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Abstract. Large Neighborhood Search (LNS) is a popular heuristic
algorithm for solving combinatorial optimization problems (COP). It
starts with an initial solution to the problem and iteratively improves it
by searching a large neighborhood around the current best solution. LNS
relies on heuristics to select neighborhoods to search in. In this paper,
we focus on designing effective and efficient heuristics in LNS for integer
linear programs (ILP) since a wide range of COPs can be represented
as ILPs. Local Branching (LB) is a heuristic that selects the neighbor-
hood that leads to the largest improvement over the current solution in
each iteration of LNS. LB is often slow since it needs to solve an ILP
of the same size as input. Our proposed heuristics, LB-RELAX and its
variants, use the linear programming relaxation of LB to select neigh-
borhoods. Empirically, LB-RELAX and its variants compute as effective
neighborhoods as LB but run faster. They achieve state-of-the-art any-
time performance on several ILP benchmarks.

Keywords: Integer Linear Program - Large Neighborhood Search -
Heuristic Search

1 Introduction

Combinatorial optimization problems (COP) concerns a wide variety of real-
world applications, including vehicle routing [42], path planning [35] and resource
allocation [34] problems. Many of them are difficult to solve with limited compu-
tational resources due to their NP-Hardness. Nonetheless, the widespread impor-
tance of COPs has inspired research in designing algorithms for solving them,
including exact algorithms, approximation algorithms, heuristic algorithms and
data-driven algorithms.

In this paper, we focus specifically on Integer Linear Programs (ILPs) since it
is a powerful tool to model and solve a broad collection of COPs, including graph
optimization [40], mechanism design [11], facility location [4,19] and network
design [12,21] problems. Branch-and-Bound (BnB) is an optimal and complete
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tree search algorithm and is one of the state-of-the-art algorithms for ILPs [27].
It is also the core of many ILP solvers such as SCIP [8] and Gurobi [17]. Huge
research effort has been made to improve it over the past decades [2]. However,
BnB still falls short of delivering practical impact due to scalability issues [14,24].
On the other hand, Large Neighborhood Search (LNS) is a powerful heuristic
algorithm for hard COPs and has been recently applied to solve ILPs [40,41,43]
in the machine learning (ML) community.

To solve ILPs, LNS starts with an initial solution, i.e., a feasible assignment of
values to the variables. It then iteratively improves the best solution found so far
(i.e., the incumbent solution), by applying destroy heuristics to select a subset of
variables and solving a sub-ILP that optimizes only the selected variables while
leaving others fixed. ML-based destroy heuristics are shown to be efficient and
effective but they are often tailored for a specific problem domain and require
extensive computational resources for learning. A few non-ML destroy heuris-
tics have been studied, such as the randomized heuristics [40,41] and the Local
Branching (LB) heuristic [13,41], but they are either less efficient or effective
compared to the ML-based ones. The randomized heuristics select the neighbor-
hood by quickly randomly sampling a subset of variables which is often of bad
quality. LB computes the optimal solution across all possible search neighbor-
hoods that differs from the current incumbent solutions on a limited number of
variables; however, LB is computationally expensive since it requires solving an
ILP that has the same size as the original problem.

To strike a balance between efficiency and effectiveness, we propose a simple
yet effective destroy heuristic LB-RELAX that is based on the linear program-
ming (LP) relaxation of LB. Instead of solving an ILP to find the neighbor-
hood as LB does, LB-RELAX computes its LP relaxation. It then selects the
variables greedily based on the difference between the values in the incumbent
solution and the LP relaxation solution. We also propose two other variants,
LB-RELAX-S and LB-RELAX-R, that deploy a sampling method and combine
the randomized heuristic with LB-RELAX to help escape local optima more effi-
ciently, respectively. In experiments, we compare LB-RELAX and its variants
against LNS with baseline destroy heuristics and BnB on several ILP bench-
marks and show that they achieve state-of-the-art anytime performance. We
also show that LB-RELAX achieves competitive results with, sometimes even
outperform, the MIL-based destroy heuristics. We also test LB-RELAX and its
variants on selected difficult MIPLIB instances [16] that encompass diverse prob-
lem domains, structures and sizes and show that they achieve best performance
on at least 40% of the instances. We also empirically show that LB-RELAX and
LB-RELAX-S find neighborhoods of similar quality but is much faster than LB.
They sometimes even outperform LB due to LB being too slow to find good
enough neighborhoods within a reasonable time cutoff.

2 Background

In this section, we first define ILP and introduce its LP relaxation. We then
introduce LNS for ILP solving and the Local Branching (LB) heuristic.
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Algorithm 1. LNS for ILPs

1: Input: An ILP.

2: 2° — Find an intial solution to the input ILP

3:t<—0

4: while time limit not exceeded do

5: X' < Select a subset of variables to destroy

6: 2! — Solve the ILP with additional constraints {z; = x! : z; ¢ X"}
7 t—t+1

8: return z*

2.1 ILP and Its LP Relaxation

An integer linear program (ILP) is defined as
minc'xz  s.t. Az <band x € {0,1}",

where = (21,...,7,)" denotes the n binary variables to be optimized, ¢ € R™
denotes the vector of objective coefficients and A € R™*™ and b € R™ specify
m linear constraints. A solution to the ILP is an feasible assignment of values
to the variables.

The linear programming (LP) relazation of an ILP is obtained by relaxing
binary variables in the ILP to continuous variables between 0 and 1, i.e., by
replacing the integer constraint @ € {0,1}" with = € [0, 1]".

Note that, in this paper, we focus on the formulation above that consists
of only binary variables, but our methods can also be applied to mixed integer
linear programs with continuous variables and/or non-binary integer variables.

2.2 LNS for ILP Solving

LNS is a heuristic algorithm that starts with an initial solution and then iter-
atively reoptimizes a part of the solution by applying the destroy and repair
operations until a time limit is exceeded. Let ¥ be the initial solution. In iter-
ation ¢t > 0 of the LNS, given the incumbent solution xt, defined as the best
solution found so far, a destroy operation is done by a destroy heuristic where
it selects a subset of k; variables Xt = {z;,,... ; iy, - The repair operation is
done by solving a sub-ILP with X* being the variables while fixing the values of
zj ¢ X' to be the same as in x'. Compared to BnB, LNS is more effective in
improving the objective value ', or the primal bound, especially on difficult
instances [40,41,43]. Compared to other local search methods, LNS explores a
large neighborhood in each step and thus, is more effective in avoiding local
minima. LNS for ILPs is summarized in Algorithm 1.

2.3 LB Heuristic

The LB Heuristic [13] is originally proposed as a primal heuristic in BnB but is
also applicable in LNS for ILP solving [31,41]. Given the incumbent solution '
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in iteration ¢ of LNS, the LB heuristic [13] aims to find the subset of variables
to destroy X? such that it leads to the optimal z**! that differs from = on at
most k; variables, i.e., it computes the optimal solution a!*! that sits within
a given Hamming ball of radius k; centered around x*. To find a‘*', the LB
heuristic solves the LB ILP that is exactly the same ILP from input but with
one additional constraint that limits the distance between ! and x!*!:

Z t+1+ Z t+1 Skt

i€[n]:zf=0 i€[n]:x

The LB ILP is of the same size of the input ILP (i.e., it has the same number of
variables and one more constraint), therefore, it is often slow to run in practice.

3 Related Work

In this section, we summarize related work on LNS for ILPs, LNS-based primal
heuristics in BnB and LNS for other COPs.

3.1 LNS for ILPs

While a lot of effort has been made to improve BnB for ILPs in the past decades,
LNS for ILPs has not been studied extensively in the past. Recently, Song et
al. [40] show that even a randomized destroy heuristic in LNS can outperform
state-of-the-art BnB in runtime. In the same paper, they show that an ML-
guided decomposition-based LNS can achieve even better performance, where
they apply reinforcement learning and imitation learning to learn the destroy
heuristics. Since then, there have been a few more recent studies on ML-based
LNS for ILPs. Sonnerat et al. [41] learn to select variables to destroy via imitating
LB. Wu et al. [43] learn the same thing but they use reinforcement learning
instead. The main difference between LB-RELAX and ML-based heuristics is
that LB-RELAX does not require extra computational resource for learning
and is agnostic to the underlying problem distributions. LB-RELAX also has a
better balance between efficiency and effectiveness than those existing non-ML
heuristics.

3.2 LNS-Based Primal Heuristics in BnB

LNS-based primal heuristics is one of the rich set of primal heuristics in BnB for
ILPs and many techniques have been proposed in past decades. With the same
purpose of improving primal bounds of the ILPs, the main differences between
the LNS-based primal heuristics in BnB and LNS for ILPs are the following:
(1) Since LNS-based primal heuristics are often more expensive to run than
the others in BnB, they are executed periodically at different search tree nodes
during the main search and the execution schedule is itself dynamic; (2) the
destroy heuristics for LNS in BnB are often designed to use information, such
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as the dual bound and the LP relaxation at a search tree node, that is specific
to BnB and not directly applicable in LNS for ILPs in our setting.

Next, we briefly summarize the destroy heuristics in LNS-based primal heuris-
tics. The Crossover heuristics [37] destroy variables that have different values
in a set of selected known solutions (typically two). The Mutation heuristics
[37] destroys a random subset of variables. Relaxation Induced Neighborhood
Search (RINS) [10] destroys variables whose values disagree in the solution
of the LP relaxation at the current search tree node and the current incum-
bent solution. Relaxation Enforced Neighborhood Search (RENS) [7] restricts
the neighborhood to be the feasible roundings of the LP relaxation at the cur-
rent search tree node. Local Branching [13] restricts the neighborhood to a ball
around the current incumbent solution. Distance Induced Neighborhood Search
(DINS) [15] takes the intersection of the neighborhoods of the Crossover, LB
and RINS heuristics. Graph-Induced Neighborhood Search (GINS) [33] destroys
the breadth-first-search neighborhood of a variable in the bipartite graph repre-
sentation of the ILP. An adaptive LNS primal heuristic that essentially solves a
multi armed bandit problem has been proposed to combine the power of these
heuristics [18].

LB-RELAX is closely related to RINS [10] since they both use LP relax-
ations to select neighborhoods. However, RINS is more suitable in BnB since
it can adapt dynamically to the constraints added by branching. It uses the
LP relaxation of the original problem, whereas LB-RELAX uses that of the LB
ILP which takes into account the incumbent solutions that could change from
iteration to iteration in LNS.

3.3 LNS for Other COPs

LNS has been applied to solve a wide range of COPs, such as the vehicle routing
problem [5,36], the traveling salesman problem [39], scheduling problems [26,44]
and path planning problems [23,28,29]. Recently, ML-based methods have been
applied to improve LNS for those applications [9,20,22,30,32].

4 The Local Branching Relaxation Heuristic

Recently, designing effective destroy heuristics in LNS for ILPs has been a focus
in the ML community [40,41,43]. However, it is difficult to apply ML-based
destroy heuristics to general ILPs since they are often customized for ILPs from
certain problem distributions, e.g., graph optimization problems from a given
graph distribution or scheduling problems where resources and demands follow
the distribution of historical data, and require extra computational resources for
training. There has been a lack of study on destroy heuristics that are agnostic
to the underlying distribution of the problem. Existing ones such as randomized
heuristics are simple and fast but sometimes not effective [40,41]. LB are effective
but not efficient [31,41] since it exhaustively solves an ILP the same size as input
for the best improvement.
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Algorithm 2. LB-RELAX (LB-RELAX-S)

1: Input: An ILP, incumbent bOluthH x' and neighborhood size k.
2: Construct the LB ILP given x! and k;
3: 'T! — Solve the LP relaxation of the LB ILP
40 A | — 2t for all i € [n]
5. Xt {x;: A; > 0,3 € [n]}
6: if |Xt| > k; then
7: X' — Select k; variables greedily with the largest A; from X
(X" « Select k; variables uniformly at random from X'*)
8: else
9: X’ « arandom subset of k; — |X*| variables from {z; : A; = 0,7 € [n]}

10: Xt —xtux’
11: return X*

There are well-known approximation algorithms for NP-hard COPs based
on LP relaxation [25]. Typically, they solve the LP relaxation of the ILP of the
original problem and apply deterministic or randomized rounding afterwards to
construct an integral solution. These algorithms often have theoretical guarantee
on the effectiveness and are fast, since LP can be solved in polynomial time.
Inspired by those algorithms, we propose destroy heuristic LB-RELAX that first
solves the LP relaxation of the LB ILP and then constructs the neighborhood
(selects variables X* to destroy) based on the LP relaxation solution. Specifically,
given an ILP and the incumbent solution ! in iteration ¢, we construct the LB
ILP with neighborhood size k; and solve its LP relaxation. Let Z'*! be the LP
relaxation solution to the LB ILP. Also, let A; = |#;*t! — zf| and X* = {z; :
A; > 0,i € [n]}. X' includes all the fractional variables in the LP relaxation
solution and all integral variables that have different values from x!. In the
following, we introduce (1) LB-RELAX, (2) LB-RELAX-S, a variant of LB-
RELAX with randomized sampling and (3) LB-RELAX-R, another variant of
LB-RELAX that combines a randomized destroy with LB-RELAX to help avoid
local minima more effectively.

LB-RELAX first gets the LP relaxation solution Z‘*! of the LB ILP and
then calculates A; and X* from &'*!, x!. To construct X* (the set of variables
to destroy), it then greedily selects k; variables with the largest A; and breaks
ties uniformly at random. Intuitively, LB-RELAX greedily selects the variables
whose values are more likely to change in the incumbent solution ! after solving
the LB ILP. LB-RELAX is summarized in Algorithm 2. Instead of using the LP
relaxation of the LB ILP, one could argue that we alternatively use that of
the original ILP similar to RINS [10]. However, the advantage of LB-RELAX
over using the LP relaxation of the original problem is that, by approximating
the solution to the LB ILP, LB-RELAX selects neighborhoods based on the
incumbent solutions that change from iteration to iteration, whereas the original
LP relaxation is a static and less informative feature that is pre-computed before
the LNS procedure.
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LB-RELAX-S is a variant of LB-RELAX with randomized sampling. To
construct X', instead of greedily choosing variables with the largest A;, it selects
k; variables from X! uniformly at random. If |X?| < ky, it selects all variables
from X* and k; — |X'?| variables from the remaining uniformly at random. LB-
RELAX is summarized in Algorithm 2 where the parts in blue highlight the
differences between LB-RELAX and LB-RELAX-S. Since 0 < A; < 1, one could
treat A; as a probability distribution and sample k; variables accordingly (see
[41] for an example of how to normalize the distribution to sample k; variables).
However, this variant performs similarly to or slightly worse than LB-RELAX-S
empirically and require extra hyperparameter tunings for the normalization. We
therefore omit it and focus on the simpler variant in this paper.

LB-RELAX-R is another variant of LB-RELAX that leverages a random-
ized destroy to avoid local minima more effectively. Once LB-RELAX fails to
find an improving solution in iteration ¢, if we let k;11 = ky, it will solve the
exact same LP relaxation of the LB ILP again in the next iteration since the
incumbent solution x'*! = ! and the neighborhood size stay the same. Also,
since LB-RELAX uses a greedy rule, it will select the same set of variables
with the largest A;’s deterministically, except that it might need to break ties
randomly in some cases when there are multiple variables with the same A;.
Therefore, it is susceptible to getting stuck at local minima. To tackle this issue,
once LB-RELAX fails to find a new incumbent solution, we update k;;1 using
the adaptive method described in the next paragraph. If it fails again in the next
iteration, we switch to a randomized destroy heuristic that uniformly samples
variables at random without replacement to construct the neighborhood. We
switch back to LB-RELAX after running the randomized destroy heuristic for
at least v seconds and a new incumbent solution is found.

Next, we discuss an adaptive method to set the neighborhood size k; for LB-
RELAX and its variants. The initial neighborhood size kg is set to a constant
or a fraction of the number of variables in the input ILP. In iteration ¢, if LNS
finds a new incumbent solution, we let ky;1 1 = k;. Otherwise, we increase k; by a
factor @ > 1. Also, we upper bound the neighborhood size k; to a fraction 5 < 1
of the number of variables to make sure the sub-ILP in each iteration is not
too difficult to solve, i.e., we let ki1 = min{« - k¢, 8 - n}. This adaptive way of
choosing k; also helps address the issue of local minima by expanding the search
neighborhood when LNS fails to improve the solution. It is applicable to not
only LB-RELAX and its variants but also any destroy heuristics that require a
given neighborhood size k.

5 Empirical Evaluation

In this section, we demonstrate the efficiency and effectiveness of LB-RELAX
and its variants through extensive experiments on ILP benchmarks.
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5.1 Setup

Instance Generation. We evaluate on four NP-hard problem benchmarks
selected from previous work [38,40,43], which consist of synthetic minimum ver-
tex cover (MVC), maximum independent set (MIS), set covering (SC) and mul-
tiple knapsack (MK) instances. MVC and MIS instances are generated according
to the Barabasi-Albert random graph model [3], with 9,000 nodes and average
degree 5 following [40]. SC instances are generated with 4,000 variables and
5,000 constraints following [43]. MK instances are generated with 400 items and
40 knapsacks following [38]. For each problem, we generate 100 instances.

Baselines. We compare LB-RELAX, LB-RELAX-R and LB-RELAX-S with
the following baselines:

— BnB using SCIP (v8.0.1) as the solver with the aggressive mode turned on
to focus on improving the primal bound;

— LB: LNS which selects the neighborhood with the LB heuristics;

— RANDOM: LNS which selects the neighborhood by uniformly sampling a
subset of variables of a given neighborhood size k;;

— GRAPH: LNS which selects the neighborhood based on the bipartite graph
representation of the ILP similar to GINS [33]. A bipartite graph representa-
tion consists of nodes representing the variables and constraints on two sides,
respectively, with an edge connecting a variable and a constraint if a vari-
able has a non-zero coefficient in the constraint. It runs a breadth-first search
starting from a random variable node in the bipartite graph and selects the
first k; variable nodes expanded.

Furthermore, we compare our approaches with state-of-the-art ML approaches:

— IL-LNS: LNS which selects the neighborhood using a GCN-based policy
obtained by learning to imitate the LB heuristic [41]. We implement IL-LNS
since the authors do not fully open source the code;

— RL-LNS: LNS which selects the neighborhood using a GCN-based policy
obtained by reinforcement learning [43]. Note that this approach does not
require a given neighborhood size k; since the size is defined implicitly by how
the trained policy is used. We use the code made available by the authors.

Hyperparameters. We conduct our experiments on 2.5 GHz Intel Xeon Plat-
inum 8259CL CPUs with 32 GB RAM. All experiments use the hyperparameters
described below unless stated otherwise. We use SCIP (v8.0.1) [8], the state-of-
the-art open source ILP solver for the repair operations in LNS. To run LNS,
we find an initial solution by running SCIP for 10s for MVC, MIS and SC and
20s for MK. We set the time limit to 60 min to solve each instance and 2 min
for each repair operation in LNS. Except for LB, we set the time limit to 10 min
for each repair operation since LB solves a larger ILP than other approaches in
each iteration and typically requires a longer time limit. All approaches require a
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Fig. 1. Comparison with non-ML approaches: The primal gap as a function of time,
averaged over 100 instances.

neighborhood size k; in LNS, except for BnB and RL-LNS. The initial neighbor-
hood size (ko) is set to kg = 400,200, 150 and 400 for MVC, MIS, SC and MK,
respectively. For fair comparison, all baselines use adaptive neighborhood sizes
with @ = 1.02 and 8 = 0.5, except for BnB and RL-LNS. For LB-RELAX-R,
we set v = 30 s. Additional details on tuning hyperparameters are included in
Appendix!.

Metrics. We use the following metrics to evaluate the efficiency and effective-
ness of different approaches: (1) The primal bound is the objective value of
the ILP. (2) The primal gap [6] is the normalized difference between the primal
if v exists and v - v* > 0, or 1 otherwise. We use € = 10~® to avoid division by
zero and v* is the best primal bound found within 60 min by any approach in
the portfolio for comparison. (3) The primal integral [1] at time ¢ is the inte-
gral on [0,¢| of the primal gap as a function of time. It captures the quality
of and the speed at which solutions are found. (4) The survival rate to meet
a certain primal gap threshold is the fraction of instances with the primal gap
below the threshold [41]. Since BnB and LNS are both anytime algorithms, we

bound v and a precomputed best known objective value v*, defined as

! Appendix is available in the full version of the paper: https://arxiv.org/abs/2212.
08183.
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Fig. 2. Comparison with non-ML approaches: The survival rate over 100 instances as
a function of time to meet a certain primal gap threshold. The primal gap threshold
is chosen from Table 1 as the median of the average primal gaps at 60 min time cutoff
over all approaches rounded to the nearest 0.05%.

show the metrics as a function of time or the number of iterations in LNS (when
applicable) to demonstrate their anytime performance.

5.2 Results

Comparison with Non-ML Approaches. First, we compare LB-RELAX,
LB-RELAX-R and LB-RELAX-S with non-ML approaches, namely BnB, LB,
RANDOM and GRAPH. Figurel shows the primal gap as a function of time,
averaged over 100 instances. The results show that LB-RELAX, LB-RELAX-
R and LB-RELAX-S consistently improve the primal gap a lot faster than the
baselines in the first few minutes of LNS. LB-RELAX improves the primal gap
slightly faster than LB-RELAX-S in all cases. On average, LB-RELAX is always
better than the baselines at any point of time on MK instances and LB-RELAX-S
is always better than the baselines on SC and MK instances. However, both LB-
RELAX and LB-RELAX-S could get stuck at some local minima. In those cases,
they need some time to escape local minima by adjusting the neighborhood size
and sometimes could be outperformed by some baselines with longer time on the
MVC and MIS instances. By adding randomization to LB-RELAX, LB-RELAX-
R escapes local minima more efficiently than LB-RELAX and LB-RELAX-S. On
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Table 1. Primal gap (PG) (in percent) and primal integral (PI) at 60 min time cutoff,
averaged over 100 instances, and their standard deviations.

MVC MIS

PG (%) PI PG (%) PI
BnB 1.014£0.46 |128.6+14.6 |2.80+1.36 | 144.04+20.1
LB 0.154+0.08 |22.143.6 |1.20+0.31 |56.3+9.4
RANDOM | 0.11+0.05 [32.3+23 |0.10+0.05 |18.0+2.5
GRAPH 0.17+0.04 |[40.8+2.5 |1.56+0.18 |90.2+7.6

LB-RELAX 0.04 £0.03 | 10.3£1.7 0.39+£0.12 |29.4+4.3
LB-RELAX-R | 0.094+0.04 |9.6+1.7 0.04+0.04 9.3 £1.7
LB-RELAX-S | 0.424+0.20 |28.8+£8.1 0.37+£0.11 | 51.7£10.1

SC MK
BnB 1.15+0.98 |87.4+£38.6 [0.91+£0.59 |60.7£17.9
LB 1.23+0.98 |114.1+£35.7 | 1.50£0.48 |97.7+£13.0
RANDOM 2.68£1.31 |124.4+£45.7 1.24+0.36 |68.9+14.7
GRAPH 8.75+2.15 |338.2+£77.00.33+£0.14 |23.6+4.9

LB-RELAX 1.37+0.96 |63.9+34.0 |0.20£0.09 |11.3+3.0
LB-RELAX-R | 1.144+0.90 |58.9+31.5|0.00£0.00|3.7+0.4
LB-RELAX-S |0.88£0.85 | 63.8+324 |0.194+0.07 |11.84+24

average, LB-RELAX-R is always better than the baselines at any point of time
in the search on the MVC, MIS and MK instances.

Table 2. The time (in seconds) to improve the initial solution in one iteration and the
improvement of the primal bound, averaged over 100 instances. The time for LB is the
solving time of the LB ILP. The time for LB-RELAX and LB-RELAX-S is the sum of
the solving times of the LB relaxation and the sub-ILP. The numbers in parentheses
are the speed-ups. The improvement is computed by taking the difference between the
initial solution and the new incumbent solution and the numbers in parentheses are
the losses in quality in percent compared to LB. T means higher is better, | means
lower is better.

MVC MIS sC MK
LB Time] | 40.2 56.0 600.0 600.0
TImp.T | 129.79 65.50 12.21 216.51
LB-RELAX | Time| 12.1 (3.3x) 195 (2.9x) 1253 (4.8x) | 5.87 (102.2x)
Imp.T | 129.41 (—0.3%) | 65.19 (—0.5%) | 15.77 (+29.2%) | 141.10 (—34.8%)
LB-RELAX-S  Time| |12.0 (3.4x) 195 (2.9x) | 24.51 (24.5x) | 5.12 (117.6x)
Imp.7 | 128.61 (—0.9%) | 62.46 (—4.6%) | 5.65 (—53.7%) | 113.48 (—47.6%)

Table 1 presents the average primal gap and primal integral at 60 min time
cutoff. (See results at 15, 30 and 45 min time cutoff in Appendix.) On MVC, SC
and MK instances, all LB-RELAX, LB-RELAX-S and LB-RELAX-R have lower
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Fig. 3. Comparison with LB: The primal bound as a function of the number of itera-
tions, averaged over 100 instances.

primal gaps and primal integrals on average than any baselines, demonstrating
that they not only find higher quality solutions but also find them at a faster
speed. On MIS and MK instances, LB-RELAX-R achieves the lowest primal
gap and primal integral among all approaches. It also achieves the lowest primal
integral on MVC and SC instances. Overall, LB-RELAX-R always comes up in
the top 2 in both metrics on all problems.

Figure 2 shows the survival rate over 100 instances as a function of time to
meet a certain primal gap threshold. On MVC instances, LB-RELAX and LB-
RELAX-R achieve final survival rates above 0.9 while the best baseline RAN-
DOM stays below 0.8. On MIS instances, both LB-RELAX-R and RANDOM
achieve final survival rates of 1.0 but LB-RELAX-R uses shorter time. On SC
instances, LB-RELAX-S and LB-RELAX-R consistently has a higher survival
rate than the baselines. On MK instances, LB-RELAX and its variants achieve
survival rates above 0.9 within 15 min while the best baseline GRAPH only gets
to around 0.6 with 60 min.

One limitation of LB-RELAX and its variants is that they do not perform
well on some problem domains, for example the maximum cut and combinatorial
auction problems. Please see Appendix for more results.

Next, we run LB, LB-RELAX and LB-RELAX-S for 10 iterations to com-
pare their effectiveness. We follow the same setup as earlier described, except
that we do not use adaptive neighborhood sizes to make sure they have the same
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Fig. 4. Comparison with ML approaches: The primal bound as a function of time,
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Fig. 5. Comparison with ML approaches: The survival rate over 100 instances as a
function of time to meet a certain primal gap threshold. The primal gap thresholds are
chosen in the same way as Fig. 2.

k; in each iteration ¢. Note that the time limit for solving the sub-ILP in each
iteration is set to 10 min for LB and 2min for LB-RELAX and LB-RELAX-S.
Table 2 shows the average time to improve the initial solutions and the average
improvement of the primal bound in the first iteration of LNS. This allows us
to compare how closely LB-RELAX and LB-RELAX-S approximate the qual-
ity of the neighborhood selected by LB and study the trade-off between quality
and time. Compared to LB, LB-RELAX and LB-RELAX-S have 2.9x-117.6x
speed-up but only lose at most 53.7% in quality. In particular, on MVC and
MIS instances, both LB-RELAX and LB-RELAX-S lose 0.5% to 4.6% in qual-
ity but have at least 2.9x speed-up; on SC instances, LB-RELAX even gains
29.2% in quality and save 79.1% in time, due to LB cannot find a good enough
neighborhood within its time limit (Fig. 5).

In Fig. 3, we show the primal bound as a function of the number of iterations.
It allows comparing the effectiveness of different heuristics independently of their
speed. On the MVC instances, both LB-RELAX and LB-RELAX-S perform
similarly to but slightly worse than LB. On the SC and MK instances, LB-
RELAX achieves better performance than LB, again due to scalability issues
of LB, and LB-RELAX-S achieves competitive performance with LB after 10
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Fig. 6. Results on 31 selected MIPLIB instances: The best performing rate as a function
of time (left) and the survival rate over 31 instances as a function of time to meet the
primal gap threshold 0.50% (right).

iterations. However on the MIS instances, both LB-RELAX and LB-RELAX-
S are able to quickly improve the primal bound in the first 2—-3 iterations, but
afterwards converge to local minima and the gaps between them and LB increase.
To complete the first 10 iterations, both LB-RELAX and LB-RELAX-S take less
than 21 min on SC instances and 3.3 min on the others, while LB takes at least
57 min and sometimes up to 100 min.

Comparison with ML Approaches. Then, we compare LB-RELAX, LB-
RELAX-R and LB-RELAX-S on MVC, MIS and SC instances with ML
approaches, namely IL-LNS and RL-LNS. Figure4 shows the primal gap as a
function of time averaged over 100 instances. The results show that LB-RELAX,
LB-RELAX-R and LB-RELAX-S consistently improve the primal bound a lot
faster than IL-LNS and RL-LNS in the first few minutes of LNS. On MVC
instances, IL-LNS surpasses LB-RELAX-R with the smallest average primal gap
best after 20 min and achieve (close-to-)zero gaps after 30 min. On MIS instances,
LB-RELAX-R has a smaller gap than both IL-LNS and RL-LNS throughout
the first 60 min. On SC instances, IL-LNS is very competitive with LB-RELAX
and converges to a similar but slightly higher gap than LB-RELAX-R and LB-
RELAX-S; RL-LNS converges to almost the same primal gap as LB-RELAX-R
on average but is worse than the best performer LB-RELAX-S. Overall, LB-
RELAX and its variants, that do not require extra computational resources for
training, are competitive with and more often even better than state-of-the-art
ML approaches, suggesting that they are agnostic to the distributions of the
instances and easily applicable to different problem domains.

Results on Selected MIPLIB Instances. Finally, we examine how well LB-
RELAX and its variants perform on ILPs that are diverse in structures and sizes.
We test them on the MIPLIB dataset [16]. MIPLIB contains COPs from various
real-world domains. We follow a procedure similar to [43] to filter out instances
where we first filter to retain ILP instances with only binary variables. Among
these, we select instances that are not too easy to solve but relatively easy to find
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a feasible solution for. Specifically, we filter out those that BnB can optimally
solve within 3h (too easy) or BnB cannot find any solutions within 10 min (too
hard), which gives us 35 instances. For all LNS approaches, we run BnB for
10 min to find the initial solution and set the time limit to 10 min for each repair
operation. The initial neighborhood size ky is set to 20% of the number of binary
variables. We compare LB-RELAX, LB-RELAX-R and LB-RELAX-S with the
non-ML baselines. We further filter out 4 instances that no approach can find a
better solution than the initial one, which finally gives us 31 instances.

Figure 6 shows the winning rate as a function of time for each approach on
the 31 instances. The best performing rate at a time ¢ for an approach is the
fraction of instances on which it achieves the best performance (including ties)
compared to all approaches in the portfolio. LB-RELAX, LB-RELAX-R and
LB-RELAX-S achieve the best performance with less than 1000 s seconds on 25,
23 and 24 instances out of 35, respectively. LB-RELAX-R has the highest best
performing rates at different time cutoffs and ties with BnB at 14 instances at
the 60-minute mark. Figure 6 also shows the survival rate over the 31 instances as
a function of time to meet the primal gap threshold 0.50%. It demonstrates that
RANDOM, GRAPH and BnB are competitive with our approaches but overall
LB-RELAX-R has the highest survival rate over time. On some instances, LB-
RELAX and its variants can significantly outperform the baselines and we show
the anytime performance on those in Appendix.

6 Conclusion

In this paper, we focused on designing effective and efficient destroy heuristics to
select neighborhoods in LNS for ILPs. LB is an effective destroy heuristic but is
slow to run. We therefore proposed LB-RELAX, LB-RELAX-S and LB-RELAX-
R to approximate LB’s decisions by solving its LP relaxation that is a lot faster to
run. Empirically, we showed that LB-RELAX, LB-RELAX-S and LB-RELAX-R
efficiently selected almost as effective neighborhoods as LB and achieved state-
of-the-art performance when compared against non-ML and ML approaches.
One limitation of our approaches is that they do not work well on some problem
domains, however we showed that they still outperformed the baselines on 14
to 25 (depending on the time cutoff) out of 31 difficult MIPLIB instances that
are diverse in problem domains, structures and sizes. The other limitation is
that they can get stuck at local minima. To address this issue, we proposed
techniques to randomize the heuristics and adaptively adjust the neighborhood
sizes. For future work, one could improve LB-RELAX and its variants to make
them applicable on more problem domains. In addition, instead of using hard-
coded rules for scheduling the randomized heuristic in LB-RELAX-R, one could
use adaptive LNS to select destroy heuristics to run. It is also future work to
develop theoretical claims to help support and explain the effectiveness of LB-
RELAX, LB-RELAX-S, LB-RELAX-R and possibly their other variants.
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