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Abstract. We study the automatic generation of primal and dual
bounds from decision diagrams in constraint programming. In particu-
lar, we expand the functionality of the Haddock system to optimization
problems by extending its specification language to include an objective
function. We describe how restricted decision diagrams can be compiled
in Haddock similar to the existing relaxed decision diagrams. Together,
they provide primal and dual bounds on the objective function, which
can be seamlessly integrated into the constraint programming search.
The entire process is automatic and only requires a high-level user model
specification. We evaluate our method on the sequential ordering prob-
lem and compare the performance of Haddock to a dedicated decision
diagram approach. The results show that Haddock achieves compara-
ble results in similar time, demonstrating the viability of our automated
decision diagram procedures for constraint optimization problems.

Keywords: Decision Diagrams · Constraint Programming Systems ·
Optimization Bounds

1 Introduction

Constraint Programming (CP) traditionally focuses on feasibility solving for
Constraint Satisfaction Problems (CSP). Namely, it focuses on finding either one
or all feasible solutions to a CSP 〈X,D,C〉. The ability to tackle optimization
problems is added by solving a sequence of CSPs, each one with an additional
constraint that requires the production of a solution that improves upon the last
incumbent solution. Naturally, the last problem in the sequence is infeasible and
the entire search tree itself is the optimality certificate. While search strategies
to explore this search tree vary, the most common choice is a depth first search
on a search tree dynamically-defined with variable and value selection heuristics.
Black-box searches [4,9,13,14] provide pre-defined variable and value selection
heuristics and non-sequential strategies such as limited discrepancy search offer
compositional solutions to consider alternative strategies that remain orthogonal
to the objective function.
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Fig. 1. Overview of automatic MDD-based constraint programming in Haddock on
an example constraint optimization problem 〈X, D, C, f〉 with variables X, domains D,
constraints C and objective function f . The constraint programming search employs a
branch-and-bound best-first strategy (BFS). The MDD specification and compilation
are derived automatically from the model declaration.

Mixed Integer Programming (MIP) solvers employ a different strategy. They
rely on a linear relaxation of the MIP model that removes integrality constraints
and leverage a linear programming solver to obtain a dual bound. MIP solvers
then use branch-and-bound style techniques to organize and explore the frontier
of nodes to be expanded. Like CP solvers, MIP solvers primarily rely on the
search process to produce a sequence of improving incumbents (thus, tightening
the primal bound), though techniques such as probing or the feasibility pump [5]
offer additional mechanisms to tighten the primal bound. The dual bounds pro-
duced at each node by the relaxation give a mechanism to prioritize nodes in
the frontier and explore the most promising options first.

Multi-valued decision diagrams (MDDs) were recently introduced as an effec-
tive tool to derive optimization bounds for discrete optimization problems, and
embed these in a branch-and-bound search [2]. This paper explores the use of
MDDs as a systematic mechanism to leverage both primal and dual bounds
within a CP solver to enable MIP-style branch-and-bound search within the
confines of a CP solver. Haddock was introduced as a generic architecture and
language for MDD propagation in a CP framework [6]. To this end, we extend
the existing Haddock framework to allow its use in optimization problems and
derive both classes of bounds for problems that are expressible as an MDD in the
Haddock language. A schematic overview is depicted in Fig. 1 on an example
constraint optimization problem (COP), that has a weighted sum as objective
function, an alldiff constraint, and precedence constraints (defined on a set
Prec). In addition to automatically deriving an MDD specification for each con-
straint [6], we now also derive an MDD specification for the objective function.
The specification language is compositional, which means that Haddock can
take the conjunction of all MDD specifications to compile a single MDD. By
adding the objective specification, the MDD can now be automatically used to
derive primal and dual bounds during the CP search. For the primal bound, we
assume that all constraints are represented in the MDD.
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Contributions. Our main contributions are 1) a formal MDD specification
for objective functions in CP systems, 2) a procedure to compile a restricted
decision diagram using the MDD specification, 3) integrating the primal and dual
bounds from the MDD into a CP search, and 4) demonstrating the abilities of
the framework on the sequential ordering problem as a concrete application. The
empirical results show that Haddock offers comparable performance relative to
a dedicated implementation of an MDD-based branch-and-bound search method.

Section 2 gives an overview of the formalization used in Haddock. Section 3
provides the necessary additions to allow Haddock to communicate with an
objective variable. Section 4 covers the use of the language for building restricted
MDDs to obtain primal bounds. Section 5 describes how to do a best-first search
using Haddock. Finally, Sect. 6 reports on the empirical results, and Sect. 7
concludes the paper.

2 Background

2.1 MDD as Layered Transition System

Following [6], we formally define an MDD as a labeled transition system [11]:

Definition 1. A labeled transition system is a triplet 〈S,→, Λ〉 where S is a
set of states, → is a relation of labeled transitions between states from S, and Λ
is a set of labels used to tag transitions.

Definition 2. Given an ordered set of variables X = {x1, . . . , xn} with domains
D(x1) through D(xn), a multi-valued decision diagram (MDD) on X is a layered
transition system 〈S,→, Λ〉 in which:

– the state set S is stratified in n+1 layers L0 through Ln with transitions from
→ connecting states between layers i and i + 1 exclusively;

– the transition label set Λ is defined as
⋃

i∈1..n D(xi);
– a transition between two states a ∈ Li−1 and b ∈ Li carries a label v ∈ D(xi)

(i ∈ 1..n);
– the layer L0 consists of a single source state s⊥;
– the layer Ln consists of a single sink state s�.

An MDD M can represent a constraint set with specific state definitions and
transition functions. If each solution in the constraint set is represented by an
s⊥-s� path in M , and vice-versa, M is exact. If M represents a superset of
the solutions of the constraint set, it is relaxed. If M represents a subset of the
solutions of the constraint set, it is restricted. In Haddock, states consist of
integer-valued sets of properties to represent the constraints. We next describe
how these are used to automatically compile the LTS, using the among constraint
as an illustration. For a complete description, we refer to [6].



Optimization Bounds from Decision Diagrams in Haddock 153

2.2 State Properties

Recall the definition of the among global constraint on an ordered set X of n
variables [1]. It counts the number of occurrences of values taken from a given
set Σ and ensures that the total number is between l and u, i.e.,

among(X, l, u,Σ) := l ≤
n∑

i=1

(xi ∈ Σ) ≤ u.

A state for among(X, l, u,Σ) carries four properties, i.e., 〈L↓, U↓, L↑, U↑〉, for
each node v in the MDD:

– L↓ ∈ Z: minimum number of times a value in Σ is taken from s⊥ to v.
– U↓ ∈ Z: maximum number of times a value in Σ is taken from s⊥ to v.
– L↑ ∈ Z: minimum number of times a value in Σ is taken from v to s�.
– U↑ ∈ Z: maximum number of times a value in Σ is taken from v to s�.

We initialize the state for the source s⊥ as 〈0, 0,−,−〉 and the sink s� as
〈−,−, 0, 0〉.

2.3 Transition Functions

The transition between a node a ∈ Li−1 and b ∈ Li is an arc (a, b) labeled
by a value � ∈ D(xi). We use transition functions T ↓(a, b, i, �) and T ↑(b, a, i, �)
to derive the property values (the states) for b and a, respectively. For each
individual property p, we use the function f(s, p, �) for a given state s. For among,
we apply f(s, p, �) = p(s) + (� ∈ Σ) for each property p in 〈L↓, U↓, L↑, U↑〉. For
example, we define L↓(b) = f(a, L↓, �), i.e., L↓(a) + (� ∈ Σ). We likewise define
L↑(a) = f(b, L↑, �), U↓(b) = f(a, U↓, �) and U↑(a) = f(b, U↑, �). The state-level
transition functions T ↓ and T ↑ compute all the down or up properties of the
next state as follows:

T ↓(a, b, i, �) = 〈f(a, L↓, �), f(a, U↓, �),−,−〉
T ↑(b, a, i, �) = 〈−,−, f(b, L↑, �), f(b, U↑, �)〉.

Note that slight variants of both functions that preserve the properties of states
b and a, respectively, in the opposite directions are equally helpful. Those are:

T ↓(a, b, i, �) = 〈f(a, L↓, �), f(a, U↓, �), L↑(b), U↑(b)〉
T ↑(b, a, i, �) = 〈L↓(a), U↓(a), f(b, L↑, �), f(b, U↑, �)〉.

2.4 Transition Existence Function

The transition existence function Et(a, b, i, �) specifies whether an arc (a, b) with
label � ∈ D(xi) exists in the LTS. For among, this function should ensure that
the lower bound l is met and the upper bound u is not exceeded, i.e.:

U↓(a) + (� ∈ S) + U↑(b) ≥ l ∧ L↓(a) + (� ∈ S) + L↑(b) ≤ u.
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2.5 Node Relaxation Functions

Two states a and b in the same layer Li can be relaxed (merged) to produce a
new state s′ according to a relaxation function R(a, b). For among, we can use:

R(a, b) = 〈 min{L↓(a), L↓(b)},max{U↓(a), U↓(b)},
min{L↑(a), L↑(b)},max{U↑(a), U↑(b)} 〉.

State relaxation generalizes to an ordered set of states {s0, s1, . . . , sk−1} as fol-
lows:

R(s0, R(s1, R(. . . , R(sk−2, sk−1) . . . ))).

For among, we maintain MDD-bounds consistency on this expression, i.e.,
we only maintain a lower and upper bound on the count to ensure feasibility
and rely on the above relaxation function to merge nodes and bound the width
of the MDD to at most w states. The usage of a relaxation is precisely why we
maintain bounds (L and U) in both up and down directions. Note that full MDD
consistency for among can be established in polynomial time by maintaining a
set of exact counts [10].

2.6 MDD Language

All of the above are used to define an MDD language used to generate an MDD
for propagation:

Definition 3 (MDD Language). Given a constraint c(x1, . . . , xn) over an
ordered set of variables X = {x1, . . . , xn} with domains D(x1), . . . , D(xn) the
MDD language for c is a tuple Mc = 〈X,P, s⊥, s�, T ↓, T ↑, U,Et, Es, R,H〉
where P is the set of properties used to model states, s⊥ is the source state, s�
is the sink state, T ↓ is the forward state transition function, T ↑ is the reverse
state transition function, U is the state update function [6], Et is the transition
existence function, Es is the state existence function [6], R is the state relaxation
function, and H is the trio of heuristics controlling the refinement process [7].

3 MDDs for Optimization

Consider a COP 〈X,D,C, f〉 to be solved within the Haddock MDD frame-
work. Without loss of generality, assume for now that for all constraints in C,
Haddock has an MDD language for that constraint. Compiling the COP to
solve it within Haddock requires one to compose the MDD languages for each
constraint c ∈ C as well as an MDD language for the objective function f . To
carry out this compilation, one must rewrite the objective function {min,max}f
into an additional constraint of the form z = f where z is an auxiliary variable,
replace the objective with {min,max} z, and obtain an MDD language for this
objective to be composed with the rest.

Some restrictions on f are needed. Since it is meant to model some form of
transition costs over prefixes of the variable list, it is required to be separable
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(e.g., additive). Any inductive definition for f would meet this requirement. A
simple example is

∑n
i=1(xi ∈ Σ) which counts the number of variables taking

their value from a prescribed set Σ. Likewise, a weighted sum
∑n

i=1 wixi that
captures transition costs is acceptable.

Definition 4 (MDD Language for Objective Function). Given an objec-
tive function {min,max}f(x1, . . . , xn) over an ordered set of variables X =
{x1, . . . , xn} with domains D(x1), . . . , D(xn) let the auxiliary z be defined as
z = f(x1, . . . , xn) and the concrete objective be {min,max} z. Then, the MDD
language for the objective {min,max} f is

Mf = 〈X,P, s⊥, s�, T ↓, T ↑,−, Et,−, R,−, {min,max} z〉
where P is the set of properties used to model states (for z = f(x1, . . . , xn)),
s⊥ is the source state, s� is the sink state, T ↓ is the forward state transition
function, T ↑ is the reverse state transition function, Et is the transition existence
function, and R is the state relaxation function. Dashes denotes the absence of
state update, state existence, and heuristic bundles.

A few observations are in order. First, the auxiliary z is not a model variable
and therefore does not occupy a layer in the MDD. Second, the auxiliary z
is typically used within Et to filter arcs that cannot produce solutions of the
desired quality. Third, the source and sink states, respectively s⊥ and s�, hold
properties related to f (and therefore z) that pertain to all source-sink paths in
the MDD and will be used to read both primal and dual bounds. Fourth, internal
states of the MDD hold properties for f that are related to the source-sink paths
going through that specific node.

Example 1 (Minimize a Weighted Sum Objective). For the objective function
min

∑n
i=1 wi · xi, the auxiliary z is defined as z =

∑n
i=1 wi · xi and is associated

to properties L and U giving the lower and upper bounds on f in both the up
and down directions in the diagram. As a result, the values L↓(s�) and L↑(s⊥)
represent a lower bound1 for z in a relaxed MDD while, for any internal state s,
L↓(s)+L↑(s) denotes z’s bound for any internal state for all paths going through
s. The transition functions are simply

T ↓(a, b, i, �) = 〈L↓(a) + (wi · �), U↓(a) + (wi · �), L↑(b), U↑(b)〉
T ↑(b, a, i, �) = 〈L↓(a), U↓(a), L↑(b) + (wi · �), U↑(b) + (wi · �)〉

while the relaxation of two states a and b is:

R(a, b) = 〈 min{L↓(a), L↓(b)},max{U↓(a), U↓(b)},
min{L↑(a), L↑(b)},max{U↑(a), U↑(b)} 〉

The arc existence function meant to test the viability of a value � ∈ D(xi) to
connect states a and b is

Et(a, b, i, �) = U↓(a)+wi · �+U↑(b) ≥ min(z) ∧ L↓(a)+wi · �+L↑(b) ≤ max(z)
1 For a maximization, U↓(s�) and U↑(s⊥) give the upper bound.
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To derive the Haddock MDD language from a COP 〈X,D,C, f〉, it suffices
to compile

M =
∧

c∈C

Mc ∧ Mf

in which ∧ is the MDD composition operator. To search for a global optimum
over D using Haddock, one must instantiate propagators for M. While it is
often not tractable to maintain an exact MDD, it is natural to rely instead on
relaxed and restricted MDD propagators to derive dual and primal bounds and
carry out a branch-and-bound search. Given a maximum width w, we can obtain:

Relaxed MDD Let M be the relaxed MDD (to width w) where nodes are
merged within each layer to never exceed width w;

Exact MDD Let M∗ be the exact MDD;
Restricted MDD Let M be the restricted MDD (to width w) in which overflow

nodes are discarded.

Note that the maximum width w together with the MDD language and a given
COP instance will yield a unique relaxed or restricted diagram. (Exact diagrams
are always unique for a given variable ordering.) This is because the MDD lan-
guage also controls any heuristic compilation choices. Therefore, so long as the
heuristics do not introduce any randomness, the relaxed or restricted MDD will
be unique.

For a decision diagram M , let Ψ(M) be the set of solutions (s⊥-s� paths)
encoded by M . By construction, we can obtain a bound on z by reading
M.L↓(s�) from the sink state of M . We have the following results [2]:

Proposition 1. Ψ(M) ⊆ Ψ(M∗) ⊆ Ψ(M).

Proposition 2. M.L↓(s�) ≤ M∗.L↓(s�) ≤ M.L↓(s�).

That is, the relaxed MDD M delivers a dual bound while the restricted MDD
M delivers a primal bound.

Example 2 (COP). Consider the COP defined over X = {x1, . . . , x4}, z ∈
{0, . . . , 4}, and D(xi) ∈ {0, 1} for i = 1, . . . , 4:

COP = 〈X,D, {among(X, 1, 3, {1})},min
4∑

i=1

(xi ∈ {1})〉

With the auxiliary z =
∑4

i=1 (xi ∈ {1}), the MDD language from M = Mamong∧
Msum ∧ Mmin z models the COP. It can be used to compile a relaxed, exact,
and restricted diagram as shown in Fig. 2, where we impose a maximum width
2 on the relaxed and restricted MDDs. Each state is labeled with properties
(L↓, U↓, L↑, U↑).2

2 With a slight abuse of notation as we do not repeat the bounds on z and among since
those properties are identical.
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Fig. 2. MDDs for the COP 〈X, D, {among(X, 1, 3, {1})},min
∑4

i=1 (xi ∈ {1})〉 of Exam-
ple 2.

The CP solver maintains the relaxed and restricted variants within propa-
gators and uses the bounds to drive the search, i.e., z is tightened using both
M.L↓(s�) and M.L↓(s�). While the Exact MDD only contains paths with sums
between 1 and 3, the Relaxed MDD includes paths of value 0 and 4, and the
Restricted only contains paths of values 2 and 3. Observe that M.L↓(s�) yields
a primal bound of value 2 while M.L↓(s�) delivers a dual bound of value 0.

4 Restricted Decision Diagrams

Reference [6] offers a way to compile a propagator for the relaxed diagram M .
This section adapts the mechanism to produce a propagator for the restricted
diagram M , meant to run at a higher priority, to compute primal bounds. When
the propagator runs, if the restricted MDD is feasible, the best path through
the restricted diagram from source to sink spells out a witness solution and
its objective value which can be submitted to the solver as a new incumbent
(and therefore trigger the usual addition of a global optimality cut based on this
primal value). The restricted MDD construction is shown in Algorithm 1. The
main loop (lines 2–9) constructs the layers sequentially. Each iteration starts
with an empty layer and considers every node and outgoing arc from the prior
layer (line 3). If the arc exists, then the transition T ↓ produces a new state that is
added to layer Li. The loop on lines 8–9 trims layer i until it reaches the desired
width, discarding the arcs chosen by the selectState heuristic introduced in [7].
Lines 10–13 conclude by connecting nodes of the penultimate layer to the sink
and making use of the relaxation function R. Note that R is not used anywhere
else, preferring instead to discard overflowing states. When creating a restricted
MDD with top-down compilation, there are no bottom-up properties, hence the
transition existence function must be updated to include this possibility. In place
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Algorithm 1. buildRestrictedMDD(M, [x1, . . . , xn], width)
1: L0 = {s⊥}, Ln = {s�}, Li = ∅ ∀i ∈ 1..n − 1, A = ∅
2: for i ∈ 1..(n − 1) do
3: for s ∈ Li−1 and � ∈ D(xi) do
4: if Et(s, −, i, �) then
5: s′ = T ↓(s, −, i, �)
6: Li = Li ∪ s′

7: A = A ∪ s
�→ s′

8: while |Li| > width do
9: Li = Li\selectState(Li)

10: for s ∈ Ln−1 and � ∈ D(xn) do
11: if Et(s, −, n, �) then
12: s� = R(s�, T ↓(s, −, i, �))

13: A = A ∪ s
�→ s�

14: return 〈[L0, · · · , Ln], A〉

Algorithm 2. Filter FM over variables X for MDD language M and width w

1: M = buildRestrictedMDD(M, X, w)
2: for f ∈ solver.onSolCallbacks do
3: f(bestPath(M.s⊥, M.s�),M.L↓(s�))
4: if M is exact then
5: failNow()

of bottom-up properties, one can use the rough relaxed bounds introduced in [8].
Line 14 returns the produced restricted diagram.

4.1 Restricted MDDs in Haddock Propagation

Algorithm 2 gives the pseudocode of the restricted propagator. Line 1 builds
the restricted diagram (these are not reused across invocations) for the MDD
language M defined over variables in X. The loop on lines 2–3 iterates over
the list of callbacks passing down the witness solution for the best path in M
together with the primal bound for it, i.e., M.L↓(s�). As long as the callback
tightens z’s upper bound, the COP will be required to improve the incumbent for
the remainder of the execution. Finally, line 4 determines whether the diagram
is exact or not. If it is exact, then it contains the optimal solution and the search
can stop.

4.2 Relaxed MDDs in Haddock Propagation

The propagator for the relaxed MDD M is unchanged from [6]. The only dif-
ference is that the propagator is accessible by the search procedure as an oracle
capable of producing a dual bound on request (produced at its last fixpoint).
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4.3 Restricted MDDs and Constraints External to the MDD

One of the strengths of Haddock is the ability to support additional constraints
with their own propagators within a single solver. The algorithms presented here
assume that all constraints are embedded in one MDD. This assumption means
every s⊥-s� path in a restricted MDD corresponds to a feasible solution. If some
constraints are external to the MDD, a solution sent to the solver on Line 3 of
Algorithm 2 may violate one or more of those external constraints. Thankfully
in this case, the callback f can invoke a sub-solver for all external constraints
based on the binding imposed by the witness solution it receives to verify their
feasibility. Note that this can entail a nested search [17]. For brevity’s sake, this
paper only considers models where the MDD contains all constraints.

5 Best-First Search

CP often uses a depth-first search and relies on optimality cuts to discard sub-
trees that cannot improve upon the incumbent. With both a primal and a dual
bound, a best-first search strategy becomes feasible. Consider Algorithm 3 mod-
eled after the DFS in miniCP [12]. Lines 1 and 2 specify the propagators for the
restricted and the relaxed MDDs, respectively, of width w associated to M. Line
3 creates a priority queue and populates it with an initial problem where the
constraints and objective function f are embedded in M . A trivial upper bound
for the primal is set to +∞ (without loss of generality, we assume a minimiza-
tion). Line 5 adds an anonymous function to be called each time an incumbent
is produced. The purpose of this lambda is to tighten the primal bound. Lines
6–14 offer the main loop. Each iteration starts in line 7 with pulling the most
promising node from the queue. Line 8 propagates this node fully with the filter-
ing associated to all constraints to obtain the refined domains D′. Line 9 picks
a variable to branch on (i.e., xi). The loop spanning lines 10–14 considers each
value v in turn. Line 11 queries layer i of the relaxed MDD to retrieve the state
reachable via value v, and line 12 recovers the dual bound for that node. If the
node appears viable (line 13), a problem is added to the queue with the revised
domain, the binding of xi to v, and the tightening of the objective.

A few observations are worth making:

– The propagator for FM should be scheduled at a higher priority than the
propagator for FM since it is cheaper to compute and has the potential to
end the search early. This is easy to achieve with any solver that has at least
2 priority lists.

– The BFS implementation outline above adopts a lazy technique by only
enqueueing the specification of the new search node in queue on line 14 and
propagating the effect of the branching constraint only where the node is
de-queued on line 7. This lazy strategy dominates the eager when a node is
propagated before being added to the queue. The rationale is that propaga-
tion is relatively expensive in the context of MDD solvers where a substantial
computational effort is expanded when refining the MDD. BFS nodes that are
ultimately fathomed do not have to carry this burden in the lazy approach.
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Algorithm 3. BFS(X = [x1, . . . , xn],D,M, f, w)
1: FM = filtering function for the restricted MDD M of width w
2: FM = filtering function for the relaxed MDD M of width w
3: queue = {(〈X, D, {M, M}〉, −∞)}
4: primal = +∞
5: solver.onSolution(λX.λz → primal = min(primal, z))
6: while queue 
= ∅ do
7: (〈X, D, C〉, _) = queue.extractBest()
8: D′ = FC(D)
9: i = min

1...n
{i | xi is not bound}

10: for v ∈ D(xi) do
11: s = M .Li.stateWithIncomingArc(v)
12: dual = L↓(s) + L↑(s)
13: if dual < primal then
14: queue = queue ∪ (〈X, D′, C ∪ {xi = v, f ≥ dual}〉, dual)

– When branching on xi, every variable sequentially before xi is bound. This
ensures that every earlier layer in the MDD consists of a single state with
one outgoing arc. As a result, when obtaining the state reachable via value
v (line 11), there can be only one state because the previous layer consists
of a single node. If using a branching technique that does not ensure every
previous variable is bound, then there may be multiple states in Li reachable
via v. In this case, the dual bound on layer 12 would instead be the minimum
across all such states in Li.

– This search bears similarities to the MDD-based branch-and-bound proposed
in [3]. In [3], the branching is done on MDD nodes from cutsets consisting
exclusively of exact nodes, i.e. nodes whose states did not require merging,
and required that every s⊥-s� path takes at least one node in the cutset. This
paper intentionally applied a traditional CP style branching on variables. Yet,
it is possible to adopt the same cutset branching provided that the necessary
API is provided on an MDD propagator, a task reserved for future work.

6 Empirical Evaluation

Haddock is part of MiniC++, a C++ implementation of the MiniCP specifica-
tion [12]. All benchmarks were executed on a Intel Xeon CPU E5-2640 v4 at
2.40 GHz with 32 GB.

Comparison to MDD-Based Branch and Bound. We compare constraint
optimization in HADDOCK to the dedicated MDD-based branch and bound
solver from [16]. We downloaded the provided source code for the dedicated
solver3, compiled, and ran it on the same machine as Haddock. We evaluate

3 Source code located at https://github.com/IsaacRudich/PnB_SOP.

https://github.com/IsaacRudich/PnB_SOP
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Table 1. Evaluating SOP instances. The maximum MDD width is w = 64.

Haddock Haddock w/ Priority B&B

Instance n # Nodes Time (s) Dual Primal Time (s) Dual Primal Time (s) Dual Primal
esc07 9 2 0.001 2125 2125 0.001 2125 2125 0.001 2125 2125
esc11 13 7 0.003 2075 2075 0.003 2075 2075 0.26 2075 2075
esc12 14 109 0.102 1675 1675 0.080 1675 1675 1.89 1675 1675
esc25 27 1456 17.129 1681 1681 16.786 1681 1681 1002.01 1681 1681
esc47 49 77278 - 171 1441 - 326 1427 - 335 1542
esc63 65 46163 - 21 62 - 21 62 - 8 62
esc78 80 8602 - 2050 19575 - 2025 19575 - 2230 19800
br17.10 18 7995 39.387 55 55 34.052 55 55 270.92 55 55
br17.12 18 5765 25.456 55 55 19.982 55 55 146.50 55 55
ft53.1 54 18969 - 2996 8198 - 1625 8198 - 1785 8478
ft53.2 54 26150 - 2322 8840 - 1729 8458 - 1945 8927
ft53.3 54 36033 - 2018 11519 - 2138 11707 - 2546 12179
ft53.4 54 71566 - 3549 14758 - 3681 14776 - 3773 14811
ft70.1 71 7293 - 24428 41751 - 24556 41647 - 25444 41926
ft70.2 71 9546 - 24560 42294 - 24664 41932 - 25237 42805
ft70.3 71 15824 - 25263 46497 - 25220 47232 - 25809 48073
ft70.4 71 21663 - 28775 56477 - 28928 56477 - 28583 56644
kro124p.1 101 2800 - 14667 45025 - 9556 44699 - 10773 46158
kro124p.2 101 3801 - 13901 46802 - 10003 46608 - 11061 46930
kro124p.3 101 6407 - 10606 55137 - 10882 55137 - 12110 55991
kro124p.4 101 9854 - 16524 84492 - 15297 84685 - 13829 85533
p43.1 44 37428 - 375 28785 - 350 29090 - 630 29450
p43.2 44 68066 - 405 28770 - 370 29010 - 440 29000
p43.3 44 76591 - 505 29530 - 510 29530 - 595 29530
p43.4 44 121550 - 960 83800 - 1015 83760 - 1370 83900
prob.42 42 93554 - 90 271 - 106 263 - 99 289
prob.100 100 4232 - 166 1673 - 163 1673 - 170 1841
rbg048a 50 51446 - 55 369 - 60 369 - 76 379
rbg050c 52 59245 - 70 500 - 56 500 - 63 566
rbg109a 111 35077 - 313 1127 - 307 1127 - 91 1196
rbg150a 152 16265 - 354 1863 - 201 1863 - 63 1874
rbg174a 176 9447 - 453 2156 - 335 2156 - 118 2157
rbg253a 255 4408 - 538 3178 - 390 3178 - 112 3181
rbg323a 325 3492 - 678 3380 - 416 3370 - 89 3519
rbg341a 343 3321 - 319 2968 - 246 2970 - 68 3038
rbg358a 360 2074 - 181 3202 - 175 3202 - 69 3359
rbg378a 554 1789 - 196 3402 - 67 3402 - 52 3429
ry48p.1 49 33024 - 6414 16892 - 4668 16763 - 5198 17555
ry48p.2 49 46264 - 6284 17439 - 4908 17410 - 5290 18046
ry48p.3 49 46053 - 5772 20890 - 5793 20962 - 6208 21161
ry48p.4 49 41435 - 12443 33391 - 14576 33261 - 13598 34517

the implementations on the Sequential Ordering Problem (SOP) from [16]. This
problem can be represented as an asymmetric traveling salesman problem with
precedence constraints. Given n elements labeled v1, . . . , vn with asymmetric
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arcs connecting them, the objective is to find a minimum path from v1 to vn
visiting each element once and respecting precedence constraints. The precedence
constraints are defined as a precedence ordering of vi before vj , the index of vi
in the path must be before the index of vj . The solvers were tested on the 41
SOP problems in TSPLIB [15].

Haddock represents the problem as the composition of an AllDifferent,
a sum (for the TSP distances), and a global ordering (that encapsulates all
precedence constraints) MDD languages. The language for the sum is a mod-
ified version from Sect. 3 to use the appropriate weight value in the transition
functions. The language for the global ordering constraint is very simple, only
requiring one forward property and one reverse property to track which elements
have been selected. The solver uses n variables labeled x1 to xn with domains
D(xi) = {1, . . . n} where the value of xi = v means element v is in position i
of the sequence. Variables x1 and xn are restricted to be 1 and n, respectively.
Following [7], the model uses heuristics to refine the MDD. First, the model uses
equality for the equivalence function and prioritizes refinement to favor states
with a smaller L↓. Second, in the initial refinement iteration, we make use of an
approximate equivalence function to split nodes based on incoming arc values.
We use a maximum reboot distance of 100.

All experiments use a 1-h timeout and record the primal and dual solutions as
well as the time taken to terminate. Results appear in Table 1. Bold-faced entries
report which solver terminates first (time) or with the best bounds (and thus best
incumbent for the primal bound). The “Haddock” columns correspond to the
default heuristics while “Haddock w/ Priority” refers to boosting the priority
of the ordering constraint. The columns for “B&B” refer to the dedicated MDD-
based branch-and-bound method from [16].

Out of the 41 instances, 6 terminate in under an hour. These terminate
for Branch and Bound as well but with longer runtimes. This is most likely
attributable to the impact of the heuristics used within the relaxed MDD propa-
gator for merging MDD nodes. Without taking advantage of constraint priority,
Haddock still obtained better times in the 6 terminating instances. Setting the
ordering constraint at top priority, the bounds obtained by Haddock improve
for several instances. For example, the dual bound for esc47 increases from
128 to 336. However, we also observe a couple instances where this heuristic
negatively impacts the dual bound. Most notably, rbg150a and rbg341a both
fail to obtain a meaningful dual bound. A limited number of heuristics were
tested in Haddock, which leads us to speculate that other heuristics may give
tighter bounds within the same time frame. For benchmark instances that time-
out after one hour, Haddock obtains competitive bounds compared to Branch
and Bound. In most instances, Haddock has a better primal (incumbent) while
the dual bound is often marginally weaker. Exceptions where the dual bound is
better do exist, e.g., esc63, ft70.4, kro124p.4, prob.42, rgb109a. From a dual
bound standpoint, it leads to the conclusion that neither solver dominates and
the difference are most likely attributable to the differences in heuristics with
the relaxed MDD propagator with the heuristic used in Haddock being either
a better or worse fit depending on the benchmark structure.
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Table 2. Time(s) and search nodes to reach target dual bound at different widths.

w = 32 w = 64 w = 128 w = 256

Instance Target Dual Time (s) # Nodes Time (s) #Nodes Time (s) #Nodes Time (s) # Nodes
esc78 1800 365.457 1707 389.607 916 830.739 723 2210.184 701
ft70.4 28000 59.153 1186 121.803 1083 252.895 1005 530.146 947
prob.42 80 221.997 11870 438.860 10751 1031.687 10909 2124.905 10695
ry48p.2 5500 165.818 4471 73.132 690 210.550 690 685.847 690

Effects of Width. Table 2 shows how the performance of Haddock scales
with the specified width on a subset of benchmarks from the various classes of
instances. Since those are larger instances that time out at 1 h, to have a better
comparison, the solvers were asked to stop once they reached a target value for
the dual bound (reported in the second column). Note how, as observed before,
there is a sweet spot for the width for which runtime is minimized. Also, the num-
ber of nodes for the branch-and-bound tree tends to reduce as width increases.
Naturally, since the algorithm is not executed to its natural termination (with
an optimality proof) the results should be interpreted conservatively.

Table 3. Impact of Restricted MDDs for the primal bound on BFS.

Depth-First Search Haddock Best-First Search Haddock

Instance n Time (s) Dual Primal Time (s) Dual Primal

esc07 9 0.002 2125 2125 0.001 2125 2125

esc11 13 0.079 2075 2075 0.003 2075 2075

esc12 14 0.737 1675 1675 0.102 1675 1675

esc25 27 605.560 1681 1681 17.129 1681 1681

esc47 49 - - 7655 - 171 1441

esc63 65 - - 170 - 21 62

esc78 80 - - 29340 - 2050 19575

br17.10 18 55.099 - 55 39.387 55 55

br17.12 18 10.298 - 55 24.456 55 55

Comparison to Depth-First Search Without Restricted MDDs. Table 3
highlights the impact of using Best-First Search with restricted MDDs. DFS finds
and proves optimality on the same instances that BFS did. Yet, in all but one of
these cases, DFS takes longer. In the exception (br17.12), it appears that DFS
gets ’lucky’ and finds the optimal solution quickly with the search strategy alone.
In other cases, DFS takes over a factor 10 longer, and when the instance takes
over an hour, not only does DFS have a weaker incumbent solution, but it has
no dual bound (effectively a dual bound of 0).

Comparison to Peel and Bound. We ran the Julia implementation of Peel &
Bound on our hardware and share in Table 4 a qualitative comparison between
Haddock and the results from [16]. First Haddock appears to remain com-
petitive w.r.t. runtime. In addition, Haddock produces primal bounds within
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Table 4. SOP Instances. Results from [16] at w = 64 for Peel & Bound.

Haddock Branch & Bound Peel & Bound

Instance n Time (s) Dual Primal Time (s) Dual Primal Time(s) Dual Primal

esc07 9 0.001 2125 2125 0.001 2125 2125 0.001 2125 2125

esc11 13 0.003 2075 2075 0.26 2075 2075 0.10 2075 2075

esc12 14 0.102 1675 1675 1.89 1675 1675 0.67 1675 1675

esc25 27 17.129 1681 1681 1002.01 1681 1681 319.47 1681 1681

esc47 49 - 171 1441 - 335 1542 - 364 1676

esc63 65 - 21 62 - 8 62 - 44 62

esc78 80 - 2050 19575 - 2230 19800 - 4950 20045

br17.10 18 39.387 55 55 270.92 55 55 11.36 55 55

br17.12 18 25.456 55 55 146.50 55 55 25.26 55 55

ft53.1 54 - 2996 8198 - 1785 8478 - 3313 8244

ft53.2 54 - 2232 8840 - 1945 8927 - 3419 8815
ft53.3 54 - 2018 11519 - 2546 12179 - 4198 12482

ft53.4 54 - 3549 14758 - 3773 14811 - 6398 14862

ft70.1 71 - 24428 41751 - 25444 41926 - 31077 41607
ft70.2 71 - 24560 42294 - 25237 42805 - 31190 42623

ft70.3 71 - 25263 46497 - 25809 48073 - 31823 47491

ft70.4 71 - 28775 56477 - 28583 56644 - 35895 56552

kro124p.1 101 - 14667 45025 - 10773 46158 - 17541 46158

kro124p.2 101 - 13901 46802 - 11061 46930 - 17608 46930

kro124p.3 101 - 10606 55137 - 12110 55991 - 18542 55991

kro124p.4 101 - 16524 84492 - 13829 85533 - 24316 85316

p43.1 44 - 375 28785 - 630 29450 - 380 29390

p43.2 44 - 405 28770 - 440 29000 - 420 29080

p43.3 44 - 505 29530 - 595 29530 - 480 29530
p43.4 44 - 960 83800 - 1370 83900 - 1010 83880

prob.42 42 - 90 271 - 99 289 - 94 289

prob.100 100 - 166 1673 - 170 1841 - 174 1841

rbg048a 50 - 55 369 - 76 379 - 45 380

rbg050c 52 - 70 500 - 63 566 - 154 512

rbg109a 111 - 313 1127 - 91 1196 - 372 1196

rbg150a 152 - 354 1863 - 63 1874 - 563 1865

rbg174a 176 - 453 2156 - 118 2157 - 623 2156
rbg253a 255 - 538 3178 - 112 3181 - 707 3181

rbg323a 325 - 678 3380 - 89 3519 - 281 3529

rbg341a 343 - 319 2968 - 68 3038 - 318 3064

rbg358a 360 - 181 3202 - 69 3359 - 72 3384

rbg378a 380 - 196 3402 - 52 3429 - 50 3429

ry48p.1 49 - 6414 16892 - 5198 17555 - 6140 17454

ry48p.2 49 - 6284 17439 - 5290 18046 - 6442 17970

ry48p.3 49 - 5772 20890 - 6208 21161 - 6874 21142

ry48p.4 49 - 12443 33391 - 13598 34517 - 14171 33804
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the 1-h timeout that rival (and often exceeds) those produced by peel & bound.
Finally, the dual bounds from peel & bound seem quite competitive, overtaking
both Haddock and classic Branch & Bound with only a few exceptions.

7 Conclusion

This paper studied the automatic use of primal and dual bounds from Multi-
valued Decision Diagrams (MDDs) in the context of branch-and-bound within a
CP solver. The paper extended Haddock to support both relaxed and restricted
diagrams for any constraints for which a labeled transition system can be speci-
fied. The paper described the derivation of the implementation and recognizes the
possibility for extending this work to include branching directly on MDD nodes
and supporting hybrid CP models that mix MDD propagators with conventional
constraints. The empirical evaluation established that the generic implementa-
tion one derives is competitive with state of the art dedicated MDD branch-and-
bound procedures including peel & bound.
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