
Combining Incomplete Search and Clause
Generation: An Application

to the Orienteering Problems with Time
Windows

Trong-Hieu Tran1,2,3(B), Cédric Pralet2,3, and Hélène Fargier1,3

1 IRIT-CNRS, Toulouse, France
2 ONERA/DTIS, Toulouse, France

trantronghieu97@gmail.com
3 Université de Toulouse, Toulouse, France

Abstract. In this paper, we present a hybrid optimization architecture
which combines on one side incomplete search processes that are often
used to quickly find good-quality solutions to large-size problems, and
on the other side clause generation techniques that are known to be
efficient to boost systematic search. In this architecture, clauses are gen-
erated once a locally optimal solution is found. We introduce a generic
component to store these clauses generated step-by-step. This compo-
nent is able to prune neighborhoods by answering queries formulated by
the incomplete search process. We define three versions of this clause
basis manager and then experiment with an Operations Research prob-
lem known as the Orienteering Problem with Time Windows (OPTW)
to show the efficiency of the approach.

Keywords: Incomplete search · Clause generation · Orienteering
Problem with Time Windows

1 Introduction

Incomplete search methods are often used on large-size problems to quickly
produce good-quality solutions. Such methods include heuristic search, where
a solution is progressively built based on efficient heuristics, local search, where
various neighborhoods help improve the current solution, and metaheuristics like
tabu search, genetic algorithms, or iterated local search, to name just a few. To
increase the performance of these incomplete methods, several hybridizations
with complete search techniques developed for SAT and Constraint Program-
ming (CP) have been proposed in the past [24], and there is rich literature on
the topic both in terms of methods and applications.

In this paper, we study a new architecture combining incomplete search and
SAT techniques. This architecture, which is given in Fig. 1, is inspired by the effi-
cient complete search methods based on clause generation, namely CDCL [1,18]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 493–509, 2023.
https://doi.org/10.1007/978-3-031-33271-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_32&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_32

494 T.-H. Tran et al.

Incomplete Search
Process (ISP)
[specific]

Clause Basis
(CB)

[generic]

Lazy Clause
Generator (CG)

[specific]

operations / queries

answers to queries

locally optimal solutions new clauses

Fig. 1. Incomplete search combined with a clause basis

and Lazy Clause Generation (LCG [28]). The global search scheme works as fol-
lows. Each time the Incomplete Search Process (ISP) converges to a locally opti-
mal solution, aClauseGenerator (CG) analyzes this solution and produces clauses
holding on Boolean decision variables of the problem. The clauses generated repre-
sent either the reasons why the current solution cannot be improved or conditions
forbidding the local optimum or regions around to be reached again in the future.
The clauses generated are then sent to a Clause Basis (CB). The latter is respon-
sible for storing the clauses and answering various queries that are relevant for the
main ISP to prune or to guide the neighborhood exploration. In this architecture,
the clauses are generated in a lazy way, only for the parts of the search space that
the ISP decides to explore. By doing so, the architecture involves a tight interac-
tion between ISP and CB as well as a less frequent clause generation phase.

With regards to tabu search [9], the architecture obtained memorizes clauses
instead of just storing recent local moves or recent solutions in a tabu list. One
impact is that the clause manager must be able to quickly reason about the clauses
collected, instead of just reading explicitly forbidden configurations. Concerning
CDCL or LCG, one key difference is that the ISP is free to assign or unassign
variables in any order, while the standard implication graph data structure used
by CDCL or LCG relies on the assumption that the variable ordering in different
layers of the graph is consistent with the order used for assigning and unassigning
the decision variables. All these points raise several basic research questions:

– Which generic clause basis data structure should be used to be able to follow
the decisions made in any order by an incomplete search process and to
quickly reason about the set of clauses memorized?

– What is the effort required to integrate an existing specific ISP within such
a generic architecture, and which key functions should the clause basis offer?

– What is the content of the clause generation module that analyzes the locally
optimal solutions?

– From a practical point of view, is clause generation beneficial for an incom-
plete search that might have to explore thousands of successive neighborhoods
per second?

To answer these questions, all along the paper, we take as an example a prob-
lem known as the Orienteering Problem with Time Windows (OPTW [32]). The
paper is organized as follows: first, we recall the definition of OPTW and present

Combining Incomplete Search and Clause Generation 495

a hybrid algorithm that combines a state-of-the-art search algorithm for OPTW
with a clause basis. Following this, we introduce clause generation mechanisms
and three data structures for the clause basis. We present experimental results
obtained on OPTW benchmarks to demonstrate that the architecture proposed
allows boosting the baseline ISP, while the integration effort required is rather
small. Finally, we compare our approach with relevant works in the literature.

2 Orienteering Problem with Time Windows

The OPTW belongs to the class of vehicle routing problems with profits, where
a vehicle has a limited time budget to visit a subset of nodes. Formally, we
consider a set of nodes i ∈ {0, 1, . . . , N + 1}, each with a reward Ri and a
predefined time window [ei, li]. Nodes 0 and N + 1 correspond to the start and
end depots, with R0 = RN+1 = 0 and a time window [0, Tmax] where Tmax is
the limited time budget. A non-negative travel time tij is associated with each
pair of nodes i �= j. A visit duration di can also be considered for each node, but
to keep it simple, we assume that the visit duration is already included in the
travel time. A solution is a sequence σ = [σ0, σ1, . . . , σK , σK+1] that starts at
node σ0 = 0, visits a set of distinct nodes σi ∈ {1, . . . , N}, and returns to node
σK+1 = N + 1. Early arrival to a particular node leads to a waiting time, and a
solution is feasible when it visits each selected node before its latest arrival time.
More precisely, the visit start time of node 0 is s0 = 0, and for two consecutive
nodes i, j in σ the visit start time of node j is sj = max(si +tij , ej), and solution
σ is feasible if and only if sj ≤ lj for every node j in σ. Next, an optimal solution
is a feasible solution σ that maximizes the total reward (

∑
i∈σ Ri). Basically, an

OPTW involves both selection and sequencing decisions, i.e. selection of a subset
of nodes S and search for a feasible visit order σ for these nodes. Regarding the
selection aspect, we introduce one Boolean decision variable xi ∈ {0, 1} per node
i, where xi = 1 means that node i is visited.

Challenging applications were modeled as OPTW in the past, such as delivery
problems, satellite planning problems, or tourist trip design problems [11,32].
Since OPTW is proven as NP-hard [10], many researches on the topic rely on
incomplete search. One first investigation in this direction was a tree heuristic
for building a single tour without violating the time windows constraints [16].
Incremental neighborhood evaluation methods were also introduced to quickly
determine the feasible node insertion moves given a current solution [29,31].
Later, [27] proposed an effective Large Neighborhood Search (LNS) strategy
that was shown to outperform the previous approaches. The basic idea is to
iteratively remove and reinsert nodes based on well-tuned removal and insertion
heuristics, and to use restarts from a pool of elite solutions.

3 Incomplete Search Using a Clause Basis

In the rest of the article, we integrate the state-of-the-art LNS algorithm for
OPTW defined in [27] within the hybrid architecture proposed. The enhanced

496 T.-H. Tran et al.

version, called LNS-CB for LNS with a Clause Basis, is depicted in Algorithm 1,
where the few changes made on the baseline LNS version are highlighted in gray.
Starting from an initial solution (Line 1), it iteratively destroys and repairs
the current solution following the standard concept of LNS (Lines 5–6). It also
uses an elite pool to record the best solutions obtained so far. This pool is
reset whenever a better solution is found, and extended when a new equivalent
solution is obtained (Line 9). When no improvement is found after R iterations,
a restart is performed by picking a random solution in the elite pool (Line 11).
The differences compared to the classical LNS algorithm are (a) the call to the
clause generation function each time a full solution is produced (Lines 2, 7), and
(b) the use of the CB as an argument to the repair function, the objective being
to improve the repair phase (Line 6).

Algorithm 1. LNS-CB

1: σ ← construct()

2: clauseGeneration(σ, CB,maxConfSize)
3: σ∗ ← σ; elitePool ← {σ}
4: while time limit is not reached do
5: σ ← destroy(σ);
6: σ ← repair(σ, CB)

7: clauseGeneration(σ, CB,maxConfSize)
8: if σ better than σ∗ then
9: σ∗ ← σ; update elitePool

10: else if no improvement after R iterations then
11: σ ← a random solution in elitePool
12: end if
13: end while
14: return σ∗

The new repair phase is detailed in Algorithm 2. It takes as an input the
current solution σ and the CB. We denote U as the set of unvisited nodes,
and F as the set of feasible insertion moves (n, p) defined by a node n ∈ U
and a position p in σ. All insertion alternatives for each unvisited node are
explored by evalNeighborhood(σ,U, CB) (Lines 2, 7). In this procedure, CB

is used to prune neighbors that are invalid according to the clauses registered.
Node insertions are iterated by selecting at each step a move that has the best
evaluation according to the well-tuned heuristics of the original LNS method
(Line 4), and they are performed until there is no more feasible move (Line 3).

The neighborhood evaluation function corresponds to Algorithm 3. It first
determines the unvisited nodes that must be visited according to CB (Line 1),
and if there is no such mandatory node, it determines the unvisited nodes that
can be visited according to CB (Line 3). Then, for each node selected, the algo-
rithm determines its best insertion position according to tuned insertion heuris-
tics and the algorithm returns all pairs made by a node and its best insertion
position.

Combining Incomplete Search and Clause Generation 497

Algorithm 2. repair(σ,CB)
1: U ← nodes that are not in σ
2: F ← evalNeighborhood(σ, U , CB)
3: while F �= ∅ do
4: (n∗, p∗) ← select(F)

5: Insert node n∗ at position p∗ in σ
6: U ← U \ {n∗}
7: F ← evalNeighborhood(σ, U , CB)
8: end while
9: return σ

Algorithm 3. evalNeighborhood(σ,U,CB)
1:U ′ ← {n ∈ U |CB allows decision [xn = 1] and forbids decision [xn = 0] }
2: if U ′ = ∅ then
3: U ′ ← {n ∈ U |CB allows decision [xn = 1]}
4: end if
5: F ← ∅
6: for each n ∈ U ′ do
7: p ← best feasible insertion position for n in σ
8: if p �= nil then
9: F ← F ∪ {(n, p)}

10: end if
11: end for
12: return F

4 Lazy Clause Generation Module

Several kinds of clauses are generated during the search, and the generation
of these clauses exploits problem-dependent techniques, as for cuts generated
in Logic-Based Benders decomposition [14]. Note that for OPTW, we consider
only clauses holding over the selection decisions, and not clauses related to the
detailed sequencing decisions defining the order of the visits.

4.1 Clauses Generated from Time-Window Conflicts

A Time-Window conflict (TW-conflict) is a subset Sc ⊆ [1..N] such that there
is no feasible solution visiting all nodes in Sc. In terms of clause generation, a
TW-conflict Sc corresponds to clause ∨i∈Sc

¬xi. Due to the exponential number
of possible sets Sc, we generate TW-conflicts in a lazy way i.e. only when a local
optimum is reached. Moreover, determining whether Sc defines a TW-conflict
is NP-hard [26], but it is an easy problem if |Sc| is bounded. This is why we
consider a predefined maximum TW-conflict size referred to as maxConfSize.

Technically, whenever a locally optimal sequence σ∗ is found over nodes in
S∗, we seek TW-conflicts preventing the other nodes from being added to σ∗.
In Algorithm 4, we try to find explanations for every unvisited node i (Line
1). With a predefined maxConfSize, the algorithm first heuristically selects a

498 T.-H. Tran et al.

Algorithm 4. clauseGeneration(σ∗,CB,maxConfSize)
1: for i �∈ σ∗ do
2: Sc ← select(σ∗, i, maxConfSize)
3: C ← extractMinTWconflicts(Sc ∪ {i})
4: for each TW-conflict C ∈ C do
5: Generate clause

∨
j∈C ¬xj

6: end for
7: end for
8: [optional] Generate a temporary clause

∨
j∈Y xj with Y a subset of the nodes that

are not selected in σ∗

set Sc ⊂ S∗ \ {0, N + 1} containing maxConfSize − 1 nodes in σ∗ that might
prevent node i from being visited. Then, in function extractMinTWcon-

flicts, a dynamic programming (DP) procedure determines whether Sc ∪{i} is
truly a TW-conflict. If so, it also extracts TW-conflicts of minimal cardinality
(Line 3). Indeed, the smaller the clauses the better, since smaller clauses prune
larger parts of the search space. Function extractMinTWconflicts takes as
an input a set of nodes S ⊆ [1..N] and determines all minimal sets S′ ⊆ S
(minimal in terms of cardinality) such that there is no feasible solution visiting
all nodes in S′. For space limitation reasons, we do not detail the pseudo-code
of extractMinTWconflicts, but the key idea is to compute, for each set
C ⊆ S, quantities of the form a(C, i) representing the earliest arrival time at
node i ∈ C for a path starting at node 0, visiting all nodes in C \{i}, and ending
at node i. As in existing methods for Traveling Salesman Problems with Time
Windows [3], these quantities are computed by increasing the size of C following
a recursive formula. Then, C ⊆ S is a TW-conflict when for every i ∈ C, either
a(C, i) > li or max{a(C, i), ei}+ ti,N+1 > Tmax. The first condition corresponds
to late arrivals for every candidate last node i, while the second one corresponds
to the violation of the time limit when returning to node N + 1.

4.2 Clauses Related to Local Optima: Lopt-Conflicts

To avoid revisiting again and again the same solution, whenever reaching a
locally optimal solution σ∗, it is possible to generate clause

∨
j �∈σ∗ xj to force

that at least one node unvisited in σ∗ must be selected in the future. Such a clause
is called a local optimum conflict or Lopt-conflict. To get small clauses that have
a higher pruning power, we consider a maximum clause size approxSize and
derive an approximate Lopt-conflict corresponding to a smaller clause

∨
j∈Y xj

where Y contains at most approxSize nodes that are not involved in σ∗ and
that are chosen in function of their rewards (Algorithm 4, Line 8). To avoid
pruning optimal solutions, such approximate clauses are used by CB only during
a certain number of steps called tabuSize, similarly to a tabu search procedure,
the main objective being to diversify search. We could also generate Pseudo-
Boolean constraint

∑
i∈{1,...,N} Rixi ≥ LB+1 whenever a new best total reward

LB is found, but we focus here on clause generation.

Combining Incomplete Search and Clause Generation 499

5 Clause Basis Data Structures

The CB part is responsible for storing the clauses generated during search.
Besides, the ISP needs to frequently query the clause basis, meaning that there
is a need for continuous and incremental interactions between these two com-
ponents. This raises many challenging questions about the choice of a specific
data structure for CB. In principle, a clause basis manager must be able to:

– quickly integrate all the clauses generated step-by-step and compactly rep-
resent them (possibly with some trashing when the size of CB becomes too
large);

– frequently update the partial assignment of the decision variables over which
the clauses hold, to keep up-to-date knowledge of the content of the current
solution considered by the main ISP. For LNS-CB, this occurs whenever a
node is selected or removed, and these assign/unassign decisions can be sent
to CB in any order;

– quickly answer to queries formulated by ISP, such as “evaluate whether deci-
sion [xi = 1] is feasible”. For OPTW, if CB proves that this decision is infea-
sible given the current assignment and the clauses generated, then testing
the insertion of node i in the current solution σ is unnecessary (neighbor-
hood pruning). Another example is: “evaluate whether decision [xi = 1] is
mandatory”. If so, node i must be inserted into σ.

In the following we study three generic versions for CB:

– CB-UnitPropagation, where CB stores a list of clauses and performs incre-
mental and decremental unit propagation to evaluate the consistency of the
clause store for a given partial assignment of the xi variables;

– CB-IncrementalSAT, where CB stores a list of clauses and employs power-
ful modern SAT solvers supporting incremental or assumption-based solving
[2,7,21];

– CB-OBDD, where the clauses are stored in an Ordered Binary Decision Dia-
gram (OBDD), a data structure defined in the field of knowledge compilation
that has good compactness and efficiency properties [4,6].

5.1 CB-UnitPropagation

For this version of CB, unit propagation is used to prune infeasible values for
the decision variables. In SAT, unit propagation can be achieved based on the
two-watched literals technique, which consists in maintaining, in each clause, two
distinct literals that can take value true [20]. In case there is no valid watched
literal for a clause c, an inconsistency is detected. If only a single valid watched
literal l is found, then clause c becomes unit and l must necessarily be true to
satisfy the clause. In this case, literal ¬l takes value false and unit propagation
is applied to other clauses to further detect other propagated decisions.

In SAT, one advantage of the watched literals is that no literal reference needs
to be updated when chronological backtracking occurs. But during incomplete

500 T.-H. Tran et al.

Fig. 2. Incremental and decremental unit propagation

search, variables can be assigned or unassigned in any order and some adapta-
tions are required to maintain the watched literals. Precisely, to handle random
variable unassignments and perform decremental unit propagation, we maintain
a list of complementary watched literals for each unit clause c (see Fig. 2). Clause
c is revised whenever one complementary watched literal l′ becomes free due to
unassignment decisions, and in this case l′ can directly become a watched literal
for c.

To answer the queries formulated by the ISP, we record a justification justif (l)
for each literal l. Basically, justif (l) =
 means that literal l takes value true
because of a decision received from the ISP, justif (l) = c means that literal l
is propagated by unit clause c, and justif (l) = nil means that there is no clue
about the truth value of l. Then, a decision like [x = 1] is allowed if and only if
literal ¬x is not propagated or decided yet, i.e. justif (¬x) = nil. The justification
of each literal is updated during incremental and decremental unit propagation.
Obviously, as unit propagation is incomplete, CB-UnitPropagation may not
detect some infeasible or mandatory node selections. For example, let us consider
four clauses c1 : ¬x1 ∨ ¬x2, c2 : ¬x4 ∨ ¬x5, c3 : x2 ∨ x3 ∨ x4, c4 : x2 ∨ x3 ∨ x5.
If decision [x1 = 1] is made, clause c1 becomes unit and we have justif (x1) =

and justif (¬x2) = c1. The other justifications take value nil . This implies that
decision [x3 = 0] is still evaluated as possible, even if it would lead to a dead-end.

5.2 CB-IncrementalSAT

The idea of using incremental SAT solving was first proposed to improve the
efficiency of the search for Minimal Unsatisfiable Sets [2]. In this case, the goal
is to reuse as much information as possible between the successive resolutions of
similar SAT problems. This is done by working with assumptions. Basically, an
assumption A is a set of literals {l1, . . . , lk} where each literal is considered as
an additional (unit) clause by the solver, but this unit clause is not permanently
added to the original CNF formula F defining the problem to be solved. For

Combining Incomplete Search and Clause Generation 501

OPTW, the assumptions are exactly the node selection decisions. Then, a call
solve(F ,A) to an incremental SAT solver tries to find a model of F that satisfies
all the assumptions in A. Doing this, the incremental solver can reuse some
previous knowledge and learn new clauses that will potentially be reused for
future calls solve(F ′,A′) using an updated CNF formula F ′ or an updated set
of assumptions A′.

At the level of CB, to determine whether literal l : [xi = a] can still be
assigned value true, it suffices to call solve(F ,A ∪ {l}) where A is the set of
assumptions representing the selection decisions made so far by the search engine.
Then, decision [xi = a] is forbidden by CB if and only if this call returns UNSAT.
Contrarily to CB-UnitPropagation, the CB-IncrementalSat method is
complete (it performs a full look ahead). One optimization allows us to reduce
the number of calls to the solve function: when searching for the possible
values of variable xi given a set of assumptions A, if solve(F ,A ∪ {xi}) or
solve(F ,A ∪ {¬xi}) returns a solution where another variable xj takes value 1,
then xj = 1 is allowed and calling solve(F ,A ∪ {xj}) is unnecessary.

5.3 CB-OBDD

Storing conflict clauses in an OBDD during a systematic search process has
been explored in the past, e.g. for a search process based on DPLL [15]. We
extend such an approach to deal with an incomplete search engine that again
can assign/unassign the decision variables of the problem in any order.

As illustrated in Fig. 3, an OBDD defined over a set of Boolean variables X
is a directed acyclic graph composed of one root node, two leaf nodes labeled by

 and ⊥, and non-leaf nodes labeled by a decision variable xi ∈ X. Each node
associated with variable xi has two outgoing arcs corresponding to assignments
[xi = 0] and [xi = 1] respectively (dotted and plain arcs in the figure). The
paths from the root node to leaf node
 correspond to the assignments that
satisfy the logical formula represented by the OBDD, while the paths leading to
leaf node ⊥ correspond to the inconsistent assignments. Additionally, OBDDs
are ordered, meaning that the variables always appear in the same order in any
path from the root to the leaves. In practice, they are also reduced, meaning
that redundant nodes (that have the same children) are recursively merged to
save some space. Such a data structure offers several advantages, including the
capacity to be exponentially more compact than an explicit representation of all
models of a logical formula, and the capacity to perform several operations and
answer several queries in polynomial time. For instance, given two OBDDs OF

and OG representing logical formulas f and g and that use the same variable
ordering, operation “OF ∧ OG” computes an OBDD representing f ∧ g in
polynomial time in the number of nodes in OF and OG.

In CB-OBDD, one OBDD referred to as OCB stores the clauses learned
during search. Initially, OCB only contains the leaf node
 since all models are
accepted. Each generated clause ck can be transformed into an OBDD Ock , and a
set of new clauses {c1, . . . , cn} is added to OCB by OCB ← [Oc1 ∧ . . . ∧ Ocn] ∧
OCB (conjunction of the elementary OBDDs associated with the new clauses

502 T.-H. Tran et al.

CNF:
(¬x1 ∨ ¬x2)
∧(¬x4 ∨ ¬x5)
∧(x2 ∨ x3 ∨ x4)
∧(x2 ∨ x3 ∨ x5)

x1

x2 x2

x3

x4

x5

⊥

Fig. 3. A conjunction of clauses and an equivalent OBDD

followed by a batch addition into OCB). During search, CB-OBDD records the
current list of assignments ACB made by the incomplete search process (the
assumptions). To determine whether a decision [x = 1] is allowed, it suffices to
condition OCB by ACB , and then to check that assignment x = 0 is not essential
(not mandatory) for the resulting OBDD. The conditioning primitive and the
search for essential variables are standard operations in OBDD packages. Their
time complexity is linear in the number of OBDD nodes.

6 Computational Study

We carried out experiments on standard OPTW benchmarks1 whose features
are summarized in Table 1. The best known total reward for each instance is
retrieved from [27]. All the experiments are performed on Intel(R) Core(TM)
i5-8265U 1.60 GHz processors with 32 GB RAM. All implementations2 are in
C++ and compiled in a Linux environment with g++17.

Table 1. Features of the OPTW benchmarks

Instance Set #instances #nodes remark

Solomon 1 (c1*, r1*, rc1*) 29 100 –

Solomon 2 (c2*, r2*, rc2*) 27 100 wider TW

Cordeau 1 (pr01-pr10) 10 48–288 –

Cordeau 2 (pr11-pr20) 10 48–288 wider TW

As the implementation of the state-of-the-art LNS algorithm [27] is not avail-
able online, we re-implemented it. We recover a similar performance even if there
are some differences wrt. the results provided in the original paper, possibly due
to random seeds or to a lack of information concerning a reset parameter R (we
set R = 50 in our LNS implementation). Anyway, our primary objective was to
determine whether conflict generation can help a baseline algorithm, therefore
the slight differences in performance are not a real issue. The three CB proposed
were implemented as follows:
1 https://www.mech.kuleuven.be/en/cib/op.
2 Github URL of the source code: https://github.com/thtran97/kb ls cpp.

https://www.mech.kuleuven.be/en/cib/op
https://github.com/thtran97/kb_ls_cpp

Combining Incomplete Search and Clause Generation 503

– The CB-UnitPropagation data structure was implemented from scratch.
– For CB-IncrementalSat, we reused CryptoMiniSat3 [30] that won the

Incremental Track in the SAT competition 2020.
– For CB-OBDD, we reused the CUDD library that offers many functions

to manage OBDDs.4 CB-OBDD uses the dynamic reordering operations of
CUDD [25]. Dynamic reordering can take some time but reducing the size of
OBDDs can pay off in the long term.

6.1 Parameter Settings for clauseGeneration

In the hybrid optimization architecture proposed, the clauseGeneration pro-
cedure is problem-specific. For OPTW, we observed that the length of time win-
dows has a large impact on the number of TW-conflicts generated for a given
value of maxConfSize: many TW-conflicts are generated for the Solomon 1 &
Cordeau 1 instances, contrarily to the Solomon 2 & Cordeau 2 instances that
involve longer time windows. This is reasonable since longer time windows make
the problem less constrained when considering only a few nodes. Besides, the
complexity of the dynamic programming algorithm producing the TW-conflicts
is exponential in maxConfSize. Thus, we decided to set maxConfSize = 4 after
the analysis of the global search efficiency.

Another parameter is the heuristic according to which, given a locally opti-
mal solution σ∗ visiting a set of nodes S∗, we choose a subset Sc ⊆ S∗ for trying
to explain why a customer i �∈ S∗ cannot be inserted into σ∗ (TW-conflicts).
For this, we use the NearestTimeWindow heuristic: to define Sc, we choose
maxConfSize−1 nodes j ∈ S∗ such that the distance between the midpoint of the
time window of j and the midpoint of the time window of i is as small as possible.
However, generating TW-conflicts all the time can slow down the global search.
Therefore, we define an explanation quota xpQuota for every node to reduce the
workload of function extractMinTWconflicts. This quota is decreased by
one unit each time a TW-conflict explaining the absence of i in a locally optimal
solution is looked for. When the quota of i becomes 0 after xpQuota searches
for TW-conflicts related to i, the absence of i in a locally optimal solution is
not explained anymore. With such an approach, there is somehow a warm-up
phase where TW-conflicts are learned, followed by an exploitation phase of these
conflicts. After performing tests with different values of xpQuota ∈ {20, 60, 100},
we decided to set xpQuota = 20.

Last, concerning the generation of Lopt-conflicts to diversify search, we need
to forbid during tabuSize iterations a region around a locally optimal solution,
where the region size is controlled by the approxSize parameter which defines
the maximum size of the approximate Lopt-conflicts. After several tests per-
formed with approxSize ∈ {3, 5, 7} and tabuSize ∈ {10, 50, 100, 200}, we set
approxSize = 7 and tabuSize = 50 for the experiments.

3 https://github.com/msoos/cryptominisat.
4 https://github.com/ivmai/cudd.

https://github.com/msoos/cryptominisat
https://github.com/ivmai/cudd

504 T.-H. Tran et al.

6.2 Performance of the Versions of CB

Experiments are performed for the three CB data structures presented before.
For LNS-CB-UnitPropagation (or shortly LNS-CB-UP), we actually con-
sider two versions: one called LNS-CB-UP where no Lopt-conflict is gener-
ated, and another called LNS-CB-UP-Lopt where Lopt-conflicts are generated.
For LNS-CB-IncrementalSAT (or shortly LNS-CB-Sat), we do not present
the results obtained with the Lopt-conflicts due to space limitation reasons.
For LNS-CB-OBDD, we do not use the temporary Lopt-conflicts as it would
require (a) maintaining an OBDD containing only permanent TW-conflicts, and
(b) making time-consuming conjunctions with the temporary Lopt-clauses that
are still active at the current iteration.

Overall Performance. To quickly compare the baseline incomplete search algo-
rithm (calledLNS-noCB) and the versions using a CB, we first measured, for each
solver and each instance, the average gap to the best known solution after five runs,
each within 1 min. This gap gs for solver s is defined by gs = 100 ∗ (bk − bf s)/bk
where bf s is the total reward of the best feasible solution found by s and bk is the
best known objective value. Table 2 shows that for 1-minute time limit, using CB-

UP globally improves the gaps (0.851% compared to 0.886% when using noCB),
while using CB-UP-Lopt also generates competitive results. On the contrary,
CB-Sat and CB-OBDD deteriorate the average gap (mean gaps equal to 1.739%
and 1.418% respectively). Moreover, we also implemented a simple tabu list that
prevents the algorithm from inserting (or removing) customers that were removed
(or inserted) during the last k iterations. This tabu list made the LNS method
highly effective for instances in the Solomon1 set, with an average gap of 0.083%.
However, the average gaps obtained on other three sets are much larger, leading to
a higher grand mean of the average gaps (2.332% for LNS-SimpleTabu, compared
to 0.851% for LNS-UP).

To further analyze the results, each version of the solver is executed during
10 000 LNS iterations and the total time elapsed over each set is measured. Then,
a speed-up rate compared to the noCB version is computed by speedUps = 100∗
(timeNoCB − timeWithCBs)/timeNoCB . Table 3 shows that the search process
is accelerated with CB-UP and CB-UP-Lopt almost all the time, especially on
the Cordeau instances where the speed-up reaches almost 50%. On the contrary,
the search process is drastically slowed down with CB-Sat and CB-OBDD.

Table 2. Average gap (%) over 5 runs (maxCPUtime=60s, best average gaps in bold)

Instance set Variants of CB in LNS

noCB UP UP-Lopt SAT OBDD simpleTabu

Solomon1 1.093 1.093 1.304 1.492 1.315 0.083

Solomon2 0.416 0.387 0.345 0.607 0.497 4.097

Cordeau1 0.139 0.078 0.351 1.125 0.903 1.540

Cordeau2 1.898 1.846 1.900 3.729 2.958 2.119

Grand mean 0.886 0.851 0.977 1.739 1.418 2.332

Combining Incomplete Search and Clause Generation 505

Table 3. Speed-up (%) when solving during 10 000 LNS iterations

Instance set Variant of CB in LNS

UP UP-Lopt SAT OBDD

Solomon1 −8.83 −18.66 −2517.14 −646.14

Solomon2 25.17 25.15 −492.75 −163.62

Cordeau1 48.66 47.04 −2779.32 −2446.31

Cordeau2 45.96 47.83 −2092.35 −610.95

Slow Convergence with CB-Sat and CB-OBDD. Despite the rapidity of incre-
mental solving with CryptoMiniSat, the results obtained show that the search
process is slower for the LNS-CB-Sat version. The main reason for this is that
there are numerous calls to solve(F ,A ∪ {l}), and each call must either find a
full solution or prove that none exists.

As for CB-OBDD, while querying in OBDD is fast, the results are not as
good as expected. Table 4 shows that the OBDDs obtained are globally com-
pact given the number of conflicts. But the reordering operations performed to
get such a compactness can take a lot of time: on some instances, CB-OBDD

spends more than 60% of the CPU time for reordering the variables. Alterna-
tively, it is challenging to heuristically compute in advance a good static variable
ordering for the OBDDs, since we do not have the entire information about the
conflicts when a static ordering must be defined. Meanwhile, we tested eight
problem-dependent heuristics (e.g. ordering the selection variables depending on
the rewards, the time windows, etc.), and as shown in Table 5, the best heuristics
give poor results on some instances.

Better and Faster Search with CB-UP. Figure 4 details the evolution of the
mean gap over each set of instances. Globally, we observe that LNS is boosted
by CB-UP. In particular, for set Cordeau 1 involving many TW-conflicts, the
search process converges much more quickly with the support of CB-UP. This is
because more LNS iterations are performed thanks to the effectiveness of neigh-
borhood pruning through CB-UP. The strength of CB-UP-Lopt is particularly
visible over instance sets Cordeau 2 and Solomon 2. In these cases, even with very
few TW-conflicts, the approximate Lopt-conflicts help guide the search towards
other interesting search regions.

Table 4. Size of CB for each instance group (CPU time: 10 s)

Instance
set

#OPTW
nodes

#conflicts
(average)

#OBDDnodes
(average)

reorderingtime
(%)

Solomon1 100 509.66 257.59 34.15

Solomon2 100 19.19 11.19 6.91

Cordeau1 48–288 109.10 303.50 67.73

Cordeau2 48–288 0.40 1.70 2.15

506 T.-H. Tran et al.

Table 5. Performance of the static and dynamic ordering strategies for OBDDs on
two instances (pr01: 48 variables, best static order found = “increasing opening time”;
pr06: 288 variables, best static order found = “decreasing rewards”)

instance LNS iteration #conflicts best-static-ordering dynamic-ordering

#nodes time(s) #nodes time(s)

pr01 1 0 1 0.0006 1 0.0012

2 2 7 0.0013 5 0.0026

3 8 36 0.0021 13 0.0041

4 8 36 0.0030 12 0.0054

pr06 1 0 1 0.0885 1 0.4886

2 55 69219 0.1803 477 2.5110

3 80 6342191 19.1407 533 2.6108

4 94 38250383 367.198 833 2.6422

7 Related Works

Incomplete search and SAT/CP were combined in Large Neighborhood
Search [23], where a sequence of destroy-repair operations is performed on an
incumbent solution. The destroy phase unassigns a subset S of the decision vari-
ables, while the repair phase can be delegated to a SAT/CP engine capable of
quickly exploring all possible reassignments of S given the current partial assign-
ment. Some authors also proposed to represent specific neighborhood structures
using a tailored CP model and to translate the solutions found for this model into
changes at the level of the global solution [22]. Others propose an efficient neigh-
borhood exploration algorithm with the help of restricted decision diagrams [8].
In the same spirit, our CB is built to quickly detect inconsistent assignments at
the selection level, therefore it can significantly reduce the neighborhood size to
explore in the repair phase, but one difference is that we generate new conflicts
during search and for the incomplete search process, CB only acts as a constraint
propagation engine.

Fig. 4. Evolution of the average gaps for CB-UP and CB-UP-Lopt

Combining Incomplete Search and Clause Generation 507

Other hybrid approaches exploit the strengths of incomplete search and com-
plete SAT/CP techniques at different search phases. As an illustration, in SAT,
Stochastic Local Search (SLS) has been combined with DPLL or Conflict Directed
Clause Learning (CDCL) [1,5,19]. For the SLS-CDCL version, the idea is that on
one side, SLS can be run first to help CDCL have a heuristic for choosing variable
values or to help CDCL update the activities of the variables, and on the other
side CDCL can help SLS espace local optima. Another example is the composi-
tion of traditional CP search and Constraint-Based Local Search (CBLS [12]),
where the two search approaches can exchange bounds, solutions, etc. In line
with previous studies, inconsistency explanations generated at each iteration
are stored in CB and then reused to help the search engine escape explored
or invalid regions. In our case, by taking into account the current search state
along with the clauses learned in the past iterations, CB may suggest mandatory
assignments to quickly lead the search to promising regions.

Another technique uses inference methods such as unit propagation or con-
straint propagation, initially developed for complete search strategies, to speed
up the neighborhood exploration during local search. One example following this
line for SAT is the unitWalk algorithm [13,17]. At each iteration, it considers a
complete variable assignment and performs a pass over this assignment to iter-
atively update the values of the variables with unit propagation. Compared to
this work, one of the novelties in CB-UP is the decremental propagation aspect.

Last, the use of an external CB coupled with incomplete search can be com-
pared with the use of a memory data structure in tabu search. On this point,
instead of a simple list of forbidden local moves or forbidden variable assignments
as in tabu search [9], CB memorizes logical formulas about the selection of nodes
in a long-term way (possibly with some trashing when the size of CB becomes
too large). CB is also equipped with efficient mechanisms to quickly reason about
the formulas collected, instead of just reading explicit forbidden configurations.
Another remark is that traditional tabu search is usually not recyclable i.e. the
memory is reset at each resolution, while the time window conflicts stored in
CB are easily recyclable for dynamic OPTWs where the reward associated with
each node can change.

8 Conclusion and Perspectives

This paper presented a new hybrid optimization architecture combining an
incomplete search process with clause generation techniques. Three generic
clause basis managers were studied instead of just arbitrarily choosing a unique
option, and the efficiency of the approach using unit propagation was demon-
strated. One next step is to apply the approach to other problems like Team
OPTW or flexible scheduling problems. Now that the generic clause bases are
defined, the main effort to tackle a new problem is the definition of the problem-
dependent clause generation procedure. Another perspective is to explore other
clause basis managers (e.g. based on 0/1 linear programming and reduced-cost
filtering), or knowledge bases covering pseudo-boolean constraints or cardinality
constraints.

508 T.-H. Tran et al.

References

1. Audemard, G., Lagniez, J.M., Mazure, B., Säıs, L.: Integrating conflict driven
clause learning to local search. In: 6th International Workshop on Local Search
Techniques in Constraint Satisfaction (LSCS 2009) (2009)

2. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

3. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM (JACM) 9(1), 61–63 (1962)

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Comput.
IEEE Trans. 100(8), 677–691 (1986)

5. Crawford, J.: Solving satisfiability problems using a combination of systematic and
local search. In: Second Challenge on Satisfiability Testing organized by Center for
Discrete Mathematics and Computer Science of Rutgers University (1996)

6. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

8. Gillard, X., Schaus, P.: Large neighborhood search with decision diagrams. In:
International Joint Conference on Artificial Intelligence (2022)

9. Glover, F., Laguna, M.: Tabu search. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization, pp. 2093–2229. Springer, Boston (1998). https://
doi.org/10.1007/978-1-4613-0303-9 33

10. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logistics
(NRL) 34(3), 307–318 (1987)

11. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of
recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2),
315–332 (2016)

12. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. The MIT Press,
Cambridge (2005)

13. Hirsch, E., Kojevnikov, A.: UnitWalk: a new SAT solver that uses local search
guided by unit clause elimination. Ann. Math. Artif. Intell. 43, 91–111 (2002)

14. Hooker, J., Ottosson, G.: Logic-based Benders’ decomposition. Math. Program.
Ser. B 96, 33–60 (2003)

15. Ignatiev, A., Semenov, A.: DPLL+ROBDD derivation applied to inversion of some
cryptographic functions. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol.
6695, pp. 76–89. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21581-0 8

16. Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows. J.
Oper. Res. Soc. 43(6), 629–635 (1992)

17. Li, X.Y., Stallmann, M.F., Brglez, F.: QingTing: a fast SAT solver using local
search and efficient unit propagation. In: Proceedings of the Sixth International
Conference on Theory and Applications of Satisfiability Testing (SAT 2003) (2003)

18. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, pp. 133–182. IOS Press (2021)

19. Mazure, B., Sais, L., Grégoire, É.: Boosting complete techniques thanks to local
search methods. Ann. Math. Artif. Intell. 22(3), 319–331 (1998)

https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-3-642-21581-0_8
https://doi.org/10.1007/978-3-642-21581-0_8

Combining Incomplete Search and Clause Generation 509

20. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference, pp. 530–535 (2001)

21. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 19

22. Pesant, G., Gendreau, M.: A constraint programming framework for local search
methods. J. Heuristics 5(3), 255–279 (1999)

23. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-
Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 99–127. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 4

24. Prestwich, S.: The relation between complete and incomplete search. In: Blum,
C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Studies
in Computational Intelligence, vol. 114, pp. 63–83. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78295-7 3

25. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams.
In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD), pp. 42–47. IEEE (1993)

26. Savelsbergh, M.W.: Local search in routing problems with time windows. Ann.
Oper. Res. 4(1), 285–305 (1985)

27. Schmid, V., Ehmke, J.F.: An effective large neighborhood search for the team
orienteering problem with time windows. In: ICCL 2017. LNCS, vol. 10572, pp.
3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68496-3 1

28. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Solving RCPSP/max by lazy clause
generation. J. Sched. 16(3), 273–289 (2013)

29. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

30. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: 12th International Conference on Theory and Applications of Satisfiability
Testing (SAT), pp. 244–257 (2009)

31. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated
local search for the team orienteering problem with time windows. Comput. Oper.
Res. 36(12), 3281–3290 (2009)

32. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-319-91086-4_4
https://doi.org/10.1007/978-3-540-78295-7_3
https://doi.org/10.1007/978-3-319-68496-3_1

	Combining Incomplete Search and Clause Generation: An Application to the Orienteering Problems with Time Windows
	1 Introduction
	2 Orienteering Problem with Time Windows
	3 Incomplete Search Using a Clause Basis
	4 Lazy Clause Generation Module
	4.1 Clauses Generated from Time-Window Conflicts
	4.2 Clauses Related to Local Optima: Lopt-Conflicts

	5 Clause Basis Data Structures
	5.1 CB-UnitPropagation
	5.2 CB-IncrementalSAT
	5.3 CB-OBDD

	6 Computational Study
	6.1 Parameter Settings for clauseGeneration
	6.2 Performance of the Versions of CB

	7 Related Works
	8 Conclusion and Perspectives
	References

