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Abstract. Clustering is a popular unsupervised learning task that con-
sists of finding a partition of the data points that groups similar points
together. Despite its popularity, most state-of-the-art algorithms do not
provide any explanation of the obtained partition, making it hard to
interpret. In recent years, several works have considered using decision
trees to construct clusters that are inherently interpretable. However,
these approaches do not scale to large datasets, do not account for uncer-
tainty in results, and do not support advanced clustering objectives such
as spectral clustering. In this work, we present soft clustering trees, an
interpretable clustering approach that is based on soft decision trees that
provide probabilistic cluster membership. We model soft clustering trees
as continuous optimization problem that is amenable to efficient opti-
mization techniques. Our approach is designed to output highly sparse
decision trees to increase interpretability and to support tree-based spec-
tral clustering. Extensive experiments show that our approach can pro-
duce clustering trees of significantly higher quality compared to the state-
of-the-art and scale to large datasets.

1 Introduction

Clustering, an unsupervised learning task, typically consists of partitioning an
unlabelled dataset into K groups of similar data points. Since most popular
clustering algorithms do not provide any explanation or interpretation for the
obtained partition, a post-hoc analysis is often required to characterize the
groups. In recent years, different approaches for interpretable clustering aim to
provide clustering together with explanations of the obtained groups. One of the
most prominent directions for interpretable clustering is based on using decision
trees to construct clusters [2,16,28,30]. However, existing approaches for clus-
tering trees are not scalable to large datasets, do not account for uncertainty
in results, and do not support advanced clustering objectives such as Spectral
Clustering [44] and Kernel-PCA clustering [37].

Soft decision trees are decision trees where at each node a data point is
directed left with some probability p and right with probability 1 — p. Soft deci-
sion trees have been used for classification and regression in a range of previ-
ous works [4,5,7,23,48]. Unlike hard decision trees that are typically optimized
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using a specialized heuristic procedure, soft decision trees can be optimized using
gradient-based continuous optimization techniques. However, soft decision trees
have not been applied to clustering.

In this work we present soft clustering trees, the first approach for inter-
pretable clustering via soft decision trees that provide probabilistic output on
cluster membership. Our approach is scalable and supports advanced clustering
objectives such as Spectral Clustering and Kernel-PCA clustering. Specifically,
we make the following contributions:

1. We present a novel approach for interpretable clustering based on soft decision
trees that provide probabilistic output on cluster membership.

2. We present a continuous optimization model for soft clustering trees that is
designed to produce fully sparse trees and is amenable to efficient second-
order continuious optimization algorithms as well as scalable, SGD-based
optimization algorithms.

3. We extend our soft clustering trees model to support spectral and Kernel-
PCA clustering objectives, while still using interpretable decision trees in the
original feature space to construct clusters.

4. We run extensive experiments and show that: (1) our spectral clustering and
Kernel-PCA clustering variants can significantly outperform the state-of-the-
art clustering trees algorithm on small and medium datasets; (2) our scalable
approach for training soft clustering trees can produce high-quality clustering
trees for large datasets.

2 Soft Clustering Trees

2.1 Soft Decision Trees

A tree T is a tuple (75,71, 6, p,l,r) where Tg is the set of branching nodes and
71, is the set of leaf nodes. 6 € Tp is the root node, p : (T U Ty, — {6}) — T
is the parent function, and I,r : 7g — (75 U 7) are the left and right child
functions, respectively.

The depth of a node in the tree t € T U Ty, is recursively defined as depth(t) =
depth(p(t)) + 1 with depth(§) = 0. The depth of a tree 7 is defined as the
maximum depth among its leaf nodes, depth(7) = max;c7, depth(t). A tree is
considered complete if all leaves have the same depth, Vi, ts € T, : depth(ty) =
depth(ts).

A decision tree maps each branching node ¢t € 7p with a feature f; € F
and a threshold value p; such that each data point x; € RIFl is directed left if
x{ ¢ < py. An oblique decision tree maps each branching node to an oblique cut
alx; — py such that x; is directed left if aZz; < ug. In contrast, a soft decision
tree is associated with a matrix a € RIFI*XI78l and a vector € RI75! such that
the probability of point z; to be directed left at branching node ¢t € 7 is

P, = Sigmoid(I7 - (a,.l;xi — pt)), 1)
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where a.; is the column vector representing the coefficients of all features in
branching node t, p; is the threshold value, and I controls the softness of the
split at node t such that higher values leads to more deterministic decisions
[4,27]. Therefore, P;; can be considered as a soft (probabilistic) version of the
oblique cut alz; < u. Note that the complement, 1 — Py, is the probability
that point x; is directed right at node t € 7g.

Finally, the probability that a data point z; ends up at a leaf node ¢ € 7, is

defined as
Q= [[ Pv J] (-Pw), (2)

t'eAL(t) t'€AR(t)

where Ap(t) (resp. Ar(t)) denotes the set of all ancestors of a leaf node ¢t € 77,
such that ¢ is a descendant of their left (resp. right) branch.!

2.2 Soft Clustering Trees

Let X = {z;}, be a set of n data points with z; being a finite-sized feature
vector, z; € RIF! and K be the number of clusters (K <|X|). To extend soft deci-
sion trees to perform clustering of X into K clusters, we consider the following
objective function inspired by fuzzy clustering,

min 3730w - 3)

i€|X| kel.. K

where w;;, (defined below) is the probability that data point z; is in cluster
k € 1..K, z is the centroid of cluster k, ||z; — zx| = \/ZfeF(x{ — z]{)Q is the
Euclidean distance between point z; and the centroid zx, and m > 1.0 is a hyper-
parameter that controls the fuzziness of the clustering. Equation (3) is similar
to the objective of Fuzzy C-Means (FCM) [3], however in our case w is defined
based on our soft decision tree rather than being an unconstrained variable.

To define w;, we first define c.; to represent the distribution over cluster
labels, i.e., ¢kt is the probability that data points reaching leaf node ¢t € 7}, are
in cluster k. Then, we define w;y, the probability that point z; is in cluster k as:

wik = Y QitChi- (4)

teTr,

In Fig. 1, we present an example for a soft clustering tree of depth 2 for the
Iris dataset.

2.3 Sparsity in Soft Clustering Trees

While the soft clustering trees in Sect. 2.2 provide inherent tree-based interpre-
tation, oblique cuts can be hard to interpret as they may utilize many, or even all

LIf AL(t) = @ or Agr(t) = @ then the corresponding products in Eq. (2) are equal to
1.0.
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pl = o(sepallength-6.1)
p3 = o(petallength-5
3 1

.0)
_p3

Fig. 1. Example soft clustering tree for the Iris dataset. We use o to denote the Sigmoid
function.

the features (i.e., cuts may have non-zero coefficients for many, or all, features).
To obtain more interpretable trees, we would like to keep the number of non-zero
coefficients in each branching node to a small number, ideally having only one
non-zero coefficient similar to standard (non-oblique) decision trees. Previous
works [4,21,27] on classification and regression have considered penalizing the
f1-norm of the coefficient matrix a. However, this often results in some branch-
ing nodes having no non-zero coefficients while others having many non-zero
coefficients, remaining difficult to interpret.

Instead of using oblique cuts, we consider the more restricted class of normal-
ized cuts for branching nodes, i.e., all coefficients are non-negative (Vf € F,t €
T : ayy > 0) and the sum of coefficients in each branching node is equal to one
(Vt € Tp : 3 jcpage = 1). This can be seen as a continuous relaxation of the
typical univariate splits in standard decision trees by replacing the domain of
each coefficient from the discrete set {0,1} to the continuous range [0, 1] while
keeping the sum of coefficients equal to one. Then, we introduce the following
regularization term for each branching node t € 7,

by = — Z a?‘t' (5)

fer

The minimal value for each ¢; term is —1 which indicates a fully sparse cut, i.e.,
exactly one coefficient in the cut is equal to one and the rest are equal to zero.

2.4 Learning Sparse Soft Clustering Trees Using Continuous
Optimization

We formulate the problem of learning soft clustering trees as a constrained con-
tinuous optimization problem. Given a dataset X and the number of clusters
K, we search for an assignment of the variables ay, cpe, pe, 2x, and I that
minimizes our regularized clustering cost function.?

2 Following [27], we keep I} as variables rather than hyper-parameters.
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In our continuous optimization model, we assume w.l.0.g that X is normalized
in the range [0, 1]. We therefore bound the p; and zj, variables in the range [0, 1].
Further, to improve the optimization performance we consider x; € X to be
a transformation of the dataset z; € X such that each feature is normalized
within the range [0,1]. In particular, we employed the quantile transformation
following [27]. We redefine the cut in branching node ¢ € 75 to be alx; — py,
while keeping the clustering objective based on the original z € X. As we focus
on fully sparse trees, each cut can be converted back to its original values using
the inverse transformation.

Constrained Continuous Optimization Model. Equation (6) presents the
complete constrained optimization model for sparse soft clustering trees. Equa-
tion (6a) is the objective function that consists of the clustering cost and the
sparsity regularization weighted by hyper-parameter A. Equations (6b)—(6e) are
based on the definitions discussed in Sects. 2.1, 2.2 and 2.3. The constraints in
Eq. (6f) and Eq. (6g) guarantee that label probabilities in leaf nodes and fea-
ture coefficients in branch nodes sum to one, respectively. Finally, Eqs. (6h)—(61)
define the bounds for each of the continuous decision variables.

min Z Z wip - ||z _2k||2 +A4 Z ol (6a)

i€|X| k€l K teTp
s.t.:
Piy = Sigmoid(I - (ayx; — ) Vxi € X, t € Tp (6b)
Qit = H Pz‘t’ H (1 — Pit’) Vz,; € X,t c T (GC)
YEAL(t)  HEAR(D)
wik = Y Querr Yz € X,k €1.K (6d)
teTy,
¢ri=— ap VteTy (6e)
feF
Y em=1 VteTp (6f)
kel.. K
Zaft:1 Vit € Tp (6g)
fEF
0<ap; <1 VteTp,feF (6h)
0<cw <1 VteTr, kel .K (61)
0<u <1 VteTs (6)
0<z,<1 Vkel.K (6k)
-1<T, <128 VteTs (61)

Constrained continuous optimization algorithms such as interior point optimiza-
tion can be used to solve the optimization model in Eq. (6) for small and medium
datasets, however they tend to be less efficient compared to unconstrained con-
tinuous optimization algorithms and are not amenable to scalable, mini-batch,
stochastic gradient descent optimizers.
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Unconstrained Optimization Model. We can reformulate the model in Eq.
(6) to be an unconstrained optimization model by making the following changes.

Regularized Softmax Splits. To eliminate the constraints in Eqs. (6g)—(6h), we

redefine ay; based on Softmax normalization of the unnormalized variables as; €
RIFIXIT5]

_ exp(ay) )
2 prer explagn))

Similar to our constrained model, we use the regularization terms ¢; to guarantee
sparse cuts. Due to the nature of Softmax, coefficients cannot be exactly zero, but
could get very close to zero. However, since all features are scaled to the same
range of [0, 1], features with near-zero coefficients will have negligible impact
on the branching behavior and can be eliminated from the resultant clustering
tree.? Although recent works have proposed several sparse variants of Softmax
[10,29], we found that they can have negative impact on the optimization and
are not needed in our case due to the feature-wise normalization.

Cl,ft

Leaf Class Labels. To eliminate the constraints in Eq. (6f) and Eq. (6i), we

redefine cx; based on Softmax normalization of the unnormalized variables é;; €
RKX |TL ‘
)

_ exp(Crt) i . (8)
> ower.x XP(Crrte))
The bounds on the remaining variables, Egs. (6j)—(61), were used to improve

the constrained model, but are not required and can be removed in our uncon-
strained model.

Ckt

2.5 Interpretable Spectral and Kernel-PCA Clustering

One of the benefits of our formulation is that the feature representation used
for constructing the decision tree and the feature representation used for the
clustering do not have to be the same. Specifically, we can replace the objective
in Eq. (3) with a more general objective,

min Z Z wip - ||z — ZkHz 9)

i€|X| k€l K

where X = {#;}1" , is a (possibly) different representation of the dataset X based
on feature set F, z; € RI¥I. We note that Eq. (3) is a special case of Eq. (9) with
F = F and, consequently, X = X. However, X can also be based on a different
feature representation such as a spectral embedding or a PCA transformation
of X. The decision tree is still constructed from the interpretable feature set X,
i.e., branching node cuts based on x € X, however the objective would be to
optimize the clustering cost based on, for example, the spectral embedding or
PCA transformation of the original dataset. In our experiment we consider two
different objectives:

3 For this purpose, we arbitrarily select 10™% as the threshold for zeroing coefficients
in the resultant clustering tree.
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— Spectral clustering [44] where X is computed by applying spectral decom-
position to the graph Laplacian of the k-nearest neighbors graph using the
Laplacian Eigenmaps algorithm [1].

— Kernel-PCA (KPCA) clustering where X is computed using a non-linear
dimensionality reduction through the use of kernels [37]. In our experiments,
we use the radial basis function (RBF) kernel.

To our knowledge, this is the first approach for interpretable spectral and KPCA
clustering that is based on decision trees in the original feature space.

2.6 Scalable Training of Soft Clustering Trees

Our unconstrained formulation in Sect. 2.4 is amenable for scalable training using
mini-batch stochastic gradient descent algorithms to support interpretable clus-
tering of large datasets using soft decision trees. However, consistent with work
on soft classification trees [15], we found that training of soft clustering trees
using first-order SGD optimizers can get stuck in poor solutions in which one or
more of the branching nodes directs almost all the data points into one of the
subtrees. We therefore introduce the following regularization term that encour-
ages branching nodes to make equal use of both left and right branches, following
[15],

m=— Y 0,0.5-log(c) + 0.5 - log(1 — )], (10)

teTp

with ¢ (resp. 1-a;) being the fraction of probability mass directed to the left
(resp. right) branch of branching node ¢t € 7 out of the probability mass directed

to node t,
Yeiex Qiaw
ZI{,GX Qi-,t 7

and 6; ensures the strength of the penalty decays exponentially with the depth
of node t, §, = 2~ derth(t),

(11)

o =

Training. The final objective function for our scalable training of soft clustering
trees is

min Z Z wi - || — 2 ||? + A Z ¢ + wm,

i€| X| kel..K teTp

where w is a hyper-parameter that controls the weight associated with the reg-
ularization term. To efficiently train clustering trees using mini-batch stochastic
gradient descent algorithms, we start by training with no sparsity regularization,
A =0, for a fixed number of training steps. Then, we anneal A by increasing it
every training step until we obtain a fully sparse tree.
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3 Experiments

In this section, we perform extensive experiments with 18 datasets to evaluate
the performance of soft clustering trees.

3.1 Implementation Details

Single-Batch Training of Soft Clustering Trees using Second-Order Optimizers.
For our experiments with small and medium datasets, we implemented our
constrained and unconstrained continuous optimization models for single-batch
training using second-order optimizers. Our constrained optimization model was
implemented in Julia using the JuMP library [13] and solved using IPOPT [45],
a primal-dual interior-point algorithm with a filter line-search method for non-
linear programming. As IPOPT converges to a local minimum on non-convex
problems, we run the solver five times, starting from different random initializa-
tions, and select the lowest-cost solution.

Our unconstrained model was implemented in Python and solved using the
Limited-memory BFGS with bounds (L-BFGS-B) solver and the Sequential
Least Squares Programming (SLSQP) solver, both implemented in the Scipy
library. We found the runtime for unconstrained optimization to be shorter com-
pared to constrained optimization, however it requires more runs to converge to
high-quality solutions. We therefore restart the solver 20 times using random
initializations and select the lowest-cost solution.

Scalable Training of Soft Clustering Trees using SGD. For our experiments with
large datasets, we implemented our scalable model for training soft clustering
trees (Sect.2.6) in Python using the PyTorch library [31]. We employ mini-
batch stochastic optimization scheme using the RMSProp optimizer [20]. To
obtain fully sparse trees, we train our model according to the training scheme
described in Sect. 2.6: We first train the model for 25,000 steps with no sparsity
regularization and then slowly anneal A by increasing it each step by 1073, In
our experiments, we set the total number of training steps to be 50,000 and we
employ cyclical learning rate schedule [39] in the range [0.0005, 0.005].

Inference. Our decision trees are soft and represent probabilistic cluster mem-
bership. In our experiments, we obtain a hard clustering for each data point by
selecting the cluster label for which the membership probability is the highest.

3.2 Datasets

To evaluate our single-batch approach for learning soft clustering trees, we use
a set of 13 small- and medium-size real and synthetic datasets (Table 1). Seven
real datasets were obtained from the UCI repository [12]: Glass, Ionosphere, Iris,
TAE, Vertebral, Wine, Zoo. Four synthetic datasets representing challenging
clustering problems in 2D and 3D were obtained from FCPS [43]. Finally, we
generated two instances of the well-known clustering problems moons and circles.
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Table 1. Details of small- and medium- Table 2. Details of large datasets used in
size datasets used in the experiments. the experiments.
Synthetic datasets are marked “(s)”.

Dataset || X]| |F| | K
Dataset IX| ||F||K Adult® 48,842 1052
Atom (s) 800 (3 |2 Avila 20,867 10 |12
Chainlink (s)|1,000|3 |2 Covertype 581,012 54 |7
Circles (s) 500 |2 |2 Pendigits {10,992 |16 |10
Glass 214 |9 |6 Shuttle 58,000 |9 7
Tonosphere 351 |34 |2
Tris 150 |4 |3 T Categorical features. conver-
ted to one-hot encoding.
Moons (s) 500 |2 |2
TAE 151 |5 |3
Target (s) 770 |2 |6
Vertebral 310 |6 |3
Wine 178 |12 |3
Wingnut (s) 11,0162 |2
Zoo 101 |16 |7

To evaluate our approach for scalable training of soft clustering trees, we
run experiments on five large datasets obtained from UCI [12]: Adult, Avila,
Covertype, Pendigits, and Shuttle, as described in Table2. All datasets were
standardized by removing the mean and scaling each feature to unit variance.

3.3 Evaluation

Since all datasets in Sect. 3.2 have ground-truth labels, we evaluate the quality
of the obtained clusterings using the following external evaluation metrics. Note
that we do not use internal evaluation metrics, such as the mean Silhouette
Coefficient [36], as they depend on the feature representation and therefore are
not comparable across different feature representations (such as the Spectral
Embedding and the Kernel-PCA).

Adjusted Rand Index (ARI). Rand Index [35] measures agreement between two
partitions of the same dataset, P; and P5. Each partition represents (g) decisions
over all pairs, assigning them to the same or different clusters. Let a be the
number of pairs assigned to the same cluster in both P, and P». Let b be the
number of pairs assigned to different clusters. Rand Index is defined as follows:

a+b

(3)
The Adjusted Rand Index (ARI) [22] is a correction for RI, based on its expected
value:

RI(Py, Py) =

RI —E(RI)

ARI = Maz(RI) — E(RI)’
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ARI score of zero indicates the partition is not better than a random assignment,
while a score of one indicates a perfect match. We compute the ARI between
the obtained clustering and the ground-truth labels.

Normalized Mutual Information (NMI). Mutual information quantifies the sta-
tistical information shared between two distributions [40]. MI(Py, P2) denotes
the mutual information between partitions P; and P, and H(P;) denotes the
entropy of partition P;. Normalized mutual information (NMI) [40] is normalized
using the mean of H(Py) and H(Ps):

MI(Py, Py)
NMI(Py, P) = .
(P, P2) Mean(H(P,), H(P,))
Values close to zero indicate independent partitions, while values close to one
indicate a significant agreement between P1 and P2. We compute the NMI
between the obtained clustering and the ground-truth labels.

Unsupervised Clustering Accuracy (ACC). The unsupervised clustering accuracy
[46] is defined as:

ACC = max Z?:l ]l{l’b = ma’p(cl))}
mape M n

)

where [(x;) and ¢(x;) are the ground-truth label and the assigned cluster label for
data point z;, respectively, and M is the set of all possible one-to-one mappings
from clusters to ground-truth labels.

3.4 Results

First, we compare our basic constrained and unconstrained optimization models
to ExXKMC [16], the state-of-the-art approach for interpretable clustering using
decision trees. For our unconstrained model, we used both L-BFGS and SLSQP
solvers. Each problem is solved 20 times starting from different initializations and
the median runtime for one run was 1.81s for L-BFGS and 2.01s for SLSQP.
As all runs are independent, they can be parallelized over multiple cores. As
we are comparing our approaches that are probabilistic to the deterministic
and fully sparse ExKMC that aims to optimize the standard K-means cost,
we tuned the hyper-parameters of our approach over a small set of possible
values, A € {10°,10%,10%} and m € {1.05,1.1}, and select the ones that yielded
the hard clustering with the lowest K-means cost while being fully sparse (all
results presented for our approaches are therefore based on fully sparse trees).
For our constrained model, solved using IPOPT, runs required longer runtime
(median of 14.45s) and we therefore opted for only five random initializations
and considered only one value for m that was found to work well (m = 1.0). We
note that the results for our approaches are not directly comparable in terms
of optimization performance due to the large set of possible choices available
for each solver (how many runs vs. how long each run, how many available
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Table 3. Experimental Results on Soft Clustering Trees for Small and Medium
Datasets.

dataset | Max | Adjusted Rand Index (ARI) Clustering Accuracy (ACC)
|7z] | BFGS |SLSQ |IPOP |ExKM |BFGS | SLSQ |IPOP | ExKM
atom |4 0.180 0.182 0.161 0.186 |0.713 |0.714 |0.701 |0.716
atom |8 0.149 0.165 |0.161 0.159 0.694 | 0.704 0.701 | 0.700
atom 16 |0.189 |0.176 0.174 0.189 |0.718|0.710 1 0.709 |0.718

chainl |4 —0.001 | —0.001 |0.183 | —0.001 |0.500 |0.500 |0.714 |0.504
chainl |8 —0.001 | —-0.001 |0.207 | —0.001 |0.509 |0.505 |0.728]0.508
chainl |16 |—-0.001 |—0.000 | 0.107 |—0.001 |0.505 |0.514 |0.664 | 0.509
circles |4 —0.002 | —0.002 | —0.002 | —0.002 | 0.502 | 0.502 | 0.502 | 0.502
circles |8 —0.002 | —0.002 | —0.002 | —0.002 | 0.502  0.502 | 0.502 | 0.502

circles |16 |—0.002 | —0.002 | —0.002 | —0.002 | 0.500 | 0.502 | 0.502 | 0.502
glass 8 0.200 |0.188 0.168 0.148 0.505 | 0.458 | 0.481 |0.425
glass 16 ]0.148 0.173 0.230 |0.173 0.481 |0.472 |0.519  0.472
iono 4 0.158 0.145 0.149 0.163 |0.701 |0.692 |0.695 |0.704
iono 8 0.112 0.178 0.183 |0.168 0.670 1 0.712 |0.715|0.707
iono 16 ]0.193 |0.178 0.168 0.168 0.721 |0.712 | 0.707 |0.707
iris 4 0.759 |0.610 0.515 0.574 0.907 | 0.827 | 0.747 | 0.800
iris 8 0.653 |0.620 0.574 0.601 0.853 | 0.833 | 0.800 | 0.820
iris 16 10.642 | 0.632 0.642 |0.610 0.847 | 0.840 | 0.847 |0.827
moons |4 0.483 |0.483 |0.483 |0.456 0.848 | 0.848 | 0.848 | 0.838
moons |8 0.472 0.472 |0.472 |0.461 0.844 | 0.844 | 0.844 | 0.840
moons |16 |0.472 0.472 0.472 0.478 |0.844 |0.844 |0.844 |0.846
tae 4 0.064 |0.064 |0.050 0.047 0.510 0.510|0.444 | 0.417
tae 8 0.047 0.047 0.047 0.064 |0.417 |0.417 |0.417 |0.510
tae 16 |0.048 0.047 0.048 0.064 |0.424 |0.417 1 0.424 |0.510
target |8 0.529 0.557 0.302 0.636 |0.635 |0.627 1 0.416 |0.638
target |16 |0.636 0.637 |0.634 0.636 0.642 | 0.652 | 0.625 | 0.636
vert 4 0.163 0.212 |0.175 0.165 0.465 | 0.487/0.471 | 0.452
vert 8 0.180 0.221 |0.169 0.194 0.461 [0.516 | 0.455 |0.461
vert 16 0.221 |0.210 0.219 0.196 0.506 |0.5130.490 | 0.461
wine 4 0.754 0.748 0.848 |0.802 0.916 |0.910 | 0.949  0.933
wine 8 0.732 0.757 0.741 0.880 |0.904 [0.916 |0.910 |0.961
wine 16 ]0.683 0.835 0.880 0.897 |0.882 [0.944 |0.961 |0.966
wingn |4 0.760 0.791 0.791 0.930 |0.936 [0.945 |0.945 |0.982
wingn |8 0.736 0.733 0.743 0.764 |0.929 0.928 |0.931 |0.937
wingn |16 |0.700 0.693 0.730 |0.683 0.918 10.916 | 0.927  0.913
Z00 8 0.870 0.871 |0.617 0.737 0.871 /1 0.871 | 0.762 | 0.822
Z00 16 |0.814 0.815 |0.792 0.737 0.822 |0.812 | 0.832  0.822
average 0.354 0.359 0.356 0.360 |0.683 |0.684 |0.687 |0.682
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cores, how many hyper-parameters values to consider, etc.) We therefore simply
demonstrate the performance of each approach with a reasonable set of choices.

For ExKMC, we run the algorithm from 100 different random initializations
and choose the one with the lowest cost (experiments with additional runs did
not lead to significant improvement). As ExKMC does not have a limit on the
tree depth but on the maximum number of leaves, we compare the results for
three different values of number of leaves, namely 4,16,32. In our approach
these values correspond to a maximum tree depth of 2, 3, 4. For each dataset, we
set K to be the number of ground-truth labels in the dataset. As the datasets
Glass, Target, and Zoo have more than 4 clusters, we only run experiments for
a maximum number of leaves of 16 and 32.

Table 3 shows the ARI and ACC scores obtained by each of the approaches
for each of the datasets. It also reports the average scores across all datasets.
Results on NMI exhibited similar trends and are omitted due to space. We can
see that, in general, the different methods are relatively comparable. Each of
the methods outperforms the other methods on some of the datasets, and we
observe minor differences between the methods in the average scores. Specifically,
ExKMC performed slightly better in terms of average ARI and IPOPT performs
slightly better in terms of ACC as well as NMI (not presented).

In the next two sections we demonstrate the unique benefits of our
approaches, namely that they can be extended to use Spectral and K-PCA objec-
tives and that are amenable to scalable optimization procedures.

Spectral and K-PCA Clustering Trees. We present results for the exten-
sions of our basic approach: our Kernel PCA model (Ours-K), and our Spectral
Clustering model (Ours-S). For KPCA, we used 10 components. For the spectral
embedding, we used k-nearest neighbors graph with k£ = 10 for all datasets and
set the dimension of the projected subspace to be the number of clusters. Due
to limited space, in this experiment we focus on our unconstrained model as it is
the basis for our scalable model, and we present results for the L-BFGS solver.
We compare our approaches to our basic model (Ours) and to ExKMC [16].

Table 4 shows the ARI and ACC scores obtained by each of the approaches
for each of the datasets. Results on NMI exhibited similar patterns to ARI and
are omited due to space. It also reports the average scores across all datasets.
The best performing approach based on the average scores is Ours-S followed by
Ours-K. Furthermore, we observe that in approximately 86% of the cases, for all
evaluation metrics (including NMI), the top performing approach is one of our
approaches. The results demonstrate the unique benefits of approaches like Ours-
S in cases such as the datasets Atom, Chainlink, and Circles, where ExKMC and
Ours find low-quality solutions compared to the high-quality solutions found by
Ours-S due to the spectral embedding.

Results for Large Datasets. Next, we run experiments with our approach
for scalable training of soft clustering trees (Sect.2.6). As our approach is the
first scalable approach for interpretable clustering based on decision trees, we



Interpretable Clustering via Soft Clustering Trees 293

Table 4. Experimental Results on Soft Clustering Trees for Small and Medium
Datasets. Our approaches are based on our unconstrained model solved by L-BFGS.

dataset | Max | Adjusted Rand Index (ARI) Clustering Accuracy (ACC)
|7z| | Ours | Ours-K | Ours-S | ExXKM | Ours | Ours-K | Ours-S | ExKM
atom |4 0.180 |0.577 0.779 |0.186 |0.713 |0.880 |0.941 |0.716
atom |8 0.149 |0.865 0.874 | 0.159 |0.694 | 0.965 |0.968 |0.700
atom |16 |0.189 |0.912 |0.970 |0.189 |0.718 |0.978 |0.993 |0.718
chain |4 —0.0010.174 ]0.861 | —0.001|0.500 | 0.709 |0.964 |0.504
chain |8 —0.001{0.178 0.933 | —-0.0010.509 |0.711 0.983 |0.508
chain |16 —0.001 | 0.181 0.941 | —-0.0010.505 |0.713 |0.985 | 0.509
circles |4 —0.002 | —0.002 | 0.369 | —0.002|0.502 | 0.504 |0.804 |0.502
circles |8 —0.002 | —0.002 | 0.639 | —0.002|0.502 | 0.502 |0.900 |0.502
circles |16 —0.002 | —0.002 | 1.000 | —0.002 0.500 |0.504 1.000 | 0.502
glass 8 0.200 | 0.145 0.112 [0.148 |0.505|0.411 0.360 |0.425
glass 16 10.148 |0.184 |0.133 |0.173 |0.481/0.439 |0.379 |0.472
iono 4 0.158 |0.203 | —0.0280.163 |0.701 | 0.726 |0.538 |0.704
iono 8 0.112 |0.208 | —0.034/0.168 |0.670 |0.729 |0.504 |0.707
iono 16 |0.193 |0.224 | —-0.034|0.168 |0.721 |0.738 |0.501 |0.707
iris 4 0.759 |0.600 |0.489 |0.574 |0.907 0.820 |0.773 |0.800
iris 8 0.653 |0.736 |0.394 |0.601 |0.853 | 0.900 |0.700 |0.820
iris 16 |0.642 |0.611 |0.413 |0.610 |0.847|0.827 |0.713 |0.827
moons |4 0.483 0.512 0.678 |0.456 |0.848 |0.858 |0.912 | 0.838
moons |8 0.472 |0.512 0.853 | 0.461 |0.844 | 0.858 |0.962 |0.840
moons |16 |0.472 |0.512 |1.000 |0.478 |0.844 0.858 |1.000 |0.846
tae 4 0.064 | 0.064 | 0.050 |0.047 |0.510|0.510 |0.444 |0.417
tae 8 0.047 |0.113 |0.047 |0.064 |0.417 | 0.550 |0.417 |0.510
tae 16 10.048 |0.113 |0.047 |0.064 |0.424 |0.550 |0.417 |0.510
target |8 0.529 |0.538 |0.544 |0.636 |0.635 0.627 |0.626 |0.638
target |16 |0.636 0.634 |0.328 |0.636 |0.642|0.627 |0.443 |0.636
vert 4 0.163 0.169 0.171 | 0.165 |0.465 | 0.458 |0.461 |0.452
vert 8 0.180 |0.254 | 0.212 |0.194 |0.461 | 0.474 |0.500 |0.461
vert 16 10.221 |0.251 |0.219 |0.196 |0.506 |0.539 | 0.474 |0.461
wine 4 0.754 10.723 0.762 |0.802 0.916 |0.899 |0.916 | 0.933
wine 8 0.732 10.642 0.7564 |0.880 |0.904 0.871 |0.916 |0.961
wine 16 |0.683 [0.725 |0.820 | 0.897 |0.882 |0.904 |0.938 |0.966
wingn |4 0.760 |0.693 1.000 | 0.930 |0.936 | 0.916 1.000 | 0.982
wingn |8 0.736 | 0.651 1.000 0.764 |0.929 |0.904 1.000 |0.937
wingn |16 |0.700 |0.736 |0.984 |0.683 |0.918 0.929 |0.996 |0.913
Z00 8 0.870 10.820 0.653 |0.737 |0.8710.832 |0.743 |0.822
Z00 16 |0.814 |0.646 0.633 | 0.737 |0.822|0.743 |0.752 |0.822
average 0.354 | 0.419 0.544 | 0.360 |0.683 |0.721 0.748 | 0.682
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compare our approach to non-interpretable scalable clustering using Mini-Batch
K-Means [38].

We run experiments for three tree depths: the minimum depth based on the
number of ground-truth labels, as well as two levels deeper. We did not tune
hyper-parameters for each dataset and instead fix w = 0.1 and m = 1.05 across
datasets (hyper-parameter tuning per dataset may lead to further improvement).
We run the training procedure five times, starting from different random initial-
izations, using a batch size of 256. Similar to previous experiment, we select the
one that yielded the hard clustering with the lowest K-means cost while being
fully sparse. For Mini-Batch K-Means, we run the algorithm for 100 random
initializations with a similar batch size of 256 and select the lowest cost solution.

Table 5 compares our approach for scalable training (Ours) to Mini-Batch
K-Means (mKM) on the five large datasets. We note that the two methods are
not directly comparable as Mini-Batch K-Means is not constrained to produce
tree-based clusterings. The results show that for Adult, Covertype, and Shuttle,
our approach can reach comparable results to mKM and even find higher-quality
solutions according to some criteria. For Pendigits, we observe that as we increase
the tree depth we are getting closer to mKM’s performance however even a depth
of 6 was not sufficient to reach the performance of mKM with a fully-sparse
decision tree. For Avila, we interestingly find the best solution at the lowest tree
depth. Overall, the results in Table 5 indicate that our scalable approach is able
to produce high-quality, fully sparse clustering trees for large datasets.

Table 5. Experimental Results for Large Datasets.

X Max | ARI NMI ACC

|7.] | Ours |mKM | Ours |mKM | Ours | mKM
Adult | 2 0.184/0.183 | 0.134 | 0.136 |0.719|0.718
Adult 4 0.184 0.134 0.719
Adult | 8 0.180 0.133 0.717
Avila |16 0.064 | 0.052 |0.117 |/ 0.136 | 0.291 | 0.292
Avila |32 ]0.016 0.053 0.218
Avila |64 |0.055 0.108 0.232
Cover | 8 0.037 |0.056 |0.143 |0.150|0.291 |0.319
Cover | 16 0.057 0.150 0.329
Cover |32 | 0.031 0.145 0.309
Pend. | 16 0.403 |0.5390.554 | 0.685 0.590 | 0.675
Pend. |32 |0.437 0.595 0.590
Pend. |64 |0.485 0.624 0.638
Shut. |8 0.181 |0.214 |0.366 |0.378 |0.412 |0.421
Shut. |16 0.196 0.329 0.444
Shut. |32 0.348 0.475 0.631
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4 Related Work

Soft decision trees have been a popular choice in tasks such as classification and
regression, solved using either constrained or unconstrained continuous optimiza-
tion algorithms [4,5,23,27]. Some works have explored using soft decision trees
together with learned representations by formulating the problem as a deep neu-
ral network [15,19,41,47]. To our knowledge, our work is the first approach that
use soft decision trees for interpretable clustering.

Recent work on neural oblivious classification and regression trees has con-
sidered sparse alternatives of Softmax, such as entmax [33], to produce sparse
trees [34], however we found it difficult to produce fully sparse trees without
hurting the optimization performance.

Previous work on interpretable clustering primarily focused on using decision
trees [2,14,16,18,26,30,42]. Other approaches also include polytope machines
[6,25], rectangular rules [8,32], and layerwise relevance propagation [24]. To our
knowledge, our work is the first to consider soft decision trees, to support scalable
training, and to be extended to tree-based spectral and KPCA clustering.

Several works on interpretable clustering via decision trees focus on a setting
in which each cluster corresponds to exactly one leaf, similar to hierarchical
clustering [2,18,30,49]. This approach significantly restricts the expressive power
of the decision trees and their ability to accurately match the observed clusters
in the dataset. Similar to the recent ExXKMC [16], our approach allows more
than K leaves to support more expressive trees.

A very recent work has focused on clustering using hard, oblique decision
trees via alternating optimization [17]. While their implementation is not avail-
able, their experiments show limited improvement over ExKMC for fully sparse
(axis-aligned) trees. Different from our work, they focus on hard decision trees
and their approach is not amenable to scalable, mini-batch, stochastic gradient
descent optimization.

5 Conclusion

We present a novel approach for interpretable clustering based on soft clustering
trees. We formulate the problem as a continuous optimization problem that can
be efficiently solved by second-order optimizers, such as L-BFGS, as well as
scalable SGD optimization. We extend our approach to support spectral and
KPCA clustering trees. We conduct extensive experiments using 18 datasets
and show that our spectral and KPCA approaches significantly outperform the
state-of-the-art approach on small and medium datasets and our scalable training
using SGD produces high quality clustering trees for large datasets.

Our work can be extended in a number of ways. Investigating approaches for
joint construction of soft clustering trees where clustering is based on learned
representations would be an interesting extension of our work. Investigating
strategies to incorporate fairness considerations [9] is an important direction
for future work. Finally, incorporating domain-specific knowledge in the form of
constraints [11] could lead to higher-quality, yet interpretable, solutions.
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