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Abstract. One surprising trait of neural networks is the extent to which
their connections can be pruned with little to no effect on accuracy. But
when we cross a critical level of parameter sparsity, pruning any further
leads to a sudden drop in accuracy. This drop plausibly reflects a loss in
model complexity, which we aim to avoid. In this work, we explore how
sparsity also affects the geometry of the linear regions defined by a neural
network, and consequently reduces the expected maximum number of
linear regions based on the architecture. We observe that pruning affects
accuracy similarly to how sparsity affects the number of linear regions
and our proposed bound for the maximum number. Conversely, we find
out that selecting the sparsity across layers to maximize our bound very
often improves accuracy in comparison to pruning as much with the same
sparsity in all layers, thereby providing us guidance on where to prune.

Keywords: Model complexity · Network pruning · Solution counting

1 Introduction

In deep learning, there are often good results with little justification and good
justifications with few results. Network pruning exemplifies the former: we can
easily prune half or more of the connections of a neural network without affecting
the resulting accuracy, but we may have difficulty explaining why we can do that.
The theory of linear regions exemplifies the latter: we can theoretically design
neural networks to express very nuanced functions, but we may end up obtaining
much simpler ones in practice. In this paper, we posit that the mysteries of
pruning and the wonders of linear regions can complement one another.

When it comes to pruning, we can reasonably argue that reducing the num-
ber of parameters improves generalization. While Denil et al. [12] show that
the parameters of neural networks can be redundant, it is also known that the
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smoother loss landscape of larger neural networks leads to better training conver-
gence [45,66]. Curiously, Jin et al. [36] argue that pruning also smooths the loss
function, which consequently improves convergence during fine tuning—the addi-
tional training performed after pruning the network. However, it remains unclear
to what extent we can prune without ultimately affecting accuracy, which is an
important concern since a machine learning model with fewer parameters can
be deployed more easily in environments with limited hardware.

The survey by Hoefler et al. [31] illustrates that a moderate amount of prun-
ing typically improves accuracy while further pruning may lead to a substantial
decrease in accuracy, whereas Liebenwein et al. [46] show that this tolerable
amount of pruning depends on the task for which the network is trained. In
terms of what to prune, another survey by Blalock et al. [6] observes that most
approaches consist of either removing parameters with the smallest absolute
value [14,16,22–24,28,35,44,48,54,67]; or removing parameters with smallest
expected impact on the output [4,13,29,30,40,42,43,47,50,64,72,73,76,79,80,
82], to which we can add the special case of exact compression [18,60,63,65].

While most work on this topic has helped us prune more with a lesser impact
on accuracy, fairness studies recently debuted by Hooker et al. [32] have focused
instead on the impact of pruning on recall—the ability of a network to correctly
identify samples as belonging to a certain class. Recall tends to be more severely
affected by pruning in classes and features that are underrepresented in the
dataset [32,33,56], which Tran et al. [70] attribute to differences across such
groups in gradient norms and Hessian matrices of the loss function. In turn,
Good et al. [20] showed that such recall distortions may also occur in balanced
datasets, but in a more nuanced form: moderate pruning leads to comparable or
better accuracy while reducing differences in recall, whereas excessive pruning
leads to lower accuracy while increasing differences in recall. Hence, avoiding a
significant loss in accuracy due to pruning is also relevant for fairness.

Overall, network pruning studies have been mainly driven by one question:
how can we get away with more network pruning? Before we get there
with our approach, let us consider the other side of the coin in our narrative.

When it comes to the theory of linear regions, we can reasonably argue
that the number of linear regions may represent the expressiveness of a neural
network—and therefore relate to its ability to classify more complex data. We
have learned that a neural network can be a factored representation of functions
that are substantially more complex than the activation function of each neu-
ron. This theory is applicable to networks in which the neurons have piecewise
linear activations, and consequently the networks represent a piecewise linear
function in which the number of pieces—or linear regions—may grow polynomi-
ally on the width and exponentially on the depth of the network [52,57]. When
the activation function is the Rectified Linear Unit (ReLU) [19,55], each linear
region corresponds to a different configuration of active and inactive neurons. For
geometric reasons that we discuss later, not every such configuration is feasible.

The study of linear regions bears some resemblance to universal approxi-
mation results, which have shown that most functions can be approximated
to arbitrary precision with sufficiently wide neural networks [10,17,34]. These
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results were extended in [78] to the currently more popular ReLU activation and
later focused on networks with limited width but arbitrarily large depth [27,49].
In comparison to universal approximation, the theory of linear regions tells us
what piecewise linear functions are possible to represent—and thus what other
functions can be approximated with them—in a context of limited resources
translated as both the number of layers and the width of each layer.

Most of the literature is focused on fully-connected feedforward networks
using the ReLU activation function, which will be our focus on this paper as
well. Nevertheless, there are also adaptations and extensions of such results for
convolutional networks by [77] and for maxout networks [21] by [52,53,62,71].

Several papers have shown that the right choice of parameters may lead to
an astronomical number of linear regions [3,52,62,68], while other papers have
shown that the maximum number of linear regions can be affected by narrow
layers [51], the number of active neurons across different linear regions [62], and
the parameters of the network [61]. Despite the exponential growth in depth,
Serra et al. [62] observe that a shallow network may in some cases yield more
linear regions among architectures with the same number of neurons. Whereas
the number of linear regions among networks of similar architecture relates to the
accuracy of the networks [62], Hanin and Rolnick [25,26] show that the typical
initialization and subsequent training of neural networks is unlikely to yield the
expressive number of linear regions that have been reported elsewhere.

These contrasting results lead to another question: is the network com-
plexity in terms of linear regions relevant to accuracy if trained models
are typically much less expressive in practice? Now that you have read
both sides of our narrative, you may have guessed where we are heading.

We posit that these two topics—network pruning and the theory of linear
regions—can be combined. Namely, that the latter can guide us on how to prune
neural networks, since it can be a proxy to model complexity.

But we must first address the paradox in our second question. As observed
by Hanin and Rolnick [25], perturbing the parameters of networks designed to
maximize the number of linear regions, such as the one by Telgarsky [68], leads to
a sudden drop on the number of linear regions. Our interpretation is that every
architecture has a probability distribution for the number of linear regions. If
by perturbing these especially designed constructions we obtain networks with
much smaller numbers, we may infer that these constructions correspond to the
tail of that distribution. However, if certain architectural choices lead to much
larger numbers of linear regions at best, we may also conjecture that the entire
distribution shifts accordingly, and thus that even the ordinary trained network
might be more expressive if shaped with the potential number of linear regions
in mind. Hence, we conjecture the architectural choices aimed at maximizing the
number of linear regions may lead better performing networks.

That brings us to a gap in the literature: to the best of our understanding,
there is no prior work on how network pruning affects the number of linear
regions. We take the path that we believe would bring the most insight, which
consists of revisiting—under the lenses of sparsity – the factors that may limit
the maximum number of linear regions based on the neural network architecture.
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In summary, this paper presents the following contributions:

(i) We prove an upper bound on the expected number of linear regions over the
ways in which weight matrices might be pruned, which refines the bound
in [62] to sparsified weight matrices (Sect. 3).

(ii) We introduce a network pruning technique based on choosing the density
of each layer for increasing the potential number of linear regions (Sect. 4).

(iii) We propose a method based on Mixed-Integer Linear Programming (MILP)
to count linear regions on input subspaces of arbitrary dimension, which
generalizes the cases of unidimensional [25] and bidimensional [26] inputs;
this MILP formulation includes a new constraint in comparison to [62] for
correctly counting linear regions in general (Sect. 5).

2 Notation

In this paper, we study the linear regions defined by the fully-connected layers of
feedforward networks. For simplicity, we assume that the entire network consists
of such layers and that each neuron has a ReLU activation function, hence being
denoted as a rectifier network. However, our results can be extended to the case
in which the fully-connected layers are preceded by convolutional layers, and in
fact our experiments show their applicability in that context. We also abstract
the fact that fully-connected layers are often followed by a softmax layer.

We assume that the neural network has an input x = [x1 x2 . . . xn0 ]
T from

a bounded domain X and corresponding output y = [y1 y2 . . . ym]T , and each
hidden layer l ∈ L = {1, 2, . . . , L} has output hl = [hl

1 hl
2 . . . hl

nl
]T from neurons

indexed by i ∈ Nl = {1, 2, . . . , nl}. Let W l be the nl × nl−1 matrix where each
row corresponds to the weights of a neuron of layer l, W l

i the i-th row of W l,
and bl the vector of biases associated with the units in layer l. With h0 for x
and hL+1 for y, the output of each unit i in layer l consists of an affine function
gli = W l

ih
l−1 + bli followed by the ReLU activation hl

i = max{0, gli}. We denote
the neuron active when hl

i = gli > 0 and inactive when hl
i = 0 and gli < 0. We

explain later in the paper how we consider the special case in which hl
i = gli = 0.

3 The Linear Regions of Pruned Neural Networks

In rectifier networks, small perturbations of a given input produce a linear change
on the output before the softmax layer. This happens because the neurons that
are active and inactive for the original input remain in the same state if the
perturbation is sufficiently small. Hence, as long as the neurons remain in their
current active or inactive states, the neural network acts as a linear function.

If we consider every configuration of active and inactive neurons that may be
triggered by different inputs, then the network acts as a piecewise linear function.
The theory of linear regions aims to understand what affects the achievable
number of such pieces, which are also known as linear regions. In other words,
we are interested in knowing how many different combinations of active and
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inactive neurons are possible, since they make the network behave differently for
inputs that are sufficiently different from one another.

Many factors may affect such number of combinations. We consider below
some building blocks leading to an upper bound for pruned networks.

(i) The Activation Hyperplane: Every neuron has an input space corre-
sponding to the output of the neurons from the previous layer, or to the input of
the network if the neuron is in the first layer. For the i-th neuron in layer l, that
input space corresponds to hl−1. The hyperplane W l

ih
l−1 + bli = 0 defined by

the parameters of the neuron separate the inputs in hl−1 into two half-spaces.
Namely, the inputs that activate the neuron in one side (W l

ih
l−1 +bli > 0) from

those that do not activate the neuron in the other side (W l
ih

l−1 + bli < 0). We
discuss in (iii) how we regard inputs on the hyperplane (W l

ih
l−1 + bli = 0).

(ii) The Hyperplane Arrangement: With every neuron in layer l partitioning
hl−1 into two half-spaces, our first guess could be that the intersections of these
half-spaces would lead the neurons in layer l to partition hl−1 into a collection of
2nl regions [52]. In other words, that there would be one region corresponding to
every possible combination of neurons being active or inactive in layer l. However,
the maximum number of regions defined in such a way depends on the number of
hyperplanes and the dimension of space containing those hyperplanes. Given the
number of activation hyperplanes in layer l as nl and assuming for now that the
size of the input space hl−1 is nl−1, then the number of linear regions defined by
layer l, or Nl, is such that Nl ≤ ∑nl−1

d=0

(
nl

d

)
[81]. Since Nl � 2nl when nl−1 � nl,

we note that this bound can be much smaller than initially expected—and that
does not cover the other factors discussed in (iv), (v), and (vi).

(iii) The Boundary: Before moving on, we note that the bound above counts
the number of full-dimensional regions defined by a collection of hyperplanes in
a given space. In other words, the activation hyperplanes define the boundaries
of the linear regions and within each linear region the points are such that either
W l

ih
l−1 + bli > 0 or W l

ih
l−1 + bli < 0 with respect to each neuron i in layer

l. Hence, this bound ignores cases in which we would regard W l
ih

l−1 + bli = 0
as making the neuron inactive when W l

ih
l−1 + bli ≥ 0 for any possible input in

hl−1, and vice-versa when W l
ih

l−1+bli ≤ 0, since in either case the linear region
defined with W l

ih
l−1 +bli = 0 would not be full-dimensional and would actually

be entirely located on the boundary between other full-dimensional regions.

(iv) Bounding Across Layers: As we add depth to a neural network, every
layer of the network breaks each linear region defined so far in even smaller
pieces with respect to the input space h0 of the network. One possible bound
would be the product of the bounds for each layer l by assuming the size of
the input space to be nl−1 [58]. That comes with the assumption that every
linear region defined by the first l − 1 layers can be further partitioned by layer
l in as many linear regions as possible. However, this partitioning is going to be
more detailed in some linear regions than in others because their input space
might be very different. The output of a linear region in layer l is defined by a
linear transformation with rank at most nl. The linear transformation would be
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hl = M lhl−1 + dl, where M l
i = W l

i and dl
i = bli if neuron i of layer l is active

in the linear region and M l
i = 0 and dl

i = 0 otherwise. Hence, the output from
a linear region is the composite of the linear transformations in each layer. If
layer l + 1 or any subsequent layer has more than nl neurons, that would not
imply that the dimension of the image from any linear region is greater than nl

since the output of any linear region after layer l is contained in a space with
dimension at most min{n0, n1, . . . , nl} [51]. In fact, the dimension the of image
is often much smaller if we consider that the rank of each matrix M l

i is bound
by how many neurons are active in the linear region, and that in only one linear
region of a layer we would see all neurons being active [62].

(v) The Effect of Parameters: The value of the parameters may also interfere
with the hyperplane arrangement. First, consider the case in which the rank
of the weight matrix is smaller than the number of rows. For example, if all
activation hyperplanes are parallel to one another and thus the rank of the
weight matrix is 1. No matter how many dimensions the input space has, this
situation is equivalent to drawing parallel lines in a plane. Hence, nl neurons
would not be able to partition the input space into more than nl + 1 regions. In
general, it is as if the dimension of the space being partitioned were equal to the
rank of the weight matrix [62]. Second, consider the case in which a neuron is
stable, meaning that this neuron is always active or always inactive for any valid
input [69]. Not only that would affect the dimension of the image because a stably
inactive neuron always outputs zero, but also the effective number of activation
hyperplanes: since the activation hyperplane associated with a stable neuron has
no inputs to one of its sides, it does not subdivide any linear region [61].

(vi) The Effect of Sparsity: When we start making parameters of the neural
network equal to zero through network pruning, we may affect the number of
linear regions due to many factors. First, some neurons may become stable.
For example, neuron i in layer l becomes stable if W l

i = 0, i.e., if that row
of parameters only has zeros, since the bias term alone ends up defining if the
neuron is active (bli > 0) or inactive (bli < 0). That is also likely to happen if only
a few parameters are left, such as when all the remaining weights and the bias
are all either positive or negative, since the probability of all parameters having
the same sign increases significantly as the number of parameters left decrease if
we assume that parameters are equally likely to be positive or negative. Second,
the rank of the weight matrix W l may decrease with sparsity. For example, let us
suppose that the weight matrix has n rows, n columns, and that there are only n
nonzero parameters. Although it is still possible that those n parameters would
all be located in distinct rows and columns to result in a full-rank matrix, that

would only occur in
n!

(
n2

n

) of the cases if we assume every possible arrangement

for those n parameters in the n2 different positions. Hence, we should expect
some rank deficiency in the weight matrix even if we do not prune that much.
Third, the rank of submatrices on the columns may decrease even if the weight
matrix is full row rank. This could happen in the typical case where the number
of columns exceeds the number of rows, such as when the number of neurons
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decreases from layer to layer, and in that case we could replace the number of
active neurons with the rank of the submatrix on their columns for the dimension
of the output from each linear region in order to obtain a tighter bound.

Based on the discussion above, we propose an expected upper bound on
the number of linear regions over the possible sparsity patterns of the weight
matrices. We use an expected bound rather than a deterministic one to avoid
the unlikely scenarios in which the impact of sparsity is minimal, such as in the
previous example with n parameters leading to matrix with rank n. This upper
bound considers every possible sparsity pattern in the weight matrix as equally
probable, which is an assumption that aligns with random pruning and does
not seem to be too strict in our opinion. For simplicity, we assume that every
weight of the network has a probability p of not being pruned; or, conversely, a
probability 1 − p of being pruned. We denote p as the network density.

Moreover, we focus on the second effect of sparsity—through a decrease on
the rank of the weight matrix—for two reasons: (1) it subsumes part of the first
effect when an entire row becomes zero; and (2) we found it to be stronger than
the third effect in preliminary comparisons with a bound based on it.

Theorem 1. Let R(l, d) be the expected maximum number of linear regions that
can be defined from layer l to layer L with the dimension of the input to layer l
being d; and let P (k|R,C, S) be the probability that a weight matrix having rank k
with R rows, C columns, and probability S of each element being nonzero. With
pl as the probability of each parameter in W l from remaining in the network
after pruning—the layer density, then R(l, d) for l = L is at most

nL∑

k=0

P (k|R = nL, C = nL−1, S = pL)
min{k,d}∑

j=0

(
nL

j

)

and R(l, d) for 1 ≤ l ≤ L − 1 is at most

nl∑

k=0

P (k|R = nl, C = nl−1, S = pl)
min{k,d}∑

j=0

(
nl

j

)

R(l + 1,min{nl − j, d, k}).

Proof. We begin with a recurrence on the number of linear regions similar to the
one in [62]. Namely, let R(l, d) be the maximum number of linear regions that can
be defined from layer l to layer L with the dimension of the input to layer l being
d, and let Nnl,d,j be the maximum number of regions from partitioning a space
of dimension d with nl activation hyperplanes such that j of the corresponding
neurons are active in the resulting subspaces (|Sl| = j):

R(l, d) =

⎧
⎪⎪⎨

⎪⎪⎩

min{nL,d}∑

j=0

(
nL

j

)
if l = L,

nl∑

j=0

Nnl,d,jR(l + 1,min{j, d}) if 1 ≤ l ≤ L − 1
(1)
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Note that the base case of the recurrence directly uses what we know about
the number of linear regions given the number of hyperplanes and the dimension

of the space. That bound also applies to
nl∑

j=0

Nnl,d,j in the other case from the

recurrence. Based on Lemma 5 from [62],
nl∑

j=0

Nnl,d,j ≤
min{nl,d}∑

j=0

(
nl

j

)
. Some of

these linear regions will have more neurons active than others. In fact, there
are at most

(
nl

j

)
regions with |Sl| = j for each j. In resemblance to BC, we

can thus assume that the largest possible number of neurons is active in each
linear region defined by layer l for the least impact on the input dimension of
the following layers. Since

(
nl

j

)
=

(
nl

nl−j

)
, we may conservatively assume that

(
nl

0

)
linear regions have nl active neurons,

(
nl

1

)
linear regions have nl − 1 active

neurons, and so on. That implies the following refinement of the recurrence:

R(l, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{nL,d}∑

j=0

(
nL

j

)
if l = L,

min{nl,d}∑

j=0

(
nl

j

)
R(l + 1,min{nl − j, d}) if 1 ≤ l ≤ L − 1

(2)

Note that there is a slight change on the recurrence call, by which j is replaced
with nl − j, given that we are working backwards from the largest possible
number of active neurons nl with nl − j.

Finally, we account for the rank of the weight matrix upon sparsification.
For the base case of l = L, we replace nL from the end of the summation range
with the rank k of the weight matrix WL, and then we calculate the expected
maximum number of linear regions using the probabilities of rank k having any
value from 0 to nL as

nL∑

k=0

P (k|R = nL, C = nL−1)
min{k,d}∑

j=0

(
nL

j

)

,

which corresponds to the first expression in the statement. For the case in which
l ∈ {1, . . . , L − 1}, we similarly replace nl from the end of the summation range
with the rank k of the weight matrix W l, and then we calculate the expected
maximum number of linear regions using the probabilities of rank k having any
value from 0 to nl as

nl∑

k=0

P (k|R = nl, C = nl−1)
min{k,d}∑

j=0

(
nl

j

)

RH(l + 1,min{nl − j, d, k}),

which corresponds to the second expression in the statement. �

Please note that the probability of the rank of a sparse matrix is not uniform
when the probability of the sparsity patterns is uniform. We discuss how to
compute the former from the later as one of the items in Sect. 6.
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4 Pruning Based on Linear Regions

Based on Theorem 1, we devise a network pruning strategy for maximizing the
number of linear regions subject to the total number of parameters to be pruned.
For a global density p reflecting how much should be pruned, we may thus choose
a density pl for each layer l, some of which above and some of which below p
if we do not prune uniformly. We illustrate below the simpler case of pruning
two hidden layers and not pruning the connections to the output layer, which is
the setting used in our experiments. We focused on two layers because there is
only one degree of freedom in that case: for any density p1 that we choose, the
density p2 is implied by p1 and by the global density p. When there are more
layers involved, trying to optimize the upper bound becomes more challenging.
If the effect is not as strong, it could be due to issues solving this nonlinear
optimization problem rather than with the main idea in the paper.

When pruning two layers, the relevant dimensions for us are the input size
n0 and the layer widths n1 and n2. Assuming the typical setting in which n0 >
n1 = n2, the maximum rank of both weight matrices is limited by the number
of rows (n1 for W 1 and n2 for W 2). However, the greater number of columns in
W 1 (n0) implies that we should expect the rank of W 1 to be greater if p1 = p2,
whereas preserving more nonzero elements in W 2 by pruning a little more from
W 1 may change the probabilities for W 2 with little impact on those for W 1.
In some of our experiments, the second layer actually has more parameters than
the first, meaning that we need to consider p1 > p2 instead of p1 < p2.

From preliminary experimentation, we indeed observed that (i) pruning more
from the layer with more parameters tends to be more advantageous in terms
of maximizing the upper bound; and also that (ii) the upper bound can be
reasonably approximated by a quadratic function. Hence, we use the extremes
consisting of pruning as much as possible from each of the two layers, say p1 and
p2, in addition to the uniform density p in both layers to interpolate the upper
bound. If that local maximum of the interpolation is not pruning more from the
layer l with more parameters, we search for the density pl that improves the
upper bound the most by uniformly sampling densities from p all the way to pl.

5 Counting Linear Regions in Subspaces

Based on the characterization of linear regions in terms of which neurons are
active and inactive, we can count the number of linear regions defined by a
trained network with a Mixed-Integer Linear Programming (MILP) formula-
tion [62]. Among other things, these formulations have also been used for net-
work verification [9], embedding the relationship between inputs and outputs of
a network into optimization problems [5,11,59], identifying stable neurons [69]
to facilitate adversarial robustness verification [75] as well as network compres-
sion [60,63], and producing counterfactual explanations [37]. Moreover, several
studies have analyzed and improved such formulations [1,2,8,15,61,63].

In these formulations, the parameters W l and bl of each layer l ∈ L are
constant while the decision variables are the inputs of the network (x = h0 ∈ X),
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the outputs before and after activation of each feedforward layer (gl ∈ R
nl and

hl ∈ R
nl
+ for l ∈ L), and the state of the neurons in each layer (zl ∈ {0, 1}nl for

l ∈ L). By mapping these variables according to the parameters of the network,
we can characterize every possible combination of inputs, outputs, and activation
states as distinct solutions of the MILP formulation. For each layer l ∈ L and
neuron i ∈ Nl, the following constraints associate the input hl with the outputs
gl
i and hl

i as well as with the neuron activation zl
i:

W l
ih

l−1 + bli = gl
i (3)

(zl
i = 1) → hl

i = gl
i (4)

(zl
i = 0) → gl

i ≤ 0 (5)

(zl
i = 0) → hl

i = 0 (6)

hl
i ≥ 0 (7)

zl
i ∈ {0, 1} (8)

The indicator constraints (4)–(6) can be converted to linear inequalities [7].
We can use such a formulation for counting the number of linear regions

based on the number of distinct solutions on the binary vectors zl for l ∈ L.
However, we must first address the implicit simplifying assumption allowing us
to assume that a neuron can be either active (zl

i = 1) or inactive (zl
i = 0) when

the preactivation output is zero (gl
i = 0) in (3)–(8). We can do so by maximizing

the value of a continuous variable that is bounded by the preactivation output
of every active neuron and the negated preactivation output of every inactive
neuron. In other words, we count the number of solutions on the binary variables
for the solutions with positive value for the following formulation:

max f (9)
s.t. (3) − (8) ∀l ∈ L, i ∈ Nl (10)

(zl
i = 1) → f ≤ gl

i ∀l ∈ L, i ∈ Nl (11)

(zl
i = 0) → f ≤ −gl

i ∀l ∈ L, i ∈ Nl (12)

h0 ∈ X (13)

We note that constraint (12) has not been used in prior work, where it is assumed
that the neuron is inactive when gl

i = 0 [61,62]. However, its absence makes
the counting of linear regions incompatible with the theory used to bound the
number of linear regions, which assumes that only full-dimensional linear regions
are valid. Hence, this represents a small correction to count all the linear regions.

Finally, we extend this formulation for counting linear regions on a subspace
of the input. This form of counting has been introduced by [25] for 1-dimensional
inputs and later extended by [26] to 2-dimensional inputs. Although far from
the upper bound, the number of linear regions can still be very large even for
networks of modest size, which makes the case for analyzing how neural networks
partition subspaces of the input. In prior work, 1 and 2-dimensional inputs have



210 J. Cai et al.

been considered as the affine combination of 1 and 2 samples with the origin, and
a geometric algorithm is used for counting the number of linear regions defined.
We present an alternative approach by adding the following constraint to the
MILP formulation above in order to limit the inputs of the neural network:

h0 = p0 +
S∑

i=1

αi(pi − p0) (14)

where {pi}Si=0 is a set of S + 1 samples and {αi}Si=1 is a set of S continuous
variables. One of these samples, say p0, could be chosen to the be origin.

6 Computational Experiments

We ran computational experiments aimed at assessing the following items:

(1) if accuracy after pruning and the number of linear regions are connected;
(2) if this connection also translates to the upper bound from Theorem 1; and
(3) if that bound can guide us on how much to prune from each layer.

Our experiments involved models trained on the datasets MNIST [41], Fash-
ion [74], CIFAR-10 [38], and CIFAR-100 [38]. We used multilayer perceptrons hav-
ing 20, 100, 200, and 400 neurons in each of their 2 fully-connected layers (denoted
as 2 × 20, 2 × 100, 2 × 200, and 2 × 400), and adaptations of the LeNet [41] and
AlexNet [39] architectures. For each choice of dataset and architecture used, we
trained and pruned 30 models. Only the fully-connected layers were pruned. In
the case of LeNet and AlexNet, we considered the output of the last convolutional
layer as the input for upper bound calculations, as if their respective dimensions
were 400×128×84 and 1024×4096×4096. We removed the weights with smallest
absolute value (magnitude pruning), using either the same density p on each layer
or choosing different densities while pruning the same number of parameters in
total. We discuss other experimental details later. The source code is available at
https://github.com/caidog1129/getting away with network pruning.

Experiment 1: We compared the mean accuracy of networks that are pruned
uniformly according to their network density with the number of linear regions
on subspaces defined by random samples from the datasets (Fig. 1) as well as
with the upper bound with input dimensions matching those subspaces (Fig. 2).
We used a simpler architecture (2×20) to keep the number of linear regions small
enough to count and a simpler dataset (MNIST) to obtain models with good
accuracy. In this experiment, we observe that indeed the number of linear regions
drops with network density and consequently with accuracy. However, the most
relevant finding is that the upper bound also drops in a similar way, even if its
values are much larger. This finding is important because it is actionable: if we
compare the upper bound resulting from different pruning strategies, then we
may prefer a pruning strategy that leads to a smaller drop in the upper bound.
Moreover, it is considerably cheaper to work with the upper bound since we do
not need to train neural networks and neither count their linear regions.

https://github.com/caidog1129/getting_away_with_network_pruning
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Fig. 1. Comparison between mean number of linear regions on the affine subspace
defined by S = 2, 3, or 5 sample points (olive curve) and mean test accuracy (blue
curve; right y axis) with the same density p used to prune both layers of the networks.
(Color figure online)

Fig. 2. Comparison between the upper bound from Theorem 1 (dashed blue curve) for
input dimension d = 1, 2, and 4 (equivalent to S = 2, 3, and 5) and mean test accuracy
(continuous blue curve; right y axis) for the same networks and densities from Fig. 1.
(Color figure online)

Experiment 2: We compared using the same density p in each layer with using
per layer densities as described in Sect. 4. We evaluated the simpler datasets
(MNIST, Fashion, and CIFAR-10) on the simpler architectures (multilayer per-
ceptrons and LeNet) in Fig. 3, where every combination of dataset and architec-
ture is tested to compare accuracy gain across network sizes and datasets. We set
aside the most complex architecture (AlexNet) and the most complex datasets
(CIFAR-10 and CIFAR-100) in Fig. 4. In this experiment, we observe that prun-
ing the fully-connected layers differently and oriented by the upper bound indeed
leads to more accurate networks. The difference between the pruning strategies
is noticeable once the network density starts impacting the network accuracy.
We intentionally evaluated network densities leading to very different accuracies
and all the way to a complete deterioration of network performance, and we
notice that the gain is consistent across all of them. If the number of parameters
is similar across fully-connected layers, such as in the case of 2 × 400, we notice
that the gain is smaller because more uniform densities are better for the upper
bound. Curiously, we also observe a relatively greater gain with our pruning
strategy for CIFAR-10 on multilayer perceptrons.

Additional Details: Each network was trained for 15 epochs using stochastic
gradient descent with batch size of 128 and learning rate of 0.01, pruned, and
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Fig. 3. Comparison between the mean test accuracy as fully-connected layers are
pruned using the baseline method and our method with each network density p. In the
baseline method, the same density is used in all layers (blue curve). In our method,
layer densities are chosen to maximize the bound from Theorem 1 while pruning the
same number of parameters (orange curve). The accuracy gain from using our method
instead of the baseline is shown in the scaled columns (maroon bars; right y axis).
Each column refers to a dataset among MNIST, Fashion, and CIFAR-10. Each row
refers to an architecture among multilayer perceptrons (2× 100, 2× 200, and 2× 400)
and LeNet. We test every combination of dataset and architecture. (Color figure online)
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Fig. 4. Comparison between mean test accuracy for the same strategies as in Fig. 3 for
the AlexNet architecture, in which we test the datasets CIFAR-10 and CIFAR-100.

then fine-tuned with the same hyperparameters for another 15 epochs. We have
opted for magnitude-based pruning due to its simplicity, popularity, and frequent
use as a component of more sophisticated pruning algorithms [6,16]. Our imple-
mentation is derived from the ShrinkBench framework [6]. In the baseline that
we used, we opted for removing a fixed proportion of parameters from each layer
(layerwise pruning) to avoid disconnecting the network, which we observed to
happen under extreme sparsities if the parameters with smallest absolute value
were mostly concentrated in one of the layers. We measured the mean network
accuracy before pruning, which corresponds to network density p = 1, as well
as for another seven values of p. In the experiments in Fig. 3, the choices of p
were aimed at gradually degrading the accuracy toward random guessing, which
corresponds to accuracy 10% accuracy in those datasets with 10 balanced classes
(MNIST, Fashion, and CIFAR-10). In the experiments with AlexNet in Fig. 4,
we aimed for a similar decay in performance.

Upper Bound Calculation: Estimating the probabilities P (k|R,C, S) in The-
orem 1 is critical to calculate the upper bound. For multilayer perceptrons and
LeNet, we generated a sample of matrices with the same shape as the weight
matrix for each layer and in which every element is randomly drawn from the
normal distribution with mean 0 and standard deviation 1. These matrices were
randomly pruned based on the density p, which may have been the same for
every layer or may varied per layer as discussed later, and then their rank was
calculated. We first generated 50 such matrices for each layer, kept track the
minimum and maximum rank values obtained, minr and maxr, and then gener-
ated more matrices until the number of matrices generated was at least as large
as (maxr −minr +1) ∗ 50. For example, 50 matrices are generated if the rank
is always the same, and 500 matrices are generated if the rank goes from 11 to
20. Finally, we calculated the probability of each possible rank based on how
many times that value was observed in the samples. For example, if 10 out of
500 matrices have rank 11, then we assumed a probability of 2% for the rank
of the matrix to be 11. For AlexNet, the time required for sampling is consider-
ably longer. Hence, we resorted to an analytical approximation which is faster
but possibly not as accurate. For an m × n matrix, m ≤ n, with density p, the
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probability of all the elements being zero in a given row is (1 − p)n. We can
overestimate the rank of the matrix as the number of rows with nonzero ele-
ments, which then corresponds to a binominal probability distribution with m
independent trials having each a probability of success given by 1− (1−p)n. For
2 × 100, calculating the upper bound takes 15–20 s with sampling and 0.5–1 s
with the analytical approximation. For 2 × 400, we have 10–20 min vs. 20 s. For
AlexNet, the analytical approximation takes 20 min.

7 Conclusion

In this work, we studied how the theory of linear regions can help us identify
how much to prune from each fully-connected feedforward layer of a neural net-
work. First, we proposed an upper bound on the number of linear regions based
on the density of the weight matrices when neural networks are pruned. We
observe from Fig. 2 that the upper bound is reasonably aligned with the impact
of pruning on network accuracy. Second, we proposed a method for counting the
number of linear regions on subspaces of arbitrary dimension. In prior work, the
counting of linear regions in subspaces is restricted to at most 3 samples and
thus dimension 2 [26]. We observe from Fig. 1 to the number of linear regions is
also aligned with the impact of pruning on network accuracy—although not as
accurately as the upper bound. Third, and most importantly, we leverage this
connection between the upper bound and network accuracy under pruning to
decide how much to prune from each layer subject to an overall network density
p. We observe from Fig. 3 that we obtain considerable gains in accuracy across
varied datasets and architectures by pruning from each layer in a proportion that
improves the upper bound on the number of linear regions rather than pruning
uniformly. These gains are particularly more pronounced when the number of
parameters differs across layers. Hence, the gains are understandably smaller
when the width of the layers increases (from 100 to 200 and 400) but greater
when the size of the input increases (from 784 for MNIST and Fashion to 3,072
for CIFAR-10 with a width of 400). We also obtain positive results with pruning
fully connected layers of convolutional networks as illustrated with LeNet and
AlexNet, and in future work we intend to investigate how to also make decisions
about pruning convolutional filters. Althought we should not discard the pos-
sibility of a confounding factor affecting both accuracy and linear regions, our
experiments indicate that the potential number of linear regions can guide us on
pruning more from neural networks with less impact on accuracy.

Acknowledgments. We would like to thank Christian Tjandraatmadja, Anh Tran,
Tung Tran, Srikumar Ramalingam, and the anonymous reviewers for their advice and
constructive feedback. Junyang Cai, Khai-Nguyen Nguyen, Nishant Shrestha, Aidan
Good, Ruisen Tu, and Thiago Serra were supported by the National Science Foundation
(NSF) award IIS 2104583. Xin Yu and Shandian Zhe were supported by the NSF
CAREER award IIS 2046295.



Getting Away with More Network Pruning 215

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

2. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-
integer programming formulations for trained neural networks. In: Lodi, A.,
Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 27–42. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17953-3 3

3. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. In: ICLR (2018)

4. Baykal, C., Liebenwein, L., Gilitschenski, I., Feldman, D., Rus, D.: Data-dependent
coresets for compressing neural networks with applications to generalization
bounds. In: ICLR (2019)

5. Bergman, D., Huang, T., Brooks, P., Lodi, A., Raghunathan, A.: JANOS: an inte-
grated predictive and prescriptive modeling framework. INFORMS J. Comput. 34,
807–816 (2022)

6. Blalock, D., Ortiz, J., Frankle, J., Guttag, J.: What is the state of neural network
pruning? In: MLSys (2020)

7. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming
with indicator constraints. Math. Program. 151(1), 191–223 (2015). https://doi.
org/10.1007/s10107-015-0891-4

8. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient veri-
fication of ReLU-based neural networks via dependency analysis. In: AAAI (2020)

9. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

10. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2, 303–314 (1989). https://doi.org/10.1007/BF02551274

11. Delarue, A., Anderson, R., Tjandraatmadja, C.: Reinforcement learning with com-
binatorial actions: an application to vehicle routing. In: NeurIPS (2020)

12. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., Freitas, N.: Predicting parameters
in deep learning. In: NeurIPS (2013)

13. Dong, X., Chen, S., Pan, S.: Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In: NeurIPS (2017)

14. Elesedy, B., Kanade, V., Teh, Y.W.: Lottery tickets in linear models: an analysis
of iterative magnitude pruning (2020)

15. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

16. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. In: ICLR (2019)

17. Funahashi, K.I.: On the approximate realization of continuous mappings by neural
networks. Neural Netw. 2(3) (1989)

18. Ganev, I., Walters, R.: Model compression via symmetries of the parameter space
(2022). https://openreview.net/forum?id=8MN GH4Ckp4

19. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AIS-
TATS (2011)

20. Good, A., et al.: Recall distortion in neural network pruning and the undecayed
pruning algorithm. In: NeurIPS (2022)

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-030-17953-3_3
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/s10601-018-9285-6
https://openreview.net/forum?id=8MN_GH4Ckp4


216 J. Cai et al.

21. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. In: ICML (2013)

22. Gordon, M., Duh, K., Andrews, N.: Compressing BERT: studying the effects of
weight pruning on transfer learning. In: Rep4NLP Workshop (2020)

23. Han, S., Mao, H., Dally, W.: Deep compression: compressing deep neural networks
with pruning, trained quantization and Huffman coding. In: ICLR (2016)

24. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: NeurIPS (2015)

25. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: ICML
(2019)

26. Hanin, B., Rolnick, D.: Deep ReLU networks have surprisingly few activation pat-
terns. In: NeurIPS (2019)

27. Hanin, B., Sellke, M.: Approximating continuous functions by ReLU nets of mini-
mal width. arXiv:1710.11278 (2017)

28. Hanson, S., Pratt, L.: Comparing biases for minimal network construction with
back-propagation. In: NeurIPS (1988)

29. Hassibi, B., Stork, D.: Second order derivatives for network pruning: optimal Brain
Surgeon. In: NeurIPS (1992)

30. Hassibi, B., Stork, D., Wolff, G.: Optimal brain surgeon and general network prun-
ing. In: IEEE International Conference on Neural Networks (1993)

31. Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep
learning: pruning and growth for efficient inference and training in neural networks.
arXiv:2102.00554 (2021)

32. Hooker, S., Courville, A., Clark, G., Dauphin, Y., Frome, A.: What do compressed
deep neural networks forget? arXiv:1911.05248 (2019)

33. Hooker, S., Moorosi, N., Clark, G., Bengio, S., Denton, E.: Characterising bias in
compressed models. arXiv:2010.03058 (2020)

34. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5) (1989)

35. Janowsky, S.: Pruning versus clipping in neural networks. Phys. Rev. A (1989)
36. Jin, T., Roy, D., Carbin, M., Frankle, J., Dziugaite, G.: On neural network prun-

ing’s effect on generalization. In: NeurIPS (2022)
37. Kanamori, K., Takagi, T., Kobayashi, K., Ike, Y., Uemura, K., Arimura, H.:

Ordered counterfactual explanation by mixed-integer linear optimization. In: AAAI
(2021)

38. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report, University of Toronto (2009)

39. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

40. Lebedev, V., Lempitsky, V.: Fast ConvNets using group-wise brain damage. In:
CVPR (2016)

41. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE (1998)

42. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: NeurIPS (1989)
43. Lee, N., Ajanthan, T., Torr, P.: SNIP: single-shot network pruning based on con-

nection sensitivity. In: ICLR (2019)
44. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.: Pruning filters for efficient

convnets. In: ICLR (2017)
45. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape

of neural nets. In: NeurIPS (2018)

http://arxiv.org/abs/1710.11278
http://arxiv.org/abs/2102.00554
http://arxiv.org/abs/1911.05248
http://arxiv.org/abs/2010.03058


Getting Away with More Network Pruning 217

46. Liebenwein, L., Baykal, C., Carter, B., Gifford, D., Rus, D.: Lost in pruning: the
effects of pruning neural networks beyond test accuracy. In: MLSys (2021)

47. Liebenwein, L., Baykal, C., Lang, H., Feldman, D., Rus, D.: Provable filter pruning
for efficient neural networks. In: ICLR (2020)

48. Liu, S., et al.: Sparse training via boosting pruning plasticity with neuroregenera-
tion. In: NeurIPS (2021)

49. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural net-
works: a view from the width. In: NeurIPS (2017)

50. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: ICLR (2017)
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71. Tseran, H., Montúfar, G.: On the expected complexity of maxout networks. In:

NeurIPS (2021)

http://arxiv.org/abs/2009.09936
https://doi.org/10.1007/978-3-030-58942-4_27


218 J. Cai et al.

72. Wang, C., Grosse, R., Fidler, S., Zhang, G.: EigenDamage: structured pruning in
the Kronecker-factored eigenbasis. In: ICML (2019)

73. Wang, C., Zhang, G., Grosse, R.: Picking winning tickets before training by pre-
serving gradient flow. In: ICLR (2020)

74. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv:1708.07747 (2017)

75. Xiao, K., Tjeng, V., Shafiullah, N., Madry, A.: Training for faster adversarial
robustness verification via inducing ReLU stability. In: ICLR (2019)

76. Xing, X., Sha, L., Hong, P., Shang, Z., Liu, J.: Probabilistic connection importance
inference and lossless compression of deep neural networks. In: ICLR (2020)

77. Xiong, H., Huang, L., Yu, M., Liu, L., Zhu, F., Shao, L.: On the number of linear
regions of convolutional neural networks. In: ICML (2020)

78. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural
Netw. 94 (2017)

79. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation.
In: CVPR (2018)

80. Yu, X., Serra, T., Ramalingam, S., Zhe, S.: The combinatorial brain surgeon: prun-
ing weights that cancel one another in neural networks. In: ICML (2022)

81. Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of
space by hyperplanes. Am. Math. Soc. (1975)

82. Zeng, W., Urtasun, R.: MLPrune: multi-layer pruning for automated neural net-
work compression (2018)

http://arxiv.org/abs/1708.07747

	Getting Away with More Network Pruning: From Sparsity to Geometry and Linear Regions
	1 Introduction
	2 Notation
	3 The Linear Regions of Pruned Neural Networks
	4 Pruning Based on Linear Regions
	5 Counting Linear Regions in Subspaces
	6 Computational Experiments
	7 Conclusion
	References




