 11.579 9.601 490.818 450.202 490.649

increases. Additionally, the lowest regret values are obtained with η = 0.13. Regard-
ing RegretAvg (see Figs. 1d and 1e), k = 10 continues to be the better query size and
η = 0.13 gives the lowest regret values. Finally, Figs. 1c and 1f compares the regret val-
ues of DISPALE-EXP and DISPALE-LIN for k = 10. As we can seen, DISPALE-EXP

allows to achieve the best regrets. Figure 2 shows the effect of DISPALE’s parameters
on regret values for � = 1. Retaining one highest-ranked pattern from the previous
query w.r.t. Regretmax does not affect the conclusions drawn previously: k = 10 being
the better query size. However, we can see the opposite behaviour w.r.t. RegretAvg (see
Figs. 2d and 2e): querying 5 patterns allows attaining low regret values. Interestingly,
as Fig. 2f shows, DISPALE-EXP outperforms DISPALE-LIN on almost all values of η.
Based on these findings, we set k = 10 and η = 0.13 for the next experiments.

c) Evaluating the Importance of Pattern Features. Table 2 compare different combi-
nation of feature representations of patterns for two settings of query retention �. As we
can see, additional features provide valuable information to learn more accurate pattern
rankings, particularly for DISPALE-EXP where the regrets decrease when adding the
feature T. However, the importance of features depends on the pattern type and the target
measure Φ [5]. For surprising pattern mining, Length is the most likely to be included
in the best feature set, because long patterns tend to have higher values of Surpris-
ingness. Items are important as well, because individual item frequencies are directly
included in the formula of Surprisingness. Transactions are important because this
feature set helps capture interactions between other features, albeit indirectly.

d) Comparing DISPALE with LETSIP and RANKSVM. Table 2 reports the regret
values. When considering Items as a feature, LETSIP performs the best. However,
selecting queries uniformly at random allows DISPALE-EXP to improve slightly the
RegretAvg. Moreover, regarding the other features (IT and ITLF), DISPALE-EXP

always outperforms LETSIPand RANKSVM. When retaining one highest-ranked pat-
tern (� = 1), RANKSVMexhibits the lowest Regretmax values, while LETSIPand
DISPALE-EXP perform very similarly. However, for RegretAvg, DISPALE-EXP per-
forms the best. These results indicate that the learned ranks by DISPALE-EXP in the
target ranking are more accurate compared to those learned by the alternatives. This
confirm the advantage of using discriminants sub-patterns as descriptors.

Figure 3 presents a detailed view of comparison on GERMAN-CREDIT dataset (other
results are given in [7]). Curves show the evolution of the regret (cumulative and non
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cumulative) over 100 iterations of learning for different combination of features. The
results confirm again the capacity of DISPALE-EXP to identify frequent patterns with
lowest regrets. Figures 3c and 3d compares the performance of the three approaches
in terms of CPU-times on two datasets. Overall, learning more complex descriptors
from the user-defined pattern ranking does not add significantly to the runtimes of our
approach: on most of the data sets considered, DISPALE-EXP and LETSIPbehave very
similarly, and the difference is very negligible (see Suppl. Mat [7] for other results).
However, RANKSVMrequires much more time to learn a linear ranking function.

(a) GERMAN-CREDIT: cumulative Regretmax values.

(b) GERMAN-CREDIT: non-cumulative Regretmax values.

(c) German-credit: runtime (d) Chess: runtime

Fig. 3. A detailed view of comparison for different pattern features, k = 10 and � = 0.
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5 Conclusion

In this paper, we have proposed a new approach to the state-of-the art of interactive pat-
tern mining: instead of using static low-level features that have been pre-defined before
the process starts, our approach learns more complex descriptors from the user-defined
pattern ranking. These features allow to capture the importance of item interactions,
and, as shown experimentally, lead to lower cumulative and individual regret than using
low-level features. We have explored two multiplicative updating rules for mapping
weights learned for complex features back to their component items, and find that the
exponential factor gives better results on most of the data sets we worked with. We have
evaluated our proposal only on itemset data so far since the majority of existing work
is defined for this kind of data. But the importance of using complex dynamic features
can be expected to be even higher when interactively mining complex, i.e. sequential,
tree, or graph-structured data. We will explore this direction in future work.

Acknowledgements. A. Hien and S. Loudni were financially support by the ANR project
InvolvD (ANR-20-CE23-0023).
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Abstract. Link forecasting in a temporal Knowledge Graph (tKG)
involves predicting a future event from a given set of past events. Most
previous studies suffered from reduced performance as they disregarded
acyclic rules and enforced a tight constraint that all past events must
exist in a strict temporal order. This paper proposes a novel explainable
rule-based link forecasting framework by introducing two new concepts,
namely ‘relaxed temporal cyclic and acyclic random walks’ and ‘link-
star rules’. The former concept involves generating rules by performing
cyclic and acyclic random walks on a tKG by taking into account the
real-world phenomenon that the order of any two events may be ignored
if their occurrence time gap is within a threshold value. Link-star rules
are a special class of acyclic rules generated based on the natural phe-
nomenon that history repeats itself after a particular time. Link-star rules
eliminate the problem of combinatorial rule explosion, thereby making
our framework practicable. Experimental results demonstrate that our
framework outperforms the state-of-the-art by a substantial margin. The
evaluation measures hits@1 and mean reciprocal rank were improved by
45% and 23%, respectively.

Keywords: Knowledge Graphs · Graph Analytics · Forecasting

1 Introduction

A temporal Knowledge Graph (tKG) is a graph in which the nodes correspond
to (real-world) entities, and the edges correspond to binary relations between the
entities at a particular timestamp. Crucial information that can facilitate end-
users to achieve socio-economic development lies hidden in these graphs. Link
forecasting is an important graph analytical technique that aims to predict a
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future event based on a given set of past events drawn from a tKG. Briefly, a link
forecasting framework involves the following steps: (i) generating logical rules
by performing random walks on a tKG and (ii) identifying suitable candidates
for a missing entity of a given query using the generated rules.

Example 1. Figure 1 shows a hypothetical temporal Knowledge Graph contain-
ing 5 distinct entities (nodes) and 7 links (temporal edges). A link, say (Robin,
visit, France, 05/06), means that a relation ‘visit’ exists between the subject
entity ‘Robin’ and the object entity ‘France’ at a timestamp ‘05/06’. Given a
query link (Fred, visit, ?, 13/06), the problem of link forecasting is to traverse
the tKG shown in Fig. 1, which contains all the past events, generate rules, and
use them to identify an appropriate candidate entity to replace ?.

Fig. 1. A temporal Knowledge Graph. The format of the timestamps is DD/MM.

Several frameworks [10,14,15] were described in the literature for link fore-
casting. Unfortunately, these frameworks completely disregard the temporal
information of a link. Many embedding-based frameworks [3–8,16] have exploited
temporal information in a graph to perform link forecasting. However, these
frameworks lack explainability, which is crucial for developing transparent and
interpretable applications. Recently, Liu et al. [9] exploited the concept of ‘logical
rules’ and presented an explainable framework known as TLogic. This framework
implicitly assumes that past events follow a strict temporal order and that cyclic
rules1 alone are sufficient (that is, acyclic rules are not needed) to capture all
the types of patterns in past events. However, this is seldom the case in the
real world. In many applications, the order of two events may not matter if
they occurred within a particular time window. Further, both cyclic and acyclic
rules can be taken into account for link forecasting purposes. As a result, TLogic
misses many useful rules and thus suffers from reduced accuracy.

Example 2. Consider the link (Fred, talk, Robin, 28/05) in Fig. 1. If we enforce
a constraint that past events must follow a strict temporal ascending order, we
cannot perform any random walk from this link to generate rules. However, if we
relax the temporal constraints and permit acyclic walks, we can generate useful
rules for link forecasting.

1 Cyclic/acyclic rules represent the rules generated by performing cyclic/acyclic ran-
dom walks on a tKG, respectively.
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With this motivation, we propose a generic rule-based link forecasting frame-
work called Temporally Relaxed Knowledge Graph Miner (TRKG-Miner). The
proposed framework employs a new time-relaxation parameter, namely maxi-
mum time gap (δ), to capture the irregular occurrence order of temporal events.
Using δ, TRKG-Miner performs relaxed temporal random walks on a tKG and
produces cyclic and link-star rules. Link-star rules represent a subset of acyclic
rules inspired by the star structural pattern [1] in graphs. They facilitate TRKG-
Miner to be practicable by controlling rule explosion. Experimental results on
various real-world datasets demonstrate that our framework outperforms the
state-of-the-art by a very large margin (improved the metrics hits@1 by 45%
and mean reciprocal rank by 23%).

The rest of the paper is organized as follows. Section 2 describes related
work on link forecasting in tKGs. Section 3 describes the problem statement and
Sect. 4 describes the proposed framework. The experimental results are reported
in Sect. 5. Finally, in Sect. 6, we conclude and discuss future research.

2 Related Work

Link prediction and link forecasting are two important graph analytical tech-
niques [13]. Link prediction focuses on predicting missing/incomplete links in a
tKG for any given set of events, whereas link forecasting aims at predicting links
only for future timestamps. In this paper, we focus on link forecasting, which
is a very active research problem that lies at the intersection of three prevalent
fields: graph theory, machine learning, and data mining.

Several embedding-based frameworks, such as RESCAL [12], TransE [2],
DistMult [15], and ComplEx [14], have been described in the literature for pre-
dicting links in a static Knowledge Graph. A key limitation of these frameworks is
that they disregard the temporal information that may exist between the nodes.
When confronted with this problem in real-world applications, researchers ini-
tially extended the existing frameworks to accommodate temporal information.
For instance, Leblay and Chekol [8] described TTransE by extending TransE to
handle tKGs, Garćıa-Durán et al. [3] discussed TA-DistMult by extending Dist-
Mult, and Lacroix et al. [7] described TNTComplEx by extending ComplEx.
It was observed that these extended frameworks do not capture the temporal
information of the graphs properly and thus suffer from the performance issues.

CyGNet by Zhu et al. [16], leverages the concept that facts/links often show
repetition to describe an embedding-based model that predicts future events and
also identifies recurring facts. Jin et al. [6] described a Recurring Neural Network-
based embedding framework for link forecasting called RE-Net. Han et al. [5]
described an explainable approach for link forecasting using graph neighborhood
sampling and attention propagation networks. They were also the first to pro-
pose the concept of inverse relation for unrestricted back-and-forth walking on
temporal knowledge graphs, to the best of our knowledge. Unfortunately, these
embedding-based frameworks lack explainability, which is crucial for developing
transparent and interpretable applications.
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An advantage of rule-based frameworks over embedding-based ones is that
they greatly help in human understanding of both the results and the link pre-
diction process since embeddings can only be treated as a black box. Another
advantage is that such frameworks are highly generalizable since we can reuse
the rules mined from one dataset to another [9]. AnyBURL [11] samples random
walks for generating rules which are then used for link prediction in static KGs.
The key limitation of this framework is that it is designed only for static Knowl-
edge Graphs. TLogic [9] extends AnyBURL to accommodate temporal dynamics
and is the first explainable framework that successfully does link forecasting on
tKGs. Although TLogic is the current best algorithm available for link forecast-
ing in tKGs, it suffers from performance issues as it only considers cyclic rules
and enforces a strict temporal constraint on the occurrence order of events. This
paper aims to improve the performance of link forecasting by tackling the issues
encountered by TLogic.

3 Problem Statement

Let E = {e1, e2, · · · , em}, m ≥ 1, be a set of entities. Let R = {r1, r2, · · · , rn},
n ≥ 1, be a set of relations. Let T = {t1, t2, · · · , to}, o ≥ 1, be an ordered
set of timestamps. A link (or an edge), denoted as li, i > 0, is a quadruple
(esub, r, eobj , t), where esub ∈ E corresponds to a subject entity, r ∈ R repre-
sents a relation, eobj ∈ E is an object entity, and t ∈ T represents a times-
tamp. For each link li = (esub, r, eobj , t), there exists an inverse link, denoted as
l̂i = (eobj , r−1, esub, t), that allows us to perform graph walks along this link in
both directions. The relation r−1 is called the inverse relation of r. A temporal

Knowledge Graph, denoted as tKG, is a set of links, i.e., tKG =
p⋃

i=1

li, p ≥ 1.

Example 3. Let E = {Fred,Robin, France,Belgium, Spain} be the set of enti-
ties. Let R = {talk, visit} be the set of relations. Let T = {14/05, · · · , 05/06}
be the set of timestamps. A link, say l1 = (Robin, visit, France, 05/06), where
‘Robin’ is a subject entity, ‘visit’ is a relation, ‘France’ is an object entity,
and ‘05/06’ is a timestamp. For this link, there exists an inverse link l̂1 =
(France, visit−1, Robin, 05/06). A hypothetical temporal Knowledge Graph con-
taining all such links is shown in Fig. 1.

Problem Statement. Given a query containing a future timestamp, say
(esub, rx, ?, tfuture) or (?, rx, eobj , tfuture), the goal of link forecasting is to pre-
dict a missing (object or subject) entity. The term tfuture represents a future
timestamp that does not exist in the tKG. That is, tfuture > to and tfuture �∈ T .

Example 4. The tKG shown in Fig. 1 records the events that happened from
‘19/05’ to ‘05/06’ in a year. Given a query with an unseen future timestamp,
say (Fred, visit, ?, 13/06), the goal of link forecasting is to predict an appropriate
candidate entity to replace ?.
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4 Proposed Framework: TRKG-Miner

Temporal Relaxation. Since the real world is complex and driven by conve-
nience, events may or may not happen in an exact temporal order. Hence, this
paper argues that the order between past events must be considered (respec-
tively, ignored) if there exists (respectively, does not exist) a significant time gap
between them. To capture our argument, we introduce a new parameter, called
maximum time gap (δ). We ignore the temporal occurrence order of two events
if their time gap is less than or equal to δ.

Definition 1. Relaxed Temporal Random Walk: A Relaxed Temporal Ran-
dom Walk2, denoted as W, is an ordered set of links such that the time gap
between any two consecutive links is no more than the user-specified maximum
time gap (δ).

That is, W = 〈(e1, r1, e2, t1), (e2, r2, e3, t2) . . . (en, rn, en+1, tn)〉, n > 0, ti ≥
(ti−1 − δ), and i ∈ [1, n].

Example 5. Consider the following sequence of links in Fig. 1: 〈(Belgium,
visit−1, F red, 24/05), (Fred, talk,Robin, 28/05), (Robin, visit, Spain, 25/05)〉.
The existing frameworks do not consider the above sequence of links as a random
walk because the link (Fred, talk,Robin, 28/05) violates the strict temporal con-
straint that it has to occur before the link (Robin, visit, Spain, 25/05). However,
if we relax the temporal constraint that the actual order of events can be ignored
if their occurrence is within a particular time gap, say 4 days, i.e., δ = 4, we can
consider the above sequence of links as a relaxed temporal random walk.

Definition 2. Relaxed Temporal Rule: Let Ei and Ti represent entity and
timestamp variables, respectively. A Relaxed Temporal Rule (See footnote 2) of
length n ∈ N is defined as ((Es, rh, Eo, Tn+1) ← ∧i(Ei, ri, Ei+1, Ti)), with the
constraint Ti ≥ Ti−1 − δ; i ∈ [1, n].

Example 6. The following is an example of a Relaxed Temporal Rule extracted
from the tKG in Fig. 1: (E1, visit, E3, T3) ← (E1, visit, E2, T1)∧(E2, talk, E3, T2)

In a Relaxed Temporal Rule, the left-hand side of the arrow is called the
rule head, while the right-hand side is called the rule body, which is represented
by an ordered conjunction of body links (Ei, ri, Ei+1, Ti). All the entities and
timestamps are variables, whereas all the relations are fixed. rh is called as the
head relation. A rule of this form implies that if the rule body holds along with
the given time constraints, then the rule head is true.

Definition 3. Cyclic Relaxed Temporal Random Walk: A relaxed tempo-
ral random walk, W , is said to be a Cyclic Relaxed Temporal Random Walk,
denoted as CW , if the walk starts and end at the same entity (or node). That
is, CW = 〈(e1, r1, e2, t1), (e2, r2, e3, t2) . . . (en, rn, e1, tn)〉
2 Throughout this paper, we will use ‘walks’ and ‘rules’ to refer to relaxed temporal

random walks and relaxed temporal rules, respectively.
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Example 7. Consider the following walk on the tKG in Fig. 1: 〈(Robin, visit,
Spain, 15/05), (Spain, talk, France, 20/05), (France, visit−1, Robin, 05/06)〉.

This is a cyclic relaxed temporal random walk because it starts and ends
with the same entity, i.e., Robin.

Definition 4. Relaxed Temporal Cyclic Rule: A Relaxed Temporal Cyclic
Rule is a Relaxed Temporal Rule generated from a cyclic walk by generalizing the
entities and timestamps with variables. While the inverse of the last link becomes
the rule head (E1, r

−1
h , En, Tn), the other links are mapped to body atoms, where

each link (ei, ri, ei+1, ti) is converted to the body atom (Ei, ri, Ei+1, Ti). That is,
the final rule is of the form (E1, r

−1
h , En, Tn) ← ∧l

i=1(Ei, ri, Ei+1, Ti)

Example 8. Continuing with Example 7, the cyclic relaxed temporal ran-
dom walk 〈(Robin, visit, Spain, 15/05), (Spain, talk, France, 20/05), (France,
visit−1, Robin, 05/06)〉 can be generalized using variables as 〈(E1, visit, E2, T1),
(E2, talk, E3, T2), (E3, visit−1, E1, T3), where E1, E2, E3, T1, T2 and T3 are gen-
eralized from ‘Robin,’ ‘Spain,’ ‘France,’ ‘15/05,’ ‘20/05,’ and ‘05/06’ respectively.
The relaxed temporal cyclic rule generated from the generalized cyclic relaxed
temporal random walk is:

(E1, visit, E3, T3) ← (E1, visit, E2, T1) ∧ (E2, talk, E3, T2) (1)

Link-Star Rules. Since cyclic rules alone can be inadequate for efficient link
forecasting, there is a need for generating acyclic rules as well. However, the lim-
itation of producing both cyclic and acyclic rules is the combinatorial explosion
problem, which involves producing too many rules. To address this problem,
we exploit the concept of star structure in graph theory to discover a subset
of acyclic rules called Link-star rules, which are formed from acyclic temporal
random walks.

Definition 5. Acyclic Relaxed Temporal Random Walk: An Acyclic
Relaxed Temporal Random Walk is a Relaxed Temporal Random Walk that does
not contain any cycles (repeated entities in the walk).

Example 5 shows an Acyclic Relaxed Temporal Random Walk of length 3.

Definition 6. Link-star (L-star) Rule: A Link-star (or L-star) Rule is a
Relaxed Temporal Rule generated from an acyclic walk of length 3 by gener-
alizing the entities and timestamps with variables. While the second link in
the walk becomes the rule head (E2, rh, E3, T2), the other two links are mapped
to body atoms, where each link (ei, ri, ei+1, ti) is converted to the body atom
(Ei, ri, Ei+1, Ti). The final rule is of the form (E1, rh, E2, T1) ← (E0, r1, E1, T0)∧
(E2, r3, E3, T2)

Example 9. The following is an L-star rule formed from the acyclic walk given
in Example 5.

(E1, talk, E2, T1) ← (E0, visit−1, E1, T0) ∧ (E2, visit, E3, T2) (2)
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A single link-star rule encompasses several acyclic rules. Consider a crude
generalization of the link-star rule given in Eq. 2 as B ← A ∧ C by representing
links as distinct letters. Then B ← A, B ← C, and B ← A ∧ C are all subsets
of this rule. In this way, we are able to prevent the repetition of acyclic rules.
Further, TLogic has a strict criteria for forming cyclic rules, where the rule body
must also terminate at the rule head, all while following the temporal constraints.
It employs a brute-force search to find such cyclic walks. Thus a lot of random
walks are wasted as they do not lead to the creation of any rules. In contrast,
the search for link-star rules does not contain any such criteria, and thus almost
every sampled walk is utilized to generate a rule.

Algorithm 1. Rule Generation
Input: A temporal Knowledge Graph
Parameters: Number of searches s ∈ N, ACR, δ
Output: Set of Relaxed Temporal rules RTR

1: for links with relation r ∈ R do
2: for i ∈ [s] do � Repeat with [ACR ∗ s] for L-star rules
3: Sample a walk w
4: Create rule rt from w
5: Compute rule confidence conf(rt)
6: RTR ← ∪(rtr, conf(rt))
7: end for
8: end for

To evaluate the quality of the generated rules, we consider the conventional
confidence measure. The confidence of a cyclic rule is the ratio of its rule
groundings to body groundings in the tKG. A body grounding (also known as
‘matching’ or ‘instantiation’) for a rule is a tuple of entities and timestamps
(e1, t1, e2, t2, · · · , tn, en+1), such that each body link (ei, ri, ei+1, ti) exists in the
tKG. For cyclic rules, a body grounding is also a rule grounding if the head link
with a future timestamp, i.e., (e1, rh, en+1, tn+1); tn ≤ tn+1+δ, also exists in the
tKG. We do not use the same measure for L-star rules. Instead, we implicitly
mine acyclic rules with high confidence by starting with the head relation while
performing acyclic walks. This saves a significant amount of time and computa-
tion resources, and also results in better forecasting accuracy.

Example 10. For the rule given by Eq. 1, one possible body grounding is
(Fred, 14/05, Belgium, 19/05, Spain, 20/05, F rance). However, there is no link
of the form (Fred, visit, France, tx); tx > 25/05. Thus it is not a rule grounding.

(Robin, 15/05, Spain, 20/05, F rance, 25/05, Belgium) is another valid body
grounding for that rule. Further, this tKG contains the link (Robin, visit,
France, 05/06), and 05/06 > 25/05. Thus, this body grounding is also a rule
grounding.

To allow for flexibility in the number of walks performed during rule gen-
eration, we define a parameter which can be controlled by the user. The ratio
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of acyclic walks to cyclic walks to be performed during rule generation is given
by Acyclic to Cyclic Ratio or ACR. For example, if the number of searches
is 100 and ACR = 0.5, then 50 acyclic walks and 100 cyclic walks will be per-
formed during rule generation. Our experimentation indicates that increasing
ACR results in improved forecasting accuracy but longer runtime. Using the
above concepts, we present TRKG-Miner, which consists of algorithms for the
following two steps: (i) Rule Generation (ii) Rule Application

Rule Generation. The rule generation process is shown in Algorithm 1. We
iterate over all the relations to generate both cyclic and L-star rules. Iterat-
ing over all relations is necessary to extract rules for less frequently occurring
relations. First, both cyclic and acyclic relaxed temporal random walks are per-
formed on the tKG. During implementation, we always begin sampling walks
with the head relation. For cyclic rules, we begin with the last link and work
backwards, and for L-star rules we begin with the middle link and then sample
the other two links. During walk sampling, since there can be multiple possible
next links, priority is given to the links which have a timestamp close to the head
link according to the probability distribution given in Eq. 3 (tu is the current
timestamp and Tc = {tc1 , ...tci , ..., tcs} is a set of timestamps of the candidates)
Next, the entities and timestamps are generalized with variables to create a rule
from the performed walk.

P(tc;Tc, tu) =
exp(−|tu − tc|)∑
Tc

exp(−|tu − tci |)
(3)

Rule Application. The algorithm for finding candidates for a given query
(equery, rquery, ?, tquery) begins by pruning the rules according to a chosen min-
imum support (minsup). Then, all the rules whose head relation matches the
query relation are selected, and body groundings are determined for each rule.
From each grounding of the form (e0, t0, equery, t1, e2, t2, e3), e2 represents a can-
didate and t1 represents its candidate timestamp for each L-star rule. For cyclic
rules, from each grounding of the form (equery, t0, ..., ti, ei, ..., tn, en), the last
entity en and timestamp tn are selected as a candidate and its candidate times-
tamp.

To compare between the different candidates, a score is calculated for each
candidate according to the scoring function given in Algorithm 2 (Line 6, λ and
α are experimentally-determined parameters). The reason for considering this
scoring function is that recent events are more relevant to the query than older
events and that the candidates from rules with a better rule quality metric should
receive a higher score. Cyclic rules get lesser priority over acyclic rules because
the search criteria for generating cyclic walks is based on loops of a short length
like 2-3, which does not work well in sparse segments of the tKG. This is not
the case with l-star rules, since they do not have any such criteria and they are
acyclic by nature. Finally, the top-k candidates ordered by score are returned.
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Algorithm 2. Rule Application
Input: RTR, Query (equery, rquery, ?, tquery)
Parameters: No. of candidates required (k), minsup
Output: Answer candidates A

1: RTR ← {rt|support(rt) > minsup}
2: for each rt with relation rquery do
3: Find all body groundings for rt
4: for each body grounding do
5: Get candidate a and candidate timestamp ta
6: score(a) ← α(exp(−λ(tquery − ta))) + (1 − α)conf(rt)
7: end for
8: end for
9: Return top-k candidates ordered by score

5 Experiments and Results

In this section, we evaluate the proposed TRKG-Miner3 against 11 existing
frameworks (DistMult [15], ComplEx [14], AnyBURL [10], TTransE [8], TA-
DistMult [3], DE-SimplE [4] , TNTComplEx [7], CyGNet [16], RE-Net [6],
xERTE [5], and TLogic [9]) on three real-world datasets and show that TRKG-
Miner outperforms all of the evaluated frameworks by a very large margin. Inte-
grated Crisis Early Warning System (ICEWS) is the most widely used dataset
for link prediction on tKGs. We use the datasets ICEWS14, ICEWS18, and
ICEWS0515. They contain information about world events from 2014, 2018, and
2005-2015 respectively. We use the same train-test-validation split as xERTE
[5]. The test and validation sets contains timestamps which are relatively in the
future from the training set. We use hits@k (k={1,3,10}) and Mean Recipro-
cal Rank as performance metrics. The hits@k metrics measures the fraction of
times that the correct entity is present among the top-k returned candidates.
For example, hits@1 measures the fraction of times when the top-ranked candi-
date is the correct entity for a given query. MRR is defined as the average of all
reciprocal ranks of the correct query answers across all queries, where reciprocal
rank is 1/x for a rank x. Please note that we have obtained consistent results
on all the datasets, but some of them are omitted owing to page constraints.

Table 1 presents the performance results of TRKG-Miner against the existing
link forecasting frameworks. It can be observed that TRKG-Miner outperforms
all of its competitors on all of the evaluated datasets. Notably, the results of
TRKG-Miner for hits@1 metrics improve by approximately 45% on average,
which means the accuracy of finding the correct result from the first candidate
increases. This helps in making accurate predictions in one shot without having
to rely upon multiple candidate predictions. There is also a significant improve-
ment in hits@3. Consequently, the MRR is also improved by about 23%.

Table 2 records the change in the number of rules and forecasting efficiency
when varying ACR during rule generation. We find that increasing the fraction
3 Code available at https://github.com/ab1nash/TRKG-Miner.

https://github.com/ab1nash/TRKG-Miner
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Table 2. Model performance on
varying ACR (ICEWS14, δ = 1)

ACR No. of Rules MRR h@1 h@3

0 31746 0.4437 0.3626 0.4825

0.25 44609 0.4666 0.3973 0.4968

0.5 53787 0.4805 0.4183 0.5053

1 67713 0.4907 0.4339 0.5113

2 88854 0.4950 0.4402 0.5145

3 104251 0.5028 0.4514 0.5189

Table 3. Model performance on
varying δ (ICEWS14, ACR = 1)

delta No. of rules MRR h@1 h@3

0 63037 0.4403 0.3662 0.4712

1 67713 0.4907 0.4339 0.5113

3 67283 0.4895 0.4313 0.5099

7 65351 0.4867 0.4271 0.5073

15 65279 0.4821 0.4207 0.5043

30 65718 0.4803 0.4181 0.5036

45 66925 0.4844 0.4230 0.5068

90 70627 0.4867 0.4269 0.5084

of L-star rules leads to an increase in prediction accuracy. However, this comes
at the increased cost of run-time since more rules are being mined. ACR can
be tuned based on the time and computing power available. Another important
observation is that when ACR = 0, only cyclic rules are mined. This demon-
strates how our approach generates a significant number of new useful rules as
compared to previous approaches.

Table 3 records the change in the number of rules and forecasting efficiency
when varying maximum time gap (δ). With an increase in δ, the number of
generated rules increases. There is also a significant increase in forecasting effi-
ciency when changing δ from 0 to 1, which indicates the usefulness of introducing
temporal relaxation. We can also observe that with subsequent increase in the
parameter, there is a decrease in error metrics. This leads to the conclusion that
between δ = 1 to δ = 90, a large number of the new rules introduced are noisy.
For other datasets, the optimal value of δ can be found by simple parameter
tuning. Generally, it is best to keep it as small as possible.

6 Conclusion

We introduce TRKG-Miner, a rule-based link forecasting framework that
improves forecasting efficiency by finding additional useful rules over previous
approaches. We achieve this by the means of two improvements: (i) Adding
time relaxation parameters to better capture the irregular occurrences of events
within a time gap. (ii) Introducing and mining Link-star rules based on the prin-
ciple that past events repeat themselves. Our experimentation indicates that we
achieve significantly better results than the past approaches. Future extensions
can include link forecasting on datasets with heterogeneous timestamps, a frame-
work for handling time intervals (and not just timestamps), and adding more
complex variations of cyclic and acyclic rules.
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Abstract. It is a well-established fact that strategic placement of items
on the shelves of a retail store significantly impacts the revenue of
the retailer. Consumer goods sold in retail stores can be classified into
essential and typically low-priced convenience items, and non-essential
and high-priced shopping items. Notably, the lower-priced convenience
items are critical to ensuring consumer foot-traffic, thereby also driv-
ing the sales of shopping items. Moreover, users typically buy multiple
items together (i.e., itemsets) to facilitate one-stop shopping. Hence, it
becomes a necessity to strategically index and place itemsets that con-
tain both convenience items and shopping items. In this regard, we pro-
pose a consumer-good-type aware and revenue-conscious itemset index-
ing scheme for efficiently retrieving high-revenue itemsets containing
both convenience and shopping items. Moreover, we propose an item-
set placement scheme, which exploits our indexing scheme, for improv-
ing retailer revenue. Our performance study with two real datasets shows
that our framework is indeed effective in improving retailer revenue w.r.t.
a reference scheme.

Keywords: Pattern Mining · Utility Mining · Retail · Indexing ·
Itemset Placement · Convenience Items · Shopping Items

1 Introduction

Retail stores provide consumers with easy access to items, and try to improve
their revenue through increased sales. Typical retail stores comprise multiple
shelves (racks), which contain slots for placement of items. Retail slots can either
be premium or non-premium. Premium slots are those with high product visibil-
ity/accessibility e.g., slots near the eye/shoulder level of users and impulse-buy
slots near checkout counters; all other slots are non-premium. Items placed in
premium slots have higher probability of sales than items placed in non-premium
slots. Moreover, customers typically prefer to buy a set of items (i.e., itemsets [1])
as opposed to individual items for the convenience of one-stop shopping. There-
fore, there is an opportunity for the retailer to improve its revenue through
placement of itemsets in premium retail slots [2,5,6,10,16–18,20].
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Consumer goods can be classified into three broad categories, namely conve-
nience items, shopping items and specialty items [4,11,15]. Convenience items are
essential and low-priced daily-use products with frequent consumer demand e.g.,
newspapers, dairy products, cigarettes and medicines. They reflect the needs of
consumers. In contrast, shopping items are higher-priced and non-essential prod-
ucts with infrequent consumer demand e.g., televisions, furniture and refrigera-
tors. They reflect the wants of consumers. Specialty goods, such as rare works
of art, are purchased by connoisseurs typically at auction houses, and are gen-
erally never sold at retail stores. Since our focus is on retail stores, we consider
placement only for convenience and shopping items in the premium slots.

Given that convenience items are essential products that consumers frequently
need, they cater to a loyal consumer base, thereby significantly driving consumer
foot-traffic; this also drives the sales of shopping items. Convenience items tend
to attract consumers to the retail store and once a consumer is already in that
store, she can purchase itemsets containing the more expensive shopping items as
well. Hence, if retailers greedily placed only itemsets containing the higher-priced
shopping items in the premium slots, they would fail to capture the importance
of convenience items in attracting foot-traffic. This would lead to some of the
convenience items not being placed as premium slots are limited in number. This
would reduce foot-traffic, thereby significantly degrading retailer revenue.

As a case in point, in the past decade, SuperFresh [7] (a supermarket brand of
Key Food Stores) decided to halt sales of convenience items (e.g., low-priced gro-
cery products) to increase its focus on selling higher-priced shopping items. How-
ever, they started losing foot-traffic precipitously and soon became bankrupt [7].
This motivates the need to place at least a minimum number minci of instances of
each convenience item ci to ensure adequate foot-traffic for driving sales. We refer
to this as the minimum placement criteria (MPC). Here, minci is application-
dependent and should be decided by the retailer. In essence, the retailer needs
to strategically place itemsets in a consumer-good-type aware manner i.e., the
placed itemsets should contain both convenience and shopping items.

Existing research efforts can be broadly categorized into three types, namely
(a) approaches that consider consumer-good-types [4,11,14,15] (b) approaches
for mining high-utility itemsets (HUIs) [3,8,9,12,21,22] and (c) approaches for
retail itemset placement [5,16–20]. While the research in (a) considers consumer-
good-types, it considers only the placement of individual items as opposed to
itemsets. The research in (b) and (c) focuses on identifying and placing HUIs
respectively, but fails to consider consumer-good-types. Given that existing HUI
mining approaches typically apply a utility (revenue) threshold for pruning away
the low-utility itemsets, they often tend to prioritize the placement of itemsets
containing expensive shopping items as compared to the low-priced convenience
items. However, they fail to capture how the pruned-away low-revenue itemsets
containing convenience items also play a significant role in driving foot-traffic
by attracting consumers to the store. In essence, absence of itemsets containing
convenience items could significantly degrade retailer revenue due to loss of foot-
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traffic. Notably, none of the existing works address the issue of consumer-good-
type aware placement of HUIs in retail stores.

This work addresses the problem of incorporating consumer-good-type aware-
ness during itemset placement in premium retail slots for improving retailer rev-
enue. Our proposed problem framework requires as input a database D of user
purchase transactions and a set H of HUIs extracted from D using any existing
HUI mining algorithm [8,22]. Each item is associated with a price, a frequency of
sales and a consumer-good-type (i.e., convenience versus shopping items). Fur-
ther, each convenience item has a minimum placement criterion (MPC). Given
TS premium slots in a retail store, the problem is to place HUIs in these slots to
improve retailer revenue such that MPC for each convenience item is satisfied.

To address this problem, we need: (a) to efficiently retrieve itemsets con-
taining convenience items to satisfy their MPC and (b) to place itemsets in the
limited number of premium slots in a consumer-good-type aware manner. To
address (a), we propose the Consumer-good-type aware and Revenue-conscious
Itemset indexing Scheme (CRIS). CRIS comprises Ncon hash buckets, one for
each convenience item. Each hash bucket is associated with a linked list of the
top-k high-revenue itemsets containing the convenience item corresponding to
that hash bucket. Observe how this enables CRIS to quickly retrieve itemsets
containing any given convenience item to satisfy MPC.

To address (b), we propose the Consumer-good-type aware and Revenue-
conscious ItemSet Placement Scheme (CRISP). Initially, CRISP greedily places
the top-revenue itemsets in the slots until all slots are exhausted. Then CRISP
keeps progressively replacing the already placed low-revenue itemsets (starting
from the placed itemset with the lowest revenue) with itemsets containing con-
venience items. These itemsets are obtained from the CRIS index. This process
continues until MPC of all convenience items is satisfied. Notably, CRISP does
not replace the placed itemsets containing convenience items to prevent ineffi-
ciencies. Observe how CRISP satisfies MPC by replacing only the low-revenue
placed itemsets. Our key contributions are three-fold:

1. We introduce the problem of consumer-good-type aware itemset placement
in retail stores for improving retailer revenue.

2. We propose the CRIS index for efficiently retrieving HUIs in a consumer-
good-type aware manner. We further propose the CRISP itemset placement
scheme, which exploits CRIS, for improving retailer revenue.

3. We conduct a performance study with two real datasets to demonstrate that
our framework is indeed effective in improving retailer revenue w.r.t. a refer-
ence scheme.

To our knowledge, this is the first work to address itemset placement in retail
stores in a consumer-good-type aware manner. The remainder of this paper is
organized as follows. Section 2 discusses related works, while Sect. 3 describes
the proposed problem framework. Section 4 presents our proposed CRIS index
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and our proposed CRISP itemset placement scheme. Section 5 reports our per-
formance study. Finally, we conclude in Sect. 6 with directions for future work.

2 Related Work

In this section, we discuss (a) approaches concerning consumer-good types (b)
utility mining approaches (c) itemset placement approaches for retail stores.

The work in [11] has made the distinction between convenience goods, shop-
ping goods and specialty goods. Moreover, the work in [4] discussed how such
consumer goods classification can be integrated with retail strategy. The work
in [15] suggested that convenience goods and shopping goods should follow dif-
ferent modes of advertising. The work in [14] aimed at demand forecasting for
new convenience goods by using a stochastic evolutionary adoption model.

The Utility Pattern Growth algorithm [22] exploits the Utility Pattern Tree,
which maintains information about HUIs for pruning purposes. Moreover, the
work in [21] discussed an approach for mining closed HUIs for both dense and
sparse datasets. The work in [9] proposed the LHUI-Miner and PHUI-Miner
algorithms, which consider that itemset utilities may vary w.r.t. time. Further,
the work in [12] finds HUIs by using two upper-bounds, namely the tight max-
imum average utility upper-bound and the maximum remaining average utility
upper-bound, in conjunction with a list-based data structure. The work in [3]
proposed an approximate HUI mining approach for scenarios with noisy data.
Additionally, the work in [13] proposed a high average utility pattern mining
approach, which uses the HAUP-List data structure for compactly storing infor-
mation about patterns, in the context of dynamic databases.

Moreover, efforts have been made to improve HUI placement approaches
based on different item sizes [5], slot premiumness [20], sale urgency and product
expiry [16,18], diversification of products [17], and item inventory [19]. Notably,
none of the existing approaches consider the consumer-good type of the items.

3 Proposed Framework of the Problem

Consider a set D of user purchase transactions over a set Υ of items, where
all transactions in D contain unique and non-repeating items. Each item i in
Υ occupies only a single retail slot, and is associated with price ρi, frequency
of sales σi, consumer-good-type μi, and minimum placement criterion (MPC),
quantified by θi. Recall that the minimum placement criteria (MPC) pertains to
the need for placing at least a minimum number of instances of each convenience
item to ensure adequate foot-traffic. We set μ = 1 for all convenience items and
μ = 0 for all shopping items. The value of θ is application-dependent and can
be decided by the retailer based on domain knowledge. Shopping items are not
associated with any MPC. Hence, θ = 0 for all shopping items.
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Given that all transactions in D comprise unique items, we simply count the
number of instances of a given item i in D to compute its frequency of sales σi.
Moreover, in this paper, we consider the net revenue of an item as a measure
of utility of the item and the average net revenue of an itemset as a measure
of utility of the itemset based on the approach proposed in [5]. We shall now
explain these terms and present the proposed problem framework.

We compute the net revenue NRi of an item i as the product of its
frequency of sales σi and its price ρi. Hence, NRi = σi ∗ ρi.

For computing the frequency of sales of an itemset, we determine the number
of occurrences of that itemset across all transactions in D. We compute the net
revenue NRz of an itemset z as the product of its frequency of sales σz and
its price ρz. Here, the value of ρz is computed as the sum of the prices of all
the individual items in itemset z. Hence, NRz = σz ∗ ∑

i∈z ρi. Observe that the
definition of the net revenue of an itemset is biased towards larger itemsets as
they are likely to have higher NR albeit at the cost of occupying more slots. To
address this bias, we introduce the notion of the average net revenue (ANR)
of an itemset. We compute ANRz of an itemset z as the net revenue of z divided
by the total number of the items in z. Hence, ANRz = (σz ∗ ∑

i∈z ρi) / |z|.
Problem Statement: Consider a database D of user purchase transactions
over items in set Υ . Each item i in Υ has price ρi, frequency of sales σi, a
consumer-good-type μi and a minimum placement criterion (MPC). Given a set
H of HUIs extracted from D (using any existing HUI mining approach [8,22])
and TS premium slots, the problem is to place HUIs in these slots to improve
retailer revenue such that MPC for each convenience item is satisfied.

4 Proposed Itemset Placement Framework

This section discusses our proposed framework, which includes (a) our proposed
CRIS index and (b) our proposed CRISP itemset placement scheme, which
exploits the CRIS index, for improving retailer revenue.

Basic Idea: Placement of itemsets in premium slots of a retail store signifi-
cantly impacts retailer revenue. High-utility itemsets (HUIs) can be extracted
for populating the slots using existing HUI mining approaches. However, these
approaches are oblivious to consumer-good-types. Given that they typically apply
a utility (revenue) threshold for pruning away the low-utility itemsets, they often
tend to prioritize the placement of itemsets containing expensive shopping items
as compared to the low-priced convenience items.

It is well known that convenience items act as the key driver of foot-traffic [7],
which in turn influences the sales of both shopping and convenience items. Hence,
if we were to greedily place HUIs based only on their average net revenue (ANR),
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there is a possibility of some of the convenience items not being placed. This
would reduce foot-traffic, thereby degrading retailer revenue. In essence, at least
a minimum number of instances need to be placed for each of the convenience
items to ensure adequate foot-traffic for driving sales. As discussed previously
in Sect. 1, this is the minimum placement criteria (MPC). To satisfy MPC, we
propose the CRIS index for efficient retrieval of HUIs associated with each of
the convenience items. Our CRISP itemset placement scheme exploits CRIS for
placing itemsets in a consumer-good-type aware manner to satisfy MPC. Figure 1
presents an overview of our proposed framework.

Fig. 1. Schematic diagram of our proposed itemset placement framework

Description of the CRIS Index: Given Ncon convenience items, CRIS com-
prises Ncon hash buckets, one for each convenience item. Each hash bucket i has
an entry of the form {i, NRi, ptri}, where i is the unique identifier of a given
convenience item, NRi is the net revenue of the item and ptri is the pointer to
the linked list of HUIs containing item i. Each entry of the linked lists is of the
form {z, ANRz}, where z refers to an itemset and ANRz is the average net rev-
enue of z. The entries in the linked lists are sorted in descending order of ANR.
Further, each linked list stores only the top-k HUIs containing the corresponding
convenience item. Here, the value of k is application-dependent. For efficiently
retrieving HUIs containing the ith convenience item, CRIS can directly traverse
to the ith hash bucket and traverse the corresponding linked list to retrieve the
relevant HUIs, until MPC is satisfied.

Notably, the hash buckets in CRIS are sorted in descending order of NR of
the convenience items for prioritizing the placement of convenience items with
higher NR. This helps in further improving the retailer revenue. Figure 2(b)
depicts an illustrative example of CRIS with five convenience items, namely
C1 to C5. Observe how the linked list corresponding to each convenience item
comprises itemsets containing that convenience item. Further, observe that the
linked lists of HUIs are sorted in descending order of ANR and the hash buckets
corresponding to the convenience items are sorted in descending order of NR.

Description of CRISP Itemset Placement Scheme: Initially, CRISP greed-
ily places the input HUIs from set H in the slots starting from the highest-revenue
HUI until all slots have been exhausted. Then it checks MPC w.r.t. each con-
venience item. For each convenience item not satisfying MPC, it traverses the
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Algorithm 1: Itemset placement framework
Input: D: set of transactions; Υ : list of m tuples of the form < i, util, μ > (i,
util, and μ denote the item ID, utility, and good-type of i respectively); I: list
of tuples of form < i, θ > (θ is the value of MPC of i); TS : number of slots
Output: Items placed in TS slots
Variables: H, L: list of tuples of the form < z, util > (z is a set, util is a real
value), C: list of tuples of the form < i, cnt > (i is an item ID, cnt is an int.)

1 Using D, compute set H of HUIs using any HUI mining algorithm
Populating the CRIS index

2 From H, extract itemsets with at least one convenience item and store in L
3 Sort L in the descending order of itemset utility values
4 foreach entry < i, util, μ > in Υ with μ = 1
5 Initialize a hash bucket for i
6 Arrange the hash buckets of each item i in the descending order of utility
7 foreach itemset z ∈ L; foreach item i ∈ z
8 if item i is a convenience item with μ(i)=1
9 Insert z into the hash bucket of i

Placing the itemsets in the premium slots

10 Sort H and place HUIs in TS slots in the descending order of utility
11 Compute the count cnt of each convenience item i in the HUIs placed in TS

slots and insert < i, cnt > in C
12 foreach hash bucket i /*starting with the highest-utility item i*/
13 while θ(i) > cnt(i) /*θ(i), cnt(i) are retrieved from I and C respectively*/
14 Replace the lowest-utility itemset (not containing items from C) in TS

slots, with highest-utility itemset z containing i from ith hash bucket
15 foreach item j ∈ z if item j is a convenience item then cntj+ = 1

16 Remove z from the ith hash bucket

CRIS index to retrieve a high-revenue HUI z containing that convenience item.
Next, it replaces the lowest-revenue placed HUI (not containing any convenience
item(s)) in the retail slots with z. This process is repeated until MPC is satis-
fied for all convenience items. CRISP avoids replacing the already placed HUIs
containing convenience items as the convenience items contained in those HUIs
would need to be re-examined, thereby causing inefficiencies.

Algorithm 1 contains the pseudocode for our proposed framework.

Illustrative Example: Figure 2 depicts an illustrative example of our proposed
framework. Inputs to our proposed framework include convenience items (C1 to
C5) and shopping items (S1 to S10), along with their corresponding attributes.
For simplicity, we assign all convenience items with equal values of θ. Observe
how our approach computes NR and ANR for the inputs HUIs in H, based
on our discussion in Sect. 3. Figure 2(b) depicts an example of the CRIS index.
Observe how for each convenience item, CRIS maintains a linked list of HUIs
sorted based on ANR. For instance, observe how convenience item C3 is associ-
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Fig. 2. Illustrative example of our proposed itemset placement framework

ated with a linked list containing itemsets {S5, C3}, {S1, S3, C3}, and {C1, C3},
that are sorted in descending order of ANR.
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Figure 2(c) depicts an illustrative example of CRISP. Initially, CRISP greed-
ily places HUIs in descending order of ANR until all slots are exhausted. To
address MPC for convenience items, CRISP exploits the CRIS index to place
HUIs containing convenience items. Starting with the convenience item with
highest NR (i.e., item C1), CRISP retrieves the top-1 HUI containing C1 from
CRIS. Since the top-1 HUI (i.e., {C1, S3}) has already been placed, CRISP
retrieves the top-2 itemset containing C1 to satisfy its MPC. Notice how CRISP
replaces the lowest-revenue HUI not containing any convenience item(s) to sat-
isfy MPC for C1. Next, since MPC for C3 has already been satisfied, CRISP
progresses to place HUIs for C5, which is the next convenience item in order
of NR. Observe how satisfying MPC for C5 also satisfies MPC for C2. Thus,
CRISP is able to satisfy MPC for all convenience items.

5 Performance Evaluation

This section reports the results of our performance study. We conducted our
experiments on an Intel(R) Pentium(R) 2.20 GHz processor running on Ubuntu
20.04.1 LTS with a 4 GB RAM. We used Python 3.8.5 for our implementation.

Our experiments used two real retail datasets, namely, Chainstore and Retail.
We extracted these datasets from the open-source SPMF data-mining library1.
Chainstore comprises 46,086 items and 1,112,949 transactions, while Retail con-
tains 16,470 items and 88,162 transactions. Chainstore provides price values,
which we use in our experiments. In contrast, to assign utility values to items in
Retail, we created ten equal buckets in the range [0,1]. Consistent with practice,
we assigned items with lower sales to high-priced buckets and vice-versa. Next,
we assigned a random price to every item corresponding to its range. We set the
value of MPC (θ) for each convenience item randomly in the range [1, 5].

Recall from Sect. 4 that our proposed approach requires a set H of HUIs
as input. In this work, we use the kUI index approach [17] to generate set H.
The kUI index is a multi-level index, where each level corresponds to a partic-
ular itemset size. At every level of the kUI index, the top-λ HUIs are stored in
descending order of revenue for facilitating quick retrieval of a queried itemset
size. We implemented the kUI index with six levels and set λ = 4000 for each
level. Notably, the kUI index is oblivious to consumer-good-types.

Table 1 summarizes the parameters of our performance study. In this work, we
divide each dataset into training and test sets, which contain 70% and 30% of the
transactions respectively. We evaluate the performance of both schemes on the
test set. Our performance metrics include total revenue TR, number NC of con-
venience items, whose MPC is completely satisfied by the placement scheme, and
execution time ET required for identification and placement of HUIs. Note that

1 http://www.philippe-fournier-viger.com/spmf/datasets.

http://www.philippe-fournier-viger.com/spmf/datasets
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in the test phase, we iterate through transactions in the test set and add (item-
set) prices to TR only if the items belonging to the transaction had been placed
as itemsets during the training phase. To our knowledge, existing approaches
do not consider consumer-good-types for itemset placement. Hence, for mean-
ingful comparison, we propose a reference scheme, designated as Randomized
high-utility Itemset Placement scheme (RIP). RIP works as follows. First, RIP
segregates the input HUIs into clusters based on their size i.e., HUIs of size k are
inserted in the kth cluster. Next, RIP randomly selects a cluster and then ran-
domly chooses an HUI from that cluster, and places it. This process is repeated
until all slots are populated. We set k=6 in this work. Notably, RIP places HUIs
of different sizes, thereby making it an efficient approach for improving retailer
revenue. Since RIP is oblivious to consumer-good-types, it tends to ignore the
placement of convenience items.

Table 1. Performance study parameters

Parameter Default Variations

Total no. of premium slots (TS) (103) 15 5, 10, 20, 25

No. of convenience items (Ncon) 120 40, 80, 160, 200

Fig. 3. Effect of varying the total number of premium slots (Retail)

Effect of Variations in the Number of Premium Slots: The results in
Fig. 3 depict the effect of varying the total number TS of premium slots for
Retail. As TS increases, TR increases for both schemes as more slots imply that
more HUIs can be placed, thereby leading to higher revenue. CRISP outper-
forms RIP in terms of TR and NC as it places HUIs in a consumer-good-type
aware manner, thus including HUIs containing both convenience and shopping
items. RIP is oblivious to consumer-good-types, hence it tends to ignore HUIs
containing convenience items. Notably, as TS increases, NC remains constant for
CRISP because CRISP already satisfies MPC for all convenience items. Hence,
increasing TS does not further increase NC . NC remains comparable for RIP
with increase in TS as it places fewer HUIs containing convenience items.



286 R. Mittal et al.

Fig. 4. Effect of varying the total number of premium slots (Chainstore)

Fig. 5. Effect of varying the number of convenience items (Retail)

Fig. 6. Effect of varying the number of convenience items (Chainstore)

The results in Fig. 3(c) indicate that ET increases for both CRISP and RIP
with increase in TS since more HUIs need to be examined for populating a
larger number of slots. CRISP incurs higher ET than RIP since it meticulously
places HUIs in a consumer-good-type aware manner. This is a small price to
pay for improved retailer revenue. The results in Fig. 4 for Chainstore exhibit
comparable trends; the differences are due to varying dataset sizes.

Effect of Variations in the Number of Convenience Items: The results
in Fig. 5 depict the effect of varying the number Ncon of convenience items for
Retail. As Ncon increases, TR remains comparable for both CRISP and RIP.
This occurs as the number of HUIs placed does not change with variations in
Ncon. CRISP outperforms RIP in terms of TR as per the rationale provided for
the results in Fig. 3(a). As Ncon increases, CRISP exhibits considerably increased
NC since it satisfies MPC for a larger number of convenience items as there are
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more convenience items in the input. In contrast, NC remains comparable for
RIP with increase in Ncon since RIP is oblivious to consumer-good-types.

The results in Fig. 5(c) depict that RIP incurs lower ET than CRISP as per
the rationale provided for results for Fig. 3(c). Further, RIP incurs comparable
ET across variations in Ncon as it is oblivious to consumer-good-types. Notably,
the results in Fig. 6 for Chainstore exhibit comparable trends.

6 Conclusion

Strategic placement of items in a retail store significantly impacts retailer rev-
enue. Retail consumer goods can be classified into lower-priced and frequently
purchased convenience items, and higher-priced and less frequently purchased
shopping items. Lower-priced convenience items ensure consumer foot-traffic and
drive the sales of shopping items [7]. Further, since users typically buy itemsets
instead of individual items, we have introduced the problem of consumer-good-
type aware itemset placement in retail stores. Our proposed framework com-
prises the CRIS index for efficiently retrieving HUIs in a consumer-good-type
aware manner and the CRISP itemset placement scheme, which exploits CRIS
for improving retailer revenue. Our performance study with two real datasets
shows that our framework is indeed effective in improving retailer revenue w.r.t.
a reference scheme. In the near future, we plan to investigate the performance
of our proposed approach by considering the impact of placement of distinct
consumer-good-types on the consumer footfall in a retail store.
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Abstract. Energy-based models (EBMs) exhibit a variety of desirable
properties in predictive tasks, such as generality, simplicity and composi-
tionality. However, training EBMs on high-dimensional datasets remains
unstable and expensive. In this paper, we present a Manifold EBM (M-
EBM) to boost the overall performance of unconditional EBM and Joint
Energy-based Model (JEM). Despite its simplicity, M-EBM significantly
improves unconditional EBMs in training stability and speed on a host
of benchmark datasets, such as CIFAR10, CIFAR100, CelebA-HQ, and
ImageNet 32 × 32. Once class labels are available, label-incorporated M-
EBM (M-JEM) further surpasses M-EBM in image generation quality
with an over 40% FID improvement, while enjoying improved accuracy.
The code can be found in https://github.com/sndnyang/mebm.

Keywords: Generative Model · Energy-based Model · Joint
Energy-based Model

1 Introduction

Energy-Based Models (EBMs) are an class of probabilistic models, which are
widely applicable in image generation, out of distribution detection, adversar-
ial robustness, and hybrid discriminative-generative modeling [3–7,16,20,21].
However, training EBMs on high-dimensional datasets remains very challenging.
Most of the works utilize the Markov Chain Monte Carlo (MCMC) sampling [19]
to generate samples from the model distribution represented by an EBM. Specif-
ically, they require K-step Langevin Dynamics sampling [19] to generate samples
from the model distribution in every iteration, which can be extremely expensive
when using a large number of sampling steps, or highly unstable with a small
number of steps. The trade-off between the training time and stability prevents
the MCMC sampling based EBMs from scaling to large-scale datasets.

Recently, there are a flurry of works on improving EBMs. The most recent
studies [3,5] on the MCMC-based approach focus on improving the generation
quality and stability. However, they still resort to a long sampling chain and
requires expensive training. Another branch of works [6,20] augment the EBM
with a regularized generator in a GAN-style training to improve the stability
and speed, sacrificing the desired property of learning a single object. Moreover,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 291–302, 2023.
https://doi.org/10.1007/978-3-031-33374-3_23
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Fig. 1. Generated samples of CelebA-HQ 128 × 128 from our M-EBM.

JEM [7] proposes an elegant framework to reinterpret the modern CNN classifier
as an EBM and achieves impressive performances in image classification and
generation simultaneously. However, it also suffers from the divergence issue of
the MCMC-based sampling, and its generative performance falls behind state-
of-the-art EBMs. Tackling the limitations of JEM, JEM++ [21] introduces a
variety of training procedures and architecture features to improve JEM in terms
of accuracy, speed and stability altogether. Furthermore, JEM++ demonstrates
a trade-off between classification accuracy and image quality, but it still cannot
improve image generation quality notably.

In this paper, we introduce simple yet effective training techniques to improve
unconditional EBM and JEM in terms of image generation quality, training sta-
bility and speed altogether. First, the informative initialization introduced in
JEM++ dramatically improves the training stability and reduces the required
MCMC sampling steps. However, it’s not scalable for high-resolution and large-
scale datasets. Hence, we introduce a simplified informative initialization that is
suitable for unconditional EBM and JEM for high-resolution images and a large
number of classes (e.g., 128 × 128 CelebA-HQ and 1000-class ImageNet 32 × 32
datasets). We name our models as Manifold EBM (M-EBM) and Manifold JEM
(M-JEM) respectively. Second, we find the L2 regularization of the energy mag-
nitude does not work with the energy function utilized in JEM. To enable L2

regularization and improve the training stability, we augment the standard soft-
max classifier with a new energy head, which is then L2 regularized. Despite the
simplicity, these techniques allow us to reduce the number of MCMC sampling
steps of EBM dramatically, while retaining or sometimes improving classification
accuracy of prior state-of-the-art EBMs.

Our main contributions are summarised as follows:

1. We simplify the informative initialization in JEM++ for the SGLD chain,
which stabilizes and accelerates the training of unconditional EBM and JEM,
while being scalable for high-resolution and large-scale datasets.

2. Adding an L2-regularized energy head on top of a CNN feature extractor to
represent an energy function stabilizes the training of JEM. Then we train
M-JEM using two mini-batches: one with data augmentation for classifica-
tion, and the other one without data augmentation for maximum likelihood
estimation of EBMs.

3. We conduct extensive experiments on four benchmark datasets. M-EBM
matches or outperforms prior state-of-the-art unconditional EBMs, while sig-
nificantly improves training stability and reduces the number of sampling
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steps. Moreover, M-JEM improves JEM’s training stability and speed, image
generation quality, and classification accuracy altogether, while outperform-
ing M-EBM in image generation quality.

2 Background

Energy-based Models (EBMs) [13] utilizes the idea that any probability density
pθ (x) can be expressed as

pθ (x) =
exp (−Eθ (x))

Z(θ)
, (1)

where Eθ (x) is named the energy function that maps each input x ∈ X to a
scalar, and Z(θ) =

∫
x

exp (−Eθ(x)) dx is the normalizing constant w.r.t x (also
known as the partition function). Ideally, an energy function should assign low
energy values to samples drawn from data distribution and high values otherwise.

The key challenge of EBM training is estimating the intractable partition
function Z(θ), and the maximum likelihood estimation of parameters θ is not
straightforward. A number of sampling-based approaches have been proposed to
approximate the partition function effectively. Specifically, the derivative of the
log-likelihood of x ∈ X w.r.t. θ can be expressed as

∂ log pθ (x)
∂θ

= Epθ (x′)

[
∂Eθ (x′)

∂θ

]

− Epd(x)

[
∂Eθ (x)

∂θ

]

, (2)

where the first expectation is over the model density pθ (x′), which is challenging
due to the intractable Z(θ).

To estimate it efficiently, MCMC and Gibbs sampling [10] have been
proposed. Moreover, to speed up the sampling, recently Stochastic Gradient
Langevin Dynamics (SGLD) [19] is employed to train EBMs [4,7,16]. Specifi-
cally, to sample from pθ (x), the SGLD follows

x0 ∼ p0(x), xt+1 = xt − α

2
∂Eθ (xt)

∂xt
+ αεt, εt ∼ N (0, 1), (3)

where p0(x) is typically a uniform distribution over [−1, 1], whose samples are
refined via a noisy gradient decent with step-size α over a sampling chain.

Prior works [4,7,15,16] have investigated the effect of hyper-parameters in
SGLD sampling and showed that the SGLD-based approaches suffer from poor
stability and prolonged computation of sampling at every iteration. Nijkamp et
al. [15] find that it’s desirable to generate samples from the SGLD chain after it
converges. The convergence requires the step-size α to decay with a polynomial
schedule and infinite sampling steps, which is impractical. Therefore, Short-
Run and Long-Run MCMC samplings are utilized for EBM training. Moreover,
most works [3,4,7] use a constant step-size α during sampling and approximate
the samples with a sampler that runs only for a finite number of steps, which
is still computationally very expensive. Another recent work [5] combines the
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SGLD-based approach with diffusion models [11] under a framework of condi-
tional EBMs. They achieve state-of-the-art image generation quality and obtain
a faithful energy potential.

Joint Energy-based Models (JEM) [7] demonstrates that standard softmax-
based classifiers can be trained as EBMs. Given an input x ∈ RD, a clas-
sifier of parameters θ maps the input to a vector of C real-valued numbers
(known as logits): fθ (x)[y],∀y ∈ [1, · · · , C], where C is the number of classes.
Then the softmax function is employed to convert the logits into a categori-
cal distribution: pθ (y|x) = efθ (x)[y]/

∑
y′ efθ (x)[y′]. The authors reuse the logits

to define an energy function for the joint density: pθ (x, y) = efθ (x)[y]/Z(θ).
Then a marginal density of x can be achieved by marginalizing out y as:
pθ (x) =

∑
y pθ (x, y) =

∑
y efθ (x)[y]/Z(θ). As a result, the corresponding energy

function of x is defined as

Eθ (x)=− log
∑

y

efθ (x)[y]=−LSE(fθ (x)), (4)

where LSE(·) denotes the Log-Sum-Exp function. The advantage of this LSE
energy function is that an additional degree of freedom in the scale of the logit
vector now can model the data distribution.

To optimize the model parameter θ, JEM maximizes the logarithm of joint
density function pθ (x, y):

log pθ (x, y) = log pθ (y|x) + log pθ (x), (5)

where the first term is the cross-entropy objective for classification, and the
second term is the maximum likelihood learning of EBM as shown in Eq. 2.
We can also interpret the second term as an unsupervised regularization on the
model parameters θ.

3 Manifold EBM

3.1 Informative Initialization and M-EBM

As shown in Eq. 3, the SGLD sampling starts from an initial distribution p0(x).
To train the EBM as a generative model, Short-Run MCMC sampling [16] uti-
lizes an MCMC sampler that starts from a random noise distribution such as
a uniform distribution. A concurrent work IGEBM [4] proposes an initializa-
tion approach with a sample replay buffer in which they store past generated
samples and draw samples from either replay buffer or uniform random noise
to initialize the Langevin dynamics procedure. This is also the sampling app-
roach adopted by [7,25]. Furthermore, JEM++ [21] introduces an informative
initialization with the replay buffer by using a Gaussian mixture distribution
estimated from the training images, which significantly reduces the number of
sampling steps required by SGLD while improving its training stability.

However, the per-class covariance matrices of the Gaussian mixture distribu-
tion utilized by JEM++ can be huge for high-resolution image datasets with a
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large number of classes. Hence, we estimate a single Gaussian distribution from
the whole training dataset. That is, we estimate the initial sampling distribution
as

p0(x) = N (μ,Σ) (6)

with μ = Ex∼D[x], Σ = Ex∼D
[
(x − μ) (x − μ)�

]
,

where D denotes the whole training set. The visualization of the estimated cen-
ters and samples from p0(x) of different datasets are provided in the appendix.
Since only one Gaussian distribution is estimated from the whole training set, we
can apply it for unconditional datasets such as CelebA, and reduce the memory
and space required for the large covariance matrices1. Although μ and Σ can be
well estimated with sufficient samples, they still lead to a biased initialization
with higher variance, compared to the Gaussian mixture initialization utilized in
JEM++. But our empirical study shows that our simplified initialization won’t
deteriorate the performance and is comparable to bias-reduced Gaussian mixture
initialization.

Since the manifold of x0 from our informative initialization is much closer
to the real data manifold than that of uniform initialization, this informative
initialization reduces the required sampling steps (and thus accelerates training),
and also improves training stability as we will demonstrate in the experiments.
We therefore call the EBM with this simplified informative initialization as M-
EBM throughout this work.

3.2 Injected Noise in M-EBM

Existing work [16] studied the effect of injected noise on training stability via
smoothing pdata with additive Gaussian noises x ← x + ε, ε ∼ N (0, σ2I). Their
results demonstrated that the fidelity of the examples in terms of IS and FID
improves, when lowering σ2. And they depict the tradeoff between the sam-
pling steps K and the level of injected noise, indicating the training time and
the stability. After it, several following methods [3,5,22] successfully remove the
injected noise and achieve better image quality. However, they require a very
large K ≥ 30 to stabilize the training. Thanks to the informative initialization,
it not only allows us to significantly reduce K, but also removes the injected
noise to improve the image quality while keeping high stability. As shown in
Fig. 4(b), the manifolds of real data and x0 sampled from informative initializa-
tion are very close, even mixing together when M-EBM is trained without energy
regularization. Hence, we suppose the gradients ∇xE(x) are defined (almost)
everywhere in such manifolds and thus can reduce the perturbation with noise
which is originally explained in NCSN [18].

1 One covariance matrix of CIFAR10 has (3 × 32 × 32)2 ≈ 9.4M parameters and uses
37.6MB memory. A dataset with C classes will take 37.6 × C MB.
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4 Manifold JEM

4.1 Injected Noise in M-JEM

As discussed in previous section, the injected noise smoothing pdata would hurt
the generative performance of EBMs. For JEM and JEM++, we suppose it would
also decrease the classification accuracy. Hence, it’s critical to remove the injected
noise and gain benefits in terms of classification accuracy and generation quality.
We use N to denote the noise-adding operation. Then the actual objective of
JEM is

log pθ (N(x), y) = log pθ (y|N(x)) + log pθ (N(x)). (7)

Interestingly, we find that if we only remove the injected noise, the training is
not stable. However, if we further disable the data augmentation when learning
maximum likelihood log pθ (x), it becomes even more stable than JEM++ and
enjoys improved accuracy and better sampling quality. Following the observa-
tion, we train our M-JEM using two mini-batches: one with data augmentation
for classification, and the other one without data augmentation for maximum
likelihood estimation of EBMs.

4.2 Energy Function Regularization in M-JEM

IGEBM [4] finds that constraining the Lipschitz constant of the energy net-
work can ease the instability issue in Langevin dynamics. Hence, they weakly
L2 regularize energy magnitudes for both positive and negative samples to the
contrastive divergence as:

L =
1
B

B∑

i=1

(
E+

i − E−
i + α(E+

i

2
+ E−

i

2
)
)

, (8)

where E+ = Eθ (x+) with x+ sampled from the data distribution pd, and
E− = Eθ (x−) with x− sampled from the model distribution pθ (x). The effect of
L2 regularization on EBMs can be viewed as Fig. 4(b). However, since L2 regu-
larization would force the vector of logits fθ (x) to be uniform, while maximizing
pθ (y|x) boosts fθ (x)[y]. Hence, the L2 regularization is incompatible with Eq. 4
and cannot be directly applied to vanilla JEM.

To incorporate L2 regularization to JEM, we propose to augment the stan-
dard CNN softmax classifier with an extra fully connected layer, called Energy
Head, as shown in Fig. 2(a). Then the L2 regularization is applied on the energy
head (instead of the LSE classification head) to improve the training stability.

We provide the pseudo-code for M-EBM/JEM as in Algorithm 1, which fol-
lows the framework of IGEBM [4] and JEM [7].

5 Experiments

In this section, we first evaluate the generative performance of M-EBM on mul-
tiple datasets, including CIFAR10, CIFAR100, CelebA-HQ 128× 128 and Ima-
geNet 32 × 32. Then, we investigate the efficacy of the M-JEM on CIFAR10
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Fig. 2. a) The architecture of M-JEM. An energy head fe is augmented for energy
magnitude regularization and two mini-batches are used for the training of classifier
and the maximum likelihood estimate of EBM, respectively. b) Comparison between
M-JEM and LSE-JEM on CIFAR100.

Algorithm 1. M-EBM/JEM Training: Given network fθ, SGLD step-size α,
SGLD noise σ, replay buffer B, SGLD steps K, reinitialization frequency ρ

1: while not converged do
2: Sample x+ and y from dataset
3: Sample x̂0 ∼ B with probability 1 − ρ, else x̂0 ∼ p0(x) as Eq. 6
4: for t ∈ [1, 2, . . . , K] do

5: x̂t = x̂t−1 − α · ∂E(x̂t−1)

∂x̂t−1
+ σ · N (0, I)

6: end for
7: x− = StopGrad(x̂K)
8: Lgen(θ) = E(x+) − E(x−) + α

(

E(x+)2 + E(x−)2
)

as Eq. 8.
9: L(θ) = Lgen(θ) for M-EBM

10: L(θ) = Lclf(θ) + Lgen(θ) with Lclf(θ) = xent(fθ(x), y) for M-JEM

11: Calculate gradient ∂L(θ)
∂θ

to update θ
12: Add x− to B
13: end while

and CIFAR100. Finally, the study and visualization of the differences between
trained EBM and JEM are provided to analyze their generative capability.

Our code is largely built on top of JEM [7]2. For a fair comparison with
JEM, we update each model with 390 iterations in 1 epoch. Empirically, we
find a batch size of 128 for pθ (y|x) achieves the best classification accuracy on
CIFAR10, while we use 64, the same batch size as in JEM, for pθ (x). We train
our models on ImageNet 32 × 32 for 50 epochs and other datasets for 150 epochs
at most. All our experiments are performed with PyTorch on Nvidia GPUs. For
CIFAR10 and CIFAR100, we train the backbone Wide-ResNet 28-10 [23] on a
single GPU. Due to limited computational resources, we use Wide-ResNet 28-2
for ImageNet 32 × 32 on a single GPU, and Wide-ResNet 28-5 for CelebA-HQ
128× 128 on 2 GPUs. Due to page limitations, we show a detailed comparison
of the training speed of different methods in the appendix.

2 https://github.com/wgrathwohl/JEM.

https://github.com/wgrathwohl/JEM
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Table 1. Inception and FID scores of
M-EBM on CIFAR10.

Model IS ↑ FID ↓
M-EBM(K=1)* 6.02 35.7

M-EBM(K=2) 6.72 27.1

M-EBM(K=5) 7.14 22.7

M-EBM(K=10) 7.08 20.4

M-EBM(K=20) 7.20 21.1

Explicit EBM(Unconditional)

ShortRun(K=100) [16] 6.72 32.1

IGEBM(K=60) [4] 6.78 38.2

f-EBM(K=60) [22] 8.61 30.8

CF-EBM(K=50) [24] – 16.7

KL-EBM(K=40) [3] 7.85 25.1

DiffuRecov(K=30) [5] 8.31 9.58

Regularized Generator

GEBM [1] – 23.02

VAEBM(K=6) [20] 8.43 12.19

Other

SNGAN [14] 8.59 21.7

NCSN [18] 8.91 25.3

StyleGAN2-ADA [12] 9.74 2.92

DDPM [11] 9.46 3.17

* M-EBM diverges with K = 1, and
we report the best FID before
diverging.

Table 2. FID results of M-EBM on
CIFAR100, CelebA-HQ 128, and Ima-
geNet 32 × 32.

Model FID ↓
CIFAR100 Unconditional

M-EBM(K=1)* 45.5

M-EBM(K=2) 26.2

M-EBM(K=5) 27.2

M-EBM(K=10) 26.9

SNGAN [14] 22.4

CelebA-HQ 128 Unconditional

M-EBM(K=5)* 57.76

M-EBM(K=10) 39.87

KL-EBM(K=40) [3] 28.78

SNGAN [14] 24.36

ImageNet 32 × 32 Unconditional

M-EBM(K=2) 54.52

M-EBM(K=5) 52.71

IGEBM(K=60) [4] 62.23

KL-EBM(K=40) [3] 32.48
∗ Our models diverge during
training with given K, and we
report the best FID before
diverging.

5.1 M-EBM

We first evaluate the performance of M-EBM on CIFAR10, CIFAR100, CelebA-
HQ 128 and ImageNet 32 × 32. We utilize the Inception Score (IS) [17] and
Fréchet Inception Distance (FID) [9] to evaluate the quality of generated images.

The results are reported in Table 1 and 2, respectively. It can be observed
that our method consistently surpasses existing methods in terms of sampling
steps by a significant margin. On CIFAR10, M-EBM outperforms many EBM
approaches and SNGAN in terms of FID, while the performance is slightly worse
than SNGAN on CIFAR100. Some EBM approaches show better performance,
such VAEBM, CF-EBM and DiffuRecov. However, they require an extra pre-
trained generator, or special architecture, or much larger sampling steps, while
M-EBM can train on a classical architecture as the backbone with least K.
On ImageNet 32× 32, we note that M-EBM with K = 2 is incredibly stable
and achieves FID 54.52 within 30 epochs and outperforms IGEBM. In addi-
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tion, increasing sampling steps K further doesn’t have an obvious improvement.
Finally, on CelebA-HQ, M-EBM is worse than baseline methods as we find it
is less stable and requires more sampling steps due to the high resolution of
CelebA-HQ. Nevertheless, our method builds a new solid baseline on different
large-scale benchmarks for further investigations of EBM training in these more
challenging tasks. Samples generated by M-EBMs for CIFAR10, CIFAR100, and
CelebA-HQ are shown in Fig. 3 and Fig. 1, respectively. The generated samples
of ImageNet 32 × 32 can be found in the appendix.

5.2 M-JEM

We train M-JEM on two benchmark datasets: CIFAR10 and CIFAR100, and
compare its performance to the state-of-the-art hybrid models and some rep-
resentative generative models. Table 3 and 4 report results on CIFAR10 and
CIFAR100, respectively. As we can see, M-JEM improves JEM’s image genera-
tion quality, stability, speed, and accuracy by a notable margin. It also boosts the
IS and FID scores over M-EBM. Compared with JEM++, FID of M-JEM drops
dramatically since we exclude the noise, and the notable gain of accuracy when
K = 5 indicates M-JEM(K = 5) is much more stable than JEM++(K = 5).
On CIFAR100, IS and FID scores are not commonly reported by state-of-the-
art hybrid models, such as JEM [7], VERA [6], and JEM++ [21]. Hence, our
work builds a baseline for hybrid modeling on CIFAR100 with decent classifi-
cation accuracy and image generation quality for future investigations. Images
generated by M-JEM for CIFAR10 and CIFAR100 are can be found in Fig. 3.

5.3 Analysis

Is Energy Head Better Than LSE? To evaluate the effect of the energy head,
we conduct an experiment comparing M-JEM (with energy head) and LSE-JEM
(without energy head) on CIFAR100. Figure 2(b) shows that M-JEM achieves
much higher classification accuracy, comparable FID but a lower Inception Score
than LSE-JEM. However, we empirically find LSE-JEM is less stable than M-
JEM after 40 epochs which leads us to analyze the manifolds learned by different
models.

Fig. 3. M-EBM (a, b) and M-JEM (c, d) generated samples of CIFAR10 and
CIFAR100.
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Manifold Analysis. To facilitate better understanding of different approaches,
we utilize the t-SNE visualization for manifold analysis shown in Fig. 4(a) and
4(b). To have a fair comparison, we pick fixed samples from CIFAR10 as x+,
initialize samples from p0(x) as x0, and randomly select samples from the replay
buffer of each pre-trained models as x−. Given the inputs from x+, x− and x0,
we collect the outputs of the penultimate layer as features and apply the t-SNE
technique to generate the visualization. For Fig. 4(a), three CIFAR10-trained M-
EBM, M-JEM, and LSE-JEM with K = 10 are involved. We further conduct the
comparison between M-EBMs(K = 5) with and without energy L2 regularization
in Fig. 4(b).

Table 3. Hybrid Modeling Results on
CIFAR10.

Model Acc % ↑ IS ↑ FID ↓
M-JEM(K=1)* 78.4 7.91 29.8

M-JEM(K=2)* 86.5 8.64 19.3

M-JEM(K=5) 93.1 8.71 12.1

M-JEM(K=10) 93.8 8.52 11.5

M-JEM(K=20) 94.2 8.72 12.2

Single Hybrid Model

Residual Flow [2] 70.3 3.60 46.4

IGEBM(K=60) [4] 49.1 8.30 37.9

JEM(K=20)+ [7] 92.9 8.76 38.4

JEM++(M=5)+ [21] 91.1 7.81 37.9

JEM++(M=10) 93.5 8.29 37.1

JEM++(M=20) 94.1 8.11 38.0

JEAT [25] 85.2 8.80 38.2

EBM + Generator

VERA(α=100) 93.2 8.11 30.5

VERA(α=1) [6] 76.1 8.00 27.5

softmax 95.8 - -

* We report the best performance
before the diverging of training.
+ They suffer from high instability and
regularly diverge.

Table 4. Hybrid Modeling Results on
CIFAR100.

Model Acc % ↑ IS ↑ FID ↓
Softmax 78.9 – –

SNGAN(Cond) – 9.30 15.6

BigGAN(Cond) – 11.0 11.73

JEM(K=20)* 70.4 10.32 51.7

JEM(K=30)* 72.8 10.84 34.2

JEM++(K=5)* 72.0 8.19 37.7

JEM++(K=10)* 74.5 10.23 32.9

VERA(α=100)* 69.3 8.14 28.2

VERA(α=1)* 48.7 7.97 26.6

M-JEM(K=1)+ 46.5 8.71 26.2

M-JEM(K=2)+ 63.5 11.22 15.1

M-JEM(K=5) 73.5 11.95 13.5

M-JEM(K=10) 75.1 11.72 12.7

* No official IS and FID scores are
reported.
+ We report the best FID before
diverging.

As we can observe in Fig. 4(a), M-JEM with label information forms more
compact manifolds of x+ and x− than M-EBM. In other words, M-JEM-
generated samples x− match the distribution of real data and have lower vari-
ance and less manifold intrusion [8] than M-EBM. It gives us an explanation
of why label information can improve generation quality. Moreover, the latent
feature space of M-JEM is better formulated than LSE-JEM, and there’s less
overlap between x0 and x+ which is desired since x0 and x+ should be assigned
with different energies. Intuitively, the number K of SGLD sampling required
for stable training is correlated to the distance between manifolds of x0 and x+.
However, in Figs. 4(a) and 4(b), we can also observe that x0 and x+ are roughly
mixed together from M-EBM without regularization and LSE-JEM. Hence, it’s
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interesting to reconsider the distance and the training instability when x0 and
x+ are somewhat mixing together. We leave the exploration of this phenomenon
as an existing direction for future.

Fig. 4. t-SNE visualization of the latent feature spaces learned by different models
trained on CIFAR10. We use different colors to represent (x0 initial samples, x− samples
in replay buffer, x+ real data), and different shapes(◦, ×, �) to indicate different EBMs.

6 Conclusion

In this paper, we propose simple yet effective training techniques to improve the
image generation quality, training speed, and stability of unconditional EBM
and JEM altogether. The experimental results demonstrate that our models
surpass prior hybrid models, achieve comparable performance on unconditional
EBMs and enable us to scale the MCMC-based EBM learning to high-resolution
large-scale image datasets, such as CelebA-HQ 128 × 128 and ImageNet 32 × 32
with the least MCMC sampling steps, making EBM training more practical for
a research lab in academia to afford and explore.
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Abstract. Differentiable architecture search (DARTS) yields highly effi-
cient gradient-based neural architecture search (NAS) by relaxing the
discrete operation selection to optimize continuous architecture parame-
ters that maps NAS from the discrete optimization to a continuous prob-
lem. DARTS then remaps the relaxed supernet back to the discrete space
by one-off post-search pruning to obtain the final architecture (final-
net). Some emerging works argue that this remap is inherently prone to
mismatch the network between training and evaluation which leads to
performance discrepancy and even model collapse in extreme cases. We
propose to close the gap between the relaxed supernet in training and
the pruned finalnet in evaluation through utilizing small temperature to
sparsify the continuous distribution in the training phase. To this end,
we first formulate sparse-noisy softmax to get around gradient satura-
tion. We then propose an exponential temperature schedule to better
control the outbound distribution and elaborate an entropy-based adap-
tive scheme to finally achieve the enhancement. We conduct extensive
experiments to verify the efficiency and efficacy of our method.

Keywords: Deep learning architecture · Neural architecture search

1 Introduction

DARTS abstracts the search space as a cell-based directed acyclic graph
composed by V nodes H = {h1, h2, ..., hV } and compound edges C =
{c1,2, ..., cV −1,V }. Every node represents feature maps and each edge subsumes
all operation candidates to express the transformations between nodes. Com-
pound edge cu,v connects node u to v and associates three attributes: candidate
operation set Oc =

{
o1c , o

2
c , ..., o

M
c

}
, corresponding operation parameter set Ac ={

a1
c , a

2
c , ..., a

M
c

}
, probability distribution of the parameters βc = softmax(Ac).

Every intermediate node is densely-connected to all its predecessor through an
edge hv = cu,v(hu) and weighted product sum cu,v(hu) = 〈βc, Oc(hu)〉 for u < v.
Generally, a unified set of operation candidates O =

{
o1, o2, ..., oM

}
is defined

for all edges in the space. The network that encodes all architectural candidates
is termed supernet. In the training phase, DARTS first divides data into training
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 303–315, 2023.
https://doi.org/10.1007/978-3-031-33374-3_24
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and validation sets and then formulates a bilevel objective depicted in Eq. (1)
to alternately optimize architecture parameter a and operation weight ω on the
validation set and training set respectively. We refer to [13] for more details of
DARTS.

min
a

Lval(ω∗(a), a) s.t. ω∗ = arg min
ω

Ltrain(ω, a) (1)

Henceforth, we abbreviate operation weight ω as weights and architecture param-
eter a∈A as parameters. After the training phase, DARTS selects the operation
associated with the largest entry (probability component after normalized by
softmax) through a post-search pruning depicted in Eq. (2) to obtain the final
architecture (finalnet) for evaluation. In sum, the supernet is trained in a multi-
path manner while the finalnet is evaluated in a single-path manner [14].

oi
c ∈ O for c ∈ C where i = arg maxi∈{1,...,M} βc, βc = softmax(Ac) (2)

where the operation oi
c is selected on edge c due to the largest entry βi

c in
βc. However, the parameter-value-based post-search pruning depicted in Eq. (2)
inevitably risks mismatching the architecture between supernet and finalnet
which ultimately leads to performance discrepancy between training and evalua-
tion in DARTS. Gradient-based NAS methods are deemed to favor architectures
that are easier to be trained [15]. More skip connections can obviously help the
network to converge faster which is considered as an unfair advantage in an
exclusive competition [7,8]. This unfairness leads to an abnormal preference for
the skip connection in some cases during optimization. The architecture mis-
match exacerbates this issue since the one-off post-pruning generally discards
all operations except the dominant one (O \ oargmaxi(β)). In extreme cases, the
pruning removes all operations except the skip connection which causes collapse
or the catastrophic failure of DARTS [1,5,10,12].

Both Fair-DARTS [8] and GAEA [11] pointed out that the sparse parame-
ters are crucial to alleviating the architecture mismatch. In particular, GAEA
emphasized that obtaining sparse final architecture parameters is critical for
good performance, both for the mixture relaxation, where it alleviates the effect
of overfitting, and for the stochastic relaxation, where it reduces noise when
sampling architectures. In DARTS, the sparse parameters refer to the sparse
distribution β (low entropy) after the parameters normalized by softmax, i.e.
β = softmax(A). Sparse parameters intrinsically reduce the gap between multi-
path supernet and single-path finalnet as shown in Fig. 1. [17] proposed to com-
bine single-path and multi-path space by a Sparse Group Lasso constraint but
impose non-trivial additional time consumption due to it’s harder to converge.
Temperature coefficient is widely used to control the sparseness and smoothness
of the (gumbel) softmax output. In this paper, we propose to achieve sparse
training straightforwardly by employing a small temperature on softmax. Our
contributions can be summarized:

– We propose sparse-noisy softmax (sn-softmax) to alleviate the gradient sat-
uration which causes premature convergence of the training of parameters
while utilizing small temperature in the training phase;
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– We propose exponential temperature schedule (ETS) and entropy-based
adaptive scheme to maintain and better control the sparsity of β that inher-
ently narrows the gap between the relaxed supernet in training and the pruned
finalnet in evaluation;

– We carry out extensive evaluations on multiple spaces and datasets and con-
duct further ablations to show the effect of different hyperparameter choices.

2 Methodology

Utilizing small temperature to sparsify β in training is non-trivial for DARTS
because the gradient saturation will impede the propagation when softmax con-
verges. Likewise, the operation weights will not be updated either when the
operation output are weighted by a zero entry in β. If that happens in the mid-
dle training of DARTS, supernet converges prematurely. In this section, we start
with formulating sparse-noisy softmax to alleviate the gradient saturation when
the outbound β converges. After that, we propose an exponential temperature
schedule (ETS) to better control the temperature t to smooth the swing of the
outbound β in training. We provide an entropy-based dynamic decay (EDD) to
finally realize a flexible and robust enhancement for DARTS.

2.1 Sparse-Noisy Softmax

Softmax normalizes the input vector A = {a1, ..., aM} to a probability distribu-
tion β = {β1, ..., βM} depicted in Eq. (3).

softmax(
A

t
) = βt where βi

t =
exp(ai/t)

∑M
j=1 exp(aj/t)

(3)

where t is the temperature coefficient and M is the total entries of the input of
softmax in DARTS. The smaller the temperature t, the sharper the outbound
β is and the closer the distribution compared to post-search one-hot argmax
pruning in Eq. (2). The derivative of softmax can be gotten through:

∂βi
t

∂ai
=

{
βi
t(1−βi

t)
t for i = j

−βi
tβ

j
t

t for i �= j
(4)

by which we can get the Jacobian matrix as:

∂βt

∂A
=

1
t

⎡

⎢
⎢
⎢
⎢
⎣

β1
t − [β1

t ]2 −β1
t β2

t −β1
t β3

t · · · −β1
t βM

t

−β2
t β1

t β2
t − [β2

t ]2 −β2
t β3

t · · · −β2
t βM

t
...

...
... · · · ...

−βM
t β1

t −βM
t β2

t −βM
t β3

t · · · βM
t − [βM

t ]2

⎤

⎥
⎥
⎥
⎥
⎦

(5)

Let At denotes the rightmost matrix in Eq. (5) and At/t is the Jacobian with the
temperature t. Let l indicates the loss actually used, then the backpropagation
to a can be written as:

∂βt

∂A

∂l

∂βt
=

At

t

∂l

∂βt
(6)
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By leveraging a smaller temperature t to get a sparser βt, only one single entry in
βt approaches one (βi

t → 1) and the others are thereby close to zero (βj �=i
t → 0),

Jacobian matrix is then overall trapped in zero lim
βi
t→1

βj �=i
t →0

∂βt/∂A = 0 and the gra-

dient saturates. When softmax is saturated, back propagation depicted in Eq. (6)
stops propagating gradients through softmax to parameters thus the parameters
stop updating. To deal with this problem, ideally, we hope that our softmax
outputs a sparse β in feedforward as the middle pane of Fig. 1, but the back-
propagation is smoother (not saturated). To this end, we propose sparse-noisy
softmax (sn-softmax), summarized in Algorithm 1, to approximate the ideal case
by combining different temperature for feedforward and backpropagation respec-
tively. Our goal is to keep the Jacobian matrix not zero even softmax converges

lim
βi
t→1

βj �=i
t →0

∂βt/∂A �= 0, which is different to the previous research that injects noise

to postpone convergence [2].

Fig. 1. Multi-path, sparse and single-path.

Set the forward-pass tempera-
ture as t, we formulate the Jaco-
bian matrix of sn-softmax as:

∂βt

∂A
=

At

t
+

Ast

st
for s > 1 (7)

where Ast/st is the Jacobian of βst. The backpropagation from the loss l w.r.t
A can be written as:

∂βt

∂A

∂l

∂βt
= (

At

t
+

Ast

st
)

∂l

∂βt
(8)

Since the equal sign can not be guaranteed:

sign(
At

t

∂l

∂βt
) �≡ sign(

Ast

st

∂l

∂βt
) for s > 1 (9)

Sn-softmax is equivalent to adding noise into the backpropagation by which the
Jacobian matrix is not absolute zero after the forward term At/t converges. s
acts as a scaling factor in Eq. (8) to tune the noise intensity. A smaller s brings
stronger gradient noise, but is easier to saturate either as the training progresses.
We can also keep st as a constant and determine s accordingly and dynamically
and thereby get out of the saturation in the whole training phase.

In practice, sn-softmax leverages a small temperature value t for feedforward
to obtain a sparse output βt while setting s � 1 (generally s > 50) thus get
1/st 	 1/t. When the feedforward does not converge (At �= 0), At/t plays a
leading role in Eq. (7) because of 1/st 	 1/t and Ast/st 	 At/t. After the
feedforward convergence, the gradient saturates (At = 0, At/t = 0). Since the
scaling factor s � 1, βst is much smoother than βt which makes Ast less conver-
gent (Ast �= 0). As a result, Ast/st supersedes the first term At/t in the Jacobian
matrix and comes into play in the backpropagation of sn-softmax depicted in
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Eq. (8). This way, when sn-softmax does not converge, the normal term repels
the noise term and dominate the update direction due to Ast/st 	 At/t but
allows sn-softmax to have a chance to escape the premature convergence after
it’s saturated. We schematically visualize the backpropagation dynamic of sn-
softmax in terms of the gradient norm on different values of s in Fig. 2A.

Algorithm 1. Sparse-noisy (sn) softmax
Input: logits A = {a1, ..., aM}, feedforward
temperature t, scaling factor s.
Output: normalized distribution βt

Feedforward: softmax(A
t
) = βt for βi

t =
exp(ai/t)

∑M
j exp(aj/t)

Backpropagation: ∂βt
∂A

= 1
t
At + 1

st
Ast for

s > 1

Sn-softmax only needs feed-
forward and backpropagation once
like softmax to get ∂l/∂βt. Then
it calculates the smoother Jaco-
bian based on temperature st
through Eq. (5). The calculation
of another Jacobian and the final
addition depicted in Eq. (7) only
takes negligible additional budget
in the whole training.

2.2 Exponential Temperature Schedule

Fig. 2. Visualize the empirical analysis of
sn-softmax and ETS. Tests are based on
the order of magnitude of a initialized in
DARTS. (A). By setting s � 1, gradients of
sn-softmax is consistent with normal soft-
max before saturated. After saturated, we
can get different backpropagation dynamics
by setting different s. (B). For equidistant
decay, ETS yields much smoother swings
than the linear counterpart in terms of the
entropy of outbound distribution β.

In general, the temperature t is grad-
ually decayed to drive β converge to a
sparse solution. As shown in Eq. (3),
t is in the exponential term and non-
linearly affects the transformation of
a → β in softmax. Linearly scheduling
t swings β nonlinearly and results in
that the early temperature decay has
little effect on the β while decay in the
later stage of training has too much
impact on the sparsity and causes the
training converges precipitately (see
LTS in Fig. 2B and LPCD-DARTS in
Fig. 4A). Therefore, the naive linear
temperature schedule is inappropriate
for the training of DARTS. In this
section, we focus on temperature t so
let texpa = exp(a/t) refers to the expo-
nential function with e as the base and
t, a as the exponent where we add the
superscript “exp” in texpa to emphasize
the value after the exponential trans-
formation exp(a/t). We then apply variable substitution in softmax as:

βi =
texpai

∑M
j=1 texpaj

where texpa∗ = exp(
a∗

t
) (10)
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where the transformation from texpa to βi is linear. We can then linearly sched-
ule texpa instead of t to better control the sparsity of β. We call this design
of scheduling texpa after the exponent substitution as exponential temperature
schedule (ETS).

To calculate texpa , we first approximate a by the order of its expectation E (a),
a ∈ A and get the temperature texpE(a). From now on, we omit E(a) in the subscript
of texpE(a) since it’s fixed in this analysis. We then specify the initial temperature
t0 and the decay target tN and get texp0 = eE(a)/t0 and texpN = eE(a)/tN for
the start and target in the exponential space (after exp(a/t) transformation)
respectively. Since t act as the denominator in the exponential term exp(a/t) of
softmax, the temperature decay from t0 to tN corresponds to an ascent in the
exponential space from texp0 to texpN . For the equidistant temperature decay, the
decay strength dexp indicates the variation amplitude within [texp0 , texpN ] which
can be calculated statically via dexp = texpN −texp0

N where N is the number of decay
points. All decay points together with texp0 form a list Lexp as

Lexp = [texpn |texpn = texp0 + ndexp, dexp =
texpN − texp0

N
,n = 0, 1, ..., N ] (11)

where texp0 = texp0 , texpN = texpN . The temperature value corresponding to each
decay point in Lexp can be inversely solved by Eq. (12) where tn > 0 when
texpn > 1.

tn =
E(a)

ln(texpn )
for texpn ∈ Lexp, n = 0, 1, ..., N (12)

Fig. 3. Diagram of the
quantitative example.

We provide a quantitative example in Fig. 3 to
show the clear usage of ETS and more details on the
calculation are given below. Firstly, as in A are initial-
ized by sampling from N(0, 1) and scaling the samples
by 1e − 3 in DARTS. When a ≤ 0, the variation of t
has little effect on the value of texpa , so we only consider
E(a) for a > 0. The scaled expectation of a can be get
through E(a) = (1e−3)E(N(0, 1))=(1e−3)

√
2/π/2 ≈

4e−4 for a > 0. By specifying the initial temper-
ature t0 = 1 and the decay target tN = 1e-3, we
can then get texp0 = exp(E(a)/t0)=e4e−4 ≈ 1 and texpN

= exp(E(a)/tN )=e4e−1 ≈ 1.492 in the exponential
space respectively. The temperature decay from t0 to
tN (1 → 1e-3) thus corresponds to an ascent from
texp0 to texpN (1 → 1.492) in the exponential space. For
the equidistant temperature decay, we preset N = 4 and texp4 = texpN = 1.492,
then [1, 1.492] is equidistantly divided into 4 segments by the other 3 decay
points. We get the decay strength accordingly as dexp = 1.492−1

4 = 0.123 and
determine the remaining three decay points as 1.123, 1.246, 1.369 and form
Lexp = [1, 1.123, 1.246, 1.369, 1.492] by Eq. (11). After that, we can get the tem-
peratures w.r.t texp1.123 as t1.123 = 4e−4/ln(1.123) ≈ 0.00345 by Eq. (12). Similarly,
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the temperature of the other 3 decay points are t1.246 = 0.0018, t1.369 = 0.00127,
t1.492 = 0.001 from which we can clearly find that the temperature decay sched-
uled equidistantly in the exponential space (1, 0.00345, 0.0018, 0.00127, 0.001)
leads to a radical difference from the typical linear temperature scheduling LTS
(1, 0.75, 0.5, 0.25, 0.001). We visualize the effect of the differences between ETS
and LTS in terms of the entropy of β in a more sensible way in Fig. 2B.

For linear temperature schedule, we always need to preset t0, tN , N and
calculate the decay strength statically to prevent temperature from decreasing
to less than 0. In contrast, Eq. (12) is always greater than 0 for texp > 1 which
yields added flexibility for the design of ETS-based training scheme. We can
calculate dexp and Lexp after we specified [texp0 , texpN ] and N . Alternatively, we
can first determine texp0 , dexp and get texpN or N by texpN = texp0 + Ndexp, so that
we can still build Lexp through Eq. (11).

2.3 Entropy-Based Adaptive Scheme

Algorithm 2. EDD sparse training scheme
Input: s for sn-softmax, λ for EDD, t0 = 1
(mostly)
Get the expectation of parameter E(a)
Get texp0 = eE(a)/t0

while training epoch k do
Training a and ω by Algorithm 1 in [13]
with t(k), s.
Update [dexp](k) by Eq.(14).
Update t(k) via [dexp](k) by Eq.(15).

end while

If operation output oi
c(h) on

edge c is zero-weighted by as
βi

co
i
c(h) for βi

c ∈ βc and βi
c = 0,

both forward and backward paths
of the operation oi

c are blocked
so that the operation weights ω
within oi

c cannot obtain effec-
tive gradients. Employing a small
temperature at the beginning of
training will lead to exaggerated
swings of β and finally biases the
search result. For an appropriate
scheme, presetting fixed t0, tN ,
dexp and updating E (x) and Lexp

every epoch is cumbersome and inflexible. Empirically, we also observe that
the same architecture under different initialization exhibits various optimiza-
tion dynamics. Some lead to strong convergence that the parameters of supernet
converge quickly under mild temperature decay. In other cases, the search is
indecisive among two or three operations. In sum, a fixed decay strength dexp is
not robust in practice.

Being equipped with the additional design freedom supported by ETS, we
further propose entropy-based dynamic decay (EDD) to adaptively determine
dexp in terms of both the sparsity of β and the current epoch k by which we
need only to tune one single hyperparameter λ to control the training process.
We first define the expectation of entropies of βs as E(H(βc)), c ∈ C in Eq. (13)
to represent the sparsity of βs over all compound edges in the cell space.

E(H(βc)) =
−∑|C|

c

∑M
i βi

c log βi
c

|C| where βc = softmax(Ac), c ∈ C (13)
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Table 1. Evaluation results on NB201&C10. “clip” refers to the gradient clip on a
to alleviate the effect of the noisy none (zero) operation which has been identified as
unsearchable in DARTS [13].

Search
dataset

Method Search
(seconds)

CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

C10 DARTS-V2 [13] 22323 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

DARTS-V1 [13] 7253 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

GDAS [9] 19720 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90

ETS-GDAS 19755 90.57±0.35 93.75±0.22 71.45±0.64 71.39±0.66 42.96±0.93 42.92±0.87

DrNAS [4] 7544 90.15±0.10 93.74±0.03 70.82±0.27 71.07±0.08 40.76±0.05 41.37±0.17

GAEA-Bilevel [11] 8280 82.80±1.01 84.64±1.00 55.24±1.47 55.35±1.72 27.72±1.35 26.40±0.85

GAEA-ERM [11] 14464 84.59±0.00 86.59±0.00 58.12±0.00 58.43±0.00 29.54±0.00 28.19±0.00

(91.50±0.06) (94.34±0.06) (73.12±0.26) (73.11±0.06) (45.71±0.28) (46.38±0.18)

GibbsNAS [19] - 90.02±0.60 92.72±0.60 68.88±1.43 69.20±1.44 42.31±1.69 42.08±1.95

DARTS- [7] - 91.03±0.44 93.80±0.40 71.36±1.51 71.53±1.51 44.87±1.46 45.12±0.82

SurgeNAS [14] - 90.2 93.7 71.2 71.6 44.5 45.2

EDD-DARTS 7392 90.95±0.44 93.80±0.33 71.44±1.21 71.42±1.25 45.14±0.78 45.12±0.56

EDD-DARTS (clip) 7400 91.12±0.19 94.05±0.11 72.59±0.62 72.43±0.64 45.89±0.41 45.80±0.29

Table 2. Experimental results on S1∼S4&C100 and S1∼S4&SVHN.

Dataset Space DARTS PC-DARTS DARTS-ES R-DARTS (DP/L2) SDARTS (RS/ADV) DARTS+PT
(unfixed/fixed)

EDD-
DARTS

C100 S1 29.46 24.69 28.37 25.93/24.25 23.51/22.33 24.48/24.40 22.27

S2 26.05 22.48 23.25 22.30/22.44 22.28/20.56 23.16/23.30 21.73

S3 28.90 21.69 23.73 22.36/23.99 21.09/21.08 22.03/21.94 21.08

S4 22.85 21.50 21.26 22.18/21.94 21.46/21.25 20.80/20.66 20.66

SVHN S1 4.58 2.47 2.72 2.55/4.79 2.35/2.29 2.62/2.39 2.23

S2 3.53 2.42 2.60 2.52/2.51 2.39/2.35 2.53/2.32 2.30

S3 3.41 2.41 2.50 2.49/2.48 2.36/2.40 2.42/2.32 2.32

S4 3.05 2.43 2.51 2.61/2.50 2.46/2.42 2.42/2.39 2.45

where M operation candidates and |C| compound edges in search space. βi
c

denotes the ith entry in the βc that used to weight the feature maps from oper-
ation oi on edge c . The design principles can be summarized as follows:

– dexp is stronger when E(H(β)) is higher (smoother β in softmax);
– Gradually increase dexp w.r.t the training epoch k.

Based on the above design principles, We update dexp according to Eq. (14)
for epoch k.

[dexp](k) = λ(1 − ρ)E(H(β)) + ρ[dexp](k−1) (14)

where we set [dexp](0) = 0 in practice and keep an exponentially moving average
with a momentum ρ ≡ 0.5 to avoid oscillations. λ is the hyperparameter to
determine the influence of E(H(β)) on dexp. Since dexp is adaptively decided
through Eq. (14), Lexp cannot be calculated in advance. After kth update of
dexp, we can get temperature t(k) accordingly by Eq. (15)

t(k) =
E(a)

ln(texp0 + k[dexp](k))
(15)

results in that dexp is proportional to the training epoch k. EDD is summarised
in Algorithm 2 where λ is the only hyperparameter for the scheme.
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3 Evaluations

We evaluate EDD, namely EDD-DARTS, on CIFAR-10 (C10), CIFAR-100
(C100), ImageNet-1k (IN-1k), SVHN and multiple spaces: NAS-BENCH-201
(NB201), DARTS space (DS), S1∼S4 [1].

Evaluations on NB201: NB201 supports three datasets (C10, C100,
ImageNet-16 [6]) and has a unified cell-based search space with 15,625 archi-
tectures. We refer their paper [10] for more details of the search space. All our
baselines come from recent top venues. Experiments of DrNAS and GAEA are
both based on the released codes. We provide extra results for GAEA-ERM
in parentheses by excluding the none operation since it’s particularly fragile
for”none” in NB201. The experimental results shown in Table 1 demonstrates
that the our enhancement effectively eliminates the performance collapse of
DARTS. Remarkably, EDD-DARTS claims superior searching on both C10 and
C100 on the standard space (include none) of NB201.

Evaluations on DS: We employ the same search recipe as on NB201. Our
evaluation is based on the source code released by DrNAS. We keep the hyper-
parameter settings unchanged except for replacing the cell genotypes. As [4,11],
we repeat the search 3 times under different seeds, evaluate each result indepen-
dently and report the mean accuracies and standard deviations in Table 3.

Table 3. Search and evaluate on DS&C10.

Method Error (%) Params (M) GPU days

PC-DARTS [18] 2.57±0.07 3.6 0.1
GAEA+PC-DARTS [11] 2.50±0.06 3.7 0.1

DARTS+PT [16] 2.61±0.08 3.0 0.8
SDARTS-RS+PT [16] 2.54±0.10 3.3 0.8

SGAS+PT [16] 2.56±0.10 3.9 0.29
DrNAS [4] 2.54±0.03 4.0 0.4
DARTS- [7] 2.59±0.08 3.5 0.4

GibbsNAS [19] 2.53±0.02 4.1 0.5
SparseNAS [17] 2.69±0.03 4.2 1
β-DARTS [20] 2.53±0.08 3.7 0.4

EDD-DARTS 2.52±0.10 3.6 0.4
EDD-PC-DARTS 2.47±0.06 4.2 0.1

Table 4. Transfer to evaluate on IN1K.

Method Top-1 Top-5 Params (M) GPU days

PC-DARTS [18] 25.1 7.8 5.3 0.1
GAEA+PC-DARTS [11] 24.3 7.3 5.6 0.1

GibbsNAS [19] 24.6 - 5.1 0.5
DrNAS [4] 24.2 7.3 5.2 3.9*

DARTS- [7] 24.8 7 4.9 4.5*

SparseNAS [17] 24.6 7.6 5.7 -
β-DARTS [20] 24.2 7.1 5.4 0.4

EDD-DARTS 24.6 7.4 5.0 0.4
EDD-PC-DARTS 24.0 7.2 5.6 0.1

* Search on ImagetNet.

Transfer to ImageNet-1k: As a
common practice, we transfer the
most prominent architecture on C10
to ImageNet-1k (IN1K) for additional
performance evaluation. As shown in
Table 3 and Table 4, the EDD itself is
already very competitive, and the com-
bination of the EDD with partial chan-
nel trick [18] can deliver a clear new art
scores with the lowest budget on both
C10 and ImageNet-1k.

Comparison with Regularization:
We evaluate EDD on four specially
designed search spaces S1∼S4 by
[1] which are particularly challenging
for DARTS-based methods. Unregu-
larized DARTS is always prone to
make a wrong choice of non-parametric
operations on these spaces. We refer
to [1] for more details of S1∼S4. We
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evaluate our method against two strong baselines Smooth DARTS [3] and
DARTS+PT [16] on this benchmark on C10, C100 and SVHN respectively. As
illustrated in Table 2, EDD-DARTS performs well under all datasets and search
spaces and outperforms baselines in aggregate.

4 Further Experiments, Analyses and Conclusion

To understand what makes EDD effective, we conduct ablation studies along two
axes, s and λ, on both NB201 and DS. We come up with and elaborate another
ETS-based baseline to validate our claim of superior robustness of EDD.

Table 5. Ablate s and λ on NB201&C10.

Search dataset Softmax s λ CIFAR-10 CIFAR-100 ImageNet-16-120

valiation test valiation test valiation test

C10 Normal softmax - 0.06 90.56±0.75 93.29±0.70 70.03±1.48 70.21±1.54 43.59±2.05 43.33±1.80

0.12 90.74±0.31 93.60±0.29 70.46±0.84 70.45±0.96 44.17±0.92 44.34±1.23

0.24 89.93±1.44 92.82±1.16 69.38±2.05 69.60±1.49 43.01±2.16 43.07±2.14

sn-softmax st ≡ 1 0.06 90.95±0.44 93.80±0.33 71.44±1.21 71.42±1.25 45.14±0.78 45.12±0.56

0.12 90.57±0.58 93.38±0.52 70.06±1.46 69.86±1.42 43.87±1.92 43.89±2.33

0.24 90.06±0.81 92.83±0.52 69.07±1.35 69.26±1.29 42.28±2.07 42.43±1.83

s = 100 0.06 90.68±0.71 93.44±0.54 70.45±1.69 70.43±1.61 43.98±1.85 44.08±2.17

0.12 91.02±0.30 93.75±0.31 71.36±0.96 71.33±1.21 44.73±0.64 44.95±0.62

0.24 90.54±0.74 93.22±0.58 69.90±1.60 70.19±1.88 43.43±1.82 43.49±1.68

Ablations on NB201: We ablate the impact of three configurations of softmax
and λ on NB201. The experimental results on C10 are shown in Table 5. For the
searching on C10, sn-softmax is helpful where both the highest and second-
highest accuracies in the experiments of EDD-DARTS come from the results
equipped with sn-softmax (st ≡ 1 or s = 100).

Table 6. Ablate s and λ on DS&C10.

Search dataset λ
normal softmax sn-softmax st ≡ 1 sn-softmax s = 100
Test Error (%) Test Error (%) Test Error (%)

C10
0.06 2.60 ± 0.10 2.55 ± 0.10 2.52 ± 0.10
0.12 2.63 ± 0.13 2.56 ± 0.10 2.54 ± 0.09
0.24 2.65 ± 0.13 2.59 ± 0.12 2.55 ± 0.10

Ablations on DS: We ablate
EDD-DARTS further on DS and the
results are shown in Table 6. We find
that a larger λ brings stronger tem-
perature decay, EDD-DARTS tends to
find higher capacity architectures some of which are tricky to be trained prop-
erly but sn-softmax alleviates this trend and ensures that EDD keeps delivering
efficient results.
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Table 7. Finetune (FT) on NB201&C10 and
transfer to other datasets and search spaces
to evaluate the robustness.

Search space Search dataset Evaluation dataset PCD-DARTS EDD-DARTS
validation test validation test

NB201

C10 (FT)
C10 91.06±0.49 93.78±0.43 90.95±0.44 93.80±0.33
C100 71.61±1.30 72.00±1.48 71.44±1.21 71.42±1.25
IN-16 45.17±0.84 45.63±0.86 45.14±0.78 45.12±0.56

C100
C10 90.04±1.35 92.97±1.78 90.27±0.81 93.44±0.49
C100 69.97±1.82 70.02±2.00 70.46±1.52 70.57±1.40
IN-16 42.34±2.16 42.79±2.01 42.43±1.80 42.88±1.81

Error (%) Param (M) Error (%) Param (M)

DS C10 C10 2.57±0.09 3.0 2.55±0.10 3.6
IN-1k 26.5 4.2 24.6 5.1

Error (%) Error (%)

S1
C10 2.75 2.77
C100 22.35 22.27
SVHN 2.27 2.23

S2
C10 2.56 2.54
C100 21.44 21.73
SVHN 2.33 2.30

S3
C10 2.50 2.49
C100 21.05 21.08
SVHN 2.32 2.32

S4
C10 2.95 2.61
C100 21.48 20.66
SVHN 2.44 2.45

Robustness Validations: To
validate the robusteness of our adap-
tive scheme EDD, we elaborate
another scheme i.e. periodic cyclic
decay (PCD) which excluding EDD
and determine Lexp statically before
training as the additional tailored
baseline. We first finetune the hyper-
parameters of both EDD and PCD
on NB201&C10 and then transfer
the settings and recipes exactly to all
other search spaces and datasets. we
finetune PCD even marginally sur-
pass EDD in Table 7. On the con-
trary, by transferring the configura-
tion of NB201&C10, EDD starkly
outperforms PCD on most other cases especially on NB201&C100, DS&C10
and DS&IN-1k. This results underpin the robustness virtue of EDD over less
flexible decay scheme PCD. Further investigation identify that PCD is more
brittle than EDD to the warmup epoch and preseted decay strength on NB201
and DS respectively. We also note that simply increase these two values can
recover the performance.

Fig. 4. (A). Trajectories of the expectation of entropies of βs during training on
NB201&C10. (B). Discretized accuracies on validation set in training on NB201&C10.

Analyses: According to [11], the entropy of β and the discretized accuracy of
the pruned finalnet on validation set are two main measurements for evaluating
the impact of the sparsity on method. We illustrate the dynamics of the expec-
tation of entropies of βs over edges in space during the training on NB201&C10
in Fig. 4A. in which the distribution entropy of EDD are much lower than other
baselines. This validates our proposal of employing small temperature to spar-
sify β in training. To better characterize the effect of the sparse β on allevi-
ating the mismatch, we also illustrate the corresponding discretized validation
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accuracies during the training on NB201&C10 in Fig. 4B. Both DARTS and
GEAE in Fig. 4B are basically stuck at the random discretized accuracies which
is obviously due to the insufficient sparsity of parameters shown in Fig. 4A. In
contrast, EDD-DARTS, shown by the brown line in Fig. 4B, maintains an appro-
priate sparsity of β and steadily improve the discretized accuracies throughout
the training. We observe the similar phenomenon on DARTS space. The drift
of E(a) can be seen in Fig. 4A in which the three decay cycles of PCD exhibit
slightly different dynamics of β for the same temperature sequence Lexp. This is
the downside of PCD since it determines the whole Lexp beforehand and fixes it
during training. In contrast, EDD adaptively gets texp directly based on the spar-
sity depicted in Eq. (15), thereby finds the appropriate t timely to compensate
that drift of the expectation.

5 Conclusion

In this paper, we focus on sparsifying the β via utilizing and scheduling small
temperature in DARTS. We first propose sn-softmax to alleviate the gradient
saturation of the premature convergence. Next, we propose ETS to better control
the sparsity of β and we elaborate an entropy-based adaptive scheme EDD to
finally deliver the effective enhancement in DARTS.
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Abstract. Relation extraction (RE) has recently moved from the sentence-level
to document-level, which requires aggregating document information and using
entities and mentions for reasoning. Existing works put entity nodes and mention
nodes with similar representations in a document-level graph, whose complex
edges may incur redundant information. Furthermore, existing studies only focus
on entity-level reasoning paths without considering global interactions among
entities cross-sentence. To these ends, we propose a novel document-level RE
model with a GRaph information Aggregation and Cross-sentence Reasoning
network (GRACR). Specifically, a simplified document-level graph is constructed
to model the semantic information of all mentions and sentences in a document,
and an entity-level graph is designed to explore relations of long-distance cross-
sentence entity pairs. Experimental results show that GRACR achieves excellent
performance on two public datasets of document-level RE. It is especially effec-
tive in extracting potential relations of cross-sentence entity pairs. Our code is
available at https://github.com/UESTC-LHF/GRACR.

Keywords: Deep learning · Relation extraction · Document-level RE

1 Introduction

Relation extraction (RE) is to identify the semantic relation between a pair of named
entities in text. Document-level RE requires the model to extract relations from the
document and faces some intractable challenges. Firstly, a document contains multiple
sentences, thus relation extraction task needs to deal with more rich and complex seman-
tic information. Secondly, subject and object entities in the same triple may appear in
different sentences, and some entities have aliase, which are often named entity men-
tions. Hence, the information utilized by document-level RE may not come from a sin-
gle sentence. Thirdly, there may be interactions among different triples. Extracting the
relation between two entities from different triples requires reasoning with contextual
features. Figure 1 shows an example from DocRED dataset [21]. It is easy to predict
intra-sentence relations because the subject and object appear in the same sentence.
However, it has a problem in identifying the inter-sentence relation between “Swedish”
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 316–328, 2023.
https://doi.org/10.1007/978-3-031-33374-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33374-3_25&domain=pdf
https://github.com/UESTC-LHF/GRACR
https://doi.org/10.1007/978-3-031-33374-3_25


Document-Level Relation Extraction with Cross-sentence Reasoning Graph 317

Fig. 1. An example of document-level RE excerpted from DocRED dataset.

and “Royal Swedish Academy”, whose mentions are distributed across different sen-
tences and there exists long-distance dependencies.

[21] proposed DocRED dataset, which contains large-scale human-annotated doc-
uments, to promote the development of sentence-level RE to document-level RE. In
order to make full use of the complex semantic information of documents, recent
works design document-level graph and propose models based on graph neural net-
works (GNN) [4]. [1] proposed an edge-oriented model that constructs a document-
level graph with different types of nodes and edges to obtain a global representation for
relation classification. [12] defined the document-level graph as a latent variable and
induced it based on structured attention to improve the performance of document-level
RE models by optimizing the structure of document-level graph. [17] proposed a model
that learns global representations of entities through a document-level graph, and learns
local representations of entities based on their contexts. However, these models simply
average the embeddings of mentions to obtain entity embeddings and feed them into
classifiers to obtain relation labels. Entity and mention nodes share a similar embed-
ding if certain entity has only one mention. Therefore, putting them in the same graph
will introduce redundant information and reduce discrimination.

To address above issues, we propose a novel GNN-based document-level RE model
with two graphs constructed by semantic information from the document. Our key idea
is to build document-level graph and entity-level graph to fully exploit the semantic
information of documents and reason about relations between entity pairs across sen-
tences. Specifically, we solve two problems:

First, how to integrate rich semantic information of a document to obtain entity rep-
resentations? We construct a document-level graph to integrate complex semantic infor-
mation, which is a heterogeneous graph containing mention nodes and sentence nodes.
Representations of mention nodes and sentence nodes are computed by the pre-trained
language model BERT [3]. The built document-level graph is input into the R-GCNs
[13], a relational graph neural network, to make nodes contain the information of their
neighbor nodes. Then, representations of entities are obtained by performing logsum-
exp pooling operation on representations of mention nodes. In previous methods, repre-
sentations of entity nodes are obtained from representations of mention nodes. Hence
putting them in the same graph will introduce redundant information and reduce dis-
criminability. Unlike previous document-level graph construction, our document-level
graph contains only sentence nodes and mention nodes to avoid redundant information
caused by repeated node representations.

Second, how to use connections between entities for reasoning? In this paper, we
exploit connections between entities and propose an entity-level graph for reasoning.
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The entity-level graph is built by the positional connections between sentences and
entities to make full use of cross-sentence information. It connects long-distance cross-
sentence entity pairs. Through the learning of GNN, each entity node can aggregate the
information of its most relevant entity nodes, which is beneficial to discover potential
relations of long-distance cross-sentence entity pairs.

In summary, we propose a novel model called GRACR for document-level RE. Our
main contributions are as follows:

• We propose a simplified document-level graph to integrate rich semantic information.
The graph contains sentence nodes and mention nodes but not entity nodes, which
avoids introducing redundant information caused by repeated node representations.

• We propose an entity-level graph for reasoning to discover potential relations of
long-distance cross-sentence entity pairs. An attention mechanism is applied to fuse
document embedding, aggregation, and inference information to extract relations of
entity pairs.

• We conduct experiments on two public document-level relation extraction datasets.
Experimental results demonstrate that our model outperforms many state-of-the-art
methods.

2 Related Work

The research on document-level RE has a long history. The document-level graph pro-
vides more features for entity pairs. The relevance between entities can be captured
through graph learning using GNN [10]. For example, [2] utilized GNN to aggregate
the neighborhood information of text graph nodes for text classification. Following
this, [1] constructed a document-level graph with heterogeneous nodes and proposed
an edge-oriented model to obtain a global representation. [7] characterized the inter-
action between sentences and entity pairs to improve inter-sentence reasoning. [25]
introduced context of entity pairs as edges between entity nodes to model semantic
interactions among multiple entities. [24] constructed a dual-tier heterogeneous graph
to encode the inherent structure of document and reason multi-hop relations of enti-
ties. [17] learned global representations of entities through a document-level graph, and
learned local representations based on their contexts. [12] defined the document-level
graph as a latent variable to improve the performance of RE models by optimizing the
structure of the document-level graph. [23] proposed a double graph-based graph aggre-
gation and inference network (GAIN). Different from GAIN, our entity-level graph is a
heterogeneous graph and we use R-GCNs to enable interactions between entity nodes
to discover potential relations of long-distance cross-sentence entity pairs. [18] con-
structed a document-level graph with rhetorical structure theory and used evidence to
reasoning. [14] constructed the input documents as heterogeneous graphs and utilized
Graph Transformer Networks to generate semantic paths.

Unlike above document-level graph construction methods, our document-level
graph contains only sentence nodes and mention nodes to avoid introducing redundant
information. Moreover, previous works don’t directly deal with cross-sentence entity
pairs. Although entities in different sentences are indirectly connected in the graph, e.g.,
the minimum distance between entities across sentences is 3 and the information needs
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Fig. 2. Architecture of our proposed model.

to pass through two different nodes when interacting in GLRE [17]. We directly connect
cross-sentence entity pairs with potential relations through bridge entities to shorten the
distance of information transmission, which reduces the introduction of noise.

In addition, there are some works that try to use pre-trained models directly instead
of introducing graph structures. [16] applied a hierarchical inference method to aggre-
gate the inference information of different granularity. [22] captured the coreferential
relations in context by a pre-training task. [9] proposed a mention-based reasoning net-
work to capture local and global contextual information. [20] used mention dependen-
cies to construct structured self-attention mechanism. [26] proposed adaptive threshold-
ing and localized context pooling to solve the multi-label and multi-entity problems.
These models take advantage of the multi-head attention of Transformer instead of
GNN to aggregate information.

However, these studies focused on the local entity representation, which overlooks
the interaction between entities distributed in different sentences [11]. To discover poten-
tial relations of long-distance cross-sentence entity pairs, we introduce an entity-level
graph built by the positional connections between sentences and entities for reasoning.

3 Methodology

In this section, we describe our proposed GRACR model that constructs a document-
level graph and an entity-level graph to improve document-level RE. As shown in Fig. 2,
GRACR mainly consists of 4 modules: encoding module, document-level graph aggre-
gation module, entity-level graph reasoning module, and classification module. First, in
encoding module, we use a pre-trained language model such as BERT [3] to encode the
document. Next, in document-level graph aggregation module, we construct a hetero-
geneous graph containing mention nodes and sentence nodes to integrate rich seman-
tic information of a document. Then, in entity-level graph reasoning module, we also
propose a graph for reasoning to discover potential relations of long-distance and cross-
sentence entity pairs. Finally, in classification module, we merge the context informa-
tion of relation representations obtained by self-attention [15] to make final relation
prediction.
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3.1 Encoding Module

To better capture the semantic information of document, we choose BERT as the
encoder. Given an input document D = [w1, w2, . . . , wk], where wj(1 ≤ j ≤ k) is
the jth word in it. We then input the document into BERT to obtain the embeddings:

H=[h1,h2, . . . ,hk]=Encoder([w1, w2, . . . , wk]) (1)

where hj ∈ R
dw is a sequence of hidden states outputted by the last layer of BERT.

To accumulate weak signals from mention tuples, we employ logsumexp pooling
[5] to get the embedding ehi of entity ei as initial entity representation.

ehi = log
Nei∑

j=1

exp
(
hmi

j

)
(2)

where mi
j is the mention mj of entity ei, hmi

j
is the embedding of mi

j , Nei
is the

number of mentions of entity ei in D .
As shown in Eq. (2), the logsumexp pooling generates an embedding for each entity

by accumulating the embeddings of its all mentions across the whole document.

3.2 Document-Level Graph Aggregation Module

To integrate rich semantic information of a document to obtain entity representations,
we construct a document-level graph (Dlg) based on H.

Dlg has two different kinds of nodes:
Sentence nodes, which represent sentences in D . The representation of a sentence

node si is obtained by averaging the representations of contained words. We concate-
nate a node type representation ts ∈ R

dt to differentiate node types. Therefore, the

representations of si is hsi =
[
avgwj∈si (hj) ; ts

]
, where [; ] is the concatenation oper-

ator.
Mention nodes, which represent mentions in D . The representation of a mention

nodemi is achieved by averaging the representations of words that make up the mention.
We concatenate a node type representation tm ∈ R

dt . Similar to sentence nodes, the

representation of mi is hmi
=

[
avgwj∈mi

(hj) ; tm
]
.

There are three types of edges in Dlg:

• Mention-mention edge. To exploit the co-occurrence dependence between mention
pairs, we create a mention-mention edge. Mention nodes of two different entities
are connected by mention-mention edges if their mentions co-occur in the same
sentence.

• Mention-sentence edge. Mention-sentence edge is created to better capture the con-
text information of mention. Mention node and sentence node are connected by
mention-sentence edges if the mention appears in the sentence.

• Sentence-sentence edge. All sentence nodes are connected by sentence-sentence
edges to eliminate the effect of sentences sequence in the document and facilitate
inter-sentence interactions.
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Then, we use an L-layer stacked R-GCNs [13] to learn the document-level graph.
R-GCNs can better model heterogeneous graph that has various types of edges than
GCN. Specifically, its node forward-pass update for the (l + 1)(th) layer is defined as
follows:

nl+1
i =σ

⎛
⎝Wl

0n
l
i+

∑
x∈X

∑
j∈Nx

i

1

|N x
i |

Wl
xn

l
j

⎞
⎠ (3)

where σ(·) means the activation function, N x
i denotes the set of neighbors of node i

linked with edge x, and X denotes the set of edge types. Wl
x,W

l
0 ∈ R

dn×dn are
trainable parameter matrices and dn is the dimension of node representation.

We use the representations of mention nodes after graph convolution to compute
the preliminary representation of entity node ei by logsumexp pooling as eprei , which
incorporates the semantic information of ei throughout the whole document. However,
the information of the whole document inevitably introduce noise. We employ atten-
tion mechanism to fuse the initial embedding information and semantic information of
entities to reduce noise. Specifically, we define the entity representation eDlgi as follows:

eDlgi = softmax

⎛
⎜⎝

epre
i W

e
pre
i

i

(
ehi W

ehi
i

)T

√
dehi

⎞
⎟⎠ ehi W

ehi
i (4)

and

eprei = log

Nei∑
j=1

exp
(
nmi

j

)
(5)

where Weprei
i and Wehi

i ∈ R
dn×dn are trainable parameter matrices. nmi

j
is mention

semantic representations after graph convolution. dehi is the dimension of ehi .

3.3 Entity-Level Graph Reasoning Module

To discover potential relations of long-distance cross-sentence entity pairs, we introduce
an entity-level graph (Elg) reasoning module. Elg contains only one kind of node:

Entity node, which represents entities in D . The representation of an entity node
ei is obtained from document-level graph defined by Eq. (5). We concatenate a node
type representation te ∈ R

te . The representations of ei is hei = [eprei ; te].
There are two kinds of edges in Elg:

• Intra-sentence edge. Two different entities are connected by an intra-sentence edge
if their mentions co-occur in the same sentence. For example, Elg uses an intra-
sentence edge to connect entity nodes ei and ej if there is a path PIi,j denoted as
ms1

i → s1 → ms1
j . ms1

i and ms1
j are mentions of an entity pair <ei, ej> and they

appear in sentence s1. “→” denotes one reasoning step on the reasoning path from
entity node ei to ej .

• Logical reasoning edge. If the mention of entity ek has co-occurrence dependencies
with mentions of other two entities in different sentences, we suppose that ek can be
used as a bridge between entities. Two entities distributed in different sentences are
connected by a logical reasoning edge if a bridge entity connects them. There is a
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logical reasoning path PLi,j denoted as ms1
i → s1 → ms1

k → ms2
k → s2 → ms2

j ,
and we apply a logical reasoning edge to connect entity nodes ei and ej .

Similar to Dlg, we apply an L-layer stacked R-GCNs to convolute the entity-level
graph to get the reasoned representation of entity eElgi . In order to better integrate the
information of entities, we employ the attention mechanism to fuse the aggregated infor-
mation, the reasoned information, and the initial information of entity to form the final
representation of entity.

erepi =softmax

⎛
⎜⎜⎜⎝

eDlgi W
e
Dlg
i

i

(
eElgi W

e
Elg
i

i

)T

√
d
e
Elg
i

⎞
⎟⎟⎟⎠ ehi W

ehi
i (6)

whereWeDlgi
i andWeElgi

i ∈ R
dn×dn are trainable parameter matrices. deElg

i
is the dimen-

sion of eElg
i .

3.4 Classification Module

To classify the target relation r for an entity pair <em, en>, we concatenate entity final
representations and relative distance representations to represent one entity pair:

êm = [erepm ; smn] , ên = [erepn ; snm] (7)

where smn denotes the embedding of relative distance from the first mention of em to
that of en in the document. snm is similarly defined.

Then, we concatenate the representations of êm, ên to form the target relation rep-
resentation or = [êm; ên].

Furthermore, following [17], we employ self-attention [15] to capture context rela-
tion representations, which can help us exploit the topic information of the document:

oc =

p∑
i=1

θioi =

p∑
i=1

exp
(
oiWoT

r

)
∑p

j=1 exp (ojWoT
r )

oi (8)

where W ∈ R
dr×dr is a trainable parameter matrix, dr is the dimension of target

relation representations. oi is the relation representation of the ith entity pair. θi is the
attention weight for oi. p is the number of entity pairs.

Finally, we use a feed-forward neural network (FFNN) on the target relation repre-
sentation or and the context relation representation oc for prediction. What’s more, we
transform the multi-classification problem into multiple binary classification problems,
since an entity pair may have different relations. The predicted probability distribution
of r over the set R of all relations is defined as follows:

yr = sigmoid (FFNN ([or;oc])) (9)

where yr ∈ {0, 1}.
We define the loss function as follows:

L = −
∑
r∈R

(y∗
r log (yr) + (1− y∗

r ) log (1− yr)) (10)

where y∗
r ∈ {0, 1} denotes the true label of r.
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4 Experiments and Results

Table 1. Statistics of the datasets.

Statistics DocRED CDR

# Train 3053 500

# Dev 1000 500

# Test 1000 500

# Relations 97 2

Avg.# Ents per Doc. 19.5 7.6

Table 2. Results on the development and test set of DocRED. Some results are quoted from
respective paper.

Model Dev Test

Ign F1 F1 Ign F1 F1

Sequence-based CNN [21] 41.58 43.45 40.33 42.26

LSTM [21] 48.44 50.68 47.71 50.07

BiLSTM [21] 48.87 50.94 48.78 51.06

Context-aware [21] 48.94 51.09 48.40 50.70

Transformer-based BERT [19] – 54.16 – 53.20

HIN [16] 54.29 56.31 53.70 55.60

CorefBERT [22] 55.32 57.51 54.54 56.96

SSAN [20] 57.03 59.19 55.84 58.16

Graph-based EoG [1] 45.94 52.15 49.48 51.82

GEDA [7] 54.52 56.16 53.71 55.74

GCGCN [25] 55.43 57.35 54.53 56.67

GLRE [17] – – 55.40 57.40

DISCO [18] 55.91 57.78 55.01 55.70

Ours GRACR 57.85 59.73 56.47 58.54

Table 3. Results on CDR.

Model F1 intra-F1 inter-F1

LSR [12] 64.8 68.9 53.1

DHG [24] 65.9 70.1 54.6

HGNN [14] 64.4 69.2 51.2

MRN [9] 65.9 70.4 54.2

GRACR 68.8 73.9 55.8
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Table 4. Ablation study on the development set
of DocRED.

Model Ign F1 F1

GRACR 57.85 59.73

w/o both module 57.33 59.16

w/o reasoning module 57.44 59.30

w/o aggregation module 57.61 59.57

w/o reasoning edge 57.52 59.48

w/o intra-sentence edge 57.51 59.46

w/ previous Dlg 57.13 58.97

Table 5. Intra-F1 and inter-F1 results on
DocRED.

Model intra-F1 inter-F1

CNN [21] 51.87 37.58

LSTM [21] 56.57 41.47

BiLSTM [21] 57.05 43.39

Context-aware [21] 56.74 42.26

GEDA [7] 61.85 49.46

LSR [12] 65.26 52.05

GRACR 65.88 52.49

4.1 Dataset

We evaluate our model on DocRED and CDR dataset. The dataset statistics are shown in
Table 1. The DocRED dataset [21], a large-scale human-annotated dataset constructed
from Wikipedia, has 3,053 documents, 132,275 entities, and 56,354 relation facts in
total. DocRED covers a wide variety of relations related to science, art, time, per-
sonal life, etc. The Chemical-Disease Relations (CDR) dataset [8] is a human-annotated
dataset, which is built for the BioCreative V challenge. CDR contains 1,500 PubMed
abstracts about chemical and disease with 3,116 relational facts.

4.2 Experiment Settings and Evaluation Metrics

To implement our model, we choose uncased BERT-base [3] as the encoder on DocRED
and set the embedding dimension to 768. For CDR dataset, we pick up BioBERT-Base
v1.1 [6], which re-trained the BERT-base-cased model on biomedical corpora.

All hyper-parameters are tuned based on the development set. Other parameters
in the network are all obtained by random orthogonal initialization [17] and updated
during training.

For a fair comparison, we follow the same experimental settings from previous
works. We apply F1 and Ign F1 as the evaluation metrics on DocRED. F1 scores can
be obtained by calculation through an online interface. Furthermore, Ign F1 means that
the F1 score ignores the relational facts shared by the training and development/test
sets. We compare our model with three categories of models. Sequence-based models
use neural architectures such as CNN and bidirectional LSTM as encoder to acquire
embeddings of entities. Graph-based models construct document graphs and use GNN
to learn graph structures and implement inference. Instead of using document graph,
transformer-based models adopt pre-trained language models to extract relation.

For CDR dataset, we use training subset to train the model. Depending on whether
relation between two entities occur within one sentence or not, F1 can be further split
into intra-F1 and inter-F1 to evaluate the model’s performance on intra-sentence rela-
tions and inter-sentence relations. To make a comprehensive comparison, we also mea-
sure the corresponding F1, intra-F1 and inter-F1 scores on development set.
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4.3 Main Results

Results on DocRED.As shown in Table 2, our model outperforms all baseline methods
on both development and test sets. Compared with graph-based models, both F1 and
Ign F1 of our model are significantly improved. Compared to GLRE, which is the most
relevant approach to our method, the performance improves 1.07% for F1 and 1.14%
for Ign F1 on test set. Furthermore, compared to Transformer-based model SSAN, our
method improves by 0.54% for F1 and 0.84% for Ign F1 on development set. With
respect to sequence-based methods, the improvement is considerable.

Results on CDR. Table 3 depicts the comparisons with state-of-the-art models on CDR.
Compared to MRN [9], the performance of our model approximately improves about
2.9% for F1, and 3.9% for intra-F1 and 1.6% for inter-F1. DHG and MRN produce
similar results. In summary, these results demonstrate that our method is effective in
extracting both intra-sentence relations and inter-sentence relations.

Fig. 3. Case study on the DocRED development set. Entities are colored accordingly.

4.4 Ablation Study

We conduct a thorough ablation study to investigate the effectiveness of two key mod-
ules in our method: an aggregation module and an reasoning module. From Table 4, we
can observe that all components contribute to model performance.

(1) When the reasoning module is removed, the performance of our model on the
DocRED development set for Ign F1 and F1 scores drops by 0.41% and 0.43%,
respectively. Furthermore, we analyze the role of each edge in the reasoning mod-
ule. F1 drops by 0.23% or 0.25% when we remove intra-sentence edge or logical
reasoning edge. Likewise, removing the aggregation module results in 0.24% and
0.16% drops in Ign F1 and F1. This phenomenon verifies the effectiveness of the
aggregation module and the reasoning module.

(2) A larger drop occurs when two modules are removed. The F1 score dropped from
59.73% to 59.16% and the Ign F1 score dropped from 57.85% to 57.33%. This
study validates that all modules work together can handle RE task more effective.

(3) When we apply the document-level graph with entity nodes and more complex
edge types like GLRE, the F1 score dropped from 59.73% to 58.97% and the Ign
F1 score dropped from 57.85% to 57.13%. This result suggests that document-level
graph containing complex and repetitive node information and edges can lead to
information redundancy and degrade model performance.
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4.5 Intra- and Inter-sentence Relation Extraction

In this subsection, we further analyze both intra- and inter-sentence RE performance
on DocRED. The experimental results are listed in Table 5, from which we can find
that GRACR outperforms the compared models in terms of intra- and inter-F1. For
example, our model obtains 0.62% intra-F1 and 0.44% inter-F1 gain on DocRED. The
improvements suggest that GRACR not only considers intra-sentence relations, but also
handles long-distance inter-sentence relations well.

4.6 Case Study

As shown in Fig. 3, GRACR infers the relations of <Swedish, Royal Swedish Academy
of Sciences> based on the information of S1 and S7. “Swedish” and “Royal Swedish
Academy of Sciences” distributed in different sentences are connected by entity-level
graph because they appear in the same sentence with “Johan Gottlieb Gahn”. Entity-
level graph connects them together to facilitate reasoning about their relations. More
importantly, our method is in line with the thinking of human logical reasoning. For
example, from ground true we can know that “Gahn”’s country is “Swedish”. Therefore,
we can speculate that there is a high possibility that the organization he joined has a
relation with “Swedish”.

5 Conclusion

In this paper, we propose GRACR, a graph information aggregation and logical cross-
sentence reasoning network, to better cope with document-level RE. GRACR applies a
document-level graph and attention mechanism to model the semantic information of
all mentions and sentences in a document. It also constructs an entity-level graph to
utilize the interaction among different entities to reason the relations. Finally, it uses
an attention mechanism to fuse document embedding, aggregation, and inference infor-
mation to help identify relations. Experimental results show that our model achieves
excellent performance on DocRED and CDR.
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Abstract. In this paper, we introduce weight prediction into the
AdamW optimizer to boost its convergence when training the deep neural
network (DNN) models. In particular, ahead of each mini-batch training,
we predict the future weights according to the update rule of AdamW
and then apply the predicted future weights to do both forward pass
and backward propagation. In this way, the AdamW optimizer always
utilizes the gradients w.r.t. the future weights instead of current weights
to update the DNN parameters, making the AdamW optimizer achieve
better convergence. Our proposal is simple and straightforward to imple-
ment but effective in boosting the convergence of DNN training. We per-
formed extensive experimental evaluations on image classification and
language modeling tasks to verify the effectiveness of our proposal. The
experimental results validate that our proposal can boost the convergence
of AdamW and achieve better accuracy than AdamW when training the
DNN models.

Keywords: Deep learning · Weight prediction · Convergence ·
AdamW

1 Introduction

The optimization of deep neural network models is to find the optimal parame-
ters using an optimizer which has a decisive influence on the convergence of the
models and thus directly affects the total training time. Adaptive gradient meth-
ods, such as RMSprop [20], AdaGrad [3], Adam [7] and AdamW [11], are cur-
rently of core practical importance in deep learning training as they are able to
attain rapid training of modern deep learning models. Particularly, AdamW [11],
also known as Adam with decoupled weight decay, has been used as a default
optimizer for training various DNN models [1,10,11,20,21]. The major advantage
of AdamW lies in that it improves the generalization performance of Adam [7]
and thus works as effectively as SGD with momentum [18] on image classification
tasks.

As with other popular gradient-based optimization methods, when using
AdamW as an optimizer, each iteration of DNN training, i.e., a mini-batch
training, generally consists of one forward pass and one backward propagation,
where the gradients w.r.t. all the parameters (also known as weights) are com-
puted during the backward propagation. The generated gradients are then used
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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by the AdamW optimizer to calculate the update values for all parameters, which
are finally applied to updating the weights. The remarkable features of using
AdamW to update parameters include: 1) the updates of weights are continu-
ous; 2) each mini-batch uses the currently available weights to do both forward
pass and backward propagation.

Motivated by the fact that DNN weights are updated in a continuous man-
ner and the update values calculated by the AdamW should reflect the “correct”
direction for updating the weights, we introduce weight prediction [2,4] into the
DNN training to further boost the convergence of AdamW. Concretely, ahead
of each mini-batch training, we first perform weight prediction according to the
currently available weights and the update rule of AdamW. Following that, we
use the predicted future weights instead of current weights to perform both for-
ward pass and backward propagation. Finally, the AdamW optimizer utilizes the
gradients w.r.t. the predicted weights to update the DNN parameters. We exper-
iment with two typical machine learning tasks, including image classification and
language modeling. The experimental results demonstrate that our proposal out-
performs AdamW in terms of convergence and accuracy. For instance, when
training four convolution neural network (CNN) models on CIFAR-10 dataset,
our proposal yields an average accuracy improvement of 0.47% (up to 0.74%)
over AdamW. When training LSTMs on Penn TreeBank dataset, our proposal
achieves 5.52 less perplexity than AdamW on average.

The contributions of this paper can be summarized as follows:

(1) We, for the first time, construct the mathematical relationship between cur-
rently available weights and future weights after several continuous updates
when using AdamW as an optimizer.

(2) We devise an effective way to incorporate weight prediction into AdamW. To
the best of our knowledge, this is the first time that uses weight prediction
strategy to boost the convergence of AdamW. The proposed weight predic-
tion strategy is believed to be well suited for other popular optimization
methods such as RMSprop [20], AdaGrad [3], Adam [7], et al.

(3) We conducted extensive experimental evaluations to validate the effective-
ness of our proposal, which demonstrates that our proposal is able to boost
the convergence of AdamW when training the DNN models.

2 Related Work

When using the gradient-based optimization methods to train DNN models,
the differences in optimization methods lie in that the ways using gradients to
update model parameters are different. Generally, the commonly used first-order
gradient methods can be categorized into two groups: the accelerated stochastic
gradient descent (SGD) family [15,16,18] and adaptive gradient methods [7,23,
24].

Adaptive gradient methods, also known as adaptive learning methods, have
been heavily studied in prior research and widely used in deep learning training.
Very different from the SGD methods (e.g., Momentum SGD [18]), which use a
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unified learning rate for all parameters, adaptive gradient methods compute a
specific learning rate for each individual parameter [24]. In 2011, Duchi et al. [3]
proposed the AdaGrad, which can dynamically adjust the learning rate according
to the history gradients from previous iterations and utilize the quadratic sum
of all previous gradients to update the model parameters. Zeiler [23] proposed
AdaDelta, seeking to alleviate the continual decay of the learning rate of Ada-
Grad. AdaDelta does not require manual tuning of a learning rate and is robust
to noisy gradient information. Tieleman and Hinton [20] refined AdaGrad and
proposed RMSprop. The same as AdaGrad, RMSprop adjusts the learning rate
via element-wise computation and then updates the variables. One remarkable
feature of RMSprop is that it can avoid decaying the learning rate too quickly. In
order to combine the advantages of both AdaGrad and RMSprop, Kingma and
Ba [7] proposed another famous adaptive gradient method, Adam, which has
become an extremely important choice for deep learning training. Loshchilov
and Hutter [11] found that the major factor of the poor generalization of Adam
is due to that L2 regularization for it is not as effective as for its competitor, the
Momentum SGD. They thus proposed decoupled weight decay regularization for
Adam, which is also known as AdamW. The experimental results demonstrate
that AdamW substantially improves the generalization performance of Adam
and illustrates competitive performance as Momentum SGD [18] when tackling
image classification tasks. To simultaneously achieve fast convergence and good
generalization, Zhuang et al. [24] proposed another adaptive gradient method
called AdaBelief, which adapts the stepsize according to the “belief” in the cur-
rent gradient direction. Other adaptive gradient methods include AdaBound [12],
RAdam [9], Yogi [22], et al. It is worth noting that all these adaptive gradient
methods share a common feature: weight updates are continuous and each mini-
batch training always uses currently available weights to perform both forward
pass and backward propagation.

Weight prediction was previously used to overcome the weight inconsistency
issue in the asynchronous pipeline parallelism. Chen et al. [2] used the smoothed
gradient to replace the true gradient in order to predict future weights when
using Momentum SGD [18] as the optimizer. Guan et al. [4] proposed using the
update values of Adam [7] to make weight predictions. Yet, both approaches use
weight prediction to ensure the weight consistency of pipeline training rather
than considering the impact of weight prediction on the optimizers themselves.

3 Methods

Ahead of any t-th (t ≥ 1) iteration, we assume that the current available DNN
weights are θt−1. Given the initial learning rate γ ∈ R, momentum factor β1 ∈ R

and β2 ∈ R, and weight decay value λ ∈ R, we reformulate the update of
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AdamW [11] as

θt = (1 − γλ)θt−1 − γm̂t√
v̂t + ε

,

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gt = ∇θft(θt−1),
mt = β1 · mt−1 + (1 − β1) · gt,
vt = β2 · vt−1 + (1 − β2) · g2

t ,
m̂t = mt

1−βt
1
,

v̂t = vt

1−βt
2
.

(1)

In (1), mt and vt refer to the first and second moment vector respectively, ε is
the smoothing term which can prevent division by zero.

Letting θ0 denote the initial weights of a DNN model, then in the following
s times of continuous mini-batch training, the DNN weights are updated via

θ1 = (1 − γλ)θ0 − γm̂1√
v̂1 + ε

,

θ2 = (1 − γλ)θ1 − γm̂2√
v̂2 + ε

,

· · ·
θs = (1 − γλ)θs−1 − γm̂s√

v̂s + ε
,

(2)

where for any i ∈ {1, 2, · · · , s}, we have

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gi = ∇θfi(θi−1),
mi = β1 · mi−1 + (1 − β1) · gi,
vi = β2 · vi−1 + (1 − β2) · g2

i ,
m̂i = mi

1−βi
1
,

v̂i = vi

1−βi
2
.

(3)

When summing up all weight update equations in (2), we have

θs = θ0 − γλ

s−1∑

i=0

θi −
s∑

i=1

γm̂i√
v̂i + ε

,

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gi = ∇θfi(θi−1),
mi = β1 · mi−1 + (1 − β1) · gi,
vi = β2 · vi−1 + (1 − β2) · g2

i ,
m̂i = mi

1−βi
1
,

v̂i = vi

1−βi
2
.

(4)

It is well known that the weight decay value λ is generally set to an extremely
small value (e.g., 5e−4), and the learning rate γ is commonly set to a value smaller
than 1 (e.g., 0.01). Consequently, γλ is pretty close to zero, and thus, the second
term of the right hand of (4) can be neglected. This, therefore, generates the
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following equation:

θs ≈ θ0 −
s∑

i=1

γm̂i√
v̂i + ε

. (5)

(5) illustrates that given the initial weights θ0, the weights after s times of
continuous updates can be approximately calculated. Correspondingly, given θt,
the weights after s times of continuous updates can be approximately calculated
via

θt+s ≈ θt −
t+s∑

i=t+1

γm̂i√
v̂i + ε

. (6)

From (6), we see that given the initial weights θt, θt+s can be approximately
calculated by letting θt subtract the sum of s continuous relative variation of the
weights. Note that the relative increments of the weights in each iteration should
reflect the trend of the weight updates in each iteration. In (6), γm̂i√

v̂i+ε
should

reflect the “correct” direction for updating the weights θt as it is calculated by
the AdamW, and the weights are updated in a continuous manner and along the
way of inertia directions.

We can therefore replace
∑t+s

i=t+1
γm̂i√
v̂i+ε

in (6) with s γm̂t+1√
v̂t+1+ε

in an effort

to approximately predict θt+s for the case when only θt, gt and the weight
prediction steps s are available. Note that at any t-th iteration, the gradients
of stochastic objective, i.e., gt = ∇t(θt−1), can be calculated when the back-
ward propagation is completed. Letting θ̂t+s denote the approximately predicted
weights for θt+s, we can construct the mathematical relationship between θt and
θ̂t+s as

θ̂t+s = θt − s
γm̂t+1

√
v̂t+1 + ε

,

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

gt = ∇θft(θt−1),
mt = β1 · mt−1 + (1 − β1) · gt,
vt = β2 · vt−1 + (1 − β2) · g2

t ,
m̂t = mt

1−βt
1
,

v̂t = vt

1−βt
2
.

(7)

In the following, we showcase how to incorporate weight prediction into
the DNN training when using AdamW [11] as an optimizer. Algorithm 1 illus-
trates the detailed information. The weight prediction step s and other hyper-
parameters are required ahead of the DNN training. At each iteration, the cur-
rent available weights θt should be cached before the forward pass starts (Line
4). Then weight prediction are performed using (7) and the predicted weights
θ̂t+s is generated (Line 5). Following that, the predicted weights θ̂t+s are used
to do both forward pass and backward propagation (Lines 6 and 7). Finally, the
cached weights θt is recovered and updated using the AdamW optimizer (Lines
8 and 9).
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Algorithm 1. Weight prediction for AdamW
Require: Weight prediction step s, other hyper-parameters such as γ, β1, β2, γ, ε.
1: Initialize or load DNN weights θ0.
2: t ← 1.
3: while stopping criterion is not met do
4: Cache the current weights θt.
5: Calculate θ̂t+s using (7).
6: Do forward pass with θ̂t+s.
7: Do backward propagation with θ̂t+s.
8: Recover the cached weights θt.
9: Update the weights θt using the AdamW optimizer.

10: t ← t + 1.
11: end while

4 Experiments

4.1 Experiment Settings

In this section, we mainly compare our proposal with AdamW [11]. We evaluated
our proposal with three different weight prediction steps (i.e., s = 1, s = 2, and
s = 3), which were respectively denoted as Ours-S1, Ours-S2, and Ours-S3 for
convenience purposes. We conducted experimental evaluations on two different
machine learning tasks: image classification on the CIFAR-10 [8] dataset with
four CNN models and language modeling on Penn TreeBank [14] dataset with
two LSTM [13] models. All the experiments were conducted on a multi-GPU
platform which is equipped with four NVIDIA Tesla P100 GPUs, each with
16GB of memory size. The CPU on the platform is Intel Xeon E5-2680 with
128GB DDR4-2400 off-chip main memory.

The CIFAR-10 dataset totally includes 60k 32×32 images, 50k images for
training, and 10k images for validation. The Penn TreeBank dataset consists of
929k training words, 73k validation words as well as 82k test words. For image
classification, the used CNN models are VGG-11 [17], ResNet-34 [5], DenseNet-
121 [6], and Inception-V3 [19]. For language modeling, we trained the LSTM
models with two sizes: 1-layer LSTM and 2-layer LSTM. Each layer was config-
ured with 650 units and was applied 50% dropout on the non-recurrent connec-
tions.

We trained all CNN models for 120 epochs with a mini-batch size of 128. The
learning rate was initialized as 1e−4, and divided by ten at the 90th epoch. For
training 1-layer and 2-layer LSTM models, we set the size of each mini-batch to
20. We trained both LSTM models for 100 epochs with an initial learning rate
of 0.01 and decreased the learning rate by a factor of 10 at the 60th and 80th
epochs. For AdamW [11] and our proposal, we always evaluated them with the
default parameters, i.e., β1 = 0.9, β2 = 0.999, and ε = 10−8. The weight decay
for both approaches was set to λ = 5e−4.
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4.2 CNNs on CIFAR-10

In this section, we report the experimental results when training four CNN mod-
els on the CIFAR-10 dataset. Table 1 summarizes the maximum validation top-1
accuracy and Table 2 presents the minimum validation loss. Figure 1 depicts
the learning curves of validation accuracy vs. epochs for training CNNs using
AdamW, Ours-S1, Ours-S2, and Ours-S3, respectively. The learning curves about
validation loss vs. epochs are shown in Fig. 2.

Fig. 1. Validation accuracy vs. epochs of training VGG-11, ResNet-34, DenseNet-121
and Inception-V3 on CIFAR-10.

Table 1. Maximum validation top-1 accuracy on CIFAR-10. Higher is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

VGG-11 87.85% 87.83% 88.34% 88.59%
ResNet-34 94.03% 94.06% 93.95% 94.37%

DenseNet-121 93.97% 94.13% 94.04% 94.39%
Inception-V3 93.53% 93.90% 93.60% 93.61%
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Fig. 2. Validation loss vs. epochs of training VGG-11, ResNet-34, DenseNet-121 and
Inception-V3 on CIFAR-10.

Table 2. Minimum validation loss on CIFAR-10. Lower is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

VGG-11 0.485 0.475 0.474 0.456
ResNet-34 0.323 0.318 0.305 0.297

DenseNet-121 0.327 0.319 0.319 0.302
Inception-V3 0.346 0.333 0.331 0.324

Based on the observation of Table 1 and Fig. 1, we can immediately reach the
following conclusions. First, Fig. 1 shows that the learning curves of our proposal
with different weight prediction steps match well with that of AdamW but con-
verge faster than that of AdamW, especially at the beginning of training epochs.
The learning curves in Figs. 1(a), 1(b), 1(b), and 1(d) also illustrate that our
proposal generally attains higher validation accuracy than AdamW at the end
of the training. Second, Table 1 shows that our proposal outperforms AdamW
on all evaluated CNN models in terms of the obtained maximum validation
accuracy. In particular, our proposal achieves consistently higher validation top-
1 accuracy than AdamW. Compared to AdamW, our proposal achieves 0.74%,
0.34%, 0.42%, and 0.37% for training VGG-11, ResNet-34, DenseNet-121, and
Inception-V3, respectively. On average, our proposal yields 0.47% (up to 0.74%)



Weight Prediction Boosts the Convergence of AdamW 337

top-1 accuracy improvement over AdamW. Third, comparing the experimental
results of Ours-S1, Ours-S2, and Ours-S3, we can see that our proposal with dif-
ferent weight prediction steps consistently gets good results, which demonstrates
that the performance of our proposal is independent of the settings of the weight
prediction step. Particularly, the experimental results show that Ours-S3 works
the best for VGG-11, ResNet-34, and DenseNet-121, while Ours-S1 works the
best for Inception-V3. Similar conclusions can be drawn from the observation
of Table 2 and Fig. 2. Our proposal consistently obtains less validation loss than
AdamW which again verifies that weight prediction can boost the convergence
of AdamW when training DNN models.

4.3 LSTMs on Penn TreeBank

In this section, we report the experimental results when training 1-layer and
2-layer LSTM models on the Penn TreeBank dataset [14]. Figures 3 and 4 depict
the learning curves. Table 3 presents the obtained minimum perplexity (lower is
better), and Table 4 summarizes the obtained minimum validation loss (lower is
better).

Fig. 3. Training 1-layer LSTM on Penn TreeBank. Left: Loss vs. epochs; Right: Per-
plexity vs. epochs.

We can draw the following conclusions from the experiment results. First,
as shown in Table 3, for both 1-layer and 2-layer LSTM models, our proposal
achieves lower perplexity and validation loss than AdamW, validating the fast
convergence and good accuracy of our proposal. Second, for 1-layer LSTM, our
proposal with s = 2 yields 9.22 less perplexity than AdamW. For 2-layer LSTM,
our proposal with s = 3 yields 2.02 less perplexity than AdamW. On average,
our proposal achieves 5.52 less perplexity than AdamW. Second, similar con-
clusions can be drawn based on the observation of the loss vs. epochs learning
curves in Figs. 3(a) and 4(a) and Table 4. Our proposal consistently achieves less
validation loss than AdamW, again validating that weight prediction can boost
the convergence of AdamW.
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Fig. 4. Training 2-layer LSTM on Penn TreeBank. Left: Loss vs. epochs; Right: Per-
plexity vs. epochs.

Table 3. Minimum perplexity on Penn TreeBank. Lower is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

1-Layer LSTM 126.21 124.75 116.99 124.71
2-Layer LSTM 114.68 114.80 113.99 112.64

Table 4. Minimum validation loss on Penn TreeBank. Lower is better.

Models AdamW Ours-S1 Ours-S2 Ours-S3

1-Layer LSTM 4.838 4.826 4.762 4.826
2-Layer LSTM 4.742 4.743 4.736 4.724

5 Conclusions

To further boost the convergence of AdamW, in this paper, we introduce weight
prediction into the DNN training. The remarkable feature of our proposal is
that we perform both forward pass and backward propagation using the future
weights which are predicted according to the update of AdamW. In particular,
we construct the mathematical relationship between current weights and future
weights and devise an effective way to incorporate weight prediction into DNN
training. Our proposal is easy to implement and works well in boosting the
convergence of DNN training. The experimental results on image classification
and language modeling tasks verify the effectiveness of our proposal.

The weight prediction should also work well for other adaptive optimization
methods such as RMSprop [20], AdaGrad [3], and Adam [7] et al. when training
the DNN models. For future work, we would like to apply weight prediction to
those popular optimization methods.
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Abstract. Verification plays an essential role in the formal analysis of
safety-critical systems. Most current verification methods have specific
requirements when working on Deep Neural Networks (DNNs). They
either target one particular network category, e.g., Feedforward Neural
Networks (FNNs), or networks with specific activation functions, e.g.,
ReLU. In this paper, we develop a model-agnostic verification frame-
work, called DeepAgn, and show that it can be applied to FNNs, Recur-
rent Neural Networks (RNNs), or a mixture of both. Under the assump-
tion of Lipschitz continuity, DeepAgn analyses the reachability of DNNs
based on a novel optimisation scheme with a global convergence guaran-
tee. It does not require access to the network’s internal structures, such
as layers and parameters. Through reachability analysis, DeepAgn can
tackle several well-known robustness problems, including computing the
maximum safe radius for a given input, and generating the ground-truth
adversarial example. We also empirically demonstrate DeepAgn’s supe-
rior capability and efficiency in handling a broader class of deep neural
networks, including both FNNs and RNNs with very deep layers and
millions of neurons, than other state-of-the-art verification approaches.
Our tool is available at https://github.com/TrustAI/DeepAgn

Keywords: Verification · Deep Learning · Model-agnostic ·
Reachability

1 Introduction

DNNs, or systems with neural network components, are widely applied in many
applications such as image processing, speech recognition, and medical diagnosis
[10]. However, DNNs are vulnerable to adversarial examples [12,25,33]. It is vital
to analyse the safety and robustness of DNNs before deploying them in practice,
particularly in safety-critical applications.
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The research on evaluating the robustness of DNNs mainly falls into two cat-
egories: falsification-based and verification-based approaches. While falsification
approaches (e.g. adversarial attacks) [11] can effectively find adversarial examples,
they cannot provide theoretical guarantees. Verification techniques, on the other
hand, can rigorously prove the robustness of deep learning systems with guaran-
tees [12,13,18,19,24]. Some researchers propose to reduce the safety verification
problems to constraint satisfaction problems that can be tackled by constraint
solvers such as Mixed-Integer Linear Programming (MILP) [1], Boolean Satisfi-
ability (SAT) [20], or Satisfiability Modulo Theories (SMT) [15]. Another popular
technique is to apply search algorithms [13] or Monte Carlo tree search [32] over
discretised vector spaces on the inputs of DNNs. To improve the efficiency, these
methods can also be combined with a heuristic searching strategy to search for a
counter-example or an activation pattern that satisfies certain constraints, such
as SHERLOCK [4] and Reluplex [15]. Nevertheless, the study subjects of these
verification methods are restricted. They either target specific layers (e.g., fully-
connected or convolutional layers), have restrictions on activation functions (e.g.,
ReLU activation only), or are only workable on a specific neural network structure
(e.g., feedforward neural networks). Particularly, in comparison to FNNs, verifi-
cation on RNNs is still in its infancy, with only a handful of representative works
available, including [14,16,34]. The adoption of [16] requires short input sequences,
and [14,34] can result in irresolvable over-approximation error.

Fig. 1. Illustration of DeepAgn working on a black-box three-output neural network.
In reachability problem, given a set of inputs (quantified by a predefined Lp-norm ball)
and a well-trained black-box neural network, DeepAgn can calculate the output range,
namely, the minimal and maximum output confidence of each label (i.e., [y1min, y1max],
[y2min, y2max], and [y3min, y3max]). For the safety verification problem, we can use a
binary search upon the reachability to find the maximum safe radius rmax where the
confidence intervals of the original label y1 and target label y2 meet.

This paper proposes a novel model-agnostic solution for safety verification
on both feedforward and recurrent neural networks without suffering from the
above weaknesses. Figure 1 outlines the working principle of DeepAgn, demon-
strating its safety evaluation process and the calculation of the maximum safety
radius. To the best of our knowledge, DeepAgn is one of the pioneering attempts
on model-agnostic verification that can work on both modern feedforward and
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recurrent neural networks under a unified framework. DeepAgn can deal with
DNNs with very deep layers, a large number of neurons, and any type of acti-
vation function, via a black-box manner (without access to the internal struc-
tures/parameters of the network). Our contributions are summarised below:

– To theoretically justify the applicability of DeepAgn, we prove that recurrent
neural networks are also Lipschitz continuous for bounded inputs.

Table 1. Comparison with other verification techniques from different aspects

Guarantees Core Techniques Neural Network Types Model
Agnostic

Exact
Computation

Model Access

Reluplex [15] Deterministic SMT+LP ReLu-based FNNs ✗ ✓ Model parameters
Planet [5] Deterministic SAT+LP ReLU-based FNNs ✗ ✓ Model parameters
AI2 [6] Upper bound Abstract Interpretation ReLU-based FNNs ✗ ✗ Model Parameters
ConDual [31] Upper bound Convex relaxation ReLU-based FNNs ✗ ✗ Model parameters
DeepGO [24] Converging bound Lipschitz Optimisation FNNs with Lipschitz continuous

layers (ReLU, Sigmoid, Tanh, etc.)
✗ ✓ Confidence values

FastLip [29] Upper bound Lipschitz estimation ReLU-based FNNs ✗ ✗ Model parameters
DeepGame [32] Approximated

converging bound
Search based ReLU/Tanh/Sigmod based FNNs ✗ ✓ Confidence values

POPQORN [16] Upper bound Unrolling RNNs, LSTMs, GRUs ✗ ✗ Model parameters
RnnVerify [14] Upper bound Invariant Inference RNNs ✗ ✗ Model parameters
VERRNN [34] Upper bound Unrolling+MILP RNNs ✗ ✗ Model parameters
DeepAgn Converging bound Lipschitz Optimisation FNNs (CNNs), RNNs, Hybrid networks

with Lipschitz continuous layers
✓ ✓ Confidence values

– We develop an efficient method for reachability analysis on DNNs. We demon-
strate that this generic and unified model-agnostic verification framework can
work on FNNs, RNNs, and a hybrid of both. DeepAgn is an anytime algo-
rithm, i.e., it can return both intermediate lower and upper bounds that are
gradually, but strictly, improved as the computation proceeds; and it has
provable guarantees, i.e., both the bounds can converge to the optimal value
within an arbitrarily small error with provable guarantees.

– Our experiments demonstrate that DeepAgn outperforms the state-of-the-art
verification tools in terms of both accuracy and efficiency when dealing with
complex, large and hybrid deep learning models.

2 Related Work

Adversarial Attacks. Attacks apply heuristic search algorithms to find adver-
sarial examples. Attacking methods are mainly guided by the forward or cost
gradient of the target DNNs. Major approaches include L-BFGS [25], FGSM [11],
Carlini & Wagner attack [2], Universal Adversarial Attack [36], etc. Adversarial
attacks for FNNs can be applied to cultivate adversarial examples for RNNs
with proper adjustments. The concepts of adversarial example and adversarial
sequence for RNNs are introduced in [22], in which they concrete adversarial
examples for Long Short Term Memory (LSTM) networks. Based on the C&W
attack [2], attacks are implemented against DeepSpeech in [3]. The method in [9]
is the first approach to analyse and perturb the raw waveform of audio directly.
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Verification on DNNs. The recent advances of DNN verification include
a layer-by-layer exhaustive search approach [13], methods using constraint
solvers [15,23], global optimisation approaches [24,27], and the abstract interpre-
tation approach [6,17]. The properties studied include robustness [13,15,35], or
reachability [24], i.e., whether a given output is possible from properties express-
ible with SMT constraints, or a given output is reachable from a given subspace
of inputs. Verification approaches aim to not only find adversarial examples but
also provide guarantees on the results obtained. However, efficient verification
on large-scale deep neural networks is still an open problem. Constraint-based
approaches such as Reluplex can only work with a neural network with a few
hundred hidden neurons [15,23]. Exhaustive search suffers from the state-space
explosion problem [13], although it can be partially alleviated by Monte Carlo
tree search [32]. Moreover, the work [1] considers determining whether an out-
put value of a DNN is reachable from a given input subspace. It proposes a
MILP-based solution. SHERLORCK [4] studies the range of output values from
a given input subspace. This method interleaves local search (based on gradient
descent) with global search (based on reduction to MILP). Both approaches can
only work with small neural networks.

The research on RNN verification is still relatively new and limited compared
with verification on FNNs. Approaches in [16,26,34] start with unrolling RNNs
and then use the equivalent FNNs for further analysis. POPQORN [16] is an
algorithm to quantify the robustness of RNNs, in which upper and lower planes
are introduced to bound the non-linear parts of the estimated neural networks.
The authors in [14] introduce invariant inference and over-approximation, trans-
ferring the RNN to a simple FNN model, demonstrating better scalability. How-
ever, the search for a proper invariant form is not straightforward. In Table 1, we
compare DeepAgn with other safety verification works from six aspects. Deep-
Agn is the only model-agnostic verification tool that can verify hybrid networks
consisting of both RNN and FNN structures. DeepAgn only requires access to
the confidence values of the target model, enabling the verification in a black-box
manner. Its precision can reach an arbitrarily small (pre-defined) error with a
global convergence guarantee.

3 Preliminaries

Let o : [0, 1]m → R be a generic function that is Lipschitz continuous. The
generic term o is cascaded with the Softmax layer of the neural network for
statistically evaluating the outputs of the network. Our problem is to find its
upper and lower bounds given the set X ′ of inputs to the network.

Definition 1 (Generic Reachability of Neural Networks). Let X ′ ⊆
[0, 1]n be an input subspace and f : Rn → R

m is a neural network. The generic
reachability of neural networks is defined as the reachable set R(o,X ′, ε) = [l, u]
of network f over the generic term o under an error tolerance ε ≥ 0 such that
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inf
x′∈X′

o(f(x′)) − ε ≤ l ≤ inf
x′∈X′

o(f(x′)) + ε

sup
x′∈X′

o(f(x′)) − ε ≤ u ≤ sup
x′∈X′

o(f(x′)) + ε
(1)

We write u(o,X ′, ε) = u and l(o,X ′, ε) = l for the upper and lower
bound respectively. Then the reachability diameter is D(o,X ′, ε) = u(o,X ′, ε) −
l(o,X ′, ε) Assuming these notations, we may write D(o,X ′, ε; f) if we need to
explicitly refer to the network f .

Definition 2 (Safety of Neural Network). A network f is safe with respect
to an input x0 and an input subspace X ′ ⊆ [0, 1]n with x0 ∈ X ′, if

∀x′ ∈ X ′ : argmax
j

cj(x′) = argmax
j

cj(x0) (2)

where cj(x0) = f(x0)j returns N ’s confidence in classifying x0 as label j.

Definition 3 (Verified Safe Radius). Given a neural network f : Rn → R
m

and an input sample x0, a verifier V returns a verified safe radius rv regarding
the safety of neural network. For input x′ with ‖x′ − x0‖ ≤ rv, the verifier
guarantees that argmaxj cj(x′) = argmaxj cj(x). For ‖x′ − x0‖ > r, the verifier
either confirms argmaxj cj(x′) 	= argmaxj cj(x) or provides an unclear answer.

Verified safe radius is important merit for robustness analysis, which is
adopted by many verification tools such as CLEVER [30] and POPQORN [16].
Verification tools can further determine the safety of the neural network by com-
paring the verified safe radius rv and the perturbation radius. A neural network
f is determined safe by verifier V with respect to input x0, if ‖x′ − x0‖ ≤ rv. In
Fig. 2, the verification tool V2 with higher verified r2 > r1 radius have a higher
evaluation accuracy. The sample x2 is misjudged as unsafe by V2.

Fig. 2. Verification of samples x1, x2, x3, x4 by different verifiers (a) Verifier V1 (b)
Verifier V2, with verified safe radius r1 < r2. According to V1, x1 is safe since ‖x1 −
x0‖ < r1. x2, x3 and x4 are determined as unsafe since ‖x2 − x0‖ > r1, ‖x3 − x0‖ >
r1, ‖x4−x0‖ > r1. According to V2, x1, x2 are safe since ‖x1−x0‖ < r2, ‖x2−x0‖ < r2.
x3, x4 are determined as unsafe since ‖x3 − x0‖ > r2, ‖x4 − x0‖ > r2. x4 is generated
by the attack method. Adversarial example x3 still exists in the attack radius.
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Definition 4 (Maximum Radius of a Safe Norm Ball). Given a neural
network f : Rm×n → R

s, an distance metric ‖ �‖D, an input x0 ∈ R
m×n, a norm

ball B(f, x0, ‖ � ‖D, r) is a subspace of [a, b]m×n such that B(f, x0, ‖ � ‖D, r) =
{x′|‖x′ − x0‖D ≤ r}. When f is safe in B(f, x0, ‖ � ‖D, r) and not safe in any
input subspace B(f, x0, ‖ �‖D, r′) with r′ > r, we call r here the maximum radius
of a safe norm ball.

Definition 5 (Successful Attack on Inputs). Given a neural network f and
input x0, a α-bounded attack Aα create input sets X ′ = {x′, ‖x′ − x0‖ ≤ α}.
Aα is a successful attack, if an xa ∈ X ′ exists, where argmaxj cj(xa) 	=
argmaxj cj(x0). We call ra = ‖xa − x0‖ ≤ α the perturbation radius of a suc-
cessful attack.

Ideally, the verification solution should provide the maximum radius r of a safe
norm ball as the verified safe radius, i.e., the black circle in Fig. 2. However, most
sound verifiers can only calculate a lower bound of the maximum safe radius, i.e.,
a radius that is smaller than r, such as r1 and r2. Distinguishing from baseline
methods, DeepAgn can estimate the maximum safe radius.

4 Lipschitz Analysis on Neural Networks

This section will theoretically prove that most neural networks, including recur-
rent neural networks, are Lipschitz continuous. We first introduce the definition
of Lipschitz continuity.

Definition 6 (Lipschitz Continuity [21]). Given two metric spaces (X, dX)
and (Y, dY ), where dX and dY are the metrics on the sets X and Y respectively, a
function f : X → Y is called Lipschitz continuous if there exists a real constant
K ≥ 0 such that, for all x1, x2 ∈ X: dY (f(x1), f(x2)) ≤ KdX(x1, x2). K is
called the Lipschitz constant of f . The smallest K is called the Best Lipschitz
constant, denoted as Kbest.

4.1 Lipschitz Continuity of FNN

Intuitively, a Lipschitz constant quantifies the changing rate of a function’s out-
put with respect to its input. Thus, if a neural network can be proved to be
Lipschitz continuous, then Lipschitz continuity can potentially be utilized to
bound the output of the neural network with respect to a given input per-
turbation. The authors in [24,25] demonstrated that deep neural networks with
convolutional, max-pooling layer and fully-connected layers with ReLU, Sigmoid
activation function, Hyperbolic Tangent, and Softmax activation functions are
Lipschitz continuous. According to the chain rule, the composition of Lipschitz
continuous functions is still Lipschitz continuous. Thus we can conclude that a
majority of deep feedforward neural networks are Lipschitz continuous.
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4.2 Lipschitz Analysis on Recurrent Neural Networks

In this paper, we further prove that any recurrent neural network with finite
input is Lipschitz continuous. Different from FNNs, RNNs contain feedback loops
for processing sequential data, which can be unfolded into FNNs by eliminating
loops [10].

Fig. 3. (a) Unfolded recurrent neural network; (b) A feedforward neural network by
unfolding a RNN with input length 3: The layers are denoted by Li for 1 ≤ i ≤ 3. The
node h2 is located in the middle of layer L2, taking x2 and h1. The rest of the L2 are
obtained by simply copying the information in L1.

Figure 3 illustrates such a process, by fixing the input size and direct unrolling
the RNNs, we can eliminate the loops and build an equivalent feed-forward neural
network. The FNN however contains structures that do not appear in regular
FNNs. They are time-delays between nodes in Fig. 4 (a) and different activation
functions in the same layer, see Fig. 4 (c).

For the time delay situation, we add dummy nodes to intermediary layers.
These dummy nodes use the identity matrix for weight and use the identity func-
tion as an activation function, as illustrated in Fig. 4 (b). After the modification,
the intermediary layer is equivalent to a regular FNN layer.

The time delay between nodes occurs even by simple structure RNNs, such
as in Fig. 3 (a), while the same layer with different activation functions appears
only by unfolding complex RNNs. Figure 4 (c) demonstrates the layer with differ-
ent activation functions after unrolling. When the appeared different activation
functions are Lipschitz continuous, the layer is Lipschitz continuous based on
the sub-multiplicative property in matrix norms. See Appendix-A for detailed
proof.
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Fig. 4. (a) Before we add dummy nodes to the intermediary layer: Wi is a weight
matrix, and fi is an activation function. Initially, a connection from x2 to h2 crosses
over the layer L2. (b) After we add dummy nodes: we add nodes s3 and h3 to L2, where
I denotes the identity matrix and id denotes the identity function.(c)Feed-forward layer
with distinct activation functions: layer L2 only performs a linear transformation (i.e.
multiplication with weight matrices), and layer L3 has the role of applying non-linear
activation functions that contain two distinct activation functions: Hyperbolic Tangent
and Sigmoid.

5 Reachability Analysis with Provable Guarantees

5.1 Verification via Lipschitz Optimization

In the Lipschitz optimization [8] we asymptotically approach the global min-
imum. Practically, we execute a finite number of iterations by using an error
tolerance ε to control the termination. As shown in Fig. 5 (a), we first generate
two straight lines with slope K and −K, concreting a cross point Z0. Since Z0 is
the minimal value of the generated piecewise-linear lower bound function (blue
lines), we use the projected W1 for the next iteration. In Fig. 5 (b), new W and
Z points are generated. In i-th iteration, the minimal value of W is the upper
bound ui, and the minimal value of Z is the lower bound li. Our approach con-
structs a sequence of lower and upper bounds, terminates the iteration whenever
|ui − li| ≤ ε,

Fig. 5. A lower-bound function designed via Lipschitz constant

For the multi-dimensional optimization problem, we decompose it into
a sequence of nested one-dimensional subproblems [7]. Then the minima of
those one-dimensional minimization subproblems are back-propagated into the
original dimension, and the final global minimum is obtained with min

x∈[ai,bi]n
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w(x) = min
x1∈[a1,b1]

... min
xn∈[an,bn]

w(x1, ..., xn). We define that for 1 ≤ k ≤ n −
1, φk(x1, ..., xk) = minxk+1∈[ak+1,bk+1] φk+1(x1, ..., xk, xk+1) and for k = n,
φn(x1, ..., xn) = w(x1, ..., xn). Thus we can conclude that minx∈[ai,bi]n w(x) =
minx1∈[a1,b1] φ1(x1) which is actually a one-dimensional optimization problem.

We design a practical approach to dynamically update the current Lip-
schitz constant according to the previous iteration: K = ηmaxj=1,...,i−1∥
∥
∥
∥

w(yj) − w(yj−1)
yj − yj−1

∥
∥
∥
∥

where η > 1, so that limi→∞ K > Kbest. We use the Lip-

schitz optimisation to find the minimum and maximum function values of the
neural network. With binary search, we further estimate the maximum safe
radius for target attack.

5.2 Global Convergence Analysis

We first analyse the convergence for a one-dimensional case. In the one dimen-
sional case convergence exists under two conditions: lim

i→∞
li = min

x∈[a,b]
w(x);

limi→∞(ui − li) = 0. It can be easily proved since the lower bound sequence Li

is strictly monotonically increasing and bounded from above by minx∈[a,b] w(x).
We use mathematical induction to prove convergence for the multi-dimension

case. The convergence conditions of the inductive step: if, for all x ∈ R
k,

limi→∞ li = infx∈[a,b]k w(x) and limi→∞(ui − li) = 0 are satisfied, then, for
all x ∈ R

k+1, limi→∞ li = infx∈[a,b]k+1 w(x) and limi→∞(ui − li) = 0 hold.

Proof. (sketch) By the nested optimisation scheme, we have minx∈[ai,bi]k+1 w(x)
= minx∈[a,b] Φ(x), Φ(x) = miny∈[ai,bi]k w(x,y). Since miny∈[ai,bi]k w(x,y) is
bounded by an interval error εy, assuming Φ∗(x) is the accurate global minimum,
then we have Φ∗(x)−εy ≤ Φ(x) ≤ Φ∗(x)+εy Φ(x) is not accurate but bounded by
|Φ(x)− Φ∗(x)| ≤ εy,∀x ∈ [a, b], where Φ∗(x) is the accurate function evaluation.

For the inaccurate evaluation case, we assume Φmin = minx∈[a,b] Φ(x), and
its lower and bound sequences are, respectively, {l0, ..., li} and {u0, ..., ui}. The
termination criteria for both cases are |u∗

i − l∗i | ≤ εx and |ui − li| ≤ εx, and φ∗

represents the ideal global minimum. Then we have φ∗ − εx ≤ li. Assuming that
l∗i ∈ [xk, xk+1] and xk, xk+1 are adjacent evaluation points, then due to the fact
that l∗i = infx∈[a,b] H(x;Yi) and the search scheme, we have φ∗ − li ≤ εy + εx.
Similarly, we can get φ∗ + εx ≥ u∗

i = infy∈Yi
Φ∗(y) ≥ ui − εy so ui − φ∗ ≤

εx + εy. By φ∗ − li ≤ εy + εx and the termination criteria ui − li ≤ εx, we have
li − εy ≤ φ∗ ≤ ui + εy, i.e., the accurate global minimum is also bounded. See
more theoretical analysis of the global convergence in Appendix-B.

6 Experiments

6.1 Performance Comparison with State-of-the-art Methods

In this section, we compare DeepAgn with baseline methods. Their performance
in feedforward neural networks and more details of the technique are demon-
strated in Appendix-C. Here, we mainly focus on the verification of RNN. We
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choose POPQORN [16] as the baseline method since it can solve RNN verifica-
tion problems analogously, i.e., calculating safe input bounds for given samples.
Both methods were run on a PC with an i7-4770 CPU and 24 GB RAM. Table 2
demonstrates the verified safe radius of baseline rb, DeepAgn r, and the radius
of CW attack ra. We fixed the number of hidden neurons and manipulated the
input lengths in Table 3 to compare the average safe radius and the time costs. It
can be seen that increasing the input length does not dramatically increase the
time consumption of DeepAgn because it is independent of the models’ architec-
tures. As in Table 4, we fixed the input length and employed RNNs and LSTMs
with different numbers of hidden neurons.

Table 2. Average radius of attack and standard deviations (·/·) of Attack, DeepAgn,
and POPQORN on MNIST

Model Attack (ra) DeepAgn (r) POPQORN (rb)

rnn 7_64 0.8427/0.3723 0.5227/0.2157 0.0198/0.014
rnn 4_32 0.8424/0.4641 0.6189/0.3231 0.0182/0.0201
lstm 4_32 0.6211/ 0.4329 0.3223/0.3563 0.0081/0.0052
lstm 7_64 0.7126/ 0.3987 0.4023/0.2112 0.0194/0.0165

Table 3. Average safe radius and time
cost of DeepAgn and POPQORN on
NN verification with different frame
lengths

Models DeepAgn POPQORN
safe radius time safe radius time

rnn 4_64 0.1336 253.64 s 0.0328 1.31 s
rnn 14_64 0.3248 228.23 s 0.2344 11.73 s
rnn 28_64 0.3551 285.35 s nan nan
rnn 56_64 0.4369 314.1 s nan nan
lstm 4_64 0.3195 250.99 s 0.0004 307.93 s
lstm 14_64 0.3883 382 s 0.0123 400.83 s
lstm 28_64 0.6469 512.45 s 0.0296 532.47 s
lstm 56_64 0.6344 491.64 s 0.0309 557.22 s

Table 4. Average safe radius and time
cost of DeepAgn and POPQORN on
NN verification with different hidden
neurons

Models DeepAgn POPQORN
safe radius time safe radius time

rnn 7_16 0.5580 117.82 s 0.2038 2.14 s
rnn 7_32 0.2371 175.92 s 0.1340 2.44 s
rnn 7_128 0.6633 240.59 s 0.1052 4.25 s
rnn 7_256 0.6656 187.83 s 0.2038 1.89 s
lstm 7_16 0.3789 175.11 s 0.0007 243.60 s
lstm 7_32 0.3461 189.51 s 0.0015 256.77 s
lstm 7_128 0.3625 256.50 s 0.0050 375.85 s

6.2 Ablation Study

In this section, we present an empirical analysis of the Lipschitz constant K and
the number of perturbed pixels, which both affect the precision of the results
and the cost of time. As shown in Fig. 6, DeepAgn with K = 0.1 gives a false safe
radius, indicating that 0.1 is not a suitable choice. When the Lipschitz constant
is larger than the minimal Lipschitz constant (K ≥ 1), DeepAgn can always
provide the exact maximum safe radius. However, with larger K, we need more
iterations to achieve the convergence condition when solving the optimisation
problem. As for the number of perturbed pixels, we treat an n-pixel perturbation
as an n-dimensional optimisation problem. Therefore, when the number of pixels
increases, the evaluation time grows exponentially.
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6.3 Case Study 1

In this experiment, we use our method to verify a deep neural network in an audio
classification task. The evaluated model is a deep CNN and is trained under the
PyTorch framework. The data set is adopted from [28], where each one-second
raw audio is transformed into a sequence input with 8000 frames and classified
into 35 categories. We perturb the input value of the frame (1000, 2000..., 7000)
and verify the network of different perturbation radii. For the deep CNN case, the
baseline method has a lower verification accuracy, while DeepAgn can still pro-
vide the output ranges and the maximal safe radius. Figure 7 shows the boundary
of the radio waveform with perturbation θ = 0.1, θ = 0.2 and θ = 0.3. Their dif-
ferences from the original audio are imperceptible to human ears. We performed
a binary search and found the exact maximum safe radius r = 0.1591.

Fig. 6. Time cost and safe radius with different K and perturbed pixel numbers

Fig. 7. Input on lower and upper bounds of different perturbations. The first value
indicates the logit output and the second shows the confidence value. For perturbation
θ = 0.1 and θ = 0.2, the network remains safe. It is not safe for perturbation θ = 0.3.

6.4 Case Study 2

In this case study, we verify a hybrid neural network CRNN that contains convo-
lutional layers and LSTM layers with CTC loss. The network converts characters
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Fig. 8. We perturb six pixels of the image to generate the ground-truth adversarial
examples(a) θ = 0.638, the first letter recognized as “K” with 48.174% confidence,
as “L” with 48.396%, the word recognized as “IKEVIN”; (b) θ = 0.0631, confidence
for fourth letter recognized as “R” 49.10%, “B” 49.12%, recognized as “CHEBPIN” (c)
θ = 0.464, the third letter as “L” 25.96%, as “I” 25.97%, recognized as “JUIES”.

from scanned documents into digital forms. As far as we know, there is no exist-
ing verification tool that can deal with this complex hybrid network. However,
DeepAgn can analyze the output range of this CRNN and compute the maximum
safe radius of a given input. In Fig. 8, we present the maximum safe radius of
the inputs and their associated ground-truth (or provably minimally-distorted)
adversarial examples.

7 Conclusion

We design and implement a safety analysis tool for neural networks, computing
reachability with provable guarantees. We demonstrate that it can be deployed
in any network, including FNNs and RNNs regardless of the complex struc-
ture or activation function, as long as the network is Lipschitz continuous. We
envision that DeepAgn marks an important step towards practical and provably-
guaranteed verification for DNNs. Future work includes using parallel compu-
tation and GPUs to improve its scalability on large-scale models trained on
ImageNet, and generalising this method to other deep models such as deep rein-
forcement learning and transformers.

References

1. Akintunde, M., Lomuscio, A., Maganti, L., Pirovano, E.: Reachability analysis for
neural agent-environment systems. In: KR, pp. 184–193 (2018)

2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

3. Carlini, N., Wagner, D.: Audio adversarial examples: targeted attacks on speech-
to-text. In: 2018 IEEE Security and Privacy Workshops (SPW) (2018)

4. Dutta, S., Jha, S., Sanakaranarayanan, S., Tiwari, A.: Output range analysis for
deep neural networks. arXiv preprint arXiv:1709.09130 (2017)

5. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis
(2017)

6. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: Ai2: safety and robustness certification of neural networks with abstract inter-
pretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE
(2018)

http://arxiv.org/abs/1709.09130


Model-Agnostic Reachability Analysis on Deep Neural Networks 353

7. Gergel, V., Grishagin, V., Gergel, A.: Adaptive nested optimization scheme for
multidimensional global search. J. Glob. Optim. 66(1), 35–51 (2016)

8. Goldstein, A.: Optimization of lipschitz continuous functions. Math. Program.
(1977)

9. Gong, Y., Poellabauer, C.: Crafting adversarial examples for speech paralinguistics
applications. arXiv preprint arXiv:1711.03280 (2017)

10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

11. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

12. Huang, X., Kroening, D., Ruan, W., et al.: A survey of safety and trustworthiness
of deep neural networks: verification, testing, adversarial attack and defence, and
interpretability. Comput. Sci. Rev. 37 (2020)

13. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International Conference on Computer Aided Verification (2017)

14. Jacoby, Y., Barrett, C., Katz, G.: Verifying recurrent neural networks using invari-
ant inference. arXiv preprint arXiv:2004.02462 (2020)

15. Katz, G., Barrett, C., et al.: Reluplex: an efficient SMT solver for verifying deep
neural networks. In: International Conference on Computer Aided Verification
(2017)

16. Ko, C.Y., Lyu, Z., Weng, T.W., et al.: Popqorn: quantifying robustness of recurrent
neural networks. arXiv preprint arXiv:1905.07387 (2019)

17. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: ICML (2018)

18. Mu, R., Ruan, W., Marcolino, L.S., Ni, Q.: 3Dverifier: efficient robustness verifi-
cation for 3D point cloud models. Mach. Learn. 1–28 (2022)

19. Mu, R., Ruan, W., Marcolino, L.S., Jin, G., Ni, Q.: Certified policy smoothing
for cooperative multi-agent reinforcement learning. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI’23) (2023)

20. Narodytska, N., Kasiviswanathan, S., Ryzhyk, L., Sagiv, M., Walsh, T.: Verify-
ing properties of binarized deep neural networks. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 32 (2018)

21. O’Searcoid, M.: Metric Spaces. Springer, London (2006). https://doi.org/10.1007/
978-1-84628-627-8

22. Papernot, N., McDaniel, P., Swami, A., Harang, R.: Crafting adversarial input
sequences for recurrent neural networks. In: MILCOM 2016–2016 IEEE Military
Communications Conference, pp. 49–54. IEEE (2016)

23. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: International Conference on Computer Aided Verifi-
cation (2010)

24. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pp. 2651–2659 (2018)

25. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199 (2013)

26. Vengertsev, D., Sherman, E.: Recurrent neural network properties and their veri-
fication with Monte Carlo techniques. In: SafeAI@AAAI (2020)

27. Wang, F., Xu, P., Ruan, W., Huang, X.: Towards verifying the geometric robustness
of large-scale neural networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI’23) (2023)

http://arxiv.org/abs/1711.03280
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2004.02462
http://arxiv.org/abs/1905.07387
https://doi.org/10.1007/978-1-84628-627-8
https://doi.org/10.1007/978-1-84628-627-8
http://arxiv.org/abs/1312.6199


354 C. Zhang et al.

28. Warden, P.: Speech commands: a dataset for limited-vocabulary speech recognition.
arXiv preprint arXiv:1804.03209 (2018)

29. Weng, L., Zhang, H., Chen, H., et al.: Towards fast computation of certified robust-
ness for ReLU networks. In: ICML (2018)

30. Weng, T.W., et al.: Evaluating the robustness of neural networks: an extreme value
theory approach. arXiv preprint arXiv:1801.10578 (2018)

31. Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex
outer adversarial polytope. In: ICML (2018)

32. Wu, M., Wicker, M., Ruan, W., Huang, X., Kwiatkowska, M.: A game-based
approximate verification of deep neural networks with provable guarantees. Theor.
Comput. Sci. 807, 298–329 (2020)

33. Yin, X., Ruan, W., Fieldsend, J.: Dimba: discretely masked black-box attack in
single object tracking. Mach. Learn. 1–19 (2022)

34. Zhang, H., Shinn, M., Gupta, A., Gurfinkel, A., Le, N., Narodytska, N.: Verification
of recurrent neural networks for cognitive tasks via reachability analysis. In: ECAI
2020, pp. 1690–1697. IOS Press (2020)

35. Zhang, T., Ruan, W., Fieldsend, J.E.: Proa: a probabilistic robustness assessment
against functional perturbations. In: Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases (ECML/PKDD’22) (2022)

36. Zhang, Y., Ruan, W., Wang, F., Huang, X.: Generalizing universal adversarial
perturbations for deep neural networks. Mach. Learn. (2023)

http://arxiv.org/abs/1804.03209
http://arxiv.org/abs/1801.10578


Adaptive Bi-nonlinear Neural Networks
Based on Complex Numbers with Weights

Constrained Along the Unit Circle

Felip Guimerà Cuevas1(B), Thomy Phan2, and Helmut Schmid3

1 BMW Group Munich, Munich, Germany
felip.guimera-cuevas@bmw.de

2 Institute for Informatics at LMU Munich, Munich, Germany
thomy.phan@ifi.lmu.de

3 Center for Information and Language Processing at LMU Munich,
Munich, Germany
schmid@cis.lmu.de

Abstract. Traditional real-valued neural networks can suppress neural
inputs by setting the weights to zero or overshadow other inputs by using
extreme weight values. Large network weights are undesirable because
they may cause network instability and lead to exploding gradients. To
penalize such large weights, adequate regularization is typically required.
This work presents a feed-forward and convolutional layer architecture
that constrains weights along the unit circle such that neural connec-
tions can never be eliminated or suppressed by weights, ensuring that
no incoming information is lost by dying neurons. The neural network’s
decision boundaries are redefined by expressing model weights as angles
of phase rotations and layer inputs as amplitude modulations, with train-
able weights always remaining within a fixed range. The approach can
be quickly and readily integrated into existing layers while preserving
the model architecture of the original network. The classification perfor-
mance was tested and assessed on basic computer vision data sets using
ShuffleNetv2, ResNet18, and GoogLeNet at high learning rates.

Keywords: Deep Learning · Complex numbers · Neural architecture

1 Introduction

Deep learning is one of the most common and promising approaches to solv-
ing many machine learning tasks [14,20]. Conventional Deep Neural Networks
(DNN) use real-valued (RV) connection weights to compute the output val-
ues of activation functions to fire neurons. Each output of a DNN’s activation
function can be thought of as a representation of a decision boundary; deter-
mined by the weighting of all input connections under (optional) consideration
of bias terms. The purpose of an activation function is to introduce non-linearity
between successive layers and respectively in the decision boundaries; otherwise,
a DNN would collapse back to an equivalent of a single-layer perceptron [29]. It
is intended that through training neural networks (NN), generalizable decision
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 355–366, 2023.
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boundaries are learned. The more representative they are, the better their final
performance on new and previously unseen data is. Linear decision boundaries
have limitations. The notorious XOR problem cannot be solved by a single-layer
perceptron with no activation function since XOR is not linearly separable, but
it can be solved by a NN with at least one hidden layer and non-linear activa-
tion functions. Decision boundaries are fundamental for DNNs; their importance
cannot be overstated.

This work proposes and evaluates a new technique for computing decision
boundaries that draws motivation from complex numbers. It integrates complex
numbers into a bi-nonlinear NN, resulting in an architecture that retains incom-
ing information by preventing the weights from eliminating or suppressing the
inputs. The method first uses weights as angles to represent artificial complex
unit numbers, i.e. complex numbers z with ||z|| = 1; then scales these unit num-
bers accordingly by the signed numeric magnitude of the input connections to the
neurons and aggregates them by summation; finally, it applies a non-linear trans-
formation on that sum to obtain the final output value. The model is designed
for RV inputs and outputs. It does not affect the compatibility e.g. with RV loss
functions and can be used on the same problem types as RV networks. It forms
a novel alternative approach to Complex-Valued Neural Networks (CVNNs),
which differs notably from prior work - in particular from Multi-Valued Neurons
(MVNs) [2] and models where RV inputs are encoded into phases of complex
numbers of unity magnitude and multiplied by complex-valued (CV) weights
[10] - by the following key points: (1) Setting weights to zero does not cancel
out inputs; (2) Complex back-propagation is not necessary; (3) Neural inputs do
not require re-mapping from R → C; (4) The weight matrix is RV. Furthermore,
compared to other CVNN methods for RV inputs, this work’s approach has sev-
eral advantages: There is no explicit mapping of inputs from real to complex
numbers, e.g. to scale down the domain of each input feature to phases of a unit
circle. Therefore, no domain knowledge of the upper and lower bounds of the
input features is required. The layers’ outputs are also RV, which avoids having
to repeatedly re-map values when stacking multiple layers sequentially. Further,
neural connections can never be suppressed or eliminated by setting the weights
to zero because weights purely denote phase rotations and correspond to angles
of complex unit numbers. The weights can also never become too large since
there are always equivalent weights in the range of [0, 2π), counteracting explod-
ing gradients [27]. Conventional weight regularization techniques are therefore
unnecessary. Lastly, the proposed CV-based layers can be easily and directly
incorporated into existing models without modifying the actual architecture.

2 Background

The Wirtinger calculus [9] can be applied to enable differentiability, with the
idea being to rewrite a complex function f(z) as a function of two variables,
namely z and its complex conjugate z, denoted as f(z, z). It uses the property
that the real and imaginary components of z can be re-written as Re(z) = z+z

2

and Im(z) = z−z
2i , on which this work’s approach is motivated.
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3 Related Work

The idea of CVNNs themselves is not new [11,13,15,22], but has often been
shadowed by the success of the classic RV DNNs [23] and by the increased com-
plexity of performing CV back-propagation for gradient descent - which, however,
is no longer a concern with today’s deep learning frameworks. One difficulty of
designing CVNN architectures for RV inputs (or outputs) is how real numbers
are mapped to complex numbers and vice versa, and how activation functions
should be defined or handled. If learning occurs through gradient descent, the
entire forward-call of the network must be complex -differentiable and thus holo-
morphic, which is the case if and only if it fulfills the Cauchy-Riemann (CR)
equations and has continuous first partial derivatives [1]. The first pioneering
methods for CV back-propagation algorithms (e.g. for multi-layer CVNNs) were
proposed in the early 1990s s [12,21]. Yet, most loss functions of interest are
RV or non-holomorphic. According to the CR conditions, an RV holomorphic
function must be constant, so typical transformations on complex numbers z
like ||z||, arg(z), z, Re(z) and Im(z) are not holomorphic. Liouville’s theorem
further states that any bounded function that is holomorphic at every point
must be constant. Therefore, complex activation functions cannot be bounded
and complex differentiable at once.

The architecture behind a CVNN is not always entirely consistent in the
literature and is often characterized by the CV activation function. Approaches
with non-holomorphic complex activation functions are called split activation
functions, categorized as Type A if the real and imaginary parts are bounded, or
Type B if only the magnitude is bounded but the phase is retained [19]. Although
networks are typically considered CVNNs if they handle CV information via CV
variables and parameters [16,17], a less stringent constraint may be imposed to
designate CVNNs if merely weights are CV. The weight matrix of a CVNN in the
complex domain typically denotes a rotation matrix. The concept of a discrete
MVN was already proposed in 1992 [8] as a neural element based on the math-
ematical model of multi-valued threshold logic for complex numbers [18]. Since
then, there have been several advancements in MVNs, in addition to approaches
integrating them into DNNs [5–7,25], and also concerning back-propagation [4].
Initially, the activation function of an MVN was merely dependent on the phase
of a weighted sum, involving inputs and outputs on the unit circle and CV
weights. Learning was reduced along movement on the unit circle by applying
a mapping from the complex domain onto it (falling so into category Type B).
Discrete MVNs can also be extended to continuous-valued inputs. The use of
periodic activation functions has also been suggested to increase the function-
ality of a single MVN [3]. In 2004, a Type A activation function of the form
fC(z) = fR(x)+ ifR(y) was analyzed [26], with fR being the sigmoid function. It
was shown that the decision boundaries of such a single CV neuron are formed
by two orthogonal intersecting hypersurfaces; and the boundaries of a CVNN
whose weights, thresholds, values, inputs, and outputs are all complex numbers
approach orthogonality as the network’s inputs increase. It was claimed that
the orthogonality of the decision boundaries improved generalization and that
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learning with complex back-propagation occurred on average faster than with
RV back-propagation. Another CVNN approach [10] maps RV inputs to com-
plex numbers of unit size using a linear transformation and multiplies them by
CV weights. The activation function then takes the weighted sum of inputs and
re-maps the resulting complex values to real numbers. CVNN architectures were
also suggested for convolutional layers [30] along with various activation func-
tions, and techniques for batch normalization and complex weight initialization.

4 Methods

4.1 Feed-Forward Layer

A CV-motivated adaptive bi-nonlinear model architecture similar to an RV-NN
is proposed. It consists of k layers with mk neurons each; k,mk ∈ N

+. However,
a neuron’s output is no longer a weighted sum of real numbers, but a more
intricate mathematical operation. The weights are still RV and not complex
since angles in radians represent complex unit numbers. Using eiθ = ei(θ+2π)

and eiθ = e−iθ for θ ∈ R, a weight matrix is initialized by randomly sampling
radians and then deriving the CV matrix from it. The entire search space of the
CVNN’s weight matrices can effectively be limited to [0, 2π) ; or [−π, π). Since
the former breaks the symmetry around zero, the latter is advocated. By using a
modulo operation, weights may be explicitly limited within the range. Because
the maximum weight value is constrained, large network weight changes (e.g.
induced by exploding gradients) are mitigated. Furthermore, zero weights no
longer erase inputs, but indicate a zero-angle, preserving the input information.

Let 1 ≤ k ≤ n refer to the kth layer in a network with n layers and hk

the RV state of the layer k of size mk. h0 is the network input of size m0.
Given mk,m0 ≥ 1, let Wk ∈ R

mk×mk−1 denote the (angular) weight matrix and
sin(Wk), cos(Wk) denote the point-wise applications of the sine and cosine to all
values in Wk. By trivial decomposition over the real and imaginary parts, an
equivalence for a polar vs. rectangular expression can be obtained:

zk : = eiWkhk−1 =
[
cos(Wk)hk−1

]
+ i

[
sin(Wk)hk−1

]
(1)

Because the real and imaginary parts are independent and uncorrelated dur-
ing the matrix operation, an activation function is defined to introduce non-
linear dependencies: the product of the real and imaginary parts divided by the
magnitude of the complex number; dropping the imaginary number i. Therefore,
let xk := cos(Wk)hk−1 ∈ R

mk and yk := sin(Wk)hk−1 ∈ R
mk . State hk then is:

h
[j]
k = α

[j]
k

(
x
[j]
k y

[j]
k√(

x
[j]
k

)2 +
(
y
[j]
k

)2

)
+ β

[j]
k : ∀1≤j≤mk (2)

where h
[j]
k is the jth component of hk for 1 ≤ j ≤ mk, and αk,βk ∈ R

mk

trainable vector variables. Thus, “bi-nonlinear” refers to using xk,yk non-linearly
to express hk. The activation function of the CV model is plotted in Fig. 1.
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Fig. 1. A 3D and 2D visualization of the activation function (left figure) and its cor-
responding gradient norm surface (right figure). The 2D visualization’s loss space is
shown for two different grid sizes (i.e. thresholds). Point symmetry exists around the
origin and decision boundaries intersect orthogonally along the coordinate axes.

Let θ := arg[z[j]k ] denote the angle of the complex argument function and
let r := ||z[j]k ||2 be the complex norm, such that z

[j]
k ≡ reiθ is the polar form

of the complex number. Respectively, w.l.o.g. r ∈ R
+ is the magnitude (due to

rei(π+θ) = −reiθ), and θ ∈ [−π, π] is the angle of z in radians. Using Re(z[j]k ) =
z
[j]
k +z

[j]
k

2 = x
[j]
k and Im(z[j]k ) = z

[j]
k −z

i2 = y
[j]
k , it holds x

[j]
k y

[j]
k = (z

[j]
k )2−(zk

[j])2

i4 =
r2 sin(2θ)

2 . Inserted into Eq. 2 yields the closed-form expression of layer k: h
[j]
k =

r
2 sin(2θ). The magnitude r = ||z[j]k || may increase the more neurons the layer k
has (Eq. 1), i.e. the larger the size of the input mk−1 is. Thus, it is sensible to
include a normalization factor ε > 0 (e.g. ε := √

mk−1) to reduce the magnitude
relative to the dimension of the input vector. The equation resembles the general
formula of a sinusoid y(t) = a · sin(2πft + ϕ), where a is an amplitude, f an
ordinal frequency, and ϕ a phase in radians. 2πf is referred to as the angular
velocity. Drawing an analogy, the amplitude would correspond to a � 1

2ε , and
the term πft � θ. If a new trainable vector variable is introduced as the angular
velocity ω := 2πf (i.e. rate of change), and α̂ := α

2ε , then Eq. 2 is equivalent to:

h
[j]
k � ||z[j]k || sin (

ω
[j]
k arg

[
z
[j]
k

])
α̂
[j]
k + β

[j]
k

(3)

An advantage of Eq. 3 over Eq. 2 is the directly adjustable (i.e. trainable)
angular velocity. Thus, Eq. 3 will be used as the transformation function for the
network. It should be noted that one might falsely assume that Eq. 3 precludes
zero-division. This is not true because the arg function can still produce a zero-
division (when all inputs are zero; in which case hk be the zero vector). And,
while it is possible to represent a CV weight using a single RV, using complex unit
numbers in this manner requires a trade-off in which two matrix multiplications
are required, one for the real part and one for the imaginary part; but this is a
common concern when using CVs instead of RVs. The effect of using different
values for ω is illustrated in Fig. 2 below:
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Fig. 2. A visual illustration of using different angular velocities ω on the decision
boundaries. As ω increases, the space becomes more divided.

4.2 Convolutional Layer

Let f, g be discrete functions. Then, CV cross-correlation is defined as (f 	
g)[n] :=

∑∞
u=∞ f [u]g[u + n] [28], where 	 denotes a valid 2D cross-correlation

operator, f [u] the complex conjugate and n the displacement (alias lag). If g is
a real-function, then (f 	 g)[n] �

∑∞
u=−∞ Re(f [u])g[u + n] − iIm(f [u])g[u + n]

=
∑∞

u=−∞ Re(f [u])g[u+n]−i
∑∞

u=−∞ Im(f [u])g[u+n], which can be interpreted
as running and aggregating two separate convolutions over the same input. The
output of the CV convolutional layer is derived analogously to Eq. 3. However,
for a convolutional layer at layer k with c

(in)
k input channels and a kernel size of

ak × bk, the magnitude scales differently and setting ε :=
√

akbkc
(in)
k smooths

out the use of multiple channels and larger kernel sizes.

5 Experimental Methods and Limitations

Models were trained using the same hyper-parameters; results averaged across
six runs. Assertive performance was defined as the greatest achieved train and
test accuracy per run. CVNNs were constructed by simply substituting the RV
convolutional and feed-forward layers with the suggested CV layers. As an opti-
mizer, AdamW [24] was utilized. The trainable angular velocity (Eq. 3) was
initialized as ω := 2 for feed-forward layers and ω := 1 for convolutional layers.
The images were normalized to a fixed size of 64 × 64 and a single gray color
channel. The batch size was 1024; the default learning rate was set to a relatively
high value of 0.1. Both models have fundamentally different forward-call archi-
tectures. Thus, this work was limited to choosing hyper-parameters, especially
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the learning rate, to demonstrate the effectiveness of the proposed technique
rather than claiming superiority over RV DNNs, which would otherwise give
the CVNN an unfair advantage. The models for minimal networks against point
classification tasks (Sect. 6.2) were trained for 50k iterations each.

6 Analytical and Experimental Results

6.1 XOR-Problem

Given the XOR problem with two input variables v1, v2 ∈ {0, 1}, complex con-
nection unit-weights z1, z2, output labels y ∈ {0, 1}, and scaling and bias terms
α, β for the complex forward-call (Eq. 3), it holds xor(v1, v2) := α

2 ||v1z1 +
v2z2|| sin

(
2 · arg

[
v1z1 + v2z2

])
, where arg is the argument function. W.l.o.g.

radian-valued weights θ ∈ [0, 2π) are required, such that XOR is solved. Letting
z1 := eiπ/4, z2 := −z1, α = 2 and β = 0 provides a solution:

xor(v1, v2) = ||z1(v1 − v2)|| sin
(
2 · arg

[
z1(v1 − v2)

])

(a)≡ |v1 − v2| sin(π/2) =

{
0 if v1 = v2

1 otherwise
(4)

where (a) uses (v1 − v2) ∈ {0, 1} and ||eiθ|| = 1. Then, sin(π/2) = 1 yields the
elegant direct solution. Since the complex weights have a magnitude of one, the
scaling factor α is important for producing a value xor(v1, v2) ∈ {0, 1}. Other
values of θ and α also provide a solution if classification using threshold values is
allowed, i.e.: y = 0 if xor(v1, v2) < t, otherwise y = 1, with t being the threshold.
This is useful for continuous classification with v1, v2 ∈ [0, 1]. A threshold can
also be introduced e.g. by adding a fixed bias term to the output.

6.2 Minimal Networks and Expressive Power

A 2D point classification task is given, where points belong to the same class if
they share the same color. The inputs are the (standardized) 2D coordinates.
The models are networks with minimal layer topologies to better analyze neural
expressiveness. The output is a single scalar. Because of the learnable angular
velocity and magnitude scaling, the CVNN neuron has slightly more weights. To
avoid unfair comparisons, two analyses were performed. (1) Comparing neurons
with different amounts of weights but the same number of neurons; (2) comparing
networks with an equal number of weights but different numbers of neurons.

Equal Number of Trainable Weights. Given is a CVNN with two inputs and
a single output. The hidden layer size be n. Thus, the total number of trainable
weights (including biases) is 6n + 3 � [2n + (n + n + n)] + [1n + (1 + 1 + 1)].
Likewise, for the RV-NN it is: 4k + 1 � [2k + k] + [1k + 1]; k be the number
of its hidden neurons. For the number of weights to be equal, 6n + 3 = 4k + 1
must hold, and so k = 1

2 (3n+1). Given n ← 3, 5, this respectively corresponds to
k ← 5, 8. The results are depicted in Fig. 3. Overall, the CV model outperformed
its RV counterpart given the same number of weights.
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Fig. 3. Decision boundaries of minimal NNs with an equal number of weights are
compared for a 2D point fitting task. The yellow and blue colors indicate the labels.
(Color figure online)

Equal Number of Neurons. The decision boundaries for the point classifi-
cation task when both models use the same number of neurons are shown in
Fig. 4.

Fig. 4. Decision boundaries of minimal NNs with an equal number of neurons are
compared for a 2D point fitting task. The yellow and blue colors indicate the labels.
(Color figure online)

The CVNN consistently achieved an F1-score (a score based on precision and
recall) of approximately 100% for all learning rates. The RV network struggled
with eight hidden neurons (depending on the learning rate) and mostly failed
with four neurons. (F1 ≈ 60%). Still, with eight neurons at a learning rate of
0.01, the RV network also achieved perfect classification; finding “linear” diagonal
boundaries. In contrast, the CVNN returned “curved” decision boundaries.

6.3 Classification

To analyze the classification performance of the CVNN architecture, three
popular larger network architectures, namely ShuffleNetv2, ResNet18, and
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GoogLeNet, were utilized on basic computer vision data sets. This allowed us to
evaluate CVNN in CNNs and NNs within a common model. The experimental
results showed that the CVNNs were successful on all data sets and outperformed
the RV equivalent model counterparts when trained on high learning rates; with
CIFAR-10 exhibiting the most notable performance difference. The individual
results of the classification scores for each model architecture when trained on a
high learning rate are shown in Fig. 5 below:

Fig. 5. Scatterplot classification results from independent runs on various data sets,
using models ShuffleNetv2, ResNet18, and GoogLeNet. The CVNN was created by
replacing neurons, keeping the original network architecture unchanged. Datasets ana-
lyzed were CIFAR10, FashionMNIST, EMNIST, QKMNIST, KMNIST, and MNIST.

Overall, the CVNNs and the RV network models achieved similar results
using a high learning rate, but the CVNN performed better overall, particularly
on CIFAR10. The results indicate that the CVNN outperforms the RV model
at higher learning rates. Moreover, all three models (ShuffleNetv2, ResNet18,
and GoogLeNet) produced comparable outcomes across all data sets. Table 1
presents the mean classification scores for all models combined (from Fig. 5).

Table 1. Average classification results of all models on different data sets

Test Train
Data set Complex Real Complex Real

MNIST 99.44% (± 0.16) 99.31% (± 0.19) 99.99% (± 0.002) 99.99% (± 0.009)
EMNIST 88.96% (± 0.43) 89.16% (± 0.51) 97.20% (± 1.25) 95.39% (± 0.95)
QMNIST 99.33% (± 0.14) 99.1% (± 0.17) 99.99% (± 0.001) 99.99% (± 0.009)
FMNIST 92.79% (± 0.51) 92.21% (± 0.44) 99.92% (± 0.08) 98.71% (± 1.02)
KMNIST 97.49% (± 0.60) 96.71% (± 0.58) 99.99% (± 0.001) 99.99% (± 0.004)
CIFAR10 76.84% (± 3.03) 70.18% (± 5.15) 99.60% (± 0.600) 91.86% (± 7.16)
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Fake-Data. The ability to fit random noise was further examined on randomly
produced pixel images. The labels were arbitrary but balanced. Because there
is no correlation between the instances of randomly generated data, attempting
to make the model “generalizable” to new (random) data makes no sense. As a
result, there was no test set. The results are depicted in Fig. 6 below:

Fig. 6. The classification accuracy for random images is shown at different learning
rates and combinations of fixed and learnable angular velocities.

Particularly at higher learning rates, the CVNN appeared to fit random pixel
images better than its counterpart. On uncorrelated random data, a fixed angular
velocity ω performed better; a trainable ω for convolutional layers was detrimen-
tal here. The RV network, however, performed well at low learning rates.

7 Summary and Discussion

This work presented an adaptive bi-nonlinear layer architecture that learns with
model weights constrained along the unit circle, so neural connections cannot be
eliminated by setting the weights to zero, and other inputs cannot be overshad-
owed by extreme connection weights. The weights of the CV model apply phase
rotations; amplitude scaling is determined by the input. The neural inputs and
outputs remain real-valued. The model’s layer topology is analogous to that of
traditional NNs, with a comparable amount of trainable parameters (the CVNN
has more; equal without additional bias and angular weights). The model is
trained using traditional gradient descent and back-propagation techniques and
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is well effective at high learning rates; successfully completing a variety of objec-
tive tasks on different architectures, and outperforming the real-valued network
in terms of expressiveness. The forward-pass, however, requires twice as many
matrix multiplications, one for the real- and one for the imaginary parts.
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Abstract. Recent developments in natural language generation have
made it possible to generate fluent articles automatically. If it is mali-
ciously used to mislead the public, it may cause potential social risks.
To avoid these risks, building automatic discriminators for detecting
machine-generated text is required. However, in real-world situations, it
is hard for humans to identify the machine-generated text, which causes
the collection of machine-generated text to be difficult, and discrimina-
tors can only be trained on insufficient data. Also, it’s hard to generate
synthetic machine data ourselves because we are unable to know the
masking strategy of collected machine-generated text in real-world situ-
ations. In this paper, we found that even if there is a small amount of
training data, the saliency score computed by the trained discriminator
can reveal the masking strategy of the machine-generated text in the
training set. Based on this observation, we propose a data augmenta-
tion method, CopyCAT. CopyCAT can mimic the masking strategy of
the collected machine data by the information revealed by the saliency
score. Our experiments show that the discriminator trained with our
augmented data can have up to 10% accuracy gain.

Keywords: Machine-generated text detection · Data augmentation

1 Introduction

Natural language generation technologies have been widely used in various fields.
However, it may be used to generate mass articles for inappropriate purposes,
such as generating fake news [17] or fake reviews [2]. We need an automatic
discriminator for detecting machine-generated text to avoid these risks.

Past research used sufficient data to fine-tune a pre-trained model as the
discriminator and achieved a great performance [5,6,13]. However, past research
focuses on detecting articles generated by the left-to-right language model [6,13,
17], which generates articles using a given prefix. In recent years, the text-infilling
language model [4,19] has become popular. Text-infilling language models can
predict appropriate text to infill the mask tokens in the input prompt. While
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 367–379, 2023.
https://doi.org/10.1007/978-3-031-33374-3_29
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generating, text-infilling language models can apply different masking strategies,
which may lead to the generated article having different characteristics. Unlike
the left-to-right language model, which can only mask tokens from the end of
the article, the text-infilling language model can flexibly choose the position and
masking length of each mask, and the masking strategy can be more diverse.
Most past research focused on detecting articles generated by the left-to-right
language model and using sufficient data to train the discriminator. But in real-
world situations, it’s hard to collect sufficient data from the same adversary,
and the adversary does not necessarily use the left-to-right language model for
generating. They may use the text-infilling language model for generating, which
is not explored by past research.

For building a powerful discriminator, it is inevitable to use a large amount
of data for training. According to past research, the more training data, the bet-
ter the trained discriminator performs [7]. However, because machine-generated
articles can easily deceive humans [2,6,17], it is impossible to label the data by
humans. This makes it difficult to collect large amounts of machine data gener-
ated by the adversary in real-world situations. Even if we want to generate more
machine data by language modeling technologies, it is also difficult because we
cannot know the masking strategy of the machine-generated text that the adver-
sary used. If the synthetic machine data is generated by an arbitrary masking
strategy, the performance of the discriminator may get worse in detecting articles
generated by the adversary.

A masking strategy similar to the adversary is needed to generate synthetic
machine data that can enhance the discriminator’s performance. Our prelimi-
nary analysis found that the trained discriminator uses different features to make
predictions depending on the masking strategy of machine data in the training
set. The saliency score computed by the trained discriminator can reveal infor-
mation about the masking strategy of machine data. Based on this observation,
we propose the CopyCAT method. CopyCAT can generate synthetic machine
data depending on the masking strategy of the adversary, and the generated
synthetic machine data can effectively improve the discriminator.

2 Related Work

2.1 Detecting Machine-Generated Articles in Real-World Settings

Our paper adopts the framework proposed by Zellers et al. [17]. They divide
this task into two roles, adversary and verifier. To meet the realistic settings, the
verifier will have some restrictions.

Adversary: The adversary’s objective is to generate articles that humans and
the verifier cannot detect.

Verifier: The verifier’s objective is to detect articles generated by the adversary.
To meet realistic settings, the verifier can only obtain a few machine-generated
articles, but human-written articles are unlimited. In addition, the verifier cannot
know the adversary’s masking strategy.
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2.2 Left-to-Right Language Modeling

Left-to-right next token prediction is an unsupervised training method for the
left-to-right language model. During training, a previous text is given, and the
model learns to predict the next token depending on the previous text. Thereby
the model can learn to predict the subsequent text of the given previous text.
Currently, many released pre-trained language models are trained with this train-
ing method [8,11,17].

The left-to-right language model can generate articles by conditional and
unconditional generation. The model generates the text following a given prompt
when using conditional generation. Conditional generation can control the topic
of generated articles by the given prompt. When using unconditional generation,
we only give a BOS token, and the model will generate the whole article. Uncon-
ditional generation cannot control the generated article into a specific topic. We
use GPT2 small to generate machine articles for the experiment.

2.3 Text-Infilling

Text-infilling has become popular in recent years [4,16,19]. The text-infilling
task aims to infill appropriate text at the masked position. Donahue et al. [4]
proposed a training method that enables unidirectional architectures to learn the
text-infilling task. This training method solves the problem of using the bidirec-
tional architecture in the text-infilling task. In addition, the trained text-infilling
language model can control the generated result of each mask by specifying dif-
ferent mask tokens. We train a text-infilling language model (ILM) using the
training method proposed by Donahue et al. on the OpenWebText [1] dataset.
The trained ILM will be used to generate machine articles for the experiment.

2.4 Saliency Score

The saliency score is used to explain that the model makes predictions based
on which input feature. A basic way to get the saliency score is to compute the
gradient of the output logits with respect to the input [12]. The magnitude of
the gradient to each input feature is the saliency score of the feature. We use
the same method as that of Li et al. [9]. Suppose an article x contains n tokens
x = {t1, t2, ..., tn} and is convert into word embeddings E = {e1,e2, ...,en} by
the embedding layer. We obtain the saliency score of each ei in E with respect
to the predicted score of class c by the following equation, where Sc(E) is the
output logits of class c, and wi is the gradient of ei.

wi =
∂Sc(E)

∂ei
(1)

Saliency scorei = ‖wi‖1 (2)
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3 Preliminary Analysis

In this section, we observe whether the discriminators trained on different train-
ing sets will focus on different features when making prediction.

3.1 Datasets

We have created 6 different datasets, and the machine data in each dataset was
generated using a single masking strategy, each dataset uses a different masking
strategy from the others. During generating, the nucleus sampling with a p value
randomly selected from 0.8 to 1.0 was used as the decoding strategy, and the
masking strategy of each dataset is as follows.

GPT2(C) 15%, 25%, 35%: GPT2 [11] with conditional generation was used
to generate the machine data of these datasets. During generation, articles in the
OpenWebText dataset were truncated to 255 (15%), 225 (25%), and 195 (35%)
tokens as prompts, and the generator generated tokens up to the maximum
sequence length (300 tokens).

GPT2(U): The gpt2-output-dataset1 released by OpenAI is used, which is gen-
erated by GPT2 with unconditional generation.

ILM 7-gram, 20-gram: The trained ILM is used to generate the machine data
of these datasets. Before generating, we fine-tune the ILM on the masked data
containing only 7-gram or 20-gram masks so that ILM can learn how to generate
with this masking strategy.

Each dataset contains 250,000 machine-generated and 250,000 human-written
articles for training. To avoid human data causing bias, the same set of human
articles is used in each dataset.

3.2 Experiment

We individually fine-tune the pre-trained Bert [3] on the above 6 datasets. To
know whether different discriminators focus on different features to make the
prediction, we use 3,500 human-written articles in the validation set to compute
the saliency score of each token to the machine class.

Figure 1a counts the number of tokens with a saliency score higher than the
average saliency score of the data in the 3,500 articles. Figure 1a shows that each
discriminator focuses on different features. Discriminators trained on GPT2(C)
datasets focus on the later position of articles to make predictions. Since only the
BOS token is given while generating the GPT2(U) dataset, the repetition rate
at the beginning of each article is relatively higher. The discriminator trained
on the GPT2(U) dataset tends to make predictions based on the repetition
tokens at the beginning of articles. Discriminators trained on the ILM dataset
does not focus on specific positions because the mask positions are randomly
1 https://github.com/openai/gpt-2-output-dataset.

https://github.com/openai/gpt-2-output-dataset
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Table 1. We count the character level
continuous length of the top 90 tokens
with the highest saliency score in each
data. This table shows the occurrence
times of each length interval. Since the
tokenizer of the generator and discrimi-
nator is different, we compute the char-
acter level’s continuous length for a fair
comparison.

Length 7-gram 20-gram

0-30 74015 78479
30-60 9550 8596
60-90 3081 2919
90-120 1152 1242
120-150 405 568
150-180 172 258
180-210 52 124

Table 2. This table shows the num-
ber of times each token interrupted the
continuous mask, i.e., the token whose
adjacent tokens have a saliency score
higher than the average but not them-
selves.

Token Interrupt times

the 4704
, 4652

4392
of 3324
to 3321
a 2236
and 1928
in 1764
- 1722
##s 818

chosen. To verify whether the two ILM discriminators rely on different features
for prediction, we take out the top 90 tokens with the largest saliency score and
compare whether there is a difference across the continuous length.

Table 1 shows that the tokens with a high saliency score are more likely to
be connected when we use the discriminator trained on the 20-gram dataset to
compute the saliency score. Saliency scores reveal the difference between these
two masking strategies.

Because it is hard to obtain sufficient data in real-world situations, in Fig. 1b,
we investigate the influence on saliency scores when the amount of training data
changes. The subset of the GPT2(C) 35% dataset is used in this experiment.
Each discriminator in Fig. 1b only trains one epoch. Figure 1b shows that as the
amount of training data increases, saliency scores can better reflect the masking
strategy of machine data. Even if there is only a small amount of data, the
saliency score can reveal the masking strategy of machine data to a certain
extent.

4 Methodology

Experiments in Sect. 3 show that the discriminator trained by different train-
ing data focuses on different features to make predictions. Using the saliency
score computed by the trained discriminator, the masking strategy of the adver-
sary can be revealed to a certain extent. Based on this observation, we propose
the CopyCAT method. CopyCAT can use the saliency score computed by the
discriminator to mimic the masking strategy of the adversary. The overview of
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Fig. 1. The x-axis is the position of the token in the article, and the y-axis indicates
the number of saliency scores above average.

CopyCAT is shown in Fig. 2. In this section, we introduce CopyCAT in three
parts, the training method of the CopyCAT generator, the way to create the
masked dataset, and the post-processing methods for the masked dataset.

4.1 Training CopyCAT Generator

Since the masking strategy that the adversary used is unknown. We need a
flexible training method that can mimic various masking strategies for training
the CopyCAT generator. We don’t use the left-to-right training method because
the masking strategy of the left-to-right language model has some restrictions.
It can’t mimic the masking strategy that uses the subsequent text to generate
the previous text. Instead, we use the text-infilling training method to train the
CopyCAT generator. The text-infilling language model can refer to the context
during generation, and we can mimic various masking strategies by adjusting
the mask level and position.

4.2 Creating Masked Dataset

The masked dataset should have a similar masking strategy to the adversary.
Therefore, adjusting the masking strategy based on the collected machine data
is necessary. Combined with the experiment results of Sect. 3, which shows that
the information of masking strategy can be revealed by the saliency score of
tokens in the input article. To create the masked dataset, we will mask tokens
with a high saliency score and select the tokens to be masked by the following
three steps.

Due to the varying ranges of saliency scores in each data, using a fixed thresh-
old to determine which token should be masked is difficult. Therefore, we nor-
malize the computed saliency scores to z-scores first. This normalization allows
us to use a fixed threshold to select which token should be masked. Secondly, we
use the sigmoid function to convert the saliency scores to values between 0 and
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1. When performing the sigmoid function, we increase the slope of the sigmoid
function so that the gap between the high and low saliency score will be larger,
and the token with a saliency score higher than average can be more obvious.
In the third step, we specify a value between 0 and 1 as the threshold and mask
the tokens with a saliency score higher than the threshold.

Fig. 2. Overview of CopyCAT

4.3 Post-processing Methods

When creating the masked dataset, we found that some tokens with high fre-
quency tend to have low saliency, resulting in the continuous mask tokens will
be interrupted by these tokens. We count the times each token interrupted the
continuous mask tokens and show the top 10 in Table 2. Since these tokens usu-
ally have little or no meaning, they can’t provide additional information during
the generation of synthetic machine data. Keeping these tokens in the prompt
may limit the generated article and make the data generated by the CopyCAT
generator worse. In this section, we test three post-processing methods to reduce
the cases where these tokens interrupt the continuous mask.

Masking Interruption Tokens: When the adjacency tokens are masked, the
middle token will also be masked.

Gaussian Blur: Use Gaussian blur to smooth the computed saliency scores.
When the token with a low saliency score is between tokens with a high saliency
score, the saliency score of the token will be raised. In addition, when the token
with a high saliency score is between tokens with a low saliency score, the saliency
score of this token will also be reduced. This makes the mask positions more
continuous.
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Masking Low Saliency Tokens: This post-processing method needs to com-
pute the average saliency score of each token first and take the n% token with the
lowest average saliency score as the target token to be masked. The target token
will be masked when there are only target tokens between two mask tokens.

5 Experiments

In this section, we compare our method with other data augmentation methods
on datasets generated by different masking strategies.

5.1 Datasets

We use the review in the Yelp dataset [18] as prompts for generating datasets in
this section. To avoid the length of review providing additional features to the
discriminator, the review which less than 300 tokens is discarded. About 110,000
reviews remain after discarding. We create datasets using four different masking
strategies to measure whether our method can improve the discriminator on
various masking strategies. During generation, nucleus sampling with a p value
random select from 0.8 to 1 is used as the decoding strategy. The details of each
dataset are as follows.

GPT2(C): GPT2 with conditional generation was used to generate the machine
data of this dataset. During generation, we truncate the reviews in the YELP
dataset to 195 (35%) tokens as prompts and let the generator generate up to
300 tokens.

GPT2(U): GPT2 with unconditional generation was used to generate the
machine data of this dataset. During generation, we use only a BOS token as
the prompt and let the generator generate up to 300 tokens.

ILM(Mix): The trained ILM is used to generate the machine data of this
dataset. During generation, we randomly mask the sentence, n-gram token, and
single token in reviews as prompts. The average ratio of generated tokens to the
whole review is about 20%.

ILM(S): The trained ILM is used to generate the machine data of this dataset.
During generation, we only use the sentence-level mask to mask the sentences in
reviews as prompts. The average ratio of generated tokens to the whole review
is about 40%.

Each generator is fine-tuned with 50,000 YELP data to make the generated
reviews have a similar style to the YELP dataset before generating the machine
data. The remaining 70,000 data are used to create the dataset of the discrimina-
tor. In real-world situations, the machine data from the same adversary is hard
to collect, so we only use 1,000 machine data in the training set. To balance the
amount of data between human and machine labels in the training set, we treat
the remaining human data as extra data. This meets the realistic setting that
we mentioned in Sect. 2.
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Table 3. Dataset statistics.

Training data Validation data Test data Extra data

Human data 1,000 1,000 5,000 48,039
Machine data 1,000 1,000 5,000 0
Total 2,000 2,000 10,000 48,039

5.2 Data Augmentation Methods

In this section, we introduce the details of baselines and CopyCAT methods.

Conditional Bert (CBert) [15]: We fine-tune a class-conditional Bert (CBert)
on the dataset containing extra human and machine data in the training set. The
fine-tuned CBert model is used to increase the amount of machine training data
to 50,000. The extra human data is added to the human training data to maintain
the balance between human and machine data in the training set.

Easy Data Augmentation (EDA) [14]: The amount of machine data is
increased to 50,000 by EDA, and the extra human data is added to the human
training data.

GPT2 Data Augmentation: We fine-tune GPT2 on the extra human data
and then used the fine-tuned GPT2 to generate synthetic machine data. During
generation, the prompt is randomly truncated into 150 to 240 tokens. In our
experiment, we use half of the extra human data as prompts to generate synthetic
machine data and add the other half into human training data to maintain the
balance between the two classes.

Random masked ILM: We fine-tune ILM on the extra human data and used
the fine-tuned ILM to generate synthetic machine data. Mask positions in the
prompt are selected randomly. Similar to the GPT2 Data Augmentation method,
we used half of the extra human data as prompts to generate synthetic machine
data and added the other half into human training data.

CopyCAT: CopyCAT is similar to the random masked ILM method. The only
difference between CopyCAT and random masked ILM is that the mask positions
of CopyCAT in the prompt are selected using the method we described in Sect. 4.

The token mask ratio of each data augmentation method except EDA is approx-
imately 35% of the entire article.

5.3 Experiment Results

The experiment results show that task-agnostic data augmentation methods
(CBert and EDA) degenerate the discriminators. We thought discriminators
have a lower accuracy because the prompts used to generate synthetic data
are created by the machine data in the training set, which cause the synthetic
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Table 4. This table shows the accuracy(%) of discriminators with different data aug-
mentation methods on each dataset.

Method Test set
GPT2(C) ILM(Mix) GPT2(U) ILM(S) Avg

Training set only 65.3 53.3 81.1 57.9 64.4
EDA 53.5 50.7 80.0 51.3 58.9
CBert 54.9 50.7 80.5 50.9 59.3
GPT2 Data Augmentation 73.9 53.8 75.2 57.3 65.1
Random masked ILM 59.2 64.5 78.6 62.0 66.0
CopyCAT (Origin) 66.2 61.5 74.8 64.5 66.8
CopyCAT (Mask Interruption Tokens) 68.9 62.8 77.0 64.6 68.3
CopyCAT (Gaussian Blur) 71.4 60.8 75.6 65.4 68.3
CopyCAT (Mask Low Saliency Tokens) 70.2 63.3 79.0 67.8 70.1

data hard to create new linguistic patterns [10], and certain useful features in
the origin machine data may be faded when generating synthetic data.

Discriminators achieve better accuracy than task-agnostic data augmentation
methods when using GPT2 or Random masked ILM to generate synthetic data.
Furthermore, the choice of masking strategy has a significant impact on the
performance of discriminators. The synthetic data generated by the GPT2 model
does not perform well on ILM datasets and vice versa.

The CopyCAT (Origin) method can improve discriminators’ performance on
each dataset. However, using the post-processing method to mask the token that
interrupts continuous mask tokens can improve the discriminator performance
further. The experiment results show that even if we only use a simple post-
processing method (Masking Interruption Tokens) to deal with the low saliency
tokens, the performance of discriminators improves significantly on each dataset.
CopyCAT (Gaussian Blur) improves the performance on datasets with more con-
tinuous machine-generated tokens, such as GPT2(C) and ILM(S), but performed
worse on the ILM(Mix) dataset, possibly because the ILM(Mix) dataset uses
token-level masks to mask the prompt when generating machine data. Gaussian
blurring makes the single token hard to be masked, leading to a greater differ-
ence between the masking strategy of synthetic machine data and the original
machine data, resulting in worse performance. CopyCAT (Masking Low Saliency
Tokens) has the best average performance, but it takes time to compute the aver-
age saliency score of each token before masking data.

5.4 Selection of Mask Threshold

None of the methods in Table 4 could improve the performance of the discrimi-
nator in the GPT2(U) dataset. In this section, we reduced the amount of extra
human data to find the best masking threshold for each dataset, and re-run the
experiments using whole extra human data on the GPT2(U) dataset. Using the
suitable threshold and CopyCAT (Masking Low Saliency Tokens) method, we
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Table 5. This table tests the most suitable threshold of each dataset by using the
dataset which only contains 5,000 extra human data. The values in this table are the
validation accuracies(%) of each threshold.

Dataset Threshold
0.05 0.1 0.2 0.3 0.4 0.5

GPT2(C) 64.0 66.0 67.3 66.4 68.1 64.3
ILM(Mix) 55.8 58.3 59.7 53.1 56.8 53.0
GPT2(U) 81.6 79.1 80.3 76.5 76.1 75.7
ILM(S) 64.1 64.0 64.8 62.0 62.6 62.2

improved the accuracy to 83.0% in the GPT2(U) dataset. In addition to the
GPT2(U) dataset, we also re-run experiments on other datasets and achieved
accuracies of 70.0%, 65.4%, and 66.5% on the GPT2(C), ILM(Mix), and ILM(S)
datasets, respectively. The average is about 71.2%. The experimental results
show that choosing a suitable masking threshold can further improve discrimi-
nators’ performance.

6 Conclusion

In this paper, we proposed the CopyCAT method and enhanced the perfor-
mance of the discriminator regardless of the masking strategy used to generate
the datasets. However, we assume the adversary only uses a single masking strat-
egy to mask prompts. When the adversary uses multiple masking strategies to
generate articles, CopyCAT may not work well. Besides, the choice of the thresh-
old will significantly affect the CopyCAT method. How to effectively select the
threshold and deal with multiple masking strategies are problems that need to
be solved.

References

1. Gokaslan, A., Cohen, V., Pavlick, E., Tellex, S.: OpenWebText Corpus (2019)
2. Adelani, D.I., Mai, H., Fang, F., Nguyen, H.H., Yamagishi, J., Echizen, I.: Gener-

ating sentiment-preserving fake online reviews using neural language models and
their human- and machine-based detection. CoRR abs/1907.09177 (2019). http://
arxiv.org/abs/1907.09177

3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis,
Minnesota (2019). https://doi.org/10.18653/v1/N19-1423. https://aclanthology.
org/N19-1423

http://arxiv.org/abs/1907.09177
http://arxiv.org/abs/1907.09177
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423


378 C.-L. Liu and H.-Y. Kao

4. Donahue, C., Lee, M., Liang, P.: Enabling language models to fill in the blanks.
In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 2492–2501. Association for Computational Linguistics, Online
(2020). https://doi.org/10.18653/v1/2020.acl-main.225. https://aclanthology.org/
2020.acl-main.225

5. Fagni, T., Falchi, F., Gambini, M., Martella, A., Tesconi, M.: TweepFake: about
detecting deepfake tweets. CoRR abs/2008.00036 (2020). https://arxiv.org/abs/
2008.00036

6. Ippolito, D., Duckworth, D., Callison-Burch, C., Eck, D.: Automatic detection of
generated text is easiest when humans are fooled. In: Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 1808–1822.
Association for Computational Linguistics, Online (Jul 2020). https://doi.org/10.
18653/v1/2020.acl-main.164. https://aclanthology.org/2020.acl-main.164

7. Jawahar, G., Abdul-Mageed, M., Lakshmanan, V.S., L.: Automatic detection of
machine generated text: a critical survey. In: Proceedings of the 28th International
Conference on Computational Linguistics, pp. 2296–2309. International Commit-
tee on Computational Linguistics, Barcelona, Spain (Online) (2020). https://
doi.org/10.18653/v1/2020.coling-main.208. https://aclanthology.org/2020.coling-
main.208

8. Keskar, N.S., McCann, B., Varshney, L., Xiong, C., Socher, R.: CTRL - a con-
ditional transformer language model for controllable generation. arXiv preprint
arXiv:1909.05858 (2019)

9. Li, J., Chen, X., Hovy, E., Jurafsky, D.: Visualizing and understanding neural mod-
els in nlp. In: Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
pp. 681–691 (2016)

10. Longpre, S., Wang, Y., DuBois, C.: How effective is task-agnostic data augmen-
tation for pretrained transformers? In: Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 4401–4411. Association for Computational
Linguistics, Online (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.394.
https://aclanthology.org/2020.findings-emnlp.394

11. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

12. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

13. Solaiman, I., et al.: Release strategies and the social impacts of language models
(2019)

14. Wei, J., Zou, K.: EDA: Easy data augmentation techniques for boosting perfor-
mance on text classification tasks. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 6382–6388.
Association for Computational Linguistics, Hong Kong, China (2019). https://doi.
org/10.18653/v1/D19-1670. https://aclanthology.org/D19-1670

15. Wu, X., Lv, S., Zang, L., Han, J., Hu, S.: Conditional BERT contextual augmen-
tation. In: Rodrigues, J., et al. (eds.) ICCS 2019. LNCS, vol. 11539, pp. 84–95.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22747-0_7

16. Xue, Q., Takiguchi, T., Ariki, Y.: Building a knowledge-based dialogue system with
text infilling. In: Proceedings of the 23rd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pp. 237–243. Association for Computational
Linguistics, Edinburgh, UK (2022). https://aclanthology.org/2022.sigdial-1.25

https://doi.org/10.18653/v1/2020.acl-main.225
https://aclanthology.org/2020.acl-main.225
https://aclanthology.org/2020.acl-main.225
https://arxiv.org/abs/2008.00036
https://arxiv.org/abs/2008.00036
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://aclanthology.org/2020.acl-main.164
https://doi.org/10.18653/v1/2020.coling-main.208
https://doi.org/10.18653/v1/2020.coling-main.208
https://aclanthology.org/2020.coling-main.208
https://aclanthology.org/2020.coling-main.208
http://arxiv.org/abs/1909.05858
https://doi.org/10.18653/v1/2020.findings-emnlp.394
https://aclanthology.org/2020.findings-emnlp.394
http://arxiv.org/abs/1312.6034
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.18653/v1/D19-1670
https://aclanthology.org/D19-1670
https://doi.org/10.1007/978-3-030-22747-0_7
https://aclanthology.org/2022.sigdial-1.25


CopyCAT: Masking Strategy Conscious Augmented Text 379

17. Zellers, R., et al.: Defending against neural fake news. In: Wallach, H., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in
Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019).
https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-
Paper.pdf

18. Zhang, X., Zhao, J., LeCun, Y.: Character-level convolutional networks for text
classification. Advances in neural information processing systems 28 (2015)

19. Zhu, W., Hu, Z., Xing, E.: Text infilling. arXiv preprint arXiv:1901.00158 (2019)

https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
http://arxiv.org/abs/1901.00158


Federated Learning Under Statistical
Heterogeneity on Riemannian Manifolds

Adnan Ahmad1(B) , Wei Luo1 , and Antonio Robles-Kelly1,2

1 School of Information Technology, Deakin University, Geelong, VIC 3220, Australia
{ahmadad,wei.luo,antonio.robles-kelly}@deakin.edu.au

2 Defence Science and Technology Group, Edinburgh, SA 5111, Australia

Abstract. Federated learning (FL) is a collaborative machine learning
paradigm in which clients with limited data collaborate to train a sin-
gle “best” global model based on consensus. One major challenge facing
FL is the statistical heterogeneity among the data for each of the local
clients. Clients trained with non-IID or imbalanced data whose models
are aggregated using averaging schemes such as FedAvg may result in
a biased global model with a slow training convergence. To address this
challenge, we propose a novel and robust aggregation scheme, FedMan,
which assigns each client a weighting factor based on its statistical con-
sistency with other clients. Such statistical consistency is measured on a
Riemannian manifold spanned by the covariance of the local client output
logits. We demonstrate the superior performance of FedMAN over sev-
eral FL baselines (FedAvg, FedProx, and Fedcurv) as applied to various
benchmark datasets (MNIST, Fashion-MNIST, and CIFAR-10) under a
wide variety of degrees of statistical heterogeneity.

1 Introduction

Conventional deep learning approaches need an enormous amount of training
data centrally to learn Machine Learning (ML) tasks. In many applications,
data exist in silos belonging to different owners. Collecting such data centrally is
often infeasible due to privacy and communication concerns. Federated Learning
(FL) [12] provides a means for clients with limited data to collaborate in order
to train a single global model.

Typical FL training involves multiple communication rounds between a cen-
tral server and multiple clients. At each round, a central server shares the global
model parameters with a (random) subset of the clients. In these methods, the
global model is often obtained via aggregation schemes whereby the selected
clients initialize their respective local models with the global model parameters,
perform a specified number of stochastic gradient descent (SGD) steps on their
local data and communicate their respective models (or parameter updates) back
to the server. The central server finally aggregate the local updates to update
the global model.

In these techniques, the manner in which the central server aggregates local
updates is an important consideration that affects how fast the global model
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converges and how biased it may be. Most existing FL aggregation schemes are
variants of FedAvg [12], where local parameters are aggregated using an arith-
metic mean, weighted by the number of training examples in each client. With
FedAvg, FL has shown its superiority in the homogeneous data scenario where
all participants carry independent and identically distributed (IID) data. Since
each local model is initialized with the same parameters and trained on homo-
geneously distributed data, every local model follows the same loss landscape
trajectory towards its minimum. As a result, all local models converge consis-
tently. However, for data that is not independent and non-identically distributed
(non-IID), statistical heterogeneity induces each local model to follow different
loss landscape trajectories, causing local models to drift away from each other’s
optimum. As a result, approaches such as FedAvg, often exhibit catastrophic
forgetting in the global model. This problem is also known as “client drift” [7].

Several approaches, such as FedProx [11] and SCAFFOLD [9], have been
proposed to mitigate the client drift problem. These methods employ proximal
terms in the local objective function of the clients while keeping the standard
weighted average approach for model aggregation on the server. The main idea
of modifying the local loss function is to penalize local models that tend to
deviate from the global model optimum. Note that this treatment may result in
slower convergence [14,17]. Here, however, we do not resort to rectifying the local
model parameters but rather explicitly use weighting factors for the aggregation
operation that reflect how each client model may contribute to a global model.

Thus, we proposed a new aggregation scheme based on the degree of agree-
ment or “proximity” of the client model with the global one. The challenges here
are twofold. Firstly, since the model is initialised randomly on both, the clients
and the central server, instead of having a natural reference to start with, we
require a client model to be consistent with other client models. Secondly, we
need to reliably measure the agreement or similarity between models. An option
in this regard can be to view the N parameters in a model as a vector in R

N and
to compute the Euclidean distance between the parameter vectors of different
models. This is, however, not a robust solution since many model parameters in
a deep learning model contain redundant information. Moreover, such an app-
roach may be prone to the curse of dimensionality due to the large number of
parameters often found in deep learning models.

As a result, here we opt to employ a metric on a Riemannian manifold
spanned by the covariance matrix of the output logits. Here we propose an
aggregation scheme, which we name FedMan. FedMan utilizes the covariance of
the output logits to compare each of the local models with the global one making
use of the geodesic distance on a Riemannian manifold. This follows from the
notion that the covariance of the model logits belongs to a Riemannian manifold
of symmetric and positive-definite (SPD) matrices. This Riemannian treatment
of the problem has several desirable advantages. First, the covariance matrix
is closely related to the Fisher Information [1], which provides a natural met-
ric reflecting the statistical heterogeneity among clients. Next, this opens up the
possibility of using the mathematical machinery associated with Affine Invariant
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Riemannian Metrics (AIRMs) and log-Euclidean metrics to perform operations
in their native spaces.

Our main contributions are summarized as follows:

– We explicitly address the client divergence problem in the aggregation phase
and propose a robust aggregation method based on inter-client consistency.

– We present an approach that leverages the relationship between statistical
heterogeneity with the covariance of the output logits in local models, intro-
ducing a novel approach based on SPD matrix manifolds.

– Guided by a canonical Riemannian metric on the SPD manifold spanned
by the logit covariance matrices, we propose a way to measure local model
similarity based on the geodesic distance making use of the Fréchet mean.

– We demonstrate the superior performance of our proposed aggregation
scheme by conducting an extensive number of experiments on various image
classification tasks.

2 Problem Formulation and Related Work

Consider a set of K clients collaborating in an FL process to learn a global task.
The objective at the central server storing the global model with weights w is
hence given by:

min
w∈Rd

f(w) where f(w) =
K∑

k=1

Nk

N
f(wk) (1)

f(.) is the loss function, wk are the weights of the kth local model at the cor-
responding client which has access to Nk training samples and N is the total
amount of training data distributed across all participating clients.

Recall that, in a standard federated averaging approach, such as FedAvg,
each participant locally performs a specified number of SGD steps and com-
municates local weights to the server. The estimates of local parameters at the
client indexed k are given by:

wk = wk − η∇f(wk) (2)

where, as usual, η is the learning rate. Once the server receives the updates from
the clients, it aggregates local updates using the weighted average method given
by:

wt+1 =
K∑

k=1

Nk

N
f(wk) (3)

where we have indexed the central server weights to iteration number t.
Note that recent years have seen a lot of research on the convergence of

FedAvg under statistical heterogeneity. Hsu et al. [6] observed that the perfor-
mance of FedAvg declines with an increase in the degree of statistical heterogene-
ity in the client’s data distributions. Zhao et al. [18] measure the performance



FL Under Statistical Heterogeneity on Riemannian Manifolds 383

degradation rate with the earth mover distance (EMD) between the data dis-
tributions of the clients and propose a data-sharing approach to decrease the
degree of statistical heterogeneity between the data distributions. Despite its
effectiveness, this data-sharing approach is impractical as it conflicts with FL’s
primary objective of respecting privacy constraints.

Several studies [9–11,16] modify the local loss function of clients to miti-
gate “client drift”. These introduce regularization terms in Eq. 2 via additional
hyperparameters that need to be tuned for each task. For instance, FedProx [11]
introduces a proximal term in the local loss function to penalize the updates
that deviate from the global objective. Similarly, FedDANE [10] incorporate a
gradient correction term in the local function to control divergence. SCAFFOLD
[9] employs a variance reduction technique in local objectives to control gradi-
ent dissimilarity. FedCurv [16] employs the diagonal of the Fisher information
matrix to penalize only those parameters that are important to the global model.

Note that the aforementioned approaches address the “client drift” problem
via modification in the client’s local objective and adopt a standard weighted
averaging approach (Eq. 3) to aggregate local updates at the server. Further-
more, these approaches can often be much more expensive than FedAvg in com-
putational terms since they place extra burdens on local clients. FedCurv [16],
for example, requires clients to compute the diagonal of the fisher information
matrix and communicate it to the server along with local parameter updates.
This is important since clients in FL are usually considered resource-constrained
devices. It is worth noting in passing that this is an added advantage of our
approach, which avoids additional computation on the clients and only assigns
extra work to the global server.

3 Riemannian Geometry of SPD Matrices

Before we go on, we require some formalism. Thus, in this section, we cover the
fundamental concepts of Riemannian geometry used throughout the remainder
of the paper.

Let M(n) be the space of n × n real matrices and S(n) = {V ∈ M(n) :
V T = V } be the subspace of all symmetric matrices. The subspace W(n) =
{ξ ∈ S(n) : gT ξg > 0,∀g ∈ R

n \ {0}} contains all the symmetric positive-
definite (SPD) matrices. SPD matrices are diagonalizable into strictly positive
eigenvalues whereby the space of SPD matrices W(n) forms a differentiable Rie-
mannian manifold M. The derivatives at point ξ lie in the tangent space Tξ at
point ξ. Recall that each tangent space on the manifold M has an inner product
〈, 〉ξ that varies smoothly from point to point throughout the manifold [3]. This
local inner product defines an affine-invariant metric which is a Riemannian one
and is invariant under GL(n), a set of n × n invertible matrices in M(n).

Moreover, an affine-invariant metric is a natural metric in differential geom-
etry and satisfies the following properties:

1. δ(ξ1, ξ2) = δ(ξ2, ξ1)
2. δ(ξ−1

1 , ξ−1
2 ) = δ(ξ1, ξ2)
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3. δ(PT ξ1P, PT ξ2P ) = δ(ξ1, ξ2) ∀P ∈ GL(n)

where the third property above makes the space of SPD matrices invariant to a
projection. This, in turn, allows simplifying complex spaces by projecting data
into less complex spaces. The metric is given by:

〈V1,V2〉ξ = 〈ξV1ξ
−1, ξV2ξ

−1〉 (4)

Further, since the tangent space S(n) is linear and symmetric [2], Eq. (4) can be
written as:

〈V1,V2〉ξ = Tr(V1ξ
−1V2ξ

−1) (5)

Here we will also employ the exponential and logarithmic maps of the space
of SPD matrices above. These project the points on the tangent space Tξ at
any reference point ξ. Note that an SPD matrix ξ has a logarithmic log(ξ)
and a symmetric matrix V has an exponential exp(V ), such that an inverse
connection exists between the two assignments [3]. The Logarithmic map Logξ

projects any point ξ1 from the manifold to the tangent space at a point ξ, where
the operations can be performed in a locally linear space. A logarithmic map is
given by:

Logξ(ξ1) = (V1) = ξ1/2 log
(
ξ−1/2ξ1ξ

−1/2
)

ξ1/2 (6)

Similarly, the exponential map Expξ projects any point V1 from the tangent
space to the manifold M. The exponential map is given as follows:

Expξ(V1) = ξ1 = ξ1/2 exp
(
ξ−1/2V1ξ

−1/2
)

ξ1/2 (7)

4 Federated Learning on Riemannian Manifold

The representation of the parameter space of neural networks on an SPD mani-
fold is not a straightforward task. Here we make use of the logits of the neural
network to represent its weights w on the manifold M. Recall that for a feed-
forward neural network parameterized by w with input x̂,logits are defined as:

y = z(x̂o−1) = σ
(
wox̂o−1 + bo

)
(8)

where σ(·) denotes the soft max function and we have adopted the o supra-index
to represent the output layer. The mean and covariance of the logits can be
defined as μ = [y] and C =

[
(y − μ)(y − μ)T

]
, respectively. Since the covariance

matrix C is indeed a family of SPD matrices we can employ the properties in
the previous section to use the geodesic distance on the manifold M so as to
perform the aggregation process.

To this end, the global server computes the covariance matrix ξk = Ck for
each k ∈ K making use of a small amount of unlabeled data D̂ = (x̂) which
can be easily procured centrally. This covariance matrix can then be used to
obtain a geodesic distance on the manifold. Viewed in this manner, the point ξk

represents the local data distribution of the client k on the manifold, such that
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Fig. 1. Figure 1a presents a geodesic curve Γ on Riemannian manifold M. Tξ is a
tangent space at point ξ on which v1 and v2 are the projections of points ξ1 and ξ2,
respectively. Figure 1b illustrates the procedure to obtain Fréchet Mean of points ξk

and ξk+1 on the manifold. We start from the identity matrix I and iteratively obtain
Fréchet mean ξ on the manifold.

the geodesic is the shortest path that joins two points on the manifold. Since
geodesics are analogous to a straight line in Euclidean geometry, our method
is consistent with the arithmetic mean for iid data giving rise to a diagonal
covariance matrix.

To illustrate this treatment, in Fig. 1a(a), we illustrate how a geodesic Γ(t)
with arclength 0 ≤ t ≤ 1 defines a series of points that joins ξ1 to ξ2. In this
manner, the initial point of the geodesic is Γ(0) at point ξ1 and its final point
is Γ(1) at ξ2. The minimum distance between two points on the manifold is the
Riemannian distance that can be computed by computing the arc length on the
curve Γ. A Riemannian geodesic distance induced by the natural Riemannian
metric in Eq. (4) is given by

δ(ξ1, ξ2) =
∥∥∥log(ξ−1/2

1 ξ2ξ
−1/2
1 )

∥∥∥
2

(9)

To employ the geodesic distance as a metric to estimate the similarity
between local clients, we need to define a reliable reference point on the mani-
fold. This is so that we can calculate the geodesic distance between the reference
point and the local covariance matrices. To obtain this reference point, we also
need to consider the need to be agnostic regarding the local data distributions
of the clients. Interestingly, Fréchet [4] defines the mean of the points on the
manifold, and Pennec [15] proposes a gradient decent algorithm to approximate
such a mean. This is important since we can use the Fréchet mean of the local
covariance matrices as a potential reference point on the manifold so as to use
the geodesic distance accordingly.
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Being more formal, consider a set of points W = {ξ1, ξ2, ..., ξk} on the mani-
fold M. The intrinsic mean of W is determined by solving the following objective:

μ = arg min
ξ∈M

ρW (ξ) (10)

where ρW (ξ) in Eq. (10) is the sum of squared distances given by:

ρW (ξ) =
1

2K

K∑

i=1

δ(μ, ξi)2 (11)

As mentioned above, Karcher [8] shows that the gradient of ρW (ξ) is given
by:

∇ρW (ξ) = − 1
K

K∑

i=1

Logξ(ξi) (12)

Thus allowing for the gradient descent step sequence presented in Algorithm
(1) presented in [15] to be used to solve the minimization problem in Eq. 10.
The algorithm starts with μ = I as the initial point and iteratively finds a final
point μ = ξ such that the sum of the squared distances in Eq. (11) is minimized.
A geometrical interpretation of the procedure is shown in Fig. 1(b). Note that,
here, these points correspond to the covariance matrices.

Using Eq. (9), we can calculate the geodesic distance between the Fréchet
mean and the local covariance updates. Ideally, the geodesic distance δ(ξ, ξk)
between ξ and ξk is expected to be zero in an ideal IID data setting. This is
due to the fact that local updates wk come from the same data distribution and
their covariance matrices ξk and hence reside on the same point on the manifold.
On the other hand, in non-IID settings, the geodesic distance varies from client
to client depending on the degree of heterogeneity in the local data distribution
of clients. Intuitively, the local covariance matrices that originated from clients
with less heterogeneous data should be far from the covariance matrices that
come from clients with extremely heterogeneous data distributions. Therefore,
the reliability of each local update can be easily scored based on its distance
from the Fréchet mean. Thus, by making use of geodesic distance, contribution

Algorithm 1: Fréchet Mean
Data: ξ1, ξ2, ..., ξk

Result: μ = ξ
1 μ0 = I
2 do

3 vi = 1
K

∑K
k=1 Logµi(ξk)

4 μi+1 = Expµi(vi)

5 while ‖vi| > ε;
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weights of local updates can be calculated as:

τk =
δ(ξ, ξk)

∑K
l=1 δ(ξ, ξl)

(13)

Equation (13) reflects the notion that the greater the geodesic distance
between ξk and the Fréchet mean, the more reliable the local update wk is
expect to be. As a result, our proposed method uses the equation above as a
substitute for Eq. (3). This yields:

wt+1 =
K∑

k=1

τkf(wk) (14)

In Algorithm 2, we show the pseudocode for our approach, which we have
named FedMAN.The pseudo-code takes the initial global model, unlabelled data
and the number of communication rounds as the server input. For the sake
of consistency, we used the same notation and equations as those employed
throughout the section. In our implementation, we use Geomstats [13], which is
an open-source Python package for computation on manifolds.

Algorithm 2: FedMAN

1 Server Input: Initial global mdoel wt, unlabelled data D̂ = (x̂), R: number of
communication rounds

2 Output: Final global model wt+1

3 Let t = 0
4 for r = 1 to R do
5 Communicate wt to all clients
6 for For each client k ∈ K in parallel do
7 Initialize local model wk ← wt

8 Client Training: wk = wk − η∇f(wk)
9 Communicate updated wk to the central server.

10 end
11 Server computes cov. matrices : ξ1, ξ2, ..., ξK ∈ W(n).
12 Server computes Fréchet mean ξ using algorithm 1
13 for k = 1 to K do
14 Server compute Geodesic distance: Dk = δ(ξ, ξk)
15 end
16 for k = 1 to K do

17 Server computes contribution weights: τk = Dk∑K
l=1 Dl

18 end

19 Server aggregates weights: wt+1 =
∑K

k=1 τkwk

20 end
21 return wt+1
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5 Experiments

For our experiments, we consider three publicly available image classification
datasets. These are the MNIST, Fashion-MNIST and CIFAR-10. The MNIST
is a digit classification dataset consisting of 60, 000 training and 10, 000 test
samples of grayscale images each with a size of (28×28). The Fashion-MNIST is
a garment classification dataset with the same characteristics as MNIST. CIFAR-
10 is a 10 class classification dataset consisting of 50, 000 training and 10, 000
test samples of RGB images, each having a size of (3×32×32). For all datasets,
we compare our method with three baselines. These are FedAvg [12], FedProx
[11] and Fedcurv [16]. The selection of these baselines stems from the fact that
FedAvg is a widely used baseline that employs a standard aggregation algorithm
for FL, whereas the other two are approaches that explicitly address the “client
drift” problem under non-IID settings.

We adopt the experimental settings used in [12]. For all our experiments, we
distribute training data among 10 clients and assume all clients remain active
in each communication round. We employ multi-layer perceptrons (MLPs) for
MNIST and Fashion-MNIST datasets. These MLPs consist of 2 hidden layers
with 200 units, each with ReLu activations. For CIFAR-10 we train a convolu-
tional neural network (CNN) which consists of three convolutional layers with
3×3 kernels (channel sizes 32,64, and 128) followed by two fully connected layers.
We tune the hyper-parameters for all models via cross-validation and set to 5 the
number of training epochs between communication rounds with a learning rate
of 0.01. For training, we use a stochastic gradient descent (SGD) optimizer with
0.001 weight decay and server momentum of 0.9 at each local client for the local
updates. Since FedProx and FedCurv have additional hyper-parameters which
are set to 0.01 and 1.0, respectively. To compute local covariance matrices for our
FedMAN aggregation approach we assume a small amount of data on the server.
To this end, we split the test dataset into two parts. 30% of test data is used
for producing local covariance matrices while the remaining test data is used
for evaluation. It is worth noting in passing that this is not an overly restrictive
condition since this data can be easily obtained in practice by making use of
a GAN [5] or communicating the covariances together with the local models at
each communication round.

Following [6], we use a Dirichlet distribution to simulate the non-IID setting.
In this manner, for each class label, we make a random draw from the Dirichlet
distribution Dir(α). The resulting multinomial distribution is used to determine
how many training examples each client is allocated for that particular class
label. The degree of heterogeneity depends on the value of α, i.e. a small α value
simulates extremely heterogeneous settings and vice versa.

In Table 1 we present the results obtained in our experiments. We repeat each
experiment 10 times and report the mean±std of the test data accuracy for the
global model obtained after 50 communication rounds. FedMAN outperforms
the baselines in all classification tasks. Further, note that the difference between
the performance of FedAvg and FedMan increases with an increase in the degree
of heterogeneity. This is due to the fact that at higher values of α, local points
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Table 1. Mean ± std of the test accuracy (%) in percentage for the three data sets
under consideration when FedMan and the alternatives as used on non-IID data with
different α values. The absolute best performance is in bold font.

Dataset α FedAvg FedProx FedCurv FedMan

MNIST 0.1 94.52 ± 0.952 94.60 ± 1.041 94.56 ± 0.889 95.17 ± 0.479

0.05 90.77 ± 3.851 90.82 ± 3.823 90.81 ± 3.671 92.50 ± 2.789

0.01 69.63 ± 5.289 71.30 ± 7.934 67.75 ± 8.108 72.79 ± 3.814

FashionMNIST 0.1 82.32 ± 1.639 82.16 ± 1.680 82.07 ± 1.869 83.06 ± 1.603

0.05 77.74 ± 5.624 78.47 ± 5.263 78.68 ± 5.174 78.88 ± 5.955

0.01 58.33 ± 5.094 62.22 ± 1.929 63.75 ± 0.913 65.25 ± 1.807

CIFAR10 0.1 68.55 ± 0.247 69.0 ± 0.203 68.49 ± 0.254 69.13 ± 0.556

0.05 62.47 ± 4.898 62.27 ± 4.202 63.30 ± 4.842 63.84 ± 3.827

0.01 46.25 ± 7.230 38.75 ± 7.687 47.68 ± 6.748 49.32 ± 5.997

on the manifold tend to be closer and their geodesic distances to their Frechet
mean are smaller. On the other hand, a small value of α pushes local points away
from each other in such a way that their distances to the Frechet mean reflect
that they are further apart from each other on the manifold. Finally, in Figs. 2-4
we show the test data accuracy and loss curves as a function of communication
round for α = {0.1, 0.05, 0.01}. These are consistent with our observations made
earlier, where FedMAN consistently outperforms alternatives throughout the
training process.

Fig. 2. Test accuracy and test loss of the global model as a function of communica-
tion rounds when the MNIST dataset is distributed between clients with a Dirichlet
distribution for α = {0.1, 0.05, 0.01}.
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Fig. 3. Test accuracy and test loss of the global model as a function of communication
rounds when the Fashion-MNIST dataset is distributed between clients with a Dirichlet
distribution for α = {0.1, 0.05, 0.01}.

Fig. 4. Test accuracy and test loss of the global model as a function of communication
rounds when the CIFAR-10 dataset is distributed between clients with a Dirichlet
distribution for α = {0.1, 0.05, 0.01}.

6 Conclusions

We proposed a novel approach to address statistical heterogeneity in FL. Fed-
MAN uses the covariance matrices of the local model output logits and follows
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Riemannian Geometry principles to produce aggregation coefficients for each
participating model. Unlike existing approaches such as FedCurv, our method
does not change the local loss function. Moreover, by leveraging the relationship
between statistical heterogeneity and the covariance of the client model output
logits it yields a more robust model aggregate. We demonstrate the superior per-
formance of FedMAN on three publicly available datasets for image classification
tasks, where our approach consistently outperforms the alternatives.

References

1. Amari, S.: Information Geometry and Its Applications. AMS, vol. 194. Springer,
Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8

2. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: statis-
tics of diffusion tensors. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.)
CVAMIA/MMBIA -2004. LNCS, vol. 3117, pp. 87–98. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27816-0 8

3. Förstner, W., Moonen, B.: A metric for covariance matrices (2003)
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Abstract. Existing topic modelling methods primarily use text fea-
tures to discover topics without considering other data modalities such
as images. The recent advances in multi-modal representation learning
show that the multi-modality features are useful to enhance the semantic
information within the text data for downstream tasks. This paper pro-
poses a novel Neural Topic Model framework in a multi-modal setting
where visual and textual information are utilized to derive text-based
topic models. The framework includes a Gated Data Fusion module to
learn the textual-specific visual representations for generating contextu-
alized multi-modality features. These features are then mapped into a
joint latent space by using a Neural Topic Model to learn topic distri-
butions. Experiments on diverse datasets show that the proposed frame-
work improves topic quality significantly.

Keywords: Deep Learning · Neural Topic Model · Multi-modal
Representation Learning

1 Introduction

The growing prominence of user-generated content in Web 3.0 has resulted in
a massive explosion of text and image data. Topic modelling methods have
been commonly used to understand text data and capture meaningful word pat-
terns [7]. Traditionally, topic models are restricted to solely utilize text data [23].
However, text data often appears with other supplementary data, most com-
monly with image data. Text-image paired data is commonly seen on social
media platforms, review platforms and search engines, and it provides enriched
semantic information for human cognitive perception and communication [3].
The meanings of words can be explicitly tied to visual perception [3,18]. A
movie poster, for example, is often found to be more precise and expressive than
a thousand-word textual description.

In the last few years, a new research area of multi-modal representation
learning has emerged [3,21]. This type of method enriches the semantic repre-
sentation of text data by including other data modalities such as image features.
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Multi-modal representation learning is reported to improve the performance of
subsequent machine learning tasks like classification and clustering [3,21].

In this paper, we propose to combine topic modelling with multi-modal learn-
ing and conjecture that images can provide valuable complementary information
for topic modelling. Topic modelling with multi-modal data remains a challeng-
ing task and received little attention [3]. (1) One primary challenge is how to
learn effective multi-modal features in an unsupervised setting. Complexities
arise because information from text and image modalities may not be equally
important and informative, and text and images may contain irrelevant or incon-
sistent information. This results in the Feature Mismatch problem [21]. Conse-
quently, simply combining (e.g. addition or concatenation) text-image features
may not contribute to a meaningful outcome [21]. (2) Another challenge is incor-
porating context from multi-modalities into topic models. Moreover, traditional
topic models such as Latent Dirichlet Allocation (LDA) [7] are purely based on
the Bag-of-words representation [5] which fail to consider word order and context
information.

To address the above-mentioned challenges, we propose a novel neural topic
model framework in a multi-modal setting where visual and textual informa-
tion is utilized to generate text-based topics. The Gated Data Fusion Neural
Topic Model (GDF-NTM) consists of two modules: data fusion module and topic
modelling module. GDF-NTM exploits the useful interactions between text and
image modality and is trained jointly in the same latent space of both text and
image features. To verify the effectiveness of our framework, we conduct exten-
sive experiments on three diverse datasets. Empirical analysis shows a significant
improvement in topic quality in comparison to the state-of-the-art models. More
specifically, the contributions of this paper are listed below:

– The novel data fusion module uses both the text and image as input and
learns a joint feature space through the GDF Module through a Gating
Mechanism. The gating mechanism exploits the inter-modalities interaction
and only learns informative features from the image data. To the best of
our knowledge, this is the first work that uses a gating mechanism for topic
modelling with multi-modality features.

– We deploy a classic Variational Auto Encoder (VAE) based neural topic
model architecture to allow the fused features to be projected into a shared
latent space and infer the topic words distribution from the latent space.

– We prepare and make a new multi-modal topical dataset, consisting of 5110
text-image pairs from Twitter1.

2 Related Work

Topic Models in the Age of Deep Neural Networks. The most popu-
lar topic modelling method, namely LDA [7], models three important concepts:
word (w), documents (d) and topics (z). LDA assumes the observed words in
1 https://github.com/Duoyi1/GDF-NTM.

https://github.com/Duoyi1/GDF-NTM
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each document (i.e. a tweet) are generated by a mixture of corpus-wide K topics.
Documents are modelled as mixtures of shared topics. Traditional LDA-based
topic models mainly rely on the bag-of-words (BoW) representation of data and
are criticized for ignoring the word order and semantic information of docu-
ments [23]. To solve this problem, a stream of recent works combines Neural
Topic Models with contextualized representation generated from word embed-
ding or pre-trained language models [5,9,22]. The embedding enhanced topic
models are reported to produce improved performance (i.e. topic interpretabil-
ity and coherence) [23]. For example, Embedded Topic Model (ETM) [9] learns
interpretable topic vectors and word embedding simultaneously through a Vari-
ational Auto Encoder (VAE). It has been shown to outperform LDA-based topic
models in finding interpretable topics with large and heavy-tailed vocabularies.
Similarly, Contextualized Topic Model (CTM) [5] utilises an encoder-based neu-
ral network to map pre-trained contextualized word embeddings (e.g., BERT [8])
to identify topic distributions. Inspired by this success, the proposed GDF-NTM
framework employs a neural topic model with contextualised representation that
is enhanced by multi-modal representation learning.

Multi-Modal Learning for Topic Modeling. Recently, multi-modal repre-
sentation learning has gained great popularity in deep learning, especially on
downstream tasks such as classification and clustering [3]. A multi-modal repre-
sentation is generated by a “fusion technique” by learning a joint low-dimensional
representation. There exists only a handful of works that introduce multi-modal
learning in topic modelling. For instance, Corr-LDA [6] learns the relationship
between images and text modalities but without considering the cross-modality
interactions. Other models [18] extract ‘visual words’ from images and use the
bag of ‘visual words’ as the representation of an image for topic modelling. How-
ever, the input to the topic model only consists of text data. Different from these
approaches, the proposed GDF-NTM framework learns useful features based on
cross-modal interactions and projects them into a shared latent space for topic
modelling in a pure unsupervised setting.

3 Methodology: The GDF-NTM Framework

Problem Formulation. GDF-NTM aims to model topics from documents in
a multi-modal setting by supplementing the text data with another modality.
Let each document d consist of a text-image pair, denoted as (dt, dv). As an
outcome, each document is modelled as a mixture of shared topics where each
topic z consists of multinomial distribution over concepts C. Each concept c ∈ C
consists of two parts: a textual part ct and a visual part cv. Different from state-
of-the-art topic modelling methods [5,7,9,10], each topic depends on both text
and image parts of the concept c ∈ C. The probability of a concept c ∈ C in a
topic model with K topics under this setting can be written as follows.

p(cj |dt, dv) =
K∑

k=1

p(cj |zk)p(zk|dt, dv) (1)



396 D. Zhang et al.

Fig. 1. Architecture of the proposed GDF-NTM framework

We assume that a concept c can be represented with a unigram text (e.g. a
single word). That is, each observable concept cj in a document d can be realised
through a representative word wj in the document. In this multi-modal setting,
the objective is to learn text-based topics with the aid of text and visual features.
Consequently, to observe a concept cj , we realise the word discourse wj ∈ dt and
use visual cues in dv to better understand the concept and find more diverse and
coherent topics. Therefore, Eq. 1 can be rewritten as:

p(wj ∼ ct
j |dt, dv) =

K∑

k=1

p(cj |zk)p(zk|dt, dv) (2)

We use Eq. 2 to implement the framework GDF-NTM. An overview of the frame-
work is given in Fig. 1. GDF-NTM consists of two modules to overcome the two
tightly coupled challenges of the feature mismatch problem in multi-model data
representation and the context embedding in topic models with multi-model fea-
ture learning. Each of these modules and data representation are explained next.

Data Representation. Let the document collection D = {di = (dt
i, d

v
i )}N

i=1

be a set of N number of text-image pairs with the word vocabulary of W . We
process the textual part of each document dt

i to capture the compositional and
contextual information. The BoW representation presents each document as
a vector of length |W |, tB ∈ R

|W |, by counting the Term-Frequency of each
unique word in a document. The Contextualized Text representation is obtained
based on the method described in SentenceBERT [16]. We use the pre-trained
RoBERTa model [15], which represents each word in the 768 fixed dimension.
We then use the mean pooling strategy to get the embedding vector tC ∈ R

768

for each di ∈ D. The Contextualized Image representation is obtained from the
well-known pre-trained VGG model [19] which consists of 16 convolution and 3
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max-pooling layers. Following [21], we get the representation of each image from
the last max-pooling layer. Each image is represented as (7 × 7) × 512, where
512 represents the number of kernels and (7 × 7) is the size of each kernel. We
then flatten each image into (49 × 512) and pass it to a fully connected layer.
The obtained image representation is a vector with 512 dimensions: vC ∈ R

512.
Note that the choice of pre-trained embedding models is highly dependent

on the dataset. The selection of the best pre-training model is out of the scope
of this study. To ensure a fair comparison, we use the same embedding method
for each baseline method in the experimental study.

Gated Data Fusion Module. A gating mechanism is commonly used to con-
trol the information flow (can be viewed as signals) in deep neural networks [12].
For example, in the long short-term memory (LSTM) model, a forget gate is
used to decide which information to drop [11]. In this study, we propose a novel
gating mechanism namely Gated Data Fusion Module (GFM) to filter out the
irrelevant and inconsistent information from the image modality to solve the
Feature Mismatch challenge discussed before.

Given the input document d, the objective of GDF is to learn a multimodal
representation M that effectively considers both text (dt) and image (dv) modali-
ties to help better understand the concepts before passing them to the next layers
of the deep network for topic modelling. We conjecture that the text modality
of concepts plays a significant role in topic modelling and the image modality
assists in finding concepts for topics. As a result, we use tC to control the flow of
information from vC . In other words, the text feature tC is used to decide what
information from the image modality vC to retain, as shown in Fig. 1.

For obtaining controlling vectors, we pass tC through a single layer NN with
a sigmoid activation function. This layer transforms tC into a gate controlling
vector tg, as shown in Eq. 3, by re-weighting each vector component and scaling
it between 0 and 1. A value close to 1 (or 0) indicates that an image feature
should be retrained (or dropped).

tg = sigmoid(NN(tC)) (3)

To enrich the positive values that encode an image feature, we pass vC through
a single NN layer with a ReLU activation function. This layer enriches vC to the
gate approaching vector vg (Eq. 4). ReLU activation makes sure that positive
values are not altered but the negative values are attenuated.

vg = ReLU(NN(vC)) (4)

We take Hadamard product (i.e. pairwise element multiplication) between vg

and tg to use text features to determine how much and what part of images to
retain for fusing them. As shown in Eq. 5, G is our retained image information
coming out of the gate with the text vector.

G = vg � tg (5)

The superposition principle [13] states that, for all linear systems, the net
response obtained by two or more signals is the sum of the responses that would
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have been caused by each signal individually. Motivated by the superposition
principle, we combine the retained (or gate passed) image vector G and contex-
tual text vector tC as their superposition and obtain the multi-model vector M
that considers information from both text modality and image modality (Eq. 6).
Combining information using the superposition principle also avoids the curse of
dimensionality. M becomes a part of the input to the following NTM module.

M = G + tC (6)

Neural Topic Modeling (NTM) Module. Recalling the mathematical for-
mulation of the GDF-NTM framework in Eq. 2, the objective of the NTM module
is to model and obtain the topic mixture p(zk|dt

i, d
v
i ) ∝ θk,i and the correspond-

ing concept distribution p(cj |zk) ∝ φk,j , while the only realised observable part
is p(wj ∼ ct

j |dt, dv). We propose to use a VAE architecture, a popular approach
for neural topic models (NTM) [23], to achieve this objective. In NTM, the
hidden variables, θ and φ, are modelled by an encoder network and a decoder
network, respectively. In this work, we design both the encoder and decoder as
a feed-forward neural network.

Encoder Network. We denote θ = fω(d) by the encoding function where ω is
a set of corresponding parameters of the encoder network. We aim to optimize
ω to find the best estimation of θ given the input document representation.

For the uni-modal case, it has been empirically demonstrated that using the
concatenation of BoW and contextualized text representations produce more
coherent topics [5]. Similarly, for the multi-modal case, we encode both the
compositional and contextualized information of a document and concatenate
tB and M (Eq. 7). This becomes input to the encoder network.

M̂ = Concat(tB,M) (7)

The encoder then directly maps the derived input document representation M̂
onto a continuous latent space to approximate θi ∼ (μ, σ2), where μ and σ2

define the mean and standard deviation of θi, respectively. In VAE, this latent
space is commonly regularized by a Gaussian Distribution N (μ, σ2). Since the
sampling process has to be expressed in a way that allows the gradient to be
backpropagated through the network, we utilize the reparameterization trick [14]
to allow gradient descent possible during optimization, as below.

μ = NN(M̂;φμ)

σ = NN(M̂;φσ)
θi = μ + σ × ζ

(8)

where ζ ∼ N (0, I).

Decoder Network. Following the structure of the encoder network, let fφ(θi) be
the decoding function given the encoder network’s input θ, where φ is the set of
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learnable parameters. The objective is to find φ that gives the best approximation
of the original documents. To achieve this, instead of the reverse mapping θ to
its input document space, we use the softmax function, as described in Eq. 9, in
the decoder network to project the hidden variable θ into individual word over
the vocabulary. This output is denoted as the reconstructed BoW representation
t̂B, and is used to estimate the concepts distributions p(wj ∼ cj |zk) required for
topic modeling. We aim to minimize the error between the original BoW (tB)
and the reconstructed BoW (t̂B) during optimization.

t̂Bi = softmax(θT
i × φ) (9)

where φ ∈ R
K×|W | are learnable parameters.

Optimization. The loss function of the GDF-NTM framework consists of two
parts, namely KL-divergence loss and reconstruction loss, as shown in Eq. 10.
Firstly, VAE regularises the topic distribution θ ∼ (μ, σ2) for each document
by enforcing the distribution to be close to a standard Gaussian distribution
by minimising the KL divergence. The KL-divergence loss prevents the model
from encoding data far away in the latent space and encourages returned dis-
tributions to overlap. Secondly, the reconstruction loss aims to minimize the
differences between tB and t̂B with the cross entropy loss. The reconstruction
loss reassembles the original document’s compositional structure to ensure that
the produced concepts are meaningful. The overall loss function of GDF-NTM
to optimize can be defined as:

Loss =
N∑

i=1

∥∥∥tB − t̂B
∥∥∥ + KL[N (μ, σ2),N (0, 1)] (10)

Note, in Eq. 9, t̂B is generated from both the bag-of-word tB and the contextu-
alized text and image features (i.e. tC and vC). However, only the bag-of-word
part is used in the reconstruction part (Eq. 10). Since, GDF-NTM aims to derive
topic words that exist in the tB given a set of documents, hence recovering only
this part by maintaining these token-level features will benefit the downstream
task of topic modelling. Reconstructing the contextualized part will not directly
benefit the downstream task.

4 Experiments

Experiments are carried out on three datasets with varying lengths and genres.
Four state-of-the-art topic modelling methods are chosen for comparison. The
choice of hyper-parameter K (Number of topics) is still an open question for
topic modelling [23]. We let K vary across different values to compare the model’s
overall performance for three diverse datasets.

Datasets. Models are evaluated on two open source datasets, Crisismmd [1], and
MM-IMDb [2], and one dataset that is collected by the research team from Twit-
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ter and named Twitter5000 2 (Table 1). Each data is in the (text-image) pairs for-
mat. As there exist limited multi-modal open-source datasets available for topic
modelling, we sourceTwitter5000 collected from the Twitter API using the search
tweets endpoint3 with five keywords including health, movie, music, sports and
cybersecurity. A total of 5110 data instances are collected on 13 Oct. 2022.

Table 1. Statistics of datasets

Dataset #Instance #Vocab Avg length per document

Crisismmd 3802 1972 8

MM-IMDb 25912 5000 36

Twitter5000 5110 1990 15

Evaluation Metrics. (1) Coherence estimates the ability of the discovered
topics to be coherent and interpretable. Specifically, CV is chosen due to its
consistency reported with human judgement [17]. CV ranges from [0, 1], higher
values indicate more coherent topics. (2) Diversity measures the extent of how
diverse the discovered topics are and describes different semantic topical mean-
ings. Specifically, We choose Inversed Rank-Biased Overlap (I-RBO) for topic
diversity measurement [20]. I-RBO ranges from [0,1], higher values indicate more
diverse topics. (3) Normalized Pair-wise Mutual Information (NPMI) estimates
the co-occurrence information between two topic words wi and wj in a list of
topics [17]. In other words, NPMI = p(wi,wj)

p(wi)p(wj)
. NPMI ranges from [0,1], higher

values indicate more coherent and related topics. (4) Topic Quality is the prod-
uct of coherence and diversity to measure the overall quality of a topic [9].

Baseline Models. To the best of our knowledge, there exist no multi-modal
topic modelling methods. Hence, we implemented two multi-modal baselines
to validate the performance of GDF-NTM. (1) We extend BERTopic [10], a
clustering-based topic model, to a multi-modal topic model and name it Multi-
Modal BerTopic (MM-BERTopic). We use concatenation to join text and image
features as the input. We replaced HDBSCAN in BERTopic with K-means to
stay consistent with other parametric baseline methods used in the experiments.
(2) We also compare a variant of GDF-NTM by removing the GDF component
and name it W/o gate. It simply uses concatenation to join text and image
features as the input for topic modelling. (3) Additionally, we use three state-of-
the-art uni-modal baselines, as discussed in the related work section, LDA [7],
ETM [9] and CTM [5]. The LDA multi-core implementation from Gensim4 is
used with BoW as the document representation [4]. ETM is implemented from

2 This dataset is available on https://github.com/Duoyi1/GDF-NTM.
3 https://developer.twitter.com/en/docs/twitter-api.
4 https://radimrehurek.com/gensim/.

https://github.com/Duoyi1/GDF-NTM
https://developer.twitter.com/en/docs/twitter-api
https://radimrehurek.com/gensim/
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its official GitHub repository5. We implement CombinedTM6 which utilize both
BoW and contextualized representations for CTM.

Results and Analysis. Table 2 and Fig. 2 show the experimental results. In
most cases, GDF-NTM performed the best or second best in all measures.
As shown by the collective measure of Topic Quality, GDF-NTM significantly
outperforms all uni-modality and multi-modality baselines. GDF-NTM shows
similar performance in all three datasets that contain varied length documents
(including short to medium-sized documents). Additionally, as shown in Fig. 2,
the performance of GDF-NTM on short, noisy social media dataset is also sat-
isfactory by capturing contextualised multi-modal information rather than the
BoW document representation as used in LDA and ETM.

The superior performance of GDF-NTM over MM-BERTopic and W/o gate
indicates that the GDF module is essential in learning useful multi-modal fea-
tures for the topic modelling task. This confirms our prior research [21] in multi-
modal learning that using simple concatenation for data fusion results in a high-
dimensional feature and does not aid in learning useful cross-modal interactions
for downstream tasks. The GDF module employs a gating mechanism that can
balance image features based on textual features and helps retain only useful
contextualised information for topic modelling.

Fig. 2. Topic Quality for the Twitter5000 dataset with K ranging from 5 to 150

CTM also performs well across all datasets, indicating that using contextu-
alised document representation improves topic quality [5]. However, the improved
performance of GDF-NTM over CTM (as shown in Fig. 2) suggests that the com-
plementary information from image modality further helps improve the overall
topic model performance. In fact, we discovered that learning useful features from
text modality can be difficult when the textual information in social media data
is noisy. In this case, GDF-NTM is advantageous because it provides additional
contextual information from image modality for topic modelling.

5 https://github.com/adjidieng/ETM.
6 https://github.com/MilaNLProc/contextualized-topic-models.

https://github.com/adjidieng/ETM
https://github.com/MilaNLProc/contextualized-topic-models
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Table 2. Experimental results averaging K across multiple values (5,10, 25, 50, 100,
150). The top-5 words for each topic are evaluated. The best scores are marked in bold,
and the second-best scores are underlined.

Coherence ↑ Diversity ↑ NPMI ↑ Topic Quality ↑
Crisis-MMD

LDA 0.464 0.774 -0.006 0.363

ETM 0.313 0.322 -0.113 0.105

CTM 0.464 0.960 -0.054 0.445

MM-BERTopic 0.446 0.731 -0.027 0.330

W\o gate 0.510 0.936 -0.002 0.478

GDF-NTM 0.594 0.940 0.103 0.560

MM-IMDb

LDA 0.550 0.951 0.005 0.521

ETM 0.611 0.932 0.053 0.570

CTM 0.594 0.971 0.009 0.576

MM-BERTopic 0.551 0.617 -0.005 0.336

W\o gate 0.561 0.958 -0.005 0.447

GDF-NTM 0.616 0.984 0.044 0.606

Twitter5000

LDA 0.519 0.698 0.031 0.363

ETM 0.487 0.545 0.022 0.267

CTM 0.693 0.990 0.147 0.686

MM-BERTopic 0.412 0.767 -0.098 0.327

W\o gate 0.677 0.976 0.132 0.661

GDF-NTM 0.723 0.980 0.180 0.708

Qualitative Assessment of Topics Obtained by GDF-NMT. To demon-
strate the quality of topics obtained by GDF-NTM, we show some of the topics
with the highest Topic Quality generated from the Crisismmd dataset. Specifi-
cally, we assign the most likely topic to each text-image data instance based on
the learnt topic distribution (θi). For better visualization, We find the top − 8
most probable images based on the topic assignment and the top− 5 most prob-
able terms based on the word distribution for each topic accordingly.

Figure 3 presents some of our results. It can be clearly seen that images are
highly correlated to their corresponding topic words and they provide a good
summary of the given topics from the visual perception. The learned information
is coherent for each topic and diverse across different topics. A closer look into
Topic 3 and Topic 10 reveals that, despite their similarity, the two topics reflect
two distinct events: “Tornado storm” and “Hurricane Maria”. This demonstrates
that GDF-NTM can effectively discover two related but distinct topics.

In general, GDF-NTM provides an interpretable way to understand the rela-
tions between text patterns and image patterns in a large dataset. It has high
applicability in practice, e.g., it can assist with multi-modal data exploration
and image annotation.
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Fig. 3. Illustration of topics by the terms and visual data found by GDF-NTM

5 Conclusion and Future Work

This paper proposes GDF-NTM, a novel neural topic modelling framework that
is enhanced by multi-modal representation learning. We extend the topic mod-
elling to allow hidden representation learnt from both text features and image
features. We use a gating mechanism to learn the effective cross-modality inter-
actions for data fusion. The experimental results on three datasets demonstrate
that GDF-NTM greatly improves the topic quality compared with existing state-
of-the-art topic models. In future work, we will explore the use of GDF-NTM for
social media data analysis and information retrieval for recommender systems.
We will also improve the current approach to make it more robust towards the
missing modality from the input data.
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Abstract. Recently, many studies incorporate external knowledge into
character-level feature based models to improve the performance of Chi-
nese relation extraction. However, these methods tend to ignore the
internal information of the Chinese character and cannot filter out the
noisy information of external knowledge. To address these issues, we
propose a mixture-of-view-experts framework (MoVE) to dynamically
learn multi-view features for Chinese relation extraction. With both
the internal and external knowledge of Chinese characters, our frame-
work can better capture the semantic information of Chinese charac-
ters. To demonstrate the effectiveness of the proposed framework, we
conduct extensive experiments on three real-world datasets in distinct
domains. Experimental results show consistent and significant superior-
ity and robustness of our proposed framework. Our code and dataset
will be released at: https://gitee.com/tmg-nudt/multi-view-of-expert-
for-chinese-relation-extraction

Keywords: Natural Language Processing · Multi-view Learning ·
Chinese Representation · Chinese Relation Extraction

1 Introduction

Information extraction (IE) is widely considered as one of the most important
topics in natural language processing (NLP), which is defined as identifying the
required structured information from the unstructured texts. Relation extrac-
tion (RE) has a pivotal role in information extraction, which aims to extract
semantic relations between entity pairs from unstructured texts. Recently, deep
learning-based models have obtained tremendous success in this task. However,
research on Chinese RE is quite limited compared to the progress in English
corpora. We attribute this to the following main challenge: it is hard to extract
semantic information from Chinese texts for the Chinese language makes less
use of function words and morphology. Although there has been extensive pre-
vious work integrating the external knowledge (i.e. lexicon feature) of Chinese
characters is shown to be effective for sequence labeling tasks [1–4], there is
room for further investigation to leverage the internal characteristics of Chinese
characters.
c© The Author(s) 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 405–417, 2023.
https://doi.org/10.1007/978-3-031-33374-3_32
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In Chinese texts, a sentence contains semantic information from different view
features including character, word, structure and contextual semantic informa-
tion. As shown in Fig. 1(a), in order to reduce segmentation errors and increasing
the semantic and boundary information of Chinese characters, some methods
are proposed to establish a model to learn both character-level and word-level
features [3,5]. However, this external knowledge information is limited by the
quality of domain lexicons and will inevitably introduce redundant noise. For
example, only one of ‘南京 (Nanjing)’,‘市长 (Mayor)’ and ‘南京市 (Nanjing
City)’,‘长江 (YangZi River)’ is an appropriate contextual information. In addi-
tion, Chinese characters have evolved from pictographs since ancient times, and
their structures often reflect more information about the characters. The internal
character structures can enrich the semantic representation of Chinese charac-
ters. As shown in Fig. 1(b), ‘氵’ is the radical of ‘江 (River)’, and suggests ‘氵
(water)’ that river is water-like liquid. On the contrary, the ‘南 (south)’ can be
encoded as a structure consisting of ‘̊a’ ,‘冂’ ,‘丫’ , and ‘二’ , but they convey no
meaningful semantic information. Previous studies have proven that semantic
irrelevant sub-character component information will be noisy for representing
a Chinese character [1,4]. Although above methods have achieved reasonable
performance, they still suffer from two common issue: (1) The underlying fact
that different view feature contains its own specific contribution to the seman-
tic representation is ignored. Existing methods map different view features into
a shared space without interaction among views, which is difficult to guaran-
tee that all common semantic information is adequately exploited. (2) Existing
methods introduce external knowledge as well as more noisy information, and
they suffer from the inability of discriminating the importance of the different
features and filtering out the noisy information.

Fig. 1. An example of multi-view features in Chinese language texts.

Is there any other better way to fuse multi-view features of Chinese charac-
ters? Inspired by mixture-of-experts [6–8], we propose a novel Mixture-of-View-
Experts (MoVE) model to dynamically fuse both internal and external features
for Chinese RE. As shown in Fig. 2, MoVE is a method for conditionally com-
puting feature representation, given multiple view expert inputs that can be
represented utilizing diverse knowledge sources. In addition, a gating network
is designed to dynamically calculate each expert weight per instance based on
the multi-view feature. In this way, the knowledge from different view experts
can be incorporated to model the inherent ambiguity and enhance the ability



Dynamic Multi-View Fusion Mechanism for Chinese Relation Extraction 407

to generalize to specific domains. Extensive experiments are conducted on three
representative datasets across different domains, Experimental results show that
our framework consistently improves the selected baselines

In this paper, we propose a novel multi-view features fusion framework which
leverages both external and internal knowledge. The main contributions of this
paper can be summarized as follows:

– We design a novel architecture framework capable of acquiring semantic, lex-
ical, and radical feature information from Chinese characters.

– Based on the multi-view features, we propose the MoVE method for dynam-
ically composing the different features for Chinese relation extraction.

– Our method achieves new state-of-the-art performance on three real-world
Chinese relation extraction datasets.

2 Related Work

2.1 Chinese Relation Extraction

As a fundamental task in NLP, Relation Extraction (RE) has been studied exten-
sively in the past decade. Here various neural network based models, such as
CNNs [9], RNNs [10] or Transformer-based architectures [11] have been inves-
tigated. Existing methods for Chinese RE are mostly character-based or word-
based implementations of mainstream NRE models. In most cases, these methods
only focus on the improvement of the model itself, ignoring the fact that different
granularity of input will have a significant impact on the RE models. [12–14].
The character-based model can not utilize the information of words, capturing
fewer features than the word-based model. On the other side, the performance
of the word-based model is significantly impacted by the quality of segmentation
[15]. Then, lexicon enhanced methods are used to combine character-level and
word-level information in other NLP tasks like character-bigrams and lexicons
information [16–18]. Although, lexicon enhanced models can exploit char and
external lexicon information, it still could be severely affected by the ambiguity
of polysemy. Therefore, We utilize external linguistic knowledge with the help
of HowNet [19], which is a concept knowledge base that annotates Chinese with
correlative word synonyms.

2.2 Chinese Character Representation

Existing models of Chinese character representation can be divided into two
categories: exploiting the structural information of the characters themselves
and injecting external knowledge. JWE [1] is introduced to jointly learn Chinese
component, character and word embeddings, which takes character information
for improving the quality of word embeddings. LSN [20] is proposed to capture
the relations among radicals, characters and words of Chinese and learn their
embeddings synchronously. CW2VEC [21] adopts the stroke n-gram of Chinese
words and utilizes the fine-grained information associated with word semantics to
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learn Chinese word embeddings. In order to effectively leverage the external word
semantic and enhance character boundary representation, a few models aimed to
integrate lexicon information into character-level sequence labeling [3,15,18,22].
Besides, there are models utilize sense-level information with external sememe-
based lexical knowledge base ,to handle the polysemy of words with the change
of language situation [12,19,23].

2.3 Multi-View Learning

There has been some research to integrate information from different multi-
view to achieve better performance. ME-CNER [22] concatenates the character
embeddings in radical, character and word levels to form the final character rep-
resentation, which exploits multiple embeddings together in different granulari-
ties for Chinese NER. To fully explore the contribution of each view embedding,
FGAT [24] is proposed to discriminate the importance of the different granulari-
ties internal semantic features with the help of graph attention network. ReaLiSe
[17] leverages the semantic, phonetic and graphic information to tackle Chinese
Spell Checking (CSC) task, which introduce the selective fusion mechanism base
Transformer [25] to integrate multi-view information. Recent, some efforts incor-
porate both internal and external multi-view information (such as lattice, glyce,
pinyin, n-gram information ) with the character token in Chinese Pre-trained
language models (PLMs) and design specific pre-train task [26–28]. To the best
of our knowledge, this paper is the first work to leverage multi-view information
to tackle the Chinese Relation Extraction task.

3 Methodology

An overview of the proposed MoVE framework is depicted in Fig. 2. In this
section, we introduce our model architecture from three perspectives: Multi-
View Features Representation, Mixture-of-View-Expert, and Relation Classifier.

3.1 Multi-View Features Representation

3.1.1 Internal View Feature

Semantic Embeddings. We adopt BERT [29] as the backbone of the semantic
encoder. BERT provides rich contextual word representation with the unsuper-
vised pretraining on large corpora and has been proven superior in building
contextualized representations for various NLP tasks [12,17,29,30]. Hence, we
utilize BERT as the underlying encoder to yield the basic contextualized charac-
ter representations. The output of the last layer Hc

i is used as the contextualized
semantic embeddings of Chinese characters at the semantic view.

Hc
i = BERT(x1, x2, x3, . . . , xn)
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Fig. 2. The architecture of our MoVE framework.

Radical Embeddings. Chinese characters are based on pictographs, and their
meanings are expressed in the shape of objects. The radical is often the seman-
tic component and inherently bring with certain levels of semantics regardless
of the contexts. In this case, the internal structure of Chinese characters has
certain useful information. For example, the radicals such as ‘月’ (body) repre-
sents human body parts or organs, and ‘疒’ (disease) represents diseases, which
benefits Chinese RE for the medical field. We choose the informative Structural
Components (SC) as radical-level features of Chinese characters, which comes
from the online XinHua Dictionary1. Specifically, we first disassemble the Chi-
nese characters into SC = (xc1

1 , xc2
1 , xc3

1 , . . . , xci
n ), and then input the radical

features into CNN. For example, we can decompose ‘脚’ as ‘月土厶卩’ , ‘疼’
as ‘疒夂丶丶’ . Then, we use the max-pooling and fully connection layers to get
the feature embedding Hr

i of Chinese characters at the radical view.

Hr
i = Max-Pooling(CNN(xc1

1 , xc2
1 , xc3

1 , . . . , xci
n ))

3.1.2 External View Feature

Lexicon Embeddings. Recently, lexical enhancement methods were proposed
to enhance character-based models, which have demonstrated the benefits of
integrating information from external lexicons for Chinese NER tasks. Following
SoftLexicon [3], we retain the segmentation information, all matched words of
each character xi is categorized into four word sets ‘BMES’. After obtaining the

1 https://github.com/kfcd/chaizi.

https://github.com/kfcd/chaizi
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‘BMES’ word sets for each character, each word set is then condensed into a
fixed-dimensional vector with average-pooling method:

vs(S) =
1

|S|
∑

w∈S

ew(w)

where S ∈ ‘BMES’ denotes a word set and ew denotes the word embedding in
external lexicon. The final step is to combine the representations of four word
sets into one fix-dimension feature, and concatenate them to get the external
feature embeddings H l

i of each character at the lexicon view.

H l
i = concat(vs(B); vs(M); vs(E); vs(S))

3.2 Mixture-of-View-Experts

After using the aforementioned multi-view feature embeddings methods, we get
three representation at hc

i , hl
i, hr

i in semantic-level, lexicon-level and radical-
level respectively. Then we concatenate the different view features to get the
multi-feature representation hm

i , as shown in Fig. 2. The multi-view feature rep-
resentations of Chinese characters hm

i can capture both internal and external
features in different semantic granularity, but they also introduce meaningless
and noisy information simultaneously. However, existing methods usually just
calculate the unweighted mean of the different view features, or sometimes set
the weights as hyper-parameters and calculate the weighted mean of the features
[3,24]. Moreover, existing approaches are incapable of distinguishing the signifi-
cance of the introduced feature. Hence, they are unable to filter out introduced
potential noisy information [16,24].

As shown in Fig. 2, we introduce an Mixture-of-View-Experts (MoVE) frame-
work to combine representations generated by experts to produce the final pre-
diction. Specifically, each different feature representation acts as an view expert,
which consists of two linear layers. The expert gate consists of a linear layer
followed by a softmax layer, which generates the confidence distribution over dif-
ferent view experts. Finally, the meta-expert feature incorporates features from
all experts based on the confidential scores from the expert gate. We formulate
the MoVE module as follows:

[expt1i , · · · , exptEi ] = [L(hm
i ), · · · , LE(hm

i )]
[α1, · · · , αE ] = softmax(Linear(hm

i ))

hf
i =

E∑

k=1

αk ∗ exptki

where hf
i is the meta-expert feature of hi, expt is the feature derived from the

expert, and L denotes the linear layer. As shown in Fig. 2, the MoVE has three
types of experts, namely semantic, radical, and lexicon experts. The expert fea-
tures are computed based on the multi-view feature representations, and the
predictions are conditioned on the meta-expert features and the multi-view fea-
tures.
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3.3 Relation Classifier

After the MoVE model dynamically combines meta-expert feature hf
i for each

token. We first merge hf
i into a sentence-level feature vector Hf , then the final

sentence representation Hf is passed through a softmax classifier to compute
the confidence of each relation. We formulate the classifier module as follows:

P (y|S) = softmax(W · Hf + b)

where W ∈ RY ×d is the transformation matrix and b ∈ RY is a bias vector. Y
indicates the total number of relation types, and y is the estimated probability
for each type. Finally, given all training examples (Si, yi), we define the objective
function using the following cross-entropy loss:

L(θ) =
T∑

i=1

logP (yi|Si, θ)

4 Experiments

4.1 Datasets

We evaluate our approach on two popular Chinese RE datasets: FinRE [12] and
SanWen [13]. To increase domain diversity, we manually annotate the SciRE,
which is the first Chinese dataset for scientific relation extraction. FinRE is
a manual-labeled financial news dataset, which contains 44 distinguished rela-
tionships, including a special relation NA. SanWen is a document-level Chinese
literature dataset for relation extraction, including 9 relation types specific to
Chinese literature articles. The SciRE dataset is collected from 3500 Chinese sci-
entific papers in CNKI2, which defines scientific terms and relations especially
for scientific knowledge graph construction. There are 4 relation types (Used-For,
Compare-For, Conjunction-Of, Hyponym-Of) defined in SciRE dataset. Follow-
ing previous work, we use the same preprocessing procedure and splits for all
datasets [12]. Table 1 shows the characteristics of each dataset.

Table 1. Statistics of the three experimental datasets.

Dataset #Type Domain Characteristic #Train #Dev #Test

FinRE 44 Financial Sentences 4477 500 1219

Triples 9873 1105 2722

SanWen 9 Literature Sentences 10754 1108 1376

Triples 12608 1283 1560

SciRE 4 Scientific Sentences 7251 1067 1990

Triples 18548 2778 5148

2 https://www.cnki.net/.

https://www.cnki.net/
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4.2 Baselines

To investigate the effectiveness of our model, we compare our model with the
both character-based and lattice-based variations of the five following models.
For the character-based models, we conduct experiments with BLSTM [10], Att-
BLSTM [31], PCNN [32] and Att-PCNN [33], which utilize traditional neural
network RNN, CNN or Attention mechanism for Chinese relation extraction. We
use DeepKE [34], an open-source neural network relation extraction toolkit to
conduct the experiments. For the lattice-based models, we compare with Basic-
Lattice and MG-Lattice. In Basic-Lattice [15], an extra word cell is employed
to encode the potential words, and attention mechanism is used to fuse feature,
which can explicitly leverages character and word information. Moreover, MG-
Lattice [12] models multiple senses of polysemous words with the help of external
linguistic knowledge to alleviate polysemy ambiguity .

We use Chines BERT-wwm [35] as the base semantic encoder for all datasets.
We follow the standard evaluation metric and report Precision, Recall, and F1
scores to compare the performance of different models. For each view feature,
we implement a linear projection layer with hidden dim 100. We train our model
with the AdamW [36] optimizer for 50 epochs. The learning rate is set to 1e-
3/5e-5, the batch size is set to 32, and the model is trained with learning rate
warmup ratio 10% and linear decay.

4.3 Experimental Results

To conduct a comprehensive comparison and analysis, we conduct experiments
on character-based, lattice-based, multiview-based models on three datasets. For
a fair comparison, we implement Basic-MultiView semantic encoder by replac-
ing the BERT with a bidirectional LSTM and improving the representation of
characters using additional bi-word features. In addition, to verify the capability
of our method combined with the pretrained model, we choose our method with
the BERT+BLSTM model.

Table 2. F1-scores of Character, Lattice and Multi-View models on all datasets.

Baseline FinRE SanWen SciRE

Character-based BLSTM 42.87 61.04 87.35

Att-BLSTM 41.48 59.48 88.47

PCNN 45.51 81.00 87.86

Att-PCNN 46.13 60.55 88.78

Lattice-based Basic-Lattice 47.41 63.88 89.25

MG-Lattice 49.26 65.61 89.82

MultiView-based Basic-MultiView 51.01 68.96 90.32

MultiView+biword 51.56 68.45 91.32

MultiView-(BERT) BERT+BLSTM 51.43 70.12 91.25

BERT+MultiView 53.89 72.98 92.18
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We report the main results in Table 2, from which we can observe that: (1)
The performance of the MultiView-based model that integrates radical feature
and lexicon feature into character-based RE models is notably better than the
previous RE baseline models. This shows our model can leverage the knowledge
from character, radical, and lexicon effectively. (2) We observe that our model
consistently outperforms the character-based and lattice-based model on three
datasets. (3) We can see that the BERT-MultiView outperforms the BERT-
BLSTM, which show that the our method can be effectively combined with pre-
trained model. Moreover, the results also verify the effectiveness of our method
in utilizing multi-view features information, which means it can complement the
information obtained from the pre-trained model. Based on the experimental
results above, it makes sense that integrating different granularity and view
information and pre-trained model is beneficial for Chinese RE.

4.4 Ablation Studies

We conduct ablation studies to further investigate the effectiveness of the main
components in our model on SanWen from two perspectives: Multi-View Fea-
tures Encoder Layer and Mixture-of-View-Experts (MoVE) fusion mechanism.

Effect Against Multi-View Features Encoder Layer. In this part, we
mainly focus on the effect of the different view encoder layer and we conduct
following experiment with Basic-MultiView. We consider three model variants
setting: w/o semantic layer, w/o lexicon layer, w/o radical layer.

Table 3. Precision, Recall, and F1 score on SanWen.

Model Variant Precision Recall F1

Basic-MultiView 68.55 67.89 68.96

w/o Semantic View 49.47 53.69 51.50

w/o Lexicon View 64.29 67.88 66.04

w/o Radical View 66.78 66.58 66.68

As shown in Table 3, the performance of our model degrades regardless of
which view encoder removed. The model without semantic layer has the most
significant performance drops, which means that contextual information between
entities is the most important feature in our multi-view encoder. The lexicon
features are complementary to character-based semantic information in different
granularity, which also is consistent with previous studies [3,22]. Finally, we are
surprised to find that the less-mentioned radical features, compared to the lexi-
con feature, appear to bring more benefits. We conclude that radical information
that will give more concrete evidence and show more logic patterns to the model.



414 J. Yang et al.

Fig. 3. Compared with different view fusion strategies in Performance, Convergence
Speed, Inference Speed.

Effect against MoVE Fusion Layer. In this part, we compare three dif-
ferent multi-view fusion strategies: concat (Concat), attention (Attention) and
our mixture-of-view-experts (MoVE). The most intuitive way is Concat method,
which just put the different view feature together and feed to classifier layer. In
order to interact with the information of different views, the existing work design
a fusion layer based on the Attention mechanism [25]. As shown in Fig. 3(a), we
find that the performance of our designed fusion module exceeds Concat 1.2%
and Attention 0.5% on SanWen, respectively. This is due to the fact that the
proposed MoVE can adapt the fusion weight of relevant views based on the prop-
erties of datasets, allowing the model to get appropriate composite features.

A potential concern of our model is that the implementation of MoVE brings
additional parameters and increases the complexity of the model. To verify the
impact of the MoVE module on the efficiency of our model, we use the same
hyper-parameters setting to observe the convergence speed of the model dur-
ing training and the inference speed during prediction under three different view
fusion strategies. As show in Fig. 3(b), with the same training settings, the MoVE
helps the model to converge faster and be more stable than Concat and Atten-
tion strategies. We attribute this to the ability of MoVE to fuse different view
information and filter noise information more effectively, which helps the model
to learn more efficiently. Figure 3(c) shows the inference speed. Our MoVE does
not reduce the inference speed, because in inference stage the gating structure
of MoVE only sparsely activated, and will only leverage information from views
that have made significant contributions in the training phase.

5 Conclusion

In this paper, we propose a novel multi-view features model for Chinese relation
extraction. The proposed model integrates different view representations that
fuses semantic, lexicon and radical features through a mixture-of-view-expert
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mechanism. We conduct extensive experiments on three distinct domain datasets
and compare our model with several strong baselines. Experimental results
demonstrate that the multi-view Chinese characters can effectively improve the
performance for Chinese RE. Furthermore, the ablation studies show mixture-
of-view-expert mechanism effectively filters noisy information while improving
the efficiency of model training and inference. In further, we will consider how to
integrate more knowledge such as part-of-speech, dependency and syntax infor-
mation and extend it to other language and NLP tasks.
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Abstract. Recent approaches [6,20] formulated the task of unsuper-
vised Semantic Textual Similarity (STS) as Earth Mover’s Distance
problem, demonstrating superior interpretability and competitive per-
formance. The main idea behind is using various word distances (or word
dissimilarity) as word transportation cost, and then measure text dissim-
ilarity by optimizing the accumulative cost of transporting all words of
texts. However, these approaches use static word distance without con-
sidering the context of text pairs. Intuitively, the distance of two words
tends to contribute more to text dissimilarity if they are well-aligned
between texts. Inspired by this observation, we propose Alignment-aware
Word Distance (AWD), which leverages prior word alignment informa-
tion of sentence pairs to refine word transportation cost. Specifically,
we design two simple and effective mechanisms to capture prior align-
ment knowledge via exploiting word position and syntactic dependency,
respectively. By incorporating AWD, our method remarkably outper-
forms current state-of-the-art models on STS tasks.

Keywords: Earth Mover’s Distance · Word Distance · Semantic
Textual Similarity

1 Introduction

The semantic textual similarity (STS) task aims to rate the semantic similarity
degree of two sentences [2], which is a fundamental language understanding
problem related to many natural language processing applications, including
machine translation, question answering, semantic search, and dialog systems [3].
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Due to the simplicity and efficiency of unsupervised STS, it has received grow-
ing attention in recent years. According to [20], existing approaches for unsuper-
vised STS can be divided into two categories. The first one is alignment-based
approaches [6,20] that measure the degree of semantic overlap between two
sentences by considering word alignment. The second one is sentence vector
approaches [5,13], which exploit word embeddings to generate sentence vec-
tors and then calculate their similarity. This paper focuses on alignment-based
approaches.

One popular line of alignment-based approach is casting STS to the well-
studied Earth Mover’s Distance (EMD) problem [14]. As a pioneering work that
introduces EMD, Word mover’s distance (WMD) [6] measures the dissimilarity
between two texts as the minimum cost of transporting the embedded words of
one text to the counterparts of another text. In WMD, the mass of each word to
transport within a text is equally divided, and Euclidean distance is used as the
transportation cost (word dissimilarity) between word vectors. Word rotator’s
distance (WRD) [20] further improves WMD by utilizing the norm of a word
vector to weight the mass and then exploiting the angle between word vectors
to calculate transportation cost.

Despite their excellent interpretability and competitive performance, most
of the above approaches calculate word dissimilarity statically without consid-
ering the context of the sentence pair. In other words, we hypothesize that the
transportation cost for the same word pair may diversify given different sen-
tence pairs that contain them. Intuitively, for a word pair (e.g., transporting a
source word to a target word), if the source word and the target word align well
between two texts (e.g., the roles or function of the source and target word in
their sentences are similar), the word pair’s dissimilarity will contribute more to
the text pair’s dissimilarity. This observation inspires us that alignment-aware
transportation cost is essential for EMD-based STS models. From another per-
spective, since solving the EMD problem is actually to yield a word alignment
strategy between two texts, leveraging prior alignment information to refine the
inputs (transportation cost) of EMD could potentially lead to a better solution.

One straightforward way to measure word alignment degree is by considering
word positions in texts. If the source word and target word have similar posi-
tions in their texts, the transportation cost can be magnified. Otherwise, we will
weaken the transportation cost by a scale factor. Surprisingly, by refining the
word transportation cost via this simple position-based alignment strategy, we
achieved extensive performance improvement on STS tasks (Sect. 5.1).

By looking into text pair samples, we find a large portion of the sentence pairs
in the data set (e.g., about three-quarters of the sample in the STS-Benchmark
dataset [3]) share very similar length and structure (Sect. 5.2). Therefore, the
improvements brought by the position-based alignment strategy may attribute to
the bias of the datasets. We can easily imagine that words with similar positions
can play very different roles in their sentences give more complex scenarios. Hence
we further propose a syntax-based alignment strategy. The intuition is that we
can roughly identify the role or function of one word by checking the syntactical
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dependency tree, so we can make a better word alignment by mining prior syntax
information. If their local structure in the syntactical dependency tree is similar,
we can safely assign a better alignment degree. Experimental results demonstrate
that the syntax-based mechanism provides a robust and practical approach to
handling more complex textual similarity comparison scenarios (Sect. 5.2).

In summary, our main contributions are as follows:

– We propose Alignment-aware Word Distance (AWD), which leverages prior
word alignment information of sentence pairs to measure word dissimilarity
(or word transportation cost).

– We design two simple and effective mechanisms to capture prior word align-
ment knowledge beneficial to unsupervised Semantic Textual Similarity (STS)
tasks, demonstrating impressive performance improvements compared with
previous SOTA models.

2 Background

2.1 Earth Mover’s Distance

EMD [14] aims to minimize the transportation cost from one pile dirty to
another. In practice, researchers usually set two distributions u and u

′
and min-

imize the transportation cost between them. EMD has the following two inputs:
1) Two probability distributions u (initial distribution) and u

′
(target

distribution).

u =
{
(xi, pi)

}m

1
, u

′
=

{
(x

′
j , p

′
j)

}n

1
. (1)

In which each point xi has a probability pi, as shown in Fig., where pi ∈ [0, 1]
and

∑m
i=1 pi = 1.

2) The transportation cost function c. c is used to compute the trans-
portation cost between two points xi and x

′
j from different distributions, thus a

transportation cost matrix C ∈ R
m×n will be generated.

Let T ∈ R
m×n be a matrix where Tij ≥ 0 denotes how much of xi travels to

x
′
j . To transform xi entirely into x

′
, EMD ensures that the entire outgoing flow

from xi equals pi, i.e.
∑

j Tij = pi. Further, the amount of incoming flow to x
′
j

must match p
′
j , i.e.

∑
i Tij = p

′
j .

Transportation Problem. Finally, the minimum cumulative cost of moving
u and u

′
given the constraints is provided by the solution to the following linear

program:

min
T≥0

∑

i,j

Tijc(xi, x
′
j)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=1

Tij = ui,

m∑

i=1

Tij = u
′
j

(2)
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2.2 Word Mover’s Distance and Word Rotator’s Distance

Kusner, M. et al. [6] first introduced EMD into STS tasks and proposed Word
Mover’s Distance (WMD), which first measures the word moving distance
between two words, and then applies EMD to compute the dissimilarity between
two sentences. WMD takes the following inputs.

1) Two probability distributions. For a given sentence, WMD sets every
word has the same weight (probability).

2) The transportation cost function. WMD uses Euclidean distance
between two pre-trained word embeddings as the transportation cost.

Yokoi, S. et al. [20] improved WMD as Word Rotator’s Distance (WRD) by
using the norm of word as weight, and use the dissimilarity of word vectors’
angle to measure the transportation cost.

3 Alignment-Aware Word Degree

By leveraging the alignment information of word position and syntactic depen-
dency, we propose two simple yet effective strategies to capture prior alignment
knowledge, named Alignment-aware Word Degree (AWD). Assume that
we have a sentence pair s1 = (x1, x2, ..., xm) and s2 = (x

′
1, x

′
2, ..., x

′
n), where xi

is the ith word in s1, and x
′
j is the jth word in s2. The key insight behind AWD

is that if xi and x
′
j align well, the word pair’s dissimilarity will contribute more

to the sentence pair’s dissimilarity.

3.1 Position-Based AWD

For the given two words xi and x
′
j , the position-based alignment degree leverages

the prior alignment knowledge via exploiting word position, and thus refines the
transportation cost between xi and x

′
j . If the sentence lengths are different, we

first pad the shorter sentence s1 into the same length with the longer sentence
s2, denoted as ŝ1. We simply add the special token < pad > at the beginning
and the end of s1, making the s1 at the middle of ŝ1. Then we compute the
position-based alignment degree between xi and x

′
j from different sentences,

which considers the exact position-based alignment information between them.

dpd
ij =

{
1 − |i−j|

α , if |i − j| < α,

0, else,
(3)

where dpd
ij is the position-based alignment degree between xi and x

′
j , which

we named as AWD(P). AWD(P) can be used to refine the transportation cost
between words. We simply set the threshold value as α = 10 for all datasets.

3.2 Syntax-Based AWD

Though AWD(P) could obtain impressive improvements in various datasets
(Sect. 5.1), when the two sentences have different syntactic structures, AWD(P)
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may misuse the meaningless alignment information. In this subsection, we intro-
duce Syntax-based AWD, denoted as AWD(S), which leverages syntactic depen-
dency to assign a more reasonable alignment degree.

For a given sentence s, every word in s has exactly one dependency rela-
tion with its head, and every word may contain multiple children [9]. Thus for
word x, the dependency relations between its head and its children describe the
contextual information and syntactic dependency.

AWD(S) is computed using the following two types of alignment degree: 1)
Head Alignment Degree, which represents the alignment degree between xi

and x
′
j according to the syntactic relation with their head; 2) Children Align-

ment Degree, which depicts the alignment degree between xi and x
′
j depend-

ing on syntactic relations with their children. Finally, the above two alignment
degrees will be combined to refine the transportation cost.

The head alignment degree simply indicates if xi and x
′
j have the same

dependency relation with their head. Intuitively, if two words xi and x
′
j have

the same dependency relation with their heads, the dissimilarity between them
tends to contribute more to the sentence pair’s dissimilarity. Specifically, given
the word xi, AWD(S) utilizes SDP to obtain the dependency relation with its
head, denoted as xh

i , then the head alignment degree is computed as follows:

dhd
ij =

{
1, if xh

i = xh′
j ,

0.5, else.
(4)

The children alignment degree represents the similarity between xi and x
′
j

in terms of the dependency relations with their children. Given the word xi,
AWD(S) utilizes SDP to obtain the dependency relation set with its children,
denoted as Si. Then we use Jaccard similarity to measure the children alignment
degree between xi and x

′
j based on Si and Sj′

.

dcd
ij =

Si ∩ Sj′

Si ∪ Sj′ , (5)

where Si and Sj′
are two dependency relation sets of their children, Si ∩ Sj′

is
the intersection between Si and Sj′

, and Si ∪ Sj′
is the union.

We simply add the dhd
ij and dcd

ij to generate syntax-based alignment degree.

ddep
ij = dhd

ij + dcd
ij , (6)

where ddep
ij ∈ [0.5, 2]. Compared with AWD(P), AWD(S) could assign better

alignment degree for transportation cost under more complex scenarios.

3.3 Imbalanced Alignment Adaptation

When the lengths of two sentences differ extensively, we face an imbalanced word
transportation problem. For example, consider the following two sentences:
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Sentence 1: Some good news for a change More lives being saved - cancer
death rates drop 20%.

Sentence 2: More lives being saved: Cancer death rates drop 20%.
The ground truth STS score for the sentence pair is 4.8 (ranging from 0

to 5), while existing EMD-based methods usually will predict a lower score.
It means that EMD-based techniques may increase dissimilarity improperly in
these complex scenarios. As a rough guess, the reason may lie in that every source
word will generate transportation cost for every target word, hence accumulating
redundancy transportation cost that leads to enlarged semantic dissimilarity in
this imbalanced scenario.

To tackle this problem, we design an adaptation mechanism for word trans-
portation costs. In particular, we generate a global imbalance ratio for the sen-
tence pair to scale down word transportation cost in-between. We compute the
imbalance ratio ρ between two sentences by the following:

ρ =

⎧
⎪⎪⎨

⎪⎪⎩

Z

Z ′ , if Z
′ ≥ Z,

Z
′

Z
, if Z

′
<Z,

(7)

where Z and Z
′
represent the sum of all words’ norm in the source sentence and

the target sentence, and ρ ∈ (0, 1]. Using ρ to adjust the dissimilarity between
words, we achieve surprisingly promising results (see Sect. 5.1).

3.4 Transportation Problem

Now we can incorporate our word alignment strategies and imbalanced alignment
adaptation into transportation problem solver. We take AWD(S) as an example.

1) Two probability distributions. Following WRD, we use the norm of
each word as weighting factor.

u =
{
(xi,

λi

Z )
}m

1
, u

′
=

{
(x

′
j ,

λ
′
j

Z′ )
}n

1
, (8)

where λi and λ
′
j are the norm of word xi and x

′
j , Z and Z

′
are normalizing

constants (Z =
∑m

i λi, Z
′
=

∑n
j λ

′
j)

2) The transportation cost function. We first use cosine distance
between two pre-trained word embeddings as the transportation cost:

ccos(xi, x
′
j) = 1 − cos(wi, w

′
j), (9)

where wi and w
′
j are the pre-trained word embeddings of xi and x

′
j , and

ccos(xi, x
′
j) ∈ [0, 2]. Then we use the cdep

ij and ρ to scale the transportation
cost for every word pairs, and the final transportation problem is computed as
follows:
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min
T≥0

∑

i,j

Tijccos(xi, x
′
j)d

dep
ij ρ

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

n∑

j=1

Tij = ui,

m∑

i=1

Tij = u
′
j

(10)

Finally, we can solve the above linear programming problem with constraints
and obtains the dissimilarity between two sentences.

4 Experimental Settings

4.1 Task Definition and Evaluation Criterion

The goal of Semantic Textual Similarity is to measure the semantic similarity
between two sentences, and Unsupervised STS only uses the test set without
any additional datasets and hyper-parameter tuning.

The golden labels are contiguous real numbers in STS datasets, typically
from 0 to 5, e.g., 0 indicates “dissimilar” and 5 means “similar”. Thus the evalu-
ation criterion used in previous works is the Pearson Correlation Coefficient
(Pearson’s r) between the predicted and actual similarity scores. It is worth
noting that we only need to predict the relative similarity rather than the abso-
lute score.

4.2 Datasets and Pre-trained Word Embeddings

Following the previous works [5,10,12,13,16,20], we use three commonly used
datasets to evaluate the performance of our methods.

STS Benchmark (STS-B) [3] is one of the most popular dataset for STS
task that contains 3 selected genres and has 1379 sentence pairs in test set.
STS-15 [1] contains sentence pairs on news headlines, image captions, student
answers, answers to question and sentences expressing committed belief. PIT-
2015 [19] is used to evaluate the semantic similarity of text written in an infor-
mal style in Twitter, and can verify the generalization ability of our method in
different scenarios.

Following the previous works [5,10,12,13,16,20], we test our methods with
three types of pre-trained word vectors: 1) GloVe [11], 2) fastText, and 3)
ParaNMT [16] (domain-specific word vectors). We directly apply our methods
on the test set, without any training set, validation set, and external corpus.

4.3 Baselines

We use the following baselines: WMD [6] first introduces EMD into unsuper-
vised STS task. OWMD [8] adds two global penalty terms to solve the OT
problems. ABT [10] proposes a simply post-processing method that eliminates
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the common mean vector and a few top dominating directions from the word vec-
tors. UP [5] proposes an angular distance-based random walk model where the
probability of a sentence being generated is robust to distortion from word vector
length. TCOT [15] uses temporally coupled optimal transport for sequences in
computer vision datasets, it assumes close sequence pairs should have low trans-
port weight, which is the opposite of our work. We re-implement their work for
a comparison DynaMax [23] which dynamically extracts and max-pools good
features depending on the sentence pair for unsupervised STS task. WRD [20]
improves the WMD by using the norm of each word as weighting factor, and
cosine distance as the dissimilarity. meta:gcca [13] is an ensemble method which
combines various pre-trained sentence encoders into sentence meta-embeddings.

Table 1. Pearson’s r×100 of our methods and baseline models on three STS datasets.
Results with ∗ are retrieved from published paper or re-implemented using the open-
source code, others are re-implemented by us. WMD(w. AWD) is the model that inte-
grates syntax-based AWD into WMD. AWD(S) w. IAA is the model that incorporates
the Imbalanced Alignment Adaptation mechanism (IAA) into AWD(S). The previous
best results are underlined, and results better than state-of-the-art are in bold.

GloVe fastText

PIT2015 STS-15 STS-B PIT2015 STS-15 STS-B

MaxPooling 45.65 66.59 70.02 57.19 68.10 71.39

UP* [5] 50.22 76.10 71.50 58.50 77.10 74.02

ABT* [10] 49.35 67.23 71.59 58.17 74.50 75.10

DynaMax* [23] - 70.90 - - 76.60 -

WMD [6] 48.83 75.34 73.22 49.57 75.15 72.03

OWMD* [8] 46.48 75.83 73.45 53.67 75.62 71.11

TCOT [15] 44.57 72.88 70.02 45.54 73.03 69.16

WRD [20] 50.46 75.12 74.28 58.01 76.94 74.69

AWD(P) 51.83 76.22 75.90 59.50 77.54 76.28

AWD(S) 51.83 76.24 76.13 60.61 78.04 77.24

AWD(S) w. IAA 52.50 76.54 76.46 62.27 78.80 77.65

5 Experimental Results

5.1 Main Results

Table 1 shows the overall performance and we have the following observations.
First, our method consistently outperforms baselines on three datasets with

GloVe and fastText word vectors. For example, when using fastText, compared
with previous best-performing models (without using task-specific word embed-
dings), our most robust model (AWD(s) w. IAA) achieves 3.77, 1.70, and 2.55
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absolute increments on the PIT2015, STS-15, and STS-B dataset, respectively.
We also suppress TCOT and OWMD, two EMD-based methods that are similar
to ours. Since TCOT is designed for computer vision, and may not be suitable for
STS tasks. As for OWMD, it considers the global penalty, thus our method could
be seen as a more fine-grained method, since we directly add our components
into the transportation cost matrix for each word pair.

Second, all AWD variants bring notable performance improvements over
WRD. These AWD-equipped methods are constructed by incorporating prior
alignment information into WRD, clearly verifying our initial intuition that
alignment-aware transportation cost is essential for the EMD-based model.

Third, AWD(S) outperforms AWD(P) significantly, e.g., with improvements
of 1.11 Pearson’s r × 100 on PIT2015 with fastText word vectors. The results
indicate that (1) prior word alignment information can be better characterized
via exploiting text syntax compared with simply using word position, and (2)
our syntax-based strategy is capable of capturing alignment knowledge.

Finally, we find the imbalanced alignment adaptation mechanism (AWD(s) w.
IAA) achieves further improvement over the powerful AWD(S). Another obser-
vation here is that the performance gain on PIT2015 is more significant than
STS-15 and STS-B (e.g., 1.66 on PIT 2015 v.s. 0.76 on STS-15 v.s. 0.41 on STS-
B with fastText word vectors). According to our statistics, 14.4% of sentence
pairs in PIT2015 have a sentence length difference greater than or equal to 3,
while in STS-B and STS-15, the proportions are 11.1% and 11.0%, respectively.
The statistics suggest that the unbalanced transportation problem will be more
prominent in PIT2015. Based on these statistics, the superiority demonstrated
on PIT2015 can be attributed to the capability of our alignment adaptation
mechanism to address the imbalanced transportation issue.

5.2 AWD(S) v.s. AWD(P)

To further investigate how AWD(S) outperforms ASD(P), we conduct compar-
isons and analyses on the effect of sentence structure difference. Specifically, we
first use word-level Levenshtein Distance as a rough metric to measure struc-
ture differences between two sentences. In the most widely-used STS-B dataset,
we select the top 25% samples with the largest Levenshtein Distance [17] as
hard samples, forming a subset named STS-B(hard). As shown in Table 2 the
improvement of AWD(S) over WRD on STS-B(hard) is much more remark-
able than its counterpart on STS-B (+3.22 v.s. +1.85). Interestingly, AWD(P)’s
improvement demonstrates an opposite pattern (+1.15 v.s. +1.65), reminding
us that AWD(P) may heavily depend on similar sentence structures, and the
current dataset may contain unintended bias.

5.3 Applying Task-Specific Word Embeddings

Following previous work [5,12,13,16,20,23], we also verify the effectiveness of our
methods by using ParaNMT vectors, which can be seen as the task-specific word
embeddings to improve unsupervised STS performances [23]. We choose UP and
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Table 2. Pearson’s r×100 of WRD and our proposed methods on STS-B(hard) with
GloVe vectors. The results with fastText demonstrate similar trends and are omitted
due to space limitation. STS-B(hard) is a subset we manual extracted from STS-B
according to the edit distance between two sentences, in which the given two sentences
tend to have significant semantic structure differences.

STS-B(hard) � STS-B �
WRD 66.97 74.28

AWD(P) 68.12 +1.15 75.90 +1.62

AWD(S) 70.19 +3.22 76.13 +1.85

Fig. 1. The Effectiveness of IAA. Due to space limit, we only report the results of
PIT2015 with fastText, but the results of different datasets and pre-trained word vec-
tors are similar and exhibit the same finding. The y-axis shows the improvements of
different methods compared with WMD.

meta:gcca as baselines since they are the best single and ensemble models with
ParaNMT vectors. It shows that AWD achieves about 4.15 absolute increments
compared with UP. AWD’s superiority can even be observed when compared
with the robust ensemble model meta:gcca. The above results verify AWD’s
generalization capability of working with various kinds of word vectors.

5.4 The Effectiveness of IAA

We also investigate the effect of IAA when the lengths of two sentences are
diverse. We choose the hardest dataset PIT2015 and split it based on the length
differences of sentence pairs. Experiments are conducted on five subsets, where
the length differences are 0, 1, 2, 3, and 4 words, respectively. We report the
improvements of different methods compared with WMD. As shown in Fig. 1,
although WRD and AWD achieve much better performances than WMD, these
methods do not achieve obvious improvements when the sentence gaps are more
than 2. As for AWD w. IAA, we can see significant improvements when the
length differences are more evident. This further demonstrates the capability of
IAA in dealing with the imbalance scenario.
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6 Related Work

A popular line of methods utilizes Earth Mover’s Distance [14] as the theoretical
foundation. Kusner, M. et al. [6] first introduces EMD into STS task as Word
Mover’s Distance (WMD), with equal weights for every word in the sentence
pair. Yokoi, S. et al. [20] improves WMD as Word Rotator’s Distance (WRD)
by using the norm of word as weight, and use the dissimilarity of word vectors’
angle to measure the transportation cost. [8] adds two global penalty terms to
solve the OT problems. Besides, Liu, B. et al. [8] don’t consider the case when
sentences contain unequal semantic details. Su, B et al. [15] uses temporally
coupled optimal transport for sequences in computer vision datasets. In addition,
Zhao, R. et al. [22] and Zhelezniak, V. et al. [23] leverage fuzzy set theory
for STS tasks and achieve impressive performances. Deep Learning method has
been shown great performances on various natural understanding tasks, such as
text classification and information extraction [7,18]. Lots of works also leverage
deep learning based method for STS task. [4] uses transfer learning to generate
high-quality sentence vectors for STS. [21] proposes an unsupervised sentence
embedding method by mutual information maximization.

7 Conclusion

We have introduced Alignment-aware Word distance (AWD), a novel technique
to measure text dissimilarity for unsupervised Semantic Textual Similarity (STS)
tasks. The main characteristic that distinguishes AWD from previous EMD
(Earth Mover’s Distance)-based approaches is that we adjust word distance by
considering the context of text pairs instead of using static word distance.

We exploit prior alignment information to scale word transportation costs fed
into STS methods, demonstrating promising superiority in a set of experiments.
We wish this work can inspire more sophisticated STS methods that exploit the
prior alignment information of sentence pairs.
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Abstract. Multiple imputation (MI) has been widely applied to missing
value problems in biomedical, social and econometric research, in order
to avoid improper inference in the downstream data analysis. In the pres-
ence of high-dimensional data, imputation models that include feature
selection, especially �1 regularized regression (such as Lasso, adaptive
Lasso, and Elastic Net), are common choices to prevent the model from
underdetermination. However, conducting MI with feature selection is
difficult: existing methods are often computationally inefficient and poor
in performance. We propose MISNN, a novel and efficient algorithm
that incorporates feature selection for MI. Leveraging the approxima-
tion power of neural networks, MISNN is a general and flexible frame-
work, compatible with any feature selection method, any neural network
architecture, high/low-dimensional data and general missing patterns.
Through empirical experiments, MISNN has demonstrated great advan-
tages over state-of-the-art imputation methods (e.g. Bayesian Lasso and
matrix completion), in terms of imputation accuracy, statistical consis-
tency and computation speed.

Keywords: Missing value · Imputation · Semi-supervised Learning

1 Introduction

1.1 Missing Value Mechanisms and Imputation

Missing data are commonly encountered in data analyses. It is well-known that
inadequate handling of missing data can lead to biased findings, improper sta-
tistical inference [11,37] and poor prediction performance. One of the effective
remedies is missing data imputation. Existing imputation methods can be mainly
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classified as single imputation (SI) and multiple imputation (MI) [26]. The for-
mer imputes missing values only once while the latter generates imputation
values multiple times from some distribution. In fields such as finance and med-
ical research, linear models are often preferred as it is important to not only
predict accurately but also explain the uncertainty of the prediction and the
effect of features. In the interest of statistical inference, MI methods, including
MISNN proposed in this paper, are more suitable as they adequately account
for imputation uncertainty and provide proper inference.

In general, performances of imputation are highly related to the mechanisms
that generate missing values, which can be categorized into three types: missing
completely at random (MCAR), missing at random (MAR) and missing not
at random (MNAR). Missing data are said to be MCAR if the probability of
being missing is the same for all entries; MAR means that the missing probability
only depends on the observed values; MNAR means that the missing probability
depends on the unobserved missing values. Intuitively, imputation is easier under
MCAR mechanisms as the missing probability is only a (unknown) constant,
and therefore most methods are designed to work under MCAR. However, MAR
and MNAR are usually more difficult and fewer methods perform well on these
problems.

1.2 Feature Selection in Imputation Models

In many applications including gene expression and financial time series research,
we need to analyze high dimensional data with number of features being much
larger than number of samples. In such cases, multiple imputation, which esti-
mates the (conditional) distribution of missing data, can be inaccurate due to
the overwhelming amount of features. Existing works [11,37] propose to use
regularized linear model for feature selection, before building the imputation
model. Some representative models include Lasso [31], SLOPE [4], Elastic Net
[39], Adaptive Lasso [38], Sparse Group Lasso [13,27], etc.

While the regularized linear models successfully reduces the number of fea-
tures, they often fail to capture the true distribution of missing data due to the
linear dependence on the selected features and information loss in the unselected
features when building the imputation model. Hence, the corresponding infer-
ence can be significantly biased. MISNN proposed in this paper overcomes the
shortcome via semi-parametric neural networks. At a high level, MISNN is a
semi-parametric model based on neural networks, which divides predictors into
two sets: the first set are used to build a linear model and the other is used to
build neural networks, which are often regarded as non-parametric models. We
highlight that the outperformance of MISNN is contributed both by its neural
network and linear parts. The neural networks effectively capture the non-linear
relationship in the imputation model, and the linear model, in addition to cap-
turing the linear relationships, allows efficient MI, through maximum likelihood
estimation for the regression parameters.
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Fig. 1. MISNN framework.

1.3 Our Contribution

This paper makes two contributions. Firstly, we propose MISNN, a novel impu-
tation method that outperforms state-of-the-art imputation methods in terms
of imputation accuracy, statistical consistency, and computation speed. MISNN
is easy to tune, interpretable, and robust to high missing rates and high-
dimensional features. Secondly, MISNN is a flexible imputation framework that
can be used with any appropriate feature selection method, such as Lasso and
forward-selection. Additionally, MISNN is compatible with any neural network,
including under or over-parameterized networks, CNN, ResNet, dropout, and
more (Fig. 1).

2 Related Work

Regarding missing data imputation, SI methods have long history before the
concept of MI [26], of which one representative approach is the mean imputa-
tion. Recent work in SI include matrix completion approaches that translate the
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imputation into an optimization problem. Existing methods such as SoftImpute
[23] and MMMF (Maximum-Margin Matrix Factorization) [28] provably work
under MCAR mechanisms. Meanwhile, an increasing number of MI methods
are studied: MICE [5,32] imputes missing values through the chained equations;
MissForest [30] imputes missing values via bootstrap aggregation of multiple
trees. Deep generative models [9,14,19,22,34], including Generative Adversarial
Impu-tation Nets (GAIN), are also proposed for imputation. We remark that
most of the existing methods only provably work under MCAR (though some
methods empirically work well under MAR).

Regularized linear models have been proposed for MI in high-dimensional data.
Bayesian Lasso [16,24] estimates the posterior distribution of coefficients, while
alternative approaches [11,37] de-bias the estimator from the regularized linear
regression. Namely, the direct use of regularized regression (DURR) and the indi-
rectuse of regularized regression (IURR).However, linear imputationmodels fail to
capture the potential non-linear relations in the conditional distribution of missing
data. MISNN falls into this line of research, is computationally more efficient than
Bayesian Lasso, and captures non-linear relations during imputation.

Recent work has highlighted the importance of trustworthiness in missing
data imputation, with privacy-preserving [8,10,18] and fairness-aware [6,21,35,
36] imputation models drawing attention. MISNN has strong interpretability,
allowing for better understanding of the imputation process and greater trust in
the results.

3 Data Setup

Denote the data matrix by D ∈ R
n×p, where n is the number of samples/cases

and p is the number of features/variables. We define the j-th feature by Dj and
its complement features by D−j := D2:p for j ∈ [p]. In the presence of missing
data, D can be separated into two submatrices Dcc and Dic, where Dcc denotes
all complete cases (i.e. all features are observed) and Dic denotes all incomplete
cases. We let Dcc,j and Dic,j denote the j-th feature of complete cases and
incomplete cases, respectively. We also define Dmiss, the set of missing features
in D, and Dobs, the set of observed features for samples in D. Briefly speaking,
to impute the missing values, we fit an imputation model g using Dobs, and use
Dic,obs as input to give imputation result D̂miss. For the ease of presentation,
we start with a single feature missing, in which only the first column in D (i.e.,
D1) contains missing values. We then move on to the general missing pattern
with multiple features missing in Sect. 5.

3.1 A Framework for Multiple Imputation

Here we provide a brief discussion about a general framework for multiple impu-
tation, which is also adopted in MISNN. Under the above data setting, MI meth-
ods estimate the conditional distribution ρ(Dmiss|Dobs) and sample imputed val-
ues from it multiple times. Assuming the distribution of D is characterized by
unknown parameters ξ, then
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ρ(Dmiss|Dobs) =
∫

ρmiss(Dmiss|Dobs, ξ)ρ2(ξ|Dobs)dξ

in which ρ, ρ1, ρ2 are three conditional distributions. For the m-th imputation,
we randomly sample ξ(m) from the posterior distribution of ξ, i.e. ρ2(ξ|Dobs);
we then generate the m-th imputed data D(m)

miss from the predictive distribu-
tion ρ1(Dmiss|Dobs, ξ). With multiple imputed datasets, further analysis and
inference can be conducted with the help of Rubin’s rule [20,26]. A detailed
introduction of Rubin’s rule is provided in Appendix A.

4 Multiple Imputation with Semi-parametric Neural
Network (MISNN)

At the high level, MISNN imputes the missing data in each column through a
partial linear model (PLM), which takes the form

D̂1 = Xβ̂ + f̂(T)

where (X,T), determined through feature selection, is a partition of the rest
p−1 columns. While the choice of β̂ and f̂(T) can be determined in an arbitrary
manner, we adopt a partialling out approach [25] (also known as the orthogo-
nalization in [7]) that can provide consistent parameter estimation if the true
model takes the form D1 = Xβ + f(T) + ε. To do so, we take the conditional
expectation on T, assuming E(ε|T) = 0:

D1 = Xβ + f(T) + ε

E(D1|T) = E(X|T)β + f(T)

D1 − E(D1|T) = (X − E(X|T)) β + ε

(1)

Let S denote the set of features selected. Notice that T := D−1 \ DS is
explicitly removed in the last equation. Therefore, if the number of selected
features can be controlled (i.e., |S| is small), we are left with a low-dimensional
linear model (as X−E(X|T) ∈ R

n×|S|), as long as we can estimate the mapping
E(D1|T) and E(X|T) properly. To realize the above approach, MISNN algorithm
takes three key steps:

– Feature Selection: During imputation of each missing feature, MISNN
conducts feature selection to select at most n features. The selected features
X are expected to have significant linear correlation with the missing feature,
which later will be fitted in a linear model (e.g., least squares).

– Fitting Partially Linear Model: Suppose the remaining features after
the selection are denoted by T, MISNN fits two neural networks to learn
E(Dmiss|T) and E(X|T), so as to derive a low-dimensional ordinary linear
model (1);

– Multiple Imputation: MISNN uses maximum likelihood to estimate
parameters in (1), then draw M times from the posterior distribution of β̂

and further draw D̂miss from the predictive distribution.



MISNN: Multiple Imputation via Semi-parametric Neural Networks 435

Note that the first two steps in combination is closely related to DebiNet [33],
though we do not refine ourselves to over-parameterized neural network, and
we utilize two neural networks to learn (E(Dmiss|T),E(X|T)). In the following,
we introduce MISNN in Algorithm 1 and validate the procedure of MISNN
rigorously. Here we assume the missing feature is continuous. For non-continuous
features, some modifications to the algorithm should be made. See details in
Appendix B.

Remark 1 If one only focuses on the prediction, not the inference, single impu-
tation can be conducted in Algorithm 1. In particular, OLS can solve the linear
model in step (4) and we impute by

D̂ic,1 = (Xcc − E(Xcc|Tcc)) β̂ + E(Dcc,1|Tcc)

We name the imputation algorithm as SISNN (see Algorithm 4 in Appendix D).

4.1 Sampling from Posterior and Predictive Distributions

To conduct multiple imputation in MISNN, we need to sample the parameters
from the posterior distribution ρ2

(
β, σ2

∣∣∣Dobs,1,Xobs,Tobs

)
and the predictive

noend 1. Multiple Imputation via Semi-parametric Neural Network (MISNN)

Input: Incomplete data D, number of imputation M

1: Fit a regularized regression Dcc,1 ∼ Dcc,−1, with the penalty function P , by

(α̂, α̂0) := argmin
(a,a0)

1

2
‖Dcc,1 − Dcc,−1a − a0‖2 + P (a).

2: Obtain the active set S := {i : α̂i �= 0} and split D−1 into sub-matrices X = [D−1]S
and T = D−1\X.

3: Given the training data {Tcc,Dcc,1,Xcc}, train neural networks to learn

ηD(T) := E(D1|T), ηX(T) := E(X|T)

4: Apply standard maximum likelihood technique onto

Dcc,1 − E(Dcc,1|Tcc) = (Xcc − E(Xcc|Tcc)) β + ε

where ε ∼ N (0, σ2) and approximate the distribution ρ2

(

β, σ
∣

∣

∣Dobs,1,Xobs,Tobs

)

5: for m ∈ {1, . . . , M} do
6: Randomly draw β̂(m), σ̂(m) from the conditional distribution

ρ2

(

β, σ
∣

∣

∣Dcc,1,Xcc,Tcc

)

.

Subsequently, impute Dic,1 with ̂D
(m)
ic,1 by drawing randomly from the predictive

distribution ρ1

(

Dic,1|Xic,Tic, β̂
(m), σ̂(m)2

)
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distribution ρ1

(
Dmiss,1|Xmiss,Tmiss, β̂

(m), σ̂(m)2
)

in MISNN (c.f. Algorithm 1).
With the partialling out, we fit a linear regression at step (4),

Dobs,1 − E(Dobs,1|Tobs) = (Xobs − E(Xobs|Tobs)) β + ε

We approximate the posterior distribution of β, σ using

ρ2

(

β, σ2
∣

∣

∣Dobs,1,Xobs,Tobs

)

= f1
(

β
∣

∣

∣Dobs,1,Xobs,Tobs

)

× f2
(

σ2
∣

∣

∣Dobs,1,Xobs,Tobs

)

Suppose the OLS estimate for β and its variance are β̄ and Σβ , respectively. We
can approximate the distribution of β by a normal distribution:

f1
(

β
∣

∣

∣Dobs,1,Xobs,Tobs

)

∼ N (

β̄, Σβ

)

where the parameters are defined as:

β̄ = argminb‖Dobs,1 − ηD(Tobs) − [Xobs − ηX(Tobs)]b‖2

Σβ = σ̄2
(

(Xobs − ηX(Tobs)
�(Xobs − ηX(Tobs))

)−1

Here σ̄2 can be estimated as the mean of squared residuals:

f2
(

σ2
∣

∣

∣Dobs,1,Xobs,Tobs

)

=
∥

∥Dobs,1 − ηD(Tobs) − (Xobs − ηX(Tobs))β̄
∥

∥

2
/nobs

As for drawing from the predictive distribution, we calculate σ̂(m) from f2 (with
β̄ substituted by β̂(m)). At last, we can draw D̂(m)

miss,1 from

ρ1

(
Dmiss,1|Xmiss,Tmiss, β̂

(m)
, σ̂

(m)2
)

= ηD(Tmiss) + (Xmiss − ηX(Tmiss))β̂
(m)

+ N (0, σ̂
(m)2

)

4.2 Flexibility of MISNN Framework

Again, we highlight that the framework of MISNN is flexible in two folds: It
can incorporate arbitrary feature selection method and arbitrary neural network
models during imputation.

MISNN can incorporate an arbitrary feature selection method. Here, we
adopt Lasso to select features X = DS and T = D−1 \ DS , where S = {i > 0 :
α̂i �= 0} comes from the non-zero part of lasso estimate

(α̂, α̂0) = argmina,a0

1
2
‖Dcc,1 − Dcc,−1a − a0‖22 + λ‖a‖1

MISNN works compatibly with all types of networks. Especially, when
equipped with over-parameterized neural networks, MISNN can borrow the
results from DebiNet [33, Theorem 1&2] to claim

√
n-consistency and expo-

nentially fast convergence.
In practice, MISNN can work with a much richer class of neural networks than

those theoretically supported in the neural tangent kernel regime [1,12]. This
includes the under-parameterized, moderately wide and deep neural networks.
Empirical experiments shows that PLM learned by such neural networks exhibit
strong prediction accuracy as well as post-selection inference (see Table 2).
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4.3 Other Properties of MISNN

Here we discuss some properties that MISNN enjoys, besides the flexibility of
the framework, the consistent estimation of β and the fast training of PLM
aforementioned. Numerical evidence can be found in Sect. 5.

Trainability: MISNN can be trained by existing optimizers in an efficient man-
ner, in comparison to Bayesian Lasso (which may require expensive burn-in
period, see Table 3), boostrap methods (e.g. DURR, which needs many boot-
strapped subsamples to be accurate) or MICE (which fits each feature iteratively
and may be slow in high dimension).

Robustness: Empirically, MISNN is robust to hyper-parameter tuning (e.g.
the width of hidden layers does not affect the performance much). From the
data perspective, in high feature dimension and high missing rate (e.g. when
compared to DURR, IURR and GAIN), MISNN still works reasonably well.

4.4 MISNN for General Missing Patterns

The imputation procedure can be naturally extended to the case of general
missing patterns, in which the pseudo code is provided in Algorithm 3 in the
Appendix D. Suppose the first K columns are missing in D, denoted as Dfull,[K]

and the k-th column is denoted by Dfull,k. The set −[K] represents all other
columns except those in [K]. Similar to the case of single column missingness,
to construct a partial linear model, we need to partition the data into X and T.
We fit regularized linear regression for each of the K columns that have missing
values and obtained K active sets. Then we propose to use either intersection
or union to combine the sets into a single one, which will be treated as X. To
estimate the parameters β, during each imputation, for the k-th column, we
consider an OLS model that uses Dfull,[K] as regressors and the k-th column
as response. Maximum likelihood techniques are adopted to generate regression
coefficients βk.

We remark that other proper feature selection methods and set-merging rules
can be adopted to replace what we use. It’s also possible that we use an itera-
tive approach, following the idea of MICE, to conduct column-wise imputation.
Generalization to the case of discrete missing values can be realized with the
help of GPLM, which is similar to the discussion in Appendix B.

5 Numerical Results

We compared MISNN with other state-of-the-art methods on various synthetic
and real-world datasets. To establish baselines, we included complete data anal-
ysis, complete case analysis, and column mean imputation. We also evaluated
two MI methods that incorporate regularized linear models for feature selection
in high-dimensional settings: MICE-DURR and MICE-IURR. Additionally, we
included MissForest, a MICE approach that uses random forest as the regres-
sion model, as well as GAIN, a deep-learning-based imputation method, and
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two matrix completion methods: SoftImpute and MMMF. More details about
our experimental setup and results can be found in Appendix C.

Table 1. Multi-feature missing pattern in synthetic data over 500 Monte Carlo
datasets. Bias: mean bias β̂1 − β1; Imp MSE: ‖ ̂Dmiss,1:3 − Dmiss,1:3‖2/nmiss; Cover-
age: coverage probability of the 95% confidence interval for β1; Seconds: wall-clock
imputation time; SE: mean standard error of β̂1; SD: Monte Carlo standard deviation
of β̂1. Model settings are in Sect. 5.1 and data generation is left in Appendix C.2.

Method Style Bias Imp MSE Coverage Seconds SE SD

Complete Data – 0.0027 – 0.954 – 0.1126 0.1150

Complete Case – 0.1333 – 0.854 – 0.1556 0.1605

Mean-Impute SI 0.1508 12.6215 0.994 0.005 0.3268 0.1933

MISNN-wide (Lasso) MI −0.0184 4.2382 0.902 0.324 0.1438 0.1713

MISNN-wide (ElasticNet) MI −0.0134 4.2191 0.924 0.286 0.1431 0.1641

MISNN-narrow (Lasso) MI −0.0251 6.2666 0.944 0.370 0.1816 0.1755

MISNN-narrow (ElasticNet) MI −0.0246 6.2550 0.956 0.344 0.1818 0.1647

MICE-DURR (Lasso) MI 0.1815 12.6704 0.978 1.266 0.2275 0.1196

MICE-DURR (ElasticNet) MI 0.1314 10.8060 0.990 0.633 0.2241 0.1219

MICE-IURR (Lasso) MI 0.2527 15.7803 0.886 1.483 0.2136 0.1150

MICE-IURR (ElasticNet) MI 0.2445 15.3266 0.892 0.566 0.2153 0.1399

MissForest MI 0.0579 9.6174 0.962 69.948 0.2851 0.2609

GAIN SI 0.7578 27.3505 0.289 14.812 0.2869 0.4314

SoftImpute SI -0.1432 4.6206 0.842 0.019 0.1804 0.2005

MMMF SI -0.1239 4.0956 0.782 3.385 0.1491 0.1869

In addition to imputation accuracy, we evaluate the performance of impu-
tation models in statistical inference that are based on imputed datasets. In all
the experiments, we specify a set of predictors and a response in the data matrix
D = (Z, y). A linear regression ŷ = Zθ̂ is fitted using imputed dataset to pre-
dict y and we record the regression parameters θ̂. In synthetic datasets, we have
access to the ground truth θ, so we focus on inference performance. In real data
analysis, we lose access to the true θ and focus on the prediction error instead.

5.1 Viewpoint of Statistical Inference

In terms of the statistical inference, we consider four statistical quantities: bias of
θ̂, coverage rate of the 95% confidence interval (CR) for θ, mean standard error
(SE) for θ̂ and Monte Carlo standard deviation (SD) of θ̂. Imputation mean
squared error (MSE) is also compared. We study the performance of MISNN
under general missing patterns, in which multiple columns (features) in the
dataset can contain missing values. We adopt a similar experiment setting to
that in [11] and evaluate performance over 500 Monte Carlo datasets. A detailed
experiment description can be found in Appendix C.

Potentially, one can combine MICE with MISNN for single-column miss-
ingness as well. Nevertheless, we avoid doing so by proposing Algorithm 3 in
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Table 2. Multi-feature missing pattern in ADNI dataset over 100 repeats. Estimator:
estimated β̂1 through OLS using first 5 features as regressors; Imp MSE: imputation
mean squared error ‖ ̂Dmiss,1:3−Dmiss,1:3‖2/nmiss; Seconds: wall-clock imputation time;
SE: mean standard error of β̂1; Pred MSE: mean squared error between Aθ̂ and y.
Model settings are in Sect. 5.2 and data generation is left in Appendix C.3. MissForest
is too slow (more than 5min per dataset) to be considered.

Method Style Estimator Imp MSE Seconds SE Pred MSE

Complete Data – 0.0532 – – 0.0676 0.8695

Complete Case – 0.1278 – – 0.1392 1.3376

Mean-Impute SI -0.0374 1.3464 0.006 0.0686 0.8938

MISNN (Lasso) MI 0.0545 0.6620 1.501 0.0681 0.8780

MISNN (ElasticNet) MI 0.0521 0.5140 0.861 0.0716 0.8789

MICE-DURR (Lasso) MI 0.0504 1.8256 3.946 0.0508 0.8755

MICE-DURR (ElasticNet) MI 0.0426 1.6998 2.709 0.0552 0.8817

MICE-IURR (Lasso) MI 0.0474 2.0404 4.093 0.0476 0.8747

MICE-IURR (ElasticNet) MI 0.0318 2.0219 2.620 0.0484 0.8803

GAIN SI 0.0304 0.9902 67.432 0.0504 0.8749

SoftImpute SI 0.0533 0.6667 0.0344 0.0763 0.8808

MMMF SI 0.0833 0.3051 5.0261 0.0838 0.8755

Appendix D, which deals with the general missing patterns differently, in a
parallel computing fashion. During the experiments, we use different network
structures at step (3) of Algorithm 3: MISNN-wide uses two hidden layers with
width 500, each followed by ReLU activation, a Batch Normalization layer [17]
and a Dropout layer [29] at rate 0.1. The neural networks in MISNN-narrow are
the same as in MISNN-wide, except the hidden layers have width 50 instead.

The results are summarized in Table 1. We highlight that all MISNN give the
smallest estimation bias compared with the rest of imputation methods. MISNN
also achieves satisfying imputation MSE, statistical coverage and computation
speed. In comparison, two matrix completion methods achieve comparable impu-
tation MSE, but their coverage is much worse than MI methods.

It is interesting to note that MISNN-wide tends to have smaller imputation
MSE and estimation bias than MISNN-narrow. However, the coverage of the
former is not as good as the latter, mainly due to the small SE. We suggest
that in practice, if the accuracy of imputation or the parameter estimation is
of main interest, MISNN with wide hidden layers should be adopted. If the
statistical inference on parameters of interest is emphasized, then MISNN should
be equipped with narrow hidden layers.
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5.2 Viewpoint of Prediction

We applied MISNN to the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
gene dataset1, which includes over 19k genomic features for 649 patients and a
response, VBM right hippocampal volume, ranging between [0.4,0.6]. We selected
the top 1000 features with the largest correlations with the response, and focused
on the linear analysis model between the response and the top 5 features. Since
we did not have access to the true coefficients in the linear model, we studied
the difference between the estimated coefficients from complete data analysis
and the ones from imputed datasets. We artificially generated missing values
under MAR in the top 3 features that had the largest correlations with the
response, with a missing rate of approximately 65%. We used MISNN, containing
a single hidden layer with width 500 and a Batch Normalization layer, and fit a
linear regression between the response y and the top five features D1 ∼ D5 for
downstream prediction.

Our results, summarized in Table 2, show that MISNN achieved small impu-
tation and prediction MSEs in a computationally efficient manner, particularly
when compared to other MI methods. Additionally, the estimators by MISNN
(as well as SoftImpute) were closest to the gold criterion from complete data
analysis. Further experiment details can be found in Appendix C.

6 Discussion

In this work, we propose MISNN, a novel deep-learning based method for mul-
tiple imputation of missing values in tabular/matrix data. We demonstrate that
MISNN can flexibly work with any feature selection and any neural network
architecture. MISNN can be trained with off-the-shelf optimizers at high com-
putation speed, providing interpretability for the imputation model, as well as
being robust against data dimension and missing rate. Various experiments with
synthetic and real-world datasets illustrate that MISNN significantly outper-
forms state-of-the-art imputation models.

While MISNN works for a wide range of analysis models, we have only dis-
cussed the case for continuous missing values using the partialling out. We can
easily extend MISNN to discrete missing value problems by considering the gen-
eralized partially linear models (GPLM, see Sect. 4.1 for details). However, the
partialling out technique generally renders invalid for GPLM. Therefore, itera-
tive methods including the backfitting, which can be slow, may be required to
learn MISNN.
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Abstract. Transformer models achieve state-of-the-art performance on
a wide range of NLP tasks. They however suffer from a prohibitive lim-
itation due to the self-attention mechanism, inducing O(n2) complexity
with regard to sequence length. To answer this limitation we introduce
the LSG architecture which relies on Local, Sparse and Global attention.
We show that LSG attention is fast, efficient and competitive in classifi-
cation and summarization tasks on long documents. Interestingly, it can
also be used to adapt existing pretrained models to efficiently extrapolate
to longer sequences with no additional training. Along with the intro-
duction of the LSG attention mechanism, we propose a PyPI package to
train new models and adapt existing ones based on this mechanism.

Keywords: Attention mechanism · Long sequences · Extrapolation

1 Introduction

Transformer models [33] are nowadays state-of-the-art in numerous domains,
and in particular in NLP where they are used in general language models, and
to successfully tackle several specific tasks such as document summarization,
machine translation and speech processing to cite a few [13,26]. The cornerstone
of Transformer models is the Attention mechanism used to iteratively build
complex context-dependent representations of sequence elements, e.g. tokens,
by dynamically aggregating prior representations of these elements. Using self-
attention, a popular Attention flavour, this is made by computing full attention
scores defining how each prior element representation will contribute to building
the new representation of an element. Considering a sequence of n elements, the
computation of the attention scores is therefore of complexity O(n2) which is
prohibitive when large sequences have to be processed. In the current context
where a large number of models based on full attention have been trained on
various datasets and tasks, we are therefore interested in extrapolating those
models to long sequences by simply substituting full attention by new atten-
tion mechanisms post training on shorter input sequences. Common pretrained
models (e.g RoBERTa) are indeed known to underperform when extrapolated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 443–454, 2023.
https://doi.org/10.1007/978-3-031-33374-3_35
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to sequences of length exceeding the 512 tokens considered during training. This
is due to the nature of the attention mechanism which largely impacts extrap-
olation capabilities: full attention usually fails to extrapolate, even considering
post hoc adaptations, e.g. using a relative positional embedding [30] or duplicat-
ing the positional embedding [3]. Defining new attention mechanisms that can
efficiently substitute full attention in pretrained models that are not originally
capable of handling long sequences would avoid the costs induced by training
large language models from scratch. In this context, the main contributions of
this paper are:

1. LSG (Local Sparse Global) attention, an efficient O(n) approach to approxi-
mate self-attention for processing long sequences.1

2. Results demonstrating that LSG is fast, efficient and competitive on classifi-
cation and summarization tasks applied to long documents. It is also shown
that LSG can adapt and extrapolate existing pretrained models not based on
LSG, with minimal to no additional training.

3. A procedure and a PyPI package are proposed to convert existing models and
checkpoints (e.g. RoBERTa, DistilBERT, BART) to their LSG variant.2

Compared to several contributions aiming at reducing the complexity of self-
attention introduced hereafter, a specific focus is given in our work on the extrap-
olation of existing Transformer models, i.e. reuse, to longer sequences.

2 Related Works

Several contributions have been devoted to the optimization of the Attention
mechanism. Four categories of approaches can be distinguished in the literature:
(i) recurrent models such as Transformers-XL [12] and Compressive Transform-
ers [25] which maintain a memory of past activation at each layer to preserve
long-range contextual information; (ii) factorization or kernels aiming at com-
pressing attention score matrices, such as Linformer [34] or Performer [9]; (iii)
models based on clustering such as Reformer [21] that dynamically define eligible
attention patterns (i.e. where attention may be made); and (iv) models based
on fixed or adaptative attention patterns, e.g. Longformer [3] or Big Bird [37].

Recurrent approaches iteratively process the sequence by maintaining a mem-
ory to enable long-range dependencies. They generally suffer limitations induced
by specific, slow, and difficult to implement forward and back propagation proce-
dures. Alternatively, one of the main line of study for reducing the complexity of
Attention is thus to perform sparsity by limiting the number of elements on which
new representations will be based, i.e. reducing the number of elements with non-
null attention scores. This approach is motivated by the observation of global or
data-dependent positional patterns of non-null attention scores depending on the
task [7]. The sparsity of attention scores in the traditional Attention mechanism

1 Checkpoints and datasets are available at https://huggingface.co/ccdv.
2 https://github.com/ccdv-ai/convert checkpoint to lsg.

https://huggingface.co/ccdv
https://github.com/ccdv-ai/convert_checkpoint_to_lsg
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is indeed documented in the literature. It has for instance been shown that in
practice, full attention tends to overweight close elements in average, in particu-
lar for MLM, machine translation, and seq-to-seq tasks in general [10]. Moreover,
according to analyses on the use of multi-head full attention on specific tasks,
e.g. machine translation, numerous heads learn similar simple patterns [27]. Such
redundant patterns may be hardcoded implementing fixed-positional patterns,
eventually in a task-dependent manner.

Two main approaches are discussed in the literature for implementing spar-
sity: fixed or adaptative patterns based on whether attention scores are com-
puted considering (1) predefined fixed elements based on their location in the
sequence, or (2) elements selected from a given procedure. As an example, [35]
have shown that fixed O(n) convolutions can perform competitively on machine
translation. Longformer proposes an alternative O(n) approach based on sliding
and global patterns [3]. In the context of image, audio, and text processing, [7]
propose sparse Transformer, an O(n

√
n) model based on sparse factorization of

the attention matrix relying on specific 2D factorized attention schemes. Those
approaches however prevent the use of task-dependent dynamic patterns. Con-
sidering adaptative patterns, [35] also introduced dynamic convolutions as an
O(n) complexity substitute to self-attention. Kernels defining the importance of
context elements are specified at inference time rather than fixed after training.
Another example is Reformer [21], an O(n log n) approach based on locality-
sensitive hashing (LSH) based on random projections.

In a transverse manner, several authors, explicitly or implicitly motivated
by the compositional nature of language have studied structured approaches in
which subsequences (i.e. blocks) are processed independently and then aggre-
gated. This aims at implementing a local or global dynamic memory for consid-
ering close to long-range dependencies. Some approaches use a blockwise app-
roach to reduce the quadratic complexity induced by large sequences in encoder-
decoder architectures [4]. Other propose a chunkwise attention in which atten-
tion is performed in a blockwise manner adaptively splitting the sequence into
small chunks over which soft attention is computed [8]. This idea is also used in
Transformer-XL [12]. Masked block self-attention mechanism in which the entire
sequence is divided into blocks, to further 1) apply self-attention intra-block for
modeling local contexts, to further 2) apply self-attention inter-block for cap-
turing long-range dependencies, as also been proposed [31]. Such an approach
enables implementing some forms of connectivity between all positions over sev-
eral steps without being restricted by full attention limitations. This can also be
achieved by factorization techniques, e.g. [7]. More recently authors have pro-
posed global attention mechanisms encoding information related to blocks on
which attention is based [1,16,39].

This paper presents the LSG (Local, Sparse and Global) attention based
on block local attention to capture local context, sparse attention to capture
extended context, and global attention to improve information flow. Contrary
to prior work mostly focusing on defining new models, the proposed LSG Atten-
tion mechanism is model agnostic and aims at facilitating adapting existing
(pretrained) models for them to be used on long sequences.
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3 LSG: Mixing Local, Sparse and Global Attentions

LSG assumes (1) that locally, a token needs to capture precise low level informa-
tion using dense attention, (2) as the context grows, higher level information is
sufficient, i.e. a limited number of tokens specifically selected are sufficient. LSG
therefore relies on block local attention to capture local context, sparse attention
to capture extended context, and global attention to improve information flow.
Local Attention. LSG take advantage of a block-based processing of the input.
The sequence is split into nb non-overlapping chunks of size bt. For a given block,
each token attends to the tokens inside the block, as well as to those in the
previous and next blocks. The local attention window is asymmetrical since a
token can connect up to 2 × bt − 1 tokens on the left or on the right.
Sparse Attention. Sparse connections are used to expand the local context by
selecting additional tokens. These tokens can be directly selected based on a spe-
cific metric or using some computation such as a pooling method. In the proposed
approach, each attention head can process different sparse tokens independently.
Sparse attention also relies on a block structure where the sparse selection is done
inside each block. Five alternative criteria can be used in LSG.
1. Head-wise strided: Each attention head attend to a set of tokens following a
specific stride defined as the sparsify factor. Figure 1 shows the selection pattern.
2. Head-wise block strided selects consecutive tokens, see Fig. 2.

Fig. 1. Head-wise selection (stride 2). Fig. 2. Block selection (stride 2).

3. Average pooling: sparse tokens are computed using average pooling on blocks.
For a block of size bt and a sparsify factor f , pooling is applied to each block
with a window of f and a stride of f to produce bt/f tokens.
4. Max norm: selects tokens that are most likely to have high scores. Find-
ing those keys efficiently is difficult in practice so we use a simple and deter-
ministic heuristic selecting inside each block and each head bt/f tokens with
the highest key norm. Indeed, note that for a query and a key q,k ∈ R

d,
qk� = cos(θ)‖q‖‖k‖. If cos(θ) is positive and ‖k‖ is high, the key will likely
dominate the softmax regardless of the query.
5. LSH Clustering: non deterministic approach relying on the LSH algorithm [2].
For each block, bt/f clusters are built using a single round LSH. To get c = bt/f
hashes and for an input x ∈ R

d, a random matrix R ∈ R
d×c/2 is generated, such

that h(x) = arg max([xR;−xR]) with [a; b] the concatenation of two vectors.
Using the key matrix as input, each token inside the block gets a cluster index
from h(x). Tokens inside a cluster are averaged.
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Fig. 3. Local and sparse contexts with a block size of 2 and a sparsity factor of 4.
Queries a and b will attend to 6 local keys and 4 sparse keys.

Global Attention . Global tokens improve the flow of information inside the
model. They attend to every tokens across the sequence and all tokens attend to
them. Rather than picking a subset of tokens, additional tokens are prepended
to the sequence and trained using their own embedding matrix (their number
is an hyperparameter). When a model is converted to its LSG version, the first
global token is initialized as the sum of the [CLS] token and the first position
from the positional embedding. The other global tokens are initialized as the
sum of [MASK] token and the other positions from the positional embedding.
Thus, they can be trained and fine-tuned independently.

Positional Embedding . It is necessary to modify the positional embedding
matrix to reuse existing models to process long sequences. In LSG, instead of
randomly initializing the new positions, the original matrix is duplicated and
concatenated until the desired max sequence length is reached.

4 Experiments

We evaluate LSG in the context of model extrapolation by replacing full atten-
tion by the LSG attention in various architectures. The official RoBERTa-base
checkpoint for classification tasks and BART-base checkpoint for summarization
tasks are extrapolated using LSG attention. All metrics are reported for the test
set except in the case where only the validation set is available and datasets are
all available on the HuggingFace hub. We use a batch size of 32, a linear decaying
learning rate, a dropout rate of 0.10 and Adam (0.9, 0.999) optimizer [20] for
classification and summarization experiments. An experiment comparing sev-
eral attention approximations to extrapolate RoBERTa in an MLM task is first
discussed as it is used to limit the number of tested alternatives, and therefore
reduce the cost of the proposed evaluations. All experiments are conducted on
NVIDIA Quadro RTX 8000 48 Gb GPUs.
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4.1 RoBERTa Extrapolation on MLM

A test on a MLM task is performed to question the ability of an attention mech-
anism to extrapolate a model to longer sequences without additional training.
A RoBERTa-base model is here considered and two experiments are conducted.
First, the full attention is substituted by different kinds of attention (kernel, fac-
torization, local, fixed pattern) and each model is evaluated on sequences of the
same length as those considered during RoBERTa initial training (512 tokens).
In the second experiment, their ability to extrapolate to 4,096 tokens sequences
without additional training is tested (positional embedding duplicated 8 times).

A random sample from Wikipedia + BookCorpus + CC News is used; BPC
and MLM accuracy are in Table 1. RoBERTa’s author report a 1.880 BPC loss;
we obtain a comparable loss of 1.881 on this random sample.

Only Longformer, Big Bird and LSG obtain competing BPC while processing
sequences of the same length as those considered during the original RoBERTa
training. Other approaches such as Linformer, Performer or Reformer requires
additional MLM fine-tuning to leverage an existing checkpoint. It can be seen
that RoBERTa fails to extrapolate to longer sequences (+2.454 BPC), which
highlights that full attention is not suitable for extrapolation. Longformer and
Big Bird are able to perform some form of extrapolation. Therefore, we restrict
our comparison to these two approaches in order to limit experimentation costs.

Table 1. BPC and MLM accuracy of RoBERTa-base with various Attention.

Attention 512 length 4,096 length

BPC Accuracy BPC Accuracy

RoBERTa (full) [23] 1.881 0.732 4.335 0.359

Linear Attn. [19] 11.324 0.061 11.474 0.058

Efficient Attn. [32] 21.022 0.102 20.574 0.097

Performer [9] 10.382 0.107 10.556 0.102

Linformer (128 proj.) [34] 22.176 0.098 20.386 0.032

Reformer [21] 17.602 0.003 18.608 0.002

Longformer (512) [3] 1.929 0.726 2.051 0.708

Big Bird (64) [37] 1.881 0.732 2.439 0.659

LSG-Norm (128/2) (block size/sparsity) 1.919 0.727 2.032 0.712

LSG-Stride (128/2) 1.938 0.724 2.046 0.710

LSG-BlockStride (128/2) 1.940 0.724 2.048 0.709

LSG-Pooling (128/2) 1.968 0.720 2.064 0.706

LSG-LSH (128/2) 1.969 0.719 2.065 0.705

4.2 Classification Tasks

We compare LSG to Longformer [3] and Big Bird [37], two approaches able to
process long sequences with a similar number of parameters. Tests are performed
considering sparse attentions with a block size of 128 and a sparsify factor of 4.
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Datasets. Standard NLP datasets are used. IMDb [24]: binary sentiment anal-
ysis classification task from movie reviews. ArXiv [17]: set of documents from
ArXiv where the objective is to predict a topic from 11 available classes. Because
there is no official split, a random one is made of 28K, 2.5K and 2.5K documents
for train, validation and test. Patent [29]: subset of the Big Patent summariza-
tion dataset. The task is redefined as a classification task where the objective
is to predict the patent category using the full document (9 classes, random
split of 25K, 5K and 5K documents for train, validation and test). Some specific
domains are highly dependent on processing long sequences, e.g. legal domain
in which sentences tend to be long and complex. To demonstrate the ability of
LSG to leverage pretrained models in such cases, the following three datasets
are chosen from LexGlue [6], a benchmark focused on legal documents. Tasks
where the input is on average significantly longer than 512 tokens have been
selected. Scotus: given a court opinion, the task is to predict the relevant issue
area among 14 choices. ECtHRa and ECtHRb: the objective is to predict which
articles of the European Court of Human Rights (ECHR) have been violated (if
any) from case description: multi-label task (10 + 1 labels).
Training Setup and Architecture. To make a fair comparison between mod-
els and architectures, fine-tuning is done with the same learning rate, number
of steps and batch size. To show that LSG is compatible with different architec-
tures, the LexGlue tasks are also run with an LSG version of LEGAL-BERT [5].
Results. Reported metrics (Table 2) show that LSG outperforms most of the
time Longformer and Big Bird models with input sequences up to 4096 tokens
long. A major difference lies in the implementation itself since the LSG variant
is twice as fast to train on these lengths with no additional memory cost.3

Table 2. Micro/Macro F-1 on classification datasets.

IMDb Arxiv Patent Scotus ECtHRa ECtHRb

Epochs 3 3 3 7 5 5

Learning rate 2e-5 5e-5 2e-5 1e-4 1e-4 1e-4

RoBERTa (512-length) 95.5 87.2/86.8 66.6/61.8 69.4/60.8 62.9/58.2 72.0/65.9

Longformer 95.9 88.2/87.9 69.8/63.8 72.9/62.6 68.3/59.7 78.9/72.2

Big Bird ETC 95.4 85.9/85.5 69.4/63.9 69.4/58.2 68.3/60.3 80.0/70.6

LSG-Local (256/0) 96.0 87.5/87.1 69.9/64.8 73.3/63.7 68.8/63.7 79.9/73.4

LSG-Stride (128/4) 95.6 88.2/87.9 69.2/64.0 70.5/60.0 69.5/62.3 79.3/71.6

LSG-BlockStride (128/4) 95.7 87.7/87.4 69.6/64.1 72.5/63.1 69.1/58.6 79.5/71.8

LSG-Norm (128/4) 95.7 87.0/86.6 70.0/64.4 71.3/60.8 70.1/61.9 79.4/72.1

LSG-Pooling (128/4) 95.9 87.5/87.3 69.4/64.1 72.6/60.9 70.2/61.4 79.0/73.1

LSG-LSH (128/4) 95.8 88.2/87.9 69.5/64.2 70.3/54.6 71.0/60.3 78.9/71.0

Legal-BERT (512-length) - - - 73.5/60.5 64.2/58.2 73.2/65.9

LSG-Legal-BERT (256/0) - - - 74.5/62.6 71.7/63.9 81.0/75.1

On Patent, ECtHRa and ECtHRb tasks, the ability to process longer
sequences improves significantly the F-measures compared to a vanilla (full
3 See https://github.com/ccdv-ai/convert checkpoint to lsg for a benchmark.

https://github.com/ccdv-ai/convert_checkpoint_to_lsg
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attention) RoBERTa model. We also observe that Big Bird model is in gen-
eral slightly under its counterpart except for the ECtHRb dataset. This proba-
bly comes from the random attention mechanism which may require additional
training steps. LSG-LSH and Big Bird models are affected by randomness during
inference, thus their performance can differ between runs.

Extrapolating LEGAL-BERT with LSG to handle longer sequences improves
predictions. The choice of the sparse attention is likely task specific. Using local
attention only with a large block size is also a viable option. The role of global
tokens is not discussed here since we only use one for all experiments. We show
in the next section with summarization tasks the utility of such tokens.

4.3 Summarization Tasks

We evaluate our models on summarization tasks where the input is significantly
longer than 1k tokens only. The models have been fine-tuned on each dataset.4

Datasets. In both ArXiv and Pubmed [11], the goal is to generate an abstract
using a document as input. MultiNews [14] involves generating human-written
summaries from sets of news documents. MediaSum [40] consists of using inter-
view transcripts from CNN and NPR media to generate a summary.

Table 3. Parameters count of summarization models.

Models Params

PRIMERA [36] 447M

LED [3] 460M

HAT-BART [28] 471M

Pegasus [38] 577M

Big Bird-Peg. [37] 577M

Hepos [18] 406M

LongT5-Base [15] 220M

LongT5-L 770M

LongT5-XL 3B

Ours, LSG-BART-base (256/0) 145M

Training Setup and Architecture. The BART-base model [22] is converted
to its LSG version by replacing the full attention in the encoder part and adding
global tokens. The model is then fine-tuned on 4,096-length inputs and evaluated.
To reduce computational costs, experiments on 16,384-length inputs are warm
started from the 4,096-length experiments. The model is then fine-tuned during
a single epoch if necessary using the same training parameters. We propose 3
4 All summarization experiments are run using a 8e-5 learning rate, a 10% warmup,

a length penalty of 2.0 and a beam size of 5 for beam search.
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setups for the 16,384-length. First we evaluate the model with pure extrapolation
from 4,096-length (no additional training). In the second setup, we extrapolate
and add 64 global tokens we choose to fine-tune. In the last setup, we extrapolate,
we add 64 global tokens and we fine-tune the full model. Extrapolation is done
by concatenating 4 copies of the positional embedding matrix (4 × 4096).

The tested model - LSG-BART-base - is significantly smaller than common
models from the existing literature (Table 3. An input sequence of 16384 tokens
can fit on a 32Gb GPU (without attention dropout) during training without a
specific memory reduction tool (i.e. gradient checkpointing).

Results. LSG-BART is compared to state-of-the-art models by reporting the
results from their respective papers. We use ROUGE-1, ROUGE-2 and ROUGE-
L evaluation metrics as comparison points.

Table 4. ROUGE on PubMed dataset.

Models R1 R2 RL

Pegasus (1K) 45.49 19.90 27.69
Big Bird-Peg. (4K) 46.32 20.65 42.33

HAT-BART (4K) 48.36 21.43 37.00

Hepos-LSH (7.2K) 48.12 21.06 42.72
Hepos-SKN (10.2K) 47.93 20.74 42.58

LongT5-Base (4K) 47.77 22.58 44.38
LongT5-L (16K) 49.98 24.69 46.46
LongT5-XL (16K) 50.23 24.76 46.67

Ours (4K) 47.37 21.74 43.67
Ours (16K) 48.03 22.42 44.32

+ global tuning 48.12 20.46 44.40
+ full tuning 48.32 22.52 44.57

Table 5. ROUGE on MultiNews.

Models R1 R2 RL

TG-MultiSum 47.10 17.55 20.73
PRIMERA (4K) 49.90 21.10 25.9

LongT5-Base (4K) 46.01 17.37 23.50
LongT5-L (4K) 46.99 18.21 24.08
LongT5-L (8K) 47.18 18.44 24.18
LongT5-XL (8K) 48.17 19.43 24.90

Ours (4K) 47.10 18.94 25.22
Ours (16K) 47.30 19.19 25.38

+ global tuning 47.23 19.18 25.29
+ full tuning 47.07 19.04 25.35

Table 6. ROUGE on ArXiv dataset.

Models R1 R2 RL

Pegasus (1K) 44.70 17.27 25.80
Big Bird-Peg. (4K) 46.63 19.02 41.77

LED (16K) 46.63 19.62 41.83
PRIMERA (4K) 47.58 20.75 42.57

HAT-BART (4K) 46.68 19.07 42.17

Hepos-LSH (7.2K) 48.24 20.26 41.78
Hepos-SKN (10.2K) 47.87 20.00 41.50

LongT5-Base (4K) 44.87 18.54 40.97
LongT5-L (16K) 48.28 21.63 44.11
LongT5-XL (16K) 48.35 21.92 44.27

Ours (4K) 46.65 18.91 42.18
Ours (16K) 47.03 20.19 42.69

+ global tuning 48.08 20.42 43.65
+ full tuning 48.74 20.88 44.23

Table 7. ROUGE on MediaSum.

Models R1 R2 RL

BART-Large (1K) 35.09 18.05 31.44
T5-large (1K) 30.68 14.88 27.88

LongT5-Base (4K) 35.09 18.35 31.87
LongT5-L (4K) 35.54 19.04 32.20
LongT5-XL (4K) 36.15 19.66 32.80

Ours (4K) 35.16 18.13 32.20
Ours (16K) 35.17 18.13 32.21

+ global tuning 35.22 18.08 32.22
+ full tuning 35.31 18.35 32.47

As shown in Tables 4, 5, 6 and 7, LSG achieve very competitive performances
by enabling adapting existing pretrained models to longer sequences. On the
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ArXiv dataset (Table 6), LSG is competitive with every size of the LongT5
model, despite the limited number of model parameters. On the PubMed dataset
(Table 4), LSG also outperforms Pegasus and Big Bird Pegasus, and is close to
Hepos models. On the MultiNews dataset (Table 5), LSG is close to the large
L and XL LongT5 models. We note that while extrapolation improves met-
rics, additional fine-tuning has a negative impact in this case. Since this dataset
is rather small (45K examples, 1,400 steps), fine-tuning a single epoch is not
enough for the model to converge properly, longer training is required. On the
MediaSum dataset (Table 7), LSG is close to the LongT5-base model again. This
dataset has the shortest inputs, thus processing a maximum of 16,384 tokens has
a marginal impact on performances. These results underline the ability of LSG
to efficiently substitute full-attention mechanisms to process long sequences.

The second surprising and important finding is the ability of LSG to improve
metrics from 4.096 to 16.384-length inputs without additional fine-tuning. This
is especially true on ArXiv and PubMed datasets which have the longest input
sequences. Fine tuning additional global tokens further improves metrics while
limiting cost and training time compared to a fully tuned model.

5 Conclusion

We have presented LSG attention, a novel efficient O(n) alternative to the full
attention mechanism relying on local, sparse and global attentions. Our results
on MLM, classification and summarization tasks show that LSG is a fast and very
competitive full attention substitute for pretrained Transformers to efficiently
extrapolate to long input sequences. We also proposed an optimized implemen-
tation of the LSG attention mechanism on HuggingFace, improving training
speed by a factor of 2 without additional memory cost compared to Longformer
and Big Bird models. By providing a PyPI package conversion tool to leverage
existing models and checkpoints (BERT, RoBERTa, DistilBERT, BART), the
proposed approach removes the need of a costly re-training of existing models
to handle long sequences.5
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Abstract. In this paper, we propose a dictionary screening method for
embedding compression in text classification. The key point is to eval-
uate the importance of each keyword in the dictionary. To this end, we
first train a pre-specified recurrent neural network-based model using
a full dictionary. This leads to a benchmark model, which we use to
obtain the predicted class probabilities for each sample in a dataset.
Next, to evaluate the impact of each keyword in affecting the predicted
class probabilities, we develop a novel method for assessing the impor-
tance of each keyword in a dictionary. Consequently, each keyword can be
screened, and only the most important keywords are reserved. With these
screened keywords, a new dictionary with a considerably reduced size can
be constructed. Accordingly, the original text sequence can be substan-
tially compressed. The proposed method leads to significant reductions
in terms of parameters, average text sequence, and dictionary size. Mean-
while, the prediction power remains very competitive compared to the
benchmark model. Extensive numerical studies are presented to demon-
strate the empirical performance of the proposed method.

Keywords: Embedding Compression · Dictionary Screening · Text
Classification

1 Introduction

Over the past few decades, natural language processing (NLP) has become a
popular research field. Among the applications of this filed, text classification is
considered to be a problem of great importance. Many successful applications
exist, such as news classification [14], topic labeling [2], sentiment analysis [8],
and many others. Note that, for most text classification tasks, the inputs are
documents constructed from word sequences. Therefore, a standard RNN-based
model can be readily applied. Remarkably, the model complexity of an RNN-
based model is mainly determined by two factors. They are, respectively, the
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model structure and dictionary size. Obviously, large dictionaries lead to more
complicated RNN models with a large number of parameters. To illustrate this
idea, consider, for example, a standard RNN model with one embedding layer and
one recurrent hidden layer. The total number of parameters needed is dk + 2k2,
where d is the dictionary size and k is the dimension for both the hidden layer
and embedding space. In the AG’s News dataset [18], for instance, the total
number of keywords contained in the dictionary could be as large as d = 93, 994.
If, following [3], we set the dimensions of both the hidden layer and embedding
space to k = 128, then the total number of parameters is more than 12 million.
As to be demonstrated later, we find that the dictionary size can be effectively
reduced to be d = 3, 000, if the method developed in this work is used. As
a result, the total number of parameters can be reduced to about 0.58 million.
This accounts for only about 4.76% of the original model complexity with limited
sacrifice of prediction accuracy.

For text classification, most of the prior work focuses on compressing the
embedding matrix. For example, a number of researchers have adopted hashing
or quantization-based approaches to compress the embedding matrix [9,13,15].
[1] proposed a low rank matrix factorization for the embedding layer. In addition
to compressing the embedding matrix, there is another branch of research that
shows training with character-level inputs can achieve several benefits over word-
level approaches, and it does so with fewer parameters [17]. For a more detailed
review paper, we refer to [5]. Despite the excellent research that has been done on
model compressing, it seems that most studies focus on simplifying the model
structure in one way or another. Little research has been done on dictionary
screening. As discussed in previous paragraph, we can see that the size of the
dictionary can have an important impact on model size. As a consequence, we
are motivated to fill this gap by proposing a dictionary screening method for
text classification applications.

The proposed dictionary screening method aims to exclude less useful key-
words from a dictionary. It can be used to effectively reduce dictionary size, lead-
ing to a significant reduction in model complexity. Specifically, we develop here
a novel dictionary screening method as follows. First, we train a pre-specified
RNN-based model using the full dictionary on a training dataset. This leads
to a benchmark model. With the help of the benchmark model, we obtain the
predicted class probabilities for every sample in the validation set. Next, for a
given keyword in the dictionary, we consider whether it should be excluded from
the dictionary. Obviously, keywords that significantly impact the predicted class
probabilities should be kept, while those that do not should be excluded. Thus,
the key here is determining how to evaluate the impact of the target keyword in
affecting the estimated class probabilities.

To this end, for each document, we replace the target keyword with a mean-
ingless substitute, which is often an empty space. By doing so, the input of the
target keyword is excluded. We then apply the pretrained benchmark model
to this new document. This leads to a new set of estimated class probabilities.
Thereafter, for each document, we obtain two sets of estimated class probabil-
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ities. One is computed based on the full dictionary, and the other is computed
based on the dictionary with the target keyword excluded. Next, the difference
between the two sets of probability estimators is evaluated and summarized.
Keywords with large differences in class probability estimators should be kept.
By selecting an appropriate threshold value, a new dictionary with a substan-
tially compressed size can be obtained. Finally, with the compressed dictionary,
each document can be re-constructed. The associated RNN-based model can
be re-trained on the re-constructed documents, and its prediction accuracy can
be evaluated. Our extensive numerical experiments suggest that the proposed
method can compress the parameter quantity by more than 90%, on average,
with little accuracy sacrificed.

The main contribution of our work is the development of a compression
method for text classification using dictionary screening. There has been rela-
tively little work on compressing dictionary size in the previous literature. A
second contribution is that we provide a novel method for evaluating the impor-
tance of the keywords in a dictionary. We empirically show that our method
outperforms popular baselines like term frequency-inverse document frequency
(TF-IDF) and the t-test for keyword importance analysis.

2 Methodology

2.1 Problem Set up

Let D = {wd : 0 ≤ d ≤ D} be a dictionary containing a total of D keywords
with wd representing the dth keyword. We define w0 to be an empty space. Then,
assume a total of N documents indexed by 1 ≤ i ≤ N . Let Xi = {Xit ∈ D :
1 ≤ t ≤ T} be the ith document. The document is constructed by a sequence
of keywords, Xit, which is indexed by t and is generated from D. If the actual
document length, T ∗, is less than T , we then define Xit = w0 for T ∗ < t ≤ T .
Next, let Yi ∈ {1, 2, · · · ,K} be the class label associated with the ith document.
The goal is then to train a classifier so that we can accurately predict Yi. To
this end, various deep learning models can be used. For illustration purposes, we
consider here a simple RNN model with four layers: one input layer of a word
sequence with dimension T , one embedding layer with d1 = 128 hidden nodes,
one simple RNN layer with d2 = 64 hidden nodes, and one fully connected
layer with K nodes (i.e., the number of class labels). Suppose the dictionary
size is D = 10, 000 and the number of class labels is K = 10, then for the
above simple RNN model, the total number of parameters is given by dfa =
10, 000 × 128 + 64 × 128 + 64 × 64 + 64 × 10 = 1, 292, 928 with the bias term
ignored. However, this number will be much reduced if the dictionary size can
be significantly decreased. For example, the total number of parameters will be
reduced to dfb = 1, 000×128+64×128+64×64+64×10 = 140, 928 if D = 1, 000.
This represents a model complexity reduction as large as (1−dfb/dfa)×100% =
89.1%. We are then motivated to develop a method for dictionary screening.
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2.2 Dictionary Screening

As discussed in the introduction, one of the key tasks for dictionary screening is
to evaluate the importance of each keyword in the dictionary. We can formulate
the problem as follows. First, we train a pre-specified RNN-based model using
the full dictionary, D, on the training dataset. Mathematically, we can write this
model as f(Xi, θ) = {fk(Xi, θ)} ∈ R

K , where Xi is the input document, with θ
as the unknown parameters that need to be estimated. Note that f(Xi, θ) is a
K-dimensional vector, its kth element, fk(Xi, θ) ∈ [0, 1], is a theoretical assumed
function to approximate the class probability. That is, P (Yi = k|Xi) ≈ fk(Xi, θ).
By the universal approximation theorem [4,7], we know that this approximation
can be arbitrarily accurate as long as the approximation function, f(·, θ), can
be sufficiently flexible. To estimate θ, an approximately defined loss function
(e.g., the categorical cross entropy) is usually used. Denote the loss function
as LN (θ) = N−1

∑N
i=1 �(Xi, θ), where �(Xi, θ) is the loss function evaluated

on the ith document. The parameter estimators can then be obtained as θ̂ =
argmaxLN (θ). This leads to the pretrained model as f(Xi, θ̂), which serves as
the benchmark model.

Next, with the help of the pretrained model, we consider how to evaluate the
importance of each keyword in D. Specifically, consider the dth keyword, wd, in
D with 1 ≤ d ≤ D. Define SF = {1, 2, · · · , N} as the indices for the full training
document. Then, for every i ∈ SF , we compute its estimated class probability
vector as p̂i = f(Xi, θ̂). Next, for the document Xi = {Xit ∈ D : 1 ≤ t ≤ T}, we
generate a document copy as X

(d)
i = {X

(d)
it ∈ D : 1 ≤ t ≤ T}, where X

(d)
it = Xit

if Xit �= wd, and X
(d)
it = w0 if Xit = wd. In other words, X

(d)
i is a document that

is almost the same as Xi. The only difference is that keyword wd is replaced by an
empty space, w0. We next apply the benchmark model to X

(d)
i , so an update class

probability vector, p̂
(d)
i = f(X(d)

i , θ̂), can be obtained. The difference between p̂i

and p̂
(d)
i is evaluated by their �2-distance as ||p̂i − p̂

(d)
i ||2. We then summarize the

difference for every wd ∈ D as λ̂(d) = |SF |−1
∑

i∈SF ||p̂i − p̂
(d)
i ||2, where |SF | is

the size of SF . This is further treated as the important score for each keyword,
wd ∈ D. Because this important score is obtained by evaluating the differences
in class probability estimators, we name it as the CPE method for simplicity.

Finally, with a carefully selected threshold value, λ, a new dictionary can be
constructed as Dλ = {wd ∈ D : λ̂(d) ≥ λ} ∪ {w0}. To this end, each document
Xi can be reconstructed as Xλi

= {Xλit ∈ Dλ : 1 ≤ t ≤ T}, where Xλit =
Xit if Xit ∈ Dλ, and Xλit = w0 otherwise. Then, by replacing Xis in the
loss function with Xλi

, a new set of parameter estimators can be obtained as
θ̂λ = argmaxLλ(θ), where Lλ(θ) = N−1

∑N
i=1 �(Xλi

, θ). Once θ̂λ is obtained,
the prediction accuracy of the resulting model, f(Xλi

, θ̂λ), can be evaluated on
the testing dataset. Thereafter, the resulting model, f(Xλi

, θ̂λ), serves as the
reduced model after applying dictionary screening. The algorithm details are
presented as follows.
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Algorithm 1: Dictionary screening method
1 Procedure1 Train a benchmark model:

Input : Document Xi = {Xit ∈ D : 1 ≤ t ≤ T}; Yi ∈ {1, 2, · · · ,K}
for 1 ≤ i ≤ N

Output: Benchmark model f(Xi, θ̂) with estimated parameters θ̂ for
1 ≤ i ≤ N

2 θ̂ = argmaxLN (θ) with LN (θ) = N−1
∑N

i∈1 �(Xi, θ)
3 where�(Xi, θ) is the loss evaluated on the ith document
4 Procedure2 Evaluate the importance of each keyword in D:

Input : D = {wd : 0 ≤ d ≤ D} , f(Xi, θ̂) for 1 ≤ i ≤ N

Output: Dλ = {wd ∈ D : λ̂(d) ≥ λ} ∪ {w0}
5 for d = 1 to D do
6 for i ∈ SF ,SF = {1, 2, · · · , N} is the indices for the full training

document. do
7 Xi = {Xit ∈ D : 1 ≤ t ≤ T}
8 Generate a copy as X

(d)
i = {X

(d)
it ∈ D : 1 ≤ t ≤ T} following:

9 If Xit �= wd then X
(d)
it = Xit else X

(d)
it = w0

10 Uncompressed class probability : p̂i = f(Xi, θ̂)
11 Compressed class probability : p̂

(d)
i = f(X(d)

i , θ̂)
12 Difference computed by �2-distance as ||p̂i − p̂

(d)
i ||2

13 end
14 Summarize the difference:
15 λ̂(d) = |SF |−1

∑
i∈SF ||p̂i − p̂

(d)
i ||2 where |SF | is the size of SF

16 end
17 Select a threshold value λ to finally obtain

Dλ = {wd ∈ D : λ̂(d) ≥ λ} ∪ {w0}

3 Experiments

3.1 Task Description and Datasets

To demonstrate its empirical performance, the proposed dictionary screening
method is evaluated on four large-scale datasets covering various text classifica-
tion tasks. These are, respectively, news classification (AG’s News and Sougou
News), sentiment analysis (Amazon Review Polarity, ARP), and entity clas-
sification (DBPedia). These datasets are popularly studied in previous litera-
ture [17,18]. Summary statistics of the four large-scale datasets are presented
in Table 1. For all the datasets (except for Sougou News), the sample size of
each category is equal in both the training and testing sets. Take AG’s News
for example, it has 30,000 samples and 1,900 samples per class in the training
set and testing set, respectively. For more detailed information about the four
datasets, see [18]. It should be noted that, to make the experiments more diverse,
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the Sougou News data used in this paper are different from those in [18]. Par-
ticularly, we used the original Chinese characters of Sougou News to test the
proposed method, not the Pinyin style used in [18]’s work. Moreover, unlike the
other three datasets, the sample size of each category (e.g., sports, entertain-
ment, business, and the Internet) in Sougou News is not equal. The proportions
of the four categories in the training and testing sets are 48%, 15%, 25%, and
12%, respectively.

Table 1. Summary of four large-scale datasets.

Dataset Classes Task TrainingSize TestingSize

AG’s News 4 news classification 120,000 7,600
Sougou News 4 news classification 63,146 15,787
DBPedia 14 entity classification 560,000 70,000
Amazon Review Polarity 2 sentiment analysis 3,600,000 400,000

3.2 Model Settings

We consider here two different types of deep learning models for text classifi-
cation. They are, respectively, TextCNN [10] and TextBiLSTM [11]. We follow
their network structures but with some modifications to adapt to our exper-
iments. In the task of text classification, the input is text sequence Xi with
length T . It should be noted that T is different for different datasets. In the
current experiment, to train the benchmark models, T is set to 60, 300, 50,
and 100 for AG’s News, Sougou News, DBPedia, and Amazon Review Polarity,
respectively. Practically, each keyword wd ∈ D in the text sequence will be con-
verted to a high dimensional vector of d1 via an embedding layer [12]. For all
three models, the embedding size, d1, is set to 128. Next, we briefly describe the
construction details for the two models.

TextCNN. After the embedding layer, we use three convolutional layers to
extract text information. Each convolutional layer has d1 = 128 filters with
kernel size k ∈ {3, 4, 5}, followed by a max pooling with receptive field size
r = 1. Rectified linear units (ReLUs) [6] are used as activation functions in
the convolutional layers. Then, we concatenate the max pooling results of the
three layers and pass it to the final dense layer through a softmax function for
classification.

TextBiLSTM. The bidirectional LSTM (Bi-LSTM) can be seen as an improved
version of the LSTM. This model structure can consider not only forward
encoded information, but also reverse encoded information [11]. We apply a
Bi-LSTM layer with the hidden states dimension, d2, set to 128. We then use
the representation obtained from the final timestep (e.g., XiT ) of the Bi-LSTM
layer and pass it through a softmax function for text classification.
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3.3 Tuning Parameter Specification

The implementation of the proposed dictionary screening method involves a tun-
ing parameter, which is the threshold value λ. For a given classification model,
this tuning parameter should be carefully selected to achieve the best empiri-
cal performance. Here, the best empirical performance means that the proposed
dictionary screening method can reduce the number of model parameters as
much as possible under the condition of ensuring little or no loss of accuracy.
Generally, the larger the λ value is, the smaller the size of the screened dic-
tionary, and thus the higher the reduction rate that can be achieved. However,
considerable prediction accuracy might be lost. In our experiments, different λ
values indicate that different numbers of keywords can be reserved for subse-
quent text compression. To this end, for analysis simplicity, we investigate the
number of important keywords reserved, denoted as K. Specifically, we rear-
range the keywords in descending order according to the importance score (e.g.,
λ̂(d)), and we select the top 1000, 3000, and 5000 keywords, respectively. That
is, K = {1000, 3000, 5000}. Therefore, we can evaluate the impact of differ-
ent tuning parameters on the performance of the proposed dictionary screening
method.

3.4 Competing Methods

For comparison purposes, two other methods for evaluating the importance of
the keywords in a dictionary are studied. The first one is to calculate the TF-
IDF [16] value of each keyword wd ∈ D. For the kth keyword, we use the word
counts as the term-frequency (TF). The inverse document frequency (IDF) is the
logarithm of the division between the total number of documents and the number
of documents with the kth word in the whole dataset. To this end, the TF-IDF
value for each wd ∈ D can be obtained by multiplying the values of TF and
IDF. It is remarkable that the larger the TF-IDF value is, the more important
the keyword is. The second method is to compute a t-test type statistic. Recall
that, for the dth keyword, wd ∈ D, we have two sets of class probabilities, p̂i

and p̂
(d)
i . Both are K-dimensional vectors. Then, for each dimension k ∈ K, a

standard paired two sample t-test can be constructed to test for the statistical
significance. The resulting p values obtained from different ks (e.g., different
categories) are then summarized, and the smallest one is selected as the final
t-test type measure for the target keyword, denoted as Pi,d. In this case, the
smaller the Pi,d value is, the more important the keyword is.

In summary, we have three methods to evaluate the importance of each key-
word in D. These are the proposed method for evaluating the differences in class
probability estimators (CPE), the method for evaluating the TF-IDF values (TF-
IDF), and the method for evaluating the t-test type statistics (t-statistic). To
make a fair comparison, the new dictionaries constructed by the three methods
are of equal size (e.g., with same tuning parameter K). Then, following the pro-
cedure described in Sect. 3.2, we can obtain three different prediction accuracies
based on the screened dictionary.
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3.5 Performance Measures and Implementation

Following the existing literature [1,17,18], and our own concerns, we adopt six
measures to gauge the empirical performances of the different compression meth-
ods: the parameter reduction ratio (Prr), dictionary reduction ratio (Drr), stor-
age reduction ratio (Srr), FLOP reduction ratio (Frr), and reduction ratio for
averaged text sequence (Trr). Meanwhile, the out-of-sample prediction accuracy
(Acc) is also monitored.

Both text classification models (e.g., TextCNN and TextBiLSTM) are trained
on the four large-scale datasets. This leads to a total of eight working models.
All the working models are trained using the AdaDelta (Zeiler, 2012) with ρ =
0.95, ε = 10−5, and a batch size of 128. The weight decay is set to 5 × 10−4 with
an �2-norm regularizer. To prevent overfitting, the dropout and early stopping
strategies are used for different working models. Finally, a total of 200 epochs are
conducted for each working model. For each working model, we choose the epoch
with the maximum prediction accuracy on the validation set as the baseline
model. All the experiments were run on a Tesla P100 GPU with 64 GB memory.

4 Results Analysis

4.1 Tuning Parameter Effects

In this subsection, we study the impact of the tuning parameter, K, which deter-
mines the number of keywords reserved. Three measures are used to gauge the
finite sample performance: Acc, Prr, and Trr. For illustration purposes, we use
the AG’s News dataset as an example. For this experiment, three different K val-
ues are studied: K = {1000, 3000, 5000}. The detailed results are given in Fig. 1.
The top panel of Fig. 1 displays the performance of the TextCNN model. The red
line in the first barplot is the prediction accuracy for the benchmark model. We
find the resulting prediction accuracy (Acc) of the reduced model increases as
K becomes larger, while the parameter reduction ratio (Prr) and the reduction
ratio for averaged text sequence (Trr) decrease. In the case of K = 3000, we can
see the parameter reduction ratio (Prr) is more than 95%, but there is almost no
accuracy loss. This suggests that the benchmark model can be substantially com-
pressed with little sacrifice in predictive power. Additionally, the averaged text
sequence is substantially reduced based on the dictionary screening. This indi-
cates that there might be some redundant information in the original text that
contributes less to the text classification. The bottom panel of Fig. 1 presents
the results for the TextBiLSTM model, which are very similar to the findings of
TextCNN.

4.2 Performance of Compression Results

On the one hand, the proposed dictionary screening method aims to compress a
text classification model as much as possible. On the other hand, an over com-
pressed model might suffer from a significant loss of prediction accuracy. Thus, it
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Fig. 1. Detailed experimental results for TextCNN and TextBiLSTM on the AG’s
News dataset. Three different K values are considered (K = 1000,3000,5000). Three
performance measures are summarized: prediction accuracy (Acc), parameter reduction
ratio (Prr), and reduction ratio for averaged text sequence (Trr). The red dashed line
in the left panel represents the accuracy of the benchmark model. (Color figure online)

is of great importance to understand the trade-off between prediction accuracy
and model compression. Obviously, they should be appropriately balanced. In
this subsection, we report the fine-tuned compression results so that their best
performance can be demonstrated. For the best empirical performance, we try
to extend the search scope for more tuning parameters. Accordingly, every value
in {1000, 2000, · · · , 10000}(e.g., with an interval of 1000) is tested for K in this
subsection. In our case, we expect that the parameter reduction ratio (Prr) will
be no less than 50% and the accuracy loss will be no more than 2%. The best
results in terms of the above criteria are summarized in Table 2. From Table 2,
we can draw the following conclusions. First, for all cases, the benchmark mod-
els can be compressed substantially using the dictionary screening method with
little sacrifice of accuracy. For example, the value of Prr is more than 95% in the
case of TextCNN on Sougou News with only 0.31% sacrifice of accuracy. Second,
we report that for half of the cases, the prediction accuracy of the reduced model
is higher than that of the benchmark model (e.g., ΔAcc is smaller than zero).
For instance, for the TextBiLSTM model on DBPedia, the prediction accuracy
of the baseline model is as high as 97.77%, while that of the reduced model
is further improved to 97.99%. Finally, we find the reduction in storage and
FLOPs are also quite substantial. For instance, the Srr is 99.56% and the Prr is
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99.70% for the TextBiLSTM on ARP. To summarize, we find that the proposed
dictionary screening method works quite well on all models and datasets under
consideration.

Table 2. Fine-tuned dictionary screening results for all model and dataset combina-
tions with the best performance. ARP stands for the Amazon Review Polarity dataset.
Acc-1 is the prediction accuracy of the benchmark model. Acc-2 is the prediction accu-
racy of the reduced model. ΔAcc is the difference between the benchmark Acc and
reduced Acc. All computed values are in % units.

Model Acc-1 Acc-2 ΔAcc Prr Drr Trr Srr Frr

TextCNN AG’s News 89.37 89.43 -0.06 95.24 96.81 34.54 85.61 89.49
Sougou News 95.56 95.25 0.31 97.28 98.19 48.35 97.26 93.83
DBPedia 98.41 97.88 0.53 98.97 99.27 27.17 99.40 98.97
ARP 92.70 91.45 1.25 99.74 99.66 13.75 98.77 99.33

TextBiLSTM AG’s News 89.58 89.72 -0.14 92.65 94.68 24.25 85.19 90.72
Sougou News 95.77 95.34 0.43 96.98 98.19 47.53 97.96 95.81
DBPedia 97.77 97.99 -0.22 99.33 99.56 35.14 98.95 98.44
ARP 92.16 92.26 -0.10 99.78 99.87 24.75 99.56 99.70

4.3 Competing Methods

Table 3. Results of the three competing methods (e.g., CPE, TF-IDF, and t-statistics).
ARP stands for the Amazon Review Polarity dataset. Reduced Acc is the prediction
accuracy of the reduced model. For each model and dataset combination, the reduced
models were trained with dictionaries of equal size. Trr is the reduction ratio for aver-
aged text sequence. The values outside of brackets are the results of the propose CPE
method. The first value in brackets is the result obtained by TF-IDF, and the second
value is the result by t-statistic. All computed values are in % units.

Model Reduced Acc Trr

TextCNN AG’s News 89.66 (89.33, 87.91) 34.54 (29.19, 46.07)
Sogou News 94.71 (94.66, 94.68) 57.54 (44.39, 55.56)
DBPedia 97.89 (97.89, 17.23) 27.17 (25.36, 93.12)
ARP 90.73 (90.49, 89.77) 25.50 (24.25, 32.50)

TextBiLSTM AG’s News 90.49 (90.09, 89.89) 18.07 (13.54, 23.84)
Sogou News 95.47 (95.14, 95.31) 47.53 (37.53, 52.54)
DBPedia 97.99 (98.00, 17.39) 35.14 (30.80, 99.82)
ARP 92.32 (92.24, 91.55) 24.75 (24.25, 30.00)

Because the key step of the proposed dictionary screening method is to eval-
uate the importance of each keyword in the dictionary. We compare the per-
formance of the proposed evaluating method, CPE, with two other competing
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methods. These are the TF-IDF and t-statistics methods, which are described
in Subsect. 4.4. For a fair comparison, the new dictionaries constructed with the
three methods are of equal size (e.g., the dictionary reduction ratio, Drr, is the
same) for each model and dataset combination. As a result, only the reduced pre-
diction accuracy (Acc) and reduction ratio for averaged text sequence (Trr) are
presented in Table 3. From Table 3, we can obtain the following conclusions. First,
we can see that the t-statistics method is not stable in evaluating the importance
of keywords because its results for the DBPedia dataset were not comparable
with the other methods. In the case of DBPedia, the t-statistic method ceases to
be effective because its Trr value is nearly 100%. This indicates that it cannot
filter the important keywords from the dictionary, leading to a very low reduced
Acc value. Second, in all cases, the proposed CPE method achieved a slightly
higher reduced accuracy value compared with the TF-IDF method. Moreover,
for most cases, by using the proposed CPE method, we can achieve a substan-
tially reduced ratio for averaged text sequence (Trr). This indicates that the
proposed CPE method can achieve a better performance in terms of predicted
accuracy when keeping a relatively short text sequence.

5 Conclusions

In this paper, we propose a dictionary screening method for embedding com-
pression in text classification tasks. The goal of this method is to evaluate the
importance of each keyword in the dictionary. To this end, we develop a method
called CPE to evaluate the differences in class probability estimators. With the
CPE method, each keyword in the original dictionary can be screened, and only
the most important keywords can be reserved. The proposed method leads to
a significant reduction in terms of parameters, average text sequence, and dic-
tionary size. Meanwhile, the prediction power remains competitive. Extensive
numerical studies are presented to demonstrate the empirical performance of
the proposed method.

To conclude this article, we present here a number of interesting topics for
future study. First, the proposed dictionary screening method involves a tuning
parameter (e.g., K), and its optimal value for balancing prediction accuracy and
parameter reduction needs to be learned. This is an important topic for future
study. Second, the proposed method is only used for a text classification task.
However, there are other natural language tasks, such as machine translation,
question answering, and so on. The scalability of the proposed method in these
tasks is also a very worthy study. Lastly, the proposed method is only conducted
on English and Chinese, other language types should be investigated to test its
validity.
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Abstract. Much research has been devoted to the problem of learning
fair representations; however, they do not explicitly state the relationship
between latent representations. In many real-world applications, there
may be causal relationships between latent representations. Furthermore,
most fair representation learning methods focus on group-level fairness
and are based on correlation, ignoring the causal relationships under-
lying the data. In this work, we theoretically demonstrate that using
the structured representations enables downstream predictive models to
achieve counterfactual fairness, and then we propose the Counterfactual
Fairness Variational AutoEncoder (CF-VAE) to obtain structured repre-
sentations with respect to domain knowledge. The experimental results
show that the proposed method achieves better fairness and accuracy
performance than the benchmark fairness methods.

Keywords: Counterfactual Fairness · Representation Learning ·
Variational AutoEncoder

1 Introduction

Machine learning algorithms have gradually penetrated into our life [23] and have
been applied to decision-making for credit scoring [16], crime prediction [14] and
loan assessment [5]. The fairness of these decisions and their impact on individ-
uals or society have become an increasing concern. Some extreme unfair inci-
dents have appeared in recent years. For example, COMPAS, a decision support
model that estimates the risk of a defendant becoming a recidivist was found
to predict higher risk for black people and lower risk for white people [1]; Face-
book users receive a recommendation prompt when watching a video featuring
blacks, asking them if they’d like to continue to watch videos about primates [21].
These incidents indicate that the machine learning models become a source of
unfairness, which may lead to serious social problems. Since most models are
trained with data, which will lead to unfair decisions due to discrimination in

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Kashima et al. (Eds.): PAKDD 2023, LNAI 13935, pp. 471–482, 2023.
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Fig. 1. (a) The process of existing works on learning fair representations to make
predictions. (b) The process of our work. A is the set of sensitive attributes; X is the
set of other observed attributes; Za is the representation of A; Y is the target attribute;
Zx is the representation of X; Z

′
x is the structured representation of X with respect to

the conceptual level causal graph Gc. The dotted line denotes the prediction process.

the training data. Therefore, the key issue for solving unfair decisions becomes
whether we can eliminate these discrimination embedded in the data through
algorithms [23].

To obtain fair decisions, many methods [6,10,20,22,25,31] are proposed to
learn fair representations through two competing goals: encoding data as much
as possible, while eliminating any information that transfers through the sen-
sitive attributes. To separate the information from sensitive attributes, various
extensions of Variational Autoencoder (VAE) consider minimising the mutual
information among latent representations [6,20,25]. For example, Creager et al.
[6] introduced disentanglement loss into the VAE objective function to decom-
pose observed attributes into sensitive latents and non-sensitive latents to achieve
subgroup level fairness; Park et al. [25] improved the above methods and pro-
posed the mutual attribute latent (MAL) to retain only beneficial information
for fair predictions.

The existing methods [6,20] follow Fig. 1a to achieve fair predictions. Specif-
ically, these methods learn fair representations Zx without stating any relation-
ships between Zx1 and Zx2, which may not satisfy the domain knowledge. Let
us consider an example where we aim to predict a person’s salary using some
observed attributes. Following the domain knowledge, we know that people’s
salary is determined by two semantic concepts, intelligence and career respec-
tively. We also note that people’s intelligence determines their career with high
probability, which can be expressed as a conceptual level causal graph Gc, i.e.,
Intelligence → Career. Therefore, we need a method as shown in Fig. 1b that not
only ensures the representation of observed attributes with no sensitive informa-
tion but also retains causal relationships with respect to domain knowledge.

On the measurement of fairness, all fair representation learning methods
use fairness metrics based on correlation, including the VAE-based methods
[6,20,25]. It is well known that correlation does not imply causation. Recent
studies [26,32] have shown that quantifying fairness based on correlation may
produce higher deviations. Counterfactual fairness is a fundamental framework
based on causation. With counterfactual fairness, a decision is fair towards an
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individual if it is the same in the actual world and in the counterfactual world
when the individual belongs to a different demographic group [17].

In this paper, we follow the counterfactual fairness and propose a VAE-based
unsupervised fair representation learning method, namely Counterfactual Fair-
ness Variational AutoEncoder (CF-VAE). We make the following contributions
in this paper:

– We propose CF-VAE, a novel VAE-based unsupervised counterfactual fair-
ness method. CF-VAE can learn structured representations with no sensitive
information and retain causal relationships with respect to the conceptual
level causal graph determined by domain knowledge.

– We theoretically demonstrate that the structured representations obtained
by CF-VAE are suitable for training counterfactually fair predictive models.

– We evaluate the effectiveness of the CF-VAE method on real-world datasets.
The experiments show that CF-VAE outperforms existing benchmark fairness
methods in both accuracy and fairness.

2 Background

We use upper case letters to represent attributes and boldfaced upper case letters
to denote the set of attributes. We use boldfaced lower case letters to represent
the values of the set of attributes. The values of attributes are represented using
lower case letters.

Let A be the set of sensitive attributes; X be the set of other observed
attributes; V be the set of all observed attributes, i.e., V = {A,X}; Y be the
target attribute. We use ̂Y (·) to represent the predictor. Gc is the conceptual
level causal graph and represents domain knowledge. The nodes shown in Gc are
“concepts”, each of which represents a set of observed attributes that have similar
meanings. Each “concept” has causal relationships with the other “concepts”.

In this paper, a causal graph is used to represent a causal mechanism. In
a causal graph, a directed edge, such as Vj → Vi denotes that Vj is a parent
(i.e., direct cause) and we use pai to denote the set of parents of Vi. We follow
Pearl’s [26] notation and define a causal model as a triple (U,V,F): U is a set
of the latent background attributes, which are the factors not caused by any
attributes in the set V = {A,X}; F is a set of deterministic functions, Vi =
fi(pai, Upai

), such that pai ⊆ V\{Vi} and Upai
⊆ U. Besides, some commonly

used definitions in graphical causal modelling, such as faithfulness, d-separation
and causal path can be found in [26,27].

With the causal model (U,V,F), we have the following definition of coun-
terfactual fairness:

Definition 1. (Counterfactual Fairness [17]). Predictor ̂Y (·) is counterfac-
tually fair if under any context X = x and A = a, P (̂YA←a(U) = y | X =
x,A = a) = P (̂YA←ā(U) = y | X = x,A = a), for all y and for any value ā
attainable by A.
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Counterfactual fairness is considered to be related to individual fairness [17].
Individual fairness means that similar individuals should receive similar pre-
dicted outcomes. The concept of individual fairness when measuring the simi-
larity of the individual is unknowable, which is similar to the unknowable dis-
tance between the real-world and the counterfactual world in counterfactual
fairness [18].

3 Proposed Method

In this section, we first theoretically demonstrate that learning counterfactually
fair representations are feasible. Then, we propose the Counterfactual Fairness
Variational AutoEncoder (CF-VAE) to obtain the structured representations for
predictors to achieve counterfactual fairness.

3.1 The Theory of Learning Counterfactually Fair Representations

We discuss what types of representations enable downstream predictive models
to achieve counterfactual fairness. Following the work in [17], the implication of
counterfactual fairness is described as follows:

Definition 2. (Implication of Counterfactual Fairness [17]). Let G be
the causal graph of the given model (U,V,F). If there exists W be any non-
descendant of A, then downstream predictor ̂Y (W) will be counterfactually fair.

We extend Definition 2 to the fair representation learning and present the
following theorem.

Theorem 1. Given the causal graph G, Za is the representation of sensitive
attributes A, Z

′
x is the structured representation of the other observed attributes

X with respect to the conceptual level causal graph Gc. We have ̂Y (Z
′
x) satisfy

counterfactual fairness.

Proof. Given the causal graph G as shown in Fig. 2, there is not a parent node
of A in X, and there is not a child node of Y in X. X contains four subsets: XA

Y

is the subset of other observed attributes that are descendants of A and parents
of Y ; XN

Y is the subset of other observed attributes that are only parents of Y ;
XN

N is the subset of other observed attributes that are no relationships with A
and Y ; XA

N is the subset of other observed attributes that are only descendants
of A. After perfect representation learning, we obtain Za and Z

′
x.

We proof that Z
′
x is not the descendant of A with the following two subsets.

For the first subsets {XA
Y ,XN

Y ,XA
N}, there are seven paths between A and Z

′
x,

including A → XA
Y ← Z

′
x, A → XA

Y → Y ← Z
′
x, A → XA

Y → Y ← XN
Y ← Z

′
x,

A → Y ← XA
Y ← Z

′
x, A → Y ← Z

′
x, A → Y ← XN

Y ← Z
′
x and A → XA

N ← Y .
These seven paths are blocked by ∅ (i.e., A and Z

′
x are d-separated by ∅), since

each path contains a collider either XA
Y or Y or XA

N. For second subset XN
N,

there is no path connecting XN
N and Y . Hence, Z

′
x is not the descendant of A.

Therefore, ̂Y (Z
′
x) is counterfactually fair based on Definition 2. ��
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Fig. 2. G is the causal graph that rep-
resents the causal relationship between
A, X = {XA

Y ,XN
Y ,XA

N,XN
N} and Y .

The dotted line represents the predic-
tion process that uses Z

′
x.

We use Fig. 2 to show whether the
following predictors satisfy counterfactual
fairness.

− ̂Y (A,X): This model is unfair since
it uses sensitive attributes to make predic-
tion.

− ̂Y (X): This model satisfies fairness
through awareness [8] but fails to achieve
counterfactual fairness. Since it uses XA

Y

and XA
N which are the descendants of A.

− ̂Y (Za,Z
′
x): This model is unfair

because it uses sensitive attributes for pre-
diction. The reason is that Za is the representation of A, which should be con-
sider as sensitive attributes either.

− ̂Y (XN
Y ,XN

N): This model satisfies counterfactual fairness since both XN
Y

and XN
N are non-descendants of A. However, this predictor losses a lot of useful

information that embeds in other observed attributes.
− ̂Y (Z

′
x): This model is counterfactually fair based on Theorem 1 and

achieves higher accuracy than ̂Y (XN
Y ,XN

N) as shown in our experiments.

3.2 CF-VAE

We first discuss the causal constraints and then explain the loss function of
CF-VAE in detail. The architecture of CF-VAE is shown in Fig. 3.

Learning Representations with Causal Constraints. We aim to retain
causal relationships between “concepts” through a more easily accessible con-
ceptual level causal graph Gc and embed these relationships in representations.

To formalise causal relationships, we consider n “concepts” in the dataset,
which means Z

′
x should have the same dimension as “concepts”. The “concepts”

in observations are causally structured by Gc with an adjacency matrix C. For
simplicity, in this paper, the causal constraints are exactly implemented by a
linear structural equation model: Z

′
x = (I − CT )−1Zx, where I is the identity

matrix, Zx is obtained from the encoder, Z
′
x is constructed from Zx and C. C

is obtained from Gc with respect to domain knowledge. The parameters in C
indicate that there are corresponding edges, and the values of the parameters
indicate the weight of the causal relationships. It is worth noting that if the
parameter value is zero, it means that such an edge does not exist, i.e., no causal
relationship between these two “concepts”.

As mentioned above, Zx is obtained from the encoder, we cannot guarantee
that each attribute inside is independent. To ensure the independence of each
attribute in Zx, we employ the total correction regularisation (TCR) in our loss
function. TCR also encourages the correctness of structured Z

′
x with respect to

domain knowledge since it guarantees that there are no relationships between
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Fig. 3. The architecture of CF-VAE.

each attribute in Zx before adding causal constraints. The TCR for our pro-
posed CF-VAE is defined as, LTCR = γDKL[q(Zx)||∏DZx

i=1 q(Zxi
)], where γ is

the weight value, DZx is dimension of Zx.

Learning Strategy. We first explain the Evidence lower bound (ELBO) with
causal constraints. Then, we add orthogonality promoting regularisation (OPR)
to obtain the loss function of CF-VAE. Given the training samples, the param-
eters can be optimised by maximising the following ELBO:

M = Eq(Za|A)[log p(A|Za)] + Eq(Z′
x|X)[log p(X|Z′

x)]

− DKL[q(Za|A)||p(Za)] − DKL[q(Z
′
x|X)||p(Z

′
x)],

where p(Z
′
x) = (I − CT )−1p(Zx); p(X|Z′

x) =
∏DX

i=1 p(Xi|Z′
x);

q(Z
′
x|X) =

∏
D

Z
′
x

i=1 N (μ = μ̂Z′
xi

, σ2 = σ̂2
Z′

xi

).

Then, we introduce orthogonality to encourage disentanglement between Za

and Z
′
x. We employ orthogonality promoting regularisation based on the pairwise

cosine similarity among latent representations: if the cosine similarity is close to
zero, then the latent representations are closer to being orthogonal and indepen-
dent [29]. The orthogonality promoting regularisation (OPR) for our proposed

CF-VAE is defined as, LOPR = 1
B

∑B
i=1

Zai
TZ

′
xi

‖Zai
‖2 ‖Z′

xi
‖2

, where B denotes the batch

size for neural network, ‖·‖2 is the l2 norm.
In conclusion, the loss function of our proposed CF-VAE is defined as:

LCF-VAE = −M + LTCR + LOPR.

4 Experiments

In this section, we conduct extensive experiments to evaluate CF-VAE on real-
world datasets. Before showing the detailed results, we first present the details
of selected methods and the evaluation metrics. The code is available at https://
github.com/IRON13/CF-VAE.

https://github.com/IRON13/CF-VAE
https://github.com/IRON13/CF-VAE
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4.1 Framework Comparison

The proposed CF-VAE is considered as a pre-processing technique to address
fairness issues. Hence, we compare CF-VAE with traditional and VAE-based
pre-processing methods. For traditional methods, we select baselines including
ReWeighting (RW) [13], Disparate Impart Remover (DIR) [9] and Optimized
Preprocessing (OP) [2]. For VAE-based methods, we compare with VFAE [20]
and FFVAE [6]. We also obtain the Full model for comparison, which uses all
attributes in the dataset to make predictions.

We select several well-known predictive models to simulate the downstream
prediction process. Linear Regression (LRR), Stochastic Gradient Descent
Regression (SGDR) and Multi-layer Perceptron Regression (MLPR) are used for
regression tasks; Logistic Regression (LRC), Stochastic Gradient Descent Classi-
fication (SGDC) and Multi-layer Perceptron Classification (MLPC) are used for
classification tasks. For each predictive model, we run 10 times and record the
mean and variance of the results for evaluation metrics.

4.2 Evaluation Metrics

Fairness. There are no metrics to quantify counterfactual fairness since we can
only obtain real-world data. Thus, we propose the situation test to measure
fairness for different predictive models. In our experiment, we define unfairness
score (UFS) to measure the result of the situation test. Specifically, the form
of score differs for different predictive models. For regression tasks, we define

UFSR =

√
1
N

∑N
i=1

(
ŶA←a(Z

′
xi ) − ŶA←ā(Z

′
xi )

)2

; For classification tasks, we define

UFSC = 1
N

∑N
i=1 xor

(
ŶA←a(Z

′
xi

), ŶA←ā(Z
′
xi

)
)

(N is the number of samples for
evaluation). The lower UFS value means that the predictive models achieve
higher fairness performance.

Accuracy. We evaluate the performance on prediction with the following met-
rics. For regression tasks, we use Root Mean Square Error (RMSE) to compare
the error between prediction results and target attributes’ values. For classifica-
tion tasks, we use accuracy to evaluate various predictive models.

4.3 Law School

The law school dataset comes from a survey [28] of admissions information from
163 law schools in the United States. It contains information of 21,790 law stu-
dents, including their entrance exam scores (LSAT), their grade point average
(GPA) collected prior to law school, and their first-year average grade (FYA).
The school expects to predict if the applicants will have a high FYA. Gender and
race are sensitive attributes in this dataset, and the school also wants to ensure
that predictions are not affected by sensitive attributes. However, LSAT, GPA
and FYA scores may be biased due to socio-environmental factors. We use the
same Gc as shown in work [17] to model latent “concepts” of GPA and LSAT .
The process of CF-VAE for the Law school dataset is shown in Fig. 4a.
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Fig. 4. (a) The process of CF-VAE for Law school dataset. (b) The process of CF-VAE
for Adult dataset.

Table 1. The results for Law School dataset. The best fairness aware RMSE and the
best UFSR are shown in bold.

Model Accuracy (RMSE) ↓ Fairness (UFSR) ↓
LRR SGDR MLPR LRR SGDR MLPR

Full 0.865(0.007) 0.867(0.007) 0.865(0.007) 0.660(0.019) 0.762(0.019) 0.760(0.045)

RW 0.955(0.013) 0.956(0.012) 0.953(0.012) 0.067(0.002) 0.067(0.001) 0.079(0.003)

DIR 0.943(0.009) 0.944(0.009) 0.941(0.010) 0.060(0.001) 0.060(0.001) 0.070(0.002)

OP 0.959(0.011) 0.960(0.011) 0.956(0.010) 0.047(0.001) 0.046(0.001) 0.055(0.003)

VFAE 0.932(0.007) 0.933(0.007) 0.934(0.007) 0.035(0.010) 0.074(0.017) 0.096(0.010)

FFVAE 0.933(0.005) 0.934(0.004) 0.935(0.005) 0.032(0.007) 0.060(0.022) 0.097(0.008)

CF-VAE 0.931(0.006) 0.932(0.006) 0.932(0.006) 0.013(0.006) 0.025(0.011) 0.044(0.006)

Results. As shown in Table 1, since the Full model uses sensitive attributes
to make predictions, inverting sensitive attributes has the highest impact on
the individual’s prediction results, which means that the model is unfair. RW,
DIR and OP achieves fair predictions by modifying the dataset compared to
the Full model. Both VFAE and FFVAE disentangle the sensitive attributes
with latent representations, so the influence of inverting the sensitive attributes
on the prediction results is small. Our method achieves the lowest UFSR, 0.013,
0.025, and 0.044 for LRR, SGDR, and MLPR respectively, which means CF-VAE
disentangle Z

′
x and Za more precisely.

For accuracy results, the Full model uses sensitive information to more accu-
rately predict FYA and thus achieves the highest accuracy. The proposed CF-
VAE achieves the best fairness aware accuracy in all predictive models than
other methods.

4.4 Adult

The Adult dataset comes from the UCI repository [7] contains 14 attributes
including race, age, education information, marital information as well as capi-
tal gain and loss for 48,842 individuals. We use the same Gc as shown in previ-
ous research [4,24] to model the latent “concepts”. The adjacency matrix C is

defined as: C =

∣∣∣∣∣∣
0 λ12 λ13

0 0 λ23

0 0 0

∣∣∣∣∣∣. Then, we construct Z
′
x from Zx and C as follows:
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Table 2. The results for Adult dataset. The best fairness aware accuracy and the best
UFSC are shown in bold.

Model Accuracy ↑ Fairness (UFSC) ↓
LRC SGDC MLPC LRC SGDC MLPC

Full 0.802(0.002) 0.803(0.004) 0.831(0.004) 0.068(0.003) 0.060(0.018) 0.034(0.009)

RW 0.797(0.001) 0.792(0.002) 0.819(0.001) 0.038(0.001) 0.029(0.002) 0.052(0.001)

DIR 0.800(0.001) 0.793(0.003) 0.817(0.001) 0.035(0.001) 0.027(0.002) 0.046(0.001)

OP 0.780(0.002) 0.779(0.003) 0.783(0.002) 0.032(0.003) 0.030(0.004) 0.033(0.005)

VFAE 0.785(0.001) 0.781(0.003) 0.819(0.004) 0.062(0.002) 0.041(0.010) 0.025(0.003)

FFVAE 0.785(0.003) 0.782(0.001) 0.814(0.005) 0.062(0.001) 0.044(0.010) 0.032(0.010)

CF-VAE 0.801(0.002) 0.794(0.004) 0.820(0.002) 0.031(0.002) 0.020(0.006) 0.024(0.004)

Z
′
x1 = Zx1 ; Z

′
x2 = λ12Zx1 + Zx2 ; Z

′
x3 = λ13Zx1 + λ23Zx2 + Zx3 . We set parameter

{λ12 = 1, λ13 = 1, λ23 = 1} to denote that edges within latent representations,
i.e., Z

′
x1 → Z

′
x2 , Z

′
x1 → Z

′
x3 , Z

′
x2 → Z

′
x3 . The process of CF-VAE is shown in

Fig. 4b.

Results. The fairness results are shown in Table 2, the Full model achieves the
worst UFSC, since it use A to predict income. Both baseline fairness models
and other VAE-based methods improve fairness to a certain extent. The pro-
posed CF-VAE achieves the best UFSC, only 3.1%, 2.0% and 2.4% of individu-
als’ results are affected by sensitive attributes’ values inversions in LRC, SGDC

and MLPC, respectively. Our method achieves better fairness performance than
other methods, since it remains causal relationships in latent representations
with respect to Gc and disentangles structured representations with sensitive
attributes.

In order to achieve fairness, VFAE and FFVAE lose about 2% of their accu-
racy performance. RW, DIR and OP modify the dataset resulting in a loss of
predictive performance. The proposed CF-VAE not only guarantees the fairness
performance but also retains the causal relationships to improve accuracy. CF-
VAE loses less information than other VAE-base methods and achieves the best
fairness aware accuracy performance in all predictive models, i.e., 80.1%, 79.4%
and 82.0% in LRC, SGDC and MLPC, respectively.

4.5 Ablation Study

We follow the same procedure in [3] to generate synthetic datasets and conduct
an ablation study to validate the contribution of each component in our method
as shown in Table 3.

The Full model (Model i) uses all the observed attributes to train the pre-
dictors. The predictors achieve the best accuracy but the worst fairness perfor-
mance. VFAE (Model ii) is the basic VAE-based unsupervised fair representa-
tion learning method. We set it to be the baseline. Model iii is CF-VAE without
adding causal constraints, which achieves similar results as VFAE since both
methods remove sensitive information from the learnt representations.
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Table 3. The results of ablation study. The best fairness aware RMSE and the best
UFSR are shown in bold, and the runner-up results are underlined.

Model Accuracy (RMSE) ↓ Fairness (UFSR) ↓
LRR SGDR MLPR LRR SGDR MLPR

i 0.078(0.001) 0.081(0.001) 0.081(0.001) 0.102(0.001) 0.098(0.001) 0.106(0.002)

ii 0.126(0.002) 0.126(0.002) 0.145(0.002) 0.006(0.001) 0.010(0.002) 0.104(0.005)

iii 0.125(0.001) 0.125(0.001) 0.145(0.001) 0.007(0.001) 0.011(0.003) 0.105(0.003)

iv 0.109(0.001) 0.111(0.001) 0.122(0.002) 0.003(0.001) 0.004(0.002) 0.071(0.002)

v 0.109(0.001) 0.110(0.001) 0.121(0.001) 0.002(0.001) 0.005(0.002) 0.070(0.002)

Then, we employ causal constraints and add TCR in the loss function
as Model iv, which retains causal relationships in latent representations and
improves both accuracy and fairness performance than previous models. Model
v (a.k.a. CF-VAE) is to encourage Z

′
x and Za are disentangled by adding OPR.

As shown in Table 3, CF-VAE achieves the best accuracy performance and UFSR

among most predictive.

5 Related Works

The machine learning literature has increasingly focused on exploring how algo-
rithms can protect marginalised populations from unfair treatment. An impor-
tant research area is how to quantify fairness, which can be divided into two
categories, the statistical framework and the causal framework.

In the statistical framework, Demographic parity was defined by [31], which
is used to measure group-level fairness. Other similar metrics include equalised
odds [11], predictive rate parity [30]. Dwork et al. [8] proposed a measurement to
quantify individual-level fairness, that is, similar individuals should have similar
treatments, and they use distance functions to measure how similar between
individuals. In the causal framework, the (conditional) average causal effect is
used to quantify fairness between groups [19]; Natural direct and natural indirect
effects are used to quantify specific fairness [24,33]; When unfair causal paths
are identified by domain knowledge, Chiappa [4] used the path-specific causal
effects to quantify fairness on approved paths. For more related works, please
refer to the literature review [23,32].

Our work is related to learning fair representations, which aims to encode
data information into a lower space while removing sensitive information.
VAE [15] and β-VAE [12] have inspired several studies in fair representation
learning. Louizos et al. [20] first introduced VAE for learning fair represen-
tation to disentangle the sensitive information and non-sensitive information,
they proposed a semi-supervised method to encourage disentanglement by using
“Maximum Mean Discrepancy” (MMD). However, the organisations that col-
lect the data cannot predict the downstream uses of the data and the models
that might be used [10,31]. Due to this, many following up works [6,20] focus
on unsupervised learning fair representation. But these works only focus on
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correlation-based constraints to ensure fairness. Our approach combines coun-
terfactual fairness and unsupervised fair representation learning to provide the
proper representations. Furthermore, we innovatively embed domain knowledge
into representations by adding causal constraints with respect to domain knowl-
edge.

6 Conclusion

In this paper, we investigate unsupervised counterfactually fair representation
learning and propose a novel method named CF-VAE which considers causal
relationships with respect to domain knowledge. We theoretically demonstrate
that the structured representations obtained by CF-VAE enable predictive mod-
els to achieve counterfactual fairness. Experimental results on real-world datasets
show that CF-VAE achieves better accuracy and fairness performance on down-
stream predictive models than the benchmark fairness methods. Ablation study
on synthetic datasets shows that causal constraints with total correction reg-
ularisation achieve better accuracy performance and orthogonality promoting
regularisation encourages disentanglement with sensitive attributes.
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Abstract. Fairness across different demographic groups is an essential
criterion for face-related tasks, Face Attribute Classification (FAC) being
a prominent example. Simultaneously, federated Learning (FL) is gain-
ing traction as a scalable paradigm for distributed training. In FL, client
models trained on private datasets get aggregated by a central aggrega-
tor. Existing FL approaches require data homogeneity to ensure fairness.
However, this assumption is restrictive in real-world settings. E.g., geo-
graphically distant or closely associated clients may have heterogeneous
data. In this paper, we observe that existing techniques for ensuring fair-
ness are not viable for FL with data heterogeneity. We introduce F3,
an FL framework for fair FAC under data heterogeneity. We propose
two methodologies in F3, (i) Heuristic-based and (ii) Gradient-based,
to improve fairness across demographic groups without requiring data
homogeneity assumption. We demonstrate the efficacy of our approaches
through empirically observed fairness measures and accuracy guarantees
on popular face datasets. Using Mahalanobis distance, we show that F3
obtains a practical balance between accuracy and fairness for FAC. The
code is available at: github.com/magnetar-iiith/F3.

Keywords: Fairness · Federated Learning · Data Heterogeneity

1 Introduction

Face Attribute Classification (FAC) finds prominence for tasks such as gender
classification, face verification, and face identification [25]. Recently, researchers
have highlighted a critical issue in FAC: attribute prediction may be biased
towards specific demographic groups [17]. E.g., for gender classification, the
error rate for ‘darker’ faces is greater than that on ‘lighter’ faces. Further, face
recognition-based criminal detection systems are prone to classify innocent peo-
ple with ‘darker’ faces as suspects. This bias in predictions is unfairness. It is
often associated with the unavailability of balanced datasets [18]. To overcome
this issue, researchers have introduced balanced, large-scale datasets [9].

Federated Learning (FL) has emerged as a popular paradigm for scalable dis-
tributed training for large-scale data [11]. FL comprises (i) independent clients
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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that train local models on their private data and (ii) a central aggregator which
combines these local models (e.g., through a random weighted average aka
FedAvg [13]), to derive a generalised global model. Unfortunately, traditional
FL models typically focus on standard performance measures (e.g., accuracy)
and inherit the fairness related drawbacks of non-FL approaches [6].

To address the unfairness in FL several methods exist [4,6,14,21]. However,
these methods inherently assume FL clients with homogeneous data, i.e., they
assume that FL clients’ data contains samples from all the demographic groups of
a particular sensitive attribute. For example, with ‘age’ as the sensitive attribute,
the client’s local training data would have samples from both ‘young’ and ‘adult’
demographic groups. However, clients’ data is likely to be heterogeneous in many
FL settings. A smartphone belonging to a ‘young’ user may have content belong-
ing majorly to its peers [16], i.e., inter-client heterogeneity in terms of age. Sim-
ilarly, geographically separated clients may exhibit inter-client heterogeneity in
demographics. Such data heterogeneity may, in turn, reduce fairness for tasks
such as FAC.

Our Approach: In this paper, we introduce and study the fair Face Attribute
Classification (FAC) problem in FL under data heterogeneity (FL with DH). We
first prove that existing approaches to ensure fairness [7,15] are not applicable
in this setting (Proposition 1). Consequently, we introduce F3, a FL framework
for Fair Face Attribute Classification. Under the F3 framework, we propose two
different methodologies (i) Heuristic-based F3 and (ii) Gradient-based F3.

• Heuristic-based F3 includes novel aggregation heuristics: (i) FairBest, (ii)
α-FairAvg, and (iii) α-FairAccAvg which prioritize specific local client
model(s) to improve the accuracy and fairness trade-off (Sect. 3.1).

• Gradient-based F3 introduces FairGrad, where the client training is mod-
ified to include fairness through gradients communicated by the aggregator,
to train a fair and accurate global model (Sect. 3.2).

• To validate the efficacy of both our methodologies, we conduct extensive
experiments on three popular face datasets, namely FairFace [9], FFHQ [10],
and UTK [23] (Sect. 4). Our results highlight that F3, through its aggrega-
tion and gradient-based methodologies, outperforms the standard approach,
FedAvg-DH [13]. More concretely, F3 ensures 25%–82% improvement in terms
of fairness with an accuracy drop of 0.4%–17% compared to FedAvg-DH.

Due to space constraints, we place our work w.r.t the existing literature in terms
of (i) fairness and (ii) data heterogeneity in FL in the full version [8]. Also,
note that the methods proposed in this work address unfairness in FL with
DH setting, irrespective of the classification problem. However, we choose Face
Attribute Classification to demonstrate our methods’ performances.

2 Preliminaries

We consider the Face Attribute Classification (FAC) task, where X is the univer-
sal set of face images, with binary labels from Y = {0, 1} (e.g., male or female),
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and sensitive attribute A ∈ A. Here, A can be age, race, or gender. The sensitive
attribute takes a finite set of values, A = {a1, . . . , as}. E.g., age can take values
such as ‘young’ or ‘adult’. We next describe our FL setting for federated FAC.

2.1 Federated Learning (FL) Setting

In FL, the data is distributed across multiple parties referred to as clients. Let
C = {C1, . . . , Cm} represent the set of clients; each Ci owns the set Di ⊂ X ×
Y × A containing ni samples. Each Ci trains its local model hθi,t

: X → Y
parameterized by θi,t at round t. The aggregator holds small amount of data
not enough to train a good model. Generally, the data is split into a test set
and a validation set (Da) [22]. We assume that Da comprises samples from each
demographic group.

At each round t, a random subset of clients St ⊆ C communicate their
locally updated model parameters Θt = {θi,t | Ci ∈ St} to the aggregator.
The aggregator combines all communicated model parameters to obtain the
global parameters at round t, φt, using a heuristic choice function μ : Θt → φt.
The Weighted average (or FedAvg) [13] is the most used heuristic, defined as:
μFedAvg(Θt) � φt =

∑
Ci∈St

ni∑
j nj

θi,t. The aggregator then communicates the
model parameters back to the clients. Then clients initialise their local model
with these parameters and train further. This back and forth process is repeated
multiple times till convergence.

2.2 Fairness Notions

The standard notions for fair classification depend on the error rates: False neg-
ative rate (FNR) and False positive rate (FPR). For a face attribute classifier
h, given a face image x with true label y and sensitive attribute a ∈ A, we have
FNR = Pr(h(x) = 0|y = 1) and FNRa = Pr(h(x) = 0|A = a, y = 1),∀a ∈ A.
Likewise, FPR = Pr(h(x) = 1|y = 0), and FPRa = Pr(h(x) = 1|A = a, y =
0),∀a ∈ A. FNRa and FPRa are the error rates observed on the data samples
belonging to a particular demographic group with sensitive attribute a ∈ A.
E.g., consider an FAC task for ‘gender’ classification with ‘age’ as the sensitive
attribute. The attribute comprises {‘young’, ‘adult’} as the demographic groups.
Now, consider the following group-fairness notions.

Equality of Opportunity (EOpp) [3]: A classifier h satisfies EOpp for a
distribution over (X ,Y, A) if: FNRa = FNR, ∀a. We denote the violation in
EOpp as ΔEOpp = max({|FNRa − FNR||∀a ∈ A}). That is, ΔEOpp is the
maximum disparity in FNR across the groups. Intuitively, EOpp ensures that
the probability of predicting a ‘male’ face as ‘female’ is the same across age
groups.

Equalized Odds (EO) [5]: A classifier h satisfies EO over (X ,Y, A) if: FNRa =
FNR and FPRa = FPR ∀a. Let ΔEO = max(max({|FPRa − FPR||∀a ∈
A}),max({|FNRa − FNR||∀a ∈ A})) denote the violation in EO. EO states
that the probability of miss-predicting the gender must be independent of age.
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Accuracy Parity (AP) [24]: A classifier h satisfies AP for a distribution over
(X ,Y, A) if: FPR + FNR = FPRa + FNRa,∀a. Let ΔAP = max({|FPRa +
FNRa − (FPR + FNR)||∀a ∈ A}) denote violation in AP. AP ensures that the
overall classification error is equal across the age groups.

Lagrangian Multiplier Method (LMM) [12]: To incorporate these fairness
notions in FAC, the standard technique is to train a model that maximises
accuracy while minimising the violation in these fairness notions. LMM adopts
a loss function that simultaneously incorporates cross-entropy loss lCE and the
violation in fairness constraint (ΔEOpp,ΔEO,ΔAP ), weighted by the lagrangian
multiplier λ ∈ R

+. Formally, in LMM, the loss function LLMM (h(X), Y, A) for
a classifier h, for k ∈ {EOpp,EO,AP} and (X,Y ) ⊆ X × Y, is as follows.

LLMM (·) = E(x,y)∼(X,Y )[lCE(h(x), y)] + λΔk. (1)

3 Methodology

We first motivate the problem by showing that existing fair FL approaches are
not applicable in the data heterogenous setting. We then introduce our novel
methodologies, (i) Heuristic-based F3 and (ii) Gradient-based F3.

Motivation: In a practical FL setting, each client might only possess sam-
ples from an individual demographic group. E.g., samples belonging only to
the ‘young’ age group when age is the sensitive attribute. We refer to this sce-
nario as Federated Learning with Data Heterogeneity (FL with DH). The exist-
ing approaches for fair FL typically compute fairness violation locally [12,15].
Proposition 1 shows that with DH, this fairness violation component for the
demographic groups not present in a particular client’s data is not defined.

Proposition 1. In the Lagrangian Multiplier Method, the loss LLMM (Eq. 1)
is not defined for FL with Data Heterogeneity (FL with DH).

The formal proof is available in [8]. Proposition 1 holds for any fairness vio-
lation function (such as ΔEO,ΔAP ) that requires samples belonging to all the
demographic groups. E.g., the loss functions defined in [1,19,20]. Thus, we can-
not use these functions to train for fairness in FL with DH. Additionally, training
only for accuracy compromises fairness [3], implying that standard approaches
such as FedAvg may not suffice. As a result, we next propose novel methodologies
curated for FL with DH.

3.1 Heuristic-Based F3

Observe that as FedAvg aggregates a random (sub)set of models at each round,
it fails to ensure fairness as the local models for aggregation may potentially
be biased. In turn, they may amplify the unfairness of the global model. In
Heuristic-based F3, we propose novel aggregation heuristics that prioritize the
local client models, which perform desirably in terms of fairness. The method
comprises the following steps.
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Algorithm 1. Heuristic-based F3
Input: (1) Each client Ck ∈ C with Dk (2) Hyperparameters: maximum number of

communication rounds T , number of local epochs E, learning rate η, accuracy
threshold a, epoch threshold τ (3) A heuristic choice function μς(Θt) s.t. ς =
{FedAvg,FairBest, α-FairAvg, α-FairAccAvg}

Output: Model φ
1: φ0 ← randomly initialized weights
2: for each round t = 0, 1 . . . , T − 1 do
3: for each client Ck ∈ St (in parallel) do
4: (Client Ck) θk,t ← LocalTraining(k, φt)
5: end for
6: (Aggregator) φt+1 ← μς(Θt); Θt = {θk,t | Ck ∈ St}
7: φbest ← StoppingCondition(t + 1, φt+1, φbest, a, τ)
8: end for
9: return φbest

10: procedure LocalTraining(k, φt)
11: θk,t ← φt

12: for each local epoch i = 1, 2, . . . , E do
13: (Per Batch) θk,t ← θk,t− η · ∇θk,tLk

(
hθk,t(·), Dk

)

14: end for
15: return θk,t

16: end procedure

1. Local Training. Each client Ci trains its model hθi
only for maximising accu-

racy, i.e., minimising Li(hθi
,Di) = E(x,y)∼Di

[lCE(hθi
(x), y)]. At each round

t, a random subset of clients St ⊆ C communicate their model parameters to
the aggregator.

2. Model Aggregation. To better control the accuracy and fairness trade-off, we
propose novel heuristics for aggregation. These heuristics derive the global
model based on accuracy and fairness values for the models in St computed
on the aggregator’s set Da.

3. Model Communication. The aggregator then communicates the global model
parameters to each client. The clients adopt these parameters and further
train on them to maximise accuracy.

Figure 1a depicts Heuristic-based F3 and Algorithm 1 provides a procedural out-
line.

Stopping Criteria. In Algorithm 1, StoppingCondition controls the training’s
stoppage and model updates (for details see [8]). The procedure records the
improvement in accuracy and fairness values across epochs. It updates the “best”
model observed so far if: (i) the current epoch is less than a threshold τ , or (ii)
φ produces a lesser fairness violation than the previous best model. The training
stops if the change in accuracy does not exceed a threshold “a” across τ rounds.

Heuristics for Fair FL: With our novel heuristics, we aim to ensure fairness
in FL with DH by deliberately aggregating only the subset of local models that
perform desirably w.r.t. to fairness and accuracy. The aggregator quantifies the
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Fig. 1. Overview of our Methodologies.

performance of local client models based on their empirical fairness violation
and accuracy computed on the aggregator set Da. Specifically, let Δloss(hi(θi,t))
denote any fairness violation for client’s Ci ∈ St model on Da at any round
t. Denote Acc(hi(θi,t)) as the accuracy of Ci’s model on Da at t. With this,
consider the following novel heuristics that aim to strike a practical balance
between fairness and accuracy.

1. FairBest: Aggregator selects a specific model among local models that
provides the least fairness violation on Da. Formally, the global model
parameters φt at round t are: μFairBest(Θt) � φt = θi∗,t s.t. i∗ =
arg min

i
{Δloss(hi(θi,t))}.

2. α-FairAvg: This heuristic generalizes FairBest by selecting the top α% of
local models followed by their weighted average. Formally, consider the set
Ft, at a round t, which comprises the top-α% of clients in increasing order of
the ratio Δloss(hi(θi,t)). Now,

μα-FairAvg(Θt) � φt =
∑

i∈Ft

ni∑
j∈Ft

nj
θi,t (2)

3. α-FairAccAvg: Aggregator selects the top-α% of local model parameters
that give the best ratio of accuracy with fairness violation on Da and take
their weighted average. Consider the set Ft, at a round t, comprising the
top-α% of clients in decreasing order of the ratio Acc(hi(θi,t))

Δloss(hi(θi,t))
.

μα-FairAccAvg(Θt) � φt =
∑

i∈Ft

ni∑
j∈Ft

nj
θi,t (3)

As α increases, more local models get aggregated akin to FedAvg with
heterogeneous data. That is, with an increase in α, Eq. 2 and Eq. 3 tend to∑

i∈C
ni∑
j nj

θi,t (the standard FedAvg aggregation), such that α-FairAvg and
α-FairAccAvg tend to mimic FedAvg. We also show this behavior empirically
in the full version [8].
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Algorithm 2. FairGrad: Gradient-based F3
Input: (1) Each client Ck ∈ C with Dk (2) Hyperparameters: maximum number of commu-

nication rounds T , number of local epochs E, learning rate η, accuracy threshold a, epoch
threshold τ and β ∈ [0, 1].

Output: Model φ

1: φ0 ← randomly initialized weights

2: for each round t = 0, 1 . . . , T − 1 do

3: for each client Ck ∈ St (in parallel) do
4: θk,t ← φt

5: for each local epoch i = 1, . . . , E do

6: (Aggregator) Gk,t ← ∇θk,t
ΔEO

(
hθk,t

(·), Da

)

7: For a fixed Gk,t, the client updates for all batches,

8: (Client Ck)

⎧
⎨
⎩

gk,t ← ∇θk,t
Lk

(
hθk,t

(·), B
)
; g∗

k,t ← β · gk,t + (1 − β) · Gk,t

θk,t ← θk,t − ηg∗
k,t

9: end for

10: end for
11: (Aggregator) φt+1 ← μFedAvg(Θt), Θt = {θk,t | Ck ∈ St}
12: φbest ← StoppingCondition(t + 1, φt+1, φbest, a, τ)

13: end for
14: return φbest

3.2 FairGrad: A Gradient-Based F3

In Heuristic-based F3, it is only possible to explore a limited set of models that
provide different trade-offs between accuracy and fairness. While each client
trains to maximize accuracy, the client models may diverge from the “fair” aggre-
gated model. Hence aggregation of these individual client models may not always
provide a good trade-off.

Based on these observations, and motivated from [2], we now propose a
Gradient-based approach curated for the FL with DH setting, namely Fair-

Grad. Informally, in FairGrad we train the individual client models for accu-
racy and w.r.t. fair gradients obtained from the aggregator. As a result, the
local client models comprise fairness information and subsequent aggregation
through FedAvg provides a balance between accuracy and fairness. Note that
clients communicate with the aggregator even during their local training. For-
mally, FairGrad comprises the following steps.

1. Local Training. At every epoch, we compute the following gradients.
(i) Client Level: For each client Ci, we compute the gradients gi(θi,Di)

w.r.t. client weights θi and local dataset Di for maximizing accu-
racy. That is, minimizing the cross-entropy loss lCE , Li(hθi

,Di) =
E(x,y)∼Di

[lCE(hθi
(x), y)].

(ii) Aggregator Level: For each client Ci, the aggregator computes the gra-
dients Gi(θi,Da) w.r.t. client weights θi and aggregator dataset Da for
minimizing fairness, i.e. Δk, for k ∈ {EOpp,EO,AP}. Aggregator com-
municates Gi to each Ci.

Upon receiving Gi, each client Ci must now judiciously aggregate the two
gradients. To this end, we fix Gi for an entire epoch while updating gi for
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each batch-wise training. Further, Ci performs weighted aggregation with
weight β ∈ (0, 1) to determine the aggregated gradients g∗

i as follows: g∗
i =

βgi + (1 − β)Gi. Next, Ci performs the SGD update: θi ← θi − ηg∗
i .

2. Model Aggregation. After a few epochs of local training, a random subset of
clients send their models to the aggregator, who then aggregates them using
FedAvg to derive the global model φ.

3. Model Communication. The aggregator communicates the aggregated global
model parameters to each client. The clients adopt these parameters to per-
form further local training.

Figure 1b depicts Heuristic-based F3 and Algorithm 2 provides a procedural
outline. Given our novel heuristics and FairGrad, we next conduct experiments
to compare their empirical performance and highlight the efficacy of F3 for FL
under data heterogeneity.

4 Experiments

We conduct our experiments on the following face datasets: FairFace [9], FFHQ
[10], and UTK [23]. In this section, we first define our baseline FedAvg-DH for an
appropriate comparison. Then, we provide our FL setup, training details, and
network model. Finally, we present our results and the key takeaways.

Baseline: To compare our methods’ performance, we create the baseline
FedAvg-DH. FedAvg-DH is simply FedAvg [13] for our FL setting with Data Het-
erogeneity.

FL Setup: We consider 50 clients, i.e., C = {C1, . . . , C50}. We randomly dis-
tribute the training data so that each client has samples of only a particular
demographic group to ensure data heterogeneity. Each client locally trains its
model on its private data. The global model aggregation is performed periodi-
cally till convergence. At each aggregation round t, we let St = C. The training
details specific to each dataset follow next.

Training Details: We focus on popular face datasets: FairFace [9], FFHQ [10],
and UTK [23]. For each of these, we consider ‘age’ as the sensitive attribute
and ‘gender’ as the predicting label. Further, we divide the samples into two age
groups, ≤ 30 and > 30 years. We distribute the data among the clients such that
50% of the clients have access to data samples belonging to the age group ≤ 30
and others have access to samples belonging to age group > 30. Each client’s
local data comprises ≈ 1K training samples for all three datasets.

For FairFace [9] and FFHQ [10], we use a batch size of 256 and train the
models for T = 50 communication rounds with clients training their local models
for E = 4 epochs (per round). We use learning rates of η = 0.05 and η = 0.01
for FairFace and FFHQ, respectively. We set the accuracy tolerance at a = 1%
and threshold round at τ = 20. For UTK [23], we train using the learning rate
η = 0.01 and batch size 64. We also set T = 80, E = 2, a = 1% and τ = 20.
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Fig. 2. Accuracy and Fairness Violation (Δk, ∀k ∈ {EOpp, EO, AP}) values for the
baseline FedAvg-DH [13] and our approaches. In Fig. 2a, the numbers highlighted in
green represent the least value of Δk. The numbers highlighted in magenta provide
the highest accuracy out of our proposed approaches. In Fig. 2b, the optimum point is
bottom left, i.e., low %-Error and low Δk.

Model: We adopt PyTorch’s implementation of the standard ResNet-18 archi-
tecture for the base model [12]. We run our experiments on 8 NVIDIA GeForce
GTX 1080 with 10 GB RAM.

Method: We run every experiment 5 times and report the approaches’ average
and standard deviation. For each instance, we randomly generate an aggrega-
tor set Da with samples between 10%–20% of the overall dataset size. For α-
FairAvg and α-FairAccAvg, we choose α = 10, i.e., 10% of the total local
models.

We restate that fairness guarantees often come at the cost of accuracy [3].
However, our methodologies aim to strike an effective balance between fairness
improvements and accuracy.

4.1 Results

First, we observe a maximum Coefficient of Variation (CoV) of 0.96 across all
experiments. For 70% of our experiments, we observe a CoV < 0.2 indicating the
stability of our approaches and the results presented. We next discuss accuracy
and fairness violations of our approaches for the three datasets.

Fairness Improvements: Figure 2a provides the accuracy and fairness viola-
tion (Δk for k ∈ {EOpp,EO,AP}) of our approaches compared to the baseline
FedAvg-DH. Recall that lower Δk implies lesser fairness violation. In Fig. 2a, the
numbers highlighted in green represent the least value of Δk (obtained often by
one of our approaches) for each dataset. The numbers highlighted in magenta
represent the highest accuracy out of our proposed approaches (i.e., excluding
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the baseline FedAvg-DH). In general, our methodologies provide significant fair-
ness improvements for a marginal drop in accuracy. Details follow.

FairFace [9]: With FairGrad, we observe fairness improvement up to 22% with
an accuracy drop of only 4% compared to FedAvg-DH. 10-FairAccAvg also
shows fairness improvements up to 42% with an accuracy drop of 7%. FairBest

provides the least fairness violation for each of the three fairness notions.

FFHQ [10]: FairBest provides the least reduction in fairness violation: 82% and
75% reduction in ΔEO and ΔAP respectively, compared to FedAvg-DH. However,
FairGrad provides a desirable trade-off with fairness improvement upto 20%
with a marginal accuracy drop of 4% compared to FedAvg-DH.

UTK [23]: For UTK, 10-FairAvg, 10-FairAccAvg and FairGrad outperform
FedAvg-DH. 10-FairAccAvg improves fairness by 40% (ΔEOpp), 48% (ΔEO)
and 42% (ΔAP ) for an accuracy drop of only 0.6%. 10-FairAvg improves fair-
ness by 55% in ΔEO and 49% in ΔAP for an accuracy drop of 0.4%. Similarly,
FairGrad provides improvement in fairness by 53% in ΔEO and 30% in ΔAP

with 1.7% accuracy drop.

Visualizing Accuracy and Fairness Trade-Off: Figure 2b depicts the accu-
racy and fairness trade-offs of our heuristics with the baseline FedAvg-DH. Note
that the optimum point is bottom left, i.e., low %-Error and low fairness viola-
tion (Δk). The red circle marker for FedAvg-DH appears at the bottom right on
most of the plots, showing low error (higher accuracy) at the cost of fairness.
Markers in the bottom-left corner of the plot assure the least fairness violation
while maintaining high accuracy. FairBest, 10-FairAvg and 10-FairAccAvg

provide lower fairness violations, for a marginal decrease in accuracy. FairGrad

also shows a better accuracy and fairness trade-off by obtaining accuracy val-
ues approximately equivalent to FedAvg-DH and fairness violations closer to our
heuristics. The highlighted “Pareto Inefficient” region is the area which is pareto
dominated by the baseline FedAvg-DH. Observe that, in general, our approaches
lie outside the Pareto inefficient region.

Additional Experiments: In the full version [8], we provide additional results,
including (i) an ablation study for the hyperparameters α, a and τ , and (ii)
experiment with different network architectures

4.2 Discussion

We see that both Heuristic and Gradient-based F3 perform significantly better
in fairness while maintaining competitive accuracy compared to FedAvg-DH.

Pareto-Optimality: To quantify the improved accuracy and fairness trade-
off using our approaches, we use Mahalanobis distance (MD). More concretely,
we derive the distance between our approaches’ performance, i.e., % Error and
Δk, k = {EOpp,EO,AP}, from the origin in Fig. 2b. We compute the distance
as MD(x) =

√
(x − μ)T S−1(x − μ). Here, x = (Error,Δk) is the vector with
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observed % Error and Fairness Violation, μ is a vector with mean values, and S
the covariance matrix of x.

An approach’s lesser MD implies a better trade-off. We provide the spe-
cific distance values of our approaches and FedAvg-DH in the full version [8].
Our results highlight that for FairFace, FairGrad provides the best accu-
racy and trade-off, i.e., least MD). For FFHQ and UTK, FairGrad and 10-
FairAvg provide the least distance for ΔEOpp, respectively. For ΔEO and ΔAP ,
10-FairAccAvg outperforms others for both datasets. These distances quan-
titatively show that FairGrad and 10-FairAccAvg significantly improve the
accuracy and fairness trade-off over FedAvg-DH.

Heuristic-Based F3 vs. Gradient-Based F3: Overall, FairBest provides
the least fairness violation, and the baseline FedAvg-DH provides the highest
accuracy. Ranking the approaches using MD shows that 10-FairAccAvg and
FairGrad provide an improved accuracy and fairness trade-off than FedAvg-DH.

Of the two, FairGrad requires comparatively higher communication over-
head between the clients and the aggregator. On the other hand, finding an
optimal α for 10-FairAccAvg that obtains a desirable trade-off may also be
challenging. As α increases, the increase in accuracy also increases the fairness
violation (refer [8]). As a result, a practitioner can appropriately decide between
the approaches to achieve the desired accuracy and fairness trade-off.

5 Conclusion

In this paper, we focus on Fair Attribute Classification (FAC) in FL setting
with data heterogeneity. We observe that existing approaches to ensure fair-
ness in FL do not work in a heterogeneous setting due to the unavailability of
demographic-specific data samples across clients. To address this, we propose
F3, a novel FL framework to achieve fairness in FAC. With F3, we introduce
(i) Heuristic-based F3, which includes three aggregation heuristics that ensure
fairness while simultaneously maximizing the model’s accuracy (ii) Gradient-
based F3 to ensure clients are trained for fairness and accuracy. Experimentally,
our approaches outperform the default counterpart in FL on challenging bench-
mark face datasets. The results suggest that F3 helps strike a practical balance
between fairness and accuracy for FAC.
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Abstract. Data owners are increasingly liable for the potential harm
caused by using their data on underprivileged communities. Stakehold-
ers seek to identify data characteristics that lead to biased algorithms
against specific demographic groups, such as race, gender, age, or reli-
gion. We focus on identifying feature subsets of datasets where the
ground truth response function from features to observed outcomes dif-
fers across demographic groups. To achieve this, we propose FORESEE,
a decision tree-based algorithm that generates a score indicating the like-
lihood of an individual’s response varying with sensitive attributes. Our
approach enables us to identify individuals most likely to be misclassified
by various classifiers, including Random Forest, Logistic Regression, Sup-
port Vector Machine, Multi-Layer Perceptron, and k-Nearest Neighbors.
The advantage of our approach is that it allows stakeholders to identify
risky samples that may contribute to discrimination and use FORESEE
to estimate the risk of upcoming samples.

Keywords: Algorithmic Fairness · Discrimination Risks Estimates ·
Bias Identification

1 Introduction

Algorithmic decision-making systems are a growing concern due to their poten-
tial to replicate or worsen existing social biases. Empirical evidence suggests that
algorithmic outcomes may depend on irrelevant demographic characteristics.
Examples can be found in criminal justice [24], banking and finance [12,26], edu-
cation [20], and facial recognition [7]. Toolkits such as [5,6] have been developed
to measure and mitigate unfairness outcomes. However, only some are suitable
for removing sensitive attribute information [15] or supplementing data delivery
with context-aware components to warn someone of the unfairness issues [2,22].

Unfairness issues are commonly identified in later development stages [23].
It has been argued that the root causes of unfair outcomes include social or
historical biases encoded in the data [10] and heteroskedastic noise between
demographic groups [8]. Therefore, assessing unfairness in the early stages can
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lead to effective and efficient mitigation of unfairness outcomes. This paper con-
tributes to this research stream by formulating a score to evaluate the risk of
unfair outcomes.

Systematic differences in the data-generating process between demographic
groups predict whether future uses of the data in a machine learning (ML)
pipeline will lead to outcomes that violate standard fairness measures. Our pro-
posed risk score aims to capture those differences. We demonstrate how to obtain
reasonable estimates of the proposed risk by either boosting or bagging decision
trees based on Bayesian Additive Regression Trees (BART) [9] and our variant
of BART (named FORESEE, a FORESt of decision trEEs algorithm), where
we ensemble decision trees trained on different combinations of data features.
We find that FORESEE generates fewer biased estimates than BART. Further-
more, our experiments on three benchmark datasets show that the risk correlates
with standard measurements of demographic parity, equalized opportunity, and
equalized odds. Specifically, we show that sub-populations with high risk are
more likely to experience high unfairness by classifiers from different families
trained on a sample of the data. Consequently, we argue that proper risk esti-
mates provide useful warnings to data owners and stakeholders before a classifier
ingests the data.

In a context where organizations that own data are increasingly liable for
future unfair uses, this risk score could be instrumental in deciding whether
data can be distributed to ML pipelines. It also allows for identifying the char-
acteristics of subsamples that are most likely to be exposed or contribute to
unfair outcomes, guiding future data collection and model development. Our
contributions are as follows:

– We formalize unfairness risk assessment for potentially discriminatory future
uses as the problem of measuring differences in data generation processes
across demographic groups.

– We demonstrate how model averaging over diverse decision trees provides
reliable estimates for the risk.

– We provide experimental evidence of how estimating the risk is a useful warn-
ing sign for the demographic disparity, inequality of odds, and opportunities
of classifiers trained on a sample of the data.

2 Related Work

Few efforts have been made to estimate or warn of unfairness risks in datasets.
For example, Model Cards [22], and Method Cards [1] propose adding sec-
tions related dataset in the supplementary reports to communicate key informa-
tion about potential unfairness issues in the models. Similarly, the Datasheets
method [13] proposes a set of questions to find these issues in the dataset. On the
other hand, Lee and Singh [21] introduce a bias identification methodology and
questionnaire to identify bias-related risks in the ML development pipeline, and
Vetro et al. [25] propose quality-based frameworks to measure unfairness risks at
the dataset level. These qualitative and quantitative methods are focused on a
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macro level. We complement these approaches by proposing quantitative assess-
ment at an individual level. Finally, we highlight that our work is motivated by
the definitions of Kamiran and Calders [18]. We both focus on the differences in
positive class ratios and compute the definitions from a labeled dataset; however,
we differentiate in that our score includes the individual fairness notion and is
defined at the sample level. Also, our goal is to determine how likely a data point
will lead to discrimination while they aim to correct bias in the data.

3 Problem Setting

We frame the task of finding g : X �→ Y from a set of individual features and the
target variable X × Y to support decision-making. We assume g has sufficient
performance for decision-makers to use in their process. We also assume that
each sampled individual has sensitive attributes s ∈ S, representing protected
information forbidden in classification. Furthermore, the sensitive attribute is
defined by the union of I groups, i.e., S = ∪iSi, i ∈ [I]. The objective is to
determine the likelihood that any individual (x, s, y) will lead to discrimination
by a function g : X �→ Y learned from a given dataset. The problem setting
implies two challenges: (1) it has to be defined what discrimination means,
and (2) the likelihood of discrimination is determined when g is still unknown.
Although we address these two under a binary classification task in the following
section, we argue that it is extensible to other task types.

4 Discrimination Notion and Risk Scores

Discrimination refers to the disparity between groups of individuals. Although
sensitive attributes can be removed, it is not enough since the correlation with
other features may still result in disparities in the outcome [11]. The Demo-
graphic Parity (demP ) metric can measure this disparate impact by computing
disparity across groups over the outcome space of g [11]. Similarly, individual
fairness certifies that g outputs similar outcomes for similar individuals [17].
Using these two notions, we define a risk measure by evaluating disparity on the
labeled dataset for similar individuals of a given sample. Specifically, we define
the unfairness risk score as the conditional probability of Y being 1 (from demP )
given X = x with differences in the sensitive attribute S (from individual fair-
ness). Formally:

Definition 1. For any individual (x, s) ∈ X × S, we denote risk score r(x) as

r(x) = |P (Y = 1S = s,X = x) − P (Y = 1S �= s,X = x)| . (1)

Definition 1 assumes an infinite population (or at least a large enough one);
however, since this is not true for most cases, we propose two estimation proce-
dures under finite population in Sect. 5. Additionally, r(x) does not depend on
any classifier that will use the data, allowing it to be used in the early steps of
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pipelines. We also argue that Definition 1 captures the granular and aggregate
fairness properties based on the independence and separate notions [20] of clas-
sifiers using the data: (i) differences in individual misclassification rates across
demographic groups; (ii) differences in aggregate misclassification rates across
demographic groups. Finally, we propose that r(x) is directly related to the dif-
ferences in misclassification rate conditional on X = x for an unknown function
g. We denote the latter difference as δmis(x) and define it as Eq. 2.

δmis(x) = |P (g(X) �= Y |X = x, S = s) − P (g(X) �= Y |X = x, S �= s)|. (2)

We present Theorem 1,1 which reflects the variation in misclassification rates
of an unaware classifier across demographic groups. Therefore, for a given X = x,
a high-risk score indicates that individuals in one group are more likely to be
misclassified than those in the other group (i.e., disparate treatment), regardless
of the classifier used.

Theorem 1. For any unaware classifier g (x ∈ X is given but not s ∈ S), we
have:

δmis(x) = r(x)
∣
∣I{g(x)=0} − I{g(x)=1}

∣
∣

where I{g(x)=1}, I{g(x)=0} are the characteristic functions of the sets {x ∈
X |g(x) = 1} and {x ∈ X |g(x) = 0}. Moreover, for a deterministic unaware
classifier, δmis(x) = r(x).

Since g is a deterministic function, then g(x) must either equal 0 or 1, which
implies δmis(x) = r(x). Furthermore, the risk score also encompasses the aggre-
gate fairness properties of any classifier g. We can examine the aggregate differ-
ence in misclassification rates [8] using Eq. 3, where large values of Δmis indicate
that the error rate is unequal across groups

Δmis(g) = |P (g(X) �= Y |S = s) − P (g(X) �= Y |S �= s)|. (3)

Having this, we present Theorem 2, which suggests that if the distribution of
features X is independent of the sensitive attribute, then the differences between
the distribution of X given S = s and S �= s is zero. Low aggregate risk scores
also correspond to low Δmis(g). Therefore, when the distribution shift between
X|S = s and X|S �= s is minimal, the risk measure can help users identify data
that are unlikely to result in unfair classification, as measured by differences in
misclassification rates (i.e., using separation concepts [20]).

Theorem 2. For any unaware classifier g,

Δmis(g) ≤ 1
2
Ex∼Ps

[r(x)] +
1
2
Ex∼Pns

[r(x)] + TV (Ps, Pns), (4)

where TV (Ps, Pns) is the total variation between the distribution Ps of X con-
ditional on S = s and the distribution Pns of X conditional on S �= s.
1 The proofs of Theorems 1, 2, and 3 can be found in the supplementary material in

this github repository: jovasque156/foresee.
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Sub-population level definitions of algorithmic fairness are stronger than their
aggregate counterparts since they protect subgroups defined by a complex inter-
section of many sensitive attributes ([19]) or a structured slicing of the feature
space [14]. We define sub-population differences in misclassification rates of a
classifier g as follows:

Δsub−mis(g, γ) = max
G:P (G)≥γ

Δmis(g|x ∈ G), (5)

where Δmis(g|x ∈ G) is the difference in misclassification rates between demo-
graphic groups in sub-population G.

Theorem 3. Suppose that there exists a sub-population G ⊂ X such that
P (G) > γ, Ps = Pns, and P (Y = 1|X = x, S = s) > P (Y = 1|X = x, S �= s).
For any stochastic classifier g : X → [0, 1] such that infx∈Gg(x) > 1/2, there
exists κ > 0 such that

Δsub−mis(g, γ) > κE[r(x)|x ∈ G]. (6)

Theorem 3 suggests that if the response function E[Y = 1|X = x, S = s]
is greater than E[Y = 1|X = x, S �= s] for a sub-population G, a classifier
that predicts Y = 1 for this sub-population will result in higher misclassification
rates for one demographic group. The differences in misclassification rates will
be bounded from below by the average risk score. Therefore, by examining sub-
populations with high predicted risk scores, the user can identify sub-populations
where differences in sensitive attributes S are likely to correlate with differences
in misclassification rates.

5 Risk Estimation

Two approaches are tested to estimate r(x): (1) A Bayesian-based method to
estimate the probability P (Y = 1|X = x, S = s) followed by the computation of
r(x) and (2) an ensemble-based approach from diverse decision trees.

5.1 Method 1: BART

This approach obtains estimates of the response functions E[Y |X = x, S = s]
and E[Y |X = x, S �= s], followed by computing the risk score. We use the non-
parametric additive tree model BART [9], as suggested by [16], which has been
successful in estimating individual treatment effects. The risk score is computed
using the trees T1, T2, ..., TM as below. BART uses a prior to regularize the depth
of each tree Tm.

rBART (x) =
1
M

∣
∣
∣
∣
∣

M∑

m=1

E(Y |Tm,X = x, S = s) − E(Y |Tm,X = x, S �= s)

∣
∣
∣
∣
∣

BART requires estimating both response functions E[Y |X = x, S = s] and
E[Y |X = x, S �= s], whereas we are only interested in the difference E[Y |X =
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x, S = s] − E[Y |X = x, S �= s]. BART averages decision trees to obtain a robust
Bayesian estimate of each response function. The following section presents the
second method that directly averages the risk score estimates from each decision
tree.

5.2 Method 2: FORESEE

Given a collection of trees T1, T2, ..., TM , we denote L1(x), L2(x), ..., LM (x)
as the leaves to which an individual belongs. For each decision tree Tm, we
compute its estimate of the risk score as the difference in the estimation error
rate Ymis between demographic groups in the leaf Lm(x), i.e., r(x, Tm) =
|E(Ymis|Lm(x), S = s) − E(Ymis|Lm(x), S �= s)|. The risk estimate is then:

rFORESEE(x) =
1
M

M∑

m=1

r(x, Tm).

Decision trees partition the feature space into regions where outcomes are
assumed to be constant. Therefore, leaf-level risk scores characterize how vio-
lations of this assumption vary across demographic groups. To obtain a robust
risk estimate, we average a diverse set of trees obtained as follows: (i) each tree
is trained on a different random sub-sample of the instances and a random sub-
set of the features, hence we ensemble trees that see different aspects of the
data-generating process and de-correlate estimation errors; and (ii) trees with
performance lower than β are filtered out, so we retain only the trees that prop-
erly and capture partial characteristics of the response function E[Y |X = x]. We
remark that S is used for training since leaves with no members of one group
would reflect a dependency between Y and S for the given X = x in the leaf,
hence a high risk of discrimination. However, in such a case, we face the chal-
lenge of estimating the misclassification rate for the unobserved group in the
leaf. Under an optimistic scenario, the expected misclassification rate should be
equal across groups, while the opposite should expect the highest error rate (i.e.,
equal to 1) for the unobserved group. Since we aim to flag probable discrimi-
nation, we argue that the latter is preferable. Although a better approach can
be used, this assumption seems sufficient according to the results. Finally, the
Algorithm 1 provides a pseudo-code for estimating the risk scores rFORESEE .
More details, like description about SUBSAMPLING, LEAVES, and PERFOR-
MANCE function, are provided in the supplementary material.

6 Experimental Evaluation

We design our experiments2 to answer the following four research questions:
RQ1: Do risk estimates from FORESEE and BART average to the ground
truth risk in numerical simulations? RQ2: Do high-risk and low-risk groups

2 The code of our experiments can be found in this repository: jovasque156/foresee.
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Algorithm 1. FORESEE Algorithm
Input: Dtrain, Dest to estimate risk
Parameters: M number of decision trees, π portion of instances for sampling, φ
number of features for sampling, β performance threshold
Output: rFORESEE , r estimates

1: rFORESEE ← ∅
2: r ← [ ]
3: for m ∈ [M ] do
4: subDtrain ← SUBSAMPLING(Dtrain, π, φ)
5: Tm ← train a Decision Tree on subDtrain

6: Lm ← LEAVES(Tm)
7: rFORESEE ← rFORESEE ∪ (Tm, Lm)
8: end for
9: for x ∈ Dest do

10: total mis ← 0
11: for (Tm, Lm) ∈ rFORESEE do
12: p ← PERFORMANCE(Tm)
13: if p ≥ β then
14: total mis ← total mis+ MV(Lm, x)
15: end if
16: end for
17: risk = ave(total mis)
18: append risk to r
19: end for
20: return rFORESEE , r

have differing levels of fairness? RQ3: Does our measure of risk allow the user
to describe the sub-populations that are the most likely to be under-served by
different classifiers families using the data as inputs?

Synthetic Data. First, we rely on numerical simulations to test whether
FORESEE and BART are unbiased estimators of the true risk score. We
uniformly draw features from [0, 1]2 and assign a sensitive attribute s with
P (S = 1) = 0.5. For S = 1, we assign a label Y = 1. For S = 0, we assign
a label Y = 1 with probability equal to 1− x1+x2

2 . Therefore, for a given X = x,
the ground truth risk is equal to r(x) = x1+x2

2 . We draw 5000 samples from this
synthetic data, run FORESEE and BART to estimate r(x), and compare their
values to the ground truth. We repeat the protocol 20 times with different seeds
to compute the mean and standard deviation of the risk estimates.

Real World Datasets. We use two benchmark datasets and a private dataset
from an educational context. Adults (also known as the Census Income Dataset)
consists of 48, 844 individuals described by 14 features such as marital status,
education, and working hours. The binary sensitive attribute is gender, and the
outcome is whether the income is larger than 50K [3]. Compas contains informa-
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tion about 7, 214 individuals in the criminal justice system to assess their recidi-
vism risk using features such as the number of felonies and misdemeanors. The
sensitive attribute is race, and the outcome is whether an individual re-commits
a crime within two years [24]. Finally, Dropout gathers academic records of
4, 706 undergraduate students. Features include grades and academic support
program participation. The sensitive attribute is gender; the outcome reflects
dropping out within the first two years. We split each dataset into training and
testing sets using a 70/30 ratio.

Experiments Protocol. To explore how the risk score is informative of future
unfair uses of the data independently of the type of classifier, we train four
models from different families – Logistic Regression (LR), Random Forest (RF),
k-Nearest Neighbors (KNN), and Support Vector Machine (SVM), and Multi-
Layer Perceptron (MLP). We compute accuracy to evaluate the models’ perfor-
mance in Compas and F-1 score in Adults and Dropout. We also compute three
standard fairness metrics: demographic disparity δdemP , inequality of opportu-
nity δopp, and inequality of odds δodd [23]. We also classify individuals into High
and Low-Risk groups based on whether their risk score is larger or smaller than
λ, taking value depending on the context.

7 Results and Discussions

RQ1: Figure 1 shows estimates’ mean (line) and standard deviation (area)
against the ground truth risk (dash-dot-black line) in the synthetic dataset. We
observe that FORESEE’s estimates are less biased than BART. BART estimates
have a higher upward bias for low values of the true risk score r(x) and a bigger
downward bias for large values of r(x). This observation confirms our intuition
that it is preferable to directly average risk estimates from local approximations.

Fig. 1. FORESEE and BART risk estimates against ground truth risks.
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Table 1. Performances of machine learning models on each dataset. Higher F-1 and
accuracy (acc) are better, whereas lower fairness metric scores are better. Figures are
in absolute values.

Model Adult Dropout Compas

F-1 δopp δodd δdemP F-1 δopp δodd δdemP acc δopp δodd δdemP

LR .61 .40 .32 .35 .65 .06 .03 .03 .65 .22 .18 .21

RF .70 .20 .20 .33 .61 .06 .04 .04 .66 .17 .17 .20

KNN .64 .20 .14 .19 .55 .08 .05 .04 .65 .17 .16 .19

SVM .66 .21 .24 .38 .62 .05 .03 .04 .65 .18 .17 .19

MLP .65 .12 .09 .17 .56 .02 .02 .03 .64 .14 .14 .16

RQ2: Table 1 shows the classification performance of the four models across the
three real-world datasets. The best classifier for each dataset generates signifi-
cant unfairness outcomes, which is particularly interesting whether our risk score
anticipates these fairness issues. Figure 2 plots the distribution of FORESEE’s
estimates of risks, where we highlight that for Compas the entire population
shows risks larger than 0.4. These high-risk scores confirm findings in existing
studies where it is claimed that the Compas dataset is not well-suited for train-
ing automated decision systems without significantly harming a demographic
group [4]. Additionally, we arbitrarily set λ equal to 0.5 for Adults and Compas
(i.e., potential discrimination is higher than non-discrimination) and 0.06 for
Dropout to group individuals into High and Low. The results are depicted in
Table 2. From the table, we observe that the fairness metrics are higher for High
group across all models. This is evidence that the risk score allows identifying
individuals for whom a given classifier’s aggregate performances would signifi-
cantly vary across demographic groups. We highlight that the differences are not
significant for Compas, flagging once again the issues of using this dataset for
automated training.

Fig. 2. Distribution of risk score along the three datasets.
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Table 2. Fairness metrics in absolute value for High and Low risk groups, defined by
setting the thresholds to 0.5 for Adult and Compas, and 0.06 for Dropout. Values closer
to 0 are preferable. Figures are truncated to two decimal places.

Model Adult Dropout Compas

δopp δodd δdemP δopp δodd δdemP δopp δodd δdemP

LR High .49 .37 .39 .50 .25 .14 .29 .19 .21

Low .01 .03 .06 .09 .05 .06 .16 .19 .20

RF High .24 .24 .37 .33 .20 .04 .30 .20 .22

Low .02 .02 .04 .17 .09 .06 .07 .16 .17

KNN High .23 .16 .22 .22 .13 .08 .32 .20 .22

Low .05 .03 .01 .04 .02 .04 .05 .14 .15

SVM High .24 .28 .42 .14 .12 .03 .28 .19 .21

Low .00 .02 .04 .09 .05 .06 .09 .15 .17

MLP High .17 .13 .20 .23 .15 .02 .28 .18 .20

Low .11 .06 .01 .03 .02 .04 .02 .10 .11

RQ3: Figure 3 shows the differences between the datasets’ High and Low-Risk
profiles. The high and low-risk groups comprise the top and lowest 20% of sam-
ples with high and low-risk scores drawn equally from both groups in S. From
Fig. 3, we can characterize high risks individuals as (i) Adult : aged individu-
als, a high number of working hours per week, and married or divorced, (ii)
Dropout : students with low academic performances and higher numbers of aca-
demic warnings, and (iii) Compas: younger defendants, fewer criminal history,
mostly felony as charge degree, and spending fewer days in jail. Our risk score
provides stakeholders and data owners with information on the characteristics of
individuals for which predictions would be affected by their sensitive attributes.
A useful implication of the profiles in Fig. 3 is to use with caution any data min-
ing algorithm that predicts the target variable if the individual’s risk estimate
is high.

Fig. 3. Average feature for high and low fairness risk groups.
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8 Conclusions

Fair machine learning literature offers metrics to measure the harmful effects.
However, stakeholders would like to anticipate these fairness pitfalls before
investing in model development or designing a data-generating process. We
propose a score to measure whether future classifiers using the data will vary
with sensitive attributes. Moreover, we propose FORESEE to estimate it from a
finite sample. Our experiments demonstrate that the proposed score anticipates
correctly whether a model using the data will under-serve some demographic
groups. Furthermore, our approach offers useful guidance: (1) to decide whether
a dataset is appropriate for training automated decision systems and designing
proper data-generating procedures, (2) to anticipate potentially discriminatory
outcomes and mitigate them early, and (3) to decide when to trust the outcome
of the algorithm. We believe FORESEE is still computationally expensive (train-
ing and estimation time complexity are O(dkn log(n)) and O(k log(n)), with k
as the number of decision trees and d as the dataset dimensionality); hence more
estimators will be explored in the future. Furthermore, the assumption about
rate variation for the absent group in a leaf is an interesting aspect to be analyzed
in the forthcoming studies as well.
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Abstract. Group work is a prevalent activity in educational settings,
where students are often divided into topic-specific groups based on their
preferences. The grouping should reflect students’ aspirations as much as
possible. Usually, the resulting groups should also be balanced in terms
of protected attributes like gender, as studies suggest that students may
learn better in mixed-gender groups. Moreover, to allow a fair workload
across the groups, the cardinalities of the different groups should be bal-
anced. In this paper, we introduce a multi-fair capacitated (MFC) group-
ing problem that fairly partitions students into non-overlapping groups
while ensuring balanced group cardinalities (with a lower and an upper
bound), and maximizing the diversity of members regarding the protected
attribute. To obtain the MFC grouping, we propose three approaches:
a greedy heuristic approach, a knapsack-based approach using vanilla
maximal knapsack formulation, and an MFC knapsack approach based
on group fairness knapsack formulation. Experimental results on a real
dataset and a semi-synthetic dataset show that our proposed methods
can satisfy students’ preferences and deliver balanced and diverse groups
regarding cardinality and the protected attribute, respectively.

Keywords: Fairness · Grouping · Knapsack · Educational data · Nash
social welfare

1 Introduction

Teamwork plays a vital role in educational activities, as students can work
together to achieve shared learning goals while learning about leadership, higher-
order thinking, and conflict management [6]. A common approach to group stu-
dents into teams is as follows: the instructor provides a list of topics, projects,
tasks, etc. (shortly: topics), according to which the different non-overlapping
groups of students should be formed. The grouping procedure can be performed
randomly or based on students’ preferences [14] typically expressed as a rank-
ing over the provided topics. Or, the instructor just says: “Find yourself into
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groups”; in this case, a grouping is not random and does not consider students’
preferences w.r.t. topics but it is triggered by social connections. The common
case in educational settings is the grouping w.r.t. students’ preferences.

The grouping process should consider various requirements. First, students’
preferences should be taken into account (i.e., student satisfaction). A grouping
is considered satisfactory if it can satisfy the students’ preferences as much as
possible. Second, the groups should be balanced in terms of their cardinalities,
so all students share a similar workload (i.e., group cardinality) because when
groups have unequal sizes, and the minority group is smaller than a critical size,
the minority cohesion widens inequality [17]. Third, the instructor might be
interested in fair-represented groups w.r.t. some protected attributes like gender
or race [8] (i.e., group fairness), as studies suggest that mixed-gender grouping
may have a positive effect on groups’ performance [4].

These requirements have been discussed in the related work but are typically
treated independently. For example, fairness w.r.t. workload distribution and
students’ preferences has been discussed in group assignments [6], assignment
of group members to tasks [14] or students to projects [19]. Student satisfac-
tion is typically assessed as the number of topics staffed [11] or the sum of the
utilities of the topics assigned to students based on the ranking of preferences
chosen by students [12]. The group cardinality can be satisfied by the heuristic
method [15], or the hierarchical clustering approach [9]. However, providing a
grouping solution that simultaneously satisfies all three requirements is hard [19].

To this end, we introduce multi-fair capacitated (MFC) grouping problem
that aims to ensure fairness of the resulting groups in multiple aspects. In par-
ticular, we target fairness in terms of i) maximizing students’ satisfaction, ii)
ensuring fairness in group representation w.r.t. the protected attribute, and
iii) balancing group cardinalities. For the satisfaction aspect, we employ the
Nash social welfare notation [16]; for the fairness w.r.t protected attribute we
use the balance score notion [3]. To solve the MFC problem, we propose three
approaches: i) a greedy heuristic algorithm; ii) a knapsack-based approach that
reformulates the assignment step as a maximal knapsack problem; iii) an MFC
knapsack model based on the group fairness knapsack formulation [18].

2 Related Work

Agrawal et al. [1] proposed the problem of grouping students in a large class w.r.t.
the overall gain of students. Miles et al. [14] investigated the problem of assign-
ment of group members to tasks w.r.t. the workload distribution. Concerning a
diversity of features such as skills, genders, and academic backgrounds, Krass et
al. [8] investigated the problem of assigning students to multiple non-overlapping
groups. However, students’ preferences were not considered. To consider both
efficiency and fairness, Magnanti et al. [12] solved a CPLEX integer programming
formulation with two objectives: maximizing the total utility computed by the
rank of student’s preferences (efficiency) and minimizing the number of students
assigned to the projects which they do not prefer (fairness). Besides, Rezaeinia et
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al. [19] introduced a lexicographic approach to prioritize the goals. The efficiency
objective is computed based on the utility, similar to [12]. A related problem is
the problem of assigning reviewers to papers [7]. Each reviewer can be assigned
to several papers, and each paper can be assigned to several reviewers [7]. How-
ever, in the students grouping problem, we attempt to generate non-overlapping
groups [8], where each student can be assigned to only one group [19].

The knapsack problem formulation has been used for finding good cluster-
ing assignments [9] without students’ preference and the minimum capacity of
a group (cluster) is not considered. Recently, Stahl et al. [20] introduced a fair
knapsack model to balance the price given by the data provider and the sug-
gested price by the customer. Fluschnik et al. [5] proposed three concepts of
fair knapsack (individually best, diverse and fair knapsack) to solve the problem
of choosing a subset of items where the total cost is not greater than a given
budget while taking into account the preferences of the voters. Fairness of the
knapsack is measured by the Nash social welfare (or Nash equilibrium) [16]. The
group fairness definition for the knapsack problem was investigated recently by
Patel et al. [18]. In their study, each item is characterized by a category, their
goal is to select a subset of items such that the total value of the selected items
is maximized, and the total weight does not surpass a given weight while each
category is fairly represented.

3 Problem Definition

Let X = {x1, x2, · · · , xn} be a set of n students, T = {t1, t2, · · · , tm} be a set of
m topics. For an integer n we use [n] to denote the set {1, 2, · · · , n}. Each student
can choose h topics as their preference (h � m). The students’ preferences are
stored in matrix wishes. Row wishesi contains the list of h topics preferred by
student i. We use a matrix V to record the student’s level of interest in the topics.
The preference of topic tj chosen by student xi is represented by a number vij .
The more preferred topic will have a higher value of vij . Matrix V is computed
as: Vi,wishesio = h/o with o ∈ [h], where o indicates the order of preferences.
Likewise, each topic tj can be chosen by several students. A priority matrix W
consists of values computed based on the registration time, where wij represents
the priority of student xi on topic tj . Students who register earlier will have a
higher value of wij . If the topic tj is not preferred by student xi then vij = 0
and wij = 0.

Let ψ : V ×W → R be the aggregate function of matrices V and W . For each
student xi, we define a welfare value w.r.t. topic tj : welfareij = ψ(vij , wij). In
detail, ψ(vij , wij) = αvij + βwij , where α and β are the parameters indicating
the weight of each component. Figure 1 illustrates a dataset with 5 students and
4 topics. The matrix welfare is computed with α = 1 and β = 1 (preferences
and registration time are equally considered).

The goal of a grouping problem is to distribute n students into k disjoint
groups G = {G1, G2, · · · , Gk}, (k ≤ m), that maximizes the students’ preferences
w.r.t. the registration time, formulated by the objective function:
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Fig. 1. A dataset with matrices wishes, V , W and welfare.

L(X,G) =
k∏

r=1

(1 +
n∑

i=1

welfareijr × yijr ) (1)

In other words, the goal is to maximize the product of the total welfare
obtained from each group Gr. In Eq. 1, a set of indexes J = {j1, j2, · · · , jk}
of k selected topics is defined as J = {j|xi ∈ Gr, welfareij > 0}, ∀r ∈ [k].
Variable yijr is the flag of xi; yijr = 1 if xi is assigned to the group of topic tjr ,
otherwise yijr = 0. Equation 1 is the representation of the Nash social welfare [16]
function1. Therefore, we can call a grouping satisfactory if it maximizes the
product in the objective function L(X,G). Furthermore, we add one to the sum∑n

i=1 welfareijr × yijr to avoid the phenomenon that the sum of welfare in a
certain group might be zero.

Fairness of Grouping w.r.t. a Protected Attribute: Assume that each
student is characterized by a binary protected attribute P = {0, 1}, where 0 is the
protected group (e.g., gender = female) and 1 is the non-protected group (e.g.,
gender = male). ϕ : X → P is the demographic category to which the student
belongs. Fairness of a grouping G w.r.t. protected attribute [3] is computed as:

balance(G) = min
∀Gr∈G

balance(Gr) (2)

where fairness of a group Gr is the minimum ratio between two categories:

balance(Gr)∀Gr∈G = min
( |{x ∈ Gr | ϕ(x) = 0}|

|{x ∈ Gr | ϕ(x) = 1}| ,
|{x ∈ Gr | ϕ(x) = 1}|
|{x ∈ Gr | ϕ(x) = 0}|

)
(3)

Capacitated Grouping: Inspired by the capacitated clustering prob-
lem [15], we call a grouping capacitated if the cardinality of each group Gr,
i.e., |Gr|, is between a given lower bound Cl ≥ 0 and an upper bound Cu ≥ Cl.

Definition 1. MFC grouping problem. We describe the MFC problem as
finding a grouping G = {G1, G2, · · · , Gk} that distributes a set of students X
into k groups corresponding to k topics, and satisfies the following requirements:
1) The assignment is fair, i.e., maximizing students’ satisfaction (Eq. 1);
2) The balance of each group Gr is maximized, i.e., the fairness constraint w.r.t.
the protected attribute (Eq. 2);
3) The cardinality of each group Gr ∈ G is bounded within [Cl, Cu].
1 The Nash social welfare was defined as

∏
vi∈V (1 +

∑
a∈S ui(a)) [5] (the typical for-

mula is
∏

vi∈V

∑
a∈S ui(a), where vi is a voter in a set of voters V , a is an item of

the knapsack S, and ui(a) represents the extent to which vi enjoys a. The knapsack
S is fair if that product is maximized.
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4 Methodology for the MFC Grouping Problem

To solve the MFC grouping problem, we first propose a greedy heuristic algo-
rithm (Sect. 4.1); then we formulate the assignment phase as a vanilla maximal
knapsack (Sect. 4.2) or a group fairness knapsack problem (Sect. 4.3).

4.1 A Greedy Heuristic Approach

We apply a 2-phase greedy strategy (Algorithm 1). Step 1: we maximize the
students’ preferences by assigning them to their most preferred topic. If a topic
is preferred by many students we select the student who has the highest welfare
value (lines 4, 5). Step 2: we adjust the assignment to satisfy the requirements
by GroupAdjustment function (Algorithm 2). The number of students w.r.t.
protected attribute (pl0, p

u
0 , pl1, p

u
1 ) are computed based on the resulting groups’

cardinalities (Cl, Cu) and the balance score θ (line 2). If there exists ungrouped
students, we try to assign them to the existing groups (lines 3 - 6). If all groups
are full, we choose the most prevalent topic preferred by the remaining ungrouped
students and assign them to such a topic (lines 7 - 11). We disband groups
containing too few students and assign those ungrouped students to other groups
until all groups have the desired capacity (lines 13 - 18).

Complexity: Step 1 consumes O(n × h) and step 2 costs O(Cl × n × m) as
the algorithm has to deal with every group having cardinality less than Cl. As
Cl � n and Cu � n, the complexity of the greedy heuristic model is O(n × m).

Algorithm 1: Greedy heuristic algorithm
Input: X: a set of students; n: #students; h: #preferences; m: #topics; Cl, Cu:

capacities ; matrices wishesn×h, Vn×m, Wn×m; θ: balance score
Output: A grouping with k groups

1 groups ← ∅; welfare ← ψ(V, W );//Step 1: Assign students to groups;
2 for i ← 1 to n do
3 for j ← 1 to h do
4 if (topic wishesij is the most preferred topic of student i) and

(welfarei,wishij is the highest value among students choosing topic

wishesij) and (len(groups[wishesij ] < Cl)) then
5 groups[wishesij ].append(i);

6 GroupAdjustment(groups) //Step 2: Adjustment;

7 return groups;

4.2 A Knapsack-Based Approach

The assignment of the greedy heuristic approach can be detrimental to students’
satisfaction because there may be some students who have no more topics to be
assigned. Therefore, we propose an approach to select the most suitable students
for each topic by a maximal knapsack problem [13]. Let capacity be a cardinality
array with capacityi = 1,∀i ∈ [n]; welfareij = ψ(vij , wij) and the indexes of k
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Algorithm 2: Group adjustment algorithm
Input: groups: a set of groups; n: #students; h: #preferences; m: #topics;

Cl, Cu: capacities; θ: balance score
Output: An adjusted grouping

1 Function GroupAdjustment(groups):

2 pl
0 ←

⌈
Cl

1+θ
θ

⌉

; pu
0 ←

⌈
Cu

1+θ
θ

⌉

; pl
1 ← Cl − pl

0; p
u
1 ← Cu − pu

0 + 1 ;

3 for i ← 1 to n do
4 for q ← 1 to m do

5 if (i /∈ groups[q]) and len(groups[q] < Cl) and ((n students 0 < pl
0)

or (n students 1 < pl
1)) then

6 groups[q].append(i);

7 while len(unassigned students) > 0 do
8 id ← the most prevalent topic preferred by remaining students;
9 for i ∈ unassigned students do

10 if len(groups[id]) < Cu and ((n students 0 < pu
0 ) or

(n students 1 < pu
1 )) then

11 groups[id].append(i);

12 n items ← 1;

13 while (cardinalities of all groups /∈ [Cl, Cu]) do

14 if n items < Cl then
15 Resolve the groups with cardinality n items;
16 if (n students 0 < pu

0 ) or (n students 1 < pu
1 ) then

17 Assign ungrouped students to the remaining groups having
cardinality < Cu;

18 n items + +;

19 return groups;

topics J = {j1, j2, · · · , jk} will be chosen for the resulting groups. For each topic
tjr ∈ T , ∀r ∈ [k], i.e., r is the index of the selected knapsack, the goal is to select
a subset of students (Gr), such that:

maximize
n∑

i=1

welfareijr × yijrs.t.

{∑n
i=1 capacityi × yijr ≤ Cu or∑n
i=1 capacityi × yijr ≤ Cl

(4)

where yijr = 1 if xi is assigned to the group of topic tjr , otherwise yijr = 0.
In other words, for each selected topic, we find a set of students that max-

imizes the total welfare, while the total capacity, is within the given bounds.
The pseudo-code is described in Algorithm 3 with two steps. Step 1: we find the
most suitable candidates among the unassigned students by the solution of a
maximal knapsack problem [13] for each topic. We use dynamic programming to
solve the maximal knapsack problem (Eq. 4). Step 2 is presented in Algorithm 2
which performs a fine-tuning of the assignment.

Complexity: In step 1, the complexity is O(m×n×Cu) since it costs O(n×Cu)
for each topic to solve the knapsack problem. The running time of step 2 is
O(Cl × n × m). Therefore, the complexity is O(n × m).
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Algorithm 3: Knapsack-based algorithm
Input: X: a set of students; n: #students; h: #preferences; m: #topics; Cl, Cu:

capacities; matrices wishesn×h; Vn×m; Wn×m.
Output: A grouping with k groups

1 groups ← ∅ //Step 1: Assign students to groups ;
2 welfare ← ψ(V, W ) ;
3 for id ← 1 to m do
4 capacity ← get capacity(unassigned students);
5 values ← get welfare(unassigned students, welfare);
6 n items ← len(unassigned students);
7 if n items > 0 then

8 if n mod Cl = 0 then

9 selected students ← knapsack(values, capacity, n, Cl);
10 else
11 selected students ← knapsack(values, capacity, n, Cu);
12 groups[id] ← selected students;

13 GroupAdjustment(groups) //Step 2: Adjustment;

14 return groups;

4.3 An MFC Knapsack Approach

In the knapsack-based approach, the fairness constraint w.r.t. the protected
attribute is not directly considered in the knapsack formulation. Inspired by
the knapsack problem with group fairness constraints of Patel et al. [18], we
propose an MFC knapsack algorithm to find the group of suitable students,
which satisfies the MFC problem’ requirements. The goal of the MFC knapsack
is to select a subset of student (Gr), such that:

maximize
n∑

i=1

welfareijr × yijrs.t.

⎧
⎪⎨

⎪⎩

∑n
i=1 capacityi × yijr ≤ Cu or∑n
i=1 capacityi × yijr ≤ Cl

balance(Gr) is maximized
(5)

where yijr = 1 if xi is assigned to the group of topic tjr , otherwise yijr = 0.
We use dynamic programming to solve the MFC knapsack problem (Algo-

rithm 4). The input parameters include a set of unassigned students S ⊆ X.
A dynamic programming table A(p, s, w) is used to record the total welfare of
the first s students in the set S with capacity w on group p, ∀p ∈ {0, 1}, e.g.,
{male, female} w.r.t. protected attribute (line 3, 4). Then, we construct table
B(p,w) to find the total welfare with capacity w w.r.t. the protected attribute.
The number of students in the protected group and the non-protected group is
computed based on a given balance score θ (line 6). We apply a two-phase app-
roach to solve the MFC grouping problem. Step 1, we assign students to groups
based on the MFC knapsack’s solution. We replace the knapsack function in
Algorithm 3 with the new MFC knapsack function (Algorithm 4). Step 2, we
use the group adjustment algorithm (Algorithm 2) to fine-tune the assignment.



514 T. Le Quy et al.

Complexity: The MFC knapsack takes O(n × Cu) for each topic. To solve
the MFC problem, step 1 consumes O(m×n×Cu), and step 2 costs O(Cl×n×m).
Therefore, the complexity of the MFC knapsack approach is O(n × m).

Algorithm 4: MFC knapsack algorithm
Input: S = {x1, x2, . . . , xz}: a set of unassigned students; Cl, Cu: capacities;

welfaren×m: a welfare matrix; θ: balance score
Output: An optimal total welfare value

1 avg =

∑n
i=1 welfareijr

(Cl + Cu)/2
;

2 Let A(p, s, w), ∀p ∈ {0, 1}, be the total welfare of the first s students in the set
S with capacity w on group p ;

3 Initialize A(p, 0, w) ← 0; A(p, s, 0) ← 0 ;
4 A(p, s, w) ← max{A(p, s − 1, w), A(p, s − 1, w − 1) +

∑s
i=1 welfareijr} ;

5 Let B(p, w) be the total welfare of group p with capacity w;

6 pl
0 ←

⌈
Cl

1+θ
θ

⌉

; pu
0 ←

⌈
Cu

1+θ
θ

⌉

; S0 ← {x ∈ S|ϕ(x) = 0}; S1 ← {x ∈ S|ϕ(x) = 1} ;

7 B(0, w) ← max{A(0, |S0|, w)|pl
0 ≤ w ≤ pu

0} ;

8 B(1, w) ← max{B(0, w′) + A(1, |S1|, w − w′)|Cl − pl
0 ≤ w − w′ ≤ Cu − pu

0 , pl
0 ≤

w′ ≤ pu
0 , and w′

w−w′ ≥ θ} ;

9 return argmax{B(1, w)|min{B(1, w) − avg}};

5 Evaluation

5.1 Datasets

We evaluate our proposed methods on two variations of the student performance
dataset [10] and a real data science dataset collected at our institute (Table 1).

Real Data Science Dataset. This dataset is collected in a seminar on data
science at our institute. Students have to register 3 desired topics out of 16
topics. The advisor assigns students into groups based on their preferences and
the registration time. The data contain demographic information of students
(ID, Name, Gender) with their preferences (wish1, wish2, wish3 ), registration
time (Time) and priority matrix W represented by 16 attributes (T1, . . . , T16 ).

Student Performance Dataset2. The dataset consists of demographic, includ-
ing the protected attribute gender which is used in the evaluation, school-related
attributes and grades of students in Mathematics and Portuguese subjects of two
Portuguese schools in 2005 - 2006. Because there is no given information about
the topics and preferences of students in the original dataset, we create a semi-
synthetic version by generating preferences and topics. For each student, we
randomly generate h different preferred topics. Then, for each topic, we list the
students who select the topic and randomly generate (different) priorities and
store them in m attributes (matrix W ). Hence, the semi-synthetic version has
(h + m) new attributes apart from the original attributes.
2 https://archive.ics.uci.edu/ml/datasets/Student+Performance.

https://archive.ics.uci.edu/ml/datasets/Student+Performance
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Table 1. An overview of the datasets.

Dataset #instances #attributes Protected attribute Balance score

Real data science 24 23 Gender (F: 8, M: 16) 0.5

Student - Mathematics 395 33 Gender (F: 208, M: 187) 0.899

Student - Portuguese 649 33 Gender (F: 383; M: 266) 0.695

5.2 Experimental Setup

Parameter Selection. We set the number of wishes h = 3 for the student
performance dataset in order to be consistent with the real data science dataset.
The number of topics, m = 200 and m = 325, are set for the student performance
dataset - Mathematics and Portuguese subjects, respectively, to ensure that each
group has at least 2 students. Besides, we set the parameters α = 1.0 and β = 1.0,
i.e., each component has the same weight. The balance scores θ are computed
based on the datasets (Table 1). Furthermore, since the real data science dataset
is very small, our methods are evaluated with the lower bound Cl in the range of
(2, . . . , 8). Regarding the student performance dataset, we set Cl = (2, . . . , 18),
as the average number of students per group should not exceed 20 [21]. The
upper bound Cu is set as Cu = Cl + 1 for all datasets.

Baseline. The CPLEX integer programming model which considers both
efficiency and fairness [12].

Evaluation Measures. We report the results on the following measures:
- Nash Social Welfare. The Nash social welfare is computed by Eq. 1.

However, the number of groups (k) is determined during the group assignment
process, i.e., k is different for the same set Cl, Cu, for each method. Hence, we
normalize the Nash social welfare of the final grouping by Nash = logkL(X,G).

- Balance. The fairness in terms of the protected attribute (Eq. 2).
- Satisfaction Level. It is computed by the ratio of the number of satisfied

students, i.e., the students are assigned to their preferred topic, out of the total

number of students: Satisfaction =
| {i|wishesip = k, i ∈ groupsk, p ∈ [h]} |

n
.

5.3 Experimental Results

Real Data Science Dataset. In Fig. 2, we present the performance of proposed
methods on various evaluation measures. The MFC knapsack method is better
in terms of the Nash social welfare and satisfaction level (Fig. 2-a, c). In terms
of fairness w.r.t. protected attribute, the MFC knapsack method outperforms
others when a group has at least 4 people (Fig. 2-b). CPLEX fails to assign
students while maintaining only a constant number of groups (Fig. 2-d).

Student Performance - Mathematics Dataset. The knapsack-based app-
roach outperforms others regarding Nash social welfare and satisfaction level in
most experiments (Fig. 3-a, c). The satisfaction level tends to decrease because
students have only a limited number of preferences (3 topics). When the group’s
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Fig. 2. Performance of methods on the real data science dataset.

cardinality increases, the desired topics become more diverse, and it is chal-
lenging to satisfy most students. In terms of fairness w.r.t. protected attribute
(gender), the knapsack-based and MFC knapsack methods tend to achieve a
higher balance score in comparison to the heuristic method (Fig. 3-b). When
groups’ cardinality is less than 4, the greedy heuristic and MFC knapsack meth-
ods tend to create more groups than the knapsack-based method (Fig. 3-d). The
CPLEX method cannot return a solution when the groups’ cardinality is less
than 9 and it also fails since it is not possible to assign all students to groups.

Fig. 3. Performance of methods on the student performance - Mathematics dataset.

Student Performance - Portuguese Dataset. The knapsack-based method
once again demonstrates the ability to create groups with higher Nash social
welfare and satisfaction level than others in many cases (Fig. 4-a and Fig. 4-
c). Regarding fairness w.r.t. gender, a higher and more stable balance score is
observed in the grouping generated by the MFC knapsack model (Fig. 4-b). The
main reason for this phenomenon can be attributed to the model’s emphasis
on maximizing the balance constraint w.r.t. protected attribute. Besides, the
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Fig. 4. Performance of methods on the student performance - Portuguese dataset.

Fig. 5. Impact of α, β parameters on the knapsack-based model (student performance
- Mathematics dataset).

MFC knapsack and greedy heuristic models divide students into more groups
(Fig. 4-d) while the CPLEX also cannot assign all students to groups.

Impact of Parameters. The influence of α, β parameters is illustrated in Fig 5.
The knapsack-based model shows the best performance with the combination of
α = 1.0 and β = 1.0.

Summary of Results. In general, the knapsack-based approach outperforms
other models regarding Nash social welfare and satisfaction level. The MFC
knapsack method shows its preeminence in terms of fairness w.r.t. gender in
many cases, especially when the resulting groups have more members. However,
in some cases, the knapsack-based approach tends to create fewer groups than
the greedy heuristic method, i.e., the groups’ cardinality is higher, which has
both advantages and disadvantages. On the one hand, the larger groups can
produce more ideas in brainstorming and discussions [2]. On the other hand, the
group’s performance may decline with the increase in the group’s size [22].
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6 Conclusions and Outlook

In this work, we introduced the MFC grouping problem that ensures fairness
in multiple aspects: i) in terms of student satisfaction and ii) regarding the
protected attribute and maintaining the groups’ cardinality within the given
bounds. We proposed three methods: the greedy heuristic approach that priori-
tizes the students’ preferences in the assignment; the knapsack-based approach
with the assignment step is formulated as a maximal knapsack problem; the
MFC knapsack method considers fairness, cardinality, and students’ preferences
in the MFC knapsack formulation. The experiments show that our methods are
effective regarding student satisfaction and fairness w.r.t. the protected attribute
while maintaining cardinality within the given bounds. In the future, we plan
to extend our approach to more than one protected attribute, as well as to fur-
ther investigate the groups’ characteristics w.r.t. students’ abilities, and other
definitions with different aspects of fairness in the educational settings.

Acknowledgements. The work of the first author is supported by the Ministry of
Science and Culture of Lower Saxony, Germany, within the Ph.D. program “LernMINT:
Data-assisted teaching in the MINT subjects”.
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Abstract. Recent research has identified discriminatory behavior of
automated prediction algorithms towards groups identified on specific
protected attributes (e.g., gender, ethnicity, age group, etc.). When
deployed in real-world scenarios, such techniques may demonstrate
biased predictions resulting in unfair outcomes. Recent literature has wit-
nessed algorithms for mitigating such biased behavior mostly by adding
convex surrogates of fairness metrics such as demographic parity or
equalized odds in the loss function, which are often not easy to estimate.
This research proposes a novel in-processing based GroupMixNorm layer
for mitigating bias from deep learning models. The GroupMixNorm layer
probabilistically mixes group-level feature statistics of samples across dif-
ferent groups based on the protected attribute. The proposed method
improves upon several fairness metrics with minimal impact on overall
accuracy. Analysis on benchmark tabular and image datasets demon-
strates the efficacy of the proposed method in achieving state-of-the-art
performance. Further, the experimental analysis also suggests the robust-
ness of the GroupMixNorm layer against new protected attributes during
inference and its utility in eliminating bias from a pre-trained network.

Keywords: Deep Learning · Ethics and fairness · Bias Mitigation

1 Introduction

Most AI algorithms process large quantities of data to identify patterns useful
for accurate predictions. Such pipelines are mostly automated in nature without
any human intervention, along with large data processing, high efficiency, and
high accuracy. Despite the benefits of automated processing, current AI systems
are marred with the challenge of biased predictions resulting in unfavourable
outcomes. One of the most infamous examples of such behavior is that of an AI-
based recruitment tool1, which disfavoured applications from women because
it was trained on resumes from the mostly male workforce. In order to rectify
such biases and support advancement in society, we need models that generate
fair results without any discrimination towards certain individuals or groups. To
1 https://tinyurl.com/5apv7xeu.
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Fig. 1. The proposed GroupMixNorm layer projects the features of different classes
and protected attributes onto a space which minimizes the distinction between the
protected attributes, thus promoting a fairer classification model.

this effect, this research proposes a novel GroupMixNorm layer for learning an
unbiased model for ensuring fair outcomes across different groups.

In the literature, research has focused on achieving fairness by introducing
techniques at the pre-processing stage (transforming the input before feeding to
the classification model) or the post-processing stage (transforming the output
produced by the classification model). It is our hypothesis that these methods
may not result in optimal accuracy, since they treat the classifier as a black box
and focus on removing bias from the input representations or the output predic-
tions only. Different from the above, in-processing techniques focus on learning
bias-invariant models by incorporating additional constraints during training,
thus resulting in more effective models [4]. Existing in-processing techniques
mostly aim to solve a constraint optimization problem to ensure fairness [20–22]
by introducing a penalty term in the loss function corresponding to the convex
surrogates of the fairness objective like demographic parity or equalized odds.
However, as observed in literature, it is challenging to formulate surrogates for
different fairness constraints that is a reasonable estimate of the original [16].

In this research, we formulate the problem of bias mitigation as distribution
alignment of several groups of the protected attribute (Fig. 1). The proposed
GroupMixNorm layer is applied at the in-processing stage which promotes the
model to learn unbiased features for classification. The formulation is motivated
by the observation that Deep Learning based algorithms tend to explore the
difference in the distribution among the groups of the protected attributes (e.g.,
male and female with similar features like age and education may have different
salaries, thus resulting in different distributions) to lift the overall performance.
The GroupMixNorm layer mixes the group-level feature statistics and transforms
all the features in a training batch based on the interpolated group statistics.
This enables the classifier to learn features invariant to the protected attribute.
Further, transforming the data towards the interpolated groups regularizes the
classifier and improves the generalizability at inference. Key highlights of this
research are as follows:
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Fig. 2. The GroupMixNorm layer takes as input the previous layer’s output (Z) along
with each sample’s protected attribute. Group-level statistics are computed, followed
by the probabilistic mixing and projection of the mini-batch features along the mixed
statistics to obtain new features (Ẑ).

– This research proposes a novel GroupMixNorm layer for learning fairer classi-
fication models. The proposed layer is applied at the architectural level and is
an in-processing technique that focuses on distribution alignment of different
groups during model training.

– GroupMixNorm operates at the feature level, thus making it flexible to be
placed across various layers of a neural network-based model and fits well into
the mini-batch gradient-based training. Experimental analysis suggests that
with limited data, GroupMixNorm can be applied to mitigate the existing
bias in classifiers as well, thus avoiding the need for re-training from scratch.

– The GroupMixNorm layer produces fairer results when evaluated for new
groups at test time as well. We believe that the GroupMixNorm layer makes
the model robust against distribution changes across sensitive groups, thus
being able to generalize well for unseen groups at test time.

– The efficacy of the proposed approach has been demonstrated on different
datasets (structured and unstructured), where it achieves improved perfor-
mance while achieving multiple fairness constraints such as demographic par-
ity, equal opportunity, and equalized odds simultaneously. For example, on
the UCI Adult Income dataset [9], GroupMixNorm achieves an average pre-
cision of 0.77, while maintaining different fairness metrics below 0.03.

2 Related Work

Group fairness can be ensured in a machine learning system via pre-processing,
in-processing, and post-processing. Pre-processing and post-processing methods
consider the classifier as a black-box model, and try to mitigate bias from the
input features or the classifier’s prediction. On the other hand, in-processing
based bias mitigation techniques solve the constraint optimization problem
for different fairness objectives. To ensure independence between the predic-
tions and sensitive attributes, Woodworth et al. [20] regularize the covariance
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between them. Zafar et al. [21] minimize the disparity between the sensitive
groups by regularizing the decision boundary of the classifier. Game theory
based approaches [1,7] provide analytical solutions and theoretical guarantees
for generalizability in fair classifier but are limited by the scalability factor.
Recent techniques [13,22] introduce an adversary network additional to the pre-
dictor network that predicts the sensitive label based on the classifier’s out-
put, while other algorithms [2,3,17,24] learn unbiased representations through
invariant risk minimization and attention-based feature learning. Research has
also focused on eliminating superficial correlations and paying more attention on
task related causal features [12,14]. Recently, Cheng et al. [5] utilize contrastive
learning to minimize the correlation between sentence representations and bias-
ing words, while mixup [19,23] techniques have proved to be effective in bias
mitigation. For example, Chuang et al. [6] utilize mixup as a data augmenta-
tion strategy to improve the generalizability of the model while optimizing the
fairness constraints, and Du et al. [8] utilize mixup for feature neutralization to
remove the correlation between the sensitive information and class labels from
the encoder feature.

Instead of focusing on optimizing surrogates of the fairness metrics, this
research proposes a novel GroupMixNorm layer which operates at the architec-
tural level of the classifier. GroupMixNorm focuses on learning unbiased repre-
sentations which results in satisfying several fairness constraints across groups.

3 Proposed GroupMixNorm Layer

As discussed before, recent research has observed that deep learning models
often tend to learn group-specific characteristics, making it easier to obtain a
higher performance on the underlying classification task. As an ancillary effect,
the learned group-specific features often also result in discriminative behavior
towards specific groups based on the protected attribute. For example, a recruit-
ment tool may learn features based on the gender of the applicant, resulting in
unintended discrimination towards applicants from the under-represented group.
In order to address the above limitation, the GroupMixNorm layer focuses on
eliminating the difference between the group statistics during training.

As part of the GroupMixNorm layer, we normalize each group of a protected
attribute in a batch separately to collect group specific statistics (i.e. for the
gender attribute, normalize all male samples and female samples in a batch
separately) and further take a probabilistic convex combination between the
group-level statistics and apply across all the samples in a batch. This process
ensures that any protected group related diversity is removed from the internal
representation of a neural network and doesn’t allow the network to explore
this information to lift the overall performance. The introduction of additional
inductive bias in the network structure enforces it to learn invariant features
pertaining to the protected attributes while training the network.

The GroupMixNorm layer is implemented as a plug-and-play module. It can
be inserted between the fully connected layers of a neural network-based classifier
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Algorithm 1. GroupMixNorm Layer
Input: Z: Learned representation of the input batch obtained from the previous layer
α, β: Hyper-parameters for the Beta distribution (default: 0.1)
Output: Ẑ: Transformed samples after the GroupMixNorm layer

1: if not in training mode then
2: return Z
3: end if
4: Compute μGj and σGj for a group Gj in a protected attribute
5: Sample mixing coefficient λ ∼ Beta(α, α)
6: Compute γmix and βmix as shown in Eq. 2
7: Normalize and transform all samples in a batch to compute ẐGj as shown in Eq. 3

8: Ẑ = {ẐGj}K
j=1, where K is the number of groups identified in a protected attribute

9: return Ẑ

during training (Algorithm 1). Let X,Y , and S be the input features, class labels,
and protected attribute labels in a training batch, respectively. As illustrated in
Fig. 2, let Z be an n dimensional representation obtained from the previous layer
and Ai represent the feature along dimension i. We identify the groups Gj in a
batch based on the protected attribute labels S, and calculate their respective
mean (μGj ,i) and variance (σGj ,i) along each dimension (step-1 of Fig. 2). Next
we calculate the weighted average of mean γmix,i and variance βmix,i along each
dimension (Eq. 1), followed by concatenation to create a single vector (Eq. 2). As
we mix statistics of two groups at a time, the mixing coefficient λ is sampled from
a symmetric Beta distribution Beta(α, α), for α ∈ (0,∞). The hyper-parameters
α controls the strength of interpolation.

Finally, we normalize all the samples by applying the calculated γmix and
βmix to each sample as shown in Eq. 3. For the ease of notation, we have consid-
ered two groups i.e. binary protected attributes. However, the proposed solution
can easily be applied to non-binary protected attributes as well.

γmix,i = λσG1,i + (1 − λ)σG2,i; βmix,i = λμG1,i + (1 − λ)μG2,i; (1)

γmix = [γmix,1, ...γmix,n]; βmix = [βmix,1, ...βmix,n] (2)

ẐGj
= γmix

(ZGj
− μGj

)
σGj

+ βmix (3)

The updated features Ẑ = [ẐG1 , ẐG2 ] are then provided as input to the
following layer of the neural network for further processing. The process of mixing
group level statistics in a GroupMixNorm layer occurs in the feature space and
has no learnable parameters. The GroupMixNorm layer is easy to implement and
fits perfectly into mini-batch training. Further, it is turned off during inference,
thus eliminating the need for protected attributes during inference. The training
procedure of GroupMixNorm layer is shown in Algorithm 1.
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4 Datasets and Experimental Details

The GroupMixNorm layer has been evaluated on two datasets with different fair-
ness evaluation metrics and compared with state-of-the-art techniques. Details
regarding the dataset protocols are as follows:

– UCI Adult Dataset [9] contains 50,000 samples with 14 attributes to
describe each data point (individual) (e.g., gender, education level, age, etc.)
from the 1994 US Census. The classification task is to predict the income of
an individual. It’s a binary classification task, where class 1 represents salary
≥ 50K and class 0 represents salary < 50K. We select gender as the protected
attribute for the fairness evaluation. The dataset is imbalanced such that only
24% of the samples belong to class 1, with only 15.13% female samples.

– CelebA Dataset [15] contains 200,000 celebrity faces with 40 binary
attributes associated with each image. Following the literature [6,8], we select
gender as the protected attribute and wavy hair attribute for the binary clas-
sification task. The dataset has 18.36% male samples as compared to female
samples in the positive class.

4.1 Fairness Evaluation Metrics

The most widely used fairness metrics [18] are: Demographic Parity, Equal
Opportunity, and Equalized Odds [10]. The metrics are elaborated in detail
below, where Y (̂Y ) is actual (predicted) class label and S is protected attribute:

– Demographic Parity Difference (DP) suggests that the probability of
favourable outcomes should be same for all the subgroups:

DPD = |P [̂Y = 1|S = 1] − P [̂Y = 1|S �= 1]| (4)

– Equality of Opportunity Difference (EO) emphasises that there should
be equal opportunities for all the subgroups having positive outcomes to have
positive prediction i.e. true positive rates for all the groups should be same:

EOP = |P [̂Y = 1|S = 1, Y = 1] − P [̂Y = 1|S �= 1, Y = 1]| (5)

– Equalized Odds Difference (EOD) focuses on equalizing false positive
rates along with the same true positive rates for all the subgroups:

EOD = |P [̂Y = 1|S = 1, Y = 1] − P [̂Y = 1|S �= 1, Y = 1]|+
|P [̂Y = 1|S = 1, Y = 0] − P [̂Y = 1|S �= 1, Y = 0])|

(6)

For a fair algorithm, DP, EO and EOD values must be closer to 0.

4.2 Implementation Details

The GroupMixNorm layer has been implemented in the PyTorch framework
on Ubuntu 16.04.7 OS with the Nvidia GeForce GTX 1080Ti GPU. For a fair
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Fig. 3. Fairness-AP trade-off curves on the Adult dataset, where GroupMixNorm
demonstrates improved performance. Results are obtained by varying the trade-off
parameter as suggested in their respective publications: Adversarial Debiasing: [0.01 ∼
1.0], Fair Mixup DP: [0.1 ∼ 0.7], Fair Mixup EO: [0.5 ∼ 5.0], and RNF: [0.05, 0.015,
0.025, 0.035]. For a fair algorithm, it is desirable to have the AP closer to 1, and the
fairness metrics (DP, EO, EOD) closer to 0.

Fig. 4. Fairness-AP trade-off curves of GroupMixNorm layer and other compara-
tive algorithms on the CelebA dataset, where the proposed approach achieves state-
of-the-art performance. Results are obtained by varying the trade-off parameter as
suggested in their respective publications: Fair M Mixup DP: [25, 50], Fair M Mixup
EO: [1, 10, 50], RNF: [0.1, 0.5, 1, 5, 10].

comparison with existing literature, we have followed the same dataset pre-
processing and protocols as the fair mixup approach [6]. For the Adult dataset,
we use four fully connected layers with hidden dimension 50. Each layer except
the last output layer is followed by SiLU activation and the proposed Group-
MixNorm layer. The model is trained for 10 epochs with a 1000 batch size. For
each epoch, the dataset is randomly split into 60-20-20 split of train, val, and
test set, respectively. We select the best-performing model on the validation set
across 10 independent runs and report the mean Average Precision and fairness
metrics defined above. For the CelebA dataset, we use the ResNet-18 [11] model
for feature extraction followed by two fully connected layers for the classification
task. We apply SiLU activation and GroupMixNorm layer between the two FC
layers. We use the original split of the dataset and train the model for 100 epochs
with 128 batch size. Both the models are trained with the Adam optimizer with
learning rate 1e − 4. In all experiments, mixing coefficient λ (Eqs. 1 and 2) is
randomly sampled from Beta(α, α). The value of α is empirically set to 0.1.
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5 Results and Analysis

Figures 3–6 and Table 1 present the results and analysis of the GroupMixNorm
layer and comparison with the state-of-the-art in-processing bias mitigation tech-
niques. Detailed analysis is given in the following subsections:

5.1 Comparison with State-of-the-art Algorithms

Since the GroupMixNorm layer focuses on mitigating bias during the training
process, comparison has been performed with algorithms that optimize fairness
constraints during training: (i) Adversarial Debiasing [22], (ii) Fair Mixup: Fair-
ness via Interpolation (Fair Mixup) [6], (iii) Fairness via Representation Neu-
tralization (RNF) [8], and (iv) plain classifier. Fair Mixup uses two separate reg-
ularizing terms for optimizing the fairness metrics of Demographic Parity (DP)
and Equal Opportunity (EO), and thus can solve for either DP or EO at a time.
In this paper, we refer to these two variants of Fair Mixup as Fair Mixup DP and
Fair Mixup EO. To calculate the DP, Chuang et al. [6] have computed the dif-
ference between the predicted probability across the protected groups. Similarly,
for EO, Chuang et al. [6] compute class-wise difference between the predicted
probability across protected groups. As part of this research, we have used the
actual definitions of EO and DP for computing the fairness metrics (Eqs. 4–5).
Parallely, the Representation Neutralization (RNF) technique [8] has shown the
bias mitigation performance via two variants: (i) in model-1, proxy labels are
generated for the protected attribute, while (ii) in model-2, ground-truth pro-
tected attribute labels are used. As part of this research, we have compared our
results with their second variant (model-2), referred to as RNF.

For a fair comparison, we evaluate all the models under the same setting.
Techniques such as Adversarial Debiasing, Fair Mixup, and RNF introduce a
regularization term in the loss function to improve fairness via a hyper-parameter
α that controls the trade-off between the average precision (AP) and fairness
metrics (DP, EO, and EOD). We have reported the results on varying values of
α as suggested in their respective papers. In our case, the GroupMixNorm layer
is proposed towards architecture design and not the loss function, thus there is
no such trade-off. Performance analysis on different datasets is as follows:
(a) Comparison on the UCI Adult Income Dataset: Figure 3 shows the
performance comparison on the UCI Adult dataset, where the GroupMixNorm
layer produces fairer results as compared to other techniques across all fairness
metrics (DP, EO, EOD) with minimal impact on average precision. Since Fair
Mixup solves separate constraint optimizations to achieve lower DP and EO, it
minimizes either DP or EO at a time. In terms of the fairness metrics, RNF pro-
duces fair results, however the average precision is relatively lower, thus making
it unsuitable for the classification task.
(b) Comparison on the CelebA Dataset (Fig. 4): Consistent with the
published manuscript [6], for Fair Mixup, comparison has been performed with
the combination of manifold mixup [19] (Fair M Mixup DP and Fair M Mixup
EO). Similar to the previous experiments, it is observed that either Fair M
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Fig. 5. PCA visualizations of the features for the MLP classifiers trained without and
with GroupMixNorm. The left plots show the class distribution, and the right plots
show the gender distribution (protected attribute). The model trained with Group-
MixNorm demonstrates minimal distinction on the gender attribute.

Table 1. Cosine similarity between the learned weight parameters of Csens and Ccls

linear classifiers (the former is trained for predicting the sensitive attribute, while the
later is trained for class label prediction). A lower score represents less biased models
since lesser similarity is observed between the weight parameters.

Method Cosine Similarity

Plain Classifier 0.205

RNF 0.075-0.2

GroupMixNorm 0.06

Mixup DP or Fair M Mixup EO achieves optimal performance at a time. Further,
the RNF model produces fair results across fairness metrics, however achieves
lower average precision. GroupMixNorm achieves comparable performance to the
best performing model across all the metrics, while maintaining a high average
precision, thus suggesting high utility for real-world applications.

5.2 Learned Representation Analysis

Experiments have been performed for (a) feature visualization and (b) auxiliary
prediction task for understanding feature quality. The key findings are as follows:
(a) Feature Visualization: Figure 5 presents the 2D projections obtained
by using the sigmoid kernel Principal Component Analysis (PCA). Figure 5a
presents the features learned by a biased MLP classifier (trained without Group-
MixNorm layer), where the features appear both class and gender (protected
attribute) discriminative. There is an overlap of male samples with the positive
class samples, both lying majorly in the lower left side of the distribution. On
the other hand, Fig. 5b shows features learned with the GroupMixNorm layer
appear to be class discriminative, while not being gender discriminative. Fur-
ther, both male and female samples are evenly distributed, thus preventing the
model to get biased against a particular sensitive group.
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Fig. 6. Average precision and fairness metrics obtained by different techniques (a) when
evaluated on new protected attributes and (b) for de-biasing a pre-trained classifier with
limited training data. Experiments have been performed on the Adult Income dataset
with race and gender as the protected attribute, respectively. GroupMixNorm presents
improved performance across metrics.

(b) Auxiliary Prediction Task: Similar to Du et al. [8], we use an auxiliary
prediction task to analyze the quality of the learned features. The objective is to
analyze how well the model can reduce the correlation between the class labels
and the sensitive attributes. To this effect, we train two linear classifiers Csens

and Ccls that take the representation vector as input and predicts class labels and
sensitive attributes, respectively. Next, we compare the learned weight matrix of
Csens and Ccls using cosine similarity. A higher similarity would signify similar
weights and thus higher correlation between the two tasks. Table 1 shows that
our model has the least cosine similarity indicating that the classifier focuses
more on task relevant information than sensitive information. It is important
to note that the cosine similarity for the RNF model varies from 0.2 to 0.075,
based on the fairness-accuracy trade-off parameter, while the GroupMixNorm
layer based model achieves a cosine similarity of 0.06 only.

5.3 Generalizability to New Protected Groups

With time, as the data evolves, new sensitive groups often get introduced. For
example, gender attribute values may change from binary to non-binary. A
robust classification model must remain unbiased even with the introduction
of additional sensitive groups during inference. In order to simulate this setup,
the proposed solution was evaluated for new groups at test time without any
re-training. Experiments were performed on the Adult Income dataset where
data pertaining to two races (White and Black) was used for training, while the
data from White, Black, and Others (Asian-Pac-Islander, Amer-Indian-Eskimo,
Other) racial groups were used for testing. Figure 6a presents the performance
of the GroupMixNorm layer along with other comparative techniques, where
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GroupMixNorm is able to generalize well to unseen groups during inference by
obtaining lower fairness metrics and a higher average precision.

5.4 Debias Pre-trained Model with Limited Data

Experiments have also been performed to analyze the effectiveness of the pro-
posed GroupMixNorm layer to mitigate bias from a pre-trained biased classifier.
We train an MLP classifier on the training partition of the Adult Income dataset,
without the GroupMixNorm layer, and later fine-tune the model after plugging
the proposed layer on the validation set. The validation set consists of only
20% samples of the entire dataset. For other techniques, we fine-tune the pre-
trained biased classifier on the validation set with the respective methods. We
evaluate the model for fairness on the Adult dataset with gender as the pro-
tected attribute. Figure 6b presents the results obtained by the proposed Group-
MixNorm layer as well as other comparative techniques. It can be observed that
the proposed solution produces fairer results as compared to other algorithms
across the different fairness metrics, while achieving the highest average preci-
sion. The experiment suggests that even with a small training set, the proposed
GroupMixNorm can aid in eliminating bias from a pre-trained network.

6 Conclusion and Future Work

Learning bias-invariant models are the need of the hour for the research com-
munity. While existing research has focused on proposing novel solutions for
learning unbiased classifiers, most of the techniques incorporate an additional
term in the loss function for modeling the model fairness. We believe that it is
often difficult to extrapolate the learnings of such an optimization function to
the test set, especially under the challenging scenario of new protected attributes
during evaluation. To this effect, this research proposes a novel GroupMixNorm
layer, which promotes learning fairer models at the architectural level. Group-
MixNorm is a distribution alignment strategy operating across the different
protected groups, enabling attribute-invariant feature learning. Across multi-
ple experiments, GroupMixNorm demonstrates improved fairness metrics while
maintaining higher average precision levels, as compared to the state-of-the-
art algorithms. Further analysis suggests high model generalizability to new
protected attributes during evaluation, possibly due to the transformation of
samples to interpolated groups resulting in model regularization during train-
ing. As an extension of this research, future research directions include studying
the impact of GroupMixNorm on different convolution layers and extending the
scope to evaluation on NLP datasets and tasks.
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Abstract. In recent years, groundbreaking transformer-based language models
(LMs) have made tremendous advances in natural language processing (NLP)
tasks. However, the measurement of their fairness with respect to different social
groups still remains unsolved. In this paper, we propose and thoroughly validate
an evaluation technique to assess the quality and bias of language model predic-
tions on transcripts of both spoken African American English (AAE) and Spoken
American English (SAE). Our analysis reveals the presence of a bias towards
SAE encoded by state-of-the-art LMs such as BERT and DistilBERT and a lower
bias in distilled LMs. We also observe a bias towards AAE in RoBERTa and
BART. Additionally, we show evidence that this disparity is present across all the
LMs when we only consider the grammar and the syntax specific to AAE.

Keywords: Language Model · Transformers · Bias and Fairness · Evaluation

1 Introduction

Since their inception [8], transformers-based bidirectional encoder representations lan-
guage models (LMs) have gained significant scientific interest due to their sizable
improvements on a wide range of NLP tasks. The success of BERT pushed researchers
to expand the state-of-the-art by introducing a plethora of model variants with differ-
ences in architecture [30], size [21,31,37] and training [22,24]. However, a growing
concern in the research community has arisen: the potential societal risks coming from
the pervasive adoption of these models [2]. Several studies highlight that this adoption
would hinder equitable and inclusive access to NLP technologies and have real-world
negative consequences in different areas, such as education, work, and politics [32].
Given the consistent emergence of new LMs trained on Web-based corpora, it is crucial
to identify and measure the bias and fairness of these models.

Given the sheer size and heterogeneity of theWeb, one might expect these models to
be bias-free. However, even before the explosion of transformer-based LMs, a variety of
biases have been identified in standard word embeddings [3]. Recently, some effort has
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been devoted to highlighting the presence of possible biases encoded by transformer-
based LMs along gender, race, ethnicity, and disability status through techniques such
as sentiment analysis and named entity recognition tasks. In contrast, we focus on tasks
used in conversational systems, where a word could be unheard or unrecognized by the
automatic speech recognition system and would therefore need to be predicted.

In particular, we focus on spoken language, as it tends to have incomplete sen-
tences, spontaneous self-corrections, and interruptions, and its register is more informal
with respect to written language, which is typically more structured. We study the pres-
ence of potential bias towards English dialects spoken by underrepresented and histor-
ically discriminated groups, such as African American English (AAE). In linguistics,
AAE and mainstream U.S. English, referred in this paper as Spoken American English
(SAE), are regarded as two different languages because they are highly structured and
possess their own phonological, syntactic and morphological rules [14]. In fact, AAE
highlights the regional, societal and cultural environments in which individuals have
learned to speak [13]. However, SAE speakers often believe that AAE is a version of
SAE with mistakes and that AAE speakers belong to deficient cultures [28,36].

It is difficult to estimate the number of AAE speakers because some African Amer-
icans may speak a variety that aligns more with SAE, and not all AAE speakers are
African Americans. Nevertheless, a 2019 census [29] estimates that approximately 13%
of the U.S. population is African American, suggesting that there is a significant number
of AAE speakers. Thus, the presence of potential linguistic biases may have discrimi-
natory consequences towards a considerable group of individuals.

For these reasons, we set out to measure the robustness and quality of 7 transformer-
based LMs in the prediction of missed words when the input is either SAE or AAE.
We resort to two renowned corpora of spoken SAE and AAE and evaluate the LMs in a
Masked Language Modeling (MLM) task. In particular, we formulate a fill-in-the-blank
task, where we mask and predict a token, simulating its absence in every utterance.
Next, we define two metrics, Probability Difference and Complementary Reciprocal
Rank, to compare the likelihood that the model assigns the predicted token to the actual
masked one and use that as a proxy of quality and fairness for the model itself.

We rigorously quantify the model bias and find that BERT, in both its cased and
uncased variants, exposes a non-negligible bias towards SAE (up to 21% more accurate
results with respect to AAE). Surprisingly we find that RoBERTa and BART models
are biased towards AAE. We additionally observe distilled variants of these LMs to be
fairer with respect to their teachers. Finally, our analysis reveals that the majority of
bias resides in the AAE structural differences, specifically the particles, pronouns, and
adpositions.

2 Related Work

Some of the major factors behind the success of transformer-based LMs include the
large architectures and the training done on huge amounts of textual data. This recently
raised the interest of the research community towards the potential societal risks linked
to the employment of these models for either generating text tasks or as components
of classification systems [2]. These works have studied the effects of transferring the
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stereotypical associations present in the training datasets to LMs, which cause an unin-
tended bias towards underrepresented groups. Significant research efforts have been
made to identify race and gender bias embedded in large models [1,5,20,26,33]. [18]
highlights the presence of topical biases in words predicted by BERT on sentences
mentioning disabilities.

In addition to works on bias measurement, researchers have proposed methods to
mitigate societal biases with debiasing techniques [23,34]. In regards to research on bias
towards languages, most studies have focused on offensive language and hate speech
detection [7,27], whereas research on bias against dialects spoken by underrepresented
groups is quite recent [10]. In contrast to the above works, which mostly focus on the
negative sentiment and stereotypical associations towards specific groups in BERT [8],
this work focuses on quantifying the linguistic bias towards AAE for 7 different LMs:
BERT, RoBERTa [24], BART [22], DistilBERT and DistilRoBERTa [31], including
both their cased and uncased versions.

Previous works have proven that the large dimension of the training datasets for
state-of-the-art LMsmay not lead to diversity and inclusion for underrepresented groups
[2]. Therefore, our analysis is essential to provide a framework to assess, reveal, and
counteract the existing biases in order to improve the performance of large language
models with regard to linguistic biases.

3 Methodology

To capture and provide an accurate and comprehensive account of societal biases
embedded in state-of-the-art LMs, we leverage two corpora of spoken English. These
are widely used in the linguistics field because linguists consider them a fair represen-
tation of their spoken language. Although there is a 15-year gap between the collection
date of these corpora, we argue that the core structure of the language remains the same
and that any bias captured due to the difference in periods will be minimal. Addition-
ally, although LMs are generally trained using text data, we argue that spoken conver-
sational agents leverage these same LMs when communicating with users. Thus, it is
still appropriate to analyze the bias of LMs using spoken corpora. We also note that
while this paper is not the first to study the presence of societal biases, to the best of our
knowledge, this is the first to provide a thorough characterization of it for AAE across
different models tested on an MLM task. We summarize LMs’ performance by means
of statistical metrics, which are used to characterize both the bias and the quality of the
models.

3.1 Corpora for Spoken English

For SAE, we leverage the Santa Barbara Corpus of Spoken American English (SBC-
SAE) [11], which is widely adopted for different applications, such as the assessment
of political risk faced by U.S. firms [16], the measure of grammatical convergence in
bilingual individuals [4], and the exploration of new-topic utterances in naturally occur-
ring dialogues [25]. It includes conversations recorded in various real everyday life
situations from a wide variety of people who differ in gender, occupation, and social
background. All the audio recordings are also complemented with their transcriptions.
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Table 1. Corpora summary: with and without filtering utterances (U) based on their length. With
〈�u〉 we indicate the average utterance length; with L, the length of the corpus in number of
words, and; with |T |, the number of terms (unique words).

Type Corpus Language |U| 〈�u〉 L |T |
Original CORAAL AAE 90,493 6.22 563,037 17,214

SBCSAE SAE 40,838 7.14 291,513 12,324

Filtered CORAAL AAE 63,814 8.23 525,067 16,352

SBCSAE SAE 25,113 8.38 210,430 10,540

Since SBCSAE consists of speakers from several regional origins (except for the
African American speakers that we preliminary filter out), we ensure that we do not
craft the results by inducing unwanted bias when comparing AAE with a version of
SAE that could be more similar to the Written American English, which is instead
rather different from the spoken mainstream U.S. English.

For AAE, we use the Corpus of Regional African American Language (CORAAL)
[19], which also provides the audio recordings along with their time-aligned ortho-
graphic transcriptions, of particular interest for this work. CORAAL includes 150 soci-
olinguistic interviews for over a million words. It is periodically updated and is the
only publicly available corpus of AAE. As such, it has been used in the literature
for a plethora of tasks, ranging from dialect-specific speech recognition [10] to cross-
language transfer learning [17].

In this work, we only focus on the CORAAL:DCB portion, since it is comprised of
the most recent interviews (carried out between 2015 and 2017) and contains the largest
amount of data (more than 500k words). It includes conversations from 48 speakers
raised in Washington, DC, a city with a long-standing African American population.

For each corpus, we define U = {u1, u2, ..., un} as the set of all the available
utterances and T = {t1, t2, ..., tn} as the set of all terms (unique words). Since we
perform an utterance-level analysis, we first filter out noise. In particular, we discard
both short utterances (composed of just one or two words) and very long ones (greater
than 50 words).

In Table 1, we report a summary of the corpora statistics, both before and after
having applied the filtering based on the utterance length. Even though the sizes of the
two datasets are very different, not only in terms of the number of utterances |U|, but
also in terms of the total number of words L and terms |T |, we can see that, after the
filtering, the average utterance length 〈�u〉 across corpora is very similar (∼ 8 words
per utterance).

3.2 Bias in Masked Language Modeling

In order to measure the bias in LMs we perform an MLM task. We lever-
age the transformer-based BERTbase LM [8] and its recent variants, including
DistilBERTbase [31], in both their cased and uncased flavors, RoBERTabase [24],
DistilRoBERTabase, and BARTbase [22]. These LMs have all been pre-trained using an
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MLM objective, which consists of randomly masking 15% of the tokens using a spe-
cial [MASK] token. Note that these models are trained on different corpora, such as
OpenWebText and BooksCorpus.

Therefore, by directly querying the underlying MLM in each LM, we simulate the
typical scenario where a conversational system has to infer a missed word in an utter-
ance. In particular, we encode each utterance of the two corpora with the tokenizer of
the LM considered. We then iteratively mask each word wmask and predict the masked
word by feeding the model with only a context of 10 tokens surrounding wmask.

The LM provides each run with a list of possible terms to fill-in-the-blank. In the
vocabulary set T , we select the predicted term tp with the highest probability P (tp|c),
that is, ranks first in the list ρ(tp|c) = 1, where c is the context surrounding tp and ρ is
the rank of t|c. In this notation, a word w is a term t in a context c (t|c). We next retrieve
the corresponding probability P (tm|c) and the rank ρ(tm|c) for the actual masked token
tm from the vocabulary of possible terms T . The latter provides a measure of how likely
the LM will choose tm as a candidate token to replace the masked one wmask. We then
employ the probabilities difference ΔP (t|c) as a proxy of the quality of the prediction
for a single token, defined as:

ΔP (t|c) = P (tp|c) − P (tm|c) = ΔP (w). (1)

We further define for each token t|c the Complementary Reciprocal Rank (CRR) as:

CRR(t|c) = 1 − ρ(tm|c)−1 = CRR(w). (2)

Note that this is the difference between the reciprocal rank (RR) of the predicted token,
which is always equal to 1 (ρ(tp|c)−1 = 1), and the RR of the masked token.

We then define the probability difference for an utterance by averaging the proba-
bility difference for each token in the utterance:

ΔP (u) =
1
�u

∑

w∈u

ΔP (w), (3)

with �u being the length of the utterance in terms of tokens. Similarly, we define the
CRR for an utterance as:

CRR(u) =
1
�u

∑

w∈u

CRR(w). (4)

Note that the metrics based on the ranks ρ(t|c) generated by the LMs are necessary
to fully capture the bias embedded in the models, since ΔP (t|c) alone could be insuffi-
cient. This is because the ΔP (t|c) strongly depends on how the LM assigns the proba-
bility. For example, the probability distribution of P (t|c) could be more unifor—m and,
consequently, would lead to, on average, a smallerΔP (t|c). Conversely, a more skewed
distribution would cause larger differences ΔP (t|c). Thus, CRR is used because it is
unaffected by such differences in the output probability distribution of P (t|c).
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Table 2. MAE and MSE of ΔP (u) and CRR(u) measured on AAE and SAE corpora: results
obtained through the fill-in-the-blank task with different language models. † signifies that the
AAE and SAE expectations are statistically significant according to Welch’s two-tailed t-test (p-
value < 0.05). The column d contains their effect size computed according to Cohen’s d.

MAE MSE

ΔP (u) CRR(u) ΔP (u) CRR(u)

Model AAE SAE Δ[%] d AAE SAE Δ[%] d AAE SAE Δ[%] d AAE SAE Δ[%] d

BERTcased 0.217 0.171 21 † 0.417 0.497 0.441 11 † 0.272 0.060 0.040 33 † 0.345 0.289 0.233 20 † 0.262

BERTuncased 0.242 0.198 18 † 0.352 0.494 0.446 10 † 0.232 0.074 0.053 29 † 0.297 0.288 0.238 18 † 0.230

DistilBERTcased 0.113 0.108 5 † 0.081 0.627 0.589 6 † 0.188 0.017 0.016 2 † 0.015 0.436 0.385 12 † 0.203

DistilBERTuncased 0.126 0.118 6 † 0.104 0.578 0.530 8 † 0.222 0.021 0.020 1 0.007 0.380 0.325 15 † 0.223

RoBERTa 0.223 0.261 −15 † 0.368 0.536 0.592 −9 † 0.252 0.061 0.079 −23 † 0.311 0.337 0.396 -15 † 0.225

DistilRoBERTa 0.143 0.153 −7 † 0.137 0.644 0.668 −4 † 0.117 0.026 0.029 -11 † 0.112 0.457 0.487 -6 † 0.115

BART 0.156 0.193 −20 † 0.506 0.613 0.682 −10 † 0.346 0.030 0.043 −31 † 0.447 0.418 0.501 −17 † 0.328

4 Results and Discussion

In this section, we first provide an accurate overview of the measured fairness of LMs
and then further analyze the discovered biases from different viewpoints. We show how
they vary when we take into account the syntactical, grammatical, and lexical patterns
typical of AAE language.

4.1 Measuring the Bias of LMs

As described in Sect. 3, we test the fairness of transformer-based LMs by running exper-
iments in an MLM setting. We use ΔP and CRR as metrics for measuring the quality
and the fairness of the models towards the two investigated languages. We observe the
expected behaviour of the LMs with respect to each utterance and consider an aggregate
measure of the metrics on a per-utterance level.

Table 2 reports an overview of the results of ΔP (u) and CRR(u). Using a Welch’s
t-test [35], we find that the difference between the means of AAE and SAE for both
ΔP (u) and CRR(u) is significant (p-value < 0.05). We then measure their effect size
using Cohen’s d [6] , which is reported in the last two columns of Table 2. According to
Cohen’s classification, there is a small effect for both metrics and a medium effect for
BART on ΔP (u) (d>0.5). We summarize the quality of the prediction in the corpora
using Mean Absolute Error (MAE) and Mean Squared Error (MSE) for both ΔP (u)
and CRR(u).

These error measures are used to quantify the quality of the predicted terms, where
an MAE and MSE closer to 0 corresponds to an utterance having more accurately pre-
dicted terms. Therefore, in Table 2, we highlight the values leading to the smallest error
between AAE and SAE. Additionally, we emphasize the presence of bias by pointing
out the percentage of bias change of each LM Δ[%], which is calculated with respect
to the model with the largest bias.

Three main patterns clearly emerge from Table 2. First, BERT and DistilBERT,
in both their cased and uncased variants, show a bias towards SAE for all the met-
rics. Specifically, BERT not only presents a non-negligible bias against AAE but also
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Fig. 1. The difference between the ECDFs of SAE and AAE for the ΔP (u) measure. When the
values are greater than zero, the LMs are more biased towards SAE, vice versa otherwise.

is the LM which leads to the highest relative bias. In particular, we observe that
the MAE(ΔP (u)) for SAE is more than 20% lower than AAE, 11% lower for the
MAE(CRR(u)), 33% for the MSE(ΔP (u)), and 20% for the MSE(CRR(u)).

Second, DistilBERT, in both its cased and uncased flavours, and DistilRoBERTa,
are the models which perform better with regards to the average probability difference
ΔP (u). This is true both in terms of MAE and MSE, which are approximately half and
one-third of the other LMs. On the one hand, this could seem somewhat unexpected
since one could argue that DistilBERT is less accurate than BERT, achieving only 97%
of its performance [31]. On the other hand, this is in line with recent work [2] reporting
that such LMs sometimes exceed the performance of the original ones. However, as
mentioned in Sect. 3, it is crucial to also look at the CRR(u) because better behaviour
in terms of ΔP (u) could, in practice, be tied to the fact that the model generates more
uniformly distributed probabilities P (t|c) with respect to the others.

Finally, we observe that BART, despite having good prediction quality for AAE
(MAE(ΔP (u)) and MSE(ΔP (u)) are lower than BERT), shows an opposite trend with
respect to BERT and DistilBERT. This unexpected bias towards AAE is also introduced
by RoBERTa and DistilRoBERTa. This is somewhat surprising and could possibly be
attributed to the type of datasets they have been trained on. RoBERTa and BART are
pre-trained with 1000% more data than BERT. By diving into the type of data involved,
we discover multiple sources, ranging from English language encyclopedias and liter-
ary works (same as BERT) to news articles and Web content. Specifically, RoBERTa,
BART, and DistilRoBERTa leverage OPENWEBTEXT [12], a corpus which includes
filtered Web content obtained by scraping the social media platform Reddit, which may
expose the LMs to less standard American English. It would be interesting to explore
in future studies whether there is a significant difference between shared colloquial
transcriptions in OpenWebText and AAE when compared to OpenWebText and SAE.

Since Table 2 only reports a summary of the distributions of the bias metrics com-
puted on both datasets, we also analyze the bias measured by subtracting the empirical
cumulative distribution functions (ECDFs) of ΔP (u) of AAE to that of SAE, which is
shown in Fig. 1. This figure includes the bias measured for the LMs and, for the sake
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Table 3. A sample of AAE utterances selected based on their syntactical features and their trans-
lations to SAE. In brackets the prevalence of the feature over utterances in the AAE corpus.

Original Translated

Double Negative (0.7%)

• You don’t need nothing but you. • You don’t need anything but you.

• I don’t know nobody over there no more. • I don’t know anyone over there anymore.

Verb be (2.8%)

• And I be okay with it. • And I am okay with it.

• All of my friends was from like DC. • All of my friends were from DC.

Contractions (4.6%)

• I’m’a ask you. • I’m going to ask you.

• something gonna happen. • something is going to happen.

Table 4. Similar to Table 2 but calculated over a sample of 50 utterances of AAE and their
translated version (AAEᵀ) for each feature of AAE.

MAE MSE

ΔP (u) CRR(u) ΔP (u) CRR(u)

Model AAE AAEᵀ Δ[%] d AAE AAEᵀ Δ[%] d AAE AAEᵀ Δ[%] d AAE AAEᵀ Δ[%] d

Double Negative [50 utterances]

BERTcased 0.202 0.159 21 † 0.591 0.391 0.334 15 † 0.493 0.046 0.030 34 † 0.526 0.166 0.125 25 † 0.436

BERTuncased 0.216 0.187 14 0.358 0.404 0.340 16 † 0.503 0.053 0.041 23 0.319 0.179 0.130 27 † 0.476

DistilBERTcased 0.137 0.106 22 † 0.548 0.506 0.441 13 † 0.523 0.022 0.014 37 † 0.504 0.267 0.213 21 † 0.457

DistilBERTuncased 0.148 0.117 21 † 0.485 0.479 0.394 18 † 0.701 0.025 0.018 27 0.293 0.240 0.174 28 † 0.611

RoBERTa 0.202 0.181 10 0.227 0.434 0.383 12 0.328 0.048 0.042 14 0.180 0.208 0.175 16 0.243

DistilRoBERTa 0.170 0.134 21 † 0.572 0.581 0.498 14 † 0.628 0.034 0.020 41 † 0.567 0.347 0.272 22 † 0.529

BART 0.164 0.140 15 † 0.422 0.534 0.471 12 † 0.469 0.030 0.023 22 0.368 0.297 0.245 18 0.392

Verb be [50 utterances]

BERTcased 0.252 0.184 27 † 0.691 0.589 0.408 31 † 1.142 0.074 0.043 42 † 0.622 0.373 0.190 49 † 1.109

BERTuncased 0.287 0.216 25 † 0.642 0.595 0.417 30 † 1.009 0.094 0.059 37 † 0.520 0.383 0.205 46 † 0.943

DistilBERTcased 0.134 0.119 11 0.273 0.703 0.540 23 † 0.910 0.021 0.017 16 0.198 0.519 0.329 37 † 0.893

DistilBERTuncased 0.138 0.118 14 † 0.339 0.678 0.513 24 † 0.904 0.022 0.017 25 0.344 0.485 0.302 38 † 0.856

RoBERTa 0.246 0.211 14 † 0.403 0.609 0.458 25 † 0.800 0.069 0.051 26 0.380 0.405 0.246 39 † 0.766

DistilRoBERTa 0.169 0.142 16 † 0.425 0.723 0.554 23 † 0.947 0.032 0.024 25 0.389 0.549 0.343 38 † 0.931

BART 0.161 0.144 11 0.305 0.672 0.556 17 † 0.672 0.029 0.024 18 0.246 0.474 0.344 27 † 0.627

Contractions [50 utterances]

BERTcased 0.225 0.181 19 † 0.507 0.470 0.347 26 † 0.848 0.058 0.040 32 † 0.436 0.247 0.136 45 † 0.786

BERTuncased 0.258 0.205 21 † 0.605 0.482 0.355 26 † 0.880 0.075 0.049 34 † 0.541 0.257 0.143 45 † 0.796

DistilBERTcased 0.135 0.114 16 0.381 0.584 0.463 21 † 0.746 0.022 0.016 28 0.316 0.369 0.237 36 † 0.743

DistilBERTuncased 0.140 0.113 19 † 0.477 0.538 0.410 24 † 0.799 0.023 0.016 33 0.374 0.318 0.191 39 † 0.761

RoBERTa 0.215 0.193 10 0.264 0.500 0.402 20 † 0.584 0.054 0.043 20 0.242 0.281 0.186 34 † 0.574

DistilRoBERTa 0.154 0.130 16 † 0.436 0.601 0.488 19 † 0.668 0.027 0.020 28 † 0.411 0.386 0.268 31 † 0.635

BART 0.143 0.136 5 0.117 0.567 0.475 16 † 0.562 0.023 0.023 1 0.015 0.346 0.255 26 † 0.520

of simplicity, only reports the cased variants of BERT and DistilBERT. The solid black
line at y = 0 shows the optimal unbiased LM and visually separates what is biased
against AAE (on the positive y-axis) from what is biased against SAE (on the negative
y-axis). Thus, we clearly see the behaviours of the LMs leading to the two worst biases,
i.e., RoBERTa and BERTcased, which are consistently biased towards one side. They
both present the maximum bias when ΔP (u) is close to 0.2 and instead mitigate for
larger values. A similar behaviour is observed for the CRR(u).
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4.2 Bias on AAE Features

Next, we investigate how results change when we acknowledge the lexical, syntacti-
cal, morphological, and phonological rules of AAE. Following AAE grammar [15], we
choose to focus on three major syntactical features: (i) the use of double negatives, (ii)
the different usage of verb be and, finally, (iii) the contractions of words and groups of
words.

For (i), we search for the close presence of multiple forms of grammatical negation
(which in standard English are ungrammatical) in all the utterances of the AAE corpus
and find that 0.7% of the utterances contain this feature. We then focus on feature (ii)
and select the AAE utterances that exhibit the use of the aspectual be verb, typically
used to denote habitual or iterative meaning (e.g., I be okay with it in Table 3). Addi-
tionally, we filter for utterances with the verb tense in the -ing form where the verb is
either omitted (e.g., It depends on where you going to in Table 3) or left at the base form
(e.g., they be getting mad in Table 3), for a total of 2.8% of utterances. Finally, for (iii),
we include utterances containing non-standard contractions, e.g., I’m’a, ain’t or omit-
ting the auxiliary before gonna, e.g., something gonna happen in Table 3. We do not
include contractions which are popular in SAE, as wanna, won’t, aren’t, etc. We obtain
4.6% of the utterances in this class. After filtering the utterances corresponding to the
specific grammar patterns, we carefully manually validate our selection by randomly
picking and inspecting 1% of them. We check that the 1% random sampled utterances
satisfy our criteria. From this manual labelling, we double-check our syntactical-rules-
based selection strategies and find that they are 99% accurate for all three cases.

Next, we randomly choose 50 utterances from each AAE case and build a ground
truth by translating the AAE utterances into a version compliant to SAE, which we
define as AAEᵀ. We keep the translation process as neutral as possible by preserving
the contractions typical of standard English and considered in dictionaries and grammar
books [9] as short form or informal and only adjust the selected grammar rules. Table 3
reports some examples of the utterances extracted from each AAE grammar case bucket
and the corresponding translated ones.

Finally, we repeat the MLM experiments, as described in Sect. 3, on these 150 trans-
lated utterances AAEᵀ and measure the bias. We report the results in Table 4. According
to Cohen’s classification, there is a prevalent medium effect for both the metrics, with
the exception of MSE(CRR(u)) for the verb be class, where it is large.

At first glance, we observe that the errors for the set of the AAE utterances in the
verb be class are larger than the other two classes and the whole AAE corpus (reported
in Table 2). We observe that, on average, the three classes show a less accurate average
prediction with respect to the overall AAE corpus. Instead, we find that the translated
utterances AAEᵀ are better predicted with respect to AAE, surprisingly for all seven
LMs.

Notably, we observe that for the translated utterances in the double negative class,
all four metrics are always smaller (and hence a sign of better performance) than those
measured for the SAE corpus. This is somewhat unexpected since RoBERTa and BART
showed a bias towards AAE. However, we note that this may be attributed to the fact
that the SAE corpus, SBCSAE, is made up of conversations collected from people with
different regional origins. Consequently, despite the effort we make in trying not to
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excessively standardize the utterances during the translation process, we could be gen-
erating sentences which are free from regional biases and consequently “cleaner” than
those found in the SAE corpus.

5 Conclusion

This work proposes a methodology for evaluating the fairness of transformer-based
language models. We assess and analyze the bias for two corpora, one for SAE and one
for AAE. By directly querying the underlying MLM in seven LMs, we study the quality
and bias of their predictions from several angles.

Results presented in this paper suggest that different models embed different biases.
For example, the most popular state-of-the-art LMs, namely BERT and DistilBERT,
show a non-negligible bias towards SAE, with the quality of the predictions being up
to 21% more accurate than AAE. In contrast, BART, RoBERTa and DistilRoBERTa
exhibit the opposite effect, with a bias leaning towards AAE. Our experiments also
reveal that the distilled variants of BERT and RoBERTa are the fairest among the seven
tested LMs.

Although this paper provides the first insightful snapshot of linguistic bias embed-
ded in different LMs, it opens up a number of research questions. First, can fairer pre-
diction outcomes be achieved with an ensemble learner of LMs embedding opposite
biases, as, for instance, BERTcased and BART? Second, our results give insights into
how the bias could be consistently mitigated with more inclusive corpora, by taking into
account AAE features. Finally, special care could be put into the analysis of the distilled
LMs, narrowing the gap on the causes which lead them to fairer predictions with respect
to their teacher models, with a particular emphasis on the Web-based corpora used for
training.
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Abstract. While conventional ranking systems focus solely on maxi-
mizing the utility of the ranked items to users, fairness-aware ranking
systems additionally try to balance the exposure based on different pro-
tected attributes such as gender or race. To achieve this type of group
fairness for ranking, we derive a new ranking system from the first princi-
ples of distributional robustness. We formulate a minimax game between
a player choosing a distribution over rankings to maximize utility while
satisfying fairness constraints against an adversary seeking to minimize
utility while matching statistics of the training data. Rather than max-
imizing utility and fairness for the specific training data, this approach
efficiently produces robust utility and fairness for a much broader family
of distributions of rankings that include the training data. We show that
our approach provides better utility for highly fair rankings than existing
baseline methods.

Keywords: Learning-to-rank · Fairness · Robustness

1 Introduction

Rankings often have social implications beyond the immediate utility they pro-
vide, since higher rankings provide opportunities for individuals and groups
associated with the ranked items. As a consequence, biases in ranking systems,
whether intentional or not, raise ethical concerns about their long-term economic
and societal harming effect. Rankings that solely maximize utility or relevance
can perpetuate existing societal biases that exist in training data whilst remain-
ing oblivious to the societal detriment they cause by amplifying such biases [21].

Conventional ranking algorithms typically produce rankings to best serve the
interests of those conducting searches by ordering the items by the probability
of relevance so that utility to the users will be maximized [26]. Biased outcomes
drawn by these models negatively impact items in marginalized protected groups
in critical decision making systems such as hiring or housing where items compete
for exposure and being unfair towards one group can lead to winner-takes-all
dynamics that reinforce existing disparities [27].
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Protected group definitions vary between different applications, and can
include characteristics such as race, gender, religion, etc. In group fairness, algo-
rithms divide the population into groups based on the protected attribute and
guarantee the same treatment for members across groups. In ranking, this treat-
ment can be evaluated using statistical metrics defined for measuring fairness.
In this paper, we focus primarily on exposure-based group fairness measures. As
a notable example, demographic parity (DP) in ranking is satisfied if the average
exposure for both groups is equal in the top k ranks. As a motivating example,
in Fig. 1 we consider two rankings based on items’ true relevance and group
membership. As a result of ranking 1, the highest utility is achieved, and fair-
ness is ignored. In contrast, ranking 2 satisfies the demographic parity fairness
constraint while still preserving high utility.

Fig. 1. Ranking 1 ignores fairness
whereas Ranking 2 satisfies the demo-
graphic parity fairness constraint while
only slightly decreasing the utility.

Fair ranking approaches seeking to
provide group fairness properties can be
categorized into post-processing and in-
processing methods. Post-processing tech-
niques are used to re-rank a given high
utility ranking to incorporate fairness con-
straints while seeking to retain high util-
ity [2,27]. These methods assume that
true relevance labels are available and
require other fairness-unaware learning
methods (e.g., regression) to predict the
true labels as a pre-processing step.
Recovering from unfair regression based
rankings in the re-ranking step may not be feasible in some circumstances [30].

The fair ranking problem can also be addressed as an in-processing, learning-
to-rank (LTR) task where the algorithm learns to maximize utility subject to
fairness constraints from training data [28,31]. Our algorithm falls into this cat-
egory. While providing a fairness-utility trade-off, fair LTR approaches need to
be robust to outliers and noisy data. For example, the label of recidivism in
the COMPAS dataset is regarded to be noisy [10]. This makes prediction while
incorporating fairness constraints more difficult. With improved robustness prop-
erties, a fair LTR can achieve better utility for highly fair rankings, which results
in a preferable utility-fairness trade-off.

In this paper, we derive a new LTR system based on the first principles of
distributional robustness to provide both fairness and robustness to label noise.
We formulate a minimax game with the ranker player choosing a distribution
over rankings constrained to satisfy fairness requirements on the training samples
while maximizing utility, and an adversary player choosing a distribution of item
relevancies that minimizes utility while being similar to training data properties.
Rather than narrowly optimizing the rankings for the specific training data, this
approach produces rankings that provide utility and fairness robustly for a family
of distributions that includes the training data.
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We show that our approach is able to trade-off between utility and fairness
much better at high levels of fairness than existing baseline methods. Further-
more, the robustness properties of our approach enable it to outperform existing
baselines in the presence of varying degrees of label noise in the training data.
To the best of our knowledge, this is the first distributionally robust fair LTR
method.

2 Related Works

Fairness in Ranking. We can broadly group existing fair ranking approaches
into various categories based on their notions of fairness. Metric-based works
base their fairness constraints on statistical parity for pairwise ranking across
item groups [1,15,20]. Several works argue that economic opportunities (e.g.,
exposure, clickthroughs, etc.) should be allocated on the basis of merit, not a
winner-take-all strategy [2,9,27]. While our approach falls into this category,
none of the existing techniques utilizes a distributionally robust approach to
derive a fair LTR system like ours. As a result their performance degrades in the
presence of training label noise, as we will show in our experiments.

There have also been recent studies that focus on other aspects of fair rank-
ing. Several works have looked at fair ranking in the presence of noisy protected
attributes [19]. Another line of research aims to select individuals distributed
across different groups fairly when there is implicit group bias [6,16]. Recent
studies have also investigated how uncertainty about protected attributes, labels,
and other features of the machine learning model affect its fairness proper-
ties [12,22]. Contrary to this line of work, [29] takes into account the presence
of uncertainty when estimating merits and defining a corresponding merit-based
notion of fairness.

3 Preliminary

3.1 Probabilistic Ranking

To formulate the ranking task, we consider a dataset of ranking problems D =
{Ri}N

i=1 for N different queries, where each Ri = {dj}M
j=1 is a candidate item

set of size M for a single query. For every item dj in this set, we denote rel(dj)
as its corresponding relevance judgment. We denote the utility of a ranking
(permutation) π for a single query as Util(π). The optimization problem can
be written as: π∗ = argmaxπ∈Πfair

Util(π). Utility measures used for rankings
are based on the relevance of the individual items being ranked for a particular
ranking problem, R|query = {dj}M

j=1. For example, the Discounted Cumulative
Gain (DCG) [14], which is a common evaluation measure for ranking systems
that discounts the utility for lower-ranked items,

DCG(π) =
∑

dj∈R

2rel(dj) − 1

log(1 + πj)
⇒ Util(π) =

M∑

j=1

ujvπj , (1)
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is a member of the more general family of linear utility functions uj = 2rel(dj)−1
representing the utility of a single item dj based on its relevance rel(.) and
vk = 1

log(1+k) providing the degree of attention that item dj receives by being
placed at rank k by permutation π, i.e., πdj

= k.
The space of all permutations of items is exponential in the number of items,

making näıve methods that find a utility-maximizing ranking subject to fairness
constraints intractable. To overcome this problem, we consider a probabilistic
ranking in which instead of a single ranking, a distribution over rankings is
used. We define the probability of positioning item dj at rank k as Pj,k. Then P
constructs a doubly stochastic matrix of size M×M where entries in each row and
each column must sum up to 1. By employing the idea of probabilistic ranking,
we express the ranking utility in (1) as an expected utility of a probabilistic
ranking:

U(P) =

M∑

j=1

M∑

k=1

Pj,k uj vk = uTPv, (2)

which we equivalently express in a vectorized format where u and v are both
column vectors of size M . Following [27], the fair ranking optimization can be
expressed as a linear programming problem:

max
P∈Δ∩Γfair

uTPv where: Δ : P1 = P�1 = 1, Pj,k ≥ 0, ∀1≤j,k≤M (3)

and Γfair denotes any linear constraint set of the form f�Pg = h. Choosing
f as the utility of items according to groups and g as the exposure of rank-
ing position, enforces equality of exposure across protected groups. In contrast
to [27], which uses this framework to re-rank the items to satisfy fairness con-
straints (i.e., a post-processing method), we extend this linear perspective to
derive a learning-to-rank approach that learns to optimize utility and fairness
simultaneously during training (i.e., an in-processing method).

Demographic parity of exposure, for a set of disjoint group members G1, . . . ,
G|S|, requires that: 1

|Gs|
∑

dj∈Gs

∑M
k=1 Pj,kvk = 1

|Gs′ |
∑

dj∈Gs′

∑M
k=1 Pj,kvk,∀s,

s′ ∈ S.
In this paper, we assume binary groups and construct fj =

1dj∈Gs

|Gs| − 1dj∈G′
s

|G′
s| ,

which makes the constraint f�Pv = 0. For more than two groups, multiple
pairwise constraints of this form can be enforced.

4 Methodology

We adopt a distributionally robust approach to the LTR problem by constructing
a worst-case adversarial distribution on item utilities. We formulate the robust
fair ranking construction as a minimax game between two players: a fair predictor
P that makes a probabilistic prediction over the set of all possible rankings to
maximize expected ranking utility; and an adversary q that approximates a
probability distribution for the utility of items which minimizes the expected
ranking utility. The adversary is additionally constrained to match the feature
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moments of the empirical training distribution. Since we solve the problem for
a given query, the query-dependent terms are omitted from the formulation for
simplicity.

In our notation, we represent ranking items d by their feature representation
X ∈ R

M×L as a matrix of M items with L features. For a given item set X, the
expected ranking utility of a probabilistic ranking P against a utility distribution
q can be expressed as:

U(X,P,q) =
M∑

j=1

Euj |x∼q

[

ujEπj |X∼P

[
vπj

]
]

. (4)

Then, the utility-maximizing optimization problem under fairness constraints
can be formulated as:

Definition 1. Given a training dataset of N ranking problems D =
{(Xi,ui)}N

i=1, with u ∈ R
M being the true relevance and X ∈ R

M×L the fea-
ture representation of ranking problem of size M . The fair probabilistic ranking
P(π) ∈ R

M×M in adversarial learning-to-rank learns a fair ranking that max-
imizes the worst-case ranking utility approximated by an adversary q(ǔ), con-
strained to match the feature statistics of the training data.

max
P(π|X)∈Δ∩Γfair

min
q(ǔ|X)

EX∼ ˜P [U(X,P,q)] (5)

s.t. EX∼P̃

⎡

⎣
M∑

j=1

Eǔj |X∼q [ǔjXj,:]

⎤

⎦ = EX,u∼ ˜P

⎡

⎣
M∑

j=1

ujXj,:

⎤

⎦ (6)

where P̃ denotes the empirical distribution over ranking dataset D =
{(Xi,ui)}N

i=1, ǔ denotes the random variable for adversary relevance, and Δ
denotes the set of doubly stochastic matrices.

This general adversarial formulation plays a foundational role in constructing
probability models and prediction techniques [11,13]. This approach has been
utilized to provide fair and robust predictions under covariate shift [25] as well as
for constructing reliable predictors for fair log loss classification [24]. Similar to
this line of work, our proposed approach imposes fairness constraints on predictor
P. Our formulation in Definition 1 accepts generic utility values. In our paper, we
focus on binary utility, which is one of the common applications of the ranking
problem, where the utility label indicates if a particular item is relevant or not.
For the binary utility problem, the expected utility can be further simplified as:

U(X,P,q) =

M
∑

j=1

Euj |X∼q

[

ujEπj |X∼P

[

vπj

]

]

=

M
∑

j=1

M
∑

k=1

q(uj = 1|X)P(πj = k|X)vk = q
�
Pv,

where the entries in the vector q contains the relevance probability of item dj . In
the following sections, we use this vector notation to simplify the optimization
formulation.



Fairness for Robust Learning to Rank 549

5 Optimization

We solve the constrained minimax formulation in Definition 1 in Lagrangian dual
form, where we optimize the dual parameters θ ∈ R

L×1 for the feature match-
ing constraint of L features by gradient descent. Rewriting the optimization in
matrix notation yields:

max
θ

Ex,u∼ ˜P

[

max
P∈Δ

min
0≤q≤1

q�Pv +
〈
q − u,

∑

l
θlX:,l

〉 ]

s.t. f�Pv=0, (7)

where: P(π) ∈ R
M×M is a doubly stochastic matrix, and the value of cell Pj,k

represents the probability that πj = k; u ∈ R
M×1 is a vector of true labels

whose jth values is 1 when the item j is relevant to the query, i.e., uj = 1 and
0 otherwise; q ∈ R

M×1 is a probability vector of the adversary’s estimation of
each item being relevant; X:,l ∈ R

M×1 denotes the lth feature of M samples;
S is the set of protected attributes; and v ∈ R

M×1 is a vector containing the
values of position bias function for each position. To denote the Frobenius inner
product between two matrices 〈., .〉 is used, i.e., 〈A,B〉 =

∑
i,j Ai,jBi,j .

For optimization purposes, using strong duality, we push the maximization
over q to the outermost level in (7). Since the objective is non-smooth, for both
P and q, we add strongly convex prox-functions to make the objective smooth.
Furthermore, to make our approach handle feature sampling error, we add a
regularization penalty to the parameter θ. To apply (7) on training data, we
replace empirical expectation with an average over all training samples. The
new formulation is as follows:

min
{0≤qi≤1}N

i=1

max
θ

1
N

N∑

i=1

max
Pi∈Δ

[

qi�
Pivi −

〈
qi − ui,

∑

l
θlXi

:,l

〉

+ λf i�
Pivi − μ

2

∥
∥Pi

∥
∥2

F
+

μ

2

∥
∥qi

∥
∥2

2

]

− γ

2
‖θ‖22 , (8)

where superscript i is the ith sample from N ranking problems in the training
set. We denote λ, γ and μ as the fairness penalty parameter (which can be
adjusted to obtain different trade-offs between fairness and utility, rather than
strictly optimized), a regularization penalty parameter and a smoothing penalty
parameter, respectively. The inner minimization over P and θ can be solved
separately, given a fixed q. The minimization over θ has a closed-form solution
where the lth element of θ∗ is:

θ∗
l = − 1

γN

N∑

i=1

〈
qi − ui,Xi

:,l

〉
. (9)

Independently from θ, we can solve the inner minimization over P for every
training sample using a projection technique. The optimal P for ith training
sample (i.e., Pi∗

) is:
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Pi∗
= argmax

Pi∈Δ

qi�
Pivi + λf i�

Pivi − μ

2

∥∥∥Pi
∥∥∥
2

F

Pi∗
= argmin

Pi∈Δ

μ

2

∥∥∥∥P
i − 1

μ
(qi + λf i)vi�

∥∥∥∥
2

F

− 1

2μ

∥∥∥qivi�∥∥∥
2

F
. (10)

As derived in (10), the minimization takes the form of minP≥0 ‖P − R‖2F ,
and we can interpret this minimization as projecting matrix 1

μ (qi + λf)vi�
into

the set of doubly-stochastic matrices. The projection from an arbitrary matrix
R to the set of doubly-stochastic matrices can be solved using the ADMM pro-
jection algorithm [3]. Since each entry in q represents a probability, the outer
optimization over q is solved using the L-BFGS-B algorithm with a bounded
constraint of the probability simplex [4]. The algorithm optimizes the quadratic
approximation of the objective function (using limited memory Quasi-Newton)
on the convex set with each iteration. In each update step, a projection to the
probability simplex is needed. Based on the above optimization, the adversary’s
optimal relevance probability q∗ can be obtained. Following (9) we compute the
θ∗ over the optimal q∗. Algorithm 1 shows the steps for training.

5.1 Inference and Runtime Analysis

For prediction, we use θ and μ learned from training data while performing
the optimization in (8). After removing the constant terms, we solve a similar
optimization problem for test data. That is:

Algorithm 1: The Fair-Robust LTR
Input: Training dataset D = {(Xi,ui)}N

i=1, fairness penalty parameter λ.
Output: θ∗,P∗,q∗

q ← random initialization;
repeat

update θ by (9) with q.
update P by (10) with q.
update q by (8) with {P, θ}.

until convergence;

min
{0≤qi≤1}Ntest

i=1

1

Ntest

Ntest
∑

i=1

max
Pi∈Δ

[

q
i�

P
i
v

i −
〈

q
i
,
∑

l
θ

∗
l X

i
:,l

〉

+ λP
i
v

i − μ

2

∥

∥

∥P
i
∥

∥

∥

2

F
+

μ

2

∥

∥

∥q
i
∥

∥

∥

2

2

]

,

where superscript i pertains to the ith ranking problem in the test set of size
N test. We follow the steps for solving the optimization in training. There is no
gradient learning of θ as in training, and true relevance labels (u) are not used
in inference. After convergence, we use the resulting P∗ from the optimization
to predict the ranking of items in the test set. We employ the Hungarian algo-
rithm [17] to solve the problem of matching items to positions.
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Runtime Analysis. Solving optimization in (8) involves running a projected
gradient descent algorithm. In each iteration, it requires the computation of the
gradient and the projection to box constraints. The box constraint projection’s
runtime is linear in terms of the number of variables, hence costing O(NM). The
gradient computation requires solving for θ∗, which costs O(NML) from the
dot product computations; and solving for P∗, which can be posed as a doubly-
stochastic matrix projection. We employ an ADMM algorithm to perform the
projection to doubly stochastic matrix, which has linear convergence due to the
strong convexity of the objective [7]. Each step inside the ADMM consists of M
projections to M -element simplex, hence costing O(M2) computations in total.

6 Experiments

In order to compare our proposed framework with existing fair LTR solutions,
we use simulated and real-world datasets to carry out in-depth empirical eval-
uations. The learning task is to determine the feature function in the training
based on the items’ ground truth utilities and fairness constraints. At testing
time, this feature function coupled with a penalty for fairness violation is used
to determine the ranking for the items in the test set with maximum utility while
satisfying fairness constraints.

6.1 Fairness Benchmark Datasets

Setup. We follow steps discussed in [28] to adapt German, Adult and COM-
PAS datasets to a LTR task. These datasets are inherently biased, making
them viable alternatives for evaluation when no real world datasets exist for
a fair LTR task. First, we split each dataset randomly into a disjoint train
and test set. Then from each train/test set we construct a corresponding LTR
train/test set. For each query, we sample randomly with replacement a set
of 10 candidates each, representative of both relevant and irrelevant items,
where on average four individuals are relevant. Each individual in the can-
didate set is a member of a group Gs based on its protected attribute. The
training data consists of 500 ranking problems. We evaluate our learned model
on 100 separate ranking problems serving as the test set. We repeat this pro-
cess 10 times and report the 95% confidence interval in the results. The reg-
ularization constant γ and smoothing penalty parameter μ in (8) are cho-
sen by 3-fold cross validation. We describe datasets used in our experiments:

Table 1. Dataset characteristics.

Dataset n Features Attribute

Adult 45,222 12 Gender

COMPAS 6,167 10 Race

German 1,000 20 Gender

– UCI Adult, census income dataset [8].
The goal is to predict whether income
is above $50K/yr on the basis of census
results.

– The COMPAS criminal recidivism risk
assessment dataset [18] is designed to
predict whether a defendant is likely to
reoffend based on criminal history.
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– UCI German dataset [8]. Based on personal information and credit history,
the goal is to classify good and bad credit.

Table 1 shows the statistics of each dataset with their protected attributes.

Baseline Methods. To evaluate the performance of our model, we compare it
against three different baselines that have similarities to and differences from our
model: FAIR-PGRank [28] and DELTR [31] are in-processing, LTR methods,
like ours; the Post-Processing method of [27] employs the fairness constraint
formulation that we build our optimization framework based on. We also add
a Random baseline that ranks items in each query randomly to give context to
NDCG. We discuss baseline methods in more details1:

– Post Processing (Post-Proc) [27] To make a fair comparison with LTR
approaches, we first learn a linear regression model using all query-item sets
in the training data and predict the relevance of an item to a query in test
set. Then, these estimated relevances are used as input to the linear program
optimization described in [27] with a demographic parity constraint.

– Fair Policy Ranking (Fair-PGRank) [28] An end-to-end, in-processing
LTR approach that uses a policy gradient method, directly optimizing for
both utility and fairness measures.

– Reducing Disparate Exposure (DELTR) [31] An in-processing LTR
method optimizing a weighted sum of a loss function and a fairness crite-
rion. The loss function is a cross entropy designed for ranking [5] and fairness
objective is a squared hinge loss based on disparate exposure.

Evaluation Metrics. We use the normalized discounted cumulative gain
(NDCG) [14], as the utility measure. This is defined as: NDCG(π) = DCG(π)/Z,
where Z is the DCG for ideal ranking and is used to normalize the ranking so
that a perfect ranking would give a NDCG score of 1.

For the fairness evaluation in our approach we use demographic parity as our
fairness violation metric which is based on disparity of average exposure across
two groups:

D̂group(P) = |Ex(G0|P) − Ex(G1|P)|. (11)

Results. Figure 2 shows the performance of our model (Fair-Robust) against
baselines on the three benchmark datasets. We observe a trade-off between fair-
ness and utility in both Fair-PGRank and Fair-Robust, i.e., as we increase
the fairness penalty parameter (λ), demographic parity difference (as a measure
of fairness violation) and NDCG both drop. While DELTR and Post-Proc
achieve comparable NDCG when λ = 0, they fail to satisfy demographic parity

1 We use the implementation from https://github.com/ashudeep/Fair-PGRank for all
baselines.

https://github.com/ashudeep/Fair-PGRank
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Fig. 2. Average NDCG versus average difference of demographic parity (DP) on test
samples, for increasing degrees of fairness penalty λ in each method. Fair-Robust:
λ ∈ [0, 20], Fair-PGRank: λ ∈ [0, 20], DELTR: λ ∈ [0, 106], Post-Proc: λ ∈ [0, 0.2].

as we increase λ and are unable to provide a sufficient utility-fairness trade-off
when high levels of fairness are desired.

In all three datasets, Fair-Robust outperforms Fair-PGRank in terms of
ranking utility when fairness is a priority. When comparing the utility-fairness
trade-off between the two approaches, we observe that Fair-Robust can retain
higher NDCG in high levels of fairness and provides a preferable trade-off. One
notable point is that, even in a noisy dataset like the COMPAS dataset, our app-
roach performs better than other methods due to its robustness.

Robustness Test. One key benefit of our approach is its robustness to label
noise in the learning process. This allows our method can be trained on data
with noisy labels and outliers, and still perform well on the test data. To test this
property, we repeat the previous experiment with noise added to the training
data. After sampling rankings for the training and test sets, we randomly flip
x% of the labels in each ranking problem in the training set. In our experiments,
we test various amounts of noise in the training data where x can be 20%, 30%,
or 40%. Figure 3 shows the results for robustness test. Similar to the previous
experiment, we observe a trade-off between fairness and utility for Fair-Robust.
As the amount of the noise increases Fair-PGRank performs poorly and can’t
maintain its trade-off. Note that when λ = 0, Fair-PGRank still performs well
but for other values of λ its NDCG gets close to random ranking.
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Fig. 3. Robustness test on German, Adult and COMPAS datasets with varying degrees of
noise in the training data.

6.2 Microsoft Learning to Rank Dataset

Fig. 4. NDCG versus differ-
ence of demographic parity for
increasing degrees of fairness
penalty λ in each method.

Setup. In the previous experiments, we used
datasets with inherent demographic biases but
the LTR tasks were simulated and constructed
from a classification task. In this experiment, we
evaluate its performance on Microsoft’s Learning
to Rank dataset [23] which is a real world LTR
dataset. We follow the steps discribed in [30] to
pre-process the dataset. We compare our method
to Fair-PGRank, as both methods are able to
trade-off between fairness and utility. Addition-
ally, we include a random baseline, which sorts
each item in a query randomly, to give context
to NDCG. Similar to the previous experiments,
we use NDCG as the utility measure and demo-
graphic parity as our fairness violation metric, which is based on the disparity
of average exposure across two groups.

Results. Figure 4 shows the fairness and accuracy trade-off on the test set.
With large fairness regularization, Fair-PGRank drops below a random rank-
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ing in terms of NDCG, making it inconsistant. This plot shows that Fair-
Robust smoothly trades-off group fairness for NDCG. Fair-PGRank’s NDCG
and group exposure, on the other hand, deteriorate for increasing regularization
strength, as [30] also observed.

7 Conclusions

In this paper, we developed a new LTR system that achieves fairness of exposure
for protected groups while maximizing utility to the users. We show that our
method is able to trade-off between utility and fairness much better at high lev-
els of fairness than existing baseline methods. Our work addresses the problem
of providing more robust fairness given a chosen fairness criterion, but does not
answer the broader question of which fairness criterion is appropriate for a par-
ticular ranking application. More extensive evaluations based on incorporating
other fairness metrics, such as disparate treatment, and generalization of this
approach beyond binary utility are two important future directions.
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