
Chapter 8
Code-Venture: A Mobile Serious Game
for Introductory Programming

Leckraj Nagowah and Diksha Cuniah

Abstract In the last decade, there have been tremendous improvements in the IT
field, and the demand for skilled professionals has ever since grown rapidly. For
a better economic development, it is thus of primary importance for schools and
universities to uncover and train new talents who will help propel our society’s
upward trend in IT and meet the increasing demand. On the other hand, there is a
misconception among youngsters that programming is complex and not designed
for everyone. Using the fact that nowadays games are becoming increasingly
popular especially among the younger generation, a mobile serious programming
game, Code-Venture, is being proposed in this chapter. Other than being fun and
entertaining, the aim of Code-Venture is to help the players understand the basics
of coding and sharpen their skills in programming. Code-Venture is based on the
fundamental programming principles as recommended in the ACM/IEEE Computer
Science Curricula 2013. Moreover, through the implementation of the teacher’s
application, which stores scoring information about the players of the game, a
constant monitoring, assessment, and evaluation of the player’s performance can
be performed. Pre-game and post-game surveys have been conducted to evaluate
the mobile serious game Code-Venture. Most of the 35 respondents found the game
useful and engaging with a considerable increase in the number of students who
are willing to join a career in programming and another increase in the number of
respondents who now found programming easy.

Keywords Mobile serious game · Game-based learning · Educational games ·
Introductory programming · Serious programming game

L. Nagowah (�) · D. Cuniah
Faculty of Information, Communication and Digital Technologies, Department of Software and
Information Systems, University of Mauritius, Réduit, Mauritius
e-mail: l.nagowah@uom.ac.mu; diksha.cuniah2@umail.uom.ac.mu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. M. L. Cooper, A. Bucchiarone (eds.), Software Engineering for Games
in Serious Contexts, https://doi.org/10.1007/978-3-031-33338-5_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33338-5protect T1	extunderscore 8&domain=pdf

 885
56845 a 885 56845 a

mailto:l.nagowah@uom.ac.mu
mailto:l.nagowah@uom.ac.mu
mailto:l.nagowah@uom.ac.mu
mailto:l.nagowah@uom.ac.mu

 10290 56845 a 10290
56845 a

mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
mailto:diksha.cuniah2@umail.uom.ac.mu
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8
https://doi.org/10.1007/978-3-031-33338-5_8

156 L. Nagowah and D. Cuniah

8.1 Introduction

Technological innovations hold a key place in most sectors worldwide. It has
become a compulsory tool to most people in the workplace and life in general.
Nowadays, almost every service, such as online shopping, reservations, or even
learning, can be accessed online or through mobile applications. What lies behind
those applications is programming. While coding can be fun and exciting, to some it
comes out as boring and tough or even stressful when traditional learning methods
are used [1, 2]. Additionally, a high rate of failure coupled with students’ lack of
interest in programing have been reported in a number of studies [3].

It is well known in the computer science education (CSE) community that
students struggle in programming classes, which can lead to high dropout and failure
rates [4]. In 2007, Bennedsen and Caspersen [5] estimated through a study that out
of 2,000,000 IT students worldwide, about 650,000 failed every year. They then
replicated their study in 2019 and observed that the failure rate was still high at 28%
[6]. Fundamental programming and computational thinking skills are crucial in the
field of computer science whereby one might find it challenging to enter the world
of IT without these core skills [7].

On the other hand, Halbrook et al. found that 95% of homes with children of
under 18 years of age own some form of video-game platform [8]. As a matter
of fact, researchers are investigating game-based computer science learning [9,
10] where numerous games are being developed that mainly focus on computer
programming and aim at helping students grasp the fundamental programming
concepts. Mathrani et al. [11] confirmed the effectiveness of serious games as a
means of teaching and learning. Students who participated in the survey proved that
game-based learning made themmore engaged in the use of programming principles
through gaming steps, as they were able to visualize the programming constructs
and thus get a better understanding of how it works. Boeker et al. [12] noted that
a conventional approach was not very effective when learning programming. Thus,
using serious games as a means of teaching made the normally boring classroom
environment more fun and enhanced the player’s ability to grasp difficult concepts.
Ding et al. also confirmed through their study that game-based learning is more
effective, easier to grasp, and more preferred by students than traditional learning
methods [13].

The primary aim of this work is to develop a mobile serious game that
aims at enhancing the programming skills of beginners, together with a mobile
application for teachers who will assess, monitor, and evaluate the performance
of players. The chapter also discusses the results obtained from a pilot study with
35 students aged between 16 and 21. The authors also plan to conduct a more
structured experimentation in the future to assess the perceived improvements in the
programming skills of the users of the mobile application. A structured approach
was used to implement our mobile serious game and is described in the subsequent
sections. The remainder of this chapter is organized as follows. In Sect. 8.2, a
background on the related works has been given, and an analysis of the existing

8 Code-Venture: A Mobile Serious Game for Introductory Programming 157

works has been provided in Sect. 8.3. Section 8.4 highlights the architecture and
the main components of Code-Venture. The implementation and testing of the
application are presented in Sect. 8.5. A discussion is presented in Sect. 8.6, and
finally, Sect. 8.7 concludes the chapter.

8.2 Background Study

A game refers to an organized play with rules, goals, and challenges for the purpose
of entertainment [14]. The term gamification was first coined in 2008, and in contrast
to normal games, it is characterized by its serious purpose. Researchers agree that
gamification usually focuses on game elements and mechanics in serious contexts.
Gamification therefore includes the use of game elements in non-game contexts.
Game elements include levels, points, badges, leader boards, avatars, quests, social
graphs, or certificates [15, 16].

Gamification is closely linked to two related concepts, namely, game-based
learning and serious games. Game-based learning is the achievement of defined
learning outcomes through game content and play, as well as boosting learning by
involving problem-solving areas and challenges that offer learners, who are also
the players, with a sense of accomplishment [17]. As the name says, game-based
learning aims at educating the players. It however relies on a fully fledged game,
commonly known as a serious game. A serious game refers to playful interactive
applications whose primary purpose other than being fun and entertaining includes
education, training, analysis, visualization, simulation, health, and therapy [18].
Serious games and game-based learning therefore differ from gamification due to
the fact that they are fully functional games. They all share the idea of employing
pleasant gameful experiences for the benefit of a serious goal, such as education or
behavior modification, rather than focusing on enjoyment. Gamification as a broader
concept merely takes components of games and applies them to the real environment
[15].

8.2.1 Related Works

To review existing serious games on programming, two searches have been carried
out: one on Google Scholar to find some related works and another one on common
app stores to look for existing commercial applications. This section presents some
of the findings.

Jemmali and Yang [19] developed a serious game called “May’s Journey,”
which targets middle school and high school students. This game was primarily
designed to encourage girls to choose programming as a field of study. It was a 3D
puzzle game where the player had to interact with the environment to solve mazes
involving basics of programming. The puzzles focused on concepts and logics but

 11919 13008 a 11919 13008
a

158 L. Nagowah and D. Cuniah

still allowed the player to type programming instructions to bridge the gap between
real programming and coding in a game. The game was tested with ten teenagers
aged from 14 to 17 years for educational content, and the authors reported that the
teenagers were engaged with the game.

Du et al. [20] made a study about the Hour of Code by Code.org, which is a
1-h introductory tutorial to programming, making use of visual programming. The
game uses blocks to program a solution for different puzzles. After solving each
maze, the player received a positive feedback and advanced to mazes that are more
complex. One hundred and sixteen students from two universities participated in
the study, and the game proved to have a positive impact on the students’ attitude
toward programming. However, the game also turned out not to have a significant
effect on the player’s actual coding skills.

Miljanovic and Bradbury [21] developed a serious game with a systematic
approach to focus on programming comprehension rather than writing codes. Thus,
novices without knowledge of programming could play this game and gain some
basic understanding. The player had to accomplish several comprehension tasks in
order to activate a Mech Suit system. While advancing in the game, the player was
able to develop a concise understanding of variable values, data types, program
statements, and control flow, all of which were repeatedly tested throughout the
gameplay.

Law [22] investigated on how to enhance the iteration, selection, and building
of command blocks in programming through the use of video games. The skills
to be developed were problem-solving skills and computational thinking skills in
order to get the required result. The author used the freely available “Program your
robot” game that targeted these skills and allowed the player to visualize the abstract
concepts in programming. Despite the fact that the pilot study was carried out with
only 42 students, the findings and the student comments showed positive results
and indicated that it would be worthwhile to expand the study to a broader cohort
pursuing a wider range of computing programs.

Junaeti et al. [23] conducted research about teaching basic programming con-
cepts using the genius learning strategy. “Array Adventure” was a serious adventure
game designed to target the principles behind arrays. The first level involved one-
dimensional arrays and the second level catered to multi-dimensional arrays. The
game was set in a 2D environment whereby the player had to complete missions in
an adventure style gameplay. The game was evaluated by 30 students and 2 experts
and positive results were obtained.

Jordaan explored the likelihood of making use of board games to improve
the learning experience of computer science students. The findings of this study
demonstrated that students appreciated the dynamic learning atmosphere provided
by board games and that they accepted them as a fun and enjoyable method of
instruction [24].

Lotfi and Mohammed [25] presented a mobile serious game that taught object-
oriented programming concepts for beginners. “OOP Serious Game” was set in a
zoo environment where the player had to create animal classes and understand the
methods that were behaviors, actions, and voices. The elements of class, object,

 25348 5027 a 25348 5027 a

8 Code-Venture: A Mobile Serious Game for Introductory Programming 159

and complex paradigms like inheritance and polymorphism were taught through
gamification techniques in order to facilitate the learning of these concepts. The
game used an in-game assessment mechanism to gauge the player’s knowledge of
four OOP concepts, namely, class, object, inherence, and polymorphism. However,
the results were inconclusive as to the game’s efficacy in teaching the programming
concepts to the players.

Yallihep and Kutlu [26] analyzed and evaluated the effect of a mobile serious
game called “LightBot” for learning programming. A 5-week study was carried
out in a primary school in Turkey with 36 fifth-grade students. According to
the research, the game positively influenced the students’ achievements. Complex
concepts like recursions and procedure were taught at an early stage to students in a
gamified learning approach.

Zhao et al. [27] proposed a serious game that focuses on the structure of the
C programming language. “Restaurant game” was a 2D game that incorporated
programming concepts like data types, variables, and structures. The player was
required to engage with various game objects, which were data types’ representa-
tions in a restaurant, and, as a result, gain a deeper knowledge about application
of these programming concepts. Ninety first-year students tested the serious game,
and the results showed that the improvements in learning outcomes were statistically
significant. More than half of the participants were of the opinion that the game may
help them get better grades in the programming course, and more than 60% of the
participants said it improved their understanding of programming topics.

Karram analyzed “Code Combat,” which is a popular game that targets object-
oriented programming concepts in a game-based format [28]. The game offers
an engaging and fun environment whereby the player has to complete tasks and
challenges to earn points and level up. Rewards such as badges and rankings also
make the player more motivated to complete the levels and thus learn the concepts
along the way. The game guides the player to type the appropriate code lines
in order to assign tasks to the virtual characters and thus complete the puzzles.
Code Combat makes difficult concepts like inheritance, nested loops, and recursion
simpler through a gaming approach.

Toukiloglou and Xinogalos [29] developed “NanoDoc” that taught programming
concepts through a first-person shooter game. The players had to acquire a key
by solving programming puzzles to navigate through the different rooms. The
programming environment featured a hybrid 2D/3D mode where the player created
a program to control the avatar’s movement in a 3D grid. The solution algorithm was
constructed with a 2D block-based programming environment using colored blocks
that could be connected and manipulated through drag and drop actions. The game
proved to be effective in improving students’ motivation, engagement, and learning
outcomes, as well as in reducing their anxiety toward programming.

Akkaya and Akpinar [30] designed a game aimed at teaching the fundamental
concepts of object-oriented programming and computational thinking skills to
students. The game adopted a constructivist learning approach set in a fantasy
environment with metaphorical machines to make the abstract concepts concrete. It
included interactive tools such as class and method definer machines for students to

160 L. Nagowah and D. Cuniah

program robots. A pedagogical agent provided instructions, support, and feedback,
and the game had a visual and textual feedback mechanism to understand the code
execution. The game aimed at teaching students the importance and applications
of object-oriented programming and computational thinking and also eased their
introduction to algorithmic thinking. The game was tested by 61 students with and
without prior programming knowledge, and the results showed that the students
improved their understanding of the fundamental concepts of OOP.

8.2.2 Commercial Apps

Popular games about coding were also searched for on common app stores with
search terms like “serious game programming,” “programming game,” and “coding
game” to search for existing serious games about programming. Some of the main
findings are listed below.

• Hacked

In Hacked, the player impersonated a hacker who needed to solve some problems
with codes and save the world [31]. It had a progressive difficulty and offered a wide
variety of options ultimately guiding the player to develop his personalized game.
The player was required to have some prior knowledge on programming before
attempting the game. The features included were performance tracker, assistance
in writing of codes, level system, problem-solving skills, reward system, and
competition with other players.

• Coding Planets

Coding planets required the user to solve puzzles through commands issued to a
robot [32]. All age groups are targeted allowing them to sharpen their programming
skills and gain fair knowledge of coding. The players needed to use their logic
to advance through the different levels while developing their problem-solving
skills. The main features included were as follows: improvement of problem-solving
skill, development of logical thinking skill, sequencing, looping, functions, use of
command icons to issue instructions, beginner and advanced difficulty, and reward
system.

• LightBot: Code Hour

This game introduced programming concepts for beginners [33]. It consisted of
commanding a robot to light up tiles by giving it instructions. The skills targeted
were basic concepts like sequencing, loops, and procedures. The game had good
reviews whereby players affirmed that they were able to learn about program-
ming concepts in a fun and interactive way. The features included were learning
of programming practices like planning, programming, testing, and debugging;
development of problem-solving skills; learning about control flow concepts like
functions, sequencing, and loops; and programming through commands.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 161

• SpriteBox: Code Hour

This was a puzzle-platformer and adventure game allowing the player to venture
through different worlds and using code to complete the objectives [34]. It targeted
all players regardless of their programming knowledge and consisted of 20 levels
of challenging puzzles. The features included were icon-based programming,
sequencing, parameters, debugging, loops and problem-solving, exploration while
learning, and beginner and advanced levels.

• Meoweb

Meoweb used fancy displays to make the process of learning programming more
fun and approachable [35]. The puzzle games consisted of the manipulation of codes
in order to solve the set problems. Logical thinking was also required from the
players to advance through different obstacles and levels to complete goals and
ultimately reach the final destination. The basic concepts of CSS programming
could be grasped by completing the levels. The main features included were as
follows: development of problem-solving skill, reward system, leveling system, and
logical thinking.

• BeBlocky: Kids Code Easy

BeBlocky was an engaging game that taught basic programming [36]. Target
players were mainly children and aspiring novices. The player encountered several
robots that needed to be programmed by dragging and dropping programming
blocks in a sequential way. The features included were memory boosting; develop-
ing aptitude in sequence, loops, and commands; improvement of problem-solving
skills; development of logical reasoning; and leveling system.

• Coding Galaxy

The game provided an interactive and user-friendly interface for learning about
basic programming concepts [37]. It was designed and reviewed by skilled teachers
and specialists who incorporated core methods traditionally used for teaching
programming in the system. The targeted players were students aged 5 and
above. The game consisted of more than 200 levels whereby the player was
expected to complete missions and objectives and solve programming puzzles. The
features included were development of computational thinking, problem-solving,
critical thinking, communication and leadership skills, development of creativity
and teamwork, learning through adventure and quest system, monitoring of user
performance, learning report, sequence, looping, conditional logic, function, and
parallelism.

• Grasshopper: Learn to Code for Free

Grasshopper consisted of several mini-games guiding players toward all the
basic concepts needed in the JavaScript programming language [38]. The player
needed to use codes to solve puzzles. Upon completion of all the game levels,
the player should be able to write basic JavaScript codes. The features included

162 L. Nagowah and D. Cuniah

were calling functions, variables, strings, for loops, arrays, conditionals, operators,
objects, arrays, recursions, and HTML.

8.2.3 Skills Required for Introductory Programming

After thorough analysis of the selected articles, the important skills deduced to
be imperative when it comes to learning introductory programming have been
highlighted in Table 8.1. The logical skills have been devised from the literature,
while the technical skills were based on the ACM/IEEE-CS Joint Task Force on
Computing Curricula, 2013 [45].

8.3 Analysis

The previous section gave an overview of some of the related works on serious
programming games. This section provides an analysis of those works with respect
to the ACM/IEEE guidelines for the programming module. The comparison table
visually highlights the main features of the serious games surveyed from the
literature and those commercially available.

8.3.1 Comparative Analysis of the Related Works

The related works have been analyzed with respect to the ACM/IEEE-CS Joint
Task Force on Computing Curricula 2013 [45]. More specifically, Table 8.2 shows
how the related works try to address the skills highlighted by ACM/IEEE in terms
of algorithms and design, fundamental programming concepts, and development
methods. As it can be observed from the table, Code Combat is by far the game that
provides for most of the features as recommended by ACM/IEEE followed by Hour
of Code and May’s Journey.

8.3.2 Comparative Analysis of the Commercial Games

Table 8.3 shows an analysis of the existing commercial programming games with
respect to their gaming features and the logical and technical skills targeted for
the commercial games. As it can be observed from Table 8.3, Hacked is the game
that has the highest number of features followed by SpriteBox and Coding Galaxy.
These three games attempt to cater to a high number of technical skills and at the

8 Code-Venture: A Mobile Serious Game for Introductory Programming 163

Table 8.1 Programming skills table

Logical skills
Problem-solving One of the factors that affect students’ academic performance when it

comes to learning introductory programming is low problem-solving
skills. According to a study, a high number of novice students failing
programming courses was due to a lack of problem-solving skills.
Training through activities that help improve this skill can be highly
beneficial to students’ performance in computing studies [39]

Debugging Debugging can be considered as a form of “learning from mistakes”
strategy. It is well known that students can effectively learn through
their mistakes, and in this case, debugging skills are developed when
the students have to browse their own code to identify the source of the
problem. This is yet another essential skill required to become a good
programmer [40]

Testing Improving testing skill is crucial to increase productivity. Without this
skill, a beginner might have difficulty in making a correct working
program which has all the required functionality. This skill should be
developed from the start and worked on to have a positive impact on
the aspiring programmer [41]

Algorithmic thinking A study proved most students learning introductory programming had
underdeveloped algorithmic and computational skills [42]. This skill is
crucial for beginners in programming as this is what will enable them
to define clear, concise steps to solve any problem, which is basically
what the basis of programming is about. Basically, algorithmic thinking
consists of the following:
• The ability to analyze given problems
• The ability to specify a problem precisely
• The ability to find the basic actions that are adequate to the given
problem
• The ability to construct a correct algorithm to a given problem using
the basic actions
• The ability to think about all possible special and normal cases of a
problem
• The ability to improve the efficiency of an algorithm
Improving this essential skill which has a strong creative aspect
includes solving a maximum of problems. By providing the student
with simple problems with gradual increasing difficulty, the latter can
effectively work on this skill [43]

Sequencing This is a common process for writing codes. Instructions are given in a
specific order, and the computer processes and executes them
accordingly. The development of this skill allows the programmer to
think like the computer and hence solve programming problems more
efficiently. This is yet another core skill required for novice
programmers [44]

(continued)

164 L. Nagowah and D. Cuniah

Table 8.1 (continued)

Technical skills
Variables and datatypes These are the basics of computer programming. Every code makes

use of variables and data types to solve problems. This knowledge is
vital to be able to write codes effectively

Functions Functions also form part of the basics of programming language. Use
of functions allows code to be modular, clear, and concise to be able
to write good-quality codes

Loops The ACM Computer Science curricula 2013 also includes the
concept of loops as the programming fundamentals. Beginners in
programming must understand how loops work and how to include
them in their code in order to effectively solve problems

Arrays Fundamental data structures also include arrays that are another
important factor in writing codes. The use of arrays is very common,
and many problems require this concept to be able to tackle
problems accordingly

Decisions/conditions Fundamental programming concepts include decisions/conditions
that is yet another core element in programming. ELSE and
SWITCH statements are very common in programming and crucial
for solving problems

same time aim at developing the logical skills of the player. They also have several
gaming features, as one would expect from a normal game.

8.3.3 Summary of Findings

Most related works concluded that a serious game for learning programming
positively influenced students’ academic performance. For instance, Yallihep and
Kutlu [26] conducted a research using a popular mobile serious game “LightBot,”
and Du et al. [20] also conducted an evaluation of a programming game, which
showed a great increase in motivation as well as performance in students. Several
games were developed that aimed at programming comprehension by combining
programming concepts with gaming mechanisms [21, 22, 25, 27]. This method
proved highly beneficial as it made learning process more fun compared to
traditional ways. Learning programming through gaming mechanisms proved to
reduce anxiety and significantly improve the learning curve in students [29, 30].
Karram [28] investigated Code Combat, which proved to accelerate and improve the
learning process of students. The game targeted several important technical skills
as per the guidelines of the ACM/IEEE. However, the gameplay of Code Combat
seems to follow the same format for all the different levels. It can eventually be
deduced that gamified learning has proved to be a great way to learn the basics
of programming. It was also observed that a series of logical skills were also
imperative when it came to learning programming. Computational thinking skills
like problem-solving, sequencing, debugging, and algorithmic thinking to facilitate

Ta
bl
e
8.
2

C
om

pa
ra
tiv

e
an
al
ys
is
 o
f
ga
m
es
 f
ro
m
 th

e
lit
er
at
ur
e

A
lg
or
ith

m
s
an
d
de
si
gn

Fu
nd
am

en
ta
l p

ro
gr
am

m
in
g
co
nc
ep
ts

D
ev
el
op
m
en
t

m
et
ho
ds

Se
ri
ou
s
ga
m
e

Pr
ob
le
m

so
lv
in
g

A
lg
or
ith

m
ic

th
in
ki
ng

Se
qu
en
ci
ng

N
on
-s
pe
ci
fic

pr
og
ra
m
m
in
g

co
nc
ep
ts

Sy
nt
ax

an
d

se
m
an
tic
s

V
ar
ia
bl
es

an
d
da
ta

ty
pe
s

E
xp
re
ss
io
ns

an
d

as
si
gn
m
en
ts

In
pu
t

an
d

ou
tp
ut

C
on
di
tio

na
ls

an
d

ite
ra
tiv

es

Fu
nc
tio

ns

an
d

pa
ra
m
e-

te
rs

R
ec
ur
si
on

A
rr
ay
s

D
eb
ug
gi
ng

Te
st
in
g

M
ay
’s
 J
ou
rn
ey

[1
9]

�
�

�
�

�
�

�
�

H
ou
r
of
 C
od
e

[2
0]

�
�

�
�

�
�

�
�

R
ob
ot
 O
N
!
[2
1]

�
�

�
�

�
�

Pr
og
ra
m
 y
ou
r

ro
bo
t [
22
]

�
�

�
�

�

A
rr
ay
 A
dv
en
tu
re

[2
3]

�
�

�
�

�

B
oa
rd
 G
am

e
[2
4]

�
�

O
O
P
Se
ri
ou
s

G
am

e
[2
5]

�
�

�

L
ig
ht
B
ot
 [
26
]

�
�

�
�

�
�

R
es
ta
ur
an
t g

am
e

[2
7]

�
�

C
od
e
C
om

ba
t

[2
8]

�
�

�
�

�
�

�
�

�
�

�
�

�
�

N
an
oD

oc
 [
29
]

�
�

�
�

C
ur
io
us
 R
ob
ot
s:

O
pe
ra
tio

n
A
sg
ar
d

[3
0]

�
�

�
�

Ta
bl
e
8.
3

C
om

pa
ra
tiv

e
an
al
ys
is
 o
f
ex
is
tin

g
fe
at
ur
es
 o
f
co
m
m
er
ci
al
 g
am

es

C
at
eg
or
y

Fe
at
ur
es

H
ac
ke
d

[3
1]

C
od
in
g

Pl
an
et

[3
2]

L
ig
ht
-

B
ot

[3
3]

Sp
ri
te
-

B
ox

[3
4]

M
eo
-

w
eb

[3
5]

B
e-

B
lo
ck
y

[3
6]

C
od
in
g

G
al
ax
y

[3
7]

G
ra
ss
ho
pp
er

[3
8]

G
am

in
g
fe
at
ur
es

A
dv
en
tu
re
/e
xp
lo
ra
tio

n
ty
pe

�
�

�
M
ul
tip

le
 d
if
fic
ul
ty
 le
ve
l

�
�

T
ra
ck
in
g
of
 p
la
ye
r
pe
rf
or
m
an
ce

�
�

�
R
ep
or
t o

n
pe
rf
or
m
an
ce

�
�

R
ew

ar
d
sy
st
em

�
�

�
�

�
T
ut
or
ia
l/i
n-
ga
m
e
as
si
st
an
ce

�
�

L
ev
el
in
g
sy
st
em

�
�

�
�

�
�

C
ha
lle

ng
e
ot
he
r
pl
ay
er
s/
in
te
ra
ct
io
n

�
�

Sk
ill
s
de
ve
lo
pe

d
D
ev
el
op
 p
la
nn
in
g
sk
ill

�
�

�
�

Im
pr
ov
e
te
st
in
g
sk
ill

�
D
eb
ug
gi
ng
 s
ki
ll

�
�

Pr
ob
le
m
-s
ol
vi
ng
 s
ki
ll

�
�

�
�

�
�

�
�

M
em

or
y
bo
os
t

�
�

L
og
ic
al
 th

in
ki
ng

�
�

�
�

�
�

�
C
ri
tic

al
 th

in
ki
ng

�
Te
am

w
or
k

�
�

Te
ch
ni
ca
l c
on

ce
pt
s

U
se
 o
f
re
al
 c
od

es
�

�
�

�
Ic
on
-b
as
ed
 p
ro
gr
am

m
in
g

�
�

�
�

�
�

Fu
nc
tio

ns
�

�
�

�
�

�
L
oo
ps

�
�

�
�

�
�

�
Se
qu
en
ci
ng

�
�

�
�

�
�

�
V
ar
ia
bl
es
 a
nd

 d
at
at
yp

es
�

�
�

Pa
ra
m
et
er
s

�
�

8 Code-Venture: A Mobile Serious Game for Introductory Programming 167

learning process were brought to attention. Finally, a gamified learning approach
to learning programming showed a very positive effect in teaching programming
classes. Therefore, games targeting the skills required for programming can greatly
improve the academic performance of students studying the subject or even teach
beginners about how programming works and introduce them to the world of
algorithms and computational thinking. The main game elements used in most of
the games were levels, points, leader boards, avatars, and quests. Varying the types
of games is vital in order to ensure that the players are motivated and engaged. It is
also important for the players to have regular and personalized feedback. Most of
the games analyzed do not provide for these two important factors, hence the aim
behind our system, Code-Venture.

8.4 High-Level Architecture

The high-level architecture is a way of representing how the whole system works
and shows the interactions between the different modules. Figure 8.1 shows the
high-level architecture of Code-Venture consisting of the mobile device, an online
database, and a mobile application for teachers.

Android Mobile Game

Online
Database

storing player
score

Players

Teacher accesses
real-time database

from mobile app
and monitors

student
performance

Fig. 8.1 High-level architecture

168 L. Nagowah and D. Cuniah

The main components of Code-Venture are as follows:

Players: The players targeted are aspiring programming students, novice program-
mers, or teenagers with little or no experience in the field. Players will record
their personal details and attempt the games through their mobile phones.

Mobile device: The mobile device is where the Code-Venture mobile app that
consists of different gameplay will be downloaded, installed, and played. Storing
of scores is made possible and pushed to the online database.

Online database: The information collected from the game, that is, the player details,
scores, and areas of weaknesses, will be saved on the online database for future
access by the tutor.

Teacher’s mobile application: The students’ information retrieved from an online
database is displayed on a mobile application designed especially for the teacher.
The latter can review player’s score, weaknesses, and overall performance of the
students on the different games through this application. This app will also allow
the tutor to send personalized messages to the students.

8.4.1 The Mini-games of Code-Venture

As compared to existing serious programming games, Code-Venture will consist
of different mini-games, namely, the Adventure Mode, the Variable Runner, the
Algorithm Puzzle, and the Quiz, where each of the mini-game targets different skills.
Table 8.4 shows the mini-games of Code-Venture and the skills that each game
targets.

Table 8.4 Code-Venture mini-games and the skills targeted

Code-Venture mini-games

Category Skills
Adventure
Mode

Variable
Runner

Algorithm
Puzzle Quiz

Logical skill Problem-solving � � �
Debugging � �
Testing �
Algorithmic thinking � �
Sequencing �

Technical skill Variables and data types � � �
Functions � �
Decisions � �
Loops � � �
Arrays �

8 Code-Venture: A Mobile Serious Game for Introductory Programming 169

8.4.2 Justifications for Code-Venture’s Mini-games

Code-Venture includes several mini-games to differentiate it from existing serious
programming games. Giving the player’s the opportunity to play a variety of games
ensures that the player is exposed to several gameplays and hence remains engaged
and motivated. The more engaged and motivated a player is, the more the benefits
that can be obtained from playing the serious game. The different mini-games of
Code-Venture have been carefully planned and are backed by evidence from the
literature whereby similar implementations have been successful in educating the
players. Table 8.5 describes Code-Venture mini-games in more detail and gives
justifications as to why these games have been chosen.

8.5 Code-Venture’s Implementation and Testing

Code-Venture was implemented with Unity 2019.2.15f1 personal edition and Visual
Studio 2017. The C# programming language over .NET2.0 framework was used
to program the different mini-games. The computer used consisted of a fourth-
generation Intel core processor, a RAM of 8GB, and a 250GB SSD together
with an NVidia graphic card GTX 1050ti. Two mobile phones were used to test
the application, namely, a Samsung A20 (Android 9.0) and an HTC Desire 828
(Android 5.1.1) having a RAM of 3 and 2 GB, respectively. Different tests were
carried out on both emulators and the actual mobile devices including a user
acceptance test with 35 students most of whom were to embark on undergraduate
studies.

8.5.1 Code-Venture’s Main Functionalities

The main functionalities of Code-Venture are described and illustrated below.

• Register or Login and Main Menu

The player should enter login details and select “Play Now” on opening the game
if he/she is an existing user, as shown in Fig. 8.2. In case of a new user, the “Register”
button registers the necessary user details. After signing in, the user is then presented
with the menu screen where the different game modes can be accessed as shown in
Fig. 8.3.

170 L. Nagowah and D. Cuniah

Ta
bl
e
8.
5

Ju
st
ifi
ca
tio

ns
 f
or
 C

od
e-

Ve
nt

ur
e
m
in
i-
ga
m
es

Pr
op
os
ed
 g
am

e
G
am

e
de
sc
ri
pt
io
n
an
d
ta
rg
et
ed
 s
ki
lls

E
vi
de
nc
e
fr
om

 li
te
ra
tu
re

A
dv
en
tu
re
 M

od
e

(C
od
in
g

A
dv
en
tu
re
)

T
hi
s
is
 th

e
m
ai
n
ga
m
e
th
at
 c
on

si
st
s
of
 a
 3
D
 e
nv
ir
on

m
en
t w

he
re
by

th
e
pl
ay
er
 is
 a
bl
e
to
 e
xp
lo
re
 f
re
el
y
an
d
so
lv
e
pr
og
ra
m
m
in
g

pu
zz
le
s
at
 th

e
sa
m
e
tim

e.
 T
he
 p
la
ye
r
is
 a
bl
e
to
 tr
ig
ge
r
di
al
og

ue
s

w
ith

 n
on
-p
la
ya
bl
e
ch
ar
ac
te
rs
 in

 th
e
ga
m
e
an
d
ac
ce
pt
 q
ue
st
s
fr
om

th
em

. E
ac
h
of
 th

e
qu

es
ts
 ta
rg
et
s
di
ff
er
en
t t
yp

es
 o
f
m
in
i-
ga
m
es

th
at
 a
dd
re
ss
 d
if
fe
re
nt
 p
ro
gr
am

m
in
g
pr
ob
le
m
s

•
C
od
e-
re
ar
ra
ng
e—

re
ar
ra
ng
e
bi
ts
 a
nd
 p
ie
ce
s
of
 a
 c
od
e
in
 th

e
co
rr
ec
t o

rd
er

•
Fi
nd
-e
rr
or
—
ch
oo
se
 th

e
lin

e
of
 c
od
e
w
hi
ch
 is
 c
au
si
ng
 a
n
er
ro
r
in

th
e
co
de

•
Fi
nd
-o
ut
pu
t—

de
te
rm

in
e
th
e
ou
tp
ut
 o
f
th
e
co
de
 w
he
n
ru
n

•
Fi
ll-
bl
an
ks
—

w
ri
te
 th

e
co
rr
ec
t c
od

e
in
 th

e
em

pt
y
bo

xe
s
pr
ov
id
ed

in
 a
 p
ie
ce
 o
f
co
de

T
he
 g
am

e
al
so
 h
as
 a
 “
ha
rd
 m

od
e,
”
w
hi
ch
 is
 th

e
sa
m
e
st
or
y
an
d

en
vi
ro
nm

en
t b

ut
 w
ith

 m
or
e
co
m
pl
ex
 a
nd
 c
ha
lle
ng
in
g

pr
og
ra
m
m
in
g
pu
zz
le
s

Ju
na
et
i e
t a
l.
[2
3]
 c
on
cl
ud
ed
 th

ro
ug
h
re
se
ar
ch
 th

at
 le
ar
ni
ng
 in

 th
e

fo
rm

 o
f
ad
ve
nt
ur
e
ga
m
es
 h
ad
 a
 p
os
iti
ve
 e
ff
ec
t o

n
th
e
pl
ay
er
s’

le
ar
ni
ng
 p
ro
ce
ss
. P

la
ye
rs
 p
ro
ve
d
to
 b
e
m
or
e
m
ot
iv
at
ed
 a
nd

en
ga
ge
d
w
hi
le
 p
la
yi
ng
 th

is
 ty

pe
 o
f
ga
m
e

Je
m
m
al
i a
nd

 Y
an
g
[1
9]
 m

ad
e
a
3D

 f
ul
ly
 im

m
er
si
ve
 a
dv
en
tu
re

ga
m
e
w
ith

 a
n
in
te
re
st
in
g
st
or
yl
in
e
to
 d
ra
w
 th

e
pl
ay
er
s’
 a
tte

nt
io
n.

T
he
 im

pl
em

en
ta
tio

n
of
 p
ro
gr
am

m
in
g
co
nc
ep
ts
 in

 a
 v
is
ua
l a
nd

in
te
ra
ct
iv
e
w
ay
 p
ro
ve
d
to
 e
nh

an
ce
 th

e
pl
ay
er
s’
 w
ill
in
gn

es
s
to

ke
ep
 p
la
yi
ng

. I
m
pl
em

en
tin

g
pr
og

ra
m
m
in
g
co
nc
ep
ts
 in

 th
is

en
vi
ro
nm

en
t m

ad
e
th
e
pl
ay
er
 h
av
e
a
fu
n
ga
m
in
g
ex
pe
ri
en
ce

in
st
ea
d
of
 th

e
fe
el
in
g
of
 b
ei
ng

 f
or
ce
d
to
 le
ar
n
so
m
et
hi
ng

 th
at
 m

ay

de
m
ot
iv
at
e
th
e
pl
ay
er
 q
ui
ck
ly

V
ar
ia
bl
e
R
un

ne
r

(g
am

e
fo
r
le
ar
ni
ng

co
nc
ep
t o

f
va
ri
ab
le
s)

T
he
 g
am

e
is
 s
et
 in

 a
 p
la
tf
or
m
 w
he
re
 th

e
pl
ay
er
 c
an
 m

ov
e
th
e
he
ro

le
ft
 o
r
ri
gh
t a
s
th
e
la
tte
r
ke
ep
s
ru
nn
in
g
fo
rw

ar
d.
 W

hi
le
 r
un
ni
ng
,

th
e
he
ro
 e
nc
ou

nt
er
s
ba
lls
 w
ith

 d
if
fe
re
nt
 v
al
ue
s,
 w
hi
ch
 a
re
 th

e
po
ss
ib
le
 a
ns
w
er
s
to
 th

e
qu
es
tio

n
be
in
g
di
sp
la
ye
d.
 T
he
 p
la
ye
r
is

fir
st
 p
re
se
nt
ed
 w
ith

 a
 q
ue
st
io
n
te
xt
 a
nd

 is
 e
xp

ec
te
d
to
 s
el
ec
t t
he

ap
pr
op

ri
at
e
an
sw

er
 b
y
co
lli
di
ng

 w
ith

 it
. A

 s
co
ri
ng

 s
ys
te
m
 is
 a
ls
o

in
cl
ud

ed
 w
he
re
by

 e
ac
h
co
rr
ec
t a
ns
w
er
 a
dd

s
to
 th

e
sc
or
e
an
d
vi
ce

ve
rs
a

M
ilj
an
ov
ic
 a
nd
 B
ra
db
ur
y
[2
1]
 m

ad
e
us
e
of
 a
 g
am

in
g
m
ec
ha
ni
sm

to
 ta
ck
le
 c
on

ce
pt
s
lik

e
va
ri
ab
le
s
an
d
da
ta
 ty

pe
s.
 A
 p
uz
zl
e-
ty
pe

ga
m
e
pr
ov
ed
 to

 b
e
ef
fe
ct
iv
e
in
 h
el
pi
ng

 to
 le
ar
n
as
 w
el
l a
s

im
pr
ov
in
g
sk
ill
s
lik

e
cr
iti
ca
l t
hi
nk

in
g
an
d
pr
ob

le
m
-s
ol
vi
ng

Z
ha
o
et
 a
l.
[2
7]
 in
ve
st
ig
at
ed
 a
nd

 c
am

e
up
 w
ith

 a
 g
am

e
th
at

te
ac
he
s
co
nc
ep
ts
 o
f
va
ri
ab
le
s
th
ro
ug
h
fo
od
s
se
t i
n
a
re
st
au
ra
nt
.

T
he
 p
la
ye
r
is
 e
xp

ec
te
d
to
 e
ng
ag
e
w
ith

 th
e
ga
m
e
ob

je
ct
s
th
at

re
pr
es
en
t d

at
a
ty
pe
s
in
 o
rd
er
 to

 g
ai
n
a
de
ep
er
 k
no
w
le
dg
e
ab
ou
t

th
is
 p
ro
gr
am

m
in
g
co
nc
ep
t

8 Code-Venture: A Mobile Serious Game for Introductory Programming 171

A
lg
or
ith

m
 P
uz
zl
e

(g
am

e
te
ac
hi
ng

ba
si
c

pr
og
ra
m
m
in
g

co
nc
ep
ts
 th

ro
ug
h

co
m
m
an
ds
)

T
hi
s
ga
m
e
ai
m
s
at
 te
ac
hi
ng

 th
e
pl
ay
er
 th

e
ba
si
c
pr
og

ra
m
m
in
g

co
nc
ep
ts
. T

he
 p
la
ye
r
ha
s
to
 is
su
e
co
m
m
an
ds
 to

 th
e
he
ro
, a
nd
 th

e
la
tte

r
w
ill
 e
xe
cu
te
 th

e
in
st
ru
ct
io
ns
 a
cc
or
di
ng

ly
. I
co
ns
 a
re
 u
se
d
to

gi
ve
 in

st
ru
ct
io
ns
 th

at
 a
re
 th

en
 a
pp
lie
d
to
 th

e
he
ro
 u
po
n
ex
ec
ut
io
n.

T
he
 s
ki
lls
 ta
rg
et
ed
 a
re
 a
s
fo
llo

w
s:

•
C
om

pu
ta
tio

na
l t
hi
nk
in
g
sk
ill

•
Pr
ob
le
m
-s
ol
vi
ng

•
Pl
an
ni
ng

•
Te
st
in
g

•
D
eb
ug
gi
ng

•
L
og

ic
al
 a
nd

 c
ri
tic

al
 th

in
ki
ng

 s
ki
ll

Fu
rt
he
rm

or
e,
 th

e
fo
llo

w
in
g
ba
si
c
hi
gh
-l
ev
el
 p
ro
gr
am

m
in
g

co
nc
ep
ts
 a
re
 a
ls
o
in
vo
lv
ed
: f
un
ct
io
ns
, l
oo
ps
, a
nd
 s
eq
ue
nc
in
g

D
u
et
 a
l.
[2
0]
 c
on
cl
ud
ed
 th

at
 v
is
ua
l p

ro
gr
am

m
in
g
w
ith

 th
e
us
e
of

bl
oc
ks
 w
as
 e
ff
ec
tiv

e
in
 m

ak
in
g
pl
ay
er
s
be
tte
r
un
de
rs
ta
nd

pr
og
ra
m
m
in
g
co
nc
ep
ts
. B

as
e
sk
ill
s
lik

e
co
m
pu
ta
tio

na
l t
hi
nk
in
g

sk
ill
s,
 p
ro
bl
em

-s
ol
vi
ng
, a
nd
 d
eb
ug
gi
ng
 w
er
e
de
ve
lo
pe
d,
 w
hi
ch

fu
rt
he
r
he
lp
s
m
as
te
r
pr
og
ra
m
m
in
g

K
ar
ra
m
 [
28
]
de
du
ce
d
fr
om

 th
e
po
pu
la
r
ga
m
e

C
od

e
C

om
ba

t t
ha
t

le
ar
ni
ng
 p
ro
gr
am

m
in
g
th
ro
ug
h
th
e
us
e
of
 c
om

m
an
ds
 a
nd

in
st
ru
ct
io
ns
 p
ro
ve
d
to
 b
e
be
ne
fic

ia
l i
n
te
ac
hi
ng

 p
la
ye
rs
 th

e
ba
si
cs

of
 p
ro
gr
am

m
in
g

Q
ui
z
(g
am

e
co
ns
is
ts
 o
f
a

se
ri
es
 o
f
qu
es
tio

ns

to
 te
st
 th

e
pl
ay
er
s’

cu
rr
en
t

kn
ow

le
dg
e)

T
hi
s
ga
m
e
te
st
s
th
e
pl
ay
er
s’
 k
no
w
le
dg
e
ab
ou
t p

ro
gr
am

m
in
g.
 I
t

al
so
 a
ct
s
as
 a
 le
ar
ni
ng

 g
am

e
si
nc
e
it
co
ns
is
ts
 o
f
se
ve
ra
l

m
ul
tip

le
-c
ho

ic
e
qu

es
tio

ns
 th

at
 h
av
e
to
 b
e
at
te
m
pt
ed
 b
y
th
e
pl
ay
er
.

T
he
 p
ro
gr
es
s
an
d
co
rr
ec
t o

r
w
ro
ng
 a
ns
w
er
s
ar
e
re
co
rd
ed
 f
or

fu
tu
re
 e
va
lu
at
io
n
of
 th

e
pe
rf
or
m
an
ce
 o
f
th
e
pl
ay
er
. T

he
 in

ce
nt
iv
e

pr
ov
id
ed
 to

 p
la
y
th
is
 q
ui
z
ga
m
e
an
d
ex
ce
l i
n
it
is
 th

at
 th

er
e
ar
e

re
w
ar
ds
 th

at
 a
re
 o
bt
ai
ne
d
if
 th

e
qu
es
tio

ns
 a
re
 c
or
re
ct
ly
 a
ns
w
er
ed
.

T
hi
s
m
ot
iv
at
es
 th

e
us
er
 to

 a
tte

m
pt
 th

e
qu

es
tio

ns
 s
er
io
us
ly
 a
nd

 a
s
a

re
su
lt
ga
in
 f
ur
th
er
 k
no
w
le
dg
e
on
 p
ro
gr
am

m
in
g.
 T
he
 g
am

e
is

ad
ap
tiv

e,
 th

at
 is
, t
he
 c
om

pl
ex
ity

 o
f
th
e
qu

es
tio

ns
 in

cr
ea
se
s
as
 th

e
pl
ay
er
 p
ro
gr
es
se
s
in
 th

e
ga
m
e

Ju
na
et
i e
t a
l.
[2
3]
 m

ad
e
us
e
of
 in

ce
nt
iv
e
an
d
co
m
pe
tit
io
n

m
ec
ha
ni
sm

s
in
 o
rd
er
 to

 a
ss
es
s
th
e
pe
rf
or
m
an
ce
 o
f
th
e
pl
ay
er

th
ro
ug

h
va
ri
ou

s
qu

iz
ze
s
af
te
r
ea
ch
 g
am

e
le
ve
l.
T
he
 r
es
ul
ts
 p
ro
ve
d

to
 b
e
su
cc
es
sf
ul
 s
in
ce
 p
la
ye
rs
 r
ev
ea
le
d
th
at
 th

ey
 g
ai
ne
d

kn
ow

le
dg
e
on
 p
ro
gr
am

m
in
g
by
 a
ns
w
er
in
g
th
e
qu
es
tio

ns

L
ot
fi
an
d
M
oh
am

m
ed
 [
25
]
m
ad
e
us
e
of
 in

-g
am

e
as
se
ss
m
en
ts
 f
or

ea
ch
 g
am

e
le
ve
l i
n
or
de
r
to
 e
va
lu
at
e
th
e
pl
ay
er
 a
bo

ut
 f
ou

r
O
O
P

co
nc
ep
ts
. T

he
 le
ar
ne
r’
s
pe
rf
or
m
an
ce
 w
as
 m

on
ito

re
d
th
ro
ug
h
a

sc
or
in
g
an
d
tim

in
g
sy
st
em

172 L. Nagowah and D. Cuniah

Fig. 8.2 Main menu—login or register

Fig. 8.3 Access main menu with player details

• Adventure Mode and Different Mini-Games

Upon choosing the Adventure mode, the player is able to move the character
around the 3D environment and rotate the camera (Fig. 8.4). The player can gather
collectibles, trigger dialogues, accept quests, and view the current progress as
illustrated in Fig. 8.5.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 173

Fig. 8.4 Adventure mode—accept quest

Fig. 8.5 Adventure mode—view progress

• Challenge Mode, Variable Runner, and View Score

The player can select the Challenge mode game option and choose to play
“Variable Runner” whereby he is able to move the character left or right to choose
the ball which corresponds to the correct answer to the question provided as shown
in Fig. 8.6. The player is presented with final score (Fig. 8.7) when the timer is
over.

174 L. Nagowah and D. Cuniah

Fig. 8.6 Variable runner game

Fig. 8.7 Variable runner score display

• Challenge Mode, Algorithm Puzzle, and View Score

Upon choosing the “Challenge Mode” game option and entering the “Algorithm
Puzzle” game, the player is presented with a scene with interface commands as
shown in Fig. 8.8. The player can make use of different functions and loops in order
to complete a level. The character can be moved by choosing different commands,
and the score is displayed after each level is completed (Fig. 8.9).

8 Code-Venture: A Mobile Serious Game for Introductory Programming 175

Fig. 8.8 Algorithm puzzle game

Fig. 8.9 Algorithm puzzle score

• Quiz Game and Score

After selecting the quiz game, the player is presented with a question together
with four possible answers, as shown in Fig. 8.10. The player must choose an answer
whereby the correct answer is highlighted in green, while a red color is used for
selection of an incorrect answer. After attempting ten questions, the player is given
his final score together with the grade, error count, and time taken to complete

176 L. Nagowah and D. Cuniah

the questions (Fig. 8.11). The quiz consists of several levels where the difficulty
increases as the player progresses in the game.

Fig. 8.10 Quiz game

Fig. 8.11 Quiz game score

8 Code-Venture: A Mobile Serious Game for Introductory Programming 177

• Teacher Application

The teacher can sign in by entering his/her login credentials and then get access to
the list of players of Code-Venture for a specific class. After logging in, the teacher
can select any player to view his/her performance details on the different games
(Fig. 8.12) as well as send a private message to the player as shown in Fig. 8.13.

Fig. 8.12 Player
performance details

178 L. Nagowah and D. Cuniah

Fig. 8.13 Personalized message sent to student

8.5.2 User Acceptance Testing

A User Acceptance Testing (UAT) was the last phase of the testing process that
was performed by end users. This was to validate the software among the targeted
audience, to get their precious feedback, and ensure the application met its intended
purpose. Pre-game and post-game surveys have been conducted with 35 students
who have very little to no perception about programming and were about to embark
on undergraduate studies. After inquiring about certain basic information through
an online form, they were made to play all games in Code-Venture for a period of
1 week. A feedback of their gaming experience was then taken by the means of a
second survey.

8.5.2.1 Pre-game Results

The 35 students who tested the application were aged between 16 and 21 years
inclusive, 57.1% were female, and the remaining 42.9% were male. Among others,
the participants were asked on their background knowledge about programming,
and the results, illustrated in Fig. 8.14, showed that 42.9% of them had only a vague
notion of programming and 45.7% had none.

They were also asked about their feelings on programming, and the results are
shown in Fig. 8.15. 68.6% of the participants thought that programming was hard,
22.9% were of the opinion that programming is medium difficult, and the remaining
8.6% thought programming was easy.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 179

Do you have any prior notion about programming?

35 responses

42.9%

11.4%

45.7%

None
Some vague notion

Basic understanding
A fair knowledge

Extensive knowledge

Fig. 8.14 Prior knowledge of programming

According to you, programming is....

35 responses

8.6%

22.9%

68.6%

Hard
Easy

Medium Difficulty

Fig. 8.15 Programming difficulty

The respondents were also asked about intention of pursuing further studies in
programming, and the results are shown in Fig. 8.16. 65.7% of the participants
mentioned that they did not intend to pursue their studies in programming, 11.4%
intended to embrace the field, and the remaining 22.9% were unsure.

8.5.2.2 Post-game Results

The 35 students were given Code-Venture to play for 1 week and were required
to answer a post-game survey. As illustrated in Fig. 8.17, 42.9% of the participants
liked the game very much, while 31.4% liked the game. Twenty percent were neutral
about the game, while 5.7% did not like Code-Venture. When asked whether they
wanted to play Code-Venture more in the future, 91.4% of the respondents answered
favorably.

180 L. Nagowah and D. Cuniah

Do you intend to pursue further studies in programming?

35 responses

11.4%

22.9%

65.7%

Yes
No

Maybe

Fig. 8.16 Further studies in programming

Fig. 8.17 Code-Venture ratings

The participants were also asked to rate Code-Venture as a means of teaching
programming. As shown in Fig. 8.18, 51.4% found the game to be useful, and 3.14%
enjoyed the game and received some information on programming. 11.4% were
not able to decide whether the game was useful in helping them better understand
programming, while 5.7% found the game to be minimally useful. It is also worth
noting that none of the respondents indicated that the game was not useful at all in
helping them in programming. When prompted about game-based learning, 77.1%
of the respondents were of the opinion that game-based learning is a good approach
to learn programing, 20% were unsure, and one participant mentioned that it is not
suitable.

After playing Code-Venture, the participants were again asked about their
feelings on programming. As shown in Fig. 8.19, this time, 40% of the respondents
found it to be easy, compared to the 8.6% obtained prior to playing Code-Venture.
Only 5.7% found programming to be hard post Code-Venture, while previously a

8 Code-Venture: A Mobile Serious Game for Introductory Programming 181

Fig. 8.18 Usefulness of Code-Venture

Fig. 8.19 Feelings on programming after playing Code-Venture

huge proportion of 68.6% found it to be difficult. The percentage of students who
found programming to be slightly difficult rose from 22.9% to 54.3% with many
respondents moving their feelings from Hard to Medium difficult.

When the participants were again asked about their intention to pursue further
studies in programming, 32.4% responded positively, compared to the 11.4% previ-
ously. Only 5.8% (two participants) mentioned that they did not want to have their
further studies in programming compared to a whopping 65.7% previously. The
percentage of students who were unsure about their further studies in programming
rose from 22.9% to 61.8% with many respondents moving their opinions from No
to May be (Fig. 8.20).

8.5.2.3 Overall Feedback from Students

The following feedback were compiled from the post-game surveys.

182 L. Nagowah and D. Cuniah

Fig. 8.20 Further studies on programming after playing Code-Venture

• Adventure Game—Positive

The game proved to bring a sense of motivation and eagerness to learn. The
element of game exploration and quests further enhanced the player’s determination
to progress through the game and complete all the achievements. By doing so, the
students had to go through programming concepts and rules that made them more
familiar with the world of programming.

• Variable Runner—Satisfactory

This game proved to be informative and did have a good response from players.
However, the players expressed that it was too basic and systematic. The concepts
were only being introduced without proper explanation on how these concepts
actually work. Hence, comprehension of variables and data types was only partially
achieved.

• Algorithm Puzzle—Positive

This game proved to be useful to most of the participants, as they understood
the game easily and managed to complete several levels with a good score.
Upon questioning, they said they could understand the concept of commands
and sequencing and were able to tackle these puzzles easily. The skills targeting
algorithmic thinking, problem-solving, debugging and functions, and loops and
sequencing proved to have been successfully inculcated in the students.

• Quiz Game—Neutral

This game ended up having a neutral effect on the students since they did not
really have much knowledge about programming initially. Hence, answering a set
of questions regarding this topic proved to be tough for them. As a result, a majority
of the students scored low marks for this game. Thus, it has been deduced that this
game mode would be much more efficient if played after attempting the other games
or after being exposed to some more programming principles.

8 Code-Venture: A Mobile Serious Game for Introductory Programming 183

8.6 Discussion

Code-Venture has several strengths as it has been designed based on the ACM/IEEE
guidelines for introductory programming. The game consists of several mini-games
that target different skills required for learning programming. Each mini-game dif-
fers from the other, making the gameplay experience fun, engaging, and appealing.
The game has an adventure mode where the player is able to venture out and attempt
programming puzzles while exploring a beautiful interactive 3D world and making
the gameplay experience interesting with in-game characters to interact with. The
player gets the feeling of actually playing a real game while indirectly learning
about programming. The player gets even more motivated to excel in the game due
to the high score/leaderboard system that triggers the element of competition among
the players. The system has a mobile application, which is used by the teacher
to monitor the scores and overall performance of the players while they attempt
the different games. He can hence easily determine the areas of weaknesses of the
students, and thus, targeted assistance can be provided to all the players based on
their gaming and learning experience. The game elements used in Code-Venture
include levels, points, leader boards, avatars, and quests. It also uses the following
game mechanics: health, energy, coins, time, position, attack, interact, movement,
and opening chests.

The pilot testing carried out with 35 participants resulted in some promising
outcomes. After playing Code-Venture, 40% of the respondents found programming
to be easy, compared to the 8.6% obtained prior to playing the game. Only
5.7% found programming to be hard after playing Code-Venture, while initially a
remarkable 68.6% found it to be difficult. When asked about their intention to pursue
further studies in programming, 32.4% of the respondents replied positively after
playing Code-Venture compared to the 11.4% previously. A mere 5.8% mentioned
that they did not want to have their further studies in programming compared to
a substantial 65.7% previously. It can therefore be deduced after this pilot study
that the mobile serious programming game Code-Venture does have a positive
impact on the players. These findings may also have practical implications for the
tutor delivering the programming module. Game-based learning strategies could
be adopted, and the use of serious programming games can be included in the
teaching and delivery of the introductory programming modules. Assessments or
non-curricular activities may also be designed on the use of the serious games in
normal classes or during practical sessions. Obviously, a more thorough testing of
the application on a larger scale and for a longer duration is required to have better
statistical claims about the effectiveness of the application.

While Code-Venture has several strengths, it does have some weaknesses.
Internet connection is required for connecting to an online database to store the
score of the player, which will be viewed by a teacher. Code-Venture has currently
been developed for Android platforms only. Moreover, mobile devices older than
Android 4.1 are not able to run Code-Venture due to incompatibility issues with
the new components included in the game. The game takes some storage space,

184 L. Nagowah and D. Cuniah

about 130 MB, on the mobile device it has been installed due to it being a 3D game
consisting of heavy game objects. As for any other 3D game, Code-Venture can also
consume a high amount of battery life when played over a prolonged period.

Some avenues for further improvement can be considered in the future. Artificial
intelligence can be integrated in the mini-games to have more responsive and
adaptive gaming experiences. Customized progress details and graphs concerning
the student’s strengths and weaknesses in the teacher’s application may also be
enhanced. Multiplayer game modes, whereby the players are able to challenge and
compete with others for rewards and points, will definitely be a big advantage.
Additionally, more quests in the game’s adventure mode, an improved storyline,
and expanding the game environment to increase the areas of exploration can be
envisaged. Finally, the development of more mini-games in the challenge mode to
tackle more programming skills may also be useful.

Based on our analysis, Code Combat, Hour of Code, LightBot, and May’s Jour-
ney are the most featured currently available serious programming games. Together
with Code-Venture, they have all been designed to encourage computational think-
ing among individuals of all ages and assist them in learning fundamental computer
science principles. All these games have a good combination of text, audio, and
graphics. What really differentiates Code-Venture from the other serious games is
that Code-Venture makes use of a varying gameplay for the different integrated mini-
games while the other games have a similar gameplay for all the different levels.
Code-Venture also includes a mobile application for the tutor who can visualize the
progress of the students on the different games. What makes Code-Venture unique is
the possibility of sending personalized messages to students to advise them on their
progress.

There are several threats to validity that could have an impact on the results
obtained. Firstly, the sample size was very small with only 35 participants and
limited to the students available from the researchers’ contacts. The use of a
convenience sampling poses a threat to internal validity. Moreover, some students
have parental or siblings support at home, which may have affected their interaction
with Code-Venture. Additionally, since the ages of the participants were between
16 and 21, the maturity of the respondents may also affect the results. Finally, the
students were given the mobile application for a period of only 1 week. The time
that the students interacted with the application may therefore not be the same. A
greater sample size would have helped minimize these issues.

8.7 Conclusion

This work investigated the possibility of applying a game-based learning strategy
to teach novice students about programming through a serious game named Code-
Venture. Code-Venture was based on the ACM/IEEE Computing Curriculum for
programming. The main objective of Code-Venture was to enlighten the students
about this seemingly complex programming subject and show them that it could be

8 Code-Venture: A Mobile Serious Game for Introductory Programming 185

fun and enjoyable to learn the programming principles. Code-Venture makes use of
varying gameplays to ensure the player is engaged and motivated. While the mini-
games serve as a challenge for the player, the adventure-mode creates an immersive
experience for learning. This game is associated with an application that helps
teachers monitor their students’ performance. With the elaborate scoring system,
the student’s skills, strengths, and weaknesses can be evaluated.

A pilot study has been carried out with 35 students together with pre-game and
post-game surveys. The survey results were analyzed, and the outcomes were very
promising. The participants who tested Code-Venture were very entertained and
engaged and showed keen interest in playing more. They got a better perception
about programming and expressed their will to learn more about it. A positive
change was noted in the opinion of the students regarding programming. After
playing Code-Venture, 40% of the respondents found programming to be easy
compared to the 8.6% obtained prior to playing the game. Only 5.7% found
programming to be hard post-Code-Venture, while previously an impressive 68.6%
found it to be difficult. When the participants were asked about their intention to
pursue further studies in programming, 32.4% responded positively post playing
Code-Venture compared to the 11.4% previously. Only 5.8% mentioned that they
did not want to have their further studies in programming compared to a massive
65.7% previously.

Code-Venture is a promising game providing ease of access, viability, and
the opportunity to sharpen one’s knowledge and expand one’s understanding of
programming in a fun and entertaining way. While Code-Venture has several
benefits, the game is still lacking in some areas. A more elaborated and captivating
storyline has yet to be implemented in the Adventure-Mode to better grasp the
player’s attention with more interesting quests and dialogues. The mini-games could
be improved by including a better tutorial system to guide the player. The teacher’s
mobile application has few options to view progress of the students that can also
be further enhanced. Moreover, budget limitations resulted in only free assets and
resources being considered for the development Code-Venture. The lockdown due
to the COVID-19 pandemic resulted in a pilot study where the testing was carried
out by only 35 participants. Hence, there is a need to carry out a thorough testing
of Code-Venture over a long period to evaluate the impact of the application on the
skills of the players and confirm its effectiveness in helping the players better grasp
the main programming principles.

Disclosures No funding was received for this article, and the authors declare no conflicts of
interest.

References

1. Papadakis, S., Kalogiannakis, M., Orfanakis, V., Zaranis, N.: Novice programming environ-
ments. Scratch & app inventor: a first comparison. In: Proceedings of the 2014 Workshop on
Interaction Design in Educational Environments, pp. 1–7 (2014)

186 L. Nagowah and D. Cuniah

2. Miskon, M.T., Hilmi, F.D., Khusairi, W.A., Rustam, I.: Development of constructionist robotics
to facilitate learning in C programming course. J. Phys. Conf. Ser. 1529(2), 022039 (2020)

3. Mathew, R., Malik, S.I., Tawafak, R.M.: Teaching problem solving skills using an educational
game in a computer programming course. Inf. Educ. 18(2), 359–373 (2019)

4. Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice programmers.
ACM SIGCSE Bull. 37(3), 14–18 (2005)

5. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory programming. ACM SIGCSE
Bull. 39(2), 32–36 (2007)

6. Bennedsen, J., Caspersen, M.E.: Failure rates in introductory programming: 12 years later.
ACM Inroads. 10(2), 30–36 (2019)

7. Lye, S.Y., Koh, J.H.L.: Review on teaching and learning of computational thinking through
programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014)

8. Halbrook, Y.J., O’Donnell, A.T., Msetfi, R.M.: When and how video games can be good: a
review of the positive effects of video games on well-being. Perspect. Psychol. Sci. 14(6),
1096–1104 (2019)

9. Schez-Sobrino, S., Vallejo, D., Glez-Morcillo, C., Redondo, M.Á., Castro-Schez, J.J.:
RoboTIC: a serious game based on augmented reality for learning programming. Multimed.
Tools Appl. 79, 34079–34099 (2020)

10. Shahid, M., Wajid, A., Haq, K.U., Saleem, I., Shujja, A.H.: A review of gamification
for learning programming fundamental. In: 2019 International Conference on Innovative
Computing (ICIC), pp. 1–8. IEEE (2019)

11. Mathrani, A., Christian, S., Ponder-Sutton, A.: PlayIT: game based learning approach for
teaching programming concepts. J. Educ. Technol. Soc. 19(2), 5–17 (2016)

12. Boeker, M., Andel, P., Vach, W., Frankenschmidt, A.: Game-based e-learning is more effective
than a conventional instructional method: a randomized controlled trial with third-year medical
students. PLoS One. 8(12) (2013)

13. Ding, D., Guan, C., Yu, Y.: Game-based learning in tertiary education: a new learning
experience for the generation Z. Int. J. Inf. Educ. Technol. 7(2), 148 (2017)

14. Cheng, M.T., Chen, J.H., Chu, S.J., Chen, S.Y.: The use of serious games in science education:
a review of selected empirical research from 2002 to 2013. J. Comput. Educ. 2, 353–375
(2015)

15. Krath, J., Schürmann, L., Von Korflesch, H.F.: Revealing the theoretical basis of gamification:
a systematic review and analysis of theory in research on gamification, serious games and
game-based learning. Comput. Hum. Behav. 125, 106963 (2021)

16. Zainuddin, Z., Chu, S.K.W., Shujahat, M., Perera, C.J.: The impact of gamification on learning
and instruction: a systematic review of empirical evidence. Educ. Res. Rev. 30, 100326 (2020)

17. Qian, M., Clark, K.R.: Game-based learning and 21st century skills: a review of recent
research. Comput. Hum. Behav. 63, 50–58 (2016)

18. Tori, A.A., Tori, R., Nunes, F.L.: Serious Game Design in Health Education: A Systematic
Review. IEEE Transactions on Learning Technologies (2022)

19. Jemmali, C., Yang, Z.: May’s journey: a serious game to teach middle and high school girls
programming. Master’s thesis, Worcester Polytechnic Institute (2016)

20. Du, J., Wimmer, H., Rada, R.: “Hour of Code”: can it change students’ attitudes toward
programming? J. Inf. Technol. Educ. Innov. Pract. 15, 53 (2016)

21. Miljanovic, M.A., Bradbury, J.S.: Robot on! A serious game for improving programming
comprehension. In: Proceedings of the 5th International Workshop on Games and Software
Engineering, pp. 33–36 (2016)

22. Law, R.: Teaching programming using computer games: a program language agnostic
approach. In: European Conference on Games Based Learning, pp. 368–376. Academic
Conferences International Limited (2017)

23. Junaeti, E., Sutarno, H., Nurmalasari, R.R.: Genius learning strategy of basic programming in
an adventure game. In: IOP Conference Series: Materials Science and Engineering, vol. 288,
No. 1, p. 012057. IOP Publishing (2018)

8 Code-Venture: A Mobile Serious Game for Introductory Programming 187

24. Jordaan, D.B.: Board games in the computer science class to improve students’ knowledge
of the python programming language. In: 2018 International Conference on Intelligent and
Innovative Computing Applications (ICONIC), pp. 1–5. IEEE (2018)

25. Lotfi, E., Mohammed, B.: Teaching object oriented programming concepts through a mobile
serious game. In: Proceedings of the 3rd International Conference on Smart City Applications,
p. 74. ACM (2018)

26. Yallihep, M., Kutlu, B.: Mobile serious games: effects on students’ understanding of program-
ming concepts and attitudes towards information technology. Educ. Inf. Technol., 1–18 (2019)

27. Zhao, D., Muntean, C., Muntean, G.: The Restaurant Game: a NEWTON PROJECT serious
game for C programming courses. In: Society for Information Technology & Teacher Educa-
tion International Conference, pp. 1867–1874. Association for the Advancement of Computing
in Education (AACE) (2019)

28. Karram, O.: The role of computer games in teaching object-oriented programming in high
schools-code combat as a game approach. WSEAS Trans. Adv. Eng. Educ. 18, 37–46 (2021)

29. Toukiloglou, P., Xinogalos, S.: NanoDoc: designing an adaptive serious game for programming
with working examples support. Eur. Conf. Games Based Learn. 16(1), 628–636 (2022)

30. Akkaya, A., Akpinar, Y.: Experiential serious-game design for development of knowledge of
object-oriented programming and computational thinking skills. Comput. Sci. Educ. 32(4),
476–501 (2022)

31. Hacked. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.hackedapp&hl=en (2015). Accessed 2 Oct 2019

32. Coding Galaxy. App Store. [online]. https://apps.apple.com/us/app/coding-galaxy/
id1240651393 (2022). Accessed 20 Feb 2023

33. Lightbot: Code Hour. App Store. [online]. https://apps.apple.com/us/app/lightbot-code-hour/
id873943739 (2018). Accessed 20 Feb 2023

34. SpriteBox: Code Hour. App Store. [online]. https://apps.apple.com/us/app/spritebox-code-
hour/id1161515477 (2018). Accessed 20 Feb 2023

35. Meoweb: The Puzzle Coding Game. Google Play. [online]. https://play.google.com/store/apps/
details?id=br.com.tapps.meoweb&hl=en&gl=US (2020). Accessed 20 Feb 2023

36. BeBlocky: Kids Code Easy. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.beblocky.beblocky&hl=en&gl=US (2022). Accessed 20 Feb 2023

37. Coding Planets. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.material.design.codingplanet&hl=en&gl=US (2017). Accessed 10 Dec
2022

38. Grasshopper: Learn to Code. Google Play. [online]. https://play.google.com/store/apps/
details?id=com.area120.grasshopper&hl=en&gl=US (2023). Accessed 20 Feb 2023

39. Gomes, A., Mendes, A.J.: Problem solving in programming. In: PPIG, p. 18. (2007)
40. Ahmadzadeh, M., Elliman, D., Higgins, C.: The impact of improving debugging skill on

programming ability. Innov. Teach. Learn. Inf. Comput. Sci. 6(4), 72–87 (2007)
41. Fucci, D., Turhan, B., Oivo, M.: On the effects of programming and testing skills on external

quality and productivity in a test-driven development context. In: Proceedings of the 19th
International Conference on Evaluation and Assessment in Software Engineering, pp. 1–6
(2015)

42. Csernoch, M., Biró, P., Máth, J., Abari, K.: Testing algorithmic skills in traditional and non-
traditional programming environments. Inf. Educ. 14(2), 175–197 (2015)

43. Futschek, G.: Algorithmic thinking: the key for understanding computer science. In: Inter-
national Conference on Informatics in Secondary Schools-Evolution and Perspectives, pp.
159–168. Springer, Berlin (2006)

44. Farrell, J.: Programming Logic and Design, Comprehensive. Cengage Learning (2014)
45. ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer Science Curricula 2013.

Technical Report. ACM Press and IEEE Computer Society Press (2013)

21670 20726 a 21670 20726 a

 17747 22940
a 17747 22940 a

 16069 25153 a 16069
25153 a

 17481 27367 a 17481
27367 a

21670 29581 a 21670 29581 a

 21670 31795 a 21670
31795 a

21670 34009 a 21670 34009 a

 21670 37330 a 21670 37330
a

	8 Code-Venture: A Mobile Serious Game for Introductory Programming
	8.1 Introduction
	8.2 Background Study
	8.2.1 Related Works
	8.2.2 Commercial Apps
	8.2.3 Skills Required for Introductory Programming

	8.3 Analysis
	8.3.1 Comparative Analysis of the Related Works
	8.3.2 Comparative Analysis of the Commercial Games
	8.3.3 Summary of Findings

	8.4 High-Level Architecture
	8.4.1 The Mini-games of Code-Venture
	8.4.2 Justifications for Code-Venture's Mini-games

	8.5 Code-Venture's Implementation and Testing
	8.5.1 Code-Venture's Main Functionalities
	8.5.2 User Acceptance Testing
	8.5.2.1 Pre-game Results
	8.5.2.2 Post-game Results
	8.5.2.3 Overall Feedback from Students

	8.6 Discussion
	8.7 Conclusion
	References

