
Exploiting Entropy in Constraint
Programming

Auguste Burlats1(B) and Gilles Pesant2(B)

1 UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
auguste.burlats@uclouvain.be

2 Polytechnique Montréal, Montreal, Canada
gilles.pesant@polymtl.ca

Abstract. The introduction of Belief Propagation in Constraint Pro-
gramming through the CP-BP framework makes possible the compu-
tation of an estimation of the probability that a given variable-value
combination belongs to a solution. The availability of such marginal
probability distributions, effectively ranking domain values, allows us to
develop branching heuristics but also more generally to apply the con-
cept of entropy to Constraint Programming. We explore how variable
and problem entropy can improve how we solve combinatorial problems
in the CP-BP framework. We evaluate our proposal on an extensive set
of benchmark instances.

1 Introduction

Constraint Programming (CP) is a powerful approach to solve combinatorial
problems. It can significantly reduce the search space by using constraints and
their powerful inference algorithms to filter out infeasible variable-value combi-
nations at each node of the search tree. The order in which variables are branched
on has a significant impact on the shape of the tree and thus on search efficiency.
This is why finding robust and generic variable ordering heuristics is crucial. The
introduction of Belief Propagation (BP) in CP [6] makes possible the computa-
tion of an estimation of the probability that a given variable-value combination
belongs to a solution. The availability of such marginal probabilities, effectively
ranking domain values, allows us to develop variable ordering heuristics [1] but
also more generally to apply the concept of entropy to CP, which is the subject
of this paper.

A Constraint Satisfaction Problem (CSP) P = 〈X,D,C〉 is a combinatorial
problem defined by a triplet where:

– X = {x1, x2, . . . , xn} is a finite set of variables,
– D = {D(x1),D(x2), . . . , D(xn)} is a finite set of finite domains,
– C = {c1, c2, . . . , cm} is a finite set of constraints.

A. Burlats—Most of this work was carried out while the first author was at Polytech-
nique Montréal.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 320–335, 2023.
https://doi.org/10.1007/978-3-031-33271-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_21&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_21

Exploiting Entropy in Constraint Programming 321

A solution s = (v1, v2, . . . , vn) to P assigns to each variable xi ∈ X a value vi
from its corresponding domain D(xi) such that all constraints in C are satisfied.
Let SP denote the set of all solutions to P and s[x] the value assigned to variable
x in solution s. Define

θPx (v) =
|{s ∈ SP : s[x] = v}|

|SP |
as the proportion of solutions in which variable x takes value v.1 We will call this
quantity the marginal of variable-value pair (x, v) in reference to the marginal
probability of x taking value v in a solution chosen uniformly at random from S.
Note that we assume for the moment that S in nonempty i.e. that P is satisfiable:
otherwise we will consider all marginals to be null. We define H(x), the entropy
of variable x using Shannon entropy [8]:

H(x) = −∑
v∈D(x) θx(v) log(θx(v)).

This nonnegative quantity can be interpreted as the uncertainty about which
value x should take in a solution: a null entropy corresponds to θx(v) = 1 for some
v, and so θx(v′) = 0 ∀v′ �= v, i.e. x = v in every solution (and x is thus a backbone
variable); maximum entropy log(|D(x)|) is reached whenever θx(v) = 1

|D(x)| ∀v ∈
D(x) i.e. its values are uniformly distributed among solutions. The normalized
entropy (also called efficiency) of x divides its entropy by the logarithm of the
cardinality of its domain, unless its domain is a singleton in which case the
(normalized) entropy is null. We derive the entropy of problem P as

H(P) =

∑
x∈X : |D(x)|>1

H(x)
log(|D(x)|)

|X| .

It corresponds to the average normalized entropy of its variables and thus lies
between 0 and 1 inclusive. We make two general observations about CSP entropy:

Observation 1. A null CSP entropy only occurs when either it admits a single
solution (including the special case where all variables are bound in a consistent
assignment) or it has no solution. In the former case each variable has some
unique value in its domain with a unit marginal whereas in the latter, each
variable has all null marginals.

Observation 2. A CSP for which every assignment is a solution (or with unin-
formed marginals) will exhibit uniformly distributed marginals for each vari-
able and an entropy equal to the proportion of its variables with non-singleton
domains. In particular if all variables have non-singleton domains the CSP
entropy is one.

Of course our notion of entropy relies on marginals of which we typically do
not know the exact value. This is where BP comes in to provide estimates of
1 We will generally omit superscript P for ease of notation.

322 A. Burlats and G. Pesant

these marginals. In this paper we investigate several uses of entropy to help solve
CSPs, particularly for branching heuristics.

We follow with a review of the CP-BP framework in Sect. 2 and then evaluate
the accuracy of the marginals computed in this framework in Sect. 3. Section 4
presents different uses of entropy and follows with comparative experiments in
Sect. 5. We then conclude in Sect. 6.

2 Belief Propagation for CSPs

Belief Propagation (BP) is an algorithm introduced by Pearl [5]. It is able to
compute the marginal distribution for each non-observed node in a graphical
model (e.g. a factor graph), conditioned by the value of the observed nodes.

Pesant [6] introduced a framework combining CP and BP in which beliefs
about variable-value pairs are propagated as messages between variables and
constraints, thus generalizing the simpler propagation of unsupported pairs. A
CSP can be viewed as a factor graph where the constraints are the factor nodes
and the variables are the variable nodes. We note μc→x the message from con-
straint c to variable x, and μx→c the message from variable x to constraint c.
Their definition is

{
μx→c(v) =

∏
c′∈N(x)\{c} μc′→x(v)

μc→x(v) =
∑

v:v[x]=v fc(v)
∏

x′∈N(c)\{x} μx′→c(v[x′])

where N(x) is the neighbourhood of variable x, i.e. the constraints applied to
this variable, N(c) is the neighbourhood of constraint c, i.e. its scope, v is a
tuple from the Cartesian product of all the variables in the scope of c, v[x] is the
value taken by x in v and fc(v) is a function that returns 1 if tuple v satisfies c
and 0 otherwise. We are thus able to estimate the marginal of a variable x as

θ̂x(v) =
∏

c∈N(x)

μc→x(v) ∀v ∈ D(x).

Messages are sent iteratively: first, all variables send their messages (ini-
tially, uniform distributions over their domain); then all constraints send their
messages. This cycle is repeated for a fixed number of iterations. Among other
things, in this paper we offer a way to decide this number dynamically at each
node of the search tree. Computing

∑
v:v[x]=v fc(v) is equivalent to counting

solutions (local to c) where v[x] = v. Therefore messages from constraints report
the number of such solutions, each being weighted by the product of correspond-
ing messages from variables. Pesant [6] provided efficient dedicated algorithms
for weighted counting on several constraints. If there is no such algorithm for
a given constraint it simply sends back a uniform distribution. Let’s examine a
small example from [6] to illustrate the behaviour of marginals.

Example 1. Consider variables a, b, c, and d with identical domains {1, 2, 3, 4},
and the following constraints:

alldifferent(a, b, c), a + b + c + d = 7, c ≤ d.

Exploiting Entropy in Constraint Programming 323

Table 1. True marginals (a), initial estimated marginals (b), marginals after 1st iter-
ation of BP (c) and after 10th iteration (d) for Example 1.

1 2 3 4

θa 0 1/2 1/2 0

θb 0 1/2 1/2 0

θc 1 0 0 0

θd 1 0 0 0

(a) true marginals

1 2 3 4

θ̂a .25 .25 .25 .25

θ̂b .25 .25 .25 .25

θ̂c .25 .25 .25 .25

θ̂d .25 .25 .25 .25

(b) initial marginals

1 2 3 4

θ̂a .50 .30 .15 .05

θ̂b .50 .30 .15 .05

θ̂c .62 .28 .09 .01

θ̂d .29 .34 .26 .11

(c) 1st iteration

1 2 3 4

θ̂a .01 .52 .46 .01

θ̂b .01 .52 .46 .01

θ̂c .98 .02 .00 .00

θ̂d .90 .10 .00 .00

(d) 10th iteration

Fig. 1. Evolution of entropy during Belief Propagation for the CSP in Example 1.

This CSP has two solutions: 〈a = 2, b = 3, c = 1, d = 1〉 and 〈a = 3, b = 2, c =
1, d = 1〉. If we examine variable a, we observe that assignment a = 2 is present
in one solution and that assignment a = 3 is present in the other one. There is no
valid solution containing a = 1 or a = 4. Therefore its true marginal distribution
is θa(1) = 0, θa(2) = 1/2, θa(3) = 1/2, θa(4) = 0. If we examine variable c, we can
observe that only assignment c = 1 can be in a valid solution. Thus, its marginal
distribution is θc(1) = 1, θc(2) = 0, θc(3) = 0, θc(4) = 0. BP starts from a uniform
distribution for each variable: θ̂xi

(v) = 1/|D(xi)|,∀v ∈ D(xi),∀xi ∈ X. And, as
we can see in Table 1, BP tends to converge to the true marginal distributions
after a few iterations. Figure 1 also traces the evolution of the CSP entropy H(P)
(solid curve) with a lighter band showing the range of entropy for individual
variables (normalized H(x)). For comparison the uninformed CSP entropy, i.e.
considering domain values to be equally likely, corresponds to the initial value
of the curve (1.0) and the true entropy is 0.25.

BP is assured to converge when there is no cycle in the graph [5] but the
graphical representation of a CSP typically contains such cycles. However the
large arity of global constraints, in addition to performing efficient inference,
allows us to encapsulate some of those cycles and prevent the marginals from
oscillating [6]. For instance in Example 1 marginals converge despite the remain-
ing cycles in the model. In case marginals still oscillate, message damping has

324 A. Burlats and G. Pesant

been known to help. Babaki et al. [1] propose using the weighted average of the
current and previous messages from variables to constraints:

μx→c(v) = λμcurrent
x→c (v) + (1 − λ)μprevious

x→c (v)

where the damping factor (0 ≤ λ ≤ 1) balances the old and the new. Observe
that for Example 1 damping is not needed and even slows down convergence
(dashed curve in Fig. 1).

The estimated marginals θ̂x(v) can serve to inform dynamic search heuris-
tics. For example max-marginal [1] branches on variable argmaxx∈X maxv∈D(x)

(θ̂x(v)), assigning it its domain value with the strongest marginal.

3 Accuracy of BP-Estimated Marginals and Entropy

In this section we evaluate empirically the accuracy of the marginals (and ulti-
mately of the entropy) computed by BP on a CP model. After the initial con-
straint propagation, we track these estimated marginals as BP iterations proceed
(and before any branching occurs). Whenever we activate message damping we
use a damping factor λ = 0.5 (the default value in MiniCPBP, the prototype
solver implementing the CP-BP framework). We use several instances of com-
binatorial problems: some with a single solution (Sudoku and Nonogram) and
others with a moderate number of solutions (n-queens and Feature model [9]).
We enumerate the solutions to these instances and use them to compute the
true marginals, against which we compare the estimated marginals using the
Kullback-Leibler divergence, a measure of dissimilarity between two probability
distributions: ∑

v∈D(x) θx(v) · log(θx(v)/θ̂x(v)).

For n-queens we use the instances ranging from n = 5 to 9 that have respec-
tively 10, 4, 40, 92, and 352 solutions (we do not break symmetries). We observe at
Fig. 2 that the KL-divergence stabilizes after a few iterations and to a low value.
The exception is for 6-queens where the divergence is about one order of magni-
tude greater. That small instance has the fewest solutions: each variable has four
domain values with identical true marginal (0.25) and the remaining two with a
null true marginal. Upon inspection, no estimated marginal is null but the four
outstanding values in each domain do have larger estimated marginals for all vari-
ables, meaning they are ranked correctly, though with less of a distinction for q1
and q4. There are also a few misses: for example with 7-queens θ̂q3(3) is the lowest
in the domain whereas it should be the highest. Damping does not make much
of a difference here. Even though we typically cannot compute the KL-divergence
because we do not know the true marginals, the observed entropy of the estimated
marginals (Fig. 2, right column), which we can compute, will align very well with
the unobserved divergence in terms of the iteration when they become stable, and
this could be used to decide when to stop iterating BP. The difference between the
estimated and true problem entropy is often under 1%.

Exploiting Entropy in Constraint Programming 325

Fig. 2. KL-divergence of variable marginals and entropy as we iterate belief propaga-
tion for instances of n-queens.

326 A. Burlats and G. Pesant

Fig. 3. KL-divergence of variable marginals and entropy as we iterate belief propaga-
tion for instances of Feature Model.

For Feature Model, which is a maximization problem, we derive three
instances of a CSP by bounding the objective: lower bounds 17738, 19000,
and 20222 (its optimal value) respectively admit 95, 15, and 1 solutions. Each
instance has 15 unbound variables. The results are shown at Fig. 3. Here damp-
ing has a dramatic effect: without it the divergence of many variable marginals
oscillates with increasing amplitude whereas with damping the divergence may
still oscillate but with much smaller amplitude and tends to converge to a low
value. Note also that for a few variables the divergence quickly stabilizes to a
near null value. And in the case of the single-solution instance (right column)
iterated BP actually identifies that solution. The divergent behaviour without
damping appears as an oscillation in the observed problem entropy whereas the
latter is smoother and even sometimes stable for the better-performing damping.
Observe also how the estimated entropy with damping appears to converge to
the true entropy.

Lastly we turn to instances with a larger number of variables and a single solu-
tion. The Sudoku instance we use at Fig. 4 features 33 unbound variables after
constraint propagation. Without damping, severe oscillation occurs for many of

Exploiting Entropy in Constraint Programming 327

Fig. 4. KL-divergence of variable marginals and entropy as we iterate belief propaga-
tion for instances of Sudoku and Nonogram.

the variable marginals. It is again accompanied by an oscillation of the entropy,
though less pronounced. Damping is very useful to keep the marginals under con-
trol except for a few which start to diverge around Iteration 10. The Nonogram
instance has 444 unbound variables out of 576. In contrast with the previous
instance no damping behaves better: it even momentarily stabilizes to the solu-
tion around Iteration 12. Another difference is that entropy without damping
oscillates until Iteration 6, a behaviour that had coincided with increased diver-
gence in the previous instances.

So, damping is not always better and entropy oscillation does not necessarily
signal that we should use damping. But according to this limited empirical inves-
tigation damping generally helps much more than it hurts: for Feature Model
and Sudoku it avoids very large (50) or even infinite divergence; for Nonogram
the divergence with damping never strays above 6.

4 Exploiting Entropy

Now that we have empirical evidence for the accuracy of the computed marginals
and entropy, we propose in this section several uses for such information.

4.1 Deciding When to Use BP

In their empirical evaluation of search based on BP for CSPs, Babaki et al. [1]
reported two problems on which the approach performed particularly badly:

328 A. Burlats and G. Pesant

Fig. 5. Evolution of problem entropy during BP for two problematic instances.

Dubois and PigeonsPlus2. Both feature unsatisfiable instances but more impor-
tantly it was noticed at the time that the computed marginals were close to being
uniform. Figure 5 confirms that in both cases the computed entropy stagnates at
a value close to 1. We can turn this observation into a criterion to decide when
problem entropy should be used to help solve an instance and when computa-
tionally expensive BP should be interrupted instead and replaced by a cheaper
variable ordering heuristic, at least until useful information can be inferred again
to guide search.

4.2 Deciding When to Stop BP Iterations

Variations of entropy give us information about the variations of marginals. If
the entropy of a variable undergoes important variations along BP iterations,
the marginals of this variable are varying too. It may mean that we shouldn’t
stop BP just yet. Based on this idea, we design a dynamic criterion to decide at
each search-tree node when we should stop BP iterations. This criterion is based
on the variations of the problem entropy H(P). After iteration t, we compare
the current entropy Ht(P) to the entropy at the previous iteration Ht−1(P). If
0 ≤ Ht−1(P) − Ht(P) ≤ α, for some threshold α, BP iterations are stopped
and a branching decision is taken. This difference must be positive: otherwise it
means that the entropy is increasing and that we shouldn’t stop BP.

Another potential criterion is to look at the value of the smallest variable
entropy. If this entropy becomes very low, we can consider this variable as almost
decided, because we have strong knowledge about the value it should take. Thus,
additional BP iterations are unnecessary and the variable should be branched
on. Another incentive to do so is that in the next few iterations this variable will
likely have all its marginals at zero except for the one value, which we observed
will have a cascading effect on several other variables, dropping their entropy
close to zero as well, which will make it harder to discriminate between the
variable at the origin of this phenomenon and the other variables when deciding
which one to branch on.
2 http://www.xcsp.org/instances/.

http://www.xcsp.org/instances/

Exploiting Entropy in Constraint Programming 329

4.3 Deciding When to Activate Damping

But perhaps the problem entropy never stabilizes and so does not meet our first
stopping criterion. We saw in Sect. 3 that marginals may sometimes oscillate
with increasing amplitude — which can be signaled by an oscillating entropy —
and that damping can alleviate this issue. However damping is not necessarily
desirable and can in some cases slow down convergence to the true marginals,
as in the case of Example 1. As an alternative to activating damping by default,
we will investigate starting BP without damping and switching it on whenever
such entropy oscillation is observed.

4.4 Branching to Search for a Solution

The lower a variable’s entropy, the stronger the information about which value
the variable should take in a solution. Hence entropy is a powerful tool that we
can exploit to make better branching decisions. We introduce variable ordering
heuristic min-entropy that selects the variable with the lowest entropy and first
tries fixing it to its domain value with the strongest marginal. Notice that, if the
marginal distributions are uniform (i.e. we have no discriminating information
between domain values), the variable with the lowest entropy will be the one
with the smallest domain. Therefore, we can consider that min-entropy is a
generalization of standard smallest-domain where we can discriminate between
domain values based on the CSP.

5 Experimental Evaluation

In this section, we evaluate the quality of our resulting search strategy. In order to
position our work with respect to the state of the art, we compare its performance
to the dom/wdeg [2] and IBS [7] heuristics, and to another heuristic based on
marginals and BP, max-marginal. Our metrics are the number of fails, which
shows the accuracy of a heuristic, i.e. how good are the branching decisions,
and the runtime, which indicates if the extra cost induced by our heuristics still
makes them worthwhile.

5.1 Experimental Protocol

We ran our experiment on a set of 1319 instances from XCSP33 and the Minizinc
Challenge4. One limitation of MiniCPBP is that it needs to store each value in
the domain of each variable, and each corresponding marginal. Therefore when
variables have very large domains this can be very space-consuming. We selected
problems where variables have reasonable-size domains: summing over the vari-
ables, our largest instance has about 810 000 domain values. Our other criterion
for problem selection was the constraints in the model. We chose problems where,
3 Availables at http://www.xcsp.org/instances/.
4 Available at https://www.minizinc.org/challenge2022/mznc2022 probs.tar.gz.

http://www.xcsp.org/instances/
https://www.minizinc.org/challenge2022/mznc2022_probs.tar.gz

330 A. Burlats and G. Pesant

for the majority of the constraints present, our solver provides a weighted count-
ing algorithm, in order to have a meaningful observation of the contribution
of BP. The experiments were performed on a server with two Intel E5-2683 v4
Broadwell @ 2.1 GHz. We used the solver MiniCPBP5, which is implemented
over MiniCP [4] and is able to perform BP. Each run had a 20-min timeout and
up to 12 GB of memory available.

Our results are presented as performance profiles: each point of a graph shows
the proportion of instances (given on the y axis) that are solved with a num-
ber of failures or runtime less than or equal to the value on the x axis. We
compare min-entropy with max-marginal during depth-first search (DFS), to
see if entropy is a better exploitation of the marginals. Before each branching
decision, unless indicated otherwise, five iterations of belief propagation are per-
formed (the current default number in MiniCPBP). To avoid the oscillation of
marginals, we apply damping on the messages sent during BP with a damping
factor λ = 0.5.

As an attempt to improve basic min-entropy and as described in Sect. 4, we
consider a dynamic configuration where the use of damping and the number of
BP iterations are dynamically decided during the search. BP is stopped when the
variation of the problem entropy is lower than threshold α = 0.1 (see Sect. 4.2):
experiments showed a strong variance on the best value for α depending on the
problem but that parameter value generally performs well on our benchmark
problems. In Sect. 4.2, we describe another stopping criterion which stops BP
iterations when the smallest entropy among variables falls under a threshold.
We tested it with different threshold values and it showed better performance
than the criterion based on the entropy’s variations on some problems, but the
latter remained the best choice overall. At each search-tree node, BP is per-
formed at first without damping and if oscillations in the problem entropy are
detected, damping is activated (with λ = 0.5 as before). To detect oscillations,
we count how many times we observe a decreasing entropy starting to increase:
if it switches 3 times from a negative variation of the entropy to a positive vari-
ation, we activate damping for the rest of the propagation. After the branching
decision, damping is deactivated again.

As a state-of-the-art reference, we use dom/wdeg with restarts (initial restart:
3n failures, where n is the number of variables in the problem; increased by
a factor 1.4 after each restart) and Impact-Based-Search (IBS) [7], also with
restarts (initial restart: 2n failures; increased by a factor 1.2 after each restart).
For IBS, to initialize impacts before the search, we try each possible assignment
and register its impact.

5.2 Evaluation

According to Fig. 6 min-entropy shows better performance than max-marginal
on opt-cryptoanalysis, MagicSquare and MagicHexagon. For the other problems,

5 Solver and used instances are available at https://github.com/PesantGilles/
MiniCPBP.

https://github.com/PesantGilles/MiniCPBP
https://github.com/PesantGilles/MiniCPBP

Exploiting Entropy in Constraint Programming 331

Fig. 6. % instances solved vs #fails for several branching heuristics

we observe similar performance for these two heuristics. The binary domains in
Nonogram, PseudoBoolean, MultiKnapsack and MarketSplit explain that we
observe identical performance between max-marginal and min-entropy (i.e. the
orange and red curves coincide): with such domains, the variable that presents
the strongest marginal is also the one with the lowest entropy. We can therefore
conclude that min-entropy is a good improvement of marginal usage.

If we now compare our heuristics to dom/wdeg and IBS, we see that we
outperform them on five problems in our dataset (LatinSquare, MagicSquare,
MultiKnapsack, PseudoBoolean, and opt-cryptoanalysis). For three problems
some of the state of the art is showing better performance: for KnightTour

332 A. Burlats and G. Pesant

Fig. 7. % instances solved vs runtime (ms) for several branching heuristics

both dom/wdeg and IBS outperform min-entropy, for Kakuro only dom/wdeg is
better, and for CryptoPuzzle only IBS is better. On the remaining six problems
heuristics perform similarly. Based on these results, exploiting entropy to make
branching decisions is a competitive approach.

Let’s take a closer look at MarketSplit and MultiKnapsack. They are inter-
esting because they present similar structure, i.e. their variables are binary and
they only contains sum constraints applied on all variables. However, we observe
a strong difference in the performance of our heuristic between these two prob-
lems. On MultiKnapsack, our heuristics clearly outperform dom/wdeg and IBS,
whereas on MarketSplit the results are more mixed. If we compare the entropy

Exploiting Entropy in Constraint Programming 333

of the variable in each problem, the reason is clear: if in MultiKnapsack they
quickly decrease, in MarketSplit they often stay above 0.9. MarketSplit is thus
a good example of a problem where BP is not as informed, as we discussed
in Sect. 4.1, and typically we would detect this and then decide to use another
branching heuristic.

We now turn to runtime to evaluate the cost of adding a second kind of prop-
agation at each node of the search tree. If we look at Fig. 7 and compare with
Fig. 6 we can observe this additional cost. If we encountered fewer failures with
min-entropy and max-marginal than dom/wdeg for problems like MarketSplit
and MagicSquare, we observe similar runtimes for these problems. For Kakuro,
Nonogram and MagicSequence, the performance in terms of failures was similar,
but dom/wdeg outperforms the other heuristics in terms of runtime. Sudoku is a
particular problem because it is the only one for which we don’t observe any addi-
tional cost. This is because the majority of instances are solved during the first
constraint propagation, before the use of belief propagation. Despite this addi-
tional cost, our heuristics still outperform dom/wdeg and IBS on PseudoBoolean
and MultiKnapsack. And for LatinSquare, max-marginal and min-entropy are
able to solve more instances. With some optimization, this approach could be a
good option for a wide spectrum of problems.

Speaking of BP optimization, we should now look at the performance of
our dynamic strategies. From Fig. 6 we observe that the heuristic quality is
not strongly impacted by the use of the dynamic parameters. We observe a
small degradation of performance for PseudoBoolean. This deterioration is due
to dynamic damping, because the configuration that is only using dynamic stop-
ping for BP shows performance as good as static min-entropy. This degradation
is stronger for MultiKnapsack and opt-cryptoanalysis and is once again mainly
due to dynamic damping. On the contrary for KnightTour and Nonogram we
observe a significant reduction of the number of failures. But the primary goal
of the dynamic stopping criterion is to improve runtime by choosing the best
moment to stop BP and thus spare useless iterations. At Fig. 7 we observe an
improvement for CryptoPuzzle, Kakuro, PseudoBoolean, and KnightTour. Con-
cerning the latter, the improvement is connected to the reduction of failures. For
the other problems, the improvement is not as significant. By using this crite-
rion, our goal is to spare a few iterations at each node of the search tree when
it is adequate. Therefore, the reduction of runtime will be linear, which is less
noticeable on a logarithmic scale. Finally we observe a small deterioration for
Sudoku, for MultiKnapsack, which is linked to the increase of failures, and for
MarketSplit. A limitation of our dynamic stopping criterion is the variability of
the best value for α, as we mentioned in Sect. 4.2. We chose the value that showed
the most stability in its performance, but it was not the best configuration for
all problems, and for some problems, like MagicSquare, we observed significantly
better performance by using our other stopping criterion, which is stopping BP
when the smallest entropy falls under a threshold. In conclusion, using a dynamic
number of iterations shows good potential to reduce the runtime, but it requires
more work to find a stopping criterion that would show improvement consis-

334 A. Burlats and G. Pesant

tently on a diverse set of problems. Concerning dynamic damping, we observe a
slight improvement for KnightTour in Fig. 6, but otherwise using it shows simi-
lar or worse performance. Further work is required to find a better criterion for
detecting the need of damping.

6 Conclusion

We investigated the entropy of CSPs and of their finite-domain variables, made
possible by estimating marginal distributions using the CP-BP framework on
constraint programming models. Our study showed that these estimated distri-
butions can get quite close to the true distributions, and that message damping
during BP may be necessary to obtain convergence. We proposed several ways
to exploit entropy in order to help solve combinatorial problems. Our experi-
ments on 1319 instances from 14 different problems showed that branching on
the variable with the lowest entropy is an insightful variable-ordering strategy.

Because performing belief propagation does come with a computational cost,
we considered two stopping criteria to decide dynamically when BP iterations
should stop in an effort to avoid unproductive work. The experiments showed
that such stopping criteria have potential but require further refinements in order
to be robust across problems.

We also considered when message damping should be activated. Instead of
turning it on with a fixed damping factor, we tried to adjust the use of damping
dynamically according to the observed effect on entropy oscillation. Experimen-
tal results show that further work is required to find a more accurate criterion.

A possible pragmatic improvement could be not to use BP at each node of
the search tree. If a branching decision has a very small impact on domains, we
can consider that it would have a very small impact on the marginals. There-
fore we could reuse the marginals computed at the previous node and spare a
mostly redundant phase of belief propagation. A similar approach gave signif-
icant acceleration when applied to maxSD [3], a branching heuristic based on
solution counting. Thus, it is a promising idea that could be explored in future
work.

References

1. Babaki, B., Omrani, B., Pesant, G.: Combinatorial search in CP-based iterated
belief propagation. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 21–36.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 2

2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the
16th European Conference on Artificial Intelligence, ECAI 2004, Including Presti-
gious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, 22–27 August
2004, pp. 146–150. IOS Press (2004)

3. Gagnon, S., Pesant, G.: Accelerating counting-based search. In: van Hoeve, W.-
J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 245–253. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93031-2 17

https://doi.org/10.1007/978-3-030-58475-7_2
https://doi.org/10.1007/978-3-319-93031-2_17

Exploiting Entropy in Constraint Programming 335

4. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for con-
straint programming. Math. Program. Comput. 13(1), 133–184 (2021). https://doi.
org/10.1007/s12532-020-00190-7

5. Pearl, J.: Reverend Bayes on inference engines: a distributed hierarchical approach.
In: Proceedings of the National Conference on Artificial Intelligence, Pittsburgh,
PA, 18–20 August 1982, pp. 133–136 (1982). http://www.aaai.org/Library/AAAI/
1982/aaai82-032.php

6. Pesant, G.: From support propagation to belief propagation in constraint program-
ming. J. Artif. Intell. Res. 66, 123–150 (2019). https://doi.org/10.1613/jair.1.11487

7. Refalo, P.: Impact-based search strategies for constraint programming. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 41

8. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

9. Vavrille, M., Truchet, C., Prud’homme, C.: Solution sampling with random table
constraints. In: Michel, L.D. (ed.) 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Con-
ference), 25–29 October 2021. LIPIcs, vol. 210, pp. 56:1–56:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CP.2021.56

https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
http://www.aaai.org/Library/AAAI/1982/aaai82-032.php
http://www.aaai.org/Library/AAAI/1982/aaai82-032.php
https://doi.org/10.1613/jair.1.11487
https://doi.org/10.1007/978-3-540-30201-8_41
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.4230/LIPIcs.CP.2021.56

	Exploiting Entropy in Constraint Programming
	1 Introduction
	2 Belief Propagation for CSPs
	3 Accuracy of BP-Estimated Marginals and Entropy
	4 Exploiting Entropy
	4.1 Deciding When to Use BP
	4.2 Deciding When to Stop BP Iterations
	4.3 Deciding When to Activate Damping
	4.4 Branching to Search for a Solution

	5 Experimental Evaluation
	5.1 Experimental Protocol
	5.2 Evaluation

	6 Conclusion
	References

