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Abstract. Mixed Integer Programming (MIP) is NP-hard, and yet
modern solvers often solve large real-world problems within minutes.
This success can partially be attributed to heuristics. Since their behav-
ior is highly instance-dependent, relying on hard-coded rules derived
from empirical testing on a large heterogeneous corpora of benchmark
instances might lead to sub-optimal performance. In this work, we pro-
pose an online learning approach that adapts the application of heuristics
towards the single instance at hand. We replace the commonly used static
heuristic handling with an adaptive framework exploiting past observa-
tions about the heuristic’s behavior to make future decisions. In particu-
lar, we model the problem of controlling Large Neighborhood Search and
Diving – two broad and complex classes of heuristics – as a multi-armed
bandit problem. Going beyond existing work in the literature, we con-
trol two different classes of heuristics simultaneously by a single learning
agent. We verify our approach numerically and show consistent node
reductions over the MIPLIB 2017 Benchmark set. For harder instances
that take at least 1000 s to solve, we observe a speedup of 4%.

Keywords: Mixed Integer Programming · Machine Learning ·
Heuristics

1 Introduction

A multitude of problems arising from real-world applications can be modeled
as Mixed Integer Problems (MIPs). Because of that, there is high interest in
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finding ways to solve MIPs efficiently. Generally, the Branch-and-Bound (B&B)
framework [23] is used which decomposes the optimization problem in smaller
subproblems that are then easier to handle. Since this approach involves a variety
of decisions that significantly influence its behavior, the idea of using machine
learning (ML) has gained interest: ML has been used to find good solver param-
eters [11,19,20], to improve node [14,32], variable [2,12,21,26,27,29], and cut
selection [3,18,28,30,31], and to detect decomposable structures [22].

The objective of B&B is to solve MIPs to global optimality. However, it is
often not feasible to wait until the optimum is found, thus finding good feasible
solutions early on is important. Primal heuristics are crucial for this: In [4],
the authors showed that heuristics improved the primal bound by 80% and the
solving time by 30% on average. An overview of different primal heuristics and
their impact can be found in [5,6,26].

Primal heuristics are powerful but can be very costly, thus it is important to
be strategic about how they are applied in practice. Controlling their behavior
by hard-coded rules derived from empirical tests on heterogeneous benchmark
sets leads to strategies that work averagely well on a broad variety of instances.
However, since the performance of heuristics is highly instance-dependent, this
might lead to suboptimal behavior. For example, primal performance can be
significantly improved by deriving problem-specific heuristic settings [10].

In this work, we present an online learning approach to control primal heuris-
tics within B&B. We model heuristic selection as a multi-armed bandit problem
and exploit past observations of heuristics’ behavior to learn on-the-fly which
heuristics are most likely to be successful. Our scheduler is, thus, capable to
adapt to and leverage specific characteristic of the problem at hand. In particu-
lar, we control Large Neighborhood Search and Diving, two significantly different
and complex classes of heuristics.

Contribution. To the best of our knowledge, this is the first time when two
different classes of heuristics are treated simultaneously by a single learning
agent. To summarize:

1. We propose an online learning approach for heuristic scheduling to
replace more static heuristic handling (Sect. 3),

2. We support our findings by extensive computational experiments on
a heterogeneous benchmark test set to numerically verify our approach
(Sect. 4).

Related Work. Since heuristics have a large impact on solver performance, using
ML to develop new strategies and to optimize their usage is a topic of ongoing
research. For instance, [27] use neural networks to derive variable assignments
to find primal solutions. The authors in [17] propose a bi-layer prediction model
utilizing graph convolutional networks designed to help heuristics find solutions
faster. To improve the usage of heuristics, the authors in [21] learn an oracle that
aims to predict at which nodes a heuristic will be successful or not. Whereas
in [10] a data-driven heuristic scheduling framework is proposed that learns
problem-specific heuristic schedules to find many solutions at minimal cost.
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In [15,16] adaptive heuristics are built that use bandit algorithms to decide
which heuristics to additionally run. In particular, their ALNS heuristic [15]
inspired the framework we present here: While ALNS was designed as another
primal heuristic to be added in the pool of available heuristics, we extend it to a
framework that aims to replace static heuristic handling and that can be easily
extendable to handle any class of heuristics.

2 Background

Mixed Integer Problems. A MIP is an optimization problem of the form

min
x

cTx, s.t. Ax ≤ b, xi ∈ Z, i ∈ I, (P)

with matrix A ∈ R
m×n, vectors b, c ∈ R

m and index set I ⊆ [n]. To solve
(P), B&B partitions the feasible region, resulting in a tree structure with nodes
correspond to the simpler subproblems.

Primal Heuristics. Heuristics aim to find feasible solutions for (P). Generally, a
solver utilizes a variety of heuristics exploiting different ideas to find high-quality
solutions. Two of the most complex and time consuming classes of heuristics are
diving and Large Neighborhood Search (LNS). Diving heuristics examine a single
probing path by sub-sequentially fixing variables according to a specific rule. In
contrast, LNS builds a neighborhood around a reference point by fixing a certain
percentage of variables and then solving the resulting sub-MIP. Since no heuristic
is guaranteed to be successful, the solver iterates over all available heuristics in a
predefined order to hopefully find a new solution. Good heuristics, like diving and
LNS, are typically computationally expensive. Thus, it is especially important
to be strategic about controlling them.

Multi-Armed Bandit Problem. Given a set of actions A, an agent aims to select a
series of actions with maximal cumulative reward. In every iteration t, an action
at ∈ A is selected for which a reward rt ∈ [0, 1] is observed. Since the agent
only learns how the selected action behaves, a good strategy entails a balance
between exploring unknown actions and exploiting the ones that performed well
in the past. There are various approaches to finding a good strategy, see [9,24].

3 Scheduling Primal Heuristics Online

We present an online learning approach that models heuristic handling as a
multi-armed bandit problem. Thereby, the set of actions A corresponds to the
set of heuristics H we want to control. Two main challenges arise when modeling
the scheduling of heuristics this way: (i) defining a suitable reward function and
(ii) choosing the right bandit algorithm. After presenting our online scheduling
framework, we describe how we tackle both in Sect. 3.2 and 3.3, respectively.
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3.1 The Online Scheduling Framework

The scheduler controls a set of primal heuristics H. Each heuristic has spe-
cial working limits influencing its behavior. Whenever the scheduler is called,
it selects and executes one heuristic h ∈ H. Depending on how h performed,
we dynamically adapt some of its working limits. This way, we not only tailor
heuristic handling to the instance at hand but also reduce the number of user-
defined parameters. To summarize, the scheduler executes the following steps:

ONLINE SCHEDULING FRAMEWORK

HEURISTIC 1

HEURISTIC 2

HEURISTIC 3 ML MODEL

SOLVER SOLUTION

ML MODEL REWARD

SUCCESS 
CHECK

SELECT OBSERVE

UPDATECALL

Fig. 1. Visualisation of the Online Scheduling Framework: When the solver
decides to run heuristics, it is checked if the scheduler was successful enough in the
past. If so, a bandit algorithm selects a heuristic which is executed with specific working
limits. A reward is observed and then used to update the bandit as well as the working
limits. A solution is returned to the solver if one was found.

1. Select heuristic h using a suitable bandit algorithm (introduced in
Sect. 3.3).

2. Execute heuristic h using the current working limits.
3. Observe reward r after executing h (introduced in Sect. 3.2).
4. Update bandit algorithm and working limits of h using reward r.

An overview of the scheduling framework is shown in Fig. 1.
Often, a solver finds an optimal solution noticeably faster than it proves

the solution’s optimality [7]. Thus, always running heuristics with the same
frequency is not necessarily the best strategy. To dynamically adapt how often
the scheduler is executed, we track how often no solution was found. Whenever
it is unsuccessful for too long, we skip a number of future calls to the scheduler:
We skip �exp(βnfail)� − 1 calls, where nfail counts consecutively failed calls and
β = 0.1.

At the beginning of the solving process, when heuristics run for the first time,
the scheduler does not have any information about the heuristic’s behavior yet.
Thus, any bandit algorithm would start by selecting heuristics at random. To
avoid uninformed decisions, our framework uses expert knowledge to warmstart
the bandit strategy: We execute all heuristics in their default order first and
observe their rewards; only then the bandit algorithm takes over.

This is a general heuristic scheduling framework that can be applied to an
arbitrary set H. However, as mentioned in Sect. 2, we focus on LNS and diving
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since they cover the majority of the more complex heuristics. We control different
types of working limits directly influencing the cost and success probability of
the heuristics: For LNS, we impose a target fixing rate and for diving, we control
the LP resolve frequency. We adapt both as follows.

The target fixing rate controls how many integer variable should be fixed in
the sub-MIP. This directly influences the success rate as well as the costs of the
heuristic. The more variables are fixed, the easier but also the more restrictive
the resulting subproblem becomes. To dynamically adapt the fixing rate, we use
the same approach as presented in [15]. Let us denote by f t

h ∈ [0, 1] the target
fixing rate of heuristic h at iteration t. Assuming that h was selected, we have

f t+1
h =

{
max{(1 − γ)f t

h, fmin}, if h found solution or sub-MIP was infeasible,
min{(1 + γ)f t

h, fmax}, otherwise,

with factor γ ∈ [0, 1] and target fixing rate limits fmin, fmax ∈ [0, 1]. We choose
γ = 0.1, fmin = 0.3, fmax = 0.9, and f0

h = fmax for all LNS heuristics.
Diving heuristics successively fix integer variables and reoptimize the cor-

responding LP relaxation in between. If the LP is solved more often, diving
becomes more expensive, but also more successful: Fixings that led to infeasi-
bility can be detected earlier and then be corrected by backtracking. To control
how often the LP is solved, the fraction of variables is tracked that had their
domains changed since the last LP solve. If this fraction exceeds a threshold
parameter q, an LP solve is triggered; larger q results in less frequent LP solves.

We dynamically adjust this threshold in a similar fashion to the target fixing
rate of LNS heuristics. Let us denote by qth ∈ [0, 1] the value for diving heuristic
h at iteration t. If h was selected at t, then

qt+1
h =

{
max{(1 − η)qth, qmin}, if h did not find an incumbent at iteration t

min{(1 + η)qth, qmax}, otherwise

for factor η ∈ [0, 1] and the bounds qmin, qmax ∈ [0, 1]. Thus, if h was not
successful, we reduce qth to increase the success probability of h in the future.
Otherwise, we increase the value to reduce the cost of executing h. We choose
η = 0.1, qmin = 0.05, qmax = 0.3, and q0

h = qmin for all diving heuristics.

3.2 Choosing a Reward Function

The simplest choice to reward a heuristic h ∈ H would be the binary function

rsol(h, t) =

{
1, if h found an incumbent at iteration t

0, otherwise.

However, heuristics find improving solutions rather rarely: For instance, on the
test set we consider in our experiments, the default settings of the solver found
on average only 12 incumbents. Thus, using rsol as the only reward signal might
not give enough feedback to the agent. Furthermore, rsol lacks a lot of important
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information. For example, a heuristic that fails fast is preferable over one that
needs more time to terminate without a solution. Furthermore, if a solution is
found, its quality should also be considered. Besides the obvious preference for
better solutions, considering the current stage of the solving process is vital:
At the beginning, it is much easier to find a new incumbent than at a more
advanced stage. Another problem is that rsol implicitly assumes the only objec-
tive of heuristics is finding solutions. This is not always true, for instance, diving
heuristics can also generate conflict constraints [1], which profits the solver.

Thus, besides rsol, we consider three additional metrics to reward h:

1. rgap to reward the quality of the new incumbent if h was successful,
2. reff to punish the effort it took to execute h,
3. rconf to reward the number of conflict constraints h found.

The overall reward function r is then

r(h, t) = λ1rsol(h, t) + λ2rgap(h, t) + λ3reff(h, t) + λ4rconf(h, t),

with λi ∈ [0, 1]. We choose λ1 = λ2 = 0.3 and λ3 = λ4 = 0.2.
The functions rgap, reff, and rconf are defined as follows. Assuming that h was

successful, let us denote by xnew and xold the new and old solution, respectively.
Furthermore, let xLP be the solution of the current linear relaxation. Then, we
measure the quality of xnew relative to the current solving stage with

rgap(h, t) =

⎧⎪⎨
⎪⎩

0, if h did not find an incumbent at iteration t

1, if h found the first incumbent at iteration t
cTxold−cTxnew

cTxold−cT xLP
, otherwise.

To define reff, let nt
h be the number of nodes used by h, and nmax an upper

bound on the maximal number of nodes used. For LNS, nt
h refers to the number

of nodes solved in the sub-MIP; for diving, it refers to the number of nodes
visited during the partial search. Finally, we define reff(h, t) = 1 − nt

h

nmax
and

rconf(h, t) = vt
h

vmax
where vt

h is the number of conflict constraints h found and
vmax the maximal number of conflict constraints found by any heuristic in the
past. The reward function r is an extension of the reward used in [15], which
only uses rgap and variants of rsol and reff.

3.3 Choosing a Bandit Algorithm

As mentioned before, to solve the multi-armed bandit problem successfully, we
need to balance exploitation and exploration carefully. In our case, this raises the
following question: Should we prioritize heuristics that have not been executed
(that often) or heuristics that have performed well in the past? Our experimen-
tal results suggests that for primal heuristics, exploitation is the better choice.
Typically, a heuristic that performs bad at the beginning, will also be rather
unsuccessful later on, since it only gets harder to find improving solutions.
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Algorithm 1. Modified ε-greedy bandit algorithm
Input: Set of heuristics H, reward function r, probability ε ∈ [0, 1]
w(h, 0) ← 1

|H|
t ← 0
while not stopped do

t ← t + 1

εt ← ε ·
√

|H|
t

Draw ρt ∼ U([0, 1])
if ρt > εt then

ht ← argmax
h∈H

w(h, t − 1)

else
Draw ht ∼ w(·, t − 1)

end if
Observe reward r(ht, t)
if ht was selected for the first time then

w(ht, t) ← r(ht, t)
else

w(ht, t) ← update average weight with r(ht, t)
end if

end while

That is why we propose to use a variant of the ε-greedy bandit algorithm.
The ε-greedy, or follow-the-leader, algorithm pursues a simple strategy: Given an
ε ∈ [0, 1], the best action seen so far is chosen with probability 1−ε. Otherwise, an
action is randomly selected following a uniform distribution. To characterize the
best action at iteration t, we associated a weight w(h, t) with every heuristic h.
The weights w are equal to the average reward of h observed so far, that is,
w(h, t) =

∑
t̃∈T t

h
r(h, t̃)/|T t

h | with T t
h ⊆ [t] being the subset of calls at which h

was selected up to time t.
In the modified ε-greedy algorithm we consider, instead of selecting a heuris-

tic uniformly at random, we draw it following the distribution imposed by the
weights w. This variant allows for more exploitation; it is described in Algo-
rithm 1. In our experiments, our online scheduling approach performed best
with this bandit algorithm. We use ε = 0.7.

To put more focus on heuristics that performed well in the recent past, we
also tried another modification: Instead of looking at the average reward as w,
we examined using an aggregation of the observed rewards where older observa-
tions contribute exponentially less. This performed considerably worse, suggest-
ing that it is preferable to consider all past behavior to make future decisions.

4 Computational Results

To study the performance of our approach, we used the state-of-the-art open-
source MIP solver SCIP 8.0 with SoPlex 6.0 [8]. We ran all experiments on a
Linux cluster of Intel Xeon CPU E5-2630 v3 2.40GHz with 64GB RAM. The time
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Table 1. Summary of results for B&B experiments. Rows labeled [t, 7200] consist of
instances solved with at least one settings taking at least t seconds. heurtime refers
to time spent in heuristics controlled by the scheduler, relative to default. Shifted
geometric means are used.

subset instances default scheduler relative

solved time nodes solved time nodes time nodes heurtime

all 892 472 1157.44 4238 464 1189.03 4056 1.03 0.95 0.94

[0, 7200] 485 472 249.02 2522 464 261.70 2426 1.05 0.96 1.20

[1, 7200] 481 468 259.89 2593 460 273.23 2494 1.05 0.96 1.20

[10, 7200] 441 428 373.99 3439 420 394.12 3298 1.05 0.96 1.21

[100, 7200] 330 317 839.49 8231 309 862.90 7759 1.03 0.94 1.05

[1000, 7200] 175 162 2312.56 20769 154 2217.32 19627 0.96 0.95 0.68

all-optimal 451 451 199.60 2294 451 209.61 2168 1.05 0.95 1.25

limit was set two hours and the test set consists of the benchmark instances of the
MIPLIB 2017 [13]. Since our framework aims to improve primal performance, we
removed all infeasible instances and problems with a zero objective function. This
leaves us with 226 instances. To filter out the effects of performance variability
[25], all experiments are run with four random seeds.

We compare two settings: default refers to the default settings of SCIP and
scheduler refers to the proposed online scheduling framework. In the latter, we
deactivated all LNS and diving heuristics that are controlled by the scheduler, as
well as the two adaptive heuristics presented in [15,16]. The scheduler is called
at every node, right after cheaper heuristics like rounding.

Table 1 shows that scheduler consistently reduces the size of the B&B
tree by 4–6%. Unfortunately, this improvement does not directly translate into
improving solving time. However, we perform the better the harder the instances
get: On instances taking at least 1000 seconds to solve, the scheduling frame-
work outperforms default by about 4%. Even though scheduler solves 13
instances that cannot be solved by default, it fails to solve 21 instances solved
by default. One reason for this behavior could be the fact that for harder
instances, the scheduler tends to spend less time then default in the heuristics
controlled by it: On [1000, 7200], scheduler reduces time spent in heuristics by
over 30%.

The heuristics’ behavior shows that our scheduling framework succeeds in
detecting more successful heuristics: The scheduler finds 88% more incumbents
while increasing the probability of a heuristic finding a new solution by 57%. On
average, the heuristics controlled by scheduler find 3.80 solutions per instance
as opposed to 2.01; with a success probability of 4.49% instead of 2.86%.

To conclude, the computational results show that our scheduling framework
can improve the performance of a solver. However, for easier instances, it seems
that there is not much potential for improvement by using an online learning
approach; there we compete against the default parameters that have been tuned
on the test set over a long period of time. This could be attributed to a lack
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of observations: When an instance is solved fast, a learning approach might
not have enough time to gather meaningful information about the heuristics’
behavior. Furthermore, the results also suggest that our approach might be too
conservative for harder instances, since it reduces the time spent in heuristics
considerably.

Hence, we believe that there is further room for improvement, also since we
have not spent a large amount of effort on tuning any hyperparameters of our
method in order to obtain the current results. As next steps, we need to combine
the good performance of the static heuristic handling with our online scheduling
approach and better detect when to apply heuristics more aggressively and when
to rely on well-working default parameters.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discret. Optim.
4(1), 4–20 (2007)

2. Balcan, M.F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: Inter-
national Conference on Machine Learning, pp. 344–353. PMLR (2018)

3. Baltean-Lugojan, R., Bonami, P., Misener, R., Tramontani, A.: Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks
(2019). https://optimization-online.org/?p=17362

4. Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6),
611–614 (2013)

5. Berthold, T.: Primal MINLP heuristics in a nutshell. In: International Conference
on Operations Research (2013)

6. Berthold, T.: A computational study of primal heuristics inside an MI(NL)P solver.
J. Glob. Optim. 70, 189–206 (2018)

7. Berthold, T., Hendel, G., Koch, T.: From feasibility to improvement to proof: three
phases of solving mixed-integer programs. Optim. Methods Softw. 33, 1–19 (2017)

8. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse
Institute Berlin (2021). https://nbn-resolving.de/urn:nbn:de:0297-zib-85309
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rithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

20. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Learning and Intelligent Optimization, pp.
507–523 (2011)

21. Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Proceedings of the 30th AAAI Conference on
Artificial Intelligence (2016)
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