
OAMIP: Optimizing ANN Architectures
Using Mixed-Integer Programming

Mostafa ElAraby1,3(B), Guy Wolf1,4, and Margarida Carvalho2,3

1 Mila – Quebec AI institute, Montreal, Canada
moustafa.elarabi@Umontrea.ca
2 CIRRELT, Montreal, Canada

3 Department of Computer Science and Operations Research,
Université de Montréal, Montreal, Canada

4 Department of Mathematics and Statistics, Université de Montréal,
Montreal, QC, Canada

Abstract. In this work, we concentrate on the problem of finding a set
of neurons in a trained neural network whose pruning leads to a marginal
loss in accuracy. To this end, we introduce Optimizing ANN Architectures
using Mixed-Integer Programming (OAMIP) to identify critical neurons
and prune non-critical ones. The proposed OAMIP uses a Mixed-Integer
Program (MIP) to assign importance scores to each neuron in deep neural
network architectures. The impact of simultaneous neuron pruning on the
main learning tasks guides the neurons’ scores. By carefully devising the
objective function of the MIP, we drive the solver to minimize the num-
ber of critical neurons (i.e., with high importance score) that maintain
the overall accuracy of the trained neural network. Our formulation iden-
tifies optimized sub-network architectures that generalize across different
datasets, a phenomenon known as lottery ticket optimization. This opti-
mized architecture not only performs well on a single dataset but also gen-
eralizes across multiple ones upon retraining of network weights. Addition-
ally, we present a scalable implementation of our pruning methodology by
decoupling the importance scores across layers using auxiliary networks.
Finally, we validate our approach experimentally, showing its ability to
generalize on different datasets and architectures.

Keywords: Pruning Neural Networks · Mixed Integer Programming ·
Neurons Ranking · Sparse Neural Networks

1 Introduction

Deep learning has proven its power to solve complex tasks and to achieve state-
of-the-art results in various domains such as image classification, speech recogni-
tion, machine translation, robotics and control [6,24]. Over-parameterized arti-
ficial neural networks (ANN), which have more parameters than the training

G. Wolf and M. Carvalho—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 219–237, 2023.
https://doi.org/10.1007/978-3-031-33271-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_15

220 M. ElAraby et al.

Fig. 1. The generic flow of OAMIP used to remove neurons with an importance score
below a specific threshold.

samples, can be used to achieve state-of-the-art results in various tasks [39,57].
However, the large number of parameters comes at the expense of computa-
tional cost in terms of memory footprint, training time, and inference time on
resource-limited devices.

In this context, the pruning of neurons in an over-parameterized neural model
has been an active area of research, enabling the increase of computational effi-
ciency and the uncovering of sub-networks with marginal (or even no) loss in the
network’s predictive capacity [1,9,17,28,41,42,45,50,51,56]. The typical sparsi-
fication procedure involves training a neural model to convergence, computing
the parameters’ importance, then pruning existing ones using specific criteria,
and fine-tuning the neural model to regain its lost accuracy. Existing pruning
and neuron ranking procedures [1,9,17,18,27,35,45,56] require iterations of fine-
tuning on the sparsified model instead of pruning a pre-trained network directly.
Moreover, the evaluation of the generalization of sparsified models across dif-
ferent datasets is under-explored in existing pruning and neuron ranking proce-
dures [31], which is consistent with the lottery ticket hypothesis [13,34,37].

We remark that modern network architectures often use sparse neuron con-
nectivity and, most notably, convolutional layers in image processing. Indeed,
the limited size of the parameter space in such cases increases the effectiveness
of network training and enables the learning of meaningful semantic features
from the input images [15]. Inspired by the benefits of sparsity in such architec-
ture designs, we aim to leverage the neuron sparsity achieved by our framework,
Optimizing ANN Architectures using Mixed-Integer Programming (OAMIP) to
obtain optimized neural architectures that can generalize well across different
datasets. For this purpose, we create a sparse sub-network by optimizing on
one dataset and then training the same architecture, i.e., masked, on another
dataset. Our results indicate a promising direction of future research into the uti-
lization of combinatorial optimization for effective automatic architecture tuning
to augment handcrafted network architecture design.

Contributions and Paper Organization. In OAMIP, illustrated in Fig. 1, we for-
malize the notation of neuron importance score in a trained neural network and

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 221

the associated dataset. The neuron importance score reflects how much activity
decrease can be inflicted while controlling the loss on the neural network model
accuracy. To this end, in Sect. 2, we begin by providing background on the con-
straints that serve as the basis for our Mixed-Integer Programming (MIP) formu-
lation presented in Sect. 3. Concretely, we propose a MIP that allows the computa-
tion of the importance score for each fully connected neuron and convolutional fea-
ture map. The error propagation associated with pruning between different layers
defines each neuron’s importance score. In addition, we also discuss the extension
of the MIP constraints for other layers besides ReLU-activated fully connected
layers. Section 4 describes OAMIP in detail, namely the integration of the neuron
importance scores on the pruning procedure. Here, we also propose a methodol-
ogy to independently decouple the computation of neuron importance score per
layer to represent deeper architectures and, thus, scale up our approach to models
like VGG-16 [44]. Furthermore, in Sect. 5, we show OAMIP’s robustness to various
input data points besides its ability to parallelize the computation of importance
score per class. Finally, we show that OAMIP’s importance score generalizes well
over various datasets complying with the lottery ticket hypothesis [13].

1.1 Related Work

Weight Pruning Methods. Early methods in weight pruning relied on the weight
magnitude by disabling the lowest magnitude weights and re-training/fine-tuning
the resulting sub-network [16,29,37]. Magnitude-based techniques rely on the
intuition that large weight values are more critical during inference than smaller
weight values. [36] devised a greedy criteria-based pruning with fine-tuning
by back-propagation. The criteria devised are given by the absolute difference
between dense and sparse neural model loss (ranker) to avoid a drop in the predic-
tive capacity. [43] developed a framework that computes the neurons’ importance
at each layer through a single backward pass as an approximation to the inter-
pretability of each neuron during inference. Other related techniques, using dif-
ferent objectives and interpretations of neuron importance, have been presented
[1,3,19,20,22,54], and require either fine-tuning to recover the network’s perfor-
mance or dynamic re-training and pruning. Another line of research [10,33,42,49,
53,55] formulates an optimization model to select which neuron to disable with-
out losing performance on the task at hand. With a less conservative perspective
but also using an optimization-based model, OAMIP aims to quantify a general-
izable per-neuron importance score for either a pre-trained network or at initial-
ization without re-training or fine-tuning the network. Similarly, other pruning
procedures aim to avoid the fine-tuning step by pruning the network during ini-
tialization. In particular, SNIP [28] and GraSP [51] focus on predicting critical
weights during initialization via salience scores and then train the sub-network
until convergence. SNIP [28] was the first to investigate the pruning of a network
during initialization by computing the connection’s sensitivity to an input batch
of data through gradient back-propagation. OAMIP can be applied to the network
at initialization or after training without requiring a long fine-tuning step.

222 M. ElAraby et al.

Lottery Ticket. [13] introduced the lottery ticket theory that shows the existence
of a lucky pruned sub-network, a winning ticket. The lucky pruned sub-network
can be trained effectively with fewer parameters while achieving a marginal loss
in accuracy. [37] proposed “one ticket to win them all” for sparsifying n over-
parameterized trained neural models based on the lottery hypothesis. Searching
for the winning ticket involves pruning the model and disabling some of its sub-
networks. The pruned model can be trained on a different dataset using the same
initialization (winning ticket), achieving good results. To this end, the dataset
used for the pruning phase must be sufficiently large. The lucky sub-network
is found by iteratively pruning the lowest magnitude weights and re-training.
Another phenomenon discovered in [40,52] was the existence of smaller, high-
accuracy models that reside in larger random networks. This phenomenon is
called the strong lottery ticket hypothesis, which was proven [34] on ReLU fully
connected layers. Furthermore, [51] proposed a technique to select the winning
ticket at initialization (before training the ANN) by computing an importance
score based on the gradient flow in each unit.

Mixed-Integer Programming. [12] presented a Mixed-Integer Linear Program-
ming big-M formulation to represent trained ReLU neural networks. Later, [4]
introduced the strongest possible tightening to the big-M formulation by adding
strengthening separation constraints when needed, which reduced the solving
time by several orders of magnitude. Recently, [48] presented efficient partition-
ing strategies that improved solving time. All the proposed formulations are
designed to represent trained ReLU ANNs with fixed parameters. In our frame-
work, we use the formulation from [12] since its performance was good due to
our tight local variable bounds, and its polynomial number of constraints (while
the models in [4,48] are non-compact). The interest of representing an ANN as
a MIP lies in its use to evaluate robustness, carry out compression and create
adversarial examples for trained ANNs. For instance, [21,47] used a big-M for-
mulation to evaluate the robustness of neural models against adversarial attacks.
[55] modeled an extension of the optimal brain surgeon [18], where the goal is
to select and remove the weights that have the most negligible impact on the
predictive capacity of the network as an Integer Quadratic Program. However,
the optimal brain surgeon pruning criteria rely heavily on the weights scale.
Moreover, the weights’ scale will be sensitive to the architecture used; differ-
ent normalization layers affect the scale and magnitude of weights in a different
way [28]. [42] also used a MIP formulation to maximize the compression of a
trained neural network without decreasing predictive accuracy. Lossless com-
pression [42] relies on different compression methods, such as removing neurons
and folding layers. However, the reported computational experiments lead only
to the removal of inactive neurons. OAMIP can identify such neurons and quan-
tify the importance of various neurons with respect to the predictive capacity
while pruning neurons that are non-critical across different datasets. The lat-
ter means that the sub-networks found by our framework to a specific dataset
generalize to others.

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 223

2 Preliminaries

Consider layer l of a trained ReLU neural network with Wl as the weight matrix,
wl

i as row i of Wl , and bl as the bias vector. For each input data point x, let hl be
a decision vector denoting the output value of layer l, i.e., hl = ReLU(Wlhl−1+
bl) for l > 0 and h0 = x, and zli be a binary variable taking value 1 if the unit i
is active (wl

ih
l−1 + bli ≥ 0) and 0 otherwise. Finally, let Ll

i and U l
i be constants

indicating a valid lower and upper bound for the input of each neuron i in layer l.
We discuss the computation of these bounds in Sect. 3.2. For now, we assume that
Ll
i and U l

i are sufficiently small and large numbers, respectively, i.e., the so-called
big-M values. Next, we provide the representation of ReLU neural networks
of [12]. Although [4] proposed an ideal MIP formulation with an exponential
number of facet-defining constraints that can be separated efficiently, we use the
formulation by [12], since it performed well in practice for our purpose. For the
sake of simplicity, we describe the formulation for one layer l of the model at
neuron i and one input data point x:

h0
i = xi (1a)

hl
i ≥ 0, for l > 0 (1b)

hl
i + (1 − zli)L

l
i ≤ wl

ih
l−1 + bli, (1c)

hl
i ≤ zliU

l
i , (1d)

hl
i ≥ wl

ih
l−1 + bli, (1e)

zli ∈ {0, 1}, hl
i ∈ R. (1f)

In constraint (1a), the initial decision vector h0 is forced to be equal to the
input x of the first layer. When zli is 0, constraints (1b) and (1d) force hl

i to be
zero, reflecting a non-active neuron. If an entry of zli is 1, then constraints (1c)
and (1e) enforce hl

i to be equal to wl
ih

l−1 + bli. After formulating the ReLU,
if we relax the binary constraint (1f) on zli to [0, 1], we obtain a polyhedron,
over which it is easier and faster to optimize. The quality (tightness) of such
relaxation highly depends on the choice of tight upper and lower bounds, U l

i , L
l
i.

Indeed, the determination of tight bounds reduces the search space and hence,
the solving time.

3 Neuron Importance Score

In what follows, we adapt constraints (1) to quantify neurons’ importance, we
describe the computation of the bounds Ll

i and U l
i and we discuss the objective

function for our MIP. Our goal is to compute importance scores for all layers in
the model in an integrated fashion. In fact, [54] has shown that this integrated
perspective leads to better predictive accuracy than layer by layer.

224 M. ElAraby et al.

3.1 MIP Constraints

In ReLU-activated layers, we keep the previously introduced binary variables zli
and continuous variables hl

i. Recall that these variables are linked to an input
data point x, so if more than one data point is considered, copies of these vari-
ables must be created. Additionally, we create the continuous decision variables
sli ∈ [0, 1] representing neuron i importance score in layer l; contrarily to zli and
hl
i, no copies of sli are created for each input data point. In this way, we proceed

to modify the ReLU constraints (1) by adding the neuron importance decision
variable sli to constraints (1c) and (1e):

hl
i + (1 − zli)L

l
i ≤ wl

ih
l−1 + bli − (1 − sli)max (U l

i , 0), (2a)

hl
i ≥ wl

ih
l−1 + bli − (1 − sli)max (U l

i , 0). (2b)

Constraints (2) impose that when neuron i is activated due to the input hl−1,
i.e., zli = 1, then hl

i is equal to the right-hand-side of those constraints. This value
can be directly decreased by reducing the neuron importance sli. When neuron
i is non-active, i.e., zli = 0, constraint (2b) becomes irrelevant as its right-hand-
side is negative. This fact together with constraints (1b) and (1d), imply that
hl
i is zero. Now, we claim that constraint (2a) allows sli to be zero if that neuron

is indeed non-important, i.e., for all possible input data points, neuron i is not
activated. This claim can be shown through the following observations. Note
that decisions h and z must be replicated for each input data point x as they
represent the propagation of x over the neural network. On the other hand, s
evaluates the importance of each neuron for the main learning task, and thus,
it must be the same for all data input points. Thus, the key ingredients are the
bounds Ll

i and U l
i that are computed for each input data point, as explained

in Sect. 3.2. In this way, if U l
i is non-positive, sli can be zero without interfering

with constraints (2). The latter is driven by the objective function derived in
Sect. 3.3. We designate a neuron as critical with respect to a trained ANN, if
its importance score is higher than a predefined threshold, otherwise it is called
non-critical.

We now discuss other architectures. Concerning convolutional feature maps,
we convert them to toeplitz matrices and their input images to vectors. This
allows us to use simple matrix multiplication which is computationally efficient
and generates the full convolution output. For padded convolution we use only
parts of the output of the full convolution, and for strided convolutions we use
sum of 1 strided convolution as proposed by [7]. Moreover, we can represent
the convolutional layer using the same formulation of fully connected layers
presented in (2a). The importance score of convolutional layers is associated
with each feature map [30,36].

We represent both max and average (avg) pooling on multi-input units in
our MIP formulation. Pooling layers are used to reduce spatial representation
of input images by applying an arithmetic operation on each feature map of
the previous layer. Avg pooling layers compute the average operation on each
feature map of the previous layer l having N l as the number of neurons. This

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 225

operation is linear and thus, it can directly be included in the MIP constraints:

hl+1 = AvgPool(hl
1, · · · , hl

N l) =
1

N l

N l∑

i=1

hl
i.

Max Pooling takes the maximum of each feature map of the previous layer:

hl+1 = MaxPool(hl
1, · · · , hl

N l) = max{hl
1, · · · , hl

N l}.

This operation can be expressed by introducing a set of binary variables
m1, · · · ,mN l , where mi = 1 implies x = MaxPool(hl

1, · · · , hl
N l):

N l∑

i=1

mi = 1

x ≥ hl
i,

x ≤ hl
imi + Ui(1 − mi)

mi ∈ {0, 1}

⎫
⎪⎬

⎪⎭
i = 1, · · · , N l.

3.2 Bound Propagation

In the previous section, we assumed a large upper bound U l
i and a small lower

bound Ll
i. However, using large bounds may lead to long computational times

and a loss of freedom to reduce the importance score, as discussed above. In
order to overcome these issues, we tailor these bounds accordingly with their
respective input point x by considering small perturbations on its value:

L0 = x − ε (3a)

U0 = x + ε (3b)

Ll = W (l−)U l−1 + W (l+)Ll−1 (3c)

U l = W (l+)U l−1 + W (l−)Ll−1 (3d)

W (l−) � min (W (l), 0) (3e)

W (l+) � max (W (l), 0). (3f)

Propagating the initial bounds of the input data points throughout the trained
model will create the desired bound using a simple arithmetic interval. The
obtained bounds are tight, narrowing the space of feasible solutions.

3.3 MIP Objective

Our framework aims at identifying non-critical neurons without significantly
decreasing the predictive accuracy of the pruned ANN. To this end, we combine
two optimization objectives.

226 M. ElAraby et al.

Our first objective is to maximize the set of neurons sparsified from the
trained ANN. Recall that N l is the number of neurons at layer l, and let n be
the number of layers, and I l =

∑N l

i=1(s
l
i − 2) be the sum of neuron importance

scores at layer l with sli scaled down to the range [−2,−1].
In order to create a relation between neurons’ importance score in differ-

ent layers, our objective becomes the maximization of the number of neu-
rons sparsified from the n − 1 layers with higher score I l. Hence, we denote
A = {I l : l = 1, . . . , n} and formulate the sparsity loss as

sparsity =

max
A′⊂A,|A′ |=(n−1)

∑

I∈A′
I

∑n
l=1 |N l| . (4)

Here, the goal is to maximize the number of non-critical neurons at each layer
relative to the other layers of the trained neural model. Note that only the n−1
layers with the most significant importance score will weigh in the objective,
allowing to reduce the pruning effort on some layers that will naturally have low
scores. The total number of neurons then normalizes the sparsity quantification.

Our second objective is to minimize the loss of important information due
to the sparsification of the trained neural model. Additionally, we aim for this
minimization to be done without relying on the values of the logits, which are
closely correlated with the neurons pruned at each layer. Otherwise, this would
drive the MIP to simply give a total score of 1 to all neurons to keep the same
output logit value. Instead, we formulate this optimization objective using the
marginal softmax proposed in [14]. Using marginal softmax allows the solver to
focus on minimizing the misclassification error without relying on logit values.
Moreover, the scale of logits can be marginally different between the decision vec-
tor hn computed by the MIP with some disabled neurons and the trained neural
network predictions. To that end, in the proposed marginal softmax loss, the
label with the highest logit value is optimized regardless of its value. Formally,
we write the objective

softmax =
Nn∑

i=1

log

[
∑

c

exp(hn
i,c)

]
−

Nn∑

i=1

∑

c

Yi,ch
n
i,c, (5)

where the index c stands for the class label. The softmax marginal objective
retains the trained model’s correct predictions for the batch of input images x
having a one-hot encoded label Y without regard to the logit value. Finally, we
combine the two objectives to formulate the loss

loss = sparsity + λ · softmax (6)

as a weighted sum of sparsification regularizer and marginal softmax.

4 OAMIP: Pruning Approach

Given a trained neural network and a dataset, our goal is to identify and prune
non-critical neurons based on importance score sli for neuron i at layer l. To this

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 227

end, we formulated a neural network as a mixed-integer program, including the
neuron importance score in its constraints and objective function. Algorithm 1
summarizes the integration of our formulation within a pruning procedure.

Algorithm 1: OAMIP: Optimizing ANN Architectures using a MIP
Require: Trained ANN, dataset D and a threshold.
Ensure: Sub-network selected from the trained ANN.
1: Select a per-class image D′ ⊂ D to be fed into the MIP.
2: Solve the MIP restricted to D′ and save the neurons importance scores s.
3: Remove every neuron i from layer l with sli ≤ threshold from the ANN.
4: Return pruned ANN (sub-network).

[58] highlights the phenomenon of neural collapse, where features of images
from the same distribution in the training set collapse around a class mean and
are maximally distant between different classes. Moreover, the neurons that are
important for a specific class, as computed on an image, should not change dras-
tically when another image from the same distribution as the training set is used.
Besides, using all the training samples as input to the MIP solver is intractable.
Hence, we use only a subset of the data points, each representing a class in the
classification task for which we aim to approximate the neuron importance score
(step 1). Then, OAMIP computes an estimation of the importance score of each
neuron (step 2). With a small tuned threshold based on the network’s architec-
ture, we mask (prune) non-critical neurons with a score lower than the threshold
(step 3). Finally, our proposed framework returns a pruned ANN (sub-network),
achieving marginal loss in accuracy.

Fig. 2. Illustration of the auxiliary network attached to each sub-module along with
the signal backpropagation during training as shown in [5].

228 M. ElAraby et al.

The most time-sensitive step of OAMIP is the optimization of the MIP. The
number of variables and constraints increases with the number of neurons and
input data points. Indeed, if large and realistic ANNs are modeled with our MIP,
the computation time for determining importance scores is expected to become
very large, as observed in the problem tackled in [12]. To overcome the compu-
tational time issue, we propose independent computation of importance scores
per layer using auxiliary networks [5]. In particular, we used decoupled greedy
learning [5] to train each layer of VGG-16 [44] using a small auxiliary network,
and, in this way, we computed the neuron importance score independently on
each auxiliary network, as shown in Fig. 2. Then, we fine-tuned the generated
masks for one epoch to propagate the errors across them resulting from the inde-
pendent optimization. Decoupled training of each layer allowed us to represent
deep models using the MIP formulation and to parallelize the computation per
layer.

5 Empirical Results

This section shows experimentally that (i) our approach can efficiently find
high-performance sub-networks from ANN architectures, (ii) the computed sub-
networks generalize well to new datasets, and (iii) OAMIP outperforms the
state-of-the-art approach SNIP with regards to generalization.

Experimental Setting. We used a simple fully connected 3-layer ANN (FC-3)
model, with 300+100 hidden units, from [26], and another simple fully connected
4-layer ANN (FC-4) model, with 200+100+100 hidden units. In addition, we
used the convolutional LeNet-5 [26] consisting of two sets of convolutional and
average pooling layers, followed by a flattening convolutional layer, then two
fully-connected layers. The largest architecture investigated was VGG-16 [44]
consisting of a stack of convolutional (Conv.) layers with a small receptive field:
3 × 3. The VGG-16 was adapted for CIFAR-10 [25], having two fully connected
layers of size 512 and average pooling instead of max pooling. Each of these
models was trained three times with different initialization.

All models were trained for 30 epochs using RMSprop [46] optimizer with
1e-3 learning rate for MNIST and Fashion MNIST. LeNet-5 [26] on CIFAR-10
was trained using the SGD optimizer with learning rate 1e−2 and 256 epochs.
VGG-16 [44] on CIFAR-10 was trained using Adam [23] with 1e−2 learning rate
for 30 epochs. The hyper-parameters were tuned on the validation set’s accuracy.
All images were resized to 32 by 32 and converted to 3 channels to generalize
the pruned network across different datasets. Our experiments revealed that
λ = 5 generally provides the right trade-off between our two objectives (6)
based on the validation set results; see the following thesis [11] for details on
these experiments.

Computational Environment. The experiments were performed in an Intel(R)
Xeon(R) CPU @ 2.30 GHz with 12 GB RAM and Tesla k80 using Mosek 9.1.11
[38] solver on top of CVXPY [2,8] and PyTorch 1.3.11.
1 The code can be found here: https://github.com/chair-dsgt/mip-for-ann.

https://github.com/chair-dsgt/mip-for-ann

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 229

5.1 OAMIP Robustness

We examine the robustness of OAMIP against different batches of input images
fed into the MIP, on the implementation of step 2 of OAMIP. Namely, we used
25 randomly sampled balanced images from the validation set. Figure 3 shows
that changing the input images used by the MIP to compute neuron importance
scores in step 2 resulted in marginal changes in the test accuracy between dif-
ferent batches. We remark that the input batches may contain images that were
misclassified by the neural network. In this case, the MIP tries to use the score
s to obtain the true label, which explains the variations in the pruning per-
centage. Furthermore, we show empirically that OAMIP is robust on different
convergence levels of the trained neural network as shown in Fig. 4. Hence, we
do not need to wait for the ANN to be trained to identify the target sub-network
(strong lottery ticket hypothesis theory [34]).

Additionally, we experiment parallelizing per class neuron importance score
computation using a balanced and imbalanced set of images per class. For those
experiments, we sampled a random number of images per class (IMIDP), then

Fig. 3. Effect of changing validation set of input images.

Fig. 4. Evolution of the computed masked sub-network during model training.

230 M. ElAraby et al.

we took the average of the computed neuron importance scores from solving the
MIP on each class. The obtained sub-networks were compared to solving the
MIP with 1 image per class (IDP) and to solving the MIP with balanced images
representing all classes (SIM). We achieved comparable results in terms of test
accuracy and pruning percentage.

Table 1. Comparing test accuracy of Lenet-5 on imbalanced independent class by class
(IMIDP.), balanced independent (IDP.) and simultaneously all classes (SIM) with 0.01
threshold, and λ = 1.

MNIST Fashion-MNIST

Ref 98.8% ± 0.09 89.5% ± 0.3

IDP. 98.6% ± 0.15 87.3% ± 0.3

Prune (%) 19.8% ± 0.18 21.8% ± 0.5

IMIDP. 98.6% ± 0.1 88% ± 0.1

Prune (%) 15% ± 0.1 18.1% ± 0.3

SIM. 98.4% ± 0.3 87.9% ± 0.1

Prune (%) 13.2% ± 0.42 18.8% ± 1.3

To conclude on the robustness of the scores computed based on the input
points used in the MIP, we empirically show in Table 1 that our method is
scalable, and that class contribution can be decoupled without deteriorating the
approximation of neuron scores and thus, the performance of our methodology.
Moreover, we show that OAMIP is robust even when an imbalanced number of
data points per class (IMIDP) is used in the MIP formulation.

5.2 Comparison to Random and Critical Pruning

We started by training a reference model (REF.) using previously described
training parameters. After training and evaluating the reference model on the
test set, we fed an input batch of images from the validation set to the MIP.
Then, the MIP solver computed the neuron importance scores based on those
input images. We used 10 images in our experimental setup, each representing
a class.

To validate our pruning policy guided by the computed importance scores, we
created different sub-networks of the reference model, where the same number of
neurons is removed in each layer, thus allowing a fair comparison among them.
These sub-networks were obtained through different procedures: non-critical (our
methodology), critical, and randomly pruned neurons. For VGG-16 experiments,
an extra fine-tuning step for 1 epoch is performed on all generated sub-networks.
Although we pruned the same number of neurons, which accordingly with [32]
should result in similar performances, Table 2 shows that pruning non-critical
neurons results in marginal loss and gives better performance. On the other hand,

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 231

we observe a significant drop in the test accuracy when critical or a random set of
neurons are removed compared with the reference model. If we fine-tune for just
1 epoch the sub-network obtained through our method, the model’s accuracy
can surpass the reference model. This is due to the fact that the MIP while
computing neuron scores, is solving its marginal softmax (5) on true labels.

Table 2. Pruning results on fully connected (FC-3, FC-4) and convolutional (Lenet-5,
VGG-16) network architectures using three different datasets. We compare the test
accuracy between the unpruned reference network (REF.), randomly pruned model
(RP.), model pruned based on critical neurons selected by the MIP (CP.) and our non-
critical pruning approach with (OAMIP + FT) and without (OAMIP) fine-tuning for
1 epoch.

Ref. RP. CP. OAMIP OAMIP+FT Prune (%) Runtime (s)

MNIST FC-3 98.1% 83.6% 44.5% 95.9% 97.8% 44.5% 12 s

±0.1 ±4.6 ±7.2 ±0.87 ±0.2 ±7.2 ±0.7

FC-4 97.9% 77.1% 50% 96.6% 97.6% 42.9% 9s

±0.1 ±4.8 ±15.8 ±0.4 ±0.01 ±4.5 ±0.4

LeNet-5 98.9% 56.9% 38.6% 98.7% 98.9% 17.2% 1 s

±0.1 ±36.2 ±40.8 ±0.1 ±0.04 ±2.4 ±0.6

Fashion-MNIST FC-3 87.7% 35.3% 11.7% 80% 88.1% 68% 16 s

±0.6 ±6.9 ±1.2 ±2.7 ±0.2 ±1.4 ±1

FC-4 88.9% 38.3% 16.6% 86.9% 88% 60.8% 10 s

±0.1 ±4.7 ±4.1 ±0.7 ±0.03 ±3.2 ±0.8

LeNet-5 89.7% 33% 28.6% 87.7% 89.8% 17.8% 10 s

±0.2 ±24.3 ±26.3 ±2.2 ±0.4 ±2.1 ±1

CIFAR-10 LeNet-5 72.2% 50.1% 27.5% 67.7% 68.6% 9.9% 6 s

±0.2 ±5.6 ±1.7 ±2.2 ±1.4 ±1.4 ±0.5

VGG-16 83.9% 85% 83.3% N/A
a 85.3% 36% N/A

b

±0.4 ±0.4 ±0.3 ±0.2 ±1.1
aA fine-tuning step is required to connect the results of independent layers.
b Computation was applied independently on each layer.

5.3 Generalization Between Different Datasets

Table 3. Cross-dataset generalization: sub-network masking is computed on source
dataset (d1) and then applied to target dataset (d2) by re-training with the same early
initialization. Test accuracies are presented for masked and unmasked (REF.) networks
on d2, as well as pruning percentage.

Model Source dataset d1 Target dataset d2 REF. Acc. Masked Acc. Pruning (%)

LeNet-5 Mnist Fashion MNIST 89.7% ± 0.3 89.2% ± 0.5 16.2% ± 0.2

CIFAR-10 72.2% ± 0.2 68.1% ± 2.5

VGG-16 CIFAR-10 MNIST 99.1% ± 0.1 99.4% ± 0.1 36% ± 1.1

Fashion-Mnist 92.3% ± 0.4 92.1% ± 0.6

232 M. ElAraby et al.

In this experiment, we train the model on a dataset d1 and create a masked
neural model using our approach. After creating the masked model, we restart
it to its original initialization. Finally, the new masked model is re-trained on
another dataset d2, and its generalization is analyzed.

Table 3 displays our experiments and respective results. When we compare
generalization results to pruning using our approach on Fashion-MNIST and
CIFAR-10, we discover that computing the critical sub-network for the LeNet-5
architecture on MNIST creates a more sparse sub-network. Moreover, this sub-
network has a test accuracy better than zero-shot pruning without fine-tuning
and comparable accuracy with the original ANN. This behavior occurs because
the solver is optimizing on a batch of images that are classified correctly with high
confidence from the trained model. Furthermore, computing the critical VGG-
16 sub-network architecture on CIFAR-10 using decoupled greedy learning [5]
generalizes well to Fashion-MNIST and MNIST.

5.4 Comparison to SNIP

OAMIP can be viewed as a compression technique of over-parameterized neural
models. We compare it to SNIP [28].

SNIP computes connection sensitivities in a data-dependent way before the
training. The sensitivity of a connection represents its importance based on the
influence of the connection on the loss function. After computing the sensitivity,
the connections below a predefined threshold are pruned before training (single
shot).

In our methodology, we exclusively identify the importance of neurons and
essentially prune all the connections of non-important ones. On the other hand,
SNIP only focuses on pruning individual connections. Moreover, we highlight
that SNIP can only compute connection sensitivity on the initialization of an
ANN. Indeed, for a trained ANN, the magnitude of the derivatives concerning
the loss function optimized during the training, makes SNIP keener to keep all
the parameters. On the other hand, OAMIP can work on different convergence
levels, as shown in Sect. 3.3. Furthermore, the connection sensitivity computed
by SNIP is only network and dataset-specific; thus, the computed connection
sensitivity for a single connection does not give a meaningful signal about its
general importance for a given task. Rather, it needs to be compared to the
sensitivity of other connections.

In order to bridge the differences between the two methods and provide
a fair comparison in equivalent settings, we make a slight adjustment to our
method. In step 2 of OAMIP, we compute neuron importance scores on the
model’s initialization2. We note that we used only 10 images as input to the
MIP, corresponding to the 10 different classes, and 128 images as input to SNIP,
following its original paper [28]. Our algorithm was able to prune neurons from
fully connected and convolutional layers of LeNet-5. After creating the sparse

2 Remark: we used λ = 1 and pruning threshold 0.2 and kept ratio 0.45 for SNIP.
Training procedures as in Sect. 5.

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 233

networks using SNIP and our methodology, we trained them on the Fashion-
MNIST dataset. The difference between SNIP (88.8% ± 0.6) and our approach
(88.7% ± 0.5) was marginal in terms of test accuracy. SNIP pruned 55% of the
ANN’s parameters and OAMIP 58.4%.

Table 4. Cross-dataset generalization comparison between SNIP, with neurons having
the lowest sum of connections’ sensitivity pruned, and our framework (OAMIP), both
applied on initialization, see Sect. 5.3 for the generalization experiment description.

Source dataset d1 Target dataset d2 REF. Acc. Method Masked Acc. Pruning (%)

Mnist Fashion-MNIST 89.7% ± 0.3 SNIP 85.8% ± 1.1 53.5% ± 1.8

OAMIP 88.5% ± 0.3 59.1% ± 0.8

CIFAR-10 72.2% ± 0.2 SNIP 53.5% ± 3.3 53.5% ± 1.8

OAMIP 63.6% ± 1.4 59.1% ± 0.8

Next, we compare SNIP and OAMIP in terms of generalization. In Table 4,
we show that our framework outperforms SNIP in terms of generalization. We
adjusted SNIP to prune entire neurons based on the value of the sum of its con-
nections’ sensitivity, and our framework was also applied to ANN’s initialization.
When our framework is applied on the initialization, more neurons are pruned
as the marginal softmax part of the objective function discussed in Sect. 3.3 is
weighing less (λ = 1), driving the optimization to focus on model sparsification.

Finally, we remark that the adjustments made to SNIP and OAMIP in the
previous experiments are solely for comparison, while (unlike SNIP) the primary
purpose of our method is to allow optimization at any stage – before, during, or
after training. In the specific case of optimizing at initialization and discarding
entire neurons based on aggregated connection sensitivity, the SNIP approach
may have some advantages, notably in scalability for deep architectures. How-
ever, it also has some limitations, as previously discussed.

6 Discussion

We proposed a mixed integer program to compute neuron importance scores in
ReLU-based deep neural networks. Our contributions focus on providing scalable
computations of importance scores in fully connected and convolutional layers.
We presented results showing that these scores can effectively prune unimpor-
tant parts of the network without significantly affecting its predictive capacity.
Further, our results indicate that this approach allows the automatic construc-
tion of efficient sub-networks that can be transferred and retrained on different
datasets. Knowing a neural network’s critical components can further impact
future work beyond the pruning applications presented here.

Acknowledgements. This work was partially funded by: IVADO (l’institut de val-
orisation des données) [G.W., M.C.]; FRQ-IVADO Research Chair in Data Science for
Combinatorial Game Theory, and NSERC grant 2019-04557 [M.C.] Canada CIFAR AI
Chair, NIH grant R01GM135929 [G.W.].

234 M. ElAraby et al.

References

1. Adamczewski, K., Park, M.: Dirichlet pruning for neural network compression.
Proc. Mach. Learn. Res. 130 (2021)

2. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex
optimization problems. J. Control Decis. 5(1), 42–60 (2018)

3. Amjad, R.A., Liu, K., Geiger, B.C.: Understanding neural networks and individ-
ual neuron importance via information-ordered cumulative ablation. IEEE Trans.
Neural Netw. Learn. Syst. 33, 7842–7852 (2021)

4. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-
integer programming formulations for trained neural networks. In: International
Conference on Integer Programming and Combinatorial Optimization, pp. 27–42.
Springer (2019)

5. Belilovsky, E., Eickenberg, M., Oyallon, E.: Decoupled greedy learning of CNNs.
In: Proceedings of the 37th International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research, vol. 119, pp. 736–745. PMLR (2020)

6. Bengio, Y., Goodfellow, I., Courville, A.: Deep Learning, vol. 1. Citeseer (2017)
7. Brosch, T., Tam, R.: Efficient training of convolutional deep belief networks in

the frequency domain for application to high-resolution 2D and 3D images. Neural
Comput. 27(1), 211–227 (2015)

8. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex
optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

9. Dong, X., Chen, S., Pan, S.: Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In: Advances in Neural Information Processing Systems,
pp. 4857–4867 (2017)

10. Ebrahimi, A., Klabjan, D.: Neuron-based pruning of deep neural networks with
better generalization using kronecker factored curvature approximation. arXiv
preprint arXiv:2111.08577 (2021)

11. ElAraby, M.: Optimizing ANN architectures using mixed-integer programming.
Master’s dissertation, Université de Montréal (2020). http://hdl.handle.net/1866/
24312

12. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018)

13. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. In: International Conference on Learning Representations (2019)

14. Gimpel, K., Smith, N.A.: Softmax-margin CRFs: training log-linear models with
cost functions. In: The Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 733–736. Association for Compu-
tational Linguistics (2010)

15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
16. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-

works with pruning, trained quantization and Huffman coding. arXiv preprint
arXiv:1510.00149 (2015a)

17. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

18. Hassibi, B., Stork, D.G., Wolff, G.J.: Optimal brain surgeon and general network
pruning. In: IEEE International Conference on Neural Networks, pp. 293–299.
IEEE (1993)

http://arxiv.org/abs/2111.08577
http://hdl.handle.net/1866/24312
http://hdl.handle.net/1866/24312
http://arxiv.org/abs/1510.00149

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 235

19. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, pp. 2234–2240. AAAI Press (2018)

20. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: A benchmark for interpretability
methods in deep neural networks. In: Advances in Neural Information Processing
Systems, pp. 9734–9745 (2019)

21. Huang, P.S., et al.: Achieving verified robustness to symbol substitutions via inter-
val bound propagation. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 4083–4093 (2019)

22. Jordao, A., Yamada, F., Schwartz, W.R.: Deep network compression based on
partial least squares. Neurocomputing 406, 234–243 (2020)

23. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of the 3rd International Conference for Learning Representations (ICLR 2015),
San Diego (2015)

24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

25. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s
thesis, University of Toronto (2009)

26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

27. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems, pp. 598–605 (1990)

28. Lee, N., Ajanthan, T., Torr, P.H.S.: SNIP: single-shot network pruning based on
connection sensitivity. In: International Conference on Learning Representations
(ICLR) (2019)

29. Lei, W., Chen, H., Wu, Y.: Compressing deep convolutional networks using k-
means based on weights distribution. In: Proceedings of the 2nd International
Conference on Intelligent Information Processing, pp. 1–6 (2017)

30. Li, Y., Adamczewski, K., Li, W., Gu, S., Timofte, R., Van Gool, L.: Revisiting
random channel pruning for neural network compression. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 191–201
(2022)

31. Liang, T., Glossner, J., Wang, L., Shi, S., Zhang, X.: Pruning and quantization for
deep neural network acceleration: a survey. Neurocomputing 461, 370–403 (2021)

32. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. In: International Conference on Learning Representations (2018)

33. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 5058–5066 (2017)

34. Malach, E., Yehudai, G., Shalev-Schwartz, S., Shamir, O.: Proving the lottery ticket
hypothesis: pruning is all you need. In: III, H.D., Singh, A. (eds.) International
Conference on Machine Learning, Proceedings of Machine Learning Research, vol.
119, pp. 6682–6691. PMLR (2020)

35. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estima-
tion for neural network pruning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)

36. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: International Conference on
Learning Representations (ICLR) (2017)

236 M. ElAraby et al.

37. Morcos, A., Yu, H., Paganini, M., Tian, Y.: One ticket to win them all: generalizing
lottery ticket initializations across datasets and optimizers. In: Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

38. Mosek, A.: The mosek optimization software. 54(2–1), 5 (2010). www.mosek.com
39. Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., Srebro, N.: The role of over-

parametrization in generalization of neural networks. In: 7th International Confer-
ence on Learning Representations, ICLR (2019)

40. Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s
hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020)

41. Salama, A., Ostapenko, O., Klein, T., Nabi, M.: Pruning at a glance: global neural
pruning for model compression. arXiv preprint arXiv:1912.00200 (2019)

42. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-
works. In: 2020 Fall Eastern Virtual Sectional Meeting, AMS (2020)

43. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International Conference on Machine Learn-
ing, pp. 3145–3153. PMLR (2017)

44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Bengio, Y., LeCun, Y. (eds.) International Conference on
Learning Representations (ICLR) (2015)

45. Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks.
arXiv preprint arXiv:1507.06149 (2015)

46. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2),
26–31 (2012)

47. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (ICLR) (2019)

48. Tsay, C., Kronqvist, J., Thebelt, A., Misener, R.: Partition-based formulations
for mixed-integer optimization of trained relu neural networks. Adv. Neural. Inf.
Process. Syst. 34, 3068–3080 (2021)

49. Verma, S., Pesquet, J.C.: Sparsifying networks via subdifferential inclusion. In:
International Conference on Machine Learning, pp. 10542–10552. PMLR (2021)

50. Wang, C., Grosse, R., Fidler, S., Zhang, G.: EigenDamage: structured pruning in
the kronecker-factored eigenbasis. In: International Conference on Machine Learn-
ing, pp. 6566–6575. PMLR (2019)

51. Wang, C., Zhang, G., Grosse, R.B.: Picking winning tickets before training by
preserving gradient flow. In: International Conference on Learning Representations
(ICLR) (2020)

52. Wang, Y., et al.: Pruning from scratch. In: AAAI, pp. 12273–12280 (2020)
53. Ye, M., Gong, C., Nie, L., Zhou, D., Klivans, A., Liu, Q.: Good subnetworks prov-

ably exist: pruning via greedy forward selection. In: International Conference on
Machine Learning, pp. 10820–10830. PMLR (2020)

54. Yu, R., et al.: NISP: pruning networks using neuron importance score propaga-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9194–9203 (2018)

55. Yu, X., Serra, T., Ramalingam, S., Zhe, S.: The combinatorial brain surgeon: prun-
ing weights that cancel one another in neural networks. In: International Confer-
ence on Machine Learning, pp. 25668–25683. PMLR (2022)

http://www.mosek.com/
http://arxiv.org/abs/1912.00200
http://arxiv.org/abs/1507.06149

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 237

56. Zeng, W., Urtasun, R.: MLPrune: multi-layer pruning for automated neural
network compression. In: International Conference on Learning Representations
(ICLR) (2018)

57. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: International Conference on Learn-
ing Representations (ICLR) (2017)

58. Zhu, Z., et al.: A geometric analysis of neural collapse with unconstrained features.
Adv. Neural. Inf. Process. Syst. 34, 29820–29834 (2021)

	OAMIP: Optimizing ANN Architectures Using Mixed-Integer Programming
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Neuron Importance Score
	3.1 MIP Constraints
	3.2 Bound Propagation
	3.3 MIP Objective

	4 OAMIP: Pruning Approach
	5 Empirical Results
	5.1 OAMIP Robustness
	5.2 Comparison to Random and Critical Pruning
	5.3 Generalization Between Different Datasets
	5.4 Comparison to SNIP

	6 Discussion
	References

