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Abstract. This paper illustrates the application of graph invariants to
break symmetries for graph search problems. The paper makes two con-
tributions: (1) the use of higher dimensional graph invariants in symme-
try breaking constraints; and (2) a novel technique to obtain symmetry
breaking constraints by combining graph invariants. Experimentation
demonstrates that the proposed approach applies to provide new results
for the generation of a particular class of cubic graphs.

1 Introduction

Graph search problems are about finding simple graphs with desired structural
properties. Such problems arise in many real-world applications and are funda-
mental in graph theory. Solving graph search problems is typically hard due to
the enormous search space and the large number of symmetries in graph rep-
resentation. For graph search problems, any graph obtained by permuting the
vertices of a solution (or a non-solution) is also a solution (or a non-solution),
which is isomorphic, or “symmetric”. When solving graph search problems, the
presence of symmetries often causes redundant search effort by revisiting sym-
metric objects. To optimize the search we aim to restrict it to focus on one
“canonical” graph from each isomorphism class.

A standard approach to eliminate symmetries is to add symmetry breaking
constraints which are satisfied by at least one member of each isomorphism
class [8,22,23]. A symmetry breaking constraint is called complete if it is sat-
isfied by exactly one member of each isomorphism class and partial otherwise.
We say that a symmetry breaking constraint is of polynomial size, if it has a
representation in propositional logic which is polynomial in size. There is no
known polynomial size complete symmetry breaking constraint for graph search
problems. Therefore, in practice, one typically applies partial symmetry breaking
constraints [5–7] which are polynomial in size.

Over the past decade, there has been little progress in the research of partial
symmetry breaking constraints for graph search problems. Codish et al. [6,7]
introduced a polynomial sized partial symmetry breaking constraint, denoted
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here as sblex, which restricts the search space to graphs with lexicographically
minimal adjacency matrices with respect to permutations that swap two vertices.
This constraint turns out to work well in practice, despite eliminating only a
small portion of the symmetries. However, when dealing with hard instances of
graph search problems, this constraint does not suffice.

Graph invariants [13] are properties of graphs (typically expressed numeri-
cally) which are preserved under isomorphism. Graph invariants have been exten-
sively researched in various disciplines such as, chemistry [1], physics [9], and
also in the context of graph isomorphism tools [15]. In this paper we use the
following terminology. Graph invariants which relate to individual vertices, such
as the degree of a vertex, are one dimensional and called “vertex invariants”.
Graph invariants which relate to pairs of vertices are two dimensional and called
“pair invariants”. Graph invariants which relate to sets of vertices (with at least
two elements) are called “high dimensional”. Previous approaches that consider
structural information to improve on sblex apply one dimensional graph invari-
ants in combination with the lexicographic order. For example, in [5,18], the
authors combine lexicographic order with information about vertex degrees.

This paper explores the application of higher dimensional graph invariants to
break symmetries. We focus on one and two dimensional invariants. However, all
the techniques demonstrated apply to invariants of any dimension. We study two
techniques to combine graph invariants. First, we introduce the “chain” symme-
try breaking constraint which generalizes the standard approach for breaking
symmetries with graph invariants. The chain constraint combines a given series
of graph invariants to break symmetries such that each invariant refines its pre-
decessors. We then introduce the “product” symmetry breaking constraint which
combines graph invariants by interleaving them. We demonstrate the advantage
of this approach over the chain constraint. Finally, we demonstrate the applica-
tion of high dimensional graph invariants to generate connected claw-free cubic
graphs of order n ≤ 36 vertices where existing symmetry breaking methods do
not suffice. The results for 32, 34, and 36 vertices are new.

The computations detailed throughout this paper are performed using the
finite-domain constraint compiler BEE [17] which compiles constraints to a CNF
and solves it applying an underlying SAT solver. We use Clasp 3.1.3 [12] as
the underlying SAT solver. All experiments run on an Intel Xeon E5-2660 with
CPU’s clocked at 2 GHz, Each instance is run on a single thread.

2 Preliminaries and Notation

Throughout this paper we consider simple graphs, i.e. undirected graphs with no
self loops. The vertex set of a graph G = (V,E) of order n, is denoted V (G) and
assumed to be V = {1, . . . , n}. The edge set of G is denoted E(G) ⊆ V ×V . The
adjacency matrix of G is an n × n Boolean matrix which, in abuse of notation,
is also denoted G. The element at row i and column j is denoted Gi,j and is
true if and only if (i, j) is an edge in G. The set of neighbors of an edge v ∈ V
is denoted NG(v). The degree of a vertex v ∈ V is the number of its neighbors,
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and is denoted degG(v). The set of simple graphs on n vertices is denoted Gn.
An unknown graph of order n is represented as an n × n adjacency matrix of
Boolean variables which is symmetric and has the values false (denoted by 0) on
the diagonal. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
A graph H is called an induced subgraph of G if H is a subgraph of G and every
edge in G that connects vertices from V (H) also appears in E(H). In other
words, the graph H is an induced subgraph of G if H and G have the same
edges between the vertices of H.

The group of all permutations on {1 . . . n} is denoted Sn. We represent a
permutation π ∈ Sn as a sequence of length n where the ith element indicates the
value of π(i). For example, the permutation [2, 3, 1] ∈ S3 maps as follows: {1 �→
2, 2 �→ 3, 3 �→ 1}. A transposition is a permutation which swaps two elements and
is the identity for all other elements. The set of all transpositions on {1 . . . n} is
denoted Tn. The transposition which swaps i and j is denoted πi,j . For example,
the transposition π1,3 ∈ T4 maps as follows: {1 �→ 3, 2 �→ 2, 3 �→ 1, 4 �→ 4}.
Permutations act on graphs and on unknown graphs in the natural way. For a
graph G ∈ Gn and also for an unknown graph G, viewing G as an adjacency
matrix, given a permutation π ∈ Sn, then π(G) is the adjacency matrix obtained
by mapping each element Gi,j to Gπ(i),π(j) (for 1 ≤ i, j ≤ n). The permutation,
π(G) of G, can equivalently be described as the adjacency matrix obtained by
permuting both rows and columns of G using π. Two graphs G,H ∈ Gn are
isomorphic if there exists a permutation π ∈ Sn such that G = π(H).

The standard lexicographic order on strings is denoted ≤lex. We consider also
lexicographic orders between integer and Boolean matrices, always comparing
matrices of the same type, dimension and order. In our context, matrices of
dimension k > 1 are always symmetric and have fixed values on the diagonal.
We define the lexicographic ordering of two such matrices M1 and M2 as follows:
M1 ≤lex M2 if and only if vec(M1) ≤lex vec(M2) where vec(M) is a string defined
by concatenating the rows of M . For a matrix M with dimension k = 1, M is a
vector and vec(M) is the string of its elements. When M is of dimension k = 2,
because of symmetry and fixed values on the diagonal, vec(M) can be viewed
as the concatenation of the rows of the upper triangle of M [4]. For higher
dimensions, k > 2, the definition extends in the natural way.

In particular for graphs G,H ∈ Gn, G ≤lex H defines a lexicographic ordering
on graphs. When G,H are unknown graphs, represented as adjacency matrices of
Boolean variables, then the lexicographic ordering, G ≤lex H, can be viewed as
specifying a lexicographic order constraint over these variables. This constraint
is true with respect to an assignment for the variables of G,H if G ≤lex H
under this assignment. We call such a constraint a “lex-constraint”. The case for
M1 ≤lex M2 where M1,M2 are matrices of integer variables is similar.

Example 1. Figure 1 depicts an unknown, order 5, graph G and its permutation
π(G), for π = [2, 1, 3, 5, 4], both represented as adjacency matrices of Boolean
variables. Note, for example, that the variable x2 occurs at position (1, 3) in G
and at position (π(1), π(3)) = (2, 3) in π(G). The lex-constraint G ≤lex π(G) is

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x1, x5, x7, x6, x2, x4, x3, x9, x8, x10]
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G =

⎡
⎢⎢⎢⎢⎣

0 x1 x2 x3 x4

x1 0 x5 x6 x7

x2 x5 0 x8 x9

x3 x6 x8 0 x10

x4 x7 x9 x10 0

⎤
⎥⎥⎥⎥⎦

π(G) =

⎡
⎢⎢⎢⎢⎣

0 x1 x5 x7 x6

x1 0 x2 x4 x3

x5 x2 0 x9 x8

x7 x4 x9 0 x10

x6 x3 x8 x10 0

⎤
⎥⎥⎥⎥⎦

Fig. 1. An unknown graph G and its permutation π(G) for π = [2, 1, 3, 5, 4].

where the sequences on the left and on the right are obtained by concatenating
the rows of the upper triangles of the corresponding graphs. This constraint can
be simplified as described by Frisch et al. [11] to

[x2, x3, x4, x8] ≤lex [x5, x7, x6, x9]

��
An order n graph search problem is a predicate, ϕ(G), on an unknown, order

n graph G, which is closed under isomorphism. A solution to ϕ(G) is a satisfy-
ing assignment for the variables of G. Given a (non-)solution for a graph search
problem, each permutation of its vertices yields a symmetric (non-)solution. One
common way to break symmetries in graph search problems is to define a sym-
metry breaking predicate which is satisfied only by the minimal representatives
of each isomorphism class with respect to some total order 	.

Theorem 1. Let G be an unknown order n graph and let 	 be a total order on
graphs. Then,

Can�(G) =
∧

π∈Sn

G 	 π(G)

is a complete symmetry breaking constraint.

Proof. Since 	 is a total order, every isomorphism class I of graphs contains
a unique minimal member G with respect to 	. By definition, G satisfies the
constraint Can�(G). Suppose that H ∈ I also satisfies Can�. Because H ∈ I it
follows that G = π(H) for some π ∈ Sn. Because H satisfies Can� then H 	 G.
Because G is minimal G 	 H. Hence G = H. ��

The complete symmetry breaking constraint Can� is impractical as it is
composed of a super-exponential number of constraints, one for each permutation
of the vertices. Hence, in practice, one often applies a partial symmetry breaking
constraint defined in terms of a polynomial sized subset of the Can� constraints.

Example 2. A classic example of a total order for graphs is the ≤lex order. The
corresponding complete symmetry breaking constraint Can≤lex is often referred
to as the lex-leader constraint [20]. Codish et al. [6,7] introduced a partial sym-
metry breaking constraint which is equivalent to taking the subset of the lex-
leader constraints corresponding to all transpositions (permutations which swap
two values), as specified below.
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sblex(G) =
∧

π∈Tn

G ≤lex π(G) (1)

The sblex constraint is composed of a quadratic number of lex-constraints. It is
compact and turns out to be effective when solving a wide range of graph search
problems. ��
Observation 1. if 	 is a weak order on graphs, instead of a total order, then
CAN� is a partial symmetry breaking constraint. Moreover, any constraint
defined as a subset of the constraints in CAN� is also a partial symmetry break-
ing constraint.

Proof. For the first claim, the proof is similar to the proof of Theorem 1. How-
ever, there is no guarantee that the minimum is unique. Hence, the correspond-
ing symmetry breaking constraint is partial. For the second claim, weakening
a partial symmetry breaking constraint results in a partial symmetry breaking
constraint. ��

3 Graph Invariants and Their Induced Graph Orderings

In this section, we recall the notion of graph invariants and in particular, high
dimensional graph invariants. We propose a constraint-based representation for
invariants of unknown graphs which is an essential component when defining
symmetry breaking constraints. Finally, we introduce an ordering on graphs
based on their corresponding graph invariant values.

A k-dimensional graph invariant is a function f which maps a graph G and
a set S =

{
v1, . . . , vk

} ⊆ V (G) of k vertices to a value which is invariant under
graph isomorphism. Namely, for every permutation π of the vertex set V (G)
it holds that f(G,S) = f(π(G), π(S)). When the graph G is fixed, we denote
the function fG(S) = f(G,S). In this paper, we focus primarily on the special
cases of 1-dimensional and 2-dimensional graph invariants which we call vertex
invariants and pair invariants, respectively.

Figure 2 introduces several graph invariants that we refer to in the remainder
of the paper. Let G be a graph. The degree invariant assigns each vertex to its
degree. The common neighbors invariant assigns each pair of vertices to the
number of their common neighbors. The min (max) degree invariant assigns
each pair of vertices to their minimal (maximal) degree. The triangles invariant
assigns each vertex to the number of triangles (cycles of length 3) in which
it occurs. In the figure, (u, v) denotes a pair of distinct vertices and the pair
invariants are not defined when u = v. The inverse of a k-dimensional invariant
f , denoted −f , is also a k-dimensional invariant which maps every input to the
minus of the corresponding value of f . For instance, the invariant −fG

common

specifies the minus of the number of common neighbors for each pair of vertices
in G. Namely for vertices u and v, (−fG

common)(u, v) = −(fG
common(u, v)).

For a fixed graph G, a k-dimensional graph invariant fG can be viewed as
a k-dimensional matrix. For a set of vertices, S =

{
v1, . . . vk

}
, the element at
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degree invariant

fG
deg : V →

fG
deg(v) = degG(v)

common neighbors invariant

fG
common : V × V →

fG
common(u, v) = |N(u) ∩ N(v)|
triangles invariant

fG
triangles : V →

fG
triangles(v) = | { (u, w) ∈ E(G)

∣∣ v ∈ N(u) ∩ N(w)
} |

min degree invariant

fG
min : V × V →

fG
min(u, v) = min(degG(u), degG(v))

max degree invariant

fG
max : V × V →

fG
max(u, v) = max(degG(u), degG(v))

Fig. 2. Several example graph invariants.

5 2

34

1 fG
deg =

⎡
⎢⎢⎢⎢⎣

4
2
3
3
2

⎤
⎥⎥⎥⎥⎦

fG
common =

⎡
⎢⎢⎢⎢⎣

− 1 2 2 1
1 − 1 2 1
2 1 − 1 2
2 2 1 − 1
1 1 2 1 −

⎤
⎥⎥⎥⎥⎦

Fig. 3. A graph G with matrix representation for fG
deg and fG

common.

position 〈v1, . . . vk〉 in the matrix specifies the integer value fG(S). The following
example illustrates this representation.

Example 3. Figure 3 details the matrix representation for graph invariants fG
deg

and fG
common for the graph G depicted on the left. The i-th entry in the vector

fG
deg specifies the degree of vertex i in G. For instance, the degree of vertex 1 is 4.

The (i, j) entry in the matrix fG
common specifies the number of common neighbors

of vertices i and j. For instance, the value in the entry (1, 3) is 2 because vertices
1 and 3 share two neighbors (vertices 2 and 4). Notice that the values on the
diagonal are not defined.

When G is an unknown graph, The invariant fG can be viewed as a k-
dimensional matrix of integer variables, together with a constraint μ which links
the Boolean variables in G and the integer variables in fG. Solutions of μ instan-
tiate G to a graph and fG to corresponding invariant values.

G =

⎡
⎢⎢⎢⎢⎣

0 x1 x2 x3 x4

x1 0 x5 x6 x7

x2 x5 0 x8 x9

x3 x6 x8 0 x10

x4 x7 x9 x10 0

⎤
⎥⎥⎥⎥⎦

fGdeg =

⎡
⎢⎢⎢⎢⎣

d1

d2

d3

d4

d5

⎤
⎥⎥⎥⎥⎦

μ =

⎡
⎢⎢⎢⎢⎣

d1 = x1 + x2 + x3 + x4 ∧
d2 = x1 + x5 + x6 + x7 ∧
d3 = x2 + x5 + x8 + x9 ∧
d4 = x3 + x6 + x8 + x10 ∧
d5 = x4 + x7 + x9 + x10 ∧

⎤
⎥⎥⎥⎥⎦
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Example 4. Figure 3 details an unknown graph G of order 5 and the correspond-
ing matrix representation of fG

deg. The constraints in μ specify the relationship
between the Boolean variables in G and the integer variables in fG. The integer
variable di in fG represents the degree of the ith vertex in G.

We observe that a (possibly unknown) graph can also be viewed as a two
dimensional graph invariant which specifies the adjacency relation. Let G be a
graph. Then,

fG
adj(u, v) =

{
1 if (u, v) ∈ E(G)
0 else

The matrix representation of fG
adj is identical to the adjacency matrix of G,

except that integer values (one and zero) occur instead of Boolean values (true
and false) and the diagonal calls are undefined instead of false.

An essential component to define symmetry breaking constraints based on
graph invariants is a notion of graph ordering with respect to an invariant f .

Definition 1 (invariant induced graph ordering). Let G,H ∈ Gn and let f be
a graph invariant. Recall that vec is a flattening of the (upper triangle of the)
matrix into a string of values. Then, G 	f H ⇔ vec(fG) ≤lex vec(fH). We
write G =f H if G 	f H and H 	f G.

In general, depending on the specific invariant f , 	f is possibly a weak order
as distinct graphs may admit the same values for the invariant f . The following
example demonstrates that 	fdeg is a weak order.

1 2

34

1 2

34

1 2

34

⎡
⎢⎢⎣
1
1
2
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

− 0 0 1
0 − 1 0
0 1 − 1
1 0 1 −

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
1
2
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

− 0 1 0
0 − 0 1
1 0 − 1
0 1 1 −

⎤
⎥⎥⎦

⎡
⎢⎢⎣
2
2
1
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

− 1 0 1
1 − 1 0
0 1 − 0
1 0 0 −

⎤
⎥⎥⎦

Fig. 4. isomorphic representations of P4 and their fdeg, fadj values.

Example 5. Consider three isomorphic representations of P4 (path on four ver-
tices), as depicted in Fig. 4. The minimal graph amongst them with respect to
the total order 	fadj is the leftmost graph. The leftmost and the center graphs
are both minimal with respect to the weak order 	fdeg . ��
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4 Symmetry Breaking Constraints with Graph Invariants

A classic way to refine the partial symmetry breaking constraint sblex presented
in Eq. (1) is to specify a partition of the vertices with respect to a graph invariant,
and to post a lex-constraint for the subset of transpositions which preserve the
partition. In [5], the authors refine sblex with respect to a partition based on
the degree invariant. This symmetry breaking constraint, which we denote here
sbdeg

lex (G), is defined as follows where G is an order n unknown graph:
∧

1≤i<n

fG
deg(i) ≤ fG

deg(i + 1)

︸ ︷︷ ︸
(a)

∧
∧

1≤i<j≤n

fG
deg(i) = fG

deg(j) =⇒ G ≤lex πi,j(G)

︸ ︷︷ ︸
(b)

(2)

The left conjunct (a) constrains the degrees of the vertices of G to be sorted in
non-decreasing order. This induces a vertex partition where vertices with equal
degree are in the same part of the partition. The right conjunct (b) enforces G to
be minimal with respect to all transpositions which preserve the vertex partition.
Equation (2) can be rewritten using the invariant based graph ordering from
Definition 1, as follows.

∧

π∈Tn

G 	fdeg π(G)

︸ ︷︷ ︸
(a′)

∧
∧

π∈Tn

G =fdeg π(G) =⇒ G 	fadj π(G)

︸ ︷︷ ︸
(b′)

(3)

The left and right parts (a′) and (b′) of Eq. (3) are equivalent respectively to
parts (a) and (b) of Eq. (2). The formulation of sbdeg

lex (G) as specified in Eq. (3)
combines two graph orderings 	fdeg and 	fadj to break symmetries. In this com-
bination, graphs are first ordered by 	fdeg and then ties are broken according
to 	fadj . We generalize this “standard” approach to apply a series of graph
invariants and term this way of combining graph invariants “chaining”. First,
we introduce an ordering induced by a sequence of invariants.

Definition 2 (The chain ordering). Let 〈f1, . . . , fn〉 be a sequence of graph
invariants. Then, for any two graphs G,H ∈ Gn, we define

G 	〈f1,...,fm〉 H =

{
(G 	f1 H) ∧ (G =f1 H =⇒ G 	〈f2,...,fm〉 H) if m > 0
true otherwise

The chain ordering induces a chain symmetry breaking constraint, as speci-
fied in the following definition.

Definition 3 (The chain constraint). Let G be an unknown graph of order n
and let 〈f1, . . . , fm〉 be a sequence of graph invariants. Then, the chain symmetry
breaking constraint induced by 〈f1, . . . , fm〉 is

sbf1,...,fm

chain (G) =
∧

π∈Tn

G 	〈f1,...,fm〉 π(G)
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One can check that, in general, the chain ordering is a weak order on graphs.
Hence, by Observation 1, the chain symmetry breaking constraint induced by
a sequence 〈f1, . . . .fn〉 is a partial symmetry breaking constraint. Observe also
that sbdeg

lex (G) as expressed in Eq. (3) is a special case of Definition 3 and is
equivalent to the chain symmetry breaking constraint induced by 〈fdeg, fadj〉.

As illustrated in the following example, the chain constraint can be alterna-
tively expressed as a conjunction of lex-constraints. Each constraint of the form
G 	〈f1,...,fm〉 π(G) is equivalent to the lex-constraint

vec(fG
1 , . . . , fG

m) ≤lex vec(fπ(G)
1 , . . . , fπ(G)

m )

where vec(fG
1 , . . . , fG

m) is obtained by concatenating vec(fG
1 ), . . . , vec(fG

m) and
similarly for vec(fπ(G)

1 , . . . , f
π(G)
m ).

Example 6. Consider the unknown graph G of order 4, the invariant fG
common

and its constraints μ which are detailed below.

G =

⎡
⎢⎢⎣

0 x1 x2 x3

x1 0 x4 x5

x2 x4 0 x6

x3 x5 x6 0

⎤
⎥⎥⎦ fG

common =

⎡
⎢⎢⎣

− y1 y2 y3

y1 − y4 y5

y2 y4 − y6

y3 y5 y6 −

⎤
⎥⎥⎦ μ =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 = x2 ∗ x4 + x3 ∗ x5 ∧
y2 = x1 ∗ x4 + x3 ∗ x6 ∧
y3 = x1 ∗ x5 + x2 ∗ x6 ∧
y4 = x1 ∗ x2 + x5 ∗ x6 ∧
y5 = x1 ∗ x3 + x4 ∗ x6 ∧
y6 = x2 ∗ x3 + x4 ∗ x5 ∧

⎤
⎥⎥⎥⎥⎥⎥⎦

The chain symmetry breaking constraint induced by 〈fcommon, fadj〉 consists of 6
constraints of the form G 	〈f1,...,fm〉 πi,j(G), one for each transposition πi,j . Each
of these can be expressed as a lex-constraint. The lex-constraint corresponding
to π1,2 is

[y1, . . . , y6, x1, . . . , x6] ≤lex [y1, y4, y5, y2, y3, y6, x1, x4, x5, x2, x3, x6]

The vector on the left of the constraint consists of the variables from the invari-
ant matrix followed by the variables from the adjacency matrix. The vector on
the right, consists of the variables of the corresponding matrices obtained by
swapping rows 1 and 2 as well as columns 1 and 2. Both vectors involve y vari-
ables first (from the graph invariant), followed by x variables (from the adjacency
matrix). This constraint further simplifies to:

[y2, y3, x2, x3] ≤lex [y4, y5, x4, x5]

��
When combining a sequence, 〈f1, ...fm〉, of graph invariants as a chain con-

straint, not every sequence “makes sense”. Each invariant fi in the sequence
should “refine” those preceding it. We say that fi refines f1, . . . , fi−1 if the set
of graphs which satisfy sbf1,...,fi

chain is a strict subset of the set of graphs which satisfy
sb

f1,...,fi−1
chain . Adding an invariant which does not refine those preceding it does not
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make sense as it adds no precision. For example, the order induced by 〈fadj, fdeg〉
is equivalent to the order induced by 〈fadj〉. This is because if G =fadj H holds,
then also G =fdeg H holds. In practice, if fadj occurs in a sequence combined as
a chain constraint, then it should always be the last invariant in the sequence as
it is the “most refined”.

Table 1. Generating all order n graphs with various symmetry breaking constraints.

method order

5 6 7 8 9 10 11

part 1: base

exact 34 156 1,044 12,346 274,668 12,005,168 1,018,997,864

sblex 43
0.00 s

276
0.00 s

3,158

0.01 s

66,595

0.20 s

2,587,488

6.49 s

184,192,329

8.20m

23,963,012,033

20.91 h

part 2: chain

fdeg, fadj 34
0.00 s

158
0.00 s

1,143

0.03 s

14,937

0.61 s

363,373

30.69 s

16,773,384

19.66 h

T.O

fcommon, fadj 43
0.00 s

231
0.02 s

1,933

0.37 s

28,184

7.32 s

748,727

32.08m

T.O T.O

fdeg, fcommon, fadj 34
0.00 s

156
0.02 s

1,075

0.28 s

13,223

5.62 s

305,189

54.33m

T.O T.O

part 3: product

fcommon, fadj 43
0.00 s

226
0.00 s

1,852

0.11 s

26,030

1.24 s

673,069

47.25 s

32,881,227

12.01 h

T.O

fadj, fcommon 42
0.00 s

231
0.00 s

1,949

0.06 s

27,620

0.84 s

715,804

22.38 s

35,060,107

78.43m

T.O

fadj, fmin, fmax 43
0.00 s

215
0.01 s

1,669

0.07 s

22,464

0.86 s

562,234

24.98 s

26,480,344

95.02m

T.O

fadj, fmin,

fmax, fcommon

42
0.00 s

210
0.01 s

1,553

0.19 s

19,209

1.95 s

437,794

63.83 s

19,188,298

16.59 h

T.O

Table 1 illustrates the impact of various symmetry breaking constraints based
on combinations of graph invariants. To this end, we compute all order 5 ≤
n ≤ 11 graphs using various symmetry breaking constraints. Cells in the table
which detail computations performed in this paper consist of two numbers: the
number of solutions (above) and the computation time (below). All times are
CPU running times specified in an appropriate unit: (s) seconds, (m) minutes, or
(h) hours. A timeout (TO) of 24 h is applied. The rows of the table are divided
into three parts titled: “base”, “chain” and “product”.

The first part of Table 1 (titled “base”): provides the base for comparison
and consists of two rows. First, the “exact” number of order n graphs (modulo
isomorphism) [19] (sequence A000088 of the OEIS). This is the base compari-
son for precision. For other computations, the closer the number of computed
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graphs is to these values, the more precise the result. The second row details
the number of graphs computed using the sblex constraint introduced in [6,7].
Applying this constraint, the number of graphs generated is up to 20 times larger
than the actual number of graphs modulo isomorphism. This is the least precise
configuration described in the table but the only one that can find all solutions
for n = 11 with the specified timeout.

The second part of Table 1 (titled “chain”): consists of three rows which
detail the computation of all graphs using the chain symmetry breaking con-
straint combining various sequences of graph invariants. Note that the compu-
tations are more precise than with sblex but considerably slower. In particu-
lar, when combining three invariants (row three of part two), the computation
becomes slightly more precise but considerably slower than when combining two.

A possible explanation for the inefficiency when chaining invariants is that
they allow less propagations on the variables of the unknown graph. Generally
speaking, for a lex-constraint of the form a1, . . . , an ≤lex b1, . . . , bn between
strings of variables, propagation on the domain of a variable ai or bi, depends on
changes to the domains of the variables to the left: a1, . . . , ai−1 and b1, . . . , bi−1.

To better understand, we focus in the following example on the comparison
of sblex and sb

〈fcommon,fadj〉
chain viewing both as conjunctions of lex-constraints.

Example 7. Consider the unknown graph G of order 4 and the invariant fG
common

detailed in Example 6. The following are the lex-constraints (after simplification)
deriving from the transposition π1,2. The first is from sblex and the second is from
sb

〈fcommon,fadj〉
chain :

[x2, x3] ≤lex [x4, x5] (4)
[y2, y3, x2, x3] ≤lex [y4, y5, x4, x5] (5)

In Eq. (4) all prefixes (of the sequences in the comparison) relate only to x
variables, from the unknown adjacency matrix. In Eq. (5) all prefixes involve
y variables from the graph invariant. Assignments for the y variables do not
necessarily restrict the possible consistent values for the x variables because
each y variable is defined in terms of a set of the x variables (see Example 6). ��

The third part of Table 1 will be described later in the paper. First, we
seek new ways to combine graph invariants that result in symmetry breaking
constraints that improve on sblex in both efficiency and precision.

Let us first clarify notation. Let 〈f1, . . . , fm〉 be a sequence of k-dimensional
graph invariants. Recall that for a given graph G and each invariant fi, fG

i is a
function which maps sets of k vertices to integer values. The Cartesian product,
fG
1 ×. . .×fG

m of these functions maps each set S of k vertices to a tuple of integers,
〈fG

1 (S), . . . fG
m(S)〉. As demonstrated in Example 8, the product, fG

1 × . . . × fG
m,

can also be viewed as a k dimensional matrix of tuples.

Definition 4 (The product ordering). Let 〈f1, . . . , fm〉 be a sequence of graph
invariants of dimension k. Then, for any two graphs G,H ∈ Gn, we say that
G 	f1×...×fm

H if and only if vec(fG
1 × . . . × fG

m) ≤lex vec(fH
1 × . . . × fH

m ).
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Definition 5 (The product constraint). Let G be an unknown graph of order n
and let 〈f1, . . . , fm〉 be a sequence of k-dimensional graph invariants. Then, the
product symmetry breaking constraint induced by 〈f1, . . . , fm〉 is

sbf1,...,fm

prod (G) =
∧

π∈Tn

G 	f1×...×fm
π(G)

One can check that, in general, the product ordering is a weak order on
graphs. Hence, by Observation 1, sbf1,...,fm

prod (G) is a partial symmetry breaking
constraint.

The following example demonstrates the construction of the product sym-
metry breaking constraint for the sequence of invariants 〈fadj, fcommon〉.
Example 8. Consider the unknown graph G of order 4 and the invariant fG

common

as detailed in Example 6. Recall that the x variables are from the adjacency
matrix, and the y variables are from the graph invariant. Then,

fG
adj × fG

common =

⎡

⎢⎢⎣

− 〈x1, y1〉 〈x2, y2〉 〈x3, y3〉
〈x1, y1〉 − 〈x4, y4〉 〈x5, y5〉
〈x2, y2〉 〈x4, y4〉 − 〈x6, y6〉
〈x3, y3〉 〈x5, y5〉 〈x6, y6〉 −

⎤

⎥⎥⎦

The product symmetry breaking constraint induced from 〈fadj, fcommon〉 consists
of 6 constraints of the form G 	fadj×fcommon πi,j(G), one for each transposition
πi,j . Each of these can be expressed as a lex-constraint. The lex-constraint cor-
responding to π1,2 is:

[x1, y1, . . . , x6, y6] ≤lex [x1, y1, x4, y4, x5, y5, x2, y2, x3, y3, x6, y6]

The vector on the left of the constraint consists of the variables of the matrix
representing the product of the two invariants. The vector on the right consists
of the variables from the permuted matrix obtained by swapping rows 1 and 2
as well as columns 1 and 2. This constraint further simplifies to:

[x2, y2, x3, y3] ≤lex [x4, y4, x5, y5]

Note that the variable order in this constraint interleaves the x variables from
the adjacency matrix and the y variables from the invariant whilst in the chain
constraint (see Example 7) the adjacency matrix variables occur at the end of
the vector. This is a property of the product constraint, that the variables of
each invariant gets a “fair” place in the vectors occurring in the lex-constraints.
We conjecture that interleaving allows for better propagation. The third part
of Table 1 supports this conjecture, at least in the sence that computations are
considerably more efficient than with the chain constraint. ��

The third part of Table 1 (titled “product”): details the computation of
graphs applying symmetry breaking constraints based on the product constraint.
This part consists of four rows, each row describes the computation using the
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specified sequence of invariants as a product. Overall, the product constraints
are more efficient than those using the chain constraint. The product symmetry
breaking constraint induced from 〈fcommon, fadj〉 is more precise and faster than
the corresponding induced chain symmetry breaking constraint. The product
symmetry breaking constraint induced from 〈fadj, fcommon〉 is slightly less precise
than that induced from 〈fcommon, fadj〉 but it is much faster. For example, when
n = 9, it is about 5% less precise but is about 80 times faster. Moreover, all of
the illustrated product constraints allow to generate the order 10 graphs within
the 24 h timeout.

The next section demonstrates the advantage of using the (product) combi-
nation of graph invariants when solving graph search problems related to specific
classes where knowledge about the structure of the graphs can be exploited to
select invariants.

5 An Application: Generation of Cubic Graphs

This section demonstrates the application of symmetry breaking constraints
induced from graph invariants to generate a specific class of cubic graphs. Cubic
graphs are such that each vertex has degree 3. The class of cubic graphs is
well studied, and many papers address the problem of generating small cubic
graphs [2,3,16]. Brinkmann et al. [3] introduce a generation method which
allows to generate all non-isomorphic connected cubic graphs for up to 32 ver-
tices. In [21], the authors compute the number of cubic graphs for graphs of
orders n ≤ 40. However, their technique is non-constructive. That is, it allows
to count the graphs but not to generate them. The number of cubic graphs
is humongous [19] (sequence A005638 of the OEIS). For example, there are
8,832,736,318,937,756,165 cubic graphs of order 40.

We consider the problem of generating all connected cubic graphs, which are
also “claw-free”. A graph is called claw-free if it contains no K1,3 as an induced
subgraph. For cubic graphs the condition for being claw-free is equivalent to
the requirement that each vertex participates in a triangle [14]. The number
of connected cubic claw-free graphs for order n ≤ 30 is specified in the OEIS
as sequence A084656 [19]. Using our constraint based approach with symmetry
breaking constraints based on various combinations of graph invariants, we were
able to extend this sequence for n ≤ 36. It is important to note that one cannot
generate the sets of order n connected cubic claw-free graphs simply by testing
the corresponding sets of cubic graphs. While the latter have been generated for
n ≤ 32, their sheer number is humongous.

Figure 5 details the constraint model we apply to generate order n cubic
claw-free connected graphs. The variables Gi,j are the Boolean variables of the
unknown order n graph G. Equation (5) constrains the degree of each vertex to
be 3. Equation (5) constrains the graph to be claw-free (each vertex must occur
in a triangle). Finally, Eq. (5) constrains the graph G to be connected, using an
encoding of the Floyd-Warshall shortest paths algorithm [10]. The variables pk

i,j

indicate whether there is a path between vertices i and j in which intermediate
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vertices are from the set
{

1 . . . k
}
. The left conjunct specifies that p0i,j is true if

and only if there is an edge between i and j. The center conjunct specifies the
variables pk

i,j for 1 ≤ k ≤ n, encoding the recursive part of the Floyd Warshall
algorithm. The right conjunct ensures that there is a path in the graph between
every two vertices.

Fig. 5. The constraint model for connected cubic claw-free graphs.

In our experimentation, we applied chain combinations involving fadj with
one additional graph invariant from the set

{
fcommon, ftriangles

}
(and their

inverses). We applied product combinations of fadj with fcommon and its inverse.
For each approach (chain and product), we report the results for the symmetry
breaking constraint that exhibit the best (time) performance. For comparison,
we also apply the state-of-the-art partial symmetry breaking constraint, sblex.

Table 2 details the computation of claw-free cubic graphs. The first column
specifies the order of the graphs. The second column details the number of non-
isomorphic solutions. The next three columns detail the solving time and number
of solutions for each symmetry breaking method. All times reported are CPU
running times and specified in an appropriate unit: (s) seconds, (m) minutes, or
(h) hours where we apply a timeout (TO) of 24 h. The numbers of non isomorphic
solutions as specified in the second column are obtained by filtering isomorphic
representations from the set of solutions using nauty [15]. The numbers below
the solid line for n ≥ 32 are new.

The results in Table 2 clearly show that symmetry breaking based on the
product constraint, fadj × −fcommon, is superior in both computation time and
precision to the other techniques. This approach allows us to generate all solu-
tions up to order 36, thus extending the OEIS sequence A084656 [19] with three
new values.



Breaking Symmetries with High Dimensional Graph Invariants 147

Table 2. Generating connected cubic claw-free graphs for orders 4 ≤ n ≤ 36.

n graphs sblex 〈−fcommon, fadj〉 fadj × −fcommon

time sols time sols time sols

4 1 0.00 s 1 0.00 s 1 0.00 s 1

6 1 0.00 s 1 0.00 s 1 0.00 s 1

8 1 0.00 s 2 0.05 s 4 0.00 s 1

10 1 0.02 s 7 0.40 s 3 0.03 s 4

12 3 0.09 s 24 1.25 s 10 0.07 s 3

14 3 0.52 s 188 3.23 s 17 0.15 s 10

16 5 1.87 s 1,134 12.60 s 58 0.28 s 28

18 11 14.58 s 7,293 26.08 s 100 0.72 s 44

20 15 3.39 m 61,391 37.17 s 280 2.11 s 132

22 27 2.28 h 546,409 2.29 m 716 3.86 s 307

24 54 T.O – 5.66 m 1,551 10.96 s 660

26 94 T.O – 5.25 m 4,384 45.37 s 1,835

28 181 T.O – 50.76 m 10,883 2.57 m 4,372

30 369 T.O – 46.00 m 26,778 6.60 m 10,567

32 731 T.O – 1.70 h 75,303 24.28 m 29,069

34 1,502 T.O – T.O – 1.12 h 72,501

36 3,187 T.O – T.O – 8.98 h 188,495

6 Conclusion

This paper explores the application of high dimensional invariants to define sym-
metry breaking constraints. To the best of our knowledge, this is the first time
graph invariants of dimension higher than one have been applied in symmetry
breaking constraints. We introduce two techniques to obtain symmetry break-
ing constraints by combining graph invariants. First, we introduce the chain
constraint which generalizes the standard approach for combining several prop-
erties when breaking symmetries. Then, after observing the poor performance
of this technique, we introduce the product combination and demonstrate its
superior performance. We demonstrate the application of the product constraint
to extend the computation of cubic claw-free graphs for order n ≤ 36 vertices.

While we focus on two dimensional invariants in examples and experiments,
the same techniques apply for invariants of any dimension.

A Note for the Modeller: When solving a specific graph search problem,
selecting which invariants to combine is nontrivial. Two points to consider are:
(1) properties of the graphs the problem seeks to find; and (2) the complexity
of the invariants when expressed as a CNF. For example, when seeking regular
graphs, one would not consider fdeg as all vertices have the same degree. Alter-
natives such as fcommon and ftriangles encode “similar” information on pairs of
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vertices. However, their encodings differ in complexity. Each variable of ftriangles
encodes the number of triangles that involve a vertex i. This expression is
quadratic. In contrast, each fcommon variable encodes the number of common
neighbors of a pair, i and j. This expression is linear in size. Hence, one might
prefer the latter.

Acknowledgement. We thank the anonymous reviewers of this paper for their con-
structive suggestions.
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