
Andre A. Cire (Ed.)
LN

CS
 1

38
84

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research
20th International Conference, CPAIOR 2023
Nice, France, May 29 – June 1, 2023
Proceedings

Lecture Notes in Computer Science 13884
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Andre A. Cire
Editor

Integration of Constraint Programming,
Artificial Intelligence,
and Operations Research

20th International Conference, CPAIOR 2023
Nice, France, May 29 – June 1, 2023
Proceedings

Editor
Andre A. Cire
Department of Management, University of Toronto
Scarborough and Rotman School of Management
University of Toronto
Toronto, ON, Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-33270-8 ISBN 978-3-031-33271-5 (eBook)
https://doi.org/10.1007/978-3-031-33271-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-5993-4295
https://doi.org/10.1007/978-3-031-33271-5

Preface

This volume contains the papers that were presented at the 20th International Conference
on the Integration of Constraint Programming, Artificial Intelligence, and Operations
Research (CPAIOR 2023). The conference was held as an in-person event in Nice,
France, at the Université Côte d’Azur, campus of Saint Jean d’Angely.

The conference received a total of 95 submissions, including 71 regular papers and
24 extended abstracts. The regular papers reflect original unpublished work, whereas
the extended abstracts contain either original unpublished work or a summary of work
that was published in another venue. Each regular paper was reviewed by at least three
Program Committee members in a single-blind process. The reviewing phase was fol-
lowed by an author response period and an extensive discussion period carried out by
the Program Committee. The extended abstracts were reviewed for appropriateness for
the conference. At the end of the review period, 32 regular papers were accepted for
presentation during the conference and publication in this volume, and 11 abstracts were
accepted for a short presentation at the conference.

In addition to the regular papers and extended abstracts, three invited talks were
given by John Paul Dickerson (University of Maryland, Arthur), Ivana Ljubić, (ESSEC
Business School), and Rodrigo Acuna Agost (Amadeus). The conference program also
included a Master Class on the topic of Transportation: New Frontiers in Practice and
Theory, organized by Jean-Charles Régin. The Master Class included invited talks by
Nicolas Isoart (Zeloce), Willem-Jan van Hoeve (Carnegie Mellon University), Arthur
Finkelstein (Instant System France), Steven Gay (Google Paris), and Andre A. Cire
(University of Toronto).

Of the regular papers accepted to the conference, the paper “Objective-Based Coun-
terfactual Explanations for Linear Discrete Optimization” by Anton Korikov and J.
Christopher Beck was selected for the Best Paper Award, and the paper “Column Elimi-
nation for Capacitated Vehicle Routing Problems” by Anthony Karahalios and Willem-
Jan van Hoeve was selected for the Best Student Paper Award. The selection process
was based on ranking and voting by the Program Committee members, paper scores,
and extensive consultation with reviewers.

We acknowledge the local organizer, Jean-Charles Régin, and the generous sup-
port of our sponsors, which were at the time of publication the Artificial Intelligence
Journal (AIJ), Springer, Université Côte d’Azur, Laboratory I3S, Gurobi Optimization,
Association for Constraint Programming (ACP), COPT GmbH, Groupe de Recherche
Raisonnement, Apprentissage et Décision en Intelligence Artificielle (GRD RADIA),
and Groupe de Recherche – Recherche Opérationnelle et Décision (GRD ROD).

April 2023 Andre A. Cire

Organization

Program Chair

Andre A. Cire University of Toronto, Canada

Conference/Master Class Chair

Jean-Charles Régin Université Côte d’Azur, France

Program Committee

Brandon Amos Facebook AI, USA
Marleen Balvert Tilburg University, The Netherlands
Beste Basciftci University of Iowa, USA
J. Christopher Beck University of Toronto, Canada
Nicolas Beldiceanu IMT Atlantique (LS2N), France
David Bergman University of Connecticut, USA
Armin Biere University of Freiburg, Germany
Christian Blum Spanish National Research Council (CSIC), Spain
Merve Bodur University of Toronto, Canada
Hadrien Cambazard Université Grenoble Alpes, France
Quentin Cappart Polytechnique Montréal, Canada
Carlos H. Cardonha University of Connecticut, USA
Mats Carlsson RISE Research Institutes of Sweden, Sweden
Margarida Carvalho University of Montreal, Canada
Margarita Castro Pontifica Universidad Católica de Chile, Chile
Simon de Givry INRA - MIAT, France
Emir Demirović Delft University of Technology, The Netherlands
Guillaume Derval Université Catholique de Louvain, France
Maria Andreina Francisco

Rodriguez
Uppsala University, Sweden

Maria Garcia de la Banda Monash University, Australia
Tias Guns KU Leuven, Belgium
Emmanuel Hebrard Université de Toulouse, France
John Hooker Carnegie Mellon University, USA
Serdar Kadioglu Brown University, USA

viii Organization

Roger Kameugne University of Maroua, Cameroon
George Katsirelos AgroParisTech, France
Elias Khalil University of Toronto, Canada
Joris Kinable Amazon, USA
Zeynep Kiziltan University of Bologna, Italy
Christophe Lecoutre University of Artois, France
Jiaoyang Li Carnegie Mellon University, USA
Michele Lombardi University of Bologna, Italy
Pierre Lopez Université de Toulouse, France
Arnaud Malapert Université Côte d’Azur, France
Ciaran McCreesh University of Glasgow, UK
Laurent Michel University of Connecticut, USA
Nysret Musliu TU Wien, Austria
Nina Narodytska VMware Research, USA
Justin Pearson Uppsala University, Sweden
Marie Pelleau Université Côte d’Azur, France
Laurent Perron Google France, France
Gilles Pesant Polytechnique Montréal, Canada
Claude-Guy Quimper Laval University, Canada
Jean-Charles Régin University Nice-Sophia Antipolis, France
Michael Römer Bielefeld University, Germany
Louis-Martin Rousseau Polytechnique Montréal, Canada
Domenico Salvagnin University of Padova, Italy
Pierre Schaus Université Catholique de Louvain, Belgium
Thomas Schiex INRAE, France
Paul Shaw IBM, France
Mohamed Siala INSA Toulouse, France
Helmut Simonis University College Cork, Ireland
Christine Solnon INSA Lyon, France
Christian Tjandraatmadja Google, USA
Willem-Jan van Hoeve Carnegie Mellon University, USA
Hélène Verhaeghe Polytechnique Montréal, Canada
Petr Vilím CoEnzyme, Czechia
Mark Wallace Monash University, Australia
Roland Yap National University of Singapore, Singapore

Contents

Efficiently Approximating High-Dimensional Pareto Frontiers
for Tree-Structured Networks Using Expansion and Compression 1

Yiwei Bai, Qinru Shi, Marc Grimson, Alexander Flecker,
and Carla P. Gomes

Objective-Based Counterfactual Explanations for Linear Discrete
Optimization . 18

Anton Korikov and J. Christopher Beck

Column Elimination for Capacitated Vehicle Routing Problems 35
Anthony Karahalios and Willem-Jan van Hoeve

Cutting Plane Selection with Analytic Centers and Multiregression 52
Mark Turner, Timo Berthold, Mathieu Besançon, and Thorsten Koch

Handling Symmetries in Mixed-Integer Semidefinite Programs 69
Christopher Hojny and Marc E. Pfetsch

A Mixed-Integer Linear Programming Reduction of Disjoint Bilinear
Programs via Symbolic Variable Elimination . 79

Jihwan Jeong, Scott Sanner, and Akshat Kumar

Local Branching Relaxation Heuristics for Integer Linear Programs 96
Taoan Huang, Aaron Ferber, Yuandong Tian, Bistra Dilkina,
and Benoit Steiner

Online Learning for Scheduling MIP Heuristics . 114
Antonia Chmiela, Ambros Gleixner, Pawel Lichocki,
and Sebastian Pokutta

Contextual Robust Optimisation with Uncertainty Quantification 124
Egon Peršak and Miguel F. Anjos

Breaking Symmetries with High Dimensional Graph Invariants and Their
Combination . 133

Avraham Itzhakov and Michael Codish

Optimization Bounds from Decision Diagrams in Haddock 150
Rebecca Gentzel, Laurent Michel, and Willem-Jan van Hoeve

x Contents

ZDD-Based Algorithmic Framework for Solving Shortest Reconfiguration
Problems . 167

Takehiro Ito, Jun Kawahara, Yu Nakahata, Takehide Soh, Akira Suzuki,
Junichi Teruyama, and Takahisa Toda

Neural Networks for Local Search and Crossover in Vehicle Routing:
A Possible Overkill? . 184

Ítalo Santana, Andrea Lodi, and Thibaut Vidal

Getting Away with More Network Pruning: From Sparsity to Geometry
and Linear Regions . 200

Junyang Cai, Khai-Nguyen Nguyen, Nishant Shrestha, Aidan Good,
Ruisen Tu, Xin Yu, Shandian Zhe, and Thiago Serra

OAMIP: Optimizing ANN Architectures Using Mixed-Integer
Programming . 219

Mostafa ElAraby, Guy Wolf, and Margarida Carvalho

Predicting the Optimal Period for Cyclic Hoist Scheduling Problems 238
Nikolaos Efthymiou and Neil Yorke-Smith

Scalable and Near-Optimal ε-Tube Clusterwise Regression 254
Aravinth Chembu, Scott Sanner, and Elias B. Khalil

Branch & Learn with Post-hoc Correction for Predict+Optimize
with Unknown Parameters in Constraints . 264

Xinyi Hu, Jasper C. H. Lee, and Jimmy H. M. Lee

Interpretable Clustering via Soft Clustering Trees . 281
Eldan Cohen

Ner4Opt: Named Entity Recognition for Optimization Modelling
from Natural Language . 299

Parag Pravin Dakle, Serdar Kadıoğlu, Karthik Uppuluri,
Regina Politi, Preethi Raghavan, SaiKrishna Rallabandi,
and Ravisutha Srinivasamurthy

Exploiting Entropy in Constraint Programming . 320
Auguste Burlats and Gilles Pesant

Constraint Propagation on GPU: A Case Study for the Cumulative
Constraint . 336

Fabio Tardivo, Agostino Dovier, Andrea Formisano, Laurent Michel,
and Enrico Pontelli

Contents xi

Constraint Programming for the Robust Two-Machine Flow-Shop
Scheduling Problem with Budgeted Uncertainty . 354

Carla Juvin, Laurent Houssin, and Pierre Lopez

A Weighted Counting Algorithm for the Circuit Constraint 370
Gauthier Pezzoli and Gilles Pesant

Boolean-Arithmetic Equations: Acquisition and Uses . 378
R. Gindullin, N. Beldiceanu, J. Cheukam Ngouonou, R. Douence,
and C. -G. Quimper

Generating Random Instances of Weighted Model Counting: An Empirical
Analysis with Varying Primal Treewidth . 395

Paulius Dilkas

Virtual Pairwise Consistency in Cost Function Networks . 417
Pierre Montalbano, David Allouche, Simon de Givry,
George Katsirelos, and Tomáš Werner

Multi-objective Optimization for the Design of Salary Structures 427
François-Alexandre Tremblay, Dominique Piché-Meunier,
and Louis Dubois

Scheduling Complex Observation Requests for a Constellation
of Satellites: Large Neighborhood Search Approaches . 443

Samuel Squillaci, Cédric Pralet, and Stéphanie Roussel

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 460
Aaron Ferber, Emily Griffin, Bistra Dilkina, Burcu Keskin,
and Meredith Gore

Iterated Greedy Constraint Programming for Scheduling Steelmaking
Continuous Casting . 477

Dongyun Kim, Yeonjun Choi, Kyungduk Moon, Myungho Lee,
Kangbok Lee, and Michael L. Pinedo

Combining Incomplete Search and Clause Generation: An Application
to the Orienteering Problems with Time Windows . 493

Trong-Hieu Tran, Cédric Pralet, and Hélène Fargier

Author Index . 511

Efficiently Approximating
High-Dimensional Pareto Frontiers
for Tree-Structured Networks Using

Expansion and Compression

Yiwei Bai1(B), Qinru Shi2, Marc Grimson1, Alexander Flecker3,
and Carla P. Gomes1

1 Department of Computer Science, Cornell University, Ithaca, USA
{yb263,mg2425}@cornell.edu, gomes@cs.cornell.edu

2 Center for Applied Mathematics, Cornell University, Ithaca, USA
qs63@cornell.edu

3 Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, USA
asf3@cornell.edu

Abstract. Real-world decision-making often involves working with
many distinct objectives. However, as we consider a larger number of
objectives, performance degrades rapidly and many instances become
intractable. Our goal is to approximate higher-dimensional Pareto fron-
tiers within a reasonable amount of time. Our work is motivated by
a problem in computational sustainability that evaluates the trade-
offs between various ecological impacts of hydropower dam prolifera-
tion in the Amazon river basin. The current state-of-the-art algorithm
finds a good approximation of the Pareto frontier within hours for
three-objective problems, but a six-objective problem cannot be solved
in a reasonable amount of time. To tackle this problem, we devel-
oped two different approaches: an expansion method, which assembles
Pareto-frontiers optimized with respect to subsets of the original set
of criteria, and a compression method, which assembles Pareto-frontiers
optimized with respect to compressed criteria, which are a weighted
sum of multiple original criteria. Our experimental results show that
the aggregation of the different methods can reliably provide good
approximations of the true Pareto-frontiers in practice. Source code
and data are available at https://github.com/gomes-lab/Dam-Portfolio-
Selection-Expansion-and-Compression-CPAIOR.

Keywords: Multi-objective Optimization · Approximation DP

1 Introduction

Multi-objective optimization (MOO) is of vital importance in many real-world
problems in computational sustainability [7,13,30], which often involve balanc-
ing various environmental, economic, and social objectives, as captured e.g., in

Y. Bai and Q. Shi—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 1–17, 2023.
https://doi.org/10.1007/978-3-031-33271-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_1&domain=pdf
https://github.com/gomes-lab/Dam-Portfolio-Selection-Expansion-and-Compression-CPAIOR
https://github.com/gomes-lab/Dam-Portfolio-Selection-Expansion-and-Compression-CPAIOR
https://doi.org/10.1007/978-3-031-33271-5_1

2 Y. Bai et al.

Fig. 1. Amazon hydropower dam portfolio selection problem. Green circles refer to
potential dam sites while yellow circles represent already built dams. The sizes of the
circles reflect the sizes of the dams in terms of energy output. (Color figure online)

the Sustainable Development Goals [28], that are all crucial to consider when
designing solutions to these problems in alignment with human values. Such multi-
objective optimization problems often have a large number of competing objec-
tives that must be simultaneously optimized. However, most multi-objective algo-
rithms only work efficiently for 2 or 3 objectives due to the curse of dimensional-
ity [4,17,29]. Thus, finding methods to adapt state-of-the-art MOO algorithms
to higher-dimensional problems is a topic of great interest. We propose two effec-
tive methods for efficiently approximating higher-dimensional Pareto Frontiers on
tree-structured networks, using a state-of-the-art approximation algorithm, which
works well in practice on lower-dimensional multi-objective problems.

Our main motivation comes from the real-world problem of strategic planning
of hydropower dam expansion [16,32] in the Amazon basin (see Fig. 1), which
has a lasting impact on a multitude of ecosystem services provided by the river
network such as fish habitat and migration routes, sediment transportation, and
fish biodiversity [2,8,34]. Finding optimal portfolios of hydropower dams while
balancing the trade-offs between various ecological, social, and economic goals
is a good example of a challenging combinatorial multiobjective optimization
problem with a relatively large number of objectives. The current state-of-the-
art algorithm [14,31] exploits the underlying tree-structure of the river networks
and uses a dynamic programming scheme to approximate the Pareto frontier
with provable guarantees, within an arbitrary small ε factor, and a runtime that
is polynomial in the size of the instance and 1

ε . However, the runtime of this algo-
rithm is still exponential with respect to the number of objectives. For large river
networks such as the Amazon basin, while the algorithm is able to solve three
or four-objective optimization problems efficiently with a small approximation
factor, its performance drops off dramatically once we reach five objectives.

To encompass the complexity of balancing hydropower generation with
ecosystem service impacts in the Amazon, higher numbers of objectives need
to be considered. Here we address a set of six objectives associated with the

Expansion and Compression for Approximating Pareto Frontiers 3

proliferation of hydropower dams in the Amazon: hydropower generation,
the main benefit provided by dams; River connectivity index, an indicator
of the amount of habitat accessible to migratory fish; sediment transporta-
tion, the amount of sediment and nutrients transported by the river to the main
stem and is essential for flood plain agriculture and fish habitat; biodiversity
impact, which indicates the overall impact of dams on local biodiversity; degree
of regulation, which represents the change of river flow regimes caused by dams
and has a lasting influence on fish populations; and greenhouse gases emis-
sions, which is an estimate of the total amount of greenhouse gases emitted
by the construction and operation of dams, such as methane emissions due to
the anaerobic decomposition of organic matter from areas flooded by the dams.
Failing to consider any one of these six objectives leads to a less comprehensive
representation of overall dam impacts. Thus, we aim to approximate the higher-
dimensional (e.g., 6 criteria) Pareto frontier with the state-of-the-art algorithm
that works efficiently on lower-dimensional (e.g., 3 criteria) problems.

High-dimensional real-world data are often shown to dwell on low-dimensional
manifolds [15,18]. Similarly, we make the assumption that, for multi-objective
optimization problems on river networks, the six-objective Pareto frontier might
approximately lie on a lower-dimensional manifold. Current state-of-the-art works
are able to solve this type of MOO problem with three or four objectives effi-
ciently and with a guaranteed approximation factor. Given that these solutions
are very likely to be on the Pareto frontier for more objectives, we conjecture that
the aggregated solutions from Pareto frontiers optimized for all combinations of
three or four-element subsets of the six objectives may form a good approximation
of various local regions of the six-objective Pareto frontier. This naturally leads
to two questions. First, for a specific n-objective optimization problem, can the
true Pareto frontier be approximated by the Pareto frontiers defined by combi-
nations of k < n objectives? Complementary to the first question, can we reduce
k′ > k objectives to k objectives via different linear combinations of criteria and
still approximate the true k′ dimensional Pareto frontier?

In answering these questions, we provide two major contributions to greatly
improve the approximation of the Pareto frontier for 6 objectives for the Amazon
river basin: (1) An expansion method, which computes the Pareto frontier with
respect to different combinations of subsets of the original n criteria, aggregating
the resulting non-dominated solutions with respect to all original criteria. (2) A
compression method, complementary to the expansion method, which com-
putes the Pareto frontier with respect to the original criteria compressed into
fewer criteria via linear combinations, aggregating the resulting non-dominated
solutions with respect to all original criteria. (3) We show our approaches pro-
duce high-quality Pareto frontiers, in a reasonable amount time, and demonstrate
their effectiveness for three different sub-basins within the Amazon and for the
entire Amazon basin.

Related Work. Our work leverages a state-of-the-art dynamic programming
(DP) algorithm for computing the exact or approximation-guaranteed Pareto
frontier for tree-structured networks, referred to as tree-DP [10,14,31]. Typically,
the size of the Pareto frontier increases dramatically when the number of criteria

4 Y. Bai et al.

increases and tree-DP’s running time is proportional to it. Moreover, tree-DP
considers all the criteria at the same time so they cannot run in parallel, which
is not computationally efficient. Our methods approximate the Pareto frontier
from subsets of all the criteria and they can naturally be computed in parallel.
Parallel DP [9] may also be employed to boost its speed. Moreover, Genetic Algo-
rithms (GA) have been widely applied to approximate Pareto frontiers and solve
multiobjective optimization problems. Many well-established multiobjective GA
methods have been developed over the past 40 years, including, but not limited
to, vector evaluated GA (VEGA) [25], Multi-objective GA (MOGA) [11], Non-
dominated Sorting Genetic Algorithm and its iterations (NSGA, NSGA-II, and
NAGA-III) [5,6,27], and multiobjective evolutionary algorithm based on decom-
position (MOEA/D) [33]. Nevertheless, GA approaches are not competitive with
the current state-of-the-art algorithm [14,31], which exploits the underlying tree-
structure of the river networks and uses a dynamic programming scheme to be
able to approximate the Pareto frontier with provable guarantees with a runtime
that is polynomial in the number of nodes in the network. Other methods, for
instance, decision diagrams [3], propositional logic [26] and ray-based methods
[19–21,23] are also be used for multiobjective optimization problems, but they
cannot scale for the dam portfolio selection problem.

2 Problem Formulation

In this paper, we consider a multi-objective optimization problem with n (n ≥ 3)
objective functions z1, z2, · · · , zn, where the values of these functions are deter-
mined by a solution π (also referred to as a policy). Without loss of generality,
we assume that all these objectives are to be maximized. For any solution π,
we define the value vector of π to be

v(π) = (z1(π), · · · , zn(π)).

Pareto Dominance: For two solutions π and π′, if zi(π) ≥ zi(π′) for all i =
1, 2, · · · , n and zi(π) > zi(π′) holds for at least one i = 1, 2, · · · , n, then we say
that the solution π dominates the solution π′

Pareto Frontier: If a solution π is not dominated by any other feasible solution,
we say that π is a Pareto-optimal solution. The set of all Pareto-optimal solutions
is called the Pareto frontier (denoted as P).

ε-approximations for multi-objective solutions: for two Pareto frontiers
P1, P2, we say P1 is ε-approximated by P2 if and only if for any π1 ∈ P1, there
exists a π2 ∈ P2, we have π1 ≥ (1 − ε)π2 for all objectives.

Hydropower Dam Portfolio Selection Problem: Hydropower dams gener-
ate hydroelectricity, which accounts for 16.6% of the world’s total electricity and
70% of all renewable electricity [1]. However, the construction of a hydropower
dam can cause significant adverse environmental impacts, e.g., disruption of fish
migration routes, alteration of river flow regimes, and greenhouse gas emissions.

Expansion and Compression for Approximating Pareto Frontiers 5

Fig. 2. An example of converting a river network (a) to a tree-structure (b). A node
in the tree is a contiguous section of river uninterrupted by dam sites. Edges in the
tree are dam sites that connect upstream and downstream segments. The mouth of the
river (labelled u in this example) becomes the root of the tree. The tree-DP algorithm
leverages this tree structure to be an efficient approximation algorithm.

[2,12]. So the selection of which potential dam sites to build is of vital importance
for balancing energy production with ecosystem impacts. The hydropower dam
portfolio selection problem is to generate an (approximated) Pareto frontier (the
portfolio) of deciding what dams should be built (or selected) from a candidate
pool of dam locations proposed by experts with respect to the six important
criteria mentioned in the introduction. One solution in the portfolio is a subset
of the dam candidate pool to be built.

The Off-the-Shelf Algorithm: Our methods leverages an algorithm that can
compute low-dimensional Pareto frontiers efficiently for tree-structured prob-
lems. In this paper, we use the state-of-the-art tree dynamic programming (tree-
DP) based approximation algorithm [14,31]. It can compute the exact solution
given enough time or compute an ε approximated solution. The tree-DP algo-
rithm models the entire river system as a tree structure (directed tree). Each
dam site represents an edge and two vertices of that edge are the upstream river
region and downstream river region respectively, where the river region is a con-
tiguous part of the river, i.e., the streams of that region are connected and not
blocked by any potential dam position (see Fig. 2). A bottom-up DP process
can be done to compute the Pareto frontier. The running complexity of the DP
algorithm is proportional to the number of solutions considered at each node, it
can round the value of each criterion to the multiplicative of a small value (the
approximation factor) to merge many similar solutions into one solution.

6 Y. Bai et al.

Fig. 3. An example of trying to approximate a three-criteria Pareto frontier with two-
criteria optimization results. Each dot represents the values of the three criteria of one
solution. For the two criteria solutions, we compute the value of the remaining criterion
based on the dams built in that solution. We can observe that the two-criteria solutions
only cover the edges of the Pareto optimal sets formed by the three-criteria optimization
results.

3 The Expansion Method

We denote the actual n-objective Pareto frontier as Pn and define Vn = {v(π)|π ∈
Pn}. Given a positive integer 2 ≤ k < n, for all 1 ≤ i1 < i2 < · · · < ik ≤ n, i.e.,
all the possible sized k combinations of n criteria, we compute an ε-approximate
Pareto frontier P̃i1,··· ,ik w.r.t. zi1 , zi2 , · · · , zik . We define the union for these
k-objective Pareto frontiers to be

P̃k =
⋃

1≤i1<···<ik≤n

P̃i1,··· ,ik ,

and
Ṽk = {v(π)|π ∈ P̃k}.

P̃k is the output of the Expansion method (see Fig. 4). In this paper we study
the following proposition: for some real-world problems, Ṽk forms a sufficiently
good coverage of Vn with appropriate choices of k and ε.

The Expansion method method might look counter-intuitive at first
because when we consider the smallest possible cases, two-criteria optimiza-
tion solutions usually only cover the edges of a three-criteria Pareto frontier
(see Fig. 3). However, in practice, we are able to approximate higher-dimensional
Pareto frontiers using lower-dimensional Pareto frontiers. We will show an exam-
ple after introducing the compression method.

Expansion and Compression for Approximating Pareto Frontiers 7

Fig. 4. High-level depiction of the expansion and compression methods. The left cir-
cle contains all the criteria we are interested in. Both the expansion and compression
methods use the off-the-shelf Pareto-frontier algorithm optimized with respect to the
criteria in the parentheses. In the expansion method, we choose all possible combina-
tions of three criteria, from all criteria, and merge their results to generate the final
results (evaluated with respect to all criteria). The compression method reduces the
number of criteria by compressing the original criteria into fewer criteria. For example,
5-3-1-2-2 denotes that five criteria are reduced into three by keeping the first one as is
and compressing the last two pairs of criteria. The compression operator is defined in
Eq. 1.

4 The Compression Method

The Expansion method is likely to miss some solutions since it only optimizes
with respect to a subset of the full criteria. We, therefore, propose a compres-
sion method (see Fig. 4) to further complement the Pareto frontier computed
by the expansion method. By compressing k′ > k criteria into k criteria, the off-
the-shelf algorithm can compute the Pareto frontier for k criteria while implicitly
considering k′ criteria.

Formally, as defined before, Pn refers to the actual n−objective Pareto fron-
tier and Vn = {v(π)|π ∈ Pn}. The compression configuration can be defined
as (k′, k, a1, a2, . . . , ak (Fig. 4) where 0 < k < k′ ≤ n and

∑k
i=1 ai = k′.

The idea of this configuration is to compress k′ criteria into k criteria and
ai (i = 1, · · · , k) describe what criteria should be merged. The compression
operator is defined as follows: for all the possible sized k′ combinations of n cri-
teria: 0 < i1, i2, · · · , ik′ ≤ n, the compressed criteria evaluation function c′

i can
be computed as:

c′
i =

sum[i]∑

j=sum[i−1]+1

wj ∗ zj (1)

where a0 = 0, sum[i] =
∑i

j=1 aj , sum[0] = 0 and wj is the scalar weight. Note,
if any two criteria ip, iq are compressed into one criterion, then p �= q. The
scales of different criteria vary substantially so the selection of the weights wi

is vital to the performance. A straightforward selection strategy is to normalize
the criteria into the same scale: denote zmax

j as the max j-th criterion value

among all the dams/rivers and wj can be set as 1 − zmax
j∑n

i=1 zmax
i

. This normalized

8 Y. Bai et al.

strategy treats each criterion as having the same importance. Then, for all the
possible 0 < i1, i2, · · · , ik′ ≤ n, i.e., k′ combinations of n criteria, we compute
the Pareto frontier P̃1′,2′,...,k′ . We define the union of these k-objective Pareto
frontiers to be P̃k′ and it is the output of our compression method (see Fig. 4 for
more details). In general, k′ is the number of actual criteria we consider while
k refers to the number of compressed criteria considered by the algorithm. The
ai (i = 1, . . . , k) specifies how we compress the k′ criteria into k criteria.

These two methods share a common idea, i.e., approximate the high-
dimensional Pareto frontier using many low-dimensional Pareto frontiers. The
difference is that the compression method implicitly considers more criteria by
compressing multiple criteria into fewer criteria.

Fig. 5. Exact non-Convex Pareto frontier of energy-connectivity for the Tapajós basin.

5 Experiments

5.1 Experimental Setup

Our study focuses on the Amazon basin, where more than 350 large hydropower
dams have been proposed. To show the generalizability of our methods and
provide scalability insights, we also considered three sub-basins of the Amazon
basin: Marañón, Tapajós and the West Amazon. We compute the Pareto fron-
tier with respect to the six important criteria introduced in the introduction:
hydropower generation, river connectivity index, sediment transportation, bio-
diversity impact, the degree of river regulation, and greenhouse gases emissions.
For our underlying off-the-shelf algorithm and baseline, we use the state-of-the-
art tree DP algorithm that computes the exact or approximate Pareto frontier,
adopting the original papers’ recommended configurations [14,31]. Our baseline
is to directly consider all six criteria with the minimal approximation factor the
runtime constraints allow.

Expansion and Compression for Approximating Pareto Frontiers 9

5.2 Evaluation Method

To compare the optimization results of the various methods, we need a met-
ric that can evaluate both the optimality and the coverage of the approximate
Pareto frontiers. Note that the exact Pareto frontier we are trying to approxi-
mate can be non-convex (see Fig. 5). So, not only do we care about the overall
shape of the Pareto frontier, but also the evaluation of the individual solutions.
Therefore, we propose an evaluation method that divides the solution space into
ε hypercubes following [24]’s approach.

Fig. 6. We use two criteria as an example. The solution space is divided into several
hypercubes. The upper bound of each cube is 1+ε of its lower bound. The lower bound
a is the minimum value of its criterion. The number of hypercubes one solution covers
is a good metric. Consider two solutions sets 1 and 2. Set1 covers two hypercubes, while
set2 covers two hypercubes. Note that these numbers are computed when we consider
each solution set individually. When we compare them, we need to compute the new
Pareto frontier after merging their solutions.

More specifically, for a n-objective optimization problem where, without loss
of generality, every objective is to be maximized and the objective values are
strictly non-negative, we define the solution space to be a n-dimensional space
where each axis represents the value of one objective. We also make the assump-
tion that the minimum possible value of each objective is non-negative. For a
given error bound ε > 0, we divide the solution space into hypercubes where the
upper bound is 1 + ε of the lower bound on each axis, with the smallest value of
the lower bounds being the minimum possible value of the corresponding objec-
tive. Similar to the definition of Pareto-dominance, for two different hypercubes,
if for each axis, the upper bound of the first hypercube is greater than or equal

10 Y. Bai et al.

Table 1. Non-dominated hypercubes occupied by the different methods. Note that the
occupied non-dominated hypercubes are computed by merging and comparing tree-DP
solutions, Expansion solutions, and Compression solutions. The approximation factors
are shown in Table 2. The number in the parentheses is the number of criteria that are
considered by the tree-DP algorithm. The epsilon is used in the hypercube computation.
The Compression method further improves the performance. Expansion+Compression
is a good approximation for all the basins, outperforming the baseline tree-DP, which
provides a theoretical approximation guarantee.

Basin epsilon Tree DP (6) Expansion-3 (3) Expansion-4 (4) Compression-3 (2) Compression-4 (3) Compression-5 (3) Expansion + Compression

Marañón 0.01 12070 9 2 1344 14884 1620 17425

Marañón 0.05 35 1 0 747 771 2 816

Tapajós 0.01 0 681 382 1435 14878 0 17371

Tapajós 0.05 0 44 22 187 1057 0 1277

West Amazon 0.01 0 66 149 306 20851 0 21371

West Amazon 0.05 0 6 11 27 1160 0 1191

Amazon 0.01 0 6778 9 1623 1243 2397 12044

Amazon 0.05 0 485 1 216 85 75 847

to the upper bound of the second hypercube, we say that the first hypercube
dominates the second hypercube. More details can be found in the Fig. 6.

To compare two or more sets of solutions, we first identify all of the ε-
hypercubes that are occupied by at least one solution in any of the solution
sets. We then find the set of occupied hypercubes that are not dominated by
any other occupied hypercube. Finally, we compute for each set of solutions the
number of non-dominated hypercubes they occupy. If one set of solutions cov-
ers more non-dominated ε-hypercubes than the other set, we say that the first
solution set has better ε-coverage than the second solution set. Notice that since
the set of occupied hypercubes will change depending on the sets of solutions
compared and the number of solutions in each set, the number of non-dominated
hypercubes covered by one set of solutions may change depending on the solution
sets compared to, so the number of non-dominated hypercubes covered cannot
be used as a universal metric of the quality of approximate Pareto frontiers.
However, when comparing fixed sets of solutions, the metric provides a good
comparison of the accuracy and coverage of the solution sets.

The visualized Pareto frontiers computed by different solutions can be more
straightforward for comparison. However, it is difficult to visualize Pareto fron-
tiers of dimensions higher than three. For the sake of clear visualization and
easier comparison, we use the Uniform Manifold Approximation and Projection
(UMAP) [22] method to project a high-dimensional Pareto-frontier onto a two-
dimensional plane while preserving the general proximity relationships between
the values of solutions. We merge the solutions generated by the tree-DP and our
methods, then only save the non-dominated solutions, and finally, use UMAP to
visualize these solutions. We have developed a website for visualizing the Pareto
frontier.

https://www.cs.cornell.edu/gomes/udiscoverit/amazon-ecovistas/visualizations.html

Expansion and Compression for Approximating Pareto Frontiers 11

Fig. 7. UMAP results of the baseline approximate six-criteria Pareto frontier of the
Marañón basin (ε = 0.1) and the Expansion + Compression approximation results.
We can observe that our method covers most solutions of the tree-DP algorithm. Note
that the solutions fed into the UMAP results are all non-dominated solutions.

5.3 Experimental Results

We first show how well each of the Expansion methods and Compression
methods can approximate the six criteria Pareto frontier for the full Amazon
Basin and three sub-basins. Since the Pareto frontier may be non-convex (see
Fig. 5), our metric is the number of non-dominated hypercubes occupied by the
solutions computed by a given method. For methods’ solution comparison, from
both fine-grain and coarse perspectives, we used two hypercube error bounds:
ε = 0.01 and ε = 0.05.

For all the experiments, we always include hydropower generation as a sin-
gle criterion, otherwise, the optimal solution would be the trivial solution of
building no dams as hydropower generation is the only criterion positively cor-
related with construction. Due to the scale of the problem, the state-of-the-art
tree-DP algorithm can only compute or approximate the Pareto frontier in a
reasonable amount of time for k = 3, 4 criteria. Thus, for both the expan-

Table 2. Approximation factors of the baseline, the expansion method, and the com-
pression method. The number in the parentheses is the number of criteria considered
by the tree-DP algorithm. Factors vary and are set so that every experiment is under
the 80 hour limit, except for the baseline.

Basin Baseline (6) Expansion-3 (3) Expansion-4 (4) Compression-3 (2) Compression-4 (3) Compression-5 (3)

Marañón 0.1 0 0 0 0 0

Tapajós 1.0 0.1 0.4 0.3 0.3 0.3

West Amazon 1.0 0.2 0.2 0.2 0.2 0.2

Amazon 1.25 0.5 2.0 0.5 0.5 0.5

12 Y. Bai et al.

Fig. 8. UMAP results of four basins’ Expansion and Compression solutions. We merge
their sets of solutions and use all the non-dominated solutions to compute these UMAP
results. The number in the names of the method refers to the actual criteria (k′ of the
Compression method) considered. We can observe that for all the basins, two methods
capture different perspectives of the problem and this leads to very different solutions.

sion and compression methods, we consider combinations of 3 and 4 criteria.
For the Expansion method we refer to the experiment that computes all the
possible 3 criteria combinations Expansion-3 and 4 criteria combinations as
Expansion-4 , and they both consider C5

2/3 = 10 combinations (here we choose
from 5 criteria instead of 6 since we always include energy as one criterion).
For the compression method, we describe the configuration in the following for-
mat, assuming the criteria are sequentially numbered: (k′, k, a1, . . . , ak), which
denotes that we compress k′ criteria into k criteria using the scheme a1, . . . , ak.
Each ai denotes how many of the original criteria in the sequence are com-
pressed to produce the final criterion i. The formal definition of compressing
these ai criteria can check Eq. 1. We consider three situations for the compres-
sion method: (1) (3, 2, 1, 2) (denoted as Compression-3): since the first target
criterion must be the single (uncompressed) energy criterion, we have a total of
C5

2 = 10 combinations; (2) (4, 3, 1, 2, 1) (denoted as Compression-4): where
we have a total of C5

2 × C5
1 = 50 combinations; and (3) (5, 3, 1, 2, 2) (denoted

as Compression-5): where we have a total of C
4∗5
2

2 = 45 combinations. To
reduce the computational overhead, we assign each (compressed) criterion the
same importance factor when reducing multiple criteria into one. We tune the

Expansion and Compression for Approximating Pareto Frontiers 13

Fig. 9. UMAP results for the four basins’ Expansion-3 and Expansion-4 solutions. We
merge their sets of solutions and use all the non-dominated solutions to compute these
UMAP results. For all the basins, except for the entire Amazon, the Expansion methods
compute very different solutions, when considering different numbers of criteria. For
the entire Amazon basin, due to the large approximation factor (2.0) used by the
Expansion-4 method, it can only find a few solutions.

approximation factor of the tree-DP algorithm to ensure a single experiment (e.g.
a combination of energy-connectivity-GHG (greenhouse gas emissions) using the
expansion method) is finished within an 80 hours time budget running on a com-
putation node that has 24 Intel(R) Xeon(R) CPU X5690 @ 3.47GHz. Note we
do not set a time limit for the baseline method. The baseline runtime for all four
basins is greater than 10 days.

The main results are summarized in Table 1 and the approximation factors
of all methods are shown in Table 2. We compute the non-dominated hypercubes
for each method, then combine these hypercubes and remove all dominated ones
to form the hypercube Pareto frontier. Since the number of solutions can be
quite large and there are many solutions that are quite similar to each other,
we sort the solutions with respect to the number of dams they build and sample
3, 000 solutions uniformly from each sub-experiment. For the baseline method,
we either select all of its solutions or uniformly sample 1, 000, 000 solutions.
For each method, we then count how many grids of its solution set belong to
the hypercube Pareto frontier. Table 1 shows that even for the smallest sub-
basin, the Marañón, which the tree-DP algorithm can finish with an ε = 0.1
approximation factor, our method can get a better approximation (17425 v.s.
12070). In Fig. 7, we also show visually how our method can cover almost every

14 Y. Bai et al.

solution of the six criteria Pareto frontier computed by the Tree-DP algorithm
(approximation factor ε = 0.1) for the Marañón sub-basin using UMAP. For the
other larger basins, where the tree-DP algorithm alone is only able to scale with
a very loose approximation factor, the solution sets computed by our Expansion
and Compression methods entirely dominate those of the tree-DP algorithm.

We also compare the sets of solutions generated by our two methods to
study how different they are. The results are summarized in Fig. 8, where we
compare the UMAP results after removing all the dominated solutions. For all
the basins, except for the full Amazon basin, our two methods generate very dif-
ferent solutions. The Compression methods produce the largest number of non-
dominated solutions (see Table 1). In terms of the full Amazon basin, interest-
ingly the Expansion method outperforms the Compression method, even though
the Compression method further improves the Expansion method. Understand-
ing the trade-offs of the two approaches is a future research question. In any
case, the combination Expansion+Compression clearly outperforms the tree-DP
algorithm baseline, as the approximation used by the tree-DP algorithm for
six criteria has to be quite loose since the number of solutions is enormously
large when directly considering all six criteria. In contrast, the Expansion and
Compression methods use a much smaller approximation factor as the num-
ber of target criteria is small (2 or 3), efficiently handled by the tree-DP algo-
rithm, which makes up for only optimizing with respect to subsets of the original
criteria.

5.4 Ablation Study

We conducted experiments to study how the number of criteria affects the solu-
tion sets computed by the expansion method and the compression method. We
merge the solution sets of all expansion methods and all compression methods
separately, and then remove all the dominated solutions from them. We then
run UMAP to project their non-dominated solutions to a 2-dimensional space
to analyze the relative distances between the solutions. The results are shown
in Fig. 9 (Expansion) and Fig. 10 (Compression). For all the basins, except for
the full Amazon basin, Expansion-3 and Expansion-4 cover very different areas.
For the entire Amazon basin, Expansion-3 dominates Expansion-4 since it is
able to use a much smaller approximation factor (0.5 v.s. 2.0). For the Com-
pression method, in general, solutions from Compression-4 and Compression-5
dominate Compression-3 solutions since the first two methods actually consider
one more criterion Moreover, except for the full Amazon basin, Compression-4
and Compression-5 methods cover diverse areas. These results show that con-
sidering different numbers of criteria can provide different solution perspectives.

Expansion and Compression for Approximating Pareto Frontiers 15

Fig. 10. UMAP results of four basins’ Compression-3, Compression-4 and
Compression-5 solutions. We merge their sets of solutions and use all the non-
dominated solutions to compute these UMAP results. For all the basins, solution
sets from the Compression-4 and Compression-5 experiments in general dominate the
Compression-3 solutions since the first two methods actually consider one more crite-
rion. Moreover, for all the basins except for the full Amazon basin, the solution sets of
Compression-4 and Compression-5 cover very different solutions.

6 Conclusion

We propose the Expansion method to efficiently approximate an n (high)-
dimension Pareto frontier by computing all the possible k (low)-dimension Pareto
frontiers and merging their solutions together. Moreover, we also introduce a
Compression method that compresses multiple criteria into fewer criteria, allow-
ing the algorithm to consider more criteria implicitly, further improving the
Expansion method. The combination of the Expansion and Compression meth-
ods provides a good Pareto frontier approximation for three Amazon sub-basins
and the full Amazon basin for six criteria, in practice outperforming the baseline
tree-DP approach, which provides a theoretical approximation guarantee. Under-
standing the trade-offs between the Expansion and Compression approaches
is an interesting topic for further research. We hope this work inspires other
approaches for efficiently approximating high-dimensional Pareto frontiers.

Acknowledgments. We thank the reviewers for all the constructive feedback. This
research is supported in part by grants from the National Science Foundation, Air
Force Office of Scientific Research, and Cornell Atkinson Center for Sustainability.

16 Y. Bai et al.

References

1. Hydroelectricity. https://en.wikipedia.org/wiki/Hydroelectricity. Accessed 26 Jan
2022

2. Almeida, R.M., et al.: Reducing greenhouse gas emissions of amazon hydropower
with strategic dam planning. Nat. Commun. 10(1), 1–9 (2019)

3. Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In:
Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86–95. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44953-1 6

4. Brockhoff, D., Zitzler, E.: Are all objectives necessary? On dimensionality reduc-
tion in evolutionary multiobjective optimization. In: Runarsson, T.P., Beyer, H.-
G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006.
LNCS, vol. 4193, pp. 533–542. Springer, Heidelberg (2006). https://doi.org/10.
1007/11844297 54

5. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2013)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiobjec-
tive combinatorial optimization. OR Spectrum 22(4), 425–460 (2000)

8. Finer, M., Jenkins, C.N.: Proliferation of hydroelectric dams in the Andean Ama-
zon and implications for Andes-Amazon connectivity. PLOS ONE 7(4), 1–9 (2012).
https://doi.org/10.1371/journal.pone.0035126

9. Fioretto, F., Pontelli, E., Yeoh, W., Dechter, R.: Accelerating exact and approxi-
mate inference for (distributed) discrete optimization with GPUs. Constraints 23,
1–43 (2018)

10. Flecker, A.S., et al.: Reducing adverse impacts of amazon hydropower expansion.
Science 375(6582), 753–760 (2022)

11. Fonseca, C.M., Fleming, P.J., et al.: Genetic algorithms for multiobjective opti-
mization: formulation discussion and generalization. In: ICGA, vol. 93, pp. 416–423
(1993)

12. Forsberg, B.R., et al.: The potential impact of new Andean dams on amazon fluvial
ecosystems. Plos One 12(8), 1–35 (2017). https://doi.org/10.1371/journal.pone.
0182254

13. Gomes, C., et al.: Computational sustainability: computing for a better world and
a sustainable future. Commun. ACM 62(9), 56–65 (2019)

14. Gomes-Selman, J.M., Shi, Q., Xue, Y., Garćıa-Villacorta, R., Flecker, A.S., Gomes,
C.P.: Boosting efficiency for computing the Pareto frontier on tree structured net-
works. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 263–279.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 19

15. Huang, D., Yi, Z., Pu, X.: Manifold-based learning and synthesis. IEEE Trans.
Syst. Man Cybern. Part B (Cybern.) 39(3), 592–606 (2009). https://doi.org/10.
1109/TSMCB.2008.2007499

16. Kareiva, P.M.: Dam choices: analyses for multiple needs. Proc. Natl. Acad. Sci.
109(15), 5553–5554 (2012)

17. Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary
algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-36970-8 27

https://en.wikipedia.org/wiki/Hydroelectricity
https://doi.org/10.1007/978-3-319-44953-1_6
https://doi.org/10.1007/11844297_54
https://doi.org/10.1007/11844297_54
https://doi.org/10.1371/journal.pone.0035126
https://doi.org/10.1371/journal.pone.0182254
https://doi.org/10.1371/journal.pone.0182254
https://doi.org/10.1007/978-3-319-93031-2_19
https://doi.org/10.1109/TSMCB.2008.2007499
https://doi.org/10.1109/TSMCB.2008.2007499
https://doi.org/10.1007/3-540-36970-8_27
https://doi.org/10.1007/3-540-36970-8_27

Expansion and Compression for Approximating Pareto Frontiers 17

18. Li, B., Li, J., Tang, K., Yao, X.: Many-objective evolutionary algorithms: a survey.
ACM Comput. Surv. 48(1) (2015). https://doi.org/10.1145/2792984

19. Lin, X., Zhen, H.L., Li, Z., Zhang, Q., Kwong, S.: Pareto multi-task learning (2019).
https://doi.org/10.48550/ARXIV.1912.12854

20. Ma, P., Du, T., Matusik, W.: Efficient continuous pareto exploration in multi-task
learning (2020). https://doi.org/10.48550/ARXIV.2006.16434

21. Mahapatra, D., Rajan, V.: Exact pareto optimal search for multi-task learning:
touring the pareto front (2021). https://doi.org/10.48550/ARXIV.2108.00597

22. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

23. Nowak, D., Küfer, K.H.: A ray tracing technique for the navigation on a non-convex
pareto front (2020). https://doi.org/10.48550/ARXIV.2001.03634

24. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings 41st Annual Symposium on Foun-
dations of Computer Science, pp. 86–92. IEEE (2000)

25. Schaffer, J.D.: Some experiments in machine learning using vector evaluated
genetic algorithms (1985). https://www.osti.gov/biblio/5673304

26. Soh, T., Banbara, M., Tamura, N., Le Berre, D.: Solving multiobjective discrete
optimization problems with propositional minimal model generation. In: Beck, J.C.
(ed.) CP 2017. LNCS, vol. 10416, pp. 596–614. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66158-2 38

27. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

28. United Nations General Assembly: Transforming our world: the 2030 agenda for
sustainable development (2015). https://sdgs.un.org/2030agenda

29. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based
methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2 56

30. Wiecek, M.M., Ehrgott, M., Fadel, G., Figueira, J.R.: Multiple criteria decision
making for engineering (2008)

31. Wu, X., et al.: Efficiently approximating the pareto frontier: hydropower dam place-
ment in the amazon basin. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32 (2018)

32. Zarfl, C., Lumsdon, A.E., Berlekamp, J., Tydecks, L., Tockner, K.: A global boom
in hydropower dam construction. Aquat. Sci. 77(1), 161–170 (2015)

33. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

34. Ziv, G., Baran, E., Nam, S., Rodŕıguez-Iturbe, I., Levin, S.A.: Trading-off fish
biodiversity, food security, and hydropower in the Mekong river basin. Proc. Natl.
Acad. Sci. 109(15), 5609–5614 (2012). https://doi.org/10.1073/pnas.1201423109.
https://www.pnas.org/content/109/15/5609

https://doi.org/10.1145/2792984
https://doi.org/10.48550/ARXIV.1912.12854
https://doi.org/10.48550/ARXIV.2006.16434
https://doi.org/10.48550/ARXIV.2108.00597
http://arxiv.org/abs/1802.03426
https://doi.org/10.48550/ARXIV.2001.03634
https://www.osti.gov/biblio/5673304
https://doi.org/10.1007/978-3-319-66158-2_38
https://doi.org/10.1007/978-3-319-66158-2_38
https://sdgs.un.org/2030agenda
https://doi.org/10.1007/978-3-540-70928-2_56
https://doi.org/10.1073/pnas.1201423109
https://www.pnas.org/content/109/15/5609

Objective-Based Counterfactual
Explanations for Linear Discrete

Optimization

Anton Korikov(B) and J. Christopher Beck

Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Canada

{korikov,jcb}@mie.utoronto.ca

Abstract. Given a user who asks why an algorithmic decision did not
satisfy some conditions, a counterfactual explanation takes the form of a
minimally perturbed input that would have led to a decision satisfying
the user’s conditions. Building on recent work, this paper develops tech-
niques to generate counterfactual explanations for linear discrete con-
strained optimization problems. These explanations take the form of a
minimally perturbed objective vector that induces an optimal solution
satisfying the newly stated user constraints. Drawing inspiration from
the inverse combinatorial optimization literature, we introduce a novel
non-convex quadratic programming algorithm to generate such explana-
tions. Furthermore, we develop conditions for the existence of an expla-
nation, addressing a limitation of past approaches. Finally, we discuss
several future directions for explanations in discrete optimization such
as actionable and sparse explanations.

1 Introduction

As the use of automated decision-making systems has increased, research has
turned toward the question of providing explanations for the decisions that are
made [12,13]. Such explanations enhance people’s ability to interact with auto-
mated systems, improving performance of deployed systems [8] and facilitating
better human oversight [7]. While much of explainability research has focused
on deep learning (e.g., [13]), explainability is also important for model-based
decision making systems, such as those studied in Constraint Programming,
Operations Research, and Artificial Intelligence. Unlike deep learning models,
declarative models are often decomposable into human-understandable symbols
(e.g., costs, weights, priorities, etc.), yet decision algorithms are typically too
complex or involve too many steps for a human to easily follow, making it dif-
ficult for people to contemplate relationships between modelling choices and
algorithmic decisions [12]. Working in the context of AI planning, Smith [21]
therefore proposed that explainability techniques are needed to support human
reasoning about the effects of modeling choices on algorithmic decisions. Explain-
able AI Planning (XAIP) has since emerged as a rapidly growing research area
[3], successful both in developing techniques specialized to AI planning [4,10]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 18–34, 2023.
https://doi.org/10.1007/978-3-031-33271-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_2&domain=pdf
http://orcid.org/0009-0003-4487-9504
http://orcid.org/0000-0002-4656-8908
https://doi.org/10.1007/978-3-031-33271-5_2

Counterfactual Explanations for Linear Discrete Optimization 19

as well as integrating broader explainable AI (XAI) research (e.g., contrastive
explanations [17]).

In the field of optimization, an explainability literature similar in scope to
XAIP has yet to emerge. Most explainability research in optimization has focused
on explaining why a problem instance is infeasible, typically by identifying min-
imal sets of conflicting constraints [20], and there is little work on explaining
feasible or optimal decisions [12]. Furthermore, integration between explainabil-
ity research in optimization and XAI research at large has been limited.

Aiming to address this gap, our recent work [14,15] applied the XAI technique
of counterfactual explanations [24] to optimal solutions of discrete optimization
problems. Given an explainee1 asking why an algorithmic decision was not differ-
ent in a specific way, a counterfactual explanation presents minimally perturbed
inputs to the algorithm that would have led to the decision being different in the
way specified. In the framework introduced in our past work [14], an explainee
asks why an optimal solution to a discrete optimization problem did not satisfy
a previously unstated set of constraints. An explanation then takes the form of
a minimally perturbed objective vector, so that, with the perturbed objective
vector replacing the original one, an optimal solution would satisfy both the
initial and new constraints.

Example 1. (Production Scheduling). A manager at a factory examines a
monthly production schedule computed by an optimization system, the objec-
tive of which is determined by job priority levels and completion times. She asks:
“Why were jobs 1 and 2 not completed in less than one week?”. The explanation
shows her the minimal change to the job priorities in the upcoming month so
that jobs 1 and 2 would be completed in under one week in an optimal schedule.
After receiving the explanation, the manager can either choose to keep the initial
job priorities and accept the initial schedule or to produce a new schedule with
the modified priority levels.

The task of generating such objective-based counterfactual explanations is a
valuable research direction for several reasons. Objectives are the result of mod-
eling choices, however, complex optimization algorithms make it difficult for a
person to understand how a particular modeling choice leads to certain solution
features [21]. For instance, in Example 1, the manager desires more information
on how the job priority values (a modeling choice) impact whether jobs 1 and
2 are completed within a week (a solution feature). While such information can
take many forms (see Sect. 7), one of the standard forms studied in XAI is a
minimal change to a set of problem inputs that induces the solution feature in
question [24]. The explanation in Example 1 takes this form. The goal of pro-
viding such information is to facilitate counterfactual reasoning, a fundamental
human reasoning strategy [11], about an algorithm’s inputs and outputs. Fur-
thermore, when explainees are shown how decisions can be changed, they are
empowered to contest or act to change decisions they believe are wrong [24].

1 A person receiving an explanation.

20 A. Korikov and J. C. Beck

Finally, research on counterfactual explanations in machine learning is devel-
oping rapidly, and many opportunities for cross-pollination exist between this
literature and explainable optimization (see Sect. 7).

Furthermore, an objective-based explanation formulation allows connections
to be made between explanation and inverse combinatorial optimization [6].
Given a possibly suboptimal solution, inverse optimization aims to find the min-
imal change to an optimization problems objectives such that the given solution
becomes optimal. The use of inverse optimization as a methodological basis for
objective-based explanation is discussed further in Sects. 2 and 4.

However, while our past work [14,15] defined an explanation framework for
discrete optimization, the algorithms we used could only compute explanations
for limited forms of questions. Specifically, an explainee could only ask why a
subset of variables did not satisfy a partial assignment, or why a single variable
did not satisfy a linear constraint (see Sect. 2.2). Their experiments also showed
that for these restricted questions, no explanation existed for many natural prob-
lem instances.

Addressing these limitations, we introduce a novel, non-convex quadratic
programming algorithm which can compute explanations for any linear discrete
optimization problem when the user’s question can be represented by linear or
quadratic constraints. This new algorithm is inspired by a well-known algorithm
in inverse combinatorial optimization [25], and capitalizes on recent advances in
commercial solvers. Numerical simulations are performed to evaluate the new
algorithm and demonstrate the explanation process for two combinatorial opti-
mization problems. Additionally, we establish conditions for the existence of an
explanation and apply them to design experimental problem instances. Finally,
several future directions are identified, such as actionable and sparse explana-
tions, and the limitations of the methods in this paper are discussed.

2 Background

2.1 Counterfactual Explanations

Given an algorithm which computes output p from input k, a counterfactual
explanation responds to a contrastive question of the form: “Why p, and not
some other output q ∈ Q?” [24]. Here, Q, called a foil set, is a set of alternative
outputs, and each alternative output q ∈ Q is called a foil. Given such a question,
a counterfactual explanation shows the explainee an alternative input l which
would have led to the output being in Q, with l typically selected such that it
minimally perturbs k.2

2.2 Nearest Counterfactual Explanations

Given an objective vector c ∈ D ⊆ R
z, the purpose of a standard (or forward)

optimization problem FW〈c, f,X〉 is to find values for a decision vector x ∈
2 Counterfactual means “contrary to the facts”. The alternative input l and outputs

q ∈ Q are contrary to the initial input k and output p, respectively.

Counterfactual Explanations for Linear Discrete Optimization 21

X ⊆ R
n which optimize an objective function f : D×X −→ R. In a minimization

problem, the goal is to find an optimal x∗ so that f(c, x∗) = minx{f(c, x) : x ∈
X}. If no optimization direction is specified, we assume minimization.

A counterfactual explanation process for an optimal solution x∗ to a forward
problem FW〈c, f,X〉 can be modeled using a Nearest Counterfactual Explana-
tion (NCE) problem [14]. The explainee must first describe a set of alternative
solutions Xψ ⊂ X, and ask the contrastive question “Why x∗ and not a solution
xψ ∈ Xψ?”. As per Sect. 2.1, Xψ is called the foil set and each solution xψ ∈ Xψ

is called a foil. To define the foil set, the explainee must specify an additional set
of constraints describing a feasible set ψ ⊂ R

n, with x∗ /∈ ψ. These additional
constraints are called foil constraints, and the foil set is defined as Xψ = X ∩ ψ.

Example 2. (Production Schedule - Contrastive Question). In Example 1,
assume that a schedule for n jobs is generated by solving a FW〈c, f,X〉 with
a decision vector x ∈ X ⊆ N

n
0 , where xi represents the number of days before

job i is completed. In the objective vector c ∈ D ⊆ N
n
0 , ci represents the pri-

ority of job i, and the objective is to minimize f = c · x,3 the sum of priority
weighted completion times. Given n = 4 and c = [4, 4, 3, 3], an optimal solution
is x∗ = [8, 13, 1, 3], prompting the manager to ask why jobs 1 and 2 were not
completed in under one week. In this case, the foil constraints are x1 ≤ 7 and
x2 ≤ 7, and the contrastive question is “Why x∗ and not an xψ ∈ Xψ?”, where
Xψ = X ∩ ψ and ψ = {x ∈ N

n
0 : x1 ≤ 7, x2 ≤ 7}.

The NCE addresses this type of question by searching for a counterfactual
objective vector d ∈ D ⊆ R

z that would lead to one of the foils xψ ∈ Xψ

being optimal to the modified problem FW〈d, f,X〉, such that d is minimally
perturbed from the initial objective vector c. This perturbation is measured
by some norm || · ||, assumed to be L1 if unspecified. If such a d is found, an
explanation is: “A solution xψ ∈ Xψ would have been optimal if the objective
vector had been d instead of c.” Formally, assuming a minimization forward
objective, the NCE〈c,D, f, ψ, x∗,X, || · ||〉 is

min
d∈D

||d − c|| (1)

s.t. min
xψ∈Xψ

f(d, xψ) = min
x∈X

f(d, x). (2)

If the optimization direction of the underlying forward problem is maximization,
the minimization terms in constraint (2) are replaced with maximization terms.

Example 3. (Production Scheduling - Explanation). Assume the manager from
Examples 1 & 2 is interested in explanations where job priorities can be adjusted
to integers between 1 and 5, giving D = {d ∈ N

4 : 1 ≤ di ≤ 5, ∀i ∈ {1, ..., 4}}.
If an optimal solution to the resulting NCE〈c,D, f, ψ, x∗,X〉 is d∗ = [5, 5, 2, 2],
the explanation is “Jobs 1 and 2 would have finished in under a week if their
priorities were increased to the maximum level (5) and the priorities of the other
two jobs were both one level lower (2)”.
3 Where clear from context, c · x is used as shorthand for cT x.

22 A. Korikov and J. C. Beck

NCEs provide a general way to model objective-based explanations of optimal
forward solutions. However, previous solution methods could only solve NCEs for
two restricted question types: questions about a single variable [14] and questions
that ask why x∗ did not satisfy a partial assignment [15]. Both methods, in
addition, restrict some components of d from being perturbed. In fact, neither
of these methods can solve the NCE described by Examples 1–3. Also, other
than observing that it is necessary for Xψ �= ∅ in a feasible NCE, we previously
did not formally study NCE feasibility conditions.

The main contribution of this paper is a novel quadratic programming algo-
rithm which can solve any NCE where the forward problem is a discrete linear
optimization problem, the foil constraints are linear or quadratic, and the norm
is L1. This new algorithm is inspired by inverse combinatorial optimization [25].

2.3 Inverse Combinatorial Optimization

Given a forward problem FW〈c, f,X〉 and a feasible target solution xd ∈ X,
the inverse optimization problem is to find a new objective vector d ∈ D ⊆ R

z,
minimally perturbed from c, so that xd becomes optimal. Given some norm || · ||,
the inverse optimization problem INV〈c,D, f, xd,X, || · ||〉 [6] is

min
d∈D

||d − c|| (3)

s.t. f(d, xd) = min
x∈X

f(d, x). (4)

The inverse optimization problem can be interpreted as a special case of the
NCE where the foil set is the singleton Xψ = {xd}. Though most inverse opti-
mization algorithms have focused on continuous optimization [5], methods also
exist for discrete optimization, with the standard technique being the InvMILP
algorithm for inverse Mixed Integer Linear Programming (MILP) [25]. Our new
algorithm is inspired by InvMILP .

A MILP〈c,X〉 is a forward problem FW〈c, f,X〉 with c ∈ D ⊆ R
n, f =

c · x, and X = {x ∈ R
n
+ : Ax ≤ b, xI ∈ N0} with A ∈ R

v×n, b ∈ R
v, and

I ⊆ {1, ..., n}. An inverse MILP, INVMILP〈c,D, xd,X〉, is an inverse problem
where the forward problem is a MILP〈c,X〉, D ⊆ R

n, and the norm is L1.
To solve such inverse MILPs, InvMILP (Algorithm 1) uses an iterative, two-

level approach where a master problem MPINV (5)–(8) is initialized with a set
S0 ⊆ X of known extreme points of conv(X), the convex hull of X. MPINV
then searches for a d, minimizing ||d − c||1, such that xd is at least as good of a
solution to MILP〈d,X〉 as any point in S0. If such a d is found, a subproblem
MILP〈d,X〉 is solved to optimality, returning an extreme point x0. If x0 gives a
better objective value for d ·x than xd, then x0 is added to S0 and the algorithm
proceeds to the next iteration of MPINV . InvMILP continues iterating either
until the subproblem finds that xd is optimal to MILP〈d,X〉, in which case
d is an optimal solution to the inverse problem, or until the master problem is
found infeasible, which will occur if the inverse problem is infeasible.

To formulate the master problem MPINV (5)–(8), the objective ||d − c||1
is first linearized using g, h ∈ R

n
+, such that c − d = g − h: the magnitude of

Counterfactual Explanations for Linear Discrete Optimization 23

Algorithm 1. InvMILP [25].

1 Inputs: INVMILP〈c, D, xd, X〉.
2 Output: d∗.
3 Step 1: Initialize S0 ← ∅.
4 Step 2: Solve MPINV〈c, D, xd, X, S0〉.
5 If infeasible , return INFEAS.

6 Otherwise , get di = (c − gi + hi).

7 Step 3: Solve MILP〈di, X〉 to get x0.

8 If di,T xd ≤ di,T x0, stop. Return di = d∗.
9 Otherwise , update S0 = S0 ∪ {x0} and return to Step 2.

the change to parameter cj is represented by gj if the change is negative and
hj if it is positive. Constraints (6) force xd to be at least as good a solution to
MILP〈d,X〉 as any point in S0. Finally, to avoid any d for which the forward
problem is unbounded, Wang introduces the decision variable u ∈ R

v
+ and adds

the constraint AT u ≥ d (7), ensuring that d results in a feasible dual problem.
Thus, MPINV〈c,D, xd,X,S0〉, a linear program, is given by

min
u,g,h

g + h (5)

s.t (c − g + h)T xd ≤ (c − g + h)T x0 ∀x0 ∈ S0 (6)

AT u ≥ c − g + h (7)
(c − g + h) ∈ D, g ∈ R

n
+, h ∈ R

n
+, u ∈ R

v
+. (8)

The complete InvMILP algorithm, which has been proven to terminate
finitely [25], is given by Algorithm 1.

Noticeably absent from the discrete inverse optimization literature are algo-
rithms capable of handling changes to constraint parameters. Such constraint
parameter changes would add a degree of difficulty to the inverse optimization
problem since they could induce the existence of multiple alternative feasible sets.
The absence of such constraint-based inverse optimization methods is the reason
that we choose to study objective-based explanations, as opposed to explanations
based on changes to both objectives and constraints.

3 Problem Definition

This paper focuses on NCEs where the forward problem is a MILP〈c,X〉, the
foil constraints defining Xψ are linear or quadratic, and || · || is L1. Such an
NCE is denoted NCEMILP〈c,D, ψ, x∗,X〉, and Examples 1–3 are examples of
an NCEMILP , given that the forward scheduling problem is a MILP.

Definition 1. (NCEMILP). An NCEMILP〈c,D, ψ, x∗,X〉 is an NCE〈c,D, f,
ψ, x∗,X, || · ||〉 where the forward problem is a MILP〈c,X〉, ψ is defined by
linear or quadratic constraints, f = cT x, and || · || is L1. A feasible NCEMILP
solution, d, must not result in an unbounded MILP〈d,X〉.

24 A. Korikov and J. C. Beck

3.1 Existence of an Explanation

We now introduce conditions for the existence of a feasible, non-trivial solution
to an NCEMILP , defined as any d ∈ D feasible to (1)–(2) such that d �= 0.
While our past work [15] showed that NCE infeasibility can be an issue, no NCE
feasibility conditions have been established other than the observation that it is
necessary for Xψ �= ∅. We formalize a simple, necessary condition (Proposition
1) as well as a sufficient condition (Theorem 1) for NCEMILP feasibility, and
Sect. 5 uses these conditions to design experimental instances.

Proposition 1. For an NCEMILP〈c,D, ψ, x∗,X〉 to have a non-trivial feasible
solution, Xψ cannot lie entirely in the interior region of conv(X).

Proof. If Xψ lies entirely in the interior region of conv(X), Xψ cannot contain
an optimal solution to MILP〈d,X〉 for any d �= 0. �

Next, we present a sufficient feasibility condition for an NCEMILP . Intu-
itively, assuming minimization, setting a single variable xj to its minimal value
in the feasible set will lead to an optimal MILP〈d,X〉 solution if dj is greater
than zero while all other components of d are zero. Formally, for all i ∈ {1, ..., n},
let xi,min = minx{xi : x ∈ X ⊆ R

n
+} and xi,max = maxx{xi : x ∈ X ⊆ R

n
+}.

Also, let Df,+
j = {d ∈ R

n
+ : 0 < dj ≤ dUB

j , di = 0 ∀ i �= j}, where dUB
j =

maxd{dj : d ∈ D} and j ∈ {1, ..., n}.

Theorem 1. An NCEMILP〈c,D, ψ, x∗,X〉 has a non-trivial feasible solution if
all following conditions hold:

1. – If the forward optimization direction is minimization, ∃ x̃ψ ∈ Xψ and
∃ j ∈ {1, ..., n} so that x̃ψ

j = xj,min.
– If the forward optimization direction is maximization, ∃ x̃ψ ∈ Xψ and

∃ j ∈ {1, ..., n} so that x̃ψ
j = xj,max.

2. Df,+
j ⊆ D.

3. ∃M ∈ R where M > dUB
j x̃ψ

j .

Proof. For any df ∈ Df,+
j , the non-negative term df

j xj is the only component
contributing to the forward objective value (df)T x. If the forward objective is
minimization, no minimization of df

j xj is possible below df
j x̃ψ

j . Similarly, if the
forward objective is maximization, no maximization of df

j xj is possible above
df

j x̃ψ
j . Condition (3) ensures the objective is bounded. Thus, x̃ψ is optimal to

MILP〈d,X〉 for any df ∈ Df,+
j . �

An analogous theorem can be defined for negative df
j values that isolate a

non-positive objective component df
j xj , which we omit in the interests of space.

Counterfactual Explanations for Linear Discrete Optimization 25

4 The NCXplain Algorithm

This section introduces NCXplain, a novel non-convex quadratic program-
ming algorithm which optimally solves an NCEMILP . Letting S be the set
of all extreme points of conv(X) and decision vector xψ ∈ Xψ be a foil, the
NCEMILP〈c, D, ψ, x∗,X〉 can be expressed as:

min
d,xψ,u

||d − c||1 (9)

s.t. d · xψ ≤ d · x0 ∀ x0 ∈ S (10)

AT u ≥ d (11)

xψ ∈ Xψ, d ∈ D, u ∈ R
v
+. (12)

Constraints (10) force a foil to have a forward objective no worse than any
extreme point of conv(X), and have a non-convex, quadratic left-hand side which
is bilinear in d and xψ. Constraints (11) ensure that MILP〈d,X〉 is bounded
by forcing its dual problem to be feasible.

NCXplain (Algorithm 2) follows a similar cutting plane approach to InvMILP
(Algorithm 1), with the main difference being NCXplain’s quadratic master
problem MPNCE (13)–(17) and stopping conditions. The NCEMILP objective
is linearized using d = c − g + h, where g, h ∈ R

n
+. Then, taking the NCEMILP

(9)–(12) and relaxing constraints (10) by replacing S with a set of known extreme
points S0 ⊆ S gives the MPNCE 〈c,D, ψ, x∗,X,S0〉:

min
g,h,x,u

g + h (13)

s.t. (c − g + h) · x ≤ (c − g + h) · x0,∀ x0 ∈ S0 (14)

AT u ≥ c − g + h (15)
x ∈ Xψ, (c − g + h) ∈ D (16)
g, h ∈ R

n
+, u ∈ R

v
+. (17)

Given an optimal MPNCE solution (di, xψ,i, ui) at iteration i of NCXplain,
solving a subproblem MILP〈di,X〉 to get an optimal extreme point x0,i allows
NCXplain to either show di is an optimal solution to the NCEMILP or add a new
extreme point of conv(X) to S0. The complete NCXplain algorithm is given by
Algorithm 2, and its properties are formalized by Lemmas 1–2 and Theorem 2.
Both the master problem and the MILP subproblem can be modelled in Gurobi
9.0+ due to recent advances allowing non-convex quadratic constraints such as
(14) to be expressed directly.

Lemma 1. NCXplain only terminates in Step 3 if di is feasible for NCEMILP .

Proof. (Lemma 1). If di · x0,i = di · xψ,i (Case 1), then the foil xψ,i is optimal to
MILP〈di,X〉. If di · x0,i < di · xψ,i but x0,i ∈ Xψ (Case 2), then x0,i is a foil
and optimal to MILP〈di,X〉. �

26 A. Korikov and J. C. Beck

Algorithm 2. NCXplain.

1 Inputs: NCEMILP〈c, D, ψ, x∗, X〉
2 Output: d∗

3 Step 1: Initialize S0 ← x∗.
4 Step 2: Solve MPNCE 〈c, D, ψ, x∗, X, S0〉.
5 If infeasible , return INFEAS.

6 Else get (di, xψ,i, ui) with di = (c − gi + hi).

7 Step 3: Solve MILP〈di, X〉 to get x0,i.

8 If di · x0,i = di · xψ,i (Case 1)

9 Stop and return d∗ = di.

10 Elif di · x0,i < di · xψ,i and x0,i ∈ Xψ(Case 2)

11 Stop and return d∗ = di.

12 Else (Case 3)

13 Update S0 = S0 ∪ {x0,i}, go to Step 2.

Lemma 2. Let S0,i be S0 during iteration i of NCXplain. If in Step 3, x0,i ∈
S0,i, NCXplain must terminate. If x0,i /∈ S0,i, then NCXplain either terminates
or a new extreme point of conv(X) is added to S0 before iteration i + 1.

Proof. (Lemma 2). If x0,i ∈ S0,i, then due to constraint (14), xψ,i must satisfy
di · xψ,i ≤ di · x0,i, but due to the optimality of x0,i to MILP〈di,X〉, di · xψ,i

≮

di · x0,i. Thus, di · xψ,i = di · x0,i (Case 1), and NCXplain must terminate. If
x0,i /∈ S0,i and NCXplain does not terminate (Case 3), the new extreme point
of conv(X), x0,i, is added to S0. �

Theorem 2. NCXplain will optimally solve an NCEMILP〈c,D, ψ, x∗,X〉 or
prove it is infeasible in a finite number of iterations.

Proof. (Theorem 2). Let XMP and XNCE represent the solution sets of MPNCE
(13)–(17) and NCEMILP (9)–(12), respectively. Since the two problems have
the same objective, differ only in constraints (10) and (14), and S0 ⊆ S, then
XNCE ⊆ XMP and MPNCE is a relaxation of NCEMILP . Thus, if an MPNCE is
found infeasible in Step 2, then NCEMILP must also be infeasible. Similarly, if
a solution (di, xψ,i, ui) is optimal to an MPNCE and di is feasible to NCEMILP ,
then di must also be optimal to NCEMILP .

By these observations and Lemmas 1 and 2, in any iteration, NCXplain either
terminates having proven the NCEMILP is infeasible, terminates having found
an optimal NCEMILP solution d∗, or continues after adding a new extreme
point of conv(X) to S0. Because S is a finite set, the number of iterations before
S0 = S is finite, and when S0 = S, Lemma 2 implies that NCXplain must
terminate since any extreme point x0,i obtained in Step 3 is in S. �

Counterfactual Explanations for Linear Discrete Optimization 27

5 Experimental Method

Simulations demonstrating our explanation approach and testing NCXplain were
carried out based on two forward MILP problems. These experiments were per-
formed in three steps, focusing on the last:

1. Optimally solving a MILP〈c,X〉 instance to get x∗.
2. Simulating a contrastive question and creating a NCEMILP〈c,D, ψ, x∗,X〉

instance.
3. Optimally solving the NCEMILP〈c,D, ψ, x∗,X〉 with NCXplain.

We do not numerically compare NCXplain to alternatives because it is the
first algorithm capable of solving an NCEMILP .

5.1 Forward Problems

The two forward MILP problems were the 0-1 knapsack problem (KP) and the
single machine scheduling with release dates problem, 1|rj |

∑
wjCj . The KP was

selected because it is NP-complete [19], has a simple structure, and is easy to
understand. The scheduling problem was chosen because it matches a potential
use case for NCEMILP based explanations (Examples 1–3) and is a relatively
simple, though strongly NP-Hard [16] problem.

0-1 Knapsack Problem (KP). We are given a set of n ∈ N items, a profit
vector c ∈ N

n
0 , a weight vector w ∈ N

n
0 , and a knapsack capacity W ∈ N0,

with W <
∑n

i=1 wi. A decision variable xi ∈ {0, 1}, i ∈ {1, ..., n}, is assigned
to 1 if item i is included in the knapsack and 0 otherwise, and the complete
KP is maxx{c · x : x ∈ X}, X = {x ∈ {0, 1}n : w · x ≤ W}. Problem
instances of sizes n ∈ {250, 500, 1000} were generated using independent ran-
dom uniform distributions ci ∈ [1, R] and wi ∈ [1, R] with R = 1000, where
W = max{�P ∑n

i=1 wi�, R} with P = 0.5.

Scheduling Problem (1|rj |
∑

wjCj). There are n ∈ N jobs with each job
i ∈ {1, ..., n} having a processing time qi ∈ N, a weight4 ci ∈ N, a release
date ri ∈ N0, and a completion time tci ∈ N0. The objective is to minimize the
weighted sum of all completion times, c · tc, given that no job can start before
its release date or be interrupted and no two jobs can be processed at the same
time. Letting xi,t ∈ {0, 1} be a decision variable which is 1 if job i starts at time
t and 0 otherwise, and T be an upper bound on latest completion time of any
job, a MILP model for 1|rj |

∑
wjCj is

min
x

n∑

i=1

T−qi∑

t=0

ci(t + qi)xi,t (18)

4 Though w is typically used for job weights, we use c instead to keep notation con-
sistent throughout the paper.

28 A. Korikov and J. C. Beck

s.t.
T−qi∑

t=0

xi,t = 1, ∀ i = 1, ..., n (19)

n∑

i=1

t∑

s=max(0,t−qi+1)

xi,s ≤ 1, ∀ t = 0, ..., T − 1 (20)

ri−1∑

t=0

xi,t = 0, ∀ i ∈ {1, ..., n} (21)

xi,t ∈ {0, 1}n×(T−1). (22)

Constraints (19) force each job to start exactly once. Constraints (20) ensure no
two jobs are processed at the same time, and constraints (21) enforce the release
dates. Problem instances of sizes n ∈ {6, 9, 12} were generated using random
uniform distributions qi ∈ [1, 10], ci ∈ [1, 10], and ri ∈ [0, �αQ�], where α = 0.3
and Q =

∑n
i=1 qi, and the time horizon T was calculated as T = �αQ� + Q.

5.2 NCEMILP Instances

Knapsack Questions. Given a subset of m items Sψ ⊆ {1, ..., n}, |Sψ| =
m, Sψ �= ∅, and a parameter βψ ∈ (0, 1], the simulated question asked “Why
were at least βψm items from Sψ not included in the knapsack?”. The foil set
corresponding to this question is Xψ = {x ∈ X :

∑
j∈Sψ

xj ≥ βψm}. Questions
were simulated with β = 0.75 by randomly selecting m items to form Sψ such
that x∗ /∈ Xψ.

Scheduling Questions. The simulated question asked why m randomly
selected jobs M ⊆ {1, ..., n} were not scheduled earlier, as in Examples 1–3.
Letting t∗ ∈ [0, T]n denote job start times in x∗, a tψ ∈ [0, T]m was created
with tψj representing the maximal counterfactual start time of job j ∈ M such
that rj ≤ tψj < t∗j . Then, the question asked “Why was each job j ∈ M not
completed by (tψj + qj), respectively?”. This question is represented with the foil

set Xψ = {x ∈ X :
∑T−qj

t=0 txj,t ≤ tψj ∀ j ∈ M}. For each job j ∈ M, the
maximal counterfactual start time tψj was randomly selected from the interval
[tψ,LB

j , tψ,UB
j], where tψ,UB

j = t∗j − 1, tψ,LB
j = �rj + θ(t∗j − 1 − rj)�, and θ = 0.5.

Non-Empty Foil Sets. For both problems, after a foil set was generated, it
was checked whether Xψ was non-empty. If Xψ was empty, the question data
was re-randomized until a non-empty foil set was found, though such cases were
rare.

Counterfactual Objectives. The set of feasible counterfactual objectives was
set to D = {d ∈ N

n
0 : 0 ≤ di ≤ cUB

i ∀i ∈ {1, ..., n}}, where cUB
i ∈ N is the

Counterfactual Explanations for Linear Discrete Optimization 29

Fig. 1. NCXplain Runtime Distributions.

maximum value for ci in a forward instance (cUB
i = 1000 for KP, cUB

i = 10 for
1|rj |

∑
wjCj). Given that X is finite for both forward problems, it is impossible

for any d ∈ D to result in an unbounded MILP〈d,X〉, so constraints (15) were
omitted in these simulations.

NCEMILP Feasibility. Any NCEMILP in these experiments meets Conditions
(1)–(3) of Theorem 1, and thus has a non-trivial feasible solution df ∈ Df,+

j .
Intuitively, any df ∈ Df,+

j implies that in the KP, there is no benefit from
including any items other than item j, while in the scheduling problem, there is
no benefit from achieving an earlier completion time for any jobs other than job
j. Specifically, Condition (2) is satisfied since Df,+

j ⊆ D for any j ∈ {1, ..., n}.
Condition (1) is met by the KP instances since the maximal value of any xj is
1, and any foil xψ ∈ Xψ must contain at least one component xψ

j = 1. For the
scheduling problem, taking any schedule xψ ∈ Xψ and left-shifting it causes the
first job in the schedule, which we will call job j, to start at its release date
rj . Condition (1) is thus satisfied since there exists a schedule in the foil set
where job j is completed at its minimal possible time, tcj,min = rj + qj . Finally,
Condition (3) is met since df

j xj,max is bounded from above by cUB for KP, while
for scheduling, df

j tcj,min is bounded from above by cUB(rj + qj).

5.3 Computational Details

Python 3.9.7 and Gurobi 9.5 were used to implement NCXplain for NCEMILP
instances, as well as to solve the initial MILP instances. Twenty instances were
tested for each value of (n,m) reported in Sect. 6, using a single core of a 2.6 GHz
Intel Core i7-10750H CPU. A time limit of 30 min was used for NCXplain, and
if an NCEMILP was not solved before this time limit, its runtime was recorded
as 30 min. Thus, the NCXplain runtimes should be interpreted as lower bounds
on the true runtimes.

30 A. Korikov and J. C. Beck

Table 1. Knapsack Explanation Results

n m tF,μ tF,σ tNCE tMP tSP nITR nS

250 3 0.003 0.001 0.5 0.5 0.01 6 20

10 0.003 0.001 0.9 0.8 0.02 8 20

33 0.003 0.001 6.8 6.6 0.07 28 20

100 0.003 0.001 862.4 853.2 1.16 860 11

500 3 0.004 0.001 270.8 259.6 1.16 443 17

10 0.005 0.001 271.5 259.1 1.39 469 17

33 0.004 0.001 278.4 270.0 0.96 361 17

100 0.004 0.001 778.0 770.5 1.18 355 12

1000 3 0.008 0.003 360.7 343.4 2.11 376 16

10 0.011 0.003 721.3 648.5 10.14 1129 12

33 0.008 0.003 371.3 351.6 2.25 420 16

100 0.008 0.003 655.7 640.2 3.00 345 13

6 Experimental Results

Figure 1 illustrates the NCXplain runtime distributions. For NCXplain, Tables 1
and 2 report the mean runtime (tNCE), mean number of iterations (nITR), the
number of instances solved optimally before the time limit (nS), as well as
the mean cumulative time in the subproblem (tSP) versus the master prob-
lem (tMP). For the initial forward problem MILP〈c,X〉, these tables show the
runtime mean (tF,μ) and standard deviation (tF,σ). All runtimes are in seconds.

No instances were infeasible, demonstrating the successful use of Theorem
1. The number of instances solved (nS) shows that most NCEMILP instances
were solved in under 30 min, though the solution times for the initial forward
problem (tF,μ) were much faster.

As indicated by the values of tMP versus tSP , NCXplain spends 90%-99.9%
of its runtime solving master problems (Step 2, Algorithm 2), showing that these
non-convex, quadratic problems are significantly harder than the MILP〈d,X〉
subproblems (Step 3, Algorithm 2). That is, it is computationally cheaper to
add a new point to S0 than to solve MPNCE . A direction for future work may
thus be to reduce the number of master problem iterations with a variation of
NCXplain which adds multiple points to S0 for each iteration of MPNCE .

While a larger n almost always resulted in longer NCEMILP solve times,
the effects of m (the number of items or jobs in a user question), as well as
compound effects of n and m, are difficult to observe from our data. Future
work should study these effects more rigorously, including investigating whether
any phase transitions exist. The existence of phase transitions may explain why
the scheduling NCEMILPs with n = 6 became easier as m increased, while those
with n = 12 became harder (Fig. 1b, Table 2).

Counterfactual Explanations for Linear Discrete Optimization 31

Table 2. Scheduling Explanation Results

n m tF,μ tF,σ tNCE tMP tSP nITR nS

6 2 0.006 0.002 0.9 0.9 0.01 4 20

3 0.005 0.002 0.6 0.6 0.02 4 20

4 0.005 0.002 0.2 0.2 0.02 5 20

9 2 0.010 0.002 89.5 89.3 0.08 7 20

3 0.011 0.005 467.0 466.6 0.15 13 16

4 0.012 0.008 150.8 150.3 0.19 15 19

12 2 0.025 0.022 694.8 694.5 0.13 7 15

3 0.016 0.005 1499.0 1498.4 0.24 13 5

4 0.021 0.013 1365.4 1364.6 0.33 17 6

7 Limitations and Future Work

Algorithmic Improvements. Currently, NCXplain can only explain small MILP
problems. However, Bodur et al. [1] recently showed that InvMILP can be sped
up by modifying Step 3 of Algorithm 1 to add non-extreme point solutions
of MILP〈c,X〉 to S0 after finding these points using early stopping criteria
and trust regions. Additionally, Duan and Wang [9] extend InvMILP with a
heuristic to parallelize cut generation and compute feasible solutions as upper
bounds to the inverse MILP problem. These extensions to InvMILP can likely
be adapted to NCXplain to improve performance and produce feasible solutions
to NCEMILP before the problem is solved optimally.

Minimizing Decision Perturbation. A limitation of the NCEMILP is that an
optimal solution to MILP〈d∗,X〉 may be arbitrarily far from x∗, the decision
being explained. Given an arbitrarily large change to x∗, an explainee may find
it difficult to evaluate the effects of perturbing c on the decision, especially if
multiple iterations of explanation and objective modification are performed. A
future modification to the NCEMILP and NCXplain could add a term |x∗ −xψ|
to the objective (9), thus optimizing for smaller perturbations to both c and x∗.

Actionability and Sparsity. The concepts of actionability [22] and sparsity [18]
could be adapted from machine learning (ML) to NCEMILP explanations. Since
some objective components ci may be easier to change, or more actionable, than
others, a weighted L1 norm wT ||d−c||1, w ∈ R

n
+, could replace objective (9), with

weight wi representing the ease of changing parameter ci. To induce sparsity, an
L0 term measuring the number of perturbed objective components could be
added to objective (9), since an explainee may prefer explanations perturbing
fewer components of c.

Meaningful Objectives. A fundamental assumption in an NCEMILP is that the
objective parameters represented by c and d are meaningful to the explainee.
Otherwise, the explainee requires an additional explanation of what these param-
eters mean before the NCEMILP explanation is useful.

32 A. Korikov and J. C. Beck

8 Related Work

Our past work [14,15] discussed in Sect. 2, introduced the NCE (1)–(2) and
solved two restricted versions of it. The only other work we are aware of which
uses counterfactual explanations for a model-based optimization problem is that
of Brandao et al. [2], in which inverse optimization is applied in its classical
form to explain a path planning problem. As mentioned in Sect. 2.3, the inverse
optimization problem can be interpreted as a special case of an NCE where the
explainee is interested in exactly one alternative solution xd. Our approach is
more general since we enable an explainee to define a set of alternative solutions
using linear or quadratic constraints.

In the inverse optimization literature, Wang [26] formulates a variant of
inverse optimization which is similar to the NCEMILP . However, this variant
assumes d is continuous, while the NCEMILP allows the domain of d ∈ D to
be an integer or mixed-integer set, such as the set of integer job priorities in
the scheduling experiments. Additionally, other than the equivalent of bilinear
constraints (10), all constraints in Wang’s problem must be linear, while the
NCEMILP allows constraints (12) defining Xψ and D to be quadratic. Most
notably, while providing interesting theoretical contributions, Wang’s work does
not connect inverse optimization with explanation, the focus of our paper.

Finally, an emerging literature on counterfactual explanations exists in ML
[23], providing potential for cross-polination with explainability research in
declarative optimization, such as the actionability and sparsity extensions pro-
posed in Sect. 7.

9 Conclusion

This paper presents techniques to respond to users asking why an optimal solu-
tion x∗ to a linear discrete optimization problem MILP〈c,X〉 did not satisfy
some previously unstated constraints. We address such questions by formulat-
ing the NCEMILP (9)–(12), the solution to which is a counterfactual explana-
tion d: an alternative objective vector minimally perturbed from c so that an
optimal solution to MILP〈d,X〉 satisfies the additional user constraints. After
establishing feasibility conditions for the NCEMILP , we introduce NCXplain,
a non-convex, quadratic cutting-plane algorithm which solves the NCEMILP .
Experiments are performed to simulate explanations for two discrete optimiza-
tion problems, evaluating NCXplain and identifying next steps for improving it.
Finally, we discuss future directions for counterfactual explanations in optimiza-
tion such as actionability, sparsity, and minimizing decision perturbation.

References

1. Bodur, M., Chan, T.C., Zhu, I.Y.: Inverse mixed integer optimization: Polyhedral
insights and trust region methods. INFORMS J. Comput. (2022)

Counterfactual Explanations for Linear Discrete Optimization 33

2. Brandao, M., Coles, A., Magazzeni, D.: Explaining path plan optimality: fast expla-
nation methods for navigation meshes using full and incremental inverse optimiza-
tion. In: Proceedings of the International Conference on Automated Planning and
Scheduling, vol. 31, pp. 56–64 (2021)

3. Chakraborti, T., Sreedharan, S., Kambhampati, S.: The emerging landscape of
explainable automated planning & decision making. In: IJCAI, pp. 4803–4811
(2020)

4. Chakraborti, T., Sreedharan, S., Zhang, Y., Kambhampati, S.: Plan explanations
as model reconciliation: moving beyond explanation as soliloquy. In: IJCAI (2017)

5. Chan, T.C., Mahmood, R., Zhu, I.Y.: Inverse optimization: theory and applica-
tions. arXiv preprint arXiv:2109.03920 (2021)

6. Demange, M., Monnot, J.: An introduction to inverse combinatorial problems. In:
Paradigms of Combinatorial Optimization: Problems and New Approaches, pp.
547–586 (2014)

7. Doshi-Velez, F., Kortz, M.: Accountability of AI under the law: the role of expla-
nation. Technical report, Berkman Klein Center Working Group on Explanation
and the Law, Berkman Klein Center for Internet and Society (2017)

8. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

9. Duan, Z., Wang, L.: Heuristic algorithms for the inverse mixed integer linear pro-
gramming problem. J. Global Optim. 51(3), 463–471 (2011)

10. Eiffer, R., Cashmore, M., Hoffmann, J., Magazzeni, D., Steinmetz, M.: A new app-
roach to plan-space explanation: analyzing plan-property dependencies in oversub-
scription planning. In: AAAI (2020)

11. Epstude, K., Roese, N.J.: The functional theory of counterfactual thinking. Pers.
Soc. Psychol. Rev. 12(2), 168–192 (2008)

12. Freuder, E.: Explaining ourselves: human-aware constraint reasoning. In: AAAI
(2017)

13. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.: Inter-
pretability beyond feature attribution: quantitative testing with concept activation
vectors (TCAV). In: International Conference on Machine Learning, pp. 2668–2677.
PMLR (2018)

14. Korikov, A., Shleyfman, A., Beck, J.C.: Counterfactual explanations for
optimization-based decisions in the context of the GDPR. In: International Joint
Conferences on Artificial Intelligence (IJCAI) (2021)

15. Korikov, A., Beck, J.C.: Counterfactual explanations via inverse constraint pro-
gramming. In: Michel, L.D. (ed.) 27th International Conference on Principles
and Practice of Constraint Programming (CP 2021). Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 210, pp. 35:1–35:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://doi.org/10.
4230/LIPIcs.CP.2021.35. https://drops.dagstuhl.de/opus/volltexte/2021/15326

16. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
In: Annals of Discrete Mathematics, vol. 1, pp. 343–362. Elsevier (1977)

17. Miller, T.: Explanation in artificial intelligence: insights from the social sciences.
Artif. Intell. 267, 1–38 (2019)

18. Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 Confer-
ence on Fairness, Accountability, and Transparency, pp. 607–617 (2020)

19. Pisinger, D., Kellerer, H., Pferschy, U.: Knapsack problems. In: Handbook of Com-
binatorial Optimization, p. 299 (2013)

http://arxiv.org/abs/2109.03920
http://arxiv.org/abs/1702.08608
https://doi.org/10.4230/LIPIcs.CP.2021.35
https://doi.org/10.4230/LIPIcs.CP.2021.35
https://drops.dagstuhl.de/opus/volltexte/2021/15326

34 A. Korikov and J. C. Beck

20. Senthooran, I., et al.: Human-centred feasibility restoration. In: Michel, L.D.
(ed.) 27th International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 210, pp. 49:1–49:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.CP.2021.49. https://
drops.dagstuhl.de/opus/volltexte/2021/15340

21. Smith, D.E.: Planning as an iterative process. In: Twenty-Sixth AAAI Conference
on Artificial Intelligence (2012)

22. Ustun, B., Spangher, A., Liu, Y.: Actionable recourse in linear classification. In:
Proceedings of the Conference on Fairness, Accountability, and Transparency, pp.
10–19 (2019)

23. Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learn-
ing: a review. In: NeurIPS Workshop on ML Retrospectives, Surveys and Meta-
Analyses (2020)

24. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without
opening the black box: automated decisions and the GDPR. Harv. JL & Tech.
31, 841 (2017)

25. Wang, L.: Cutting plane algorithms for the inverse mixed integer linear program-
ming problem. Oper. Res. Lett. 37(2), 114–116 (2009)

26. Wang, L.: Branch-and-bound algorithms for the partial inverse mixed integer linear
programming problem. J. Global Optim. 55(3), 491–506 (2013)

https://doi.org/10.4230/LIPIcs.CP.2021.49
https://drops.dagstuhl.de/opus/volltexte/2021/15340
https://drops.dagstuhl.de/opus/volltexte/2021/15340

Column Elimination for Capacitated
Vehicle Routing Problems

Anthony Karahalios(B) and Willem-Jan van Hoeve

Carnegie Mellon University, Pittsburgh, PA 15213, USA
{akarahal,vanhoeve}@andrew.cmu.edu

Abstract. We introduce a column elimination procedure for the capac-
itated vehicle routing problem. Our procedure maintains a decision dia-
gram to represent a relaxation of the set of feasible routes, over which we
define a constrained network flow. The optimal solution corresponds to a
collection of paths in the decision diagram and yields a dual bound. The
column elimination process iteratively removes infeasible paths from the
diagram to strengthen the relaxation. The network flow model can be
solved as a linear program with a conventional solver or via a Lagrangian
relaxation. To solve the Lagrangian subproblem more efficiently, we
implement a special successive shortest paths algorithm. We introduce
several cutting planes to strengthen the dual bound, including a new
type of clique cut that exploits the structure of the decision diagram.
We experimentally compare the bounds from column elimination with
those from column generation for capacitated vehicle routing problems.

1 Introduction

The capacitated vehicle routing problem (CVRP) can be stated as follows [29].
Given a set of locations each with a specified weight and a fleet of trucks each
with a specified capacity, the problem asks to design a route for each truck
such that each location is visited by a truck, for each truck the total weight
of its visited locations does not exceed the capacity, and the sum of the truck
route lengths is minimized. It is a central problem in logistics and has become
increasingly important over the last decade due to the rise of last-mile deliv-
ery applications. The CVRP is among the most studied NP-hard combinatorial
optimization problems and finding provably optimal solutions remains a chal-
lenge in practice. Current state-of-the-art exact methods can solve up to around
200 locations optimally within a reasonable of time, with branch-cut-and-price
(BCP) methods performing particularly well [5,12,23–25].

BCP is an effective method for solving generic large-scale integer program-
ming models [7]. It relies on column generation to solve the linear programming
relaxation: working with a restricted set of variables (or columns), column gener-
ation iteratively adds new variables to the model until an optimal basis is found.
Despite its successes, column generation has some weaknesses. For example, it
may take many iterations to converge to the optimal solution due to dual degen-
eracy of the intermediate solutions. Furthermore, branching decisions or cutting
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 35–51, 2023.
https://doi.org/10.1007/978-3-031-33271-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_3&domain=pdf
http://orcid.org/0000-0001-9479-4080
http://orcid.org/0000-0002-0023-753X
https://doi.org/10.1007/978-3-031-33271-5_3

36 A. Karahalios and W.-J. van Hoeve

planes that strengthen the relaxation may complicate the pricing problem that
finds new variables.

We study an alternative approach that does not rely on a pricing problem,
thereby avoiding the potential drawbacks of column generation mentioned above.
Instead of using a restricted set of columns, column elimination works with a
relaxed set of columns, from which infeasible ones are iteratively eliminated. As
the total number of columns can be exponentially large, we use relaxed deci-
sion diagrams to compactly represent and manipulate the set of columns. This
method was first introduced for the graph coloring problem in [15,31,33], then
applied to the traveling salesperson problem with a drone [27,28], and later
termed ‘column elimination’ [32].

The main focus of this work is to develop strong dual bounds for the CVRP
using column elimination. As will be formalized later, column elimination and
column generation will produce the same dual bound if they work from the
same underlying route relaxation. Column elimination can potentially produce
stronger bounds than the initial route relaxation as it can remove infeasible
columns beyond those that are excluded by the initial route relaxation (cf. [26]).
Moreover, column elimination allows a more liberal use of cutting planes to
strengthen the relaxation. We show how existing cuts from the column gener-
ation literature can be expressed directly into the column elimination model,
while in addition the decision diagram representation of the columns permits us
to develop new cuts. The novel contributions include introducing cuts to column
elimination, developing an efficient solution method via a Lagrangian reformu-
lation, and showing how column elimination can produce bounds competitive
with state-of-the-art solvers for the CVRP.

The paper is organized as follows. In Sect. 2 we present the column formu-
lation of the CVRP. Section 3 describes the decision diagram-based constrained
network flow formulation. The column elimination procedure is presented in
Sect. 4. Section 5 present our Lagrangian relaxation. In Sect. 6 we describe how
cutting planes can be added to strengthen the model. Section 7 presents a
reduced cost-based arc fixing procedure to reduce the model size. We conduct
experimental results in Sect. 8 and conclude in Sect. 9.

2 Column Formulation for CVRP

We first give a formal definition of the CVRP [29]. Let G = (V,A) be a complete
directed graph with vertex set V = {0, 1, . . . , n} and arc set A = {(i, j) | i, j ∈
V, i �= j}. Vertex 0 represents the depot and vertices {1, . . . , n} represent the
locations to be visited. We will interchangeably use vertices and locations. Each
vertex i ∈ V has a demand qi ≥ 0 and each arc a ∈ A has a length la ≥ 0. Let
K be the number of (homogeneous) vehicles, each with capacity Q. A route is a
sequence of vertices [v1, v2, . . . , vk] starting and ending at the depot with total
demand at most Q. The distance of a route is the sum of its arc lengths, i.e.,∑k−1

i=1 l(vi,vi+1). The CVRP consists in finding K routes such that each vertex
except for the depot belongs to exactly one route and the sum of the route
distances is minimized.

Column Elimination for Capacitated Vehicle Routing Problems 37

The column formulation for the CVRP is based on the set R of all feasible
elementary routes [6]. We let dr denote the distance of route r ∈ R. We define an
n × |R| matrix M such that Mir = 1 if vertex i ∈ {1, 2, . . . , n} belongs to route
r ∈ R, and Mir = 0 otherwise. That is, each column vector in M corresponds
to a route. Lastly, we define a binary decision variable xr for each r ∈ R. The
column formulation of the CVRP is:

min
∑

r∈R

drxr

s.t.
∑

r∈R

Mirxr = 1 ∀i ∈ {1, 2, . . . , n}
∑

r∈R

xr = K

xr ∈ {0, 1} ∀r ∈ R.

(1)

This model is also known as the set partitioning formulation. In practice the set
of routes R often has exponential size, which restricts the direct application of
the set partitioning model to very small instances. Branch-and-price [7] provides
a more scalable approach by using a column generation procedure to solve the
continuous linear programming relaxation of (1).

Column generation starts by solving the linear programming relaxation of
the set partitioning model defined on a (small) subset of variables, known as
the restricted master problem. Using the dual variables of the optimal solution
it then solves a pricing problem to find a new variable with a negative reduced
cost. This process continues until no more improving variables exist and the
restricted master has a provably optimal basis. To ensure integer feasibility,
column generation is embedded into a systematic search.

Solving the pricing problem for the CVRP is not straightforward, because
it corresponds to the NP-hard elementary shortest path problem with resource
constraints [13]. It can be solved with dynamic programming, which is however
limited by the exponential state space size. A computationally efficient alterna-
tive is to relax the pricing problem to find a shortest path that is not necessarily
elementary, i.e., certain locations can be visited more than once [20]. Recent
examples include the q-route relaxation [12] and the ng-route relaxation [5]. The
linear programming model from route relaxations can be further strengthened
by adding cutting planes to the restricted master problem [23].

3 Decision Diagram Formulation for CVRP

The key ingredient of the column elimination procedure is to compactly represent
the set of routes R as a decision diagram. The CVRP can then be formulated
as a constrained integer network flow over the decision diagram following the
methodology in [27,33].

38 A. Karahalios and W.-J. van Hoeve

3.1 From Dynamic Programming to Decision Diagrams

For our purposes, a decision diagram is a layered acyclic weighted directed graph
D = (N ,A) with node set N and arc set A. Each arc a ∈ A has an associated
cost ca and arc label �a. Graph D has a single root node r and a single terminal
node t. While there are different methods to compile decision diagrams, we
employ a generic approach that constructs a decision diagram from a dynamic
programming formulation [8]. It requires a state definition, an (implied) set of
states S, a set of labels L, a state transition function f : (S × L) → S and a
transition cost function g : (S × L) → R.

For the CVRP, we can use the dynamic programming formulation for the
elementary shortest path problem with resource constraints [13], which we will
refer to as DPESPRC. We define each state as a tuple (S,w, e) where S ⊆ V
represents the set of visited locations, w ≥ 0 represents the accumulated ‘weight’,
and e ∈ V represents the last visited location. The initial state is defined as
(∅, 0, 0). The set of labels is L = V . Given a state s = (S,w, e) and control (or
label) i ∈ V such that i /∈ S and w + qi ≤ Q, we define the transition function
f(s, i) as

f(s, i) = (S ∪ {i}, w + qi, i)

with associated transition cost function g(s, i) = l(e,i).
The decision diagram is defined similar to the state-transition graph of the

dynamic programming model: the nodes in N correspond to the states and the
arcs in A correspond to the transitions. That is, the root node r corresponds to
the initial state (∅, 0, 0). For each transition f(s1, i) = s2 from state s1 to state
s2 we define an arc (u, v) ∈ A where u corresponds to s1 and v to s2. The arc
(u, v) has associated label �(u,v) = i and arc cost c(u,v) = g(s, i). We define the
terminal node t as the collection of all states (S,w, e) with |S| ≥ 1 and e = 0,
i.e., t is the endpoint of all transitions that take label i = 0 to finish the route
at the depot.

3.2 Dynamic Programming for Route Relaxations

The two most-used route relaxations for the CVRP in the column generation
literature are the q-route relaxation [12] and the ng-route relaxation [5]. Both
are based on the DPESPRC dynamic programming formulation, but relax the set
of visited locations S.

The q-route relaxation maintains the last q visited locations. The dynamic
program has state definition (SQ , w) where w is defined as above, and SQ =
[i1, . . . , iq] is a sequence of locations. The initial state is ([- , . . . , -], 0). Given a
state s = (SQ , w) and label i ∈ V such that i /∈ SQ and w + qi ≤ Q, we define
the transition function as

fSQ(s, i) = ([i2, . . . , iq, i], w + qi)

with associated transition cost function gSQ(s, i) = l(iq,i). We denote the result-
ing dynamic programming model as DPSQq

.

Column Elimination for Capacitated Vehicle Routing Problems 39

For the ng-route relaxation, we assume that a set Ni ⊆ V of size g exists for
each i ∈ {1, . . . , n}. The set Ni must include i and typically represents the g
locations closest to i. As state definition, we use (NG , w, e) where the ‘no-good’
set NG ⊆ V is a subset of visited locations, and w and e are as above. The initial
state is (∅, 0, 0). Given a state s = (NG , w, e) and label i ∈ V such that i /∈ NG
and w + qi ≤ Q, we define the transition function as

fNG(s, i) = ((NG ∪ {i}) ∩ Ni, w + qi, i)

with associated transition cost function gNG(s, i) = l(e,i). We denote the resulting
dynamic programming model as DPNGg

. Observe that DPSQq
and DPNGg

forbid
cycles of length at most q and g, respectively.

3.3 Exact and Relaxed Decision Diagrams

We next specify the concepts of exact and relaxed decision diagrams [8] in the
context of the CVRP. Given a decision diagram D, we let PD denote the set of
arc-label specified r-t paths in D. We slightly abuse notation and let cp denote
the sum of the arc costs of path p ∈ PD. Recall that dr represents the distance
of route r ∈ R.

Definition 1. Let R be a set of routes for the CVRP and let D be a decision
diagram. We say that D is an exact diagram w.r.t. R if PD = R and cp = dr for
all p ∈ PD, where r is the route representation of p. We say that D is a relaxed
diagram w.r.t. R if PD ⊇ R and cp ≤ dr for all p ∈ PD.

Theorem 1. The decision diagram derived from DPESPRC is exact w.r.t. R.
The decision diagrams derived from DPSQq

and DPNGg
are both relaxed w.r.t. R.

Proof. Because DPESPRC encodes elementary paths and represents all possible
feasible routes and their associated length, the resulting decision diagram is
exact. Both DPSQq

and DPNGg
encode a relaxation that contains elementary

paths, and therefore represent a superset of all possible feasible routes. Because
they both maintain the last visited location their cost functions are not relaxed,
i.e., cp = dr for each path p and associate route r (which is not necessarily
elementary). Hence, DPSQq

and DPNGg
yield a relaxed decision diagram. �

3.4 Constrained Network Flow Formulation

We next reformulate the set partitioning model (1) as a constrained integer
network flow model over a given decision diagram D = (N ,A). We introduce
a ‘flow’ variable ya ≥ 0 for each a ∈ A. The set of incoming arcs of a node u
is denoted by δ−(u). Likewise δ+(u) denotes the set of outgoing arcs of u. We
denote the set of arcs in A with label i by Ai. The model is as follows:

F (D) : min
∑

a∈A
caya (2)

40 A. Karahalios and W.-J. van Hoeve

s.t.
∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u ∈ N\{r, t} (3)

∑

a∈Ai

ya = 1 ∀i ∈ V \{0} (4)

∑

a∈δ+(r)

ya = K (5)

ya ∈ {0, 1} ∀a ∈ A. (6)

The objective function (2) minimizes the sum of all arc costs. The ‘flow con-
servation’ constraints (3) ensure that the solution is a collection of labeled r-t
paths. Constraints (4) ensure that all locations are visited once. Constraint (5)
enforces that exactly K units of flow originate from r. The binary constraints (6)
complete the formulation.

Theorem 2. Let D be an exact decision diagram w.r.t. the set of routes R.
Model F (D) is an exact formulation of the CVRP.

The proof relies on the fact that the dynamic programming model represents all
possible routes, that each solution of the network flow model consists of exactly
K r-t paths, and that each r-t path corresponds to a feasible route.

Corollary 1. Let D be a relaxed decision diagram w.r.t. the set of routes R.
Model F (D) yields a dual bound for the CVRP.

In the remainder of this paper, we will use the continuous linear program-
ming relaxation of model F (D), referred to as LP(F (D)), which is obtained by
replacing the integrality constraints (6) by 0 ≤ ya ≤ 1 for all a ∈ A.

4 Column Elimination Procedure

We present a schematic representation of column elimination in Fig. 1. Starting
with an initial relaxed decision diagram D, the column elimination procedure
iteratively 1) solves the constrained network flow model F (D), 2) decomposes the
solution into paths (routes), 3) identifies infeasible paths and removes them from
D, and repeats. The process terminates when no infeasible paths are detected
in which case F (D) is solved to optimality. It can also terminate earlier when
the dual bound matches a given (or heuristically generated) primal bound, or
when a different stopping criterion such as a time or memory limit is met. The
procedure can utilize either the integer model F (D) or its continuous relaxation
LP(F (D)); using LP(F (D)) would solve the continuous linear programming
relaxation of (1), but could be embedded in branch-and-bound to solve the full
problem.

Column Elimination for Capacitated Vehicle Routing Problems 41

Initial relaxed
decision diagram D

Constrained
network flow F (D)

D Path
decomposition

solution

Conflict?

path(s)

Conflict
refinement

yes Return
bound

no

refined D

Fig. 1. Overview of the column elimination framework, adapted from [27].

Locations V = {0, 1, 2, 3, 4}
Depot = 0
Demands q1 = q2 = q3 = 1, q4 = 2
Number of trucks K = 2
Vehicle capacity Q = 3

lij 0 1 2 3 4
0 0 5 10 5 10
1 5 0 10 10 15
2 10 10 0 10 15
3 5 10 10 0 10
4 10 15 15 10 0

Fig. 2. Input data for the CVRP instance in Example 1.

Any (existing) route relaxation for the CVRP can be applied to construct the
initial relaxed decision diagram. Recall that model DPESPRC has state definition
(S,w, e), and each of these three elements can potentially be relaxed to define
a relaxed decision diagram. The q-route and ng-route relaxations only relax the
elementarity constraint, i.e., the set S. This means that conflicts will only come
in the form of repeated labels; each path respects the truck capacity constraint
and the route costs are exact. For a decision diagram D derived from such a
relaxation, F (D) is an exact formulation for the CVRP. In practice, we prefer
using a relaxation that is relatively small and provides a ‘good’ starting point
in terms of bound quality from LP(F (D)). In our experiments, we therefore use
DPSQq

with q = 1 and DPNGg
with g = 2 to initialize the relaxed decision

diagram, with DPNG2 performing best.
Given the initial relaxed decision diagram D, we solve the associated model

LP(F (D)), apply a path decomposition of the solution, and inspect the paths
for any conflicts. For our choice of route relaxations, the only conflicts arise from
repetition of locations along a path. To remove a conflict, we follow the (partial)
path elimination process outlined in [33]: it essentially separates the path by
introducing a new node at each layer, and removing the arc associated with the
repeated label. During this process, we will update the state information of the
nodes along the separated path. We illustrate conflict separation in the next
example, and refer to [33] for more details.

Example 1. Consider the CVRP instance with the problem data given in Fig. 2.
The integer optimal solution uses routes [0, 1, 2, 0] and [0, 3, 4, 0] with total dis-
tance 50. The relaxed decision diagram based on DPSQq

with q = 1 is presented
in Fig. 3(a). Each node in the diagram is associated with its SQ state, i.e., the
last visited location. The weights are omitted from the states; instead nodes with
the same cumulative weight are represented in the same layer. For clarity, we also

42 A. Karahalios and W.-J. van Hoeve

w = 0

w = 1

w = 2

w = 3

r

1 2 3

1 2 3 4

1 2 3 4

t

a. Relaxed decision diagram from DPSQ1
.

r

1 2 3

1 2 3 4

1 2 3 4

t

[1, 2]

b. Refined decision diagram.

Fig. 3. Decision diagrams for the CVRP instance in Example 1. Figure (a) depicts the
relaxed decision diagram obtained from the q-route relaxation. The optimal solution
to model LP(F (D)) is indicated by thick blue arcs. Figure (b) represents the refined
decision diagram after eliminating the partial path [1, 2, 1] that contains a conflict.

omit the arc labels and arc costs. Arcs into t correspond to terminating a route
and are dashed. The optimal solution to the linear programming relaxation of
F (D) yields dual bound 48.333 and uses the following arc-label specified paths:
path (1, 2, 1, 0) with flow value 1

3 , path (1, 2, 3, 0) with flow value 1
3 , path (4, 2, 0)

with flow value 1
3 , and path (4, 3, 0) with flow value 2

3 .
The first path contains a conflict: label 1 is repeated. We separate this conflict

by rerouting the path to a new node with state SQ = [1, 2] memorizing location
1 in addition to 2. As a result, we eliminate the arc with label 1 from the new
state. The refined decision diagram is depicted in Fig. 3(b). It yields a dual bound
of value 50, which is optimal.

5 Lagrangian Relaxation

Because the decision diagrams can grow large in size, solving the constrained net-
work flow model can become the computational bottleneck of our method, even
when we consider the continuous linear programming relaxation. To potentially
solve the model more efficiently, we consider solving a Lagrangian relaxation,
similar to [27,28], that has optimal bound equivalent to LP(F (D)). We obtain
our Lagrangian relaxation of the constrained network flow model by dualizing
constraints (4) that require that each location is visited once. We introduce a
Lagrangian multiplier λi for each i ∈ V (λ0 = 0 is only introduced for notational
ease), and define the Lagrangian relaxation as

L(D,λ) : min
∑

a∈A
caya +

∑

i∈V \{0}
λi(1 −

∑

a∈Ai

ya) (7)

Column Elimination for Capacitated Vehicle Routing Problems 43

s.t.
∑

a∈δ−(u)

ya −
∑

a∈δ+(u)

ya = 0 ∀u ∈ N\{r, t} (8)

∑

a∈δ+(r)

ya = K (9)

ya ∈ {0, 1} ∀a ∈ A. (10)

The objective function (7) can be rewritten as

min
∑

a∈A
caya −

∑

i∈V \{0}
λi

∑

a∈Ai

ya +
∑

i∈V \{0}
λi =

min
∑

a∈A
(ca − λ�a)ya +

∑

i∈V \{0}
λi.

As a consequence, for fixed λ, the Lagrangian relaxation can be solved as a
(continuous) minimum-cost network flow problem over the decision diagram,
using ca − λ�a as the cost for arc a ∈ A, yielding an integer optimal solution.
In fact, given constraints (9) and the unit capacity constraints on the arcs, each
solution consists of K arc-disjoint r-t paths. By applying the successive shortest
paths (SSP) algorithm [1] to solve L(D,λ) we obtain the following result:

Lemma 1. Given a decision diagram D = (N ,A) and fixed λ, the Lagrangian
relaxation L(D,λ) can be solved in O(K(|N | log(|N |) + |A|)) time.

We also implemented a dedicated algorithm, based on the ‘minimum update
Successive Shortest Paths’ (muSSP) algorithm that was developed for specific
directed acyclic graphs in the content of multi-object tracking in computer
vision [34]. Although graphs with a slightly different structure are considered
in [34], the algorithm generalizes to our case: weighted directed acyclic graphs
with one source (the root), one sink (the terminal), and unit capacities. The
muSSP algorithm leverages the fact that most updates to the shortest path tree
through Dijkstra’s algorithm are not useful, and it aims instead to make minimal
updates to the shortest path tree. While it has the same theoretical worst-case
time complexity as the SSP, in practice the muSSP algorithm can be an order
of magnitude more efficient than the standard SSP algorithm.

The Lagrangian ‘dual’ subproblem maxλ L(D,λ) finds the multipliers that
provide the best Lagrangian bound. Because the objective in L(D,λ) is concave
and piecewise linear, the dual can be solved via a subgradient method. At each
iteration k of the subgradient method, one choice for a subgradient that we will
use is γk such that γk

i = (1 − ∑
a∈Ai yk

a) where yk
a is the solution to L(D,λk).

Then we update the dual multipliers for the next iteration as λk+1 = λk +αkγk,
where we use an estimated Polyak step size αk [10]. Note that the initial choice
of multipliers λ0 can be important for solving the dual quickly [9].

We remark that the optimal Lagrangian dual bound is equal to the optimal
linear programming bound from model LP(F (D)), when both apply the same
decision diagram. Moreover, when the column elimination process uses model
LP(F (D)) or L(D,λ), its bound at termination is equal to the column generation

44 A. Karahalios and W.-J. van Hoeve

bound of the set partitioning model (1), assuming that all methods use the same
underlying dynamic programming formulation, as was observed in [27]. That is,
the decision diagram applies the same dynamic programming formulation in its
construction as column generation uses in the pricing problem.

Lastly, we note that in each iteration of the subgradient method for solving
the Lagrangian dual the solution can potentially be used to identify and separate
conflicts. Similar to [28], we separate these conflicts in batches of size 100, after
which we restart the Lagrangian process.

6 Cutting Planes

Results from the literature show that the LP relaxation of the set partitioning
formulation for CVRP, solved via column generation, frequently has a 1–4%
optimality gap. To further strengthen the LP relaxation several classes of valid
inequalities can be added. According to the literature, the most effective are
rounded capacity cuts, strengthened comb inequalities, and subset-row cuts [12,
18,23]. The first two types of cuts are called robust in the column generation
literature because they do not affect the runtime of the pricing problem, while
the subset-row cuts are not robust. We next show how rounded capacity cuts
and strengthened comb inequalities can be implemented in our decision diagram-
based model LP(F (D)), as well as a generalization of subset-row cuts as a type
of clique cut.

Rounded capacity cuts ensure that a subset of locations S is visited by a
sufficient number of trucks to meet its aggregate demand. In column generation
these cuts can be added to model (1) so long as the underlying routes are stored
for each r ∈ R. Let pS

r be the number of times route r uses an edge between S
and V \S, and let k(S) = � 1

Q

∑
i∈S qi�. The cut added to the restricted master

problem is
∑

r∈R pS
r xr ≥ 2k(S), and the associated dual variable is added to

controls in the dynamic program for the pricing problem that correspond to a
route traversing an edge between S and V \S. To add this cut in column elimina-
tion, let AS be the set of arcs a ∈ A such that �(a) ∈ S and the node u that is the
head of a has state with last visited location i ∈ V \S, or the other way around
with �(a) ∈ V \S and i ∈ S. A rounded capacity cut for set S can be modeled by
adding to LP(F (D)) the following inequality:

∑
a∈AS ya ≥ 2k(S). Note that

when solving LP(F (D)) using the Lagrangean formulation, this constraint can
be dualized.

Strengthened comb inequalities are a generalization of comb inequalities
that have been proven highly useful for solving the Traveling Salesman Prob-
lem [17]. A strengthened comb inequality is defined by a handle set of loca-
tions H and teeth sets of locations Tt for t ∈ {1, ..., T}. Let S(H,T1, ..., TT)
be the appropriately defined right hand side for the inequality [17]. In col-
umn generation, this cut also requires storing the underlying routes and can
be added to the restricted master problem as

∑
r∈R pH

r xr +
∑

t∈T

∑
r∈R pTt

r xr ≥
S(H,T1, ..., TT). The associated dual variable is then added to controls in the
dynamic program for the pricing problem that correspond to traversing edges

Column Elimination for Capacitated Vehicle Routing Problems 45

with one endpoint in H or one of Ti and the other endpoint not in that set.
In column elimination, a strengthened comb inequality with handle H and
teeth Tt can be modeled by adding to LP(F (D)) the following inequality:∑

a∈AH ya +
∑

t∈{1,...,T}
∑

a∈ATt ya ≥ S(H,T1, ..., TT). This constraint can also
be dualized when using the Lagrangean formulation to solve LP(F (D)).

Subset row cuts are non-robust cuts that have been successfully applied to
the CVRP. In particular, the limited memory subset row cuts are an important
part of the success of the column generation method in [23]. Since the decision
diagram representation does not have a matrix view of the set of routes, subset
row cuts do not directly translate to the LP(F (D)) model. However, they can
be generalized by a class of clique cuts on a specific conflict graph [3]. These
cuts are non-robust and have been used in [4] but not until the problem size has
been reduced. The structure of our decision diagram allows column elimination
to implement a specific version of these cuts. Let D = (N ,A) be a decision
diagram as defined above. The conflict graph GC = (N , AC) is defined on node
set N . Its arc set AC contains all arcs (i, j) such that 1) the set of visited locations
in the states associated to nodes i and j have a non-empty intersection, and 2)
nodes i and j never appear on the same directed path in D. A clique cut states
that the flow through nodes in a clique of GC must be at most 1:

Theorem 3. Let C be a clique in the conflict graph GC derived from a decision
diagram D. The associated clique cut

∑
i∈C

∑
a∈δ−(i) ya ≤ 1 is a valid inequality

for model LP(F (D)).

Proof. By construction of GC , each pair of nodes i, j ∈ C has at least one common
visited location (say u) in their associate states, and there is no directed path
between i to j in D. Suppose that for an integral optimal solution we have∑

a∈δ−(i)∪δ−(j) ya > 1. This means that location u is visited twice, which cannot
occur in an optimal solution: a contradiction. �
Given GC and a set of cliques in GC , clique cuts can be easily separated for
LP(F (D)) by evaluating whether a given fractional solution violates a cut.
Because a solution to the Lagrangian model L(D,λ) is integral, we cannot
directly use it to separate any cuts. In [2] it is shown that a weighted aver-
age of the subproblem solutions converges to an optimal primal solution and we
apply this method to identify valid inequalities.

7 Reduced Cost-Based Arc Fixing

Variable fixing based on reduced costs is often applied to reduce the problem
size of integer programs [21], including the CVRP [14,23]. It uses a feasible dual
solution and suitably small optimality gap to set the value of a primal variable
equal to 0 [1,11,16]. We develop an arc fixing method for the LP(F (D)) model,
using similar arguments as [23].

Let D = (N ,A) be a decision diagram that is exact w.r.t. some set of routes
R′ ⊆ R. Consider a feasible dual solution (ν, κ) to the LP relaxation of the

46 A. Karahalios and W.-J. van Hoeve

set partitioning model (1) over R′, where ν correspond to the ‘set partitioning’
constraints and κ to the ‘number of trucks’ constraint. For each arc a ∈ A we
define a ‘reduced cost distance’ rc(a) = la −ν�a . For each node u ∈ N , we define
sp↓

u as the shortest r-u path in D with respect to the reduced cost distances,
and similarly define sp↑

u to be the shortest u-t path in D.

Theorem 4. Consider arc a = (v1, v2) ∈ A. Let v(ν, κ) be the dual solution
value, and let UB an upper bound on (1). If v(ν, κ)+sp↓

v1
+sp↑

v2
+rc(a)−κ > UB,

then arc a can be fixed to have flow 0 in F (D) and accordingly in LP(F (D)).

Proof. Given (ν, κ), each route r ∈ R′ in the LP relaxation of (1) has reduced cost
rc(r) = dr −∑n

i=1 Mirνi −κ. Each r corresponds to a path p = {a1, ..., al} in D,
so rc(r) can be decomposed into rc(r) =

∑l
i=1 rc(ai) − κ. For all p that contain

arc a, let p′ be the path that corresponds to the route r′ with lowest reduced cost.
Denote rc(r′) = sp↓

v1
+ sp↑

v2
+rc(a)−κ. Now for sake of contradiction assume an

optimal solution to F (D) has ya = 1. Then some path p′′ in D that contains arc a
will have flow of 1, so we can consider this as some xr′′ = 1 in an optimal solution
to (1). To construct the remainder of an optimal solution to the LP relaxation
of (1) we can solve this LP relaxation with constraints for locations in r′′ removed
and only requiring K−1 trucks. Because (ν, κ) remains feasible to the dual of this
updated problem and has value v(ν, κ) − ∑n

i=1 Mir′′νi − κ, it gives a valid lower
bound on (1) that contradicts UB, namely v(ν, κ) − ∑n

i=1 Mir′′νi − κ + dr′′ =
v(ν, κ) + rc(r′′) ≥ v(ν, κ) + rc(r′) ≥ v(ν, κ) + sp↓

v1
+ sp↑

v2
+ rc(a) − κ > UB. �

Note that while Theorem 4 relies on the set partitioning model (1) to build the
reduced cost argument, we can use the optimal dual solution to LP(F (D)) in
the application of the theorem. When solving LP(F (D)) with a standard linear
programming solver, we can use the feasible dual from the previous iteration –
which remains feasible even with cuts and separations – to fix arcs. One impor-
tant note is that these fixed arcs are reintroduced if separation happens before
the next iteration, as the change in the decision diagram structure may dis-
rupt previous arc fixing arguments. When solving LP(F (D)) via its Lagrangian
relaxation L(D,λ), we must ensure that we work with a feasible dual solution. In
addition, we include a dual variable for constraint (10) and set it to its maximum
value while ensuring dual feasibility.

8 Experimental Results

We use the benchmark set of CVRP instances from http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/, including the new challenge set of instances from [30]. All
experiments are run on an Intel(R) Xeon(R) Gold 6248R CPU @ 3.00 GHz. We
use CPLEX version 22.1 [19] as a linear programming solver and change (4) to
≥ to help find an initial feasible solution. We use the package CVRPSEP [18] to
heuristically find rounded capacity cuts and strengthened comb inequalities when
given a fractional primal solution. At each iteration we add at most 10 robust
capacity cuts and 5 strengthened comb inequalities, using the most violated ones

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

Column Elimination for Capacitated Vehicle Routing Problems 47

a. Baseline CE vs. CG b. Adding Cuts to CE

Fig. 4. a) Comparing column generation over DPQ2 with column elimination starting
from DPQ1 and using different methods to solve LP(F (D)) without any added cuts.
b) Performance plot for adding cuts to CELP and CELAG.

possible. We use Cliquer [22] to heuristically find large weighted cliques in the
conflict graph used to derive clique cuts.

Comparing Column Elimination and Column Generation. We compare
column generation over DPQ2 with column elimination starting from the DPQ1

route relaxation and eliminating cycles of size 2. Doing so, the final bounds
are the same, which allows us to compare how quickly column generation and
column elimination reach the optimal bound. We implement a vanilla version
of column generation that starts with a small set of greedily chosen routes and
solves the pricing problem as shortest paths through the pre-compiled decision
diagram for DPQ2 . We compare column generation not including and including
time to compile the decision diagram (CG-a, CG-b), column elimination using
CPLEX (CELP), and column elimination using a subgradient method over the
Lagrangian dual (CELAG). We run each method for 3,600 s over benchmark sets
A, B, E, F, M, P. We remove instances when the decision diagram for DPQ2 does
not finish compiling. Arc fixing uses the best known solution as an upper bound
and is used in CELP but not in CELAG. Lower bounds for column generation
are computed before termination as in [35]. Figure 4.a is a performance plot of
the number of instances solved to within a 5% optimality gap in a given amount
of time, extended by the number of instances solved to larger optimality gaps.
Over the given relaxation, it is evident that column elimination with the different
methods can work appropriately and be competitive with column generation.

Evaluating the Impact of Cuts. We compare solving column elimina-
tion using CPLEX with and without cuts (CELP CUT, CELP) and using the
Lagrangian method with and without cuts (CELAG CUT, CELAG). Figure 4.b
is a performance plot for solving the instances up to 5% as in the last experi-
ment. Figure 4.b shows how cuts greatly improve column elimination when using
CPLEX as the LP solver, and benefit when solving the Lagrangian reformulation
but not as much.

48 A. Karahalios and W.-J. van Hoeve

a. Evaluating Individual Cuts b. Evaluating Arc Fixing

Fig. 5. a) Evaluating the performance of individual cuts on CELP CUT. b) Perfor-
mance plot of CELP CUT with and without arc fixing

We then compare the performance of CELP CUT removing one class of
cuts at a time: without the rounded capacity cuts (CELP NORCC), without
the strengthened comb inequalities (CELP NOCOMB), and without the clique
inequalities (CELP NOCLIQUE). Figure 5.a is a performance plot of the number
of instances solved to within a 1% optimality gap. Rounded capacity cuts pro-
vide the most benefit, the overhead of strengthened comb inequalities sometimes
outweigh their benefit but not entirely if we more closely examine the bounds
achieved for each instance, and clique inequalities can provide some benefit later
in the method when it is able to be distinguished from separations and other
cuts.

Evaluating the Impact of Arc Fixing. We consider the impact of arc
fixing by removing the feature from CELP CUT to get CELP CUT NOFIX.
Figure 5.b is a performance plot using 1% optimality gap. Arc fixing speeds up
column elimination to find stronger bounds in less time.

Evaluating the Impact of muSSP. We evaluate the impact of using the
muSSP algorithm to solve the subproblem in CELAG by removing it in CELAG -
NOMUSSP. The performance plot using 5% optimality gap is for 64 large X
instances and shows that there is a significant speedup. We chose to use the X
class here because the speedup is more pronounced on large instances.

Comparison to State-of-the-Art. Figure 6.b compares the state-of-the-art
BCP method’s root node lower bounds (Pecin) with the best column elimination
method settings that we chose through experimentation (CE). For each class of
problems the table gives the number of problems in the class (NP) and the
average optimality gap found at the root node over all instances. Pecin takes
less than 3600 s to compute its bounds for all instances except the X class where
it can take several hours. CE gaps are computed based on 3600 s second runs
for all classes except M, F, and X which are given 7200 s. The decision diagram
did not compile for 12 X instances, so we leave these out of the analysis. One F
instance with large capacity resulted in a large diagram and 27% gap that can

Column Elimination for Capacitated Vehicle Routing Problems 49

Class NP Pecin Gap (%) CE Gap (%)

A 22 0.36 0.66
B 20 0.14 0.61

E-M 12 0.33 2.60
F 3 0.00 16.41
P 24 0.42 0.85
X 100 0.44 2.13

a. Evaluating muSSP for CELAG b. Comparing root node bounds

Fig. 6. (a) A comparison of column elimination using the Lagrangean reformulation
with and without the muSSP algorithm. (b) Comparing the root node lower bounds
from Pecin et al. [23] (Pecin) and the lower bounds from column elimination (CE);
both methods include cuts.

be reduced with more runtime. The better of the CELAG and CELP results is
used; most small instances use CELP while large instances like almost all of the
X class use CELAG. We also remove two E class instances with unconventional
demand formatting.

9 Conclusion

We introduced a column elimination procedure for the capacitated vehicle rout-
ing problem (CVRP). Our methods works with a relaxed set of routes that are
compactly represented in a decision diagram, and from which infeasible routes
are iterative removed. We showed how we can use existing route relaxations for
the CVRP, such as the q-route and ng-route relaxation, to compile good initial
relaxed decision diagrams. When the decision diagram is exact, and only con-
tains all feasible routes, we showed that a solution to the CVRP can be found by
solving a constrained network flow problem over the diagram. When the diagram
is relaxed, this model yields a dual bound. To strengthen the linear programming
relaxation of our model we added valid inequalities; in particular, we showed how
a class of clique cuts can be derived from the structure of the diagram. To solve
the model more efficiently, we considered solving a Lagrangian dual formulation
for which we implemented a specialized successive shortest paths algorithm. In
our experimental results, we demonstrated that column elimination is a viable
alternative to column generation for the CVRP, although the best known dual
bounds from the literature, obtained by column generation with cutting planes,
are generally stronger.

Acknowledgements. This work is partially supported by Office of Naval Research
Grant No. N00014-21-1-2240 and National Science Foundation Award #1918102. This
material is also based upon work supported by the National Science Foundation Grad-
uate Research Fellowship Program under Grant No. DGE1745016, DGE2140739. Any

50 A. Karahalios and W.-J. van Hoeve

opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Hoboken
(1993)

2. Anstreicher, K.M., Wolsey, L.A.: Two “well-known” properties of subgradient opti-
mization. Math. Program. 120(1), 213–220 (2009)

3. Balas, E., Ho, A.: Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: a computational study. In: Padberg, M.W. (ed.) Com-
binatorial Optimization. Mathematical Programming Studies, vol. 12, pp. 37–60.
Springer, Heidelberg (1980). https://doi.org/10.1007/BFb0120886

4. Baldacci, R., Christofides, N., Mingozzi, A.: An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts.
Math. Program. 115(2), 351–385 (2008)

5. Baldacci, R., Mingozzi, A., Roberti, R.: New route relaxation and pricing strategies
for the vehicle routing problem. Oper. Res. 59(5), 1269–1283 (2011)

6. Balinski, M.L., Quandt, R.E.: On an integer program for a delivery problem. Oper.
Res. 12(2), 300–304 (1964)

7. Barnhart, C., Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P., Vance, P.H.:
Branch-and-price: column generation for solving huge integer programs. Oper. Res.
46(3), 316–329 (1998)

8. Bergman, D., Cire, A.A., Van Hoeve, W.J., Hooker, J.: Decision Diagrams for
Optimization, vol. 1. Springer, Heilderberg (2016)

9. Bertsekas, D.P.: Constrained optimization and Lagrange multiplier methods. Aca-
demic Press, Cambridge (2014)

10. Boyd, S., Xiao, L., Mutapcic, A.: Subgradient methods. Lect. Notes EE392o, 2004,
2004–2005 (2003)

11. Fischetti, M., Toth, P.: An additive bounding procedure for combinatorial opti-
mization problems. Oper. Res. 37(2), 319–328 (1989)

12. Fukasawa, R.: Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Math. Program. 106(3), 491–511 (2006)

13. Irnich, S., Desaulniers, G.: Shortest path problems with resource constraints. In:
Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 33–
65. Springer, Boston (2005). https://doi.org/10.1007/0-387-25486-2 2

14. Irnich, S., Desaulniers, G., Desrosiers, J., Hadjar, A.: Path-reduced costs for elim-
inating arcs in routing and scheduling. INFORMS J. Comput. 22(2), 297–313
(2010)

15. Karahalios, A., van Hoeve, W.-J.: Variable ordering for decision diagrams: a port-
folio approach. Constraints 27(1), 116–133 (2022)

16. Lodi, A., Milano, M., Rousseau, L.-M.: Discrepancy-based additive bounding for
the AllDifferent constraint. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 510–
524. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45193-8 35

17. Lysgaard, J., Letchford, A., Eglese, R.: A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Math. Program. Ser. A 100, 423–445 (2004)

18. Lysgaard, J.: CVRPSEP: a package of separation routines for the capacitated
vehicle routing problem (2003). http://www.hha.dk/∼lys/CVRPSEP.html

https://doi.org/10.1007/BFb0120886
https://doi.org/10.1007/0-387-25486-2_2
https://doi.org/10.1007/978-3-540-45193-8_35
http://www.hha.dk/~lys/CVRPSEP.html

Column Elimination for Capacitated Vehicle Routing Problems 51

19. CPLEX User’s Manual: Ibm ilog cplex optimization studio. Version 12(1987–2018):
1 (1987)

20. Christofides, N., Mingozzi, A., Toth, P.: Exact algorithms for the vehicle routing
problem, based on spanning tree and shortest path relaxations. Math. Program.
20(1), 255–282 (1981)

21. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley, Hobo-
ken (1988)

22. Österg̊ard, P.R.J.: A fast algorithm for the maximum clique problem. Discret.
Appl. Math. 120(1–3), 197–207 (2002)

23. Pecin, D., Pessoa, A., Poggi, M., Uchoa, E.: Improved branch-cut-and-price for
capacitated vehicle routing. Math. Program. Comput. 9(1), 61–100 (2017)

24. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: Automation and combina-
tion of linear-programming based stabilization techniques in column generation.
INFORMS J. Comput. 30(2), 339–360 (2018)

25. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: A generic exact solver for vehi-
cle routing and related problems. Mathematical Programming 1, 483–523 (2020).
https://doi.org/10.1007/s10107-020-01523-z

26. Roberti, R., Mingozzi, A.: Dynamic ng-path relaxation for the delivery man prob-
lem. Transp. Sci. 48(3), 413–424 (2014)

27. Tang, Z., van Hoeve, W.-J.: Dual bounds from decision diagram-based route relax-
ations: an application to truck-drone routing. Optim. Online (2022)

28. Tang, Z.: Theoretical and Computational Methods for Network Design and Rout-
ing. PhD thesis, Carnegie Mellon University (2021)

29. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications. SIAM,
2 edition (2014)

30. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New
benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper.
Res. 257(3), 845–858 (2017)

31. Hoeve, W.-J.: Graph coloring lower bounds from decision diagrams. In: Bienstock,
D., Zambelli, G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 405–418. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-45771-6 31

32. van Hoeve, W.-J., Tang, Z.: Column “Elimination”: dual bounds from decision
diagram-based route relaxations. In: INFORMS Computing Society Conference
(2022)

33. van Hoeve, W.-J.: Graph coloring with decision diagrams. Math. Program. 192(1),
631–674 (2022)

34. Wang, C., Wang, Y., Wang, Y., Wu, C.T., Yu, G.: muSSP: Efficient min-cost flow
algorithm for multi-object tracking. In: Advances in Neural Information Processing
Systems, vol. 32 (2019)

35. Wolsey, L.A.: Integer Programming. Wiley, Hoboken (2020)

https://doi.org/10.1007/s10107-020-01523-z
https://doi.org/10.1007/978-3-030-45771-6_31

Cutting Plane Selection with Analytic
Centers and Multiregression

Mark Turner1,2(B) , Timo Berthold1,3 , Mathieu Besançon2 ,
and Thorsten Koch1,2

1 Institute of Mathematics, Technische Universität Berlin, Berlin, Germany
2 Zuse Institute Berlin, Berlin, Germany

{turner,koch,besancon}@zib.de
3 Fair Isaac Deutschland GmbH, Berlin, Germany

timoberthold@fico.com

Abstract. Cutting planes are a crucial component of state-of-the-art
mixed-integer programming solvers, with the choice of which subset of
cuts to add being vital for solver performance. We propose new distance-
based measures to qualify the value of a cut by quantifying the extent to
which it separates relevant parts of the relaxed feasible set. For this pur-
pose, we use the analytic centers of the relaxation polytope or of its opti-
mal face, as well as alternative optimal solutions of the linear program-
ming relaxation. We assess the impact of the choice of distance measure
on root node performance and throughout the whole branch-and-bound
tree, comparing our measures against those prevalent in the literature.
Finally, by a multi-output regression, we predict the relative performance
of each measure, using static features readily available before the sep-
aration process. Our results indicate that analytic center-based meth-
ods help to significantly reduce the number of branch-and-bound nodes
needed to explore the search space and that our multiregression approach
can further improve on any individual method.

1 Introduction

Branch-and-cut is the algorithm at the core of most Mixed-Integer Programming
(MIP) solvers. A key component of branch-and-cut is the resolution of Linear
Programming (LP) relaxations of the original problem over partitions of the
variable domains. Cutting planes – or cuts – tighten those relaxations around
integer-feasible points. Given a MIP:

argmin
x

{cᵀx | Ax ≤ b, l ≤ x ≤ u, x ∈ Z
|J | × R

n−|J |} (P)

a cut is an inequality αᵀx ≤ β that is violated by at least one solution of the
LP relaxation but that does not increase the optimal value of the problem when
added i.e. it is valid for (P). Thereby, the inequality added as a constraint to (P)
tightens the relaxation, potentially increasing the relaxation’s optimal value. The
use of cutting planes is one of the crucial aspects to solving MIPs efficiently [3].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 52–68, 2023.
https://doi.org/10.1007/978-3-031-33271-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_4&domain=pdf
http://orcid.org/0000-0001-7270-1496
http://orcid.org/0000-0002-6320-8154
http://orcid.org/0000-0002-6284-3033
http://orcid.org/0000-0002-1967-0077
https://doi.org/10.1007/978-3-031-33271-5_4

Cutting Plane Selection with Analytic Centers and Multiregression 53

A well-designed cutting plane separation procedure often helps to reduce the
branch-and-bound tree size while accelerating the overall solving process.

In MIP solvers, two key algorithms related to cuts are their generation and
their selection. Cut generation is the problem of computing a set of cuts that
tighten the relaxation and separate the current continuous relaxation solution
from the feasible MIP solutions. Modern MIP solvers implement various general-
purpose and specialised cutting plane generation algorithms. Since the genera-
tion of cuts is, in general, far less expensive than solving the LP relaxation, many
cuts are generated from the same relaxation. The cut selection algorithm takes
the set of all cut candidates generated so far and selects a subset that is actually
added to the LP relaxation. This two-step process of generation and selection
constitutes a single separation round.

At the root node, the MIP solver interleaves separation rounds with solving
the enhanced LP relaxation until the branch-and-bound search is started. At
other search tree nodes, the solver often only performs a limited cut loop, if at
all. We focus in this paper on globally-valid cuts, i.e. cuts that are valid for the
original problem, as opposed to local cuts, which are generated with additional
local bounds at a node.

Cut selection is a classical trade-off problem: too little cutting leads to large
enumeration trees; too much cutting to a small node throughput and numerical
instability. However, carefully selected cuts can help improve both the dual and
the primal bound simultaneously by bringing the relaxation closer to the convex
hull of feasible solutions. Since proximity to the convex hull is inherently hard
to measure, cut selection methods often try to approximate it by various cheap
measures, e.g., efficacy.

Efficacy, or cutoff distance, is used in commercial MIP solvers as one of
the main criteria for whether to add a cut or not [1,9]1. Efficacy measures the
shortest distance between the LP optimal solution xLP and the cut hyperplane
αᵀx ≤ β. The function eff that maps a cut, and the LP solution xLP to the
efficacy is defined as:

eff(α, β,xLP) :=
αᵀxLP − β

‖α‖
Introduced in [14], directed cutoff distance is the signed distance between the
LP solution xLP and the cut hyperplane in the direction of a primal solution, x̂.
The measure has the property that the directed projection of xLP onto the cut
hyperplane is inside of the feasible region, and by using the best primal solution
available, aims to cut in the direction of the optimal solution. We define the
directed cutoff distance, with the function dcd as follows:

dcd(α, β,xLP , x̂) :=
αᵀxLP − β

|αᵀy| , where y =
x̂ − xLP

||x̂ − xLP ||
The last measure we consider, although not based on a distance, is expected
improvement, see [27], which corresponds to the difference in objective between
1 Confirmed as a main criterion in FICO Xpress 8.14.

54 M. Turner et al.

xLP and its orthogonal projection onto the hyperplane of a cut. We denote the
measure as exp-improv, and define it as:

exp-improv(α, β, c,xLP) := ||c|| · αᵀc
||α||||c|| · eff(α, β,xLP)

In this paper, we propose new distance-based measures for the quality of cuts.
These measures are designed to retain soundness properties in common cases
that hinder the applicability, and to reduce the size of the search space, without
focusing on runtime improvement. To this end, we perform extensive computa-
tional experiments to analyse the effects of our newly introduced measures and
those that exist in the literature. Unlike previous beliefs, the choice of distance
measure significantly impacts solver performance both in time and number of
nodes, with different measures performing better on different groups of instances.
Motivated by this observation, we design a multi-output regression model, which
predicts the relative performance of each measure using static features readily
available before the separation process. The scope of this paper is to establish a
model that aims at reducing search space size rather than runtime.

2 Related Work

There is a prevailing sentiment in the MIP community, supported by a set of
older computational studies, see [1,4,27], that inexpensive heuristics are suf-
ficient for cut selection. Specifically, these studies suggest that cheap ranking
metrics, predominantly efficacy, are sufficiently effective when combined with
filtering mechanisms that ensure no two overly parallel cuts are added. The
studies [1,27] argue that a weighted sum of different metrics is most effective for
ranking cuts as opposed to any single metric.

Recently, the research focus for cuts in MIP has been on using deep learning
to either calculate scores directly from a set of measures or to predict parameter
values in scoring functions, see [6,7,17,21,25,26]. In [7] and [21] a neural network
is trained to predict the objective value improvement of cuts when added. In [25],
a neural network is trained using evolutionary strategies to select Gomory cuts. A
neural network is also trained in [17], this time using multiple instance learning,
to map a set of aggregate cut features to a scoring function. In [6], the cut
selection parameter space is shown to be partitionable into a set of regions, such
that all parameter choices within a region select the same set of cuts. Finally,
for cut scores based on weighted criteria, [26] provides an illustrative example
of worst-case scenario for parameter grid search in the cut selection parameter
space, and phrases learning cut selection parameters as a reinforcement learning
problem.

Closest to our work are papers that introduced cut selection measures other
than efficacy, which were still based on a notion of measuring distances. Directed
cutoff distance was introduced in SCIP 6.0 [14], other measures such as rotated
cutoff distance and distance with bounds were explored in [27], and depth was
introduced in [23]. Measures based on non-distance arguments are also prevalent

Cutting Plane Selection with Analytic Centers and Multiregression 55

in cut selection, albeit often as smaller weighted complements to a distance
measure, see objective parallelism and integer support in [1,27], and enumeration
of lattice points in [18].

In the presented distance measures of Sect. 1, an LP-optimal solution is used
as a reference point. Note, however, that this optimum is not necessarily unique,
with the set of minimisers frequently being a higher-dimensional face of the
LP-feasible region due to dual degeneracy [13]. The optimal solution used in
these degenerate cases inevitably has a large impact on cut generation [29], and
therefore cut selection. This has been noted in previous research, with work
such as [11] using multiple LP solutions from different LP random seeds to
generate different sets of cuts. Additionally, the patent [2], proposes using a
second LP optimal solution at the same cutting round to filter cuts derived
from the original LP solution. They provide an example, where a second LP
solution that prioritises integrality is found, which then filters all cuts that do
not separate it. Dual degeneracy is one major aspect motivating some of the
newly-proposed measures in our work.

Finally, analytic centers have been used in other aspects of MIP solving,
namely, presolving [8], cut generation [12], branching [8], and heuristics [5,20],
motivating the measures introduced in this paper.

3 Contributions and Methodology

The contribution of the present paper is threefold. First, we introduce new
distance-derived cut quality measures, the most important of which utilise ana-
lytic centers, and analyse properties of interest for these measures in cases of dual
degeneracy and infeasible projections. Secondly, we present an extensive set of
computational experiments on the effectiveness of our new measures and those
commonly found in practice, showing that the choice of cut selection measure
does have a strong influence on root-node and tree-wide performance. Thirdly,
we introduce a multi-output regression model that predicts a ranking of distance
measures per instance from a set of root node features.

3.1 Analytic Center-Based Methods

We propose two new methods for measuring cut quality: analytic efficacy, and
analytic directed cutoff distance. They are based on the analytic center of the
polytope and of the optimal face, respectively. For a given bounded MIP formu-
lation (P), the analytic center is unique and in the relative interior of the feasible
region.

When a constraint aᵀx ≤ b is tight for any feasible solution or in the presence
of equality constraints, the analytic center is not well-defined due to a log-barrier
term being +∞. In practice, algorithms relax all log-barriers with a fixed slack
constant as long as constraints are imposed on solutions.

56 M. Turner et al.

While the analytic center is invariant under affine transformations of Prob-
lem (P), it can change with reformulations. E.g., the analytic center can be
shifted by the presence of redundant inequalities. For our work, we assume
that the formulation has already been presolved by the MIP solver. Presolving
includes tightening both variable bounds and constraints, and removing both
redundant constraints and variables. It thereby limits the extent of such edge
cases.

Analytic Efficacy. As opposed to using the xLP extreme point returned by
the MIP solver for eff calculations, we propose a new measure that uses the
analytic center of the optimal face of the LP, xF . We define xF by the following
using the notation from Problem (P), where Ai, bi, ui, and li are the i-th row
or i-th entry of their respective matrix or vector:

xF := argmin
x : cᵀx=cᵀxLP

{−
m∑

i=1

log(bi − Aix) − (
n∑

i=1

log(xi − li) + log(ui − xi))}

In practice, we find xF using the barrier (or interior point) algorithm on the LP
relaxation without crossover, see [8]. This algorithm is available in all modern
MIP solvers, and is often run concurrently to the simplex at the root node,
making our cut selection algorithms of practical interest for MIP solving.

The obtained center xF is different from xLP only if the current problem
presents dual degeneracy. The purpose of evaluating cuts with respect to how
much they separate the center of the optimal face is to favour those which cut a
greater part or potentially all of the optimal face, thereby more likely favouring
an improvement in the dual bound. Compare Figs. 1a and 1b for the intuition
behind analytic efficacy.

Analytic Directed Cutoff Distance. This measure is inspired by directed
cutoff distance, and uses the analytic center of the feasible region, xC , as opposed
to the best incumbent solution x̂. Using the same notation as in Sect. 3.1, we
define the analytic center of the feasible region, xC , as:

xC := argmin
x

{−
m∑

i=1

log(bi − Aix) − (
n∑

i=1

log(xi − li) + log(ui − xi))}

xC is often interpreted as the “central-most” point of the polytope and can
be computed efficiently by dropping the objective function cᵀx and solving the
resulting LP relaxation using the barrier algorithm without crossover. The moti-
vation is that the incumbent is not necessarily representative of the feasible set
of the MIP since it can be any point of the feasible set generated by heuristics.
Furthermore, it introduces an additional source of variability in the cut selection
since the best primal solution is prone to updates, particularly during root node
cutting when many primal heuristics are employed. By contrast, xC is unique

Cutting Plane Selection with Analytic Centers and Multiregression 57

and deterministically determined for the LP relaxation. Compare Figs. 1b and 1d
for the intuition behind analytic directed cutoff distance.

For computational efficiency, we further introduce approximate analytic
directed cutoff distance, which re-uses the analytic center, xC , from the pre-
vious separation round provided it is still LP-feasible. This is motivated by the
intuition that the analytic center, as the “central-most” point, is rarely separated
and remains close to the new analytic center after cuts have been added.

Fig. 1. A visualisation of distance measures. Note that in Fig. 1c we see that there are
two alternative optimal vertices.

3.2 Multiple LP Solutions

We also introduce two distance measures, which mitigate cases of dual degener-
acy and do not rely on analytic centers, but rather rely on multiple LP-optimal
vertices. Let XLP be a set of LP optimal solutions. We propose the measures
average efficacy, denoted avgeff, and minimum efficacy, denoted mineff, which
respectively take the average and minimum efficacy over all LP solutions in XLP .

avgeff(α, β,XLP) :=
∑

xLP ∈XLP

eff(α, β,xLP)
|XLP |

mineff(α, β,XLP) := min{eff(α, β,xLP) | xLP ∈ XLP }

58 M. Turner et al.

Fig. 2. Two cases showing the limitation of efficacy, in the presence of dual degeneracy
2a, and infeasible projection 2b. The blue polytope represents the LP feasible region,
the black dots integer solutions, the red lines are proposed cuts, and xLP represents a
LP optimal solution. In both cases, the dotted cut has a higher efficacy even though it
is likely not preferable. (Color figure online)

3.3 Properties and Limitations of the Distance Measures

In this section, we highlight situations in which the standard interpretations
of some distance measures are limited; we introduce dominance consistency, a
soundness property for distance measures, and establish cases under which it
holds and under which it does not. Examples of dominance consistency also
offer valuable insight into the geometry of different measures.

Efficacy, similarly expected improvement, uses the orthogonal projection of
xLP onto the cut to measure distance. Unlike measures such as directed cut-
off distance, the projection point might not be LP feasible, potentially making
efficacy non-representative of the strength of the cut. A larger efficacy does not
necessarily correspond to a larger part of the polyhedron being cut off nor to a
better improvement in dual bound, see Fig. 2a. Note that minimum and analytic
efficacy would not assign the dotted cut a positive score. Efficacy would prefer
the dotted cut even though it does not improve the dual bound while the dashed
cut does. Figure 2b visualises a basic example of when the orthogonal projection
used for efficacy is LP-infeasible and thus not necessarily a good proxy for cut
quality. Analytic efficacy, minimum efficacy, and average efficacy help overcome
some limitations of efficacy, namely the dependence on the vertex returned by
the LP solve. They are, however, equivalent when the current relaxation is not
dual-degenerate since they then compute the distance to the cut using the same,
unique optimal vertex.

Cutting Plane Selection with Analytic Centers and Multiregression 59

Directed cutoff distance heavily depends on the incumbent solution, which
is typically obtained from a primal heuristic.2 This primal solution may be sub-
optimal and near a corner of the feasible region, biasing cuts in an unfavourable
direction. Additionally, the primal solution may be LP-infeasible for local relax-
ations of the branch-and-bound tree, reducing the applicability of directed cutoff
distance.

Ultimately, one would like a distance measure to be a surrogate for solver
efficiency, in our case: the size of the search space in terms of branch and bound
nodes. Such a measure is impossible to quantify however, with solution fraction-
ality being insufficient, and the closest analogue, ‘strong cutting’, which measures
the dual bound improvement of an added cut, see [21], being computationally
intractable. The holy grail of cut selection is to either identify a computationally
tractable measure that is a reasonably good proxy for solver performance, or to
learn to adaptively select a suitable measure based on the input instance.

In the following, we will formalise these considerations. Therefore, we first
recall the basic concepts of cut dominance and feasible rays. A cut (A) =
(αA, βA) dominates another cut (B) = (αB , βB) if all points of the polytope
cut by (A) are cut by (B) and there exists a point cut by (A) not cut by (B).
We highlight that this definition of dominance is more general than, e.g., [28,
Definition 9.2.1] since it only requires dominance to hold in the polytope and
not in the whole space or the positive orthant. We define a feasible ray as a ray
r starting from an LP-feasible point x for which there exists λ > 0 such that
x + λr is LP-feasible. Such a ray always exists by convexity if the polyhedron is
not a single point.

Definition 1 (Dominance consistency). Given a MIP (P) and a relax-
ation point to cut off x, a distance measure noted d(x,αX , βX) is dominance-
consistent w.r.t. a set of cuts iff for any cut (A) and (B) in the set,
d(x,αA, βA) > d(x,αB , βB) implies that (A) is not dominated by (B).

Note that with this definition, for a given MIP and LP solution x, one set of cuts
(e.g., from one separation round) can imply dominance consistency for a measure
while another set of cuts (e.g., from another separation round) might not. We will
see that for some measures, dominance consistency applies for all sets of cuts, all
relaxation points, and all MIPs. Dominance consistency is a desirable property
for a cut selection measure since a fully dominated cut will systematically be
inferior to the dominating cut from the cut strength perspective.3

Proposition 1 (Consistency of Euclidean distance measures). All mea-
sures consisting of the Euclidean distance of a given point x to the cut hyperplane
are dominance-consistent with respect to any set of cuts if, for any two cuts in
the set, the cut with the smallest distance measure cuts off x and the projection
of x onto its hyperplane is LP-feasible.
2 At the root node, in particular, the incumbent – if existing – will always come from

a heuristic, otherwise there would be no more cut rounds.
3 Note that we disregard other cut properties such as density, numerical stability, or

orthogonality here.

60 M. Turner et al.

Proof. Let (A) and (B) be the two cuts of the set. The proof directly applies to
more cuts by induction. We assume w.l.o.g. that d(x,αA, βA) > d(x,αB , βB).
The set of cuts with distance measure d(x, ·, ·) = d(x,αA, βA) is a subset of
the hyperplanes tangent to the sphere of radius d(x,αA, βA) centered at x.
The cut (B) does not separate the projection of x onto its own hyperplane,
which is by assumption LP-feasible. The projected point lies on the sphere of
radius d(x,αB , βB) centered at x, and is contained in the open ball of radius
d(x,αA, βA) centered at x. As a tangent hyperplane to the sphere of radius
d(x,αA, βA), (A) therefore cuts off the projected point by at least d(x,αA, βA)−
d(x,αB , βB) and can therefore not be dominated. ��

Proposition 1 directly applies to efficacy and analytic efficacy, with the key
restriction that the projection of the relaxation point onto the cut must be LP-
feasible, which excludes a majority of real instances. Furthermore, since eff is
a linear function of xLP , the property also applies to avgeff as a distance mea-
sure, with the point to project xbeing the average of the multiple LP solutions.
Finally, we can construct counter-examples where dominance-consistency does
not hold for measures based on the Euclidean projection of a point onto the cut
hyperplane in cases where the projection is not LP-feasible, as shown in Fig. 2b.

Proposition 2 (Consistency of the minimum efficacy). Given the set of
LP solutions XLP , we define the active solutions for a cut (α, β) as the subset
arg minx∈XLP eff(α, β,x). mineff is dominance-consistent with respect to a set
of cuts if for any two cuts (A) and (B) such that (B) has a strictly lower mineff,
there exists an active solution x0 separated by (B) such that its projection onto
the hyperplane of (B) is LP-feasible.

Proof. Similarly to Proposition 1, the cut (B) forms a tangent hyperplane to
the sphere centered at x0 and of radius equal to the score of (B). That point is
not separated by (B) itself but (A) has to separate it by at least the difference
in score between (A) and (B). ��
Proposition 3 (Consistency of directed distance measures). All mea-
sures based on the distance of a point x to the cut in the direction of an LP-
feasible point x̂ are dominance-consistent w.r.t any set of cuts which all sepa-
rate x.

Proof. All points on the segment [x, x̂] are LP-feasible. Let (A) and (B) be two
cuts of the set such that (A) has a strictly greater measure value. Since the
measure corresponds to the length of the segment cut off by cuts, some points
are separated by (A) only, (B) cannot dominate (A). ��

Proposition 3 notably applies to directed cutoff distance and (approximate)
analytic directed cutoff distance. We note that dominance-consistency does not
extend to exp-improv, even with feasible LP projections, with a counterexample
visualised in Fig. 3.

Cutting Plane Selection with Analytic Centers and Multiregression 61

Fig. 3. Two cuts with LP-feasible orthogonal projections of xLP . The dotted cut is
dominated, but has a better exp-improv score.

3.4 Multi-output Regression

Machine Learning for MIP has mainly focused on classification tasks, e.g. should
an algorithm be run with option A or B, or run at all. In our case, the output
of interest is the (relative) advantage of distance measures in terms of some per-
formance criterion. For some instances, different measures may result in (near-
)identical performance, e.g. if the same, “obvious” subset of cuts is selected by
all methods. Classifying these (near-)ties with one distance measure or choosing
an arbitrary threshold to classify a measure as well-performing could prevent the
model from fitting well on the important data points where the selection method
is significant. We therefore pose our learning task as a multi-output regression
that predicts the relative performance of each method. We aim at an inter-
pretable model to predict the preferred measure, with the goal of outperforming
individual distance measures.

The feature space used as input to our model consists of: dual degeneracy
(fraction of non-basic variables with zero-reduced cost), primal degeneracy (frac-
tion of basic variables at their respective bounds), solution fractionality (frac-
tion of integer variables with fractional LP values), thinness (fraction of equality
constraints), and density (fraction of non-zero entries in constraint matrix). All
features are obtainable at the root node before the separation process begins,
are relevant to the separation process, and are easy to retrieve.

4 Experiments

We perform experiments on the MIPLIB 2017 collection set4 [15], which we will
now simply refer to as MIPLIB. We define a run as an instance random-seed pair
for which we enforce exactly 50 separation rounds at the root node, with a max-
imum of 10 cuts to be added per round. We use default separators, but increase
the amount of cuts that can be generated. Additionally, in order to reduce the
variability of the solving process, restarts are disabled, no cuts are allowed to be
added after the root node, and the best available MIPLIB solution is provided.
All other aspects of the solver are untouched, with our experiments only replac-
ing the cut scoring function in SCIP, not the selection algorithm itself, see [26].
The primary motivation is to assess the performance of different distance-based

4 MIPLIB 2017 – The Mixed Integer Programming Library https://miplib.zib.de/.

https://miplib.zib.de/

62 M. Turner et al.

cut measures, and to determine for which instance characteristics a distance
measure is effective. All results are obtained by averaging results over the SCIP
random seeds {1, 2, 3}, and instances are filtered subject to Table 1, with 162
instances remaining. Three LP solutions are used for mineff and avgeff.

Table 1. Criteria for which we removed instances from the MIPLIB collection and
percentages of instances affected by each criterion

Criteria % of instances removed

Tags: feasibility, numerics, infeasible, no solution 4.5%, 17.5%, 2.8%, 0.9%

Unbounded objective, MIPLIB solution unavailable 0.9%, 2.6%

Root optimal (any measure) 13.3%

Root node with separation rounds longer than 600s (any measure) 13.4%

No optional cuts generated (all measures) 2.3%

Numerical issues (any measure) 1.2%

Failed to prove optimality in branch and cut within 7200 s s (all measures) 21.7%

For all experiments, SCIP 8.0.2 [9] is used, with PySCIPOpt [19] as the
API, and Xpress 8.14 [10] as the LP solver. All experiments are run on a clus-
ter equipped with Intel Xeon Gold 5122 CPUs with 3.60 GHz and 96 GB main
memory. The code used for all experiments is available and open-source5. The
structure of this section is as follows. In Subsect. 4.1, we present results of our
distance-based cut measures on root node restricted runs. In Subsect. 4.2 we
present results of our distance measures generalised to branch and cut. Finally,
in Subsect. 4.3 we present the performance of our support vector regression
model on selecting distance measures.

4.1 Root Node Results

Table 2. Summary of all distance measures

Function Measure Description

eff Efficacy See Sect. 1

dcd Directed cutoff distance See Sect. 1

a-eff Analytic Efficacy See Subsect. 3.1

a-dcd Analytic directed cutoff distance See Subsect. 3.1

app-a-dcd Approximate analytic directed cutoff distance See Subsect. 3.1

avgeff Average efficacy See Subsect. 3.2

mineff Minimum efficacy See Subsect. 3.2

exp-improv Expected Improvement See Sect. 1

5 https://github.com/Opt-Mucca/Analytic-Center-Cut-Selection.

https://github.com/Opt-Mucca/Analytic-Center-Cut-Selection

Cutting Plane Selection with Analytic Centers and Multiregression 63

Table 2 provides a summary of all cut selection measures we evaluated. We
compare head-to-head results on the primal-dual difference after 50 separa-
tion rounds. We say that a scoring measure has outperformed another for an
instance, if it is at least as good over all random seeds, and strictly better
for at least one. Curiously, we observe a clear hierarchy of distance-based cut
measures for root-restricted dual bound performance over MIPLIB. That is,
a-dcd ≥ app-a-dcd ≥ a-eff ≥ mineff ≥ avgeff ≥ dcd ≥ eff ≥ exp-improv.

Table 3. Entry coordinate (i, j) is a tuple of win/loss percentage over all instances for
dual bound improvement of measure i over measure j. A win is defined by at least as
good performance over all seeds, and better performance for at least one seed.

a-dcd app-a-dcd a-eff mineff avgeff eff dcd exp-improv

a-dcd - 0.29/0.16 0.32/0.3 0.29/0.29 0.32/0.26 0.38/0.22 0.4/0.21 0.47/0.22

app-a-dcd 0.16/0.29 - 0.3/0.3 0.3/0.27 0.3/0.27 0.38/0.22 0.37/0.23 0.43/0.25

a-eff 0.3/0.32 0.3/0.3 - 0.25/0.23 0.22/0.2 0.31/0.14 0.37/0.26 0.41/0.23

mineff 0.29/0.29 0.27/0.3 0.23/0.25 - 0.14/0.13 0.28/0.12 0.32/0.26 0.36/0.24

avgeff 0.26/0.32 0.27/0.3 0.2/0.22 0.13/0.14 - 0.27/0.12 0.31/0.25 0.38/0.24

eff 0.22/0.38 0.22/0.38 0.14/0.31 0.12/0.28 0.12/0.27 - 0.26/0.25 0.32/0.25

dcd 0.21/0.4 0.23/0.37 0.26/0.37 0.26/0.32 0.25/0.31 0.25/0.26 - 0.36/0.26

exp-improv 0.22/0.47 0.25/0.43 0.23/0.41 0.24/0.36 0.24/0.38 0.25/0.32 0.26/0.36 -

Fig. 4. Boxenplots of distance measures root-node performance. Each instance com-
pared to the virtual best and averaged over random seeds.

A head-to-head comparison, while helpful for ranking measures, contains
limited information on the distribution of performance. For this reason, we also
visualise the primal-dual difference results using boxenplots in Fig. 4, see [16] for
a description. Figure 4 shows a comparison of each method against the so-called
virtual best. Therefore, we divide, instance by instance, the average gap (over
all seeds) by the best average gap among the eight methods. We observe similar
results to Table 3 in that a-dcd, app-a-dcd, and a-eff are superior to other
methods in terms of dual bound improvement. It should be noted, however, that
on average a-eff takes 32% of the root node processing time and a-dcd takes

64 M. Turner et al.

25%. This is in contrast to eff, which only takes 0.8%. We conclude that using
an analytic center for cut selection is beneficial for closing the primal-dual gap
during root node cutting.

4.2 Branch and Bound Generalisation

Table 4. Entry coordinate (i, j) is a tuple of win/loss percentage over all instances for
measure i over measure j. A win is defined by at least as good performance over all
seeds, and better performance for at least one seed.

a-dcd app-a-dcd a-eff mineff avgeff eff dcd exp-improv

a-dcd - 0.17/0.16 0.29/0.17 0.25/0.17 0.23/0.19 0.27/0.17 0.23/0.17 0.28/0.15

app-a-dcd 0.16/0.17 - 0.2/0.22 0.23/0.2 0.19/0.27 0.22/0.19 0.21/0.22 0.23/0.18

a-eff 0.17/0.29 0.22/0.2 - 0.15/0.15 0.2/0.2 0.17/0.17 0.2/0.19 0.18/0.17

mineff 0.17/0.25 0.2/0.23 0.15/0.15 - 0.11/0.17 0.17/0.1 0.17/0.18 0.18/0.15

avgeff 0.19/0.23 0.27/0.19 0.2/0.2 0.17/0.11 - 0.17/0.14 0.21/0.19 0.23/0.22

eff 0.17/0.27 0.19/0.22 0.17/0.17 0.1/0.17 0.14/0.17 - 0.16/0.2 0.19/0.2

dcd 0.17/0.23 0.22/0.21 0.19/0.2 0.18/0.17 0.19/0.21 0.2/0.16 - 0.19/0.17

exp-improv 0.15/0.28 0.18/0.23 0.17/0.18 0.15/0.18 0.22/0.23 0.2/0.19 0.17/0.19 -

(a) Number of nodes

a-dcd app-a-dcd a-eff mineff avgeff eff dcd exp-improv

a-dcd - 0.37/0.14 0.33/0.16 0.28/0.15 0.28/0.17 0.22/0.3 0.16/0.3 0.19/0.29

app-a-dcd 0.14/0.37 - 0.23/0.2 0.25/0.23 0.24/0.23 0.17/0.35 0.15/0.3 0.16/0.36

a-eff 0.16/0.33 0.2/0.23 - 0.23/0.23 0.26/0.29 0.14/0.41 0.15/0.35 0.1/0.37

mineff 0.15/0.28 0.23/0.25 0.23/0.23 - 0.2/0.2 0.12/0.4 0.11/0.33 0.12/0.29

avgeff 0.17/0.28 0.23/0.24 0.29/0.26 0.2/0.2 - 0.1/0.37 0.12/0.34 0.12/0.32

eff 0.3/0.22 0.35/0.17 0.41/0.14 0.4/0.12 0.37/0.1 - 0.18/0.22 0.2/0.2

dcd 0.3/0.16 0.3/0.15 0.35/0.15 0.33/0.11 0.34/0.12 0.22/0.18 - 0.21/0.2

exp-improv 0.29/0.19 0.36/0.16 0.37/0.1 0.29/0.12 0.32/0.12 0.2/0.2 0.2/0.21 -

(b) Time

While root node performance can be used as a surrogate for solver performance,
there is no guarantee that results generalise to the entire solving process. We
therefore extend our experiments to the branch-and-bound tree with a time limit
of two hours. The head-to-head results of each distance measure for the number
of nodes and solve time are displayed in Table 4. For the number of nodes,
note that we removed all instances where a measure timed out. We observe
in the number of nodes comparison that a-dcd remains the superior method,
however the ordering of methods is now less clear. Most interesting is the drop
in performance of app-a-dcd compared to the root node results, which suggests
that the analytic center from previous separation rounds is often not a good
direction for distance measures. This is supported by the fact that 26.5% of
the analytic centers from previous rounds are LP infeasible. In the solve time
comparison, we see that the ‘cheaper’ measures, eff, dcd, exp-improv, which
require no additional LP solver calls, are superior over the more ‘expensive’
measures. This suggests that while our introduced methods, especially a-dcd,
can reduce the number of nodes and have better root node performance, the
total solve time is not similarly improved. We note that while dcd is superior in

Cutting Plane Selection with Analytic Centers and Multiregression 65

Table 4b, we believe that our experimental design is overly favourable since we
start with an optimal MIPLIB solution (or best known, for unsolved instances).

Fig. 5. Boxenplots of measures’ tree performance. Nodes (left), time (right).

Similarly to Subsect. 4.1, we visualise an instance-wide comparison to the
virtual best of all measures for number of nodes and solve time in Fig. 5. The
results confirm our conclusion from Table 4a that a-dcd is the best performing
measure, and that eff is the worst one w.r.t. number of nodes. All other mea-
sures, however, have similar distributions, making stronger conclusions difficult.
We note that 90.4% of cuts have infeasible projections when scoring by eff, and
that previous studies, see [13], identify an 87.5% occurrence rate of some level of
dual degeneracy of the final root node LP in standard benchmark instances, con-
firming the practical geometric limitations of efficacy presented in Sect. 3.3. For
solve time, we observe the improved performance of ‘cheaper’ methods through
their relatively high median values. We also observe that a-dcd has the smallest
performance variability of all measures, while the standard eff has the largest
performance variability. This implies that using an analytic center for cut selec-
tion can help to reduce performance variability, an interesting observation by its
own.

4.3 Regression Model Results

We have thus far observed that our newly introduced measures, especially a-dcd,
have superior root node dual bound performance than traditional measures, and
often result in smaller branch-and-bound trees. No single measure is however
dominant, as seen in Tables 4a and 4b, with no single measure ever having less
than 10% of instances as wins in the head-to-head contest. This motivates the
need for an adaptive method, which decides on a distance measure at the start
of the solving process that will best perform on the instance.

We use support vector regression (SVR) with a cubic kernel function, see
[24], implemented in scikit-learn [22] with default parameters. We train on

66 M. Turner et al.

instance-seed pairs, with the virtual best number of nodes for each pair divided
by the number of nodes under the distance measure as output. Our model was
trained using 5-fold cross-validation, with 10% of pairs retained for validation.
We were able to achieve comparable performance with regression forests and
alternative kernels, likewise with default parameter sets. The final model was
selected due to its ease of interpretation and potential embedding in a MIP
solver.

We observe in Fig. 5 that our trained model clearly outperforms any indi-
vidual distance measure w.r.t. number of nodes. Further, when considering the
shifted geometric mean of the number of nodes, it is 12% smaller than that of
the best overall performing distance measure. This strong result does not gener-
alise to solve time, however. The distribution looks similar to a-dcd, albeit with
a better median. The shifted geometric mean of our model w.r.t. solve time is
8% larger than the single best-performing distance measure. Note that there are
situations where available memory is a limiting factor – e.g., super-computing –
which makes node savings important. Finally, we visualise the decision bound-
aries of the trained model over the two first principal components from a PCA
of the original features, maintaining 71% of the explained variance. We deter-
mine decision boundaries with the largest regression value over all distances and
visualise the result in Fig. 6, with the component equations printed below.

Fig. 6. Decision regions in transformed feature space. Dots are validation
instances, with their opacity the relative performance of the predicted mea-
sure. Component 1: 0.947 dual deg − 0.205 primal deg + 0.22 frac − 0.089 thin − 0.063 density

Component 2: − 0.27 dual deg − 0.733 primal deg + 0.467 frac − 0.256 thin + 0.326 density

5 Conclusion

In this paper, we reassessed the question of cut selection through the lens of
distance measures. Motivated by geometric properties of polyhedra encountered

Cutting Plane Selection with Analytic Centers and Multiregression 67

in MIPs, we defined measures based on analytic centers and multiple LP solu-
tions. We showed their performance, and more importantly, that the relative
performance of distance measures can be learned for new instances with an
interpretable and implementable model. We found that the introduced measures
help to reduce root node gap, size of the branch and bound tree and performance
variability. The focus of our work is on the improved evaluation of individual
cuts; future directions will build upon these measures to enhance the whole sep-
aration process, incorporating combinations of cut measures, and generalising
the promising node reductions to improved runtime.

Acknowledgements. The work for this article has been conducted in the Research
Campus MODAL funded by the German Federal Ministry of Education and Research
(BMBF) (fund numbers 05M14ZAM, 05M20ZBM). The described research activities
are funded by the Federal Ministry for Economic Affairs and Energy within the project
UNSEEN (ID: 03EI1004-C).

References

1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, TU Berlin (2007)
2. Achterberg, T.: LP relaxation modification and cut selection in a MIP solver. US

Patent US8463729B2 (2013). https://patents.google.com/patent/US8463729B2/
en

3. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years of
progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization,
pp. 449–481. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-38189-
8 18

4. Andreello, G., Caprara, A., Fischetti, M.: Embedding {0, 1/2}-cuts in a branch-
and-cut framework: a computational study. Informs J. Comput. 19(2), 229–238
(2007)

5. Baena, D., Castro, J.: Using the analytic center in the feasibility pump. Oper. Res.
Lett. 39(5), 310–317 (2011). https://doi.org/10.1016/j.orl.2011.07.005. https://
www.sciencedirect.com/science/article/pii/S0167637711000824

6. Balcan, M.F.F., Prasad, S., Sandholm, T., Vitercik, E.: Sample complexity of tree
search configuration: cutting planes and beyond. In: Advances in Neural Informa-
tion Processing Systems, vol. 34 (2021)

7. Baltean-Lugojan, R., Bonami, P., Misener, R., Tramontani, A.: Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks.
Optimization-online preprint 2018/11/6943 (2019)

8. Berthold, T., Perregaard, M., Mészáros, C.: Four good reasons to use an interior
point solver within a MIP solver. In: Kliewer, N., Ehmke, J.F., Borndörfer, R.
(eds.) Operations Research Proceedings 2017. ORP, pp. 159–164. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89920-6 22

9. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0 (2021)
10. FICO Xpress Optimization. https://www.fico.com/en/products/fico-xpress-

optimization. Accessed 10 Nov 2022
11. Fischetti, M., Lodi, A., Monaci, M., Salvagnin, D., Tramontani, A.: Improving

branch-and-cut performance by random sampling. Math. Program. Comput. 8(1),
113–132 (2016)

https://patents.google.com/patent/US8463729B2/en
https://patents.google.com/patent/US8463729B2/en
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1016/j.orl.2011.07.005
https://www.sciencedirect.com/science/article/pii/S0167637711000824
https://www.sciencedirect.com/science/article/pii/S0167637711000824
https://doi.org/10.1007/978-3-319-89920-6_22
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization

68 M. Turner et al.

12. Fischetti, M., Salvagnin, D.: Yoyo search: a bisection cutting-plane method (2009)
13. Gamrath, G., Berthold, T., Salvagnin, D.: An exploratory computational analysis

of dual degeneracy in mixed-integer programming. EURO J. Comput. Optim. 8(3–
4), 241–261 (2020)

14. Gleixner, A., et al.: The SCIP Optimization Suite 6.0. Technical report. 18–26,
ZIB, Takustr. 7, 14195 Berlin (2018)

15. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. 1–48 (2021)

16. Hofmann, H., Kafadar, K., Wickham, H.: Letter-value plots: boxplots for large
data. Technical report, had.co.nz (2011)

17. Huang, Z., et al.: Learning to select cuts for efficient mixed-integer programming.
arXiv preprint arXiv:2105.13645 (2021)

18. Lodi, A., Pesant, G., Rousseau, L.-M.: On counting lattice points and Chvátal-
Gomory cutting planes. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS,
vol. 6697, pp. 131–136. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-21311-3 13

19. Maher, S., Miltenberger, M., Pedroso, J.P., Rehfeldt, D., Schwarz, R., Serrano, F.:
PySCIPOpt: mathematical programming in Python with the SCIP optimization
suite. In: Greuel, G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016.
LNCS, vol. 9725, pp. 301–307. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-42432-3 37

20. Naoum-Sawaya, J.: Recursive central rounding for mixed integer programs. Com-
put. Oper. Res. 43, 191–200 (2014)

21. Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L., Maddison, C.: Learning to cut
by looking ahead: cutting plane selection via imitation learning. In: International
Conference on Machine Learning, pp. 17584–17600. PMLR (2022)

22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

23. Poirrier, L., Yu, J.: On the depth of cutting planes. arXiv preprint arXiv:1903.05304
(2019)

24. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput.
14(3), 199–222 (2004)

25. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming:
learning to cut. In: International Conference on Machine Learning, pp. 9367–9376.
PMLR (2020)

26. Turner, M., Koch, T., Serrano, F., Winkler, M.: Adaptive cut selection in mixed-
integer linear programming. arXiv preprint arXiv:2202.10962 (2022)

27. Wesselmann, F., Stuhl, U.: Implementing cutting plane management and selection
techniques. Technical report, University of Paderborn (2012)

28. Wolsey, L.A.: Integer Programming. Wiley, Hoboken (2020)
29. Zanette, A., Fischetti, M., Balas, E.: Can pure cutting plane algorithms work?

In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
416–434. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-
4 29

http://arxiv.org/abs/2105.13645
https://doi.org/10.1007/978-3-642-21311-3_13
https://doi.org/10.1007/978-3-642-21311-3_13
https://doi.org/10.1007/978-3-319-42432-3_37
https://doi.org/10.1007/978-3-319-42432-3_37
http://arxiv.org/abs/1903.05304
http://arxiv.org/abs/2202.10962
https://doi.org/10.1007/978-3-540-68891-4_29
https://doi.org/10.1007/978-3-540-68891-4_29

Handling Symmetries in Mixed-Integer
Semidefinite Programs

Christopher Hojny1(B) and Marc E. Pfetsch2

1 Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513,

5600MB Eindhoven, The Netherlands
c.hojny@tue.nl

2 Department of Mathematics, TU Darmstadt,
Dolivostr. 15, 64293 Darmstadt, Germany
pfetsch@mathematik.tu-darmstadt.de

Abstract. Symmetry handling is a key technique for reducing the run-
ning time of branch-and-bound methods for solving mixed-integer lin-
ear programs. In this paper, we generalize the notion of (permuta-
tion) symmetries to mixed-integer semidefinite programs (MISDPs). We
first discuss how symmetries of MISDPs can be automatically detected
by finding automorphisms of a suitably colored auxiliary graph. Then
known symmetry handling techniques can be applied. We demonstrate
the effect of symmetry handling on different types of MISDPs. To this
end, our symmetry detection routine is implemented in the state-of-the-
art MISDP solver SCIP-SDP. We obtain speed-ups similar to the mixed-
integer linear case.

Keywords: mixed-integer semidefinite programming · symmetry
handling · branch-and-bound

1 Introduction

In this paper, we consider solving general Mixed-Integer Semidefinite Programs
(MISDP) of the following form:

inf b�y

s.t.
m∑

k=1

Ak yk − A0 � 0,

�i ≤ yi ≤ ui ∀ i ∈ [m],
yi ∈ Z ∀ i ∈ I,

(1)

with symmetric matrices Ak ∈ Rn×n for k ∈ [m]0 := {0, . . . , m}, b ∈ Rm,
�i ∈ R ∪ {−∞}, ui ∈ R ∪ {∞} for all i ∈ [m] := {1, . . . ,m}. The set of indices
of integer variables is given by I ⊆ [m]. The notation M � 0 indicates that a
matrix M is positive semidefinite. Throughout this paper, we use the notation
A(y) :=

∑m
k=1 Ak yk − A0 for y ∈ Rm.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 69–78, 2023.
https://doi.org/10.1007/978-3-031-33271-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_5&domain=pdf
http://orcid.org/0000-0002-5324-8996
http://orcid.org/0000-0002-0947-7193
https://doi.org/10.1007/978-3-031-33271-5_5

70 C. Hojny and M. E. Pfetsch

One way to solve (1) is by SDP-based branch-and-bound, a special case
of nonlinear branch-and-bound, see Dakin [5]. Here, branching on the integer
variables creates a search tree and in each node a semidefinite program (SDP) is
solved, which arises from the relaxation of the integrality requirements of that
node. For more details on this approach see, e.g., [9,20].

Optimization problems (1) are quite general and, in particular, contain
mixed-integer linear programs (MIPs) as a special case, where one uses only
the diagonal entries of the matrices Ak, k ∈ [m]0. MISDPs also have numerous
applications, e.g., robust truss topology optimization with discrete bar diame-
ters [19] and cardinality least squares [8,24].

The challenges for solving MIPs are inherited for the solution of MISDPs.
This includes the presence of symmetries, which are defined as follows. Let

X = {y ∈ Rm : A(y) � 0, � ≤ y ≤ u, yi ∈ Z ∀ i ∈ I}

be the feasible region of (1). A symmetry of (1) is a bijection π : Rm → Rm such
that X = π(X) := {π(x) : x ∈ X} and b�π(x) = b�x for every x ∈ X. Thus, π
maps feasible solutions of (1) to feasible solutions with the same objective value.
The symmetries of (1) form the so-called symmetry group.

The presence of symmetries results in an unnecessarily large search tree, since
many symmetric solutions have to be treated although they do not contain new
information. This effect is well-known for MIPs, and many different techniques
for handling symmetries in MIPs have been developed, see, e.g., [12,18,23] for
an overview. Many of these methods are implemented in the solver SCIP [2,10].

As far as we know, symmetry handling for mixed-integer semidefinite pro-
gramming has not been considered so far. For SDPs without integer variables,
however, model reformulating techniques can be used to handle symmetries.
The main idea is to aggregate a set of symmetric variables to a common variable
that represents the average value of all symmetric variables, see, e.g., [1,6,11,13].
Moreover, symmetries in mixed-integer conic programming has been investigated
very recently in [27]; note that the SDP cone is not mentioned there.

The goal of this paper is to generalize the techniques for MIPs to MISDPs and
to investigate their computational impact. We first discuss how symmetries can
be computed. In Sect. 2 permutations of the variables and so-called formulation
symmetries of MISDPs are defined. In Sect. 3, we discuss how such symmetries
can be computed through graph automorphisms. We conclude the paper in Sect. 4
with a numerical study of the impact of handling symmetries in MISDPs.

2 Computing Symmetries

Note that the definition of a symmetry above is based on the feasible region X,
which is hard to handle in general (e.g., it is NP-hard to decide if X = ∅). In
practice, one therefore often only considers permutations of variables that leave
the description of X invariant. In the following, we generalize the corresponding
definition for MIPs, see, e.g., Margot [18], to MISDPs.

Handling Symmetries in Mixed-Integer Semidefinite Programs 71

Denote the (full) symmetric group, i.e., the set of all permutations of [m],
by Sm. Then a permutation π ∈ Sm acts on x ∈ Rm by permuting its compo-
nents, i.e., π(x)i = xπ−1(i) for all i ∈ [m]. Thus, π(x) := (xπ−1(1), . . . , xπ−1(m))�.
Let σ ∈ Sn act on a matrix A ∈ Rn×n as follows:

σ(A)ij = Aσ−1(i),σ−1(j) ∀i, j ∈ [n].

Definition 1. A permutation π ∈ Sm of variables is a formulation symmetry
of (1) if there exists a permutation σ ∈ Sn such that

(P1) π(I) = I, π(�) = �, π(u) = u, and π(b) = b (i.e., π leaves integer variables,
variable bounds, and the objective coefficients invariant),

(P2) σ(A0) = A0 and, for all i ∈ [m], σ(Ai) = Aπ−1(i).

Thus, the variables are permuted by π and the matrices by σ.

Lemma 1. Every formulation symmetry of (1) is a symmetry.

Proof. Let y ∈ Rm and let π ∈ Sm be a formulation symmetry with correspond-
ing matrix permutation σ ∈ Sn. Since π(b) = b and permutations are orthogonal
maps, we find b�π(y) = π−1(b)�y = b�y. Thus, π leaves the objective invariant.
It remains to show that π also maps feasible solutions onto feasible solutions.

Note that

σ(A)(π(y)) =
m∑

k=1

σ(Ak)π(y)k − σ(A0) =
m∑

k=1

Aπ−1(k)yπ−1(k) − A0

(�)
=

m∑

k′=1

Ak′
yk′ − A0 = A(y),

where (�) follows from π being a permutation of [m]. Consequently, since for-
mulation symmetry π maps integer variables onto integer variables and respects
the bounds of variables, y is feasible for (1) if and only if π(y) is feasible.
�

We note that we currently only treat symmetries in the above sense, but do
not reduce symmetries in the SDP-formulations as described in the introduction,
see, e.g., [1,6,13] for details; we leave this to future research.

3 Symmetry Detection

A common strategy for detecting formulation symmetries of MIPs is to construct
a suitably colored graph whose color-preserving automorphisms correspond to
formulation symmetries, see, e.g., [23,26]. We follow this line of research and
present a colored graph to detect formulation symmetries of MISDPs.

Recall that each formulation symmetry π admits a permutation σ ∈ Sn

with σ(Ai) = Aπ−1(i) for all i ∈ [m] as well as σ(A0) = A0. To model this
matrix invariant, we first introduce some notation. For each matrix Ak, k ∈ [m]0,

72 C. Hojny and M. E. Pfetsch

let Nk = {(i, j)k ∈ [n]×[n] : Ak
ij �= 0} be the set of its non-zero entries, where the

superscript at (i, j)k is used to distinguish non-zero entries of different matrices.
For p = (i, j)k ∈ Nk, let rk(p) = i be its row index and ck(p) = j be its column
index. We define the symmetry detection graph G = (V, E) as described next.

The graph needs to capture both the permutation of variables π ∈ Sm and
the permutation of the matrix entries σ ∈ Sn. For this reason, we consider the
node set V = V ∪ D ∪ ⋃m

k=0 Nk, where V := {y1, . . . , ym} and D := [n] represent
the variables and the “dimensions” of the matrices of the MISDP, respectively.
Permutation π will then correspond to a permutation of the variable nodes V
and σ will correspond to a permutation of the dimension nodes in D. The nodes
in N0, . . . , Nk will make sure that both π and σ are correctly linked, which is
achieved by adding appropriate edges.

The edge set E is partitioned into EV ∪ ER ∪ EC ∪ EP , where

EV = {{yk, p} : p ∈ Nk, k ∈ [m]} ,

ER =
{{p, rk(p)} : p ∈ Nk, k ∈ [m]0

}
,

EC =
{{p, ck(p)} : p ∈ Nk, k ∈ [m]0

}
,

EP =
{{(i, j)k, (j, i)k} : (i, j)k ∈ Nk, k ∈ [m]0

}
.

The edges in EP are not necessary to encode formulation symmetries, however,
we think that graph automorphism codes benefit from them since they allow to
more easily recognize dependencies between different nodes. With this graph,
permuting dimension nodes requires to also permute nodes corresponding to
non-zero entries, which in turn might trigger a permutation of variable nodes
and vice versa. To make sure that only nodes corresponding to the same problem
information are mapped onto each other, we color the nodes and edges.

The variables are partitioned into groups, each with the same objective coef-
ficient, lower & upper bound, and variable type (continuous or integer). Each of
the groups is assigned a unique color and all variables within this group receive
this color. Similarly, we define a unique color for the sets D and

⋃m
k=0 Nk, and

assign all nodes within such a set the corresponding color. That is, all nodes
modeling a dimension of a matrix receive the same color and all nodes corre-
sponding to matrix entries receive the same color. Finally, to also distinguish
the entries of the matrices A0, . . . , Am, we color the edges in ER according to
their matrix coefficient, i.e., edge {p, rk(p)} gets color Ak

p. Similarly, we color the
edges in EC . To distinguish “row colors” from “column colors”, we refer to the
color of {p, ck(p)} as Āk

p. All other edges remain uncolored.
A bijective map ϕ : V → V is an automorphism of G if it preserves adjacency,

i.e., {u, v} ∈ E if and only if {ϕ(u), ϕ(v)} ∈ E . We say that ϕ is color-preserving
if, for every v ∈ V, nodes ϕ(v) and v have the same color and, for every {u, v} ∈ E ,
edges {u, v} and {ϕ(u), ϕ(v)} have the same color.

Example 1. Consider the MISDP

inf
{

y1 + y2 :
(

0 1 0
1 0 0
0 0 0

)
y1 +

(
0 0 0
0 0 1
0 1 0

)
y2 � 0, 0 ≤ y1, y2 ≤ 1, y1, y2 ∈ Z

}
.

Handling Symmetries in Mixed-Integer Semidefinite Programs 73

1 2 3

(1, 2)1

(2, 1)1
(2, 3)2

(3, 2)2

y1 y2

Fig. 1. Illustration of symmetry detection graph.

The corresponding symmetry detection graph is given in Fig. 1, where uncol-
ored edges are drawn in black and (i, j)k denotes entry (i, j) of Ak. The only
non-trivial color-preserving automorphism of the graph exchanges y1 ↔ y2,
(1, 2)1 ↔ (3, 2)2, (2, 1)1 ↔ (2, 3)2, 1 ↔ 3, and keeps node 2 fixed. This leads
to the variable permutation π, which exchanges y1 and y2, and the matrix per-
mutation σ, which exchanges 1 and 3.

We show that G captures all information about formulation symmetries. The
restriction of ϕ to a set B ⊆ V is denoted ϕ|B .

Proposition 1. Let G = (V, E) be constructed as described above.

– For each color-preserving automorphism ϕ of G, ϕ|V is a formulation sym-
metry of (1).

– For every formulation symmetry π of (1), there is a color-preserving auto-
morphism ϕ such that ϕ|V = π.

Proof. For the first part, let ϕ be a color-preserving automorphism of G.
Define π := ϕ|V and σ := ϕ|D. We claim that π is a formulation symmetry
with corresponding matrix permutation σ. Since ϕ is a color-preserving auto-
morphism, the image of π is V and the image of σ is D. Moreover, by the choice
of colors, π can only map variables of the same type (integer/continuous, objec-
tive coefficient, upper and lower bounds) onto each other. Thus, π satisfies (P1).
Moreover, for all k ∈ [m] and (i, j)k ∈ Nk, we have ϕ((i, j)k) = (σ(i), σ(j))π(k)

because ϕ preserves adjacency:

– If one element of Nk is mapped to Nk′ , all elements from Nk need to be
mapped to Nk′ by the edges in EV ; in particular, k′ = π(k).

– If (i, j)k is mapped to (i′, j′)k′
, the edges in ER (resp. EC) ensure i′ = σ(i)

(resp. j′ = σ(j)); in particular, Ak
i,j = Ak′

i′,j′ as ϕ preserves edge colors.

Since ϕ((i, j)k) = (σ(i), σ(j)π(k)) describes the action of σ on matrix Ak, the
second part of (P2) holds. The first part σ(A0) = A0 follows by the same argu-
ment, because ϕ cannot map (i, j)0 to a node (i′, j′)k for k �= 0 since the nodes
in N0 are the only matrix-entry nodes not connected to a variable node.

74 C. Hojny and M. E. Pfetsch

The second part follows from the above discussion by setting

ϕ(v) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π(v), if v ∈ V,

σ(v), if v ∈ D,

(σ(i), σ(j))π(k), if v = (i, j)k ∈ Nk for some k ∈ [m],
(σ(i), σ(j))0, if v = (i, j)0 ∈ N0 for some k ∈ [m],

for each v ∈ V.
�
Remark 1. Graph automorphism codes like bliss [15] or nauty [21] cannot han-
dle edge colors. Modifying G by replacing colored edges {u, v} by a node with
the same color that is connected to u and v allows to use these codes.

4 Computational Results

We implemented the symmetry detection method described in Sect. 3 in SCIP-
SDP 4.1.0. SCIP-SDP is a framework for solving MISDPs and is available
at https://wwwopt.mathematik.tu-darmstadt.de/scipsdp/. We compiled SCIP-
SDP with a developer version of SCIP 8.0.2 (githash 878b1c5) and used Mosek
9.2.40 for solving SDP-relaxations. All tests were performed on a Linux cluster
with 3.5 GHz Intel Xeon E5-1620 Quad-Core CPUs, having 32 GB main memory
and 10 MB cache. All computations were run single-threaded and with a time
limit of one hour. Detailed results per instance can be found at [25].

To handle symmetries, we use the variant of the state-of-the-art method
orbital fixing [17,22] as described in [23] and as implemented in SCIP. The idea
of orbital fixing is to derive symmetry-based fixings of binary variables that are
derived from the branching decisions and already fixed variables.

Table 1. Symmetries in the 21 symmetric instances from [20], where Sk refers to the
full symmetric group on k elements and Dk is the dihedral group.

instance symmetry group

0+-115305C MISDPld000010 S2
0+-115305C MISDPrd000010 S2
band60605D MISDPld000010 S2 × S2 × S2 × S2 × S2 × S2 × S10 × S3 × S4
band60605D MISDPrd000010 S2 × S2 × S2 × S2 × S2 × S2 × S10 × S3 × S4
band70704A MISDPld000010 S2 × S2 × S2 × S3 × S3
band70704A MISDPrd000010 S2 × S2 × S2 × S3 × S3
clique 60 k10 6 6, clique 60 k15 4 4,

clique 60 k20 3 3, clique 60 k4 15 15,

clique 60 k5 12 12, clique 60 k6 10 10,

clique 60 k7 8 9, clique 60 k8 7 8, clique 60 k9 6 7,

clique 70 k3 23 24

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

S2

diw 34 S2 × S2 × S2 × S2 × D4 × S4 × S4
diw 37 S2 × S4 × S3 × S4
diw 38 S2 × S2 × S2 × S3
diw 43 S3
diw 44 S3

https://wwwopt.mathematik.tu-darmstadt.de/scipsdp/

Handling Symmetries in Mixed-Integer Semidefinite Programs 75

Table 2. Results for MISDP instances from [20].

variant all (184) all optimal (168) only symmetric (21)

time (s) symtime (s) # gens time (s) #nodes time (s)

no symmetry 130.6 – – 95.0 778.3 45.07

orbital fixing 125.3 0.44 99 90.8 760.6 29.84

In the first experiment, we use the same 185 instances as in [20] from a variety
of applications; the instances can be downloaded from [25]. Table 1 shows the
detected symmetries of all 21 instances that contain symmetry. We can see that
most instances admit symmetries of the full symmetric group Sk, i.e., k variables
can be permuted arbitrarily. As |Sk| = k!, the symmetry groups become rather
large, which indicates that symmetry handling might be beneficial for solving
these instances. Note that the action of the symmetries might be nontrivial,
i.e., several variables might be moved simultaneously like permuting the rows or
columns of a matrix.

Table 2 shows a comparison of the default without symmetry handling and
the new version with symmetry handling. Here, we excluded one numerically dif-
ficult instance for which both variants computed a wrong solution. The columns
represent the shifted geometric mean of the CPU time in seconds (with a shift
of 1s), the average time for symmetry handling (including detection), and the
number of generators. The next two columns display the shifted geometric mean
of the CPU time and number of nodes (with a shift of 100) for the 168 instances
that could be solved by both variants. The last column shows the CPU time,
but only for those instances for which at least one generator has been found.

One can see a 4% speed-up in CPU time for all instances and about 34% for
the 21 instances that contain symmetry. Note that symmetry handling does not
help to solve more instances (168), but to speed up computation. The time for
handling and computing symmetry over all instances is quite small. Similarly,
the number 99 of found generators is quite small. This fits well with Table 1 in
which the symmetry groups admit a small set of generators.

In a second experiment, we consider the problem of finding a maximum stable
set in an unweighted undirected graph G = (V,E). Based on [3,16], we derive
the MISDP formulation

sup
∑

v∈V

xv

s.t.
(

1 x�

x X

)
� 0,

Xuv ≤ xu, Xuv ≤ xv, xu + xv ≤ 1 + Xuv ∀ {u, v} ∈
(

V

2

)
,

Xuv = 0, ∀ {u, v} ∈ E,

x ∈ {0, 1}V , X ∈ {0, 1}V ×V .

(2)

76 C. Hojny and M. E. Pfetsch

Table 3. Results for stable set MISDP instances on Color02 graphs.

variant all (54) all optimal (47) only symmetric (51)

time (s) symtime (s) # gens time (s) #nodes time (s)

no symmetry 89.2 – – 51.1 11.0 85.35

orbital fixing 81.4 0.32 1028 46.4 7.2 77.54

Table 4. Results for the stable set MISDP instances on flower snark graphs.

variant all (20) all optimal (14)

time (s) symtime (s) # gens time (s) #nodes

no symmetry 310.8 – – 108.3 10.2

orbital fixing 211.7 0.23 80 67.3 7.2

Model (2) can be easily transformed into a MISDP of type (1). It indeed models
the stable set problem, where xv = 1 if and only if v is contained in a stable set.
The linear constraints model that Xuv = xu · xv and that not both endpoints
of an edge can be contained in a stable set. The SDP constraint arises from the
observation that xx� � 0 for every incidence vector x of a stable set.

We conducted experiments for two sets of graph instances. The Color02 test
sets consists of the 55 smallest graphs from the Color02 symposium [4]; the
Snark test sets consists of so-called flower snark graphs [7,14] with 4n nodes,
where n ∈ {11, . . . , 49} ∩ (1 + 2Z) nodes. The latter instances are of particular
interest, because they admit a large dihedral symmetry group.

Table 3 provides results for the Color02 graphs. Here we excluded one
instance for which the computations produced a wrong result. There is a speed-
up of about 9% each for all instances, the ones the have been solved by all
variants, and the ones in which a least one symmetry has been found. Note that
the symmetry of the formulation only arises from the symmetry of the graph.

Table 4 shows the result for the flower snark graphs, which all contain sym-
metries. With symmetry handling one solves 17 instances, compared to 14 for
the default. Moreover, there is a speed-up of about 32% and 38% on all instances
and the ones solved to optimality by both variants, respectively.

Conclusion. Our numerical experiments indicate that symmetry handling is an
important tool for reducing the running time of solving MISDPs. Our graph
automorphism based approach allows to quickly compute symmetries such that
the additional time needed to detect symmetries is negligible. Then, using state-
of-the-art methods such as orbital fixing, already allows to substantially improve
the solution time on a variety of test sets. An interesting question is whether
new symmetry handling methods that are tailored for MISDPs allow to improve
the running time even further. For instance, one could try to combine handling
permutation symmetries and using model reformulations as mentioned in the
introduction. We leave this for future research.

Handling Symmetries in Mixed-Integer Semidefinite Programs 77

References

1. Bai, Y., de Klerk, E., Pasechnik, D., Sotirov, R.: Exploiting group symmetry in
truss topology optimization. Optim. Eng. 10(3), 331–349 (2009)

2. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. Technical report, Opti-
mization Online (2021). http://www.optimization-online.org/DB HTML/2021/
12/8728.html

3. Burer, S., Monteiro, R.D., Zhang, Y.: Maximum stable set formulations and
heuristics based on continuous optimization. Math. Program. 94, 137–166 (2022).
https://doi.org/10.1007/s10107-002-0356-4

4. Color02 - computational symposium: graph coloring and its generalizations (2002).
http://mat.gsia.cmu.edu/COLOR02

5. Dakin, R.J.: A tree-search algorithm for mixed integer programming problems.
Comput. J. 8(3), 250–255 (1965). https://doi.org/10.1093/comjnl/8.3.250

6. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming
relaxations of the quadratic assignment problem. Math. Program. 122(2), 225–246
(2010)

7. Fiorini, S., Wilson, R.J.: Edge-colourings of graphs. No. 16 in Research Notes in
Mathematics, Pitman Publishing Limited (1977)

8. Gally, T.: Computational Mixed-Integer Semidefinite Programming. Dissertation,
TU Darmstadt (2019)

9. Gally, T., Pfetsch, M.E., Ulbrich, S.: A framework for solving mixed-integer
semidefinite programs. Optim. Methods Softw. 33(3), 594–632 (2017). https://
doi.org/10.1080/10556788.2017.1322081

10. Gamrath, G., et al.: The SCIP Optimization Suite 7.0. Technical report, Opti-
mization Online (2020). http://www.optimization-online.org/DB HTML/2020/
03/7705.html

11. Gatermann, K., Parrilo, P.: Symmetry groups, semidefinite programs, and sums of
squares. J. Pure Appl. Algebra 192(1–3), 95–128 (2004)

12. Hojny, C., Pfetsch, M.E.: Polytopes associated with symmetry handling. Math.
Program. 175(1), 197–240 (2019). https://doi.org/10.1007/s10107-018-1239-7

13. Hu, H., Sotirov, R., Wolkowicz, H.: Facial reduction for symmetry reduced semidef-
inite and doubly nonnegative programs. Math. Program. (2022, to appear)

14. Isaacs, R.: Infinite families of nontrivial trivalent graphs which are not tait col-
orable. Am. Math. Mon. 82(3), 221–239 (1975). https://doi.org/10.1080/00029890.
1975.11993805

15. Junttila, T., Kaski, P.: Bliss: a tool for computing automorphism groups and canon-
ical labelings of graphs. https://users.aalto.fi/tjunttil/bliss/

16. Lovász, L.: On the Shannon capacity of a graph. IEEE Trans. Inf. Theory 25, 1–7
(1979)

17. Margot, F.: Exploiting orbits in symmetric ILP. Math. Program. 98(1–3), 3–21
(2003). https://doi.org/10.1007/s10107-003-0394-6

18. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.)
50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-540-68279-0 17

19. Mars, S.: Mixed-Integer Semidefinite Programming with an Application to Truss
Topology Design. Dissertation, FAU Erlangen-Nürnberg (2013)

20. Matter, F., Pfetsch, M.E.: Presolving for mixed-integer semidefinite optimization.
INFORMS J. Optim. (2022, to appear). https://doi.org/10.1287/ijoo.2022.0079

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.1007/s10107-002-0356-4
http://mat.gsia.cmu.edu/COLOR02
https://doi.org/10.1093/comjnl/8.3.250
https://doi.org/10.1080/10556788.2017.1322081
https://doi.org/10.1080/10556788.2017.1322081
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://doi.org/10.1007/s10107-018-1239-7
https://doi.org/10.1080/00029890.1975.11993805
https://doi.org/10.1080/00029890.1975.11993805
https://users.aalto.fi/tjunttil/bliss/
https://doi.org/10.1007/s10107-003-0394-6
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1287/ijoo.2022.0079

78 C. Hojny and M. E. Pfetsch

21. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,
94–112 (2014). https://doi.org/10.1016/j.jsc.2013.09.003

22. Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Pro-
gram. 126(1), 147–178 (2011). https://doi.org/10.1007/s10107-009-0273-x

23. Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling meth-
ods for mixed integer programs. Math. Program. Comput. 11(1), 37–93 (2018).
https://doi.org/10.1007/s12532-018-0140-y

24. Pilanci, M., Wainwright, M.J., El Ghaoui, L.: Sparse learning via Boolean relax-
ations. Math. Program. 151(1), 63–87 (2015). https://doi.org/10.1007/s10107-
015-0894-1

25. Project website: instance data, supplementary material. https://www2.
mathematik.tu-darmstadt.de/pfetsch/MISDP-symmetries.html

26. Salvagnin, D.: A dominance procedure for integer programming. Master’s thesis,
University of Padova, Padova, Italy (2005)

27. Wiese, S.: Symmetry detection in mixed-integer conic programming. Mosek
Whitepaper (2022). https://docs.mosek.com/whitepapers/symmetry.pdf

https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1007/s10107-009-0273-x
https://doi.org/10.1007/s12532-018-0140-y
https://doi.org/10.1007/s10107-015-0894-1
https://doi.org/10.1007/s10107-015-0894-1
https://www2.mathematik.tu-darmstadt.de/pfetsch/MISDP-symmetries.html
https://www2.mathematik.tu-darmstadt.de/pfetsch/MISDP-symmetries.html
https://docs.mosek.com/whitepapers/symmetry.pdf

A Mixed-Integer Linear Programming
Reduction of Disjoint Bilinear Programs

via Symbolic Variable Elimination

Jihwan Jeong1,3(B), Scott Sanner1,3, and Akshat Kumar2

1 University of Toronto, Toronto, Canada
jihwan.jeong@mail.utoronto.ca, ssanner@mie.utoronto.ca

2 Singapore Management University, Singapore, Singapore
akshatkumar@smu.edu.sg

3 Vector Institute, Toronto, Canada

Abstract. A disjointly constrained bilinear program (DBLP) has various
practical and industrial applications, e.g., in game theory, facility location,
supply chain management, and multi-agent planning problems. Although
earlier work has noted the equivalence of DBLP and mixed-integer linear
programming (MILP) from an abstract theoretical perspective, a practi-
cal and exact closed-form reduction of a DBLP to a MILP has remained
elusive. Such explicit reduction would allow us to leverage modern MILP
solvers and techniques along with their solution optimality and anytime
approximation guarantees. To this end, we provide the first constructive
closed-form MILP reduction of a DBLP by extending the technique of
symbolic variable elimination (SVE) to constrained optimization prob-
lems with bilinear forms. We apply our MILP reduction method to dif-
ficult DBLPs including XORs of linear constraints and show that we sig-
nificantly outperform Gurobi. We also evaluate our method on a variety
of synthetic instances to analyze the effects of DBLP problem size and
sparsity w.r.t. MILP compilation size and solution efficiency.

Keywords: Bilinear programming · Symbolic variable elimination

1 Introduction

A disjointly constrained bilinear program (DBLP) is formally defined as follows

min
x,y

f(x,y) = c�x + x�Qy + d�y (1)

s.t. a�
i x ≤ ai ∀i ∈ I, b�

j y ≤ bj ∀j ∈ J

xk ≥ 0 ∀k ∈ K; yl ≥ 0 ∀l ∈ L

xm ∈ {0, 1} ∀m ∈ M ; yn ∈ {0, 1} ∀n ∈ N,

where I and J are the index sets of the linear constraints. K, L and M , N are
those of continuous and binary variables, respectively. Let nx = |K| + |M | and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 79–95, 2023.
https://doi.org/10.1007/978-3-031-33271-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_6

80 J. Jeong et al.

x1

0

1

2

x 2
0.0

0.5

1.0

y1

0.0

0.5

1.0

y 2

−1.0

−0.5

0.0

Fig. 1. The objective function of a DBLP instance constructed according to [15], eval-
uated on a range of values of x (left) and y (right). The piecewise linear structure hints
at a MILP reduction. Details are provided in Sect. 5.

ny = |L| + |N |, then we have Q ∈ R
nx×ny , c,ai ∈ R

nx , and d,bj ∈ R
ny . The

disjointness property arises from the separation of linear constraints on x and
y. We define X and Y to be the feasible sets of x and y variables.

Historically, DBLPs have been used to formulate a variety of applications
including uses in game theory, facility location, nonlinear multi-commodity net-
work flows, dynamic assignment and production, risk management, and supply
chain management [8,9,11,14]. In addition, DBLPs have found applications in
multi-agent planning problems [10], particularly when the transitions of different
agents are assumed to be independent, which leads to disjoint constraints.

While Gurobi [4] can directly solve DBLPs to optimality since version 9.0
(based on spatial branching and a locally valid McCormick-based LP relaxation),
it can only solve small DBLP instances when they use complex logical constraints
(e.g., XORs of linear constraints). Given that logical constraints can be naturally
encoded in a MILP, we conjecture (and later empirically show) that Gurobi can
better solve such DBLPs when transformed to a MILP formulation.

Earlier work has shown that a DBLP is a concave minimization problem with
a piecewise linear objective and linear constraints over one set of variables, say,
x [5,6]. To illustrate, Fig. 1 shows a DBLP objective from Sect. 5 evaluated on
a range of x and y values, where we clearly observe piecewise linear structure.
Formally, consider minx,y f(x,y) = minx g(x) with

g(x) := min
y∈Y

f(x,y) = min
y∈V (Conv(Y))

f(x,y) = c�x + min
y∈V (Conv(Y))

{
(d + Q�x)�y

}
,

where V (Conv(Y)) is the set of vertices of the convex hull of Y. Theoretically,
enumerating all vertices makes g(x) piecewise linear and hence MILP-reducible,
but a more compact and constructive MILP reduction has remained elusive.

In this work, we extend symbolic variable elimination (SVE) [12] to bilinear
expressions and derive the first DBLP to MILP reduction that does not require
enumeration of all vertices V (Conv(Y)). In addition to an investigation of the

A MILP Reduction of DBLP via Symbolic Variable Elimination 81

performance of our DBLP to MILP reduction on synthetic instances with varying
size and sparsity, we demonstrate that the Gurobi MILP solver applied to our
DBLP reduction can outperform Gurobi’s own bilinear solver for DBLPs.

2 Reducing a DBLP to a MILP: A Worked Example

To foreshadow the general methodology that we explore in this paper, we first
demonstrate how we can “deflate” a DBLP into a conditional DBLP by elimi-
nating one variable from y at a time until the final result is a conditional LP, or
a MILP. We proceed to show such deflation steps in close detail in Example 1.

Example 1. Consider the following simple DBLP (Fig. 2a):

min
x1,y1,y2

− 2x1 + x1(y1 + y2) − y1 − y2 (2)

s.t. − y1 + 2y2 ≤ 2, y1 ≤ 2, y2 ≥ 1, 0 ≤ x1 ≤ 2

Our goal is to symbolically minimize out y1 and y2 so that we can obtain a
reduced form over just x1. To do this, we can view the minx1,y1,y2 from the
perspective of symbolic variable elimination [12] where we can “min-out” y1
first. Observe that when y1 is minimized, x1 and y2 are considered free variables,
allowing us to treat the bilinear objective as linear in y1. The minimum, therefore,
must occur at a boundary value of y1. We can easily obtain symbolic bounds on
y1 if we isolate it in the linear constraints. In this example, −y1 + 2y2 ≤ 2 and
y1 ≤ 2 are equivalent to ylb

1 ≤ y1 ≤ yub
1 with yub

1 = 2 and ylb
1 = 2y2 − 2.

Fig. 2. Compact XADD [13] decision diagram representation of (2) in its (a) original
form and after (b) y1 and (c) y2 are eliminated. Given values for x1, y1, and y2, the
XADD can be evaluated top-to-bottom. Oval constraints are decisions and the solid
(dashed) edge is followed if the constraint evaluates to true (false). Leaf nodes provide
the objective evaluation. In (c), once all y variables are symbolically eliminated, all
constraints and leaves are linear leading to a conditional LP (=MILP).

82 J. Jeong et al.

We now plug the two bounds on y1 into the objective and compare resulting
values. To that end, let fub(x1, y2) and f lb(x1, y2) be the objective values when
the upper and lower bound of y1 is substituted in, respectively. That is,

fub(x1, y2) = −2x1 + x1(2 + y2) − 2 − y2 = x1y2 − y2 − 2

f lb(x1, y2) = −2x1 + x1[(2y2 − 2) + y2] − (2y2 − 2) − y2 = −4x1 + 3x1y2 − 3y2 + 2

In order to determine which bound on y1 minimizes the objective, we can check
if the difference fub(x1, y2) − f lb(x1, y2) is positive or negative:

fub(x1, y2) − f lb(x1, y2) = (yub
1 − ylb

1)(x1 − 1) = (4 − 2y2)(x1 − 1) (3)

Crucially in (3), the terms in the objective that do not have y1 always cancel
out, while the ones multiplied to y1 remain. Hence, when we substitute in the
boundary values of y1 into the objective, the difference always has two factors:
one linear factor of x and one linear factor of y (see the discussion in Sect. 4). If
(3) is positive (or negative), f lb(x1, y2) is smaller (or greater) than fub(x1, y2).
Fortunately since yub

1 − ylb
1 should be nonnegative, we need only check if linear

factor (x1 − 1) is negative (positive) to determine if the upper (lower) bound
substitution is minimal. Then we can write a reduced conditional DBLP form
(Fig. 2b) with y1 eliminated, linear conditions on x, and a bilinear objective:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Case1) x1 − 1 ≤ 0 : min
x1,y2

fub(x1, y2) = x1y2 − y2 − 2

s.t. 0 ≤ x1 ≤ 1, 1 ≤ y2 ≤ 2

(Case2) x1 − 1 > 0 : min
x1,y2

f lb(x1, y2) = −4x1 + 3x1y2 − 3y2 + 2

s.t. 1 < x1 ≤ 2, 1 ≤ y2 ≤ 2

(4)

As a technical note, we need to symbolically guarantee yub
1 ≥ ylb

1 , which simplifies
to y2 ≤ 2 and is shown added to the above constraints.

Now that we’ve eliminated y1, we can proceed to eliminate y2. For Case1, we
can minimize out y2 in the same way as we’ve done for y1. Firstly, the bounds are
ylb
2 = 1 and yub

2 = 2. By substituting these boundary values to fub(x1, y2) and
comparing the results, we get an LP min

0≤x1≤1
2x1 − 4. Similarly, Case2 gives us

another LP, min
1<x1≤2

− x1 − 1. Figure 2c exemplifies the compact representation

of this conditional LP. We can replace the case conditions with binary variables,
reducing the overall problem of (2) to an optimization problem with a piecewise
linear objective and linear constraints, which can be expressed as a MILP.

Example 1 illustrates that we can obtain a concrete MILP model by sym-
bolically minimizing out one set of variables from a DBLP (e.g., y) yielding a
reduced MILP optimization problem over x, which can be easily implemented
and efficiently solved by off-the-shelf MILP solvers such as Gurobi. Substituting
the optimal x in the original DBLP reduces to a MILP over y that is easily
solved to obtain the corresponding y. To move beyond this example and provide
a fully automated reduction of an arbitrary DBLP to a MILP, we will need a
general symbolic procedure to automate this reasoning, which we provide next.

A MILP Reduction of DBLP via Symbolic Variable Elimination 83

3 Symbolic Calculus with Case Representation

Generalizing Example 1, we demonstrate the generic DBLP to MILP conver-
sion using symbolic case representation and calculus [3,13] (Sect. 3) with a new
extension for SVE [12] in continuous minimization operations with bilinear forms
(Sect. 4). Finally, we present empirical analysis in Sect. 5.

3.1 Case Representation

We assume that all symbolic functions can be represented in case form [3,13]:

f =

⎧
⎪⎪⎨

⎪⎪⎩

φ1 : f1
...

...

φk : fk

(5)

Here, φi (a partition) are logical formulae, which can include arbitrary logical
(∧,∨,¬) combinations of linear inequalities. We assume that the set of conditions
{φ1, . . . , φk} disjointly and exhaustively partition the domain of the variables
such that f is well-defined. We call φi “disjointly linear” if it consists only one
of x or y. We restrict fi (a function value) to be linear or bilinear in x and y.
Further, we restrict φi to be disjointly linear if f has bilinear fi. These restrictions
ensure that we can represent an arbitrary DBLP in case form in Sect. 4.

Henceforth, we refer to functions with linear φi and fi as linear piecewise
linear (LPWL). Functions with disjointly linear φi and bilinear fi are dubbed as
disjointly linear piecewise bilinear (LPWB). Later, we discuss that in order for
SVE of a DBLP to remain closed-form, it is critical that the procedural reduction
of the original case function always produces an LPWB or LPWL function.

We remark that the DBLP in Example 1 can be easily rewritten in case form

f =

{
[−y1 + 2y2 ≤ 2] ∧ [y1 ≤ 2] ∧ [y2 ≥ 1] ∧ [0 ≤ x1 ≤ 2] : −2x1+x1(y1+y2)−y1−y2

otherwise : ∞
where any finite value for f satisfying the first case (the feasible set) will always
be chosen over ∞ (infeasibility), since we want minx1,y1,y2 f .

3.2 Basic Case Operators

One of the most simple case operations on f in (5) is a unary operation such
as scalar multiplication c · f (c ∈ R) or negation −f . This operation is simply
applied to the function value fi for every partition φi. We can also define binary
operations between two case functions by taking the cross-product of the logical
partitions from the two case statements and performing the operation on the
resulting paired partitions.1 For example, the “cross-sum” ⊕ of two cases is:

{
φ1 : f1

φ2 : f2
⊕

{
ψ1 : g1

ψ2 : g2
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ1 ∧ ψ1 : f1 + g1

φ1 ∧ ψ2 : f1 + g2

φ2 ∧ ψ1 : f2 + g1

φ2 ∧ ψ2 : f2 + g2

1 Only the case operations that we actually use for SVE of a DBLP are introduced.

84 J. Jeong et al.

Likewise, we perform
 by subtracting function values per each pair of partitions.
Observe that LPWL and LPWB functions are closed under ⊕ and
.

Next, we define symbolic case min(max) between two case functions as:

casemin

({
φ1 : f1

φ2 : f2
,

{
ψ1 : g1

ψ2 : g2

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ1 ∧ ψ1 ∧ f1 > g1 : g1

φ1 ∧ ψ1 ∧ f1 ≤ g1 : f1

φ1 ∧ ψ2 ∧ f1 > g2 : g2

φ1 ∧ ψ2 ∧ f1 ≤ g2 : f1
...

...

(6)

wherein the resulting partitions also include the comparison of associated func-
tion values fi and gj to determine min(fi, gj) (highlighted in bold). casemin of
more than two case functions is straightforward since the operator is associa-
tive. Crucially, LPWL functions are closed under casemin (max), but LPWB
functions are not because fi ≤ gj can be bilinear or jointly linear.

Another important symbolic operation is symbolic substitution. This oper-
ation takes a set σ of variables and their substitutions, e.g., σ = {y/(x1 +
x2), z/(x1 − x2)} where the LHS of ‘/’ represents the substitution variable and
the RHS of ‘/’ is the expression being substituted in. Then, we write the substi-
tution operation on fi with σ as fiσ. Then the operation follows:

f =

⎧
⎪⎪⎨

⎪⎪⎩

φ1 : f1
...

...

φk : fk

, fσ =

⎧
⎪⎪⎨

⎪⎪⎩

φ1σ : f1σ
...

...

φkσ : fkσ

(7)

In this paper, we will only substitute linear expressions of {yj}j �=i variables into
yi, which clearly preserves the LPWL and LPWB properties.

In the next section, we show that the procedural reduction of a DBLP to
a MILP only involves the application of the case operations that preserve an
LPWB form, which eventually reduces to an LPWL form (equivalent to a MILP).

4 Symbolic Reduction of a DBLP to a MILP

Having introduced the case form and its basic operations in Sect. 3, we first note
that the DBLP in (1) can be written in case form. That is, (1) is equivalent to
minx,y fDBLP (x,y) where

fDBLP (x,y) =

{
φ(x) ∧ ψ(y) : c�x + x�Qy + d�y

¬(φ(x) ∧ ψ(y)) : ∞ (8)

with φ(x) := [x ∈ X], ψ(y) := [y ∈ Y]. Note how the feasible set of the DBLP
is encoded as a partition and the objective as its function value. Also, observe
that φ(x) ∧ ψ(y) is disjointly linear, so fDBLP (x,y) is an LPWB function.

We have seen in Example 1 that we get a MILP out of a DBLP via symbolic
minimization of y variables. In general, if the result of SVE of y from an arbi-
trary LPWB function can be shown to be equivalent to an LPWL function, we

A MILP Reduction of DBLP via Symbolic Variable Elimination 85

effectively reduce a DBLP to a MILP. However, existing symbolic min operators
[17] fall short of dealing with LPWB functions, since none of them can handle
bilinear function values. In the sequel, we show that we can always factorize the
bilinear expressions appearing during the SVE of y variables into one factor in
x and the other in y. This in turn makes LPWB functions closed under the SVE
operations. With this, we prove that a DBLP can be reduced to a MILP.

4.1 Symbolic Minimization of Linear Piecewise Linear Functions

To see why existing approaches fail to symbolically optimize variables in closed-
form when it comes to LPWB functions, we first consider the symbolic min
operator for LPWL functions [17].2 This operator differs from casemin in that
the former optimizes a symbolic function w.r.t. decision variables, whereas the
latter compares multiple symbolic functions as in (6). Example 2 illustrates the
application of the symbolic min operator to an LPWL function.

Example 2. Let f(x1, x2) be a symbolic function of x1, x2 ∈ [0, 10]2 as below:

f(x1, x2) =

{
x1 + x2 ≥ 1 : 3x1 + 2x2

x1 + x2 < 1 : −3x1 + x2

(9)

As in Example 1, we can view the minx1,x2 from the perspective of symbolic
variable elimination, and we write it as minx2 minx1 f(x1, x2). When x1 is being
minimized out, we can treat x2 as a symbolic free variable. Then,

min
x2

min
x1

f(x1, x2) = min
x2

[
min
x1

{
φ1(x1, x2) : f1(x1, x2)

φ2(x1, x2) : f2(x1, x2)

]

= min
x2

[
min
x1

casemin
i={1,2}

{
φi(x1, x2) : fi(x1, x2)

¬φi(x1, x2) : ∞

]
(10)

= min
x2

[
casemin
i={1,2}

min
x1

{
φi(x1, x2) : fi(x1, x2)

¬φi(x1, x2) : ∞

]
(11)

where φi and fi are defined as per (9). (10) follows since partitions are disjoint.
The commutative property gives (11). As a result, minx1 f(x1, x2) is equivalent
to minimizing out x1 from “{φi : fi” for all i, followed by casemin of the results.

Now in order to compute minx1

{
φi(x1, x2) : fi(x1, x2), we make three impor-

tant observations: (a) a partition φi and domain bounds on x1 prescribe the lower
and upper bounds over the variable, xlb,i

1 and xub,i
1 respectively; (b) since fi is

linear in x1, either xlb,i
1 or xub,i

1 will evaluate to the minimum (ties broken arbi-
trarily); and (c) if there is a subset of conditionals in φi that are independent of
x1, denoted as φ⊥⊥x1

i , it should still be satisfied after the min operation.

2 This operator has been introduced firstly in [17] and later in more detail in [7].
However, we include the result here for completeness and to better illustrate our
extension to handling bilinear function values in Sect. 4.2.

86 J. Jeong et al.

For example, from φ1(x1, x2) = [x1 + x2 ≥ 1],

xlb,1
1 = casemax(1 − x2, 0) =

{
x2 ≥ 1 : 0

x2 < 1 : 1 − x2

(12)

In general, a domain bound (e.g., x1 ≥ 0) and each conditional (e.g., [x1 + x2 ≥
1]) of a partition can contribute at most one lower bound candidate, and xlb,i

1

is the casemax among the candidates. Similarly, we get xub,i
1 as the casemin

among candidates, which in this case is simply xub,1
1 = 10. From these bounds,

we additionally impose a set of constraints such that xlb,i
1 ≤ xub,i

1 is ensured
at all times, which are added to φ⊥⊥x1

i . In this example, these are [0 ≤ 10] and
[1 − x2 ≤ 10], which trivially hold true, and so we set φ⊥⊥x1

1 = true.
With these bounds, it remains to determine the minimum value by substi-

tuting xlb,i
1 and xub,i

1 into x1 in f1 and performing casemin. For i = 1, we have:3

min
x1

{
φ1(x1, x2) : f1(x1, x2)

¬φ1(x1, x2) : ∞ = casemin(f1σ
ub
1 , f1σ

lb
1) ⊕

{
φ⊥⊥x1
1 : 0

¬φ⊥⊥x1
1 : ∞

= casemin

(
30 + 2x2,

{
x2 ≥ 1 : 2x2

x2 < 1 : 3 − x2

)

=

{
x2 ≥ 1 : 2x2

x2 < 1 : 3 − x2

(13)

where σlb
1 = {x1/xlb,1

1 } and σub
1 = {x1/xub,1

1 }.
If we follow the same procedure for φ2(x1, x2) and f2(x1, x2), we get below:

min
x1

{
φ2(x1, x2) : f2(x1, x2)

¬φ2(x1, x2) : ∞ =

{
x2 ≥ 1 : x2

x2 < 1 : −3 + 4x2

(14)

Finally, we take casemin of (13) and (14), which becomes

g(x2) := min
x1

f(x1, x2) =

{
x2 ≥ 1 : x2

x2 < 1 : −3 + 4x2

(15)

Note that x1 has been eliminated from f(x1, x2) in (15). The same procedure
can be repeated for the elimination of x2.

4.2 Symbolic Minimization of Disjointly Linear Piecewise Bilinear
Functions

Example 2 highlights the key operations entailed in symbolic minimization of an
LPWL function. However for DBLPs, the step in (13) would compare bilinear

3 Note the way we enforce φ⊥⊥x1
1 by the cross-sum operation.

A MILP Reduction of DBLP via Symbolic Variable Elimination 87

expressions, leading to a case function with bilinear or jointly linear partitions,
preventing naively applying the same symbolic manipulations. Despite these
bilinear expressions, Proposition 1 affirms that we can still perform SVE of one
set of variables from the DBLP, which eventually gives rise to an LPWL function.
This in turn can be modeled as a MILP by introducing binary indicator variables.

Firstly, we formally define an LPWB function f(x,y) for x ∈ R
nx ,y ∈ R

ny :

f(x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

φ1(x) ∧ ψ1(y) : f1(x,y) = c�
1 x + x�Q1y + d�

1 y
...

...

φn(x) ∧ ψn(y) : fn(x,y) = c�
nx + x�Qny + d�

ny

(16)

where ci ∈ R
nx , di ∈ R

ny , Qi ∈ R
nx×ny , and φi(x) and ψi(y) are conjunction

of linear inequalities in x and y.4 Note that fDBLP is a special case of (16).
Proposition 1 establishes that LPWB functions are closed under symbolic min
and eventually become LPWL, which uses the following result from Lemma 1.

Lemma 1. Consider the symbolic substitution operations into bilinear fi(x,y)
with σj = {y1/lj(y2:ny

)}, where y2:ny
= {y2, . . . , yny

}, lub(y2:ny
) and llb(y2:ny

)
are linear. Then, casemin(fi(x,y)σub, fi(x,y)σlb) is an LPWB function.

Proof. Define h : Rnx×(ny−1) �→ R as h(x,y2:ny
) := fi(x,y)σub − fi(x,y)σlb. If

h ≥ 0, we select fi(x,y)σlb as the casemin; otherwise, fi(x,y)σub is selected. In
other words, we get a case function with bilinear partitions and bilinear values:

casemin(fi(x,y)σub, fi(x,y)σlb) =

{
h(x,y2:ny) ≥ 0 : fi(x,y)σlb

h(x,y2:ny) < 0 : fi(x,y)σub
(17)

However, h(x,y2:ny
) can always be factorized into two factors where each factor

is linear in either x or y2:ny
. That is,

h(x,y2:ny) =

(
lub(y2:ny) − llb(y2:ny)

)[
[di]1 +

nx∑

r=1

xr[Qi]r,1

]
≥ 0 (18)

since the terms in fi(x,y) that do not include y1 cancel out. Finally, we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[lub(y2:ny) − llb(y2:ny) ≥ 0] ∧ [[di]1 +
∑nx

r=1 xr[Qi]r,1 ≥ 0] : fi(x,y)σlb

[lub(y2:ny) − llb(y2:ny) < 0] ∧ [[di]1 +
∑nx

r=1 xr[Qi]r,1 < 0] : fi(x,y)σlb

[lub(y2:ny) − llb(y2:ny) ≥ 0] ∧ [[di]1 +
∑nx

r=1 xr[Qi]r,1 < 0] : fi(x,y)σub

[lub(y2:ny) − llb(y2:ny) < 0] ∧ [[di]1 +
∑nx

r=1 xr[Qi]r,1 ≥ 0] : fi(x,y)σub

(19)

which has disjointly linear partitions and bilinear values, hence an LPWB.

4 A function value can be ∞, which implies that the corresponding partition is infea-
sible (see Fig. 2c).

88 J. Jeong et al.

Now, we present the main result in Proposition 1.

Proposition 1 (Symbolic minimization of LPWB functions). Let g(x)
denote the result of symbolic minimization of f(x,y) over y variables, which we
assume to be well-defined. That is,

g(x) := min
y

f(x,y) (20)

Then, it follows that g(x) is an LPWL function of x.

Proof. The proof relies on inductive reasoning as we show how each yi can be
eliminated in turn yielding an LPWB closed-form and ultimately a final LPWL
form once all y have been eliminated.

Firstly, similar to (11), we note min
y

f(x,y) is equivalent to the following:

min
yny ,...,y2

[
casemin
i={1,...,n}

min
y1

{
φi(x) ∧ ψi(y) : fi(x,y)

¬φi(x) ∨ ¬ψi(y) : ∞

]
(21)

For the ith partition, ψi(y) and the generic domain bounds over y1 specify the
upper and lower bounds of y1, denoted as yub,i

1 and ylb,i
1 , respectively. Notice

that yub,i
1 and ylb,i

1 are LPWL functions of y2:ny
. We now substitute the bounds

in the place of y1, followed by casemin to determine a smaller value, which gives:

gi(x, y2:ny) := min
y1

{
φi(x) ∧ ψi(y) : fi(x,y)

¬φi(x) ∨ ¬ψi(y) : ∞

= casemin

(
fi(x,y)σub

i , fi(x,y)σlb
i

)
⊕

{
φi(x) ∧ ψ⊥⊥y1

i (y2:ny) : 0

¬(
φi(x) ∧ ψ⊥⊥y1

i (y2:ny)
)

: ∞ (22)

where σub
i = {y1/yub,i

1 } and σlb
i = {y1/ylb,i

1 }.
The second term in (22) ensures that the conditionals independent of y1

in [φi(x) ∧ ψi(y)] hold true, which are not accounted for in yub,i
1 and ylb,i

1 .
ψ⊥⊥y1
i (y2:ny

) also includes a set of conditionals that require yub,i
1 ≥ ylb,i

1 for
all pairs of function values. Naturally, we use ∞ as the value of an infeasible
partition such that it will be ignored in later steps since we are minimizing.

Now, we have that gi(x,y2:ny
) is an LPWB function. To see this, denote the

casemin in (22) as m(x,y2:ny
). A partition of m(x,y2:ny

) is a conjunction of a
partition from yub,i

1 , say the jth, and another from ylb,i
1 , say the kth; the cor-

responding function value is casemin(fi{y1/lubj (y2:ny
)}, fi{y1/llbk (y2:ny

)}), with
lubj and llbk denoting the function values from yub,i

1 and ylb,i
1 , respectively. Then

for this partition, we clearly see we get disjointly linear partitions and bilin-
ear function values as per Lemma 1. This analysis can be extended to all other
partitions and function values of m(x,y2:ny

), and hence gi(x,y2:ny
) is LPWB ∀i.

A MILP Reduction of DBLP via Symbolic Variable Elimination 89

Finally, we note (21) becomes

min
y

f(x,y) = min
yny ,...,y2

[
casemin
i={1,...,n}

gi(x,y2:ny)

]

= casemin
i={1,...,n}

[
min

yny ,...,y3

(
min
y2

gi(x,y2:ny)

)]
(23)

where (23) follows since min and casemin are commutative. Then, we see that the
inner-most minimization is essentially SVE of y2 of an LPWB function. Hence,
we can repeat the elimination procedure until all y variables are minimized out,
at which point we get a sequence of casemin applied to an LPWL function of x.
Since an LPWL function is closed under the casemin operator, we will get an
LPWL function, g(x) in closed-form.

Corollary 1. The DBLP in (1) is equivalent to a MILP.

Proof. The DBLP can be represented in case form as in (8), which is an LPWB
function. Hence, minx,y fDBLP (x,y) can be represented as minx gDBLP (x)
where gDBLP (x) := miny fDBLP (x,y) is an LPWL function (Proposition 1).
Therefore, the DBLP is equivalent to the minimization problem with piecewise
linear objective and linear constraints, which is equivalent to a MILP.

We remark that maintaining a case representation of a DBLP or its LPWL
equivalent with explicit partitions can be prohibitively expensive. Hence, in prac-
tice we use Extended Algebraic Decision Diagrams (XADDs) [13] (example in
Fig. 2) to compactly represent the case statement and perform operations.

5 Empirical Analysis

In this section, we evaluate the proposed novel reduction of a DBLP to a MILP
on various test problems. First, we present the problem constrained with XORs of
linear constraints in which the proposed approach outperformed Gurobi (9.5.0).
Then, we explore empirical characteristics of the MILP reduction on general
DBLPs using a set of randomized test instances. Specifically, we analyze the
effects of the problem size and sparsity on the MILP reduction and its solution
efficiency. We use the XADD for practical implementation of case functions, and
we ported the original XADD implementation in Java to our own in Python.
Generated MILPs are then solved using Gurobi. All experiments were done on
a Linux machine with a 2.90 GHz processor.5

5 SVE runs on a single processor, but Gurobi made use of all 16 available cores.

90 J. Jeong et al.

Problems with XOR Conditional Constraints. Consider the following
DBLP involving XOR (�) combinations of constraints as motivated by [16]:

min c
�
r + r

�
Qy + d

�
y + czz, where (24)

ri =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
[x3i−2 ≥ x3i−1] � [x3i−1 ≥ x3i]

] ∧ [z ≥ 0] : max(x3i−1, x3i) − min(x3i−1, x3i)
[
[x3i−2 ≥ x3i−1] � [x3i−1 ≥ x3i]

] ∧ [z < 0] : min(x3i−1, x3i) − max(x3i−1, x3i)

¬[
[x3i−2 ≥ x3i−1] � [x3i−1 ≥ x3i]

] ∧ [z ≥ 0] : min(x3i−2, x3i−1) − max(x3i−2, x3i−1)

¬[
[x3i−2 ≥ x3i−1] � [x3i−1 ≥ x3i]

] ∧ [z < 0] : max(x3i−2, x3i−1) − min(x3i−2, x3i−1)

s.t. b
�
j y ≤ bj , ∀j = 1, . . . , 15

xi ∈ [−10, 10], rj ∈ [−20, 20], yk ∈ [−10, 10]

i = 1, . . . , 3n, j = 1, . . . , n, k = 1, . . . , 15.

Here, c, r ∈ R
n, x ∈ R

3n, cz, z ∈ R and bj ,y ∈ R
15. Observe that ri in

the objective is determined based on an XOR conditional expression involv-
ing x3i−2, x3i−1, x3i and a linear constraint of z ∀i = 1, . . . , n. We randomly
generate (cz, c,d, Q) and (bj , bj ∀j) to construct the objective and the feasible
region over y, respectively. We eliminate x from (24) and solve the resulting
MILP using Gurobi for the remaining variables.

Fig. 3. Left: Runtime comparison of the Native DBLP form (using Gurobi’s bilinear
solver) and the SVE DBLP-to-MILP conversion (using Gurobi’s MILP solver) vs. n
(number of variables in XOR problem). Unlike Native DBLP whose time complexity
appears exponential in n, SVE DBLP-to-MILP appears linear in n (nb. logarithmic
y-axis). Right: Breakdown of total runtime of the SVE DBLP-to-MILP solution sep-
arated into SVE Conversion time and Gurobi MILP solve time. While SVE scales
linearly in n, the MILP step takes a larger fraction of time as n increases (nb. linear
y-axis and extended range of n on the x-axis, which only SVE DBLP-to-MILP can
solve).

Note that this problem structure is particularly advantageous for the sym-
bolic framework since each ri can be compactly represented in XADD with only a
small number of decision variables and the XOR constraints are sparse. In Fig. 3,
we compare the runtime performance of our approach against that of Gurobi.

A MILP Reduction of DBLP via Symbolic Variable Elimination 91

For each n, we generated 5 instances with different random seeds and plot the
mean and its standard error. As the runtime grows exponentially for Gurobi, it
quickly becomes impossible to solve problems with n ≥ 15 (nx ≥ 45) within the
given time limit of 5000 s. However, the solution time increases linearly in the
number of variables for the symbolic approach, and we solve the problem with
nx = 150 within 30 s. In other words, we have effectively reformulated a DBLP
that Gurobi cannot practically solve in its native form to the one that Gurobi
can solve as a MILP!

Randomized Test Problems with Different Sizes and Sparsity. Now, we
scrutinize the proposed approach on some general DBLP test problems. For the
first set of experiments, we follow [15] for systematic generation of test prob-
lems with certain properties. In particular, they suggested a two-step method in
which smaller DBLP problems are first constructed, which are then additively
combined. Furthermore, the underlying structure of the problem is then con-
cealed by random transformations on the decision variables using Householder
matrices [1]. 5 instances with different random transformation matrices are con-
structed for each configuration (nx, ny) and we report the average and standard
error.

In Table.1, we evaluate the impact of how balanced a problem is on computa-
tional complexity by fixing the total number of variables while altering (nx, ny)
such that one instance has nx = ny whereas nx > ny for the other (y is elim-
inated). We have compared four sets of problem instances with varying total
numbers of variables, i.e., 12, 16, 20, 24. For each total number of variables, bal-
anced and imbalanced instances are compared. We can see that it is in general
much easier to solve imbalanced problems, which turn out to be more com-
pact to encode as well. As the number of total variables increases, we observe
that the discrepancy in the complexity between an imbalanced and its balanced
counterpart widens.

Table 1. Time and space complexity for balanced and imbalanced problems. For every
fixed number of total variables (12, 16, 20, 24), the results for an imbalanced (nx > ny)
and a balanced (nx = ny) are reported. Observe that imbalanced problems are easier
to solve and more compact to encode than their balanced counterparts.

nx + ny nx ny Time (Symbolic) Time (MILP) # XADD
Nodes

Cont var
(MILP)

Bin var
(MILP)

Constr
(MILP)

12 8 4 4.35 ± 0.01 0.01 ± 0.00 44 35 16 55

6 6 16.35 ± 0.17 0.04 ± 0.00 76 54 18 75

16 10 6 44.67 ± 0.17 0.04 ± 0.00 114 75 23 103

8 8 121.45 ± 1.09 0.88 ± 0.02 214 140 24 168

20 12 8 391.87 ± 3.22 0.71 ± 0.01 318 185 30 221

10 10 959.65 ± 66.15 28.84 ± 2.81 622 388 30 423

24 16 8 313.38 ± 1.65 0.18 ± 0.00 536 295 32 335

12 12 5886.00 ± 142.75 356.23 ± 11.17 1840 1122 36 1164

92 J. Jeong et al.

Notably, the number of binary variables only rises at a moderate rate, whereas
the numbers of continuous variables and constraints increase along with the size
of the MILP reduction. This suggests that the case representation of the MILP
equivalent of a given DBLP turns out to have a structure similar to a tree. For
this type of problem, the computational gain attributed to using XADD can
rather be small, and therefore we observe fast increases in complexity with the
problem size. On the other hand, for types of problems we present in (24) and
Fig. 4, the SVE step can be efficiently done even for larger problems. Finally,
note also that regardless of ny, the running times for the optimal MILP solution
remain very small.

In order to better understand the solution efficiency with regard to the num-
ber of variables and the sparsity of the problem, we created other sets of random
test problems. Concretely, the goals are to examine (i) whether the increase in
the number of symbolically eliminated variables has greater impact than the
increase in the total number of variables in solution efficiency and (ii) the effects
of the sparsity of coefficients (ai,bj , Q). For these problems, we generate feasible
and bounded problems with 30 constraints (na = nb = 15). 5 instances gener-
ated with different random seeds are used per each experiment configuration,
and we plot the average and its standard error.

For (i), we symbolically eliminate y and compare two sets: one with nx = 8
and ny from 4 to 9, and the other with ny = 4 and nx increased from 8 to 13.
This way, when we increment the total number of variables by 1, it is only for the
first set that the number of symbolically eliminated variables increases. In Fig. 4,
we see that the time requirements for solving problems with fixed ny (solid) have
virtually remained consistent regardless of the total number of variables. On the
other hand, the runtimes for the symbolic solution with increasing ny have seen
a huge jump at nx + ny = 16 and they are generally on the increase along with
the number of variables (dashed). On the contrary, the final sizes of the MILP
reduction—in terms of the number of nodes in XADD, the number of binary

Fig. 4. Time and space complexity as the total number of variables increases. Here, y
is symbolically minimized. The dashed lines correspond to the case of increasing ny,
whereas the solid lines represent the case of increasing nx.

A MILP Reduction of DBLP via Symbolic Variable Elimination 93

Fig. 5. Time and space complexity as the sparsity of Q, {ai}na
i=1, {bj}nb

j=1 changes

and continuous variables, and the number of constraints—have shown only mild
increasing patterns.

For (ii), we vary the density parameter used in the generation of the coefficient
matrices (a,b, Q) from 0.1 to 1.0 (full matrices) and record the time and space
complexity thereof. The numbers of variables are set to (nx, ny) = (8, 4) and we
eliminate y variables. Figure 5 shows a general trend where the MILP reduction
becomes increasingly expensive as the density of the coefficient matrices rises.
However, the complexity peaks at the density 0.8, and the instances with denser
coefficients turn out to be easier to solve. Typically, instances that take longer
symbolic compilation running times tend to result in XADDs with more nodes.
Hence, it appears that sparse forms have few constraints leading to smaller
encodings and solution times, while the highest density problems likely have
redundant (implied) constraints that the XADD can eliminate also leading to
smaller encodings and solution times.

To sum up, we have seen that there are types of DBLP problems that can-
not be solved by Gurobi within a reasonable amount of time in their native
form. We are able to solve such problems by solving the MILP equivalent of a
DBLP which can be obtained via SVE. Using various test problems, we have
also examined the efficiency of the proposed approach. In particular, we have
observed that imbalanced problems are much easier to solve with SVE than their
balanced counterparts with the same numbers of decision variables. Although it
generally takes longer to solve a larger DBLP, there exists a set of problems
with which we do not see much increase in solution time as the number of vari-
ables increases. These sorts of problems can benefit the most from our symbolic
approach. Finally, we have seen that sparse instances can be more compactly
represented via XADD, leading to smaller runtimes, while the densest form can
be solved relatively easily as well.

94 J. Jeong et al.

6 Conclusion and Future Work

We proposed a novel use of symbolic variable elimination (SVE) for reducing one
optimization problem (DBLP) to another (MILP) exactly in closed-form. We
showed this methodological innovation involves extending existing SVE oper-
ations to work with bilinear forms. As a result, we were able to provide the
first exact constructive MILP reformulation of DBLPs by proving that all sym-
bolic operations involved remain closed-form. Empirically, we saw this reduction
enables solving DBLPs with complex logical constraints to optimality, which are
unsolvable in their native form.

As future work, we note that it is possible to extend our methodology to dis-
jointly constrained multilinear programs (DMLPs), which will further broaden
the applicability of our method to multi-agent decision-making problems [2].

Longer term, we hope that this work inspires the use of (and further research
into) SVE as a technique for manipulating and reducing constrained optimization
problems into alternative forms more amenable for use with highly efficient and
optimal off-the-shelf solvers.

References

1. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A symmetrical linear maxmin
approach to disjoint bilinear programming. Math. Program. 85(3), 573–592 (1999)

2. Becker, R., Zilberstein, S., Lesser, V., Goldman, C.V.: Transition-independent
decentralized markov decision processes. In: Proceedings of the Second Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pp. 41–48.
AAMAS 2003, Association for Computing Machinery, New York (2003). https://
doi.org/10.1145/860575.860583

3. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order
MDPs. In: IJCAI-01, pp. 690–697. Seattle (2001)

4. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://
www.gurobi.com

5. Horst, R., Pardalos, P., Van Thoai, N.: Introduction to Global Optimization. Non-
convex Optimization and Its Applications. Springer, US (1995). https://books.
google.ca/books?id=w6bRM8W-oTgC

6. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Hei-
delberg (2013)

7. Jeong, J., Jaggi, P., Sanner, S.: Symbolic dynamic programming for continuous
state mdps with linear program transitions. In: Proceedings of the 30th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-21). Online (2021)

8. Konno, H.: A Bilinear Programming: Part II. Applications of Bilinear Program-
ming, Technical report (1975)

9. Nahapetyan, A.G.: Bilinear Programming: Applications in the Supply Chain Man-
agement, pp. 282–288. Springer, Boston (2009)

10. Petrik, M., Zilberstein, S.: A bilinear programming approach for multiagent plan-
ning. J. Artif. Int. Res. 35(1), 235–274 (2009)

11. Rebennack, S., Nahapetyan, A., Pardalos, P.M.: Bilinear modeling solution app-
roach for fixed charge network flow problems. Optim. Lett. 3(3), 347–355 (2009).
https://doi.org/10.1007/s11590-009-0114-0, https://doi.org/10.1007/s11590-009-
0114-0

https://doi.org/10.1145/860575.860583
https://doi.org/10.1145/860575.860583
https://www.gurobi.com
https://www.gurobi.com
https://books.google.ca/books?id=w6bRM8W-oTgC
https://books.google.ca/books?id=w6bRM8W-oTgC
https://doi.org/10.1007/s11590-009-0114-0
https://doi.org/10.1007/s11590-009-0114-0
https://doi.org/10.1007/s11590-009-0114-0

A MILP Reduction of DBLP via Symbolic Variable Elimination 95

12. Sanner, S., Abbasnejad, E.: Symbolic variable elimination for discrete and con-
tinuous graphical models. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 26. no. 1, pp. 1954–1960 (2012)

13. Sanner, S., Delgado, K.V., de Barros, L.N.: Symbolic dynamic programming for
discrete and continuous state MDPs. In: Proceedings of the 27th Conference on
Uncertainty in AI (UAI-2011). Barcelona (2011)

14. Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for
bilinear programming problems. J. Global Optim. 2(4), 379–410 (1992)

15. Vicente, L.N., Calamai, P.H., Júdice, J.J.: Generation of disjointly constrained
bilinear programming test problems. Comput. Optim. Appl. 1, 299–306 (1992)

16. Ye, Z., Say, B., Sanner, S.: Symbolic bucket elimination for piecewise continuous
constrained optimization. In: CPAIOR, pp. 585–594 (2018). https://doi.org/10.
1007/978-3-319-93031-2 42

17. Zamani, Z., Sanner, S., Fang, C.: Symbolic dynamic programming for continuous
state and action MDPs. In: Proceedings of the 26th AAAI Conference on Artificial
Intelligence (AAAI-12). Toronto, Canada (2012)

https://doi.org/10.1007/978-3-319-93031-2_42
https://doi.org/10.1007/978-3-319-93031-2_42

Local Branching Relaxation Heuristics
for Integer Linear Programs

Taoan Huang1(B) , Aaron Ferber1 , Yuandong Tian2 , Bistra Dilkina1 ,
and Benoit Steiner2

1 University of Southern California, Los Angeles, USA
{taoanhua,aferber,dilkina}@usc.edu
2 Meta AI (FAIR), Menlo Park, USA

yuandong@meta.com

Abstract. Large Neighborhood Search (LNS) is a popular heuristic
algorithm for solving combinatorial optimization problems (COP). It
starts with an initial solution to the problem and iteratively improves it
by searching a large neighborhood around the current best solution. LNS
relies on heuristics to select neighborhoods to search in. In this paper,
we focus on designing effective and efficient heuristics in LNS for integer
linear programs (ILP) since a wide range of COPs can be represented
as ILPs. Local Branching (LB) is a heuristic that selects the neighbor-
hood that leads to the largest improvement over the current solution in
each iteration of LNS. LB is often slow since it needs to solve an ILP
of the same size as input. Our proposed heuristics, LB-RELAX and its
variants, use the linear programming relaxation of LB to select neigh-
borhoods. Empirically, LB-RELAX and its variants compute as effective
neighborhoods as LB but run faster. They achieve state-of-the-art any-
time performance on several ILP benchmarks.

Keywords: Integer Linear Program · Large Neighborhood Search ·
Heuristic Search

1 Introduction

Combinatorial optimization problems (COP) concerns a wide variety of real-
world applications, including vehicle routing [42], path planning [35] and resource
allocation [34] problems. Many of them are difficult to solve with limited compu-
tational resources due to their NP-Hardness. Nonetheless, the widespread impor-
tance of COPs has inspired research in designing algorithms for solving them,
including exact algorithms, approximation algorithms, heuristic algorithms and
data-driven algorithms.

In this paper, we focus specifically on Integer Linear Programs (ILPs) since it
is a powerful tool to model and solve a broad collection of COPs, including graph
optimization [40], mechanism design [11], facility location [4,19] and network
design [12,21] problems. Branch-and-Bound (BnB) is an optimal and complete
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 96–113, 2023.
https://doi.org/10.1007/978-3-031-33271-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_7&domain=pdf
http://orcid.org/0000-0002-8733-2379
http://orcid.org/0000-0002-7422-0044
http://orcid.org/0000-0003-4202-4847
http://orcid.org/0000-0002-6784-473X
http://orcid.org/0000-0002-5767-4976
https://doi.org/10.1007/978-3-031-33271-5_7

Local Branching Relaxation Heuristics for Integer Linear Programs 97

tree search algorithm and is one of the state-of-the-art algorithms for ILPs [27].
It is also the core of many ILP solvers such as SCIP [8] and Gurobi [17]. Huge
research effort has been made to improve it over the past decades [2]. However,
BnB still falls short of delivering practical impact due to scalability issues [14,24].
On the other hand, Large Neighborhood Search (LNS) is a powerful heuristic
algorithm for hard COPs and has been recently applied to solve ILPs [40,41,43]
in the machine learning (ML) community.

To solve ILPs, LNS starts with an initial solution, i.e., a feasible assignment of
values to the variables. It then iteratively improves the best solution found so far
(i.e., the incumbent solution), by applying destroy heuristics to select a subset of
variables and solving a sub-ILP that optimizes only the selected variables while
leaving others fixed. ML-based destroy heuristics are shown to be efficient and
effective but they are often tailored for a specific problem domain and require
extensive computational resources for learning. A few non-ML destroy heuris-
tics have been studied, such as the randomized heuristics [40,41] and the Local
Branching (LB) heuristic [13,41], but they are either less efficient or effective
compared to the ML-based ones. The randomized heuristics select the neighbor-
hood by quickly randomly sampling a subset of variables which is often of bad
quality. LB computes the optimal solution across all possible search neighbor-
hoods that differs from the current incumbent solutions on a limited number of
variables; however, LB is computationally expensive since it requires solving an
ILP that has the same size as the original problem.

To strike a balance between efficiency and effectiveness, we propose a simple
yet effective destroy heuristic LB-RELAX that is based on the linear program-
ming (LP) relaxation of LB. Instead of solving an ILP to find the neighbor-
hood as LB does, LB-RELAX computes its LP relaxation. It then selects the
variables greedily based on the difference between the values in the incumbent
solution and the LP relaxation solution. We also propose two other variants,
LB-RELAX-S and LB-RELAX-R, that deploy a sampling method and combine
the randomized heuristic with LB-RELAX to help escape local optima more effi-
ciently, respectively. In experiments, we compare LB-RELAX and its variants
against LNS with baseline destroy heuristics and BnB on several ILP bench-
marks and show that they achieve state-of-the-art anytime performance. We
also show that LB-RELAX achieves competitive results with, sometimes even
outperform, the ML-based destroy heuristics. We also test LB-RELAX and its
variants on selected difficult MIPLIB instances [16] that encompass diverse prob-
lem domains, structures and sizes and show that they achieve best performance
on at least 40% of the instances. We also empirically show that LB-RELAX and
LB-RELAX-S find neighborhoods of similar quality but is much faster than LB.
They sometimes even outperform LB due to LB being too slow to find good
enough neighborhoods within a reasonable time cutoff.

2 Background

In this section, we first define ILP and introduce its LP relaxation. We then
introduce LNS for ILP solving and the Local Branching (LB) heuristic.

98 T. Huang et al.

Algorithm 1. LNS for ILPs
1: Input: An ILP.
2: x0 ← Find an intial solution to the input ILP
3: t ← 0
4: while time limit not exceeded do
5: X t ← Select a subset of variables to destroy
6: xt+1 ← Solve the ILP with additional constraints {xi = xt

i : xi /∈ X t}
7: t ← t + 1

8: return xt

2.1 ILP and Its LP Relaxation

An integer linear program (ILP) is defined as

min cTx s.t. Ax ≤ b and x ∈ {0, 1}n,

where x = (x1, . . . , xn)T denotes the n binary variables to be optimized, c ∈ R
n

denotes the vector of objective coefficients and A ∈ R
m×n and b ∈ R

m specify
m linear constraints. A solution to the ILP is an feasible assignment of values
to the variables.

The linear programming (LP) relaxation of an ILP is obtained by relaxing
binary variables in the ILP to continuous variables between 0 and 1, i.e., by
replacing the integer constraint x ∈ {0, 1}n with x ∈ [0, 1]n.

Note that, in this paper, we focus on the formulation above that consists
of only binary variables, but our methods can also be applied to mixed integer
linear programs with continuous variables and/or non-binary integer variables.

2.2 LNS for ILP Solving

LNS is a heuristic algorithm that starts with an initial solution and then iter-
atively reoptimizes a part of the solution by applying the destroy and repair
operations until a time limit is exceeded. Let x0 be the initial solution. In iter-
ation t ≥ 0 of the LNS, given the incumbent solution xt, defined as the best
solution found so far, a destroy operation is done by a destroy heuristic where
it selects a subset of kt variables X t = {xi1 , . . . , xikt

}. The repair operation is
done by solving a sub-ILP with X t being the variables while fixing the values of
xj /∈ X t to be the same as in xt. Compared to BnB, LNS is more effective in
improving the objective value cTx, or the primal bound, especially on difficult
instances [40,41,43]. Compared to other local search methods, LNS explores a
large neighborhood in each step and thus, is more effective in avoiding local
minima. LNS for ILPs is summarized in Algorithm 1.

2.3 LB Heuristic

The LB Heuristic [13] is originally proposed as a primal heuristic in BnB but is
also applicable in LNS for ILP solving [31,41]. Given the incumbent solution xt

Local Branching Relaxation Heuristics for Integer Linear Programs 99

in iteration t of LNS, the LB heuristic [13] aims to find the subset of variables
to destroy X t such that it leads to the optimal xt+1 that differs from xt on at
most kt variables, i.e., it computes the optimal solution xt+1 that sits within
a given Hamming ball of radius kt centered around xt. To find xt+1, the LB
heuristic solves the LB ILP that is exactly the same ILP from input but with
one additional constraint that limits the distance between xt and xt+1:

∑

i∈[n]:xt
i=0

xt+1
i +

∑

i∈[n]:xt
i=1

(1 − xt+1
i) ≤ kt.

The LB ILP is of the same size of the input ILP (i.e., it has the same number of
variables and one more constraint), therefore, it is often slow to run in practice.

3 Related Work

In this section, we summarize related work on LNS for ILPs, LNS-based primal
heuristics in BnB and LNS for other COPs.

3.1 LNS for ILPs

While a lot of effort has been made to improve BnB for ILPs in the past decades,
LNS for ILPs has not been studied extensively in the past. Recently, Song et
al. [40] show that even a randomized destroy heuristic in LNS can outperform
state-of-the-art BnB in runtime. In the same paper, they show that an ML-
guided decomposition-based LNS can achieve even better performance, where
they apply reinforcement learning and imitation learning to learn the destroy
heuristics. Since then, there have been a few more recent studies on ML-based
LNS for ILPs. Sonnerat et al. [41] learn to select variables to destroy via imitating
LB. Wu et al. [43] learn the same thing but they use reinforcement learning
instead. The main difference between LB-RELAX and ML-based heuristics is
that LB-RELAX does not require extra computational resource for learning
and is agnostic to the underlying problem distributions. LB-RELAX also has a
better balance between efficiency and effectiveness than those existing non-ML
heuristics.

3.2 LNS-Based Primal Heuristics in BnB

LNS-based primal heuristics is one of the rich set of primal heuristics in BnB for
ILPs and many techniques have been proposed in past decades. With the same
purpose of improving primal bounds of the ILPs, the main differences between
the LNS-based primal heuristics in BnB and LNS for ILPs are the following:
(1) Since LNS-based primal heuristics are often more expensive to run than
the others in BnB, they are executed periodically at different search tree nodes
during the main search and the execution schedule is itself dynamic; (2) the
destroy heuristics for LNS in BnB are often designed to use information, such

100 T. Huang et al.

as the dual bound and the LP relaxation at a search tree node, that is specific
to BnB and not directly applicable in LNS for ILPs in our setting.

Next, we briefly summarize the destroy heuristics in LNS-based primal heuris-
tics. The Crossover heuristics [37] destroy variables that have different values
in a set of selected known solutions (typically two). The Mutation heuristics
[37] destroys a random subset of variables. Relaxation Induced Neighborhood
Search (RINS) [10] destroys variables whose values disagree in the solution
of the LP relaxation at the current search tree node and the current incum-
bent solution. Relaxation Enforced Neighborhood Search (RENS) [7] restricts
the neighborhood to be the feasible roundings of the LP relaxation at the cur-
rent search tree node. Local Branching [13] restricts the neighborhood to a ball
around the current incumbent solution. Distance Induced Neighborhood Search
(DINS) [15] takes the intersection of the neighborhoods of the Crossover, LB
and RINS heuristics. Graph-Induced Neighborhood Search (GINS) [33] destroys
the breadth-first-search neighborhood of a variable in the bipartite graph repre-
sentation of the ILP. An adaptive LNS primal heuristic that essentially solves a
multi armed bandit problem has been proposed to combine the power of these
heuristics [18].

LB-RELAX is closely related to RINS [10] since they both use LP relax-
ations to select neighborhoods. However, RINS is more suitable in BnB since
it can adapt dynamically to the constraints added by branching. It uses the
LP relaxation of the original problem, whereas LB-RELAX uses that of the LB
ILP which takes into account the incumbent solutions that could change from
iteration to iteration in LNS.

3.3 LNS for Other COPs

LNS has been applied to solve a wide range of COPs, such as the vehicle routing
problem [5,36], the traveling salesman problem [39], scheduling problems [26,44]
and path planning problems [23,28,29]. Recently, ML-based methods have been
applied to improve LNS for those applications [9,20,22,30,32].

4 The Local Branching Relaxation Heuristic

Recently, designing effective destroy heuristics in LNS for ILPs has been a focus
in the ML community [40,41,43]. However, it is difficult to apply ML-based
destroy heuristics to general ILPs since they are often customized for ILPs from
certain problem distributions, e.g., graph optimization problems from a given
graph distribution or scheduling problems where resources and demands follow
the distribution of historical data, and require extra computational resources for
training. There has been a lack of study on destroy heuristics that are agnostic
to the underlying distribution of the problem. Existing ones such as randomized
heuristics are simple and fast but sometimes not effective [40,41]. LB are effective
but not efficient [31,41] since it exhaustively solves an ILP the same size as input
for the best improvement.

Local Branching Relaxation Heuristics for Integer Linear Programs 101

Algorithm 2. LB-RELAX (LB-RELAX-S)
1: Input: An ILP, incumbent solution xt and neighborhood size kt.
2: Construct the LB ILP given xt and kt

3: x̄t+1 ← Solve the LP relaxation of the LB ILP
4: Δi ← |x̄i

t+1 − xt
i| for all i ∈ [n]

5: X̄ t ← {xi : Δi > 0, i ∈ [n]}
6: if |X̄ t| ≥ kt then
7: X t ← Select kt variables greedily with the largest Δi from X̄ t

(X t ← Select kt variables uniformly at random from X̄ t)
8: else
9: X ′ ← a random subset of kt − |X̄ t| variables from {xi : Δi = 0, i ∈ [n]}

10: X t ← X̄ t ∪ X ′

11: return X t

There are well-known approximation algorithms for NP-hard COPs based
on LP relaxation [25]. Typically, they solve the LP relaxation of the ILP of the
original problem and apply deterministic or randomized rounding afterwards to
construct an integral solution. These algorithms often have theoretical guarantee
on the effectiveness and are fast, since LP can be solved in polynomial time.
Inspired by those algorithms, we propose destroy heuristic LB-RELAX that first
solves the LP relaxation of the LB ILP and then constructs the neighborhood
(selects variables X t to destroy) based on the LP relaxation solution. Specifically,
given an ILP and the incumbent solution xt in iteration t, we construct the LB
ILP with neighborhood size kt and solve its LP relaxation. Let x̄t+1 be the LP
relaxation solution to the LB ILP. Also, let Δi = |x̄i

t+1 − xt
i| and X̄ t = {xi :

Δi > 0, i ∈ [n]}. X̄ t includes all the fractional variables in the LP relaxation
solution and all integral variables that have different values from xt. In the
following, we introduce (1) LB-RELAX, (2) LB-RELAX-S, a variant of LB-
RELAX with randomized sampling and (3) LB-RELAX-R, another variant of
LB-RELAX that combines a randomized destroy with LB-RELAX to help avoid
local minima more effectively.

LB-RELAX first gets the LP relaxation solution x̄t+1 of the LB ILP and
then calculates Δi and X̄ t from x̄t+1,xt. To construct X t (the set of variables
to destroy), it then greedily selects kt variables with the largest Δi and breaks
ties uniformly at random. Intuitively, LB-RELAX greedily selects the variables
whose values are more likely to change in the incumbent solution xt after solving
the LB ILP. LB-RELAX is summarized in Algorithm 2. Instead of using the LP
relaxation of the LB ILP, one could argue that we alternatively use that of
the original ILP similar to RINS [10]. However, the advantage of LB-RELAX
over using the LP relaxation of the original problem is that, by approximating
the solution to the LB ILP, LB-RELAX selects neighborhoods based on the
incumbent solutions that change from iteration to iteration, whereas the original
LP relaxation is a static and less informative feature that is pre-computed before
the LNS procedure.

102 T. Huang et al.

LB-RELAX-S is a variant of LB-RELAX with randomized sampling. To
construct X t, instead of greedily choosing variables with the largest Δi, it selects
kt variables from X̄ t uniformly at random. If |X̄ t| < kt, it selects all variables
from X̄ t and kt − |X̄ t| variables from the remaining uniformly at random. LB-
RELAX is summarized in Algorithm 2 where the parts in blue highlight the
differences between LB-RELAX and LB-RELAX-S. Since 0 ≤ Δi ≤ 1, one could
treat Δi as a probability distribution and sample kt variables accordingly (see
[41] for an example of how to normalize the distribution to sample kt variables).
However, this variant performs similarly to or slightly worse than LB-RELAX-S
empirically and require extra hyperparameter tunings for the normalization. We
therefore omit it and focus on the simpler variant in this paper.

LB-RELAX-R is another variant of LB-RELAX that leverages a random-
ized destroy to avoid local minima more effectively. Once LB-RELAX fails to
find an improving solution in iteration t, if we let kt+1 = kt, it will solve the
exact same LP relaxation of the LB ILP again in the next iteration since the
incumbent solution xt+1 = xt and the neighborhood size stay the same. Also,
since LB-RELAX uses a greedy rule, it will select the same set of variables
with the largest Δi’s deterministically, except that it might need to break ties
randomly in some cases when there are multiple variables with the same Δi.
Therefore, it is susceptible to getting stuck at local minima. To tackle this issue,
once LB-RELAX fails to find a new incumbent solution, we update kt+1 using
the adaptive method described in the next paragraph. If it fails again in the next
iteration, we switch to a randomized destroy heuristic that uniformly samples
variables at random without replacement to construct the neighborhood. We
switch back to LB-RELAX after running the randomized destroy heuristic for
at least γ seconds and a new incumbent solution is found.

Next, we discuss an adaptive method to set the neighborhood size kt for LB-
RELAX and its variants. The initial neighborhood size k0 is set to a constant
or a fraction of the number of variables in the input ILP. In iteration t, if LNS
finds a new incumbent solution, we let kt+1 = kt. Otherwise, we increase kt by a
factor α > 1. Also, we upper bound the neighborhood size kt to a fraction β < 1
of the number of variables to make sure the sub-ILP in each iteration is not
too difficult to solve, i.e., we let kt+1 = min{α · kt, β · n}. This adaptive way of
choosing kt also helps address the issue of local minima by expanding the search
neighborhood when LNS fails to improve the solution. It is applicable to not
only LB-RELAX and its variants but also any destroy heuristics that require a
given neighborhood size kt.

5 Empirical Evaluation

In this section, we demonstrate the efficiency and effectiveness of LB-RELAX
and its variants through extensive experiments on ILP benchmarks.

Local Branching Relaxation Heuristics for Integer Linear Programs 103

5.1 Setup

Instance Generation. We evaluate on four NP-hard problem benchmarks
selected from previous work [38,40,43], which consist of synthetic minimum ver-
tex cover (MVC), maximum independent set (MIS), set covering (SC) and mul-
tiple knapsack (MK) instances. MVC and MIS instances are generated according
to the Barabasi-Albert random graph model [3], with 9,000 nodes and average
degree 5 following [40]. SC instances are generated with 4,000 variables and
5,000 constraints following [43]. MK instances are generated with 400 items and
40 knapsacks following [38]. For each problem, we generate 100 instances.

Baselines. We compare LB-RELAX, LB-RELAX-R and LB-RELAX-S with
the following baselines:

– BnB using SCIP (v8.0.1) as the solver with the aggressive mode turned on
to focus on improving the primal bound;

– LB: LNS which selects the neighborhood with the LB heuristics;
– RANDOM: LNS which selects the neighborhood by uniformly sampling a

subset of variables of a given neighborhood size kt;
– GRAPH: LNS which selects the neighborhood based on the bipartite graph

representation of the ILP similar to GINS [33]. A bipartite graph representa-
tion consists of nodes representing the variables and constraints on two sides,
respectively, with an edge connecting a variable and a constraint if a vari-
able has a non-zero coefficient in the constraint. It runs a breadth-first search
starting from a random variable node in the bipartite graph and selects the
first kt variable nodes expanded.

Furthermore, we compare our approaches with state-of-the-art ML approaches:

– IL-LNS: LNS which selects the neighborhood using a GCN-based policy
obtained by learning to imitate the LB heuristic [41]. We implement IL-LNS
since the authors do not fully open source the code;

– RL-LNS: LNS which selects the neighborhood using a GCN-based policy
obtained by reinforcement learning [43]. Note that this approach does not
require a given neighborhood size kt since the size is defined implicitly by how
the trained policy is used. We use the code made available by the authors.

Hyperparameters. We conduct our experiments on 2.5 GHz Intel Xeon Plat-
inum 8259CL CPUs with 32 GB RAM. All experiments use the hyperparameters
described below unless stated otherwise. We use SCIP (v8.0.1) [8], the state-of-
the-art open source ILP solver for the repair operations in LNS. To run LNS,
we find an initial solution by running SCIP for 10 s for MVC, MIS and SC and
20 s for MK. We set the time limit to 60 min to solve each instance and 2 min
for each repair operation in LNS. Except for LB, we set the time limit to 10 min
for each repair operation since LB solves a larger ILP than other approaches in
each iteration and typically requires a longer time limit. All approaches require a

104 T. Huang et al.

(a) MVC (b) MIS

(c) SC (d) MK

Fig. 1. Comparison with non-ML approaches: The primal gap as a function of time,
averaged over 100 instances.

neighborhood size kt in LNS, except for BnB and RL-LNS. The initial neighbor-
hood size (k0) is set to k0 = 400, 200, 150 and 400 for MVC, MIS, SC and MK,
respectively. For fair comparison, all baselines use adaptive neighborhood sizes
with α = 1.02 and β = 0.5, except for BnB and RL-LNS. For LB-RELAX-R,
we set γ = 30 s. Additional details on tuning hyperparameters are included in
Appendix1.

Metrics. We use the following metrics to evaluate the efficiency and effective-
ness of different approaches: (1) The primal bound is the objective value of
the ILP. (2) The primal gap [6] is the normalized difference between the primal
bound v and a precomputed best known objective value v∗, defined as |v−v∗|

max(v,v∗,ε)

if v exists and v · v∗ ≥ 0, or 1 otherwise. We use ε = 10−8 to avoid division by
zero and v∗ is the best primal bound found within 60 min by any approach in
the portfolio for comparison. (3) The primal integral [1] at time q is the inte-
gral on [0, q] of the primal gap as a function of time. It captures the quality
of and the speed at which solutions are found. (4) The survival rate to meet
a certain primal gap threshold is the fraction of instances with the primal gap
below the threshold [41]. Since BnB and LNS are both anytime algorithms, we

1 Appendix is available in the full version of the paper: https://arxiv.org/abs/2212.
08183.

https://arxiv.org/abs/2212.08183
https://arxiv.org/abs/2212.08183

Local Branching Relaxation Heuristics for Integer Linear Programs 105

Fig. 2. Comparison with non-ML approaches: The survival rate over 100 instances as
a function of time to meet a certain primal gap threshold. The primal gap threshold
is chosen from Table 1 as the median of the average primal gaps at 60 min time cutoff
over all approaches rounded to the nearest 0.05%.

show the metrics as a function of time or the number of iterations in LNS (when
applicable) to demonstrate their anytime performance.

5.2 Results

Comparison with Non-ML Approaches. First, we compare LB-RELAX,
LB-RELAX-R and LB-RELAX-S with non-ML approaches, namely BnB, LB,
RANDOM and GRAPH. Figure 1 shows the primal gap as a function of time,
averaged over 100 instances. The results show that LB-RELAX, LB-RELAX-
R and LB-RELAX-S consistently improve the primal gap a lot faster than the
baselines in the first few minutes of LNS. LB-RELAX improves the primal gap
slightly faster than LB-RELAX-S in all cases. On average, LB-RELAX is always
better than the baselines at any point of time on MK instances and LB-RELAX-S
is always better than the baselines on SC and MK instances. However, both LB-
RELAX and LB-RELAX-S could get stuck at some local minima. In those cases,
they need some time to escape local minima by adjusting the neighborhood size
and sometimes could be outperformed by some baselines with longer time on the
MVC and MIS instances. By adding randomization to LB-RELAX, LB-RELAX-
R escapes local minima more efficiently than LB-RELAX and LB-RELAX-S. On

106 T. Huang et al.

Table 1. Primal gap (PG) (in percent) and primal integral (PI) at 60min time cutoff,
averaged over 100 instances, and their standard deviations.

MVC MIS

PG (%) PI PG (%) PI

BnB 1.01± 0.46 128.6± 14.6 2.80± 1.36 144.0± 20.1

LB 0.15± 0.08 22.1± 3.6 1.20± 0.31 56.3± 9.4

RANDOM 0.11± 0.05 32.3± 2.3 0.10± 0.05 18.0± 2.5

GRAPH 0.17± 0.04 40.8± 2.5 1.56± 0.18 90.2± 7.6

LB-RELAX 0.04± 0.03 10.3± 1.7 0.39± 0.12 29.4± 4.3

LB-RELAX-R 0.09± 0.04 9.6± 1.7 0.04± 0.04 9.3± 1.7

LB-RELAX-S 0.42± 0.20 28.8± 8.1 0.37± 0.11 51.7± 10.1

SC MK

BnB 1.15± 0.98 87.4± 38.6 0.91± 0.59 60.7± 17.9

LB 1.23± 0.98 114.1± 35.7 1.50± 0.48 97.7± 13.0

RANDOM 2.68± 1.31 124.4± 45.7 1.24± 0.36 68.9± 14.7

GRAPH 8.75± 2.15 338.2± 77.0 0.33± 0.14 23.6± 4.9

LB-RELAX 1.37± 0.96 63.9± 34.0 0.20± 0.09 11.3± 3.0

LB-RELAX-R 1.14± 0.90 58.9± 31.5 0.00± 0.00 3.7± 0.4

LB-RELAX-S 0.88± 0.85 63.8± 32.4 0.19± 0.07 11.8± 2.4

average, LB-RELAX-R is always better than the baselines at any point of time
in the search on the MVC, MIS and MK instances.

Table 2. The time (in seconds) to improve the initial solution in one iteration and the
improvement of the primal bound, averaged over 100 instances. The time for LB is the
solving time of the LB ILP. The time for LB-RELAX and LB-RELAX-S is the sum of
the solving times of the LB relaxation and the sub-ILP. The numbers in parentheses
are the speed-ups. The improvement is computed by taking the difference between the
initial solution and the new incumbent solution and the numbers in parentheses are
the losses in quality in percent compared to LB. ↑ means higher is better, ↓ means
lower is better.

MVC MIS SC MK

LB Time↓ 40.2 56.0 600.0 600.0

Imp.↑ 129.79 65.50 12.21 216.51

LB-RELAX Time↓ 12.1 (3.3x) 19.5 (2.9x) 125.3 (4.8x) 5.87 (102.2x)

Imp.↑ 129.41 (−0.3%) 65.19 (−0.5%) 15.77 (+29.2%) 141.10 (−34.8%)

LB-RELAX-S Time↓ 12.0 (3.4x) 19.5 (2.9x) 24.51 (24.5x) 5.12 (117.6x)

Imp.↑ 128.61 (−0.9%) 62.46 (−4.6%) 5.65 (−53.7%) 113.48 (−47.6%)

Table 1 presents the average primal gap and primal integral at 60 min time
cutoff. (See results at 15, 30 and 45 min time cutoff in Appendix.) On MVC, SC
and MK instances, all LB-RELAX, LB-RELAX-S and LB-RELAX-R have lower

Local Branching Relaxation Heuristics for Integer Linear Programs 107

Fig. 3. Comparison with LB: The primal bound as a function of the number of itera-
tions, averaged over 100 instances.

primal gaps and primal integrals on average than any baselines, demonstrating
that they not only find higher quality solutions but also find them at a faster
speed. On MIS and MK instances, LB-RELAX-R achieves the lowest primal
gap and primal integral among all approaches. It also achieves the lowest primal
integral on MVC and SC instances. Overall, LB-RELAX-R always comes up in
the top 2 in both metrics on all problems.

Figure 2 shows the survival rate over 100 instances as a function of time to
meet a certain primal gap threshold. On MVC instances, LB-RELAX and LB-
RELAX-R achieve final survival rates above 0.9 while the best baseline RAN-
DOM stays below 0.8. On MIS instances, both LB-RELAX-R and RANDOM
achieve final survival rates of 1.0 but LB-RELAX-R uses shorter time. On SC
instances, LB-RELAX-S and LB-RELAX-R consistently has a higher survival
rate than the baselines. On MK instances, LB-RELAX and its variants achieve
survival rates above 0.9 within 15 min while the best baseline GRAPH only gets
to around 0.6 with 60 min.

One limitation of LB-RELAX and its variants is that they do not perform
well on some problem domains, for example the maximum cut and combinatorial
auction problems. Please see Appendix for more results.

Next, we run LB, LB-RELAX and LB-RELAX-S for 10 iterations to com-
pare their effectiveness. We follow the same setup as earlier described, except
that we do not use adaptive neighborhood sizes to make sure they have the same

108 T. Huang et al.

Fig. 4. Comparison with ML approaches: The primal bound as a function of time,
averaged over 100 instances.

Fig. 5. Comparison with ML approaches: The survival rate over 100 instances as a
function of time to meet a certain primal gap threshold. The primal gap thresholds are
chosen in the same way as Fig. 2.

kt in each iteration t. Note that the time limit for solving the sub-ILP in each
iteration is set to 10 min for LB and 2 min for LB-RELAX and LB-RELAX-S.
Table 2 shows the average time to improve the initial solutions and the average
improvement of the primal bound in the first iteration of LNS. This allows us
to compare how closely LB-RELAX and LB-RELAX-S approximate the qual-
ity of the neighborhood selected by LB and study the trade-off between quality
and time. Compared to LB, LB-RELAX and LB-RELAX-S have 2.9x–117.6x
speed-up but only lose at most 53.7% in quality. In particular, on MVC and
MIS instances, both LB-RELAX and LB-RELAX-S lose 0.5% to 4.6% in qual-
ity but have at least 2.9x speed-up; on SC instances, LB-RELAX even gains
29.2% in quality and save 79.1% in time, due to LB cannot find a good enough
neighborhood within its time limit (Fig. 5).

In Fig. 3, we show the primal bound as a function of the number of iterations.
It allows comparing the effectiveness of different heuristics independently of their
speed. On the MVC instances, both LB-RELAX and LB-RELAX-S perform
similarly to but slightly worse than LB. On the SC and MK instances, LB-
RELAX achieves better performance than LB, again due to scalability issues
of LB, and LB-RELAX-S achieves competitive performance with LB after 10

Local Branching Relaxation Heuristics for Integer Linear Programs 109

Fig. 6. Results on 31 selected MIPLIB instances: The best performing rate as a function
of time (left) and the survival rate over 31 instances as a function of time to meet the
primal gap threshold 0.50% (right).

iterations. However on the MIS instances, both LB-RELAX and LB-RELAX-
S are able to quickly improve the primal bound in the first 2–3 iterations, but
afterwards converge to local minima and the gaps between them and LB increase.
To complete the first 10 iterations, both LB-RELAX and LB-RELAX-S take less
than 21 min on SC instances and 3.3 min on the others, while LB takes at least
57 min and sometimes up to 100 min.

Comparison with ML Approaches. Then, we compare LB-RELAX, LB-
RELAX-R and LB-RELAX-S on MVC, MIS and SC instances with ML
approaches, namely IL-LNS and RL-LNS. Figure 4 shows the primal gap as a
function of time averaged over 100 instances. The results show that LB-RELAX,
LB-RELAX-R and LB-RELAX-S consistently improve the primal bound a lot
faster than IL-LNS and RL-LNS in the first few minutes of LNS. On MVC
instances, IL-LNS surpasses LB-RELAX-R with the smallest average primal gap
best after 20 min and achieve (close-to-)zero gaps after 30 min. On MIS instances,
LB-RELAX-R has a smaller gap than both IL-LNS and RL-LNS throughout
the first 60 min. On SC instances, IL-LNS is very competitive with LB-RELAX
and converges to a similar but slightly higher gap than LB-RELAX-R and LB-
RELAX-S; RL-LNS converges to almost the same primal gap as LB-RELAX-R
on average but is worse than the best performer LB-RELAX-S. Overall, LB-
RELAX and its variants, that do not require extra computational resources for
training, are competitive with and more often even better than state-of-the-art
ML approaches, suggesting that they are agnostic to the distributions of the
instances and easily applicable to different problem domains.

Results on Selected MIPLIB Instances. Finally, we examine how well LB-
RELAX and its variants perform on ILPs that are diverse in structures and sizes.
We test them on the MIPLIB dataset [16]. MIPLIB contains COPs from various
real-world domains. We follow a procedure similar to [43] to filter out instances
where we first filter to retain ILP instances with only binary variables. Among
these, we select instances that are not too easy to solve but relatively easy to find

110 T. Huang et al.

a feasible solution for. Specifically, we filter out those that BnB can optimally
solve within 3 h (too easy) or BnB cannot find any solutions within 10 min (too
hard), which gives us 35 instances. For all LNS approaches, we run BnB for
10 min to find the initial solution and set the time limit to 10 min for each repair
operation. The initial neighborhood size k0 is set to 20% of the number of binary
variables. We compare LB-RELAX, LB-RELAX-R and LB-RELAX-S with the
non-ML baselines. We further filter out 4 instances that no approach can find a
better solution than the initial one, which finally gives us 31 instances.

Figure 6 shows the winning rate as a function of time for each approach on
the 31 instances. The best performing rate at a time q for an approach is the
fraction of instances on which it achieves the best performance (including ties)
compared to all approaches in the portfolio. LB-RELAX, LB-RELAX-R and
LB-RELAX-S achieve the best performance with less than 1000 s seconds on 25,
23 and 24 instances out of 35, respectively. LB-RELAX-R has the highest best
performing rates at different time cutoffs and ties with BnB at 14 instances at
the 60-minute mark. Figure 6 also shows the survival rate over the 31 instances as
a function of time to meet the primal gap threshold 0.50%. It demonstrates that
RANDOM, GRAPH and BnB are competitive with our approaches but overall
LB-RELAX-R has the highest survival rate over time. On some instances, LB-
RELAX and its variants can significantly outperform the baselines and we show
the anytime performance on those in Appendix.

6 Conclusion

In this paper, we focused on designing effective and efficient destroy heuristics to
select neighborhoods in LNS for ILPs. LB is an effective destroy heuristic but is
slow to run. We therefore proposed LB-RELAX, LB-RELAX-S and LB-RELAX-
R to approximate LB’s decisions by solving its LP relaxation that is a lot faster to
run. Empirically, we showed that LB-RELAX, LB-RELAX-S and LB-RELAX-R
efficiently selected almost as effective neighborhoods as LB and achieved state-
of-the-art performance when compared against non-ML and ML approaches.
One limitation of our approaches is that they do not work well on some problem
domains, however we showed that they still outperformed the baselines on 14
to 25 (depending on the time cutoff) out of 31 difficult MIPLIB instances that
are diverse in problem domains, structures and sizes. The other limitation is
that they can get stuck at local minima. To address this issue, we proposed
techniques to randomize the heuristics and adaptively adjust the neighborhood
sizes. For future work, one could improve LB-RELAX and its variants to make
them applicable on more problem domains. In addition, instead of using hard-
coded rules for scheduling the randomized heuristic in LB-RELAX-R, one could
use adaptive LNS to select destroy heuristics to run. It is also future work to
develop theoretical claims to help support and explain the effectiveness of LB-
RELAX, LB-RELAX-S, LB-RELAX-R and possibly their other variants.

Local Branching Relaxation Heuristics for Integer Linear Programs 111

Acknowledgements. This paper reports on research done while Taoan Huang and
Aaron Ferber were interns at Meta AI (FAIR). The research at the University of South-
ern California was supported by the National Science Foundation (NSF) under grant
number 2112533.

References

1. Achterberg, T., Berthold, T., Hendel, G.: Rounding and propagation heuristics
for mixed integer programming. In: Klatte, D., Lüthi, H.J., Schmedders, K. (eds.)
Operations Research Proceedings 2011. Operations Research Proceedings, pp. 71–
76. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29210-1 12

2. Achterberg, T., Wunderling, R.: Mixed integer programming: analyzing 12 years
of progress. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimiza-
tion, pp. 449–481. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38189-8 18

3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47 (2002)

4. Amaral, A.R.: An exact approach to the one-dimensional facility layout problem.
Oper. Res. 56(4), 1026–1033 (2008)

5. Azi, N., Gendreau, M., Potvin, J.Y.: An adaptive large neighborhood search for
a vehicle routing problem with multiple routes. Comput. Oper. Res. 41, 167–173
(2014)

6. Berthold, T.: Primal heuristics for mixed integer programs. Ph.D. thesis, Zuse
Institute Berlin (ZIB) (2006)

7. Berthold, T.: Rens. Math. Program. Comput. 6(1), 33–54 (2014)
8. Bestuzheva, K., et al.: The SCIP optimization suite 8.0. Technical report, Opti-

mization Online (2021). http://www.optimization-online.org/DB HTML/2021/
12/8728.html

9. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial opti-
mization. Adv. Neural Inf. Process. Syst. 32 (2019)

10. Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods
to improve MIP solutions. Math. Program. 102(1), 71–90 (2005)

11. De Vries, S., Vohra, R.V.: Combinatorial auctions: a survey. INFORMS J. Comput.
15(3), 284–309 (2003)

12. Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conser-
vation. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp.
102–116. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13520-
0 14

13. Fischetti, M., Lodi, A.: Local branching. Math. program. 98(1), 23–47 (2003)
14. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial

optimization with graph convolutional neural networks. Adv. Neural Inf. Process.
Syst. 32 (2019)

15. Ghosh, S.: DINS, a MIP improvement heuristic. In: Fischetti, M., Williamson,
D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 310–323. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-72792-7 24

16. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. 13(3), 443–490 (2021). https://doi.
org/10.1007/s12532-020-00194-3

17. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://
www.gurobi.com

https://doi.org/10.1007/978-3-642-29210-1_12
https://doi.org/10.1007/978-3-642-38189-8_18
https://doi.org/10.1007/978-3-642-38189-8_18
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.1007/978-3-642-13520-0_14
https://doi.org/10.1007/978-3-642-13520-0_14
https://doi.org/10.1007/978-3-540-72792-7_24
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://www.gurobi.com
https://www.gurobi.com

112 T. Huang et al.

18. Hendel, G.: Adaptive large neighborhood search for mixed integer programming.
Math. Program. Comput. 14(2), 185–221 (2022)

19. Heragu, S.S., Kusiak, A.: Efficient models for the facility layout problem. Eur. J.
Oper. Res. 53(1), 1–13 (1991)

20. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated
vehicle routing problem. In: ECAI 2020, pp. 443–450. IOS Press (2020)

21. Huang, T., Dilkina, B.: Enhancing seismic resilience of water pipe networks. In:
Proceedings of the 3rd ACM SIGCAS Conference on Computing and Sustainable
Societies, pp. 44–52 (2020)

22. Huang, T., Li, J., Koenig, S., Dilkina, B.: Anytime multi-agent path finding via
machine learning-guided large neighborhood search. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pp. 9368–9376 (2022)

23. Huang, T., et al.: Deadline-aware multi-agent tour planning. In: Proceedings of the
International Conference on Automated Planning and Scheduling (ICAPS) (2023)

24. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch in
mixed integer programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30 (2016)

25. Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education India (2006)
26. Kovacs, A.A., Parragh, S.N., Doerner, K.F., Hartl, R.F.: Adaptive large neigh-

borhood search for service technician routing and scheduling problems. J. Sched.
15(5), 579–600 (2012)

27. Land, A.H., Doig, A.G.: An automatic method for solving discrete programming
problems. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulley-
blank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer
Programming 1958-2008, pp. 105–132. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-540-68279-0 5

28. Li, J., Chen, Z., Harabor, D., Stuckey, P.J., Koenig, S.: Anytime multi-agent path
finding via large neighborhood search. In: Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), pp. 4127–4135 (2021)

29. Li, J., Chen, Z., Harabor, D., Stuckey, P.J., Koenig, S.: MAPF-LNS2: fast repairing
for multi-agent path finding via large neighborhood search. In: Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), pp. 10256–10265 (2022)

30. Li, S., Yan, Z., Wu, C.: Learning to delegate for large-scale vehicle routing. Adv.
Neural. Inf. Process. Syst. 34, 26198–26211 (2021)

31. Liu, D., Fischetti, M., Lodi, A.: Revisiting local branching with a machine learning
lens

32. Lu, H., Zhang, X., Yang, S.: A learning-based iterative method for solving vehicle
routing problems. In: International Conference on Learning Representations (2019)

33. Maher, S.J., et al.: The SCIP optimization suite 4.0 (2017)
34. Manne, A.S.: On the job-shop scheduling problem. Oper. Res. 8(2), 219–223 (1960)
35. Pohl, I.: Heuristic search viewed as path finding in a graph. Artif. Intell. 1(3–4),

193–204 (1970)
36. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)
37. Rothberg, E.: An evolutionary algorithm for polishing mixed integer programming

solutions. INFORMS J. Comput. 19(4), 534–541 (2007)
38. Scavuzzo, L., et al.: Learning to branch with tree MDPS. arXiv preprint

arXiv:2205.11107 (2022)
39. Smith, S.L., Imeson, F.: GLNS: an effective large neighborhood search heuristic for

the generalized traveling salesman problem. Comput. Oper. Res. 87, 1–19 (2017)

https://doi.org/10.1007/978-3-540-68279-0_5
https://doi.org/10.1007/978-3-540-68279-0_5
http://arxiv.org/abs/2205.11107

Local Branching Relaxation Heuristics for Integer Linear Programs 113

40. Song, J., Yue, Y., Dilkina, B., et al.: A general large neighborhood search framework
for solving integer linear programs. Adv. Neural. Inf. Process. Syst. 33, 20012–
20023 (2020)

41. Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., Nair, V.: Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint
arXiv:2107.10201 (2021)

42. Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM (2002)
43. Wu, Y., Song, W., Cao, Z., Zhang, J.: Learning large neighborhood search policy

for integer programming. Adv. Neural. Inf. Process. Syst. 34, 30075–30087 (2021)
44. Žulj, I., Kramer, S., Schneider, M.: A hybrid of adaptive large neighborhood search

and tabu search for the order-batching problem. Eur. J. Oper. Res. 264(2), 653–664
(2018)

http://arxiv.org/abs/2107.10201

Online Learning for Scheduling MIP
Heuristics

Antonia Chmiela1(B), Ambros Gleixner1,2, Pawel Lichocki3,
and Sebastian Pokutta1,4

1 Zuse Institute Berlin, Berlin, Germany
{chmiela,gleixner,pokutta}@zib.de

2 Hochschule für Technik und Wirtschaft Berlin, Berlin, Germany
3 Google Research, Mountain View, USA

pawell@google.com
4 Technische Universität Berlin, Berlin, Germany

Abstract. Mixed Integer Programming (MIP) is NP-hard, and yet
modern solvers often solve large real-world problems within minutes.
This success can partially be attributed to heuristics. Since their behav-
ior is highly instance-dependent, relying on hard-coded rules derived
from empirical testing on a large heterogeneous corpora of benchmark
instances might lead to sub-optimal performance. In this work, we pro-
pose an online learning approach that adapts the application of heuristics
towards the single instance at hand. We replace the commonly used static
heuristic handling with an adaptive framework exploiting past observa-
tions about the heuristic’s behavior to make future decisions. In particu-
lar, we model the problem of controlling Large Neighborhood Search and
Diving – two broad and complex classes of heuristics – as a multi-armed
bandit problem. Going beyond existing work in the literature, we con-
trol two different classes of heuristics simultaneously by a single learning
agent. We verify our approach numerically and show consistent node
reductions over the MIPLIB 2017 Benchmark set. For harder instances
that take at least 1000 s to solve, we observe a speedup of 4%.

Keywords: Mixed Integer Programming · Machine Learning ·
Heuristics

1 Introduction

A multitude of problems arising from real-world applications can be modeled
as Mixed Integer Problems (MIPs). Because of that, there is high interest in

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) under Germany’s Excellence Strategy - The Berlin Mathe-
matics Research Center MATH+ (EXC-2046/1, 390685689) and by the German Federal
Ministry of Education and Research (BMBF) within the Research Campus MODAL
(05M14ZAM, 05M20ZBM) and supported by a Google Research Award.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 114–123, 2023.
https://doi.org/10.1007/978-3-031-33271-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_8&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_8

Online Learning for Scheduling MIP Heuristics 115

finding ways to solve MIPs efficiently. Generally, the Branch-and-Bound (B&B)
framework [23] is used which decomposes the optimization problem in smaller
subproblems that are then easier to handle. Since this approach involves a variety
of decisions that significantly influence its behavior, the idea of using machine
learning (ML) has gained interest: ML has been used to find good solver param-
eters [11,19,20], to improve node [14,32], variable [2,12,21,26,27,29], and cut
selection [3,18,28,30,31], and to detect decomposable structures [22].

The objective of B&B is to solve MIPs to global optimality. However, it is
often not feasible to wait until the optimum is found, thus finding good feasible
solutions early on is important. Primal heuristics are crucial for this: In [4],
the authors showed that heuristics improved the primal bound by 80% and the
solving time by 30% on average. An overview of different primal heuristics and
their impact can be found in [5,6,26].

Primal heuristics are powerful but can be very costly, thus it is important to
be strategic about how they are applied in practice. Controlling their behavior
by hard-coded rules derived from empirical tests on heterogeneous benchmark
sets leads to strategies that work averagely well on a broad variety of instances.
However, since the performance of heuristics is highly instance-dependent, this
might lead to suboptimal behavior. For example, primal performance can be
significantly improved by deriving problem-specific heuristic settings [10].

In this work, we present an online learning approach to control primal heuris-
tics within B&B. We model heuristic selection as a multi-armed bandit problem
and exploit past observations of heuristics’ behavior to learn on-the-fly which
heuristics are most likely to be successful. Our scheduler is, thus, capable to
adapt to and leverage specific characteristic of the problem at hand. In particu-
lar, we control Large Neighborhood Search and Diving, two significantly different
and complex classes of heuristics.

Contribution. To the best of our knowledge, this is the first time when two
different classes of heuristics are treated simultaneously by a single learning
agent. To summarize:

1. We propose an online learning approach for heuristic scheduling to
replace more static heuristic handling (Sect. 3),

2. We support our findings by extensive computational experiments on
a heterogeneous benchmark test set to numerically verify our approach
(Sect. 4).

Related Work. Since heuristics have a large impact on solver performance, using
ML to develop new strategies and to optimize their usage is a topic of ongoing
research. For instance, [27] use neural networks to derive variable assignments
to find primal solutions. The authors in [17] propose a bi-layer prediction model
utilizing graph convolutional networks designed to help heuristics find solutions
faster. To improve the usage of heuristics, the authors in [21] learn an oracle that
aims to predict at which nodes a heuristic will be successful or not. Whereas
in [10] a data-driven heuristic scheduling framework is proposed that learns
problem-specific heuristic schedules to find many solutions at minimal cost.

116 A. Chmiela et al.

In [15,16] adaptive heuristics are built that use bandit algorithms to decide
which heuristics to additionally run. In particular, their ALNS heuristic [15]
inspired the framework we present here: While ALNS was designed as another
primal heuristic to be added in the pool of available heuristics, we extend it to a
framework that aims to replace static heuristic handling and that can be easily
extendable to handle any class of heuristics.

2 Background

Mixed Integer Problems. A MIP is an optimization problem of the form

min
x

cTx, s.t. Ax ≤ b, xi ∈ Z, i ∈ I, (P)

with matrix A ∈ R
m×n, vectors b, c ∈ R

m and index set I ⊆ [n]. To solve
(P), B&B partitions the feasible region, resulting in a tree structure with nodes
correspond to the simpler subproblems.

Primal Heuristics. Heuristics aim to find feasible solutions for (P). Generally, a
solver utilizes a variety of heuristics exploiting different ideas to find high-quality
solutions. Two of the most complex and time consuming classes of heuristics are
diving and Large Neighborhood Search (LNS). Diving heuristics examine a single
probing path by sub-sequentially fixing variables according to a specific rule. In
contrast, LNS builds a neighborhood around a reference point by fixing a certain
percentage of variables and then solving the resulting sub-MIP. Since no heuristic
is guaranteed to be successful, the solver iterates over all available heuristics in a
predefined order to hopefully find a new solution. Good heuristics, like diving and
LNS, are typically computationally expensive. Thus, it is especially important
to be strategic about controlling them.

Multi-Armed Bandit Problem. Given a set of actions A, an agent aims to select a
series of actions with maximal cumulative reward. In every iteration t, an action
at ∈ A is selected for which a reward rt ∈ [0, 1] is observed. Since the agent
only learns how the selected action behaves, a good strategy entails a balance
between exploring unknown actions and exploiting the ones that performed well
in the past. There are various approaches to finding a good strategy, see [9,24].

3 Scheduling Primal Heuristics Online

We present an online learning approach that models heuristic handling as a
multi-armed bandit problem. Thereby, the set of actions A corresponds to the
set of heuristics H we want to control. Two main challenges arise when modeling
the scheduling of heuristics this way: (i) defining a suitable reward function and
(ii) choosing the right bandit algorithm. After presenting our online scheduling
framework, we describe how we tackle both in Sect. 3.2 and 3.3, respectively.

Online Learning for Scheduling MIP Heuristics 117

3.1 The Online Scheduling Framework

The scheduler controls a set of primal heuristics H. Each heuristic has spe-
cial working limits influencing its behavior. Whenever the scheduler is called,
it selects and executes one heuristic h ∈ H. Depending on how h performed,
we dynamically adapt some of its working limits. This way, we not only tailor
heuristic handling to the instance at hand but also reduce the number of user-
defined parameters. To summarize, the scheduler executes the following steps:

ONLINE SCHEDULING FRAMEWORK

HEURISTIC 1

HEURISTIC 2

HEURISTIC 3 ML MODEL

SOLVER SOLUTION

ML MODEL REWARD

SUCCESS
CHECK

SELECT OBSERVE

UPDATECALL

Fig. 1. Visualisation of the Online Scheduling Framework: When the solver
decides to run heuristics, it is checked if the scheduler was successful enough in the
past. If so, a bandit algorithm selects a heuristic which is executed with specific working
limits. A reward is observed and then used to update the bandit as well as the working
limits. A solution is returned to the solver if one was found.

1. Select heuristic h using a suitable bandit algorithm (introduced in
Sect. 3.3).

2. Execute heuristic h using the current working limits.
3. Observe reward r after executing h (introduced in Sect. 3.2).
4. Update bandit algorithm and working limits of h using reward r.

An overview of the scheduling framework is shown in Fig. 1.
Often, a solver finds an optimal solution noticeably faster than it proves

the solution’s optimality [7]. Thus, always running heuristics with the same
frequency is not necessarily the best strategy. To dynamically adapt how often
the scheduler is executed, we track how often no solution was found. Whenever
it is unsuccessful for too long, we skip a number of future calls to the scheduler:
We skip �exp(βnfail)� − 1 calls, where nfail counts consecutively failed calls and
β = 0.1.

At the beginning of the solving process, when heuristics run for the first time,
the scheduler does not have any information about the heuristic’s behavior yet.
Thus, any bandit algorithm would start by selecting heuristics at random. To
avoid uninformed decisions, our framework uses expert knowledge to warmstart
the bandit strategy: We execute all heuristics in their default order first and
observe their rewards; only then the bandit algorithm takes over.

This is a general heuristic scheduling framework that can be applied to an
arbitrary set H. However, as mentioned in Sect. 2, we focus on LNS and diving

118 A. Chmiela et al.

since they cover the majority of the more complex heuristics. We control different
types of working limits directly influencing the cost and success probability of
the heuristics: For LNS, we impose a target fixing rate and for diving, we control
the LP resolve frequency. We adapt both as follows.

The target fixing rate controls how many integer variable should be fixed in
the sub-MIP. This directly influences the success rate as well as the costs of the
heuristic. The more variables are fixed, the easier but also the more restrictive
the resulting subproblem becomes. To dynamically adapt the fixing rate, we use
the same approach as presented in [15]. Let us denote by f t

h ∈ [0, 1] the target
fixing rate of heuristic h at iteration t. Assuming that h was selected, we have

f t+1
h =

{
max{(1 − γ)f t

h, fmin}, if h found solution or sub-MIP was infeasible,
min{(1 + γ)f t

h, fmax}, otherwise,

with factor γ ∈ [0, 1] and target fixing rate limits fmin, fmax ∈ [0, 1]. We choose
γ = 0.1, fmin = 0.3, fmax = 0.9, and f0

h = fmax for all LNS heuristics.
Diving heuristics successively fix integer variables and reoptimize the cor-

responding LP relaxation in between. If the LP is solved more often, diving
becomes more expensive, but also more successful: Fixings that led to infeasi-
bility can be detected earlier and then be corrected by backtracking. To control
how often the LP is solved, the fraction of variables is tracked that had their
domains changed since the last LP solve. If this fraction exceeds a threshold
parameter q, an LP solve is triggered; larger q results in less frequent LP solves.

We dynamically adjust this threshold in a similar fashion to the target fixing
rate of LNS heuristics. Let us denote by qth ∈ [0, 1] the value for diving heuristic
h at iteration t. If h was selected at t, then

qt+1
h =

{
max{(1 − η)qth, qmin}, if h did not find an incumbent at iteration t

min{(1 + η)qth, qmax}, otherwise

for factor η ∈ [0, 1] and the bounds qmin, qmax ∈ [0, 1]. Thus, if h was not
successful, we reduce qth to increase the success probability of h in the future.
Otherwise, we increase the value to reduce the cost of executing h. We choose
η = 0.1, qmin = 0.05, qmax = 0.3, and q0

h = qmin for all diving heuristics.

3.2 Choosing a Reward Function

The simplest choice to reward a heuristic h ∈ H would be the binary function

rsol(h, t) =

{
1, if h found an incumbent at iteration t

0, otherwise.

However, heuristics find improving solutions rather rarely: For instance, on the
test set we consider in our experiments, the default settings of the solver found
on average only 12 incumbents. Thus, using rsol as the only reward signal might
not give enough feedback to the agent. Furthermore, rsol lacks a lot of important

Online Learning for Scheduling MIP Heuristics 119

information. For example, a heuristic that fails fast is preferable over one that
needs more time to terminate without a solution. Furthermore, if a solution is
found, its quality should also be considered. Besides the obvious preference for
better solutions, considering the current stage of the solving process is vital:
At the beginning, it is much easier to find a new incumbent than at a more
advanced stage. Another problem is that rsol implicitly assumes the only objec-
tive of heuristics is finding solutions. This is not always true, for instance, diving
heuristics can also generate conflict constraints [1], which profits the solver.

Thus, besides rsol, we consider three additional metrics to reward h:

1. rgap to reward the quality of the new incumbent if h was successful,
2. reff to punish the effort it took to execute h,
3. rconf to reward the number of conflict constraints h found.

The overall reward function r is then

r(h, t) = λ1rsol(h, t) + λ2rgap(h, t) + λ3reff(h, t) + λ4rconf(h, t),

with λi ∈ [0, 1]. We choose λ1 = λ2 = 0.3 and λ3 = λ4 = 0.2.
The functions rgap, reff, and rconf are defined as follows. Assuming that h was

successful, let us denote by xnew and xold the new and old solution, respectively.
Furthermore, let xLP be the solution of the current linear relaxation. Then, we
measure the quality of xnew relative to the current solving stage with

rgap(h, t) =

⎧⎪⎨
⎪⎩

0, if h did not find an incumbent at iteration t

1, if h found the first incumbent at iteration t
cTxold−cTxnew

cTxold−cT xLP
, otherwise.

To define reff, let nt
h be the number of nodes used by h, and nmax an upper

bound on the maximal number of nodes used. For LNS, nt
h refers to the number

of nodes solved in the sub-MIP; for diving, it refers to the number of nodes
visited during the partial search. Finally, we define reff(h, t) = 1 − nt

h

nmax
and

rconf(h, t) = vt
h

vmax
where vt

h is the number of conflict constraints h found and
vmax the maximal number of conflict constraints found by any heuristic in the
past. The reward function r is an extension of the reward used in [15], which
only uses rgap and variants of rsol and reff.

3.3 Choosing a Bandit Algorithm

As mentioned before, to solve the multi-armed bandit problem successfully, we
need to balance exploitation and exploration carefully. In our case, this raises the
following question: Should we prioritize heuristics that have not been executed
(that often) or heuristics that have performed well in the past? Our experimen-
tal results suggests that for primal heuristics, exploitation is the better choice.
Typically, a heuristic that performs bad at the beginning, will also be rather
unsuccessful later on, since it only gets harder to find improving solutions.

120 A. Chmiela et al.

Algorithm 1. Modified ε-greedy bandit algorithm
Input: Set of heuristics H, reward function r, probability ε ∈ [0, 1]
w(h, 0) ← 1

|H|
t ← 0
while not stopped do

t ← t + 1

εt ← ε ·
√

|H|
t

Draw ρt ∼ U([0, 1])
if ρt > εt then

ht ← argmax
h∈H

w(h, t − 1)

else
Draw ht ∼ w(·, t − 1)

end if
Observe reward r(ht, t)
if ht was selected for the first time then

w(ht, t) ← r(ht, t)
else

w(ht, t) ← update average weight with r(ht, t)
end if

end while

That is why we propose to use a variant of the ε-greedy bandit algorithm.
The ε-greedy, or follow-the-leader, algorithm pursues a simple strategy: Given an
ε ∈ [0, 1], the best action seen so far is chosen with probability 1−ε. Otherwise, an
action is randomly selected following a uniform distribution. To characterize the
best action at iteration t, we associated a weight w(h, t) with every heuristic h.
The weights w are equal to the average reward of h observed so far, that is,
w(h, t) =

∑
t̃∈T t

h
r(h, t̃)/|T t

h | with T t
h ⊆ [t] being the subset of calls at which h

was selected up to time t.
In the modified ε-greedy algorithm we consider, instead of selecting a heuris-

tic uniformly at random, we draw it following the distribution imposed by the
weights w. This variant allows for more exploitation; it is described in Algo-
rithm 1. In our experiments, our online scheduling approach performed best
with this bandit algorithm. We use ε = 0.7.

To put more focus on heuristics that performed well in the recent past, we
also tried another modification: Instead of looking at the average reward as w,
we examined using an aggregation of the observed rewards where older observa-
tions contribute exponentially less. This performed considerably worse, suggest-
ing that it is preferable to consider all past behavior to make future decisions.

4 Computational Results

To study the performance of our approach, we used the state-of-the-art open-
source MIP solver SCIP 8.0 with SoPlex 6.0 [8]. We ran all experiments on a
Linux cluster of Intel Xeon CPU E5-2630 v3 2.40GHz with 64GB RAM. The time

Online Learning for Scheduling MIP Heuristics 121

Table 1. Summary of results for B&B experiments. Rows labeled [t, 7200] consist of
instances solved with at least one settings taking at least t seconds. heurtime refers
to time spent in heuristics controlled by the scheduler, relative to default. Shifted
geometric means are used.

subset instances default scheduler relative

solved time nodes solved time nodes time nodes heurtime

all 892 472 1157.44 4238 464 1189.03 4056 1.03 0.95 0.94

[0, 7200] 485 472 249.02 2522 464 261.70 2426 1.05 0.96 1.20

[1, 7200] 481 468 259.89 2593 460 273.23 2494 1.05 0.96 1.20

[10, 7200] 441 428 373.99 3439 420 394.12 3298 1.05 0.96 1.21

[100, 7200] 330 317 839.49 8231 309 862.90 7759 1.03 0.94 1.05

[1000, 7200] 175 162 2312.56 20769 154 2217.32 19627 0.96 0.95 0.68

all-optimal 451 451 199.60 2294 451 209.61 2168 1.05 0.95 1.25

limit was set two hours and the test set consists of the benchmark instances of the
MIPLIB 2017 [13]. Since our framework aims to improve primal performance, we
removed all infeasible instances and problems with a zero objective function. This
leaves us with 226 instances. To filter out the effects of performance variability
[25], all experiments are run with four random seeds.

We compare two settings: default refers to the default settings of SCIP and
scheduler refers to the proposed online scheduling framework. In the latter, we
deactivated all LNS and diving heuristics that are controlled by the scheduler, as
well as the two adaptive heuristics presented in [15,16]. The scheduler is called
at every node, right after cheaper heuristics like rounding.

Table 1 shows that scheduler consistently reduces the size of the B&B
tree by 4–6%. Unfortunately, this improvement does not directly translate into
improving solving time. However, we perform the better the harder the instances
get: On instances taking at least 1000 seconds to solve, the scheduling frame-
work outperforms default by about 4%. Even though scheduler solves 13
instances that cannot be solved by default, it fails to solve 21 instances solved
by default. One reason for this behavior could be the fact that for harder
instances, the scheduler tends to spend less time then default in the heuristics
controlled by it: On [1000, 7200], scheduler reduces time spent in heuristics by
over 30%.

The heuristics’ behavior shows that our scheduling framework succeeds in
detecting more successful heuristics: The scheduler finds 88% more incumbents
while increasing the probability of a heuristic finding a new solution by 57%. On
average, the heuristics controlled by scheduler find 3.80 solutions per instance
as opposed to 2.01; with a success probability of 4.49% instead of 2.86%.

To conclude, the computational results show that our scheduling framework
can improve the performance of a solver. However, for easier instances, it seems
that there is not much potential for improvement by using an online learning
approach; there we compete against the default parameters that have been tuned
on the test set over a long period of time. This could be attributed to a lack

122 A. Chmiela et al.

of observations: When an instance is solved fast, a learning approach might
not have enough time to gather meaningful information about the heuristics’
behavior. Furthermore, the results also suggest that our approach might be too
conservative for harder instances, since it reduces the time spent in heuristics
considerably.

Hence, we believe that there is further room for improvement, also since we
have not spent a large amount of effort on tuning any hyperparameters of our
method in order to obtain the current results. As next steps, we need to combine
the good performance of the static heuristic handling with our online scheduling
approach and better detect when to apply heuristics more aggressively and when
to rely on well-working default parameters.

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discret. Optim.
4(1), 4–20 (2007)

2. Balcan, M.F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: Inter-
national Conference on Machine Learning, pp. 344–353. PMLR (2018)

3. Baltean-Lugojan, R., Bonami, P., Misener, R., Tramontani, A.: Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks
(2019). https://optimization-online.org/?p=17362

4. Berthold, T.: Measuring the impact of primal heuristics. Oper. Res. Lett. 41(6),
611–614 (2013)

5. Berthold, T.: Primal MINLP heuristics in a nutshell. In: International Conference
on Operations Research (2013)

6. Berthold, T.: A computational study of primal heuristics inside an MI(NL)P solver.
J. Glob. Optim. 70, 189–206 (2018)

7. Berthold, T., Hendel, G., Koch, T.: From feasibility to improvement to proof: three
phases of solving mixed-integer programs. Optim. Methods Softw. 33, 1–19 (2017)

8. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. ZIB-Report 21-41, Zuse
Institute Berlin (2021). https://nbn-resolving.de/urn:nbn:de:0297-zib-85309

9. Bubeck, S., Nicoló, C.B.: Regret analysis of stochastic and nonstochastic multi-
armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012)

10. Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., Pokutta, S.: Learning to schedule
heuristics in branch and bound. In: Advances in Neural Information Processing
Systems, vol. 34 (2021)

11. Iommazzo, G., D’Ambrosio, C., Frangioni, A., Liberti, L.: A learning-based math-
ematical programming formulation for the automatic configuration of optimization
solvers. In: Nicosia, G., et al. (eds.) LOD 2020. LNCS, vol. 12565, pp. 700–712.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64583-0 61

12. Etheve, M., Alés, Z., Bissuel, C., Juan, O., Kedad-Sidhoum, S.: Reinforcement
learning for variable selection in a branch and bound algorithm. arXiv:2005.10026
(2020)

13. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. 13(3), 443–490 (2021)

14. He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound
algorithms. In: Advances in Neural Information Processing Systems, vol. 27, pp.
3293–3301 (2014)

https://optimization-online.org/?p=17362
https://nbn-resolving.de/urn:nbn:de:0297-zib-85309
https://doi.org/10.1007/978-3-030-64583-0_61
http://arxiv.org/abs/2005.10026

Online Learning for Scheduling MIP Heuristics 123

15. Hendel, G.: Adaptive large neighborhood search for mixed integer programming.
Math. Program. Comput. 14(2), 185–221 (2022)

16. Hendel, G., Miltenberger, M., Witzig, J.: Adaptive algorithmic behavior for solving
mixed integer programs using bandit algorithms. In: International Conference on
Operations Research (2018)

17. Huang, L., et al.: Improving primal heuristics for mixed integer programming prob-
lems based on problem reduction: a learning-based approach. arXiv:2209.13217
(2022)

18. Huang, Z., et al.: Learning to select cuts for efficient mixed-integer programming.
Pattern Recognit. 123, 108353 (2022)

19. Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic algo-
rithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)

20. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Learning and Intelligent Optimization, pp.
507–523 (2011)

21. Khalil, E.B., Bodic, P.L., Song, L., Nemhauser, G., Dilkina, B.: Learning to branch
in mixed integer programming. In: Proceedings of the 30th AAAI Conference on
Artificial Intelligence (2016)

22. Kruber, M., Lübbecke, M., Parmentier, A.: Learning when to use a decomposition.
In: International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, pp. 202–210 (2017)

23. Land, A.H., Doig, A.G.: An automatic method of solving discrete programming
problems. Econometrica 28(3), 497–520 (1960)

24. Lattimore, T., Szepesvári, C.: Bandit Algorithms. Cambridge University Press,
Cambridge (2020)

25. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming.
Tutor. Oper. Res. 10, 1–12 (2013)

26. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236
(2017). https://doi.org/10.1007/s11750-017-0451-6

27. Nair, V., et al.: Solving mixed integer programs using neural networks. arXiv
preprint: arXiv:2012.13349 (2020)

28. Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L., Maddison, C.: Learning to cut
by looking ahead: cutting plane selection via imitation learning. In: Proceedings of
the 39th International Conference on Machine Learning, vol. 162, pp. 17584–17600
(2022)

29. Scavuzzo, L., et al.: Learning to branch with tree MDPs. arXiv:2205.11107 (2022)
30. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer programming:

learning to cut. In: Proceedings of the 37th International Conference on Machine
Learning, vol. 119, pp. 9367–9376 (2020)

31. Turner, M., Koch, T., Serrano, F., Winkler, M.: Adaptive cut selection in mixed-
integer linear programming. arXiv:2202.10962 (2022)

32. Yilmaz, K., Yorke-Smith, N.: A study of learning search approximation in mixed
integer branch and bound: node selection in SCIP. AI 2, 150–178 (2021)

http://arxiv.org/abs/2209.13217
https://doi.org/10.1007/s11750-017-0451-6
http://arxiv.org/abs/2012.13349
http://arxiv.org/abs/2205.11107
http://arxiv.org/abs/2202.10962

Contextual Robust Optimisation
with Uncertainty Quantification

Egon Peršak(B) and Miguel F. Anjos

University of Edinburgh, Edinburgh, UK
E.Persak@sms.ed.ac.uk

Abstract. We propose two pipelines for convex optimisation problems
with uncertain parameters that aim to improve decision robustness by
addressing the sensitivity of optimisation to parameter estimation. This
is achieved by integrating uncertainty quantification (UQ) methods for
supervised learning into the ambiguity sets for distributionally robust
optimisation (DRO). The pipelines leverage learning to produce contex-
tual/conditional ambiguity sets from side-information. The two pipelines
correspond to different UQ approaches: i) explicitly predicting the con-
ditional covariance matrix using deep ensembles (DEs) and Gaussian
processes (GPs), and ii) sampling using Monte Carlo dropout, DEs, and
GPs. We use i) to construct an ambiguity set by defining an uncertainty
around the estimated moments to achieve robustness with respect to the
prediction model. UQ ii) is used as an empirical reference distribution of
a Wasserstein ball to enhance out of sample performance. DRO problems
constrained with either ambiguity set are tractable for a range of convex
optimisation problems. We propose data-driven ways of setting DRO
robustness parameters motivated by either coverage or out of sample
performance. These parameters provide a useful yardstick in comparing
the quality of UQ between prediction models. The pipelines are compu-
tationally evaluated and compared with deterministic and unconditional
approaches on simulated and real-world portfolio optimisation problems.

Keywords: Prediction and Optimisation · Prescriptive Analytics ·
Uncertainty Quantification · Distributionally Robust Optimisation

1 Introduction

Real world decision problems are seldom deterministic. The perennial opera-
tional risk of mathematical programming is the sensitivity of the problem to its
parameterisation. Small differences in the parameters governing the objective or
the constraints can render solutions highly suboptimal or infeasible. Optimisa-
tion under uncertainty is a mature field which has devised a number of tractable
approaches that derive robust or expectation optimal solutions, thus manag-
ing the uncertainty. Since the true underlying distributions are never known in
practice, the most successful approaches exploit available samples of parameters

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 124–132, 2023.
https://doi.org/10.1007/978-3-031-33271-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_9&domain=pdf
http://orcid.org/0000-0003-3432-2123
http://orcid.org/0000-0002-8258-9116
https://doi.org/10.1007/978-3-031-33271-5_9

Contextual Robust Optimisation with Uncertainty Quantification 125

with statistically valid constructs of uncertainty. When contextual information
exists, using what amounts to an unsupervised approach should lead to overly
conservative decisions. Contexts of the problem for which existing samples are
information-poor may result in overly confident decisions. Problem parameters
can be estimated based on available contextual information using supervised
learning. This is commonly referred to as predict-then-optimise and is how pre-
scriptive analytics is often performed. This is a form of contextual optimisation,
but prediction models tend to be overly confident and in their vanilla form do
not quantify the certainty of their predictions. Using point parameter estimates
preserves the operational risk, which may be exacerbated due to inconsistent
out-of-sample performance. Given the ubiquity of predict-then-optimise deci-
sion making, improving its reliability and out-of-sample performance will result
in tangible impact.

In this work we propose an approach to adapt predictive models with uncer-
tainty quantification (UQ) to a robust optimisation setup. We mainly focus on
distributionally robust models (DRO), forming the pipeline UQ-DRO. Simi-
lar logic can be applied in robust ways for safety-critical situations. Section 2
introduces the concept of robust prediction and optimisation. Section 3 presents
implemented predictive methods with UQ. The ambiguity sets used with UQ
are defined in Sect. 4. Section 5 sets out data-driven algorithms for robustness
parameter specification and the objectives of the two pipelines. Section 6 com-
putationally evaluates the approach on a simulated and a real data portfolio
optimisation problem.

2 Robust Predict-then-Optimise

Prediction models provide an estimate of the conditional expected value of the
target. Predictive uncertainty can be decomposed into epistemic, and aleatoric
uncertainty. Epistemic uncertainty is a result of a lack of information about
the true data generating process (DGP). Aleatoric uncertainty is the underly-
ing stochasticity of the process and is irreducible. Even in the best-case super-
vised scenario, the persisting aleatoric uncertainty presents an operational risk,
thus motivating the use of robust approaches. A well-tuned robust predict-then-
optimise approach would provide a meaningful scoring criterion for predictive
models used in optimisation, reflecting their worst-case outcome. The key driver
of decision quality in such a system would be the level of epistemic uncertainty,
which would determine the needed level of conservativeness. As such, the pre-
dictive model should be highly expressive, trained delicately, as phenomena such
as overfitting may increase out-of-sample epistemic uncertainty, and capable of
reasonably capturing the uncertainty of its predictions. The prediction task in
this case is more difficult as we are typically interested in the values of many
parameters, encouraging the use of multiple-output models to better capture
interdependence.

Existing approaches for conditional optimisation have utilised local nonpara-
metric regression methods such as K-nearest neighbours with DRO [2,3,15] to

126 E. Peršak and M. F. Anjos

provide a conditional sample for a variety uncertain optimisation problems.
Building on this [8] propose a method based on distribution trimmings and
cast it as a partial mass transportation problem to hedge against the limitations
of inferring conditional distributions with limited samples, providing an outer
layer of robustness. On the other hand, a growing body of literature has looked
at fused approaches wherein the prediction function is optimised with respect
to decision loss. Often referred to as Predict-and-Optimise, it involves differen-
tiating across a solver which has been achieved either with surrogate gradients
[1,17] or differentiating the optimality conditions [7,16] of a potentially relaxed
problem. These models implicitly learn how to deal with conditional uncertainty.

In contrast our work uses global supervised learning methods. This is moti-
vated by the idea that global models have the potential to cross-learn about dif-
ferent contexts through shared patterns in the data. This improves the model’s
ability to infer about contexts which are information-poor, a key case of which are
out-of sample contexts. We do not make any assumptions on the DGP, instead
relying on a cross-validation type approach to determine robustness parameters.

3 Predictive Models with Uncertainty Quantification

We propose the use of three predictive approaches which have high expressive
power and capacity for UQ. The approaches cover both main directions in UQ,
namely ensemble, and Bayesian techniques. The ensemble approach is a deep
ensemble (DE) [11], an ensembling technique which treats ensemble members as
mixture model components. Constituent models are neural networks designed to
predict both a mean vector and a covariance matrix. They are trained using a
form of gradient descent to minimise the negative log likelihood given a paramet-
ric assumption about the DGP’s uncertainty, usually heteroskedastic Gaussian,
though Laplacian likelihood may be more appropriate for heavy tails. Denote
the available contextual information as x ∈ R

n, and the model parameters as
θ. The model maps R

n �→ R
p × R

p×p or from contextual information x to a
mean vector μ(x) ∈ R

p and covariance matrix Σ(x) ∈ R
p×p. The optimisation

problem with a Gaussian maximum likelihood objective is:

min
θ

L(θ) =
∑

(x,y)∈D

1
2
(y− μ(x; θ))T Σ(x; θ)−1(y− μ(x; θ)) +

1
2
ln(|Σ(x; θ)|) (1)

Note that the covariance matrix is symmetric, so only p + p(p+1)
2 outputs need

to be predicted. The structural concern is that Σ should be positive semidefinite
(PSD). We follow [14] who encourage a PSD estimate by using an exp activa-
tion function for variance terms and a tanh activation function for predicting
correlation coefficients from which they construct covariances. The size of the
estimated matrix grows quadratically, so this approach is unlikely to scale to
large problems. In practice, the exponential activation and subsequent matrix
construction can lead to numerical difficulties with the determinant. Since we
are interested in the log of the determinant we can reformulate this part of the

Contextual Robust Optimisation with Uncertainty Quantification 127

loss function into a sum of the log of its eigenvalues. If an odd number of eigen-
values are negative, we clip the value at a small positive ε. While this means
that the resulting matrix may not be PSD in intermediate steps, it enables more
informative gradients and tends to predict PSD matrices after training. This
procedure is fully differentiable and was key to stabilising training in addition
to standardising variables.

The second approach is Monte-Carlo dropout (MCD), which is an ensemble
technique that became popular after a Bayesian analysis showed that it can be
cast as approximate inference in deep Gaussian processes [9]. MCD relies on a
regularisation technique for deep learning called dropout. Dropout deactivates
neurons in the network randomly according to some prior parameterisation (usu-
ally Bernoulli), thus limiting the gradient information during that pass to the
active units. Dropout regularisation can be thought of as training an implicit
ensemble of models within the network, but is deactivated at test time. MCD
retains dropout at test time and uses it as an empirical sampling technique to
estimate the posterior uncertainty of predictions given contextual information
x. This approach should scale better, but tends to be worse at UQ.

Finally, we propose the use of a Bayesian non-parametric regression approach.
The most commonly used such approach is a Gaussian Process (GP) which is
assumed to be the distribution across functions. Any set of observations about
the function value is assumed to have a multivariate Gaussian joint distribution
parameterised by a mean, and kernel function which measures the similarity of
contextual information. Predictions are made by marginalising the probability
distribution of a new point given its contextual information. The choice of kernel
is key for modelling (scale and Matern in our case) and kernels are often para-
metric, thus allowing for some optimisation, typically by optimising the marginal
likelihood. Given that we are interested in multi-task prediction, we follow the
setup of [5], which models interdependence with a task-similarity kernel.

4 Conditional Ambiguity Sets

We incorporate UQ in various forms of DRO. DRO seeks to obtain a solution
that has the least worst expected value across all distributions in an ambiguity
set. To exemplify, say the uncertain parameter ξ ∼ P is only in the objective
h(x, ξ). The DRO formulation is:

min
x∈S

sup
P∈D

EP(h(x, ξ)) (2)

It is less conservative than robust optimisation approaches and does not suf-
fer from the optimiser’s curse (overly optimistic out-of-sample) like stochastic
programming. The two prevailing ways of defining ambiguity sets are by using
moments or disturbance metrics. Moment-based sets are typically convex sets
constructed in reference to a stated or estimated moment, usually using conic
formulations. Disturbance sets are defined as all distributions within a certain
disturbance metric. Even though these problems are semi-infinite, they often
admit tractable reformulations by exploiting duality.

128 E. Peršak and M. F. Anjos

We propose the use of ambiguity sets that incorporate the output of UQ. DE
and GP quantify their uncertainty with predicted covariances. We employ the
approach from [6], which defines ambiguity sets in terms of moment-uncertainty.
The ambiguity set D(μ̂, Σ̂, γ1, γ2) is defined as:

D(μ̂, Σ̂, γ1, γ2) =

⎧
⎨

⎩P ∈ P(S)

∣∣∣∣∣∣

ξ ∼ P

(E(ξ) − μ̂)TΣ̂−1(E(ξ) − μ̂) ≤ γ1
E((ξ − μ̂)T(ξ − μ̂)) � γ2Σ̂

⎫
⎬

⎭ , (3)

where S ⊆ R
p is the support of the set. The set defines all distributions for which

the expected value lies within a scaled ellipsoid uncertainty set centred on the
model prediction and shaped by the UQ, and for which the true covariance lies
within a PSD cone defined by scaled UQ. This ambiguity set does not assume
that the model is correct or that it captures its conditional uncertainty well. It
enables us to parametrically define a space of distributions around our model’s
predictions within which we can guarantee a worst case expectation. Under mild
convexity assumptions about the objective function [6], this ambiguity set has a
tractable semidefinite programming (SDP) robust counterpart.

For sampling-based UQ we propose the use of ambiguity sets defined by the
Wasserstein metric [12]. The ambiguity set is defined as the set of distributions
that are within a ball from the empirical reference distribution, which in our case
is the n conditionally generated samples P̂n(xi). The ambiguity set is defined as
Dw(P̂n, φ) = {Q ∈ P(S)|dW,p(Q, P̂n) ≤ φ}, where dW,p is the p-norm Wasserstein
metric dW,p(P̂n,Q) = infΠ{∫

S×S
||p̂− q||pdΠ(p, q)}, and Π denotes the joint dis-

tribution of p, q whose marginals are P̂n,Q respectively. Wasserstein ambiguity
sets are generally less tractable, but robust counterparts exist in a number of
settings. In the context of predict-then-optimise, this allows us to account for
sampling error and bias. Posterior sampling from a GP provides a conditional
reference distribution based on our structural beliefs about the DGP. MCD is a
black box, but provides a more centred form of sampling.

5 Data-driven Robustness Parameter Specification

We see two ways of leveraging the UQ-DRO pipeline depending on how robust-
ness parameters are set. We can either set them to probabilistically cover poten-
tial outcomes, or induce limited robustness. The drawback of the former is that
robustness tends to come with a cost to performance on average as it is overly
conservative. In turn, limited robustness may increase average performance by
reducing the sensitivity of decision quality to mild parameter uncertainty.

We aim to achieve coverage with the UQ and uncertain moments pipeline. We
achieve this by finding the smallest values γ1, γ2 such that the defined uncertainty
sets are likely to contain the true moments. We use a holdout set V as a proxy
for the problem. Lower values of these parameters indicate that a model is better
tuned for estimating its uncertainty in the context of the optimisation model.

Contextual Robust Optimisation with Uncertainty Quantification 129

We cast the setting of these parameters as optimisation problems. We want
to find the smallest γ̂1 such that the (unknown) conditional mean is within the
ellipsoidal uncertainty set defined by the predicted mean and variance:

argmin
γ1

{γ1|E[(ξ − μ̂(x))TΣ̂−1(x)(ξ − μ̂(x)) ≤ γ1|x]}. (4)

We use (x, ξ) ∈ V as a proxy for this problem, by calculating the distance for
each point and then picking the median. This is motivated by an assumption
that the true conditional distributions are symmetric on average, so realisations
are more distant from the predicted mean than the true mean approximately
half of the time. Setting γ2 is slightly more difficult as the associated constraint
is defined using a Loewner order. We solve the following SDP problem for each
point in the holdout set for each (xi, ξi) ∈ V:

γ̂2,i = argmin
γ2

{γ2|γ2Σ̂(xi) − Z 	 0, γ2 ≥ 0}, (5)

where Z = 1
|V|

∑
i∈V

((ξi−μ̂(xi))T(ξi−μ̂(xi))) and set γ̂2(α2) as the 1−α2 quantile
of the obtained γ̂2,i. The linear matrix inequality constraint in this problem is
simple so it should not be a computational bottleneck. We use α2 = 0.1 to
encourage a 90% coverage of covariances, but this can be tinkered with.

We use the sampling-Wasserstein pipeline to achieve limited robustness. We
want to obtain a reference holdout φ and then scale it by multiplying it with
some constant k ≤ 1. We obtain the reference φ by computing the p-Wasserstein
distance between every distribution realisation ξi and the predicted sample
P̂n(xi) = 1

n

∑n
j=1 δξ̂i,j

which we treat as a mixture of Dirac delta distributions.
Since both are discrete, this is equivalent to calculating the earth mover’s dis-
tance (EMD) between the two. The p-Wasserstein distance between the two can
be cast as a linear optimisation problem:

dW,p(P̂n(xi), δξi) = min
T

{〈T,M〉|T1 = pP, T
T1 = pξ}, (6)

where T is the optimal transport matrix, M ∈ R
n×1 is the moving cost, which

is calculated as the point-wise p-norm between the sample P̂n(xi) and ξi, and
pP,pξ are the discrete densities (in this case equally weighted). Since T is only
a vector, the optimisation is trivial: the optimal transport plan is tk = 1

n for all
k. The EMD for holdout entry i is therefore 1

n

∑n
j=1 |ξ̂i,j − ξi|pp and we set the

reference φ as the 0.9 quantile of these values. However, the true distribution of
ξ is very unlikely to be a discrete point and such a large ambiguity set will likely
lead to overly conservative solutions, which is why we scale it down with k.

6 Computational Evaluation and Discussion

Our approach was evaluated on a common prediction and optimisation problem,
namely portfolio optimisation. The code is publicly available1. The uncertain
1 https://github.com/EgoPer/Contextual-Robust-Optimisation-with-UQ.

https://github.com/EgoPer/Contextual-Robust-Optimisation-with-UQ

130 E. Peršak and M. F. Anjos

parameters are the asset returns p. Asset returns are famously difficult to predict
due to a high noise to signal ratio and concept drift. We followed the problem
setup from [4,8], which uses a linear reformulation of CVAR [13] in the objective.
The DRO optimisation problem for ε-CVAR is:

minx,β infP EP[β + 1
ε (−pTx − β)+ − λpTx]

s.t. eTx = 1,x ≥ 0 (7)

where λ governs the trade off between tail risk and returns, and (a)+ = max(0, a).
We set ε = 0.1 (expected value of the 10% worst cases), and λ at 1. We use 25
samples for each conditional Wasserstein approach, set k = 0.1 on the simulated
problem, and k = 0.02 on the real data problem.

6.1 Simulated Problem

The simulated version of this problem is based on a problem used in two
existing papers [4,8] about DRO with side/contextual information, but we
introduce significant non-linearity and heteroskedasticity. Three independent
inputs are simulated as standard normal variables x1,2,3 ∼ N (0, 1). The con-
ditional joint distribution of the simulated returns is N (μ(x), Σ(x)), where
μ(x) = μ̄ + y(x)2, Σ(x) = [(15 tanh(x1) + 1) · Σ̄

1
2]2 (μ̄, Σ̄ as in [4]).

We generate five datasets at five training set sizes (20% holdout) and train
models five times due to the stochastic nature of their training. The test set is
the same across experiments and is deliberately generated out-of-sample (100
samples of x1,3 ∼ N (2, 1), x2 ∼ N (−2, 1), same DGP). Given that we have
access to the true DGP, we can approximately evaluate the performance of each
solution (in our case using a 104 sample Monte Carlo simulation). We construct
a deterministic equivalent, which gives us the true optimal value, allowing us
to measure regret. We run three unconditioned models that derive their uncer-
tainty inputs from the whole training set, an uncertain moments (UM) model, a
Wasserstein (WASS) model, and a sample average approximation (SAA) model.
We run a conditional SAA model using the moment outputs of DE to sample
a normal distribution. We run five of our contextual models: DE-UM, GP-UM,
DE-Wasserstein (DE-WASS), GP-WASS, and MCD-WASS.

Figure 1 displays boxplots of the mean out-of-sample regret for each app-
roach. The DE-WASS approach dominates across data sizes improving in per-
formance with a growing size of the dataset, outdoing a robustly performing
unconditional Wasserstein. MCD-WASS is close in performance to the uncon-
ditional case, while the GP version lags slightly. The prediction models were
trained in an out-of-the-box manner, so it is conceivable that they would out-
perform using hyperparameter optimisation or in richer data environments. The
conditional UM methods outperformed the unconditional case, though the gap

2 The outputs of y(x) are defined as:
y1 = 30 tanh(x2 exp(

1
2
x1 − 2)], y2 = 50 tanh(x1) sin(3x3), y3 = 10 ln(|x1x2x3|),

y4 = sin(x2) + x2
1 − x1x2, y5 = 20(sin(x1) + sin(x2

10x3
)), y6 = y1 − y2.

Contextual Robust Optimisation with Uncertainty Quantification 131

Fig. 1. Mean performance from simulated experiments.

between DE and the unconditional UM got smaller with an increase in the size of
data, possibly reflecting overfitting as the models were trained for the same num-
ber of epochs in each case. The results support the use of UQ for constructing
contextual DRO approaches.

For the real problem we use a slightly reduced version of the dataset from
[10], which contains returns on five large US indices alongside 106 contextual
covariates such as technical and economic indicators. We cannot directly evaluate
the objective function in 7 so we approximate the CVAR and the expected return
using a two year testing set training each model five times.

Fig. 2. Approximate performance from real-data experiment.

Figure 2 presents the approximate performance of these methods. The con-
textual approaches outperform all unconditioned approaches. The Wasserstein
approaches are very competitive with non-robust contextual SAA equivalents
and are less sensitive to model training, illustrating the positive trade-off of lim-
ited robustness. Notably, the DE-WASS approach is best performing in both
experiments.

The pipelines offer an effective way of introducing robustness to prediction
and optimisation problems by leveraging established methods for UQ. They can
also be used a means of achieving contextual DRO, though analysis is needed
to establish the desired convergence properties that established DRO techniques
have. We see much potential for refining these pipelines with regularisation,
predictive model architecture, contextual setting of robustness parameters, and
end-to-end learning.

132 E. Peršak and M. F. Anjos

References

1. Amos, B., Kolter, J.Z.: Optnet: differentiable optimization as a layer in neural
networks. In: International Conference on Machine Learning, pp. 136–145. PMLR
(2017)

2. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Manag. Sci.
66(3), 1025–1044 (2020)

3. Bertsimas, D., McCord, C., Sturt, B.: Dynamic optimization with side information.
Eur. J. Oper. Res. 304(2), 634–651 (2023)

4. Bertsimas, D., Van Parys, B.: Bootstrap robust prescriptive analytics (2017).
https://arxiv.org/abs/1711.09974v1

5. Bonilla, E.V., Chai, K., Williams, C.: Multi-task gaussian process prediction. Adv.
Neural Inf. Process. Syst. 20 (2007)

6. Delage, E., Ye, Y.: Distributionally robust optimization under moment uncertainty
with application to data-driven problems. Oper. Res. 58(3), 595–612 (2010)

7. Elmachtoub, A.N., Grigas, P.: Smart predict, then optimize. Manag. Sci. 68(1),
9–26 (2022)

8. Esteban-Pérez, A., Morales, J.M.: Distributionally robust stochastic programs with
side information based on trimmings. Math. Program. 1–37 (2021). https://doi.
org/10.1007/s10107-021-01724-0

9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing, pp. 1050–1059. PMLR (2016)

10. Hoseinzade, E., Haratizadeh, S.: CNNpred: CNN-based stock market prediction
using a diverse set of variables. Expert Syst. Appl. 129, 273–285 (2019)

11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. Adv. Neural Inf. Process. Syst. 30
(2017)

12. Mohajerin Esfahani, P., Kuhn, D.: Data-driven distributionally robust optimiza-
tion using the wasserstein metric: performance guarantees and tractable reformu-
lations. Math. Program. 171(1), 115–166 (2018)

13. Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distribu-
tions. J. Bank. Financ. 26(7), 1443–1471 (2002)

14. Russell, R.L., Reale, C.: Multivariate uncertainty in deep learning. IEEE Trans.
Neural Netw. Learn. Syst. 33, 7937–7943 (2021)

15. Srivastava, P.R., Wang, Y., Hanasusanto, G.A., Ho, C.P.: On data-driven pre-
scriptive analytics with side information: a regularized nadaraya-watson approach
(2021). https://arxiv.org/abs/2110.04855

16. Vlastelica, M., Paulus, A., Musil, V., Martius, G., Rolínek, M.: Differentiation of
blackbox combinatorial solvers. arXiv preprint arXiv:1912.02175 (2019)

17. Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: decision-
focused learning for combinatorial optimization. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, pp. 1658–1665 (2019)

https://arxiv.org/abs/1711.09974v1
https://doi.org/10.1007/s10107-021-01724-0
https://doi.org/10.1007/s10107-021-01724-0
https://arxiv.org/abs/2110.04855
http://arxiv.org/abs/1912.02175

Breaking Symmetries with High
Dimensional Graph Invariants and Their

Combination

Avraham Itzhakov(B) and Michael Codish

Department of Computer Science, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

{itzhakoa,mcodish}@cs.bgu.ac.il

Abstract. This paper illustrates the application of graph invariants to
break symmetries for graph search problems. The paper makes two con-
tributions: (1) the use of higher dimensional graph invariants in symme-
try breaking constraints; and (2) a novel technique to obtain symmetry
breaking constraints by combining graph invariants. Experimentation
demonstrates that the proposed approach applies to provide new results
for the generation of a particular class of cubic graphs.

1 Introduction

Graph search problems are about finding simple graphs with desired structural
properties. Such problems arise in many real-world applications and are funda-
mental in graph theory. Solving graph search problems is typically hard due to
the enormous search space and the large number of symmetries in graph rep-
resentation. For graph search problems, any graph obtained by permuting the
vertices of a solution (or a non-solution) is also a solution (or a non-solution),
which is isomorphic, or “symmetric”. When solving graph search problems, the
presence of symmetries often causes redundant search effort by revisiting sym-
metric objects. To optimize the search we aim to restrict it to focus on one
“canonical” graph from each isomorphism class.

A standard approach to eliminate symmetries is to add symmetry breaking
constraints which are satisfied by at least one member of each isomorphism
class [8,22,23]. A symmetry breaking constraint is called complete if it is sat-
isfied by exactly one member of each isomorphism class and partial otherwise.
We say that a symmetry breaking constraint is of polynomial size, if it has a
representation in propositional logic which is polynomial in size. There is no
known polynomial size complete symmetry breaking constraint for graph search
problems. Therefore, in practice, one typically applies partial symmetry breaking
constraints [5–7] which are polynomial in size.

Over the past decade, there has been little progress in the research of partial
symmetry breaking constraints for graph search problems. Codish et al. [6,7]
introduced a polynomial sized partial symmetry breaking constraint, denoted

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 133–149, 2023.
https://doi.org/10.1007/978-3-031-33271-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_10&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_10

134 A. Itzhakov and M. Codish

here as sblex, which restricts the search space to graphs with lexicographically
minimal adjacency matrices with respect to permutations that swap two vertices.
This constraint turns out to work well in practice, despite eliminating only a
small portion of the symmetries. However, when dealing with hard instances of
graph search problems, this constraint does not suffice.

Graph invariants [13] are properties of graphs (typically expressed numeri-
cally) which are preserved under isomorphism. Graph invariants have been exten-
sively researched in various disciplines such as, chemistry [1], physics [9], and
also in the context of graph isomorphism tools [15]. In this paper we use the
following terminology. Graph invariants which relate to individual vertices, such
as the degree of a vertex, are one dimensional and called “vertex invariants”.
Graph invariants which relate to pairs of vertices are two dimensional and called
“pair invariants”. Graph invariants which relate to sets of vertices (with at least
two elements) are called “high dimensional”. Previous approaches that consider
structural information to improve on sblex apply one dimensional graph invari-
ants in combination with the lexicographic order. For example, in [5,18], the
authors combine lexicographic order with information about vertex degrees.

This paper explores the application of higher dimensional graph invariants to
break symmetries. We focus on one and two dimensional invariants. However, all
the techniques demonstrated apply to invariants of any dimension. We study two
techniques to combine graph invariants. First, we introduce the “chain” symme-
try breaking constraint which generalizes the standard approach for breaking
symmetries with graph invariants. The chain constraint combines a given series
of graph invariants to break symmetries such that each invariant refines its pre-
decessors. We then introduce the “product” symmetry breaking constraint which
combines graph invariants by interleaving them. We demonstrate the advantage
of this approach over the chain constraint. Finally, we demonstrate the applica-
tion of high dimensional graph invariants to generate connected claw-free cubic
graphs of order n ≤ 36 vertices where existing symmetry breaking methods do
not suffice. The results for 32, 34, and 36 vertices are new.

The computations detailed throughout this paper are performed using the
finite-domain constraint compiler BEE [17] which compiles constraints to a CNF
and solves it applying an underlying SAT solver. We use Clasp 3.1.3 [12] as
the underlying SAT solver. All experiments run on an Intel Xeon E5-2660 with
CPU’s clocked at 2 GHz, Each instance is run on a single thread.

2 Preliminaries and Notation

Throughout this paper we consider simple graphs, i.e. undirected graphs with no
self loops. The vertex set of a graph G = (V,E) of order n, is denoted V (G) and
assumed to be V = {1, . . . , n}. The edge set of G is denoted E(G) ⊆ V ×V . The
adjacency matrix of G is an n × n Boolean matrix which, in abuse of notation,
is also denoted G. The element at row i and column j is denoted Gi,j and is
true if and only if (i, j) is an edge in G. The set of neighbors of an edge v ∈ V
is denoted NG(v). The degree of a vertex v ∈ V is the number of its neighbors,

Breaking Symmetries with High Dimensional Graph Invariants 135

and is denoted degG(v). The set of simple graphs on n vertices is denoted Gn.
An unknown graph of order n is represented as an n × n adjacency matrix of
Boolean variables which is symmetric and has the values false (denoted by 0) on
the diagonal. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
A graph H is called an induced subgraph of G if H is a subgraph of G and every
edge in G that connects vertices from V (H) also appears in E(H). In other
words, the graph H is an induced subgraph of G if H and G have the same
edges between the vertices of H.

The group of all permutations on {1 . . . n} is denoted Sn. We represent a
permutation π ∈ Sn as a sequence of length n where the ith element indicates the
value of π(i). For example, the permutation [2, 3, 1] ∈ S3 maps as follows: {1 �→
2, 2 �→ 3, 3 �→ 1}. A transposition is a permutation which swaps two elements and
is the identity for all other elements. The set of all transpositions on {1 . . . n} is
denoted Tn. The transposition which swaps i and j is denoted πi,j . For example,
the transposition π1,3 ∈ T4 maps as follows: {1 �→ 3, 2 �→ 2, 3 �→ 1, 4 �→ 4}.
Permutations act on graphs and on unknown graphs in the natural way. For a
graph G ∈ Gn and also for an unknown graph G, viewing G as an adjacency
matrix, given a permutation π ∈ Sn, then π(G) is the adjacency matrix obtained
by mapping each element Gi,j to Gπ(i),π(j) (for 1 ≤ i, j ≤ n). The permutation,
π(G) of G, can equivalently be described as the adjacency matrix obtained by
permuting both rows and columns of G using π. Two graphs G,H ∈ Gn are
isomorphic if there exists a permutation π ∈ Sn such that G = π(H).

The standard lexicographic order on strings is denoted ≤lex. We consider also
lexicographic orders between integer and Boolean matrices, always comparing
matrices of the same type, dimension and order. In our context, matrices of
dimension k > 1 are always symmetric and have fixed values on the diagonal.
We define the lexicographic ordering of two such matrices M1 and M2 as follows:
M1 ≤lex M2 if and only if vec(M1) ≤lex vec(M2) where vec(M) is a string defined
by concatenating the rows of M . For a matrix M with dimension k = 1, M is a
vector and vec(M) is the string of its elements. When M is of dimension k = 2,
because of symmetry and fixed values on the diagonal, vec(M) can be viewed
as the concatenation of the rows of the upper triangle of M [4]. For higher
dimensions, k > 2, the definition extends in the natural way.

In particular for graphs G,H ∈ Gn, G ≤lex H defines a lexicographic ordering
on graphs. When G,H are unknown graphs, represented as adjacency matrices of
Boolean variables, then the lexicographic ordering, G ≤lex H, can be viewed as
specifying a lexicographic order constraint over these variables. This constraint
is true with respect to an assignment for the variables of G,H if G ≤lex H
under this assignment. We call such a constraint a “lex-constraint”. The case for
M1 ≤lex M2 where M1,M2 are matrices of integer variables is similar.

Example 1. Figure 1 depicts an unknown, order 5, graph G and its permutation
π(G), for π = [2, 1, 3, 5, 4], both represented as adjacency matrices of Boolean
variables. Note, for example, that the variable x2 occurs at position (1, 3) in G
and at position (π(1), π(3)) = (2, 3) in π(G). The lex-constraint G ≤lex π(G) is

[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] ≤lex [x1, x5, x7, x6, x2, x4, x3, x9, x8, x10]

136 A. Itzhakov and M. Codish

G =

⎡
⎢⎢⎢⎢⎣

0 x1 x2 x3 x4

x1 0 x5 x6 x7

x2 x5 0 x8 x9

x3 x6 x8 0 x10

x4 x7 x9 x10 0

⎤
⎥⎥⎥⎥⎦

π(G) =

⎡
⎢⎢⎢⎢⎣

0 x1 x5 x7 x6

x1 0 x2 x4 x3

x5 x2 0 x9 x8

x7 x4 x9 0 x10

x6 x3 x8 x10 0

⎤
⎥⎥⎥⎥⎦

Fig. 1. An unknown graph G and its permutation π(G) for π = [2, 1, 3, 5, 4].

where the sequences on the left and on the right are obtained by concatenating
the rows of the upper triangles of the corresponding graphs. This constraint can
be simplified as described by Frisch et al. [11] to

[x2, x3, x4, x8] ≤lex [x5, x7, x6, x9]

��
An order n graph search problem is a predicate, ϕ(G), on an unknown, order

n graph G, which is closed under isomorphism. A solution to ϕ(G) is a satisfy-
ing assignment for the variables of G. Given a (non-)solution for a graph search
problem, each permutation of its vertices yields a symmetric (non-)solution. One
common way to break symmetries in graph search problems is to define a sym-
metry breaking predicate which is satisfied only by the minimal representatives
of each isomorphism class with respect to some total order 	.

Theorem 1. Let G be an unknown order n graph and let 	 be a total order on
graphs. Then,

Can�(G) =
∧

π∈Sn

G 	 π(G)

is a complete symmetry breaking constraint.

Proof. Since 	 is a total order, every isomorphism class I of graphs contains
a unique minimal member G with respect to 	. By definition, G satisfies the
constraint Can�(G). Suppose that H ∈ I also satisfies Can�. Because H ∈ I it
follows that G = π(H) for some π ∈ Sn. Because H satisfies Can� then H 	 G.
Because G is minimal G 	 H. Hence G = H. ��

The complete symmetry breaking constraint Can� is impractical as it is
composed of a super-exponential number of constraints, one for each permutation
of the vertices. Hence, in practice, one often applies a partial symmetry breaking
constraint defined in terms of a polynomial sized subset of the Can� constraints.

Example 2. A classic example of a total order for graphs is the ≤lex order. The
corresponding complete symmetry breaking constraint Can≤lex is often referred
to as the lex-leader constraint [20]. Codish et al. [6,7] introduced a partial sym-
metry breaking constraint which is equivalent to taking the subset of the lex-
leader constraints corresponding to all transpositions (permutations which swap
two values), as specified below.

Breaking Symmetries with High Dimensional Graph Invariants 137

sblex(G) =
∧

π∈Tn

G ≤lex π(G) (1)

The sblex constraint is composed of a quadratic number of lex-constraints. It is
compact and turns out to be effective when solving a wide range of graph search
problems. ��
Observation 1. if 	 is a weak order on graphs, instead of a total order, then
CAN� is a partial symmetry breaking constraint. Moreover, any constraint
defined as a subset of the constraints in CAN� is also a partial symmetry break-
ing constraint.

Proof. For the first claim, the proof is similar to the proof of Theorem 1. How-
ever, there is no guarantee that the minimum is unique. Hence, the correspond-
ing symmetry breaking constraint is partial. For the second claim, weakening
a partial symmetry breaking constraint results in a partial symmetry breaking
constraint. ��

3 Graph Invariants and Their Induced Graph Orderings

In this section, we recall the notion of graph invariants and in particular, high
dimensional graph invariants. We propose a constraint-based representation for
invariants of unknown graphs which is an essential component when defining
symmetry breaking constraints. Finally, we introduce an ordering on graphs
based on their corresponding graph invariant values.

A k-dimensional graph invariant is a function f which maps a graph G and
a set S =

{
v1, . . . , vk

} ⊆ V (G) of k vertices to a value which is invariant under
graph isomorphism. Namely, for every permutation π of the vertex set V (G)
it holds that f(G,S) = f(π(G), π(S)). When the graph G is fixed, we denote
the function fG(S) = f(G,S). In this paper, we focus primarily on the special
cases of 1-dimensional and 2-dimensional graph invariants which we call vertex
invariants and pair invariants, respectively.

Figure 2 introduces several graph invariants that we refer to in the remainder
of the paper. Let G be a graph. The degree invariant assigns each vertex to its
degree. The common neighbors invariant assigns each pair of vertices to the
number of their common neighbors. The min (max) degree invariant assigns
each pair of vertices to their minimal (maximal) degree. The triangles invariant
assigns each vertex to the number of triangles (cycles of length 3) in which
it occurs. In the figure, (u, v) denotes a pair of distinct vertices and the pair
invariants are not defined when u = v. The inverse of a k-dimensional invariant
f , denoted −f , is also a k-dimensional invariant which maps every input to the
minus of the corresponding value of f . For instance, the invariant −fG

common

specifies the minus of the number of common neighbors for each pair of vertices
in G. Namely for vertices u and v, (−fG

common)(u, v) = −(fG
common(u, v)).

For a fixed graph G, a k-dimensional graph invariant fG can be viewed as
a k-dimensional matrix. For a set of vertices, S =

{
v1, . . . vk

}
, the element at

138 A. Itzhakov and M. Codish

degree invariant

fG
deg : V →

fG
deg(v) = degG(v)

common neighbors invariant

fG
common : V × V →

fG
common(u, v) = |N(u) ∩ N(v)|
triangles invariant

fG
triangles : V →

fG
triangles(v) = | { (u, w) ∈ E(G)

∣∣ v ∈ N(u) ∩ N(w)
} |

min degree invariant

fG
min : V × V →

fG
min(u, v) = min(degG(u), degG(v))

max degree invariant

fG
max : V × V →

fG
max(u, v) = max(degG(u), degG(v))

Fig. 2. Several example graph invariants.

5 2

34

1 fG
deg =

⎡
⎢⎢⎢⎢⎣

4
2
3
3
2

⎤
⎥⎥⎥⎥⎦

fG
common =

⎡
⎢⎢⎢⎢⎣

− 1 2 2 1
1 − 1 2 1
2 1 − 1 2
2 2 1 − 1
1 1 2 1 −

⎤
⎥⎥⎥⎥⎦

Fig. 3. A graph G with matrix representation for fG
deg and fG

common.

position 〈v1, . . . vk〉 in the matrix specifies the integer value fG(S). The following
example illustrates this representation.

Example 3. Figure 3 details the matrix representation for graph invariants fG
deg

and fG
common for the graph G depicted on the left. The i-th entry in the vector

fG
deg specifies the degree of vertex i in G. For instance, the degree of vertex 1 is 4.

The (i, j) entry in the matrix fG
common specifies the number of common neighbors

of vertices i and j. For instance, the value in the entry (1, 3) is 2 because vertices
1 and 3 share two neighbors (vertices 2 and 4). Notice that the values on the
diagonal are not defined.

When G is an unknown graph, The invariant fG can be viewed as a k-
dimensional matrix of integer variables, together with a constraint μ which links
the Boolean variables in G and the integer variables in fG. Solutions of μ instan-
tiate G to a graph and fG to corresponding invariant values.

G =

⎡
⎢⎢⎢⎢⎣

0 x1 x2 x3 x4

x1 0 x5 x6 x7

x2 x5 0 x8 x9

x3 x6 x8 0 x10

x4 x7 x9 x10 0

⎤
⎥⎥⎥⎥⎦

fGdeg =

⎡
⎢⎢⎢⎢⎣

d1

d2

d3

d4

d5

⎤
⎥⎥⎥⎥⎦

μ =

⎡
⎢⎢⎢⎢⎣

d1 = x1 + x2 + x3 + x4 ∧
d2 = x1 + x5 + x6 + x7 ∧
d3 = x2 + x5 + x8 + x9 ∧
d4 = x3 + x6 + x8 + x10 ∧
d5 = x4 + x7 + x9 + x10 ∧

⎤
⎥⎥⎥⎥⎦

Breaking Symmetries with High Dimensional Graph Invariants 139

Example 4. Figure 3 details an unknown graph G of order 5 and the correspond-
ing matrix representation of fG

deg. The constraints in μ specify the relationship
between the Boolean variables in G and the integer variables in fG. The integer
variable di in fG represents the degree of the ith vertex in G.

We observe that a (possibly unknown) graph can also be viewed as a two
dimensional graph invariant which specifies the adjacency relation. Let G be a
graph. Then,

fG
adj(u, v) =

{
1 if (u, v) ∈ E(G)
0 else

The matrix representation of fG
adj is identical to the adjacency matrix of G,

except that integer values (one and zero) occur instead of Boolean values (true
and false) and the diagonal calls are undefined instead of false.

An essential component to define symmetry breaking constraints based on
graph invariants is a notion of graph ordering with respect to an invariant f .

Definition 1 (invariant induced graph ordering). Let G,H ∈ Gn and let f be
a graph invariant. Recall that vec is a flattening of the (upper triangle of the)
matrix into a string of values. Then, G 	f H ⇔ vec(fG) ≤lex vec(fH). We
write G =f H if G 	f H and H 	f G.

In general, depending on the specific invariant f , 	f is possibly a weak order
as distinct graphs may admit the same values for the invariant f . The following
example demonstrates that 	fdeg is a weak order.

1 2

34

1 2

34

1 2

34

⎡
⎢⎢⎣
1
1
2
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

− 0 0 1
0 − 1 0
0 1 − 1
1 0 1 −

⎤
⎥⎥⎦

⎡
⎢⎢⎣
1
1
2
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

− 0 1 0
0 − 0 1
1 0 − 1
0 1 1 −

⎤
⎥⎥⎦

⎡
⎢⎢⎣
2
2
1
1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

− 1 0 1
1 − 1 0
0 1 − 0
1 0 0 −

⎤
⎥⎥⎦

Fig. 4. isomorphic representations of P4 and their fdeg, fadj values.

Example 5. Consider three isomorphic representations of P4 (path on four ver-
tices), as depicted in Fig. 4. The minimal graph amongst them with respect to
the total order 	fadj is the leftmost graph. The leftmost and the center graphs
are both minimal with respect to the weak order 	fdeg . ��

140 A. Itzhakov and M. Codish

4 Symmetry Breaking Constraints with Graph Invariants

A classic way to refine the partial symmetry breaking constraint sblex presented
in Eq. (1) is to specify a partition of the vertices with respect to a graph invariant,
and to post a lex-constraint for the subset of transpositions which preserve the
partition. In [5], the authors refine sblex with respect to a partition based on
the degree invariant. This symmetry breaking constraint, which we denote here
sbdeg

lex (G), is defined as follows where G is an order n unknown graph:
∧

1≤i<n

fG
deg(i) ≤ fG

deg(i + 1)

︸ ︷︷ ︸
(a)

∧
∧

1≤i<j≤n

fG
deg(i) = fG

deg(j) =⇒ G ≤lex πi,j(G)

︸ ︷︷ ︸
(b)

(2)

The left conjunct (a) constrains the degrees of the vertices of G to be sorted in
non-decreasing order. This induces a vertex partition where vertices with equal
degree are in the same part of the partition. The right conjunct (b) enforces G to
be minimal with respect to all transpositions which preserve the vertex partition.
Equation (2) can be rewritten using the invariant based graph ordering from
Definition 1, as follows.

∧

π∈Tn

G 	fdeg π(G)

︸ ︷︷ ︸
(a′)

∧
∧

π∈Tn

G =fdeg π(G) =⇒ G 	fadj π(G)

︸ ︷︷ ︸
(b′)

(3)

The left and right parts (a′) and (b′) of Eq. (3) are equivalent respectively to
parts (a) and (b) of Eq. (2). The formulation of sbdeg

lex (G) as specified in Eq. (3)
combines two graph orderings 	fdeg and 	fadj to break symmetries. In this com-
bination, graphs are first ordered by 	fdeg and then ties are broken according
to 	fadj . We generalize this “standard” approach to apply a series of graph
invariants and term this way of combining graph invariants “chaining”. First,
we introduce an ordering induced by a sequence of invariants.

Definition 2 (The chain ordering). Let 〈f1, . . . , fn〉 be a sequence of graph
invariants. Then, for any two graphs G,H ∈ Gn, we define

G 	〈f1,...,fm〉 H =

{
(G 	f1 H) ∧ (G =f1 H =⇒ G 	〈f2,...,fm〉 H) if m > 0
true otherwise

The chain ordering induces a chain symmetry breaking constraint, as speci-
fied in the following definition.

Definition 3 (The chain constraint). Let G be an unknown graph of order n
and let 〈f1, . . . , fm〉 be a sequence of graph invariants. Then, the chain symmetry
breaking constraint induced by 〈f1, . . . , fm〉 is

sbf1,...,fm

chain (G) =
∧

π∈Tn

G 	〈f1,...,fm〉 π(G)

Breaking Symmetries with High Dimensional Graph Invariants 141

One can check that, in general, the chain ordering is a weak order on graphs.
Hence, by Observation 1, the chain symmetry breaking constraint induced by
a sequence 〈f1,fn〉 is a partial symmetry breaking constraint. Observe also
that sbdeg

lex (G) as expressed in Eq. (3) is a special case of Definition 3 and is
equivalent to the chain symmetry breaking constraint induced by 〈fdeg, fadj〉.

As illustrated in the following example, the chain constraint can be alterna-
tively expressed as a conjunction of lex-constraints. Each constraint of the form
G 	〈f1,...,fm〉 π(G) is equivalent to the lex-constraint

vec(fG
1 , . . . , fG

m) ≤lex vec(fπ(G)
1 , . . . , fπ(G)

m)

where vec(fG
1 , . . . , fG

m) is obtained by concatenating vec(fG
1), . . . , vec(fG

m) and
similarly for vec(fπ(G)

1 , . . . , f
π(G)
m).

Example 6. Consider the unknown graph G of order 4, the invariant fG
common

and its constraints μ which are detailed below.

G =

⎡
⎢⎢⎣

0 x1 x2 x3

x1 0 x4 x5

x2 x4 0 x6

x3 x5 x6 0

⎤
⎥⎥⎦ fG

common =

⎡
⎢⎢⎣

− y1 y2 y3

y1 − y4 y5

y2 y4 − y6

y3 y5 y6 −

⎤
⎥⎥⎦ μ =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1 = x2 ∗ x4 + x3 ∗ x5 ∧
y2 = x1 ∗ x4 + x3 ∗ x6 ∧
y3 = x1 ∗ x5 + x2 ∗ x6 ∧
y4 = x1 ∗ x2 + x5 ∗ x6 ∧
y5 = x1 ∗ x3 + x4 ∗ x6 ∧
y6 = x2 ∗ x3 + x4 ∗ x5 ∧

⎤
⎥⎥⎥⎥⎥⎥⎦

The chain symmetry breaking constraint induced by 〈fcommon, fadj〉 consists of 6
constraints of the form G 	〈f1,...,fm〉 πi,j(G), one for each transposition πi,j . Each
of these can be expressed as a lex-constraint. The lex-constraint corresponding
to π1,2 is

[y1, . . . , y6, x1, . . . , x6] ≤lex [y1, y4, y5, y2, y3, y6, x1, x4, x5, x2, x3, x6]

The vector on the left of the constraint consists of the variables from the invari-
ant matrix followed by the variables from the adjacency matrix. The vector on
the right, consists of the variables of the corresponding matrices obtained by
swapping rows 1 and 2 as well as columns 1 and 2. Both vectors involve y vari-
ables first (from the graph invariant), followed by x variables (from the adjacency
matrix). This constraint further simplifies to:

[y2, y3, x2, x3] ≤lex [y4, y5, x4, x5]

��
When combining a sequence, 〈f1, ...fm〉, of graph invariants as a chain con-

straint, not every sequence “makes sense”. Each invariant fi in the sequence
should “refine” those preceding it. We say that fi refines f1, . . . , fi−1 if the set
of graphs which satisfy sbf1,...,fi

chain is a strict subset of the set of graphs which satisfy
sb

f1,...,fi−1
chain . Adding an invariant which does not refine those preceding it does not

142 A. Itzhakov and M. Codish

make sense as it adds no precision. For example, the order induced by 〈fadj, fdeg〉
is equivalent to the order induced by 〈fadj〉. This is because if G =fadj H holds,
then also G =fdeg H holds. In practice, if fadj occurs in a sequence combined as
a chain constraint, then it should always be the last invariant in the sequence as
it is the “most refined”.

Table 1. Generating all order n graphs with various symmetry breaking constraints.

method order

5 6 7 8 9 10 11

part 1: base

exact 34 156 1,044 12,346 274,668 12,005,168 1,018,997,864

sblex 43
0.00 s

276
0.00 s

3,158

0.01 s

66,595

0.20 s

2,587,488

6.49 s

184,192,329

8.20m

23,963,012,033

20.91 h

part 2: chain

fdeg, fadj 34
0.00 s

158
0.00 s

1,143

0.03 s

14,937

0.61 s

363,373

30.69 s

16,773,384

19.66 h

T.O

fcommon, fadj 43
0.00 s

231
0.02 s

1,933

0.37 s

28,184

7.32 s

748,727

32.08m

T.O T.O

fdeg, fcommon, fadj 34
0.00 s

156
0.02 s

1,075

0.28 s

13,223

5.62 s

305,189

54.33m

T.O T.O

part 3: product

fcommon, fadj 43
0.00 s

226
0.00 s

1,852

0.11 s

26,030

1.24 s

673,069

47.25 s

32,881,227

12.01 h

T.O

fadj, fcommon 42
0.00 s

231
0.00 s

1,949

0.06 s

27,620

0.84 s

715,804

22.38 s

35,060,107

78.43m

T.O

fadj, fmin, fmax 43
0.00 s

215
0.01 s

1,669

0.07 s

22,464

0.86 s

562,234

24.98 s

26,480,344

95.02m

T.O

fadj, fmin,

fmax, fcommon

42
0.00 s

210
0.01 s

1,553

0.19 s

19,209

1.95 s

437,794

63.83 s

19,188,298

16.59 h

T.O

Table 1 illustrates the impact of various symmetry breaking constraints based
on combinations of graph invariants. To this end, we compute all order 5 ≤
n ≤ 11 graphs using various symmetry breaking constraints. Cells in the table
which detail computations performed in this paper consist of two numbers: the
number of solutions (above) and the computation time (below). All times are
CPU running times specified in an appropriate unit: (s) seconds, (m) minutes, or
(h) hours. A timeout (TO) of 24 h is applied. The rows of the table are divided
into three parts titled: “base”, “chain” and “product”.

The first part of Table 1 (titled “base”): provides the base for comparison
and consists of two rows. First, the “exact” number of order n graphs (modulo
isomorphism) [19] (sequence A000088 of the OEIS). This is the base compari-
son for precision. For other computations, the closer the number of computed

Breaking Symmetries with High Dimensional Graph Invariants 143

graphs is to these values, the more precise the result. The second row details
the number of graphs computed using the sblex constraint introduced in [6,7].
Applying this constraint, the number of graphs generated is up to 20 times larger
than the actual number of graphs modulo isomorphism. This is the least precise
configuration described in the table but the only one that can find all solutions
for n = 11 with the specified timeout.

The second part of Table 1 (titled “chain”): consists of three rows which
detail the computation of all graphs using the chain symmetry breaking con-
straint combining various sequences of graph invariants. Note that the compu-
tations are more precise than with sblex but considerably slower. In particu-
lar, when combining three invariants (row three of part two), the computation
becomes slightly more precise but considerably slower than when combining two.

A possible explanation for the inefficiency when chaining invariants is that
they allow less propagations on the variables of the unknown graph. Generally
speaking, for a lex-constraint of the form a1, . . . , an ≤lex b1, . . . , bn between
strings of variables, propagation on the domain of a variable ai or bi, depends on
changes to the domains of the variables to the left: a1, . . . , ai−1 and b1, . . . , bi−1.

To better understand, we focus in the following example on the comparison
of sblex and sb

〈fcommon,fadj〉
chain viewing both as conjunctions of lex-constraints.

Example 7. Consider the unknown graph G of order 4 and the invariant fG
common

detailed in Example 6. The following are the lex-constraints (after simplification)
deriving from the transposition π1,2. The first is from sblex and the second is from
sb

〈fcommon,fadj〉
chain :

[x2, x3] ≤lex [x4, x5] (4)
[y2, y3, x2, x3] ≤lex [y4, y5, x4, x5] (5)

In Eq. (4) all prefixes (of the sequences in the comparison) relate only to x
variables, from the unknown adjacency matrix. In Eq. (5) all prefixes involve
y variables from the graph invariant. Assignments for the y variables do not
necessarily restrict the possible consistent values for the x variables because
each y variable is defined in terms of a set of the x variables (see Example 6). ��

The third part of Table 1 will be described later in the paper. First, we
seek new ways to combine graph invariants that result in symmetry breaking
constraints that improve on sblex in both efficiency and precision.

Let us first clarify notation. Let 〈f1, . . . , fm〉 be a sequence of k-dimensional
graph invariants. Recall that for a given graph G and each invariant fi, fG

i is a
function which maps sets of k vertices to integer values. The Cartesian product,
fG
1 ×. . .×fG

m of these functions maps each set S of k vertices to a tuple of integers,
〈fG

1 (S), . . . fG
m(S)〉. As demonstrated in Example 8, the product, fG

1 × . . . × fG
m,

can also be viewed as a k dimensional matrix of tuples.

Definition 4 (The product ordering). Let 〈f1, . . . , fm〉 be a sequence of graph
invariants of dimension k. Then, for any two graphs G,H ∈ Gn, we say that
G 	f1×...×fm

H if and only if vec(fG
1 × . . . × fG

m) ≤lex vec(fH
1 × . . . × fH

m).

144 A. Itzhakov and M. Codish

Definition 5 (The product constraint). Let G be an unknown graph of order n
and let 〈f1, . . . , fm〉 be a sequence of k-dimensional graph invariants. Then, the
product symmetry breaking constraint induced by 〈f1, . . . , fm〉 is

sbf1,...,fm

prod (G) =
∧

π∈Tn

G 	f1×...×fm
π(G)

One can check that, in general, the product ordering is a weak order on
graphs. Hence, by Observation 1, sbf1,...,fm

prod (G) is a partial symmetry breaking
constraint.

The following example demonstrates the construction of the product sym-
metry breaking constraint for the sequence of invariants 〈fadj, fcommon〉.
Example 8. Consider the unknown graph G of order 4 and the invariant fG

common

as detailed in Example 6. Recall that the x variables are from the adjacency
matrix, and the y variables are from the graph invariant. Then,

fG
adj × fG

common =

⎡

⎢⎢⎣

− 〈x1, y1〉 〈x2, y2〉 〈x3, y3〉
〈x1, y1〉 − 〈x4, y4〉 〈x5, y5〉
〈x2, y2〉 〈x4, y4〉 − 〈x6, y6〉
〈x3, y3〉 〈x5, y5〉 〈x6, y6〉 −

⎤

⎥⎥⎦

The product symmetry breaking constraint induced from 〈fadj, fcommon〉 consists
of 6 constraints of the form G 	fadj×fcommon πi,j(G), one for each transposition
πi,j . Each of these can be expressed as a lex-constraint. The lex-constraint cor-
responding to π1,2 is:

[x1, y1, . . . , x6, y6] ≤lex [x1, y1, x4, y4, x5, y5, x2, y2, x3, y3, x6, y6]

The vector on the left of the constraint consists of the variables of the matrix
representing the product of the two invariants. The vector on the right consists
of the variables from the permuted matrix obtained by swapping rows 1 and 2
as well as columns 1 and 2. This constraint further simplifies to:

[x2, y2, x3, y3] ≤lex [x4, y4, x5, y5]

Note that the variable order in this constraint interleaves the x variables from
the adjacency matrix and the y variables from the invariant whilst in the chain
constraint (see Example 7) the adjacency matrix variables occur at the end of
the vector. This is a property of the product constraint, that the variables of
each invariant gets a “fair” place in the vectors occurring in the lex-constraints.
We conjecture that interleaving allows for better propagation. The third part
of Table 1 supports this conjecture, at least in the sence that computations are
considerably more efficient than with the chain constraint. ��

The third part of Table 1 (titled “product”): details the computation of
graphs applying symmetry breaking constraints based on the product constraint.
This part consists of four rows, each row describes the computation using the

Breaking Symmetries with High Dimensional Graph Invariants 145

specified sequence of invariants as a product. Overall, the product constraints
are more efficient than those using the chain constraint. The product symmetry
breaking constraint induced from 〈fcommon, fadj〉 is more precise and faster than
the corresponding induced chain symmetry breaking constraint. The product
symmetry breaking constraint induced from 〈fadj, fcommon〉 is slightly less precise
than that induced from 〈fcommon, fadj〉 but it is much faster. For example, when
n = 9, it is about 5% less precise but is about 80 times faster. Moreover, all of
the illustrated product constraints allow to generate the order 10 graphs within
the 24 h timeout.

The next section demonstrates the advantage of using the (product) combi-
nation of graph invariants when solving graph search problems related to specific
classes where knowledge about the structure of the graphs can be exploited to
select invariants.

5 An Application: Generation of Cubic Graphs

This section demonstrates the application of symmetry breaking constraints
induced from graph invariants to generate a specific class of cubic graphs. Cubic
graphs are such that each vertex has degree 3. The class of cubic graphs is
well studied, and many papers address the problem of generating small cubic
graphs [2,3,16]. Brinkmann et al. [3] introduce a generation method which
allows to generate all non-isomorphic connected cubic graphs for up to 32 ver-
tices. In [21], the authors compute the number of cubic graphs for graphs of
orders n ≤ 40. However, their technique is non-constructive. That is, it allows
to count the graphs but not to generate them. The number of cubic graphs
is humongous [19] (sequence A005638 of the OEIS). For example, there are
8,832,736,318,937,756,165 cubic graphs of order 40.

We consider the problem of generating all connected cubic graphs, which are
also “claw-free”. A graph is called claw-free if it contains no K1,3 as an induced
subgraph. For cubic graphs the condition for being claw-free is equivalent to
the requirement that each vertex participates in a triangle [14]. The number
of connected cubic claw-free graphs for order n ≤ 30 is specified in the OEIS
as sequence A084656 [19]. Using our constraint based approach with symmetry
breaking constraints based on various combinations of graph invariants, we were
able to extend this sequence for n ≤ 36. It is important to note that one cannot
generate the sets of order n connected cubic claw-free graphs simply by testing
the corresponding sets of cubic graphs. While the latter have been generated for
n ≤ 32, their sheer number is humongous.

Figure 5 details the constraint model we apply to generate order n cubic
claw-free connected graphs. The variables Gi,j are the Boolean variables of the
unknown order n graph G. Equation (5) constrains the degree of each vertex to
be 3. Equation (5) constrains the graph to be claw-free (each vertex must occur
in a triangle). Finally, Eq. (5) constrains the graph G to be connected, using an
encoding of the Floyd-Warshall shortest paths algorithm [10]. The variables pk

i,j

indicate whether there is a path between vertices i and j in which intermediate

146 A. Itzhakov and M. Codish

vertices are from the set
{

1 . . . k
}
. The left conjunct specifies that p0i,j is true if

and only if there is an edge between i and j. The center conjunct specifies the
variables pk

i,j for 1 ≤ k ≤ n, encoding the recursive part of the Floyd Warshall
algorithm. The right conjunct ensures that there is a path in the graph between
every two vertices.

Fig. 5. The constraint model for connected cubic claw-free graphs.

In our experimentation, we applied chain combinations involving fadj with
one additional graph invariant from the set

{
fcommon, ftriangles

}
(and their

inverses). We applied product combinations of fadj with fcommon and its inverse.
For each approach (chain and product), we report the results for the symmetry
breaking constraint that exhibit the best (time) performance. For comparison,
we also apply the state-of-the-art partial symmetry breaking constraint, sblex.

Table 2 details the computation of claw-free cubic graphs. The first column
specifies the order of the graphs. The second column details the number of non-
isomorphic solutions. The next three columns detail the solving time and number
of solutions for each symmetry breaking method. All times reported are CPU
running times and specified in an appropriate unit: (s) seconds, (m) minutes, or
(h) hours where we apply a timeout (TO) of 24 h. The numbers of non isomorphic
solutions as specified in the second column are obtained by filtering isomorphic
representations from the set of solutions using nauty [15]. The numbers below
the solid line for n ≥ 32 are new.

The results in Table 2 clearly show that symmetry breaking based on the
product constraint, fadj × −fcommon, is superior in both computation time and
precision to the other techniques. This approach allows us to generate all solu-
tions up to order 36, thus extending the OEIS sequence A084656 [19] with three
new values.

Breaking Symmetries with High Dimensional Graph Invariants 147

Table 2. Generating connected cubic claw-free graphs for orders 4 ≤ n ≤ 36.

n graphs sblex 〈−fcommon, fadj〉 fadj × −fcommon

time sols time sols time sols

4 1 0.00 s 1 0.00 s 1 0.00 s 1

6 1 0.00 s 1 0.00 s 1 0.00 s 1

8 1 0.00 s 2 0.05 s 4 0.00 s 1

10 1 0.02 s 7 0.40 s 3 0.03 s 4

12 3 0.09 s 24 1.25 s 10 0.07 s 3

14 3 0.52 s 188 3.23 s 17 0.15 s 10

16 5 1.87 s 1,134 12.60 s 58 0.28 s 28

18 11 14.58 s 7,293 26.08 s 100 0.72 s 44

20 15 3.39 m 61,391 37.17 s 280 2.11 s 132

22 27 2.28 h 546,409 2.29 m 716 3.86 s 307

24 54 T.O – 5.66 m 1,551 10.96 s 660

26 94 T.O – 5.25 m 4,384 45.37 s 1,835

28 181 T.O – 50.76 m 10,883 2.57 m 4,372

30 369 T.O – 46.00 m 26,778 6.60 m 10,567

32 731 T.O – 1.70 h 75,303 24.28 m 29,069

34 1,502 T.O – T.O – 1.12 h 72,501

36 3,187 T.O – T.O – 8.98 h 188,495

6 Conclusion

This paper explores the application of high dimensional invariants to define sym-
metry breaking constraints. To the best of our knowledge, this is the first time
graph invariants of dimension higher than one have been applied in symmetry
breaking constraints. We introduce two techniques to obtain symmetry break-
ing constraints by combining graph invariants. First, we introduce the chain
constraint which generalizes the standard approach for combining several prop-
erties when breaking symmetries. Then, after observing the poor performance
of this technique, we introduce the product combination and demonstrate its
superior performance. We demonstrate the application of the product constraint
to extend the computation of cubic claw-free graphs for order n ≤ 36 vertices.

While we focus on two dimensional invariants in examples and experiments,
the same techniques apply for invariants of any dimension.

A Note for the Modeller: When solving a specific graph search problem,
selecting which invariants to combine is nontrivial. Two points to consider are:
(1) properties of the graphs the problem seeks to find; and (2) the complexity
of the invariants when expressed as a CNF. For example, when seeking regular
graphs, one would not consider fdeg as all vertices have the same degree. Alter-
natives such as fcommon and ftriangles encode “similar” information on pairs of

148 A. Itzhakov and M. Codish

vertices. However, their encodings differ in complexity. Each variable of ftriangles
encodes the number of triangles that involve a vertex i. This expression is
quadratic. In contrast, each fcommon variable encodes the number of common
neighbors of a pair, i and j. This expression is linear in size. Hence, one might
prefer the latter.

Acknowledgement. We thank the anonymous reviewers of this paper for their con-
structive suggestions.

References

1. Balaban, A.T., Balaban, T.S.: New vertex invariants and topological indices of
chemical graphs based on information on distances. J. Math. Chem. 8(1), 383–397
(1991). https://doi.org/10.1007/BF01166951

2. Brinkmann, G.: Fast generation of cubic graphs. J. Graph Theory 23(2), 139–149
(1996)

3. Brinkmann, G., Goedgebeur, J., McKay, B.D.: Generation of cubic graphs. Discret.
Math. Theor. Comput. Sci. 13, 69–80 (2011)

4. Cameron, R., Colbourn, C., Read, R., Wormald, N.C.: Cataloguing the graphs on
10 vertices. J. Graph Theory 9(4), 551–562 (1985)

5. Codish, M., Gange, G., Itzhakov, A., Stuckey, P.J.: Breaking symmetries in graphs:
the nauty way. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 157–172.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 11

6. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Breaking symmetries in graph
representation. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Con-
ference on Artificial Intelligence, IJCAI 2013, Beijing, China, 3–9 August 2013, pp.
510–516. IJCAI/AAAI (2013). https://ijcai.org/proceedings/2013

7. Codish, M., Miller, A., Prosser, P., Stuckey, P.J.: Constraints for symmetry break-
ing in graph representation. Constraints 24(1), 1–24 (2018). https://doi.org/10.
1007/s10601-018-9294-5

8. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predi-
cates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S.C. (eds.) Proceed-
ings of the Fifth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR 1996), Cambridge, Massachusetts, USA, 5–8 November
1996, pp. 148–159. Morgan Kaufmann (1996)

9. da F. Costa, L., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of
complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007).
https://doi.org/10.1080/00018730601170527

10. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962).
https://doi.org/10.1145/367766.368168

11. Frisch, A.M., Harvey, W.: Constraints for breaking all row and column symmetries
in a three-by-two matrix. In: Proceedings of SymCon 2003 (2003)

12. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

13. Harary, F.: Graph Theory. Addison-Wesley, Reading (1969)
14. Hong, Y., Liu, Q., Yu, N.: Edge decomposition of connected claw-free cubic graphs.

Discret. Appl. Math. 284, 246–250 (2020). https://doi.org/10.1016/j.dam.2020.03.
040

https://doi.org/10.1007/BF01166951
https://doi.org/10.1007/978-3-319-44953-1_11
https://ijcai.org/proceedings/2013
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1007/s10601-018-9294-5
https://doi.org/10.1080/00018730601170527
https://doi.org/10.1145/367766.368168
https://doi.org/10.1016/j.dam.2020.03.040
https://doi.org/10.1016/j.dam.2020.03.040

Breaking Symmetries with High Dimensional Graph Invariants 149

15. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,
94–112 (2014)

16. Meringer, M.: Fast generation of regular graphs and construction of cages. J. Graph
Theory 30(2), 137–146 (1999)

17. Metodi, A., Codish, M., Stuckey, P.J.: Boolean equi-propagation for concise and
efficient SAT encodings of combinatorial problems. J. Artif. Intell. Res. (JAIR) 46,
303–341 (2013)

18. Miller, A., Prosser, P.: Diamond-free degree sequences. CoRR abs/1208.0460
(2012). https://arxiv.org/abs/1208.0460

19. The on-line encyclopedia of integer sequences (OEIS) (2010). Published electroni-
cally at https://oeis.org

20. Read, R.C.: Every one a winner or how to avoid isomorphism search when cata-
loguing combinatorial configurations. Ann. Discret. Math. 2, 107–120 (1978)

21. Robinson, R.W., Wormald, N.C.: Numbers of cubic graphs. J. Graph Theory 7(4),
463–467 (1983). https://doi.org/10.1002/jgt.3190070412

22. Shlyakhter, I.: Generating effective symmetry-breaking predicates for search prob-
lems. Discret. Appl. Math. 155(12), 1539–1548 (2007)

23. Walsh, T.: General symmetry breaking constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 650–664. Springer, Heidelberg (2006). https://doi.org/
10.1007/11889205 46

https://arxiv.org/abs/1208.0460
https://oeis.org
https://doi.org/10.1002/jgt.3190070412
https://doi.org/10.1007/11889205_46
https://doi.org/10.1007/11889205_46

Optimization Bounds from Decision
Diagrams in Haddock

Rebecca Gentzel1(B), Laurent Michel1 , and Willem-Jan van Hoeve2

1 University of Connecticut, Storrs, CT 06269, USA
{rebecca.gentzel,laurent.michel}@uconn.edu

2 Carnegie Mellon University, Pittsburgh, PA 15213, USA
vanhoeve@andrew.cmu.edu

Abstract. We study the automatic generation of primal and dual
bounds from decision diagrams in constraint programming. In particu-
lar, we expand the functionality of the Haddock system to optimization
problems by extending its specification language to include an objective
function. We describe how restricted decision diagrams can be compiled
in Haddock similar to the existing relaxed decision diagrams. Together,
they provide primal and dual bounds on the objective function, which
can be seamlessly integrated into the constraint programming search.
The entire process is automatic and only requires a high-level user model
specification. We evaluate our method on the sequential ordering prob-
lem and compare the performance of Haddock to a dedicated decision
diagram approach. The results show that Haddock achieves compara-
ble results in similar time, demonstrating the viability of our automated
decision diagram procedures for constraint optimization problems.

Keywords: Decision Diagrams · Constraint Programming Systems ·
Optimization Bounds

1 Introduction

Constraint Programming (CP) traditionally focuses on feasibility solving for
Constraint Satisfaction Problems (CSP). Namely, it focuses on finding either one
or all feasible solutions to a CSP 〈X,D,C〉. The ability to tackle optimization
problems is added by solving a sequence of CSPs, each one with an additional
constraint that requires the production of a solution that improves upon the last
incumbent solution. Naturally, the last problem in the sequence is infeasible and
the entire search tree itself is the optimality certificate. While search strategies
to explore this search tree vary, the most common choice is a depth first search
on a search tree dynamically-defined with variable and value selection heuristics.
Black-box searches [4,9,13,14] provide pre-defined variable and value selection
heuristics and non-sequential strategies such as limited discrepancy search offer
compositional solutions to consider alternative strategies that remain orthogonal
to the objective function.

Laurent Michel—Synchrony Chair in Cybersecurity.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 150–166, 2023.
https://doi.org/10.1007/978-3-031-33271-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_11&domain=pdf
http://orcid.org/0000-0001-7230-7130
http://orcid.org/0000-0002-0023-753X
https://doi.org/10.1007/978-3-031-33271-5_11

Optimization Bounds from Decision Diagrams in Haddock 151

Fig. 1. Overview of automatic MDD-based constraint programming in Haddock on
an example constraint optimization problem 〈X, D, C, f〉 with variables X, domains D,
constraints C and objective function f . The constraint programming search employs a
branch-and-bound best-first strategy (BFS). The MDD specification and compilation
are derived automatically from the model declaration.

Mixed Integer Programming (MIP) solvers employ a different strategy. They
rely on a linear relaxation of the MIP model that removes integrality constraints
and leverage a linear programming solver to obtain a dual bound. MIP solvers
then use branch-and-bound style techniques to organize and explore the frontier
of nodes to be expanded. Like CP solvers, MIP solvers primarily rely on the
search process to produce a sequence of improving incumbents (thus, tightening
the primal bound), though techniques such as probing or the feasibility pump [5]
offer additional mechanisms to tighten the primal bound. The dual bounds pro-
duced at each node by the relaxation give a mechanism to prioritize nodes in
the frontier and explore the most promising options first.

Multi-valued decision diagrams (MDDs) were recently introduced as an effec-
tive tool to derive optimization bounds for discrete optimization problems, and
embed these in a branch-and-bound search [2]. This paper explores the use of
MDDs as a systematic mechanism to leverage both primal and dual bounds
within a CP solver to enable MIP-style branch-and-bound search within the
confines of a CP solver. Haddock was introduced as a generic architecture and
language for MDD propagation in a CP framework [6]. To this end, we extend
the existing Haddock framework to allow its use in optimization problems and
derive both classes of bounds for problems that are expressible as an MDD in the
Haddock language. A schematic overview is depicted in Fig. 1 on an example
constraint optimization problem (COP), that has a weighted sum as objective
function, an alldiff constraint, and precedence constraints (defined on a set
Prec). In addition to automatically deriving an MDD specification for each con-
straint [6], we now also derive an MDD specification for the objective function.
The specification language is compositional, which means that Haddock can
take the conjunction of all MDD specifications to compile a single MDD. By
adding the objective specification, the MDD can now be automatically used to
derive primal and dual bounds during the CP search. For the primal bound, we
assume that all constraints are represented in the MDD.

152 R. Gentzel et al.

Contributions. Our main contributions are 1) a formal MDD specification
for objective functions in CP systems, 2) a procedure to compile a restricted
decision diagram using the MDD specification, 3) integrating the primal and dual
bounds from the MDD into a CP search, and 4) demonstrating the abilities of
the framework on the sequential ordering problem as a concrete application. The
empirical results show that Haddock offers comparable performance relative to
a dedicated implementation of an MDD-based branch-and-bound search method.

Section 2 gives an overview of the formalization used in Haddock. Section 3
provides the necessary additions to allow Haddock to communicate with an
objective variable. Section 4 covers the use of the language for building restricted
MDDs to obtain primal bounds. Section 5 describes how to do a best-first search
using Haddock. Finally, Sect. 6 reports on the empirical results, and Sect. 7
concludes the paper.

2 Background

2.1 MDD as Layered Transition System

Following [6], we formally define an MDD as a labeled transition system [11]:

Definition 1. A labeled transition system is a triplet 〈S,→, Λ〉 where S is a
set of states, → is a relation of labeled transitions between states from S, and Λ
is a set of labels used to tag transitions.

Definition 2. Given an ordered set of variables X = {x1, . . . , xn} with domains
D(x1) through D(xn), a multi-valued decision diagram (MDD) on X is a layered
transition system 〈S,→, Λ〉 in which:

– the state set S is stratified in n+1 layers L0 through Ln with transitions from
→ connecting states between layers i and i + 1 exclusively;

– the transition label set Λ is defined as
⋃

i∈1..n D(xi);
– a transition between two states a ∈ Li−1 and b ∈ Li carries a label v ∈ D(xi)

(i ∈ 1..n);
– the layer L0 consists of a single source state s⊥;
– the layer Ln consists of a single sink state s�.

An MDD M can represent a constraint set with specific state definitions and
transition functions. If each solution in the constraint set is represented by an
s⊥-s� path in M , and vice-versa, M is exact. If M represents a superset of
the solutions of the constraint set, it is relaxed. If M represents a subset of the
solutions of the constraint set, it is restricted. In Haddock, states consist of
integer-valued sets of properties to represent the constraints. We next describe
how these are used to automatically compile the LTS, using the among constraint
as an illustration. For a complete description, we refer to [6].

Optimization Bounds from Decision Diagrams in Haddock 153

2.2 State Properties

Recall the definition of the among global constraint on an ordered set X of n
variables [1]. It counts the number of occurrences of values taken from a given
set Σ and ensures that the total number is between l and u, i.e.,

among(X, l, u,Σ) := l ≤
n∑

i=1

(xi ∈ Σ) ≤ u.

A state for among(X, l, u,Σ) carries four properties, i.e., 〈L↓, U↓, L↑, U↑〉, for
each node v in the MDD:

– L↓ ∈ Z: minimum number of times a value in Σ is taken from s⊥ to v.
– U↓ ∈ Z: maximum number of times a value in Σ is taken from s⊥ to v.
– L↑ ∈ Z: minimum number of times a value in Σ is taken from v to s�.
– U↑ ∈ Z: maximum number of times a value in Σ is taken from v to s�.

We initialize the state for the source s⊥ as 〈0, 0,−,−〉 and the sink s� as
〈−,−, 0, 0〉.

2.3 Transition Functions

The transition between a node a ∈ Li−1 and b ∈ Li is an arc (a, b) labeled
by a value � ∈ D(xi). We use transition functions T ↓(a, b, i, �) and T ↑(b, a, i, �)
to derive the property values (the states) for b and a, respectively. For each
individual property p, we use the function f(s, p, �) for a given state s. For among,
we apply f(s, p, �) = p(s) + (� ∈ Σ) for each property p in 〈L↓, U↓, L↑, U↑〉. For
example, we define L↓(b) = f(a, L↓, �), i.e., L↓(a) + (� ∈ Σ). We likewise define
L↑(a) = f(b, L↑, �), U↓(b) = f(a, U↓, �) and U↑(a) = f(b, U↑, �). The state-level
transition functions T ↓ and T ↑ compute all the down or up properties of the
next state as follows:

T ↓(a, b, i, �) = 〈f(a, L↓, �), f(a, U↓, �),−,−〉
T ↑(b, a, i, �) = 〈−,−, f(b, L↑, �), f(b, U↑, �)〉.

Note that slight variants of both functions that preserve the properties of states
b and a, respectively, in the opposite directions are equally helpful. Those are:

T ↓(a, b, i, �) = 〈f(a, L↓, �), f(a, U↓, �), L↑(b), U↑(b)〉
T ↑(b, a, i, �) = 〈L↓(a), U↓(a), f(b, L↑, �), f(b, U↑, �)〉.

2.4 Transition Existence Function

The transition existence function Et(a, b, i, �) specifies whether an arc (a, b) with
label � ∈ D(xi) exists in the LTS. For among, this function should ensure that
the lower bound l is met and the upper bound u is not exceeded, i.e.:

U↓(a) + (� ∈ S) + U↑(b) ≥ l ∧ L↓(a) + (� ∈ S) + L↑(b) ≤ u.

154 R. Gentzel et al.

2.5 Node Relaxation Functions

Two states a and b in the same layer Li can be relaxed (merged) to produce a
new state s′ according to a relaxation function R(a, b). For among, we can use:

R(a, b) = 〈 min{L↓(a), L↓(b)},max{U↓(a), U↓(b)},
min{L↑(a), L↑(b)},max{U↑(a), U↑(b)} 〉.

State relaxation generalizes to an ordered set of states {s0, s1, . . . , sk−1} as fol-
lows:

R(s0, R(s1, R(. . . , R(sk−2, sk−1) . . .))).

For among, we maintain MDD-bounds consistency on this expression, i.e.,
we only maintain a lower and upper bound on the count to ensure feasibility
and rely on the above relaxation function to merge nodes and bound the width
of the MDD to at most w states. The usage of a relaxation is precisely why we
maintain bounds (L and U) in both up and down directions. Note that full MDD
consistency for among can be established in polynomial time by maintaining a
set of exact counts [10].

2.6 MDD Language

All of the above are used to define an MDD language used to generate an MDD
for propagation:

Definition 3 (MDD Language). Given a constraint c(x1, . . . , xn) over an
ordered set of variables X = {x1, . . . , xn} with domains D(x1), . . . , D(xn) the
MDD language for c is a tuple Mc = 〈X,P, s⊥, s�, T ↓, T ↑, U,Et, Es, R,H〉
where P is the set of properties used to model states, s⊥ is the source state, s�
is the sink state, T ↓ is the forward state transition function, T ↑ is the reverse
state transition function, U is the state update function [6], Et is the transition
existence function, Es is the state existence function [6], R is the state relaxation
function, and H is the trio of heuristics controlling the refinement process [7].

3 MDDs for Optimization

Consider a COP 〈X,D,C, f〉 to be solved within the Haddock MDD frame-
work. Without loss of generality, assume for now that for all constraints in C,
Haddock has an MDD language for that constraint. Compiling the COP to
solve it within Haddock requires one to compose the MDD languages for each
constraint c ∈ C as well as an MDD language for the objective function f . To
carry out this compilation, one must rewrite the objective function {min,max}f
into an additional constraint of the form z = f where z is an auxiliary variable,
replace the objective with {min,max} z, and obtain an MDD language for this
objective to be composed with the rest.

Some restrictions on f are needed. Since it is meant to model some form of
transition costs over prefixes of the variable list, it is required to be separable

Optimization Bounds from Decision Diagrams in Haddock 155

(e.g., additive). Any inductive definition for f would meet this requirement. A
simple example is

∑n
i=1(xi ∈ Σ) which counts the number of variables taking

their value from a prescribed set Σ. Likewise, a weighted sum
∑n

i=1 wixi that
captures transition costs is acceptable.

Definition 4 (MDD Language for Objective Function). Given an objec-
tive function {min,max}f(x1, . . . , xn) over an ordered set of variables X =
{x1, . . . , xn} with domains D(x1), . . . , D(xn) let the auxiliary z be defined as
z = f(x1, . . . , xn) and the concrete objective be {min,max} z. Then, the MDD
language for the objective {min,max} f is

Mf = 〈X,P, s⊥, s�, T ↓, T ↑,−, Et,−, R,−, {min,max} z〉
where P is the set of properties used to model states (for z = f(x1, . . . , xn)),
s⊥ is the source state, s� is the sink state, T ↓ is the forward state transition
function, T ↑ is the reverse state transition function, Et is the transition existence
function, and R is the state relaxation function. Dashes denotes the absence of
state update, state existence, and heuristic bundles.

A few observations are in order. First, the auxiliary z is not a model variable
and therefore does not occupy a layer in the MDD. Second, the auxiliary z
is typically used within Et to filter arcs that cannot produce solutions of the
desired quality. Third, the source and sink states, respectively s⊥ and s�, hold
properties related to f (and therefore z) that pertain to all source-sink paths in
the MDD and will be used to read both primal and dual bounds. Fourth, internal
states of the MDD hold properties for f that are related to the source-sink paths
going through that specific node.

Example 1 (Minimize a Weighted Sum Objective). For the objective function
min

∑n
i=1 wi · xi, the auxiliary z is defined as z =

∑n
i=1 wi · xi and is associated

to properties L and U giving the lower and upper bounds on f in both the up
and down directions in the diagram. As a result, the values L↓(s�) and L↑(s⊥)
represent a lower bound1 for z in a relaxed MDD while, for any internal state s,
L↓(s)+L↑(s) denotes z’s bound for any internal state for all paths going through
s. The transition functions are simply

T ↓(a, b, i, �) = 〈L↓(a) + (wi · �), U↓(a) + (wi · �), L↑(b), U↑(b)〉
T ↑(b, a, i, �) = 〈L↓(a), U↓(a), L↑(b) + (wi · �), U↑(b) + (wi · �)〉

while the relaxation of two states a and b is:

R(a, b) = 〈 min{L↓(a), L↓(b)},max{U↓(a), U↓(b)},
min{L↑(a), L↑(b)},max{U↑(a), U↑(b)} 〉

The arc existence function meant to test the viability of a value � ∈ D(xi) to
connect states a and b is

Et(a, b, i, �) = U↓(a)+wi · �+U↑(b) ≥ min(z) ∧ L↓(a)+wi · �+L↑(b) ≤ max(z)
1 For a maximization, U↓(s�) and U↑(s⊥) give the upper bound.

156 R. Gentzel et al.

To derive the Haddock MDD language from a COP 〈X,D,C, f〉, it suffices
to compile

M =
∧

c∈C

Mc ∧ Mf

in which ∧ is the MDD composition operator. To search for a global optimum
over D using Haddock, one must instantiate propagators for M. While it is
often not tractable to maintain an exact MDD, it is natural to rely instead on
relaxed and restricted MDD propagators to derive dual and primal bounds and
carry out a branch-and-bound search. Given a maximum width w, we can obtain:

Relaxed MDD Let M be the relaxed MDD (to width w) where nodes are
merged within each layer to never exceed width w;

Exact MDD Let M∗ be the exact MDD;
Restricted MDD Let M be the restricted MDD (to width w) in which overflow

nodes are discarded.

Note that the maximum width w together with the MDD language and a given
COP instance will yield a unique relaxed or restricted diagram. (Exact diagrams
are always unique for a given variable ordering.) This is because the MDD lan-
guage also controls any heuristic compilation choices. Therefore, so long as the
heuristics do not introduce any randomness, the relaxed or restricted MDD will
be unique.

For a decision diagram M , let Ψ(M) be the set of solutions (s⊥-s� paths)
encoded by M . By construction, we can obtain a bound on z by reading
M.L↓(s�) from the sink state of M . We have the following results [2]:

Proposition 1. Ψ(M) ⊆ Ψ(M∗) ⊆ Ψ(M).

Proposition 2. M.L↓(s�) ≤ M∗.L↓(s�) ≤ M.L↓(s�).

That is, the relaxed MDD M delivers a dual bound while the restricted MDD
M delivers a primal bound.

Example 2 (COP). Consider the COP defined over X = {x1, . . . , x4}, z ∈
{0, . . . , 4}, and D(xi) ∈ {0, 1} for i = 1, . . . , 4:

COP = 〈X,D, {among(X, 1, 3, {1})},min
4∑

i=1

(xi ∈ {1})〉

With the auxiliary z =
∑4

i=1 (xi ∈ {1}), the MDD language from M = Mamong∧
Msum ∧ Mmin z models the COP. It can be used to compile a relaxed, exact,
and restricted diagram as shown in Fig. 2, where we impose a maximum width
2 on the relaxed and restricted MDDs. Each state is labeled with properties
(L↓, U↓, L↑, U↑).2

2 With a slight abuse of notation as we do not repeat the bounds on z and among since
those properties are identical.

Optimization Bounds from Decision Diagrams in Haddock 157

Fig. 2. MDDs for the COP 〈X, D, {among(X, 1, 3, {1})},min
∑4

i=1 (xi ∈ {1})〉 of Exam-
ple 2.

The CP solver maintains the relaxed and restricted variants within propa-
gators and uses the bounds to drive the search, i.e., z is tightened using both
M.L↓(s�) and M.L↓(s�). While the Exact MDD only contains paths with sums
between 1 and 3, the Relaxed MDD includes paths of value 0 and 4, and the
Restricted only contains paths of values 2 and 3. Observe that M.L↓(s�) yields
a primal bound of value 2 while M.L↓(s�) delivers a dual bound of value 0.

4 Restricted Decision Diagrams

Reference [6] offers a way to compile a propagator for the relaxed diagram M .
This section adapts the mechanism to produce a propagator for the restricted
diagram M , meant to run at a higher priority, to compute primal bounds. When
the propagator runs, if the restricted MDD is feasible, the best path through
the restricted diagram from source to sink spells out a witness solution and
its objective value which can be submitted to the solver as a new incumbent
(and therefore trigger the usual addition of a global optimality cut based on this
primal value). The restricted MDD construction is shown in Algorithm 1. The
main loop (lines 2–9) constructs the layers sequentially. Each iteration starts
with an empty layer and considers every node and outgoing arc from the prior
layer (line 3). If the arc exists, then the transition T ↓ produces a new state that is
added to layer Li. The loop on lines 8–9 trims layer i until it reaches the desired
width, discarding the arcs chosen by the selectState heuristic introduced in [7].
Lines 10–13 conclude by connecting nodes of the penultimate layer to the sink
and making use of the relaxation function R. Note that R is not used anywhere
else, preferring instead to discard overflowing states. When creating a restricted
MDD with top-down compilation, there are no bottom-up properties, hence the
transition existence function must be updated to include this possibility. In place

158 R. Gentzel et al.

Algorithm 1. buildRestrictedMDD(M, [x1, . . . , xn], width)
1: L0 = {s⊥}, Ln = {s�}, Li = ∅ ∀i ∈ 1..n − 1, A = ∅
2: for i ∈ 1..(n − 1) do
3: for s ∈ Li−1 and � ∈ D(xi) do
4: if Et(s, −, i, �) then
5: s′ = T ↓(s, −, i, �)
6: Li = Li ∪ s′

7: A = A ∪ s
�→ s′

8: while |Li| > width do
9: Li = Li\selectState(Li)

10: for s ∈ Ln−1 and � ∈ D(xn) do
11: if Et(s, −, n, �) then
12: s� = R(s�, T ↓(s, −, i, �))

13: A = A ∪ s
�→ s�

14: return 〈[L0, · · · , Ln], A〉

Algorithm 2. Filter FM over variables X for MDD language M and width w

1: M = buildRestrictedMDD(M, X, w)
2: for f ∈ solver.onSolCallbacks do
3: f(bestPath(M.s⊥, M.s�),M.L↓(s�))
4: if M is exact then
5: failNow()

of bottom-up properties, one can use the rough relaxed bounds introduced in [8].
Line 14 returns the produced restricted diagram.

4.1 Restricted MDDs in Haddock Propagation

Algorithm 2 gives the pseudocode of the restricted propagator. Line 1 builds
the restricted diagram (these are not reused across invocations) for the MDD
language M defined over variables in X. The loop on lines 2–3 iterates over
the list of callbacks passing down the witness solution for the best path in M
together with the primal bound for it, i.e., M.L↓(s�). As long as the callback
tightens z’s upper bound, the COP will be required to improve the incumbent for
the remainder of the execution. Finally, line 4 determines whether the diagram
is exact or not. If it is exact, then it contains the optimal solution and the search
can stop.

4.2 Relaxed MDDs in Haddock Propagation

The propagator for the relaxed MDD M is unchanged from [6]. The only dif-
ference is that the propagator is accessible by the search procedure as an oracle
capable of producing a dual bound on request (produced at its last fixpoint).

Optimization Bounds from Decision Diagrams in Haddock 159

4.3 Restricted MDDs and Constraints External to the MDD

One of the strengths of Haddock is the ability to support additional constraints
with their own propagators within a single solver. The algorithms presented here
assume that all constraints are embedded in one MDD. This assumption means
every s⊥-s� path in a restricted MDD corresponds to a feasible solution. If some
constraints are external to the MDD, a solution sent to the solver on Line 3 of
Algorithm 2 may violate one or more of those external constraints. Thankfully
in this case, the callback f can invoke a sub-solver for all external constraints
based on the binding imposed by the witness solution it receives to verify their
feasibility. Note that this can entail a nested search [17]. For brevity’s sake, this
paper only considers models where the MDD contains all constraints.

5 Best-First Search

CP often uses a depth-first search and relies on optimality cuts to discard sub-
trees that cannot improve upon the incumbent. With both a primal and a dual
bound, a best-first search strategy becomes feasible. Consider Algorithm 3 mod-
eled after the DFS in miniCP [12]. Lines 1 and 2 specify the propagators for the
restricted and the relaxed MDDs, respectively, of width w associated to M. Line
3 creates a priority queue and populates it with an initial problem where the
constraints and objective function f are embedded in M . A trivial upper bound
for the primal is set to +∞ (without loss of generality, we assume a minimiza-
tion). Line 5 adds an anonymous function to be called each time an incumbent
is produced. The purpose of this lambda is to tighten the primal bound. Lines
6–14 offer the main loop. Each iteration starts in line 7 with pulling the most
promising node from the queue. Line 8 propagates this node fully with the filter-
ing associated to all constraints to obtain the refined domains D′. Line 9 picks
a variable to branch on (i.e., xi). The loop spanning lines 10–14 considers each
value v in turn. Line 11 queries layer i of the relaxed MDD to retrieve the state
reachable via value v, and line 12 recovers the dual bound for that node. If the
node appears viable (line 13), a problem is added to the queue with the revised
domain, the binding of xi to v, and the tightening of the objective.

A few observations are worth making:

– The propagator for FM should be scheduled at a higher priority than the
propagator for FM since it is cheaper to compute and has the potential to
end the search early. This is easy to achieve with any solver that has at least
2 priority lists.

– The BFS implementation outline above adopts a lazy technique by only
enqueueing the specification of the new search node in queue on line 14 and
propagating the effect of the branching constraint only where the node is
de-queued on line 7. This lazy strategy dominates the eager when a node is
propagated before being added to the queue. The rationale is that propaga-
tion is relatively expensive in the context of MDD solvers where a substantial
computational effort is expanded when refining the MDD. BFS nodes that are
ultimately fathomed do not have to carry this burden in the lazy approach.

160 R. Gentzel et al.

Algorithm 3. BFS(X = [x1, . . . , xn],D,M, f, w)
1: FM = filtering function for the restricted MDD M of width w
2: FM = filtering function for the relaxed MDD M of width w
3: queue = {(〈X, D, {M, M}〉, −∞)}
4: primal = +∞
5: solver.onSolution(λX.λz → primal = min(primal, z))
6: while queue
= ∅ do
7: (〈X, D, C〉, _) = queue.extractBest()
8: D′ = FC(D)
9: i = min

1...n
{i | xi is not bound}

10: for v ∈ D(xi) do
11: s = M .Li.stateWithIncomingArc(v)
12: dual = L↓(s) + L↑(s)
13: if dual < primal then
14: queue = queue ∪ (〈X, D′, C ∪ {xi = v, f ≥ dual}〉, dual)

– When branching on xi, every variable sequentially before xi is bound. This
ensures that every earlier layer in the MDD consists of a single state with
one outgoing arc. As a result, when obtaining the state reachable via value
v (line 11), there can be only one state because the previous layer consists
of a single node. If using a branching technique that does not ensure every
previous variable is bound, then there may be multiple states in Li reachable
via v. In this case, the dual bound on layer 12 would instead be the minimum
across all such states in Li.

– This search bears similarities to the MDD-based branch-and-bound proposed
in [3]. In [3], the branching is done on MDD nodes from cutsets consisting
exclusively of exact nodes, i.e. nodes whose states did not require merging,
and required that every s⊥-s� path takes at least one node in the cutset. This
paper intentionally applied a traditional CP style branching on variables. Yet,
it is possible to adopt the same cutset branching provided that the necessary
API is provided on an MDD propagator, a task reserved for future work.

6 Empirical Evaluation

Haddock is part of MiniC++, a C++ implementation of the MiniCP specifica-
tion [12]. All benchmarks were executed on a Intel Xeon CPU E5-2640 v4 at
2.40 GHz with 32 GB.

Comparison to MDD-Based Branch and Bound. We compare constraint
optimization in HADDOCK to the dedicated MDD-based branch and bound
solver from [16]. We downloaded the provided source code for the dedicated
solver3, compiled, and ran it on the same machine as Haddock. We evaluate

3 Source code located at https://github.com/IsaacRudich/PnB_SOP.

https://github.com/IsaacRudich/PnB_SOP

Optimization Bounds from Decision Diagrams in Haddock 161

Table 1. Evaluating SOP instances. The maximum MDD width is w = 64.

Haddock Haddock w/ Priority B&B

Instance n # Nodes Time (s) Dual Primal Time (s) Dual Primal Time (s) Dual Primal
esc07 9 2 0.001 2125 2125 0.001 2125 2125 0.001 2125 2125
esc11 13 7 0.003 2075 2075 0.003 2075 2075 0.26 2075 2075
esc12 14 109 0.102 1675 1675 0.080 1675 1675 1.89 1675 1675
esc25 27 1456 17.129 1681 1681 16.786 1681 1681 1002.01 1681 1681
esc47 49 77278 - 171 1441 - 326 1427 - 335 1542
esc63 65 46163 - 21 62 - 21 62 - 8 62
esc78 80 8602 - 2050 19575 - 2025 19575 - 2230 19800
br17.10 18 7995 39.387 55 55 34.052 55 55 270.92 55 55
br17.12 18 5765 25.456 55 55 19.982 55 55 146.50 55 55
ft53.1 54 18969 - 2996 8198 - 1625 8198 - 1785 8478
ft53.2 54 26150 - 2322 8840 - 1729 8458 - 1945 8927
ft53.3 54 36033 - 2018 11519 - 2138 11707 - 2546 12179
ft53.4 54 71566 - 3549 14758 - 3681 14776 - 3773 14811
ft70.1 71 7293 - 24428 41751 - 24556 41647 - 25444 41926
ft70.2 71 9546 - 24560 42294 - 24664 41932 - 25237 42805
ft70.3 71 15824 - 25263 46497 - 25220 47232 - 25809 48073
ft70.4 71 21663 - 28775 56477 - 28928 56477 - 28583 56644
kro124p.1 101 2800 - 14667 45025 - 9556 44699 - 10773 46158
kro124p.2 101 3801 - 13901 46802 - 10003 46608 - 11061 46930
kro124p.3 101 6407 - 10606 55137 - 10882 55137 - 12110 55991
kro124p.4 101 9854 - 16524 84492 - 15297 84685 - 13829 85533
p43.1 44 37428 - 375 28785 - 350 29090 - 630 29450
p43.2 44 68066 - 405 28770 - 370 29010 - 440 29000
p43.3 44 76591 - 505 29530 - 510 29530 - 595 29530
p43.4 44 121550 - 960 83800 - 1015 83760 - 1370 83900
prob.42 42 93554 - 90 271 - 106 263 - 99 289
prob.100 100 4232 - 166 1673 - 163 1673 - 170 1841
rbg048a 50 51446 - 55 369 - 60 369 - 76 379
rbg050c 52 59245 - 70 500 - 56 500 - 63 566
rbg109a 111 35077 - 313 1127 - 307 1127 - 91 1196
rbg150a 152 16265 - 354 1863 - 201 1863 - 63 1874
rbg174a 176 9447 - 453 2156 - 335 2156 - 118 2157
rbg253a 255 4408 - 538 3178 - 390 3178 - 112 3181
rbg323a 325 3492 - 678 3380 - 416 3370 - 89 3519
rbg341a 343 3321 - 319 2968 - 246 2970 - 68 3038
rbg358a 360 2074 - 181 3202 - 175 3202 - 69 3359
rbg378a 554 1789 - 196 3402 - 67 3402 - 52 3429
ry48p.1 49 33024 - 6414 16892 - 4668 16763 - 5198 17555
ry48p.2 49 46264 - 6284 17439 - 4908 17410 - 5290 18046
ry48p.3 49 46053 - 5772 20890 - 5793 20962 - 6208 21161
ry48p.4 49 41435 - 12443 33391 - 14576 33261 - 13598 34517

the implementations on the Sequential Ordering Problem (SOP) from [16]. This
problem can be represented as an asymmetric traveling salesman problem with
precedence constraints. Given n elements labeled v1, . . . , vn with asymmetric

162 R. Gentzel et al.

arcs connecting them, the objective is to find a minimum path from v1 to vn
visiting each element once and respecting precedence constraints. The precedence
constraints are defined as a precedence ordering of vi before vj , the index of vi
in the path must be before the index of vj . The solvers were tested on the 41
SOP problems in TSPLIB [15].

Haddock represents the problem as the composition of an AllDifferent,
a sum (for the TSP distances), and a global ordering (that encapsulates all
precedence constraints) MDD languages. The language for the sum is a mod-
ified version from Sect. 3 to use the appropriate weight value in the transition
functions. The language for the global ordering constraint is very simple, only
requiring one forward property and one reverse property to track which elements
have been selected. The solver uses n variables labeled x1 to xn with domains
D(xi) = {1, . . . n} where the value of xi = v means element v is in position i
of the sequence. Variables x1 and xn are restricted to be 1 and n, respectively.
Following [7], the model uses heuristics to refine the MDD. First, the model uses
equality for the equivalence function and prioritizes refinement to favor states
with a smaller L↓. Second, in the initial refinement iteration, we make use of an
approximate equivalence function to split nodes based on incoming arc values.
We use a maximum reboot distance of 100.

All experiments use a 1-h timeout and record the primal and dual solutions as
well as the time taken to terminate. Results appear in Table 1. Bold-faced entries
report which solver terminates first (time) or with the best bounds (and thus best
incumbent for the primal bound). The “Haddock” columns correspond to the
default heuristics while “Haddock w/ Priority” refers to boosting the priority
of the ordering constraint. The columns for “B&B” refer to the dedicated MDD-
based branch-and-bound method from [16].

Out of the 41 instances, 6 terminate in under an hour. These terminate
for Branch and Bound as well but with longer runtimes. This is most likely
attributable to the impact of the heuristics used within the relaxed MDD propa-
gator for merging MDD nodes. Without taking advantage of constraint priority,
Haddock still obtained better times in the 6 terminating instances. Setting the
ordering constraint at top priority, the bounds obtained by Haddock improve
for several instances. For example, the dual bound for esc47 increases from
128 to 336. However, we also observe a couple instances where this heuristic
negatively impacts the dual bound. Most notably, rbg150a and rbg341a both
fail to obtain a meaningful dual bound. A limited number of heuristics were
tested in Haddock, which leads us to speculate that other heuristics may give
tighter bounds within the same time frame. For benchmark instances that time-
out after one hour, Haddock obtains competitive bounds compared to Branch
and Bound. In most instances, Haddock has a better primal (incumbent) while
the dual bound is often marginally weaker. Exceptions where the dual bound is
better do exist, e.g., esc63, ft70.4, kro124p.4, prob.42, rgb109a. From a dual
bound standpoint, it leads to the conclusion that neither solver dominates and
the difference are most likely attributable to the differences in heuristics with
the relaxed MDD propagator with the heuristic used in Haddock being either
a better or worse fit depending on the benchmark structure.

Optimization Bounds from Decision Diagrams in Haddock 163

Table 2. Time(s) and search nodes to reach target dual bound at different widths.

w = 32 w = 64 w = 128 w = 256

Instance Target Dual Time (s) # Nodes Time (s) #Nodes Time (s) #Nodes Time (s) # Nodes
esc78 1800 365.457 1707 389.607 916 830.739 723 2210.184 701
ft70.4 28000 59.153 1186 121.803 1083 252.895 1005 530.146 947
prob.42 80 221.997 11870 438.860 10751 1031.687 10909 2124.905 10695
ry48p.2 5500 165.818 4471 73.132 690 210.550 690 685.847 690

Effects of Width. Table 2 shows how the performance of Haddock scales
with the specified width on a subset of benchmarks from the various classes of
instances. Since those are larger instances that time out at 1 h, to have a better
comparison, the solvers were asked to stop once they reached a target value for
the dual bound (reported in the second column). Note how, as observed before,
there is a sweet spot for the width for which runtime is minimized. Also, the num-
ber of nodes for the branch-and-bound tree tends to reduce as width increases.
Naturally, since the algorithm is not executed to its natural termination (with
an optimality proof) the results should be interpreted conservatively.

Table 3. Impact of Restricted MDDs for the primal bound on BFS.

Depth-First Search Haddock Best-First Search Haddock

Instance n Time (s) Dual Primal Time (s) Dual Primal

esc07 9 0.002 2125 2125 0.001 2125 2125

esc11 13 0.079 2075 2075 0.003 2075 2075

esc12 14 0.737 1675 1675 0.102 1675 1675

esc25 27 605.560 1681 1681 17.129 1681 1681

esc47 49 - - 7655 - 171 1441

esc63 65 - - 170 - 21 62

esc78 80 - - 29340 - 2050 19575

br17.10 18 55.099 - 55 39.387 55 55

br17.12 18 10.298 - 55 24.456 55 55

Comparison to Depth-First Search Without Restricted MDDs. Table 3
highlights the impact of using Best-First Search with restricted MDDs. DFS finds
and proves optimality on the same instances that BFS did. Yet, in all but one of
these cases, DFS takes longer. In the exception (br17.12), it appears that DFS
gets ’lucky’ and finds the optimal solution quickly with the search strategy alone.
In other cases, DFS takes over a factor 10 longer, and when the instance takes
over an hour, not only does DFS have a weaker incumbent solution, but it has
no dual bound (effectively a dual bound of 0).

Comparison to Peel and Bound. We ran the Julia implementation of Peel &
Bound on our hardware and share in Table 4 a qualitative comparison between
Haddock and the results from [16]. First Haddock appears to remain com-
petitive w.r.t. runtime. In addition, Haddock produces primal bounds within

164 R. Gentzel et al.

Table 4. SOP Instances. Results from [16] at w = 64 for Peel & Bound.

Haddock Branch & Bound Peel & Bound

Instance n Time (s) Dual Primal Time (s) Dual Primal Time(s) Dual Primal

esc07 9 0.001 2125 2125 0.001 2125 2125 0.001 2125 2125

esc11 13 0.003 2075 2075 0.26 2075 2075 0.10 2075 2075

esc12 14 0.102 1675 1675 1.89 1675 1675 0.67 1675 1675

esc25 27 17.129 1681 1681 1002.01 1681 1681 319.47 1681 1681

esc47 49 - 171 1441 - 335 1542 - 364 1676

esc63 65 - 21 62 - 8 62 - 44 62

esc78 80 - 2050 19575 - 2230 19800 - 4950 20045

br17.10 18 39.387 55 55 270.92 55 55 11.36 55 55

br17.12 18 25.456 55 55 146.50 55 55 25.26 55 55

ft53.1 54 - 2996 8198 - 1785 8478 - 3313 8244

ft53.2 54 - 2232 8840 - 1945 8927 - 3419 8815
ft53.3 54 - 2018 11519 - 2546 12179 - 4198 12482

ft53.4 54 - 3549 14758 - 3773 14811 - 6398 14862

ft70.1 71 - 24428 41751 - 25444 41926 - 31077 41607
ft70.2 71 - 24560 42294 - 25237 42805 - 31190 42623

ft70.3 71 - 25263 46497 - 25809 48073 - 31823 47491

ft70.4 71 - 28775 56477 - 28583 56644 - 35895 56552

kro124p.1 101 - 14667 45025 - 10773 46158 - 17541 46158

kro124p.2 101 - 13901 46802 - 11061 46930 - 17608 46930

kro124p.3 101 - 10606 55137 - 12110 55991 - 18542 55991

kro124p.4 101 - 16524 84492 - 13829 85533 - 24316 85316

p43.1 44 - 375 28785 - 630 29450 - 380 29390

p43.2 44 - 405 28770 - 440 29000 - 420 29080

p43.3 44 - 505 29530 - 595 29530 - 480 29530
p43.4 44 - 960 83800 - 1370 83900 - 1010 83880

prob.42 42 - 90 271 - 99 289 - 94 289

prob.100 100 - 166 1673 - 170 1841 - 174 1841

rbg048a 50 - 55 369 - 76 379 - 45 380

rbg050c 52 - 70 500 - 63 566 - 154 512

rbg109a 111 - 313 1127 - 91 1196 - 372 1196

rbg150a 152 - 354 1863 - 63 1874 - 563 1865

rbg174a 176 - 453 2156 - 118 2157 - 623 2156
rbg253a 255 - 538 3178 - 112 3181 - 707 3181

rbg323a 325 - 678 3380 - 89 3519 - 281 3529

rbg341a 343 - 319 2968 - 68 3038 - 318 3064

rbg358a 360 - 181 3202 - 69 3359 - 72 3384

rbg378a 380 - 196 3402 - 52 3429 - 50 3429

ry48p.1 49 - 6414 16892 - 5198 17555 - 6140 17454

ry48p.2 49 - 6284 17439 - 5290 18046 - 6442 17970

ry48p.3 49 - 5772 20890 - 6208 21161 - 6874 21142

ry48p.4 49 - 12443 33391 - 13598 34517 - 14171 33804

Optimization Bounds from Decision Diagrams in Haddock 165

the 1-h timeout that rival (and often exceeds) those produced by peel & bound.
Finally, the dual bounds from peel & bound seem quite competitive, overtaking
both Haddock and classic Branch & Bound with only a few exceptions.

7 Conclusion

This paper studied the automatic use of primal and dual bounds from Multi-
valued Decision Diagrams (MDDs) in the context of branch-and-bound within a
CP solver. The paper extended Haddock to support both relaxed and restricted
diagrams for any constraints for which a labeled transition system can be speci-
fied. The paper described the derivation of the implementation and recognizes the
possibility for extending this work to include branching directly on MDD nodes
and supporting hybrid CP models that mix MDD propagators with conventional
constraints. The empirical evaluation established that the generic implementa-
tion one derives is competitive with state of the art dedicated MDD branch-and-
bound procedures including peel & bound.

Acknowledgements. Laurent Michel and Rebecca Gentzel were partially supported
by Synchrony. Willem-Jan van Hoeve is partially supported by Office of Naval Research
Grant No. N00014-21-1-2240 and National Science Foundation Award #1918102.

References

1. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. J. Math.
Comput. Model. 20(12), 97–123 (1994)

2. Bergman, D., Cire, A.A., Van Hoeve, W.-J., Hooker, J.: Decision Diagrams for
Optimization, vol. 1. Springer, Cham (2016)

3. Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Discrete optimization
with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In: Proceedings of the 16th European Conference on
Artificial Intelligence, ECAI 2004, pp. 146–150, NLD, August 2004. IOS Press
(2004)

5. Fischetti, M., Glover, F. Lodi, A.: The feasibility pump. Math. Program. 104(1),
91–104 (2005). https://doi.org/10.1007/s10107-004-0570-3

6. Gentzel, R., Michel, L., van Hoeve, W.-J.: HADDOCK: a language and architec-
ture for decision diagram compilation. In: Simonis, H. (ed.) CP 2020. LNCS, vol.
12333, pp. 531–547. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58475-7_31

7. Gentzel, R., Michel, L., van Hoeve, W.-J.: Heuristics for MDD propagation in
HADDOCK. In: 28th International Conference on Principles and Practice of Con-
straint Programming (CP 2022), vol. 235 of Leibniz International Proceedings in
Informatics (LIPIcs), pp. 24:1–24:17. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik (2022)

8. Gillard, X., Coppé, V., Schaus, P., Cire, A.A.: Improving the filtering of branch-
and-bound MDD solver. In: Stuckey, P.J. (ed.) CPAIOR 2021. LNCS, vol. 12735,
pp. 231–247. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78230-
6_15

https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1007/978-3-030-58475-7_31
https://doi.org/10.1007/978-3-030-58475-7_31
https://doi.org/10.1007/978-3-030-78230-6_15
https://doi.org/10.1007/978-3-030-78230-6_15

166 R. Gentzel et al.

9. Pesant, G., Quimper, C., Zanarini, A.: Counting-based search: branching heuris-
tics for constraint satisfaction problems. J. Artif. Intell. Res. 43, 173–210 (2012).
https://doi.org/10.1613/jair.3463

10. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-9_23

11. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

12. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for con-
straint programming. Math. Program. Comput. 13, 133–184 (2021)

13. Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint
programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR
2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29828-8_15

14. Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8_41

15. Reinelt, G.: TSPLIB-a traveling salesman problem library. ORSA J. Comput. 3(4),
376–384 (1991)

16. Rudich, I., Cappart, Q., Rousseau, L.M.: Peel-and-bound: generating stronger
relaxed bounds with multivalued decision diagrams. In: 28th International Con-
ference on Principles and Practice of Constraint Programming (CP 2022), vol.
235 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 35:1–35:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

17. Van Hentenryck, P., Perron, L., Puget, J.F.: Search and Strategies in OPL. ACM
Trans. Comput. Logic 1(2), 1–36 (2000)

https://doi.org/10.1613/jair.3463
https://doi.org/10.1007/978-3-642-15396-9_23
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-642-29828-8_15
https://doi.org/10.1007/978-3-540-30201-8_41

ZDD-Based Algorithmic Framework
for Solving Shortest Reconfiguration

Problems

Takehiro Ito1, Jun Kawahara2(B), Yu Nakahata3, Takehide Soh4,
Akira Suzuki1, Junichi Teruyama5, and Takahisa Toda6

1 Graduate School of Information Sciences, Tohoku University, Sendai, Japan
{takehiro,akira}@tohoku.ac.jp

2 Graduate School of Informatics, Kyoto University, Kyoto, Japan
jkawahara@i.kyoto-u.ac.jp

3 Graduate School of Science and Technology, Nara Institute of Science
and Technology, Ikoma, Japan
yu.nakahata@is.naist.jp

4 Information Infrastructure and Digital Transformation Initiatives Headquarters,
Kobe University, Kobe, Japan

soh@lion.kobe-u.ac.jp
5 Graduate School of Information Sciences, University of Hyogo, Kobe, Japan

junichi.teruyama@gsis.u-hyogo.ac.jp
6 Graduate School of Informatics and Engineering,

The University of Electro-Communications, Chofu, Japan
toda@disc.lab.uec.ac.jp

Abstract. This paper proposes an algorithmic framework for solving
various combinatorial reconfiguration problems by using zero-suppressed
binary decision diagrams (ZDDs), a data structure for representing fam-
ilies of sets. In general, a reconfiguration problem checks if there is a
step-by-step transformation between two given feasible solutions (e.g.,
independent sets of an input graph) of a fixed search problem, such that
all intermediate results are also feasible and each step obeys a fixed
reconfiguration rule (e.g., adding/removing a single vertex to/from an
independent set). The solution space formed by all feasible solutions
can be exponential in the input size, and indeed, many reconfiguration
problems are known to be PSPACE-complete. This paper shows that an
algorithm in the proposed framework efficiently conducts breadth-first
search by compressing the solution space using ZDDs, and that it finds
a shortest transformation between two given feasible solutions if such a
transformation exists. Moreover, the proposed framework provides rich
information on the solution space, such as its connectivity and all feasible
solutions that are reachable from a specified one. Finally, we demonstrate
that the proposed framework can be applied to various reconfiguration
problems, and experimentally evaluate its performance.

Partially supported by JSPS KAKENHI Grant Numbers JP18H04091, JP19H01103,
JP19H04068, JP19K11814, JP20K11666, JP20K11748, JP20H05793 and JP20H05794,
Japan.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 167–183, 2023.
https://doi.org/10.1007/978-3-031-33271-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_12&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_12

168 T. Ito et al.

Keywords: Combinatorial reconfiguration · Graph algorithms ·
Binary decision diagrams

1 Introduction

Combinatorial reconfiguration [11,13,23] is a family of problems that involve
finding a procedure to change one solution of a combinatorial search problem
into another solution while maintaining the conditions of the search problem,
and has attracted much attention in recent years. Taking a change in the switch
configuration of a power distribution network as an example, we can regard a
switch configuration that satisfies all given electrical conditions as a solution
for a search problem [12]. In the reconfiguration version of this search problem,
the task is to find a change procedure from the current switch configuration
to another (more desirable) configuration while maintaining required electrical
conditions such as not causing power outages. In general, we can say that a
combinatorial reconfiguration problem models a situation in which the goal is to
change a current configuration to another one without requiring the system to
stop.

Combinatorial reconfiguration problems have been actively studied in the
theoretical algorithms research community in recent years. (See the surveys
in [11,23].) In particular, combinatorial reconfiguration problems related to
graph problems, such as independent set reconfiguration and graph coloring
reconfiguration, have been well studied. Many of these studies have mainly fol-
lowed a theoretical perspective, such as analysis of the computational complex-
ity of the problem with respect to graph classes; in contrast, to the bast of our
knowledge, there has been little research on the applied aspects of combinatorial
reconfiguration. Since many reconfiguration problems, such as the independent
set reconfiguration [15] and graph 4-coloring reconfiguration [2], are PSPACE-
complete, it is hard to design an efficient algorithm. However, depending on the
application, the number of vertices in the input graph may be at most tens or
hundreds, and in such cases, we can expect the existence of an algorithm that
runs within an acceptable time.

There are various promising methods for solving combinatorial optimization
problems that appear in real applications, such as integer programming, SAT
solvers, genetic algorithms, and metaheuristics. One approach that has attracted
attention is the use of zero-suppressed binary decision diagrams (ZDDs) [4,20].
A ZDD is a data structure that compresses and compactly represents a family of
sets. By representing the solution set of a combinatorial optimization problem
as a ZDD and then performing set operations of ZDDs, it is possible to find
an optimal solution by imposing constraints that integer programming methods
and SAT solvers do not handle well.

In this study, we investigate the solution of combinatorial reconfiguration
problems by using ZDDs. In particular, we leverage the fact that a ZDD pre-
serves not just one solution, but all solutions. Hence, we propose an algorithm
to obtain all solutions that are changeable from a given solution as a ZDD.

ZDD-Based Algorithmic Framework for Reconfiguration Problems 169

Fig. 1. Variants, models, and reconfiguration objects that our framework can handle.

This algorithm can be applied to various combinatorial reconfiguration problems
whose solution sets can be represented as ZDDs. We give precise definitions in
Sect. 2, but here, Fig. 1 shows combinatorial reconfiguration problems that our
algorithm can handle. These problems can be identified by their combinations of
problem variants, change rules (models), and solutions (reconfiguration objects).
In addition, we demonstrate the effectiveness of the proposed algorithm through
computer experiments.

The organization of the paper is as follows. Section 2 defines combinatorial
reconfiguration problems and introduces ZDDs. We propose our algorithm using
ZDDs in Sect. 3. Then, Sect. 4 shows that the proposed algorithm can solve
various combinatorial reconfiguration problems. Finally, we describe the experi-
mental results in Sect. 5, before concluding the paper in Sect. 6.

2 Preliminaries

Throughout this paper, we use the symbols G, V , and E to denote an input
graph, its vertex set, and its edge set, respectively. For families A, B of sets, we
define A �� B = {A ∪ B | A ∈ A, B ∈ B}. In this paper, we sometimes simply
call a family of sets a “family.”

170 T. Ito et al.

2.1 Reconfiguration Problems

As shown in Fig. 1, a combinatorial reconfiguration problem can be identified by
a combination of problem variants, models, and reconfiguration objects.

We first define reconfiguration objects. Throughout this paper, we use the
symbol U to denote a finite universal set, and we assume that the solutions for a
change can be represented as subsets of U . Specifically, given a reconfiguration
problem, we fix a property π defined on the subsets of U , and we say that a set
X ⊆ U is a reconfiguration object, or simply an object, if X satisfies π.

We next define models, also known as reconfiguration rules. A reconfiguration
rule R on the subsets of U defines whether two subsets of U are adjacent. Three
reconfiguration rules, called the token addition and removal, token jumping, and
token sliding models, are well studied [15,23]. Here, we imagine that a token is
placed on each element in a subset of U . In this paper, we omit the token sliding
model.

Token Addition and Removal: Two subsets X and Y of U are adjacent under
the token addition and removal (TAR) model if and only if |(X\Y)∪(Y \X)| = 1.
In other words, Y can be obtained from X by either adding a single element in
U \ X or removing a single element in X.

Token Jumping: Two subsets X and Y of U are adjacent under the token
jumping model if and only if |X \ Y | = |Y \ X| = 1. That is, Y can be obtained
from X by exchanging a single element in X with an element in U \ X.

Lastly, we define problem variants. For a given universal set U , the solution
space under the property π and the reconfiguration rule R is a graph where each
node corresponds to a reconfiguration object of U , and two nodes are joined
by an edge if and only if their corresponding sets are adjacent under R. Then,
we can consider variants of reconfiguration problems on the solution space. The
reachability variant asks whether the solution space contains a path connecting
two given objects. The shortest variant asks to compute the shortest length (i.e.,
the minimum number of edges) of any path in the solution space that connects
two given objects. The farthest variant asks to find an object farthest from a
given object in the solution space (i.e., the shortest path between the two objects
is the longest). Finally, the connectivity variant asks whether the solution space
is connected.

2.2 Zero-Suppressed Decision Diagram (ZDD)

A ZDD, as defined below, is a data structure for efficiently representing a family
of sets. In this section, we set U = {x1, . . . , xn} and x1 < x2 < · · · < xn. A ZDD
is a directed acyclic graph (DAG) Z that has the following properties. It has
at most two nodes with outdegree zero, which are called terminals and denoted
by ⊥ and �. Nodes other than the terminals are called non-terminal nodes. A
non-terminal node ν has an element in U , which is called a label and denoted by
label(ν), and it has two arcs, called the 0-arc and 1-arc. If the 0-arc and 1-arc of
a non-terminal node ν point at nodes ν0, ν1, we write ν = (label(ν), ν0, ν1), and

ZDD-Based Algorithmic Framework for Reconfiguration Problems 171

we call ν0 and ν1 the 0-child and 1-child, respectively. Then, label(ν) < label(ν0)
and label(ν) < label(ν1) must hold, where we guarantee that xi < label(⊥) and
xi < label(�) for all i = 1, . . . , n. Lastly, a ZDD Z has exactly one node with
indegree zero, called the root, and is denoted by root(Z).

A ZDD Z represents a family of sets whose universal set is U , as follows.
We associate each node in Z with a family, denoted by S(ν), in the following
recursive manner. The terminal nodes ⊥ and � are associated with ∅ and {∅},
respectively; that is, S(⊥) = ∅ and S(�) = {∅}. Consider the case where ν is a
non-terminal node. Let ν = (x, ν0, ν1), where x ∈ U and ν0, ν1 are nodes of Z.
The node ν is associated with the union of the family that we associate with ν0,
and the family obtained by adding x to each set in the family that we associate
with ν1; that is, S(ν) = S(ν0) ∪ ({{x}} �� S(ν1)). (Note that {{x}} �� S(ν1)
is the family obtained by adding x to each set in S(ν1).) Observe that each of
the sets in S(ν0) and S(ν1) does not contain x because of the ZDD property
that label(ν) < label(ν0) and label(ν) < label(ν1) must hold. We interpret Z
to represent the family that we associate with the root node. The family S(Z)
represented by Z is defined by S(Z) = S(root(Z)) (note that we use the same
notation S for a node and a ZDD).

Every ZDD Z has the following recursive structure [3,20]. Let ν = root(Z),
and suppose that ν is represented by ν = (x, ν0, ν1). Then, for i = 0, 1, the
DAG comprising the nodes and arcs reachable from νi can be considered a ZDD
with root νi, and we denote it as childi(Z) (see Fig. 2). The ZDD childi(Z)
represents S(νi). For computation using a ZDD Z, we often design a recursive
algorithm op(Z), which calls op(child0(Z)) and op(child1(Z)) and manipulates
the results of them. To clarify this notion, we describe the behavior of a recursive
algorithm for the set union operation. Consider the construction of a ZDD Z
for the union of P = {{x1}, {x2}, {x1, x2}} and P ′ = {{x1, x3}, {x2, x3}} from
the ZDDs. First, we focus on sets in P and P ′ that do not include x1, and we
take the union over them. We do this by applying the union operation to the left
children of the ZDDs for P and for P ′. The operation proceeds recursively: the
base step occurs when one of the ZDDs is � or ⊥, which is straightforward and
thus omitted here. The induction step is described below. The same approach
applies to the union of the other sets, i.e., the sets in P and P ′ that include
x1. Here, we have two ZDDs as a result of applying the recursive operation: one
represents all sets in P ∪ P ′ that do not include x1, and the other represents
those sets in P ′ that include x1; these ZDDs correspond to child0(P)∪child0(P ′)
and child1(P) ∪ child1(P ′), respectively. We thus construct the final ZDD Z so
that the 0-arc of x1 points to the root of the ZDD child0(P) ∪ child0(P ′) and
that of the ZDD child1(P) ∪ child1(P ′).

ZDDs have rich operations for manipulating families [3,20]. For example,
given two ZDDs Z,Z ′, we can efficiently compute ZDDs representing S(Z) ∪
S(Z ′), S(Z)∩S(Z ′), S(Z)\S(Z ′), and so on by the recursive process described
above. For a binary operation ◦ ∈ {∪,∩, \, . . .}, we denote the ZDD representing
S(Z) ◦ S(Z ′) by Z ◦ Z ′. For more information on ZDDs, refer to [19].

172 T. Ito et al.

Fig. 2. Example of a ZDD and the recursive structure.

3 ZDD-Based Algorithmic Framework

3.1 Algorithmic Framework

We begin with the reachability variant under the TAR model for independent
sets, where reconfiguration objects are independent sets in an input graph G
whose cardinality is at least a threshold k given as an input. In this problem,
we are given a graph G = (V,E), an integer k, and two independent sets S, T .
The task of the problem is to decide whether a reconfiguration sequence from
S to T exists such that any set in the sequence is an independent set of G,
its cardinality is at least k, and any set except for S is obtained by adding or
removing a vertex to or from the previous set, respectively. For example, if G =
(V,E) with V = {1, 2, 3, 4, 5, 6} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}},
k = 2, S = {1, 3}, and T = {1, 4, 6}, an example of a reconfiguration sequence is
{1, 3}, {1, 3, 6}, {1, 6}, {1, 4, 6}, which is obtained by adding 6, removing 3, and
adding 4.

Hayase et al. [10] proposed an algorithm that constructs a ZDD, say Zind,
that represents the family of all the independent sets of a given graph, where
the universal set U is the vertex set of the graph and the elements (vertices)
in U are ordered. The ZDD Zind is highly compressed if the given graph has a
good structure, such as one with a small pathwidth. For example, an 8 × 250
grid graph has 3.07 × 10361 independent sets, but the ZDD representing them
has just 49,989 nodes (with about 1MB of memory usage).

For the reconfiguration problem, we consider the use of a ZDD that represents
a vast number of independent sets. Although Zind includes all the independent
sets, it does not have information on their adjacency relations. Our goal is to

ZDD-Based Algorithmic Framework for Reconfiguration Problems 173

obtain the family of independent sets that are adjacent to a given independent
set, and more generally, the family of independent sets that are adjacent to
any independent set in a given family. If we can obtain these by repeating the
operation of obtaining the family of adjacent independent sets from the initial
independent set, then we can obtain all independent sets that are reachable from
the initial independent set and decide whether a reconfiguration sequence from
that set to the target set exists.

The TAR model requires two operations: removal of a vertex from an inde-
pendent set and addition of a vertex to an independent set. First, we consider the
removal operation. Given a family I of independent sets, the removal operation
entails removing each element from each independent set in I, thus obtaining
the family {I \ {v} | I ∈ I, v ∈ I}. Given I as a ZDD, we propose an algorithm
that constructs a ZDD representing {I \ {v} | I ∈ I, v ∈ I} without extracting
elements from I. As for the addition operation, we also propose an algorithm
that constructs a ZDD representing {I ∪ {v} | I ∈ I, v ∈ U \ I}.

For later use, we describe the two operations in a somewhat general form.
For a ZDD Z (whose universal set is U) and a set R ⊆ U , let remove(Z, R) be
the ZDD representing

{I \ {v} | I ∈ S(Z), v ∈ I ∩ R},

which means that we remove an element only from R. For a ZDD Z and a set
A ⊆ U , let add(Z, A) be the ZDD representing

{I ∪ {x} | I ∈ S(Z), x ∈ A \ I},

which means that we add an element only in A.
For the TAR model, we can solve the reachability variant of the independent

set reconfiguration problem by using remove(Z, R) and add(Z, A) as follows.
First, we construct a ZDD representing the solution space. Recall that a feasible
independent set in the TAR model contains at least k vertices. It is easy to
construct a ZDD, say Z≥k, representing the family of all sets with cardinality at
least k (i.e., {I ⊆ U | |I| ≥ k}) [19]. The solution space ZDD Zsol is then obtained
from the intersection operation of Zind and Z≥k, as mentioned in Sect. 2.2. In
the above example, S(Z≥2) = {{1, 2}, {1, 3}, . . . , {5, 6}}. S(Zind) includes sets
whose cardinality is less than k (for example, {1} and {3} are independent sets of
G). By taking the union of Zind and Z≥k, we remove the sets whose cardinality
is less than k from S(Zind).

Next, for i = 0, 1, . . ., let Zi denote the ZDD representing the family of
independent sets obtained by applying the reconfiguration rule (i.e., removing or
adding a vertex) to S exactly i times, where Z0 is the ZDD such that S(Z0) =
{S}. The construction of Z0 is trivial. For i = 1, 2, . . ., the ZDD Zi can be
constructed by

Zi ← op(Zi−1) ∩ Zsol, (1)

where op(Z) = remove(Z, V)∪add(Z, V) for ZDD Z (recall that V is the vertex
set of a given graph). Note that ∪ and ∩ are ZDD operations mentioned in

174 T. Ito et al.

Sect. 2.2. After constructing Zi, we decide whether Zi = ⊥ (i.e., S(Zi) = ∅)
and whether T ∈ S(Zi) (both tasks are straightforward). If Zi = ⊥, it means
that a reconfiguration sequence from S to T does not exist, because S(Zj),
0 ≤ j ≤ i, includes all independent sets that are reachable from S within j
steps. We thus output NO and halt. On the other hand, if T ∈ S(Zi), then a
reconfiguration sequence with length i from S to T exists: we output YES and
halt. If neither case holds, we construct Zi+1.

Let us consider the above example. In the following description, we use
the S notation, but actually, all operations are conducted as ZDD operations.
We obtain S(Z0) = {S} = {{1, 3}}, S(Z1) = {{1, 3, 5}, {1, 3, 6}}, S(Z2) =
{{1, 3}, {1, 5}, {1, 6}, {3, 5}, {3, 6}}, and S(Z3) = {{1, 3, 5}, {1, 3, 6}, {1, 4, 6}}.

3.2 Removal and Addition Operations

Next, given a ZDD Z and two sets A and R, we describe how to construct
the ZDDs remove(Z, R) and add(Z, A). We begin by designing an algorithm for
remove(Z, R) for a ZDD Z, which is based on the recursive process described
in Sect. 2.2. Let ν = root(Z). Suppose that ν is a non-terminal node and ν =
(x, ν0, ν1), where x ∈ U and νi is the i-child of ν.

Here, we consider the case of x ∈ R. Letting Zrem = remove(Z, R), we observe
the characteristics of Zrem. First, root(Zrem) = x because S(Zrem) contains a
set that includes x and does not contain any set that includes an element smaller
than x. Secondly, consider child0(Zrem), which is a ZDD representing the family
of sets in S(Zrem) that do not contain x. Each set in S(child0(Zrem)) is obtained
in one of the following two ways: (i) we remove an element from a set in S(Z)
that does not include x (i.e., a set in S(child0(Z))), or (ii) we remove x from a set
in S(Z) that includes x (i.e., a set in {{x}} �� S(child1(Z))). We collect all the
sets obtained by (i), and we construct a ZDD representing them by recursively
applying the remove operation to child0(Z). In contrast, the ZDD for case (ii) is
just child1(Z). Hence, we obtain

child0(Zrem) = remove(child0(Z), R \ {x}) ∪ child1(Z),

where ‘∪’ is the union operation of ZDDs described in Sect. 2.2.
Thirdly, we consider child1(Zrem), which is the ZDD representing the family

of sets each of which is obtained by removing x from a set in S(Zrem) that
contains x. Each set in S(child1(Zrem)) is obtained by removing x from a set
in S(Zrem) containing x. The ZDD is thus obtained by applying the remove
operation to child1(Z) as follows:

child1(Zrem) = remove(child1(Z), R \ {x}).

Now, we consider the case of x /∈ R, which means that we do not remove x
from any independent set. We obtain

child0(Zrem) = remove(child0(Z), R \ {x}),
child1(Zrem) = remove(child1(Z), R \ {x}).

ZDD-Based Algorithmic Framework for Reconfiguration Problems 175

Our recursive algorithm for remove(Z, U) is as follows: If Z = ⊥ or Z = �,
return ⊥. Otherwise, let x = label(root(Z)), construct

Z0 ←
{
remove(child0(Z), R \ {x}) ∪ child1(Z) if x ∈ R,

remove(child0(Z), R \ {x}) if x /∈ R,

Z1 ←remove(child1(Z), R \ {x}),

and then call and return makenode(x,Z0,Z1). Here, the makenode(x,Z0,Z1)
function conducts the following procedure: if there is a node whose label is x
and whose i-arc points at the root of Zi for i = 0, 1, just return the node;
otherwise, make a new node with label x, make its i-arc point at the root of Zi

for i = 0, 1, and return the new node.
Next, we design an algorithm for add(Z, A) for any A ⊆ U . Note that there is

a possibility that an element that appears in A but never in Z is added to a set.
Let x = label(root(Z)), and let y be the minimum element in A. First, we consider
the case of x ≥ y. Similarly to the remove operation, we call makenode(x,Z0,Z1),
where

Z0 ←add(child0(Z), A \ {x}),

Z1 ←
{
add(child1(Z), A \ {x}) ∪ child0(Z), if x ∈ A

add(child1(Z), A \ {x}) if x /∈ A.

Secondly, we consider the case of x < y, including the case where Z = � and
A = ∅, which means that the constructed family contains sets obtained by adding
y to sets in S(Z). In this case, we consider a ZDD Z ′ that is equivalent to Z
(i.e., S(Z ′) = S(Z)), such that label(root(Z ′)) = y. Such a Z ′ is constructed by
calling makenode(y,Z,⊥). We then call and return add(Z ′, A) recursively.

At the end of the recursion, add(⊥, A) = ⊥ for any A ⊆ U , and add(�, ∅) = ⊥
(the case of add(�, A) for a non-emptyset A has already been described above).

4 Versatility of Proposed Algorithm

In this section, we show the versatility of the proposed algorithm in the following
three directions. (i) By using Zi (from Sect. 3.1), we can solve the variants
introduced in Sect. 2.1 (discussed below in Sect. 4.1). (ii) By changing op(Z) in
Eq. (1), we can solve certain models (Sect. 4.2). (iii) By constructing Zsol, we
can handle various reconfiguration objects and constraints (Sect. 4.3).

4.1 Shortest, Farthest, and Connectivity Variants

The ZDD Zi represents the family of all independent sets that are reachable
from the initial set S in i steps. Therefore, the smallest integer i such that
T ∈ S(Zi) holds is the length of a shortest reconfiguration sequence from S to
T . The proposed algorithm can solve not only the reachability variant but also
the shortest variant.

176 T. Ito et al.

The shortest sequence I0 (= S), . . . , Ih (= T) between S and T can be
obtained by the following backtrack method, where h is the smallest integer
such that T ∈ S(Zh). Here, we consider only the token jumping model; the other
models are similar. Suppose that we have already obtained Ip, . . . , Ih (2 ≤ p ≤
h). Then, there are vertices v /∈ Ip and w ∈ Ip such that Ip∪{v}\{w} ∈ S(Zp−1)
according to the construction of Zp. Thus, we let Ip−1 := Ip ∪{v} \ {w}. By the
above method, we obtain I1, . . . , Ih. Finally, |I0\I1| = |I1\I0| = 1 obviously holds
according to the construction of Z1, which indicates that the sequence I0, . . . , Ih
is certainly the reconfiguration sequence between S and T . The computation time
is as follows. We can test whether Ip∪{v}\{w} is in S(Zp−1) by a ZDD operation
in O(|V |) time. The number of candidates for Ip−1 is O(|V |2). Therefore, the
computation time to obtain the shortest sequence after constructing the ZDDs
Z0, . . . ,Zh is O(h|V |3).

Next, consider the farthest variant. We construct Z0,Z1, . . . without checking
whether T ∈ S(Zi) in the algorithm until Zi = ⊥ holds. Let h′ be the smallest
integer such that Zh′

= ⊥. Then, a set in S(Zh′−1) is a farthest independent
set from S.

As for the connectivity variant, we solve it by applying the following idea. If
the solution space (graph) is connected, then all independent sets are reachable
from any set S. Therefore, we randomly choose S from S(Zsol) by a ZDD opera-
tion and construct Z0,Z1, . . . ,Zh′−1 in the same way as for the farthest variant.
Then, by examining whether Zsol is equivalent to

⋃
i=0,...,h′−1 Zi, we obtain the

answer. Note that checking the equivalency of two given ZDDs can be done in
O(1) time in many ZDD manipulation systems.

We conclude this subsection by pointing out that our algorithm can solve
the reconfiguration problem with multiple starting sets S1, . . . , Ss and goal
sets T1, . . . , Tt, where the task is to decide whether a reconfiguration sequence
between Sj and Tj′ exists for some j, j′. We simply let Z0 be the ZDD for
{S1, . . . , Ss} and decide whether Tj′ ∈ S(Zi) for some j′ instead of whether
T ∈ S(Zi).

4.2 Token Jumping Model

We consider the token jumping model by designing op(Z) in Eq. (1).
A swap operation removes a vertex from and adds another vertex to an

independent set. For a ZDD Z (whose universal set is U) and sets A,R ⊆ U , let
swap(Z, A,R) be the ZDD representing

{I ∪ {v} \ {v′} | I ∈ S(Z), v ∈ A \ I, v′ ∈ I ∩ R},

which means that we add an element in A and remove an element in R. This can
be represented by add(remove(Zi−1, R), A) \ Zi−1. The set subtraction of Zi−1

is needed because the family represented by add(remove(Zi−1, R), A) includes
sets obtained by removing and adding the same vertex.

ZDD-Based Algorithmic Framework for Reconfiguration Problems 177

We can design a more efficient algorithm. Here, we only show Z0 and Z1

when calling makenode(x,Z0,Z1) with x = root(Z). The other cases are similar
to the addition operation. Z0 and Z1 are given as follows:

Z0 ←
{
swap(child0(Z), A \ {x}, R \ {x}) ∪ add(child1(Z), A \ {x}), x ∈ R,

swap(child0(Z), A \ {x}, R \ {x}) x /∈ R,

Z1 ←
{
swap(child1(Z), A \ {x}, R \ {x}) ∪ remove(child0(Z), R \ {x}), x ∈ A,

swap(child1(Z), A \ {x}, R \ {x}) x /∈ A.

This approach holds because S(Z0) includes the independent sets obtained by
removing x from each set in {{x}} �� S(child1(Z)) and then adding a vertex
other than x if x ∈ R, and S(Z1) includes the independent sets obtained by
adding x to each set in S(child0(Z)) and removing a vertex other than x if
x ∈ A. At the end of the recursion, swap(⊥, A,R) = swap(�, A,R) = ⊥ holds
for any A and R.

4.3 Reconfiguration Objects and Constraints

The proposed algorithm does not depend on the characteristics of independent
sets, except for the construction of Zsol. Therefore, to solve a certain reconfigu-
ration problem, we can apply the algorithm by explaining how to construct Zsol

for objects corresponding to the problem. Many researchers have proposed ZDD
construction algorithms for various set families, some of which can be applied to
ZDD construction for many reconfiguration objects. In this section, we overview
the kinds of objects that we can handle.

Vertex Subsets. First, we show that we can construct many kinds of objects
each of which is represented as a subset of the vertex set by set operations.
Assume that the universal set U is V .

We begin with independent sets (although we mentioned in the previous
section that there is a more efficient algorithm [10]). Let Xv and X v be respec-
tively the families of all sets including v and the family of those not including
v; that is, Xv = {A ⊆ U | v ∈ A} and Xv = {A ⊆ U | v /∈ A}. It is easy to
construct ZDDs for Xv and X v. For two vertices v and w, the family of all sets
including at most one of v and w is X v ∪ Xw. Therefore, the family of all the
independent sets is ⋂

{v,w}∈E

(X v ∪ Xw

)
,

and the ZDD for this family can simply be obtained by combining known ZDD
operations [19]. Similarly, we can solve other reconfiguration objects via ZDD
operations [19], and we list some of them in Table 1.

178 T. Ito et al.

Table 1. Reconfiguration objects that can be represented as vertex subsets, and how
to obtain them by set operations [19]. Let Nk(v) be the set of vertices whose distance
from v ranges from 1 to k.

Reconfiguration object Set operations

Dominating set
⋂

v∈V

(
Xv ∪

(⋃
w∈N(v) Xw

))

Vertex cover
⋂

{v,w}∈E (Xv ∪ Xw)

Clique
⋂

{v,w}/∈E

(X v ∪ Xw

)

Distance-k independent set
⋂

v∈V

⋂
w∈Nk(v)

(X v ∪ Xw

)

Distance-k dominating set
⋂

v∈V

(
Xv ∪

(⋃
w∈Nk(v) Xw

))

Coudert [8] proposed algorithms that construct ZDDs representing the fam-
ilies of sets obtained by collecting only the maximal/minimal sets in a fam-
ily given as a ZDD Z; that is, maximal(Z) is the ZDD for {X ∈ S(Z) |
∀X ′ ∈ S(Z),X ⊆ X ′ =⇒ X = X ′} and minimal(Z) is the ZDD for
{X ∈ S(Z) | ∀X ′ ∈ S(Z),X ′ ⊆ X =⇒ X = X ′}. Using the maximal
operation, we can solve (the token jumping model of) the maximal independent
set reconfiguration problem [5], where every feasible solution of this problem is
a maximal independent set. We can also solve certain maximal/minimal recon-
figuration problems, such as minimal dominating set reconfiguration, minimal
vertex cover reconfiguration, and maximal clique reconfiguration.

Subgraphs. Next, we consider a subgraph that can be represented by an edge
set. For example, a path can be represented by the set of edges comprising the
path. Formally, for an edge set E′ ⊆ E, a subgraph is represented by (V ′, E′),
where V ′ =

⋃
{v,w}∈E′({v} ∪ {w}). Then, we set E as the universe set U . Note

that this representation handle subgraphs that include isolated vertices.
Sekine et al. [24] proposed an algorithm that constructs a ZDD representing

the family of all spanning trees. Knuth [19] proposed a similar algorithm that
constructs a ZDD representing the family of all s-t paths. Kawahara et al. [16]
generalized those algorithms to a framework that can handle various objects,
including matchings, regular graphs, and Steiner trees. Moreover, their frame-
work can impose constraints on parameters such as the degree of each vertex, the
connectivity of vertices, the existence of a cycle, and the number of edges (equal
to, less than, or more than a specified value) in any combination. Recent research
on ZDD construction has enabled treatment of more complex graph classes such
as degree constrained graphs [17], chordal graphs [18], interval graphs [18], and
planar graphs [22]. All of these can be treated as reconfiguration objects and
are shown in Fig. 1. For example, the proposed algorithms can solve Steiner tree
reconfiguration [21], planar subgraph reconfiguration, and so on.

ZDD-Based Algorithmic Framework for Reconfiguration Problems 179

5 Experimental Results

To evaluate the performance of the proposed ZDD-based method, we conducted
an experimental comparison using the 1st place solver that won CoRe Challenge
2022.

CoRe Challenge 2022. The 1st Combinatorial Reconfiguration Challenge
(CoRe Challenge 2022)1 was held in 2022. The goal of CoRe Challenge 2022
was practical exploration of combinatorial reconfiguration. This first competi-
tion targeted the token jumping model of the independent set reconfiguration
problem [15]. It provided 369 instances, which included both instances that have
a reconfiguration sequence (323 instances) and do not have any sequence (46
instances). The participating solvers included a state-of-the-art AI planner and
BMC solver based methods [25], e.g., SymK [26] and NuSMV [7].

Experimental Conditions. We compared our system with recon (@telematik-
tuhh) [27], which is based on a hybridization of the IDA* algorithm and breadth-
first search. It found 280 shortest reconfiguration sequences and was the 1st-
place solver in the overall solver track for the shortest reconfiguration metric2.
Except for the queen benchmark series, the instances solved by recon included
all instances solved by the 2nd- and 3rd-place solvers. In our experiment, we
compared how many shortest reconfiguration sequences could be found by each
system. We used a machine with a 2.30-GHz CPU and 2 TB of RAM. The
proposed ZDD solver was written in C++ language with the SAPPOROBDD3

and TdZdd [14] libraries, and it was compiled by g++ with the -O3 option.
The variable of ZDDs were ordered by the heuristic described in [9]. We have
published an implementation of the proposed algorithm and scripts to reproduce
the experiments on GitHub4.

Results. Table 2 summarizes the comparisons between the proposed algorithm
and recon for each series of benchmark instances. In this experiment, the time
limit was two hours. The first and second columns respectively indicate the name
of the benchmark series and the number of instances included in each series. The
third and fourth columns indicate the maximum numbers of vertices and edges in
each series, respectively. The fifth column lists the longest shortest reconfigura-
tion length known for each series. Finally, the sixth and seventh columns indicate
the numbers of instances solved by the two systems in two hours. The benchmark
series are sorted in order of the longest shortest reconfiguration length.

From this table, we can see the pros and cons of the proposed algorithm
and recon. The proposed algorithm was good at solving instances having long
reconfiguration sequences, but it was not so good for instances of large graphs. In
contrast, the recon solver could adapt to instances of large graphs but could not
solve many instances having long reconfiguration sequences. A major bottleneck

1 https://core-challenge.github.io/2022/.
2 https://core-challenge.github.io/2022result/.
3 https://github.com/Shin-ichi-Minato/SAPPOROBDD.
4 https://github.com/junkawahara/ddreconf-experiments2023.

https://core-challenge.github.io/2022/
https://core-challenge.github.io/2022result/
https://github.com/Shin-ichi-Minato/SAPPOROBDD
https://github.com/junkawahara/ddreconf-experiments2023

180 T. Ito et al.

in the proposed algorithm is the construction of the ZDD Zind representing all
the independent sets. When a graph is large (e.g., more than 10,000 edges), it
takes a very long time and large memory to construct Zind. Table 3 summarizes
the results when classified by the length of the shortest reconfiguration found.
This table more clearly shows the characteristics of the two methods.

Next, Fig. 3 shows a plot of the relation between the length of the shortest
reconfiguration sequence found and the CPU time in log scale for sp series. In
this experiment, to examine the length of the reconfiguration sequences that the
algorithms could find, we set the time limit to 200,000 s. From the plot, we can see
that the CPU time for the proposed algorithm rose gently as the length increased,
whereas the time for recon rose steeply. Figure 4 shows a similar plot, but for a
comparison of memory usage. The proposed algorithm used more memory at the
beginning for the ZDD library, but the situation was reversed when the reconfig-
uration sequence became longer. The proposed algorithm successfully computed
the shortest sequence for the sp019 instance with 247 vertices and 1,578 edges,
with length 5,767,157, in 151,567 s. For sp019, the size (number of nodes) of the
ZDDs Zi in the proposed algorithm was at most tens of thousands for each i, but
some Zi contained more than 1010 independent sets. The proposed algorithm thus
behaved as if it was searching the solution space like a breadth-first search while
compressing the found solutions. This indicates that our algorithm is good at han-
dling instances for which the solution space has a relatively small width, but is very
long. The recon solver also conducts a breadth-first search, but it takes a long time
because the solution space itself is enormous. Other solvers in the competition
show the same trend as recon although we omit the detail.

Table 2. Experimental results for each benchmark series

Dataset # Inst Max |V | Max |E| Reconfig. len # Solved ZDD # Solved recon

grid 4 40000 79600 8 2 2

handcrafted 5 36 51 69 5 5

color04 202 10000 990000 112 76 201

queen 48 40000 13253400 159 8 40

square 17 204 303 1722 17 8

power 17 304 463 55139 11 6

sp 30 390 2502 90101 15 10

Table 3. Experimental results for each range of reconfiguration lengths.

Reconfig. len � # Instances # Solved ZDD # Solved recon

1 ≤ � ≤ 10 178 70 178

10 < � ≤ 100 78 25 73

100 < � ≤ 1000 21 16 13

1000 < � ≤ 10000 11 11 6

10000 < � ≤ 100000 7 7 2

ZDD-Based Algorithmic Framework for Reconfiguration Problems 181

Fig. 3. CPU time for the sp series. Fig. 4. Memory usage for the sp series.

6 Conclusion

We have proposed a ZDD-based framework for solving combinatorial reconfig-
uration problems, and we have demonstrated that the framework can handle
various reconfiguration objects, as shown in Fig. 1. In particular, the framework
can solve the TAR and the token jumping model on a graph. We have also shown
that our framework can be used for analyzing the solution spaces of reconfig-
uration problems such as the reachability, shortest, farthest, and connectivity
variants. We seek to implement all the features described in this paper, and
some of them have already been published on Github5. Currently, our program
can handle independent/dominating sets, matchings, (spanning/Steiner) trees,
and forests as reconfiguration objects under the TAR and the token jumping
model. We hope that these features will contribute to analysis of reconfiguration
problems from both theoretical and practical viewpoints.

A power grid network described in the introduction is modelled as a graph
where vertices correspond to substations (power suppliers) and houses (demand
nodes), and edges correspond to power cables having switch gears. A switch
on/off configuration is regarded as a rooted forest consisting of switch-on edges
where roots correspond to substations. The solution space is the family of switch-
on edge sets. Adding/removing an edge means turning on/off a switch. Therefore,
the power grid reconfiguration problem described in the introduction can be
solved by our framework. We expect that some power grid networks are (almost)
planar [12] and that the ZDD that represents the solution space will be small.

Future work includes theoretical analysis of the complexity of the proposed
algorithm, designing ZDD-based algorithms for problems in which the solution
space cannot be directly represented as a set family, such as coloring reconfig-
uration problems [6] and graph partition reconfiguration problems [1], adopting
relax/restrict DD techniques [4] and applying the algorithm to practical prob-
lems.

5 https://github.com/junkawahara/ddreconf.

https://github.com/junkawahara/ddreconf

182 T. Ito et al.

References

1. Akitaya, H.A., et al.: Reconfiguration of connected graph partitions. J. Graph The-
ory 102(1), 35–66 (2023). https://doi.org/10.1002/jgt.22856. https://onlinelibrary.
wiley.com/doi/abs/10.1002/jgt.22856

2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoret. Comput. Sci. 410(50),
5215–5226 (2009). https://doi.org/10.1016/j.tcs.2009.08.023

3. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C-35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.
1676819

4. Castro, M.P., Cire, A.A., Beck, J.C.: Decision diagrams for discrete optimiza-
tion: a survey of recent advances. INFORMS J. Comput. 34(4), 2271–2295 (2022).
https://doi.org/10.1287/ijoc.2022.1170

5. Censor-Hillel, K., Rabie, M.: Distributed reconfiguration of maximal independent
sets. J. Comput. Syst. Sci. 112, 85–96 (2020). https://doi.org/10.1016/j.jcss.2020.
03.003. https://www.sciencedirect.com/science/article/pii/S0022000020300349

6. Cereceda, L., van den Heuvel, J., Johnson, M.: Connectedness of the graph of
vertex-colourings. Discrete Math. 308(5–6), 913–919 (2008). https://doi.org/10.
1016/j.disc.2007.07.028

7. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

8. Coudert, O.: Solving graph optimization problems with ZBDDs. In: Proceed-
ings European Design and Test Conference, ED & TC 1997, pp. 224–228 (1997).
https://doi.org/10.1109/EDTC.1997.582363

9. Fifield, B., Imai, K., Kawahara, J., Kenny, C.T.: The essential role of empirical
validation in legislative redistricting simulation. Stat. Public Policy 7(1), 52–68
(2020). https://doi.org/10.1080/2330443X.2020.1791773

10. Hayase, K., Sadakane, K., Tani, S.: Output-size sensitiveness of OBDD construc-
tion through maximal independent set problem. In: Du, D.-Z., Li, M. (eds.)
COCOON 1995. LNCS, vol. 959, pp. 229–234. Springer, Heidelberg (1995). https://
doi.org/10.1007/BFb0030837

11. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society
Lecture No te Series, vol. 409, pp. 127–160. Cambridge University Press, Cambridge
(2013). https://doi.org/10.1017/CBO9781139506748.005

12. Inoue, T., et al.: Distribution loss minimization with guaranteed error bound.
IEEE Trans. Smart Grid 5(1), 102–111 (2014). https://doi.org/10.1109/TSG.2013.
2288976

13. Ito, T.: On the complexity of reconfiguration problems. Theoret. Comput. Sci.
412(12–14), 1054–1065 (2011). https://doi.org/10.1016/j.tcs.2010.12.005

14. Iwashita, H., Minato, S.: Efficient top-down ZDD construction techniques using
recursive specifications. TCS Technical reports TCS-TR-A-13-69 (2013)

15. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfig-
urability problems. Theoret. Comput. Sci. 439, 9–15 (2012). https://doi.org/10.
1016/j.tcs.2012.03.004

16. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enu-
merating all constrained subgraphs with compressed representation. IEICE Trans.
Fund. Electron. Commun. Comput. Sci. E100-A(9), 1773–1784 (2017). https://
doi.org/10.1587/transfun.E100.A.1773

https://doi.org/10.1002/jgt.22856
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22856
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22856
https://doi.org/10.1016/j.tcs.2009.08.023
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1287/ijoc.2022.1170
https://doi.org/10.1016/j.jcss.2020.03.003
https://doi.org/10.1016/j.jcss.2020.03.003
https://www.sciencedirect.com/science/article/pii/S0022000020300349
https://doi.org/10.1016/j.disc.2007.07.028
https://doi.org/10.1016/j.disc.2007.07.028
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1109/EDTC.1997.582363
https://doi.org/10.1080/2330443X.2020.1791773
https://doi.org/10.1007/BFb0030837
https://doi.org/10.1007/BFb0030837
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1109/TSG.2013.2288976
https://doi.org/10.1109/TSG.2013.2288976
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1587/transfun.E100.A.1773
https://doi.org/10.1587/transfun.E100.A.1773

ZDD-Based Algorithmic Framework for Reconfiguration Problems 183

17. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Solving the longest oneway-
ticket problem and enumerating letter graphs by augmenting the two representative
approaches with ZDDs. In: Proceedings of the Computational Intelligence in Infor-
mation Systems Conference (CIIS 2016), vol. 532, pp. 294–305 (2016). https://doi.
org/10.1007/978-3-319-48517-1 26

18. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Colorful frontier-based search:
implicit enumeration of chordal and interval subgraphs. In: Kotsireas, I., Pardalos,
P., Parsopoulos, K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol.
11544, pp. 125–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34029-2 9

19. Knuth, D.E.: The Art of Computer Programming, Volume 4A, Combinatorial Algo-
rithms, Part 1, 1st edn. Addison-Wesley Professional (2011)

20. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proceedings of the 30th ACM/IEEE Design Automation Conference, pp. 272–
277 (1993). https://doi.org/10.1145/157485.164890

21. Mizuta, H., Ito, T., Zhou, X.: Reconfiguration of steiner trees in an unweighted
graph. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(7), 1532–
1540 (2017). https://doi.org/10.1587/transfun.E100.A.1532

22. Nakahata, Yu., Kawahara, J., Horiyama, T., Minato, S.: Implicit enumeration of
topological-minor-embeddings and its application to planar subgraph enumeration.
In: Rahman, M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol.
12049, pp. 211–222. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
39881-1 18

23. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018).
https://doi.org/10.3390/a11040052

24. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of
moderate size. In: Proceedings of the 6th International Symposium on Algorithms
and Computation, pp. 224–233 (1995). https://doi.org/10.1007/BFb0015427

25. Soh, T., Okamoto, Y., Ito, T.: Core challenge 2022: solver and graph descriptions.
CoRR abs/2208.02495 (2022). https://doi.org/10.48550/arXiv.2208.02495

26. Speck, D., Mattmüller, R., Nebel, B.: Symbolic top-k planning. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, 7–12 February 2020, pp. 9967–9974. AAAI Press (2020).
https://ojs.aaai.org/index.php/AAAI/article/view/6552

27. Turau, V., Weyer, C.: Finding shortest reconfigurations sequences of independent
sets. In: Core Challenge 2022: Solver and Graph Descriptions, pp. 3–14 (2022)

https://doi.org/10.1007/978-3-319-48517-1_26
https://doi.org/10.1007/978-3-319-48517-1_26
https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1145/157485.164890
https://doi.org/10.1587/transfun.E100.A.1532
https://doi.org/10.1007/978-3-030-39881-1_18
https://doi.org/10.1007/978-3-030-39881-1_18
https://doi.org/10.3390/a11040052
https://doi.org/10.1007/BFb0015427
https://doi.org/10.48550/arXiv.2208.02495
https://ojs.aaai.org/index.php/AAAI/article/view/6552

Neural Networks for Local Search
and Crossover in Vehicle Routing:

A Possible Overkill?

Ítalo Santana1(B) , Andrea Lodi2 , and Thibaut Vidal1,3

1 Department of Computer Science, Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro, Brazil

isantana@inf.puc-rio.br, thibaut.vidal@polymtl.ca
2 Jacobs Technion-Cornell Institute, Cornell Tech and Technion - IIT,

New York, USA
andrea.lodi@cornell.edu

3 CIRRELT & SCALE-AI Chair in Data-Driven Supply Chains, Department of
Mathematical and Industrial Engineering, Polytechnique Montréal, Montréal, Canada

Abstract. Extensive research has been conducted, over recent years,
on various ways of enhancing heuristic search for combinatorial opti-
mization problems with machine learning algorithms. In this study, we
investigate the use of predictions from graph neural networks (GNNs)
in the form of heatmaps to improve the Hybrid Genetic Search (HGS),
a state-of-the-art algorithm for the Capacitated Vehicle Routing Prob-
lem (CVRP). The crossover and local-search components of HGS are
instrumental in finding improved solutions, yet these components essen-
tially rely on simple greedy or random choices. It seems intuitive to
attempt to incorporate additional knowledge at these levels. Throughout
a vast experimental campaign on more than 10,000 problem instances,
we show that exploiting more sophisticated strategies using measures of
node relatedness (heatmaps, or simply distance) within these algorithmic
components can significantly enhance performance. However, contrary to
initial expectations, we also observed that heatmaps did not present sig-
nificant advantages over simpler distance measures for these purposes.
Therefore, we faced a common —though rarely documented— situation
of overkill: GNNs can indeed improve performance on an important opti-
mization task, but an ablation analysis demonstrated that simpler alter-
natives perform equally well.

Keywords: Heuristic search · Vehicle routing problem · Graph neural
networks

1 Introduction

Vehicle routing problems (VRP) represent one of the most studied classes of NP-
hard problems due to their practical difficulty and ubiquity in real-life applica-
tions such as food distribution, parcel delivery, or waste collection, among others
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 184–199, 2023.
https://doi.org/10.1007/978-3-031-33271-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_13&domain=pdf
http://orcid.org/0000-0002-2424-5382
http://orcid.org/0000-0001-9269-633X
http://orcid.org/0000-0001-5183-8485
https://doi.org/10.1007/978-3-031-33271-5_13

Neural Networks for Local Search and Crossover in Vehicle Routing 185

[18,26]. Problems in this class generally seek to plan efficient itineraries for a fleet
of vehicles to service a geographically-dispersed set of customers. The capaci-
tated VRP (CVRP) is the most canonical variant among all existing routing
problems. Its objective is to minimize the total distance traveled by the vehicles
to service the customers, subject to a single constraint representing the vehicle
capacities: the sum of customers’ demands over a route should not exceed the
vehicle capacity.

Over the years, there have been dramatic improvements in the heuristic and
exact (i.e., provably optimal) solution of VRPs. To date, the best-performing
exact algorithms rely on branch-cut-and-price strategies, with tailored cutting-
plane algorithms and sophisticated column-generation routines [5,13]. With
these methods, it is now possible to solve most existing instances with 200 or
300 customers. However, the time for an exact solution remains highly volatile at
this scale, and most larger instances remain unsolved. Consequently, extensive
research has been conducted on metaheuristics for this problem to find high-
quality solutions in a shorter and more controlled time [24].

As it stands now, metaheuristics can consistently locate high-quality solu-
tions for CVRPs with up to 1,000 customers in a matter of minutes [4,21]. Of
all existing methods, the Hybrid Genetic Search (HGS) algorithm developed in
[21,23,25] achieves the best-known solution quality consistently on most prob-
lems and instances of interest. During the 12th DIMACS implementation chal-
lenge on the CVRP organized in 2022 [2], it was used as the base algorithm
for four of the five best methods. It was also adopted as a baseline for the
EURO Meets NeurIPS 2022 Vehicle Routing Competition [8]. Moreover, very-
large problem instances counting dozens of thousands of customers can also be
solved using tailored data structures and decomposition strategies [1,15]. Within
the latest generation of metaheuristics, including HGS, it is clear that two main
operators —local search and crossover— are instrumental in finding improving
solutions.

– Local Search (LS) consists in systematically exploring a neighborhood
obtained by small changes over a current solution to identify improvements.
This process is iterated until attaining a local optimum. Classical neighbor-
hoods for the CVRP involve exchanges or relocations of client visits and edge
reconnections. They typically include O(n2) possible neighbors, where n rep-
resents the number of customers. Due to its iterative nature, LS typically
takes the largest share of the computational time. Several techniques have
been developed to reduce computational complexity. In particular, in [17],
it is observed that the search could be limited to relocations and exchanges
of customers that are geographically related. The resulting strategy, called
granular search, limits classical neighborhoods to O(Γn) moves, where Γ is a
user-defined parameter. However, although very simple in design, a straight-
forward distance-based relatedness criterion may hinder the search process,
especially if optimal solutions require a few long edges.

– In contrast, Crossover operators focus on diversifying the search. They con-
sist of recombining two existing (parent) solutions into a new (offspring)

186 Í. Santana et al.

solution that inherits promising characteristics from both. For the CVRP,
crossover operators are not primarily designed for solution improvement, but
instead used to create promising starting points for subsequent LS. Various
crossovers have been used in previous works [10,21]. As shown in Sect. 2,
the Ordered Crossover (OX) is widely used, and consists in juxtaposing a
fragment of the first solution with the remaining client visits ordered as in
the second solution. Doing so implicitly creates a re-connection point that is
typically random.

Note that in both LS and Crossover, there is interest in using relatedness infor-
mation between client vertices to (i) speed up the LS or (ii) identify a subset of
more promising crossover operations. It is also noteworthy that the relatedness
information used until now for the LS (and possibly used for the crossover) is
a broader concept that goes beyond simple distance criteria and that could be
possibly learned.

In recent years, graph neural networks (GNNs) have emerged as a tool to
apply machine learning techniques to combinatorial optimization problems posed
over graphs. To the best of our knowledge, the first attempt in this context was
proposed by [7] for the Traveling Salesman Problem. Underpinned by enhance-
ments in hardware and artificial intelligence research over the last years, the
development of deep NNs made them relevant to a wide range of difficult com-
binatorial optimization problems, such as SAT, Minimum Vertex Cover, and
Maximum Cut [6,28]. When applied to solve CVRPs, these networks are usually
combined with reinforcement learning (RL) [3,11] or typically used for node clas-
sification or edge prediction [9,27]. Despite extensive research, GNNs for directly
solving CVRPs remain limited to small problem instances (e.g., 100 customers)
and generally do not compare favorably with classic optimization methods (exact
or heuristic) regarding solution quality. This is possibly due to the fact that
good solutions for combinatorial optimization problems result from tacit struc-
tural knowledge about the problem (learnable solution structures) along with
a significant amount of trial-and-error to build the best possible solution sat-
isfying almost perfectly the constraints at hand. Whereas better knowledge of
solution structures can be learned to guide the search, avoiding some (explicit
or implicit) enumeration of solutions without compromising solution quality is
generally challenging.

Against this background, a promising path toward better solution methods
for VRPs concerns the hybridization of learning-based and traditional solution
methods. More specifically, given the importance of both LS and crossover oper-
ations in HGS, we are naturally led to question whether learned relatedness
information can lead to substantial improvements in these components. To that
end, we capitalize upon the work in [9], where a GNN is trained to predict the
occurrence probabilities of edges in high-quality solutions (i.e., heatmap). We
leverage the heatmaps as a source of relatedness information to define neighbor-
hood restrictions in the LS and possible re-connection points in the crossover.
To make this analysis possible, we introduce the following methodological con-
tributions:

Neural Networks for Local Search and Crossover in Vehicle Routing 187

1. We introduce a framework for defining and exploiting relatedness information
between pairs of customers in CVRP context. We show that relatedness mea-
sures can be exploited to steer the LS toward the most promising moves. Addi-
tionally, we use relatedness information to extend the classical OX crossover,
trading some of its inherent randomness for better choices of re-connection
points between the parents. Our approaches are generic and applicable to any
relatedness measure. Specifically, we consider relatedness from two sources:
geographical relatedness, given by the distance between two customers, and
learnable relatedness (i.e., heatmap), obtained from a GNN.

2. We suggest a practical technique to exploit the output of a single GNN
(heatmaps for fixed-size graphs) for problem instances of varying sizes. To
this end, we decompose the original instance into a sequence of fixed-size
subproblems and aggregate the resulting heatmap information. This app-
roach has the benefit of only requiring a single trained model of moderate
size.

Next, throughout an extensive experimental campaign, we evaluate how HGS
performance varies with the proposed changes, for better or worse, on more
than 10,000 different instances containing 100 to 1,000 customers. We, therefore,
measure the enhancements achieved with the proposed techniques and analyze
the impact of each change through an ablation analysis.

The first, positive result of our investigation is that incorporating related-
ness information within the crossover and LS operators significantly benefit the
search. This is maybe not totally surprising but, considering the quality of the
baseline results, the significance of this improvement is remarkable. The second
result gives us a more mixed message instead. Indeed, contrary to our initial intu-
ition, and after closer analysis through the ablation study, we observe that the
improvements we achieved are quite insensitive to the source of the relatedness
information (geographical or learned). Essentially, there is potential to improve
these operators by exploiting additional problem knowledge, but the learning
strategies designed to do so did not perform much better than simple ad-hoc
rules based on geographical relatedness. In other words, in this study, using
GNN-based heatmaps seemed to be an overkill for the task at hand, although
the door remains open to use them to capture possible relations in more complex
problem variants.

2 Methodology

The CVRP is defined over a complete graph G = (V,E), where the set of vertices
V = {0, 1 . . . , n} contains a vertex 0 representing the depot, and the remaining
vertices represent customers. Each customer i ∈ {1, . . . , n} is characterized by
a demand di. Edges (i, j) model direct travel between vertices i and j for a
distance dij . A solution to this problem is a set of routes originating and ending
at the depot and visiting customers, such that (i) the total demand over each
route does not exceed a vehicle-capacity limit Q, (ii) each customer is visited
exactly once, and (iii) the total travel distance is minimized.

188 Í. Santana et al.

We additionally assume that we can calculate a relatedness metric φ(i, j) for
each edge (i, j). This definition is general: in the simplest setting, relatedness
could be the inverse of distance, i.e., φ(i, j) = 1/dij . In a more informed setting,
we can instead consider defining φ(i, j) as the output of a graph neural network
(GNN) as seen in [9], predicting the probability of occurrence of an edge in a
high-quality solution. Probabilities of this kind are typically called heatmaps. In
the remainder of the paper, we will refer to φd(i, j) for distance-relatedness, and
φn(i, j) for GNN-based relatedness. This information will now be used to refine
the two most important HGS operators.

2.1 Hybrid Genetic Search

The Hybrid Genetic Search [21] relies on simple solution generation and improve-
ment steps. The method starts by initializing a population of size μ with random
solutions that are improved by local search. After this initialization phase, HGS
iteratively generates new solutions by selecting two random solutions in the pop-
ulation, recombining them using an ordered crossover (OX), and applying local
search for improvement. To promote exploration, solutions that exceed capacity
limits are not directly rejected but instead penalized according to their amount
of infeasibility. The penalty weights are adapted during the search to achieve a
target percentage of feasible solutions, and infeasible solutions are maintained
in a separate subpopulation. Whenever a solution is infeasible after the local
search, an extra Repair step is applied, which simply consists of a classic local
search with a temporarily (10×) higher penalty coefficient.

During the overall search process, the number of solutions in the feasible
and infeasible populations is monitored. Whenever any population exceeds μ+λ
solutions, a survivors’ selection phase is triggered to retain only the best μ indi-
viduals, according to a ranking metric based on solution value and contribution
to the population diversity. Finally, the algorithm restarts each time nit con-
secutive solution generations have been done without improvement of the best
solution, and it terminates upon a time limit Tmax by returning the best solution
found over all the restarts.

2.2 Local Search Using Relatedness Measures

Local Search (LS) is a conceptually simple and efficient method to solve combi-
natorial optimization problems of the form minx∈X c(x), where X is the space
of all solutions and c is the objective function. A neighborhood is defined as
a mapping N : X → 2X associating with any solution x a set of neighbors
N (x) ⊂ X. For the CVRP, N (x) is usually defined relative to a set of opera-
tions (i.e., moves) that can modify the current solution x. A move τ is a small
modification that can be applied on x to obtain a neighbor τ(x) ∈ N (x). HGS
uses four main types of moves and some of their immediate extensions [21]:

Neural Networks for Local Search and Crossover in Vehicle Routing 189

Fig. 1. Sets of related customers according to φd and φn, on instance X-n247-k50

– Relocate: Moves a visit to customer i immediately after a visit to a different
customer j or the depot;

– Swap: Exchanges the visits of customers i and j;
– 2-Opt: Reverts a customer-visit sequence (i, . . . , j);
– 2-Opt*: Exchanges customers i and j and their succeeding visits.

From an incumbent solution represented as a set of routes, the moves are eval-
uated in a random order of the indices i and j (within the same or different
routes), and any improvement is directly applied. This process is repeated until
a local minimum is reached, i.e., a situation where no improving move exists
for all the considered neighborhoods. Without further pruning, all these neigh-
borhoods contain O(n2) solutions. Using incremental calculations (keeping track
of partial load and distance over the routes), it is possible to conduct a com-
plete evaluation of all neighborhoods in O(n2) time. Moreover, the number of
complete neighborhood searches (i.e., loops) needed to converge is rarely greater
than 10 in practice.

A quadratic complexity for the LS operator is adequate for small problems,
but this can become a significant bottleneck otherwise due to its frequent use.
Considering this, [17] introduced a “granular search” mechanism that consists in
limiting the moves to customer pairs (i, j) that are geographically close, i.e., such
that j belongs to a set Φ(i) formed of the Γ closest customers of i. Consequently,
the total number of moves and the complexity of each LS loop reduce to O(nΓ)
time. Indeed, it rarely makes sense to relocate or exchange customer visits that
are far away from each other. Moreover, this strategy ensures that each move
creates at least one short edge [1,16,22].

Since its inception, granular search has been adapted to many VRP vari-
ants. Especially, to handle customer constraints on service-time windows, [22]
extended the concept to filter node pairs (i, j) based on a compound metric that

190 Í. Santana et al.

includes distance, unavoidable waiting times, and unavoidable time-window vio-
lations arising from this customer succession.

In this study, we instead extend the filtering criterion by relying on related-
ness information from the GNN. As illustrated in Fig. 1 for instance X-n247-k50
from [19], the Γ most-related customers according to the relatedness metrics φd

and φn can differ very significantly. In this particular example, the GNN-based
relatedness even includes an edge (represented as the thickest edge in the figure)
contained in the optimal solution that is otherwise missing when considering
distance only.

For each i, we therefore form the set Φ(i) in two steps: we first include
in Φ(i) the �Γ/2� vertices that are most related to i according to the GNN-
based relatedness metric φn(i, j), and then we complete the �Γ/2� remaining
customers by increasing distance, therefore according to φd(i, j). This strategy,
named neural granular search, uses learned information and ensures that the
Γ/2 closest customers are still considered in the moves.

2.3 Crossover Using Relatedness Measures

In HGS, each solution is represented as a single permutation of the customer’s
visits (i.e., a giant tour) during the crossover operation. The use of this represen-
tation is motivated by the fact that (i) one can simply represent any complete
solution by concatenating the routes and omitting the visits to the depot, and
(ii) reversely, given a sequence of customers visits, there exists a linear-time
algorithm, called Split, that optimally segments this giant tour into routes [20].

Based on this representation, HGS employs the ordered crossover (OX –
[12]) illustrated in Fig. 2. OX works in two steps. First, a fragment F of the
first parent defined by two randomly-selected cutting points is copied in place
into an empty offspring. Next, the second parent is scanned from the position
of the second cutting point to complete all missing customer visits circularly.
This gives a new giant tour, which is then transformed into a complete CVRP
solution using Split.

As it stands, OX is completely dependent upon random choices. In particu-
lar, the second step tends to concatenate unrelated customers immediately after
fragment F . This creates low-quality fragments of solution requiring many LS
moves for improvement. To correct this issue, we suggest relying on the relat-
edness metric to modify the completion step. Let i be the last customer from
fragment F . Instead of arbitrarily reconnecting F with the next customer from
Parent 2 obtained by a circular sweep, we select a random related customer j
among the Γ customers most related to i that are not part of F (or a random
position if no such j exists) and then proceed to complete the offspring from this
position following the order in Parent 2. This small but notable difference permits
reconnecting visits that are more closely related among both parents, allowing for
better solutions without sacrificing diversity. As previously, the choice of relat-
edness metric leads to different variants of the OX crossover. In the remainder
of this paper, we will refer to the modified crossover using distance-relatedness
as DOX, and to the modified crossover using GNN-relatedness as NOX.

Neural Networks for Local Search and Crossover in Vehicle Routing 191

Fig. 2. Illustration of the ordered crossover (OX)

3 Experimental Analyses

This section presents extensive computational experiments designed to: (i) cali-
brate and evaluate the impact of the granular search parameter Γ , which governs
the size of the LS neighborhoods; (ii) measure the impact of our enhancements on
the LS and OX operators as well as the usefulness of different relatedness criteria;
(iii) confront the characteristics, the computational effort, and the performance
of heatmaps produced by different GNN configurations, and (iv) analyze the
extension of GNNs originally trained on fixed-size graphs to instances of vary-
ing sizes. We address objective (i) in Sect. 3.4, whereas objectives (ii, iii, iv) are
covered in Sects. 3.5 and 3.6.

We will analyze, in the following sections, the performance of HGS in its
original form (baseline) along with five combinations of φd and φn for local
search and crossover operators, which are listed below:

– HGS-D-O (baseline): HGS with granular search and OX;
– HGS-D-D: HGS with granular search and DOX;
– HGS-D-N: HGS with granular search and NOX;
– HGS-N-O: HGS with neural granular search and OX;
– HGS-N-D: HGS with neural granular search and DOX;
– HGS-N-N: HGS with neural granular search and NOX.

3.1 Computational Environment

All experiments are run on a single thread of an Intel Gold 6148 Skylake 2.4 GHz
processor with 40 GB of RAM and NVIDIA Tesla P100 Pascal (12 G memory),
running CentOS 7.8.2003. Unless otherwise stated, we use the original parame-
ters defined for HGS in [21] and the GNN in [9]. To achieve fast convergence, we

192 Í. Santana et al.

set smaller values for the population-size parameters in HGS: μ = 12 and λ = 20.
We compile HGS with g++ 9.1.0 and execute the GNN using Python 3.8.8 on
Torch 1.9.1.

3.2 Benchmark Instances

Our experiments use two main sets of CVRP instances: Set X from [19], and
Set XML from [14]. As an extension of our experiments, we also consider the
instance set generated in [9] and report results in a supplementary material
located with the code. Set X is a well-known benchmark of 100 instances of
variable size, containing between 100 and 1000 customers. This set includes
diverse instances that mimic important characteristics of real-world situations
concerning depot positions, route length, customer demands, and locations. The
XML set [14] includes 10,000 instances with 100 customers each, drawn from a
similar distribution as set X. One advantage of the XML set is that the number
of customers is constant in all instances, and all optimal solutions are provided.
This permits comparisons with proven optima instead of best-known solutions
(BKS) collected from all previous works. In contrast, many instances of set X
are still unsolved to proven optimality. All instance sets, open-source codes,
and scripts needed to run the experiments are provided at https://github.com/
italogs/HGS-CVRP.

3.3 Parametrization and Training of the GNN

The GNN proposed by [9] is designed to be trained and applied for prediction
over graphs (i.e., instances) of fixed size. The authors released their final model
trained on 100-customers instances generated similarly to set X and XML. This
model can therefore be directly applied for inference on the XML instances,
which each contain 100 customers. In contrast, since the original Set X has
instances with different numbers of customers, a different approach is needed to
use the heatmaps. Due to these key differences, we will subdivide the presentation
of our experiments into two parts, with results on XML instances in Sect. 3.5,
and adaptations and results for Set X in Sect. 3.6.

In these experiments, we use the original trained GNN from [9] for heatmap
generation, called Original in the rest of this paper. However, although this
model is already trained, it still takes around 0.85 s of inference time to produce
the heatmap for a given instance. This is a similar order of magnitude as the time
needed by HGS to solve the CVRP to near optimality (i.e., below 0.1% error)
on instances containing 100 customers. Since we aim to compare CVRP solution
algorithms under the same total CPU time budget (counting inference time and
solution time), GNN-based methods would be at a disadvantage if a large share
of the CPU time is invested in the inference step. Therefore, to estimate the
performance of GNN-based algorithms in the most optimistic conditions (e.g.,
considering a hypothetical scenario where GPU inference is extremely fast), we
will also report the results of the same method ignoring inference time. Addi-
tionally, we produce results (counting inference time) obtained with two lighter

https://github.com/italogs/HGS-CVRP
https://github.com/italogs/HGS-CVRP

Neural Networks for Local Search and Crossover in Vehicle Routing 193

versions of the GNN, called Model #1 and Model #2, which were trained on
the same examples as [9], with fewer internal nodes and internal layers. Table 1
summarizes the parameter setting of all the considered GNNs.

Table 1. GNN configurations

GNN #Nodes #Layers #Epochs Pred-T(s)

Original 300 30 1500 0.85

Optimistic 300 30 1500 Ignored

Model #1 10 5 500 0.03

Model #2 10 5 1500 0.03

This table lists for each GNN the number of hidden layers (# Layers), nodes
per layer (# Nodes), and epochs (# Epochs) used for training. Finally, the last
column reports the average inference time on an XML instance. The parameters
of Model #1 and Model #2 were selected to achieve training and inference
in a limited time. Model #1 (resp. #2) required 8 (resp. 24) hours of training
time on our hardware.

3.4 Calibration of the Local Search

We focus here on the parameter Γ , which drives the exploration breadth of the LS
(see Sect. 2.2) and significantly impacts the computational time of HGS. The aim
of this experiment is to select a meaningful range of values for this parameter.
Based on standard values used in previous works, we evaluate configurations
Γ ∈ {5, 10, 15, 20, 30, 50, 100} and analyze the sensitivity of the baseline method
(i.e., HGS-D-O) to this parameter. To keep a simple experimental design, we
focus on the performance of the LS by generating ten random initial solutions for
each instance and applying a single LS to each of these solutions. We then report
in Table 2 the quality of the best solution found as well as the computational
time used by the ten LS runs.

Table 2. Impact of Γ on solution quality and CPU time

Γ Set X Set XML

Gap% Time (s) Gap% Time (s)

5 4.664 0.157 2.976 0.024

10 4.018 0.160 2.365 0.026

15 3.817 0.162 2.194 0.027

20 3.667 0.165 2.137 0.029

30 3.630 0.197 2.087 0.034

50 3.696 0.238 2.089 0.043

100 3.690 0.375 2.087 0.057

194 Í. Santana et al.

In Table 2 and the rest of this paper, solution quality is expressed as a percent-
age error gap calculated as Gap(%) = 100 × (z − zbks)/zbks, where z represents
the cost of the solution and zbks is the optimal or BKS cost value.

The results of this experiment indicate that solution quality generally
improves with Γ , but with decreasing marginal returns. We cease to see notable
solution quality improvements once Γ exceeds a value of 30, but CPU time
dramatically increases. Given this, we set Γ = 15 in the remainder of our exper-
iments, and additionally provide detailed results with Γ ∈ {20, 30, 50} in the
online material.

3.5 Experimental Results – Set XML

Having calibrated all the algorithmic components, we can now measure the
impact of GNN-informed relatedness measures in the LS and crossover operator.
We focus here on the instances of set XML. Given that HGS converges towards
near-optimal solutions within seconds for these instances, we use a short termi-
nation criterion with Tmax = 5 s per instance and report final results as well as
convergence plots to measure the impact of the different versions of the LS and
crossover.

Table 3 therefore reports the number of optimal solutions (#Opt) attained
over the 10,000 instances and the average final Gap(%) for all of the meth-
ods, considering the four possible GNN configurations (Original, Optimistic,
Model #1, and Model #2). Best performance is indicated in boldface. Addi-
tionally, the convergence plots of Fig. 3 depict the progress of the average gap of
the different methods over time for the Optimistic configuration of the GNN,
and similar graphs are provided for the other GNN configurations in the online
material.

Table 3. Results of all methods and GNN configurations for the instances of set XML

GNN HGS-D-O HGS-D-D HGS-D-N† HGS-N-O† HGS-N-D† HGS-N-N†

#Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap%

Original 7715 0.030 8105 0.024 8086 0.023 7691 0.031 8046 0.023 8011 0.025

Optimistic 7715 0.030 8105 0.024 8120 0.023 7732 0.031 8062 0.023 8041 0.025

Model #1 7715 0.030 8105 0.024 8094 0.023 7697 0.031 8028 0.024 7994 0.025

Model #2 7715 0.030 8105 0.024 8102 0.024 7719 0.030 8067 0.024 8057 0.024

†: HGS variants with heatmaps either in the local search or crossover.

As seen in these results, all HGS versions progress (i.e., decrease the gap)
smoothly within the time limit, and all approaches except HGS-N-O outper-
formed HGS-D-O (the baseline HGS algorithm) in terms of their number of
optimal solutions and average gap. The significance of these improvements is
confirmed by two-tailed paired-samples Wilcoxon tests between each method
and HGS-D-O at a significance level of 0.05.

However, these experiments also show that HGS-N-O does not perform sig-
nificantly better than HGS-D-O, even when ignoring the inference time (i.e.,

Neural Networks for Local Search and Crossover in Vehicle Routing 195

Fig. 3. Convergence plots for all HGS variants on set XML (upper graph = complete
run, lower graph = last 1.5 s)

Optimistic evaluation of the GNN). This indicates that using the GNN-based
relatedness criterion in the LS does not bring significant benefits. It is an open
research question to determine if different GNN architectures may perform bet-
ter in the task of filtering LS neighborhoods.

Now, a comparison of configurations HGS-D-O (baseline), HGS-D-D, and
HGS-D-N permits us to assess the impact of our changes on the crossover oper-
ator. We remind that HGS-D-O refers to the original OX crossover, whereas
HGS-D-D and HGS-D-N modify the reconnection step to integrate relatedness
information. As seen in our experiments, HGS-D-D and HGS-D-N are much bet-
ter than the baseline (final gaps of 0.024% compared to 0.030%), as confirmed
by paired-samples Wilcoxon tests at 0.05 significance level. This is a notable
breakthrough, given that it is uncommon to identify simple conceptual changes
to HGS that significantly improve its state-of-the-art performance.

Finally, the choice of configuration for the GNN did not significantly affect
the results, and our observations remain valid for the Original, Model #1,
and Model #2 configurations.

3.6 Experimental Results – Set X

The instances of set X include a different number of customers, but the GNN of
[9] is designed to predict heatmaps only for fixed-size graphs. Moreover, training
a model on an instance of maximal size (1000 customers) and relying on dummy

196 Í. Santana et al.

nodes is likely to require extensive training time (especially with its original
parametrization).

To circumvent this issue, we instead propose combining the heatmaps from
different subproblems to obtain a relatedness measure for all customers. Let ng

be the graph size handled by the GNN. For each customer i ∈ {1, . . . , n}, in
turn, we collect the ng − 1 closest customers along with the depot to form a
CVRP subproblem with exactly ng customers. We rely on the GNN to infer the
heatmap for this graph, and use the heatmap values for all edges (i, j) such that
j belongs to the subproblem and 0 otherwise. This simple approach requires
n heatmaps inference steps, but the inherent parallelism of Pytorch makes it
effective enough for our purposes.

As previously, we report the results of the different HGS variants in Table 4
for the four considered GNN parameter settings. We set a total computational
time budget that is linearly proportional to n, allowing 24 s for the smallest
instance (X-n101-k25) with 100 customers, and up to 240 s for the largest one
(X-n1001-k43) with 1000 customers. Moreover, we perform 10 experiments with
different random seeds for each of the 100 instances, leading to 1000 solution
processes. The table, therefore, counts the number of optimal solutions out of
1000 as well as the average error gap when the algorithm terminates. With these
time limits, the inference time of the Original GNN represents 15.2% of the
overall time budget, and the inference time of Model #1 and Model #2 is
limited to 1.9% of the time budget. Convergence plots in the same format as
before are additionally presented in Fig. 4.

Table 4. Results of all methods and GNN configurations for the instances of set X

GNN HGS-D-O HGS-D-D HGS-D-N† HGS-N-O† HGS-N-D† HGS-N-N†

#Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap% #Opt Gap%

Original 188 0.368 187 0.302 184 0.317 177 0.395 169 0.325 172 0.317

Optimistic 188 0.368 187 0.302 187 0.299 185 0.365 177 0.307 182 0.299

Model #1 188 0.368 187 0.302 185 0.309 166 0.414 177 0.332 184 0.336

Model #2 188 0.368 187 0.302 186 0.301 169 0.391 175 0.314 170 0.316

†: HGS variants with heatmaps either in the local search or crossover.

These additional results on Set X confirm our previous observations: all HGS
variants except HGS-N-O outperformed the HGS-D-O baseline. Additionally, the
proposed modifications to the crossover operator (HGS-D-D and HGS-D-N) led
to performance improvements that are even more expressive on that instance
set, with final gaps of 0.302% and 0.299% compared to 0.368% for the original
HGS. As previously, however, using learned information from the GNN instead of
distance did not make a substantial difference in the crossover and even appeared
to be detrimental in the context of the LS.

It is important to stress that, without a complete analysis involving HGS-D-
D, a comparison of HGS-D-N versus HGS-D-O could have led to the conclusion
that the GNN was responsible for the improvement. However, recommending the

Neural Networks for Local Search and Crossover in Vehicle Routing 197

Fig. 4. Convergence plots for all HGS variants on set X (upper graph = complete run,
lower graph = last 25% of CPU time)

use of this method in this context would have been an “overkill” since a simpler
reconnection mechanism based on distance effectively produces the same gains.

4 Conclusions

In this work, we have shown that relatedness metrics can be broadly used to
improve the performance of the HGS [21], a state-of-the-art solution algorithm
for the CVRP. Relatedness has been exploited in two ways: to focus the LS
on promising moves, and to steer the crossover operator towards meaningful
reconnections. As relatedness is a fairly general concept, we can freely use geo-
graphical or learnable (i.e., GNN-based) information for that purpose. As seen in
our experimental analyses, these adaptations lead to significant improvements on
a large benchmark counting over 10,000 instances. Additionally, we show that a
simple strategy to extend GNN heatmap predictions to instances of varying size
is fairly effective, circumventing the limitation due to fixed-size training. Overall,
exploiting heatmaps to boost HGS operators is very effective, but also not supe-
rior to a simpler application of distance-based relatedness for similar purposes,
even considering subsets of the tested instances with different characteristics.
This observation contrasts with the superiority claims of sophisticated learning
mechanisms and ever-larger networks. Instead, it aligns with the “less-is-more”
approach toward algorithmic design.

198 Í. Santana et al.

We acknowledge that some aspects studied in this work can be further inves-
tigated for future research. The first one refers to the applications of relatedness
criteria to other combinatorial optimization problems and solvers (e.g., branch
and bound). Another research avenue of interest concerns exploiting different
relatedness sources and simpler machine learning models. Finally, from a more
general viewpoint, we expect that the contributions of this work can lead to
a better comprehension of the challenges involved in incorporating sophisti-
cated machine-learning techniques into state-of-the-art solvers. We believe that
research on GNN-enhanced heuristics is promising, but that careful ablation
studies are essential to correctly measure impacts and improvements.

References

1. Accorsi, L., Vigo, D.: A fast and scalable heuristic for the solution of large-scale
capacitated vehicle routing problems. Transp. Sci. 55(4), 832–856 (2021)

2. Archetti, C., et al.: 12th DIMACS challenge (2022). http://dimacs.rutgers.edu/
programs/challenge/vrp/cvrp. Accessed 06 June 2022

3. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial opti-
mization. In: Advances in Neural Information Processing Systems, pp. 6278–6289
(2019)

4. Christiaens, J., Vanden Berghe, G.: Slack induction by string removals for vehicle
routing problems. Transp. Sci. 54(2), 417–433 (2020)

5. Costa, L., Contardo, C., Desaulniers, G.: Exact branch-price-and-cut algorithms
for vehicle routing. Transp. Sci. 53(4), 946–985 (2019)

6. Dai, H., Khalil, E.B., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial
optimization algorithms over graphs. In: Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pp. 6351–6361 (2017)

7. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization
problems. Biol. Cybern. 52(3), 141–152 (1985)

8. Kool, W., et al.: The EURO meets NeurIPS 2022 vehicle routing competition. In:
Proceedings of Machine Learning Research, NeurIPS 2022 Competitions (2023, in
press)

9. Kool, W., van Hoof, H., Gromicho, J., Welling, M.: Deep policy dynamic program-
ming for vehicle routing problems. In: Schaus, P. (ed.) CPAIOR 2022. LNCS, vol.
13292, pp. 190–213. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08011-1 14

10. Nagata, Y.: Edge assembly crossover for the capacitated vehicle routing problem.
In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 142–153.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71615-0 13

11. Nazari, M., Oroojlooy, A., Takáč, M., Snyder, L.V.: Reinforcement learning for
solving the vehicle routing problem. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 9861–9871 (2018)

12. Oliver, I.M., Smith, D.J., Holland, J.R.C.: A study of permutation crossover oper-
ators on the traveling salesman problem. In: Proceedings of the 2nd International
Conference on Genetic Algorithms on Genetic Algorithms and Their Application,
pp. 224–230 (1987)

13. Pessoa, A., Sadykov, R., Uchoa, E., Vanderbeck, F.: A generic exact solver for
vehicle routing and related problems. Math. Program. 183(1), 483–523 (2020)

http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp
http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp
https://doi.org/10.1007/978-3-031-08011-1_14
https://doi.org/10.1007/978-3-031-08011-1_14
https://doi.org/10.1007/978-3-540-71615-0_13

Neural Networks for Local Search and Crossover in Vehicle Routing 199

14. Queiroga, E., Sadykov, R., Uchoa, E., Vidal, T.: 10,000 optimal CVRP solutions
for testing machine learning based heuristics. In: AAAI-22 Workshop on Machine
Learning for Operations Research (ML4OR) (2022)

15. Santini, A., Schneider, M., Vidal, T., Vigo, D.: Decomposition strategies for vehicle
routing heuristics. INFORMS Journal on Computing, Articles in Advance (2023)

16. Schneider, M., Schwahn, F., Vigo, D.: Designing granular solution methods for
routing problems with time windows. Eur. J. Oper. Res. 263(2), 493–509 (2017)

17. Toth, P., Vigo, D.: The granular tabu search and its application to the vehicle-
routing problem. Informs J. Comput. 15(4), 333–346 (2003)

18. Toth, P., Vigo, D. (eds.): Vehicle Routing: Problems, Methods, and Applications,
2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2014)

19. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New
benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper.
Res. 257(3), 845–858 (2017)

20. Vidal, T.: Split algorithm in O(n) for the capacitated vehicle routing problem.
Comput. Oper. Res. 69, 40–47 (2016)

21. Vidal, T.: Hybrid genetic search for the CVRP: open-source implementation and
SWAP* neighborhood. Comput. Oper. Res. 140, 105643 (2022)

22. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with
adaptive diversity management for a large class of vehicle routing problems with
time-windows. Comput. Oper. Res. 40(1), 475–489 (2013)

23. Vidal, T., Crainic, T., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3),
611–624 (2012)

24. Vidal, T., Crainic, T., Gendreau, M., Prins, C.: Heuristics for multi-attribute vehi-
cle routing problems: a survey and synthesis. Eur. J. Oper. Res. 231(1), 1–21
(2013)

25. Vidal, T., Crainic, T., Gendreau, M., Prins, C.: A unified solution framework for
multi-attribute vehicle routing problems. Eur. J. Oper. Res. 234(3), 658–673 (2014)

26. Vidal, T., Laporte, G., Matl, P.: A concise guide to existing and emerging vehicle
routing problem variants. Eur. J. Oper. Res. 286, 401–416 (2020)

27. Xin, L., Song, W., Cao, Z., Zhang, J.: NeuroLKH: combining deep learning model
with Lin-Kernighan-Helsgaun heuristic for solving the traveling salesman problem.
In: Advances in Neural Information Processing Systems, vol. 34, pp. 7472–7483
(2021)

28. Yolcu, E., Poczos, B.: Learning local search heuristics for Boolean satisfiability. In:
Advances in Neural Information Processing Systems, vol. 32, pp. 7992–8003 (2019)

Getting Away with More Network
Pruning: From Sparsity to Geometry

and Linear Regions

Junyang Cai1, Khai-Nguyen Nguyen1, Nishant Shrestha1, Aidan Good1,
Ruisen Tu1, Xin Yu2, Shandian Zhe2, and Thiago Serra1(B)

1 Bucknell University, Lewisburg, USA
{jc092,nkn002,ns037,wag011,rt024,thiago.serra}@bucknell.edu

2 University of Utah, Salt Lake City, USA
xin.yu@utah.edu, zhe@cs.utah.edu

Abstract. One surprising trait of neural networks is the extent to which
their connections can be pruned with little to no effect on accuracy. But
when we cross a critical level of parameter sparsity, pruning any further
leads to a sudden drop in accuracy. This drop plausibly reflects a loss in
model complexity, which we aim to avoid. In this work, we explore how
sparsity also affects the geometry of the linear regions defined by a neural
network, and consequently reduces the expected maximum number of
linear regions based on the architecture. We observe that pruning affects
accuracy similarly to how sparsity affects the number of linear regions
and our proposed bound for the maximum number. Conversely, we find
out that selecting the sparsity across layers to maximize our bound very
often improves accuracy in comparison to pruning as much with the same
sparsity in all layers, thereby providing us guidance on where to prune.

Keywords: Model complexity · Network pruning · Solution counting

1 Introduction

In deep learning, there are often good results with little justification and good
justifications with few results. Network pruning exemplifies the former: we can
easily prune half or more of the connections of a neural network without affecting
the resulting accuracy, but we may have difficulty explaining why we can do that.
The theory of linear regions exemplifies the latter: we can theoretically design
neural networks to express very nuanced functions, but we may end up obtaining
much simpler ones in practice. In this paper, we posit that the mysteries of
pruning and the wonders of linear regions can complement one another.

When it comes to pruning, we can reasonably argue that reducing the num-
ber of parameters improves generalization. While Denil et al. [12] show that
the parameters of neural networks can be redundant, it is also known that the

J. Cai and K.-N. Nguyen—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 200–218, 2023.
https://doi.org/10.1007/978-3-031-33271-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_14&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_14

Getting Away with More Network Pruning 201

smoother loss landscape of larger neural networks leads to better training conver-
gence [45,66]. Curiously, Jin et al. [36] argue that pruning also smooths the loss
function, which consequently improves convergence during fine tuning—the addi-
tional training performed after pruning the network. However, it remains unclear
to what extent we can prune without ultimately affecting accuracy, which is an
important concern since a machine learning model with fewer parameters can
be deployed more easily in environments with limited hardware.

The survey by Hoefler et al. [31] illustrates that a moderate amount of prun-
ing typically improves accuracy while further pruning may lead to a substantial
decrease in accuracy, whereas Liebenwein et al. [46] show that this tolerable
amount of pruning depends on the task for which the network is trained. In
terms of what to prune, another survey by Blalock et al. [6] observes that most
approaches consist of either removing parameters with the smallest absolute
value [14,16,22–24,28,35,44,48,54,67]; or removing parameters with smallest
expected impact on the output [4,13,29,30,40,42,43,47,50,64,72,73,76,79,80,
82], to which we can add the special case of exact compression [18,60,63,65].

While most work on this topic has helped us prune more with a lesser impact
on accuracy, fairness studies recently debuted by Hooker et al. [32] have focused
instead on the impact of pruning on recall—the ability of a network to correctly
identify samples as belonging to a certain class. Recall tends to be more severely
affected by pruning in classes and features that are underrepresented in the
dataset [32,33,56], which Tran et al. [70] attribute to differences across such
groups in gradient norms and Hessian matrices of the loss function. In turn,
Good et al. [20] showed that such recall distortions may also occur in balanced
datasets, but in a more nuanced form: moderate pruning leads to comparable or
better accuracy while reducing differences in recall, whereas excessive pruning
leads to lower accuracy while increasing differences in recall. Hence, avoiding a
significant loss in accuracy due to pruning is also relevant for fairness.

Overall, network pruning studies have been mainly driven by one question:
how can we get away with more network pruning? Before we get there
with our approach, let us consider the other side of the coin in our narrative.

When it comes to the theory of linear regions, we can reasonably argue
that the number of linear regions may represent the expressiveness of a neural
network—and therefore relate to its ability to classify more complex data. We
have learned that a neural network can be a factored representation of functions
that are substantially more complex than the activation function of each neu-
ron. This theory is applicable to networks in which the neurons have piecewise
linear activations, and consequently the networks represent a piecewise linear
function in which the number of pieces—or linear regions—may grow polynomi-
ally on the width and exponentially on the depth of the network [52,57]. When
the activation function is the Rectified Linear Unit (ReLU) [19,55], each linear
region corresponds to a different configuration of active and inactive neurons. For
geometric reasons that we discuss later, not every such configuration is feasible.

The study of linear regions bears some resemblance to universal approxi-
mation results, which have shown that most functions can be approximated
to arbitrary precision with sufficiently wide neural networks [10,17,34]. These

202 J. Cai et al.

results were extended in [78] to the currently more popular ReLU activation and
later focused on networks with limited width but arbitrarily large depth [27,49].
In comparison to universal approximation, the theory of linear regions tells us
what piecewise linear functions are possible to represent—and thus what other
functions can be approximated with them—in a context of limited resources
translated as both the number of layers and the width of each layer.

Most of the literature is focused on fully-connected feedforward networks
using the ReLU activation function, which will be our focus on this paper as
well. Nevertheless, there are also adaptations and extensions of such results for
convolutional networks by [77] and for maxout networks [21] by [52,53,62,71].

Several papers have shown that the right choice of parameters may lead to
an astronomical number of linear regions [3,52,62,68], while other papers have
shown that the maximum number of linear regions can be affected by narrow
layers [51], the number of active neurons across different linear regions [62], and
the parameters of the network [61]. Despite the exponential growth in depth,
Serra et al. [62] observe that a shallow network may in some cases yield more
linear regions among architectures with the same number of neurons. Whereas
the number of linear regions among networks of similar architecture relates to the
accuracy of the networks [62], Hanin and Rolnick [25,26] show that the typical
initialization and subsequent training of neural networks is unlikely to yield the
expressive number of linear regions that have been reported elsewhere.

These contrasting results lead to another question: is the network com-
plexity in terms of linear regions relevant to accuracy if trained models
are typically much less expressive in practice? Now that you have read
both sides of our narrative, you may have guessed where we are heading.

We posit that these two topics—network pruning and the theory of linear
regions—can be combined. Namely, that the latter can guide us on how to prune
neural networks, since it can be a proxy to model complexity.

But we must first address the paradox in our second question. As observed
by Hanin and Rolnick [25], perturbing the parameters of networks designed to
maximize the number of linear regions, such as the one by Telgarsky [68], leads to
a sudden drop on the number of linear regions. Our interpretation is that every
architecture has a probability distribution for the number of linear regions. If
by perturbing these especially designed constructions we obtain networks with
much smaller numbers, we may infer that these constructions correspond to the
tail of that distribution. However, if certain architectural choices lead to much
larger numbers of linear regions at best, we may also conjecture that the entire
distribution shifts accordingly, and thus that even the ordinary trained network
might be more expressive if shaped with the potential number of linear regions
in mind. Hence, we conjecture the architectural choices aimed at maximizing the
number of linear regions may lead better performing networks.

That brings us to a gap in the literature: to the best of our understanding,
there is no prior work on how network pruning affects the number of linear
regions. We take the path that we believe would bring the most insight, which
consists of revisiting—under the lenses of sparsity – the factors that may limit
the maximum number of linear regions based on the neural network architecture.

Getting Away with More Network Pruning 203

In summary, this paper presents the following contributions:

(i) We prove an upper bound on the expected number of linear regions over the
ways in which weight matrices might be pruned, which refines the bound
in [62] to sparsified weight matrices (Sect. 3).

(ii) We introduce a network pruning technique based on choosing the density
of each layer for increasing the potential number of linear regions (Sect. 4).

(iii) We propose a method based on Mixed-Integer Linear Programming (MILP)
to count linear regions on input subspaces of arbitrary dimension, which
generalizes the cases of unidimensional [25] and bidimensional [26] inputs;
this MILP formulation includes a new constraint in comparison to [62] for
correctly counting linear regions in general (Sect. 5).

2 Notation

In this paper, we study the linear regions defined by the fully-connected layers of
feedforward networks. For simplicity, we assume that the entire network consists
of such layers and that each neuron has a ReLU activation function, hence being
denoted as a rectifier network. However, our results can be extended to the case
in which the fully-connected layers are preceded by convolutional layers, and in
fact our experiments show their applicability in that context. We also abstract
the fact that fully-connected layers are often followed by a softmax layer.

We assume that the neural network has an input x = [x1 x2 . . . xn0]
T from

a bounded domain X and corresponding output y = [y1 y2 . . . ym]T , and each
hidden layer l ∈ L = {1, 2, . . . , L} has output hl = [hl

1 hl
2 . . . hl

nl
]T from neurons

indexed by i ∈ Nl = {1, 2, . . . , nl}. Let W l be the nl × nl−1 matrix where each
row corresponds to the weights of a neuron of layer l, W l

i the i-th row of W l,
and bl the vector of biases associated with the units in layer l. With h0 for x
and hL+1 for y, the output of each unit i in layer l consists of an affine function
gli = W l

ih
l−1 + bli followed by the ReLU activation hl

i = max{0, gli}. We denote
the neuron active when hl

i = gli > 0 and inactive when hl
i = 0 and gli < 0. We

explain later in the paper how we consider the special case in which hl
i = gli = 0.

3 The Linear Regions of Pruned Neural Networks

In rectifier networks, small perturbations of a given input produce a linear change
on the output before the softmax layer. This happens because the neurons that
are active and inactive for the original input remain in the same state if the
perturbation is sufficiently small. Hence, as long as the neurons remain in their
current active or inactive states, the neural network acts as a linear function.

If we consider every configuration of active and inactive neurons that may be
triggered by different inputs, then the network acts as a piecewise linear function.
The theory of linear regions aims to understand what affects the achievable
number of such pieces, which are also known as linear regions. In other words,
we are interested in knowing how many different combinations of active and

204 J. Cai et al.

inactive neurons are possible, since they make the network behave differently for
inputs that are sufficiently different from one another.

Many factors may affect such number of combinations. We consider below
some building blocks leading to an upper bound for pruned networks.

(i) The Activation Hyperplane: Every neuron has an input space corre-
sponding to the output of the neurons from the previous layer, or to the input of
the network if the neuron is in the first layer. For the i-th neuron in layer l, that
input space corresponds to hl−1. The hyperplane W l

ih
l−1 + bli = 0 defined by

the parameters of the neuron separate the inputs in hl−1 into two half-spaces.
Namely, the inputs that activate the neuron in one side (W l

ih
l−1 +bli > 0) from

those that do not activate the neuron in the other side (W l
ih

l−1 + bli < 0). We
discuss in (iii) how we regard inputs on the hyperplane (W l

ih
l−1 + bli = 0).

(ii) The Hyperplane Arrangement: With every neuron in layer l partitioning
hl−1 into two half-spaces, our first guess could be that the intersections of these
half-spaces would lead the neurons in layer l to partition hl−1 into a collection of
2nl regions [52]. In other words, that there would be one region corresponding to
every possible combination of neurons being active or inactive in layer l. However,
the maximum number of regions defined in such a way depends on the number of
hyperplanes and the dimension of space containing those hyperplanes. Given the
number of activation hyperplanes in layer l as nl and assuming for now that the
size of the input space hl−1 is nl−1, then the number of linear regions defined by
layer l, or Nl, is such that Nl ≤ ∑nl−1

d=0

(
nl

d

)
[81]. Since Nl � 2nl when nl−1 � nl,

we note that this bound can be much smaller than initially expected—and that
does not cover the other factors discussed in (iv), (v), and (vi).

(iii) The Boundary: Before moving on, we note that the bound above counts
the number of full-dimensional regions defined by a collection of hyperplanes in
a given space. In other words, the activation hyperplanes define the boundaries
of the linear regions and within each linear region the points are such that either
W l

ih
l−1 + bli > 0 or W l

ih
l−1 + bli < 0 with respect to each neuron i in layer

l. Hence, this bound ignores cases in which we would regard W l
ih

l−1 + bli = 0
as making the neuron inactive when W l

ih
l−1 + bli ≥ 0 for any possible input in

hl−1, and vice-versa when W l
ih

l−1+bli ≤ 0, since in either case the linear region
defined with W l

ih
l−1 +bli = 0 would not be full-dimensional and would actually

be entirely located on the boundary between other full-dimensional regions.

(iv) Bounding Across Layers: As we add depth to a neural network, every
layer of the network breaks each linear region defined so far in even smaller
pieces with respect to the input space h0 of the network. One possible bound
would be the product of the bounds for each layer l by assuming the size of
the input space to be nl−1 [58]. That comes with the assumption that every
linear region defined by the first l − 1 layers can be further partitioned by layer
l in as many linear regions as possible. However, this partitioning is going to be
more detailed in some linear regions than in others because their input space
might be very different. The output of a linear region in layer l is defined by a
linear transformation with rank at most nl. The linear transformation would be

Getting Away with More Network Pruning 205

hl = M lhl−1 + dl, where M l
i = W l

i and dl
i = bli if neuron i of layer l is active

in the linear region and M l
i = 0 and dl

i = 0 otherwise. Hence, the output from
a linear region is the composite of the linear transformations in each layer. If
layer l + 1 or any subsequent layer has more than nl neurons, that would not
imply that the dimension of the image from any linear region is greater than nl

since the output of any linear region after layer l is contained in a space with
dimension at most min{n0, n1, . . . , nl} [51]. In fact, the dimension the of image
is often much smaller if we consider that the rank of each matrix M l

i is bound
by how many neurons are active in the linear region, and that in only one linear
region of a layer we would see all neurons being active [62].

(v) The Effect of Parameters: The value of the parameters may also interfere
with the hyperplane arrangement. First, consider the case in which the rank
of the weight matrix is smaller than the number of rows. For example, if all
activation hyperplanes are parallel to one another and thus the rank of the
weight matrix is 1. No matter how many dimensions the input space has, this
situation is equivalent to drawing parallel lines in a plane. Hence, nl neurons
would not be able to partition the input space into more than nl + 1 regions. In
general, it is as if the dimension of the space being partitioned were equal to the
rank of the weight matrix [62]. Second, consider the case in which a neuron is
stable, meaning that this neuron is always active or always inactive for any valid
input [69]. Not only that would affect the dimension of the image because a stably
inactive neuron always outputs zero, but also the effective number of activation
hyperplanes: since the activation hyperplane associated with a stable neuron has
no inputs to one of its sides, it does not subdivide any linear region [61].

(vi) The Effect of Sparsity: When we start making parameters of the neural
network equal to zero through network pruning, we may affect the number of
linear regions due to many factors. First, some neurons may become stable.
For example, neuron i in layer l becomes stable if W l

i = 0, i.e., if that row
of parameters only has zeros, since the bias term alone ends up defining if the
neuron is active (bli > 0) or inactive (bli < 0). That is also likely to happen if only
a few parameters are left, such as when all the remaining weights and the bias
are all either positive or negative, since the probability of all parameters having
the same sign increases significantly as the number of parameters left decrease if
we assume that parameters are equally likely to be positive or negative. Second,
the rank of the weight matrix W l may decrease with sparsity. For example, let us
suppose that the weight matrix has n rows, n columns, and that there are only n
nonzero parameters. Although it is still possible that those n parameters would
all be located in distinct rows and columns to result in a full-rank matrix, that

would only occur in
n!

(
n2

n

) of the cases if we assume every possible arrangement

for those n parameters in the n2 different positions. Hence, we should expect
some rank deficiency in the weight matrix even if we do not prune that much.
Third, the rank of submatrices on the columns may decrease even if the weight
matrix is full row rank. This could happen in the typical case where the number
of columns exceeds the number of rows, such as when the number of neurons

206 J. Cai et al.

decreases from layer to layer, and in that case we could replace the number of
active neurons with the rank of the submatrix on their columns for the dimension
of the output from each linear region in order to obtain a tighter bound.

Based on the discussion above, we propose an expected upper bound on
the number of linear regions over the possible sparsity patterns of the weight
matrices. We use an expected bound rather than a deterministic one to avoid
the unlikely scenarios in which the impact of sparsity is minimal, such as in the
previous example with n parameters leading to matrix with rank n. This upper
bound considers every possible sparsity pattern in the weight matrix as equally
probable, which is an assumption that aligns with random pruning and does
not seem to be too strict in our opinion. For simplicity, we assume that every
weight of the network has a probability p of not being pruned; or, conversely, a
probability 1 − p of being pruned. We denote p as the network density.

Moreover, we focus on the second effect of sparsity—through a decrease on
the rank of the weight matrix—for two reasons: (1) it subsumes part of the first
effect when an entire row becomes zero; and (2) we found it to be stronger than
the third effect in preliminary comparisons with a bound based on it.

Theorem 1. Let R(l, d) be the expected maximum number of linear regions that
can be defined from layer l to layer L with the dimension of the input to layer l
being d; and let P (k|R,C, S) be the probability that a weight matrix having rank k
with R rows, C columns, and probability S of each element being nonzero. With
pl as the probability of each parameter in W l from remaining in the network
after pruning—the layer density, then R(l, d) for l = L is at most

nL∑

k=0

P (k|R = nL, C = nL−1, S = pL)
min{k,d}∑

j=0

(
nL

j

)

and R(l, d) for 1 ≤ l ≤ L − 1 is at most

nl∑

k=0

P (k|R = nl, C = nl−1, S = pl)
min{k,d}∑

j=0

(
nl

j

)

R(l + 1,min{nl − j, d, k}).

Proof. We begin with a recurrence on the number of linear regions similar to the
one in [62]. Namely, let R(l, d) be the maximum number of linear regions that can
be defined from layer l to layer L with the dimension of the input to layer l being
d, and let Nnl,d,j be the maximum number of regions from partitioning a space
of dimension d with nl activation hyperplanes such that j of the corresponding
neurons are active in the resulting subspaces (|Sl| = j):

R(l, d) =

⎧
⎪⎪⎨

⎪⎪⎩

min{nL,d}∑

j=0

(
nL

j

)
if l = L,

nl∑

j=0

Nnl,d,jR(l + 1,min{j, d}) if 1 ≤ l ≤ L − 1
(1)

Getting Away with More Network Pruning 207

Note that the base case of the recurrence directly uses what we know about
the number of linear regions given the number of hyperplanes and the dimension

of the space. That bound also applies to
nl∑

j=0

Nnl,d,j in the other case from the

recurrence. Based on Lemma 5 from [62],
nl∑

j=0

Nnl,d,j ≤
min{nl,d}∑

j=0

(
nl

j

)
. Some of

these linear regions will have more neurons active than others. In fact, there
are at most

(
nl

j

)
regions with |Sl| = j for each j. In resemblance to BC, we

can thus assume that the largest possible number of neurons is active in each
linear region defined by layer l for the least impact on the input dimension of
the following layers. Since

(
nl

j

)
=

(
nl

nl−j

)
, we may conservatively assume that

(
nl

0

)
linear regions have nl active neurons,

(
nl

1

)
linear regions have nl − 1 active

neurons, and so on. That implies the following refinement of the recurrence:

R(l, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{nL,d}∑

j=0

(
nL

j

)
if l = L,

min{nl,d}∑

j=0

(
nl

j

)
R(l + 1,min{nl − j, d}) if 1 ≤ l ≤ L − 1

(2)

Note that there is a slight change on the recurrence call, by which j is replaced
with nl − j, given that we are working backwards from the largest possible
number of active neurons nl with nl − j.

Finally, we account for the rank of the weight matrix upon sparsification.
For the base case of l = L, we replace nL from the end of the summation range
with the rank k of the weight matrix WL, and then we calculate the expected
maximum number of linear regions using the probabilities of rank k having any
value from 0 to nL as

nL∑

k=0

P (k|R = nL, C = nL−1)
min{k,d}∑

j=0

(
nL

j

)

,

which corresponds to the first expression in the statement. For the case in which
l ∈ {1, . . . , L − 1}, we similarly replace nl from the end of the summation range
with the rank k of the weight matrix W l, and then we calculate the expected
maximum number of linear regions using the probabilities of rank k having any
value from 0 to nl as

nl∑

k=0

P (k|R = nl, C = nl−1)
min{k,d}∑

j=0

(
nl

j

)

RH(l + 1,min{nl − j, d, k}),

which corresponds to the second expression in the statement. �

Please note that the probability of the rank of a sparse matrix is not uniform
when the probability of the sparsity patterns is uniform. We discuss how to
compute the former from the later as one of the items in Sect. 6.

208 J. Cai et al.

4 Pruning Based on Linear Regions

Based on Theorem 1, we devise a network pruning strategy for maximizing the
number of linear regions subject to the total number of parameters to be pruned.
For a global density p reflecting how much should be pruned, we may thus choose
a density pl for each layer l, some of which above and some of which below p
if we do not prune uniformly. We illustrate below the simpler case of pruning
two hidden layers and not pruning the connections to the output layer, which is
the setting used in our experiments. We focused on two layers because there is
only one degree of freedom in that case: for any density p1 that we choose, the
density p2 is implied by p1 and by the global density p. When there are more
layers involved, trying to optimize the upper bound becomes more challenging.
If the effect is not as strong, it could be due to issues solving this nonlinear
optimization problem rather than with the main idea in the paper.

When pruning two layers, the relevant dimensions for us are the input size
n0 and the layer widths n1 and n2. Assuming the typical setting in which n0 >
n1 = n2, the maximum rank of both weight matrices is limited by the number
of rows (n1 for W 1 and n2 for W 2). However, the greater number of columns in
W 1 (n0) implies that we should expect the rank of W 1 to be greater if p1 = p2,
whereas preserving more nonzero elements in W 2 by pruning a little more from
W 1 may change the probabilities for W 2 with little impact on those for W 1.
In some of our experiments, the second layer actually has more parameters than
the first, meaning that we need to consider p1 > p2 instead of p1 < p2.

From preliminary experimentation, we indeed observed that (i) pruning more
from the layer with more parameters tends to be more advantageous in terms
of maximizing the upper bound; and also that (ii) the upper bound can be
reasonably approximated by a quadratic function. Hence, we use the extremes
consisting of pruning as much as possible from each of the two layers, say p1 and
p2, in addition to the uniform density p in both layers to interpolate the upper
bound. If that local maximum of the interpolation is not pruning more from the
layer l with more parameters, we search for the density pl that improves the
upper bound the most by uniformly sampling densities from p all the way to pl.

5 Counting Linear Regions in Subspaces

Based on the characterization of linear regions in terms of which neurons are
active and inactive, we can count the number of linear regions defined by a
trained network with a Mixed-Integer Linear Programming (MILP) formula-
tion [62]. Among other things, these formulations have also been used for net-
work verification [9], embedding the relationship between inputs and outputs of
a network into optimization problems [5,11,59], identifying stable neurons [69]
to facilitate adversarial robustness verification [75] as well as network compres-
sion [60,63], and producing counterfactual explanations [37]. Moreover, several
studies have analyzed and improved such formulations [1,2,8,15,61,63].

In these formulations, the parameters W l and bl of each layer l ∈ L are
constant while the decision variables are the inputs of the network (x = h0 ∈ X),

Getting Away with More Network Pruning 209

the outputs before and after activation of each feedforward layer (gl ∈ R
nl and

hl ∈ R
nl
+ for l ∈ L), and the state of the neurons in each layer (zl ∈ {0, 1}nl for

l ∈ L). By mapping these variables according to the parameters of the network,
we can characterize every possible combination of inputs, outputs, and activation
states as distinct solutions of the MILP formulation. For each layer l ∈ L and
neuron i ∈ Nl, the following constraints associate the input hl with the outputs
gl
i and hl

i as well as with the neuron activation zl
i:

W l
ih

l−1 + bli = gl
i (3)

(zl
i = 1) → hl

i = gl
i (4)

(zl
i = 0) → gl

i ≤ 0 (5)

(zl
i = 0) → hl

i = 0 (6)

hl
i ≥ 0 (7)

zl
i ∈ {0, 1} (8)

The indicator constraints (4)–(6) can be converted to linear inequalities [7].
We can use such a formulation for counting the number of linear regions

based on the number of distinct solutions on the binary vectors zl for l ∈ L.
However, we must first address the implicit simplifying assumption allowing us
to assume that a neuron can be either active (zl

i = 1) or inactive (zl
i = 0) when

the preactivation output is zero (gl
i = 0) in (3)–(8). We can do so by maximizing

the value of a continuous variable that is bounded by the preactivation output
of every active neuron and the negated preactivation output of every inactive
neuron. In other words, we count the number of solutions on the binary variables
for the solutions with positive value for the following formulation:

max f (9)
s.t. (3) − (8) ∀l ∈ L, i ∈ Nl (10)

(zl
i = 1) → f ≤ gl

i ∀l ∈ L, i ∈ Nl (11)

(zl
i = 0) → f ≤ −gl

i ∀l ∈ L, i ∈ Nl (12)

h0 ∈ X (13)

We note that constraint (12) has not been used in prior work, where it is assumed
that the neuron is inactive when gl

i = 0 [61,62]. However, its absence makes
the counting of linear regions incompatible with the theory used to bound the
number of linear regions, which assumes that only full-dimensional linear regions
are valid. Hence, this represents a small correction to count all the linear regions.

Finally, we extend this formulation for counting linear regions on a subspace
of the input. This form of counting has been introduced by [25] for 1-dimensional
inputs and later extended by [26] to 2-dimensional inputs. Although far from
the upper bound, the number of linear regions can still be very large even for
networks of modest size, which makes the case for analyzing how neural networks
partition subspaces of the input. In prior work, 1 and 2-dimensional inputs have

210 J. Cai et al.

been considered as the affine combination of 1 and 2 samples with the origin, and
a geometric algorithm is used for counting the number of linear regions defined.
We present an alternative approach by adding the following constraint to the
MILP formulation above in order to limit the inputs of the neural network:

h0 = p0 +
S∑

i=1

αi(pi − p0) (14)

where {pi}Si=0 is a set of S + 1 samples and {αi}Si=1 is a set of S continuous
variables. One of these samples, say p0, could be chosen to the be origin.

6 Computational Experiments

We ran computational experiments aimed at assessing the following items:

(1) if accuracy after pruning and the number of linear regions are connected;
(2) if this connection also translates to the upper bound from Theorem 1; and
(3) if that bound can guide us on how much to prune from each layer.

Our experiments involved models trained on the datasets MNIST [41], Fash-
ion [74], CIFAR-10 [38], and CIFAR-100 [38]. We used multilayer perceptrons hav-
ing 20, 100, 200, and 400 neurons in each of their 2 fully-connected layers (denoted
as 2 × 20, 2 × 100, 2 × 200, and 2 × 400), and adaptations of the LeNet [41] and
AlexNet [39] architectures. For each choice of dataset and architecture used, we
trained and pruned 30 models. Only the fully-connected layers were pruned. In
the case of LeNet and AlexNet, we considered the output of the last convolutional
layer as the input for upper bound calculations, as if their respective dimensions
were 400×128×84 and 1024×4096×4096. We removed the weights with smallest
absolute value (magnitude pruning), using either the same density p on each layer
or choosing different densities while pruning the same number of parameters in
total. We discuss other experimental details later. The source code is available at
https://github.com/caidog1129/getting away with network pruning.

Experiment 1: We compared the mean accuracy of networks that are pruned
uniformly according to their network density with the number of linear regions
on subspaces defined by random samples from the datasets (Fig. 1) as well as
with the upper bound with input dimensions matching those subspaces (Fig. 2).
We used a simpler architecture (2×20) to keep the number of linear regions small
enough to count and a simpler dataset (MNIST) to obtain models with good
accuracy. In this experiment, we observe that indeed the number of linear regions
drops with network density and consequently with accuracy. However, the most
relevant finding is that the upper bound also drops in a similar way, even if its
values are much larger. This finding is important because it is actionable: if we
compare the upper bound resulting from different pruning strategies, then we
may prefer a pruning strategy that leads to a smaller drop in the upper bound.
Moreover, it is considerably cheaper to work with the upper bound since we do
not need to train neural networks and neither count their linear regions.

https://github.com/caidog1129/getting_away_with_network_pruning

Getting Away with More Network Pruning 211

Fig. 1. Comparison between mean number of linear regions on the affine subspace
defined by S = 2, 3, or 5 sample points (olive curve) and mean test accuracy (blue
curve; right y axis) with the same density p used to prune both layers of the networks.
(Color figure online)

Fig. 2. Comparison between the upper bound from Theorem 1 (dashed blue curve) for
input dimension d = 1, 2, and 4 (equivalent to S = 2, 3, and 5) and mean test accuracy
(continuous blue curve; right y axis) for the same networks and densities from Fig. 1.
(Color figure online)

Experiment 2: We compared using the same density p in each layer with using
per layer densities as described in Sect. 4. We evaluated the simpler datasets
(MNIST, Fashion, and CIFAR-10) on the simpler architectures (multilayer per-
ceptrons and LeNet) in Fig. 3, where every combination of dataset and architec-
ture is tested to compare accuracy gain across network sizes and datasets. We set
aside the most complex architecture (AlexNet) and the most complex datasets
(CIFAR-10 and CIFAR-100) in Fig. 4. In this experiment, we observe that prun-
ing the fully-connected layers differently and oriented by the upper bound indeed
leads to more accurate networks. The difference between the pruning strategies
is noticeable once the network density starts impacting the network accuracy.
We intentionally evaluated network densities leading to very different accuracies
and all the way to a complete deterioration of network performance, and we
notice that the gain is consistent across all of them. If the number of parameters
is similar across fully-connected layers, such as in the case of 2 × 400, we notice
that the gain is smaller because more uniform densities are better for the upper
bound. Curiously, we also observe a relatively greater gain with our pruning
strategy for CIFAR-10 on multilayer perceptrons.

Additional Details: Each network was trained for 15 epochs using stochastic
gradient descent with batch size of 128 and learning rate of 0.01, pruned, and

212 J. Cai et al.

Fig. 3. Comparison between the mean test accuracy as fully-connected layers are
pruned using the baseline method and our method with each network density p. In the
baseline method, the same density is used in all layers (blue curve). In our method,
layer densities are chosen to maximize the bound from Theorem 1 while pruning the
same number of parameters (orange curve). The accuracy gain from using our method
instead of the baseline is shown in the scaled columns (maroon bars; right y axis).
Each column refers to a dataset among MNIST, Fashion, and CIFAR-10. Each row
refers to an architecture among multilayer perceptrons (2× 100, 2× 200, and 2× 400)
and LeNet. We test every combination of dataset and architecture. (Color figure online)

Getting Away with More Network Pruning 213

Fig. 4. Comparison between mean test accuracy for the same strategies as in Fig. 3 for
the AlexNet architecture, in which we test the datasets CIFAR-10 and CIFAR-100.

then fine-tuned with the same hyperparameters for another 15 epochs. We have
opted for magnitude-based pruning due to its simplicity, popularity, and frequent
use as a component of more sophisticated pruning algorithms [6,16]. Our imple-
mentation is derived from the ShrinkBench framework [6]. In the baseline that
we used, we opted for removing a fixed proportion of parameters from each layer
(layerwise pruning) to avoid disconnecting the network, which we observed to
happen under extreme sparsities if the parameters with smallest absolute value
were mostly concentrated in one of the layers. We measured the mean network
accuracy before pruning, which corresponds to network density p = 1, as well
as for another seven values of p. In the experiments in Fig. 3, the choices of p
were aimed at gradually degrading the accuracy toward random guessing, which
corresponds to accuracy 10% accuracy in those datasets with 10 balanced classes
(MNIST, Fashion, and CIFAR-10). In the experiments with AlexNet in Fig. 4,
we aimed for a similar decay in performance.

Upper Bound Calculation: Estimating the probabilities P (k|R,C, S) in The-
orem 1 is critical to calculate the upper bound. For multilayer perceptrons and
LeNet, we generated a sample of matrices with the same shape as the weight
matrix for each layer and in which every element is randomly drawn from the
normal distribution with mean 0 and standard deviation 1. These matrices were
randomly pruned based on the density p, which may have been the same for
every layer or may varied per layer as discussed later, and then their rank was
calculated. We first generated 50 such matrices for each layer, kept track the
minimum and maximum rank values obtained, minr and maxr, and then gener-
ated more matrices until the number of matrices generated was at least as large
as (maxr −minr +1) ∗ 50. For example, 50 matrices are generated if the rank
is always the same, and 500 matrices are generated if the rank goes from 11 to
20. Finally, we calculated the probability of each possible rank based on how
many times that value was observed in the samples. For example, if 10 out of
500 matrices have rank 11, then we assumed a probability of 2% for the rank
of the matrix to be 11. For AlexNet, the time required for sampling is consider-
ably longer. Hence, we resorted to an analytical approximation which is faster
but possibly not as accurate. For an m × n matrix, m ≤ n, with density p, the

214 J. Cai et al.

probability of all the elements being zero in a given row is (1 − p)n. We can
overestimate the rank of the matrix as the number of rows with nonzero ele-
ments, which then corresponds to a binominal probability distribution with m
independent trials having each a probability of success given by 1− (1−p)n. For
2 × 100, calculating the upper bound takes 15–20 s with sampling and 0.5–1 s
with the analytical approximation. For 2 × 400, we have 10–20 min vs. 20 s. For
AlexNet, the analytical approximation takes 20 min.

7 Conclusion

In this work, we studied how the theory of linear regions can help us identify
how much to prune from each fully-connected feedforward layer of a neural net-
work. First, we proposed an upper bound on the number of linear regions based
on the density of the weight matrices when neural networks are pruned. We
observe from Fig. 2 that the upper bound is reasonably aligned with the impact
of pruning on network accuracy. Second, we proposed a method for counting the
number of linear regions on subspaces of arbitrary dimension. In prior work, the
counting of linear regions in subspaces is restricted to at most 3 samples and
thus dimension 2 [26]. We observe from Fig. 1 to the number of linear regions is
also aligned with the impact of pruning on network accuracy—although not as
accurately as the upper bound. Third, and most importantly, we leverage this
connection between the upper bound and network accuracy under pruning to
decide how much to prune from each layer subject to an overall network density
p. We observe from Fig. 3 that we obtain considerable gains in accuracy across
varied datasets and architectures by pruning from each layer in a proportion that
improves the upper bound on the number of linear regions rather than pruning
uniformly. These gains are particularly more pronounced when the number of
parameters differs across layers. Hence, the gains are understandably smaller
when the width of the layers increases (from 100 to 200 and 400) but greater
when the size of the input increases (from 784 for MNIST and Fashion to 3,072
for CIFAR-10 with a width of 400). We also obtain positive results with pruning
fully connected layers of convolutional networks as illustrated with LeNet and
AlexNet, and in future work we intend to investigate how to also make decisions
about pruning convolutional filters. Althought we should not discard the pos-
sibility of a confounding factor affecting both accuracy and linear regions, our
experiments indicate that the potential number of linear regions can guide us on
pruning more from neural networks with less impact on accuracy.

Acknowledgments. We would like to thank Christian Tjandraatmadja, Anh Tran,
Tung Tran, Srikumar Ramalingam, and the anonymous reviewers for their advice and
constructive feedback. Junyang Cai, Khai-Nguyen Nguyen, Nishant Shrestha, Aidan
Good, Ruisen Tu, and Thiago Serra were supported by the National Science Foundation
(NSF) award IIS 2104583. Xin Yu and Shandian Zhe were supported by the NSF
CAREER award IIS 2046295.

Getting Away with More Network Pruning 215

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020). https://doi.org/10.1007/s10107-020-01474-5

2. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-
integer programming formulations for trained neural networks. In: Lodi, A.,
Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 27–42. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17953-3 3

3. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. In: ICLR (2018)

4. Baykal, C., Liebenwein, L., Gilitschenski, I., Feldman, D., Rus, D.: Data-dependent
coresets for compressing neural networks with applications to generalization
bounds. In: ICLR (2019)

5. Bergman, D., Huang, T., Brooks, P., Lodi, A., Raghunathan, A.: JANOS: an inte-
grated predictive and prescriptive modeling framework. INFORMS J. Comput. 34,
807–816 (2022)

6. Blalock, D., Ortiz, J., Frankle, J., Guttag, J.: What is the state of neural network
pruning? In: MLSys (2020)

7. Bonami, P., Lodi, A., Tramontani, A., Wiese, S.: On mathematical programming
with indicator constraints. Math. Program. 151(1), 191–223 (2015). https://doi.
org/10.1007/s10107-015-0891-4

8. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient veri-
fication of ReLU-based neural networks via dependency analysis. In: AAAI (2020)

9. Cheng, C.-H., Nührenberg, G., Ruess, H.: Maximum resilience of artificial neural
networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol.
10482, pp. 251–268. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68167-2 18

10. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2, 303–314 (1989). https://doi.org/10.1007/BF02551274

11. Delarue, A., Anderson, R., Tjandraatmadja, C.: Reinforcement learning with com-
binatorial actions: an application to vehicle routing. In: NeurIPS (2020)

12. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., Freitas, N.: Predicting parameters
in deep learning. In: NeurIPS (2013)

13. Dong, X., Chen, S., Pan, S.: Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In: NeurIPS (2017)

14. Elesedy, B., Kanade, V., Teh, Y.W.: Lottery tickets in linear models: an analysis
of iterative magnitude pruning (2020)

15. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018). https://doi.org/10.1007/s10601-018-9285-6

16. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. In: ICLR (2019)

17. Funahashi, K.I.: On the approximate realization of continuous mappings by neural
networks. Neural Netw. 2(3) (1989)

18. Ganev, I., Walters, R.: Model compression via symmetries of the parameter space
(2022). https://openreview.net/forum?id=8MN GH4Ckp4

19. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: AIS-
TATS (2011)

20. Good, A., et al.: Recall distortion in neural network pruning and the undecayed
pruning algorithm. In: NeurIPS (2022)

https://doi.org/10.1007/s10107-020-01474-5
https://doi.org/10.1007/978-3-030-17953-3_3
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1007/s10107-015-0891-4
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/978-3-319-68167-2_18
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/s10601-018-9285-6
https://openreview.net/forum?id=8MN_GH4Ckp4

216 J. Cai et al.

21. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. In: ICML (2013)

22. Gordon, M., Duh, K., Andrews, N.: Compressing BERT: studying the effects of
weight pruning on transfer learning. In: Rep4NLP Workshop (2020)

23. Han, S., Mao, H., Dally, W.: Deep compression: compressing deep neural networks
with pruning, trained quantization and Huffman coding. In: ICLR (2016)

24. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: NeurIPS (2015)

25. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: ICML
(2019)

26. Hanin, B., Rolnick, D.: Deep ReLU networks have surprisingly few activation pat-
terns. In: NeurIPS (2019)

27. Hanin, B., Sellke, M.: Approximating continuous functions by ReLU nets of mini-
mal width. arXiv:1710.11278 (2017)

28. Hanson, S., Pratt, L.: Comparing biases for minimal network construction with
back-propagation. In: NeurIPS (1988)

29. Hassibi, B., Stork, D.: Second order derivatives for network pruning: optimal Brain
Surgeon. In: NeurIPS (1992)

30. Hassibi, B., Stork, D., Wolff, G.: Optimal brain surgeon and general network prun-
ing. In: IEEE International Conference on Neural Networks (1993)

31. Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., Peste, A.: Sparsity in deep
learning: pruning and growth for efficient inference and training in neural networks.
arXiv:2102.00554 (2021)

32. Hooker, S., Courville, A., Clark, G., Dauphin, Y., Frome, A.: What do compressed
deep neural networks forget? arXiv:1911.05248 (2019)

33. Hooker, S., Moorosi, N., Clark, G., Bengio, S., Denton, E.: Characterising bias in
compressed models. arXiv:2010.03058 (2020)

34. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5) (1989)

35. Janowsky, S.: Pruning versus clipping in neural networks. Phys. Rev. A (1989)
36. Jin, T., Roy, D., Carbin, M., Frankle, J., Dziugaite, G.: On neural network prun-

ing’s effect on generalization. In: NeurIPS (2022)
37. Kanamori, K., Takagi, T., Kobayashi, K., Ike, Y., Uemura, K., Arimura, H.:

Ordered counterfactual explanation by mixed-integer linear optimization. In: AAAI
(2021)

38. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical
report, University of Toronto (2009)

39. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Commun. ACM 60(6), 84–90 (2017)

40. Lebedev, V., Lempitsky, V.: Fast ConvNets using group-wise brain damage. In:
CVPR (2016)

41. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Proceedings of the IEEE (1998)

42. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In: NeurIPS (1989)
43. Lee, N., Ajanthan, T., Torr, P.: SNIP: single-shot network pruning based on con-

nection sensitivity. In: ICLR (2019)
44. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.: Pruning filters for efficient

convnets. In: ICLR (2017)
45. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape

of neural nets. In: NeurIPS (2018)

http://arxiv.org/abs/1710.11278
http://arxiv.org/abs/2102.00554
http://arxiv.org/abs/1911.05248
http://arxiv.org/abs/2010.03058

Getting Away with More Network Pruning 217

46. Liebenwein, L., Baykal, C., Carter, B., Gifford, D., Rus, D.: Lost in pruning: the
effects of pruning neural networks beyond test accuracy. In: MLSys (2021)

47. Liebenwein, L., Baykal, C., Lang, H., Feldman, D., Rus, D.: Provable filter pruning
for efficient neural networks. In: ICLR (2020)

48. Liu, S., et al.: Sparse training via boosting pruning plasticity with neuroregenera-
tion. In: NeurIPS (2021)

49. Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural net-
works: a view from the width. In: NeurIPS (2017)

50. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: ICLR (2017)

51. Montúfar, G.: Notes on the number of linear regions of deep neural networks. In:
SampTA (2017)

52. Montúfar, G., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions
of deep neural networks. In: NeurIPS (2014)

53. Montúfar, G., Ren, Y., Zhang, L.: Sharp bounds for the number of regions of
maxout networks and vertices of Minkowski sums (2021)

54. Mozer, M., Smolensky, P.: Using relevance to reduce network size automatically.
Connection Sci. (1989)

55. Nair, V., Hinton, G.: Rectified linear units improve restricted Boltzmann machines.
In: ICML (2010)

56. Paganini, M.: Prune responsibly. arXiv:2009.09936 (2020)
57. Pascanu, R., Montúfar, G., Bengio, Y.: On the number of response regions of deep

feedforward networks with piecewise linear activations. In: ICLR (2014)
58. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Dickstein, J.: On the expressive

power of deep neural networks. In: ICML (2017)
59. Say, B., Wu, G., Zhou, Y., Sanner, S.: Nonlinear hybrid planning with deep net

learned transition models and mixed-integer linear programming. In: IJCAI (2017)
60. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-

works. In: Hebrard, E., Musliu, N. (eds.) CPAIOR 2020. LNCS, vol. 12296, pp.
417–430. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58942-4 27

61. Serra, T., Ramalingam, S.: Empirical bounds on linear regions of deep rectifier
networks. In: AAAI (2020)

62. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear
regions of deep neural networks. In: ICML (2018)

63. Serra, T., Yu, X., Kumar, A., Ramalingam, S.: Scaling up exact neural network
compression by ReLU stability. In: NeurIPS (2021)

64. Singh, S.P., Alistarh, D.: WoodFisher: efficient second-order approximation for
neural network compression. In: NeurIPS (2020)

65. Sourek, G., Zelezny, F.: Lossless compression of structured convolutional models
via lifting. In: ICLR (2021)

66. Sun, R., Li, D., Liang, S., Ding, T., Srikant, R.: The global landscape of neural
networks: an overview. IEEE Signal Process. Mag. 37(5), 95–108 (2020)

67. Tanaka, H., Kunin, D., Yamins, D., Ganguli, S.: Pruning neural networks without
any data by iteratively conserving synaptic flow. In: NeurIPS (2020)

68. Telgarsky, M.: Representation benefits of deep feedforward networks (2015)
69. Tjeng, V., Xiao, K., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming. In: ICLR (2019)
70. Tran, C., Fioretto, F., Kim, J.E., Naidu, R.: Pruning has a disparate impact on

model accuracy. In: NeurIPS (2022)
71. Tseran, H., Montúfar, G.: On the expected complexity of maxout networks. In:

NeurIPS (2021)

http://arxiv.org/abs/2009.09936
https://doi.org/10.1007/978-3-030-58942-4_27

218 J. Cai et al.

72. Wang, C., Grosse, R., Fidler, S., Zhang, G.: EigenDamage: structured pruning in
the Kronecker-factored eigenbasis. In: ICML (2019)

73. Wang, C., Zhang, G., Grosse, R.: Picking winning tickets before training by pre-
serving gradient flow. In: ICLR (2020)

74. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. arXiv:1708.07747 (2017)

75. Xiao, K., Tjeng, V., Shafiullah, N., Madry, A.: Training for faster adversarial
robustness verification via inducing ReLU stability. In: ICLR (2019)

76. Xing, X., Sha, L., Hong, P., Shang, Z., Liu, J.: Probabilistic connection importance
inference and lossless compression of deep neural networks. In: ICLR (2020)

77. Xiong, H., Huang, L., Yu, M., Liu, L., Zhu, F., Shao, L.: On the number of linear
regions of convolutional neural networks. In: ICML (2020)

78. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural
Netw. 94 (2017)

79. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation.
In: CVPR (2018)

80. Yu, X., Serra, T., Ramalingam, S., Zhe, S.: The combinatorial brain surgeon: prun-
ing weights that cancel one another in neural networks. In: ICML (2022)

81. Zaslavsky, T.: Facing up to arrangements: face-count formulas for partitions of
space by hyperplanes. Am. Math. Soc. (1975)

82. Zeng, W., Urtasun, R.: MLPrune: multi-layer pruning for automated neural net-
work compression (2018)

http://arxiv.org/abs/1708.07747

OAMIP: Optimizing ANN Architectures
Using Mixed-Integer Programming

Mostafa ElAraby1,3(B), Guy Wolf1,4, and Margarida Carvalho2,3

1 Mila – Quebec AI institute, Montreal, Canada
moustafa.elarabi@Umontrea.ca
2 CIRRELT, Montreal, Canada

3 Department of Computer Science and Operations Research,
Université de Montréal, Montreal, Canada

4 Department of Mathematics and Statistics, Université de Montréal,
Montreal, QC, Canada

Abstract. In this work, we concentrate on the problem of finding a set
of neurons in a trained neural network whose pruning leads to a marginal
loss in accuracy. To this end, we introduce Optimizing ANN Architectures
using Mixed-Integer Programming (OAMIP) to identify critical neurons
and prune non-critical ones. The proposed OAMIP uses a Mixed-Integer
Program (MIP) to assign importance scores to each neuron in deep neural
network architectures. The impact of simultaneous neuron pruning on the
main learning tasks guides the neurons’ scores. By carefully devising the
objective function of the MIP, we drive the solver to minimize the num-
ber of critical neurons (i.e., with high importance score) that maintain
the overall accuracy of the trained neural network. Our formulation iden-
tifies optimized sub-network architectures that generalize across different
datasets, a phenomenon known as lottery ticket optimization. This opti-
mized architecture not only performs well on a single dataset but also gen-
eralizes across multiple ones upon retraining of network weights. Addition-
ally, we present a scalable implementation of our pruning methodology by
decoupling the importance scores across layers using auxiliary networks.
Finally, we validate our approach experimentally, showing its ability to
generalize on different datasets and architectures.

Keywords: Pruning Neural Networks · Mixed Integer Programming ·
Neurons Ranking · Sparse Neural Networks

1 Introduction

Deep learning has proven its power to solve complex tasks and to achieve state-
of-the-art results in various domains such as image classification, speech recogni-
tion, machine translation, robotics and control [6,24]. Over-parameterized arti-
ficial neural networks (ANN), which have more parameters than the training

G. Wolf and M. Carvalho—Equal contribution.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 219–237, 2023.
https://doi.org/10.1007/978-3-031-33271-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_15&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_15

220 M. ElAraby et al.

Fig. 1. The generic flow of OAMIP used to remove neurons with an importance score
below a specific threshold.

samples, can be used to achieve state-of-the-art results in various tasks [39,57].
However, the large number of parameters comes at the expense of computa-
tional cost in terms of memory footprint, training time, and inference time on
resource-limited devices.

In this context, the pruning of neurons in an over-parameterized neural model
has been an active area of research, enabling the increase of computational effi-
ciency and the uncovering of sub-networks with marginal (or even no) loss in the
network’s predictive capacity [1,9,17,28,41,42,45,50,51,56]. The typical sparsi-
fication procedure involves training a neural model to convergence, computing
the parameters’ importance, then pruning existing ones using specific criteria,
and fine-tuning the neural model to regain its lost accuracy. Existing pruning
and neuron ranking procedures [1,9,17,18,27,35,45,56] require iterations of fine-
tuning on the sparsified model instead of pruning a pre-trained network directly.
Moreover, the evaluation of the generalization of sparsified models across dif-
ferent datasets is under-explored in existing pruning and neuron ranking proce-
dures [31], which is consistent with the lottery ticket hypothesis [13,34,37].

We remark that modern network architectures often use sparse neuron con-
nectivity and, most notably, convolutional layers in image processing. Indeed,
the limited size of the parameter space in such cases increases the effectiveness
of network training and enables the learning of meaningful semantic features
from the input images [15]. Inspired by the benefits of sparsity in such architec-
ture designs, we aim to leverage the neuron sparsity achieved by our framework,
Optimizing ANN Architectures using Mixed-Integer Programming (OAMIP) to
obtain optimized neural architectures that can generalize well across different
datasets. For this purpose, we create a sparse sub-network by optimizing on
one dataset and then training the same architecture, i.e., masked, on another
dataset. Our results indicate a promising direction of future research into the uti-
lization of combinatorial optimization for effective automatic architecture tuning
to augment handcrafted network architecture design.

Contributions and Paper Organization. In OAMIP, illustrated in Fig. 1, we for-
malize the notation of neuron importance score in a trained neural network and

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 221

the associated dataset. The neuron importance score reflects how much activity
decrease can be inflicted while controlling the loss on the neural network model
accuracy. To this end, in Sect. 2, we begin by providing background on the con-
straints that serve as the basis for our Mixed-Integer Programming (MIP) formu-
lation presented in Sect. 3. Concretely, we propose a MIP that allows the computa-
tion of the importance score for each fully connected neuron and convolutional fea-
ture map. The error propagation associated with pruning between different layers
defines each neuron’s importance score. In addition, we also discuss the extension
of the MIP constraints for other layers besides ReLU-activated fully connected
layers. Section 4 describes OAMIP in detail, namely the integration of the neuron
importance scores on the pruning procedure. Here, we also propose a methodol-
ogy to independently decouple the computation of neuron importance score per
layer to represent deeper architectures and, thus, scale up our approach to models
like VGG-16 [44]. Furthermore, in Sect. 5, we show OAMIP’s robustness to various
input data points besides its ability to parallelize the computation of importance
score per class. Finally, we show that OAMIP’s importance score generalizes well
over various datasets complying with the lottery ticket hypothesis [13].

1.1 Related Work

Weight Pruning Methods. Early methods in weight pruning relied on the weight
magnitude by disabling the lowest magnitude weights and re-training/fine-tuning
the resulting sub-network [16,29,37]. Magnitude-based techniques rely on the
intuition that large weight values are more critical during inference than smaller
weight values. [36] devised a greedy criteria-based pruning with fine-tuning
by back-propagation. The criteria devised are given by the absolute difference
between dense and sparse neural model loss (ranker) to avoid a drop in the predic-
tive capacity. [43] developed a framework that computes the neurons’ importance
at each layer through a single backward pass as an approximation to the inter-
pretability of each neuron during inference. Other related techniques, using dif-
ferent objectives and interpretations of neuron importance, have been presented
[1,3,19,20,22,54], and require either fine-tuning to recover the network’s perfor-
mance or dynamic re-training and pruning. Another line of research [10,33,42,49,
53,55] formulates an optimization model to select which neuron to disable with-
out losing performance on the task at hand. With a less conservative perspective
but also using an optimization-based model, OAMIP aims to quantify a general-
izable per-neuron importance score for either a pre-trained network or at initial-
ization without re-training or fine-tuning the network. Similarly, other pruning
procedures aim to avoid the fine-tuning step by pruning the network during ini-
tialization. In particular, SNIP [28] and GraSP [51] focus on predicting critical
weights during initialization via salience scores and then train the sub-network
until convergence. SNIP [28] was the first to investigate the pruning of a network
during initialization by computing the connection’s sensitivity to an input batch
of data through gradient back-propagation. OAMIP can be applied to the network
at initialization or after training without requiring a long fine-tuning step.

222 M. ElAraby et al.

Lottery Ticket. [13] introduced the lottery ticket theory that shows the existence
of a lucky pruned sub-network, a winning ticket. The lucky pruned sub-network
can be trained effectively with fewer parameters while achieving a marginal loss
in accuracy. [37] proposed “one ticket to win them all” for sparsifying n over-
parameterized trained neural models based on the lottery hypothesis. Searching
for the winning ticket involves pruning the model and disabling some of its sub-
networks. The pruned model can be trained on a different dataset using the same
initialization (winning ticket), achieving good results. To this end, the dataset
used for the pruning phase must be sufficiently large. The lucky sub-network
is found by iteratively pruning the lowest magnitude weights and re-training.
Another phenomenon discovered in [40,52] was the existence of smaller, high-
accuracy models that reside in larger random networks. This phenomenon is
called the strong lottery ticket hypothesis, which was proven [34] on ReLU fully
connected layers. Furthermore, [51] proposed a technique to select the winning
ticket at initialization (before training the ANN) by computing an importance
score based on the gradient flow in each unit.

Mixed-Integer Programming. [12] presented a Mixed-Integer Linear Program-
ming big-M formulation to represent trained ReLU neural networks. Later, [4]
introduced the strongest possible tightening to the big-M formulation by adding
strengthening separation constraints when needed, which reduced the solving
time by several orders of magnitude. Recently, [48] presented efficient partition-
ing strategies that improved solving time. All the proposed formulations are
designed to represent trained ReLU ANNs with fixed parameters. In our frame-
work, we use the formulation from [12] since its performance was good due to
our tight local variable bounds, and its polynomial number of constraints (while
the models in [4,48] are non-compact). The interest of representing an ANN as
a MIP lies in its use to evaluate robustness, carry out compression and create
adversarial examples for trained ANNs. For instance, [21,47] used a big-M for-
mulation to evaluate the robustness of neural models against adversarial attacks.
[55] modeled an extension of the optimal brain surgeon [18], where the goal is
to select and remove the weights that have the most negligible impact on the
predictive capacity of the network as an Integer Quadratic Program. However,
the optimal brain surgeon pruning criteria rely heavily on the weights scale.
Moreover, the weights’ scale will be sensitive to the architecture used; differ-
ent normalization layers affect the scale and magnitude of weights in a different
way [28]. [42] also used a MIP formulation to maximize the compression of a
trained neural network without decreasing predictive accuracy. Lossless com-
pression [42] relies on different compression methods, such as removing neurons
and folding layers. However, the reported computational experiments lead only
to the removal of inactive neurons. OAMIP can identify such neurons and quan-
tify the importance of various neurons with respect to the predictive capacity
while pruning neurons that are non-critical across different datasets. The lat-
ter means that the sub-networks found by our framework to a specific dataset
generalize to others.

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 223

2 Preliminaries

Consider layer l of a trained ReLU neural network with Wl as the weight matrix,
wl

i as row i of Wl , and bl as the bias vector. For each input data point x, let hl be
a decision vector denoting the output value of layer l, i.e., hl = ReLU(Wlhl−1+
bl) for l > 0 and h0 = x, and zli be a binary variable taking value 1 if the unit i
is active (wl

ih
l−1 + bli ≥ 0) and 0 otherwise. Finally, let Ll

i and U l
i be constants

indicating a valid lower and upper bound for the input of each neuron i in layer l.
We discuss the computation of these bounds in Sect. 3.2. For now, we assume that
Ll
i and U l

i are sufficiently small and large numbers, respectively, i.e., the so-called
big-M values. Next, we provide the representation of ReLU neural networks
of [12]. Although [4] proposed an ideal MIP formulation with an exponential
number of facet-defining constraints that can be separated efficiently, we use the
formulation by [12], since it performed well in practice for our purpose. For the
sake of simplicity, we describe the formulation for one layer l of the model at
neuron i and one input data point x:

h0
i = xi (1a)

hl
i ≥ 0, for l > 0 (1b)

hl
i + (1 − zli)L

l
i ≤ wl

ih
l−1 + bli, (1c)

hl
i ≤ zliU

l
i , (1d)

hl
i ≥ wl

ih
l−1 + bli, (1e)

zli ∈ {0, 1}, hl
i ∈ R. (1f)

In constraint (1a), the initial decision vector h0 is forced to be equal to the
input x of the first layer. When zli is 0, constraints (1b) and (1d) force hl

i to be
zero, reflecting a non-active neuron. If an entry of zli is 1, then constraints (1c)
and (1e) enforce hl

i to be equal to wl
ih

l−1 + bli. After formulating the ReLU,
if we relax the binary constraint (1f) on zli to [0, 1], we obtain a polyhedron,
over which it is easier and faster to optimize. The quality (tightness) of such
relaxation highly depends on the choice of tight upper and lower bounds, U l

i , L
l
i.

Indeed, the determination of tight bounds reduces the search space and hence,
the solving time.

3 Neuron Importance Score

In what follows, we adapt constraints (1) to quantify neurons’ importance, we
describe the computation of the bounds Ll

i and U l
i and we discuss the objective

function for our MIP. Our goal is to compute importance scores for all layers in
the model in an integrated fashion. In fact, [54] has shown that this integrated
perspective leads to better predictive accuracy than layer by layer.

224 M. ElAraby et al.

3.1 MIP Constraints

In ReLU-activated layers, we keep the previously introduced binary variables zli
and continuous variables hl

i. Recall that these variables are linked to an input
data point x, so if more than one data point is considered, copies of these vari-
ables must be created. Additionally, we create the continuous decision variables
sli ∈ [0, 1] representing neuron i importance score in layer l; contrarily to zli and
hl
i, no copies of sli are created for each input data point. In this way, we proceed

to modify the ReLU constraints (1) by adding the neuron importance decision
variable sli to constraints (1c) and (1e):

hl
i + (1 − zli)L

l
i ≤ wl

ih
l−1 + bli − (1 − sli)max (U l

i , 0), (2a)

hl
i ≥ wl

ih
l−1 + bli − (1 − sli)max (U l

i , 0). (2b)

Constraints (2) impose that when neuron i is activated due to the input hl−1,
i.e., zli = 1, then hl

i is equal to the right-hand-side of those constraints. This value
can be directly decreased by reducing the neuron importance sli. When neuron
i is non-active, i.e., zli = 0, constraint (2b) becomes irrelevant as its right-hand-
side is negative. This fact together with constraints (1b) and (1d), imply that
hl
i is zero. Now, we claim that constraint (2a) allows sli to be zero if that neuron

is indeed non-important, i.e., for all possible input data points, neuron i is not
activated. This claim can be shown through the following observations. Note
that decisions h and z must be replicated for each input data point x as they
represent the propagation of x over the neural network. On the other hand, s
evaluates the importance of each neuron for the main learning task, and thus,
it must be the same for all data input points. Thus, the key ingredients are the
bounds Ll

i and U l
i that are computed for each input data point, as explained

in Sect. 3.2. In this way, if U l
i is non-positive, sli can be zero without interfering

with constraints (2). The latter is driven by the objective function derived in
Sect. 3.3. We designate a neuron as critical with respect to a trained ANN, if
its importance score is higher than a predefined threshold, otherwise it is called
non-critical.

We now discuss other architectures. Concerning convolutional feature maps,
we convert them to toeplitz matrices and their input images to vectors. This
allows us to use simple matrix multiplication which is computationally efficient
and generates the full convolution output. For padded convolution we use only
parts of the output of the full convolution, and for strided convolutions we use
sum of 1 strided convolution as proposed by [7]. Moreover, we can represent
the convolutional layer using the same formulation of fully connected layers
presented in (2a). The importance score of convolutional layers is associated
with each feature map [30,36].

We represent both max and average (avg) pooling on multi-input units in
our MIP formulation. Pooling layers are used to reduce spatial representation
of input images by applying an arithmetic operation on each feature map of
the previous layer. Avg pooling layers compute the average operation on each
feature map of the previous layer l having N l as the number of neurons. This

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 225

operation is linear and thus, it can directly be included in the MIP constraints:

hl+1 = AvgPool(hl
1, · · · , hl

N l) =
1

N l

N l∑

i=1

hl
i.

Max Pooling takes the maximum of each feature map of the previous layer:

hl+1 = MaxPool(hl
1, · · · , hl

N l) = max{hl
1, · · · , hl

N l}.

This operation can be expressed by introducing a set of binary variables
m1, · · · ,mN l , where mi = 1 implies x = MaxPool(hl

1, · · · , hl
N l):

N l∑

i=1

mi = 1

x ≥ hl
i,

x ≤ hl
imi + Ui(1 − mi)

mi ∈ {0, 1}

⎫
⎪⎬

⎪⎭
i = 1, · · · , N l.

3.2 Bound Propagation

In the previous section, we assumed a large upper bound U l
i and a small lower

bound Ll
i. However, using large bounds may lead to long computational times

and a loss of freedom to reduce the importance score, as discussed above. In
order to overcome these issues, we tailor these bounds accordingly with their
respective input point x by considering small perturbations on its value:

L0 = x − ε (3a)

U0 = x + ε (3b)

Ll = W (l−)U l−1 + W (l+)Ll−1 (3c)

U l = W (l+)U l−1 + W (l−)Ll−1 (3d)

W (l−) � min (W (l), 0) (3e)

W (l+) � max (W (l), 0). (3f)

Propagating the initial bounds of the input data points throughout the trained
model will create the desired bound using a simple arithmetic interval. The
obtained bounds are tight, narrowing the space of feasible solutions.

3.3 MIP Objective

Our framework aims at identifying non-critical neurons without significantly
decreasing the predictive accuracy of the pruned ANN. To this end, we combine
two optimization objectives.

226 M. ElAraby et al.

Our first objective is to maximize the set of neurons sparsified from the
trained ANN. Recall that N l is the number of neurons at layer l, and let n be
the number of layers, and I l =

∑N l

i=1(s
l
i − 2) be the sum of neuron importance

scores at layer l with sli scaled down to the range [−2,−1].
In order to create a relation between neurons’ importance score in differ-

ent layers, our objective becomes the maximization of the number of neu-
rons sparsified from the n − 1 layers with higher score I l. Hence, we denote
A = {I l : l = 1, . . . , n} and formulate the sparsity loss as

sparsity =

max
A′⊂A,|A′ |=(n−1)

∑

I∈A′
I

∑n
l=1 |N l| . (4)

Here, the goal is to maximize the number of non-critical neurons at each layer
relative to the other layers of the trained neural model. Note that only the n−1
layers with the most significant importance score will weigh in the objective,
allowing to reduce the pruning effort on some layers that will naturally have low
scores. The total number of neurons then normalizes the sparsity quantification.

Our second objective is to minimize the loss of important information due
to the sparsification of the trained neural model. Additionally, we aim for this
minimization to be done without relying on the values of the logits, which are
closely correlated with the neurons pruned at each layer. Otherwise, this would
drive the MIP to simply give a total score of 1 to all neurons to keep the same
output logit value. Instead, we formulate this optimization objective using the
marginal softmax proposed in [14]. Using marginal softmax allows the solver to
focus on minimizing the misclassification error without relying on logit values.
Moreover, the scale of logits can be marginally different between the decision vec-
tor hn computed by the MIP with some disabled neurons and the trained neural
network predictions. To that end, in the proposed marginal softmax loss, the
label with the highest logit value is optimized regardless of its value. Formally,
we write the objective

softmax =
Nn∑

i=1

log

[
∑

c

exp(hn
i,c)

]
−

Nn∑

i=1

∑

c

Yi,ch
n
i,c, (5)

where the index c stands for the class label. The softmax marginal objective
retains the trained model’s correct predictions for the batch of input images x
having a one-hot encoded label Y without regard to the logit value. Finally, we
combine the two objectives to formulate the loss

loss = sparsity + λ · softmax (6)

as a weighted sum of sparsification regularizer and marginal softmax.

4 OAMIP: Pruning Approach

Given a trained neural network and a dataset, our goal is to identify and prune
non-critical neurons based on importance score sli for neuron i at layer l. To this

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 227

end, we formulated a neural network as a mixed-integer program, including the
neuron importance score in its constraints and objective function. Algorithm 1
summarizes the integration of our formulation within a pruning procedure.

Algorithm 1: OAMIP: Optimizing ANN Architectures using a MIP
Require: Trained ANN, dataset D and a threshold.
Ensure: Sub-network selected from the trained ANN.
1: Select a per-class image D′ ⊂ D to be fed into the MIP.
2: Solve the MIP restricted to D′ and save the neurons importance scores s.
3: Remove every neuron i from layer l with sli ≤ threshold from the ANN.
4: Return pruned ANN (sub-network).

[58] highlights the phenomenon of neural collapse, where features of images
from the same distribution in the training set collapse around a class mean and
are maximally distant between different classes. Moreover, the neurons that are
important for a specific class, as computed on an image, should not change dras-
tically when another image from the same distribution as the training set is used.
Besides, using all the training samples as input to the MIP solver is intractable.
Hence, we use only a subset of the data points, each representing a class in the
classification task for which we aim to approximate the neuron importance score
(step 1). Then, OAMIP computes an estimation of the importance score of each
neuron (step 2). With a small tuned threshold based on the network’s architec-
ture, we mask (prune) non-critical neurons with a score lower than the threshold
(step 3). Finally, our proposed framework returns a pruned ANN (sub-network),
achieving marginal loss in accuracy.

Fig. 2. Illustration of the auxiliary network attached to each sub-module along with
the signal backpropagation during training as shown in [5].

228 M. ElAraby et al.

The most time-sensitive step of OAMIP is the optimization of the MIP. The
number of variables and constraints increases with the number of neurons and
input data points. Indeed, if large and realistic ANNs are modeled with our MIP,
the computation time for determining importance scores is expected to become
very large, as observed in the problem tackled in [12]. To overcome the compu-
tational time issue, we propose independent computation of importance scores
per layer using auxiliary networks [5]. In particular, we used decoupled greedy
learning [5] to train each layer of VGG-16 [44] using a small auxiliary network,
and, in this way, we computed the neuron importance score independently on
each auxiliary network, as shown in Fig. 2. Then, we fine-tuned the generated
masks for one epoch to propagate the errors across them resulting from the inde-
pendent optimization. Decoupled training of each layer allowed us to represent
deep models using the MIP formulation and to parallelize the computation per
layer.

5 Empirical Results

This section shows experimentally that (i) our approach can efficiently find
high-performance sub-networks from ANN architectures, (ii) the computed sub-
networks generalize well to new datasets, and (iii) OAMIP outperforms the
state-of-the-art approach SNIP with regards to generalization.

Experimental Setting. We used a simple fully connected 3-layer ANN (FC-3)
model, with 300+100 hidden units, from [26], and another simple fully connected
4-layer ANN (FC-4) model, with 200+100+100 hidden units. In addition, we
used the convolutional LeNet-5 [26] consisting of two sets of convolutional and
average pooling layers, followed by a flattening convolutional layer, then two
fully-connected layers. The largest architecture investigated was VGG-16 [44]
consisting of a stack of convolutional (Conv.) layers with a small receptive field:
3 × 3. The VGG-16 was adapted for CIFAR-10 [25], having two fully connected
layers of size 512 and average pooling instead of max pooling. Each of these
models was trained three times with different initialization.

All models were trained for 30 epochs using RMSprop [46] optimizer with
1e-3 learning rate for MNIST and Fashion MNIST. LeNet-5 [26] on CIFAR-10
was trained using the SGD optimizer with learning rate 1e−2 and 256 epochs.
VGG-16 [44] on CIFAR-10 was trained using Adam [23] with 1e−2 learning rate
for 30 epochs. The hyper-parameters were tuned on the validation set’s accuracy.
All images were resized to 32 by 32 and converted to 3 channels to generalize
the pruned network across different datasets. Our experiments revealed that
λ = 5 generally provides the right trade-off between our two objectives (6)
based on the validation set results; see the following thesis [11] for details on
these experiments.

Computational Environment. The experiments were performed in an Intel(R)
Xeon(R) CPU @ 2.30 GHz with 12 GB RAM and Tesla k80 using Mosek 9.1.11
[38] solver on top of CVXPY [2,8] and PyTorch 1.3.11.
1 The code can be found here: https://github.com/chair-dsgt/mip-for-ann.

https://github.com/chair-dsgt/mip-for-ann

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 229

5.1 OAMIP Robustness

We examine the robustness of OAMIP against different batches of input images
fed into the MIP, on the implementation of step 2 of OAMIP. Namely, we used
25 randomly sampled balanced images from the validation set. Figure 3 shows
that changing the input images used by the MIP to compute neuron importance
scores in step 2 resulted in marginal changes in the test accuracy between dif-
ferent batches. We remark that the input batches may contain images that were
misclassified by the neural network. In this case, the MIP tries to use the score
s to obtain the true label, which explains the variations in the pruning per-
centage. Furthermore, we show empirically that OAMIP is robust on different
convergence levels of the trained neural network as shown in Fig. 4. Hence, we
do not need to wait for the ANN to be trained to identify the target sub-network
(strong lottery ticket hypothesis theory [34]).

Additionally, we experiment parallelizing per class neuron importance score
computation using a balanced and imbalanced set of images per class. For those
experiments, we sampled a random number of images per class (IMIDP), then

Fig. 3. Effect of changing validation set of input images.

Fig. 4. Evolution of the computed masked sub-network during model training.

230 M. ElAraby et al.

we took the average of the computed neuron importance scores from solving the
MIP on each class. The obtained sub-networks were compared to solving the
MIP with 1 image per class (IDP) and to solving the MIP with balanced images
representing all classes (SIM). We achieved comparable results in terms of test
accuracy and pruning percentage.

Table 1. Comparing test accuracy of Lenet-5 on imbalanced independent class by class
(IMIDP.), balanced independent (IDP.) and simultaneously all classes (SIM) with 0.01
threshold, and λ = 1.

MNIST Fashion-MNIST

Ref 98.8% ± 0.09 89.5% ± 0.3

IDP. 98.6% ± 0.15 87.3% ± 0.3

Prune (%) 19.8% ± 0.18 21.8% ± 0.5

IMIDP. 98.6% ± 0.1 88% ± 0.1

Prune (%) 15% ± 0.1 18.1% ± 0.3

SIM. 98.4% ± 0.3 87.9% ± 0.1

Prune (%) 13.2% ± 0.42 18.8% ± 1.3

To conclude on the robustness of the scores computed based on the input
points used in the MIP, we empirically show in Table 1 that our method is
scalable, and that class contribution can be decoupled without deteriorating the
approximation of neuron scores and thus, the performance of our methodology.
Moreover, we show that OAMIP is robust even when an imbalanced number of
data points per class (IMIDP) is used in the MIP formulation.

5.2 Comparison to Random and Critical Pruning

We started by training a reference model (REF.) using previously described
training parameters. After training and evaluating the reference model on the
test set, we fed an input batch of images from the validation set to the MIP.
Then, the MIP solver computed the neuron importance scores based on those
input images. We used 10 images in our experimental setup, each representing
a class.

To validate our pruning policy guided by the computed importance scores, we
created different sub-networks of the reference model, where the same number of
neurons is removed in each layer, thus allowing a fair comparison among them.
These sub-networks were obtained through different procedures: non-critical (our
methodology), critical, and randomly pruned neurons. For VGG-16 experiments,
an extra fine-tuning step for 1 epoch is performed on all generated sub-networks.
Although we pruned the same number of neurons, which accordingly with [32]
should result in similar performances, Table 2 shows that pruning non-critical
neurons results in marginal loss and gives better performance. On the other hand,

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 231

we observe a significant drop in the test accuracy when critical or a random set of
neurons are removed compared with the reference model. If we fine-tune for just
1 epoch the sub-network obtained through our method, the model’s accuracy
can surpass the reference model. This is due to the fact that the MIP while
computing neuron scores, is solving its marginal softmax (5) on true labels.

Table 2. Pruning results on fully connected (FC-3, FC-4) and convolutional (Lenet-5,
VGG-16) network architectures using three different datasets. We compare the test
accuracy between the unpruned reference network (REF.), randomly pruned model
(RP.), model pruned based on critical neurons selected by the MIP (CP.) and our non-
critical pruning approach with (OAMIP + FT) and without (OAMIP) fine-tuning for
1 epoch.

Ref. RP. CP. OAMIP OAMIP+FT Prune (%) Runtime (s)

MNIST FC-3 98.1% 83.6% 44.5% 95.9% 97.8% 44.5% 12 s

±0.1 ±4.6 ±7.2 ±0.87 ±0.2 ±7.2 ±0.7

FC-4 97.9% 77.1% 50% 96.6% 97.6% 42.9% 9s

±0.1 ±4.8 ±15.8 ±0.4 ±0.01 ±4.5 ±0.4

LeNet-5 98.9% 56.9% 38.6% 98.7% 98.9% 17.2% 1 s

±0.1 ±36.2 ±40.8 ±0.1 ±0.04 ±2.4 ±0.6

Fashion-MNIST FC-3 87.7% 35.3% 11.7% 80% 88.1% 68% 16 s

±0.6 ±6.9 ±1.2 ±2.7 ±0.2 ±1.4 ±1

FC-4 88.9% 38.3% 16.6% 86.9% 88% 60.8% 10 s

±0.1 ±4.7 ±4.1 ±0.7 ±0.03 ±3.2 ±0.8

LeNet-5 89.7% 33% 28.6% 87.7% 89.8% 17.8% 10 s

±0.2 ±24.3 ±26.3 ±2.2 ±0.4 ±2.1 ±1

CIFAR-10 LeNet-5 72.2% 50.1% 27.5% 67.7% 68.6% 9.9% 6 s

±0.2 ±5.6 ±1.7 ±2.2 ±1.4 ±1.4 ±0.5

VGG-16 83.9% 85% 83.3% N/Aa 85.3% 36% N/Ab

±0.4 ±0.4 ±0.3 ±0.2 ±1.1
aA fine-tuning step is required to connect the results of independent layers.
b Computation was applied independently on each layer.

5.3 Generalization Between Different Datasets

Table 3. Cross-dataset generalization: sub-network masking is computed on source
dataset (d1) and then applied to target dataset (d2) by re-training with the same early
initialization. Test accuracies are presented for masked and unmasked (REF.) networks
on d2, as well as pruning percentage.

Model Source dataset d1 Target dataset d2 REF. Acc. Masked Acc. Pruning (%)

LeNet-5 Mnist Fashion MNIST 89.7% ± 0.3 89.2% ± 0.5 16.2% ± 0.2

CIFAR-10 72.2% ± 0.2 68.1% ± 2.5

VGG-16 CIFAR-10 MNIST 99.1% ± 0.1 99.4% ± 0.1 36% ± 1.1

Fashion-Mnist 92.3% ± 0.4 92.1% ± 0.6

232 M. ElAraby et al.

In this experiment, we train the model on a dataset d1 and create a masked
neural model using our approach. After creating the masked model, we restart
it to its original initialization. Finally, the new masked model is re-trained on
another dataset d2, and its generalization is analyzed.

Table 3 displays our experiments and respective results. When we compare
generalization results to pruning using our approach on Fashion-MNIST and
CIFAR-10, we discover that computing the critical sub-network for the LeNet-5
architecture on MNIST creates a more sparse sub-network. Moreover, this sub-
network has a test accuracy better than zero-shot pruning without fine-tuning
and comparable accuracy with the original ANN. This behavior occurs because
the solver is optimizing on a batch of images that are classified correctly with high
confidence from the trained model. Furthermore, computing the critical VGG-
16 sub-network architecture on CIFAR-10 using decoupled greedy learning [5]
generalizes well to Fashion-MNIST and MNIST.

5.4 Comparison to SNIP

OAMIP can be viewed as a compression technique of over-parameterized neural
models. We compare it to SNIP [28].

SNIP computes connection sensitivities in a data-dependent way before the
training. The sensitivity of a connection represents its importance based on the
influence of the connection on the loss function. After computing the sensitivity,
the connections below a predefined threshold are pruned before training (single
shot).

In our methodology, we exclusively identify the importance of neurons and
essentially prune all the connections of non-important ones. On the other hand,
SNIP only focuses on pruning individual connections. Moreover, we highlight
that SNIP can only compute connection sensitivity on the initialization of an
ANN. Indeed, for a trained ANN, the magnitude of the derivatives concerning
the loss function optimized during the training, makes SNIP keener to keep all
the parameters. On the other hand, OAMIP can work on different convergence
levels, as shown in Sect. 3.3. Furthermore, the connection sensitivity computed
by SNIP is only network and dataset-specific; thus, the computed connection
sensitivity for a single connection does not give a meaningful signal about its
general importance for a given task. Rather, it needs to be compared to the
sensitivity of other connections.

In order to bridge the differences between the two methods and provide
a fair comparison in equivalent settings, we make a slight adjustment to our
method. In step 2 of OAMIP, we compute neuron importance scores on the
model’s initialization2. We note that we used only 10 images as input to the
MIP, corresponding to the 10 different classes, and 128 images as input to SNIP,
following its original paper [28]. Our algorithm was able to prune neurons from
fully connected and convolutional layers of LeNet-5. After creating the sparse

2 Remark: we used λ = 1 and pruning threshold 0.2 and kept ratio 0.45 for SNIP.
Training procedures as in Sect. 5.

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 233

networks using SNIP and our methodology, we trained them on the Fashion-
MNIST dataset. The difference between SNIP (88.8% ± 0.6) and our approach
(88.7% ± 0.5) was marginal in terms of test accuracy. SNIP pruned 55% of the
ANN’s parameters and OAMIP 58.4%.

Table 4. Cross-dataset generalization comparison between SNIP, with neurons having
the lowest sum of connections’ sensitivity pruned, and our framework (OAMIP), both
applied on initialization, see Sect. 5.3 for the generalization experiment description.

Source dataset d1 Target dataset d2 REF. Acc. Method Masked Acc. Pruning (%)

Mnist Fashion-MNIST 89.7% ± 0.3 SNIP 85.8% ± 1.1 53.5% ± 1.8

OAMIP 88.5% ± 0.3 59.1% ± 0.8

CIFAR-10 72.2% ± 0.2 SNIP 53.5% ± 3.3 53.5% ± 1.8

OAMIP 63.6% ± 1.4 59.1% ± 0.8

Next, we compare SNIP and OAMIP in terms of generalization. In Table 4,
we show that our framework outperforms SNIP in terms of generalization. We
adjusted SNIP to prune entire neurons based on the value of the sum of its con-
nections’ sensitivity, and our framework was also applied to ANN’s initialization.
When our framework is applied on the initialization, more neurons are pruned
as the marginal softmax part of the objective function discussed in Sect. 3.3 is
weighing less (λ = 1), driving the optimization to focus on model sparsification.

Finally, we remark that the adjustments made to SNIP and OAMIP in the
previous experiments are solely for comparison, while (unlike SNIP) the primary
purpose of our method is to allow optimization at any stage – before, during, or
after training. In the specific case of optimizing at initialization and discarding
entire neurons based on aggregated connection sensitivity, the SNIP approach
may have some advantages, notably in scalability for deep architectures. How-
ever, it also has some limitations, as previously discussed.

6 Discussion

We proposed a mixed integer program to compute neuron importance scores in
ReLU-based deep neural networks. Our contributions focus on providing scalable
computations of importance scores in fully connected and convolutional layers.
We presented results showing that these scores can effectively prune unimpor-
tant parts of the network without significantly affecting its predictive capacity.
Further, our results indicate that this approach allows the automatic construc-
tion of efficient sub-networks that can be transferred and retrained on different
datasets. Knowing a neural network’s critical components can further impact
future work beyond the pruning applications presented here.

Acknowledgements. This work was partially funded by: IVADO (l’institut de val-
orisation des données) [G.W., M.C.]; FRQ-IVADO Research Chair in Data Science for
Combinatorial Game Theory, and NSERC grant 2019-04557 [M.C.] Canada CIFAR AI
Chair, NIH grant R01GM135929 [G.W.].

234 M. ElAraby et al.

References

1. Adamczewski, K., Park, M.: Dirichlet pruning for neural network compression.
Proc. Mach. Learn. Res. 130 (2021)

2. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex
optimization problems. J. Control Decis. 5(1), 42–60 (2018)

3. Amjad, R.A., Liu, K., Geiger, B.C.: Understanding neural networks and individ-
ual neuron importance via information-ordered cumulative ablation. IEEE Trans.
Neural Netw. Learn. Syst. 33, 7842–7852 (2021)

4. Anderson, R., Huchette, J., Tjandraatmadja, C., Vielma, J.P.: Strong mixed-
integer programming formulations for trained neural networks. In: International
Conference on Integer Programming and Combinatorial Optimization, pp. 27–42.
Springer (2019)

5. Belilovsky, E., Eickenberg, M., Oyallon, E.: Decoupled greedy learning of CNNs.
In: Proceedings of the 37th International Conference on Machine Learning. Pro-
ceedings of Machine Learning Research, vol. 119, pp. 736–745. PMLR (2020)

6. Bengio, Y., Goodfellow, I., Courville, A.: Deep Learning, vol. 1. Citeseer (2017)
7. Brosch, T., Tam, R.: Efficient training of convolutional deep belief networks in

the frequency domain for application to high-resolution 2D and 3D images. Neural
Comput. 27(1), 211–227 (2015)

8. Diamond, S., Boyd, S.: CVXPY: a Python-embedded modeling language for convex
optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

9. Dong, X., Chen, S., Pan, S.: Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In: Advances in Neural Information Processing Systems,
pp. 4857–4867 (2017)

10. Ebrahimi, A., Klabjan, D.: Neuron-based pruning of deep neural networks with
better generalization using kronecker factored curvature approximation. arXiv
preprint arXiv:2111.08577 (2021)

11. ElAraby, M.: Optimizing ANN architectures using mixed-integer programming.
Master’s dissertation, Université de Montréal (2020). http://hdl.handle.net/1866/
24312

12. Fischetti, M., Jo, J.: Deep neural networks and mixed integer linear optimization.
Constraints 23(3), 296–309 (2018)

13. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable
neural networks. In: International Conference on Learning Representations (2019)

14. Gimpel, K., Smith, N.A.: Softmax-margin CRFs: training log-linear models with
cost functions. In: The Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pp. 733–736. Association for Compu-
tational Linguistics (2010)

15. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
16. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-

works with pruning, trained quantization and Huffman coding. arXiv preprint
arXiv:1510.00149 (2015a)

17. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for
efficient neural network. In: Advances in Neural Information Processing Systems,
pp. 1135–1143 (2015)

18. Hassibi, B., Stork, D.G., Wolff, G.J.: Optimal brain surgeon and general network
pruning. In: IEEE International Conference on Neural Networks, pp. 293–299.
IEEE (1993)

http://arxiv.org/abs/2111.08577
http://hdl.handle.net/1866/24312
http://hdl.handle.net/1866/24312
http://arxiv.org/abs/1510.00149

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 235

19. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence, IJCAI 2018, pp. 2234–2240. AAAI Press (2018)

20. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: A benchmark for interpretability
methods in deep neural networks. In: Advances in Neural Information Processing
Systems, pp. 9734–9745 (2019)

21. Huang, P.S., et al.: Achieving verified robustness to symbol substitutions via inter-
val bound propagation. In: Proceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 4083–4093 (2019)

22. Jordao, A., Yamada, F., Schwartz, W.R.: Deep network compression based on
partial least squares. Neurocomputing 406, 234–243 (2020)

23. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings
of the 3rd International Conference for Learning Representations (ICLR 2015),
San Diego (2015)

24. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

25. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s
thesis, University of Toronto (2009)

26. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

27. LeCun, Y., Denker, J.S., Solla, S.A.: Optimal brain damage. In: Advances in Neural
Information Processing Systems, pp. 598–605 (1990)

28. Lee, N., Ajanthan, T., Torr, P.H.S.: SNIP: single-shot network pruning based on
connection sensitivity. In: International Conference on Learning Representations
(ICLR) (2019)

29. Lei, W., Chen, H., Wu, Y.: Compressing deep convolutional networks using k-
means based on weights distribution. In: Proceedings of the 2nd International
Conference on Intelligent Information Processing, pp. 1–6 (2017)

30. Li, Y., Adamczewski, K., Li, W., Gu, S., Timofte, R., Van Gool, L.: Revisiting
random channel pruning for neural network compression. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 191–201
(2022)

31. Liang, T., Glossner, J., Wang, L., Shi, S., Zhang, X.: Pruning and quantization for
deep neural network acceleration: a survey. Neurocomputing 461, 370–403 (2021)

32. Liu, Z., Sun, M., Zhou, T., Huang, G., Darrell, T.: Rethinking the value of network
pruning. In: International Conference on Learning Representations (2018)

33. Luo, J.H., Wu, J., Lin, W.: ThiNet: a filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 5058–5066 (2017)

34. Malach, E., Yehudai, G., Shalev-Schwartz, S., Shamir, O.: Proving the lottery ticket
hypothesis: pruning is all you need. In: III, H.D., Singh, A. (eds.) International
Conference on Machine Learning, Proceedings of Machine Learning Research, vol.
119, pp. 6682–6691. PMLR (2020)

35. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estima-
tion for neural network pruning. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11264–11272 (2019)

36. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional
neural networks for resource efficient inference. In: International Conference on
Learning Representations (ICLR) (2017)

236 M. ElAraby et al.

37. Morcos, A., Yu, H., Paganini, M., Tian, Y.: One ticket to win them all: generalizing
lottery ticket initializations across datasets and optimizers. In: Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

38. Mosek, A.: The mosek optimization software. 54(2–1), 5 (2010). www.mosek.com
39. Neyshabur, B., Li, Z., Bhojanapalli, S., LeCun, Y., Srebro, N.: The role of over-

parametrization in generalization of neural networks. In: 7th International Confer-
ence on Learning Representations, ICLR (2019)

40. Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s
hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020)

41. Salama, A., Ostapenko, O., Klein, T., Nabi, M.: Pruning at a glance: global neural
pruning for model compression. arXiv preprint arXiv:1912.00200 (2019)

42. Serra, T., Kumar, A., Ramalingam, S.: Lossless compression of deep neural net-
works. In: 2020 Fall Eastern Virtual Sectional Meeting, AMS (2020)

43. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through
propagating activation differences. In: International Conference on Machine Learn-
ing, pp. 3145–3153. PMLR (2017)

44. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: Bengio, Y., LeCun, Y. (eds.) International Conference on
Learning Representations (ICLR) (2015)

45. Srinivas, S., Babu, R.V.: Data-free parameter pruning for deep neural networks.
arXiv preprint arXiv:1507.06149 (2015)

46. Tieleman, T., Hinton, G.: Lecture 6.5-rmsprop: divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2),
26–31 (2012)

47. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (ICLR) (2019)

48. Tsay, C., Kronqvist, J., Thebelt, A., Misener, R.: Partition-based formulations
for mixed-integer optimization of trained relu neural networks. Adv. Neural. Inf.
Process. Syst. 34, 3068–3080 (2021)

49. Verma, S., Pesquet, J.C.: Sparsifying networks via subdifferential inclusion. In:
International Conference on Machine Learning, pp. 10542–10552. PMLR (2021)

50. Wang, C., Grosse, R., Fidler, S., Zhang, G.: EigenDamage: structured pruning in
the kronecker-factored eigenbasis. In: International Conference on Machine Learn-
ing, pp. 6566–6575. PMLR (2019)

51. Wang, C., Zhang, G., Grosse, R.B.: Picking winning tickets before training by
preserving gradient flow. In: International Conference on Learning Representations
(ICLR) (2020)

52. Wang, Y., et al.: Pruning from scratch. In: AAAI, pp. 12273–12280 (2020)
53. Ye, M., Gong, C., Nie, L., Zhou, D., Klivans, A., Liu, Q.: Good subnetworks prov-

ably exist: pruning via greedy forward selection. In: International Conference on
Machine Learning, pp. 10820–10830. PMLR (2020)

54. Yu, R., et al.: NISP: pruning networks using neuron importance score propaga-
tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9194–9203 (2018)

55. Yu, X., Serra, T., Ramalingam, S., Zhe, S.: The combinatorial brain surgeon: prun-
ing weights that cancel one another in neural networks. In: International Confer-
ence on Machine Learning, pp. 25668–25683. PMLR (2022)

http://www.mosek.com/
http://arxiv.org/abs/1912.00200
http://arxiv.org/abs/1507.06149

OAMIP Optimizing ANN Architectures Using Mixed-Integer Programming 237

56. Zeng, W., Urtasun, R.: MLPrune: multi-layer pruning for automated neural
network compression. In: International Conference on Learning Representations
(ICLR) (2018)

57. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: International Conference on Learn-
ing Representations (ICLR) (2017)

58. Zhu, Z., et al.: A geometric analysis of neural collapse with unconstrained features.
Adv. Neural. Inf. Process. Syst. 34, 29820–29834 (2021)

Predicting the Optimal Period for Cyclic
Hoist Scheduling Problems

Nikolaos Efthymiou and Neil Yorke-Smith(B)

STAR Lab, Delft University of Technology, Delft, The Netherlands
nikolaos.efthymiou@epfl.ch, n.yorke-smith@tudelft.nl

Abstract. Since combinatorial scheduling problems are usually NP-
hard, this paper investigates whether machine learning (ML) can accel-
erate exact solving of a problem instance. We adopt supervised learning
on a corpus of problem instances, to acquire a function that predicts the
optimal makespan for a given instance. The learned predictor is invari-
ant to the instance size as it uses statistics of instance attributes. We
provide this prediction to a solving algorithm in the form of bounds on
the objective function. Specifically, this approach is applied to the well-
studied Cyclic Hoist Scheduling Problem (CHSP). The goal for a CHSP
instance is to find a feasible schedule for a hoist which moves objects
between tanks with minimal cyclic period. Taking an existing Constraint
Programming (CP) model for this problem, and an exact CP-SAT solver,
we implement a Deep Neural Network, a Random Forest and a Gradient
Boosting Tree in order to predict the optimal period p. Experimental
results find that, first, ML models (in particular DNNs), can be good
predictors of the optimal p; and, second, providing tight bounds for p
around the predicted value to an exact solver significantly reduces the
solving time without compromising the optimality of the solutions.

Keywords: combinatorial optimisation · supervised learning · cyclic
hoist scheduling · constraint programming

1 Introduction

Computationally-challenging scheduling problems are common in industrial
practice [8]. The hardness often arises from a combinatorial core in the prob-
lem, coupled by large size. Examples of such problems are satellite downlink
scheduling [7], staff rostering [19], and hoist scheduling [11].

Contemporary machine learning (ML) methods are being exploited in the
solving of large-scale combinatorial optimisation problems, including challenging
scheduling problems [9]. Among the various approaches in the recent literature
are learning problem-class-specific heuristics, end-to-end production of solutions,
and warm-starting an optimisation solver. Bengio et al. [1], Kotary et al. [10]
provide surveys. This paper explores the effectiveness of a loose coupling of the
learning and optimisation. Thus we adopt the last of the above approaches:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 238–253, 2023.
https://doi.org/10.1007/978-3-031-33271-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_16&domain=pdf
http://orcid.org/0000-0002-6025-2782
http://orcid.org/0000-0002-1814-3515
https://doi.org/10.1007/978-3-031-33271-5_16

Predicting the Optimal Period for CHSP 239

warm-starting a solver using information provided for a given problem instance
by a pre-trained ML model. Specifically, taking inspiration from Wang et al. [24],
we acquire and leverage an oracle for the makespan of the scheduling problem.

In more detail, we perform supervised learning on a corpus of problem
instances to acquire a function that predicts the optimal makespan for a given
instance. We provide this prediction to a solving algorithm in the form of bounds
on the objective function. In this way we study the effect on the solver’s com-
putation time and the solution quality.

In the current paper this approach is developed for the Cyclic Hoist Schedul-
ing Problem (CHSP), an optimization problem of practical and theoretical
importance [11,12]. The aim is to find a schedule for one or multiple indus-
trial hoists on track(s) that move objects between tanks. Process constraints
impose bounds for the processing time in each tank, while the time that a hoist
needs to travel between different tanks depends on the tanks and whether the
hoist is empty or loaded. An important characteristic of CHSP is that the fixed
series of moves is repeatedly performed by the hoist(s). This repetitive – cyclic
– hoist schedule introduces the notion of the cycle period p, which is defined
as the difference between the start time of two consecutive objects. Note that
minimising the period is the analogue of minimising the makespan in this cyclic
setting.

The literature boasts a host of techniques for solving CHSP instances [6],
including custom branch-and-bound, mixed integer linear programming (MIP),
constraint programming (CP), and meta-heuristics and evolutionary algorithms.
We study the idea of providing predicted bounds to a competitive CP model of
the CHSP [23], using an exact CP-SAT solver as the backend. Results show
that supervised learning can acquire a function that predicts the optimal CHSP
period p, and that providing bounds of 10% of this predicted p value leads to
a mean time decrease of 90% in finding a feasible solution on unseen industrial
problem instances, and a mean time decrease in solving to optimality of 44%.

This accelerated solving is important for industrial practice, where hoist lines
can be much longer than tackled in the bulk of the academic literature [21].
Further, when an event occurs that causes a deviation from the planned schedule,
a rapid rescheduling is necessary. In addition, from an academic perspective, the
CHSP is relatively simple in its essential form [23] – while remaining challenging
– which suggests that the same kind of methodology used in this paper can
benefit other combinatorial scheduling problems.

Summarising: 1) we show that supervised learning can effectively acquire a
function that predicts the optimal CHSP makespan; 2) we provide evidence that
feeding a solver with predicted bounds of the objective function can accelerate
the solving process; and 3) through extensive computational experiments we
provide the first demonstration of the value of ML in finding CHSP solutions.

The remainder of the paper is structured as follows. Section 2 introduces the
CHSP. Section 3 explains our approach. Section 4 studies the approach empiri-
cally. Section 5 situates our work in the literature. Section 6 concludes with future
directions.

240 N. Efthymiou and N. Yorke-Smith

2 Hoist Scheduling Problem

The hoist scheduling problem is to operate one or multiple hoists which move
along a linear track above a set of tanks (Fig. 1). Among the many problem
variants [2], the cyclic hoist scheduling problem assumes a fixed sequence of
items to be processed. From a scheduling perspective, the challenge is to allow
the processing of successive items to overlap, so that (different) tasks on different
items may be carried out at the same time. The schedule of tasks for one item is
repeated for subsequent items: the length of a cycle is the time between the start
of processing for an item and that of its successor. The objective is to maximise
throughput, i.e., to minimise the cycle period, p; this is equivalent to minimising
the makespan. An efficient CP model for the generic CHSP problem is formulated
by Wallace and Yorke-Smith [23]. At the centre is a three-variable disjunctive
constraint, from which arises the hard combinatorial core of the CHSP. The
CP approach is interesting because a single model can solve a set of CHSP
problem variants, whereas solving is performed by any of a range of state-of-the-
art backend solvers which can ingest the model.

Optimal p Predictor. The CP model uses static calculated lower and upper
bounds of p, denoted Bcalc, to specify the space of feasible solutions. Given that
such computation reflects the theoretical maximum range of p, Bcalc tend to
be quite loose. This leads to the central hypothesis of the paper: predicting the
optimal value of p – without solving the CSHP instance – and then restricting
the range in which the solver is trying to find a solution could result in lower
solving times (T). This is a form of predict-then-optimise in which the prediction
is not necessary for the optimisation, but can serve as a catalyst in the solver’s
inference and search process for an optimal solution.

We would like the learned predictor to be invariant to the instance size.
For a CHSP instance with n tanks, we have the following exhaustive set of
possible raw features: number of hoists, number of tanks, minimum/maximum
processing times of each tank, (n+ 1)-dimensional vector of loaded move times,
(n + 1) × (n + 1) matrix with empty move times, and capacity of each tank.
Considering all these features leads to a dimensionality of (n+1)2+3n+4. This
is a large number of features, and also of varying dimension depending on the

Fig. 1. Typical hoist scheduling line (from Laajili et al. [11]).

Predicting the Optimal Period for CHSP 241

number of tanks. One approach would be to train a different ML model for each
value of n [24]. Instead, we will study the possibility of having a fixed number of
independent variables for the ML models, irrespective of the amount of tanks.
To this end we will replace instances’ attributes per tank with their descriptive
statistics.

Hypothesis 1. A universal regressor for the optimal value of p can be imple-
mented that uses a fixed number of selected CHSP descriptive statistics.

3 Methodology

In order to study accelerated solving of CHSP instances, we first perform super-
vised learning on a corpus of instances, to acquire a predictor of the optimal
period for a given instance. We provide this prediction to a CP-SAT solver in
the form of bounds on the objective function. This section explains the approach.

3.1 Data

Industry Instances. Seven sets of industry instances (PU [18], BO1, BO2, Zinc,
Copper [13], Ligne1 and Ligne2 [15]) were used to: 1) analyse the various patterns
that the values of instances’ features follow, in order to implement the random
generator (described below); 2) test the ML models; and 3) assess the perfor-
mance of the CP solver when predicted bounds Bpred are used. Each instance
has the following attributes: number of tanks n; minimum processing time for
each tank tmin; maximum processing time for each tank tmax; vector of loaded
move times from tank i to tank i + 1, f ; and 2D matrix of empty move times
from tank i to tank j, e. Further, in order to extend the original instances to
larger sizes, we considered values in {1, 2, 3, 4, 5} for the tank capacity and the
number of hoists (compare the ‘multiplier’ factor of Wallace and Yorke-Smith
[23]). This yields a total of 7 · 5 · 5 = 175 instances. We will denote this set with
Iind. We note that the values of 4 and 5 for the capacity and the number of
hoists are not present in random instances used to train ML models, and thus
we test the generalizability of the ML models. For comparison reasons, a subset
of Iind for which the number of hoists and the capacity take values in {1, 2, 3}
is also used (we will refer to this subset as Iind[3]).

Random Instances. Since the number of industrial instances is limited, we gener-
ated random CHSP instances for training and testing the ML models. We imple-
mented a random generator by making assumptions about the loading-unloading
stations, the relative position of the tanks, and the times defining each instance.
To this aim, we examined the patterns of the industry instances with respect
to the following features and then uniform random values were chosen from a
fixed range of each parameter: 1) Time window of treatments (minimum time,
variability in minimum time, maximum to minimum time ratio) 2) Empty move
times from tank i to tank j and their variability 3) Loaded move times from tank

242 N. Efthymiou and N. Yorke-Smith

i to tank i+1 and their variability 4) Number of tanks: {3, 4, . . . , 24} 5) Number
of hoists: {1, 2, 3} and 6) Tank capacity: {1, 2, 3}. These features are the ones
mostly used in the literature and especially in the CP model that we utilise as a
baseline. We assume the following: 1) treatment i occurs in tank i; 2) the loading
and the unloading stations are the same; 3) there is one track; 4) the time to
load/unload a job into/from a tank is 0; and 5) all tanks of an instance have
the same capacity. These assumptions are made in most published works that
include single-track industry hoist scheduling data. Regarding Hypothesis 1, we
flattened each instance to a 19-dimensional vector (corresponding to the fea-
tures of the ML models) consisting of: 1) the number of tanks; 2) the number
of hoists; 3) the capacity of the tanks; and 4) the minimum, maximum, average
and standard deviation of e, f , tmin and tmax.

Four generators were implemented, each of which corresponds to a differ-
ent topology. In particular, the following four spatial arrangements of the tanks
were examined: 1) linear topology, where tank n is the farthest from the load-
ing/unloading station (similar to Ligne2 [15]); 2) reversed linear topology with
tank 1 being the farthest from the loading/unloading station (similar to BO1,
BO2, Ligne1 [13,15]); 3) ring topology with tank n

2 being the farthest from the
loading/unloading station (similar to Copper, Zinc, PU [13,18]); and 4) a trans-
formed version of the linear topology with increased time for the loaded move
from tank n to the loading/unloading station. In total we generated 166,320 ran-
dom instances: 66,528 for the linear topology and 33,264 for each of the others.
The observed variety in the descriptive statistics of the instances’ e, f , tmin and
tmax suggests the dataset captures many possible real life instances.

Solving Instances with Calculated Bounds. Of the generated instances, 98.6%
(164,032) were solved with at least a feasible solution, within 6min using the
Google OR-Tools CP-SAT solver [17] ({processes = 8, free search = True, opti-
misation level = 1, timeout = 360 s}). We denote this set with Igen; it was used
to train and test ML models. For hypothesis testing purposes, a random sample
of 4,000 instances was drawn from Igen (1,000 for each topology). In addition,
as we consider to be ‘difficult’ those instances that led to a Satisfied solution
when Bcalc were used, and in order to make our sample more demanding, we
include the remaining 173 such instances to the sample. We denote this set of
4,173 instances with Isample.

3.2 ML Model Training

We experimented with three ML models. The (optimal) cycle period pcalc found
by using Bcalc was used as a target value of the ML models to be trained. We
split the data set Igen into a train set Itrain and a test set Itest (test size = 0.33).

First, we used the Keras library for training and testing a Deep Neural Net-
work (DNN); we experimented with 3–8 hidden, non-linear, dense layers with
various activation functions (ReLu, Leaky ReLu, PReLu, ELU). We normalized
the input features and used a linear dense single-output layer for predicting
the optimal p. Model compilation was performed with the MAPE loss function

Predicting the Optimal Period for CHSP 243

and the Adam optimizer (learning rate = 0.001). Fine-tuning was done with a
validation split of 0.2. Six DNN variants were tested on Itest, Iind and Iind[3].

Second, we also trained and tested a Random Forest (RF) regressor model
using the Scikit-learn Python library. During the fine-tuning phase we tuned
various values of the parameters max depth, max features, min samples leaf, min
samples split and n-estimators. Third, we trained and tested a Histogram-based
Gradient Boosting Regression (HGBR) model using Scikit-learn by tuning the
following parameters: l2 regularization, learning rate, loss, max iterations, max
leaf nodes and min samples leaf.

Lastly, to obtain a simpler and easier to interpret model, we performed fea-
ture extraction (by removing irrelevant features) on the flattened instances. For
this we considered the mean decrease in impurity and the permutation feature
importance [3], using the structure of the RF model. We give details below.

Solving Instances with Predicted Bounds. The best-performing ML model was
applied to predict the optimal p value for the instances of Isample and Iind.
This predicted value (ppred) and its deviation from pcalc provide the basis for
calculating the predicted bounds Bpred. We denote with p̂l and p̂u the lower
and upper bounds derived accordingly. Note there is no guarantee that the true
optimum is within these derived bounds. We denote with pl and pu the static
lower and upper bounds from Wallace and Yorke-Smith [23], and write Bcalc =
[pl, pu]. These calculated bounds are conservative: they guarantee to contain the
true optimum.

To solve problem instances from the sample dataset Isample and the industrial
dataset Iind, we use the CP model unaltered, except that we give the following
bounds on the objective function (note we always keep the tightest bounds):

p∗
l =

{
p̂l, if p̂l ∈ (pl, pu)
pl, otherwise

p∗
u =

{
p̂u, if p̂u ∈ (pl, pu)
pu, otherwise

(1)

Given that in almost all cases the p̂l, p̂u values were used, for simplicity we
define the predicted bounds Bpred = [p∗

l , p
∗
u].

Throughout, the OR-Tools CP-SAT solver was used with the same machine
configuration for experiments on each data set, to make the results comparable.
We compare the solutions found by the solver when using Bcalc and using Bpred,
in terms of the following standard metrics: number of Optimal, Satisfied and
Unsatisfiable cases; best found p value; number of solutions (N) found; and
total solving time (T) to find and prove the optimal solution.

4 Experimental Results

With the pipeline described, this section reports an empirical study. Firstly
in Sect. 4.1 we compare the various ML models to select the best performing
model. Then in Sect. 4.2 we study the tightness of the predicted bounds versus
their inclusion of the true optimal period. Thirdly in Sect. 4.3 we assess the
performance of the whole pipeline in terms of solving time and optimal solution.

244 N. Efthymiou and N. Yorke-Smith

Fig. 2. DNN loss on training and valida-
tion sets

Fig. 3. Predicted vs. true values of p on
dataset Itest

4.1 Experiment 1: ML Predictive Power and Model Selection

The DNN model that led to the best results (f∗) has 4 hidden dense layers with
92 neurons. The Exponential Linear Units activation function was used and the
model was run for 35 epochs. Plots for the performance of this model are shown
in Figs. 2 and 3. The graph of the training–validation loss reveals a rather normal
learning progress over the number of epochs, and a good fit to the training data.
The scatterplot shows a high correlation between predicted and true p values.
The parameter values of the best RF model were the default values of the Scikit-
learn library. As for the HGBR model, the strongest performance was obtained
with the following parameter configuration: {l2 regularization = 0.22, learning
rate = 0.065, loss = Poisson, max iterations = 1500, max leaf nodes = 100, min
samples leaf = 160}.

Table 1 shows the seven most important features, as calculated by the RF
regressor, with respect to two importance measures: mean decrease in impurity
(MDI) and feature permutation (FP). These features were used to train and
test a simpler DNN model f− that receives 7-dimensional examples as input.
Tables 2 and 3 report the MAPE values obtained with the best-performing mod-
els and the difference in performance between using all features and using only
the important features. The best DNN model slightly outperforms the other ML
methods used, on MAPE values on the test set Itest. The full model f∗ achieved
a MAPE of 3.38 on the test set Itest, while the value of 4.73 was reached using
f− on the same set. Further, the DNN model has significantly higher predictive
power when testing on the industry sets Iind and Iind[3]. f∗ performed ade-
quately, even in the case of Iind that contains instances with unseen attribute
values. We note that the Ligne1 and PU industry sets have higher MAPE values
compared to the other industry instances. One explanation might be that only
these sets have tanks with infinite processing time (that is somehow treated by
the CP solver) and there is no such case in the training dataset.

Predicting the Optimal Period for CHSP 245

Table 1. Features sorted by
importance

Feature MDI FP

max(tmin) 0.51 1.32

tank capacity 0.19 0.47

hoists 0.09 0.31

avg(f) 0.05 0.23

tanks 0.05 0.13

max(f) 0.04 0.07

avg(tmax) 0.02 0.04

Table 2. MAPE values (%) of f∗ and
f− on the industry instances

f∗ f−

Iind[3] Iind Iind[3] Iind

BO1 9 9 11 14

BO2 7 9 17 18

Copper 1 3 1 10

Ligne1 48 34 73 75

Ligne2 8 12 6 22

PU 13 19 22 23

Zinc 5 8 2 11

All 13 13 19 25

Table 3. MAPE values (%) of the ML models

Features DNN HGBR Random Forest
Iind[3] Iind Itest Iind[3] Iind Itest Iind[3] Iind Itest

All 12.95 13.34 3.38 18.01 30.81 4.50 22.60 36.20 3.81
Important 18.85 24.74 4.73 27.61 37.18 4.89 26.61 37.16 3.98

Table 4. Cumulative relative frequency of instances per bound deviation d

d f∗ f−

Iind[3] Iind Itest Iind[3] Iind Itest

5% 42.9 37.7 81.5 44.4 32.6 76.7
10% 66.7 61.7 90.2 57.1 42.3 86.7
15% 77.8 72.0 94.5 66.7 55.4 91.8
20% 84.13 77.7 96.6 71.4 60.6 94.7
> 100.0 100.0 100.0 100.0 100.0 100.0

Calculation of Bpred In order to minimise the possibility of pcalc being out-
side of the new predicted bounds of p, while keeping the bounds as narrow as
possible, we calculated the cumulative relative frequency of instances per inter-
val class of the predicted to actual p deviation (d = |ppred−pcalc

pcalc
|%). Table 4

presents the percentage of instances with ppred being at most x% away from
pcalc (for x ∈ {5, 10, 15, 20}). The relative difference between ppred and pcalc did
not exceed 20% for 96.6% of random instances and 5% for 81.5% of instances.
Thus we selected these margins for the further experiments. In case of Iind these
cumulative frequencies are lower and so we selected a margin of ±10% instead
of ±5%.

246 N. Efthymiou and N. Yorke-Smith

4.2 Experiment 2: Bounds and Solutions

Solutions on Random Instances. We examine first the results of the CP-SAT
solver on the 4,173 instances of Isample, when the predicted bounds Bpred (as
predicted by f∗) were used. In most cases (98.3% for the ±5% margin and
90.2% for the ±20% margin), both the lower and upper predicted bounds of p
(Bpred) are tighter than the calculated bounds (Bcalc), and they were used by
the solver. Further, in most cases (85.9% for the ±5% margin and 97.1% for
the ±20% margin), Bpred contain the original pcalc. In the other 14.1% of cases,
either the solver (incorrectly) found the instance unsatisfiable (e.g., N = 421
in case of ±5%), or the solver found a sub-optimal p (e.g., N = 168 in case of
±5%): usually only slightly sub-optimal.

A feasible solution was found for 89.9% of instances, and an optimal solution
for 86.1% of instances, in the case of ±5% margin (respectively, 97.3% and 92.2%,
in the case of ±20% margin). Hence only a relatively small number of instances
have no solution (‘unsatisfiable’: there is no solution with p within Bpred or
‘unknown’). As expected, this number reduces as the Bpred margin increases from
5% to 20%. The solver found the original pcalc in most cases: 85.0% and 96.1%
of all instances or 94.6% and 98.8% of solved instances, per margin respectively.
The percentage of satisfied cases is similar in all three scenarios: 5.4% for the
original solver, 4.2% for the ±5% margin and 5.3% for the ±20% margin.

As the bound margin decreases, a very small number of instances have an
optimal p greater (i.e., worse) than the original solver: N = 147 (plus N = 18
previously satisfied) for Bpred_5% vs. Bcalc, and N = 9 for Bpred_20% vs. Bcalc.
This is so because the original optimal p is out of the predicted bounds used.
Further, in case of satisfied solutions, there are only 13 and 20 cases respectively
with p greater than the original solver and pcalc in Bpred. Table 5 reports in detail
the solutions found with Bpred (in rows) in comparison with those found with
Bcalc (in columns) for each scenario.

Solutions on Industry Instances. Table 6 reports that, for most of the industry
instances of Iind, an (optimal) solution was found (163 out of 175, in case of
±10% margin and 168 in case of ±20%). However, especially in the case of
±10% margins, the Bpred of some instances do not contain the original pcalc.
Thus the optimal ppred found using Bpred is higher than pcalc. Table 6 presents
the solutions per industry setting. We observe a variation in the performance of
the solver that corresponds to the MAPE values presented in Table 2.

Predicting the Optimal Period for CHSP 247

Table 5. Solutions for the set Isample

±5% any p ±5% pcalc ±20% any p ±20% pcalc

Opt Sat Opt Sat Opt Sat Opt Sat

Optimal 3,546 46 3,399 23 3,834 14 3,825 14
Satisfied 159 126 1 213 1 172
Unknown 11
Unsatisfiable 400 11 111
Total 3,946 227 3,399 149 3,946 227 3,826 186

Table 6. Solutions per industry set

Industry instances Unsatisfiable pcalc found p �= pcalc found
±10% ±20% ±10% ±20% ±10% ±20%

BO1 5 14 25 6
BO2 17 24 8 1
Copper 25 25
Ligne1 2 2 8 12 15 11
Ligne2 2 2 16 20 7 3
PU 3 3 10 16 12 6
Zinc 22 22 3 3
Total 12 7 112 144 51 24

Comparison with a Baseline Approach. We compare the above Bpred-based
method with a simple bound estimation. First we compute the average r
of pcalc/Bcalc across all instances; then for each instance compute estimated
bounds: Best = (lbest, ubest) = (r · Bcalc · 0.95, r · Bcalc · 1.05). Best contain the
original pcalc for 5% of the solved instances of Isample and for 7% of the solved
instances of Iind. Hence if we apply these new estimated bounds to the CP solv-
ing process, for most instances either no solution will be found or a solution with
a greater p.

4.3 Experiment 3: Solver Performance with Predicted Bounds

Our final experiment studies the impact of using Bpred in the CP-SAT solver.
For this we used a subset of Isample to only include cases for which an optimal
solution was found, and we formulate three hypotheses:

Hypothesis 2. A (CP) solver that uses Bpred instead of Bcalc requires less time
(T) to find an optimal solution.

Hypothesis 3. As Bpred become tighter, the solving time (T) decreases further.

248 N. Efthymiou and N. Yorke-Smith

Table 7. Random Instances: Predicted vs. Calculated bounds

Optimal solution Satisfied
Inst. Δp ΔT ΔN Inst Δp ΔT ΔN

Margin ±5% Any p 3,546 0.3% −70.7% −56.6% 159 0.0% −16.6% −77.4%
pcalc 3,399 — −68.1% −53.4% 126 — −29.5% −78.0%

Margin ±20% Any p 3,834 0.1% −33.1% −27.1% 213 −0.1% −9.5% −36.3%
pcalc 3,825 — −33.0% −26.9% 172 — -22.9% −40.2%

Table 8. Solving time difference (margin ±5%) – Negative vs. positive deviation

Tcalc Tpred_5% ΔT

Tpred_5% − Tcalc > 0 0.18 0.22 0.04
Tpred_5% − Tcalc < 0 2.31 0.66 −1.65
Total 1.91 0.58 −1.33

Hypothesis 4. Using Bpred instead of Bcalc does not increase the value of p of
the optimal solution found.

To test these hypotheses, we follow a repeated-measurements experimental
design and thus only cases with a feasible solution in both conditions (calculated
bounds vs. predicted bounds) are included. Note that cases with no solution are
irrelevant here, for their failure relates to prediction error, i.e., Hypothesis 1.
Comparisons are made independently for instances with an optimal solution in
both conditions, and instances with a satisfied solution in both conditions.

Impact on Solving Time. Regarding Hypotheses 2 and 3, we can accept that
the solving time is significantly lower when the predicted bounds of p (Bpred)
are used, instead of the calculated bounds Bcalc (Tpred_5%: X = 0.58, s = 4.93;
Tpred_20%: X = 1.27, s = 11.01; Tcalc: X = 1.91, s = 14.09). Specifically, there is
a decrease in time (ΔT = −1.3) when Bpred_5% is used instead of Bcalc. There is
a more modest decrease (ΔT = −0.6) when Bpred_20% is used instead of Bcalc.
Accordingly, there is a decrease in solving time when Bpred become narrower
from ±20% to ±5% (ΔT = −0.7).

As Table 7 shows, the decrease in the solving time for cases in which an
optimal solution was found (−70.7%) is larger compared to cases with a satisfied
solution (−16.6%). Figure 4 shows there was a decrease in the solving time for
81% of all solved instances. We also see that for a minority of some 60 instances,
much more time was required (relative change higher than 90%). However, in
most cases with ΔT > 0, the solving time and its increase are very small in
absolute terms. The corresponding means of ΔT and T are shown in Table 8.

Impact on p Value. Regarding Hypothesis 4, the impact of Bpred on the value
of p of the optimal solution is negligible (pcalc: X = 3007, s = 3099; ppred_5%:
X = 3017, s = 3117; ppred_20%: X = 3010, s = 3107). We found a very small

Predicting the Optimal Period for CHSP 249

Fig. 4. Solving time difference with 5% margin on Isample (optimal solution found)

Table 9. Industry Instances: Predicted vs. Calculated bounds

Inst. ΔP ΔT ΔN

Margin ±10% Any p 163 1.2% −90.3% −32.6%
pcalc 112 — −43.5% −18.8%

Margin ±20% Any p 168 0.5% −78.8% −3.7%
pcalc 144 — −33.2% 2.0%

increase (Δp = 9.4) between ppred_5% and pcalc, an even smaller increase (Δp =
2.2) between ppred_20% and pcalc, and an analogous increase (Δp = 7.2) between
ppred_5% and ppred_20%. Table 7 reports the relative change in p.

Results on Industry Instances. Similar promising results were observed on the
industry data set Iind (Table 9). Using Bpred resulted in a large decrease in
solving time with practically no increase in the value of p. Further, Fig. 5 shows
that in 85% of all solved instances, solving time was reduced.

5 Related Work

The interplay between learning, search and inference for solving combinatorial
optimisation problems was surveyed by Bengio et al. [1]. In CP, Cappart et
al. [4] tightly hybridise reinforcement learning with a dynamic programming
representation. Most works tend to emphasise one side or the other.

On the one hand, some authors emphasise the ML side followed by some
search. In early work, Deudon et al. [5] for instance study the travelling sales-
person problem, and improve a learned schedule with local search. In more recent
work, Kool et al. [9] study vehicle routing problems with time windows and derive
a schedule using neural-network guided dynamic programming.

250 N. Efthymiou and N. Yorke-Smith

Fig. 5. Solving time difference with 10% margin on Iind (all solved instances)

On the other hand – and closer to this paper – is the idea of pre-computing
using ML and informing a ‘standard’ optimisation solver with this information.
Osanlou et al. [16], for instance, study constrained path planning and use a
graph convolution network to predict an optimal vertex order. They feed the
resulting cost into a branch-and-bound search as an upper bound. Xu et al. [25]
predict with supervised learning the satisfaction of a general (binary) CSP. Wang
et al. [24] study job shop scheduling, and predict the optimal makespan of an
instance. We follow the same approach, but on a more complex problem; we use
aggregation functions in order to obtain a regressor independent of the problem
size (number of tanks); we further simplify the ML models by performing feature
extraction; and we use prediction bounding rather than the binary objective
search. There are many recent similar works (Václavík et al. [26], Zhang et al.
[22]); none to our knowledge consider the hoist scheduling problem.

Lastly we note the approach of decision-focussed learning (e.g., [14]), which
offers a tighter integration between learning and optimisation than either the
learning-to-search or the predict-then-optimise approaches.

6 Conclusion and Future Work

The growing research field at the intersection of machine learning and combina-
torial optimisation leads in this paper to the question: how can a predict-then-
optimise approach lead to faster solving of hard scheduling problems, without
sacrificing solution quality?

This approach – in the form of offline supervised learning coupled with online
exact solving – was applied to the CHSP, a hard combinatorial optimisation prob-
lem that involves search for a feasible hoist schedule that minimises the cycle
period p. We tested various ML models for predicting the optimal p, in order to
improve the effectiveness of a CP-SAT solver by providing tighter objective func-
tion bounds. Using a size-invariant representation, coupled with feature ablation,

Predicting the Optimal Period for CHSP 251

we found that a relatively simple dense neural network was effective in acquiring
a predictor. Experiments on synthetic and industrial benchmarks showed that
using tighter bounds derived from p̂ leads to markedly lower solving times (mean
44% decrease on industrial instances), without increasing the value of p in the
majority of cases. Only for a small fraction of instances is the solving time using
the predicted bounds longer. This minority increase most commonly happens
when the initial solving time is negligible (i.e., easy instances): thus the delta is
small in absolute terms.

Our approach has intentionally emphasised simplicity and a loose coupling
of the learning and optimisation. The highly-promising results suggest several
future directions. First, it will be interesting to choose the relaxed bounds around
p̂ based not on static percentages, but according to the confidence of the ML
model. Second, to further study the generalisation ability of the predictor: for
instance, testing on instances obtained from a different generator, or exploring
other backend solvers such as a MIP. Third, since the ML models implemented
in this paper do not consider some CSHP instance attributes (e.g., number of
tracks and loading/unloading times), their inclusion could be investigated in
future work. Fourth, the ML model could be informed by a regret-based loss
function, in the style of decision-focussed learning [20]. Besides these directions,
we are exploring whether a more end-to-end ML approach could be promising. To
this aim we currently study the use of a graph neural network embedding to try
and predict the optimal solution (not just the optimal objective function value).
Initial experiments indicate that predicting the whole solution is challenging; it
seems more promising to predict only the removal time of the first item from its
first tank, and we find this already is useful guidance for the solver.

Acknowledgements. We thank the anonymous reviewers. Thanks to K. van den
Houten, S. van der Laan, M. Wallace and M. de Weerdt. Partially supported by TAI-
LOR, funded by the EU Horizon 2020 programme under grant 952215.

References

1. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021).
https://doi.org/10.1016/j.ejor.2020.07.063

2. Boysen, N., Briskorn, D., Meisel, F.: A generalized classification scheme for crane
scheduling with interference. Eur. J. Oper. Res. 258(1), 343–357 (2017). https://
doi.org/10.1016/j.ejor.2016.08.041

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/
10.1023/A:1010933404324

4. Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.A.: Com-
bining reinforcement learning and constraint programming for combinatorial opti-
mization. In: AAAI 2021, pp. 3677–3687 (2021). https://doi.org/10.1609/aaai.
v35i5.16484

5. Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., Rousseau, L.: Learning
heuristics for the TSP by policy gradient. In: CPAIOR 2018, pp. 170–181 (2018).
https://doi.org/10.1007/978-3-319-93031-2_12

https://doi.org/10.1016/j.ejor.2020.07.063
https://doi.org/10.1016/j.ejor.2016.08.041
https://doi.org/10.1016/j.ejor.2016.08.041
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1609/aaai.v35i5.16484
https://doi.org/10.1609/aaai.v35i5.16484
https://doi.org/10.1007/978-3-319-93031-2_12

252 N. Efthymiou and N. Yorke-Smith

6. Feng, J., Chu, C., Che, A.: Cyclic jobshop hoist scheduling with multi-capacity
reentrant tanks and time-window constraints. Comput. Ind. Eng. 120, 382–391
(2018). https://doi.org/10.1016/j.cie.2018.04.046

7. He, L., Guijt, A., de Weerdt, M., Xing, L., Yorke-Smith, N.: Order acceptance and
scheduling with sequence-dependent setup times. Comput. Ind. Eng. 138, 106102
(2019). https://doi.org/10.1016/j.cie.2019.106102

8. Kacem, I., Kellerer, H.: Foreword: combinatorial optimization for industrial engi-
neering. Comput. Ind. Eng. 61(2), 239–241 (2011). https://doi.org/10.1016/j.cie.
2011.07.016

9. Kool, W., van Hoof, H., Gromicho, J.A.S., Welling, M.: Deep policy dynamic pro-
gramming for vehicle routing problems. In: CPAIOR 2022, pp. 190–213 (2022).
https://doi.org/10.1007/978-3-031-08011-1_14

10. Kotary, J., Fioretto, F., Hentenryck, P.V., Wilder, B.: End-to-end constrained opti-
mization learning: a survey. In: IJCAI 2021, pp. 4475–4482 (2021). https://doi.org/
10.24963/ijcai.2021/610

11. Laajili, E., Lamrous, S., Manier, M., Nicod, J.: An adapted variable neighborhood
search based algorithm for the cyclic multi-hoist design and scheduling problem.
Comput. Ind. Eng. 157, 107225 (2021). https://doi.org/10.1016/j.cie.2021.107225

12. Lee, C.Y., Lei, L., Pinedo, M.: Current trends in deterministic scheduling. Ann.
Oper. Res. 70, 1–41 (1997). https://doi.org/10.1023/A:1018909801944

13. Leung, J.M., Zhang, G., Yang, X., Mak, R., Lam, K.: Optimal cyclic multi-hoist
scheduling: a mixed integer programming approach. Oper. Res. 52(6), 965–976
(2004). https://doi.org/10.1287/opre.1040.0144

14. Mandi, J., Bucarey, V., Mulamba Ke Tchomba, M., Guns, T.: Decision-focused
learning: through the lens of learning to rank. In: ICML 2022, pp. 14935–14947
(2022). https://proceedings.mlr.press/v162/mandi22a.html

15. Manier, M.A., Lamrous, S.: An evolutionary approach for the design and schedul-
ing of electroplating facilities. J. Math. Model. Algorithms 7(2), 197–215 (2008).
https://doi.org/10.1007/s10852-008-9083-z

16. Osanlou, K., Bursuc, A., Guettier, C., Cazenave, T., Jacopin, E.: Optimal solv-
ing of constrained path-planning problems with graph convolutional networks and
optimized tree search. In: IROS 2019, pp. 3519–3525 (2019). https://doi.org/10.
1109/IROS40897.2019.8968113

17. Perron, L., Furnon, V.: OR-Tools version 9.3 (2022). https://developers.google.
com/optimization/

18. Phillips, L.W., Unger, P.S.: Mathematical programming solution of a hoist
scheduling program. AIIE Trans. 8(2), 219–225 (1976). https://doi.org/10.1080/
05695557608975070

19. Quesnel, F., Wu, A., Desaulniers, G., Soumis, F.: Deep-learning-based partial pric-
ing in a branch-and-price algorithm for personalized crew rostering. Comput. Oper.
Res. 138, 105554 (2022). https://doi.org/10.1016/j.cor.2021.105554

20. Teso, S., et al.: Machine learning for combinatorial optimisation of partially-
specified problems. CoRR abs/2205.10157 (2022). https://doi.org/10.48550/arXiv.
2205.10157

21. UTIKAL Automation: Private correspondence (2022). https://utikal-automation.
com

22. Václavík, R., Novák, A., Sucha, P., Hanzálek, Z.: Accelerating the branch-and-price
algorithm using machine learning. Eur. J. Oper. Res. 271(3), 1055–1069 (2018).
https://doi.org/10.1016/j.ejor.2018.05.046

https://doi.org/10.1016/j.cie.2018.04.046
https://doi.org/10.1016/j.cie.2019.106102
https://doi.org/10.1016/j.cie.2011.07.016
https://doi.org/10.1016/j.cie.2011.07.016
https://doi.org/10.1007/978-3-031-08011-1_14
https://doi.org/10.24963/ijcai.2021/610
https://doi.org/10.24963/ijcai.2021/610
https://doi.org/10.1016/j.cie.2021.107225
https://doi.org/10.1023/A:1018909801944
https://doi.org/10.1287/opre.1040.0144
https://proceedings.mlr.press/v162/mandi22a.html
https://doi.org/10.1007/s10852-008-9083-z
https://doi.org/10.1109/IROS40897.2019.8968113
https://doi.org/10.1109/IROS40897.2019.8968113
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://doi.org/10.1080/05695557608975070
https://doi.org/10.1080/05695557608975070
https://doi.org/10.1016/j.cor.2021.105554
https://doi.org/10.48550/arXiv.2205.10157
https://doi.org/10.48550/arXiv.2205.10157
https://utikal-automation.com
https://utikal-automation.com
https://doi.org/10.1016/j.ejor.2018.05.046

Predicting the Optimal Period for CHSP 253

23. Wallace, M., Yorke-Smith, N.: A new constraint programming model and solving
for the cyclic hoist scheduling problem. Constraints 25(3), 319–337 (2020). https://
doi.org/10.1007/s10601-020-09316-z

24. Wang, T., Payberah, A.H., Vlassov, V.: CONVJSSP: convolutional learning for
job-shop scheduling problems. In: ICMLA 2022, pp. 1483–1490 (2020). https://
doi.org/10.1109/ICMLA51294.2020.00229

25. Xu, H., Koenig, S., Kumar, T.K.S.: Towards effective deep learning for constraint
satisfaction problems. In: CP 2018, pp. 588–597 (2018). https://doi.org/10.1007/
978-3-319-98334-9_38

26. Zhang, W., et al.: NLocalSAT: boosting local search with solution prediction. In:
IJCAI 2020, pp. 1177–1183 (2020). https://doi.org/10.24963/ijcai.2020/164

https://doi.org/10.1007/s10601-020-09316-z
https://doi.org/10.1007/s10601-020-09316-z
https://doi.org/10.1109/ICMLA51294.2020.00229
https://doi.org/10.1109/ICMLA51294.2020.00229
https://doi.org/10.1007/978-3-319-98334-9_38
https://doi.org/10.1007/978-3-319-98334-9_38
https://doi.org/10.24963/ijcai.2020/164

Scalable and Near-Optimal ε-Tube
Clusterwise Regression

Aravinth Chembu(B), Scott Sanner, and Elias B. Khalil

Department of Mechanical and Industrial Engineering, University of Toronto,
Toronto, Canada

aravinth.chembu@mail.utoronto.ca, {ssanner,khalil}@mie.utoronto.ca

Abstract. Clusterwise Regression (CLR) methods that jointly optimize
clustering and regression tasks are useful for partitioning data into dis-
joint subsets with distinct regression trends. Due to the inherent diffi-
culty in simultaneously optimizing clustering and regression objectives,
it is not surprising that existing optimal CLR approaches do not scale
beyond 100 s of data points. In an effort to provide more scalable and
optimal CLR methods, we propose a novel formulation of the problem
that takes inspiration from ε-tubes in Support Vector Regression (SVR).
The advantage of this novel formulation, which aims to assign data points
to clusters in order to minimize the largest ε-tube that encapsulates the
regressed data, is that it admits an optimal MILP formulation. Further-
more, given that each constraint in our formulation corresponds to a
single data point, we propose an efficient row generation solution that
can optimally converge for the full dataset while only requiring optimiza-
tion over a subset of the data. Our results on a variety of synthetic and
benchmark real datasets show that our Clusterwise Regression MILP
formulation provides near-optimal solutions up to 100,000 data points
and the smallest data-encapsulating ε-tubes among CLR alternatives.

Keywords: Clusterwise Regression · Row Generation · Mixed-integer
linear programming

1 Introduction

Clusterwise Regression (CLR) is a fundamental task in Machine Learning that
jointly optimizes for clustering and regression tasks, where the data is partitioned
into several clusters, each group fit by a regression plane, such that the overall
regression error is minimized. CLR models find applications in a plethora of fields
such as social science [17], marketing analysis [9], and climate modeling [1].

Traditionally, CLR models entailed jointly optimizing for clustering with the
squared error objective for regression, as proposed in seminal work on CLR [20].
Existing greedy algorithms for CLR are sensitive to initialization and provide
only locally optimal results, thus limiting clustering quality and reproducibility.
Moreover, the classical CLR model [20] was recently shown to be NP-hard [18]
and considered a very difficult problem to solve [14]. Thus, optimally solving for
100 s of data observations is challenging [4–7], even with synthetic examples.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 254–263, 2023.
https://doi.org/10.1007/978-3-031-33271-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_17&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_17

Scalable and Near-Optimal ε-Tube Clusterwise Regression 255

Fig. 1. We show the ε-tube CLR solution (right) with an illustrative example. Addi-
tionally, we demonstrate our row generation algorithm, where we start (left) with an
initial set of points (denoted with ×) and run two iterations adding 3 constraints per
iteration denoted with + that are the farthest from the regression lines until we reach
the optimal result in the third iteration. We observe that convergence to the optimal
solution does not require ε to monotonically decrease.

In this work, we propose a novel approach to CLR that is inspired by the ε-
tubes (or margins) that correspond to absolute values of the regression residuals
in Support Vector Regression (SVR) [12,22]. In this formulation, we minimize
the largest ε-tube across all clusters that encapsulates the regressed data. Such a
formulation is inherently insensitive to cluster size imbalance since we only mea-
sure the worst-case residual. In addition, a core computational advantage of this
formulation is that it can be expressed and optimally solved as a Mixed Integer
Linear Program (MILP) that supports an efficient row (constraint) generation
strategy. We illustrate this iterative row generation process in Fig. 1 demon-
strating the evolution of data point (re)assignments to three clusters and their
corresponding shaded ε-tube at each iteration until optimality. It is important to
note that this solution only generated the most-violated constraints for all data
points (most often near the ε-tube boundaries, by definition) since the remaining
data lie within tube boundaries and automatically satisfy the optimality criteria.

Leveraging our novel MILP formulation and row generation solution can thus
solve ε-tube CLR using a subset of the data (while guaranteeing optimality w.r.t.
all data), hence providing near-optimal results for up to 100,000 data points in
comparison to other CLR formulations and solutions that cannot scale optimally
beyond 100 s of data points. We provide experiments on a variety of synthetic
datasets (varying number of data points, dimensionality, clusters, and cluster
imbalance) and 10 benchmark real datasets to demonstrate our algorithm’s abil-
ity to reach the smallest ε-tube clusters when compared with several baselines.

2 Related Work

Several greedy algorithms have been proposed to solve the classical CLR
problem, including exchange algorithms proposed in the pioneering works of

256 A. Chembu et al.

Späth [20,21], simulated annealing in [10], mathematical programming-based
heuristics [2,3,13], and an Expectation-Maximization [8] type methodology in
a recent work called k-plane clustering [16], which is analogous to the k-means
algorithm [15]. In contrast, exact approaches involve the use of mixed-integer
optimization [4,7,14], repetitive branch-and-bound methods [5], and column gen-
eration approaches [6,18]. However, these algorithms only scale up to 100 s of
observations in low dimensions, even with synthetic datasets and typically less
than 5 clusters. Moreover, numerous alternatives for the L2 regression loss of
CLR have been presented, like the more robust L1 loss [2,4,19]. More recently,
SVR for regression was used for the CLR problem [13]; however, the key dif-
ference with our approach is that we directly minimize the ε-tubes while they
solve for pure SVRs in each cluster (by minimizing the slacks) with ε being a
hyperparameter; further, they do not provide any optimality guarantees.

3 Optimal CLR with ε-Tube Objective

3.1 Reduction of ε-Tube CLR to a MILP

Our ε-tube objective for CLR minimizes the maximum regression residual for
every point across all the clusters. More formally, consider that we have n
observations (xi , yi) with d features in the dataset (X, y) ∈ R

n×(d+1) where
i ∈ N = {1, ..., n}. The main goal in CLR is to find one regression plane for
each of the k clusters (Cj), where the regression coefficients for the jth cluster
are represented by weights wj ∈ R

d and bias bj ∈ R for j ∈ K = {1, ..., k}. We
will use w and b without cluster indices to refer to the collection of k regression
plane parameters. Each data point is assigned to exactly one cluster, similar to a
hard-partitioning setting in unsupervised clustering. We introduce binary vari-
ables cij that denote whether point i is assigned to cluster Cj (cij = 1) or not
(cij = 0), thus enabling us to formulate a min-max mixed integer optimization
problem. Using this notation, we define our first key novel contribution of
the ε-tube CLR objective:

min
w ,b,c

max
j∈K

max
i∈N

|yi − wᵀ
j xi − bj | · cij (1)

Here, we first observe that we can further reduce this ε-tube CLR objective to
a bi-level optimization problem with the introduction of a new variable ε, which
takes the value of the maximum residual from all points across the k regression
planes (through the first constraint in (2)).

min
w ,b,c

ε

s.t. ε = max
j∈K

max
i∈N

|yi − wᵀ
j xi − bj | · cij

k∑

j=1

cij = 1, i ∈ N ; wj,1 < wj+1,1, j ∈ K\{k};

wj ∈ R
d, bj ∈ R, j ∈ K; cij ∈ {0, 1}, i ∈ N, j ∈ K;

(2)

Scalable and Near-Optimal ε-Tube Clusterwise Regression 257

In this bi-level problem, indicator variables cij ensure we only capture residu-
als for the regression plane (cluster) a point is assigned to. Moreover, constraints∑k

j=1 cij = 1 guarantee every point in the dataset is assigned to exactly one clus-
ter. We also add symmetry-breaking constraints of the form wj,1 < wj+1,1 that
enforce the first dimension of the regression coefficients across clusters to be
in increasing order. This guarantees that we choose exactly one solution out of
the k! possible permutations with the same optimal value. A key observation
is that we can remove both max’s from the first constraint and rewrite it to
ε ≥ |yi − wᵀ

j xi − bj | · cij , i ∈ N, j ∈ K. While this constraint ensures that ε
takes a value greater than or equal to the max prediction error, the minimization
criteria in (2) enforces equality! Using this elegant transformation and indica-
tor constraints to encode the product of regression residual and cij yields our
second key novel contribution of ε-tube CLR formulated as a MILP:

min
w ,b,c

ε

s.t. cij = 1 =⇒ ε ≥ |yi − wᵀ
j xi − bj |, i ∈ N, j ∈ K

k∑

j=1

cij = 1, i ∈ N ; wj,1 < wj+1,1, j ∈ K\{k};

wj ∈ R
d, bj ∈ R, j ∈ K; cij ∈ {0, 1}, i ∈ N, j ∈ K;

(3)

3.2 Row Generation Methodology

The final pure-MILP formulation for our ε-tube objective in (3) allows for the use
of efficient branch-and-bound strategies through state-of-the-art MILP solvers.
However, the large number of binary variables and constraints may present a
challenge for MILP solvers. A possible solution would be to reduce the number
of variables and constraints of the model without affecting its correctness.

In problem (3), we observe that we minimize a single variable ε whose value
is governed through the n × k indicator constraints. If points that have large
residuals w.r.t. the regression coefficients for the optimal result can be known
a priori, the indicator constraints corresponding to the points that have much
smaller residuals can be neglected. Neglecting these observations will not change
the optimal value as ε is already larger than the residuals from these points.

This crucial insight can be leveraged in our third novel contribution of
an efficient row (constraint) generation MILP solution by starting with
a small subset of observations (with their associated variables and constraints) in
a reduced version of (3) we term main problem (MP). Given an optimal solution
to MP, we check whether it is optimal for the full problem (3). This check can be
performed through a sub-problem (SP) that identifies points that have residuals
larger than that of the current solution of the MP. In essence, the SP identifies
the most-violated constraints corresponding to the points with largest residuals
not yet included in the MP. These most-violated constraints can then be added

258 A. Chembu et al.

to the MP. This procedure can be iteratively executed until the SP ensures that
all observations have residuals smaller than that of the current optimal solution.
In such a case, we have found an optimum for the full problem (3). Convergence
to optimality is guaranteed in finite time since in the (unlikely) worst case this
happens when we generate all rows (constraints) and recover the full problem (3).

Algorithm 1. Row generation
Input (xi , yi), k

1: ε∗ ← 0, ε̂ ← ∞
2: I �= ∅, cons �= ∅, wj , bj ← Initialize

� Initial constraints cons for points I
3: ε∗, w∗

j , b∗
j , c

∗
ij ← Solve MILP with

cons
4: ĉij ← {1j=ĵ |ĵ = argminj |yi −w∗ᵀ

j xi −
b∗
j |}, � Assign points i ∈ N

5: ε̂, I,cons ← Add-Constraints()
6: if ε̂ > ε∗ then
7: go to line 3 � Re-solve MILP

with augmented constraints set cons
8: end if
9: return ε∗, w∗

j , b∗
j , ĉij � Optimal

Algorithm 2. Add-Constraints
Input (xi , yi), w

∗
j , b∗

j , ĉij ,cons, ε
∗

ε̂ = maxi∈N, j∈K{|yi − w∗ᵀ
j xi − b∗

j | ·
ĉij}
� Check if ε∗ is the max residual
if ε̂ > ε∗ then

for j ∈ K do
Iadd ← {argmaxi|yi−w∗ᵀ

j xi −
b∗
j | · ĉij} � Find largest residual

I ← I ∪ Iadd
end for
cons ← cons ∪ {cij = 1 =⇒

ε ≥|yi − wᵀ
j xi − bj |, i ∈ Iadd, j ∈ K}

end if
return ε̂, I,cons

We formalize the above row (or constraint) generation procedure through
Algorithms 1 and 2 that primarily perform the MP and SP tasks, respectively.
In Algorithm 1, we initialize our model with a small subset of observations in
I ⊂ N , and their corresponding variables cij and constraints in C. We solve
the MP with the reduced formulation of (3) using a MILP solver to obtain
the optimal value ε∗. The coefficients for the k regression planes are used to
assign a point i ∈ N to the cluster to which it has the lowest prediction error
(line 4 in Algorithm 1). This is a crucial step in our algorithm as we use the
cluster assignment information to then compute the maximum residual stored
in ε̂ (line 1 in Algorithm 2) for all points w.r.t. the coefficients obtained from the
MP. If ε̂ > ε∗, we are yet to reach the optimal solution. Hence, we identify the
most violating constraints (if one exists) for each of the k clusters through the
SP (line 7 in Algorithm 2) and add them to the MP. We stop iterating between
the MP and SP when ε̂ = ε∗, i.e., when no more points i ∈ N incur residuals
larger than the current objective, implying optimality w.r.t. all constraints.

4 Empirical Evaluation

We first study the properties of our ε-tube CLR objective and comparatively
evaluate our solution on synthetic and real datasets. We use a hyphenated
three-part naming convention: (1) clustering criteria (k-means or direct point-
to-cluster assignment), (2) regression loss (least squares, SVR, or ε-tube), and

Scalable and Near-Optimal ε-Tube Clusterwise Regression 259

Fig. 2. # Constraints generated and solution time to 5% optimality gap for dir-et-
milp-rg with number of clusters k and dimensionality d vs. amount of data n for the
klr-data. # Constraints and time only increase marginally as n increases.

(3) optimization method (independent, iterative, or MILP). We compare the fol-
lowing methods: (i) km-ls-indep: k-means (km) followed by least-squares (ls)
regression where the clustering and regression take place independently; (ii) km-
svr-indep: k-means followed by SVR [22]; (iii) km-et-indep: k-means followed
by optimizing our ε-tube objective; (iv) dir-ls-iter: k-planes [16] algorithm with
least squares regression where the clustering is directly (dir) assigned by an iter-
ative procedure (iter); (v) dir-et-iter: a novel k-means inspired approximate
iterative algorithm to optimize for our ε-tube (et) objective — here we iterate
between (a) finding the best set of hyperplanes (compute wj , bj , j ∈ K) per
cluster given a cluster assignment for all points and (b) re-assigning points to
clusters (update cij) such that each point has the lowest prediction error when
assigned to that cluster; (vi) dir-et-milp: our novel full MILP from Eq (3); (vii)
dir-et-milp-rg: our novel full MILP with row generation (rg).

Across our experiments, similar to the approach followed in [5,6,16,18], we
primarily focus on comparing the ε value, i.e., the maximum residual among
all clusters, since providing an optimal algorithm for the ε-tube objective is our
key contribution; we only include non-“et” methods for relative comparison with
other common CLR methods. All experiments were run on Google Colab in the
standard CPU setting (at 2.3 GHz and 32 GB memory) with Gurobi 9.5.2. All
code is available at https://github.com/Aravinthck/CLR-epsTube.

4.1 Synthetic Dataset Experiments

Scalability. Our dir-et-milp-rg algorithm depends on solving a MILP at every
iteration, which leads us to ask how well it scales vs. the dimensionality, number
of clusters, and amount of data. To this end, we evaluate the scalability of
dir-et-milp-rg when the ground truth clusters are recovered by constructing
synthetic datasets (called klr-data) similar in spirit to [5,6,16] where we choose

https://github.com/Aravinthck/CLR-epsTube

260 A. Chembu et al.

Fig. 3. Comparative experiments of different algorithms for synthetic datasets.

k ∈ {2, 3, 5} regression parameters uniformly at random with d ∈ {1, 2, 5, 8}
features and normal error in the regression. The feature vectors are extracted
from Gaussian clusters with observations n varied from 103 to 105 points. Fig. 2
shows that the number of constraints generated to reach an optimality gap of 5%
only increases marginally with the number of data points n. Similar trends are
observed for the reported run-time for these experiments (cf. Fig. 2, right). These
empirical results further suggest that only a small fraction of the observations
are needed. For example, only ≈ 75 observations are needed to solve the problem
to 5% optimality gap with 105 observations (top-right point in Fig. 2, left).

Performance Gain for Row Generation. We now compare the run-times
of our row generation method dir-et-milp-rg and full-MILP solution dir-et-
milp in Fig. 3a where we terminate on reaching the 5% optimality gap with
both methods. With the klr-data, we experiment with n ranging from 100 to
104, d ∈ {1, 2, 5} and k = 2 to ensure that dir-et-milp finishes in under 104

seconds. Here, dir-et-milp-rg strictly dominates its dir-et-milp counterpart
in all cases and by more than 3 orders of magnitude for n = 104. What is
more remarkable is that dir-et-milp-rg remains relatively flat as n increases in
contrast to dir-et-milp that grows exponentially with n (i.e., as evidenced by
the superlinear trend on this log-log plot).

Robustness to Cluster Imbalance. The optimal solution of our ε-tube CLR
should be insensitive to imbalance in the number of points in the clusters because
we only measure the worst-case residual. This alleviates the need for a higher
concentration of clusters in areas where the data is denser. We validate this

Scalable and Near-Optimal ε-Tube Clusterwise Regression 261

Table 1. Comparative evaluation of objective values ε from (3) on 10 datasets shown
in the columns and ordered by number of data points (n).

index Iris Autompg Ceosalaries Boston Airfoil Redwine Abalone Whitewine Powerplant Protein

data (n) 150 392 500 506 1503 1599 4177 4898 9568 45730

dimension (d) 4 7 1 13 5 11 7 11 4 9

clusters (k) 3 3 6 2 4 3 3 3 5 2

km-ls-indep 0.8 1.5 10.64 2.34 2.77 3.04 4.56 3.98 2.71 3.94

km-svr-indep 0.94 1.38 5.69 2.02 2.3 2.81 3.57 3.39 1.99 1.72

km-et-indep 0.63 1.06 5.68 1.27 2.2 2.24 2.83 2.98 1.62 1.72

dir-ls-iter 0.48 1.0 2.5 1.76 1.21 2.34 2.82 3.05 1.76 2.16

dir-et-iter 0.32 0.59 0.7 0.99 0.86 1.55 1.75 1.86 0.53 1.67

dir-et-milp 0.24 0.42 0.64 0.78 0.77 1.13 1.75 1.82 1.45 1.72

dir-et-milp-rg 0.22 0.38 0.48 0.67 0.59 0.62 0.88 1.03 0.3 0.82

claim with imbalanced clusters with n = 104, d = 1, and k = 3. One of the
clusters was designed to be dense, and the others were sparse, with the ratio
of points given by dense/sparse ratio. From Fig. 3b, it is evident that all three
methods came close to recovering the optimal balanced clusters (dense/sparse
ratio = 1). However, for the imbalanced cases (ratio > 1), only dir-et-milp-rg
identified the true ground truth cluster in all cases, while dir-et-iter struggled
with local optimality of its greedy method (reaching optimality once) and dir-
ls-iter appears to further suffer from the sensitivity of its least sum-of-squared
loss to imbalanced clusters.

4.2 Real Dataset Experiments

We now benchmark our model with 10 commonly used CLR datasets found in
[2,11,13,16]. In Table 1, we report the mean objective value ε obtained after 10
independent runs for the various greedy baselines compared with the full-MILP
solution dir-et-milp, which is run for the same amount of time that it takes
dir-et-milp-rg to reach the 5% optimality gap. We use the best value for k
reported in the mentioned peer-reviewed works for each dataset. The ε values
obtained for dir-et-milp-rg are better than all other methods, often substan-
tially. Interestingly, we note that the greedy dir-et-iter that we have proposed
outperforms dir-et-milp on several datasets. Moreover, we observed that the
lower bound returned by Gurobi for dir-et-milp was zero and did not increase
within the restricted time limit for these experiments. Improved formulation for
dir-et-milp (and -rg) and tightening of lower bounds is an interesting direc-
tion for potential future work. However, the strictly dominant performance of
dir-et-milp-rg underscores its ability to scale to large real datasets.

5 Conclusion

We provided a novel formulation for the ε-tube CLR problem that reduces to
a MILP and further admits an efficient row generation solution. Our results on

262 A. Chembu et al.

benchmark datasets make it evident that our row generation solution is much
faster than solving the full MILP and that we outperform other CLR methods
in terms of maximum ε-tube loss and different levels of cluster imbalance.

References

1. Bagirov, A.M., Mahmood, A., Barton, A.: Prediction of monthly rainfall in victoria,
Australia: clusterwise linear regression approach. Atmos. Res. 188, 20–29 (2017).
https://doi.org/10.1016/j.atmosres.2017.01.003, https://www.sciencedirect.com/
science/article/pii/S0169809517300285

2. Bagirov, A.M., Taheri, S.: Dc programming algorithm for clusterwise linear l1
regression. J. Oper. Res. Soc. China 5(2), 233–256 (2017)

3. Bagirov, A.M., Ugon, J., Mirzayeva, H.: Nonsmooth nonconvex optimization app-
roach to clusterwise linear regression problems. Eur. J. Oper. Res. 229(1), 132–
142 (2013). https://doi.org/10.1016/j.ejor.2013.02.059, https://www.sciencedirect.
com/science/article/pii/S0377221713002087

4. Bertsimas, D., Shioda, R.: Classification and regression via integer optimiza-
tion. Oper. Res. 55(2), 252–271 (2007). https://doi.org/10.1287/opre.1060.0360,
https://doi.org/10.1287/opre.1060.0360

5. Carbonneau, R.A., Caporossi, G., Hansen, P.: Extensions to the repetitive branch
and bound algorithm for globally optimal clusterwise regression. Comput. Oper.
Res. 39(11), 2748–2762 (2012). https://doi.org/10.1016/j.cor.2012.02.007

6. Carbonneau, R.A., Caporossi, G., Hansen, P.: Globally optimal clusterwise regres-
sion by column generation enhanced with heuristics, sequencing and ending subset
optimization. J. Classif. 31(2), 219–241 (2014). https://doi.org/10.1007/s00357-
014-9155-x

7. Carbonneau, R.A., Caporossi, G., Hansen, P.: Globally optimal clusterwise regres-
sion by mixed logical-quadratic programming. Eur. J. Oper. Res. 212(1), 213–
222 (2011). https://doi.org/10.1016/j.ejor.2011.01.016, https://www.sciencedirect.
com/science/article/pii/S0377221711000191

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. J. R. Stat. Soc. Series B (Methodological) 39(1), 1–38
(1977). http://www.jstor.org/stable/2984875

9. DeSarbo, W.S., Cron, W.L.: A maximum likelihood methodology for cluster-
wise linear regression. J. Classif. 5(2), 249–282 (1988). https://doi.org/10.1007/
BF01897167

10. DeSarbo, W.S., Oliver, R.L., Rangaswamy, A.: A simulated annealing methodology
for clusterwise linear regression. Psychometrika 54(4), 707–736 (1989)

11. Di Mari, R., Rocci, R., Gattone, S.A.: Clusterwise linear regression mod-
eling with soft scale constraints. Int. J. Approximate Reasoning 91, 160–
178 (2017). https://doi.org/10.1016/j.ijar.2017.09.006, https://www.sciencedirect.
com/science/article/pii/S0888613X17305686

12. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector
regression machines. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neu-
ral Information Processing Systems, vol. 9. MIT Press (1996). https://proceedings.
neurips.cc/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf

13. Joki, K., Bagirov, A.M., Karmitsa, N., Mäkelä, M.M., Taheri, S.: Clus-
terwise support vector linear regression. Eur. J. Oper. Res. 287(1), 19–
35 (2020). https://doi.org/10.1016/j.ejor.2020.04.032, https://www.sciencedirect.
com/science/article/pii/S0377221720303830

https://doi.org/10.1016/j.atmosres.2017.01.003
https://www.sciencedirect.com/science/article/pii/S0169809517300285
https://www.sciencedirect.com/science/article/pii/S0169809517300285
https://doi.org/10.1016/j.ejor.2013.02.059
https://www.sciencedirect.com/science/article/pii/S0377221713002087
https://www.sciencedirect.com/science/article/pii/S0377221713002087
https://doi.org/10.1287/opre.1060.0360
https://doi.org/10.1287/opre.1060.0360
https://doi.org/10.1016/j.cor.2012.02.007
https://doi.org/10.1007/s00357-014-9155-x
https://doi.org/10.1007/s00357-014-9155-x
https://doi.org/10.1016/j.ejor.2011.01.016
https://www.sciencedirect.com/science/article/pii/S0377221711000191
https://www.sciencedirect.com/science/article/pii/S0377221711000191
http://www.jstor.org/stable/2984875
https://doi.org/10.1007/BF01897167
https://doi.org/10.1007/BF01897167
https://doi.org/10.1016/j.ijar.2017.09.006
https://www.sciencedirect.com/science/article/pii/S0888613X17305686
https://www.sciencedirect.com/science/article/pii/S0888613X17305686
https://proceedings.neurips.cc/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/d38901788c533e8286cb6400b40b386d-Paper.pdf
https://doi.org/10.1016/j.ejor.2020.04.032
https://www.sciencedirect.com/science/article/pii/S0377221720303830
https://www.sciencedirect.com/science/article/pii/S0377221720303830

Scalable and Near-Optimal ε-Tube Clusterwise Regression 263

14. Lau, K.N., Leung, P.l., Tse, K.K.: A mathematical programming approach to clus-
terwise regression model and its extensions. Eur. J. Oper. Res. 116(3), 640–652
(1999). https://EconPapers.repec.org/RePEc:eee:ejores:v:116:y:1999:i:3:p:640-652

15. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

16. Manwani, N., Sastry, P.: K-plane regression. Inf. Sci. 292(C), 39–56 (2015).
https://doi.org/10.1016/j.ins.2014.08.058

17. Olson, A.W., Zhang, K., Calderon-Figueroa, F., Yakubov, R., Sanner, S., Silver,
D., Arribas-Bel, D.: Classification and regression via integer optimization for neigh-
borhood change. Geogr. Anal. 53(2), 192–212 (2021)

18. Park, Y.W., Jiang, Y., Klabjan, D., Williams, L.: Algorithms for generalized clus-
terwise linear regression. INFORMS J. Comput. 29(2), 301–317 (2017)

19. Späth, H.: Clusterwise linear least absolute deviations regression. Computing
37(4), 371–377 (1986)

20. Späth, H.: Algorithm 39 clusterwise linear regression. Computing 22(4), 367–373
(1979). https://doi.org/10.1007/BF02265317

21. Späth, H.: A fast algorithm for clusterwise linear regression. Computing 29(2),
175–181 (1982). https://doi.org/10.1007/BF02249940

22. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999)

https://EconPapers.repec.org/RePEc:eee:ejores:v:116:y:1999:i:3:p:640-652
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1016/j.ins.2014.08.058
https://doi.org/10.1007/BF02265317
https://doi.org/10.1007/BF02249940

Branch & Learn with Post-hoc Correction
for Predict+Optimize with Unknown

Parameters in Constraints

Xinyi Hu1(B), Jasper C. H. Lee2(B), and Jimmy H. M. Lee1(B)

1 Department of Computer Science and Engineering, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong

xyhu@cse.cuhk.edu.hk, jasper.lee@wisc.edu
2 Department of Computer Sciences & Institute for Foundations of Data Science,

University of Wisconsin-Madison, Madison, WI, USA
jlee@cse.cuhk.edu.hk

Abstract. Combining machine learning and constrained optimization, Predict+
Optimize tackles optimization problems containing parameters that are unknown
at the time of solving. Prior works focus on cases with unknowns only in the
objectives. A new framework was recently proposed to cater for unknowns also in
constraints by introducing a loss function, called Post-hoc Regret, that takes into
account the cost of correcting an unsatisfiable prediction. Since Post-hoc Regret
is non-differentiable, the previous work computes only its approximation. While
the notion of Post-hoc Regret is general, its specific implementation is applicable
to only packing and covering linear programming problems. In this paper, we
first show how to compute Post-hoc Regret exactly for any optimization problem
solvable by a recursive algorithm satisfying simple conditions. Experimentation
demonstrates substantial improvement in the quality of solutions as compared
to the earlier approximation approach. Furthermore, we show experimentally the
empirical behavior of different combinations of correction and penalty functions
used in the Post-hoc Regret of the same benchmarks. Results provide insights for
defining the appropriate Post-hoc Regret in different application scenarios.

Keywords: Constraint Optimization · Machine Learning · Predict+Optimize

1 Introduction

Constraint optimization problems are ubiquitous and occur in many daily and indus-
trial applications [2,7,8]. In practice, constraint optimization problems can contain cer-
tain parameters which are unknown at the time of solving and require prediction based
on some historical records. For example, a train company needs to schedule a mini-
mal number of trains while meeting the passenger demand, but the precise demand is
unknown ahead of time and needs to be predicted. The task is to 1) predict the unknown
parameters, then 2) solve the optimization problem using the predicted parameters, such
that the resulting solutions are good even under true parameters. Traditionally, in the
prediction stage, machine learning models are trained with error metrics independent of
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 264–280, 2023.
https://doi.org/10.1007/978-3-031-33271-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_18&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_18

Branch & Learn with Post-hoc Correction 265

optimization problems, such as mean squared error. However, this kind of error metric
does not necessarily represent the performance of the resulted solutions. The predicted
parameters may in fact lead to a low-quality solution for the (true) optimization prob-
lem despite being “high-quality” for the error metric. Predict+Optimize instead trains
the prediction model with the more effective regret function, capturing the difference
in objective between the estimated and true optimal solutions, both evaluated using the
true parameters. The challenge is, regret, the new error metric, is piecewise constant
and non-differentiable [4], thus gradient-based methods do not apply.

A number of prior works [3–5,10,20] propose methods to overcome the non-
differentiability of regret, and they can be roughly divided into approximation and
exact methods. Approximation methods [5,20] compute the (approximate) gradients
of (approximations of) the regret function. They work not with the regret loss itself, but
an approximation of it. While novel, they are not always reliable. On the other hand,
exact methods [3,4,10] work directly with the regret to find a good prediction model,
even if the method cannot always find the global-optimum model for the training data
(e.g. if the method uses a local optimization method to find the output model). To over-
come the nondifferentiability of the regret, they exploit the structure of optimization
problems to train models without computing gradients, and can be applied to dynamic
programming solvable problems [4] and recursively solvable problems [10].

Despite the variety of approaches, most of the previous works [3–5,10,20] on Pre-
dict+Optimize handle problems with unknowns only in the objective. When constraints
contain also unknown parameters, one major challenge is that the estimated solution
may end up being infeasible under the true parameters—an issue inherent with uncer-
tainty in constraints. The regret function designed for fixed solution space is not applica-
ble in this situation. Hu et al. [9] propose a more general loss function called post-hoc
regret, in which an infeasible estimated solution is first corrected into a feasible one
(with respect to true parameters), and then the error of prediction is the sum of 1) the
objective difference between the true optimal solution and the feasible solution, and 2)
potential penalty incurred by correction. When unknown parameters only appear in the
objective, the post-hoc regret degenerates into the regret. The post-hoc regret is also
nondifferentiable, and Hu et al. further propose an approximation approach for packing
and covering linear programs [9]. However, exact approaches considering the post-hoc
regret remain uncovered.

The contributions of this paper are threefold. First, we propose the first exact app-
roach for Predict+Optimize with unknown parameters in both the objective and con-
straints. The proposed method is extended from Branch & Learn [10] and handles recur-
sively solvable problems with unknown constraints. Second, extensive experiments are
conducted to investigate the performance of post-hoc regret. We experimentally com-
pare the proposed method with the state-of-the-art approximation method [9] and inves-
tigate the performance of post-hoc regret on more general problems. Third, we empir-
ically study different combinations of the two key components of post-hoc regret, i.e.,
the correction function and the penalty function to gain insights for defining post-hoc
regret in different scenarios. Due to the page limit, we opted to present only part of the
experiment results. For the complete experiment results and analysis, as well as future
work, please refer to the extended version on arXiv with the same title.

266 X. Hu et al.

2 Background

Without loss of generality, we define an optimization problem (OP) P as finding:

x∗ = argmin
x

obj(x) s.t. C(x)

where x ∈ R
d is a vector of decision variables, obj : Rd → R is a real-valued objective

function in x which is to be minimized, and C is a set of constraints over x. We say x∗

is an optimal solution and obj(x∗) is the optimal value. A parameterized optimization
problem (Para-OP) P (θ) is an extension of an OP P :

x∗(θ) = argmin
x

obj(x, θ) s.t. C(x, θ)

where θ ∈ R
t is a vector of parameters. The objective obj(x, θ) and the constraints

C(x, θ) all depend on θ. An OP is a degenerated case of a Para-OP when there are no
unknowns.

The true parameters θ ∈ R
t for a Para-OP are hidden at the time of solving in

the Predict+Optimize (P+O) setting [3], and estimated parameters θ̂ are utilized in
their places. Suppose each parameter is estimated by m features. The estimation will
rely on a machine learning model trained over n observations of a training data set
{(A1, θ1), . . . , (An, θn)} where Ai ∈ R

t×m is a feature matrix for θi, in order to yield
a prediction function f : Rt×m → R

t predicting parameters θ̂ = f(A).
Solving the Para-OP under the estimated parameters, we can obtain an estimated

solution x∗(θ̂). When constraints contain unknown parameters, a big challenge is that
the feasible region is only approximated at solving time, and thus the estimated solu-
tion may be infeasible under the true parameters. Fortunately, some applications allow
us to correct an infeasible solution into a feasible one, after the true parameters are
revealed. Under these applications, Predict+Optimize can use a novel error measure-
ment, called Post-hoc Regret [9], to evaluate the quality of the estimated parameters θ̂.
The correction process can be formalized as a correction function, which takes an esti-
mated solution x∗(θ̂) and true parameters θ and returns a corrected solution x∗

corr(θ̂, θ)
that is feasible under θ. Although some scenarios may allow for post-hoc correct of an
estimated solution, some penalties may incur from such correction. A penalty function
Pen(x∗(θ̂) → x∗

corr(θ̂, θ)) takes an estimated solution x∗(θ̂) and the corrected solu-
tion x∗

corr(θ̂, θ) and returns a non-negative penalty. The choice of both the correction
function and the penalty function are problem and application-specific.

With respect to the corrected solution x∗
corr(θ̂, θ) and penalty function Pen, we are

now ready to define the Post-hoc Regret. The post-hoc regret contains two parts, one
is the objective difference between the true optimal solution x∗(θ) and the corrected
solution x∗

corr(θ̂, θ) under the true parameters θ, another one is the penalty that changing
from the estimated solution x∗(θ̂) to the corrected solution x∗

corr(θ̂, θ) will incur. The
Post-hoc Regret PReg(θ̂, θ) can be formally defined as:

PReg(θ̂, θ) = obj(x∗
corr(θ̂, θ), θ)−obj(x∗(θ), θ) + Pen(x∗(θ̂) → x∗

corr(θ̂, θ)) (1)

where obj(x∗
corr(θ̂, θ), θ) is the corrected optimal value and obj(x∗(θ), θ) is the true

optimal value.

Branch & Learn with Post-hoc Correction 267

When only the objective contains unknown parameters, Post-hoc Regret degener-
ates into the Regret function [5], which compares the difference between the objec-
tive value of the true optimal solution x∗(θ) and the estimated solution x∗(θ̂) under
true parameters θ. The regret function can be defined as: Reg(θ̂, θ) = obj(x∗(θ̂), θ) −
obj(x∗(θ), θ), where obj(x∗(θ̂), θ) is the estimated optimal value.

Following the empirical risk minimization principle, Hu et al. [9] choose the pre-
diction function to be the function f from the set of models F attaining the smallest
average post-hoc regret over the training data:

f∗ = argmin
f∈F

1
n

n∑

i=1

PReg(f(Ai), θi) (2)

For discrete OPs and linear programs, the Post-hoc Regret is non-differentiable. Hence,
traditional machine learning algorithms that rely on gradients are not applicable.

Branch & Learn (B&L) [10] is a Predict+Optimize framework for Para-OPs with
unknown parameters only in the objective, which can compute the Regret exactly. B&L
can handle optimization problems solvable with a recursive algorithm (under some
restrictions). In B&L, Hu et al. study the class F of linear prediction functions and
represent the solution structure of a Para-OP using (continuous) piecewise linear func-
tions. A piecewise linear function h is a real-valued function defined on a finite set of
(closed) intervals I(h) partitioning R. Each interval I ∈ I(h) is associated with a linear
function h[I] of the form h[I](r) = aIr + bI , and the value of h(r) for a real number
r ∈ R is given by h[I](r) where r ∈ I . An algebra can be canonically defined on piece-
wise linear functions [18]. For piecewise linear functions h and g, we define pointwise
addition as (h+g)(r) = h(r)+g(r) for all r ∈ R. Pointwise subtraction, max/min and
scalar products are similarly defined. All five operations can be computed efficiently by
iterating over intervals of the operands [4].

This work is extended from B&L and in the rest of the paper, following the assump-
tion in B&L, we assume that the prediction function f is a linear mapping of the form
f(A) = Aα for some m-dimensional vector of coefficients α ∈ R

m.

3 Branch & Learn with Post-hoc Correction

In this section, we extend B&L to cater for unknown parameters also in constraints,
and call the extended framework Branch & Learn with post-hoc correction (B&L-C).
Post-hoc regret is used as the error metric.

To solve Problem 2, following the approach of Hu et al. [10], we update coefficients
α of f iteratively via coordinate descent (Algorithm 1). The algorithm starts with an
arbitrary initialization of α, and updates each coefficient in a round-robin fashion. Each
iteration (Lines 3–11) contains four functions. Construct constructs a Para-OP as a
function of the free coefficient, fixing the other coefficients in α, with an initial domain
I0. Convert returns a piecewise function of the free coefficient from the Para-OP,
and each interval of the function corresponds to one or a set of estimated solution(s).
Correct takes the returned piecewise function from Convert and the true parame-
ters as inputs. Then makes the post-hoc correction, and returns a piecewise function of

268 X. Hu et al.

Algorithm 1: Branch & Learn with Post-hoc Correction

Input: A Para-COP P (θ) and a training data set {(A1, θ1), . . . , (An, θn)}
Output: a coefficient vector α ∈ R

m

1 Initialize α arbitrarily and k ← 0;
2 while not converged ∧ resources remain do
3 k ← (k mod m) + 1;
4 Initialize L to be the zero constant function;
5 for i ∈ [1, 2, . . . , n] do
6 (P i

γ , I0) ← Construct(P (θ), k, Ai);
7 Ei(γ) ← Convert(P i

γ , I0);
8 Ci(γ) ← Correct(Ei, θi, I0);
9 Li(γ) ← Evaluate(Ei, Ci, θi, I0);

10 L(γ) ← L(γ) + Li(γ);

11 αk ← argminγ∈R
L(γ)*;

12 return α;

the free coefficient from the Para-OP. Each interval of the function corresponds to a data
structure representing one or a set of corrected solution(s). Evaluate takes the two
returned functions from Convert and Correct, and the true parameters as inputs.
Then computes the corrected optimal value and the penalty, and obtains the post-hoc
regret as a piecewise function of the free coefficient.

Let us describe lines 3–11 in Algorithm 1 in more detail. In each iteration (Lines
3–11), a coefficient αk is updated. Iterating over index k ∈ {1, . . . ,m}, we replace αk

in α with a variable γ ∈ R by constructing α + (γ − αk)ek, where ek is a unit vector
for coordinate k. In Lines 5–11, we wish to update αk as:

αk ← argmin
γ∈R

n∑

i=1

PReg(Aiekγ + Ai(α − αkek), θi)

For notational convenience, let ai = Aiek ∈ R
m and bi = Ai(α−αkek) ∈ R

m, which
are vectors independent of the free variable γ.

Construct synthesizes the Para-OP

P i
γ ≡ x∗(aiγ + bi) = argmin

x
obj(x, aiγ + bi) s.t. C(x, aiγ + bi)

Sometimes, the Para-OP can also have an initial domain I0 �= R for γ.
Convert takes P i

γ to create a function Ei mapping γ to the estimated objective
Ei(γ) = obj(x∗(aiγ + bi), aiγ + bi). Associated with each interval I ∈ I(Ei(γ)), a
linear function maps γ to the objective computed with the estimated parameters aiγ +
bi. When the unknown parameters only appear in the objective, the estimated solution
x∗(aiγ+bi) remains the same in each interval I [3,4], i.e., each interval corresponds to
one estimated solution. However, when the unknown parameters appear in constraints,
the estimated solution may not remain the same in each interval I . If the estimated
solution changes in one interval, one interval corresponds to a set of estimated solutions.

Branch & Learn with Post-hoc Correction 269

Whether the estimated solution will remain the same in each interval depends on the
optimization problem and the positions of the unknown parameters. In Sect. 4, we show
two examples that the estimated solution will remain the same in each interval and one
example that the estimated solution will change in each interval.

Correct implements the correction function in the post-hoc regret. It takes the
returned piecewise function Ei(γ) from Convert and the true parameters θi as inputs.
For each interval I ∈ I(Ei(γ)), one or a set of estimated solution(s) x∗(aiγ + bi)
can be obtained. Correct makes the post-hoc correction with the true parameters
θi, and creates a function Ci mapping γ to the corrected optimal value Ci(γ) =
obj(x∗

corr(a
iγ + bi, θi), θi). Each interval I ∈ I(Ci(γ)) corresponds to one or a set

of corrected solution(s) x∗
corr(a

iγ + bi, θi). Whether the corrected solution will remain
the same in each interval I depends on the correction function. Besides, the form of the
returned function Ci(γ) depends on the correction function.

Evaluate takes the returned function from Convert, the returned function from
Correct, and the true parameters as inputs. It computes the corrected optimal value
and the penalty, and obtains the post-hoc regret Li for each γ, i.e.

Li[I] = PReg(aiγ + bi, θi) = obj(x∗
corr(a

iγ + bi, θi), θi) − obj(x∗(θi), θi)

+ Pen(x∗(aiγ + bi) → x∗
corr(a

iγ + bi, θ))

When the unknown parameters only appear in objectives, the post-hoc regret func-
tion Li returned from Evaluate is always a piecewise constant function of the free
coefficient [3,4,10]. It is straightforward to compute the sum of two piecewise constant
functions and update the coefficient (Lines 10–11 in Algorithm 1). However, when the
unknown parameters appear in constraints, the form of the post-hoc regret function Li

returned from Evaluate depends on the correction function and the penalty function,
which are both problem and application specific. Under different scenarios, the post-hoc
regret function may even be a piecewise nonlinear function, which leads to a technical
obstacle: how to sum up two piecewise nonlinear functions and find the minimum of
the resulted function efficiently. We will discuss this obstacle in Sect. 4.

While coordinate descent is a standard technique, a challenge of using this frame-
work is how to construct Convert for an algorithm. B&L presents a standard tem-
plate for recursive algorithms and shows how to cleanly adapt a recursive algorithm to
Convert. We use their template to construct Convert here. Therefore, the proposed
B&L-C framework has the same restrictions on the optimization problems as the B&L.

4 Case Studies

4.1 Maximum Flow with Unknown Edge Capacities

We first demonstrate, using the example of the maximum flow problem (MFP), how
our framework can solve problems solvable by a state-of-the-art approximation method
(IntOpt-C) [9]. The problem aims to find the largest possible flow sent from a source s
to a terminal t in a directed graph, under the constraints that the flow sent on each edge
cannot exceed the edge capacity.

Using the template proposed in B&L [10], we adapt the Edmonds-Karp algo-
rithm [19] to Convert, which recursively finds an unblocking path with remaining

270 X. Hu et al.

capacity and sends a flow such that at least one edge along the path is saturated. The
estimated solution x∗(aiγ+bi) of MFP is the flows sent through each path and therefore
will change with the capacities of saturated edges. In each interval of Ei(γ) returned by
Convert, the saturated edges remain the same, but the estimated solution will change
when γ changes. When the edge capacities are unknown, we need to consider a case
where the flow computed with the estimated capacities might exceed the true capacities
of some edges. We consider two possible correction functions:

– Correction Function A: given an infeasible estimated solution x∗, find the largest
λ ∈ [0, 1] such that λx∗ satisfies the constraints under the true parameters.
Note that Correction Function A is the same as the one used in IntOpt-C [9], which
is designed for packing linear programs. By using the same correction function, we
can investigate the performance difference between B&L-C and IntOpt-C.

– Correction Function B: re-compute the blocking flows of the chosen paths in the
infeasible estimated solution with the true capacities, and then augment the paths one
by one with the re-computed blocking flows. The ordering of path augmentation
is important but computing the best order requires O(n!) time. We can adopt an
approximate method: the paths are augmented according to the order of the path
augmentation of the Edmonds-Karp algorithm.

Using Correction Function B, augmenting the chosen paths by their blocking flows
one by one may lead to a situation that, since some edges are shared by several paths,
they may be blocked before some paths are used. Thus the blocking flows of some
chosen paths in the estimated solution may be zero and these chosen paths are wasted.
Therefore, we propose a penalty function:

– Penalty Function I: whenever a chosen path in the estimated solution is wasted,
deduct K units of flow.

Penalty Function I is not needed if Correction Function A is used, since the true capac-
ities are all positive, λ will not be zero in this problem and no chosen paths in the
estimated solution will be wasted.

Using Correction Function A, the corrected solution x∗
corr(a

iγ + bi, θi) will not
remain the same in each interval I ∈ I(Ci(γ)) either, where Ci(γ) is the piece-
wise rational linear function returned from Convert. Since the true optimal value
obj(x∗(θi), θi) is a constant value, the post-hoc regret function L(γ) returned from
Evaluate is a piecewise rational linear function. This will lead to the technical obsta-
cle mentioned in Sect. 3: how to sum up two piecewise rational linear functions and find
the minimum of the resulting piecewise rational linear function efficiently. In this work,
we deal with this obstacle by using grid search.

Using Correction Function B, the corrected solution x∗
corr(a

iγ+ bi, θi) remains the
same in each interval I ∈ I(Ci(γ)), where Ci(γ) is the piecewise constant function
returned from Convert. Using Penalty Function I, Pen(x∗(aiγ + bi) → x∗

corr(a
iγ +

bi, θi)) is also a piecewise constant function. Therefore, the post-hoc regret function
L(γ) returned from Evaluate is a piecewise constant function, and we can easily sum
up two piecewise constant functions and minimizes L(γ) in Lines 9 and 10 respectively
in Algorithm 1.

Branch & Learn with Post-hoc Correction 271

4.2 0-1 Knapsack with Unknown Weights

In the second example, we showcase our framework on a packing integer programming
problem, the 0-1 knapsack problem, which can be handled by our framework straight-
forwardly but not by IntOpt-C. Given a set of items, each with a weight wi and a value
vi, and a knapsack with a maximum capacity C. The aim is to maximize the total value
of the selected items under the constraint that the total weight of the selected items is
less than or equal to the maximum capacity. Using the template proposed in B&L [10],
we adapt the branching algorithm for the 0-1 knapsack problem to Convert. The
estimated solution x∗(aiγ + bi) is a set of the selected items. In each interval of Ei(γ)
returned by Convert, the set of the selected items, i.e., the estimated solution, remains
the same. When the weights are unknown, we need to consider a case where the items
are selected with the estimated weights, but the total true weights might exceed the
capacity. We propose three correction functions here:

– Correction Function A: remove the selected items in the estimated solution one by
one in increasing order of the ratios of value/weight until the capacity is sufficient.

– Correction Function B: remove the selected items in the estimated solution one by
one in decreasing order of the weights until the capacity is sufficient.

– Correction Function C: remove all the selected items in the estimated solution
when it is infeasible.

Removing selected items from the knapsack may incur some removal fees, which
are formulated as the penalty function here. We consider two possible penalty functions:

– Penalty Function I: when the ith item is removed from the estimated solution, σivi

units of value is deducted, where σ ≥ 0 is a non-negative tunable vector.
– Penalty Function II: whenever a selected item in the estimated solution is removed,

K units of value is deducted, where K is a constant.

Since the solution set is discrete and finite, the estimated solution x∗(aiγ + bi)
remains the same in each interval I ∈ I(Ei(γ)), where Ei(γ) is the piecewise linear
function returned from Convert. Using the above three correction functions, the cor-
rected solution x∗

corr(a
iγ + bi, θi) remains the same in each interval I ∈ I(Ci(γ)),

where Ci(γ) is the piecewise constant function returned from Convert. Using the
above two penalty functions, Pen(x∗(aiγ + bi) → x∗

corr(a
iγ + bi, θi)) is also a piece-

wise constant function. Therefore, the post-hoc regret function L(γ) returned from
Evaluate is a piecewise constant function, and we can easily sum up two piecewise
constant functions and minimizes L(γ) in Lines 9 and 10 respectively in Algorithm 1.

4.3 Minimum Cost Vertex Cover with Unknown Costs and Edge Values

Our last example is a variant of the minimum cost vertex cover (MCVC) problem, where
we show how to apply our framework to an optimization problem that has unknown
parameters in both the objective and the constraints. This problem is also not solvable
by IntOpt-C. Given a graph G = (V,E), there is an associated cost c ∈ R

|V | denoting
the cost of picking each vertex, as well as edge values � ∈ R

|E|, one real value for each

272 X. Hu et al.

edge. Both the costs and edge values are unknown parameters. The goal is to pick a
subset of vertices, minimizing the total cost, subject to the constraint that for all edges
except the one with the smallest edge value, the edge needs to be covered, namely at
least one of the two vertices on the edge needs to be picked. This problem is relevant in
applications such as building public facilities. Consider, for example, the graph being a
road network with edge values being traffic flow, and we wish to build speed cameras at
intersections with minimum cost, while covering all the roads except the one with the
least traffic.

Using the template proposed in B&L [10], we adapt the branching algorithm for the
MCVC to Convert. The estimated solution x∗(aiγ+bi) is a set of the picked vertices.
In each interval of Ei(γ) returned by Convert, the set of the picked vertices, i.e., the
estimated solution, remains the same. When the edge values are unknown, the estimated
edge values might cause an edge to be wrongly removed. The selected vertices might
not cover all the edges that need to be covered. We thus propose one correction function:

– Correction Function A: if there is an edge not covered by the selected vertices, add
both of the edge endpoints to the selection.

Since the solution set is discrete and finite, the estimated solution x∗(aiγ + bi)
remains the same in each interval I ∈ I(Ei(γ)), where Ei(γ) is the piecewise linear
function returned from Convert. Using Correction Function A, the corrected solution
x∗

corr(a
iγ + bi, θi) remains the same in each interval I ∈ I(Ci(γ)), where Ci(γ) is

the piecewise constant function returned from Convert. Since there is no penalty
function in this example, Pen(x∗(aiγ + bi) → x∗

corr(a
iγ + bi, θi)) = 0 is a constant

function. Therefore, the post-hoc regret function L(γ) returned from Evaluate is a
piecewise constant function, and we can easily sum up two piecewise constant functions
and minimizes L(γ) in Lines 9 and 10 respectively in Algorithm 1.

5 Experimental Evaluation

In this section, we evaluate the proposed B&L-C framework and the post-hoc regret
function on the three optimization problems mentioned in Sect. 4. We compare the
proposed framework (B&L-C) with 7 different methods: the B&L framework [10], a
state-of-the-art approximation method (IntOpt-C) [9], and 5 classical regression meth-
ods including linear regression (LR), k-nearest neighbors (k-NN), classification and
regression tree (CART), random forest (RF) and neural network (NN) [6]. Below we
briefly discuss the experiment setting of each problem:

MFP with Unknown Edge Capacities. Our aim is to use this problem to compare the
proposed B&L-C framework with IntOpt-C [9]. Therefore, we use the same dataset and
follow the experiment setting in the work of IntOpt-C. The real-life dataset [17] is used
on three real-life graphs: POLSKA [15], with 12 vertices and 18 edges, USANet [13],
with 24 vertices and 43 edges, and GÉANT [12], with 40 vertices and 61 edges. In
this dataset, each unknown edge capacity is related to 8 features. Following the setting
in IntOpt-C, we divide the dataset into two sets: training and test. For experiments on

Branch & Learn with Post-hoc Correction 273

POLSKA and USANet, 610 instances are used for training and 179 instances for testing
the model performance, while for experiments on GÉANT, 490 instances are used for
training and 130 instances for testing the model performance.

0-1 Knapsack with Unknown Weights. In this experiment, each instance consists of
10 items. The weightsW will be predicted from data, while values V and capacityC are
given. Given that we are unable to find datasets specifically for the 0-1 knapsack prob-
lem, we follow the experimental approach in the previous works of P+O [10,14] and use
real data from a different problem (the ICON scheduling competition) [17] as numeri-
cal values required for our experiment instances. In this dataset, each unknown weight
is related to 8 features. We use a 70%/30% training/testing data split: 210 instances are
used for training and 90 instances for testing the model performance.

We generate the values following the generation method proposed by Pisinger [16],
which is widely used to generate knapsack data [1,11]. Three groups of values, which
are uncorrelated, weakly correlated, and almost strongly correlated with the weights,
are considered. Suppose the value of the ith item is vi, the weight of the ith item is wi.
These 3 groups of values are generated as: 1) uncorrelated: vi is randomly chosen in
[1, R], 2) weakly correlated: vi is randomly chosen in [max{1, wi−R/10}, wi+R/10],
3) almost strongly correlated: vi is randomly chosen in [wi + R/10 − R/500, wi +
R/10 + R/500], where R is set to be 500 since the weights in the dataset are around
40 to 60. Since the average total weight of each instance is around 400, we conduct
experiments on the 0-1 knapsack problem with 100, 200, and 300 capacities. The σ in
Penalty Function I is set to be 0.1 and K in Penalty Function II is set to be 500.

MCVCwith Unknown Costs and Edge Values. Since the MCVC is an NP-hard prob-
lem, we conduct experiments on two small graphs from the Survivable Network Design
Library [15]: ABILENE, with 12 vertices and 15 edges, and PDH, with 11 vertices
and 34 edges. Given that we are unable to find datasets specifically for the MCVC, we
use the same real data from the ICON scheduling competition [17] as numerical values
required for our experiment instances. We use a 70%/30% training/testing data split:
210 instances are used for training and 90 instances for testing the model performance.

5.1 B&L-C Versus IntOpt-C

In the first experiment, we compare our exact method (B&L-C) against an approxima-
tion method (IntOpt-C) in terms of solution quality and runtime. We conduct exper-
iments on the MFP with unknown edge capacities, which can be solved by both the
approximation method IntOpt-C [9] and the proposed exact method B&L-C. Following
the experiment setting in IntOpt-C [9], Correction Function A is used and there is no
penalty function here. We run 10 simulations on each graph and compare the solution
quality and the runtime of each method.

Table 1 reports the mean post-hoc regrets and standard deviations for each app-
roach. At the bottom of the table, we also report the average True Optimal Values
(TOV) for reference. Note that B&L performs training with the regret but the testing is

274 X. Hu et al.

Table 1.Mean post-hoc regrets and standard deviations for the MFP with unknown edge capaci-
ties using Correction Function A and no penalty function.

PReg POLSKA USANet GÉANT

B&L-C 9.07 ± 0.67 14.44 ± 1.12 10.18 ± 1.02

B&L 17.01±2.00 21.79±1.53 17.04±2.11

IntOpt-C 10.00±0.67 16.64±1.34 10.84±1.10

Ridge 11.20±0.73 19.52±1.16 12.47±1.14

k-NN 14.39±0.83 22.89±1.58 15.13±1.08

CART 16.65±1.06 24.15±1.51 17.01±1.59

RF 12.30±0.90 22.27±1.34 12.52±1.19

NN 12.18±1.08 18.62±1.23 12.05±1.13

TOV 88.66±1.10 96.22±1.38 98.71±1.98

Table 2. Average runtimes (in seconds) for the MFP with unknown edge capacities.

Runtime(s) POLSKA USANet GÉANT

B&L-C 66.54 411.67 48.32

B&L 40.30 288.43 29.90

IntOpt-C 18.65 132.22 15.48

with the post-hoc regret, while B&L-C and IntOpt-C use post-hoc regret in both train-
ing and testing. The results show that B&L-C always achieves the best performance,
while IntOpt-C achieves the second-best performance in all cases. Compared with
IntOpt-C, B&L-C obtains 9.29% smaller regret on POLSKA, 13.20% smaller regret on
USANet, and 6.08% smaller regret on GÉANT. Considering the relative error, B&L-
C achieves 10.23%, 15.01%, and 10.31% relative error on POLSKA, USANet, and
GÉANT respectively. We also observe that using regret as the loss function, B&L does
not have a better performance than the classical regression methods when the unknown
parameters appear in constraints. Table 2 shows the average runtimes of B&L-C using
Correction Function A, B&L, and IntOpt-C. Here, the runtime refers to the training
time of the prediction model. The results show that the runtime of B&L-C using Cor-
rection Function A is larger than that of IntOpt-C, while the runtime of B&L is not
that much larger than that of IntOpt-C. The reason is that, in this problem, the post-
hoc regret function using Correction Function A is a piecewise rational linear function,
while the regret function is a piecewise linear function. To compute the minimum of a
piecewise rational linear function, grid search is used and is quite time-consuming. But
the minimum of a piecewise linear function can be computed easily and grid search is
not needed.

In conclusion, we observe that B&L-C can achieve much better solution quality but
need longer runtime than IntOpt-C.

Branch & Learn with Post-hoc Correction 275

5.2 Post-hoc Regret on More General Problems

IntOpt-C is only applicable for packing and covering linear programming problems. We
investigate the performance of post-hoc regret on two integer programming problems:
0–1 knapsack with unknown weights, and a variant of MCVC with unknown costs and
edge values, both of which cannot be solved by IntOpt-C.

0-1 Knapsack with Unknown Weights. In this experiment, we use Correction Func-
tion A and Penalty Function I as an example, to show that the B&L-C framework can
deal with 0-1 knapsack with unknown weights. Table 3 reports the solution qualities for

Table 3. Mean post-hoc regrets and standard deviations for the 0-1 knapsack problem with
unknown weights and 3 groups of values using Correction Function A with Penalty Function I.

Preg Cap=100 Cap=200 Cap=300

Uncorrelated B&L-C 112.66 ± 19.70 91.45 ± 9.43 53.90 ± 8.33

B&L 165.57±18.35 199.02±48.07 123.06±25.26

Ridge 175.05±24.22 201.00±24.52 145.73±23.04

k-NN 188.73±22.95 239.83±30.24 189.11±37.25

CART 185.33±22.53 215.83±24.14 174.44±22.06

RF 179.34±21.99 213.53±23.63 159.27±29.35

NN 159.75±40.05 172.87±74.31 120.21±70.43

TOV 942.76±37.06 1712.67±41.63 2174.50±42.63

Weakly
Correlated

B&L-C 20.81 ± 2.61 18.88 ± 1.56 12.91 ± 1.16

B&L 31.73±6.56 36.45±6.36 25.31±5.65

Ridge 28.98±3.39 36.00±3.81 26.81±2.40

k-NN 31.22±3.93 42.00±4.95 34.32±5.08

CART 31.61±4.68 38.80±3.72 31.83±3.49

RF 30.04±4.08 38.05±4.94 29.34±3.51

NN 27.08±5.11 31.18±11.57 22.12±9.80

TOV 165.96±4.62 309.28±4.69 397.94±5.77

Almost
Strongly
Correlated

B&L-C 44.62 ± 4.01 59.77 ± 3.91 43.93 ± 3.41

B&L 51.95±5.17 84.11±13.64 97.72±22.87

Ridge 49.98±3.47 82.92±8.01 96.53±10.61

k-NN 51.73±3.38 87.15±7.68 110.98±12.66

CART 52.40±4.48 81.02±6.73 101.58±8.95

RF 50.75±4.29 80.72±9.87 98.31±12.44

NN 50.11±3.63 75.34±18.42 85.56±32.39

TOV 209.40±5.92 441.17±9.05 654.16±10.99

276 X. Hu et al.

each approach across 10 runs on 0-1 knapsack problem with unknown weights and 3
different groups of values (uncorrelated, weakly correlated, and almost strongly corre-
lated).

As shown in Table 3, B&L-C has the smallest mean post-hoc regrets in all cases.
In the experiments on uncorrelated values, B&L-C obtains at least 29.48%, 47.10%,
and 55.16% when the capacity is 100, 200, and 300 respectively. In the experiments
on weakly correlated values, B&L-C obtains at least 23.13%, 39.45%, and 41.61%
when the capacity is 100, 200, and 300 respectively. In the experiments on almost
strongly correlated values, B&L-C obtains at least 10.72%, 20.67%, and 48.65% when
the capacity is 100, 200, and 300 respectively. These results indicate that using Cor-
rection Function A, when the capacity grows larger, the advantage of B&L-C is more
evident.

We also report the relative errors in these experiments. In the experiments on uncor-
related values, B&L-C achieves 11.95%, 5.34%, and 2.48% relative error when the
capacity is 100, 200, and 300 respectively. In the experiments on weakly correlated val-
ues, B&L-C achieves 12.54%, 6.10%, and 3.25% relative error when the capacity is
100, 200, and 300 respectively. In the experiments on almost strongly correlated values,
B&L-C achieves 21.31%, 13.55%, and 6.72% relative error when the capacity is 100,
200, and 300 respectively. These results indicate that when the values are more correla-
tive with the weights, the relative error is larger. Besides, using Correction Function A,
the relative error becomes smaller when the capacity grows larger.

Table 4. Mean post-hoc regrets and
standard deviations for the MCVC with
unknown costs and edge values.

PReg ABILENE PDH

B&L-C 11.83 ± 2.79 55.94 ± 8.46

B&L 15.26±3.56 73.6±8.55

Ridge 19.3±3.05 65.23±6.76

k-NN 33.08±4.55 70.52±6.72

CART 28.6±5.67 66.03±7.39

RF 27.91±4.25 65.29±8.01

NN 14.14±2.42 70.65±5.69

TOV 275.33±5.43 491.18±12.75

Table 5. Mean post-hoc regrets and standard devi-
ations for the MFP with unknown edge capacities
using Correction Function B without/with Penalty
Function I.

PReg Correction Function B Correction Function B
& Penalty Function I

POLSKA USANet GÉANT POLSKA USANet GÉANT

B&L-C 1.41 ± 0.26 4.49 ± 0.67 1.03 ± 0.24 6.14 ± 1.08 16.89 ± 1.10 2.04 ± 0.27

B&L 1.51±0.30 10.09±1.37 5.82±1.68 8.59±0.45 20.89±1.55 7.00±2.01

Ridge 1.52±0.30 7.11±0.88 1.20±0.34 8.54±0.47 18.72±1.10 2.47±0.27

k-NN 2.42±0.36 8.03±0.86 1.47±0.52 8.22±0.53 23.57±1.04 3.10±0.46

CART 3.29±0.69 10.84±1.28 1.75±0.52 8.13±0.88 28.79±1.96 3.71±0.82

RF 1.81±0.33 8.72±1.19 1.27±0.41 7.27±0.52 21.30±1.36 2.54±0.44

NN 1.83±0.29 5.52±0.73 1.22±0.37 8.95±0.44 18.98±1.02 2.45±0.54

TOV 88.66±1.10 96.22±1.38 98.71±1.98 88.66±1.10 96.22±1.38 98.71±1.98

MCVC with Unknown Costs and Edge Values. Table 4 shows the solution qualities
for each approach across 10 runs on the MCVC experiment. B&L-C achieves the best
performance in both of the two graphs. B&L-C obtains at 16.13%-64.24% smaller post-
hoc regret in ABILENE, and 14.24%-23.99% in PDH. Considering the relative error,
B&L-C achieves 4.30% relative error in ABILENE, and 11.39% relative error in PDH.

5.3 Different Combinations of Correction Functions and Penalty Functions

The correction function and the penalty function are problem and application-specific.
Even in the same problem but different scenarios, the correction function and the

Branch & Learn with Post-hoc Correction 277

penalty function could be different. Here, we try out different combinations of cor-
rection functions and penalty functions in the same problem to provide insights for
defining the appropriate post-hoc regret.

MFP with Unknown Edge Capacities. We conduct experiments on the MFP using
Correction Function B with/without Penalty Function I. The experiment results are
shown in Table 5. Since the correction function is changed, the gradient of the post-
hoc regret with respect to edge capacities is also changed and thus IntOpt-C cannot be
used.

First, to compare the performance of post-hoc regret with different correction func-
tions, we compare the results of using Correction Function A and B in Tables 1 and 5
respectively. Table 5 shows that B&L-C always achieves the best performance. Com-
pared with other methods, B&L-C obtains at least 7.03% smaller regret on POLSKA,
18.50% smaller regret on USANet, and 14.19% smaller regret on GÉANT. Considering
the relative error, B&L-C achieves 1.59%, 4.67%, and 1.04% relative error on POL-
SKA, USANet, and GÉANT respectively. The results show that B&L-C using Correc-
tion Function B can achieve smaller mean post-hoc regret than B&L-C using Correction
Function A, which indicates that using Correction Function B is more suitable.

Second, we investigate the performance of post-hoc regret when using penalty func-
tions on the MFP. Due to the page limit, we opted to present only one value of K, which
is the units of flow to be deducted. Here, K is set to be 10. For experiment results and
analysis on K = {30, 50}, please refer to the extended version on arXiv with the same
title. Results in Table 5 show that when using Correction Function B & Penalty Func-
tion I, B&L-C also achieves the best performance on all of the three graphs. Since the
penalty term exists and is always non-negative, the mean post-hoc regrets here are larger
than the mean post-hoc regrets of using Correction Function B without a penalty func-
tion. Compared with other methods, B&L-C obtains at least 15.46% smaller regret on
POLSKA, 9.79% smaller regret on USANet, and 16.47% smaller regret on GÉANT.
Considering the relative error, B&L-C achieves 6.93%, 17.53%, and 2.07% relative
error on POLSKA, USANet, and GÉANT respectively.

Table 6.Mean post-hoc regrets and standard deviations for the 0-1 knapsack problemwith weakly
correlated values using different correction functions with Penalty Function I.

PReg Corection Function B Correction Function C

Cap=100 Cap=200 Cap=300 Cap=100 Cap=200 Cap=300

B&L-C 24.25 ± 2.59 32.87 ± 3.55 31.70 ± 1.89 53.48 ± 5.27 116.56 ± 14.06 130.79 ± 9.80

B&L 32.59±6.32 40.24±5.31 36.35±5.72 58.67±7.41 124.67±23.56 174.70±26.32

Ridge 29.88±3.22 39.62±3.60 36.27±2.33 55.31±7.29 124.23±14.73 160.04±20.54

k-NN 32.96±3.72 45.98±4.16 41.73±4.11 62.72±6.63 123.12±14.03 153.48±21.53

CART 35.14±4.71 45.79±4.37 42.28±2.79 70.97±11.57 141.80±19.47 171.11±23.31

RF 32.83±3.97 43.51±4.91 37.30±2.37 64.01±11.51 126.48±22.04 158.52±26.99

NN 28.60±4.58 39.05±8.02 38.52±11.05 74.05±28.73 163.71±64.50 213.17±80.20

TOV 165.96±4.62 309.28±4.69 397.94±5.77 165.96±4.62 309.28±4.69 397.94±5.77

278 X. Hu et al.

0-1 Knapsack with Unknown Weights. Experiments on weakly correlated values are
conducted as examples to show the performance difference of post-hoc regret when
using different correction functions and penalty functions in the 0-1 knapsack problem.

First, to compare the performance when using different correction functions, we fix
the penalty function as Penalty Function I. Experiments on 0-1 knapsack using Correc-
tion Function A & Penalty Function I are conducted in Sect. 5.1, and we only conduct
experiments using Correction Function B and C here. The results are shown in Table 6.
B&L-C outperforms other approaches. Besides, the mean post-hoc regrets achieved
by B&L-C using Correction Functions B and C are both larger than that achieved by
B&L-C using Correction Function A, which indicates that when using Penalty Function
I, Correction Function A is more suitable than Correction Functions B and C.

Second, to compare the performance when using different penalty functions, we
conduct experiments using Penalty Function II and Correction Function A, B, and C
respectively. Experiment results are shown in Table 7. As Table 7 shows, B&L-C outper-
forms other approaches. The results show that when using Penalty Function II, B&L-C

Table 7. Mean post-hoc regrets and standard deviations for the 0-1 knapsack problem with
unknown weights and weakly correlated values using Penalty Function II.

PReg Cap=100 Cap=200 Cap=300

Correction
Function A

B&L-C 127.13 ± 27.52 202.99 ± 48.62 231.32 ± 58.74

B&L 280.65±73.44 482.37±134.13 668.78±167.01

Ridge 263.55±68.79 439.81±101.30 608.07±121.73

k-NN 323.26±67.78 445.81±119.63 566.84±159.66

CART 566.15±188.48 687.51±184.25 697.52±176.48

RF 378.68±131.24 536.21±170.43 613.09±153.58

NN 357.23±121.00 614.05±191.50 608.49±200.71

Correction
Function B

B&L-C 127.24 ± 27.60 186.84 ± 37.45 193.92 ± 39.52

B&L 281.43±73.56 491.13±158.54 726.18±175.94

Ridge 264.37±68.94 435.33±97.59 596.34±121.07

k-NN 323.73±66.71 437.21±115.41 556.91±159.57

CART 563.81±187.58 676.10±180.67 685.91±176.05

RF 380.11±±132.23 527.84±163.75 595.89±151.56

NN 356.05±119.96 552.03±217.25 592.49±190.67

Correction
Function C

B&L-C 173.12 ± 43.50 255.03 ± 73.81 335.59 ± 82.28

B&L 566.25±155.93 1546.77±518.46 2736.39±628.02

Ridge 543.03±149.36 1472.25±283.24 2328.08±430.10

k-NN 658.57±156.24 1376.22±322.83 2069.61±493.77

CART 1030.83±320.56 1991.15±453.46 2581.91±509.94

RF 775.12±270.11 1623.26±483.81 2322.75±582.54

NN 697.35±269.30 1890.08±712.55 2485.80±892.67

TOV 165.96±4.62 309.28±4.69 397.94±5.77

Branch & Learn with Post-hoc Correction 279

using Correction Function B achieves smaller mean post-hoc regret than B&L-C using
Correction Function A or C. This indicates that when using Penalty Function II, Cor-
rection Function B is more suitable to be used. The reason for this phenomenon lies in
the definitions of Penalty Function II and Correction Function B. In Penalty Function II,
removing more items leads to a larger penalty, while Correction Function B removes the
selected items in the estimated solution one by one in decreasing order of the weights,
thus will remove fewer items than Correction Functions A and C. We also notice that
when the capacity is 100, B&L-C using Correction Function A outperforms B&L-C
using Correction Function B. We give the explanation below. Since the average weight
of the items is around 40 to 60, when the capacity is 100, the number of the selected
items in the estimated solution and the number of the removal items from the post-hoc
correction are both very small and the latter ones in Correction Function A and B may
be almost the same. Under this situation, the penalty terms (Pen(x∗(θ̂) → x∗

corr(θ̂, θ)))
of using Correction Functions A and B in the post-hoc regret function are almost the
same, then selecting items with higher value and has larger corrected optimal value
(obj(x∗

corr(θ̂, θ), θ)) can achieve smaller post-hoc regret. Therefore, B&L-C using Cor-
rection Function A performs better.

6 Conclusion

We propose the first exact method for Predict+Optimize with unknown parameters in
both the objective and constraints. The proposed framework is an extension of Branch
& Learn, a framework for problems with only unknown objectives, and can handle
recursively and iteratively solvable problems. Extensive experiments are conducted to
compare the proposed method with the state-of-the-art Predict+Optimize approach and
investigate the performance of the post-hoc regret on more general problems. Further-
more, we empirically study different combinations of correction functions and penalty
functions to gain insights for defining post-hoc regret in different scenarios.

Acknowledgments. We thank the anonymous referees for their constructive comments. In addi-
tion, Xinyi Hu and Jimmy H.M. Lee acknowledge the financial support of a General Research
Fund (RGC Ref. No. CUHK 14206321) by the University Grants Committee, Hong Kong. Jasper
C.H. Lee was supported in part by the generous funding of a Croucher Fellowship for Postdoc-
toral Research, NSF award DMS-2023239, NSF Medium Award CCF-2107079 and NSF AiTF
Award CCF-2006206.

References

1. Cappart, Q., Moisan, T., Rousseau, L.M., Prémont-Schwarz, I., Cire, A.A.: Combining rein-
forcement learning and constraint programming for combinatorial optimization. In: Proceed-
ings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, vol. 35, pp. 3677–3687
(2021)

2. Collet, M., Gotlieb, A., Lazaar, N., Carlsson, M., Marijan, D., Mossige, M.: RobTest: a CP
approach to generate maximal test trajectories for industrial robots. In: Simonis, H. (ed.) CP
2020. LNCS, vol. 12333, pp. 707–723. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-58475-7 41

https://doi.org/10.1007/978-3-030-58475-7_41
https://doi.org/10.1007/978-3-030-58475-7_41

280 X. Hu et al.

3. Demirović, E., et al.: Predict+Optimise with ranking objectives: exhaustively learning linear
functions. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, pp. 1078–1085 (2019)

4. Demirović, E., et al.: Dynamic programming for Predict+Optimise. In: Proceedings of the
Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 1444–1451 (2020)

5. Elmachtoub, A.N., Grigas, P.: Smart predict, then optimize. Manag. Sci. 68(1), 9–26 (2022)
6. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning, vol. 1, Number

10. Springer series in statistics, New York (2001). https://doi.org/10.1007/978-0-387-21606-
5

7. Genc, B., O’Sullivan, B.: A two-phase constraint programming model for examination
timetabling at university college cork. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333,
pp. 724–742. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 42

8. de Givry, S., Lee, J.H.M., Leung, K.L., Shum, Y.W.: Solving a judge assignment problem
using conjunctions of global cost functions. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol.
8656, pp. 797–812. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 57

9. Hu, X., Lee, J.C., Lee, J.H.: Predict+Optimize for packing and covering LPs with unknown
parameters in constraints. In: Proceedings of the Thirty-Second AAAI Conference on Arti-
ficial Intelligence (2022)

10. Hu, X., Lee, J.C., Lee, J.H., Zhong, A.Z.: Branch & learn for recursively and iteratively
solvable problems in Predict+Optimize. Adv. Neural Inf. Process. Syst. 35 (2022)

11. Li, D., et al.: A novel method to solve neural knapsack problems. In: Proceedings of the
Thirty-Eighth International Conference onMachine Learning, pp. 6414–6424. PMLR (2021)

12. LLC, M.: Geant topology map dec2018 copy (2018). https://www.geant.org/Resources/
Documents/GEANT Topology Map December 2018.pdf. Accessed 10 Sep 2020

13. Lucerna, D., Gatti, N., Maier, G., Pattavina, A.: On the efficiency of a game theoretic app-
roach to sparse regenerator placement in WDM networks. In: GLOBECOM 2009–2009
IEEE Global Telecommunications Conference, pp. 1–6. IEEE (2009)

14. Mandi, J., Stuckey, P.J., Guns, T., et al.: Smart predict-and-optimize for hard combinatorial
optimization problems. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial
Intelligence, vol. 34, pp. 1603–1610 (2020)

15. Orlowski, S., Pióro, M., Tomaszewski, A., Wessäly, R.: SNDlib 1.0-Survivable network
design library. In: Proceedings of the Third International Network Optimization Conference,
April 2007. http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-
SNDlib-INOC.pdf.gz, http://sndlib.zib.de, extended version accepted in Networks, 2009

16. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284
(2005)

17. Simonis, H., O’Sullivan, B., Mehta, D., Hurley, B., Cauwer, M.D.: Energy-Cost Aware
Scheduling/Forecasting Competition (2014). http://challenge.icon-fet.eu/sites/default/files/
iconchallenge.pdf

18. Von Mohrenschildt, M.: A normal form for function rings of piecewise functions. J. Symb.
Comput. 26(5), 607–619 (1998)

19. Waissi, G.R.: Network flows: theory, algorithms, and applications (1994)
20. Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: decision-focused

learning for combinatorial optimization. In: Proceedings of the Thirty-Third AAAI Confer-
ence on Artificial Intelligence, pp. 1658–1665 (2019)

https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-0-387-21606-5
https://doi.org/10.1007/978-3-030-58475-7_42
https://doi.org/10.1007/978-3-319-10428-7_57
https://www.geant.org/Resources/Documents/GEANT_Topology_Map_December_2018.pdf
https://www.geant.org/Resources/Documents/GEANT_Topology_Map_December_2018.pdf
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz
http://sndlib.zib.de
http://challenge.icon-fet.eu/sites/default/files/iconchallenge.pdf
http://challenge.icon-fet.eu/sites/default/files/iconchallenge.pdf

Interpretable Clustering via Soft
Clustering Trees

Eldan Cohen(B)

University of Toronto, Toronto, Canada

ecohen@mie.utoronto.ca

Abstract. Clustering is a popular unsupervised learning task that con-
sists of finding a partition of the data points that groups similar points
together. Despite its popularity, most state-of-the-art algorithms do not
provide any explanation of the obtained partition, making it hard to
interpret. In recent years, several works have considered using decision
trees to construct clusters that are inherently interpretable. However,
these approaches do not scale to large datasets, do not account for uncer-
tainty in results, and do not support advanced clustering objectives such
as spectral clustering. In this work, we present soft clustering trees, an
interpretable clustering approach that is based on soft decision trees that
provide probabilistic cluster membership. We model soft clustering trees
as continuous optimization problem that is amenable to efficient opti-
mization techniques. Our approach is designed to output highly sparse
decision trees to increase interpretability and to support tree-based spec-
tral clustering. Extensive experiments show that our approach can pro-
duce clustering trees of significantly higher quality compared to the state-
of-the-art and scale to large datasets.

1 Introduction

Clustering, an unsupervised learning task, typically consists of partitioning an
unlabelled dataset into K groups of similar data points. Since most popular
clustering algorithms do not provide any explanation or interpretation for the
obtained partition, a post-hoc analysis is often required to characterize the
groups. In recent years, different approaches for interpretable clustering aim to
provide clustering together with explanations of the obtained groups. One of the
most prominent directions for interpretable clustering is based on using decision
trees to construct clusters [2,16,28,30]. However, existing approaches for clus-
tering trees are not scalable to large datasets, do not account for uncertainty
in results, and do not support advanced clustering objectives such as Spectral
Clustering [44] and Kernel-PCA clustering [37].

Soft decision trees are decision trees where at each node a data point is
directed left with some probability p and right with probability 1 − p. Soft deci-
sion trees have been used for classification and regression in a range of previ-
ous works [4,5,7,23,48]. Unlike hard decision trees that are typically optimized

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 281–298, 2023.
https://doi.org/10.1007/978-3-031-33271-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_19&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_19

282 E. Cohen

using a specialized heuristic procedure, soft decision trees can be optimized using
gradient-based continuous optimization techniques. However, soft decision trees
have not been applied to clustering.

In this work we present soft clustering trees, the first approach for inter-
pretable clustering via soft decision trees that provide probabilistic output on
cluster membership. Our approach is scalable and supports advanced clustering
objectives such as Spectral Clustering and Kernel-PCA clustering. Specifically,
we make the following contributions:

1. We present a novel approach for interpretable clustering based on soft decision
trees that provide probabilistic output on cluster membership.

2. We present a continuous optimization model for soft clustering trees that is
designed to produce fully sparse trees and is amenable to efficient second-
order continuious optimization algorithms as well as scalable, SGD-based
optimization algorithms.

3. We extend our soft clustering trees model to support spectral and Kernel-
PCA clustering objectives, while still using interpretable decision trees in the
original feature space to construct clusters.

4. We run extensive experiments and show that: (1) our spectral clustering and
Kernel-PCA clustering variants can significantly outperform the state-of-the-
art clustering trees algorithm on small and medium datasets; (2) our scalable
approach for training soft clustering trees can produce high-quality clustering
trees for large datasets.

2 Soft Clustering Trees

2.1 Soft Decision Trees

A tree T is a tuple (TB , TL, δ, p, l, r) where TB is the set of branching nodes and
TL is the set of leaf nodes. δ ∈ TB is the root node, p : (TB ∪ TL − {δ}) → TB

is the parent function, and l, r : TB → (TB ∪ TL) are the left and right child
functions, respectively.

The depth of a node in the tree t ∈ TB ∪ TL is recursively defined as depth(t) =
depth(p(t)) + 1 with depth(δ) = 0. The depth of a tree T is defined as the
maximum depth among its leaf nodes, depth(T) = maxt∈TL

depth(t). A tree is
considered complete if all leaves have the same depth, ∀t1, t2 ∈ TL : depth(t1) =
depth(t2).

A decision tree maps each branching node t ∈ TB with a feature ft ∈ F
and a threshold value μt such that each data point xi ∈ R

|F | is directed left if
xft
i ≤ μt. An oblique decision tree maps each branching node to an oblique cut

aT
·txi − μt such that xi is directed left if aT

·txi ≤ μt. In contrast, a soft decision
tree is associated with a matrix a ∈ R

|F |×|TB | and a vector μ ∈ R
|TB | such that

the probability of point xi to be directed left at branching node t ∈ TB is

Pit = Sigmoid(Γt · (aT
·txi − μt)), (1)

Interpretable Clustering via Soft Clustering Trees 283

where a·t is the column vector representing the coefficients of all features in
branching node t, μt is the threshold value, and Γt controls the softness of the
split at node t such that higher values leads to more deterministic decisions
[4,27]. Therefore, Pit can be considered as a soft (probabilistic) version of the
oblique cut aT

·txi ≤ μt. Note that the complement, 1 − Pit, is the probability
that point xi is directed right at node t ∈ TB .

Finally, the probability that a data point xi ends up at a leaf node t ∈ TL is
defined as

Qit =
∏

t′∈AL(t)

Pit′
∏

t′∈AR(t)

(1 − Pit′), (2)

where AL(t) (resp. AR(t)) denotes the set of all ancestors of a leaf node t ∈ TL

such that t is a descendant of their left (resp. right) branch.1

2.2 Soft Clustering Trees

Let X = {xi}ni=1 be a set of n data points with xi being a finite-sized feature
vector, xi ∈ R

|F |, and K be the number of clusters (K<|X|). To extend soft deci-
sion trees to perform clustering of X into K clusters, we consider the following
objective function inspired by fuzzy clustering,

min
∑

i∈|X|

∑

k∈1..K

wm
ik · ‖xi − zk‖2, (3)

where wik (defined below) is the probability that data point xi is in cluster

k ∈ 1..K, zk is the centroid of cluster k, ‖xi − zk‖ =
√∑

f∈F (xf
i − zfk)2 is the

Euclidean distance between point xi and the centroid zk, and m ≥ 1.0 is a hyper-
parameter that controls the fuzziness of the clustering. Equation (3) is similar
to the objective of Fuzzy C-Means (FCM) [3], however in our case w is defined
based on our soft decision tree rather than being an unconstrained variable.

To define wik, we first define c·t to represent the distribution over cluster
labels, i.e., ckt is the probability that data points reaching leaf node t ∈ TL are
in cluster k. Then, we define wik, the probability that point xi is in cluster k as:

wik =
∑

t∈TL

Qitckt. (4)

In Fig. 1, we present an example for a soft clustering tree of depth 2 for the
Iris dataset.

2.3 Sparsity in Soft Clustering Trees

While the soft clustering trees in Sect. 2.2 provide inherent tree-based interpre-
tation, oblique cuts can be hard to interpret as they may utilize many, or even all
1 If AL(t) = ∅ or AR(t) = ∅ then the corresponding products in Eq. (2) are equal to

1.0.

284 E. Cohen

Fig. 1. Example soft clustering tree for the Iris dataset. We use σ to denote the Sigmoid
function.

the features (i.e., cuts may have non-zero coefficients for many, or all, features).
To obtain more interpretable trees, we would like to keep the number of non-zero
coefficients in each branching node to a small number, ideally having only one
non-zero coefficient similar to standard (non-oblique) decision trees. Previous
works [4,21,27] on classification and regression have considered penalizing the
�1-norm of the coefficient matrix a. However, this often results in some branch-
ing nodes having no non-zero coefficients while others having many non-zero
coefficients, remaining difficult to interpret.

Instead of using oblique cuts, we consider the more restricted class of normal-
ized cuts for branching nodes, i.e., all coefficients are non-negative (∀f ∈ F, t ∈
TB : aft > 0) and the sum of coefficients in each branching node is equal to one
(∀t ∈ TB :

∑
f∈F aft = 1). This can be seen as a continuous relaxation of the

typical univariate splits in standard decision trees by replacing the domain of
each coefficient from the discrete set {0, 1} to the continuous range [0, 1] while
keeping the sum of coefficients equal to one. Then, we introduce the following
regularization term for each branching node t ∈ TB ,

φt = −
∑

f∈F

a2
ft. (5)

The minimal value for each φt term is −1 which indicates a fully sparse cut, i.e.,
exactly one coefficient in the cut is equal to one and the rest are equal to zero.

2.4 Learning Sparse Soft Clustering Trees Using Continuous
Optimization

We formulate the problem of learning soft clustering trees as a constrained con-
tinuous optimization problem. Given a dataset X and the number of clusters
K, we search for an assignment of the variables aft, ckt, μt, zk, and Γt that
minimizes our regularized clustering cost function.2

2 Following [27], we keep Γt as variables rather than hyper-parameters.

Interpretable Clustering via Soft Clustering Trees 285

In our continuous optimization model, we assume w.l.o.g that X is normalized
in the range [0, 1]. We therefore bound the μt and zk variables in the range [0, 1].
Further, to improve the optimization performance we consider xi ∈ X to be
a transformation of the dataset xi ∈ X such that each feature is normalized
within the range [0, 1]. In particular, we employed the quantile transformation
following [27]. We redefine the cut in branching node t ∈ TB to be aT

·txi − μt,
while keeping the clustering objective based on the original x ∈ X. As we focus
on fully sparse trees, each cut can be converted back to its original values using
the inverse transformation.

Constrained Continuous Optimization Model. Equation (6) presents the
complete constrained optimization model for sparse soft clustering trees. Equa-
tion (6a) is the objective function that consists of the clustering cost and the
sparsity regularization weighted by hyper-parameter Λ. Equations (6b)–(6e) are
based on the definitions discussed in Sects. 2.1, 2.2 and 2.3. The constraints in
Eq. (6f) and Eq. (6g) guarantee that label probabilities in leaf nodes and fea-
ture coefficients in branch nodes sum to one, respectively. Finally, Eqs. (6h)–(6l)
define the bounds for each of the continuous decision variables.

min
∑

i∈|X|

∑

k∈1..K

wm
ik · ‖xi − zk‖2 + Λ

∑

t∈TB

φt (6a)

s.t. :

Pit := Sigmoid(Γt · (aT
·txi − μt)) ∀xi ∈ X, t ∈ TB (6b)

Qit :=
∏

t′∈AL(t)

Pit′
∏

t′∈AR(t)

(1 − Pit′) ∀xi ∈ X, t ∈ TL (6c)

wik :=
∑

t∈TL

Qitckt ∀xi ∈ X, k ∈ 1..K (6d)

φt := −
∑

f∈F

a2
ft ∀t ∈ TB (6e)

∑

k∈1..K

ckt = 1 ∀t ∈ TL (6f)

∑

f∈F

aft = 1 ∀t ∈ TB (6g)

0 ≤ aft ≤ 1 ∀t ∈ TB , f ∈ F (6h)
0 ≤ ckt ≤ 1 ∀t ∈ TL, k ∈ 1..K (6i)
0 ≤ μt ≤ 1 ∀t ∈ TB (6j)
0 ≤ zk ≤ 1 ∀k ∈ 1..K (6k)
−1 ≤ Γt ≤ −128 ∀t ∈ TB (6l)

Constrained continuous optimization algorithms such as interior point optimiza-
tion can be used to solve the optimization model in Eq. (6) for small and medium
datasets, however they tend to be less efficient compared to unconstrained con-
tinuous optimization algorithms and are not amenable to scalable, mini-batch,
stochastic gradient descent optimizers.

286 E. Cohen

Unconstrained Optimization Model. We can reformulate the model in Eq.
(6) to be an unconstrained optimization model by making the following changes.

Regularized Softmax Splits. To eliminate the constraints in Eqs. (6g)–(6h), we
redefine aft based on Softmax normalization of the unnormalized variables âft ∈
R

|F |×|TB |,

aft =
exp(âft)∑

f ′∈F exp(âf ′t))
. (7)

Similar to our constrained model, we use the regularization terms φt to guarantee
sparse cuts. Due to the nature of Softmax, coefficients cannot be exactly zero, but
could get very close to zero. However, since all features are scaled to the same
range of [0, 1], features with near-zero coefficients will have negligible impact
on the branching behavior and can be eliminated from the resultant clustering
tree.3 Although recent works have proposed several sparse variants of Softmax
[10,29], we found that they can have negative impact on the optimization and
are not needed in our case due to the feature-wise normalization.

Leaf Class Labels. To eliminate the constraints in Eq. (6f) and Eq. (6i), we
redefine ckt based on Softmax normalization of the unnormalized variables ĉkt ∈
R

K×|TL|,

ckt =
exp(ĉkt)∑

k′∈1..K exp(ĉk′t))
. (8)

The bounds on the remaining variables, Eqs. (6j)–(6l), were used to improve
the constrained model, but are not required and can be removed in our uncon-
strained model.

2.5 Interpretable Spectral and Kernel-PCA Clustering

One of the benefits of our formulation is that the feature representation used
for constructing the decision tree and the feature representation used for the
clustering do not have to be the same. Specifically, we can replace the objective
in Eq. (3) with a more general objective,

min
∑

i∈|X̄|

∑

k∈1..K

wm
ik · ‖x̄i − z̄k‖2 (9)

where X̄ = {x̄i}ni=1 is a (possibly) different representation of the dataset X based
on feature set F̄ , x̄i ∈ R

|F̄ |. We note that Eq. (3) is a special case of Eq. (9) with
F̄ = F and, consequently, X̄ = X. However, X̄ can also be based on a different
feature representation such as a spectral embedding or a PCA transformation
of X. The decision tree is still constructed from the interpretable feature set X,
i.e., branching node cuts based on x ∈ X, however the objective would be to
optimize the clustering cost based on, for example, the spectral embedding or
PCA transformation of the original dataset. In our experiment we consider two
different objectives:
3 For this purpose, we arbitrarily select 10−4 as the threshold for zeroing coefficients

in the resultant clustering tree.

Interpretable Clustering via Soft Clustering Trees 287

– Spectral clustering [44] where X̄ is computed by applying spectral decom-
position to the graph Laplacian of the k-nearest neighbors graph using the
Laplacian Eigenmaps algorithm [1].

– Kernel-PCA (KPCA) clustering where X̄ is computed using a non-linear
dimensionality reduction through the use of kernels [37]. In our experiments,
we use the radial basis function (RBF) kernel.

To our knowledge, this is the first approach for interpretable spectral and KPCA
clustering that is based on decision trees in the original feature space.

2.6 Scalable Training of Soft Clustering Trees

Our unconstrained formulation in Sect. 2.4 is amenable for scalable training using
mini-batch stochastic gradient descent algorithms to support interpretable clus-
tering of large datasets using soft decision trees. However, consistent with work
on soft classification trees [15], we found that training of soft clustering trees
using first-order SGD optimizers can get stuck in poor solutions in which one or
more of the branching nodes directs almost all the data points into one of the
subtrees. We therefore introduce the following regularization term that encour-
ages branching nodes to make equal use of both left and right branches, following
[15],

π = −
∑

t∈TB

θt[0.5 · log(αt) + 0.5 · log(1 − αt)], (10)

with αt (resp. 1-αt) being the fraction of probability mass directed to the left
(resp. right) branch of branching node t ∈ TB out of the probability mass directed
to node t,

αt =

∑
xi∈X Qi,l(t)∑
xi∈X Qi,t

, (11)

and θt ensures the strength of the penalty decays exponentially with the depth
of node t, θt = 2−depth(t).

Training. The final objective function for our scalable training of soft clustering
trees is

min
∑

i∈|X|

∑

k∈1..K

wm
ik · ‖xi − zk‖2 + Λ

∑

t∈TB

φt + ωπ,

where ω is a hyper-parameter that controls the weight associated with the reg-
ularization term. To efficiently train clustering trees using mini-batch stochastic
gradient descent algorithms, we start by training with no sparsity regularization,
Λ = 0, for a fixed number of training steps. Then, we anneal Λ by increasing it
every training step until we obtain a fully sparse tree.

288 E. Cohen

3 Experiments

In this section, we perform extensive experiments with 18 datasets to evaluate
the performance of soft clustering trees.

3.1 Implementation Details

Single-Batch Training of Soft Clustering Trees using Second-Order Optimizers.
For our experiments with small and medium datasets, we implemented our
constrained and unconstrained continuous optimization models for single-batch
training using second-order optimizers. Our constrained optimization model was
implemented in Julia using the JuMP library [13] and solved using IPOPT [45],
a primal-dual interior-point algorithm with a filter line-search method for non-
linear programming. As IPOPT converges to a local minimum on non-convex
problems, we run the solver five times, starting from different random initializa-
tions, and select the lowest-cost solution.

Our unconstrained model was implemented in Python and solved using the
Limited-memory BFGS with bounds (L-BFGS-B) solver and the Sequential
Least Squares Programming (SLSQP) solver, both implemented in the Scipy
library. We found the runtime for unconstrained optimization to be shorter com-
pared to constrained optimization, however it requires more runs to converge to
high-quality solutions. We therefore restart the solver 20 times using random
initializations and select the lowest-cost solution.

Scalable Training of Soft Clustering Trees using SGD. For our experiments with
large datasets, we implemented our scalable model for training soft clustering
trees (Sect. 2.6) in Python using the PyTorch library [31]. We employ mini-
batch stochastic optimization scheme using the RMSProp optimizer [20]. To
obtain fully sparse trees, we train our model according to the training scheme
described in Sect. 2.6: We first train the model for 25,000 steps with no sparsity
regularization and then slowly anneal Λ by increasing it each step by 10−3. In
our experiments, we set the total number of training steps to be 50,000 and we
employ cyclical learning rate schedule [39] in the range [0.0005, 0.005].

Inference. Our decision trees are soft and represent probabilistic cluster mem-
bership. In our experiments, we obtain a hard clustering for each data point by
selecting the cluster label for which the membership probability is the highest.

3.2 Datasets

To evaluate our single-batch approach for learning soft clustering trees, we use
a set of 13 small- and medium-size real and synthetic datasets (Table 1). Seven
real datasets were obtained from the UCI repository [12]: Glass, Ionosphere, Iris,
TAE, Vertebral, Wine, Zoo. Four synthetic datasets representing challenging
clustering problems in 2D and 3D were obtained from FCPS [43]. Finally, we
generated two instances of the well-known clustering problems moons and circles.

Interpretable Clustering via Soft Clustering Trees 289

Table 1. Details of small- and medium-
size datasets used in the experiments.
Synthetic datasets are marked “(s)”.

Dataset |X| |F | K

Atom (s) 800 3 2

Chainlink (s) 1,000 3 2

Circles (s) 500 2 2

Glass 214 9 6

Ionosphere 351 34 2

Iris 150 4 3

Moons (s) 500 2 2

TAE 151 5 3

Target (s) 770 2 6

Vertebral 310 6 3

Wine 178 12 3

Wingnut (s) 1,016 2 2

Zoo 101 16 7

Table 2. Details of large datasets used in
the experiments.

Dataset |X| |F | K

Adult† 48,842 105 2

Avila 20,867 10 12

Covertype 581,012 54 7

Pendigits 10,992 16 10

Shuttle 58,000 9 7

†Categorical features conver-
ted to one-hot encoding.

To evaluate our approach for scalable training of soft clustering trees, we
run experiments on five large datasets obtained from UCI [12]: Adult, Avila,
Covertype, Pendigits, and Shuttle, as described in Table 2. All datasets were
standardized by removing the mean and scaling each feature to unit variance.

3.3 Evaluation

Since all datasets in Sect. 3.2 have ground-truth labels, we evaluate the quality
of the obtained clusterings using the following external evaluation metrics. Note
that we do not use internal evaluation metrics, such as the mean Silhouette
Coefficient [36], as they depend on the feature representation and therefore are
not comparable across different feature representations (such as the Spectral
Embedding and the Kernel-PCA).

Adjusted Rand Index (ARI). Rand Index [35] measures agreement between two
partitions of the same dataset, P1 and P2. Each partition represents

(
n
2

)
decisions

over all pairs, assigning them to the same or different clusters. Let a be the
number of pairs assigned to the same cluster in both P1 and P2. Let b be the
number of pairs assigned to different clusters. Rand Index is defined as follows:

RI(P1, P2) =
a + b(

n
2

) .

The Adjusted Rand Index (ARI) [22] is a correction for RI, based on its expected
value:

ARI =
RI − E(RI)

Max(RI) − E(RI)
.

290 E. Cohen

ARI score of zero indicates the partition is not better than a random assignment,
while a score of one indicates a perfect match. We compute the ARI between
the obtained clustering and the ground-truth labels.

Normalized Mutual Information (NMI). Mutual information quantifies the sta-
tistical information shared between two distributions [40]. MI(P1, P2) denotes
the mutual information between partitions P1 and P2, and H(Pi) denotes the
entropy of partition Pi. Normalized mutual information (NMI) [40] is normalized
using the mean of H(P1) and H(P2):

NMI(P1, P2) =
MI(P1, P2)

Mean(H(P1),H(P2))
.

Values close to zero indicate independent partitions, while values close to one
indicate a significant agreement between P1 and P2. We compute the NMI
between the obtained clustering and the ground-truth labels.

Unsupervised Clustering Accuracy (ACC). The unsupervised clustering accuracy
[46] is defined as:

ACC = max
map∈M

∑n
i=1 1{li = map(ci))}

n
,

where l(xi) and c(xi) are the ground-truth label and the assigned cluster label for
data point xi, respectively, and M is the set of all possible one-to-one mappings
from clusters to ground-truth labels.

3.4 Results

First, we compare our basic constrained and unconstrained optimization models
to ExKMC [16], the state-of-the-art approach for interpretable clustering using
decision trees. For our unconstrained model, we used both L-BFGS and SLSQP
solvers. Each problem is solved 20 times starting from different initializations and
the median runtime for one run was 1.81 s for L-BFGS and 2.01 s for SLSQP.
As all runs are independent, they can be parallelized over multiple cores. As
we are comparing our approaches that are probabilistic to the deterministic
and fully sparse ExKMC that aims to optimize the standard K-means cost,
we tuned the hyper-parameters of our approach over a small set of possible
values, Λ ∈ {100, 101, 102} and m ∈ {1.05, 1.1}, and select the ones that yielded
the hard clustering with the lowest K-means cost while being fully sparse (all
results presented for our approaches are therefore based on fully sparse trees).
For our constrained model, solved using IPOPT, runs required longer runtime
(median of 14.45 s) and we therefore opted for only five random initializations
and considered only one value for m that was found to work well (m = 1.0). We
note that the results for our approaches are not directly comparable in terms
of optimization performance due to the large set of possible choices available
for each solver (how many runs vs. how long each run, how many available

Interpretable Clustering via Soft Clustering Trees 291

Table 3. Experimental Results on Soft Clustering Trees for Small and Medium
Datasets.

dataset Max Adjusted Rand Index (ARI) Clustering Accuracy (ACC)

|TL| BFGS SLSQ IPOP ExKM BFGS SLSQ IPOP ExKM

atom 4 0.180 0.182 0.161 0.186 0.713 0.714 0.701 0.716

atom 8 0.149 0.165 0.161 0.159 0.694 0.704 0.701 0.700

atom 16 0.189 0.176 0.174 0.189 0.718 0.710 0.709 0.718

chainl 4 −0.001 −0.001 0.183 −0.001 0.500 0.500 0.714 0.504

chainl 8 −0.001 −0.001 0.207 −0.001 0.509 0.505 0.728 0.508

chainl 16 −0.001 −0.000 0.107 −0.001 0.505 0.514 0.664 0.509

circles 4 −0.002 −0.002 −0.002 −0.002 0.502 0.502 0.502 0.502

circles 8 −0.002 −0.002 −0.002 −0.002 0.502 0.502 0.502 0.502

circles 16 −0.002 −0.002 −0.002 −0.002 0.500 0.502 0.502 0.502

glass 8 0.200 0.188 0.168 0.148 0.505 0.458 0.481 0.425

glass 16 0.148 0.173 0.230 0.173 0.481 0.472 0.519 0.472

iono 4 0.158 0.145 0.149 0.163 0.701 0.692 0.695 0.704

iono 8 0.112 0.178 0.183 0.168 0.670 0.712 0.715 0.707

iono 16 0.193 0.178 0.168 0.168 0.721 0.712 0.707 0.707

iris 4 0.759 0.610 0.515 0.574 0.907 0.827 0.747 0.800

iris 8 0.653 0.620 0.574 0.601 0.853 0.833 0.800 0.820

iris 16 0.642 0.632 0.642 0.610 0.847 0.840 0.847 0.827

moons 4 0.483 0.483 0.483 0.456 0.848 0.848 0.848 0.838

moons 8 0.472 0.472 0.472 0.461 0.844 0.844 0.844 0.840

moons 16 0.472 0.472 0.472 0.478 0.844 0.844 0.844 0.846

tae 4 0.064 0.064 0.050 0.047 0.510 0.510 0.444 0.417

tae 8 0.047 0.047 0.047 0.064 0.417 0.417 0.417 0.510

tae 16 0.048 0.047 0.048 0.064 0.424 0.417 0.424 0.510

target 8 0.529 0.557 0.302 0.636 0.635 0.627 0.416 0.638

target 16 0.636 0.637 0.634 0.636 0.642 0.652 0.625 0.636

vert 4 0.163 0.212 0.175 0.165 0.465 0.487 0.471 0.452

vert 8 0.180 0.221 0.169 0.194 0.461 0.516 0.455 0.461

vert 16 0.221 0.210 0.219 0.196 0.506 0.513 0.490 0.461

wine 4 0.754 0.748 0.848 0.802 0.916 0.910 0.949 0.933

wine 8 0.732 0.757 0.741 0.880 0.904 0.916 0.910 0.961

wine 16 0.683 0.835 0.880 0.897 0.882 0.944 0.961 0.966

wingn 4 0.760 0.791 0.791 0.930 0.936 0.945 0.945 0.982

wingn 8 0.736 0.733 0.743 0.764 0.929 0.928 0.931 0.937

wingn 16 0.700 0.693 0.730 0.683 0.918 0.916 0.927 0.913

zoo 8 0.870 0.871 0.617 0.737 0.871 0.871 0.762 0.822

zoo 16 0.814 0.815 0.792 0.737 0.822 0.812 0.832 0.822

average 0.354 0.359 0.356 0.360 0.683 0.684 0.687 0.682

292 E. Cohen

cores, how many hyper-parameters values to consider, etc.) We therefore simply
demonstrate the performance of each approach with a reasonable set of choices.

For ExKMC, we run the algorithm from 100 different random initializations
and choose the one with the lowest cost (experiments with additional runs did
not lead to significant improvement). As ExKMC does not have a limit on the
tree depth but on the maximum number of leaves, we compare the results for
three different values of number of leaves, namely 4, 16, 32. In our approach
these values correspond to a maximum tree depth of 2, 3, 4. For each dataset, we
set K to be the number of ground-truth labels in the dataset. As the datasets
Glass, Target, and Zoo have more than 4 clusters, we only run experiments for
a maximum number of leaves of 16 and 32.

Table 3 shows the ARI and ACC scores obtained by each of the approaches
for each of the datasets. It also reports the average scores across all datasets.
Results on NMI exhibited similar trends and are omitted due to space. We can
see that, in general, the different methods are relatively comparable. Each of
the methods outperforms the other methods on some of the datasets, and we
observe minor differences between the methods in the average scores. Specifically,
ExKMC performed slightly better in terms of average ARI and IPOPT performs
slightly better in terms of ACC as well as NMI (not presented).

In the next two sections we demonstrate the unique benefits of our
approaches, namely that they can be extended to use Spectral and K-PCA objec-
tives and that are amenable to scalable optimization procedures.

Spectral and K-PCA Clustering Trees. We present results for the exten-
sions of our basic approach: our Kernel PCA model (Ours-K), and our Spectral
Clustering model (Ours-S). For KPCA, we used 10 components. For the spectral
embedding, we used k-nearest neighbors graph with k = 10 for all datasets and
set the dimension of the projected subspace to be the number of clusters. Due
to limited space, in this experiment we focus on our unconstrained model as it is
the basis for our scalable model, and we present results for the L-BFGS solver.
We compare our approaches to our basic model (Ours) and to ExKMC [16].

Table 4 shows the ARI and ACC scores obtained by each of the approaches
for each of the datasets. Results on NMI exhibited similar patterns to ARI and
are omited due to space. It also reports the average scores across all datasets.
The best performing approach based on the average scores is Ours-S followed by
Ours-K. Furthermore, we observe that in approximately 86% of the cases, for all
evaluation metrics (including NMI), the top performing approach is one of our
approaches. The results demonstrate the unique benefits of approaches like Ours-
S in cases such as the datasets Atom, Chainlink, and Circles, where ExKMC and
Ours find low-quality solutions compared to the high-quality solutions found by
Ours-S due to the spectral embedding.

Results for Large Datasets. Next, we run experiments with our approach
for scalable training of soft clustering trees (Sect. 2.6). As our approach is the
first scalable approach for interpretable clustering based on decision trees, we

Interpretable Clustering via Soft Clustering Trees 293

Table 4. Experimental Results on Soft Clustering Trees for Small and Medium
Datasets. Our approaches are based on our unconstrained model solved by L-BFGS.

dataset Max Adjusted Rand Index (ARI) Clustering Accuracy (ACC)

|TL| Ours Ours-K Ours-S ExKM Ours Ours-K Ours-S ExKM

atom 4 0.180 0.577 0.779 0.186 0.713 0.880 0.941 0.716

atom 8 0.149 0.865 0.874 0.159 0.694 0.965 0.968 0.700

atom 16 0.189 0.912 0.970 0.189 0.718 0.978 0.993 0.718

chain 4 −0.001 0.174 0.861 −0.001 0.500 0.709 0.964 0.504

chain 8 −0.001 0.178 0.933 −0.001 0.509 0.711 0.983 0.508

chain 16 −0.001 0.181 0.941 −0.001 0.505 0.713 0.985 0.509

circles 4 −0.002 −0.002 0.369 −0.002 0.502 0.504 0.804 0.502

circles 8 −0.002 −0.002 0.639 −0.002 0.502 0.502 0.900 0.502

circles 16 −0.002 −0.002 1.000 −0.002 0.500 0.504 1.000 0.502

glass 8 0.200 0.145 0.112 0.148 0.505 0.411 0.360 0.425

glass 16 0.148 0.184 0.133 0.173 0.481 0.439 0.379 0.472

iono 4 0.158 0.203 −0.028 0.163 0.701 0.726 0.538 0.704

iono 8 0.112 0.208 −0.034 0.168 0.670 0.729 0.504 0.707

iono 16 0.193 0.224 −0.034 0.168 0.721 0.738 0.501 0.707

iris 4 0.759 0.600 0.489 0.574 0.907 0.820 0.773 0.800

iris 8 0.653 0.736 0.394 0.601 0.853 0.900 0.700 0.820

iris 16 0.642 0.611 0.413 0.610 0.847 0.827 0.713 0.827

moons 4 0.483 0.512 0.678 0.456 0.848 0.858 0.912 0.838

moons 8 0.472 0.512 0.853 0.461 0.844 0.858 0.962 0.840

moons 16 0.472 0.512 1.000 0.478 0.844 0.858 1.000 0.846

tae 4 0.064 0.064 0.050 0.047 0.510 0.510 0.444 0.417

tae 8 0.047 0.113 0.047 0.064 0.417 0.550 0.417 0.510

tae 16 0.048 0.113 0.047 0.064 0.424 0.550 0.417 0.510

target 8 0.529 0.538 0.544 0.636 0.635 0.627 0.626 0.638

target 16 0.636 0.634 0.328 0.636 0.642 0.627 0.443 0.636

vert 4 0.163 0.169 0.171 0.165 0.465 0.458 0.461 0.452

vert 8 0.180 0.254 0.212 0.194 0.461 0.474 0.500 0.461

vert 16 0.221 0.251 0.219 0.196 0.506 0.539 0.474 0.461

wine 4 0.754 0.723 0.762 0.802 0.916 0.899 0.916 0.933

wine 8 0.732 0.642 0.754 0.880 0.904 0.871 0.916 0.961

wine 16 0.683 0.725 0.820 0.897 0.882 0.904 0.938 0.966

wingn 4 0.760 0.693 1.000 0.930 0.936 0.916 1.000 0.982

wingn 8 0.736 0.651 1.000 0.764 0.929 0.904 1.000 0.937

wingn 16 0.700 0.736 0.984 0.683 0.918 0.929 0.996 0.913

zoo 8 0.870 0.820 0.653 0.737 0.871 0.832 0.743 0.822

zoo 16 0.814 0.646 0.633 0.737 0.822 0.743 0.752 0.822

average 0.354 0.419 0.544 0.360 0.683 0.721 0.748 0.682

294 E. Cohen

compare our approach to non-interpretable scalable clustering using Mini-Batch
K-Means [38].

We run experiments for three tree depths: the minimum depth based on the
number of ground-truth labels, as well as two levels deeper. We did not tune
hyper-parameters for each dataset and instead fix ω = 0.1 and m = 1.05 across
datasets (hyper-parameter tuning per dataset may lead to further improvement).
We run the training procedure five times, starting from different random initial-
izations, using a batch size of 256. Similar to previous experiment, we select the
one that yielded the hard clustering with the lowest K-means cost while being
fully sparse. For Mini-Batch K-Means, we run the algorithm for 100 random
initializations with a similar batch size of 256 and select the lowest cost solution.

Table 5 compares our approach for scalable training (Ours) to Mini-Batch
K-Means (mKM) on the five large datasets. We note that the two methods are
not directly comparable as Mini-Batch K-Means is not constrained to produce
tree-based clusterings. The results show that for Adult, Covertype, and Shuttle,
our approach can reach comparable results to mKM and even find higher-quality
solutions according to some criteria. For Pendigits, we observe that as we increase
the tree depth we are getting closer to mKM’s performance however even a depth
of 6 was not sufficient to reach the performance of mKM with a fully-sparse
decision tree. For Avila, we interestingly find the best solution at the lowest tree
depth. Overall, the results in Table 5 indicate that our scalable approach is able
to produce high-quality, fully sparse clustering trees for large datasets.

Table 5. Experimental Results for Large Datasets.

X Max ARI NMI ACC

|TL| Ours mKM Ours mKM Ours mKM

Adult 2 0.184 0.183 0.134 0.136 0.719 0.718

Adult 4 0.184 0.134 0.719

Adult 8 0.180 0.133 0.717

Avila 16 0.064 0.052 0.117 0.136 0.291 0.292

Avila 32 0.016 0.053 0.218

Avila 64 0.055 0.108 0.232

Cover 8 0.037 0.056 0.143 0.150 0.291 0.319

Cover 16 0.057 0.150 0.329

Cover 32 0.031 0.145 0.309

Pend. 16 0.403 0.539 0.554 0.685 0.590 0.675

Pend. 32 0.437 0.595 0.590

Pend. 64 0.485 0.624 0.638

Shut. 8 0.181 0.214 0.366 0.378 0.412 0.421

Shut. 16 0.196 0.329 0.444

Shut. 32 0.348 0.475 0.631

Interpretable Clustering via Soft Clustering Trees 295

4 Related Work

Soft decision trees have been a popular choice in tasks such as classification and
regression, solved using either constrained or unconstrained continuous optimiza-
tion algorithms [4,5,23,27]. Some works have explored using soft decision trees
together with learned representations by formulating the problem as a deep neu-
ral network [15,19,41,47]. To our knowledge, our work is the first approach that
use soft decision trees for interpretable clustering.

Recent work on neural oblivious classification and regression trees has con-
sidered sparse alternatives of Softmax, such as entmax [33], to produce sparse
trees [34], however we found it difficult to produce fully sparse trees without
hurting the optimization performance.

Previous work on interpretable clustering primarily focused on using decision
trees [2,14,16,18,26,30,42]. Other approaches also include polytope machines
[6,25], rectangular rules [8,32], and layerwise relevance propagation [24]. To our
knowledge, our work is the first to consider soft decision trees, to support scalable
training, and to be extended to tree-based spectral and KPCA clustering.

Several works on interpretable clustering via decision trees focus on a setting
in which each cluster corresponds to exactly one leaf, similar to hierarchical
clustering [2,18,30,49]. This approach significantly restricts the expressive power
of the decision trees and their ability to accurately match the observed clusters
in the dataset. Similar to the recent ExKMC [16], our approach allows more
than K leaves to support more expressive trees.

A very recent work has focused on clustering using hard, oblique decision
trees via alternating optimization [17]. While their implementation is not avail-
able, their experiments show limited improvement over ExKMC for fully sparse
(axis-aligned) trees. Different from our work, they focus on hard decision trees
and their approach is not amenable to scalable, mini-batch, stochastic gradient
descent optimization.

5 Conclusion

We present a novel approach for interpretable clustering based on soft clustering
trees. We formulate the problem as a continuous optimization problem that can
be efficiently solved by second-order optimizers, such as L-BFGS, as well as
scalable SGD optimization. We extend our approach to support spectral and
KPCA clustering trees. We conduct extensive experiments using 18 datasets
and show that our spectral and KPCA approaches significantly outperform the
state-of-the-art approach on small and medium datasets and our scalable training
using SGD produces high quality clustering trees for large datasets.

Our work can be extended in a number of ways. Investigating approaches for
joint construction of soft clustering trees where clustering is based on learned
representations would be an interesting extension of our work. Investigating
strategies to incorporate fairness considerations [9] is an important direction
for future work. Finally, incorporating domain-specific knowledge in the form of
constraints [11] could lead to higher-quality, yet interpretable, solutions.

296 E. Cohen

References

1. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data
representation. Neural Comput. 15(6), 1373–1396 (2003)

2. Bertsimas, D., Orfanoudaki, A., Wiberg, H.: Interpretable clustering: an optimiza-
tion approach. Mach. Learn. 110(1), 89–138 (2021)

3. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy C-means clustering algorithm.
Comput. Geosci. 10(2–3), 191–203 (1984)

4. Blanquero, R., Carrizosa, E., Molero-Ŕıo, C., Morales, D.R.: Sparsity in optimal
randomized classification trees. Eur. J. Oper. Res. 284(1), 255–272 (2020)

5. Blanquero, R., Carrizosa, E., Molero-Ŕıo, C., Morales, D.R.: Optimal randomized
classification trees. Comput. Oper. Res. 132, 105281 (2021)

6. Carrizosa, E., Kurishchenko, K., Maŕın, A., Morales, D.R.: Interpreting clusters
via prototype optimization. Omega 107, 102543 (2022)

7. Carrizosa, E., Molero-Ŕıo, C., Romero Morales, D.: Mathematical optimization
in classification and regression trees. TOP 29(1), 5–33 (2021). https://doi.org/10.
1007/s11750-021-00594-1

8. Chen, J., et al.: Interpretable clustering via discriminative rectangle mixture model.
In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 823–
828. IEEE (2016)

9. Chhabra, A., Masalkovaitė, K., Mohapatra, P.: An overview of fairness in cluster-
ing. IEEE Access 9, 130698–130720 (2021)

10. Correia, G.M., Niculae, V., Martins, A.F.: Adaptively sparse transformers. In:
Proceedings of the EMNLP-IJCNLP (2019, to appear)

11. Dao, T.B.H., Vrain, C., Duong, K.C., Davidson, I.: A framework for actionable
clustering using constraint programming. In: Proceedings of the Twenty-Second
European Conference on Artificial Intelligence, pp. 453–461 (2016)

12. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.
edu/ml

13. Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathe-
matical optimization. SIAM Rev. 59(2), 295–320 (2017). https://doi.org/10.1137/
15M1020575

14. Fraiman, R., Ghattas, B., Svarc, M.: Interpretable clustering using unsupervised
binary trees. Adv. Data Anal. Classif. 7(2), 125–145 (2013)

15. Frosst, N., Hinton, G.: Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784 (2017)

16. Frost, N., Moshkovitz, M., Rashtchian, C.: ExKMC: expanding explainable k-
means clustering. arXiv preprint arXiv:2006.02399 (2020)

17. Gabidolla, M., Carreira-Perpiñán, M.Á.: Optimal interpretable clustering using
oblique decision trees. In: Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 400–410 (2022)

18. Gamlath, B., Jia, X., Polak, A., Svensson, O.: Nearly-tight and oblivious algorithms
for explainable clustering. Adv. Neural. Inf. Process. Syst. 34, 28929–28939 (2021)

19. Hazimeh, H., Ponomareva, N., Mol, P., Tan, Z., Mazumder, R.: The tree ensemble
layer: Differentiability meets conditional computation. In: International Conference
on Machine Learning, pp. 4138–4148. PMLR (2020)

20. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent. Cited on 14(8), 2 (2012)

21. Hou, Q., Zhang, N., Kirschen, D.S., Du, E., Cheng, Y., Kang, C.: Sparse oblique
decision tree for power system security rules extraction and embedding. IEEE
Trans. Power Syst. 36(2), 1605–1615 (2020)

https://doi.org/10.1007/s11750-021-00594-1
https://doi.org/10.1007/s11750-021-00594-1
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
http://arxiv.org/abs/1711.09784
http://arxiv.org/abs/2006.02399

Interpretable Clustering via Soft Clustering Trees 297

22. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
23. Irsoy, O., Yildiz, O.T., Alpaydin, E.: Soft decision trees. In: Proceedings of the

21st International Conference on Pattern Recognition (ICPR2012), pp. 1819–1822.
IEEE (2012)

24. Kauffmann, J., Esders, M., Ruff, L., Montavon, G., Samek, W., Müller, K.R.: From
clustering to cluster explanations via neural networks. IEEE Trans. Neural Netw.
Learn. Syst. (2022)

25. Lawless, C., Kalagnanam, J., Nguyen, L.M., Phan, D., Reddy, C.: Interpretable
clustering via multi-polytope machines. In: Proceedings of the AAAI Conference
on Artificial Intelligence, pp. 7309–7316 (2022)

26. Liu, B., Xia, Y., Yu, P.S.: Clustering via decision tree construction. In: Chu,
W., Young Lin, T. (eds.) Foundations and Advances in Data Mining. Studies in
Fuzziness and Soft Computing, vol. 180, pp. 97–124. Springer, Heidelberg (2005).
https://doi.org/10.1007/11362197 5

27. Luo, H., Cheng, F., Yu, H., Yi, Y.: SDTR: soft decision tree regressor for tabular
data. IEEE Access 9, 55999–56011 (2021)

28. Makarychev, K., Shan, L.: Near-optimal algorithms for explainable k-medians and
k-means. In: International Conference on Machine Learning, pp. 7358–7367. PMLR
(2021)

29. Martins, A., Astudillo, R.: From softmax to sparsemax: a sparse model of attention
and multi-label classification. In: International Conference on Machine Learning,
pp. 1614–1623. PMLR (2016)

30. Moshkovitz, M., Dasgupta, S., Rashtchian, C., Frost, N.: Explainable k-means and
k-medians clustering. In: International Conference on Machine Learning, pp. 7055–
7065. PMLR (2020)

31. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

32. Pelleg, D., Moore, A.: Mixtures of rectangles: interpretable soft clustering. In:
ICML, vol. 2001, pp. 401–408 (2001)

33. Peters, B., Niculae, V., Martins, A.F.: Sparse sequence-to-sequence models. arXiv
preprint arXiv:1905.05702 (2019)

34. Popov, S., Morozov, S., Babenko, A.: Neural oblivious decision ensembles for deep
learning on tabular data. arXiv preprint arXiv:1909.06312 (2019)

35. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.
Stat. Assoc. 66(336), 846–850 (1971)

36. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

37. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis.
In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997.
LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0020217

38. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International
Conference on World Wide Web, pp. 1177–1178 (2010)

39. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV), pp. 464–472.
IEEE (2017)

40. Strehl, A., Ghosh, J.: Cluster ensembles–a knowledge reuse framework for combin-
ing multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

https://doi.org/10.1007/11362197_5
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1905.05702
http://arxiv.org/abs/1909.06312
https://doi.org/10.1007/BFb0020217
https://doi.org/10.1007/BFb0020217

298 E. Cohen

41. Tanno, R., Arulkumaran, K., Alexander, D., Criminisi, A., Nori, A.: Adaptive
neural trees. In: International Conference on Machine Learning, pp. 6166–6175.
PMLR (2019)

42. Tavallali, P., Tavallali, P., Singhal, M.: K-means tree: an optimal clustering tree
for unsupervised learning. J. Supercomput. 77(5), 5239–5266 (2021)

43. Ultsch, A., Lötsch, J.: The fundamental clustering and projection suite (FCPS): a
dataset collection to test the performance of clustering and data projection algo-
rithms. Data 5(1), 13 (2020)

44. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

45. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2006)

46. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering
analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR
(2016)

47. Yang, Y., Morillo, I.G., Hospedales, T.M.: Deep neural decision trees. In: ICML
Workshop on Human Interpretability in Machine Learning (WHI) (2018)

48. Yoo, J., Sael, L.: EDiT: interpreting ensemble models via compact soft decision
trees. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 1438–
1443. IEEE (2019)

49. Zantedeschi, V., Kusner, M., Niculae, V.: Learning binary decision trees by argmin
differentiation. In: International Conference on Machine Learning, pp. 12298–
12309. PMLR (2021)

NER4OPT: Named Entity Recognition
for Optimization Modelling from Natural

Language

Parag Pravin Dakle1, Serdar Kadıoğlu1,2(B) , Karthik Uppuluri1,
Regina Politi1, Preethi Raghavan1, SaiKrishna Rallabandi1,

and Ravisutha Srinivasamurthy1

1 AI Center of Excellence, Fidelity Investments, Boston, USA
{paragpravin.dakle,serdar.kadoglu,karthik.uppuluri,regina.politi,

preethi.raghavan,saikrishna.rallabandi,ravisutha.srinivasamurthy}@fmr.com
2 Department of Computer Science, Brown University, Providence, USA

Abstract. Solving combinatorial optimization problems involves a two-
stage process that follows the model-and-run approach. First, a user
is responsible for formulating the problem at hand as an optimization
model, and then, given the model, a solver is responsible for finding the
solution. While optimization technology has enjoyed tremendous theo-
retical and practical advances, the overall process has remained the same
for decades. To date, transforming problem descriptions into optimiza-
tion models remains a barrier to entry. To alleviate users from the cog-
nitive task of modeling, we study named entity recognition to capture
components of optimization models such as the objective, variables, and
constraints from free-form natural language text, and coin this problem
as Ner4Opt. We show how to solve Ner4Opt using classical techniques
based on morphological and grammatical properties and modern meth-
ods leveraging pre-trained large language models and fine-tuning trans-
formers architecture with optimization-specific corpora. For best perfor-
mance, we present their hybridization combined with feature engineering
and data augmentation to exploit the language of optimization problems.
We improve over the state-of-the-art for annotated linear programming
word problems, identify several next steps and discuss important open
problems toward automated modeling.

Keywords: Optimization Modeling · Named Entity Recognition ·
Natural Language Processing

1 Introduction

Optimization technology spans a wide range of applications, and over the years,
combinatorial optimization solvers have enjoyed significant speed-ups [27]. In
parallel, several high-level modeling languages (e.g., [16,36,56]) are designed to
improve the accessibility of this powerful technology. Still, the overall process
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 299–319, 2023.
https://doi.org/10.1007/978-3-031-33271-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_20&domain=pdf
http://orcid.org/0000-0002-4672-6830
https://doi.org/10.1007/978-3-031-33271-5_20

300 P. P. Dakle et al.

of modeling and solving optimization problems remained the same for decades.
The de facto approach is to follow the model-and-run strategy where the user
is responsible for transforming the problem at hand as an optimization model,
and then, given the model, a solver is responsible for finding the solution.

We envision an automated modeling assistant to help turn natural language
into optimization formulations. To realize this future state, there is a necessary
precursor: given the problem description of an optimization problem, finding
key pieces of information to enable model formulation. This is exactly what we
study in this paper; Ner4Opt, the challenge of named entity recognition for
extracting optimization-related information such as the objective, constraints,
and variables from free-form natural language text. With this goal in mind, in
this paper, we make the following contributions:

1. We formalize Ner4Opt as an interdisciplinary problem at the intersection of
Natural Language Processing and Combinatorial Optimization. We discuss
how it differs from the standard named entity recognition (Ner) (Sect. 2) in
important ways stemming from the optimization context.

2. We start with baseline lexical solutions built on classical techniques commonly
used in Ner (Sect. 3.1) and then study the impact of recent advances in pre-
trained large language models for building semantic solutions (Sect. 3.2).

3. We show how to combine the lexical and semantic models as a hybrid app-
roach and propose several augmentation techniques including fine-tuning lan-
guage models using optimization textbooks to achieve the best performance
(Sect. 3.4).

Our key finding is that generalization for Ner4Opt is possible. We learn from
annotated optimization problems emerging in advertising, investment, and sales
optimization as the source domain that is then tested on production, science,
and transportation optimization as the target domain.

For computational experiments (Sect. 4), we consider the recently introduced
linear programming word problems as the benchmark (Sect. 4.1). We improve
over the best-known solutions on this dataset [48]. To foster further research,
we release our code and demo that extracts optimization-related entities from
input text1. More importantly, we show that it is possible to train effectively for
generalization not only to new problem instances of the same domain but also to
new applications. Our work is necessary but not sufficient for automated model-
ing assistants, and accordingly, we discuss important next steps and remaining
open problems.

2 Problem Description

Let us start with a formal definition of the Ner4Opt problem which can be
viewed as an instantiation of the classical Ner problem [10,15,55] with its par-
ticular challenges emerging from the optimization context.
1 https://huggingface.co/spaces/skadio/ner4opt.

https://huggingface.co/spaces/skadio/ner4opt

Ner4Opt 301

Definition 1 (Named Entity Recognition for Optimization
(Ner4Opt)). Given a sequence of tokens s = 〈w1, w2, · · · , wn〉, the goal of
Ner4Opt is to output a list of tuples 〈Is, Ie, t〉 each of which is a named entity
specified in s. Here, Is ∈ [1, n] and Ie ∈ [1, n] are the start and the end indexes
of a named entity mention; t is the entity type from a predefined category set of
constructs related to optimization.

Fig. 1. Ner4Opt Example: Given the problem description in free-form natural lan-
guage text, the goal is to extract key information about the variables, parameters,
constraint direction, limits, objective, and optimization direction.

Figure 1 illustrates our problem definition with an example. Given the prob-
lem description, the goal of Ner4Opt is to extract constraints, parameters,
variables, and the objective, among others.

Regarding entities, when Ner was first defined in MUC-6 [15], the task was
to recognize names of people, organizations, locations, time, currency, and per-
centage expressions in the text. As shown in our example, the predefined opti-
mization entities in this paper are constraint direction (CONST_DIR), limits
(LIMIT), objective direction (OBJ_DIR), objective name (OBJ_NAME), param-
eter (PARAM), and variable (VAR).

Regarding downstream applications, Ner acts as an essential pre-processing
step for information retrieval, question answering, and machine translation. Here,
we leverage it as the precursor to automated modeling where Ner4Opt treats
the input description as a word problem that describes decision variables, the
objective, and constraints. However, this multi-sentence word problem exhibits a
high level of ambiguity due to the variability of the linguistic patterns, problem
structure, and application domain.

Regarding NLP tasks, the Ner4Opt differs from the Ner problem in sev-
eral challenging ways. First, optimization technology is a general-purpose tool
that can tackle a wide range of applications. Accordingly, when parsing problem
descriptions, the solution for Ner4Opt must be domain-agnostic and generalize

302 P. P. Dakle et al.

to new instances and applications. Second, given the complexity of building opti-
mization models, we only have access to limited training data. Unlike many NLP
tasks, we cannot even depend on human annotators since it requires modeling
expertise. Therefore, we must rely on large-scale domain knowledge and data
augmentation methods to train robust models in low-resource settings. Finally,
while most existing parsers operate at the sentence level, optimization descrip-
tions span long text inputs to describe variables and constraints with a high
degree of compositionality and ambiguity.

3 Our Approach

We follow three main directions to address the Ner4Opt problem: classical
NLP approaches (Sect. 3.1), followed by recent advances in modern language
models (Sect. 3.2), and their hybridization thereof (Sect. 3.4) together with data
augmentation techniques (Sect. 3.3) to achieve the best performance.

3.1 Classical NLP

A standard approach in the literature to solve the Ner problem is feature engi-
neering coupled with a structured prediction model such as linear chain Condi-
tional Random Field (CRF) [28,41]. This is what we start with as our baseline.

Overview of CRF. As shown in Fig. 2, given an input sequence of tokens xi

and a set of engineered feature extraction functions fj at each token position, a
conditional random field models a probability distribution of labels yi that can
be assigned to appropriate segments in x.

score (y |x) =
m∑

j=1

n∑

i=1

wjfj (x, i, yi, yi−1) (1)

p(y|x) =
expscore(y|x)

∑
y′ expscore(y′|x) (2)

Given a set of training examples D, a CRF finds an optimal label assignment
using maximum likelihood. Here, w is the weight vector and C is the regulariza-
tion parameter.

D = [(x1, y1) , (x2, y2) , (x3, y3) ,, (xd, yd)] i.i.d training examples (3)

L(w,D) = −
d∑

k=1

log
[
p(yk|xk)

]
(4)

w∗ = argmin
w

L(w,D) + C
1
2
||w||2 (5)

Ner4Opt 303

Feature Extraction. In NLP, a feature extraction function explores the lin-
guistic properties of a token or a group of tokens. For Ner, different classes of
properties, including grammatical (e.g., part-of-speech tagging and dependency
relations), morphological (e.g., prefix, suffix, and word shape), vocabulary (e.g.,
gazetteers) and syntactic (noun phrases and prepositional phrases) are often
used. For details on features used for Ner, we refer to [49]. In addition to com-
monly used feature extraction functions, we engineered other features inspired
by the structural characteristics of the optimization problems, as detailed next.

Fig. 2. Ner4Opt CRF Example: Given the input sentence, feature extraction and
transformation of each token is fed into the conditional random field to find the output
of recognized entities.

Gazetteer Features: Gazetteers serve as lookup tables and are utilized as
noisy priors to entity labels. These are especially useful when the entity class
has frequent keywords and phrases. These key phrases are extracted from the
training data. In our optimization setting, canonical keywords include maximize
OBJ_DIR and minimize OBJ_DIR, and similarly, at least CONST_DIR and at most
CONST_DIR.

Syntactic Features: In linguistics, a conjunct is a group of tokens
joined together by conjunction or appropriate punctuation. The (VAR) and
(OBJ_NAME) entities are associated with unique syntactical properties in
the form of conjuncts. We observe four patterns for the (VAR) entity. First,

304 P. P. Dakle et al.

these are often conjuncting noun chunks, e.g., “a factory produces rice VAR
and corn VAR”. These entities also appear as conjuncting prepositional chunks,
e.g., “there are two types of cars: cars with automatic gear VAR and
cars with manual gear VAR”. The other patterns include conjuncts connected
by a hyphen or a quote. For the (OBJ_NAME), we observe that (OBJ_DIR)
appears in the context of defining the objective of the problem. Moreover, fre-
quently, an (OBJ_DIR) is followed by a noun chunk denoting the (OBJ_NAME)
often qualified by an adjective, verb, or prepositional phrase. To succinctly cap-
ture these feature extraction heuristics, we design an automaton as depicted in
Fig. 3.

Fig. 3. Regular automaton (sketch) to capture features for (OBJ_NAME) extraction.

The regular membership with respect to this automaton in Fig. 3 enables
us to extract the (OBJ_NAME). For example, “profit SUBJ to be maxi-
mized OBJ_DIR, and similarly, “maximize OBJ_DIR the total monthly ADJP
profit NOUN” are valid in this language, and the profit is extracted as the
objective.

Contextual Features: All the previous hand-crafted features operate at token
level. In addition, we extract left and right contextual features around each token
with window size, w. The parameter w is learned from the training data based
on the longest entity phrase. These feature extraction functions act as noisy
priors to each entity label. The CRF model relies on many such features and
their respective contexts; hence, a few false positive features will not affect the
model’s overall performance. We studied other features engineering methods,
including constituent parsing, quantized word embeddings, and word-frequency-
based features that are omitted here for brevity.

3.2 Modern NLP

So far, our solution for Ner4Opt only considered classical methods based on
feature extraction and manual feature engineering. This helps us establish a
baseline performance. The challenger to this baseline is motivated by the recent

Ner4Opt 305

advances in NLP, offering advantages over traditional techniques. Specifically,
deep neural networks alleviate the need for manual feature extraction. At a high
level, Eq. 1 continues to apply whereby feature vectors f(x) now correspond to
dense embeddings retrieved from large language models. This not only saves a
significant amount of time in creating features but offers more robust behavior.
Moreover, the nonlinearity in the activation functions enables learning complex
features and dependencies from the labeled training data.

In practice, Ner problems require modeling long-range text dependencies.
When operating on the long-range, recurrent architectures are known to struggle
with vanishing and exploding gradients [39]. As a remedy, most recent works rely
on the Transformers architecture [57] that solve the long-range problem by
replacing the recurrent component with the attention mechanism. There are
many variants of this architecture, and here, we consider three distinct flavors
based on RoBERTa [32] to generate the features vectors f(x) used in CRF.

1. Xlm-Rb: The XLM-RoBERTa [11] is a self-supervised language model that
follows the RoBERTa architecture with multilingual training. This is the
state-of-the-art method [48] on the benchmark dataset we consider. One of
our goals is to improve this existing approach and its large version, Xlm-Rl.

2. Xlm-Rl+: Our unique contribution that extends Xlm-Rl with fine-tuning
over corpora related to optimization texts. We explain this in detail below.

3. RoBERTa: Another large language model that uses the same transformers
architecture as BERT [12] and improves it with more robust training [32].
It achieves state-of-the-art results on well-known NLP benchmarks such as
GLUE [58], RACE [29] and SQuAD [46,47]. As such, we consider it here and
employ its large version.

[XLM-RL+] Fine-Tuning on Optimization Textbooks: Language models
such as BERT, RoBERTa, and GPT [42] are pre-trained on non-domain specific
texts where the goal of pre-training is to obtain good downstream performance
on a diverse set of language-oriented tasks (e.g., sentiment analysis). The training
is carried out in a self-supervised fashion via masked language modeling, next
sentence prediction [12], and causal language modeling [42]. For domain-specific
tasks (e.g., sentiment analysis in finance), performance can be improved further
using domain-specific corpora to fine-tune pre-trained models [1,5,20,30].

We use a similar approach for fine-tuning Xlm-Rl leading to Xlm-Rl+. For
that purpose, we source three publicly available optimization textbooks. The
first is the well-known convex optimization book by S. Boyd [8]. The second
one is about linear programming and game theory [54]. And finally, we consider
the course notes on optimization [18] from the Open Optimization Platform2

that shares educational content. We extract textual data from the PDFs of these
textbooks, and then, fine-tune Xlm-Rl via masked language modeling. More
precisely, we mask 15% of the words at random and replace 80% of the masked
words with the MASK token, 10% with random words, and the remaining 10%

2 https://github.com/open-optimization.

https://github.com/open-optimization

306 P. P. Dakle et al.

with the original word. Finally, the model is trained in self-supervised fashion
to predict the masked words.

3.3 Data Augmentation

In parallel to modeling strategies, we also consider two methods for data augmen-
tation to improve performance. First, we show how to find infrequent patterns
to over-sample, and second, we introduce a simple yet effective technique, coined
L2 augmentation, to disambiguate the objective variable from other variables.

Dealing with Infrequent Patterns: Over-sampling is an effective technique,
especially when dealing with class imbalance. While the distribution of entity
classes might not be imbalanced, the lexical features might exhibit popular traits
with a few infrequent features. For example, the objective direction is almost
always maximize or minimize. Yet, in a few cases, it is given as an adjective, e.g.,
“cost to be minimal ADJ”. The challenge is to find a way to surface such infre-
quent cases without manual inspection so that we can over-sample the dataset.

Fig. 4. Example pattern for the given objective name entity as the union of its part-
of-speech and dependency tags.

We propose a simple approach as shown in Fig. 4. First, we extract part-of-
speech and dependency tags for each token in a given sentence and consider their
union as a pattern. We then build the set of unique patterns and map them to
entity labels in the training data to find their occurrence counters. Consequently,
problem descriptions with infrequent patterns are duplicated.

Dealing with Disambiguation: There is a severe ambiguity between the
objective variable and other variables. After all, the objective is yet another
variable, only with an optimization direction. The critical question is how to
train a model to differentiate between the two effectively. Consider the scenario
in Fig. 5. In this case, the objective is blood pressure reducing medicine, and

Ner4Opt 307

there is no distinctive feature that separates it from other variables such as dia-
betic pill and diabetic shot. Even for the human annotator or the optimization
expert, the objective remains unknown until the last sentence. Despite that,
the model must label the objective correctly as early as the second sentence in
its first occurrence. This is precisely the long-range text dependency aspect of
Ner4Opt. To combat this, we append the beginning of each problem description
with the last two sentences and refer to this method as L2 augmentation.

3.4 Hybrid Modeling

Finally, we consider a hybrid approach that combines our proposed methods.
Classical methods for feature engineering and modern techniques for feature
learning have their strengths and weakness. While feature engineering can some-
times be brittle, feature learning struggles when there is long-range dependency
and no semantic theme, as in the (OBJ_NAME). On the other hand, hand-
crafted features, such as our gazetteer, syntactic and contextual features, and
knowledge injection, such as our purpose-built automaton, allow us to build apri-
ori information. Our hybrid model uses the classical CRF approach boosted by
feature engineering plus an additional feature provided by the prediction of a
transformers-based model fine-tuned on optimization corpora with over-sampling
and L2 data augmentation.

Fig. 5. The challenge of long-range text dependency in Ner4Opt. Notice the disam-
biguation problem between the objective variable and other variables and the impor-
tance of the last sentences in capturing the goal of the problem description.

4 Experiments

To demonstrate the effectiveness of our approach when solving the Ner4Opt
problem in practice, we consider the following specific questions:

Q1: What is the baseline performance of classical methods (Sect. 3.1) and does
feature engineering help?

308 P. P. Dakle et al.

Q2: How do modern NLP methods (Sect. 3.2) perform, how do we fare against
the best-known solutions on the same dataset, and do we improve the state-
of-the-art for Ner4Opt?

Q3: Does the hybrid model (Sect. 3.4) that combines feature engineering with
feature learning and augmentation perform better than its counterparts in
isolation?

Let us start with an overview of the dataset, the experimental setup, and eval-
uation metrics and present numerical results with discussions and error analysis.

4.1 NER4OPT Dataset

We use linear programming word problems that are released as part of the
NeurIPS’22 natural language for optimization challenge3. We are indebted to
the organizers for contributing such a rich dataset to the community. Our for-
mal definition of Ner4Opt corresponds to Task–I from this challenge4. This
dataset was first introduced in [48], which uses the Xlm-Rb model to solve the
entity recognition problem. It contains 1101 linear programming word problems
of the form:

min
x∈Rn

c�x s.t. a�
i x ≤ bi, i = 1, ...,m (6)

where c represents the parameters of the objective, ai the i -th constraint, and
bi is the right-hand-side limit. The goal of the linear problems is to find x that
minimizes the objective value.

Table 1. The benchmark dataset with 1101 samples annotated with six entities.

Statistic Value

Dataset size 1101
Train set size 713
Dev set size 99
Test set size (not available) 289
Number of entity types 6
Number of VAR entities 5299
Number of PARAM entities 4113
Number of LIMIT entities 2064
Number of CONST_DIR entities 1877
Number of OBJ_DIR entities 813
Number of OBJ_NAME entities 2391

3 https://github.com/nl4opt.
4 https://github.com/nl4opt/nl4opt-subtask1-baseline.

https://github.com/nl4opt
https://github.com/nl4opt/nl4opt-subtask1-baseline

Ner4Opt 309

Table 1 shows dataset statistics. The problems in the dataset belong to six
domains grouped into two: the source domain comprising of problems from
advertising, investment, and sales, and the target domain consists of problems
from production, science, and transportation. As in our problem description
(Sect. 2), it contains annotations for six entity types: variable (VAR), parameter
(PARAM), limit (LIMIT), constraint direction (CONST_DIR), objective direction
(OBJ_DIR) and objective name (OBJ_NAME). The test set is not public, hence
we focus on train and dev sets and cannot directly compare with Task-I.

The training set consists of samples only from the source domain, whereas
the dev and test sets consist of samples from both source and target domains in
a 1:3 source-to-target domain ratio. According to [48], 15 annotators created the
problem descriptions and the labels while 4 additional NLP/OR experts anno-
tated more than 10% of the entire dataset to compute inter-annotator agreement.
Average pairwise micro-averaged F1 score was used to measure the agreement
and a score of 97.7% was reported. Figure 1 presents an annotated input sample.

4.2 Comparisons

We compare the classical, modern, and hybrid models with the following variants:

1. Classical: Our classical method (Sect. 3.1) based on grammatical and
morphological features.

2. Classical+: Our classical method plus our hand-crafted gazetteer, syntac-
tic, and contextual features.

3. Xlm-rb: The state-of-the-art method on this dataset from [48] that we re-ran
thanks to authors’ code. We also consider its large version, Xlm-rl.

4. RoBERTa: Transformers model with good default performance across sev-
eral language tasks for comparison. We use its large model variant.

5. Xlm-rl+: Our approach (Sect. 3.2) to fine-tune Xlm-rl with optimization
books.

6. Hybrid: Our hybrid approach (Sect. 3.4) that combines Classical+ with
Xlm-rl+ and data augmentation.

4.3 Experimental Setup

We use the train set for learning the model weights and the dev set for testing
the performance for all the methods considered. We conduct limited parameter
tuning to avoid overfitting. We leverage HuggingFace [59] and SimpleTransform-
ers [45] for transformer models, spaCy [19] for part-of-speech and dependency
tagging, and sklearn-crf5 for the CRF model.

5 https://github.com/TeamHG-Memex/sklearn-crfsuite.

https://github.com/TeamHG-Memex/sklearn-crfsuite

310 P. P. Dakle et al.

Hyperparameters for CRF. There are four hyper-parameters for CRF: c1
& c2 controlling the amount of regularization, the context window size w, and
the optimizer. We use gradient descent with the L-BFGS method [66] as our
optimizer and random cross-validation search to find the best values for c1 & c2
from the continuous exponential distribution of scale 0.5 for c1 and 0.05 for c2.
In addition, the window size is set to 6 tokens as the longest entity observed in
the training data.

Hyperparameters for Transformers. We perform limited tuning for all the
transformers models to avoid over-fitting. As mentioned in Sect. 4.1, dev and
test sets have samples from both source and target domains. Therefore, any
over-fitting of the training data will hurt the model’s generalizability. For learn-
ing rate, we use the range {4E-5, . . . , 1E-1} with a step size of 1E-2. For the
maximum sequence length, we experiment with {256, 512}. In addition, for the
l2 regularization coefficient, we use the range {1E-3, . . . , 1E-1} with a step size
of 1E-2. Finally, we run the training procedure for a maximum of 25 epochs,
with an early stopping callback function set to stop training by monitoring the
loss delta set to 1E-3 and patience of 5 epochs.

4.4 Evaluation Metrics

We evaluate all methods using the micro-averaged F1 score as suggested in the
NeurIPS’22 competition and in the existing results [48]. The score is computed
as follows:

F1 =
2 × P × R

P + R (7)

where P and R are the average precision and average recall of all entity types,
respectively. The computation of true positives, false positives, and false nega-
tives for precision and recall is done as follows:

– A predicted span is considered as True Positive if the span and the predicted
entity type are present in the ground truth annotations.

– A predicted span is considered as False Positive if the span is present in the
ground truth annotations but the predicted entity type is incorrect or the
predicted span is not present in the ground truth annotations.

– A span is considered as False Negative if the span is present in the ground
truth but is absent in the predicted spans.

Ner4Opt 311

Table 2. Numerical results that compare classical, modern, and hybrid models for
precision, P, and recall, R for each named entity together with average micro F1 score.

Method CONST_DIR LIMIT OBJ_DIR OBJ_NAME PARAM VAR Average
Micro F1P R P R P R P R P R P R

Classical 0.956 0.854 0.904 0.954 0.979 0.929 0.649 0.353 0.958 0.916 0.795 0.714 0.816
Classical+ 0.960 0.858 0.931 0.942 0.990 0.970 0.726 0.544 0.953 0.935 0.823 0.787 0.853
Xlm-Rb [48] 0.887 0.897 0.965 0.950 0.949 0.999 0.617 0.469 0.960 0.969 0.909 0.932 0.888
Xlm-Rl 0.930 0.897 0.979 0.938 0.979 0.989 0.606 0.512 0.963 0.985 0.899 0.938 0.893
RoBERTa 0.895 0.902 0.984 0.950 0.990 1.000 0.668 0.597 0.965 0.983 0.916 0.940 0.904
Xlm-Rl+ 0.901 0.897 0.987 0.953 0.989 0.999 0.665 0.583 0.971 0.989 0.918 0.946 0.907
Hybrid 0.946 0.890 0.980 0.942 0.990 1.000 0.730 0.668 0.957 0.983 0.935 0.953 0.919

4.5 Numerical Results

Table 2 presents our results that compare different classical, modern, and hybrid
methods for solving the Ner4Opt on the linear programming word problems
dataset. We report the performance metrics for precision, P, and recall, R, for
each entity class together with the micro F1 score averaged across classes.

[Q1] Performance of Classical NLP The Classical method based on
grammatical and morphological features achieves an average micro F1 of 0.816.
This result establishes our performance lower bound. From there, Classical+
jumps to 0.853 by leveraging our hand-crafted gazetteer, syntactic, and contex-
tual features. The gazetteer features focus on (OBJ_DIR) and (CONST_DIR).
Accordingly, for (OBJ_DIR), the P and R increase by 0.011 and 0.041, and for
(CONST_DIR), both metrics increases slightly by 0.004. The syntactic features
focus on (VAR) and (OBJ_NAME) entity types. Accordingly, for (VAR), P and
R increase by 0.028 and 0.077, and for (OBJ_NAME), P and R increase by 0.077
and 0.191. While the F1 score 0.816 is relatively lower compared to other meth-
ods, both classical approaches report 0.90+ P and 0.85+ R on all entity types
except (OBJ_NAME) and (VAR). These two classes stand out as the difficult
labels, as we discussed earlier, due to ambiguity and long-range dependency.

[Q2] Performance of Modern NLP and the State-of-the-Art The state-
of-the-art method for Ner4Opt on this dataset from [48] is based on the modern
transformers architecture, specifically Xlm-Rb. Xlm-Rb improves over the clas-
sical results from an F1 of 0.816 to 0.888. Switching the underlying transformer
architecture from the base model to its large version, Xlm-Rl, or to a differ-
ent model as RoBERTa improves the results further. Interestingly, RoBERTa
outperforms Xlm-Rb, hinting that the multilingual pre-training objective of
Xlm-Rb [11] is not beneficial in our Ner4Opt task.

When comparing modern methods that use deep contextual embeddings with
their classical counterpart, we observe that recent techniques perform better;
0.853 vs. 0.907. That said, it is worth noting that while it is possible to improve
the overall average F1 score when compared to classical methods, modern meth-
ods do not improve P and R in every class.

312 P. P. Dakle et al.

Our approach Xlm-Rl+ that combines Xlm-Rl with fine-tuning on opti-
mization corpora improves the F1 score of 0.893 to 0.907. It is encouraging to
realize this performance improvement even when fine-tuning with only a few
textbooks over the pre-trained model built with large corpora. Our Xlm-Rl+
stands out as the best-performing modern method in parts with small margins.

[Q3] Performance of Hybrid Modeling Finally, we consider the case for
combining classical and modern techniques. Overall, the best performance is
achieved with our Hybrid model with an F1 score of 0.919. This result signifi-
cantly outperforms the baseline classical approach from the F1 score of 0.816 and
improves over the best-known results from the F1 score of 0.888. The Hybrid
model benefits from data augmentation via over-sampling to address infrequent
patterns and L2 augmentation to combat long-range dependency. Beyond aver-
age results, upon closer inspection of P and R for each entity class, we find that
Hybrid offers the best result in half of the scores. The largest improvement is
realized for the (OBJ_NAME) entity type, which is the most challenging label
to predict. To summarize, our experiments demonstrate that integrating feature
engineering with feature learning coupled with fine tuning and augmentation
stands out as an attractive mechanism for Ner4Opt.

4.6 Post-Mortem Analysis

A critical post-mortem error analysis is to inspect where the methods fail for
Ner4Opt. Our initial findings reveal conflicting token spans in the annotation
of entities. Let’s highlight a few examples to illustrate the issue:

=⇒ How many of each type of donut should be bought in order to
maximize OBJ_DIR the total monthly profit OBJ_NAME?

=⇒ How many of each type of transportation should the company
schedule to move their lumber to minimize OBJ_DIR
the total cost OBJ_NAME?

=⇒ How many of each should the pharmaceutical manufacturing
plant make to minimize OBJ_DIR the total number of minutes
needed OBJ_NAME?

In the first example from the training data, profit is annotated as the objec-
tive omitting the preceding adjective phrase total monthly. Contrarily, in the
second example, this time from the dev data, total cost is annotated as the
objective, considering the adjective as part of the entity span. On the other hand,
in the last example, again from the dev data, number of minutes is annotated
as the objective omitting the total.

This inconsistency is especially evident in (OBJ_NAME) entity, which turns
out to be the hardest entity to predict. Similar inconsistencies exist in other
classes as well. For example, in (VAR) entity, the prepositional phrase preced-
ing a noun is sometimes tagged, sometimes ignored. Likewise, in (LIMIT) and
(PARAM) non-alpha-numeric characters (e.g., $, %) preceding or succeeding the
term is tagged inconsistently.

Ner4Opt 313

This is known as aleatoric uncertainty and is difficult to address [13]. We
expect the performance of any method, classical, modern or hybrid, to saturate
eventually due to inherent labeling issues. At times, even human annotators
cannot agree on the exact span of annotations, making Ner4Opt challenging.

5 Related Work

The unique aspect of our paper is its interdisciplinary nature. At the intersection
of NLP and Optimization, our main contribution is to formalize the Ner4Opt
problem and offer an initial attempt at its solution. We consider classical, mod-
ern, and hybrid techniques commonly employed in the Ner literature.

Similar to our approach, early Ner systems were built via templates and
hand-crafted rules. For example, in [50], corporate identity was extracted from
financial texts using heuristics. As in our case, such rule-based approaches require
domain experts to formulate templates. We design gazetteer, syntactic, and con-
textual features for optimization problems. It is also common to employ rep-
resentative models such as Hidden Markov Models [34,63,65], and as in here,
Conditional Random Fields [28,41]. A drawback of these methods is poor gen-
eralization, as observed in our experiments for the average scores.

Complementary to these are modern approaches, and in particular, masked
language modeling employed in BERT [12], autoregressive training utilized in
GPT [43], permutation-based training employed in XLNet [62]. We build on the
idea of pre-trained language models to perform practical tasks without additional
training [9,43]. We leverage pre-trained transformer models such as Xlm-Rb [11]
and RoBERTa [32]. Additionally, we fine-tune these large language models using
optimization textbooks. To the best of our knowledge, this is the first attempt
to improve large language models with optimization verbiage. A recent survey
of advances in modern Ner can be found in [60].

Apart from these, we exploit domain expertise in optimization and propose
regular automaton to capture heuristics for the objective variable succinctly.
This automaton can be further specialized for specific downstream optimization
problems. Similarly, we propose the L2 data augmentation aimed at capturing
the context of the objective earlier in the text.

As benchmark, we consider the linear programming word problems dataset
from [48]. This work is the closest to our paper in spirit. Compared to our
work, [48] goes a step further and attempts to build an interactive decision
support system to assist modelers in formulating optimization problems from
text. Unfortunately, [48] does not formally define the entity recognition problem.
It is only mentioned briefly as one of the black boxes in the overall system
architecture without details on how to solve it.

We introduce Ner4Opt as a standalone problem and an important building
block of modeling assistants. We then provide an in-depth study of its solution
approaches ranging from baselines to advanced hybrids. While [48] depends solely
on off-the-shelf pre-trained models, we attempt domain-specific fine-tuning. Our
results improve the best-known solutions from [48] considerably.

314 P. P. Dakle et al.

A growing body of research is dedicated to integrating machine learn-
ing and optimization. These include general algorithm configuration proce-
dures [21,22,24], variable selection [6,22,23,31,33], branching constraint selec-
tion [61], cut selection [53], node selection [17,51], and theoretical results for tree-
search configuration [2,3]. Compared to these efforts, the integration of natural
language processing and optimization remains much more limited. Our paper
is one of the first attempts in that direction. For optimization technology, the
Ner4Opt is immediately relevant to pave the road for modeling assistants.

For NLP, Ner4Opt offers unique challenges as noted in Section (Sect. 2)
such as multi-sentence dependency with high-level of ambiguity, low data regime
with high-cost of annotation, and inherent aleatoric uncertainty. Linguistically,
Ner4Opt is somewhat counter-intuitive. In the classical NLP setting, entities in
the same class refer to similar objects in the real world, e.g., person, place, and
organization, and they share grammatical properties. Contrarily, in Ner4Opt,
the objects tagged in the same entity can wildly differ and be completely unre-
lated, e.g., the number of trucks, the number of coconuts, and the time spent
brewing coffee might all be variables or even objectives. Given the challenging
nature of Ner4Opt, both communities would benefit from closer integration.

The need for significant expertise to formulate models as a barrier to entry is
a common concern shared by many in the community. In that regard, our paper
is closely related to learning constraint models. These include learning models
using generate-and-test [26], from examples [44], from spreadsheets [25], from
tables [38], from solutions as in model seeker [4], and from non-solutions [7,40].
Related to this are visualization frameworks, explanations, and user hints as
part of human-computer interaction [14,35,37,52]. Our work differs substan-
tially from all of these previous works, as we are working with free form natural
language text. Let us note that analogous attempts have already succeeded in
other domains, e.g., turning text into Sql queries [64].

6 Conclusions

We envision a future in which non-technical users are empowered with optimiza-
tion techniques so that they can naturally interact in multi-modal settings via
text, and even voice. This requires significant advances at the intersection of mul-
tiple domains, and our paper is an initial attempt toward automated modeling
assistants. Still, more work is needed toward the integration of Ner4Opt into
high-level modeling frameworks. Our call to action for researchers and practi-
tioners is to help us break the low annotated data regime to achieve revolutionary
breakthroughs as realized in large language models. The optimization commu-
nity is neatly suited for such success with a wide range of applications that have
already equipped with exact model annotations in several problem domains.

Ner4Opt 315

References

1. Araci, D.: Finbert: financial sentiment analysis with pre-trained language models.
arXiv preprint arXiv:1908.10063 (2019)

2. Balcan, M., Prasad, S., Sandholm, T., Vitercik, E.: Sample complexity
of tree search configuration: cutting planes and beyond. In: Ranzato, M.,
Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, 6–14 December
2021, pp. 4015–4027 (2021). https://proceedings.neurips.cc/paper/2021/hash/
210b7ec74fc9cec6fb8388dbbdaf23f7-Abstract.html

3. Balcan, M., Prasad, S., Sandholm, T., Vitercik, E.: Improved sample complex-
ity bounds for branch-and-cut. In: Solnon, C. (ed.) 28th International Confer-
ence on Principles and Practice of Constraint Programming, CP 2022, 31 July to
8 August 2022, Haifa, Israel. LIPIcs, vol. 235, pp. 3:1–3:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.CP.2022.3

4. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint mod-
els from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, pp. 141–157.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7_13

5. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific
text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), Hong Kong, China, pp. 3615–3620. Associa-
tion for Computational Linguistics (2019). https://doi.org/10.18653/v1/D19-1371.
https://aclanthology.org/D19-1371

6. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–
421 (2021). https://doi.org/10.1016/j.ejor.2020.07.063. https://www.sciencedirect.
com/science/article/pii/S0377221720306895

7. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning
power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP
2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30201-8_12

8. Boyd, S., Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge Univer-
sity Press, Cambridge (2004)

9. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process.
Syst. 33, 1877–1901 (2020)

10. Chinchor, N., Robinson, P.: Appendix E: MUC-7 named entity task definition (ver-
sion 3.5). In: Seventh Message Understanding Conference (MUC-7): Proceedings
of a Conference Held in Fairfax, Virginia, 29 April–1 May 1998 (1998). https://
aclanthology.org/M98-1028

11. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale.
arXiv preprint arXiv:1911.02116 (2019)

12. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

13. Fisch, A., Jia, R., Schuster, T.: Uncertainty estimation for natural language pro-
cessing. In: COLING (2022). https://sites.google.com/view/uncertainty-nlp

14. Goodwin, S., Mears, C., Dwyer, T., de la Banda, M.G., Tack, G., Wallace, M.:
What do constraint programming users want to see? Exploring the role of visuali-

http://arxiv.org/abs/1908.10063
https://proceedings.neurips.cc/paper/2021/hash/210b7ec74fc9cec6fb8388dbbdaf23f7-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/210b7ec74fc9cec6fb8388dbbdaf23f7-Abstract.html
https://doi.org/10.4230/LIPIcs.CP.2022.3
https://doi.org/10.1007/978-3-642-33558-7_13
https://doi.org/10.18653/v1/D19-1371
https://aclanthology.org/D19-1371
https://doi.org/10.1016/j.ejor.2020.07.063
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://www.sciencedirect.com/science/article/pii/S0377221720306895
https://doi.org/10.1007/978-3-540-30201-8_12
https://doi.org/10.1007/978-3-540-30201-8_12
https://aclanthology.org/M98-1028
https://aclanthology.org/M98-1028
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1810.04805
https://sites.google.com/view/uncertainty-nlp

316 P. P. Dakle et al.

sation in profiling of models and search. IEEE Trans. Vis. Comput. Graph. 23(1),
281–290 (2017). https://doi.org/10.1109/TVCG.2016.2598545

15. Grishman, R., Sundheim, B.: Message understanding conference- 6: a brief history.
In: COLING 1996 Volume 1: The 16th International Conference on Computational
Linguistics (1996). https://aclanthology.org/C96-1079

16. Guns, T.: On learning and branching: a survey. In: The 18th Workshop on Con-
straint Modelling and Reformulation (2019)

17. He, H., Daume III, H., Eisner, J.M.: Learning to search in branch and bound
algorithms. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Wein-
berger, K. (eds.) Advances in Neural Information Processing Systems, vol. 27.
Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/
757f843a169cc678064d9530d12a1881-Paper.pdf

18. Hildebrand, R., Poirrier, L., Bish, D., Moran, D.: Mathematical program-
ming and operations research (2022). https://github.com/open-optimization/
open-optimization-or-book

19. Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A.: Spacy: industrial-
strength natural language processing in python (2020)

20. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146 (2018)

21. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

22. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-
7_35

23. Kadioglu, S., Malitsky, Y., Sellmann, M.: Non-model-based search guidance for
set partitioning problems. In: Hoffmann, J., Selman, B. (eds.) Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence, 22–26 July 2012,
Toronto, Ontario, Canada. AAAI Press (2012). http://www.aaai.org/ocs/index.
php/AAAI/AAAI12/paper/view/5082

24. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - instance-specific
algorithm configuration. In: Coelho, H., Studer, R., Wooldridge, M.J. (eds.) ECAI
2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, 16–
20 August 2010, Proceedings. Frontiers in Artificial Intelligence and Applications,
vol. 215, pp. 751–756. IOS Press (2010). https://doi.org/10.3233/978-1-60750-606-
5-751

25. Kolb, S., Paramonov, S., Guns, T., Raedt, L.D.: Learning constraints in spread-
sheets and tabular data. Mach. Learn. 106(9–10), 1441–1468 (2017). https://doi.
org/10.1007/s10994-017-5640-x

26. Kumar, M., Kolb, S., Guns, T.: Learning constraint programming models from data
using generate-and-aggregate. In: Solnon, C. (ed.) 28th International Conference
on Principles and Practice of Constraint Programming, CP 2022, 31 July to 8
August 2022, Haifa, Israel. LIPIcs, vol. 235, pp. 29:1–29:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.CP.2022.
29

27. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for scheduling
- 20+ years of scheduling with constraints at IBM/ILOG. Constraints 23(2), 210–
250 (2018). https://doi.org/10.1007/s10601-018-9281-x

28. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: proba-
bilistic models for segmenting and labeling sequence data. In: Brodley, C.E., Dany-
luk, A.P. (eds.) Proceedings of the Eighteenth International Conference on Machine

https://doi.org/10.1109/TVCG.2016.2598545
https://aclanthology.org/C96-1079
https://proceedings.neurips.cc/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/757f843a169cc678064d9530d12a1881-Paper.pdf
https://github.com/open-optimization/open-optimization-or-book
https://github.com/open-optimization/open-optimization-or-book
http://arxiv.org/abs/1801.06146
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-642-23786-7_35
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5082
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/5082
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.1007/s10994-017-5640-x
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.4230/LIPIcs.CP.2022.29
https://doi.org/10.1007/s10601-018-9281-x

Ner4Opt 317

Learning (ICML 2001), Williams College, Williamstown, MA, USA, 28 June–1 July
2001, pp. 282–289. Morgan Kaufmann (2001)

29. Lai, G., Xie, Q., Liu, H., Yang, Y., Hovy, E.: Race: large-scale reading comprehen-
sion dataset from examinations. arXiv preprint arXiv:1704.04683 (2017)

30. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., Kang, J.: BioBERT: a
pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics (2019). https://doi.org/10.1093/bioinformatics/btz682

31. Liberto, G.M.D., Kadioglu, S., Leo, K., Malitsky, Y.: DASH: dynamic approach
for switching heuristics. Eur. J. Oper. Res. 248(3), 943–953 (2016). https://doi.
org/10.1016/j.ejor.2015.08.018

32. Liu, Y., et al.: Roberta: a robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

33. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236
(2017). https://doi.org/10.1007/s11750-017-0451-6

34. Morwal, S., Jahan, N., Chopra, D.: Named entity recognition using hidden Markov
model (HMM). Int. J. Nat. Lang. Comput. (IJNLC) 1 (2012)

35. do Nascimento, H.A.D., Eades, P.: User hints: a framework for interactive opti-
mization. Future Gener. Comput. Syst. 21(7), 1171–1191 (2005). https://doi.org/
10.1016/j.future.2004.04.005

36. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

37. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explana-
tions for interactive constraint satisfaction. In: van Beek, P. (ed.) CP 2005.
LNCS, vol. 3709, pp. 445–459. Springer, Heidelberg (2005). https://doi.org/10.
1007/11564751_34

38. Paramonov, S., Kolb, S., Guns, T., Raedt, L.D.: Tacle: learning constraints in tab-
ular data. In: Lim, E., et al. (eds.) Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM 2017, Singapore, 06–10 Novem-
ber 2017, pp. 2511–2514. ACM (2017). https://doi.org/10.1145/3132847.3133193

39. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neu-
ral networks. In: International Conference on Machine Learning, pp. 1310–1318.
PMLR (2013)

40. Pawlak, T.P., Krawiec, K.: Automatic synthesis of constraints from examples
using mixed integer linear programming. Eur. J. Oper. Res. 261(3), 1141–1157
(2017). https://doi.org/10.1016/j.ejor.2017.02.034. https://www.sciencedirect.
com/science/article/pii/S037722171730156X

41. Quattoni, A., Collins, M., Darrell, T.: Conditional random fields for object recog-
nition. In: Advances in Neural Information Processing Systems, vol. 17 (2004)

42. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018)

43. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language
models are unsupervised multitask learners (2019)

44. Raedt, L.D., Passerini, A., Teso, S.: Learning constraints from examples. In: AAAI
Conference on Artificial Intelligence (2018)

45. Rajapakse, T.C.: Simple transformers (2019). https://github.com/
ThilinaRajapakse/simpletransformers

46. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822 (2018)

http://arxiv.org/abs/1704.04683
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1016/j.ejor.2015.08.018
https://doi.org/10.1016/j.ejor.2015.08.018
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/s11750-017-0451-6
https://doi.org/10.1016/j.future.2004.04.005
https://doi.org/10.1016/j.future.2004.04.005
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/11564751_34
https://doi.org/10.1007/11564751_34
https://doi.org/10.1145/3132847.3133193
https://doi.org/10.1016/j.ejor.2017.02.034
https://www.sciencedirect.com/science/article/pii/S037722171730156X
https://www.sciencedirect.com/science/article/pii/S037722171730156X
https://github.com/ThilinaRajapakse/simpletransformers
https://github.com/ThilinaRajapakse/simpletransformers
http://arxiv.org/abs/1806.03822

318 P. P. Dakle et al.

47. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250 (2016)

48. Ramamonjison, R., Li, H., et al.: Augmenting operations research with auto-
formulation of optimization models from problem descriptions (2022). https://doi.
org/10.48550/ARXIV.2209.15565. https://arxiv.org/abs/2209.15565

49. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity recog-
nition. In: Proceedings of the Thirteenth Conference on Computational Natural
Language Learning (CoNLL-2009), pp. 147–155 (2009)

50. Rau, L.F.: Extracting company names from text. In: Proceedings the Seventh
IEEE Conference on Artificial Intelligence Application, pp. 29–30. IEEE Computer
Society (1991)

51. Sabharwal, A., Samulowitz, H., Reddy, C.: Guiding combinatorial optimization
with UCT. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS,
vol. 7298, pp. 356–361. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29828-8_23

52. Simonis, H., Davern, P., Feldman, J., Mehta, D., Quesada, L., Carlsson, M.: A
generic visualization platform for CP. In: Cohen, D. (ed.) CP 2010. LNCS, vol.
6308, pp. 460–474. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15396-9_37

53. Tang, Y., Agrawal, S., Faenza, Y.: Reinforcement learning for integer program-
ming: learning to cut. In: Daume III, H., Singh, A. (eds.) Proceedings of the 37th
International Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 119, pp. 9367–9376. PMLR (2020). https://proceedings.mlr.press/
v119/tang20a.html

54. Thie, P.R., Keough, G.E.: An Introduction to Linear Programming and Game
Theory. Wiley, Hoboken (2011)

55. Tjong Kim Sang, E.F.: Introduction to the CoNLL-2002 shared task: language-
independent named entity recognition. In: COLING-02: The 6th Conference on
Natural Language Learning 2002 (CoNLL-2002) (2002). https://aclanthology.org/
W02-2024

56. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press,
Cambridge (1999)

57. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

58. Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: a multi-
task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461 (2018)

59. Wolf, T., et al.: Huggingface’s transformers: state-of-the-art natural language pro-
cessing. arXiv preprint arXiv:1910.03771 (2019)

60. Yadav, V., Bethard, S.: A survey on recent advances in named entity recognition
from deep learning models. arXiv preprint arXiv:1910.11470 (2019)

61. Yang, Y., Boland, N., Dilkina, B., Savelsbergh, M.: Learning generalized strong
branching for set covering, set packing, and 0-1 knapsack problems. Eur. J. Oper.
Res. 301(3), 828–840 (2022). https://doi.org/10.1016/j.ejor.2021.11.050. https://
www.sciencedirect.com/science/article/pii/S0377221721010018

62. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet:
generalized autoregressive pretraining for language understanding. In: Advances in
Neural Information Processing Systems, vol. 32 (2019)

63. Zhao, S.: Named entity recognition in biomedical texts using an hmm model. In:
Proceedings of the International Joint Workshop on Natural Language Processing
in Biomedicine and its Applications (NLPBA/BioNLP), pp. 87–90 (2004)

http://arxiv.org/abs/1606.05250
https://doi.org/10.48550/ARXIV.2209.15565
https://doi.org/10.48550/ARXIV.2209.15565
https://arxiv.org/abs/2209.15565
https://doi.org/10.1007/978-3-642-29828-8_23
https://doi.org/10.1007/978-3-642-29828-8_23
https://doi.org/10.1007/978-3-642-15396-9_37
https://doi.org/10.1007/978-3-642-15396-9_37
https://proceedings.mlr.press/v119/tang20a.html
https://proceedings.mlr.press/v119/tang20a.html
https://aclanthology.org/W02-2024
https://aclanthology.org/W02-2024
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.11470
https://doi.org/10.1016/j.ejor.2021.11.050
https://www.sciencedirect.com/science/article/pii/S0377221721010018
https://www.sciencedirect.com/science/article/pii/S0377221721010018

Ner4Opt 319

64. Zhong, V., Xiong, C., Socher, R.: Seq2sql: generating structured queries from natu-
ral language using reinforcement learning. arXiv preprint arXiv:1709.00103 (2017)

65. Zhou, G., Su, J.: Named entity recognition using an HMM-based chunk tagger.
In: Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, pp. 473–480 (2002)

66. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran sub-
routines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.
(TOMS) 23(4), 550–560 (1997)

http://arxiv.org/abs/1709.00103

Exploiting Entropy in Constraint
Programming

Auguste Burlats1(B) and Gilles Pesant2(B)

1 UCLouvain, Ottignies-Louvain-la-Neuve, Belgium
auguste.burlats@uclouvain.be

2 Polytechnique Montréal, Montreal, Canada
gilles.pesant@polymtl.ca

Abstract. The introduction of Belief Propagation in Constraint Pro-
gramming through the CP-BP framework makes possible the compu-
tation of an estimation of the probability that a given variable-value
combination belongs to a solution. The availability of such marginal
probability distributions, effectively ranking domain values, allows us to
develop branching heuristics but also more generally to apply the con-
cept of entropy to Constraint Programming. We explore how variable
and problem entropy can improve how we solve combinatorial problems
in the CP-BP framework. We evaluate our proposal on an extensive set
of benchmark instances.

1 Introduction

Constraint Programming (CP) is a powerful approach to solve combinatorial
problems. It can significantly reduce the search space by using constraints and
their powerful inference algorithms to filter out infeasible variable-value combi-
nations at each node of the search tree. The order in which variables are branched
on has a significant impact on the shape of the tree and thus on search efficiency.
This is why finding robust and generic variable ordering heuristics is crucial. The
introduction of Belief Propagation (BP) in CP [6] makes possible the computa-
tion of an estimation of the probability that a given variable-value combination
belongs to a solution. The availability of such marginal probabilities, effectively
ranking domain values, allows us to develop variable ordering heuristics [1] but
also more generally to apply the concept of entropy to CP, which is the subject
of this paper.

A Constraint Satisfaction Problem (CSP) P = 〈X,D,C〉 is a combinatorial
problem defined by a triplet where:

– X = {x1, x2, . . . , xn} is a finite set of variables,
– D = {D(x1),D(x2), . . . , D(xn)} is a finite set of finite domains,
– C = {c1, c2, . . . , cm} is a finite set of constraints.

A. Burlats—Most of this work was carried out while the first author was at Polytech-
nique Montréal.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 320–335, 2023.
https://doi.org/10.1007/978-3-031-33271-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_21&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_21

Exploiting Entropy in Constraint Programming 321

A solution s = (v1, v2, . . . , vn) to P assigns to each variable xi ∈ X a value vi
from its corresponding domain D(xi) such that all constraints in C are satisfied.
Let SP denote the set of all solutions to P and s[x] the value assigned to variable
x in solution s. Define

θPx (v) =
|{s ∈ SP : s[x] = v}|

|SP |
as the proportion of solutions in which variable x takes value v.1 We will call this
quantity the marginal of variable-value pair (x, v) in reference to the marginal
probability of x taking value v in a solution chosen uniformly at random from S.
Note that we assume for the moment that S in nonempty i.e. that P is satisfiable:
otherwise we will consider all marginals to be null. We define H(x), the entropy
of variable x using Shannon entropy [8]:

H(x) = −∑
v∈D(x) θx(v) log(θx(v)).

This nonnegative quantity can be interpreted as the uncertainty about which
value x should take in a solution: a null entropy corresponds to θx(v) = 1 for some
v, and so θx(v′) = 0 ∀v′ �= v, i.e. x = v in every solution (and x is thus a backbone
variable); maximum entropy log(|D(x)|) is reached whenever θx(v) = 1

|D(x)| ∀v ∈
D(x) i.e. its values are uniformly distributed among solutions. The normalized
entropy (also called efficiency) of x divides its entropy by the logarithm of the
cardinality of its domain, unless its domain is a singleton in which case the
(normalized) entropy is null. We derive the entropy of problem P as

H(P) =

∑
x∈X : |D(x)|>1

H(x)
log(|D(x)|)

|X| .

It corresponds to the average normalized entropy of its variables and thus lies
between 0 and 1 inclusive. We make two general observations about CSP entropy:

Observation 1. A null CSP entropy only occurs when either it admits a single
solution (including the special case where all variables are bound in a consistent
assignment) or it has no solution. In the former case each variable has some
unique value in its domain with a unit marginal whereas in the latter, each
variable has all null marginals.

Observation 2. A CSP for which every assignment is a solution (or with unin-
formed marginals) will exhibit uniformly distributed marginals for each vari-
able and an entropy equal to the proportion of its variables with non-singleton
domains. In particular if all variables have non-singleton domains the CSP
entropy is one.

Of course our notion of entropy relies on marginals of which we typically do
not know the exact value. This is where BP comes in to provide estimates of
1 We will generally omit superscript P for ease of notation.

322 A. Burlats and G. Pesant

these marginals. In this paper we investigate several uses of entropy to help solve
CSPs, particularly for branching heuristics.

We follow with a review of the CP-BP framework in Sect. 2 and then evaluate
the accuracy of the marginals computed in this framework in Sect. 3. Section 4
presents different uses of entropy and follows with comparative experiments in
Sect. 5. We then conclude in Sect. 6.

2 Belief Propagation for CSPs

Belief Propagation (BP) is an algorithm introduced by Pearl [5]. It is able to
compute the marginal distribution for each non-observed node in a graphical
model (e.g. a factor graph), conditioned by the value of the observed nodes.

Pesant [6] introduced a framework combining CP and BP in which beliefs
about variable-value pairs are propagated as messages between variables and
constraints, thus generalizing the simpler propagation of unsupported pairs. A
CSP can be viewed as a factor graph where the constraints are the factor nodes
and the variables are the variable nodes. We note μc→x the message from con-
straint c to variable x, and μx→c the message from variable x to constraint c.
Their definition is

{
μx→c(v) =

∏
c′∈N(x)\{c} μc′→x(v)

μc→x(v) =
∑

v:v[x]=v fc(v)
∏

x′∈N(c)\{x} μx′→c(v[x′])

where N(x) is the neighbourhood of variable x, i.e. the constraints applied to
this variable, N(c) is the neighbourhood of constraint c, i.e. its scope, v is a
tuple from the Cartesian product of all the variables in the scope of c, v[x] is the
value taken by x in v and fc(v) is a function that returns 1 if tuple v satisfies c
and 0 otherwise. We are thus able to estimate the marginal of a variable x as

θ̂x(v) =
∏

c∈N(x)

μc→x(v) ∀v ∈ D(x).

Messages are sent iteratively: first, all variables send their messages (ini-
tially, uniform distributions over their domain); then all constraints send their
messages. This cycle is repeated for a fixed number of iterations. Among other
things, in this paper we offer a way to decide this number dynamically at each
node of the search tree. Computing

∑
v:v[x]=v fc(v) is equivalent to counting

solutions (local to c) where v[x] = v. Therefore messages from constraints report
the number of such solutions, each being weighted by the product of correspond-
ing messages from variables. Pesant [6] provided efficient dedicated algorithms
for weighted counting on several constraints. If there is no such algorithm for
a given constraint it simply sends back a uniform distribution. Let’s examine a
small example from [6] to illustrate the behaviour of marginals.

Example 1. Consider variables a, b, c, and d with identical domains {1, 2, 3, 4},
and the following constraints:

alldifferent(a, b, c), a + b + c + d = 7, c ≤ d.

Exploiting Entropy in Constraint Programming 323

Table 1. True marginals (a), initial estimated marginals (b), marginals after 1st iter-
ation of BP (c) and after 10th iteration (d) for Example 1.

1 2 3 4

θa 0 1/2 1/2 0

θb 0 1/2 1/2 0

θc 1 0 0 0

θd 1 0 0 0

(a) true marginals

1 2 3 4

θ̂a .25 .25 .25 .25

θ̂b .25 .25 .25 .25

θ̂c .25 .25 .25 .25

θ̂d .25 .25 .25 .25

(b) initial marginals

1 2 3 4

θ̂a .50 .30 .15 .05

θ̂b .50 .30 .15 .05

θ̂c .62 .28 .09 .01

θ̂d .29 .34 .26 .11

(c) 1st iteration

1 2 3 4

θ̂a .01 .52 .46 .01

θ̂b .01 .52 .46 .01

θ̂c .98 .02 .00 .00

θ̂d .90 .10 .00 .00

(d) 10th iteration

Fig. 1. Evolution of entropy during Belief Propagation for the CSP in Example 1.

This CSP has two solutions: 〈a = 2, b = 3, c = 1, d = 1〉 and 〈a = 3, b = 2, c =
1, d = 1〉. If we examine variable a, we observe that assignment a = 2 is present
in one solution and that assignment a = 3 is present in the other one. There is no
valid solution containing a = 1 or a = 4. Therefore its true marginal distribution
is θa(1) = 0, θa(2) = 1/2, θa(3) = 1/2, θa(4) = 0. If we examine variable c, we can
observe that only assignment c = 1 can be in a valid solution. Thus, its marginal
distribution is θc(1) = 1, θc(2) = 0, θc(3) = 0, θc(4) = 0. BP starts from a uniform
distribution for each variable: θ̂xi

(v) = 1/|D(xi)|,∀v ∈ D(xi),∀xi ∈ X. And, as
we can see in Table 1, BP tends to converge to the true marginal distributions
after a few iterations. Figure 1 also traces the evolution of the CSP entropy H(P)
(solid curve) with a lighter band showing the range of entropy for individual
variables (normalized H(x)). For comparison the uninformed CSP entropy, i.e.
considering domain values to be equally likely, corresponds to the initial value
of the curve (1.0) and the true entropy is 0.25.

BP is assured to converge when there is no cycle in the graph [5] but the
graphical representation of a CSP typically contains such cycles. However the
large arity of global constraints, in addition to performing efficient inference,
allows us to encapsulate some of those cycles and prevent the marginals from
oscillating [6]. For instance in Example 1 marginals converge despite the remain-
ing cycles in the model. In case marginals still oscillate, message damping has

324 A. Burlats and G. Pesant

been known to help. Babaki et al. [1] propose using the weighted average of the
current and previous messages from variables to constraints:

μx→c(v) = λμcurrent
x→c (v) + (1 − λ)μprevious

x→c (v)

where the damping factor (0 ≤ λ ≤ 1) balances the old and the new. Observe
that for Example 1 damping is not needed and even slows down convergence
(dashed curve in Fig. 1).

The estimated marginals θ̂x(v) can serve to inform dynamic search heuris-
tics. For example max-marginal [1] branches on variable argmaxx∈X maxv∈D(x)

(θ̂x(v)), assigning it its domain value with the strongest marginal.

3 Accuracy of BP-Estimated Marginals and Entropy

In this section we evaluate empirically the accuracy of the marginals (and ulti-
mately of the entropy) computed by BP on a CP model. After the initial con-
straint propagation, we track these estimated marginals as BP iterations proceed
(and before any branching occurs). Whenever we activate message damping we
use a damping factor λ = 0.5 (the default value in MiniCPBP, the prototype
solver implementing the CP-BP framework). We use several instances of com-
binatorial problems: some with a single solution (Sudoku and Nonogram) and
others with a moderate number of solutions (n-queens and Feature model [9]).
We enumerate the solutions to these instances and use them to compute the
true marginals, against which we compare the estimated marginals using the
Kullback-Leibler divergence, a measure of dissimilarity between two probability
distributions: ∑

v∈D(x) θx(v) · log(θx(v)/θ̂x(v)).

For n-queens we use the instances ranging from n = 5 to 9 that have respec-
tively 10, 4, 40, 92, and 352 solutions (we do not break symmetries). We observe at
Fig. 2 that the KL-divergence stabilizes after a few iterations and to a low value.
The exception is for 6-queens where the divergence is about one order of magni-
tude greater. That small instance has the fewest solutions: each variable has four
domain values with identical true marginal (0.25) and the remaining two with a
null true marginal. Upon inspection, no estimated marginal is null but the four
outstanding values in each domain do have larger estimated marginals for all vari-
ables, meaning they are ranked correctly, though with less of a distinction for q1
and q4. There are also a few misses: for example with 7-queens θ̂q3(3) is the lowest
in the domain whereas it should be the highest. Damping does not make much
of a difference here. Even though we typically cannot compute the KL-divergence
because we do not know the true marginals, the observed entropy of the estimated
marginals (Fig. 2, right column), which we can compute, will align very well with
the unobserved divergence in terms of the iteration when they become stable, and
this could be used to decide when to stop iterating BP. The difference between the
estimated and true problem entropy is often under 1%.

Exploiting Entropy in Constraint Programming 325

Fig. 2. KL-divergence of variable marginals and entropy as we iterate belief propaga-
tion for instances of n-queens.

326 A. Burlats and G. Pesant

Fig. 3. KL-divergence of variable marginals and entropy as we iterate belief propaga-
tion for instances of Feature Model.

For Feature Model, which is a maximization problem, we derive three
instances of a CSP by bounding the objective: lower bounds 17738, 19000,
and 20222 (its optimal value) respectively admit 95, 15, and 1 solutions. Each
instance has 15 unbound variables. The results are shown at Fig. 3. Here damp-
ing has a dramatic effect: without it the divergence of many variable marginals
oscillates with increasing amplitude whereas with damping the divergence may
still oscillate but with much smaller amplitude and tends to converge to a low
value. Note also that for a few variables the divergence quickly stabilizes to a
near null value. And in the case of the single-solution instance (right column)
iterated BP actually identifies that solution. The divergent behaviour without
damping appears as an oscillation in the observed problem entropy whereas the
latter is smoother and even sometimes stable for the better-performing damping.
Observe also how the estimated entropy with damping appears to converge to
the true entropy.

Lastly we turn to instances with a larger number of variables and a single solu-
tion. The Sudoku instance we use at Fig. 4 features 33 unbound variables after
constraint propagation. Without damping, severe oscillation occurs for many of

Exploiting Entropy in Constraint Programming 327

Fig. 4. KL-divergence of variable marginals and entropy as we iterate belief propaga-
tion for instances of Sudoku and Nonogram.

the variable marginals. It is again accompanied by an oscillation of the entropy,
though less pronounced. Damping is very useful to keep the marginals under con-
trol except for a few which start to diverge around Iteration 10. The Nonogram
instance has 444 unbound variables out of 576. In contrast with the previous
instance no damping behaves better: it even momentarily stabilizes to the solu-
tion around Iteration 12. Another difference is that entropy without damping
oscillates until Iteration 6, a behaviour that had coincided with increased diver-
gence in the previous instances.

So, damping is not always better and entropy oscillation does not necessarily
signal that we should use damping. But according to this limited empirical inves-
tigation damping generally helps much more than it hurts: for Feature Model
and Sudoku it avoids very large (50) or even infinite divergence; for Nonogram
the divergence with damping never strays above 6.

4 Exploiting Entropy

Now that we have empirical evidence for the accuracy of the computed marginals
and entropy, we propose in this section several uses for such information.

4.1 Deciding When to Use BP

In their empirical evaluation of search based on BP for CSPs, Babaki et al. [1]
reported two problems on which the approach performed particularly badly:

328 A. Burlats and G. Pesant

Fig. 5. Evolution of problem entropy during BP for two problematic instances.

Dubois and PigeonsPlus2. Both feature unsatisfiable instances but more impor-
tantly it was noticed at the time that the computed marginals were close to being
uniform. Figure 5 confirms that in both cases the computed entropy stagnates at
a value close to 1. We can turn this observation into a criterion to decide when
problem entropy should be used to help solve an instance and when computa-
tionally expensive BP should be interrupted instead and replaced by a cheaper
variable ordering heuristic, at least until useful information can be inferred again
to guide search.

4.2 Deciding When to Stop BP Iterations

Variations of entropy give us information about the variations of marginals. If
the entropy of a variable undergoes important variations along BP iterations,
the marginals of this variable are varying too. It may mean that we shouldn’t
stop BP just yet. Based on this idea, we design a dynamic criterion to decide at
each search-tree node when we should stop BP iterations. This criterion is based
on the variations of the problem entropy H(P). After iteration t, we compare
the current entropy Ht(P) to the entropy at the previous iteration Ht−1(P). If
0 ≤ Ht−1(P) − Ht(P) ≤ α, for some threshold α, BP iterations are stopped
and a branching decision is taken. This difference must be positive: otherwise it
means that the entropy is increasing and that we shouldn’t stop BP.

Another potential criterion is to look at the value of the smallest variable
entropy. If this entropy becomes very low, we can consider this variable as almost
decided, because we have strong knowledge about the value it should take. Thus,
additional BP iterations are unnecessary and the variable should be branched
on. Another incentive to do so is that in the next few iterations this variable will
likely have all its marginals at zero except for the one value, which we observed
will have a cascading effect on several other variables, dropping their entropy
close to zero as well, which will make it harder to discriminate between the
variable at the origin of this phenomenon and the other variables when deciding
which one to branch on.
2 http://www.xcsp.org/instances/.

http://www.xcsp.org/instances/

Exploiting Entropy in Constraint Programming 329

4.3 Deciding When to Activate Damping

But perhaps the problem entropy never stabilizes and so does not meet our first
stopping criterion. We saw in Sect. 3 that marginals may sometimes oscillate
with increasing amplitude — which can be signaled by an oscillating entropy —
and that damping can alleviate this issue. However damping is not necessarily
desirable and can in some cases slow down convergence to the true marginals,
as in the case of Example 1. As an alternative to activating damping by default,
we will investigate starting BP without damping and switching it on whenever
such entropy oscillation is observed.

4.4 Branching to Search for a Solution

The lower a variable’s entropy, the stronger the information about which value
the variable should take in a solution. Hence entropy is a powerful tool that we
can exploit to make better branching decisions. We introduce variable ordering
heuristic min-entropy that selects the variable with the lowest entropy and first
tries fixing it to its domain value with the strongest marginal. Notice that, if the
marginal distributions are uniform (i.e. we have no discriminating information
between domain values), the variable with the lowest entropy will be the one
with the smallest domain. Therefore, we can consider that min-entropy is a
generalization of standard smallest-domain where we can discriminate between
domain values based on the CSP.

5 Experimental Evaluation

In this section, we evaluate the quality of our resulting search strategy. In order to
position our work with respect to the state of the art, we compare its performance
to the dom/wdeg [2] and IBS [7] heuristics, and to another heuristic based on
marginals and BP, max-marginal. Our metrics are the number of fails, which
shows the accuracy of a heuristic, i.e. how good are the branching decisions,
and the runtime, which indicates if the extra cost induced by our heuristics still
makes them worthwhile.

5.1 Experimental Protocol

We ran our experiment on a set of 1319 instances from XCSP33 and the Minizinc
Challenge4. One limitation of MiniCPBP is that it needs to store each value in
the domain of each variable, and each corresponding marginal. Therefore when
variables have very large domains this can be very space-consuming. We selected
problems where variables have reasonable-size domains: summing over the vari-
ables, our largest instance has about 810 000 domain values. Our other criterion
for problem selection was the constraints in the model. We chose problems where,
3 Availables at http://www.xcsp.org/instances/.
4 Available at https://www.minizinc.org/challenge2022/mznc2022 probs.tar.gz.

http://www.xcsp.org/instances/
https://www.minizinc.org/challenge2022/mznc2022_probs.tar.gz

330 A. Burlats and G. Pesant

for the majority of the constraints present, our solver provides a weighted count-
ing algorithm, in order to have a meaningful observation of the contribution
of BP. The experiments were performed on a server with two Intel E5-2683 v4
Broadwell @ 2.1 GHz. We used the solver MiniCPBP5, which is implemented
over MiniCP [4] and is able to perform BP. Each run had a 20-min timeout and
up to 12 GB of memory available.

Our results are presented as performance profiles: each point of a graph shows
the proportion of instances (given on the y axis) that are solved with a num-
ber of failures or runtime less than or equal to the value on the x axis. We
compare min-entropy with max-marginal during depth-first search (DFS), to
see if entropy is a better exploitation of the marginals. Before each branching
decision, unless indicated otherwise, five iterations of belief propagation are per-
formed (the current default number in MiniCPBP). To avoid the oscillation of
marginals, we apply damping on the messages sent during BP with a damping
factor λ = 0.5.

As an attempt to improve basic min-entropy and as described in Sect. 4, we
consider a dynamic configuration where the use of damping and the number of
BP iterations are dynamically decided during the search. BP is stopped when the
variation of the problem entropy is lower than threshold α = 0.1 (see Sect. 4.2):
experiments showed a strong variance on the best value for α depending on the
problem but that parameter value generally performs well on our benchmark
problems. In Sect. 4.2, we describe another stopping criterion which stops BP
iterations when the smallest entropy among variables falls under a threshold.
We tested it with different threshold values and it showed better performance
than the criterion based on the entropy’s variations on some problems, but the
latter remained the best choice overall. At each search-tree node, BP is per-
formed at first without damping and if oscillations in the problem entropy are
detected, damping is activated (with λ = 0.5 as before). To detect oscillations,
we count how many times we observe a decreasing entropy starting to increase:
if it switches 3 times from a negative variation of the entropy to a positive vari-
ation, we activate damping for the rest of the propagation. After the branching
decision, damping is deactivated again.

As a state-of-the-art reference, we use dom/wdeg with restarts (initial restart:
3n failures, where n is the number of variables in the problem; increased by
a factor 1.4 after each restart) and Impact-Based-Search (IBS) [7], also with
restarts (initial restart: 2n failures; increased by a factor 1.2 after each restart).
For IBS, to initialize impacts before the search, we try each possible assignment
and register its impact.

5.2 Evaluation

According to Fig. 6 min-entropy shows better performance than max-marginal
on opt-cryptoanalysis, MagicSquare and MagicHexagon. For the other problems,

5 Solver and used instances are available at https://github.com/PesantGilles/
MiniCPBP.

https://github.com/PesantGilles/MiniCPBP
https://github.com/PesantGilles/MiniCPBP

Exploiting Entropy in Constraint Programming 331

Fig. 6. % instances solved vs #fails for several branching heuristics

we observe similar performance for these two heuristics. The binary domains in
Nonogram, PseudoBoolean, MultiKnapsack and MarketSplit explain that we
observe identical performance between max-marginal and min-entropy (i.e. the
orange and red curves coincide): with such domains, the variable that presents
the strongest marginal is also the one with the lowest entropy. We can therefore
conclude that min-entropy is a good improvement of marginal usage.

If we now compare our heuristics to dom/wdeg and IBS, we see that we
outperform them on five problems in our dataset (LatinSquare, MagicSquare,
MultiKnapsack, PseudoBoolean, and opt-cryptoanalysis). For three problems
some of the state of the art is showing better performance: for KnightTour

332 A. Burlats and G. Pesant

Fig. 7. % instances solved vs runtime (ms) for several branching heuristics

both dom/wdeg and IBS outperform min-entropy, for Kakuro only dom/wdeg is
better, and for CryptoPuzzle only IBS is better. On the remaining six problems
heuristics perform similarly. Based on these results, exploiting entropy to make
branching decisions is a competitive approach.

Let’s take a closer look at MarketSplit and MultiKnapsack. They are inter-
esting because they present similar structure, i.e. their variables are binary and
they only contains sum constraints applied on all variables. However, we observe
a strong difference in the performance of our heuristic between these two prob-
lems. On MultiKnapsack, our heuristics clearly outperform dom/wdeg and IBS,
whereas on MarketSplit the results are more mixed. If we compare the entropy

Exploiting Entropy in Constraint Programming 333

of the variable in each problem, the reason is clear: if in MultiKnapsack they
quickly decrease, in MarketSplit they often stay above 0.9. MarketSplit is thus
a good example of a problem where BP is not as informed, as we discussed
in Sect. 4.1, and typically we would detect this and then decide to use another
branching heuristic.

We now turn to runtime to evaluate the cost of adding a second kind of prop-
agation at each node of the search tree. If we look at Fig. 7 and compare with
Fig. 6 we can observe this additional cost. If we encountered fewer failures with
min-entropy and max-marginal than dom/wdeg for problems like MarketSplit
and MagicSquare, we observe similar runtimes for these problems. For Kakuro,
Nonogram and MagicSequence, the performance in terms of failures was similar,
but dom/wdeg outperforms the other heuristics in terms of runtime. Sudoku is a
particular problem because it is the only one for which we don’t observe any addi-
tional cost. This is because the majority of instances are solved during the first
constraint propagation, before the use of belief propagation. Despite this addi-
tional cost, our heuristics still outperform dom/wdeg and IBS on PseudoBoolean
and MultiKnapsack. And for LatinSquare, max-marginal and min-entropy are
able to solve more instances. With some optimization, this approach could be a
good option for a wide spectrum of problems.

Speaking of BP optimization, we should now look at the performance of
our dynamic strategies. From Fig. 6 we observe that the heuristic quality is
not strongly impacted by the use of the dynamic parameters. We observe a
small degradation of performance for PseudoBoolean. This deterioration is due
to dynamic damping, because the configuration that is only using dynamic stop-
ping for BP shows performance as good as static min-entropy. This degradation
is stronger for MultiKnapsack and opt-cryptoanalysis and is once again mainly
due to dynamic damping. On the contrary for KnightTour and Nonogram we
observe a significant reduction of the number of failures. But the primary goal
of the dynamic stopping criterion is to improve runtime by choosing the best
moment to stop BP and thus spare useless iterations. At Fig. 7 we observe an
improvement for CryptoPuzzle, Kakuro, PseudoBoolean, and KnightTour. Con-
cerning the latter, the improvement is connected to the reduction of failures. For
the other problems, the improvement is not as significant. By using this crite-
rion, our goal is to spare a few iterations at each node of the search tree when
it is adequate. Therefore, the reduction of runtime will be linear, which is less
noticeable on a logarithmic scale. Finally we observe a small deterioration for
Sudoku, for MultiKnapsack, which is linked to the increase of failures, and for
MarketSplit. A limitation of our dynamic stopping criterion is the variability of
the best value for α, as we mentioned in Sect. 4.2. We chose the value that showed
the most stability in its performance, but it was not the best configuration for
all problems, and for some problems, like MagicSquare, we observed significantly
better performance by using our other stopping criterion, which is stopping BP
when the smallest entropy falls under a threshold. In conclusion, using a dynamic
number of iterations shows good potential to reduce the runtime, but it requires
more work to find a stopping criterion that would show improvement consis-

334 A. Burlats and G. Pesant

tently on a diverse set of problems. Concerning dynamic damping, we observe a
slight improvement for KnightTour in Fig. 6, but otherwise using it shows simi-
lar or worse performance. Further work is required to find a better criterion for
detecting the need of damping.

6 Conclusion

We investigated the entropy of CSPs and of their finite-domain variables, made
possible by estimating marginal distributions using the CP-BP framework on
constraint programming models. Our study showed that these estimated distri-
butions can get quite close to the true distributions, and that message damping
during BP may be necessary to obtain convergence. We proposed several ways
to exploit entropy in order to help solve combinatorial problems. Our experi-
ments on 1319 instances from 14 different problems showed that branching on
the variable with the lowest entropy is an insightful variable-ordering strategy.

Because performing belief propagation does come with a computational cost,
we considered two stopping criteria to decide dynamically when BP iterations
should stop in an effort to avoid unproductive work. The experiments showed
that such stopping criteria have potential but require further refinements in order
to be robust across problems.

We also considered when message damping should be activated. Instead of
turning it on with a fixed damping factor, we tried to adjust the use of damping
dynamically according to the observed effect on entropy oscillation. Experimen-
tal results show that further work is required to find a more accurate criterion.

A possible pragmatic improvement could be not to use BP at each node of
the search tree. If a branching decision has a very small impact on domains, we
can consider that it would have a very small impact on the marginals. There-
fore we could reuse the marginals computed at the previous node and spare a
mostly redundant phase of belief propagation. A similar approach gave signif-
icant acceleration when applied to maxSD [3], a branching heuristic based on
solution counting. Thus, it is a promising idea that could be explored in future
work.

References

1. Babaki, B., Omrani, B., Pesant, G.: Combinatorial search in CP-based iterated
belief propagation. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 21–36.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 2

2. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the
16th European Conference on Artificial Intelligence, ECAI 2004, Including Presti-
gious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, 22–27 August
2004, pp. 146–150. IOS Press (2004)

3. Gagnon, S., Pesant, G.: Accelerating counting-based search. In: van Hoeve, W.-
J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 245–253. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93031-2 17

https://doi.org/10.1007/978-3-030-58475-7_2
https://doi.org/10.1007/978-3-319-93031-2_17

Exploiting Entropy in Constraint Programming 335

4. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for con-
straint programming. Math. Program. Comput. 13(1), 133–184 (2021). https://doi.
org/10.1007/s12532-020-00190-7

5. Pearl, J.: Reverend Bayes on inference engines: a distributed hierarchical approach.
In: Proceedings of the National Conference on Artificial Intelligence, Pittsburgh,
PA, 18–20 August 1982, pp. 133–136 (1982). http://www.aaai.org/Library/AAAI/
1982/aaai82-032.php

6. Pesant, G.: From support propagation to belief propagation in constraint program-
ming. J. Artif. Intell. Res. 66, 123–150 (2019). https://doi.org/10.1613/jair.1.11487

7. Refalo, P.: Impact-based search strategies for constraint programming. In: Wal-
lace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30201-8 41

8. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3),
379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

9. Vavrille, M., Truchet, C., Prud’homme, C.: Solution sampling with random table
constraints. In: Michel, L.D. (ed.) 27th International Conference on Principles and
Practice of Constraint Programming, CP 2021, Montpellier, France (Virtual Con-
ference), 25–29 October 2021. LIPIcs, vol. 210, pp. 56:1–56:17. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CP.2021.56

https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
http://www.aaai.org/Library/AAAI/1982/aaai82-032.php
http://www.aaai.org/Library/AAAI/1982/aaai82-032.php
https://doi.org/10.1613/jair.1.11487
https://doi.org/10.1007/978-3-540-30201-8_41
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.4230/LIPIcs.CP.2021.56

Constraint Propagation on GPU: A Case
Study for the Cumulative Constraint

Fabio Tardivo1(B) , Agostino Dovier2 , Andrea Formisano2 ,
Laurent Michel3 , and Enrico Pontelli1

1 New Mexico State University, Las Cruces, USA
{ftardivo,epontell}@nmsu.edu

2 University of Udine, INdAM-GNCS, Udine, Italy
{agostino.dovier,andrea.formisano}@uniud.it

3 Synchrony Chair in Cybersecurity, University of Connecticut, Storrs, USA
ldm@uconn.edu

Abstract. The Cumulative constraint is one of the most important
global constraints, as it naturally arises in a variety of problems related to
scheduling with limited resources. Devising fast propagation algorithms
that run at every node of the search tree is critical to enable the reso-
lution of a wide range of applications. Since its introduction, numerous
propagation algorithms have been proposed, providing different tradeoffs
between computational complexity and filtering power.

Motivated by the impressive computational power that modern GPUs
provide, this paper explores the use of GPUs to speed up the propaga-
tion of the Cumulative constraint. The paper describes the development
of a GPU-driven propagation algorithm, motivates the design choices,
and provides solutions for several design challenges. The implementa-
tion is evaluated in comparison with state-of-the-art constraint solvers
on different benchmarks from the literature. The results suggest that
GPU-accelerated constraint propagators can be competitive by provid-
ing strong filtering in a reasonable amount of time.

Keywords: Constraint Propagation · Cumulative · Parallelism · GPU

1 Introduction

Industrial scheduling problems are derivatives of the so-called “Resource Con-
strained Project Scheduling Problem” (briefly, RCPSP) in which one must order
non-preemptible activities of fixed duration to minimize the makespan, i.e., the
project duration. Activities use a fixed amount of resources to execute and each
resource has a fixed capacity. Unsurprisingly, industrial scheduling readily ben-
efits from any improvements to solve the classic RCPSP problem.

The last three decades witnessed the development of multiple techniques to
prune the search tree of such an NP-hard problem [3,16]. The most prominent
techniques are Edge-Finding [29,33], Time-Tabling [26], Not-First/Not-Last [33,
40], and Energetic-Reasoning [28]. Edge-Finding was developed for cumulative
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 336–353, 2023.
https://doi.org/10.1007/978-3-031-33271-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_22&domain=pdf
http://orcid.org/0000-0003-3328-2174
http://orcid.org/0000-0003-2052-8593
http://orcid.org/0000-0002-6755-9314
http://orcid.org/0000-0001-7230-7130
http://orcid.org/0000-0002-7753-1737
https://doi.org/10.1007/978-3-031-33271-5_22

Constraint Propagation on GPU: Cumulative 337

instances through a series of contributions and it deduces precedences between
activities that must be satisfied in time O(n2k) [29] where n is the number of activ-
ities and k is the number of distinct capacity requirements of the activities. Time-
Tabling focuses on resource usage profile. Several techniques based on line-sweep
methods were proposed with an O(n2) [17] solution that separates profile building
and inference phases. The core of the inference mechanism rests on the ability to
deduce, from the mandatory part of the profile, whether an activity must be post-
poned or not. Not-First/Not-Last performs an orthogonal pruning with respect
to the other approaches by deducing unfeasible precedences between activities in
time O(n2 log n) [39] using a Θ-tree data structure. Energetic-Reasoning calcu-
lates the resource usage in specific time intervals to check and adjust the activi-
ties so that there is no over-consumption. Its standard algorithm has O(n3) time
complexity, that can be reduced to O(n2 log n) [36] by using Monge matrices.

In practice, most CP solvers employ Edge-Finding or Time-Tabling techniques
that exhibit a lower time complexity at each node of the search tree, despite the
strength of the filtering one might benefit from with Energetic-Reasoning. This
paper revisits this design decision and considers the use of an Energetic-Reasoning
propagator in a CP solver. Specifically, the paper advocates that the high com-
putational complexity cost at each fixpoint can be mitigated with the use of a
Graphics Processing Unit (GPU) and deliver, overall, faster computation times,
or better solutions within a given time horizon. The fundamental assumption is
that the energetic filtering rule is easily parallelized on this class of hardware and
that the benefits from the derived filtering can be significant.

This paper is organized as follows. Section 2 offers some general background.
Section 3 discusses the design of the proposed solution. Section 4 discusses empir-
ical results that pitch a GPU-based Energetic-Reasoning against multiple solvers
using Edge-Finding and Time-Tabling techniques. Section 5 concludes the paper.

2 Background

This section establishes the required background knowledge on Constraint Sat-
isfaction and Optimization [2,37], Cumulative Scheduling [3,6] and General-
Purpose computing on Graphics Processing Units (GPGPU) [10,38].

2.1 Constraint Satisfaction/Optimization Problem

A Constraint Satisfaction Problem (CSP) is a triple P = 〈V,D,C〉, where V =
{V1, . . . , Vn} is a finite set of variables, D = {D1, . . . , Dn} is the set of finite
domains, and C is a collection of constraints on variables in V . Each constraint
c ∈ C, defined over a set of variables vars(c) = {Vi1 , . . . , Vim} ⊆ V , defines a
relation on Di1 ×· · ·×Dim , namely c ⊆ Di1 ×· · ·×Dim . A solution of 〈V,D,C〉
is an assignment σ : V → ⋃n

i=1 Di such that:

• σ(Vi) ∈ Di for each i = 1, . . . , n
• ∀ c ∈ C then 〈σ(Vi1), . . . , σ(Vim)〉 ∈ c, where vars(c) = {Vi1 , . . . , Vim}.

338 F. Tardivo et al.

The set of solutions for the CSP 〈V,D,C〉 is denoted S(〈V,D,C〉). Given a CSP
〈V,D,C〉, a constraint solver searches for one or more solutions. A solver alter-
nates two types of steps: (1) constraint propagation and (2) non-deterministic
choice. The latter is used to select the next variable to be assigned and to select
non-deterministically a value to be given to such a variable (drawn from its cur-
rent domain). Constraint propagation uses the constraints to prune the domain
of the variables, removing values that provably do not belong to a solution.

The propagation algorithm uses a queue to schedule the constraints that
must be reconsidered when the domain of a variable changes. Namely, whenever
the domain of a variable x ∈ vars(c) for some c ∈ C changes, the constraint
c is added to the queue. The filtering algorithms of a constraint that shrinks
domains enforces a level of consistency, such as domain consistency [37]. An m-
ary constraint c on the variables vars(c) = {Vi1 , . . . , Vim} is domain consistent
if ∀ j ∈ {1, . . . , m} the following holds:

∀aj ∈ Dij : ∃a1 ∈ Di1 · · · ∃aj−1 ∈ Dij−1∃aj+1 ∈ Dij+1 · · · ∃am ∈ Dim : (a1, . . . , am) ∈ c

A CSP is domain consistent if all constraints in C are domain consistent. For
binary constraints (i.e., m = 2) domain consistency is known as arc consistency.
Without loss of generality, a Constraint Optimization Problem is specified with
〈V,D,C, f〉 where 〈V,D,C〉 is a CSP and f : D1 × · · · × Dn → R is an objective
function to be minimized. The goal is to find a solution of 〈V,D,C〉

σ∗ = argmin
σ∈S(〈V,D,C〉)

f(σ)

that minimizes f(σ(V1), · · · , σ(Vn)).

2.2 Cumulative

The Cumulative constraint is one of the most used constraints in CP. It makes
it easy to model and solve a variety of real-world problems, contributing to the
success of CP in scheduling applications.

In detail, it models the Cumulative Scheduling Problem (CuSP): given a set
A of activities that use a resource of capacity u and where the goal is to schedule
the activities so that the last activity finishes as soon as possible and no more
than u units of the resources are used at any time. Formally, each activity a ∈ A
is defined by its start time sa, its processing time pa and, its resource usage ha.
The end time of activity a is ea = sa + pa and the problem is defined as follows:

minimize max
a∈A

(ea)

subject to
∑

{a :a∈A, sa≤ t<ea}
ha ≤ u t ∈ N

Since its introduction in [1], the Cumulative constraint has been the subject
of many studies to improve its efficiency. The result is a collection of propaga-
tion algorithms with different trade-offs between filtering capability and com-
putational complexity. Such algorithms are commonly classified by the filtering

Constraint Propagation on GPU: Cumulative 339

Fig. 1. Left shift and right shift for the activity a with respect to [t1, t2).

technique they employ: Time-Tabling, Edge-Finding, Not-First/Not-Last, and
Energetic-Reasoning. A complete description of these approaches is out of the
scope of this work, interested readers can refer to [6]. This section describes the
core ideas that characterize each method and points to the relevant literature
for details.

Edge-Finding. This approach considers subsets of activities, determining if an
activity must start before or end after the rest. It was introduced in [33],
corrected in [29] and improved in different ways in [20,24,35,47,48].

Time-Table. This method consists of computing the minimal resource usage at
every time and adjusting the starting time of the activities so that there is no
over-consumption of the resource. It first appeared in [26] and was successively
refined in [7,17,27].

Not-First/Not-Last. This approach considers subsets of activities and deter-
mines whenever an activity cannot be the first/last to be executed. Introduced
in [33], it was corrected in [40] and improved in [22,23,39].

Energetic-Reasoning. This method checks some critical time intervals and
adjusts the starting time of the activities so that there is no over-consumption
of the resource. Introduced in [28], it was refined and improved in [4,13,36,
45,46].

Energetic-Reasoning is one of the strongest propagators for the Cumulative con-
straint, dominating both the Time-Table and Edge-Finding approaches [6]. Such
filtering examines O(n2) time intervals for a total complexity of O(n3), too costly
to be used in practice [13,36,46].

Preliminaries. Before proceeding to formalize the Energetic-Reasoning, we intro-
duce some notation: [t1, t2) denotes an open time interval. The lower and upper
bounds of (the domain of) a variable x are denoted by x and x, respectively.
Given a time interval [t1, t2) and an activity a, their minimal intersection is
MI (a, t1, t2) = min(LS (a, t1, t2),RS (a, t1, t2)) where LS and RS are the left
shift and right shift (see Fig. 1):

LS (a, t1, t2) = max(0,min(ea, t2) − max(sa, t1))
RS (a, t1, t2) = max(0,min(ea, t2) − max(sa, t1))

340 F. Tardivo et al.

foreach [t1, t2) ∈ RI do
w =

∑
a∈A ha · MI (a, t1, t2)

if w < c · (t2 − t1) then
foreach a ∈ A do

r = c · (t2 − t1) − w + ha · MI (a, t1, t2)
if r < ha · LS(a, t1, t2) then

sa = max(sa, t2 − r
ha

)

if r < ha · RS(a, t1, t2) then
ea = min(ea, t1 + r

ha
)

else
Fail

Algorithm 1: Energetic-Reasoning propagation algorithm.

The Energetic-Reasoning propagator considers the intervals whose extremes
are related to the beginning/end of an action [4,13]. We define the set of relevant
intervals as

RI =
⋃

(i,j)∈A×A

O(i, j)

where:

O(i, j) = {[t1, t2) : t1 < t2, t1 ∈ O1(i), t2 ∈ O2(j)} ∪
{[t1, t2) : t1 < t2, t1 ∈ O1(i), t2 ∈ O3(j,O1(i))} ∪
{[t1, t2) : t1 < t2, t1 ∈ O3(i, O2(j)), t2 ∈ O2(j)}

and O1(a) = {sa, sa}, O2(a) = {ea, ea}, O3(a, T) = {sa + ea − t : t ∈ T}. The
consistency condition of is:

∀[t1, t2) ∈ RI :
∑

a∈A

ha · MI (a, t1, t2) ≤ u · (t2 − t1)

From such condition one adjusts the start time of activities to prevent over-usage
as listed in Algorithm 1. Note that it could be worth to consider a set O(i, j)
only if si or sj changed in the current propagation phase. The rational of this
heuristics is to avoid to check consistent intervals and despite that it makes the
filtering weaker, it proved to be effective for the sequential implementation (see
Sect. 4).

2.3 GPUs and CUDA

Modern Graphical Processing Units (GPUs) are massively parallel architectures
where thousands of computing units can process large amounts of data. Such
power allows for the solution of problems that are out of reach with contempo-
rary multi-core CPU technology. Recent research shows that the use of GPUs can

Constraint Propagation on GPU: Cumulative 341

Fig. 2. High level GPU architecture.

be beneficial for speeding up basic Computational Logic tasks. See, among many,
[11,12] for SAT, [14,15] for ASP, and [44] for CP. However, accessing the compu-
tational power offered by GPUs demands specific techniques and algorithms that
proficiently exploit the peculiarities of the GPU architecture. To support devel-
opers and researchers, NVIDIA introduced CUDA (Computing Unified Device
Architecture) [34], a C/C++ Application Programming Interface (API) that
allows to ignore the underlying graphical concepts in favor of parallel computing
concepts. A typical CUDA program is composed of parts executed by the CPU,
the host, and parts designed to be executed on the GPU, the device. The host
parts contain instructions for data movement and computation offloading, while
the device parts contain the code that performs the computation.

A current NVIDIA GPU contains up to one hundred Streaming Multiproces-
sors (SM), each containing up to one hundred computational units called CUDA
Cores (see Fig. 2). The main GPU memory is called global memory, and it can
be tens of GB large. Between global memory and SMs there is a L2 cache of
a few MB. Finally, each SM is equipped with some tens of KB of fast memory
used as L1 cache and/or scratchpad memory, in which case it is referred to as
shared memory.

The CUDA computational model is defined as Single-Instruction Multiple-
Thread (SIMT). In this model, each thread executes the same C/C++ function,
named kernel, and uses its unique index to identify the data fragments to fetch
or the control flow. The case where different threads take different control flows
is called thread divergence, and it is handled by executing the threads one after
the other. Such a behavior may cause serious performance degradation. From
a programmer’s perspective, threads are logically grouped in blocks and blocks
are organized in a grid. Blocks are dispatched to the Streaming Multiprocessors,
that run the threads using their CUDA Cores. Threads in the same block can
share data using the shared memory, while threads of different blocks can only
share data through the global memory.

342 F. Tardivo et al.

include "cumulative.mzn";

include "minicpp.mzn";

...

int: m; % Number of resources

set of int: RESOURCE = 1..m;

...

constraint forall(r in RESOURCE)

(cumulative (...) ::gpu);

...

Listing 1.1. MiniZinc annotation to use the GPU-accelerated propagator.

To take full advantage of GPU architecture, one has to adhere to specific
programming directives to distribute the workload among the cores, avoid thread
divergence and optimize memory accesses. This usually involves exploiting the
shared memory to reduce costly global memory accesses.

3 Design and Implementation

This section describes the process of developing a constraint solver which sup-
ports the GPU-accelerated propagation of Cumulative. The first part is about
the constraint solver and can be used to estimate the effort necessary to integrate
our ideas into an existing solver. The second part focuses on a GPU-accelerated
propagator and can be useful to evaluate how effectively other propagators can
be parallelized.

Solver. The exploitation of a GPU-based propagator within a solver has some
caveats. The first is that the solver is open-source because intimate modifications
of internals might be needed. Second, it is preferable that the solver is written
in C/C++ to facilitate the interaction with CUDA. Finally, it is convenient
that the solver supports the MiniZinc language so that the GPU-accelerated
propagator is easily accessible by the community.

We choose to work with MiniCP [30] because it is open-source and it is rea-
sonably simple to modify thanks to the comprehensive documentation and the
straightforward mapping between its architecture and the theory. In particular
we used MiniCPP [19], a C++ implementation of MiniCP. The integration of
the GPU-accelerated propagator is the same as any other propagator, but it
requires modifying the build process to properly handle CUDA code. The addi-
tion of a FlatZinc frontend [42], few variable/value selection heuristics and some
constraints were sufficient to obtain a solver compatible with MiniZinc [41].
To provide a simple mechanism to use the GPU-accelerated propagator, we
introduced a new MiniZinc annotation. Specifically, a constraint annotated with
::gpu is enforced using the GPU-accelerated propagator in place of the CPU
implementation (see Listing 1.1).

Constraint Propagation on GPU: Cumulative 343

Propagator. The GPU can be used to enhance constraints propagation according
to two strategies: speed-up the fastest algorithms, or lower the computational
price of strong filtering algorithms. The first strategy has different downsides:
offloading to a GPU introduces an overhead that may overshadow the speed-up,
and it may not be obvious to parallelize the best (sequential) algorithm because
of its data structures. On the contrary, strong filtering algorithms may expose
enough parallelizable work to make it convenient to offload the computation,
but it may still be too slow to be beneficial.

Let us consider prior implementations proposed for Edge-Finding, Time-
Tabling, etc. to single out the most promising one for GPU parallelization.
We evaluate them based on the data structures they use, preferring plain data
structures since pointer chasing (i.e., a sequence of irregular memory accesses
following chains of pointers) is quite harmful on a GPU. The Time-Table propa-
gator, as proposed in [17], seems to be a good candidate since other implementa-
tions are impeded by the use of heap data structures. Among the Edge-Finding
propagators found in the literature, the most promising are those proposed in
[24,29], as other approaches heavily rely on linked data-structures (trees, queues,
lists) and involve pointer chasing. All the Not-First/Not-Last approaches are
equally dependent on linked data-structures. The standard Energetic-Reasoning
[4] is a strong filtering candidate which uses only array-like data structure. We
decided to base our GPU-accelerated propagator on Energetic-Reasoning for
both its GPU-friendly data structures, and because on typical instances and
with “enough” GPU cores, it is possible to generate and check all the O(n2)
intervals in parallel, reducing the running time from O(n3) to O(n).

3.1 Parallelization

This section describes and motivates the developing of a parallel Energetic-
Reasoning propagator. The first part introduces the notions of occupancy and
latency, two fundamental concepts of GPU computing. The second part details
how we parallelized the filtering algorithm, while the final part is about overhead
reduction.

Performance Considerations. Propagators are called thousands of times and run
for a few milliseconds. To derive a speedup, a GPU-accelerated propagator must
maximize occupancy and minimize latency.

Occupancy refers to how many and how effectively GPU cores are used. A
good algorithm uses fine-grain parallelism to engage many GPU cores, and relies
on cache-friendly data structures to mitigate memory stalls. Latency refers to
the time used to transfer data –and control– to the GPU as well as the time to
retrieve results and recover control back to the CPU. Such operations are very
expensive, so it is crucial to minimize both their duration and frequency.

Data Layout. It is convenient to specify how data is organized on the GPU. All
the data are stored in the global memory using dynamically allocated and stat-
ically sized vectors. Such vectors are triples (p, s, c), where p is a pointer to the

344 F. Tardivo et al.

propagationFailed = False
initStartingTimesFromDomains(S)
memcpyCpuToGpu([propagationFailed , S]) /* Asynchronous API */

calcIntervalsKernel(S, RI) /* Asynchronous launch */

updateBoundsKernel(S, RI , propagationFailed) /* Asynchronous launch */

memcpyGpuToCpu([propagationFailed , S]) /* Asynchronous API */

waitGpu()
if ¬propagationFailed then

updateDomains(S)
else

fail()

Algorithm 2: Pseudocode of the parallel Energetic-Reasoning propagator.

allocated memory block, s is the current size, and c is the maximum capacity.
This representation does not rely on links of pointers and can be allocated when
the constraint is created. Specifically, four vectors are kept in the GPU mem-
ory: P containing the processing time of activities, H containing the resource
usage of activities, RI 1 containing the relevant intervals (pairs of integers), and
S containing pairs of integers representing the earlier/latest starting time of
activities.

Parallel Algorithm. The parallelization of Algorithm 1 begins with the parallel
computation of RI . A GPU kernel named calcIntervalsKernel calculates and
merges the sets O(i, j) of each (i, j) ∈ A×A. Then, the outer loop is parallelized
by a kernel named updateBoundsKernel that processes the intervals [t1, t2) ∈ RI .
The resulting parallel propagator is listed in Algorithm2 and available in the gpu
branch of [41].

Let #SM be the number of Streaming Multiprocessors, and #CS be the num-
ber of CUDA Cores per Streaming Multiprocessors. We maximize the occupancy
of calcIntervalsKernel by running it with #SM blocks, each of #CS threads so
that each thread is responsible for about |A×A|

#SM ·#CS pairs of activities. In details,
each thread generates some elements of RI in shared memory and stores them
in RI , that is in global memory. To store the elements, each thread first reserves
enough space in RI and then writes the elements. The reservation is done with
a single atomic increment on the size of the vector. Such increment is the only
point where threads might be serialized. The occupancy of updateBoundsKernel
is maximized by launching it with #SM blocks, each of #CS threads so that
each thread is responsible for about |RI |

#SM ·#CS intervals (see Fig. 3). To retain
correctness, each update of S must be atomic. Because of the massive number of
threads concurrently accessing S, such atomic operations, if performed on global
memory, would cause contention and slow down. Shared memory can be used
instead by creating a copy S′ of S for each block to reduce contention. Once all
threads complete their computations, S is updated using S′. Naturally, updates

1 From now on we will use RI to refer both to the set and to the relative vector.

Constraint Propagation on GPU: Cumulative 345

Fig. 3. Sequential (top) vs parallel (bottom) processing of RI .

of S′s are still atomic, but since their scopes are single blocks, different blocks
do not interfere.

Overhead Reduction. The first step to reduce the overhead is to minimize the
volume of data transferred to/from the GPU. Since vectors P and H are con-
stant, it suffices to copy them to the GPU when the constraint is posted. The
only data that the host has to communicate to the GPU is the vector S, while
it has to retrieve both the updated S and the Boolean propagationFailed . A
possibility consists in using CUDA Unified Memory to exchange data between
CPU and GPU. In this case, the CUDA runtime autonomously copies the data
between host and device through a paging mechanism that, unfortunately, intro-
duces a not negligible overhead. Hence, we packed S and propagationFailed into
a structure and explicitly copy it to/from the GPU as a single block of data
when needed. In Fig. 4 such transfers are represented in cyan and magenta.

Another source of overhead originates from CUDA asynchronous calls. The
bottom part of Fig. 4 illustrates on a timeline the latency one experiences when
multiple such calls occur. The alternative is to use CUDA Graphs to organize
all kernel launches and memory operations in a dependency graph in such a way
that they can be launched by means of a single API call.

Fig. 4. Propagation with (top) and without (bottom) the use of CUDA Graph.

346 F. Tardivo et al.

A final note is about the possibility to offload the propagation of multiple
constraints at the same time. Parallel constraint propagation on GPU is pos-
sible and we are currently exploring it. Further investigation on such topic is
warranted, and will be the subject of future work.

4 Experiments

This section presents the result of a comparison between the GPU-accelerated
propagator, the CPU implementation and state-of-the-art solvers on different
sets of instances from the literature. Moreover, it shows the benefits of the heuris-
tics introduced in Sect. 2.2. We used the RCPSP as a benchmark. It is a gen-
eralization of CuPS with multiple resources and precedences between activities.
In CP it is usually modeled with multiple Cumulative and linear constraints.
Hence, it is particularly well-suited to evaluate the performance of a Cumulative
propagator. The evaluation considered three established sets of instances, for a
total of 299 instances:

PSPLib. Introduced in [25], it is the most popular benchmark for RCPSP. It
contains synthetic instances of 30, 60, 90, and 120 activities. Instances are
classified by their generation parameters, for a total of 204 classes, each of 10
instances. To have a reasonable benchmark time, we considered only the first
instance of each class.

BL. Introduced in [5], it is part of a study about solving highly disjunctive
and highly cumulative instances. It contains 40 highly cumulative synthetic
instances, with 20 and 25 activities.

Pack. Introduced in [8], it is part of a study that uses sharp makespan’s
lower bounds to solve the RCPSP. It contains 55 highly cumulative synthetic
instances, with 17 to 35 activities.

For a detailed description of the benchmarks, the reader can refer to [3]. Both the
model and instances are from the MinZinc Benchmark Suite [32] and make use of
smallest as variable selection heuristics. The model, instances and benchmark
scripts are available at [43]. The system used in the experiments is equipped with
an Intel Core i7-10700K, 32GB of RAM, and a NVIDIA GeForce RTX 3080. It
runs Ubuntu 22.04 with CUDA 11.8.

The solvers included in the comparison are the top two open-source not-LCG
(Lazy Clause Generation) solvers of the MiniZinc Challenge 2022 [31]: Jacop
[21], and Gecode [18]. We focused on open-source solvers because MiniCPP is
open-source, and on not-LCG solvers because we wanted to assess the specific
benefits of parallelizing the propagator. However, there is nothing that precludes
the use of GPU-accelerated propagators in a LCG solver. Note that neither
Jacop nor Gecode provide Energetic-Reasoning propagators, so we compared
ours with their Time-Tabling and Edge-Finding propagators. Since it is not
possible to select a specific propagator from the MiniZinc model, we did it by
modifying the source code of Jacop (version 4.9.0) and Gecode (version 6.3.0).
We called such solvers Jacop-TT, Jacop-EF, Gecode-TT, and Gecode-EF, while

Constraint Propagation on GPU: Cumulative 347

MiniCPP-ER and MiniCPP-ER-GPU stand for MiniCPP using the sequential and
the GPU-accelerated Energetic-Reasoning propagators, respectively.

4.1 Results and Analysis

To give an effective and concise presentation, we focus on the instances for which
a reasonable comparison of the solvers is possible. Namely, to be selected, an
instance must satisfy one of the following criteria:

1. It has been solved by at least one solver, and at least half of the solvers had
spent more than 10 s on the search. In this way, we rule out easier instances.

2. It was not solved by any solver and at least half of the solvers reported a
solution after 10 s. This way we filter out instances for which there is not
enough information on the progress of the search.

With 30 min timeout, these criteria select 31 instances in category 1 and 50 in
category 2.

Category 1. The results of the instances in category 1 are illustrated in Fig. 5 and
summarized in Table 2. The plots use logarithmic scale on the time axis, while
each entry of the table is the sum of the corresponding statistic among all the
instances. Overall, MiniCPP-ER-GPU results are compelling. It is the only app-
roach that completed the search for all the instances and has the smallest total
search time. The BL benchmark offers a direct comparison between MiniCPP-ER
and MiniCPP-ER-GPU since both solved all its instances. In this case the GPU-
accelerated solver is an order of magnitude faster. For the highly cumulative
BL and Pack, Energetic-Reasoning leads to a smaller search tree that translates
in a smaller search time only for MiniCPP-ER-GPU. For the PSPLib instances,
Energetic-Reasoning leads to bigger search trees and Jacop-TT results the fastest
solver. A similar outcome was observed in [9].

Table 1. Aggregate statistics for the proposed Energetic-Reasoning heuristics.

Benchmark Solver Optimal Time (s) Nodes (M) Failures (M) Depth

BL MiniCPP-ER 9 3072 3.31 1.10 349

MiniCPP-ER* 9 985 3.32 1.11 353

MiniCPP-ER-GPU 9 228 3.31 1.10 349

MiniCPP-ER*-GPU 9 237 3.32 1.11 353

Pack MiniCPP-ER 3 2277 2.17 0.72 147

MiniCPP-ER* 3 799 2.19 0.73 147

MiniCPP-ER-GPU 3 148 2.17 0.72 147

MiniCPP-ER*-GPU 3 159 2.19 0.73 147

PSPLib MiniCPP-ER 6 2138 0.26 0.09 558

MiniCPP-ER* 6 535 0.30 0.10 566

MiniCPP-ER-GPU 6 28 0.26 0.09 558

MiniCPP-ER*-GPU 6 30 0.30 0.10 566

348 F. Tardivo et al.

Table 2. Aggregate statistics for the instances in category 1.

Benchmark Solver Optimal Time (s) Nodes (M) Failures (M) Depth

BL Gecode-TT 15 8436 297.55 148.78 799

Gecode-EF 0 30600 187.34 93.67 791

Jacop-TT 13 11551 2307.47 1153.74 1123

Jacop-EF 17 1022 22.76 11.38 787

MiniCPP-ER 17 3163 3.46 1.15 605

MiniCPP-ER-GPU 17 233 3.46 1.15 605

Pack Gecode-TT 2 7812 222.34 111.17 308

Gecode-EF 0 10800 40.62 20.31 272

Jacop-TT 0 10782 2458.11 1229.05 814

Jacop-EF 3 7219 177.93 88.97 463

MiniCPP-ER 3 7674 5.37 1.79 286

MiniCPP-ER-GPU 6 2509 23.76 7.92 307

PSPLib Gecode-TT 4 8085 137.33 68.66 507

Gecode-EF 0 14400 32.12 16.06 564

Jacop-TT 8 404 34.01 17.00 502

Jacop-EF 8 3506 33.40 16.70 496

MiniCPP-ER 3 10049 11.97 3.99 485

MiniCPP-ER-GPU 8 3142 43.88 14.63 492

Table 3. Aggregate statistics for the instances in category 2.

Benchmark Solver Solutions AUC (K) Nodes (M) Failures (M) Depth

Pack Gecode-TT 41 16.99 493.47 246.74 520

Gecode-EF 0 1157.40 60.17 30.09 458

Jacop-TT 38 17.88 4112.02 2056.01 1646

Jacop-EF 41 14.01 343.27 171.63 978

MiniCPP-ER 28 45.66 14.22 4.74 669

MiniCPP-ER-GPU 45 10.62 238.52 79.51 806

PSPLib Gecode-TT 344 146.02 443.49 221.74 7613

Gecode-EF 4 11176.49 25.44 12.72 9739

Jacop-TT 412 22.70 4960.48 2480.23 6570

Jacop-EF 382 84.48 861.81 430.90 5918

MiniCPP-ER 312 213.83 7.15 2.38 4744

MiniCPP-ER-GPU 389 76.45 354.61 118.20 5549

Category 2. The results of the instances in category 2 are reported in Table 3.
The number of optimally solved instances is replaced with the number of solu-
tions and the search time with the Area Under the Curve (AUC). There are
no instances of BL for category 2. The numbers confirm what was observed for
category 1: MiniCPP-ER-GPU is the best solver for the Pack benchmark, having
the smaller AUC and the bigger number of solutions, while Jacop-TT is the best

Constraint Propagation on GPU: Cumulative 349

Fig. 5. Search time (in seconds) for all the instances in category 1.

350 F. Tardivo et al.

on the PSPLib instances. Naturally, it remains possible to add Time-Tabling
propagators alongside the Energetic-Reasoning propagators to get an additional
boost, yet this remains a topic for future research.

To analyze the effects of the heuristics proposed at the end of Sect. 2.2 we
implemented it in MiniCPP-ER*/MiniCPP-ER*-GPU, and test them on all the
299 instances. The results are summarized in Table 1. It reports the aggregate
statistics of the instances optimally solved by all the Energetic-Reasoning imple-
mentations within the timeout of 30 min. The heuristics leads to an increment of
the search tree size of less than 1% in the worst case (i.e., PSPLib), while improv-
ing the search time of the CPU implementation by at least 2.85 times (i.e. Pack).
On the contrary, the GPU-accelerated implementation is barely affected, with a
slowdown of less than 0.1%. That confirms the effectiveness of the parallelization
and shows the penalty incurred in having thread divergence.

5 Conclusions

This paper revisited cumulative scheduling and offered a GPU-based implemen-
tation of the Energetic-Reasoning propagator. Energetic-Reasoning, while hav-
ing one of the strongest filtering power, has often been sidelined because of its
prohibitive runtime. The advent of GPU computing offers massive parallelism
that opens the door to reconsider such design decisions and make this stronger
contender viable. This paper reviewed Energetic-Reasoning and detailed key con-
siderations for its implementation on GPUs. The empirical evaluation demon-
strated that this is a worthwhile technique that is competitive, scales well and,
should be part of CP toolkits.

Acknowledgements. Agostino Dovier and Andrea Formisano are partially sup-
ported by Interdepartment Project on AI and by INdAM-GNCS projects CUP
E55F22000270001 and CUP E53C22001930001. Laurent Michel is partially supported
by Synchrony.

References

1. Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling
and placement problems. Math. Comput. Model. 17, 57–73 (1993). https://doi.
org/10.1016/0895-7177(93)90068-a

2. Apt, K.: Principles of Constraint Programming. Cambridge University Press
(2003). https://doi.org/10.1017/cbo9780511615320

3. Artigues, C., Demassey, S., Nron, E. (eds.): Resource-Constrained Project Schedul-
ing. ISTE (2008). https://doi.org/10.1002/9780470611227

4. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time-bound adjust-
ments for cumulative scheduling problems. Ann. Oper. Res. 92, 305–333 (1999).
https://doi.org/10.1023/a:1018995000688

5. Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques for
highly disjunctive and highly cumulative project scheduling problems. In: Smolka,
G. (ed.) CP 1997. LNCS, pp. 375–389. Springer, Heidelberg (1997). https://doi.
org/10.1007/bfb0017454

https://doi.org/10.1016/0895-7177(93)90068-a
https://doi.org/10.1016/0895-7177(93)90068-a
https://doi.org/10.1017/cbo9780511615320
https://doi.org/10.1002/9780470611227
https://doi.org/10.1023/a:1018995000688
https://doi.org/10.1007/bfb0017454
https://doi.org/10.1007/bfb0017454

Constraint Propagation on GPU: Cumulative 351

6. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Springer,
Heidelberg (2001). https://doi.org/10.1007/978-1-4615-1479-4

7. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with
negative heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
63–79. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46135-3 5

8. Carlier, J., Néron, E.: On linear lower bounds for the resource constrained project
scheduling problem. Eur. J. Oper. Res. 149(2), 314–324 (2003). https://doi.org/
10.1016/s0377-2217(02)00763-4

9. Van Cauwelaert, S., Lombardi, M., Schaus, P.: Understanding the potential of
propagators. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 427–436.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3 29

10. Cheng, J., Grossman, M., McKercher, T.: Professional CUDA C Program-
ming. EBL-Schweitzer. Wiley (2014). https://www.wiley.com/en-us/Professional+
CUDA+C+Programming-p-9781118739310

11. Collevati, M., Dovier, A., Formisano, A.: GPU parallelism for SAT solving heuris-
tics. In: Calegari, R., Ciatto, G., Omicini, A. (eds.) Proceedings of the CILC 2022.
CEUR Workshop Proceedings, vol. 3204, pp. 17–31. CEUR-WS.org (2022)

12. Dal Palù, A., Dovier, A., Formisano, A., Pontelli, E.: CUD@SAT: SAT solving
on GPUs. J. Exp. Theor. Artif. Intell. 27(3), 293–316 (2015). https://doi.org/10.
1080/0952813X.2014.954274

13. Derrien, A., Petit, T.: A new characterization of relevant intervals for energetic
reasoning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 289–297. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10428-7 22

14. Dovier, A., Formisano, A., Pontelli, E.: Parallel answer set programming. In:
Hamadi, Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 237–
282. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3 7

15. Dovier, A., Formisano, A., Vella, F.: GPU-based parallelism for ASP-solving. In:
Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds.) INAP/WLP/WFLP
-2019. LNCS (LNAI), vol. 12057, pp. 3–23. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-46714-2 1

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., USA (1990)

17. Gay, S., Hartert, R., Schaus, P.: Simple and scalable time-table filtering for the
cumulative constraint. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 149–
157. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5 11

18. Gecode Team: GECODE. https://github.com/Gecode/gecode
19. Gentzel, R., Michel, L., van Hoeve, W.-J.: HADDOCK: a language and architec-

ture for decision diagram compilation. In: Simonis, H. (ed.) CP 2020. LNCS, vol.
12333, pp. 531–547. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
58475-7 31

20. Gingras, V., Quimper, C.G.: Generalizing the edge-finder rule for the cumulative
constraint. In: Kambhampati, S. (ed.) Proceedings IJCAI 2016, pp. 3103–3109.
IJCAI/AAAI Press (2016)

21. JaCoP Team: JaCoP. https://github.com/radsz/jacop
22. Kameugne, R., Betmbe Fetgo, S., Gingras, V., Ouellet, Y., Quimper, C.-G.: Hor-

izontally elastic not-first/not-last filtering algorithm for cumulative resource con-
straint. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 316–332.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93031-2 23

23. Kameugne, R., Fotso, L.P.: A cumulative not-first/not-last filtering algorithm in
O(n2 log n). Indian J. Pure Appl. Math. 44(1), 95–115 (2013). https://doi.org/10.
1007/s13226-013-0005-z

https://doi.org/10.1007/978-1-4615-1479-4
https://doi.org/10.1007/3-540-46135-3_5
https://doi.org/10.1016/s0377-2217(02)00763-4
https://doi.org/10.1016/s0377-2217(02)00763-4
https://doi.org/10.1007/978-3-319-18008-3_29
https://www.wiley.com/en-us/Professional+CUDA+C+Programming-p-9781118739310
https://www.wiley.com/en-us/Professional+CUDA+C+Programming-p-9781118739310
https://doi.org/10.1080/0952813X.2014.954274
https://doi.org/10.1080/0952813X.2014.954274
https://doi.org/10.1007/978-3-319-10428-7_22
https://doi.org/10.1007/978-3-319-63516-3_7
https://doi.org/10.1007/978-3-030-46714-2_1
https://doi.org/10.1007/978-3-030-46714-2_1
https://doi.org/10.1007/978-3-319-23219-5_11
https://github.com/Gecode/gecode
https://doi.org/10.1007/978-3-030-58475-7_31
https://doi.org/10.1007/978-3-030-58475-7_31
https://github.com/radsz/jacop
https://doi.org/10.1007/978-3-319-93031-2_23
https://doi.org/10.1007/s13226-013-0005-z
https://doi.org/10.1007/s13226-013-0005-z

352 F. Tardivo et al.

24. Kameugne, R., Fotso, L.P., Scott, J., Ngo-Kateu, Y.: A quadratic edge-finding
filtering algorithm for cumulative resource constraints. In: Lee, J. (ed.) CP 2011.
LNCS, vol. 6876, pp. 478–492. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23786-7 37

25. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. Eur. J.
Oper. Res. 96(1), 205–216 (1997). https://doi.org/10.1016/s0377-2217(96)00170-1

26. Lahrichi, A.: Scheduling: the notions of hump, compulsory parts and their use
in cumulative problems. Comptes Rendus De L Academie Des Sciences Serie I-
mathematique 294(6), 209–211 (1982)

27. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumu-
lative constraint. In: Milano, M. (ed.) CP 2012. LNCS, pp. 439–454. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33558-7 33

28. Lopez, P.: Energy-based approach for task scheduling under time and resource
constraints. Ph.D. thesis, Université Paul Sabatier-Toulouse III (1991)

29. Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling.
INFORMS J. Comput. 20(1), 143–153 (2008). https://doi.org/10.1287/ijoc.1070.
0226

30. Michel, L., Schaus, P., Van Hentenryck, P.: MiniCP: a lightweight solver for con-
straint programming. Math. Program. Comput. 13(1), 133–184 (2021). https://
doi.org/10.1007/s12532-020-00190-7

31. MiniZinc Team: MiniZinc Challenge 2022 Results. https://www.minizinc.org/
challenge2022/results2022.html

32. MiniZinc Team: The MiniZinc Benchmark Suite. https://github.com/MiniZinc/
minizinc-benchmarks

33. Nuijten, W.: Time and resource constrained scheduling: a constraint satisfaction
approach. Ph.D. thesis, Eindhoven University of Technology (1994)

34. Nvidia Team: CUDA. https://developer.nvidia.com/cuda-toolkit
35. Ouellet, P., Quimper, C.-G.: Time-table extended-edge-finding for the cumulative

constraint. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 562–577. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40627-0 42

36. Ouellet, Y., Quimper, C.-G.: A O(n log2 n) checker and O(n2 logn) filtering algo-
rithm for the energetic reasoning. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS,
vol. 10848, pp. 477–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-93031-2 34

37. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Program-
ming, Foundations of Artificial Intelligence, vol. 2. Elsevier (2006). https://www.
sciencedirect.com/science/bookseries/15746526/2

38. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming. Pearson Education (2010). https://developer.nvidia.com/
cuda-example

39. Schutt, A., Wolf, A.: A new O(n2 logn) not-first/not-last pruning algorithm for
cumulative resource constraints. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp.
445–459. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15396-
9 36

40. Schutt, A., Wolf, A., Schrader, G.: Not-first and not-last detection for cumulative
scheduling in O(n3 log n). In: Umeda, M., Wolf, A., Bartenstein, O., Geske, U.,
Seipel, D., Takata, O. (eds.) INAP 2005. LNCS (LNAI), vol. 4369, pp. 66–80.
Springer, Heidelberg (2006). https://doi.org/10.1007/11963578 6

41. Tardivo, F.: Fzn-minicpp. https://bitbucket.org/constraint-programming/fzn-
minicpp

https://doi.org/10.1007/978-3-642-23786-7_37
https://doi.org/10.1007/978-3-642-23786-7_37
https://doi.org/10.1016/s0377-2217(96)00170-1
https://doi.org/10.1007/978-3-642-33558-7_33
https://doi.org/10.1287/ijoc.1070.0226
https://doi.org/10.1287/ijoc.1070.0226
https://doi.org/10.1007/s12532-020-00190-7
https://doi.org/10.1007/s12532-020-00190-7
https://www.minizinc.org/challenge2022/results2022.html
https://www.minizinc.org/challenge2022/results2022.html
https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/MiniZinc/minizinc-benchmarks
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1007/978-3-642-40627-0_42
https://doi.org/10.1007/978-3-319-93031-2_34
https://doi.org/10.1007/978-3-319-93031-2_34
https://www.sciencedirect.com/science/bookseries/15746526/2
https://www.sciencedirect.com/science/bookseries/15746526/2
https://developer.nvidia.com/cuda-example
https://developer.nvidia.com/cuda-example
https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/978-3-642-15396-9_36
https://doi.org/10.1007/11963578_6
https://bitbucket.org/constraint-programming/fzn-minicpp
https://bitbucket.org/constraint-programming/fzn-minicpp

Constraint Propagation on GPU: Cumulative 353

42. Tardivo, F.: Libfzn. https://bitbucket.org/constraint-programming/libfzn
43. Tardivo, F.: MiniCPP-Benchmarks. https://bitbucket.org/constraint-programmi

ng/minicpp-benchmarks
44. Tardivo, F., Dovier, A., Formisano, A., Michel, L., Pontelli, E.: Constraints propa-

gation on GPU: a case study for AllDifferent. In: Calegari, R., Ciatto, G., Omicini,
A. (eds.) Proceedings of CILC 2022. CEUR Workshop Proceedings, vol. 3204, pp.
61–74. CEUR-WS.org (2022)

45. Tesch, A.: A nearly exact propagation algorithm for energetic reasoning in
O(n2 log n). In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 493–519. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-44953-1 32

46. Tesch, A.: Improving energetic propagations for cumulative scheduling. In: Hooker,
J. (ed.) CP 2018. LNCS, vol. 11008, pp. 629–645. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98334-9 41

47. Viĺım, P.: Edge finding filtering algorithm for discrete cumulative resources in
O(kn log n). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 62

48. Viĺım, P.: Timetable edge finding filtering algorithm for discrete cumulative
resources. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp.
230–245. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21311-
3 22

https://bitbucket.org/constraint-programming/libfzn
https://bitbucket.org/constraint-programming/minicpp-benchmarks
https://bitbucket.org/constraint-programming/minicpp-benchmarks
https://doi.org/10.1007/978-3-319-44953-1_32
https://doi.org/10.1007/978-3-319-98334-9_41
https://doi.org/10.1007/978-3-319-98334-9_41
https://doi.org/10.1007/978-3-642-04244-7_62
https://doi.org/10.1007/978-3-642-21311-3_22
https://doi.org/10.1007/978-3-642-21311-3_22

Constraint Programming for the Robust
Two-Machine Flow-Shop Scheduling
Problem with Budgeted Uncertainty

Carla Juvin1(B), Laurent Houssin1,2, and Pierre Lopez1

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
{carla.juvin,laurent.houssin,pierre.lopez}@laas.fr

2 ISAE-SUPAERO, Toulouse, France

Abstract. This paper addresses the robust two-machine permutation
flow-shop scheduling problem considering non-deterministic operation
processing times associated with an uncertainty budget. The objective
is to minimize the makespan of the schedule.

Exact solution methods incorporated within the framework of a two-
stage robust optimization are proposed to solve the problem. We first
prove that under particular conditions the robust two-machine permuta-
tion flow-shop scheduling problem can be solved in polynomial time by
the well-known Johnson’s algorithm usually dedicated to the determin-
istic version. Then we tackle the general problem, for which we propose
a column and constraint generation algorithm. We compare two versions
of the algorithm. In the first version, a mixed-integer linear programming
formulation is used for the master problem. In the second version, we use
a constraint programming model for the master problem. To the best of
our knowledge, the use of constraint programming for a master problem
in a two-stage robust optimization problem is innovative.

The experimental results show the very good performance of the
method based on the constraint programming formulation. We also
notice that Johnson’s algorithm is surprisingly efficient for the robust
version of the general problem.

Keywords: Flow-Shop Scheduling · Robust Optimization ·
Uncertainty Budget · Mixed-Integer Linear Programming · Constraint
Programming

1 Introduction

The permutation flow-shop scheduling is a well-studied problem where a set of
jobs are to be processed on a set of machines. Each job must be processed on
every machine, with given processing times, following the same given order of
machines. Each machine can process only one job at a time and the processing
sequence of jobs is the same on each machine. This problem is strongly NP-
hard for three or more machines. However, the two-machine flow-shop scheduling
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 354–369, 2023.
https://doi.org/10.1007/978-3-031-33271-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_23&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_23

CP for Robust Two-Machine Flow-Shop Scheduling 355

problem is solved by the well-known Johnson’s algorithm [5] for the makespan
minimization when operation processing times are assumed deterministic. In
the real world, many sources of uncertainty (processing times variation, machine
breakdown, addition of new operations, etc.) can affect the quality and even the
feasibility of a schedule.

There exist two major approaches to deal with data uncertainty: stochastic
optimization and robust optimization. While stochastic optimization considers
probability distribution, robust optimization assumes that uncertain data belong
to a given uncertainty set and aims to optimize performance considering the worst-
case scenario within that set. The traditional robust optimization approach [8]
consists in protecting against the case when all parameters can deviate at the same
time, which makes the solution overly conservative. Indeed, there is a very low
probability that all parameters take their worst value all together. To overcome
this limitation, Bertsimas & Sim introduce an uncertainty budget approach that
allows a restriction on the number of deviations that can occur simultaneously to
a given budget [2]. In order to reach a trade-off between robustness and solution
quality, we exploit this approach to define the uncertainty set. Multi-stage robust
optimization has been introduced by Ben-Tal et al. [1]. In some optimization prob-
lems, only a part of the decision variables have to be determined before uncertainty
is revealed, while the other variables can be chosen after the realization of the
uncertainty and can thus be adjusted to the scenario. The authors introduce the
adjustable robust counterpart where the set of decision variables is split into “here
and now” decisions and “wait and see” decisions. Thus, the objective is to find a
solution for the “here and now” decision variables such that there always exists
“wait and see” variables meeting the constraints for all values of the uncertain
parameters, and minimizing the objective value.

The purpose is to find the sequence on the machines (first stage decision),
allowing to define a start time for each operation and each scenario (second stage
decision), minimizing the makespan in the worst-case scenario considering the
budget of uncertainty.

In this paper, we propose exact solution methods to solve the robust two-
machine flow-shop scheduling problem. We first study a particular case of the
problem. Next, we provide a robust counterpart model based on constraint pro-
gramming formulation, that is embedded in a column and constraint generation
framework. A discussion is conducted on the basis of an analysis of experimental
results.

2 Problem Statement

An instance of the two-machine flow-shop scheduling problem implies a set of
jobs J and two machines M = {M1,M2}. Each job i ∈ J consists of two
operations Oi,1 and Oi,2. The first one, Oi,1, must be processed by machine M1

with a duration of pi,1 and then, Oi,2 must be processed by machine M2 with
a duration of pi,2. Each machine can process only one job at a time and each
job can only be processed on one machine at a time. The objective is to find a
permutation of jobs, denoted σ, minimizing the makespan.

356 C. Juvin et al.

When processing times are deterministically known, the problem can be
solved in polynomial time by means of Johnson’s rule [5], which states that
job i must be processed before job j if min(pi,1, pj,2) < min(pj,1, pi,2).

2.1 Processing Times Uncertainty

Here, we consider that the processing times of operations are uncertain. Each
processing time pi,m of an operation Oi,m, i ∈ J ,m ∈ {M1,M2}, belongs to
the interval [p̄i,m, p̄i,m + p̂i,m], where p̄i,m is the nominal value and p̂i,m the
maximum deviation of the processing time from its nominal value.

Let Γ be the budget of uncertainty, that is the maximum number of oper-
ations whose processing time deviation can occur simultaneously. For each sce-
nario ξ in the set of feasible scenarios UΓ , the processing time of operation Oi,m

is then given by:
pi,m(ξ) = p̄i,m + ξi,m · p̂i,m

where ξi,m is equal to 1 if the processing time of the operation deviates, 0 oth-
erwise.

In this study we consider two types of uncertainty budget:

1. A global budget Γ which denotes the number of operations that can deviate on
both machines combined. In this case, the set of feasible scenarios is expressed
as:

UΓ =
{

(ξi,m)i∈J ,m∈{M1,M2} |
∑
i∈J

2∑
m=1

ξi,m ≤ Γ, ξi,m ∈ {0, 1}
}

2. A machine-dependent budget Γ = (Γ1, Γ2) where Γ1 and Γ2 denote the num-
ber of operations whose processing time deviation can occur simultaneously
on machines M1 and M2, respectively. In this case, the set of feasible scenarios
is expressed as:

UΓ =
{

(ξi,m)i∈J ,m∈{M1,M2} |
∑
i∈J

ξi,1 ≤ Γ1,
∑
i∈J

ξi,2 ≤ Γ2, ξi,m ∈ {0, 1}
}

Notations and Definitions
J : Set of jobs

M : Set of machines
Oi,m : mth operation of job i (i ∈ J) to be executed on machine m ∈ M

σ : sequence of jobs
σ[i] : ith job of sequence σ

Γ : uncertainty budget
Γm : uncertainty budget on machine m ∈ M
UΓ : uncertainty set for a given uncertainty budget Γ ξ: scenario

Cγ
i,m(σ) : maximum completion time of the ith job of sequence σ, on machine

m ∈ M, considering at most γ deviations

CP for Robust Two-Machine Flow-Shop Scheduling 357

2.2 Worst-Case Evaluation

For a given sequence of jobs σ, there exists a worst-case scenario, maximizing the
value of the makespan. Levorato et al. [6] developed a polynomial-time (O(n2))
worst-case determination procedure, using dynamic programming, for machine-
dependent budget Γ = (Γ1, Γ2). The same idea is now used when considering a
global budget Γ .

In the deterministic case, the completion time Ci,1(σ) of job σ[i] on machine
M1 is the completion time Ci−1,1(σ) of job σ[i − 1] plus the processing time
pσ[i],1 of job σ[i] on machine M1, i.e.:

Ci,1(σ) = Ci−1,1(σ) + pσ[i],1 (1)

and the completion time Ci,2(σ) of job σ[i] on machine M2 is the maximum
between the completion time Ci−1,2(σ) of job σ[i − 1] plus the processing time
pσ[i],2 of job σ[i] on machine M2 and the completion time Ci,1(σ) of job σ[i]
on machine M1 plus the processing time pσ[i],2 of job σ[i] on machine M2 (see
Fig. 1):

Ci,2(σ) = max(Ci−1,2(σ), Ci,1(σ)) + pσ[i],2 (2)

Fig. 1. Completion time on machine M2

Given a machine m ∈ M, and two integer numbers i ∈ [1, |J |] and γ ∈
[0, Γ], let Cγ

i,m(σ) be the maximum completion time of the ith job of sequence
σ, on machine m, considering at most γ deviations. This value is defined by the
following recurrence relations:

Cγ
i,1(σ) = max(Cγ

i−1,1(σ) + p̄σ[i],1, Cγ−1
i−1,1(σ) + p̄σ[i],1 + p̂σ[i],1) (3)

Cγ
i,2(σ) = max(Cγ

i−1,2(σ) + p̄σ[i],2, Cγ
i,1(σ) + p̄σ[i],2, Cγ−1

i−1,2(σ)

+p̄σ[i],2 + p̂σ[i],2, Cγ−1
i,1 (σ) + p̄σ[i],2 + p̂σ[i],2)

(4)

with Cγ
i,m(σ) = −∞ if γ < 0, Cγ

0,m(σ) = 0 if γ ≥ 0 and C0
i,2(σ) = p̄σ[i],2 +

max(C0
i−1,2(σ), C0

i,1(σ)).
The worst-case makespan, under sequence σ, for a global uncertainty budget

Γ , is given by CΓ
|J |,2(σ).

358 C. Juvin et al.

3 Special Cases

In this section, we focus on the complexity of the robust two-machine permuta-
tion flow-shop scheduling problem with an uncertainty budget. In particular, we
study the effect of two parameters, namely:

– the type of uncertainty budget, global budget or machine-dependent budget,
as defined in Sect. 2.1;

– the type of processing time deviation,
• with preserved order through deviation, i.e., ∀(i, i′) ∈ J 2, ∀(m,m′) ∈

M2, p̄i,m < p̄i′,m′ ⇔ p̄i,m + p̂i,m < p̄i′,m′ + p̂i′,m′ , or
• with unpreserved order, i.e., ∃(i, i′) ∈ J 2, ∃(m,m′) ∈ M2, such that

p̄i,m < p̄i′,m′ and p̄i,m + p̂i,m > p̄i′,m′ + p̂i′,m′ .

3.1 Global Budget and Preserved Order of Processing Times

Proposition 1. If the order of processing times is preserved through deviation,
then a schedule following the Johnson’s rule is optimal for any global uncertainty
budget Γ .

Proof. Suppose that σ is an optimal sequence for a given global uncertainty
budget Γ , with four consecutive jobs, σ[i− 1], σ[i] = j, σ[i+1] = k and σ[i+2]
meeting one of the following conditions:

(i) p̄j,1 > p̄j,2 and p̄k,1 < p̄k,2

(ii) p̄j,1 < p̄j,2, p̄k,1 < p̄k,2 and p̄j,1 > p̄k,1

(iii) p̄j,1 > p̄j,2, p̄k,1 > p̄k,2 and p̄j,2 < p̄k,2

That is, sequence σ such that j is before k does not respect Johnson’s rule
(min(pk,1, pj,2) < min(pj,1, pk,2) =⇒ k before j).

Note σ′ the sequence obtained from σ by pairwise interchanging jobs j and
k. It suffices to show that under any of the three conditions the makespan of the
schedule under σ′ is not greater than under σ.

The maximum start time of job σ[i+2] = σ′[i+2], on machine M1, considering
at most γ deviations, is the same under σ and σ′, namely, the completion time of
job σ[i−1] plus the processing times of jobs j and k, on machine M1, considering
at most γ deviations, i.e., Cγ

i+1,1(σ) = Cγ
i+1,1(σ

′) = max(a1, a2, a3) with:

a1 = Cγ
i−1,1(σ) + p̄j,1 + p̄k,1

a2 = Cγ−1
i−1,1(σ) + p̄j,1 + p̄k,1 + max(p̂j,1, p̂k,1) if γ ≥ 1, 0 otherwise

a3 = Cγ−1
i−1,1(σ) + p̄j,1 + p̂j,1 + p̄k,1 + p̂k,1 if γ ≥ 2, 0 otherwise

Thus, the rest of the schedule on machine M1 is not affected by the pairwise
interchange. We now study the effect of the change on the schedule on machine
M2, in particular, the date of availability of machine M2 to process job σ[i + 2],
i.e., Cγ

i+1,2(σ) under the original schedule and Cγ
i+1,2(σ

′) after the interchange.
The worst-case completion time of job σ[i + 1] = k under original schedule

σ, on machine M2, depending on the operation in which the deviations occur, is
Cγ

i+1,2(σ) = max(b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11) with:

CP for Robust Two-Machine Flow-Shop Scheduling 359

b1 = Cγ
i−1,2 + p̄j,2 + p̄k,2

b2 = Cγ−1
i−1,2 + p̄j,2 + p̄k,2 + max(p̂j,2, p̂k,2) if γ ≥ 1, 0 otherwise

b3 = Cγ−2
i−1,2 + p̄j,2 + p̂j,2 + p̄k,2 + p̂k,2 if γ ≥ 2, 0 otherwise

b4 = Cγ
i−1,1 + p̄j,1 + p̄j,2 + p̄k,2

b5 = Cγ−1
i−1,1 + p̄j,1 + p̄j,2 + p̄k,2 + max(p̂j,1, p̂j,2, p̂k,2) if γ ≥ 1, 0 otherwise

b6 = Cγ−2
i−1,1 + p̄j,1 + p̄j,2 + p̄k,2 + max(p̂j,1 + p̂j,2, p̂j,1 + p̂k,2, p̂j,2 + p̂k,2) if γ ≥ 2,

0 otherwise
b7 = Cγ−3

i−1,1 + p̄j,1 + p̂j,1 + p̄j,2 + p̂j,2 + p̄k,2 + p̂k,2 if γ ≥ 3, 0 otherwise
b8 = Cγ

i−1,1 + p̄j,1 + p̄k,1 + p̄k,2

b9 = Cγ−1
i−1,1 + p̄j,1 + p̄k,1 + p̄k,2 + max(p̂j,1, p̂k,1, p̂k,2) if γ ≥ 1, 0 otherwise

b10 = Cγ−2
i−1,1 + p̄j,1 + p̄k,1 + p̄k,2 +max(p̂j,1 + p̂k,1, p̂j,1 + p̂k,2, p̂k,1 + p̂k,2) if γ ≥ 2,

0 otherwise
b11 = Cγ−3

i−1,1 + p̄j,1 + p̂j,1 + p̄k,1 + p̂k,1 + p̄k,2 + p̂k,2 if γ ≥ 3, 0 otherwise

while the completion time of job σ′[i + 1] = j on machine M2 under sequence σ′

is Cγ
i+1,2(σ

′) = max(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11), with:

c1 = Cγ
i−1,2 + p̄k,2 + p̄j,2

c2 = Cγ−1
i−1,2 + p̄k,2 + p̄j,2 + max(p̂k,2, p̂j,2) si γ ≥ 1, 0 otherwise

c3 = Cγ−2
i−1,2 + p̄k,2 + p̂k,2 + p̄j,2 + p̂j,2 if γ ≥ 2, 0 otherwise

c4 = Cγ
i−1,1 + p̄k,1 + p̄k,2 + p̄j,2

c5 = Cγ−1
i−1,1 + p̄k,1 + p̄k,2 + p̄j,2 + max(p̂k,1, p̂k,2, p̂j,2) si γ ≥ 1, 0 otherwise

c6 = Cγ−2
i−1,1 + p̄k,1 + p̄k,2 + p̄j,2 + max(p̂k,1 + p̂k,2, p̂k,1 + p̂j,2, p̂k,2 + p̂j,2) if γ ≥ 2,

0 otherwise
c7 = Cγ−3

i−1,1 + p̄k,1 + p̂k,1 + p̄k,2 + p̂k,2 + p̄j,2 + p̂j,2 if γ ≥ 3, 0 otherwise
c8 = Cγ

i−1,1 + p̄k,1 + p̄j,1 + p̄j,2

c9 = Cγ−1
i−1,1 + p̄k,1 + p̄j,1 + p̄j,2 + max(p̂k,1, p̂j,1, p̂j,2) if γ ≥ 1, 0 otherwise

c10 = Cγ−2
i−1,1 + p̄k,1 + p̄j,1 + p̄j,2 + max(p̂k,1 + p̂j,1, p̂k,1 + p̂j,2, p̂j,1 + p̂j,2) if γ ≥ 2,

0 otherwise
c11 = Cγ−3

i−1,1 + p̄k,1 + p̂k,1 + p̄j,1 + p̂j,1 + p̄j,2 + p̂j,2 if γ ≥ 3, 0 otherwise

It is clear that b1 = c1, b2 = c2 and b3 = c3.
Under condition (i): with p̄j,1 > p̄j,2 we get c4 ≤ b8, c5 ≤ b9, c6 ≤ b10 and
c7 ≤ b11; with p̄k,1 < p̄k,2 we get c8 ≤ b4, c9 ≤ b5, c10 ≤ b6 and c11 ≤ b7.
Under condition (ii): with p̄k,1 < p̄j,1 we get c4 ≤ b4, c5 ≤ b5, c6 ≤ b6 and
c7 ≤ b7; with p̄k,1 < p̄k,2 we get c8 ≤ b4, c9 ≤ b5, c10 ≤ b6 and c11 ≤ b7.
Under condition (iii): with p̄j,1 > p̄j,2 we get c4 ≤ b8, c5 ≤ b9, c6 ≤ b10 and
c7 ≤ b11; with p̄k,2 > p̄j,2 we get c8 ≤ b8, c9 ≤ b9, c10 ≤ b10 and c11 ≤ b11.

Thus under each condition, Cγ
i+1,2(σ

′) ≤ Cγ
i+1,2(σ), and therefore the make-

span of the schedule under σ′ is not greater than under σ. �
Note that this proof deals only with the relative position of jobs j and k; it

is based on the general case where these jobs are surrounded by other jobs in
the sequence. However, we can apply the same reasoning:

360 C. Juvin et al.

– If jobs j and k are the first two jobs of the sequence. In this case, the
availability date of the machines to process the first job is zero (Cγ

i−1,m = 0
∀γ ≤ Γ, ∀m ∈ {M1,M2}, job σ[i − 1] can be seen as a virtual task with
duration of 0).

– If jobs j and k are the last two jobs of the sequence. In this case,
Cγ

i+1,2(σ) under the original schedule and Cγ
i+1,2(σ

′) after the interchange no
longer represent the date of availability of machine M2 to process job σ[i+2],
but the makespan of the solution.

Consequently, it is possible to find an optimal sequence for the robust two-
machine permutation flow-shop scheduling problem, with a global uncertainty
budget and preserved order of processing times, in polynomial time using John-
son’s rule.

3.2 Machine-Dependent Budget Γ = (Γ1, Γ2)

In general, Johnson’s rule does not lead to an optimal robust schedule when
considering a machine-dependent uncertainty budget.

Example 1. Consider a robust two-machine flow-shop problem with 3 jobs with
machine-dependent uncertainty budget Γ = (1, 2). The intervals [p̄i,m, p̄i,m +
p̂i,m] of processing times pi,m of operations Oi,m, i ∈ J ,m ∈ M, are given in
Table 1.

Table 1. Numerical example of an instance of a two-machine flow-shop problem: pre-
served order of operation processing times.

M1 M2

J1 [6,9] [8,12]

J2 [10,15] [4,6]

J3 [4,6] [3,5]

Applying Johnson’s rule to this instance yields the sequence σ = {J1, J2, J3}.
Given sequence σ, and considering an uncertainty budget Γ = (1, 2), the worst
case, for this solution, is that the processing time of job J2 on machine M1 and
jobs J2 and J3 on machine M2 deviate and take their greatest value. Figure 2
depicts the Gantt chart in this case. The objective function value of this solution
reaches a makespan equal to 32.

Another possible sequence is σ′ = {J3, J1, J2}. The worst case for this new
solution is such that the processing time of job J2 on machine M1 and jobs J1

and J2 on machine M2 deviate from their nominal value. Figure 3 depicts the
Gantt chart in this case; it leads to a solution with a worst-case makespan equal
to 31.

Although the order of processing times is preserved, Johnson’s rule does not
allow us to obtain the optimal sequence for this instance when considering a
machine-dependent uncertainty budget Γ = (1, 2).

CP for Robust Two-Machine Flow-Shop Scheduling 361

Fig. 2. Example 1 and sequence {J1, J2, J3}: worst case under Johnson’s schedule,
Γ1 = 1, Γ2 = 2.

Fig. 3. Example 1 and sequence {J3, J1, J2}: worst case under optimal robust schedule,
Γ1 = 1, Γ2 = 2.

3.3 Unpreserved Order of Processing Times

In general, Johnson’s rule does not lead to an optimal robust schedule when
considering an instance with unpreserved order of processing times, even when
we consider a global uncertainty budget.

Example 2. Consider a robust two-machine flow-shop problem with 3 jobs with
the global uncertainty budget Γ = 3. The intervals [p̄i,m, p̄i,m+p̂i,m] of processing
times pi,m of operations Oi,m, i ∈ J ,m ∈ M, are given in Table 2. The order
of processing time is unpreserved, for example, p̄1,1 = 1 < p̄2,1 = 2 while p̄1,1 +
p̂1,1 = 5 > p̄2,1 + p̂2,1 = 3.

Table 2. Numerical example of an instance of a two-machine flow-shop problem: unpre-
served order of operation processing times.

M1 M2

J1 [1,5] [2,3]

J2 [2,3] [1,5]

J3 [2,20] [4,5]

Applying Johnson’s rule to this instance yields the sequence σ = {J1, J3, J2}.
Given sequence σ, and considering an uncertainty budget Γ = 2, the worst case,
for this solution, is such that the processing time of job J3 on machine M1 and
job J2 on machine M2 deviate and take their greatest value. Figure 4 depicts the
Gantt chart in this case. The objective function value of this solution reaches a
makespan equal to 30.

362 C. Juvin et al.

Fig. 4. Example 2 and sequence {J1, J3, J2}: worst case under Johnson’s schedule,
Γ = 2.

Another possible sequence is σ′ = {J2, J3, J1}. The worst case for this solu-
tion is such that the processing time of job J2 on machine M1 and job J1 on
machine M2 deviate from their nominal value. Figure 5 depicts the Gantt chart
in this case; it leads to a solution with a worst-case makespan equal to 29.

Fig. 5. Example 2 and sequence {J2, J3, J1}: worst case under optimal robust schedule,
Γ = 2.

Although the considered uncertainty budget is global, Johnson’s rule does
not allow us to obtain the optimal sequence for this instance whose order of
processing times is not preserved.

4 General Case

As discussed in the previous section, in the general case, Johnson’s rule is not
guaranteed to find an optimal robust sequence. However, Mixed-Integer Linear
Programming (MILP) or Constraint Programming (CP) allow the development
of exact solution methods.

4.1 Mixed-Integer Linear Programming Robust Counterparts

Levorato et al. [6] proposed two mixed-integer linear programming robust coun-
terparts for the two-machine permutation flow-shop problem.

The first one is adapted from the integer programming model for the three-
machine deterministic flow-shop by Wagner [9]. It uses rank decision binary
variables, which determine whether a job is placed at a given position in the
sequence. It also uses two types of idle times variables. The first ones represent
the time each job waits between the end of its execution on machine M1 and
its starting on machine M2. The others represent the time machine M2 idles
between the execution of each pair of consecutive jobs. These idle times variables
are duplicated for each considered scenario. Precedence constraints are addressed
with job-adjacency and machine-linkage constraints, which exploit the special
structure of the problem to describe the relation between idle times, both on
machines and jobs, and processing times.

CP for Robust Two-Machine Flow-Shop Scheduling 363

The second robust counterpart proposed by Levorato et al. is based on the
formulation presented by Wilson [10]. It also uses rank decision binary variables
to determine whether a job is placed at a given position in the sequence. Prece-
dence constraints are based on start time variables defined for each job operation
and each machine.

The numerical experiments in [6] highlight the superiority of Wagner’s for-
mulation over Wilson’s method. Consequently, we only focus on Wagner’s for-
mulation and MILP always refers to this formulation in the following.

4.2 Constraint Programming Robust Counterparts

Another alternative is to use constraint programming. To present the CP model,
we use the IBM CP Optimizer solver, which allows the use of specific decision
variables and constraints. In particular, interval variables can be used to rep-
resent the time during which a task is processed and are defined by a starting
value, an ending value and a size. Constraints such as endBeforeStart() allow
us to constrain the relative positions of the interval variables. A sequence variable
allows the representation of an order on a set of interval variables. Constraints
can be applied on it such as NoOverlap() to prevent intervals from a sequence
overlapping or SameSequence() which forces two sequences of intervals to follow
the same order. We use interval and sequence variables defined as follows:

– taski,m,ξ: interval variable between the start and the end of the processing of
job i ∈ J on machine m ∈ {M1,M2} in scenario ξ ∈ UΓ ;

– seqsm,ξ: sequence variable of operations scheduled on machine m ∈ {M1,M2}
in scenario ξ ∈ UΓ .

The CP model developed for the two-machine robust flow-shop problem is
as follows:

min Cmax (5)

s.t. Cmax ≥ taski,2,ξ.end ∀i ∈ J , ξ ∈ UΓ (6)

EndBeforeStart(taski,1,ξ, taski,2,ξ) ∀i ∈ J , ξ ∈ UΓ (7)

NoOverlap(seqsm,ξ) ∀m ∈ {M1,M2}, ξ ∈ UΓ (8)

SameSequence(seqs1,1, seqsm,ξ) ∀m ∈ {M1,M2}, ξ ∈ UΓ (9)

Constraints (6) allow the determination of the makespan, which is equal to the
end of the last job on machine M2 in the worst-case scenario. Constraints (7)
ensure the precedence relations between the two operations of a same job. Con-
straints (8) ensure that, in each scenario, each machine performs at most one
operation at a time. Constraints (9) ensure that the sequence is the same on
both machines, and the same for each scenario. The first scenario ξ = 1 is used
as reference, and the constraint is duplicated for each scenario and each machine.

364 C. Juvin et al.

4.3 Column and Constraint Generation Algorithm

The column and constraint generation method has been introduced by Zeng and
Zhao [12] to solve two-stage robust optimization problems. The procedure splits
the problem into a master problem and an adversarial subproblem. The idea
is to solve the robust counterpart problem (or master problem), for a limited
subset of scenarios, that fixes the first stage variables, and then to identify which
scenarios, if any, make the solution found in the master problem infeasible, using
an adversarial subproblem. Then, these scenarios are included in the master
problem by generating the corresponding recourse decision variables on the fly.
This process repeats until a solution that is feasible for all scenarios is found
[3,4,6,7]. Figure 6 depicts the scheme of the column and constraint generation
algorithm.

Levorato et al. [6] propose a column and constraint generation framework
for the two-machine permutation flow-shop problem where the “first-stage vari-
ables” are the sequence variables, that allow the determination of the order of
the jobs on the machines and the makespan, and the “second-stage variables”
are the start times for each operation and each scenario. It consists in relaxing
one of the MILP formulations presented in Sect. 4.1 by considering only a sub-
set of scenarios. Then, given a sequence, a polynomial time dynamic algorithm
(see Sect. 2.2) is used to identify the worst-case makespan considering a given
uncertainty budget.

Since constraint programming is often very efficient for scheduling problems,
we try to improve this framework by replacing the master problem by a relaxed
version of the constraint programming model presented in Sect. 4.2. For this
purpose, each robust constraint (6–9) is defined only for a subset of scenarios.
The rest of the algorithm remains identical to the version proposed by Levorato
et al.

5 Experimental Results

We evaluate the performance of the column and constraint generation algorithm
for both the MILP and the CP models. Experiments are performed on three
cluster nodes with Intel Xeon E5-2695 v4 CPU at 2.1 GHz. The algorithms are
implemented in C++, CPLEX 12.10 is used as the solver for the MILP master
problem and CP Optimizer (CPO) 12.10 for the CP master problem. We limited
time to 2 h, with 4 CPU and a total of 16 GB of RAM, per instance.

5.1 Instances from Literature

The instances we used in this section are the same as in [6], based on instances
generated by Ying [11]. They are composed of six groups of instances of dif-
ferent size, where the number of jobs |J | belongs to {10, 20, 50, 100, 150, 200}.
The nominal processing time p̄i,m, i ∈ J ,m ∈ {M1,M2} is generated from the
uniform distribution U [10, 50] and the processing time deviation p̂i,m is a ratio

CP for Robust Two-Machine Flow-Shop Scheduling 365

Fig. 6. Column and constraint algorithm.

of the nominal processing time αp̄i,m with α = 10, 20, 30, 40 and 50%. Thus, the
order of processing times is preserved through deviation. Ten sets of values for
nominal duration were generated for each size |J |, and all deviations ratios α
were applied to each of them, giving a total of 300 test instances. The uncertainty
budgets, Γ1 and Γ2, are set to 20%, 40%, 60%, 80% and 100% of |J |.

We summarize the results in Table 3 where the performance over instances
of different sizes is displayed. We report the percentage of instances solved to
optimality before reaching the time limit (Solved (%)). For the instances solved to
optimality, we display the average execution time, in seconds, to reach optimality
(Avg. time (sec)). Lastly, we display the average percentage gap of non-optimally
solved instances (Avg. gap (%)), where the gap is computed as follows:

gapmethod =
UBmethod − LB∗

UBmethod
(10)

with LB∗ the best bound found among the two versions of the column and
constraint generation algorithm.

We notice that the CP model outperforms the MILP one. Indeed, even for
the largest instances (200 jobs) the CP-based method manages to solve almost
all (98.83%) of the instances optimally, while the MILP-based method solves
fewer and fewer instances as they grow (down to 68.92% for 200 jobs). We also
observe that the time needed to reach the optimum is much lower for the CP
method, whatever the size of the instances. Finally, we can see that for both
methods, the gap is quite low (less than 1%, regardless of instance size).

366 C. Juvin et al.

Table 3. Methods performance comparison grouping by instance sizes.

|J | CP MILP

Solved (%) Avg. time (sec) Avg. gap (%) Solved (%) Avg. time (sec) Avg. gap (%)

10 100 0.42 – 100 14.7 –

20 100 0.76 – 100 191.59 –

50 100 1.47 – 98.75 194.9 0.23

100 99.58 0.99 0.08 85.5 319.17 0.31

150 98.92 3.12 0.02 74.67 341.65 0.47

200 98.83 8.49 0.1 68.92 390.73 0.4

Note that the few differences between the results reported here and those
presented in [6] concerning the MILP method is probably due to a difference in
the implementation of the method and the tools (software and hardware) used
for the tests. However, we obtain very comparable results in terms of number of
instances optimally solved.

We now examine the quality of the solution obtained by applying Johnson’s
rule on these instances. Table 4 presents the percentage of best known solution
found (Best known sol. (%)) and the average percentage gap (Avg. gap (%)) of
non-optimally solved instances (UBmethod > LB∗).

We note that the polynomial time algorithm enables to find high quality
solutions. Indeed, for almost all the instances (94.46%), Johnson’s rule provides
a robust solution with the same objective value as the best known solution, and
the optimality gap is very low.

Table 4. Johnson’s rule performance (instances from literature grouping by size).

|J | Best known sol. (%) Avg. gap (%)

10 92.58 1.13

20 92.67 0.4

50 98.5 0.29

100 97.67 0.04

150 89.67 0.04

200 95.67 0.04

In view of these results, we notice that these instances are easy to solve, due
to their particular structure that preserves the order of the processing times. To
overcome this, we generated new instances and the results obtained are presented
in the following section.

CP for Robust Two-Machine Flow-Shop Scheduling 367

5.2 New Instances

In this section, we generated new instances which are also based on the ones
from [11]. The nominal processing times p̄i,m, i ∈ J ,m ∈ {M1,M2} remain the
same as in the original instances [11]. However, the processing time deviations
p̂i,m are randomly generated to avoid the order preserving of processing times.
Let p̄max be the maximum nominal processing time for all operations. For each
operation Oi,m, i ∈ J ,m ∈ {M1,M2}, we randomly generate a value for p̂i,m

within a range from 25% to 80% of the value of p̄max. We generate in total 60
instances that we use for our tests. Again, the uncertainty budgets, Γ1 and Γ2,
are set to 20%, 40%, 60%, 80% and 100% of |J |.

Table 5 presents the same performance indicators as Table 3 for the new gen-
erated instances.

By comparing these two tables, it can be seen that the new instances are
more difficult to solve than the ones from literature. Indeed, there is a lower
proportion of instances solved optimally, a higher average time needed to reach
the optimum, as well as a higher average gap for the unsolved instances, for
both methods. However, focusing on the information provided by Table 5, it is
noticeable that the CP model still outperforms the MILP one, for all observed
indicators.

Table 5. Methods performance comparison grouping by instance sizes (new instances).

|J | CP MILP

Solved (%) Avg. time (sec) Avg. gap (%) Solved (%) Avg. time (sec) Avg. gap (%)

10 100 12.36 – 100 46.77 –

20 80 167.11 2.04 75 1002.05 2.22

50 60 86.85 2.61 49 902.69 3.07

100 56 310.3 2.49 45 600.67 4.11

150 48 271.32 2.3 32 667.89 4.3

200 54 99.57 2.68 30 827.08 4.36

Tables 6 and 7 detail the percentage of solved instances according to uncer-
tainty budget Γ = (Γ1, Γ2) for the CP-based and the MILP-based column and
constraint generation method, respectively.

By comparison of these two tables with each other, we notice that, for all
combinations of Γ1 and Γ2, except one (Γ1 = 40%, Γ2 = 20%), the CP model
outperforms the MILP one. We also see that the problem is more difficult to
solve for medium uncertainty budgets (40% or 60%), for both methods. This
can be explained by the fact that these uncertainty budgets generate a greater
number of scenarios. However, the number of scenarios is not the only difficulty
factor, as we can see, the methods are more efficient in solving instances with
a large uncertainty budget. For example, instances with an uncertainty budget
of 80% are better solved than those with a budget of 20%, while the number of
possible scenarios are the same.

368 C. Juvin et al.

Table 6. Percentage of solved instances according to uncertainty budget Γ = (Γ1, Γ2)
for the CP-based column and constraint generation method.

Γ2 Γ1

20% 40% 60% 80% 100%

20% 28.33 25 41.67 70 100

40% 35 21.67 26.67 81.67 100

60% 36.67 28.33 28.33 83.33 100

80% 60 71.67 75 88.33 100

100% 100 100 100 100 –

Table 7. Percentage of solved instances according to uncertainty budget Γ = (Γ1, Γ2)
for the MILP-based column and constraint generation method.

Γ2 Γ1

20% 40% 60% 80% 100%

20% 26.67 26.67 33.33 58.33 100

40% 23.33 18.33 23.33 65 100

60% 23.33 21.67 26.67 65 98.33

80% 35 35 40 60 100

100% 76.67 83.33 91.67 98.33 –

6 Conclusion

In this paper, we investigate the robust two-machine flow-shop scheduling prob-
lem where the operation processing times are subject to uncertainty. A two-stage
robust optimization is used to deal with this uncertainty, where the first stage is
devoted to fixing the sequencing decisions whilst the second stage determines the
start time of the operations. As a main contribution, we show that under specific
conditions the problem can be solved in polynomial time. For the general case,
we introduce a constraint programming formulation, which we embed in a col-
umn and constraint generation decomposition scheme. This method provides the
best results compared to a literature algorithm based on a MILP formulation.

References

1. Ben-Tal, A., Goryashko, A., Guslitzer, E., Nemirovski, A.: Adjustable robust solu-
tions of uncertain linear programs. Math. Program. 99(2), 351–376 (2004)

2. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
3. Duarte, J.L.R., Fan, N., Jin, T.: Multi-process production scheduling with variable

renewable integration and demand response. Eur. J. Oper. Res. 281(1), 186–200
(2020)

CP for Robust Two-Machine Flow-Shop Scheduling 369

4. Hamaz, I., Houssin, L., Cafieri, S.: The cyclic job shop problem with uncertain
processing times. In: 16th International Conference on Project Management and
Scheduling (PMS 2018), Rome, Italy, pp. 119–122 (2018)

5. Johnson, S.M.: Optimal two-and three-stage production schedules with setup times
included. Nav. Res. Logist. Q. 1(1), 61–68 (1954)

6. Levorato, M., Figueiredo, R., Frota, Y.: Exact solutions for the two-machine robust
flow shop with budgeted uncertainty. Eur. J. Oper. Res. 300(1), 46–57 (2022)

7. Silva, M., Poss, M., Maculan, N.: Solution algorithms for minimizing the total
tardiness with budgeted processing time uncertainty. Eur. J. Oper. Res. 283(1),
70–82 (2020)

8. Soyster, A.L.: Convex programming with set-inclusive constraints and applications
to inexact linear programming. Oper. Res. 21(5), 1154–1157 (1973)

9. Wagner, H.M.: An integer linear-programming model for machine scheduling. Nav.
Res. Logist. Q. 6(2), 131–140 (1959)

10. Wilson, J.: Alternative formulations of a flow-shop scheduling problem. J. Oper.
Res. Soc. 40(4), 395–399 (1989)

11. Ying, K.C.: Scheduling the two-machine flowshop to hedge against processing time
uncertainty. J. Oper. Res. Soc. 66(9), 1413–1425 (2015)

12. Zeng, B., Zhao, L.: Solving two-stage robust optimization problems using a column-
and-constraint generation method. Oper. Res. Lett. 41(5), 457–461 (2013)

A Weighted Counting Algorithm for the Circuit
Constraint

Gauthier Pezzoli and Gilles Pesant(B)

Polytechnique Montréal, Montreal, Canada
gilles.pesant@polymtl.ca

Abstract. The CIRCUIT constraint is useful to model many combinatorial prob-
lems in Constraint Programming. CP solvers extended with Belief Propagation,
such as MiniCPBP, require that constraints be equipped with weighted counting
algorithms in order to propagate probability mass functions over domains. This is
not yet the case for CIRCUIT. To this purpose we introduce a probabilistic sam-
pling algorithm to count Hamiltonian circuits in a weighted graph. We show that
our resulting estimator is unbiased, measure its empirical accuracy, and evaluate
its impact on search performance.

1 Introduction

Let G = (N ,A) be a directed graph. A Hamiltonian circuit of G is a path through arcs
from A that visits exactly once all the nodes in N and ends where it started (Fig. 1). Let
H(G) denote the set of all Hamiltonian circuits of G. We are interested in counting the
number of such circuits. For unweighted graphs, each Hamiltonian circuit counts for 1.
In order to generalize the counting to weighted graphs, we can define the weight of a
circuit as the product of the weights wa of each arc a in the circuit. Thus an unweighted
graph can be seen as a weighted graph with arcs of unit weight. If the weights are
natural numbers we can make a parallel with multigraphs, with each weight represent-
ing the number of arcs between two nodes. Here the weights are instead interpreted as
probabilities. We define the weighted count of all Hamiltonian circuits as

H(G) =
∑

c∈H(G)

∏

a∈c

wa.

The CIRCUIT({s1, s2, . . . , s|N |}) constraint, defined over finite-domain variables
si ∈ {j ∈ N : (i, j) ∈ A}, is useful to model many combinatorial problems in
Constraint Programming (CP). It enforces that the set of arcs {(i, si) : i ∈ N} forms a
Hamiltonian circuit of G. Several domain-filtering algorithms have been proposed in the
literature (e.g. [3]), including for the optimization version of the constraint (e.g. [2]),
as well as some decompositions. CP solvers extended with Belief Propagation (BP),
such as MiniCPBP [4], additionally require that constraints be equipped with weighted
counting algorithms, which is not yet the case for CIRCUIT. This short paper aims to
correct this.

In Sect. 2 we present our weighted counting algorithm and discuss its implementa-
tion into MiniCPBP in Sect. 3. Section 4 evaluates its usefulness to solve combinatorial
problems. We conclude with Sect. 5.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023

A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 370–377, 2023.
https://doi.org/10.1007/978-3-031-33271-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_24&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_24

A Weighted Counting Algorithm for the Circuit Constraint 371

Fig. 1. A Hamiltonian circuit (shown in red) (Color figure online)

Algorithm 1: Sampling algorithm
Input: weighted digraph G(N , A), with |N | = n
Output: estimator XG

1 if n = 1 then

2 XG =
{

w(1,1) if (1, 1) ∈ A
0 else

3 else
4 W = {i > 1 : (1, i) ∈ A}
5 if W = ∅ then
6 XG ← 0

7 else
8 Choose J ∈ W randomly according to the weight of each edge(1, J)
9 XG ← XG1,J × ∑

i∈W w(1,i)

2 An Unbiased Estimator for the Weighted Count of Hamiltonian
Circuits

Since deciding whether a graph admits a Hamiltonian circuit is already NP-complete,
we cannot hope to count them exactly in a reasonable amount of time.

2.1 A Sampling Algorithm

We turn to designing a probabilistic sampling algorithm adapted from Rasmussen’s
estimator for undirected, unweighted graphs [6].

Algorithm 1 starts from node 1 and tries to build a path neighbour after neighbour,
being careful not to form a sub-circuit before encompassing all the nodes. At the end
it checks whether the last node has an arc to the first one. The weighted count is accu-
mulated as the path is built. G1,J denotes graph G transformed in the following way:
redirect node 1’s incoming arcs to node J and node J’s incoming arcs to node 1, delete
node 1, renumber the nodes from 1 to n − 1 (no matter the order). Figure 2 illustrates
one step of the algorithm. Changes with respect to the original algorithm of Rasmussen
are shown in red.

We now proceed to show that our estimator is unbiased.

372 G. Pezzoli and G. Pesant

Fig. 2. One step of the estimator

Lemma 1. Let G be a weighted directed graph and W the set of neighbours of node 1.
Then H (G) = ∑

i∈W w(1,i) × H (G1,i)

Proof. If W is empty then node 1 has no neighbour and H (G) = 0. Otherwise assume
that W is not empty. Thus H (G) = ∑

i∈W w(1,i) × Ci,1 where Ck,� is the sum of the
costs (which is defined for a path here as the product of the weights of its arcs) of all
Hamiltonian paths starting with k, ending with �, and containing all the other nodes.
We have Ck,� = H (Gk,�) because Gk,� corresponds to the graph G where we would
have merged nodes k and � into one new node that represents the link k → �. Instead
of actually merging the nodes, we consider � as the node representing the link. It must
therefore receive the incoming arcs of node k (since it is the beginning of the link) and
delete the incoming arcs of node � that no longer need to exist. This is exactly what we
do with Gk,� by swapping the incoming arcs of k and �, then deleting node k and all its
arcs. It is the same for Ck,� which represents the weight of all Hamiltonian circuits of
G that include arc (k, �) without counting the weight of it. ��
Theorem 1. Let G be a weighted directed graph. Then E(XG) = H(G).
Proof. We demonstrate this by induction on the number of nodes, n. If n = 1 then
either there is a loop on node 1 and H(G) = w(1,1), or there is not and the algorithm
returns 0. Assume the theorem holds for n − 1; we show it for n. If the set W is empty,
node 1 has no neighbour and thus we won’t be able to form a Hamiltonian circuit that
way and we indeed return 0. Otherwise

E(XG) =
∑

j∈W

E(XG |J = j) Pr(J = j), by definition of expectation

=
∑

j∈W

E

(
XG1,j ×

∑

i∈W

w(1,i)

)
w(1,j)∑

i∈W w(1,i)
, by construction

=
∑

j∈W

w(1,j) × E
(
XG1,j

)

=
∑

j∈W

w(1,j) × H (G1,j) , from the induction hypothesis

= H (G) , from Lemma 1

��

A Weighted Counting Algorithm for the Circuit Constraint 373

Fig. 3. Relative error versus number of iterations (graph with 10 nodes)

In practice we choose the starting node uniformly at random, run our algorithm
several times, and take the average of the results. We have then a time complexity in
O(kn2) where k is the number of runs. Indeed for one step of the sampling algorithm,
in the worst case, W isn’t empty: we create W , pick up J , and construct G1,J in O(n).
Then we repeat it a maximum of n times for the n nodes of the graph. Hence in the
worst case we have O(n2) for one run of the sampling algorithm.

2.2 Empirical Accuracy of the Estimator

Despite the probabilistic guarantee from Theorem 1 that the expected value of our esti-
mator is equal to the true value, we measure empirically its relative error and variance
with respect to the number of runs and to characteristics of the graph. All the following
tests have been run using randomly generated graphs on a small number of nodes, the
limiting factor being the exact calculation by the naive algorithm whose runtime grows
exponentially. The graphs we report on admit at least one Hamiltonian circuit: on an
instance without a Hamiltonian circuit our estimator would necessarily return 0, which
is the exact value.

Figure 3 shows the influence of the number of iterations. We set the arc density to
0.7 and each data point represents the average of 100 instances. Not surprisingly, the
more iterations there are, the closer the relative error gets to 0. We also do not seem
to observe any differences between the different types of graph. Figure 4 shows how
the edge density acts on the relative error. Each data point represents the average of 10
instances. The algorithm performs well especially when the density is high, the relative
error being fairly low and slowly increasing with graph size. However the estimator
struggles around an edge density equal to 0.3. On sparser graphs which still admit
Hamiltonian circuits, our algorithm may often fail (i.e. return 0) which increases the
variance significantly.

374 G. Pezzoli and G. Pesant

Fig. 4. Relative error versus number of nodes per density (nb iter = 10000)

3 Integration in the CP-BP Framework

3.1 CP-BP Framework

CP-based Belief Propagation, introduced in [4], offers a more informative propagation
of constraints. In addition to removing unsupported values from the domain of vari-
ables, it computes the belief that each value will satisfy the constraint. Those beliefs for
individual variables are then sent as messages to these variables, which combine them
with messages from the other constraints and send back the resulting, more global,
beliefs to each constraint. In the next round of messages, constraints use these updated
beliefs to weight each of their solutions, hence the term weighted counting.

Specifically in our case, the (weighted) proportion of circuits that use a given arc
(i, j) ∈ A,

θG(si, j) =
H(i,j)(G)
H(G) (1)

where H(i,j)(G) =
∑

c∈H(G):(i,j)∈c

⎛

⎝
∏

a∈c:a�=(i,j)

wa

⎞

⎠ ,

is called the marginal of assignment si = j according to the Hamiltonian circuit con-
straint on G.

This back-and-forth process is iterated and hopefully converges to the true marginal
probabilities over the whole CSP: for each variable-value pair (x, v), the probability that
x is assigned value v in a solution (i.e. where all the constraints are satisfied). Message
damping [1], sending a convex combination of the newly computed and previous mes-
sages, may be used to help convergence. Branching heuristics have been designed based
on marginals: for example max-marginal [1] selects a variable with the largest marginal
probability for one of its domain values and assigns it to that value.

A Weighted Counting Algorithm for the Circuit Constraint 375

3.2 Implementation of Weighted Counting for CIRCUIT

For domain filtering, the current implementation of CIRCUIT relies on a standard
decomposition into an ALLDIFFERENT constraint and subtour elimination constraints
that keep track of the extremities orig and dest of current partial paths [5].

Algorithm 2: updateBelief algorithm
Input: beliefs from variables: b(i, j) for all variable indices i and values j
Output: unnormalized θG(si, j) for all unbound variables si

// Collect beliefs of partial paths: orig[i] � i, si unbound
1 B ← 1
2 foreach i ∈ Unbound do
3 j ← orig[i]
4 while j �= i do
5 B ← B × b(j, sj)
6 j ← sj

// Clear frequency count of unbound variables
7 foreach i ∈ Unbound do
8 foreach j ∈ D(si) do
9 count[i][j] ← ε // avoids null count if never sampled

// Compute frequency counts
10 t ← 0
11 t� ← |Unbound|2 // our target number of samples
12 for k ← 1 to tmax do
13 if findCircuit(B, b,count) > 0 then
14 t ← t + 1

15 if t = t� then
16 break

// Set marginals
17 if t ≥ 1 then
18 foreach i ∈ Unbound do
19 foreach j ∈ D(si) do
20 θG(si, j) ← count[i][j]

21 else
// no sample obtained; set default uniform marginals

22 foreach i ∈ Unbound do
23 foreach j ∈ D(si) do
24 θG(si, j) ← 1

In the CP-BP framework, messages from constraints to variables are assembled
by calling the updateBelief method of each constraint. Algorithm 2 describes that
method for the CIRCUIT constraint. Throughout the search we maintain a reversible set

376 G. Pezzoli and G. Pesant

Unbound of indices to the unbound successor variables. Array count accumulates
the results of successful sampling trials in an effort to approximate the numerator in
Eq. 1. Function findCircuit is basically our estimator described in Algorithm 1 which
uses beliefs b as weights, starts with an initial weight B, and adds a contribution to
count each time it succeeds.

4 Combinatorial Search Guidance

We now evaluate empirically the contribution of our weighted counting algorithm to
solve combinatorial problems featuring CIRCUIT constraints using the CP-BP frame-
work as implemented in the MiniCPBP solver1. We selected the Perfect 1-Factorization
of a Complete Graph Problem2 because it features several CIRCUIT constraints (and
many INVERSE, ALLDIFFERENT, ELEMENT, LEXLESS, and SUM constraints) and
because finding a feasible solution quickly becomes challenging for a combinatorial
solver. According to the documentation:

“A 1-factorization [of Kn, a complete graph on n vertices] is a partition of the
edges of the graph into n − 1 complete matchings. For the 1-factorization to be
perfect, every pair of matchings must form a Hamiltonian circuit of the graph.”

Because a 1-factorization is only possible when n is even, instances alternate between
being satisfiable and unsatisfiable as n increases.

We ran MiniCPBP with the following settings: depth-first search, ten iterations
of belief propagation at each search-tree node, message damping with damping fac-
tor 0.75, max-marginal branching heuristic considering all model variables, maximum
number of sampling trials tmax = 5000 for CIRCUIT, and a one-hour time limit.

We compare solving instances of the above problem with and without the weighted
counting algorithm for CIRCUIT. In the latter case, the CIRCUIT constraint simply
returns uniform marginals in its messages to variables. All the other constraints in
the model are already equipped with weighted counting algorithms. Table 1 reports the
number of fails either to find a feasible solution or to show unsatisfiability for instances
of increasing size. Since the weighted counting algorithm is not deterministic we report
the median of five runs in that case. Looking first at satisfiable instances (i.e. even val-
ues of n) observe the marked difference in search guidance between the two (the “no”
version times out on K10). Remarkably, the addition of the weighted counting algo-
rithm for the CIRCUIT constraint allows us to find a solution to both K6 and K8 with-
out any backtracking. Turning to unsatisfiable instances (i.e. odd values of n) observe
that informed marginals from the CIRCUIT constraint contribute to branching decisions
yielding smaller (failed) search trees, especially for K9 that times out without them.

1 https://github.com/PesantGilles/MiniCPBP.
2 https://github.com/MiniZinc/mzn-challenge/blob/develop/2021/p1f-pjs/p1f-pjs.mzn.

https://github.com/PesantGilles/MiniCPBP
https://github.com/MiniZinc/mzn-challenge/blob/develop/2021/p1f-pjs/p1f-pjs.mzn

A Weighted Counting Algorithm for the Circuit Constraint 377

Table 1. Number of fails to find a feasible solution (n even) or show that none exists
(n odd) for the Perfect 1-Factorization of Kn

weighted counting n

for CIRCUIT 6 8 10 5 7 9

no 0 2639 T.O. 5 45 T.O.

yes 0 0 335 4 40 5587

5 Conclusion

We designed a probabilistic algorithm to estimate the (weighted) number of Hamil-
tonian circuits in a directed weighted graph and proved our estimator to be unbiased.
We then described how such an algorithm can be used to compute marginals for the
CIRCUIT constraint in the CP-BP framework. Preliminary experiments suggest that it
can greatly improve that framework’s ability to solve combinatorial problems featuring
that constraint.

References

1. Babaki, B., Omrani, B., Pesant, G.: Combinatorial search in CP-based iterated belief propa-
gation. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 21–36. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-58475-7 2

2. Benchimol, P., van Hoeve, W.J., Régin, J.C., Rousseau, L.M., Rueher, M.: Improved filtering
for weighted circuit constraints. Constraints An Int. J. 17(3), 205–233 (2012). https://doi.org/
10.1007/s10601-012-9119-x

3. Isoart, N., Régin, J.C.: A linear time algorithm for the k-cutset constraint. In: Michel, L.D.
(ed.) 27th International Conference on Principles and Practice of Constraint Programming (CP
2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 210, pp. 29:1–29:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021). https://drops.
dagstuhl.de/opus/volltexte/2021/15320

4. Pesant, G.: From support propagation to belief propagation in constraint programming. J.
Artif. Intell. Res. 66, 123–150 (2019). https://doi.org/10.1613/jair.1.11487

5. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic program-
ming algorithm for the traveling salesman problem with time windows. Transp. Sci. 32(1),
12–29 (1998). https://doi.org/10.1287/trsc.32.1.12

6. Rasmussen, L.E.: Approximating the permanent: a simple approach. Random Struct. Algo-
rithms 5(2), 349–362 (1994). https://doi.org/10.1002/rsa.3240050208

https://doi.org/10.1007/978-3-030-58475-7_2
https://doi.org/10.1007/s10601-012-9119-x
https://doi.org/10.1007/s10601-012-9119-x
https://drops.dagstuhl.de/opus/volltexte/2021/15320
https://drops.dagstuhl.de/opus/volltexte/2021/15320
https://doi.org/10.1613/jair.1.11487
https://doi.org/10.1287/trsc.32.1.12
https://doi.org/10.1002/rsa.3240050208

Boolean-Arithmetic Equations:
Acquisition and Uses

R. Gindullin1,2(B), N. Beldiceanu1,2, J. Cheukam Ngouonou1,2,4,
R. Douence1,2,3, and C. -G. Quimper4

1 IMT Atlantique, Nantes, France
2 LS2N, Nantes, France

ramiz.gindullin@imt-atlantique.fr
3 INRIA, Paris , France

4 Université Laval, Quebec, Canada

Abstract. Motivated by identifying equations to automate the discov-
ery of conjectures about sharp bounds on combinatorial objects, we intro-
duce a CP model to acquire Boolean-arithmetic equations (BAE) from
a table providing sharp bounds for various combinations of parameters.

Boolean-arithmetic expressions consist of simple arithmetic conditions
(SAC) connected by a single commutative operator such as ‘∧’, ‘∨’, ‘⊕’
or ‘+’. Each SAC can use up to three variables, two coefficients, and
an arithmetic function such as ‘+’, ‘−’, ‘×’, ‘floor’, ‘mod’ or ‘min’. We
enhance our CP model in the following way to limit the search space:
(i) We break the symmetries linked to multiple instances of similar SACs
in the same expression. (ii) We prevent the creation of SAC that could
be simplified away. We identify several use cases of our CP model for
acquiring BAE and show its applicability for learning sharp bounds for
eight types of combinatorial objects as digraphs, forests, and partitions.

Keywords: Boolean-arithmetic equation · equation discovery · bounds

1 Introduction

In the context of finding conjectures about combinatorial objects, the relevance of
Boolean and BAE has been noted but not fully developed. Larson and Cleemput
describe in [21] the use of pure Boolean expressions to represent necessary or
sufficient conditions for a graph property, while [8] depicts the application of
BAE to express sharp bounds of graph characteristics. While the first work uses
a systematic generate and test approach, the second does not describe how such
BAE were produced. Our work is motivated by the following observations: (i) we
want to go beyond a generate and test approach [21], and investigate how CP
can be used to identify a wide range of concise BAE in the context of conjecture
acquisition; (ii) while the experimental part of [8] indicates the relevance to
use BAE to get sharp bounds for digraphs characteristics, it was still unclear
whether this applies to other combinatorial objects. The contribution of the
paper is threefold.

R. Gindulling is supported by the EU-funded ASSISTANT project no. 101000165.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 378–394, 2023.
https://doi.org/10.1007/978-3-031-33271-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_25&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_25

Boolean-Arithmetic Equations: Acquisition and Uses 379

1. First, it exhibits a variety of Boolean-arithmetic expressions f(X1,X2, . . . ,
Xn) which occur in practice when looking for sharp bounds.

2. Second, it provides CP models for acquiring Boolean arithmetic expressions.
The main point of these models is to restrict the search space by breaking
symmetries between similar simple arithmetic conditions (SACs) and avoiding
generating simplifiable SACs.

3. Finally, it shows that Boolean-arithmetic expressions are not only relevant for
expressing bounds for digraphs as mentioned in [8], but also for trees, forests,
partitions, and some global constraints.

In Sect. 2, we describe four settings for the practical use of Boolean expressions
that we observed in the context of sharp bound acquisition. In Sect. 3, we define
the Boolean-arithmetic formulae that we consider throughout this paper. In
Sect. 4, we provide a core CP model for learning a BAE that explains an output
column of a table from a set of input columns. We show in Sect. 5 various
extensions of the core model to restrict the search space of Boolean-arithmetic
expressions. We evaluate the core model and its extensions in Sect. 6, discuss
related work in Sect. 7, and conclude in Sect. 8.

2 The Relevance of Boolean-Arithmetic Equations

To show the expressive power of BAE, let us consider typical situations where
they are relevant for acquiring sharp bounds, i.e. an inequality for which the
equality holds for at least one example.

1. Using a BAE is a natural option when the codomain of f(X1,X2, . . . , Xn)
is equal to {0, 1} or more generally consists of only two distinct consecutive
values v and v+1. For instance, let v, a, os and s be the number of vertices, of
arcs, of smallest strongly connected components and the size of the smallest
strongly connected component of a digraph. As found by the CP model of
[8] when a is maximal, we have the relation os = � v

max(−s+v,s)�, which is
subsumed by the relation os = 1 + [v = 2 · s], where the Boolean expression
[v = 2 · s] is used as an integer, i.e. either 0 for false or 1 for true.

2. Even when the number of distinct values m of the codomain of f(X1,X2,
. . . , Xn) is greater than two values, but still very small, we can use Boolean
arithmetic expressions to capture concise formulae. This is done by summing
up m − 1 Boolean-arithmetic conditions as illustrated now: e.g., let v, a, c1
and c be the number of vertices, of arcs, of connected components having
more than one vertex and the size of the smallest connected component of
a digraph. As found by the CP model in [8], when a is maximal, we have
the relation c1 = � (v+max(−c+v,c))

(2·max(max(−c+v,c),2)−max(−c+v,c)+1)�, which is subsumed
by the BAE c1 = 2 − ([c = 1] + [(v − c) ≤ 1]).

3. Quite often, using BAE allows one simplifying formulae with min and max
as illustrated now. Let v, c, c23 and s be the number of vertices, connected
components, connected components with two or three vertices where the size
of each strongly connected component is equal to 1, and the size of the largest
strongly connected component of a digraph: e.g for the graph

380 R. Gindullin et al.

we have v = 7, c = 3, c23 = 2, s = 2. As discovered by the CP model of [8],
when c is minimal, we have c23 = (v.s ≤ 3 ? min(v − 1, 1) : 0),1 which can be
replaced by the Boolean relation c23 = [s = 1 ∧ v ∈ [2, 3]].

4. It may occur that a formula can provide an approximate bound with an error
of at most 1 on a parameter in Z. Then, a way for getting a sharp bound is
to find a Boolean formula which precisely describes the bound discrepancy.
For instance, a non-sharp lower bound (with a deviation of at most 1) on the
number of connected components c of a digraph G wrt the number of vertices
v of G, the size of the largest connected component c of G, and the size of the
smallest strongly connected component s of G is given by � v

c �; but a sharp
lower is given by � v

c � + [(s < fmod(v, c)) ∧ (2 · s > c)], where fmod(x, y) is
defined by the conditional expression (x mod y = 0 ? y : x mod y).

The following points are specific to our equation discovery context [29]:

– As our samples are noise-free, we need to acquire formulae that correctly
represent all the samples we have.

– As our samples correspond to instances of combinatorial objects reaching a
sharp bound, this is why we search for equations rather than for inequalities.

– Simple conditions are not translated into a large set of features, which is the
case for most decision tree approaches [3,4,19].

– We keep the original columns of the tables, as using one-hot encoding consid-
erably increases the number of columns and affects the interpretability [28].

3 Describing Boolean-Arithmetic Expressions

The type of Boolean-Arithmetic expressions we consider is dictated by two oppo-
site objectives. (i) On the one hand, we want to focus on concise expressions
involving a limited number of variables and constants. This is motivated by the
need to generate interpretable formulae and by the necessity to avoid a combi-
natorial explosion when searching for such formulae [12]. Consequently, we limit
the number of variables and constants, as well as the number of subterms of
Boolean-Arithmetic expressions. (ii) On the other hand, we aim at covering a
variety of Boolean expressions which occurs in practice. This is done by allowing
one to use a variety of arithmetic operators and Boolean functions.
To meet the above objectives, we use the following two-level description:

– First, we consider a Boolean-arithmetic condition (BAC) mentioning no more
than two variables and two constants, the comparison operators ≤, =, ≥, ∈,
/∈ and a variety of arithmetic operators such as +, −, ×, � �, � �, mod , min,
max. We currently have 53 elementary arithmetic conditions.

– Second, we build a Boolean-arithmetic term by feeding several arithmetic
conditions, or their negation, to a commutative and associative aggregation
operator such as +, ∨, ∧, ⊕, eq, card1, voting, where:

• ⊕ stands for xor;
• eq is equal to 1 iff all its conditions are evaluated to the same value;

1 The expression (cond ?x : y) denotes x if condition cond holds, y otherwise.

Boolean-Arithmetic Equations: Acquisition and Uses 381

• card1 is equal to 1 iff only one of its conditions is evaluated to 1;
• voting is equal to 1 iff the majority of its conditions are evaluated to 1.

The use of a commutative and associative aggregation operator simplifies the
interpretability of a formula and reduces the combinatorics, as the order of the
BACs within a Boolean-arithmetic term is irrelevant. It allows for a compact
representation of some Boolean expressions, that would otherwise be large when
expressed in conjunctive or disjunctive normal form without introducing new
variables. For instance, the n-ary xor, i.e. ⊕n

i=1 �i, is represented by a CNF
consisting of 2n−1 clauses, where each clause mentions all literals �1, �2, . . . , �n.
It also permits the use of the ‘+’ operator in a natural way.

4 A Core Model for Acquiring BAE

This section introduces a CP-based core model for acquiring BAE. First, the
model relies on soft constraints to represent learned Boolean expressions that
mention a restricted number of arithmetic conditions taken from a large set of
candidate conditions. Second, the model incorporates symmetry-breaking con-
straints resulting from the relaxation of arithmetic conditions. Section 5 will
extend these symmetry-breaking constraints.

4.1 Problem Description

Given a two-dimensional table tab[1..r, 1..c] of integer values, consisting of r
distinct rows and c distinct columns, where column c is functionally determined
by columns 1, 2, . . . , c− 1, the problem is to come up with a constraint model to
acquire an equality constraint of the form

∀j ∈ [1, r] : tab[j, c] = f(tab[j, 1], tab[j, 2], . . . , tab[j, c − 1]) (1)

i.e. a constraint that is valid for all rows of the table, where f is a Boolean-
arithmetic expression mentioning c − 1 parameters.

As we want to restrict the complexity of the acquired formulae, the expres-
sion f is limited to nAC ∈ {1, 2, 3} conditions chosen from m = 53 potential
distinct BACs introduced in Sect. 3 (where a few conditions may be duplicated
using different constants), and a single commutative and associative aggregation
operator g selected from the set {∨,∧,⊕,+, eq, card1, voting}. As the acquisi-
tion system successively tries the different aggregation operators, we assume
from now on that g is fixed. As we search for Boolean-arithmetic expressions by
increasing number of BACs, we also assume that nAC is fixed.

Each potential candidate BAC Cd of f (with d ∈ [1,m]) mentioning �d

columns of the tab table (with �d ∈ [1, 3]) and �′
d coefficients (with �′

d ∈ [0, 2]) is

represented by the term Cd

(
ad,1, . . . , ad,�d ,
cd,1, . . . , cd,�′

d

)
, where:

– the variables ad,1, . . . , ad,�d denote the indices of the distinct columns of the
table tab[1..r, 1..c] mentioned by condition Cd,

382 R. Gindullin et al.

– the variables cd,1, . . . , cd,�′
d

represents the coefficients used in the arithmetic
expression of condition Cd.

The problem is to come up with a CP-based model which, given (i) a commu-
tative and associative Boolean operator g ∈ {∨,∧,⊕,+, eq, card1, voting}, and
(ii) a fixed number of conditions nAC, extracts the subset of relevant conditions
for the expression f of Constraint (1), and finds for each used conditions all its
parameters, i.e. which columns and which coefficient values it uses.

Example 1. On page 8, the left-hand side of Table 2 provides a table tab[1..9, 1..4]
from which we acquire the following BAE x4 = [(x1 − x2) = 2] ∨ [x3 ≤ 4]. The
acquisition process is now explained in Sect. 4.2.

4.2 A CP Core Model

Notation 1. Given a table tab[1..r, 1..c], the j-th row of tab[1..r, 1..c] is called
a negative entry if tab[j, c] = 0, and a positive entry otherwise.

Selecting the BACs used in f. To each potential BAC Cd (with d ∈ [1,m])
of a Boolean-arithmetic expression f , we associate a variable bd such that:

• bd = −1 means that neither condition Cd, nor condition ¬Cd are used in f ,
• bd = −0 indicates that the condition ¬Cd is used in f , i.e. Cd is negated,
• bd = −1 signifies that the condition Cd occurs in f .

As f should mention nAC BACs, we set up the following among constraint to
specify that m − nAC conditions must be unused:

among (m − nAC, 〈b1, b2, . . . , bm〉,−1) (2)

Selecting the Attributes Used in Each BAC. For each potential condition

Cd

(
ad,1, . . . , ad,�d ,
cd,1, . . . , cd,�′

d

)
(with d ∈ [1,m]) we set all its variables ad,1, ad,2, . . . , ad,�d

to 0 when the condition Cd is not used, i.e. when bd = −1. We introduce the
variables a′

d,1, a
′
d,2, . . . , a

′
d,�d

corresponding to ad,1 + 1, ad,2 + 1, . . . , ad,�d + 1: we
use the offset +1 as these variables will also be used in element constraints
whose index starts at 1.

For each potential condition Cd, its variables a′
d,1, a′

d,2, . . . , a′
d,�d

should
either be all distinct and greater than or equal to 2, or be all equal to 1. This is
expressed by the next global cardinality (gcc) constraint.

gcc

(〈
a′

d,1, a
′
d,2, . . . , a

′
d,�d

〉
,

〈1 : {0, �d}, 2 : {0, 1}, . . . , c : {0, 1}〉

)
(3)

When the condition Cd is unused, i.e. bd = −1, we set all its variables
a′

d,1, a
′
d,2, . . . , a

′
d,�d

to 1 to break symmetry, i.e. to avoid enumerating over these
variables:

∀d ∈ [1,m],∀k ∈ [1, �d] : bd = −1 ⇔ a′
d,k = 1 (4)

Boolean-Arithmetic Equations: Acquisition and Uses 383

To force the use of all attributes from 1 to c − 1 of the table tab[1..r, 1..c]
across all selected conditions, i.e. those conditions Cd, (with d ∈ [1,m]) such
that bd �= −1, we set up the following gcc constraint:

gcc

⎛
⎜⎜⎝

〈 a′
1,1, a

′
1,2, . . . , a

′
1,�1

,

a′
2,1, a

′
2,2, . . . , a

′
2,�2

,

.
a′

m,1, a
′
m,2, . . . , a

′
m,�m

〉
,

〈2 : o2,
3 : o3,

. .
c : oc

〉⎞
⎟⎟⎠ with oi ∈ [1,m],∀i ∈ [2, c] (5)

Restricting the Coefficients of Each BAC. When the BAC

Cd

(
ad,1, . . . , ad,�d ,
cd,1, . . . , cd,�′

d

)
is used, i.e. bd �= −1, the coefficient variables cd,1, . . . , cd,�′

d

denote the coefficients used in the arithmetic expression related to Cd. As we
look for simple formulae, the initial domain of such variables is initialised to a
small interval, e.g. [−9,+9].

Note that we are not interested in acquiring conditions that can be sub-
stituted by true or false as they could be simplified away. For some types
of conditions this would require additional constraints on the condition’s coeffi-
cients, e.g. for Cd(ad,1, cd,1, cd,2) ≡ [(ad,1 mod cd,1) = cd,2] we post the additional
constraints bd �= −1 ⇒ cd,1 ≥ 2 and bd �= −1 ⇒ cd,2 ∈ [0, cd,1 − 1]:

– If cd,1 = 1 then the condition Cd(ad,1, cd,1, cd,2) is either always true, when
cd,2 = 0, or always false when cd,2 �= 0.

– Otherwise, if cd,1 ≥ 2 and cd,2 /∈ [0, cd,1 − 1] then the condition
Cd(ad,1, cd,1, cd,2) is always false as (ad,1 mod cd,1) ∈ [0, cd,1 − 1].

When the condition Cd is unused, we have bd = −1 ⇒ (cd,1 = · · · = cd,�′
d

= 0) to
avoid multiple solutions stemming from the coefficients of an unused condition.

How to further restrict the initial domain of the coefficient variables wrt the
entries of the table tab[1..r, 1..c] will be explained in Sect. 5.3.

Setting Row Constraints. To evaluate each condition Cd wrt the j-th row
of the table tab[1..r, 1..c], we create the variables vd,j,k for the values of its k-th
attributes and a variable bd,j for the value of Cd. This is described in the next
two items:

– For each condition Cd (with d ∈ [1,m]), for each row j (with j ∈ [1, r]), and
for each argument k (with k ∈ [1, �d]) of condition Cd, we create a variable
vd,j,k that gives, either the value of the k-th argument of condition Cd wrt
the j-th row of the table tab[1..r, 1..c], or 0 if the condition Cd is unused:

• ∀d ∈ [1,m], ∀j ∈ [1, r], ∀k ∈ [1, �d] :
element

(
a′

d,k, 〈0, tab[j, 1], tab[j, 2], . . . , tab[j, c − 1]〉 , vd,j,k

)
.

– We also create a 0 − 1 variable bd,j which will be set to true iff condition Cd

holds for the j-th row of the table tab[1..r, 1..c]:
• ∀d ∈ [1,m], ∀j ∈ [1, r] : bd,j ⇔ Cd (vd,j,1, vd,j,2, . . . , vd,j,�d) .

384 R. Gindullin et al.

Now, based on the aggregator g, we state a few row constraints for each used
condition Cd (with d ∈ [1,m]) and wrt each row of the table tab[1..r, 1..c]. These
row constraints are related to the type of aggregator g we are using. In this
context, we distinguish the following types of aggregators I, II, and III:

I. Aggregators for which (i) positive and negative table entries have distinct row
constraints and (ii) a single table entry may determine the Boolean arithmetic
expression value. For instance, if g is the ‘∧’ aggregator then on a positive
entry, a condition Cd which is false (with d ∈ [1,m]) falsifies the Boolean
arithmetic expression f . Aggregators ‘∨’ and ‘∧’ belong to this class.

II. Aggregators for which (i) positive and negative table entries have distinct
row constraints, and (ii) a single table entry cannot determine the Boolean
arithmetic expression value. Aggregator ‘eq’ belongs to this class.

III. Aggregators for which (i) positive and negative table entries have the same
row constraint, and (ii) a single table entry cannot determine the Boolean
arithmetic expression value. Aggregators ‘+’, ‘⊕’, ‘card1’, and ‘voting’ belong
to this class.

Table 1 provides for each class in {I, II, III} of aggregator g the corresponding
row constraints that determine the value of the Boolean arithmetic expression
f . As mentioned earlier, for the first two classes, these row constraints depend
on whether we have a positive or negative table entry; for the third class, the
same constraint applies for both a positive and a negative table entry. We now
explain the constraints stated in Table 1 for the first aggregator of each class.

[Case aggregator g is ‘∨’]

– For each positive row j (with j ∈ [1, r]), we post the constraint ∨m
d=1[bd =

bd,j] to ensure that at least one condition is true so that the disjunction of
conditions holds.

– For each condition Cd (with d ∈ [1,m]) and each negative row j (with
j ∈ [1, r]), we post the constraint table(〈(bd, bd,j)〉, 〈(−1, 0), (−1, 1), (0, 1),
(1, 0)〉). When the condition Cd is not used, i.e. bd = −1, there is no restric-
tion on bd,j , i.e. bd,j ∈ {0, 1}; otherwise, each condition must be falsified,
i.e. bd,j = 1 − bd, so that the corresponding disjunction of conditions is not
true.

[Case aggregator g is ‘eq’]

– For each positive row j (with j ∈ [1, r]), we post the constraint:
[∑m

d=1
[bd = bd,j] = nAC

]
∨

[∑m

d=1
[bd = ¬bd,j] = nAC

]
enforcing either that all conditions hold or that all conditions are false.

– For each negative row j (with j ∈ [1, r]) we post the constraint:
[∑m

d=1
[bd = bd,j] < nAC

]
∧

[∑m

d=1
[bd = ¬bd,j] < nAC

]
imposing that at least one condition is false and at least one is true.

Boolean-Arithmetic Equations: Acquisition and Uses 385

Table 1. Row constraints which are posted on a positive or a negative table entry
for computing the value of a Boolean arithmetic expression f , depending on the used
aggregator g of classes I, II; for class III the same row constraint is posted for all entries.

Class g Positive entries (tab[j, c] = 1) Negative entries (tab[j, c] = 0)

I
‘∨’ ∨m

d=1[bd = bd,j] table

(
〈(bd, bd,j)〉,

〈
(−1, 0), (−1, 1),
(0, 1), (1, 0)

〉)

‘∧’ table

(
〈(bd, bd,j)〉,

〈
(−1, 0), (−1, 1),
(0, 0), (1, 1)

〉)
∨m

d=1[bd = ¬bd,j]

II ‘eq’
∨ (∑m

d=1[bd = bd,j] = nAC,∑m
d=1[bd = ¬bd,j] = nAC

) ∧ (∑m
d=1[bd = bd,j] < nAC,∑m
d=1[bd = ¬bd,j] < nAC

)

III

[bat’+‘ j, c] =
∑m

d=1[bd = bd,j]

‘⊕’ tab[j, c] = (
∑m

d=1[bd = bd,j]) mod 2

‘card1’ tab[j, c] = [(
∑m

d=1[bd = bd,j]) = 1]

‘voting’ tab[j, c] = [2 (m
d=1[bd = bd,j]) > nAC]

Table 2. Illustrating the core model on the table tab[1..9, 1..4] (with columns x1, x2,
x3, x4) for acquiring a Boolean-arithmetic expression explaining x4 wrt x1, x2, x3 using
the ‘∨’ aggregator with two conditions C1 and C2 selected from the following potential
candidate conditions C1 : xi − xj = cst , C2 : xi ≤ cst and C3 : xi = xj .

j
table tab C1 = [(x1 − x2) = 2] C2 = [x3 ≤ 4] C3 = [xk1 = xk2] row

constraint
satisfaction

x1x2x3x4
b1=1a′

1,1=2 a′
1,2=3 b2=1 a′

2,1=4 b3=−1a′
3,1=1a′

3,2=1
b1,j v1,j,1 v1,j,2 b2,j v2,j,1 b3,j v3,j,1 v3,j,2

po
si
ti
ve

en
tr
ie
s

1 4 2 5 1 1 4 2 0 5 1 0 0 true

2 3 4 4 1 0 3 4 1 4 1 0 0 true

3 1 1 3 1 0 1 1 1 3 1 0 0 true

4 3 1 5 1 1 3 1 0 5 1 0 0 true

5 4 1 2 1 0 4 1 1 2 1 0 0 true

ne
ga

ti
v e

en
tr
ie
s 6 2 4 5 0 0 2 4 0 5 1 0 0 true

7 4 1 5 0 0 4 1 0 5 1 0 0 true

8 4 3 5 0 0 4 3 0 5 1 0 0 true

9 3 5 5 0 0 3 5 0 5 1 0 0 true

[Case aggregator g is ‘+’] For each row j (with j ∈ [1, r]), we post the con-
straint tab[j, c] =

∑m
d=1[bd = bd,j] to ensure that the appropriate number of

conditions are satisfied.

Example 2 (Continuation of Example 1). Table 2 summarises the acquisition
of the BAE x4 = [(x1 − x2) = 2] ∨ [x3 ≤ 4] from the table tab[1..9, 1..4]: it
provides the main variables introduced by the core model. First, note that only
conditions C1 and C2 are selected, as b3 = −1. For the first positive entry

386 R. Gindullin et al.

(i.e. j = 1) and the first negative entry (i.e. j = 6), we now show that the
corresponding row constraints described in Table 1 are true:

– As row 1 is a positive entry, we post the constraint [b1 = b1,1] ∨ [b2 = b2,1] ∨
[b3 = b3,1] which is true as b1 = b1,1 holds.

– As row 6 is a negative entry, we post the constraint table (〈(bd, bd,6)〉, T),
with T = 〈(−1, 0), (−1, 1), (0, 1), (1, 0)〉, for each condition Cd (d ∈ {1, 2, 3}).
All three constraints hold for the sixth row.

5 Enhancing the Core Model

5.1 Linking the Number of Conditions, Their Arity, and the Number
of Attributes

We introduce the following constraints to explicitly restrict the potential com-
binations of unary, binary and ternary conditions to consider.

Notation 2. Within the expression f formed by nAC conditions, let nAC,k

denote the number of conditions mentioning k attributes.

Since we restrict the Boolean-arithmetic expression f to at most three con-
ditions, we state the constraints nAC =

∑3
k=1 nAC,k and

∑3
k=1 k · nAC,k =∑c

i=2 oi, where oi is the number of occurrences of value i in the variables
a′

d,1, a
′
d,2, . . . , a

′
d,�d

, as stated by the gcc constraint (3) of the core model. We
now state the lower and upper bounds on the number of distinct attributes c−1
appearing in the expression f wrt nAC,k (with k ∈ [1, 3]):

• c − 1 ≥ max3
k=1 (k · min(1, nAC,k)) , • c − 1 ≤

3∑
k=1

(k · nAC,k) .

5.2 Symmetry Breaking

As a formula may involve commutative arithmetic operators whose arguments
can be interchanged, and mention several occurrences of the same condition
which can be swapped, we show how to restrict the search space for formulae.

Commutative Arithmetic Operators. For each BAC Cd

(
ad,1, ad,2,

cd,1, . . . , cd,�′
d

)

(with d ∈ [1,m]) mentioning two attributes ad,1 and ad,2, as well as a com-
mutative arithmetic operator such as +, min, or max, we order its argu-
ments only when the condition is used, by posting a constraint of the form
bd �= −1 ⇒ a′

d,1 < a′
d,2 on its variables a′

d,1 and a′
d,2.

Conditions Mentioning the Same Comparison and Arithmetic Oper-
ators. In case a same condition would occur several times in the expression f ,
positively or negatively, or with different attributes, we post symmetry-breaking

Boolean-Arithmetic Equations: Acquisition and Uses 387

constraints to prevent generating equivalent subexpressions. We order the list of
potential BACs C1, C2, . . . , Cm so that conditions that use the same comparison
operator ≤, =, ≥, ∈, as well as the same arithmetic operator +, −, ×, � �, � �,
mod, min, max are located consecutively. For each pair of consecutive condi-

tions Cd

(
ad,1, . . . , ad,�d ,
cd,1, . . . , cd,�′

d

)
, Cd+1

(
ad+1,1, . . . , ad+1,�d+1 ,
cd+1,1, . . . , cd+1,�′

d+1

)
(with d ∈ [1,m − 1])

using the same comparison and arithmetic operators, we enforce the following
symmetry-breaking constraint.

The idea is to impose a strict lexicographic ordering constraint (SLOC)
between the variables of such consecutive conditions Cd and Cd+1. However,
we need to consider the cases where these conditions are unused (bd = −1,
bd+1 = −1), negated (bd = 0, bd+1 = 0) or positively used (bd = 1,
bd+1 = 1). We use the following idea to adapt the SLOC to our context:
a SLOC can be described as a finite automaton whose input alphabet con-
sists of letters that pairwise compare the k-th components of two vectors [6].
We compare the vectors

−→
U = (bd, a

′
d,1, a

′
d,2, . . . , a

′
d,�d

) = (u1, u2, . . . , u�d+1)

and
−→
V = (bd+1, a

′
d+1,1, a

′
d+1,2, . . . , a

′
d+1,�d+1

) = (v1, v2, . . . , v�d+1). Recall from
Sect. 4.2 that (i) depending on whether condition Cd is unused, negated or used
positively, bd will be set to −1, 0 or 1 respectively, and that (ii) the variables
a′

d,1, a
′
d,2, . . . , a

′
d,�d

are all in the range [2, c] as we applied the offset +1. By pair-

Table 3. Definition of the input letters of the finite automaton depicted in Part (A)
of Fig. 1 used for breaking symmetry between two consecutive conditions

Input letter Corresponding condition Comment

wk = 0 uk = −1 ∧ vk = −1 Both conditions are unused.

wk = 1 (uk = 0 ∨ uk = 1) ∧ vk = −1 Only one condition is used.

wk = 2 uk = 1 ∧ vk = 0
The 1st condition is used positively,

and the negation of the 2nd condition is used.

wk = 3 uk = 0 ∧ vk = 0
The negation of the 1st condition is used,

and the negation of the 2nd condition is used.

wk = 4 uk = 1 ∧ vk = 1
k = 1: both conditions are used positively,

k > 1: attributes of both conditions are unused.

wk = 5 uk > 1 ∧ vk = 1

uk is an attribute of the 1st condition, and

vk an unused attribute of the 2nd condition,

as the 2nd condition is unused.

wk = 6 uk > 1 ∧ vk > 1 ∧ uk = vk
uk and vk are attributes of the two used

conditions, such that uk = vk.

wk = 7 uk > 1 ∧ vk > 1 ∧ uk > vk
uk and vk are attributes of the two used

conditions, such that uk > vk.

wk = 8 uk > 1 ∧ vk > 1 ∧ uk < vk
uk and vk are attributes of the two used

conditions, such that uk < vk.

388 R. Gindullin et al.

wise comparing the k-th components of vectors
−→
U and

−→
V (with k ∈ [1, �d + 1])

we create the following vector
−→
W = (w1, w2, . . . w�d+1), where each component

is defined by one of the nine letters 0, 1, . . . , 8 described in Table 3.
We then force the components of vector

−→
W to be accepted by the finite

automaton given in Fig. 1. The three accepting states labelled by n, o, and t

respectively correspond to the fact that (i) none of the conditions Cd, Cd+1

is used, (ii) only the first condition Cd is used, and (iii) the two conditions
Cd, Cd+1 are both used. The outgoing transitions from state ε to states t

�=
and t

> enforce that, when using a condition and its negated form, the negated

form is located in the second position. The two outgoing transitions of state t
>

ensure that the arguments of the first used condition are lexicographically strictly
greater than the arguments of the second condition, while the two outgoing
transitions of state t

�= force the two conditions to not use the same arguments.

5.3 Pre-computing the Combinations of Possible Values
of the Coefficients of a Condition

Most BACs Cd

(
ad,1, . . . , ad,�d ,
cd,1, . . . , cd,�′

d

)
can be presented as a comparison of the form

C ′
d(P)♦ cd,�′

d
(with ♦ ∈ {≤,=,≥}), where C ′

d(P) is an arithmetic expression

parameterised by P =
(

a′
d,1, . . . , a

′
d,�d

,

cd,1, . . . , cd,�′
d−1

)
. Such BACs in a Boolean formula f

must not be equivalent to true or false, as otherwise they could be simplified
away from f . We also want to avoid generating a condition involving an inequal-
ity when an equality would suffice. For this purpose we proceed as follows.

– For each possible combination of values p of parameter P wrt the potential
values of a′

d,1, . . . , a
′
d,�d

, cd,1, . . . , cd,�′
d−1, we compute the feasible values of

C ′
d(p) wrt all the table entries of tab[1..r, 1..c]. We denote by Vd,p such sets.

Fig. 1. (A) Automaton for breaking symmetries between two consecutive conditions
Cd, Cd+1 sharing the same comparison and arithmetic operators, where accepting states

are denoted by a double circle; (B) Examples of vectors
−→
U ,

−→
V ,

−→
W and corresponding

used conditions with their arguments (each condition mentions one single attribute).

Boolean-Arithmetic Equations: Acquisition and Uses 389

Table 4. Example table for pre-computing the possible values of the coefficients for
conditions C1 and C2

x1 x2 xc [x1 − x2] [x2 − x1] [x1 mod 3] [x2 mod 3]

1 2 0 −1 1 1 2

2 1 0 1 −1 2 1

1 2 1 −1 1 1 2

1 3 1 −2 2 1 0

1 4 1 −3 3 1 1

– Then, depending on the comparison operator ♦ used in condition Cd, we
derive for each combination of values p of parameter P , the set of values
of coefficient cd,�′

d
which does not make condition Cd always true or always

false. We denote such sets as V♦
d,p. They are obtained from the sets Vd,p in

the following way.
• [♦ is ‘=’]: when the coefficient cd,�′

d
is assigned a value outside Vd,p the

condition Cd would always be false; if the cardinality of Vd,p is 1 then
V♦

d,p = ∅ (i.e. if there is only one value the condition would always be
true), otherwise V♦

d,p = Vd,p.
• [♦ is ‘≤’ or ‘≥’]: let α and ω respectively be the smallest and the largest

value of the set Vd,p; then V♦
d,p = Vd,p \ {α, ω}. The intuition for ♦ =‘≤’

is as follows: if we keep α then ♦ =‘≤’ is equivalent to ♦ =‘=’ ; if we keep
ω the condition will always be true. For ‘≥’ the intuition is symmetrical.

– We may further reduce the set V♦
d,p by considering the aggregator g. First,

for each possible combination of values p of parameter P , we compute the
feasible values of C ′

d(p) wrt all the positive (resp. negative) table entries of
tab[1..r, 1..c]. We denote by Vpos

d,p (resp. Vneg
d,p) such sets. From these sets, we

compute the further restricted set V♦,g
d,p as follows:

• [g is ‘∧′]: if ♦ is ‘=’ then V♦,g
d,p = Vpos

d,p else V♦,g
d,p = Vpos

d,p ∩ V♦
d,p,

• [g ∈ {‘ ∨ ’, ‘ + ’}]: V♦,g
d,p = V♦

d,p \ Vneg
d,p ,

• [g /∈ {‘ ∧ ’, ‘ ∨ ’, ‘ + ’}]:V♦,g
d,p = V♦

d,p.

– Finally, we set up the table constraint table

(〈
a′

d,1, . . . , a
′
d,�d

,

cd,1, . . . , cd,�′
d

〉
,S

)
where

S corresponds to the union of cartesian products ∪p∈P (p × V♦,g
d,p).

Example 3. To illustrate the process, consider Table 4. There are two input
columns 1 and 2 and the output column c. Consider the two conditions C1 =
[a1,1 − a1,2 = c1,1] and C2 = [a2,1 mod c2,1 ≥ c2,2].

• For C1 we have only two options for p = {a1,1, a1,2}, namely:

1) p = {1, 2}:
{V1,p = {−3,−2,−1, 1}, V=

1,p = V1,p,
V=,‘∧’
1,p = {−3,−2,−1}, V=,‘∨’

1,p = V=
1,p \ {−1, 1} = {−3,−2}.

390 R. Gindullin et al.

2) p = {2, 1}:
{V1,p = {−1, 1, 2, 3}, V=

1,p = V1,p,
V=,‘∧’
1,p = {1, 2, 3}, V=,‘∨’

1,p = V=
1,p \ {−1, 1} = {2, 3}.

• For C2 we need to enumerate on c2,1. Wlog, we only consider the case c2,1 = 3.
In this context, the options for p = {a2,1, c2,1} are:

1) p = {1, 3}: V2,p = {1, 2}, α = 1, ω = 2, V≥
2,p = V2,p \ α, ω = ∅, i.e. this

set of options for this condition is not considered any further.

2) p = {2, 3}:

⎧⎨
⎩

V2,p = {0, 1, 2}, α = 0, ω = 2, V≥
1,p = V2,p \ {α, ω} = {1},

Vpos
2,p = {1}, Vneg

2,p = {1, 2},
V≥, ‘∧’
2,p = Vpos

2,p ∩ V≥
2,p = {1},V≥,‘∨’

2,p = V≥
2,p \ Vneg

2,p = ∅.

6 Evaluation

The CP core model introduced in Sect. 4 and its extension described in Sect. 5
were evaluated in the context of the search of conjectures on sharp bounds on
characteristics of several combinatorial objects, which we now describe.

– digraph (without isolated vertex): a set of vertices V and a set of ordered
pairs of vertices A with the restriction that each vertex of V occurs in at least
one pair of A [5].

– rooted tree: a connected acyclic undirected graph where a vertex is designed
as the “root” of the tree [18].

– rooted forest: a disjoint union of rooted trees [18]; we also consider a variant,
rooted forest2, where all rooted trees have at least two vertices.

– partition: a partition of a set S is a collection of possibly empty subsets
of S such that every element of S is in exactly one of the subsets of the
collection. The use of a partition was motivated the by fact that a partition
can be interpreted as a solution to the conjunction of the nvalue (i.e. the
number of partition subsets, see [26]) and the balance (i.e. the difference
between the cardinalities of the largest and smallest subsets of the partition,
see [7]) constraints. Motivated by the extension of the balance constraint, i.e.
all balance [9], we also consider a version of partition named partition0
where all subsets of S are non-empty.

– stretch: a solution of a stretch constraint on 0–1 variables, where a subse-
quence of 1 immediately preceded and followed by a 0 is called a stretch [27];
we also consider the variant named cyclic stretch where, when the sequence
begins and terminates by 1, those two 1 belong to the same stretch.

Table 5 shows for each combinatorial object some characteristics we consider,
and some conjectures found using the Boolean model described in this paper.
Those conjectures are equalities which express (i) either the value of a character-
istic when another characteristic is reaching its sharp bound, (ii) either a sharp
bound formulated wrt other characteristics [8]. We evaluate the CP models of
Sect. 4 and 5 wrt to the following two aspects:

Boolean-Arithmetic Equations: Acquisition and Uses 391

Table 5. Examples of characteristics (char.) of combinatorial objects and correspond-
ing conjectures: (i) c, s, oc, c and s: number of connected components (cc), strongly
connected components (scc), connected components with at least two vertices, size of
the smallest cc and size of the largest scc of a digraph; (ii) c0: denote 0 if all the
cc have same maximal size, and c otherwise, for a digraph; (iii) v and f : number
of vertices and leaves in a rooted tree; (iv) d: largest degree of a parent node in a
rooted tree or a rooted forest; (v) p and t: minimum depth and size of the smallest
tree in a rooted forest; (vi) n, nval , and m: number of elements, number of subsets,
and cardinality of the smallest subset in a partition; (vii) sr , dr , and dm: difference
between the number of elements of the largest and smallest stretches, difference between
the maximum and minimum distance of consecutive stretches, and minimum distance
between consecutive stretches in stretch; (viii) n, ng , and osc: number of elements,
total number of stretches, and number of stretches which have more than one element
when the number of element of the largest stretch is maximal in cyclic stretch.

Combinatorial object Number of char. Some of the used char. Examples of discovered conjectures

digraph 20 c, c, s, oc c = 1 + [¬(s ≤ c ∧ oc ≤ 1)]

digraph 20 c0, c, s, s c0 = [¬ voting(c = s, c = 1,min(c, s) = 1)]

rooted tree 6 d, v, f d = (v = f ∨ v = 1 ? 0 : f)

rooted forest 11 p, d, t d = 2 − ([p = 0] + [(t − p) = 1])

partition 14 n,nval ,m nval = 1 + [2 · m ≤ n]

stretch 26 sr , dr , dm dm = [(sr + dr) ≥ 1]

cyclic stretch 26 osc,n,ng osc = [¬ card1(n = 2 · ng, n · ng = 3, n · ng ≤ 3)]

Table 6. Computing time for the Core and the Enhanced models wrt aggregators (left
side) and combinatorial objects (right side)

g nAC

Number of Average time
conjectures per conjecture

C. Model E. Model

∧ 1 2311 0.36s 0.35s
∧ 2 341 25.5s 11s
∧ 3 5 2591s 542s
∨ 2 190 18.9s 6.1s
∨ 3 1 3062s 292s
eq 2 143 35.7s 14.7s
eq 3 47 309s 50s
+ 2 662 2s 1.3s

card1 3 2 1003s 27.5s
voting 3 4 345s 66s

Combinatorial Number of Average time
object conjectures per conjecture

C. Model E. Model

digraph 546 43s 10s
rooted tree 56 1.5s 1s
rooted forest 229 3.4s 1.3s
rooted forest2 586 18.2s 5.9s
partition 24 2.7s 1.7s
partition0 24 0.8s 0.5s
stretch 1059 10s 2.7s
cyclic stretch 1182 6.4s 1.8s

Total 3706 14.4h 3.9h

1. The computing time spent by the core model of Sect. 4 (i.e. C. Model) and by
its enhanced version of Sect. 5 (i.e. E. Model) wrt (i) the type of aggregator
used in a BAE, and wrt (ii) the kind of combinatorial object. For this aspect,
we test 3706 examples of acquired BAE on a MacBookPro with a 2.6 GHz
Core i7 and 16 Gb of memory using SICStus 4.6.0. Table 6 shows that the
E. model acquires a BAE with, on average, 73% less time than the C. Model.
Additional tests showed that using just the constraints from Sect. 5.1 increases
the speed of the C. Model by ≈5%, just the constraints from Sect. 5.2 - by
≈63% and just the constraints from Sect. 5.3 - by ≈48%.

392 R. Gindullin et al.

2. Using the enhanced model together with the model acquiring polynomial of [8]
(i.e. the EP. Model), Table 7 gives (i) the number of Boolean formulae found,
i.e. 642 (sum of second columns), replacing a formula with a polynomial,
and (ii) the number of new Boolean formulae, i.e. 56 (sum of third columns)
discovered compared to the model described in [8], which only looked for for-
mulae with polynomials and arithmetic functions involving two polynomials
(i.e. the P. Model).

7 Related Work

Learning purely Boolean expressions from data is widely reported in the litera-
ture. A significant number of papers explore the acquisition of relevant features,
often called the “relevant features problem” (RFP). Blum formalises the RFP
in [10], and provides a survey of various algorithms in [11]. The RFP can be
applied to features that are Boolean, integer or continuous, each of which requires
its own approach [15, chapter 1.2]. Some of the works focusing on purely Boolean
RFP are described in [13,23,25]. In [24], Mutlu and Oghaz provide a taxonomy of
Boolean and non-Boolean feature extraction techniques applied to graphs. Other
works present the acquisition of Boolean expressions as a part of the Boolean
rules extraction process for classification problems using SAT [31] or neural net-
works [22]. Lastly, there are papers [14,16] focusing on the construction and
the simplification of Boolean functions. The acquisition of Boolean-arithmetic
expressions is often used in the context of classification problems. Random for-
est [17], decision trees [3,4,19], Bayesian rule lists [30], fuzzy association rules [2]
and rough sets [20] approaches are used. Most of the work considers the acquisi-
tion of relatively simple Boolean-arithmetic expressions of the type “attribute has
a value of ”. The SEEN system [19] extracts more complex Boolean-arithmetic
expressions that contain the +, × and / arithmetic operators: it calls such domain
“logical-arithmetic expression mining”.

Beyond the domain of Boolean formulae, synthesising formulae from data [1]
mostly relies on a generate and test approach to produce candidate formulae of
increasing complexity for a fixed grammar. In our context, applying techniques
that minimise an error function produces complicated formulae that are not
verified wrt all input data. In [8] we compared our approach to methods used
for symbolic regression such as GPlearn and ffx: GPlearn generally found no
formulae, while ffx discovered formulae with a large number of terms.

Table 7. Contribution of the EP. Model that both acquires Boolean formulae (BF) and
polynomials compared to searching only formulae with polynomials with the P. Model

Combi- Number of (BF) which are:
natorial found replacing new
object polynomials
digraph 164 118 46
rooted tree 26 26 0
rooted forest 91 86 5
rooted forest2 149 145 4

Combi- Number of (BF) which are:
natorial found replacing new
object polynomials
partition 20 20 0
partition0 10 10 0
stretch 93 93 0
cyclic stretch 145 144 1

Boolean-Arithmetic Equations: Acquisition and Uses 393

8 Conclusion

The paper presents a CP model for learning BAE that can cope with a variety
of expressions involving the most common Boolean aggregators and arithmetic
operators. In the context of sharp bound acquisition, this complements the model
introduced in [8] for learning equations whose right-hand sides are polynomials.
The model is relevant not only in the context of digraphs, but also for other
combinatorial objects such as rooted trees or partitions.

References

1. Alur, R., Singh, R., Fisman, D., Solar-Lezama, A.: Search-based program synthesis.
Commun. ACM 61(12), 84–93 (2018). https://doi.org/10.1145/3208071

2. Au, W.H., Chan, K.C.: Mining fuzzy association rules in a bank-account database.
IEEE Trans. Fuzzy Syst. 11(2), 238–248 (2003)

3. Aung, M.S.H., et al.: Comparing analytical decision support models through
Boolean rule extraction: a case study of ovarian Tumour malignancy. In: Liu, D.,
Fei, S., Hou, Z., Zhang, H., Sun, C. (eds.) ISNN 2007. LNCS, vol. 4492, pp. 1177–
1186. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72393-6 139

4. Barbareschi, M., Barone, S., Mazzocca, N.: Advancing synthesis of decision tree-
based multiple classifier systems: an approximate computing case study. Knowl.
Inf. Syst. 63(6), 1577–1596 (2021). https://doi.org/10.1007/s10115-021-01565-5

5. Beldiceanu, N.: Global constraints as graph properties on a structured network of
elementary constraints of the same type. In: Dechter, R. (ed.) CP 2000. LNCS,
vol. 1894, pp. 52–66. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45349-0 6

6. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8 11

7. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global Constraint Catalog, 2nd Edi-
tion (revision a). Technical report T2012–03, Swedish Institute of Computer Sci-
ence (2012). http://ri.diva-portal.org/smash/get/diva2:1043063/FULLTEXT01.
pdf

8. Beldiceanu, N., Cheukam-Ngouonou, J., Douence, R., Gindullin, R., Quimper,
C.G.: Acquiring maps of interrelated conjectures on sharp bounds. In: 28th Inter-
national Conference on Principles and Practice of Constraint Programming (CP
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2022)

9. Bessiere, C., et al.: The balance constraint family. In: O’Sullivan, B. (ed.) CP
2014. LNCS, vol. 8656, pp. 174–189. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10428-7 15

10. Blum, A.: Relevant examples and relevant features: thoughts from computational
learning theory. In: AAAI Fall Symposium on Relevance, vol. 5, p. 1 (1994)

11. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97(1–2), 245–271 (1997)

12. Brence, J., Todorovski, L., Džeroski, S.: Probabilistic grammars for equation
discovery. Knowl.-Based Syst. 224 (2021). https://doi.org/10.1016/j.knosys.2021.
107077

https://doi.org/10.1145/3208071
https://doi.org/10.1007/978-3-540-72393-6_139
https://doi.org/10.1007/s10115-021-01565-5
https://doi.org/10.1007/3-540-45349-0_6
https://doi.org/10.1007/3-540-45349-0_6
https://doi.org/10.1007/978-3-540-30201-8_11
http://ri.diva-portal.org/smash/get/diva2:1043063/FULLTEXT01.pdf
http://ri.diva-portal.org/smash/get/diva2:1043063/FULLTEXT01.pdf
https://doi.org/10.1007/978-3-319-10428-7_15
https://doi.org/10.1007/978-3-319-10428-7_15
https://doi.org/10.1016/j.knosys.2021.107077
https://doi.org/10.1016/j.knosys.2021.107077

394 R. Gindullin et al.

13. Forman, G., Kirshenbaum, E.: Extremely fast text feature extraction for classifi-
cation and indexing. In: Proceedings of the 17th ACM Conference on Information
and Knowledge Management, pp. 1221–1230 (2008)

14. Golia, P., Slivovsky, F., Roy, S., Meel, K.S.: Engineering an efficient Boolean func-
tional synthesis engine. In: 2021 IEEE/ACM International Conference On Com-
puter Aided Design (ICCAD), pp. 1–9. IEEE (2021)

15. Guyon, I., Elisseeff, A.: An introduction to feature extraction. In: Guyon, I.,
Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.) Feature Extraction. Studies in Fuzzi-
ness and Soft Computing, vol. 207, pp. 1–25. Springer, Berlin, Heidelberg (2006).
https://doi.org/10.1007/978-3-540-35488-8 1

16. Jakobovic, D., Picek, S., Martins, M.S., Wagner, M.: Toward more efficient heuris-
tic construction of Boolean functions. Appl. Soft Comput. 107, 107327 (2021)

17. Jun, S., Lee, S., Chun, H.: Learning dispatching rules using random forest in flexible
job shop scheduling problems. Int. J. Prod. Res. 57(10), 3290–3310 (2019)

18. Knuth, D.: Art of Computer Programming, Volume 4, Generating All Trees, pp.
461–462. Addison-Wesley, Boston (2006)

19. Kosman, E., Kolchinsky, I., Schuster, A.: Mining logical arithmetic expressions
from proper representations. In: Proceedings of the 2022 SIAM International Con-
ference on Data Mining (SDM), pp. 621–629. SIAM (2022)

20. Lambert-Torres, G.: Application of rough sets in power system control center data
mining. In: 2002 IEEE Power Engineering Society Winter Meeting. Conference
Proceedings (Cat. No. 02CH37309). vol. 1, pp. 627–631. IEEE (2002)

21. Larson, C.E., Van Cleemput, N.: Automated conjecturing iii. Ann. Math. Artif.
Intell. 81(3), 315–327 (2017)

22. Mereani, F., Howe, J.M.: Exact and approximate rule extraction from neural net-
works with Boolean features. In: Proceedings of the 11th International Joint Con-
ference on Computational Intelligence, pp. 424–433. SCITEPRESS (2019)

23. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning functions of k relevant vari-
ables. J. Comput. Syst. Sci. 69(3), 421–434 (2004)

24. Mutlu, E.C., Oghaz, T.A.: Review on graph feature learning and feature extraction
techniques for link prediction. arXiv preprint arXiv:1901.03425 (2019)

25. Nguifo, E.M., Njiwoua, P.: Using lattice-based framework as a tool for feature
extraction. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp.
304–309. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0026700

26. Pachet, F., Roy, P.: Automatic generation of music programs. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 331–345. Springer, Heidelberg (1999). https://doi.
org/10.1007/978-3-540-48085-3 24

27. Pesant, G.: A filtering algorithm for the stretch constraint. In: Walsh, T. (ed.) CP
2001. LNCS, vol. 2239, pp. 183–195. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45578-7 13

28. Schelldorfer, J., Wuthrich, M.V.: Nesting classical actuarial models into neural
networks (2019). Available at SSRN 3320525

29. Todorovski, L.: Equation discovery. In: Sammut, C., Webb, G.I. (eds.) Encyclope-
dia of Machine Learning, pp. 327–330. Springer, Boston, MA (2011). https://doi.
org/10.1007/978-0-387-30164-8 258

30. Yang, H., Rudin, C., Seltzer, M.: Scalable Bayesian rule lists. In: International
Conference on Machine Learning, pp. 3921–3930. PMLR (2017)

31. Yu, J., Ignatiev, A., Stuckey, P.J., Le Bodic, P.: Computing optimal decision sets
with SAT. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 952–970. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 55

https://doi.org/10.1007/978-3-540-35488-8_1
http://arxiv.org/abs/1901.03425
https://doi.org/10.1007/BFb0026700
https://doi.org/10.1007/978-3-540-48085-3_24
https://doi.org/10.1007/978-3-540-48085-3_24
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/3-540-45578-7_13
https://doi.org/10.1007/978-0-387-30164-8_258
https://doi.org/10.1007/978-0-387-30164-8_258
https://doi.org/10.1007/978-3-030-58475-7_55

Generating Random Instances
of Weighted Model Counting

An Empirical Analysis with Varying Primal Treewidth

Paulius Dilkas(B)

National University of Singapore, Singapore, Singapore
paulius.dilkas@nus.edu.sg

Abstract. Weighted model counting (WMC) is an extension of propo-
sitional model counting with applications to probabilistic inference and
other areas of artificial intelligence. In recent experiments, WMC algo-
rithms perform similarly overall but with significant differences on spe-
cific subsets of benchmarks. A good understanding of the differences in
the performance of algorithms requires identifying key characteristics
that favour some algorithms over others. In this paper, we introduce a
random model for WMC instances with a parameter that influences pri-
mal treewidth—the parameter most commonly used to characterise the
difficulty of an instance. We then use this model to experimentally com-
pare the performance of WMC algorithms c2d, Cachet, d4, DPMC,
and miniC2D. Using these random instances, we show that the easy-
hard-easy pattern is different for algorithms based on dynamic program-
ming and algebraic decision diagrams than for all other solvers. We also
show how all WMC algorithms scale exponentially with respect to primal
treewidth and how this scalability varies across algorithms and densities.
Finally, we combine insights from experiments involving both random
and competition instances to determine how the best-performing WMC
algorithm varies depending on clause density and primal treewidth.

Keywords: Weighted model counting · Random model ·
Parameterised complexity

1 Introduction

Weighted model counting (WMC)—a weighted generalisation of propositional
model counting (#SAT) [19]—has emerged as a powerful computational frame-
work for problems in a variety of domains. In particular, WMC has been used
to perform probabilistic inference for graphical models [8,16,17,29,71], prob-
abilistic programs [55], and probabilistic logic programs [45]. More recently,
WMC was used in the context of neural-symbolic artificial intelligence as
well [75]. Extensions of WMC add support for continuous variables [11], infi-
nite domains [10], and first-order logic [51,73] and generalise the definition to

The work was done while the author was a PhD student at the University of Edinburgh.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 395–416, 2023.
https://doi.org/10.1007/978-3-031-33271-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_26&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_26

396 P. Dilkas

support arbitrary pseudo-Boolean functions instead of clauses [35]. Exact WMC
algorithms can be broadly classified as based on search [69,72], knowledge compi-
lation [30,58,61], and dynamic programming [38,39]. Other alternatives include
approximate [15,65] and parallel algorithms [24,44], hybrid approaches [53],
quantum computing [66], and reduction to model counting [14].

Recent papers that include experimental comparisons of WMC algorithms
show many of them performing very similarly overall [38,39] but with over-
whelming differences when run on specific subsets of data [34,35,58]. Examples
of such segregating data sets include bipartite Bayesian networks by Sang et
al. [71] and relational Bayesian networks by Chavira et al. [20] that encode
reachability in graphs under node deletion. So far, such performance differences
remain unexplained. However, knowledge about the nature of these differences
can inform our choices and aid in further algorithmic developments. Moreover,
identifying performance predictors of algorithms is often an important step in
developing a portfolio approach to the problem [76]. Lastly, if new algorithms
are always tested on the same set of benchmarks, eventually they may become
somewhat fitted to the particular characteristics of those instances, leading to
algorithms that may perform worse when run on new types of data [56].

Both theoretical and experimental analysis of SAT algorithms on random
instances is a rich area of research spanning almost forty years. Variations of
some of the first random models ever proposed [46,63] continue to be instrumen-
tal up to this day for, e.g., establishing the location of the threshold between
satisfiable and unsatisfiable instances [2] and approximating #SAT [47]. Other
random models consider non-uniform variable frequencies [3], fixing the number
of times each variable occurs both positively and negatively [22], and adding
other constraints such as cardinality and ‘exclusive or’ [62]. Experimental work
investigating how SAT algorithms behave on random instances typically focuses
on parameters that describe each instance independently of its size. The most
common parameter is the ratio of clauses to variables, i.e., (clause) density. Early
work in the area showed random 3-SAT instances to be at their hardest when den-
sity is around 4.25 [59]. Later work revealed that the interaction between density
and empirical hardness is much more solver-dependent [21]. Many other parame-
ters such as heterogeneity, locality, and modularity have emerged from attempts
to generate random instances similar to industry benchmarks [3,13,48,49].

In contrast, the analysis of WMC algorithms on random instances is only
beginning to be developed. Early on, Sang et al. [69,70] ran one of the WMC
algorithms on random 3-CNF formulas and observed an easy-hard-easy pattern
with respect to (w.r.t.) clause density. Recently, Gupta et al. [52] included some
WMC algorithms in their study on phase transitions in knowledge compilation.
Two phase transitions were identified: one w.r.t. clause density and another w.r.t.
a new parameter called solution density. There is also a recent attempt [33] to
compare WMC algorithms on random instances of a particular application of
WMC, i.e., probabilistic logic programs. However, it finds no meaningful differ-
ences among the algorithms in that context. Our work complements previous

Generating Random WMC Instances 397

results by including WMC algorithms of various kinds (i.e., not just those based
on knowledge compilation) and introducing another parameter of interest.

What parameters are most appropriate to study WMC? Like SAT [4], WMC
is known to be fixed-parameter tractable w.r.t. primal treewidth (or a closely
related notion) [5,26,30,69]. However—as we show in Sect. 4—instances gen-
erated by a standard random model for k-CNF formulas fail to exhibit enough
variance in primal treewidth for us to infer its effect on the behaviour of the
algorithms. Therefore, we present an extension of this model with a parameter
that influences primal treewidth. The performance of WMC algorithms that use
data structures called algebraic decision diagrams (ADDs) [6] is also known to
depend on the numerical values of weights [38,39]. Thus, our random model also
includes two parameters that control redundancies in these values.

In addition to introducing a new random model for WMC instances, the
contributions of this paper include several findings about the behaviour of WMC
algorithms on instances generated by our model. First, we show that the easy-
hard-easy pattern w.r.t. density is different for dynamic programming algorithms
than for all other algorithms. Second, we present statistical evidence that all
the algorithms scale exponentially w.r.t. primal treewidth and estimate how
the base of that exponential changes w.r.t. density. Third, we show how the
performance of ADD-based algorithms gradually improves w.r.t. the proportion
of weights that have repeating values. Fourth, we complement our findings on
random instances with an experimental study on WMC competition benchmarks,
showing how the best-performing algorithm changes depending on density and
primal treewidth.

2 Preliminaries

Notation. For any graph G, we write V(G) for its set of nodes and E(G) for
its set of edges. Let S be a finite set. We write 2S to denote the powerset of S
and US for the discrete uniform probability distribution on S. We represent any
other probability distribution as a pair (S, p) where p : S→ [0, 1] is a probability
mass function. For any probability distribution P, we write x�P to denote the
act of sampling x from P. For instance, x� ({ 1, 2 }, { 1↦ 0.1, 2↦ 0.9 }) means
that x becomes equal to 1 with probability 0.1 or to 2 with probability 0.9.

By variable, we always mean a Boolean variable. A literal is either a variable
(say, v) or its negation (denoted ¬v), respectively called positive and negative
literal. A clause is a disjunction of literals. A formula is any well-formed expres-
sion consisting of variables, negation, conjunction, and disjunction. A formula
is in conjunctive normal form (CNF) if it is a conjunction of clauses, and it is
in k-CNF if every clause has exactly k literals. While we use the set-theoretic
notation for CNF formulas (e.g., writing c ∈φ to mean that clause c is one of the
clauses in formula φ), duplicate clauses are still allowed. The primal graph of a
CNF formula is a graph that has a node for every variable, and there is an edge

398 P. Dilkas

between two variables if they coappear in some clause. The primal treewidth
of a formula is the treewidth of its primal graph, where treewidth is as in
Definition 1.

Definition 1 ([67]). A tree decomposition of a graph G is a pair (T, χ), where T
is a tree and χ : V(T)→2V(G) is a labelling function, with the following properties:

–
⋃

t∈V(T) χ(t) = V(G);
– for every e ∈ E(G), there is t ∈ V(T) such that e has both endpoints in χ(t);
– for all t, t′, t′′ ∈ V(T), if t′ is on the path between t and t′′, then χ(t) ∩ χ(t′′) ⊆

χ(t′).

The width of tree decomposition (T, χ) is maxt∈V(T) |χ(t)| − 1. The treewidth of
graph G is the smallest w such that G has a tree decomposition of width w.

Given a CNF formula φ, SAT is a decision problem that asks whether there
exists a way to assign values to all variables in φ such that φ evaluates to true.
Such a formula is said to be satisfiable; otherwise, it is unsatisfiable. #SAT is
a problem that asks to count the number of such assignments. WMC extends
#SAT with a weight function on literals and asks to compute the sum of the
weights of the models of the given formula, where the weight of a model is the
product of the weights of the literals in it [19]. For example, the WMC of the
formula x∨y with a weight function w : {x, y,¬x,¬y }→R≥0 defined as w(x)=0.3,
w(y) = 0.2, w(¬x) = 0.7, w(¬y) = 0.8 is w(x)w(y)+w(x)w(¬y)+w(¬x)w(y) = 0.3×
0.2 + 0.3 × 0.8 + 0.7 × 0.2 = 0.44.

3 Background on WMC Algorithms

In this section, we briefly review the three major approaches to WMC—search,
knowledge compilation, and dynamic programming—and their corresponding
algorithms. The main search-based WMC algorithm Cachet1 [69] is based on
a conflict-driven clause learning SAT solver [60], which is then extended with a
component caching scheme and adapted to counting.

Knowledge compilation refers to transformations of propositional formulas
into more restrictive formats that make various operations (such as model count-
ing) tractable in the size of the representation [32]. c2d2 [30], d43 [58], and
miniC2D4 [61] are all algorithms of this type. c2d compiles to deterministic
decomposable negation normal form (d-DNNF) [27]. Similarly, d4 compiles to
decision-DNNF (also known as decomposable decision graphs) [42]. The only
difference between d-DNNF and decision-DNNF is that decision-DNNF has if-
then-else constructions instead of disjunctions [58]. Finally, miniC2D compiles

1 https://henrykautz.com/Cachet/index.htm.
2 http://reasoning.cs.ucla.edu/c2d/.
3 https://www.cril.univ-artois.fr/KC/d4.html.
4 http://reasoning.cs.ucla.edu/minic2d/.

https://henrykautz.com/Cachet/index.htm
http://reasoning.cs.ucla.edu/c2d/
https://www.cril.univ-artois.fr/KC/d4.html
http://reasoning.cs.ucla.edu/minic2d/

Generating Random WMC Instances 399

to decision-SDDs—a subset of sentential decision diagrams (SDDs) that form a
subset of d-DNNF [31].

All of the algorithms mentioned above run the same way regardless of whether
computing WMC or #SAT. Two recent WMC algorithms instead use data struc-
tures whose size (and thus the runtime of the algorithm) depends on the numeri-
cal values of weights. These data structures represent pseudo-Boolean functions,
i.e., functions of the form f : 2X

→ R≥0, where X is a set. ADDMC is the
first such algorithm [38]. It uses ADDs to represent pseudo-Boolean functions,
combining and simplifying them in a bottom-up dynamic programming fash-
ion. Since the size of an ADD for f depends on the cardinality of the range
of f [6], the performance of the algorithm is sensitive to the numerical values
of weights, e.g., to how frequently they repeat. DPMC5 extends ADDMC in
two ways [39]. First, DPMC allows for the order and nesting of operations on
ADDs to be determined from an approximately-minimal-width tree decomposi-
tion rather than by heuristics.6 Second, tensors are offered as an alternative to
ADDs.

In all known parameterised complexities of WMC algorithms, the exponen-
tial factor is a function of primal treewidth or a closely related parameter. Inter-
estingly, c2d is specifically designed to handle high primal treewidth (which
the author refers to as connectivity [25]) and improves upon an earlier algo-
rithm that has O(mw2w) time complexity, where m is the number of clauses,
and w is the width of the decomposition tree which is known to be at most
primal treewidth [26,30]. While the complexity of Cachet was not analysed
directly, the algorithm is based on component caching which is known to have
a 2O(w)nO(1) time complexity, where n is the number of variables, and w is the
branchwidth of the underlying hypergraph [5,69], which is known to be within
a constant factor of primal treewidth [68]. Similarly, the complexity of DPMC is
not described in the paper, although the authors define a notion of width w that
is at most primal treewidth plus one and estimate the runtime of the (execution
part of the) algorithm to be proportional to 2w [39].

4 Random k-CNF Formulas with Varying Primal
Treewidth

Our random model is based on the following parameters: (a) the number of
variables ν ∈N+, (b) density μ∈R>0, (c) clause width κ∈N+ (for k-CNF formulas,
κ=k), (d) a parameter ρ∈[0, 1] that influences the primal treewidth of the formula,
(e) the proportion δ ∈ [0, 1] of variables x such that w(x) = 1 and w(¬x) = 0
or w(x) = 0 and w(¬x) = 1, (f) and the proportion ε ∈ [0, 1 − δ] of variables
x such that w(x) = w(¬x) = 0.5. The first three parameters are the standard
parameters used to generate random κ-CNF formulas with νμ clauses (up to
rounding). Parameters δ and ε control the numerical values of weights similarly to
5 https://github.com/vardigroup/dpmc.
6 There is also a recent line of work in using tree decompositions to guide the heuristics

of search-based model counters [57].

https://github.com/vardigroup/dpmc

400 P. Dilkas

Algorithm 1: Generating a random formula
Input: ν, κ ∈ N+ (such that κ < ν), μ ∈ R>0, ρ ∈ [0, 1].
Output: A k-CNF formula φ.

1 φ← empty CNF formula;
2 G← empty graph;
3 for i← 1 to �νμ� do
4 X ←∅;
5 for j ← 1 to κ do
6 x← NewVariable(X, G);
7 V(G)← V(G) ∪ { x };
8 E(G)← E(G) ∪ { { x, y } | y ∈X };
9 X ←X ∪ { x };

10 φ← φ ∪ { l� U{ x,¬x } | x ∈X };

11 return φ;
12 Function NewVariable(X, G):
13 N ← { e ∈ E(G) | |e ∩X| = 1 };
14 if N = ∅ then
15 return x� U({ x1, x2, . . . , xν } \ X);

16 return x�
(
{ x1, x2, . . . , xν } \ X,

17 y ↦ 1−ρ
ν−|X| + ρ |{ z∈X|{ y,z }∈E(G) }|

|N|

)
;

determinism and parameter equality—facets of local structure considered in the
literature on probabilistic models [74]. While all other WMC algorithms disregard
the weights, DPMC [39] can exploit both determinism and equal weights to solve
the problem faster. Indeed, higher values of both δ and ε result in ADDs having
fewer real-numbered values they need to represent. Thus, the ADDs are smaller
and can be handled more efficiently.

The process for generating random k-CNF formulas is summarized as Algo-
rithm 1. The idea behind the algorithm is to reduce the density of the primal
graph (via having some overlapping edges) while: (a) avoiding having many vari-
ables that do not occur in any clause and (b) promoting tree-like subgraphs that
are likely to have low treewidth. For the rest of this section, let {xi}ν

i=1 be the
variables of the formula under construction. We simultaneously construct both
formula φ and its primal graph G.7 Each iteration of the first for-loop adds a
clause to φ. This is done by constructing a set X of variables to be included in
the clause, and then randomly adding either x or ¬x to the clause for each x ∈X
on line 10. Function NewVariable randomly selects each new variable x, and
lines 7 to 9 add x to the graph and the formula while also adding edges between
x and all the other variables in the clause. To select each variable, line 13 defines
set N to contain all edges with exactly one endpoint in X. The edges added to
7 The idea to directly take the primal graph into consideration while generating the

formula is new—cf. random SAT instance generators based on, e.g., adversarial evo-
lution [56] and community structure [48].

Generating Random WMC Instances 401

G by line 8 form a subset of N . If N = ∅, we select the variable uniformly at
random (u.a.r.) from all viable candidates. Otherwise, ρ determines how much
we bias the uniform distribution towards variables that would introduce fewer
new edges to G.

When ρ = 0, Algorithm 1 reduces to what has become the standard random
model for k-CNF formulas. Equivalently to Franco and Paull [46], we indepen-
dently sample a fixed number of clauses, each clause has no duplicate variables,
and each variable becomes either a positive or a negative literal with equal prob-
abilities. At the other extreme, when ρ = 1, the first variable of a clause is still
chosen u.a.r., but all other variables are chosen from those that already coap-
pear in a clause (if possible). The probability that a variable is selected to be
included in a clause scales linearly w.r.t. the proportion of edges in N that would
be repeatedly added to G if the variable y was added to the clause. This is an
arbitrary choice (which appears to work well, see Sect. 4.1) although alternatives
(e.g., exponential scaling) could be considered. As long as ρ < 1, every k-CNF
formula retains a positive probability of being generated by the algorithm.

To transform the generated formula into a WMC instance, we need to define
weights on literals.8 We want to partition all variables into three groups: those
with weights equal to zero and one, those with weights equal to 0.5, and those
with arbitrary weights, where the size of each group is determined by δ and
ε. To do this, we sample a permutation π � USν (where Sν is the permuta-
tion group on {1, 2, . . . , ν}), and assign to each variable xn a weight drawn
u.a.r. from (a) U{ 0, 1 } if π(n) ≤ νδ, (b) U{ 0.5 } if νδ < π(n) ≤ νδ + νε, and (c)
U{ 0.01, 0.02, . . . , 0.99 }9 if π(n) > νδ + νε. We extend these weights to weights
on literals by choosing the weight of each positive literal to be equal to the
weight of its variable, and the weight of each negative literal to be such that
w(x) + w(¬x) = 1 for all variables x. This restriction is to ensure consistent
answers among the algorithms.

Example 1. Let ν = 5, μ = 0.6, κ = 3, ρ = 0.3, δ = 0.4, and ε = 0.2 and consider
how Algorithm 1 generates a random instance. Since κ = 3, and �νμ� = 3, the
algorithm will generate a 3-CNF formula with three clauses.

For the first variable of the first clause, we are choosing u.a.r. from
{x1, x2, . . . , x5 }. Suppose the algorithm chooses x5. Graph G then gets its first
node but no edges. The second variable is chosen u.a.r. from {x1, x2, x3, x4 }.
Suppose the second variable is x2. Then G gets another node and its first edge
between x2 and x5. The third variable in the first clause is similarly chosen u.a.r.
from {x1, x3, x4 } because the only edge in G has both endpoints in X={x2, x5 },
and so N =∅. Suppose the third variable is x1. Graph G becomes a triangle con-
necting x1, x2, and x5. Each of the three variables is then added to the clause as
either a positive or a negative literal (with equal probabilities). Thus, the first
clause becomes, e.g., ¬x5 ∨ x2 ∨ x1.

8 Algorithms such as DPMC and ADDMC [38,39] support a more flexible way of
assigning weights that can lead to significant performance improvements [34,35].

9 For convenience, we represent (0, 1) as 99 discrete values.

402 P. Dilkas

The first variable of the second clause is chosen u.a.r. from {x1, x2, . . . , x5 }.
Suppose it is x5 again. When the function NewVariable tries to choose the
second variable, X={x5 }, and so N ={ {x1, x5 }, {x2, x5 } }. The second variable
is chosen from the discrete probability distribution Pr(x1)=Pr(x2)= 1−0.3

5−1 +0.3×
1
2 = 0.325 and Pr(x3) = Pr(x4) = 1−0.3

5−1 = 0.175.
We skip the details of how all remaining variables and clauses are selected

and consider the weight assignment. First, we shuffle the list of variables and get,
e.g., L= (x4, x3, x2, x1, x5). This means that the first νδ=5×0.4=2 variables of L
get weights u.a.r. from { 0, 1 }, the next νε=5×0.2=1 variable gets a weight of 0.5,
and the remaining two variables get weights u.a.r. from { 0.01, 0.02, . . . , 0.99 }.
The weight function w : {x1, x2, . . . , x5,¬x1,¬x2, . . . ,¬x5 }→ [0, 1] can then be
defined as, e.g., w(x4) = w(¬x3) = 0, w(x3) = w(¬x4) = 1, w(x2) = w(¬x2) = 0.5,
w(x1) = 0.23, w(¬x1) = 0.77, w(x5) = 0.18, and w(¬x5) = 0.82.

4.1 Validating the Model

The idea behind our model is that manipulating the value of ρ should allow us to
generate instances of varying primal treewidth. Is this effect observable in prac-
tice? In addition, as WMC instances are mostly used for probabilistic inference,
they tend to be satisfiable. Therefore, we want to filter out unsatisfiable instances
from those generated by the model and need to ensure that the proportion of
satisfiable instances remains sufficiently high. Given that higher values of ρ can
result in constraints on variables being more localised and concentrated, we ask:
are instances generated with higher values of ρ less likely to be satisfiable? To
answer both questions, we run the following experiment.

Experiment 1. We fix ν = 100, δ = ε = 0, and consider random instances with
μ = 2.5×

√
2

−5
, 2.5×

√
2

−4
, . . . , 2.5×

√
2
5
, κ = 2, 3, 4, 5, and ρ going from 0 to 1 in

steps of 0.01. For each combination of parameters, we generate ten instances.10

We check if each instance is satisfiable using MiniSat11 2.2.0 [41] and calculate
its (approximate) primal treewidth using htd12 [1].

Remark 1. Here and henceforth, we use htd to provide heuristic upper bounds
on true treewidth as exact computation would make the experiments significantly
more time-consuming. However, we compared the accuracy of htd with exact
treewidth algorithm Jdrasil13 [7] on 3% of our random instances. The difference
between the upper bound produced by htd and the exact value was never higher
than four and up to two in 85% of all cases. Since the difference is small enough
to not have a qualitative effect, hereafter we write ‘(primal) treewidth’ to mean
‘the heuristic upper bound on treewidth found by htd’.

10 Since one expects similar values of ρ to produce instances with similar properties,
and ρ’s are enumerate quite densely, generating only ten instances is sufficient.

11 http://minisat.se/MiniSat.html.
12 https://github.com/mabseher/htd.
13 https://maxbannach.github.io/Jdrasil/.

http://minisat.se/MiniSat.html
https://github.com/mabseher/htd
https://maxbannach.github.io/Jdrasil/

Generating Random WMC Instances 403

μ = 0.4 μ = 0.6 μ = 0.9 μ = 1.2 μ = 1.8 μ = 2.5 μ = 3.5 μ = 5 μ = 7.1 μ = 10 μ = 14.1
κ
=

2
κ
=

3
κ
=

4
κ
=

5

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

0

50

100

0

50

100

0

50

100

0

50

100

ρ

P
ri
m
al

tr
ee
w
id
th

Fig. 1. The relationship between ρ and primal treewidth for various values of μ and
κ for k-CNF formulas from Experiment 1. Black points represent individual instances,
and blue lines are smoothed means computed using locally weighted smoothing. The
values of μ are rounded to one decimal place.

Figure 1 shows the relationship between ρ and primal treewidth. Except for
when both μ and κ are very low (i.e., the formulas are small in both clause
width and the number of clauses), primal treewidth decreases as ρ increases.
This downward trend becomes sharper as μ increases, however, not uniformly: it
splits into a roughly linear segment that approaches a horizontal line (for most
values of ρ) and a sharply-decreasing segment that approaches a vertical line
(when ρ is close to one). Higher values of κ seem to expedite this transition, i.e.,
with a higher value of κ, a lower value of μ is sufficient for a smooth downward
curve between ρ and primal treewidth to turn into a combination of a horizontal
and a vertical line. While this behaviour may be troublesome when generating
formulas with higher values of μ (almost all of which would be unsatisfiable), the
relationship between ρ and primal treewidth is excellent for generating 3-CNF

404 P. Dilkas

formulas close to and below the satisfiability threshold of 4.25 [23]. Regarding
satisfiability, the proportion of satisfiable 3-CNF formulas drops from 63.6%
when ρ = 0 to 50.9% when ρ = 1, so—while ρ does affect satisfiability—the effect
is not significant enough to influence our experimental setup in the next section.

5 Experimental Results

In Sect. 5.1, we examine how the runtimes of WMC algorithms change w.r.t.
the parameters of our random model. Then, in Sect. 5.2, we run an experiment
with WMC competition benchmarks to check whether the conclusions drawn
from random instances apply to real data. Full experimental results as well as
an implementation of Algorithm 1 are available at https://github.com/dilkas/
cpaior23-d.

For all of these experiments, we use Scientific Linux 7, GCC 10.2.0,
Python 3.8.1, R 4.1.0, c2d 2.20 [30], Cachet 1.22 [69], htd 1.2.0 [1], and per-
form no preprocessing. With both c2d and d4 [58], we use query-dnnf14 to
compute the numerical answer from the compiled circuit. We omit ADDMC [38]
from our experiments as it exceeds time and memory limits on too many
instances; however, observations about the behaviour of DPMC [39] apply to
ADDMC as well, with the addendum that the tree decomposition implicitly
used by ADDMC may have a significantly higher width. DPMC is run with
tree decomposition-based planning (using one iteration of htd) and ADD-based
execution—the combination that was found to be most effective by Dudek et
al. [39].

5.1 Experiments on Random Instances

We restrict our attention to 3-CNF formulas, generate 100 satisfiable instances
for each combination of parameters, and run each of the five algorithms with a
500 s time limit and an 8 GiB memory limit on Intel Xeon E5–2630. While both
limits are somewhat low, we prioritise large numbers of instances to increase
the accuracy and reliability of our results. Unless stated otherwise, in each plot
of this section, lines denote median values, and shaded areas show interquartile
ranges. We run the following three experiments, setting ν = 70 in all of them as
we found that this produces instances of suitable difficulty.

Experiment 2 (Density and Primal Treewidth). Let ν = 70, μ go from 1
to 4.3 in steps of 0.3, ρ go from 0 to 0.5 in steps of 0.01, and δ = ε = 0.

Experiment 3 (δ). Let ν = 70, μ= 2.215, ρ= 0, δ go from 0 to 1 in steps of 0.01,
and ε = 0.

Experiment 4 (ε). Same as Experiment 3 but with δ = 0 and ε going from 0
to 1 in steps of 0.01.
14 http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html.
15 Experiment 2 shows this density to be the most challenging for DPMC.

https://github.com/dilkas/cpaior23-d
https://github.com/dilkas/cpaior23-d
http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html

Generating Random WMC Instances 405

0

100

200

300

400

500

1 2 3 4
μ

T
im

e
(s
)

ρ = 0

0

100

200

300

400

500

20 25 30 35
Primal treewidth

μ = 1.9

1.0

1.2

1.4

1.6

1.8

1 2 3 4

B
as
e

1.0

1.2

1.4

1.6

1.8

1 2 3 4

c2d

Cachet

d4

DPMC

miniC2D

μ

Fig. 2. Visualisations of the data from Experiment 2. The top-left plot shows how the
runtime of each algorithm changes w.r.t. density when ρ = 0. The top-right plot shows
changes in the runtime of each algorithm w.r.t. primal treewidth with μ fixed at 1.9.
The plots at the bottom show how the estimated base of the exponential relationship
between primal treewidth and the runtime of each algorithm depends on μ. The bottom-
left plot is for the simple linear model (with shaded areas showing standard error), and
the bottom-right plot uses the estimates provided by ESA [64] (with shaded areas
showing 95% confidence intervals).

In each experiment, the proportion of algorithm runs that timed out never
exceeded 3.8%. While in Experiment 2 only 1% of experimental runs ran out
of memory, the same percentage was higher in Experiment 3 and 4—10 and
12%, respectively. d4 [58] and c2d are the algorithms that experienced the most
issues fitting within the memory limit, accounting for 66–72% and 28–33% of
such instances, respectively. We exclude the runs that terminated early due to
running out of memory from the rest of our analysis.

In Experiment 2, we investigate how the runtime of each algorithm depends
on the density and primal treewidth by varying both μ and ρ. The results are in
Fig. 2. The first thing to note is that the peak hardness w.r.t. density occurs at
around 1.9 for all algorithms except for DPMC, which peaks at 2.2 instead.16

16 The exact values—while illegible from the plot—can be confirmed by numerical data.

406 P. Dilkas

0.19 0.51 0 0.97 0.43

0.91 0.99 0.99 0.87 0.79

0.99 0.98 0.98 0.99 0.98

0.57 0.71 0.83 0.94 0.18

0.97 0.96 0.98 0.98 0.95
0.98 0.98 0.97 1 0.98

0.88 0.92 0.91 0.91 0.9

0.98 0.99 0.98 0.99 0.98
0.99 0.99 0.98 1 0.96

0.62 0.33 1 0.94 0.53

0.98 1 0.99 0.99 0.9

0.47 0.85 0.8 0.97 0.53

1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
3.4
3.7
4

4.3

c2d Cachet d4 DPMCminiC2D

μ

0.25 0.50 0.75 1.00
R2

Fig. 3. The coefficients of determination (rounded to one decimal place) of all the
linear models fitted for the top-right subplot of Fig. 2

This finding is consistent with previous works that show Cachet, miniC2D,
and a d-DNNF compilation algorithm to peak at 1.8 [28,52,69].17

The other question we want to investigate is how each algorithm scales w.r.t.
primal treewidth. The top-right plot in Fig. 2 shows this relationship for a fixed
value of μ, and one can see some evidence that the runtime of DPMC grows
faster w.r.t. primal treewidth compared to the other algorithms. We use two sta-
tistical techniques to quantify this growth: a simple linear regression model and
the empirical scaling analyzer (ESA) v218 [64]. In both cases, for each algorithm
and value of μ in Experiment 2, we select the median runtime for all available
primal treewidth values. In the former case, we fit the model ln t ∼ αw+β, where
t is the median runtime of the algorithm, w is the primal treewidth, and α and
β are parameters.19 In other words, we express median runtime as eβ(eα)w. In
the latter case, we run ESA with 1001 bootstrap samples, a window of 101, and
use the first 30% of the data for training.

The results of both models are qualitatively the same (except for DPMC run
on instances with μ = 1) and are displayed at the bottom of Fig. 2. We find that
DPMC scales worse w.r.t. primal treewidth than any other algorithm across
all values of μ and is the only algorithm that does not become indifferent to
primal treewidth when faced with high-density formulas. A second look at the

17 For comparison, #SAT algorithms are known to peak at densities 1.2 and 1.5 [9,12].
18 https://github.com/YashaPushak/ESA.
19 Similar analyses have been used to investigate polynomial-to-exponential phase tran-

sitions in SAT [21] and the behaviour of SAT solvers on CNF-XOR formulas [37].

https://github.com/YashaPushak/ESA

Generating Random WMC Instances 407

0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00
0

100

200

300

400

500

0.00 0.25 0.50 0.75 1.00
ε

c2d

Cachet

d4

DPMC

miniC2D

T
im

e
(s
)

Fig. 4. Changes in the runtime of each algorithm as a result of changing δ (on the
left-hand side) and ε (on the right-hand side) as in Experiments 3 and 4

top-left subplot of Fig. 2 suggests an explanation for the latter observation. The
runtimes of all algorithms except for DPMC approach zero when μ > 3 while
the median runtime of DPMC approaches a small non-zero constant instead.
This observation also explains why Fig. 3 shows that the fitted models fail to
explain the data for non-ADD algorithms running on high-density instances—
the runtimes are too small to be meaningful. In all other cases, an exponential
relationship between primal treewidth and runtime fits the experimental data
remarkably well.

Another thing to note is that miniC2D [61] is the only algorithm that exhibits
a clear low-high-low pattern in the bottom subplots of Fig. 2. To a smaller extent,
the same may apply to c2d and DPMC, although the evidence for this is lim-
ited due to relatively large gaps between different values of μ. In contrast, the
runtimes of Cachet and d4 remain dependent on primal treewidth even when
the density of the WMC instance is very low, suggesting that miniC2D should
have an advantage on low-density high-primal-treewidth instances.

Finally, Experiments 3 and 4 investigate how changing the numerical values
of weights can simplify a WMC instance. The results are in Fig. 4. As expected,
the runtimes of all algorithms other than DPMC stay the same regardless of
the value of δ or ε. The runtime of DPMC, however, experiences a sharp (expo-
nential?) decline with increasing δ. The decline w.r.t. ε is also present, although
significantly less pronounced and with high variance.

To sum, we found that c2d and d4 are the most memory-intensive algo-
rithms, Cachet is great on random instances in general, miniC2D excels on
low-density high-primal-treewidth instances, and DPMC is at its best on low-
density low-primal-treewidth instances. Furthermore, a median instance with
all weights equal to each other is about three times easier for DPMC than a
median instance with random weights. Another important observation is about
how peak hardness w.r.t. density depends on the algorithm: DPMC peaks at a
higher density than all other WMC algorithms, which peak at a higher density
than (some) #SAT algorithms.

408 P. Dilkas

[5,24]

(24,29.8]

(29.8,35.7]

(35.7,54.6]

(54.6,73]

(73,95]

(95,174]

(174,329]

(329,655]

(655,22110]

[0.
87
5,1
.67
]

(1
.67
,2.
23
]

(2
.23
,2.
46
]

(2
.46
,2.
54
]

(2
.54
,3.
76
]

(3
.76
,4.
29
]

(4
.29
,5.
23
]

(5
.23
,7.
06
]

(7
.06
,14
.4]

(1
4.4
,12
5]

Density

P
ri
m
al

tr
ee
w
id
th c2d

Cachet

d4

DPMC

miniC2D

Fig. 5. The best-performing algorithm for each combination of density and primal
treewidth according to the experiments on competition benchmarks. Both ranges of
values are divided into ten bins so that there are ten instances in each bin. The
best-performing algorithm for each combination of bins is the algorithm that solved
the largest number of instances, with ties broken by minimising total runtime. An
empty cell means that either no benchmark had this combination of density and pri-
mal treewidth or all algorithms failed on all such instances.

5.2 Experiments on Competition Benchmarks

To check whether our observations on random instances are accurate on real
data, we use the 100 public instances from track 2 of the 2022 model counting
competition20—an annual competition that has been running since 2020 [43].
This time, we run the algorithms on Intel Xeon Gold 6138 with 32 GiB of memory
and a one hour time limit. As in Sect. 5.1, we compute the density and the primal
treewidth of each instance.

Figure 5 shows the best-performing algorithm for various combinations of
the parameters. We observe that: (a) DPMC [39] is best on most instances with
low primal treewidth, (b) c2d [30] can handle some low-density high-primal-
treewidth instances that all the other algorithms fail on, (c) Cachet [69] (as well

20 https://mccompetition.org/2022/mc description.

https://mccompetition.org/2022/mc_description

Generating Random WMC Instances 409

as d4 [58] to some extent) excel when both density and primal treewidth are quite
high, (d) and miniC2D [61] does not have a clear niche. Hence, the observation
in Sect. 5.1 that DPMC is good on low-density low-primal-treewidth instances
is confirmed by the experiments on real data. Moreover, higher density instances
can also favour DPMC as long as primal treewidth is sufficiently low. On the
other hand, while the experiments on random instances suggested that miniC2D
might excel at low-density high-primal-treewidth instances, our experiments on
competition benchmarks suggest otherwise. Instead, c2d, Cachet or DPMC
could be the right choice depending on the exact values.

6 Conclusions and Future Work

In this paper, we studied the behaviour of and differences among WMC algo-
rithms on random instances generated by a standard model for k-CNF formulas
extended with parameters that control primal treewidth and literal weights.
Among other things, we established statistical evidence for the existence of an
exponential relationship between primal treewidth and the runtimes of all WMC
algorithms on instances generated by our model. The runtime of the ADD-based
algorithm was observed to peak at a higher density, scale worse w.r.t. primal
treewidth, and depend negatively on repeating weight values compared to algo-
rithms based on search or knowledge compilation. These observations can, to
some degree, be extended to a closely related weighted projected model count-
ing algorithm [40] as well as to other applications of ADDs more generally, e.g.,
probabilistic inference [18,50] and stochastic planning [54].

One limitation of our work is that variability in primal treewidth was achieved
via a parameter, and this could bias randomness in some unexpected way
(although it is encouraging that there is only a slight decrease in the proportion
of satisfiable instances between ρ = 0 and ρ = 1). Perhaps a theoretical investiga-
tion of the proposed model is warranted, including a characterisation of how ρ
influences primal treewidth and the structure of the primal graph more generally.
Since treewidth is widely used in parameterised complexity [36], formally estab-
lishing a connection with ρ could make our random model useful for a variety of
other hard computational problems.

To keep the number of experiments feasible, we restricted our attention to
3-CNF formulas, although, of course, this is not very representative of real-world
WMC instances. The model could be adapted to generate non-k-CNF formulas,
and perhaps a more representative structure could be achieved by introducing
new variables that clauses define to be equivalent to select conjunctions of literals
as is done in one of the WMC encodings for Bayesian networks [29].

Acknowledgements. The author would like to thank Vaishak Belle and the anony-
mous reviewers for their feedback on earlier versions of this work. The author was
supported by the EPSRC Centre for Doctoral Training in Robotics and Autonomous
Systems, funded by the UK Engineering and Physical Sciences Research Council (grant
EP/L016834/1). This work has made use of the resources provided by the Edinburgh
Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.uk/). For the purpose of

http://www.ecdf.ed.ac.uk/

410 P. Dilkas

open access, the author has applied a Creative Commons Attribution (CC BY) licence
to any Author Accepted Manuscript version arising from this submission.

References

1. Abseher, M., Musliu, N., Woltran, S.: htd – a free, open-source framework for (cus-
tomized) tree decompositions and beyond. In: Salvagnin, D., Lombardi, M. (eds.)
CPAIOR 2017. LNCS, vol. 10335, pp. 376–386. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59776-8 30

2. Achlioptas, D., Moore, C.: The asymptotic order of the random k-SAT threshold.
In: 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16–19
November 2002, Vancouver, BC, Canada, Proceedings, pp. 779–788. IEEE Com-
puter Society (2002). https://doi.org/10.1109/SFCS.2002.1182003

3. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT
instances. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July
2009, pp. 387–392 (2009). http://ijcai.org/Proceedings/09/Papers/072.pdf

4. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. J. Artif. Intell. Res. 40, 353–373 (2011).
https://doi.org/10.1613/jair.3152

5. Bacchus, F., Dalmao, S., Pitassi, T.: Solving #SAT and Bayesian inference with
backtracking search. J. Artif. Intell. Res. 34, 391–442 (2009). https://doi.org/10.
1613/jair.2648

6. Bahar, R.I., et al.: Algebraic decision diagrams and their applications. For-
mal Meth. Syst. Des. 10(2/3), 171–206 (1997). https://doi.org/10.1023/A:
1008699807402

7. Bannach, M., Berndt, S., Ehlers, T.: Jdrasil: a modular library for computing tree
decompositions. In: Iliopoulos, C.S., Pissis, S.P., Puglisi, S.J., Raman, R. (eds.)
16th International Symposium on Experimental Algorithms, SEA 2017, 21–23 June
2017, London, UK. LIPIcs, vol. 75, pp. 28:1–28:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.SEA.2017.28

8. Bart, A., Koriche, F., Lagniez, J., Marquis, P.: An improved CNF encoding scheme
for probabilistic inference. In: Kaminka, G.A., et al. (eds.) ECAI 2016–22nd Euro-
pean Conference on Artificial Intelligence, 29 August–2 September 2016, The
Hague, The Netherlands - Including Prestigious Applications of Artificial Intel-
ligence (PAIS 2016). Frontiers in Artificial Intelligence and Applications, vol. 285,
pp. 613–621. IOS Press (2016). https://doi.org/10.3233/978-1-61499-672-9-613

9. Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components.
In: Kautz, H.A., Porter, B.W. (eds.) Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on on Innovative
Applications of Artificial Intelligence, 30 July–3 August 2000, Austin, Texas, USA,
pp. 157–162. AAAI Press/The MIT Press (2000). http://www.aaai.org/Library/
AAAI/2000/aaai00-024.php

10. Belle, V.: Open-universe weighted model counting. In: Singh, S., Markovitch, S.
(eds.) Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
4–9 February 2017, San Francisco, California, USA, pp. 3701–3708. AAAI Press
(2017). http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008

https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1109/SFCS.2002.1182003
http://ijcai.org/Proceedings/09/Papers/072.pdf
https://doi.org/10.1613/jair.3152
https://doi.org/10.1613/jair.2648
https://doi.org/10.1613/jair.2648
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1023/A:1008699807402
https://doi.org/10.4230/LIPIcs.SEA.2017.28
https://doi.org/10.3233/978-1-61499-672-9-613
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php
http://www.aaai.org/Library/AAAI/2000/aaai00-024.php
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/15008

Generating Random WMC Instances 411

11. Belle, V., Passerini, A., Van den Broeck, G.: Probabilistic inference in hybrid
domains by weighted model integration. In: Yang, Q., Wooldridge, M.J. (eds.) Pro-
ceedings of the Twenty-Fourth International Joint Conference on Artificial Intel-
ligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 2770–2776.
AAAI Press (2015). http://ijcai.org/Abstract/15/392

12. Birnbaum, E., Lozinskii, E.L.: The good old Davis-Putnam procedure helps count-
ing models. J. Artif. Intell. Res. 10, 457–477 (1999). https://doi.org/10.1613/jair.
601

13. Bläsius, T., Friedrich, T., Sutton, A.M.: On the empirical time complexity of scale-
free 3-SAT at the phase transition. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019.
LNCS, vol. 11427, pp. 117–134. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-17462-0 7

14. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From weighted to unweighted
model counting. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, 25–31 July 2015, pp. 689–695. AAAI Press (2015). http://
ijcai.org/Abstract/15/103

15. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Approximate model counting. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability - Second
Edition, Frontiers in Artificial Intelligence and Applications, vol. 336, pp. 1015–
1045. IOS Press (2021). https://doi.org/10.3233/FAIA201010

16. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local structure.
In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, UK,
30 July–5 August 2005, pp. 1306–1312. Professional Book Center (2005). http://
ijcai.org/Proceedings/05/Papers/0931.pdf

17. Chavira, M., Darwiche, A.: Encoding CNFs to empower component analysis. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 61–74. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948 9

18. Chavira, M., Darwiche, A.: Compiling Bayesian networks using variable elimina-
tion. In: Veloso, M.M. (ed.) IJCAI 2007, Proceedings of the 20th International
Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007,
pp. 2443–2449 (2007). http://ijcai.org/Proceedings/07/Papers/393.pdf

19. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artif. Intell. 172(6–7), 772–799 (2008). https://doi.org/10.1016/j.artint.2007.11.
002

20. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational Bayesian networks for
exact inference. Int. J. Approx. Reason. 42(1–2), 4–20 (2006). https://doi.org/10.
1016/j.ijar.2005.10.001

21. Coarfa, C., Demopoulos, D.D., Aguirre, A.S.M., Subramanian, D., Vardi, M.Y.:
Random 3-SAT: the plot thickens. Constraints 8(3), 243–261 (2003). https://doi.
org/10.1023/A:1025671026963

22. Coja-Oghlan, A., Wormald, N.: The number of satisfying assignments of random
regular k-SAT formulas. Comb. Probab. Comput. 27(4), 496–530 (2018). https://
doi.org/10.1017/S0963548318000263

23. Crawford, J.M., Auton, L.D.: Experimental results on the crossover point in ran-
dom 3-SAT. Artif. Intell. 81(1–2), 31–57 (1996). https://doi.org/10.1016/0004-
3702(95)00046-1

24. Dal, G.H., Laarman, A.W., Lucas, P.J.F.: Parallel probabilistic inference by
weighted model counting. In: Studený, M., Kratochv́ıl, V. (eds.) International

http://ijcai.org/Abstract/15/392
https://doi.org/10.1613/jair.601
https://doi.org/10.1613/jair.601
https://doi.org/10.1007/978-3-030-17462-0_7
https://doi.org/10.1007/978-3-030-17462-0_7
http://ijcai.org/Abstract/15/103
http://ijcai.org/Abstract/15/103
https://doi.org/10.3233/FAIA201010
http://ijcai.org/Proceedings/05/Papers/0931.pdf
http://ijcai.org/Proceedings/05/Papers/0931.pdf
https://doi.org/10.1007/11814948_9
http://ijcai.org/Proceedings/07/Papers/393.pdf
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.ijar.2005.10.001
https://doi.org/10.1016/j.ijar.2005.10.001
https://doi.org/10.1023/A:1025671026963
https://doi.org/10.1023/A:1025671026963
https://doi.org/10.1017/S0963548318000263
https://doi.org/10.1017/S0963548318000263
https://doi.org/10.1016/0004-3702(95)00046-1
https://doi.org/10.1016/0004-3702(95)00046-1

412 P. Dilkas

Conference on Probabilistic Graphical Models, PGM 2018, 11–14 September 2018,
Prague, Czech Republic. Proceedings of Machine Learning Research, vol. 72, pp.
97–108. PMLR (2018). http://proceedings.mlr.press/v72/dal18a.html

25. Darwiche, A.: Compiling knowledge into decomposable negation normal form. In:
Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, IJCAI 99, Stockholm, Sweden, 31 July–6 August 1999, 2
Volumes, 1450 pages, pp. 284–289. Morgan Kaufmann (1999). http://ijcai.org/
Proceedings/99-1/Papers/042.pdf

26. Darwiche, A.: Decomposable negation normal form. J. ACM 48(4), 608–647 (2001).
https://doi.org/10.1145/502090.502091

27. Darwiche, A.: On the tractable counting of theory models and its application to
truth maintenance and belief revision. J. Appl. Non Class. Logics 11(1–2), 11–34
(2001). https://doi.org/10.3166/jancl.11.11-34

28. Darwiche, A.: A compiler for deterministic, decomposable negation normal form.
In: Dechter, R., Kearns, M.J., Sutton, R.S. (eds.) Proceedings of the Eighteenth
National Conference on Artificial Intelligence and Fourteenth Conference on Inno-
vative Applications of Artificial Intelligence, 28 July–1 August 2002, Edmonton,
Alberta, Canada, pp. 627–634. AAAI Press/The MIT Press (2002). http://www.
aaai.org/Library/AAAI/2002/aaai02-094.php

29. Darwiche, A.: A logical approach to factoring belief networks. In: Fensel, D.,
Giunchiglia, F., McGuinness, D.L., Williams, M. (eds.) Proceedings of the Eights
International Conference on Principles and Knowledge Representation and Reason-
ing (KR-02), Toulouse, France, 22–25 April 2002, pp. 409–420. Morgan Kaufmann
(2002)

30. Darwiche, A.: New advances in compiling CNF into decomposable negation normal
form. In: de Mántaras, R.L., Saitta, L. (eds.) Proceedings of the 16th Eureopean
Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants
of Intelligent Systems, PAIS 2004, Valencia, Spain, 22–27 August 2004, pp. 328–
332. IOS Press (2004)

31. Darwiche, A.: SDD: A new canonical representation of propositional knowledge
bases. In: Walsh, T. (ed.) IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, 16–22 July 2011,
pp. 819–826. IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-57735-516-8/
IJCAI11-143

32. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002). https://doi.org/10.1613/jair.989

33. Dilkas, P., Belle, V.: Generating random logic programs using constraint program-
ming. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 828–845. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-58475-7 48

34. Dilkas, P., Belle, V.: Weighted model counting with conditional weights for
Bayesian networks. In: de Campos, C.P., Maathuis, M.H., Quaeghebeur, E. (eds.)
Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelli-
gence, UAI 2021, Virtual Event, 27–30 July 2021. Proceedings of Machine Learn-
ing Research, vol. 161, pp. 386–396. AUAI Press (2021). https://proceedings.mlr.
press/v161/dilkas21a.html

35. Dilkas, P., Belle, V.: Weighted model counting without parameter variables. In:
Li, C.-M., Manyà, F. (eds.) SAT 2021. LNCS, vol. 12831, pp. 134–151. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-80223-3 10

36. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

http://proceedings.mlr.press/v72/dal18a.html
http://ijcai.org/Proceedings/99-1/Papers/042.pdf
http://ijcai.org/Proceedings/99-1/Papers/042.pdf
https://doi.org/10.1145/502090.502091
https://doi.org/10.3166/jancl.11.11-34
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.1613/jair.989
https://doi.org/10.1007/978-3-030-58475-7_48
https://proceedings.mlr.press/v161/dilkas21a.html
https://proceedings.mlr.press/v161/dilkas21a.html
https://doi.org/10.1007/978-3-030-80223-3_10
https://doi.org/10.1007/978-1-4471-5559-1

Generating Random WMC Instances 413

37. Dudek, J.M., Meel, K.S., Vardi, M.Y.: The hard problems are almost everywhere
for random CNF-XOR formulas. In: Sierra, C. (ed.) Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Mel-
bourne, Australia, 19–25 August 2017, pp. 600–606. ijcai.org (2017). https://doi.
org/10.24963/ijcai.2017/84

38. Dudek, J.M., Phan, V., Vardi, M.Y.: ADDMC: weighted model counting with
algebraic decision diagrams. In: The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February
2020, pp. 1468–1476. AAAI Press (2020). https://ojs.aaai.org/index.php/AAAI/
article/view/5505

39. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: DPMC: weighted model counting by
dynamic programming on project-join trees. In: Simonis, H. (ed.) CP 2020. LNCS,
vol. 12333, pp. 211–230. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-58475-7 13

40. Dudek, J.M., Phan, V.H.N., Vardi, M.Y.: ProCount: weighted projected model
counting with graded project-join trees. In: Li, C.-M., Manyà, F. (eds.) SAT 2021.
LNCS, vol. 12831, pp. 152–170. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-80223-3 11

41. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

42. Fargier, H., Marquis, P.: On the use of partially ordered decision graphs in knowl-
edge compilation and quantified Boolean formulae. In: Proceedings, the Twenty-
First National Conference on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, 16–20 July 2006, Boston, Mas-
sachusetts, USA, pp. 42–47. AAAI Press (2006). http://www.aaai.org/Library/
AAAI/2006/aaai06-007.php

43. Fichte, J.K., Hecher, M., Hamiti, F.: The model counting competition 2020. ACM
J. Exp. Algorithmics 26, 13:1–13:26 (2021). https://doi.org/10.1145/3459080

44. Fichte, J.K., Hecher, M., Woltran, S., Zisser, M.: Weighted model counting on
the GPU by exploiting small treewidth. In: Azar, Y., Bast, H., Herman, G. (eds.)
26th Annual European Symposium on Algorithms, ESA 2018, 20–22 August 2018,
Helsinki, Finland. LIPIcs, vol. 112, pp. 28:1–28:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.28

45. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted Boolean formulas. Theor. Pract. Log. Program. 15(3), 358–401 (2015).
https://doi.org/10.1017/S1471068414000076

46. Franco, J., Paull, M.C.: Probabilistic analysis of the Davis Putnam procedure for
solving the satisfiability problem. Discret. Appl. Math. 5(1), 77–87 (1983). https://
doi.org/10.1016/0166-218X(83)90017-3

47. Galanis, A., Goldberg, L.A., Guo, H., Yang, K.: Counting solutions to random
CNF formulas. SIAM J. Comput. 50(6), 1701–1738 (2021). https://doi.org/10.
1137/20M1351527

48. Giráldez-Cru, J., Levy, J.: Generating SAT instances with community structure.
Artif. Intell. 238, 119–134 (2016). https://doi.org/10.1016/j.artint.2016.06.001

49. Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. In: Sierra, C. (ed.)
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 638–644.
ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/89

https://doi.org/10.24963/ijcai.2017/84
https://doi.org/10.24963/ijcai.2017/84
https://ojs.aaai.org/index.php/AAAI/article/view/5505
https://ojs.aaai.org/index.php/AAAI/article/view/5505
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-540-24605-3_37
http://www.aaai.org/Library/AAAI/2006/aaai06-007.php
http://www.aaai.org/Library/AAAI/2006/aaai06-007.php
https://doi.org/10.1145/3459080
https://doi.org/10.4230/LIPIcs.ESA.2018.28
https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1016/0166-218X(83)90017-3
https://doi.org/10.1016/0166-218X(83)90017-3
https://doi.org/10.1137/20M1351527
https://doi.org/10.1137/20M1351527
https://doi.org/10.1016/j.artint.2016.06.001
https://doi.org/10.24963/ijcai.2017/89

414 P. Dilkas

50. Gogate, V., Domingos, P.M.: Approximation by quantization. In: Cozman, F.G.,
Pfeffer, A. (eds.) UAI 2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, Barcelona, Spain, 14–17 July 2011, pp. 247–
255. AUAI Press (2011)

51. Gogate, V., Domingos, P.M.: Probabilistic theorem proving. Commun. ACM 59(7),
107–115 (2016). https://doi.org/10.1145/2936726

52. Gupta, R., Roy, S., Meel, K.S.: Phase transition behavior in knowledge compilation.
In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 358–374. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-58475-7 21

53. Hecher, M., Thier, P., Woltran, S.: Taming high treewidth with abstraction, nested
dynamic programming, and database technology. In: Pulina, L., Seidl, M. (eds.)
SAT 2020. LNCS, vol. 12178, pp. 343–360. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-51825-7 25

54. Hoey, J., St-Aubin, R., Hu, A.J., Boutilier, C.: SPUDD: Stochastic planning using
decision diagrams. In: Laskey, K.B., Prade, H. (eds.) UAI 1999: Proceedings of the
Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden,
30 July–1 August 1999, pp. 279–288. Morgan Kaufmann (1999)

55. Holtzen, S., Van den Broeck, G., Millstein, T.D.: Scaling exact inference for discrete
probabilistic programs. Proc. ACM Program. Lang. 4(OOPSLA), 140:1–140:31
(2020). https://doi.org/10.1145/3428208

56. Hossain, M.M., Abbass, H.A., Lokan, C., Alam, S.: Adversarial evolution: phase
transition in non-uniform hard satisfiability problems. In: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, 18–23 July
2010, pp. 1–8. IEEE (2010). https://doi.org/10.1109/CEC.2010.5586506

57. Korhonen, T., Järvisalo, M.: Integrating tree decompositions into decision heuris-
tics of propositional model counters (short paper). In: Michel, L.D. (ed.) 27th
International Conference on Principles and Practice of Constraint Programming,
CP 2021, Montpellier, France (Virtual Conference), 25–29 October 2021. LIPIcs,
vol. 210, pp. 8:1–8:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021).
https://doi.org/10.4230/LIPIcs.CP.2021.8

58. Lagniez, J., Marquis, P.: An improved decision-DNNF compiler. In: Sierra, C.
(ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 667–673.
ijcai.org (2017). https://doi.org/10.24963/ijcai.2017/93

59. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions of SAT
problems. In: Swartout, W.R. (ed.) Proceedings of the 10th National Conference on
Artificial Intelligence, San Jose, CA, USA, 12–16 July 1992, pp. 459–465. AAAI
Press/The MIT Press (1992). http://www.aaai.org/Library/AAAI/1992/aaai92-
071.php

60. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 530–535. ACM
(2001). https://doi.org/10.1145/378239.379017

61. Oztok, U., Darwiche, A.: A top-down compiler for sentential decision diagrams. In:
Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,
25–31 July 2015, pp. 3141–3148. AAAI Press (2015). http://ijcai.org/Abstract/
15/443

62. Pote, Y., Joshi, S., Meel, K.S.: Phase transition behavior of cardinality and XOR
constraints. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International

https://doi.org/10.1145/2936726
https://doi.org/10.1007/978-3-030-58475-7_21
https://doi.org/10.1007/978-3-030-51825-7_25
https://doi.org/10.1007/978-3-030-51825-7_25
https://doi.org/10.1145/3428208
https://doi.org/10.1109/CEC.2010.5586506
https://doi.org/10.4230/LIPIcs.CP.2021.8
https://doi.org/10.24963/ijcai.2017/93
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
https://doi.org/10.1145/378239.379017
http://ijcai.org/Abstract/15/443
http://ijcai.org/Abstract/15/443

Generating Random WMC Instances 415

Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16
August 2019, pp. 1162–1168. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/
162

63. Purdom, P.W., Jr., Brown, C.A.: An analysis of backtracking with search rear-
rangement. SIAM J. Comput. 12(4), 717–733 (1983). https://doi.org/10.1137/
0212049

64. Pushak, Y., Hoos, H.H.: Advanced statistical analysis of empirical performance
scaling. In: Coello, C.A.C. (ed.) GECCO 2020: Genetic and Evolutionary Com-
putation Conference, Cancún Mexico, 8–12 July 2020, pp. 236–244. ACM (2020).
https://doi.org/10.1145/3377930.3390210

65. Renkens, J., Kimmig, A., Van den Broeck, G., De Raedt, L.: Explanation-based
approximate weighted model counting for probabilistic logics. In: Brodley, C.E.,
Stone, P. (eds.) Proceedings of the Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, 27–31 July 2014, Québec City, Québec, Canada, pp. 2490–2496.
AAAI Press (2014). http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/
view/8484

66. Riguzzi, F.: Quantum weighted model counting. In: Giacomo, G.D., et al. (eds.)
ECAI 2020–24th European Conference on Artificial Intelligence, 29 August-8
September 2020, Santiago de Compostela, Spain, 29 August–8 September 2020
- Including 10th Conference on Prestigious Applications of Artificial Intelligence
(PAIS 2020). Frontiers in Artificial Intelligence and Applications, vol. 325, pp.
2640–2647. IOS Press (2020). https://doi.org/10.3233/FAIA200401

67. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theor. Ser. B 36(1), 49–64 (1984). https://doi.org/10.1016/0095-8956(84)90013-3

68. Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-
decomposition. J. Comb. Theor. Ser. B 52(2), 153–190 (1991). https://doi.org/
10.1016/0095-8956(91)90061-N

69. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining component
caching and clause learning for effective model counting. In: SAT 2004 - The Sev-
enth International Conference on Theory and Applications of Satisfiability Testing,
10–13 May 2004, Vancouver, BC, Canada, Online Proceedings (2004). http://www.
satisfiability.org/SAT04/programme/21.pdf

70. Sang, T., Beame, P., Kautz, H.: Heuristics for fast exact model counting. In: Bac-
chus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 226–240. Springer,
Heidelberg (2005). https://doi.org/10.1007/11499107 17

71. Sang, T., Beame, P., Kautz, H.A.: Performing Bayesian inference by weighted
model counting. In: Veloso, M.M., Kambhampati, S. (eds.) Proceedings, the Twen-
tieth National Conference on Artificial Intelligence and the Seventeenth Innova-
tive Applications of Artificial Intelligence Conference, 9–13 July 2005, Pittsburgh,
Pennsylvania, USA, pp. 475–482. AAAI Press/The MIT Press (2005). http://www.
aaai.org/Library/AAAI/2005/aaai05-075.php

72. Sharma, S., Roy, S., Soos, M., Meel, K.S.: GANAK: A scalable probabilistic exact
model counter. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16
August 2019, pp. 1169–1176. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/
163

73. Van den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted prob-
abilistic inference by first-order knowledge compilation. In: Walsh, T. (ed.) IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artificial Intelli-
gence, Barcelona, Catalonia, Spain, 16–22 July 2011, pp. 2178–2185. IJCAI/AAAI
(2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-363

https://doi.org/10.24963/ijcai.2019/162
https://doi.org/10.24963/ijcai.2019/162
https://doi.org/10.1137/0212049
https://doi.org/10.1137/0212049
https://doi.org/10.1145/3377930.3390210
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8484
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8484
https://doi.org/10.3233/FAIA200401
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(91)90061-N
https://doi.org/10.1016/0095-8956(91)90061-N
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf
https://doi.org/10.1007/11499107_17
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
https://doi.org/10.24963/ijcai.2019/163
https://doi.org/10.24963/ijcai.2019/163
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-363

416 P. Dilkas

74. Vlasselaer, J., Meert, W., Van den Broeck, G., De Raedt, L.: Exploiting local and
repeated structure in dynamic Bayesian networks. Artif. Intell. 232, 43–53 (2016).
https://doi.org/10.1016/j.artint.2015.12.001

75. Xu, J., Zhang, Z., Friedman, T., Liang, Y., Van den Broeck, G.: A semantic
loss function for deep learning with symbolic knowledge. In: Dy, J.G., Krause,
A. (eds.) Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018. Proceed-
ings of Machine Learning Research, vol. 80, pp. 5498–5507. PMLR (2018). http://
proceedings.mlr.press/v80/xu18h.html

76. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. 32, 565–606 (2008). https://doi.org/
10.1613/jair.2490

https://doi.org/10.1016/j.artint.2015.12.001
http://proceedings.mlr.press/v80/xu18h.html
http://proceedings.mlr.press/v80/xu18h.html
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490

Virtual Pairwise Consistency in Cost
Function Networks

Pierre Montalbano1, David Allouche1, Simon de Givry1(B), George Katsirelos2,
and Tomáš Werner3

1 Université Fédérale de Toulouse, ANITI, INRAE, UR 875, 31326 Toulouse, France
{pierre.montalbano,david.allouche,simon.de-givry}@inrae.fr

2 Université Fédérale de Toulouse, ANITI, INRAE, MIA Paris, AgroParisTech,
75231 Paris, France

3 Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, Czech Republic

werner@fel.cvut.cz

Abstract. In constraint satisfaction, pairwise consistency (PWC) is a
well-known local consistency improving generalized arc consistency in
theory but not often in practice. A popular approach to enforcing PWC
enforces arc consistency on the dual encoding of the problem, allowing
to reuse existing AC algorithms. In this paper, we explore the bene-
fit of this simple approach in the optimization context of cost function
networks and soft local consistencies. Using a dual encoding, we obtain
an equivalent binary cost function network where enforcing virtual arc
consistency achieves virtual PWC on the original problem. We exper-
imentally observed that adding extra non-binary cost functions before
the dual encoding results in even stronger bounds. Such supplemen-
tary cost functions may be produced by bounded variable elimination
or by adding ternary zero-cost functions. Experiments on (probabilistic)
graphical models, from the UAI 2022 competition benchmark, show a
clear improvement when using our approach inside a branch-and-bound
solver compared to the state-of-the-art.

Keywords: dual encoding · non-binary cost function network · soft
local consistency · branch-and-bound · graphical model · discrete
optimization

1 Introduction

Cost Function Networks (CFNs) can represent many combinatorial problems in
a compact way as a sum of local functions over discrete variables. They have
been used in bioinformatics [1,27], resource allocation [2,5], and elsewhere [9].
They can model probabilistic graphical models such as Bayesian networks and

This research was funded by the grants ANR-18-EURE-0021 and ANR-19-P3IA-0004.
It receives support from the Genotoul (Toulouse) Bioinformatic platform.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 417–426, 2023.
https://doi.org/10.1007/978-3-031-33271-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_27&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_27

418 P. Montalbano et al.

Markov random fields [8], which find many applications in artificial intelligence
[17,28,31]. We focus here on the minimization task, a.k.a. Weighted Constraint
Satisfaction Problem (WCSP), where exact methods mostly rely on a branch-
and-bound procedure. Its efficiency depends on the compromise between the
quality of its lower bound and the time to construct it. Several directions have
been studied, inspired by Arc Consistency (AC) in CSP [6]. Stronger soft local
consistencies were rarely considered, except in [7,13,22]. Pairwise Consistency
(PWC) is known as the strongest consistency that can be enforced without
introducing new cost functions when computing the lower bound [34]. It was
never implemented nor tested in a branch-and-bound WCSP solver. In constraint
programming, PWC was compared to generalized AC for solving non-binary
CSPs given in extension [26,29,32,33]. These approaches rely on a dual encoding
into a binary CSP. We explore a similar idea in the CFN framework.

2 Background

2.1 Weighted Constraint Satisfaction Problem

A Cost Function Network (CFN) is a quadruplet (V,D, S, f) where V is a set of
variable indices (or variables in short), D = (Di)i∈V is the list of finite domains
for all the variables, S is a set of subsets of V , and f = (fA)A∈S is the list of
all the cost functions (defined below). A value of variable i ∈ V is denoted by
xi ∈ Di. By DA =

∏
i∈A Di we denote the Cartesian product of the domains of

variables A ⊆ V , and by x = (xi)i∈A ∈ DA an assignment to variables A. For
B ⊆ A ⊆ V , x|B = (xi)i∈B denotes the projection of x ∈ DA to variables B. A
cost function fA is a function of a set of variables A taking non-negative values
or possibly infinity (representing forbidden assignments), i.e., it is a function
DA → R+ ∪ {∞}, where A ⊆ V is the scope of the function and |A| its arity.
A nullary cost function f∅ with an empty scope is just a constant. We assume
that the network is normalized (with one cost function per scope), ∅ ∈ S (f∅
will be used as a problem lower bound) and {i} ∈ S ∀i ∈ V (the network
contains all unary functions). Given a CFN (V,D, S, f), the Weighted Constraint
Satisfaction Problem (WCSP) is to find a complete non-forbidden assignment
x ∈ DV minimizing the function

∑
A∈S fA(x|A). This problem is NP-hard.

Example 1. Let V = {1, 2, 3, 4, 5}, S = {∅, {1}, {1, 2, 3}, {1, 4}, {2}, {2, 3, 4}, {2, 3, 5},
{3}, {4}, {5}}, D2 = D3 = D5 = {a, b}, and D1 = D4 = {a, b, c}. The WCSP aims to
minimize the objective function f∅ + f1(x1) + f123(x1, x2, x3) + f14(x1, x4) + f2(x2) +
f234(x2, x3, x4)+f235(x2, x3, x5)+f3(x3)+f4(x4)+f5(x5) (where we abbreviated f{1,2,3}
by f123, etc.) over all assignments (x1, x2, x3, x4, x5) ∈ DV .

2.2 Constraint Satisfaction Problem and Local Consistencies

If all cost functions in a CFN take only values 0 or ∞, the cost functions are
called constraints and the WCSP reduces to the Constraint Satisfaction Problem
(CSP). In this case, we denote the cost functions by rA rather than fA, so the

Virtual Pairwise Consistency 419

Constraint Network (CN) is defined by (V,D, S, r). The values 0 and ∞ act as
the logical values true and false, respectively. For u, v ∈ {0,∞}, we will denote
logical conjuction by u ∧ v = u+ v and the disjunction by u ∨ v = min{u, v}. As
in CFN, we assume a CN contains all unary constraints, i.e., {i} ∈ S ∀i ∈ V .

For any B ⊆ A ⊆ V , we define the projection of a constraint rA: DA →
{0,∞} onto variables B to be the constraint rA|B : DB → {0,∞} given by

rA|B(x) =
∨

x′∈DA: x′|B=x

rA(x′) ∀x ∈ DB . (1)

We say that a pair of constraints {rA, rB} is Pairwise Consistent (PWC) if they
admit the same set of assignments to their shared variables, i.e.,

rA|A∩B = rB |A∩B (2)

where ‘=’ denotes here equality of functions. A CN is PWC if all possible pairs
of its constraints are PWC.1 If we restrict PWC to pairs of constraints where one
constraint is unary, we get (generalized) arc consistency (GAC, AC for binary
CNs). PWC or GAC can be enforced on a CN P by iteratively forbidding assign-
ments that violate (2). The minimal set of changes required to do this is unique
and the resulting CN is called the PWC (or GAC) closure of P .

We say that a local consistency ψ′ is not weaker than a local consistency ψ
if for every CN instance for which the ψ-consistency closure is empty, the ψ′-
consistency closure is also empty. We say that ψ and ψ′ are equally strong if ψ′

is not weaker than ψ and vice versa. We say that ψ′ is strictly stronger than ψ
if ψ′ is not weaker than ψ but they are not equally strong. It can be shown that:
(i) for binary CNs, AC is equally strong as PWC; (ii) for non-binary CNs, PWC
is strictly stronger than GAC.

The PWC relation of constraints is clearly reflexive and symmetric. It is in
general not transitive but it satisfies the following weaker condition:

Theorem 1. [16] Let C1, . . . , Cn ∈ S be such that for every i = 1, . . . , n, we
have C1 ∩ Cn ⊆ Ci. Let for every i = 1, . . . , n − 1, constraint rCi

be PWC with
rCi+1 . Then rC1 is PWC with rCn

.

Thus, enforcing PWC for some constraint pairs implies that the PWC con-
dition holds also for some other pairs, which can simplify algorithms [16,29].

2.3 Soft Local Consistencies

To solve a WCSP to optimality, most methods rely on a branch-and-bound algo-
rithm. At each node, the solver computes a bound using either static memory-
intensive bounds [11] or memory-light ones [6] better suited to dynamic variable
orderings. We focus on the latter, called Soft Arc Consistencies (SAC), because
they reason on each non-unary cost function one by one, in a generalization of

1 This corresponds to full PWC because unary constraints may appear in these pairs.

420 P. Montalbano et al.

propagation in CSPs. In particular, Virtual Arc Consistency (VAC) is charac-
terized by AC of a CN derived from the CFN. To any CFN P = (V,D, S, f) we
associate the CN Bool(P) = (V,D, S, r) where r∅ = 0 and

rA(x) =

{
0 if fA(x) = 0
∞ if fA(x) > 0

∀A ∈ S\{∅}, x ∈ DA. (3)

Definition 1. [6] A CFN P is VAC if the GAC closure of Bool(P) is non-
empty.

Algorithms enforcing SACs apply a sequence of Equivalence-Preserving
Transformations (EPTs) to the CFN. An EPT moves finite costs between two
cost functions. That is, for some A,B ∈ S we add a function ϕAB : DA∩B → R

with scope A ∩ B to cost function fA and subtract it from function fB :

fA(x) := fA(x) + ϕAB(x|A∩B) ∀x ∈ DA, (4a)
fB(x) := fB(x) − ϕAB(x|A∩B) ∀x ∈ DB . (4b)

This operation can be seen as moving a set of costs (stored as the values of
the ϕAB) from fB to fA. The values of ϕAB cannot be arbitrary because we
require the resulting cost functions to have non-negative values. EPTs preserve
the WCSP objective function because the terms ϕAB and −ϕAB cancel out in
the sum

∑
A∈S fA(x|A). CFNs (V,D, S, f) and (V,D, S, f ′) are equivalent if one

can be obtained from the other by a sequence of EPTs. SAC algorithms aim to
derive an equivalent CFN where f ′

∅ > f∅.

2.4 Dual Encoding of a Cost Function Network

An encoding into a binary CFN is a way to get better bounds. The dual encoding
of a CFN P = (V,D, S, f) is a CFN Dual(P) = (S\{∅}, D̄, S̄, f̄) where:

– The variables of the dual problem are the scopes S\{∅} of P .
– The domain of variable A ∈ S\{∅} of the dual problem is D̄A = DA.
– The scopes are S̄ = {∅} ∪ { {A} | A ∈ S } ∪ { {A,B} | A,B ∈ S, A ∩ B �= ∅ }.
– The dual nullary cost function is unchanged: f̄∅ = f∅.
– The dual unary cost function with scope {A} ∈ S̄ is the function f̄A = fA.
– The dual binary cost function with scope {A,B} ∈ S̄ is the channeling con-
straint f̄AB : DA × DB → {0,∞} with values:

f̄AB(y, y
′) =

{
0 if yi = y′

i∀i ∈ A ∩ B

∞ otherwise
∀y = (yi)i∈A ∈ DA, y

′ = (y′
i)i∈B ∈ DB .

Example 2. Let P be the CFN described in Example 1, represented by the hypergraph
in Fig. 1(a). Then, Dual(P) has 9 dual variables, y1, y123, y14, . . . , y5, and 16 binary
channeling constraints, as shown by the constraint graph in Fig. 1(b). Using Theorem 1,
a minimal dual graph can be produced with only 9 binary constraints (Fig. 1(c)).

Virtual Pairwise Consistency 421

x1

x2 x3

x4

x5

(a)

y1

y123

y14 y4

y234

y2 y3

y235

y5

(b)

y1

y123

y14 y4

y234

y2 y3

y235

y5

(c)

x1

y123

f14
x4

y234

x2 x3

y235

x5

(d)

y234 y235
aaa
aab
aac
aba
abb
abc
baa
bab
bac
bba
bbb
bbc

aaa
aab

aba
abb

baa
bab

bba
bbb

(e)

Fig. 1. (a) Hypergraph of a CFN, (b) its dual graph, (c) a minimal dual graph, (d) the
partial dual graph used in the experiments, (e) a binary channeling constraint created
by the dual encoding (an edge depicts a 0-cost assignment).

Table 1. (a) Original CFN. (b) dual unary cost functions (missing tuples have 0 cost).

(a) f123 x1 x2 x3 Cost f234 x2 x3 x4 Cost f14 x1 x4 Cost (b) y123 Cost y234 Cost y14 Cost

a a a 0 a a a 1 a a 2 aaa 0 aaa 1 aa 2
a a b 1 a a b 1 a b 2 aab 1 aab 1 ab 2
b a a 1 a a c 1 a c 2 baa 1 aac 1 ac 2
b a b 1 f1 x1 f2 x2 bab 1 y1 y2
c a a 1 b 2 a 0 caa 1 b 2 a 0
c a b 1 c 2 b 2 cab 1 c 2 b 1

3 Virtual Pairwise Consistency

Following the idea of VAC, we introduce Virtual Pairwise Consistency (VPWC),
a stronger soft local consistency than VAC.

Definition 2. A CFN P is VPWC if the PWC closure of Bool(P) is non-empty.

Combining Definition 2 and previous results [16], we get that enforcing
VPWC is possible using existing algorithms.

Theorem 2. Let P be a CFN. P is VPWC if and only if Dual(P) is VAC.

Proof. It is known that a CN has a non-empty PWC closure if and only if
its dual has a non-empty AC closure [16]. Clearly, for any CFN P we have
Dual(Bool(P)) = Bool(Dual(P)). Therefore, P is VPWC iff Dual(Bool(P)) =
Bool(Dual(P)) has a non-empty AC closure, which means Dual(P) is VAC. �
Example 3. Following Example 2, we give the costs for each cost function in Table 1(a).
VAC on this problem derives a lower bound of 2, since x1 = a is not consistent with
r14. VAC on the dual (Table 1(b)) derives a lower bound of 3, because (a) all values in
y14 compatible with y1 = a (i.e., aa, ab, ac) have cost 2, and (b) all values compatible
with y123 = aaa in y234 (i.e., aaa, aab, aac) have a cost of 1, therefore they do not
support y2 = a, making it inconsistent in y123. This leads to a lower bound of 3.

The dual can help derive better lower bounds, as we show in the next section,
but introduces a possibly large number of variables with large domains which
may slow down search. We propose to first dualize the problem and get a first

422 P. Montalbano et al.

strong lower bound, then return to the primal. The following shows that this is
always possible without introducing higher order cost functions2.

Theorem 3. Let P be a CFN and let Q be a CFN equivalent to Dual(P). Then
there exists a CFN Q′ equivalent to Q such that all binary constraints of Q′ are
hard and Q′ has the same lower bound as Q.

Proof (Sketch). The main observation is that every dual binary cost function
(the channeling constraint) rij has a block structure (see Fig. 1(e)): there exists
a partition Hi = {s1, ..., sm} of the domain Di and a partition Hj = {s′

1, ..., s
′
m}

of Dj such that for each xi ∈ sk and xj ∈ s′
l we have rij(xi, xj) = 0 whenever

k = l and rij(xi, xj) = ∞ whenever k �= l. This implies that every EPT that
moves cost into rij can be matched with another EPT that moves cost out of it
without affecting the lower bound. �

We can now summarize the base version of our approach. Given a CFN P ,
we apply EPTs to its dual encoding Dual(P) (using a VAC algorithm) to obtain
a CFN Q with an increased lower bound. Theorem 3 lets us obtain from Q
another CFN Q′ in which all channeling cost functions are constraints. We can
thus undo the dual encoding, i.e., obtain a CFN P ′, equivalent to P , such that
Q′ = Dual(P ′). If Q was VAC then, by Theorem 2, P ′ is VPWC.

4 Experimental Results on UAI 2022 Competition

We won a recent competition on probabilistic graphical models.3 We present
results on a set of 120 tuning instances where 63 have maximum arity of 3.

We evaluate three solvers: daoopt (version from UAI 2012 competition with
1-h settings as given in [23]), cplex (version 20.1.0.0, forcing completeness with
zero absolute and relative gaps, translating CFN to 0–1 LP by the tuple encod-
ing [15]), and toulbar2 (version 1.2.0) using two state-of-the-art methods, Vari-
able Neighborhood Search (VNS) [24] winner of UAI 2014 competition,4 and
Hybrid Best-First Search with VAC in preprocessing (VACpre-HBFS), includ-
ing VAC integrality heuristics [30].5 We implemented VPWC in the latest ver-
sion of toulbar2. It is either enforced in preprocessing (and then converted back
to the primal, see Theorem 3) (VPWCpre-HBFS) or maintained during search
(HBFS-VPWC). EDAC is always enforced [19,27], providing a default value
ordering heuristic when no solution is found for solution-based heuristics [12].
The branching heuristic is dom/wdeg [4] combined with last conflict [20].

We use a slightly different binary encoding, a hybrid between the dual and
hidden variable encoding [25].6 We keep the original variables and the original
2 This is unsurprising because the strongest bound that can be derived using EPTs is

obtained using a linear program which includes pairwise consistency constraints [34].
3 https://uaicompetition.github.io/uci-2022, see MPE and MMAP entries.
4 http://auai.org/uai2014/competition.shtml, http://miat.inrae.fr/toulbar2.
5 Options -A -P=1000 -T=1000 -vacint -vacthr -rasps -raspsini in toulbar2-vacint.
6 Called double encoding in [26], it allows more flexibility to enforce various levels of

consistency from GAC to PWC depending on the selected channeling constraints.

https://uaicompetition.github.io/uci-2022
http://auai.org/uai2014/competition.shtml
http://miat.inrae.fr/toulbar2

Virtual Pairwise Consistency 423

Table 2. UAI 2022 detailed results on a selection of four instances for HBFS methods.
‘-’ means the instance is unsolved in 1h. (in parentheses, remaining optimality gap).

instance (n, d, e, a) (n′, e′, a′) (n′′, d′′, e′′) VACpre-HBFS VPWCpre-HBFS HBFS-VPWC
time (gap) time (gap) time (gap)

Grids21 (1600,2,4800,2) (799,2810,4) (1628,16,4675) - (42.4%) - (3%) 1216.83
Promedas12 (1766,2,1766,3) (826,1884,4) (1373,16,2223) 5.17 6.34 7.7
ProteinFold11 (400,2,1160,2) (190,604,4) (381,16,1005) - (16.1%) 8.48 12.43
wcsp12 (311,4,5732,3) (305,5887,3) (12708,64,70959) - (49.9%) - (19.3%) - (54.8%)

binary cost functions unchanged, and only dualize the original non-binary cost
functions. We add channeling constraints between those pairs of dual variables
that are not redundant by Theorem 1 and with intersecting scopes strictly greater
than 1. We also add channeling constraints between dual and primal variables.7
Note that Theorem 2 and 3 remain valid. Moreover, we apply this encoding
only partially, indeed for high-arity constraints, a full dual encoding might mean
prohibitive amount of memory to store the dual domains. Hence, only non-binary
cost functions of arity less than 10 and fewer than 215 non-forbidden tuples are
dualized. Those remaining are lazily propagated by VAC/EDAC when they have
less than three unassigned variables in their scope. The memory used by each
channeling constraint between a pair of dual variables is restricted to at most 1
MB (arbitrarily chosen). Larger channeling constraints are ignored.

Additional preprocessing is performed beforehand for all the HBFS methods
in order to find better bounds. An initial upper bound is found by local search [3,
21] and VAC-based heuristics [30]. To reduce the problem size and improve lower
bounds, we apply bounded variable elimination with a min-fill ordering [10,14,
18]8 and add ternary zero-cost functions on the most-preferred triangles (total
memory space of extra ternary functions limited to 1 MB).9 It results in at
most 6-ary (resp. zero-cost ternary) cost functions for 84 (resp. 81) instances,
making our encoding applicable to 85 instances rather than 63. Finding a (quasi-
)minimal dual graph (see Theorem 1) yielded 700.3 channeling constraints on
average, a 4.5% savings compared to the complete dual graph.

The experiments were run on a single core of Intel Xeon E5-2683 2.1 GHz
processors with 1-h CPU-time and 8 GB memory limit. toulbar2 was able to solve
optimally 86 instances using VACpre-HBFS or VNS. daoopt solved 92 instances
and cplex 95 instances. Using our partial dual encoding with VPWC applied in
preprocessing, VPWCpre-HBFS solved 95 instances, and when applied during
search, HBFS-VPWC solved 99 instances, 15% above VACpre-HBFS, being the
best exact method for this benchmark.

7 The resulting non-minimal graph for Example 2 is shown in Fig. 1(d).
8 It is done only if the median degree in the original problem is less than 8, eliminating

variables with a current degree less than or equal to the original median degree.
9 With additional options -i -pils -p = -8 -O = −3 -t = 1. A triangle is defined by

three variables involved in three binary cost functions. The score of a triangle is
given by the average cost in the three functions. Triangles with the largest score are
selected first. This approach allows to simulate soft path inverse consistency [22].

424 P. Montalbano et al.

Fig. 2. Normalized lower and upper bounds (y-axis) as time passes (x-axis in hour,
zoomed on the right fig.) for cplex, daoopt, and toulbar2 on UAI 2022 tuning benchmark.

Table 2 shows for a selection of UAI 2022 instances their size in terms of
number of variables n, maximum domain size d, number of cost functions e,
maximum arity a of the original problem, after preprocessing it with bounded
variable elimination and adding triangles (n′, d′, e′, a′ with d′ = d), and after
applying our partial dual encoding (n′′, d′′, e′′, a′′ with a′′ = 2). It gives also the
CPU-time in seconds to solve an instance using HBFS methods or the remaining
optimality gap if unsolved after 1 h. On Grids21, only HBFS-VPWC solves the
instance. Notice the large improvement on the optimality gap by VPWCpre
compared to VACpre. On Promedas12 and ProteinFolding11, VPWCpre-HBFS
develops 13 and 32250 nodes, respectively, and takes about the same time as
HBFS-VPWC which develops 4 and 992 nodes, respectively. For wcsp12, the
size of the encoding slows down the search too much, suggesting harder limits
for our partial dual encoding.

We report in Fig. 2 the average normalized lower and upper bounds as time
passes (computed as in [30]). Here VNS provides the best upper bounds in limited
time whereas HBFS-VPWC is slightly slower than VPWCpre-HBFS, VACpre-
HBFS, and VNS, but still faster than daoopt and cplex. Both VPWCpre-HBFS
and HBFS-VPWC offer the best average lower bounds in less than 1 h. HBFS-
VPWC found 117 best solutions, VPWCpre-HBFS 112, VACpre-HBFS 106, VNS
105, daoopt 99, and cplex 95. VNS found 2 single-best solutions (wcsp11, wcsp12).
For the competition, we combined VNS and HBFS-VPWC sequentially.10

5 Conclusion

We have defined virtual pairwise consistency and shown how it can efficiently be
used in preprocessing or during search by applying the existing VAC algorithm to
a dual encoding of the problem. In the future we will explore the benefit of other
binary encodings [33] and adapt the VAC algorithm to the specific constraints
10 See toulbar2-ipr results on the UAI 2022 Tuning Leader Board. Multiple runs of VNS

with increasing floating-point precision were done with a total amount of time of 1
2
h.

The remaining time is allocated to HBFS-VPWC. Each search procedure gives its
best solution found to the next search procedure. On UAI 2022 tuning instances,
this approach found 119 best solutions, ranking first among our 7 tested methods.

Virtual Pairwise Consistency 425

of the encoding as it is done in CSPs [29,32]. Finding good heuristics to exploit
a partial dual encoding in conjunction with bounded variable elimination and
zero-cost function addition is also an interesting question.

References

1. Allouche, D., et al.: Computational protein design as an optimization problem.
Artif. Intell. 212, 59–79 (2014)

2. Bensana, E., Lemaître, M., Verfaillie, G.: Earth observation satellite management.
Constraints 4(3), 293–299 (1999)

3. Beuvin, F., de Givry, S., Schiex, T., Verel, S., Simoncini, D.: Iterated local search
with partition crossover for computational protein design. Proteins Struct. Funct.
Bioinf. 87, 1522–1529 (2021)

4. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by
weighting constraints. In: ECAI. vol. 16, p. 146 (2004)

5. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.: Radio link frequency
assignment. Constraints J. 4, 79–89 (1999)

6. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
arc consistency revisited. Artif. Intell. 174(7–8), 449–478 (2010)

7. Cooper, M.C.: High-order consistency in valued constraint satisfaction. Constraints
10, 283–305 (2005)

8. Cooper, M.C., de Givry, S., Schiex, T.: Graphical models: queries, complexity,
algorithms (tutorial). In: 37th International Symposium on Theoretical Aspects of
Computer Science (STACS-20). LIPIcs, vol. 154, pp. 4:1–4:22. Montpellier, France
(2020)

9. Cooper, M.C., de Givry, S., Schiex, T.: Valued constraint satisfaction problems.
In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intel-
ligence Research, pp. 185–207. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-06167-8_7

10. Dechter, R.: Bucket elimination: a unifying framework for reasoning. Artif. Intell.
113(1–2), 41–85 (1999)

11. Dechter, R., Rish, I.: Mini-buckets: a general scheme for bounded inference. J.
ACM (JACM) 50(2), 107–153 (2003)

12. Demirović, E., Chu, G., Stuckey, P.J.: Solution-based phase saving for CP: a value-
selection heuristic to simulate local search behavior in complete solvers. In: Hooker,
J. (ed.) CP 2018. LNCS, vol. 11008, pp. 99–108. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-98334-9_7

13. Dlask, T., Werner, T., de Givry, S.: Bounds on weighted CSPs using constraint
propagation and super-reparametrizations. In: Proceedings of CP-21. Montpellier,
France (2021)

14. Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combi-
natorial optimization in graphical models. In: Proceedings of IJCAI-11. Barcelona,
Spain (2011). http://www.inra.fr/mia/T/degivry/Favier11.mov

15. Hurley, B., et al.: Multi-language evaluation of exact solvers in graphical model
discrete optimization. Constraints 21(3), 413–434 (2016)

16. Janssen, P., Jégou, P., Nouguier, B., Vilarem, M.C.: A filtering process for general
constraint-satisfaction problems: achieving pairwise-consistency using an associ-
ated binary representation. In: IEEE International Workshop on Tools for Artificial
Intelligence, pp. 420–421. IEEE Computer Society (1989)

https://doi.org/10.1007/978-3-030-06167-8_7
https://doi.org/10.1007/978-3-030-06167-8_7
https://doi.org/10.1007/978-3-319-98334-9_7
https://doi.org/10.1007/978-3-319-98334-9_7
http://www.inra.fr/mia/T/degivry/Favier11.mov

426 P. Montalbano et al.

17. Kappes, J.H., et al.: A comparative study of modern inference techniques for struc-
tured discrete energy minimization problems. Intl. J. of Comput. Vis. 115(2), 155–
184 (2015)

18. Larrosa, J.: Boosting search with variable elimination. In: Dechter, R. (ed.) CP
2000. LNCS, vol. 1894, pp. 291–305. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45349-0_22

19. Larrosa, J., Heras, F.: Resolution in Max-SAT and its relation to local consis-
tency in weighted CSPs. In: Proceedings of IJCAI 2005, pp. 193–198. Edinburgh,
Scotland (2005)

20. Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in
constraint programming. Artif. Intell. 173, 1592–1614 (2009)

21. Neveu, B., Trombettoni, G., Glover, F.: ID Walk: a candidate list strategy with a
simple diversification device. In: Proceedings of CP, pp. 423–437 (2004)

22. Nguyen, H., Bessiere, C., de Givry, S., Schiex, T.: Triangle-based consistencies for
cost function networks. Constraints 22(2), 230–264 (2017)

23. Otten, L., Ihler, A., Kask, K., Dechter, R.: Winning the pascal 2011 map challenge
with enhanced AND/OR branch-and-bound. In: DISCML 2012 Workshop, at NIPS
2012. Lake Tahoe, NV (2012)

24. Quali, A.: Variable neighborhood search for graphical model energy minimization.
Artif. Intell. 278(103194), 22p (2020)

25. Rossi, F., Petrie, C.J., Dhar, V.: On the equivalence of constraint satisfaction
problems. In: ECAI, vol. 90, pp. 550–556 (1990)

26. Samaras, N., Stergiou, K.: Binary encodings of non-binary constraint satisfaction
problems: algorithms and experimental results. J. Artif. Intell. Res. 24, 641–684
(2005)

27. Sánchez, M., de Givry, S., Schiex, T.: Mendelian error detection in complex pedi-
grees using weighted constraint satisfaction techniques. Constraints 13(1), 130–154
(2008)

28. Savchynskyy, B.: Discrete graphical models - an optimization perspective. Found.
Trends Comput. Graph. Vis. 11(3–4), 160–429 (2019)

29. Schneider, A., Choueiry, B.Y.: PW-AC: extending compact-table to enforce pair-
wise consistency on table constraints. In: Hooker, J. (ed.) CP 2018. LNCS, vol.
11008, pp. 345–361. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98334-9_23

30. Trösser, F., de Givry, S., Katsirelos, G.: Relaxation-aware heuristics for exact opti-
mization in graphical models. In: Proceedings of CP-AI-OR’2020, pp. 475–491.
Vienna, Austria (2020)

31. Wainwright, M.J., Jordan, M.I., et al.: Graphical models, exponential families, and
variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

32. Wang, R., Yap, R.H.C.: Arc consistency revisited. In: Rousseau, L.-M., Stergiou,
K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 599–615. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19212-9_40

33. Wang, R., Yap, R.H.: Bipartite encoding: a new binary encoding for solving non-
binary CSPs. In: Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pp. 1184–1191 (2021)

34. Werner, T.: Revisiting the linear programming relaxation approach to Gibbs energy
minimization and weighted constraint satisfaction. IEEE Trans. Pattern Anal.
Mach. Intell. 32(8), 1474–1488 (2010)

https://doi.org/10.1007/3-540-45349-0_22
https://doi.org/10.1007/3-540-45349-0_22
https://doi.org/10.1007/978-3-319-98334-9_23
https://doi.org/10.1007/978-3-319-98334-9_23
https://doi.org/10.1007/978-3-030-19212-9_40

Multi-objective Optimization
for the Design of Salary Structures

François-Alexandre Tremblay(B) , Dominique Piché-Meunier ,
and Louis Dubois

Department of Computer Science and Software Engineering,
Université Laval, Québec, QC, Canada

{francois-alexandre.tremblay.1,dominique.piche-meunier.1,
louis.dubois.2}@ulaval.ca

Abstract. In a context of labor shortage and strong global competition
for talent, salary management is becoming a critical issue for companies
wishing to attract, engage and retain qualified employees. This paper
presents a multi-objective optimization model to balance the internal
equity, external equity and costs trade-offs associated with the design of
salary structures. Solutions are generated to estimate and explore the
Pareto frontier using real compensation data from a unionized establish-
ment in the public sector. Our work shows the interest of using combi-
natorial optimization techniques in the design of salary structures.

Keywords: Multi-objective optimization · constraint programming ·
salary structure · decision support system

1 Introduction

In a context of global labor shortage, companies must offer competitive wages to
attract and retain qualified employees while minimizing their payroll to remain
competitive. Managing this trade-off is no small task, especially for organizations
that heavily rely on human capital. In North America, salary structures are the
most common approach to determine and manage salaries fairly [13]. Fair and
aligned organizational pay policies are important since they can significantly
improve individual and organizational performance [1,6]. As illustrated by Fig.
1, these structures allow to integrate various jobs in a coherent manner according
to their relative value within the company (i.e., internal equity) and to align
internal wages with those on the market (i.e., external equity) [12].

However, establishing or updating salary structures usually requires a consid-
erable amount of time and resources for companies. A decision maker (DM) must
also consider several different scenarios simultaneously, and the set of constraints
makes it difficult, without an analytical approach, to ensure that the structure
obtained is close to an optimal one. For some companies, the law requires to
follow some guidelines when establishing job grades [3], increasing the process
complexity.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 427–442, 2023.
https://doi.org/10.1007/978-3-031-33271-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_28&domain=pdf
http://orcid.org/0000-0002-1647-3123
http://orcid.org/0000-0002-7677-7436
http://orcid.org/0000-0002-2219-7911
https://doi.org/10.1007/978-3-031-33271-5_28

428 F.-A. Tremblay et al.

: internal range
: external range

S
a
la
ry

(a) Low external eq.

: internal range
: external range

S
a
la
ry

(b) High external eq.

Jobs scoring

C1 C2 C3 C4 C5

(c) Low internal eq.

Jobs scoring

C1 C2 C3 C4 C5

(d) High internal eq.

Fig. 1. Concept of equity in the design of salary structures: (a) low external equity:
internal pay ranges are misaligned with the market; (b) high external equity: internal
pay ranges are aligned with external ranges on the market; (c) low internal equity:
some jobs could belong to a different grade; (d) high internal equity: jobs likely belong
to the right grade.

As depicted by Table 1, the literature addressing the subject analytically is
surprisingly sparse. Bruno [4] proposes a linear program that consider individual
performance (i.e., individual equity) and job evaluation. An employee’s salary is
determined by a weighted sum of the relative value of his job and his personal
contribution. Wallace and Steuer [14] design a linear multi-objective program
that reconciles internal and external equity issues by constraining the available
budget. The user must iteratively modify the variables and constraints until a
satisfactory salary structure is obtained. Finally, Kassa [7] develops a goal pro-
gramming model to generate the minimum and maximum wage of grades by
minimizing structure average wages with the external market and costs. How-
ever, all previous models are interactive or a priori approaches and partially
take into account the organizational equity dimensions (i.e., individual, internal
and external). Authors [7,14] suggest that subsequent models should include
variables, such as the number of grades, the salary range spreads, the level of
overlap between ranges, as well as wages offered per job, instead of per grade,
on the market. In our work, we propose a multi-objective a posteriori optimiza-
tion model to simultaneously maximize all equity dimensions and minimize costs
while including the variables suggested by previous authors.

Table 1. Summary of the existing approaches in the literature for the design of salary
structure based on the whether they consider a single objective (SO) or multiple objec-
tives (MO), and based on the optimization techniques (LP: linear programming, GP:
goal programming, CP: constraint programming). For internal equity, − means a less
rigorous definition of the concept is used.

Cost Internal Eq External Eq Individual eq Approach Method

Bruno [4] x x x SO LP
Wallace [14] x − x MO iterative LP
Kassa [7] x − x MO a priori GP

Ours x x x x MO a posteriori CP

Multi-objective Optimization for the Design of Salary Structures 429

This paper is organized as follows: in Sect. 2, we review the necessary concepts
behind salary structures. Section 3 details the optimization model. In Sect. 4, we
explain the experiments we perform to evaluate our model. The experimental
results are discussed in Sect. 5 and we conclude in Sect. 6.

2 Preliminary Concepts

The process of designing salary structure can be summarized by the three fol-
lowing steps [2,12,13]: (1) The employer reviews and analyzes jobs to iden-
tify key characteristics and requirements. The end result is usually job descrip-
tions. (2) Based on the previous analysis, managers undertake a job evaluation
method to determine the relative importance of jobs within the organization.
Even though several methods can be used to respect equity principles, the points
and factors evaluation method, sometimes implicitly suggested by the law (e.g.,
Pay Equity Act [3]), is often preferred because of its neutral, analytical and sys-
tematic nature. Specifically, this method consists of associating points to each
job according to several sub-factors (e.g. physical effort, decision-making, job
complexity) established by the employer. These points come from a weighted
scoring table which shows the sub-factor and their respective levels of points.
The total points assigned to a job thus represent its relative value in the com-
pany. At this point, since the evaluation process could be affected by human
judgment, the method requires determining ranges of points, called grades, to
group jobs of similar value together. Therefore, a difference of 20 points does
not necessarily mean that one job is more valued than another. (3) Finally, the
employer assigns a salary range to each grade consisting of a minimum and max-
imum salary between which employees wages are positioned on. Higher grades
imply higher salary ranges. Sometimes the ranges integrate steps, which refers
to discrete salary levels within the salary range. At each salary increase period,
an employee’s wage will increase by one salary step, and consequently one wage
rate, until the scale’s maximum salary is reached.

3 Optimization Model of Salary Structure Design

The optimization model is built around three components presented previously
in steps 2 and 3 of the salary structure design process: the scoring table, the
score ranges and the salary structure.

3.1 Scoring Table

The scoring table Ts,n, illustrated by Fig. 2, represents the score of each level
n ∈ N for each sub-factor s ∈ S where N is the set of possible levels and
S is the set of sub-factors previously determined by the employer. Since the
sub-factors do not necessarily possess the same number of levels, the constant
Ns, which is the number of levels per sub-factor s, forces the variables of the

430 F.-A. Tremblay et al.

Table 2. Structure of a scoring table. As an example, if the third sub-factor (SF3)
referred to physical effort, a desk job could be assigned to level one (T3,1 = 5), and a
warehouse job to level 4 (T3,4 = 20).

Sub-factors SF1 SF2 SF3 ...

Min scoring Tmin
1 = 15 Tmin

2 = 10 Tmin
3 = 5 ...

Levels n = 1 T1,1 = 15 T2,1 = 10 T3,1 = 5 ...
n = 2 T1,2 = 45 T2,2 = 20 T3,2 = 10 ...
n = 3 T1,3 = 75 T2,3 = 30 T3,3 = 15 ...
n = 4 T1,4 = 105 T3,4 = 20 ...

Max scoring Tmax
1 = 105 Tmax

2 = 30 Tmax
3 = 20 ...

Max levels N1 = 4 N2 = 3 N3 = 4 ...
Coefficients C1 = 30 C2 = 10 C3 = 5 ...

table Ts,n to remain null when levels are not used (1). The variables Tmin
s and

Tmax
s , which indicate the score of the first and last levels of each sub-factor s

respectively, allow for a more flexible manipulation of the variables related to
the scoring table (2, 3). Since sub-factors are not all equally important for the
company and must remain within a reasonable range, the constants Ls and Us

are used as lower and upper bounds respectively for the levels’ maximum and
minimum scores (4). To compute scores of intermediate levels, we introduce the
variable Cs, which represents the gap between two levels of a sub-factor (5). This
coefficient thus allows intermediate score values to be calculated by an arithmetic
progression (6) [13]. Finally, we constrain the sum of maximum scores Tmax

s to
be 1000, as is often the case in practice to facilitate the communication of sub-
factors impact with employees (7).

Parameters Variables
Ns # of levels of sub-factor s Ts,n Score of the sub-factor
N = {1, ...,max(Ns)} Set of levels Tmin

s Min. score of the sub-factor
S Set of sub-factors Tmax

s Max. score of the sub-factor
Cs Score between sub-factor levels

Constraints

Ts,n = 0 ∀s ∈ S | n > Ns (1)

Ts,1 = Tmin
s ∀s ∈ S (2)

Ts,Ns
= Tmax

s ∀s ∈ S (3)

Tmin
s ≥ Ls ∧ Tmax

s ≤ Us ∀s ∈ S (4)

Cs = (Tmax
s − Tmin

s)/Ns ∀s ∈ S (5)

Multi-objective Optimization for the Design of Salary Structures 431

Ts,n = Ts,n−1 + Cs ∀n ∈ {2, ..., Ns}, s ∈ S (6)
∑

s

Tmax
s = 1000 ∀s ∈ S (7)

From the scoring table Ts,n and the job evaluation ratings Rs,j predetermined
by the employer, it is possible to calculate, for each job j ∈ J , it’s total relative
value Vj within the organization (8).

J Set of jobs

Vj =
∑

s∈S
Ts,Rs,j

j ∈ J (8)

3.2 Score Ranges

Figure 2a illustrates an example of score ranges. The variables Binf
c and Bsup

c

express respectively the lower and upper bounds of each scoring range of grade
c ∈ C = {1, ..., C} where C is the largest possible number of grades of the opti-
mized salary structure. However, the number of grades is unknown and poten-
tially less than C. We thus introduce the variable k, the number of grades in the
structure, which strongly influences the separation of scores, and consequently,
of jobs.

Several constraints force the score bounds to take a valid form. The lower
bounds Binf

c and upper bounds Bsup
c are null when the grade c is not used (9).

To remain consistent, the first lower bound Binf
1 starts from the sum of the first

levels of the weighting table T (10). The lower intermediate bound Binf
c starts

one point over the upper bound of the previous grade Bsup
c−1 (11) while the upper

bound Bsup
c of grade c ∈ {1, ..., k} is p points over the minimum bound Binf

c

(12). This gap p is obtained via the number of grades k and the minimum bound
Binf

1 (13).
Smaller number of grades compared to the number of grades in an original

structure (i.e., actual structure on which the employees’ salaries are positioned)
systematically causes a compression in the classification of jobs and rise in costs.
On the opposite, a number of grades that is too high could potentially lead to
unbalanced score ranges and internal inequity problems. Thus, the number of

Binf
1 Binf

2 Binf
3

... Binf
k

Bsup
1 Bsup

2 Bsup
k

p

c = 1 c = 2 ... Score

(a) Score ranges

S1,1

S1,2

Smax
1

i
S2,1

S2,2

S2,3

Smax
2

a

c = 1 c = 2

(b) Salary structure

Fig. 2. Variables related to (a) the score ranges, and (b) the salary structure (b).

432 F.-A. Tremblay et al.

grades k of the modeled structure is constrained to remain close to the number
of grades K of the original structure (14). Finally, the variable Dj allows us to
directly obtain the new grade of job j without iterating over the vector of bounds
Bsup (15).

Parameters Variables
C = 15 Max number of grades Binf

c Lower bound of grade c

C = {1, ..., C} Set of possible grades Bsup
c Upper bound of grade c

K # of grades of original struct k # of grades of optimized struct
p Points gap between two bounds
Dj New grade of job j

Constraints

Binf
c = 0 ∧ Bsup

c = 0 ∀c ∈ C|c > k (9)

Binf
1 =

∑

s∈S
T1,s (10)

Binf
c = Bsup

c−1 + 1 ∀c ∈ {2, ..., k} (11)

Bsup
c = Binf

c + p ∀c ∈ {1, ..., k} (12)

p =
⌊max

j
Vj − Binf

1

k

⌋
+ 1 (13)

k ≥ K − 1 ∧ k ≤ K + 3 (14)

Dj =
⌊ (Vj − Binf

1)
p + 1

⌋
+ 1 ∀j ∈ J (15)

3.3 Salary Structure

Figure 2b is an example of the salary structure S. The variable Sc,e denotes the
salary of grade c ∈ C at step e ∈ E = {1, ..., E} where E represents the highest
possible number of steps. Each grade c has a number of steps Mc ∈ E , a minimum
annual wage rate Sc,1 ∈ R and a maximum wage rate Smax

c ∈ R where R is the
set of possible wage values of the optimized structure. The minimum wage rate of
grade Sc,1 is the wage rate offered to employees with no previous experience in the
job while the maximum wage rate for a grade Smax

c indicates the highest rate the
organization can offer for jobs under that grade. The set of steps {1, ...,Mc} refer
to different levels of the salary scale. In unionized environments, structures are
often stair-shaped, especially in public service collective agreements according to
practitioners, which means that the salary scale starts with the minimum steps
M1 and, at each salary scale, the number of steps per grade Mc increases by one
until it reaches the maximum possible number of steps E (16, 17).

In order to prevent unnecessary branching from the solver, the unused wage
rate Sc,e and maximum rate Smax

c of the structure are set to zero (18, 19). The
maximum wage rate Smax

c of grade c, associated with the maximum step Mc, is

Multi-objective Optimization for the Design of Salary Structures 433

equivalent to the maximum grade’s rate of the structure Sc,Mc
(20). Since it is

not realistic in practice to lower the organization’s pay scales too much, a lower
bound constrains the minimum rate S1,1 to remain greater than or equal to
90% of the minimum rate of the original salary structure O (21). The optimized
structure must also take into account employees’ years of experience by integrat-
ing salary progression mechanisms and reasonably distinct salary gaps between
maximum ranges [12]. To incorporate these aspects, we add the following con-
straints: the wage gap is i between two consecutive rates Sc,e−1 and Sc,e (22);
the wage gap is a between the previous scale maximum rate Smax

c−1 and the next
scale maximum rate Smax

c (23); the minimum wage rate of a grade Sc,1 remains
higher than the previous minimum grade rate Sc−1,1 (24); the salary scales must
overlap in accordance to the stair-shaped principle (25). In this work, the wage
gap a between the scales maximums’ rates is constant (i.e., arithmetic progres-
sion), as is often the case in practice. Other types of progression (e.g., geometric)
could be integrated by modifying the constraint (23).

The variables Fj and Hj , which allow us to calculate the external equity
objective function later, correspond to the new minimum and maximum wage
rate of job j ∈ J and are respectively equal to the minimum Sc,1 and maximum
Smax
c annual wage rate of their new grade Dj (26, 27).

Parameters Variables
E Set of possible steps Sc,e Salary of grade c at step e

R Set of possible steps c Mc # of steps in grade c

R Set of possible wages Xmax
c Max salary in grade c

O Original salary structure i Salary gap between cons. steps
a Salary gap between two scales
Fj Minimum wage of job j

Constraints

Mc = min(Mc−1 + 1, E) ∀c ∈ {2, ..., k} (16)
Mc = E ∀c ∈ {k + 1, ..., C} (17)
Sc,e = 0 ∀c ∈ {k + 1, ..., C}, e ∈ {Mc + 1, ..., E} (18)
Smax
c = 0 ∀c ∈ {k + 1, ..., C} (19)

Sc,Mc
= Smax

c ∀c ∈ {1, ..., k} (20)
S1,1 ≥ �O1,1 × 0.9� (21)
Sc,e = Sc,e−1 + i ∀c ∈ {1, ..., k}, e ∈ {2, ...,Mc} (22)
Smax
c = Smax

c−1 + a ∀c ∈ {2, ..., k} (23)
Sc−1,1 < Sc,1 ∀c ∈ {2, ..., k} (24)
Sc,1 < Smax

c−1 ∀c ∈ {2, ..., k} (25)
Fj = SDj ,1 ∀j ∈ J (26)
Hj = Smax

Dj
∀j ∈ J (27)

434 F.-A. Tremblay et al.

Since many employees share the same job and step in the original structure, it
is possible to speed up certain calculation operations (e.g., total cost, step assign-
ment) by arranging the employees into separate groups. Indeed, staff members
are necessarily positioned at the same wage rate in the optimized structure if
they hold the same wage rate in the original one.

For this purpose, we include the constants Vg, Wg, Xg, Yg and Zg which cor-
respond respectively to the job, step, number of employees, salary and maximum
possible step of a distinct group of employees g ∈ G = {1, ..., G} in the original
salary structure where G denotes the number of distinct groups of employees.
Before assigning a new salary to each group g, it is first necessary to obtain the
new grade Qg and the new step Ag. The first variable is obtained simply by
taking the jobs’ new grade (28). As for Ag, it is more difficult to obtain since
the new wage’s rate must be positioned on a step that is different from the one
in the original structure. In other words, the salary in the current structure Yg,
which is tied to the step Wg, must now be associated with a new salary Rg and
paired with the new step Ag. In practice, the salary Yg is integrated at the step
in the new structure (i.e., optimized structure) which salary is equal to or imme-
diately greater than the salary the employee is currently earning. To respect this
principle, we first convert, via the temporary variable Θg, the group salary into
a step from a base change (29). The mathematical formulation of this constraint
allows to avoid iterating through the grades and steps of the optimized structure
to find the corresponding wage rate. Since the temporary variable Θg can take a
value less than one or greater than the number of steps Mc of the related grade,
we constrain Ag to remain within the range of valid steps (30).

Despite the determination of the group’s new grade and step, it is still pos-
sible that some salaries Yg of group g evolve outside the maximum of the new
grade salary range. Employees in this situation are referred to as red circles [2].
Since the employer must at least maintain the wages of its employees, a group’s
new wage Rg is maintained if it exceeds the wage rate SQg,Ag

of the optimized
structure (31). In addition, the concept of red circle causes employee dissatisfac-
tion and demotivation [13]. The employer and union representatives (if any) thus
have a common interest in limiting the number of employees in this situation.
Consequently, we constrain the number of red circles r to remain less than or
equal to 10% of the number of employees as the general rule of thumb used by
practitioners (32, 33).

Parameters Variables
G Job of employees in group g Qg New grade of group g

Vg Job of employees in group g Θg Temporary variable
Wg Step of employees group g Ag New step of group g

Xg # of employees in group g r # of red circles
Yg Salary of group g Rg New salary of group g

Zg Highest step in group g

Multi-objective Optimization for the Design of Salary Structures 435

Constraints

Qg = DVg
∀g ∈ G (28)

Θg = 2 +
⌊ (Yg − SQg,1)(MQg

− 1)
Smax
Qg

− SQg,1

⌋
∀g ∈ G (29)

Ag = min(max(Θg, 1),MQg
) ∀g ∈ G (30)

Rg = max(SQg,Ag
, Yg) ∀g ∈ G (31)

r =
∑

g

Xg[Smax
Qg

< Yg] (32)

r ≤ �0.1 × P � (33)

3.4 Objective Functions

Our model has three objective functions: additional cost, internal equity and
external equity. The additional cost objective α is defined as the extra cost
an employer must pay over a given number of years ymax (ymax = 3 in our
experiments) to implement the optimized structure.

Specifically, it is obtained by calculating the salary progression of employees
over ymax years for each structure (i.e., optimized and initial) and summing the
cost differences (34). Considering the evolution of the cost over several years allow
to avoid solutions where the payroll increase is low the first year (when employees
are integrated into the optimized structure) but high in subsequent years due to
significant salary differences between steps. In Eq. (34), Oy,g correspond to the
initial structure cost at year y ∈ {0, ..., ymax} of group g.

α =

ymax−1∑

y=0

∑

g∈G

employees︷︸︸︷
Xg

[Optimized structure cost︷ ︸︸ ︷
max(SQg,min(y+Ag,MQg)

, Yg) −
Initial structure cost︷︸︸︷

Oy,g

]

(34)

There are several ways to define an internal equity objective. Kassa [7] models
this objective using the differentials between the grade’s mid wages and target
wages specified in advance by the DM, whereas Bruno [4] considers internal
equity and individual equity under the same concept. In our work, we propose
a distinct and more rigorous definition of internal equity that does not depend
on parameters chosen by the user. Concretely, the internal equity objective β
represents the sum of squared errors of jobs’ scores from the center of their
associated score ranges (35). Squaring errors gives quadratically more weight
to scores that are further away from their grade center. Intuitively, a low value
indicates that similar jobs are closer from the center of their grade, while a high
value implies that they are nearer their bounds. The fact that job scores must
stay close to each other reinforces the idea that each job is paid its fair share.

β =
∑

j∈J

[⌊Binf
Dj

+ Bsup
Dj

2

⌋
− Vj

]2

(35)

436 F.-A. Tremblay et al.

The external equity objective δ represents the sum of absolute errors between the
new scale’s minimum and maximum rates (Fj and Hj) and the average external
minimum and maximum rates (λmin

j and λmax
j) (36). A low value means that

the scale’s minimum and maximum rates are close to those of the market, while
high value signifies that they are misaligned with the market’s realities.

δ =
∑

j∈J
|Fj − λmin

j | + |Hj − λmax
j | (36)

The objective functions are optimized using the ε-constraint method (see
Sect. 4.2).

3.5 Model Complexity

Let N be the number of levels, S the number of sub-factors, J the number of
jobs, C the maximum number of grades, Eo the maximum number of steps in the
optimized structure, Ea the maximum number of steps in the current structure,
and G the number of employee groups. The model has

– Θ(NS) variables and Θ(NS + J) constraints related to the scoring table
(Sect. 3.1).

– Θ(J + C) variables and constraints related to the score ranges (Sect. 3.2)
– Θ(CEo+G) variables and constraints linked to the salary structure (Sect. 3.3).

In total, the optimization model has Θ(NS+CEo+G) variables and constraints.
Since organizations typically have more distinct employee groups than other
parameters, it is reasonable to assume that the model is upper bounded by G.
Nevertheless, to reach the worst case of G, it is necessary that at least one
employee covers each step of each job, which is very unlikely. The model is
therefore suitable for large organizational workforce.

4 Experiments

4.1 Data

The optimization model is evaluated using compensation data from a unionized
institution with a total of 127 employees that hold one of 20 distinct jobs in
the organization. The employer has previously evaluated its job using a 13 sub-
factors evaluation plan. The database reports, for each employee, the job title,
the salary, the current salary grade and step, as well as the external market
salary ranges. To incorporate this notion of external markets, the organization’s
jobs are matched by compensation experts when external data was available.
This procedure, known as job matching [12], links the unionized institution’s
jobs with those in the market to obtain the external compensation components.

Multi-objective Optimization for the Design of Salary Structures 437

4.2 Optimization Method

In general, multi-objective optimization problems take the following form:

min
x

J(x) = [J1(x), J2(x), ..., Jk(x)]
T s.t. g(x) ≤ 0 (37)

where J is the objective functions vector and x is a feasible solution with inequal-
ity constraints g. The optimal space of solutions is called the Pareto frontier (i.e.,
the set of non-dominated points).

To estimate the Pareto frontier, we use the ε-constraint optimization method,
which consists in optimizing a single objective by transforming the others into
bound constraints. The optimization is thus performed by successively changing
the ε bounds values to explore different regions of the Pareto frontier. The algo-
rithm generally achieves a good distribution of solutions, handles non-convex
solution spaces, explores the Pareto frontier without a priori preferences and
can solve problems with three or fewer objectives relatively quickly [8,10]. Since
the solution space is non-convex, the salary structure design is an exploratory
process and our model incorporates three objective functions, ε-constraint is the
chosen optimization technique. In our work, we choose to minimize the addi-
tional cost and transform the internal equity and external equity objectives into
bound constraints.

Considering the large solution space of the problem, it is necessary to make
a compromise between the computation time and the quality of the solution in
order to avoid, on the one hand, a loss of time without significant improvement
of the solution, and on the other, a significant degradation of quality. As shown
by Fig. 3, we found that 30 min was sufficient to bring the cost within 2.5% of
the optimal cost obtained from optimizing over a 120-min period (using a M1
MacBook Pro).

Moreover, the ε-constraint algorithm requires to find the ranges of the ε-
bounds on the objectives to constrain (i.e., external and external equity). To find
the lower ε-bound, we separately minimize, over a one-hour interval, the internal
and external equity objectives. To find the upper ε-bound of the internal equity,
we use the internal equity value obtained by minimizing the external equity (and
vice versa for the upper ε-bound of the external equity).

Fig. 3. Resolution of the cost objective (in %) compared to the minimum cost found
(after a 120-min period) for each instance.

438 F.-A. Tremblay et al.

In our experiments, we optimize the additional cost objective over the ε
equity parameter space for three years (i.e., ymax = 3), according to the time
and bounds found in the previous step, on a 6X6 grid search. This optimization
is run repeatedly, for each point of the grid search, from a Python script calling
the Gecode solver in backend.

4.3 Heuristic Search

The solver chooses, in order, the number of grades k, the scoring table minimums
Tmin
s and maximums Tmax

s , the highest step of the first salary grade M1, the
wage gap between two steps i, the wage gap between scale’s maximum a, and
the first grade maximum wage rate Smax

1 . The first three variables are used to
ensure a valid job classification and are therefore concerned with internal equity,
while the last four are more concerned with wage differentials, and therefore
external equity and cost. Thus, we first generate valid rankings before building
the salary structure. Whereas it is straightforward to define a variable selection
heuristic that helps guide the exploration of the search tree, it is more difficult
to define a value selection heuristic that could work with all ε-constraint bounds.
Consequently, we assign the values randomly, and we use a linear restart strategy
with one unit increments. This restart allows to do a breadth-first search and
gradually explore deeper levels of the search tree. The strategy used allows to
quickly obtain good solutions while globally exploring the search tree.

To optimize the model, we use the Gecode solver in MiniZinc [11] as the
Chuffed solver, which learns clauses from implication graphs that led to failures,
was empirically found to be slower to converge. This outcome probably comes
from the fact that domains are very poorly filtered (e.g., wage gap between scale
maximums a) or never filtered at all (e.g., the number of grades k). Clause gener-
ation thus appears to be of little help compared to random sequence generation
as permitted by Gecode.

5 Results and Discussion

5.1 Pareto Frontier

Figure 4 shows the resulting Pareto frontier where each point corresponds to a
different internal equity, external equity and cost solution. In general, solutions
with high internal and external equity (Fig. 4a) involve more costs than the less
equitable ones (Fig. 4c). On Fig. 4a, the solution has an internal equity of 1267,
an external equity of 41.8k$ and a cost of 368k$. This implies that most jobs are
well centered between the grade point boundaries and that the salary structure
is relatively well aligned with the market scales. In the diametrically opposite
corner of the Pareto frontier (Fig. 4c), we find an internal equity of 2962, an
external equity of 67.7k$ and a cost of 77.4k$. Unlike the previous solution, this
solution has more job scores near the class boundaries as well as higher wages
compared to the market.

Multi-objective Optimization for the Design of Salary Structures 439

Salary structure
240 277 315 353 391 429 467 505 543 581 619 657 695 733

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
Job scores

1 2 3 4 5 6 7 8 9 10 11 12 13

30k

35k

40k

45k

50k

55k

60k

65k
Grade external
salary range
Red circles

Grade

S
al

ar
y

($
)

(a)

Pareto front

1

2

315 353 391 429 467 505 543 581 619 657 695 733

Salary structure

Grade externalade external
salary salary range
Red circlesed circles

(b)

Salary structure
180 225 271 317 363 409 455 501 547 593 639 685

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Job scores

Salary structure

1 2 3 4 5 6 7 8 9 10 11

30k

35k

40k

45k

50k

55k

60k

65k
Grade external
salary range
Red circlesRed circles

Grade

S
al

ar
y

($
)

(c)

Fig. 4. Pareto frontier approximation using 6×6 = 36 values. Lower values of external
and internal equities are better. Point 1 is an example of a weakly Pareto solution as
there exists another solution (i.e., point 2) with a better internal equity keeping the
external equity and cost objectives constant.

The obtained results suggest different strategies of the solver depending on
the importance given to objective functions. On the one hand, to obtain a struc-
ture with strong equity (Fig. 4a), the number of grades takes the maximum
value of the domain (i.e., 13). This is consistent with the fact that an increase
of job rankings decreases the score gap, which in turn reduces the squared error
of internal equity. The same is true for the absolute error of the external equity
objective since it becomes easier to align structure rates with market rates when
jobs are less clustered. However, the salary ranges are becoming more spread
out (ranging from 29.5k$ to 62.9k$) to align the structure with the external
market. This leads to an additional cost increase via higher wage progression
and wage rates. On the other hand, to obtain a low-cost salary structure (Fig.
4c), the solver focuses on variables that lower the payroll such as the wage gap
between scale maximums (861$) and the wage gap between steps (2048$). While
there are solutions with even less internal and external equity on the Pareto
frontier, the solver gets a relatively compressed structure (salaries from 33.8k$
to 57.7k$) with closer steps. This limits progression of employee salaries over
time and reduces the additional cost accordingly.

Figure 5 illustrates the correlation between the external equity, internal
equity and cost objectives. Figure 5a shows a statistically negative relationship
(r = −0.78, p < 0.001) between external equity and cost; that is, as the structure
becomes more aligned with the external market, the wage bill increases. In Fig.
5b, the internal equity and additional cost objectives are not statistically linked
(r = −0.25, p > 0.01), and the same is true in Fig. 5c between the internal equity
and external equity (r = 0.09, p > 0.01). Thus, employers cannot improve their
external salary gaps without generating additional costs but, they can maintain
fairness without compromising cost increases. In our case, this result seems to
suggest that the internal equity objective could be replaced by a bound con-
straint, as there it incurs little trade-off with the other objectives. However, this

440 F.-A. Tremblay et al.

(a) (b) (c)

Fig. 5. Correlation between each pair of objective functions. Shaded areas correspond
to 95% confidence intervals on the fit.

might not be the case for all organizations, as the internal equity objective is
influenced by multiple variables (e.g., the scoring the table).

The Pareto frontier on Fig. 4b also suggests weakly Pareto optimal solutions
(e.g., point 1). The presence of these points likely comes from the fact that there
is no apparent relationship between internal equity and the other two objective
functions (Fig. 5b and Fig. 5c). When this situation occurs, only the lowest
internal equity value is relevant. Unfortunately, the ε-constraint method does
not allow to avoid weakly Pareto optimal solutions and, consequently, results in
wasted computation time.

5.2 Comparison with the Negotiated Structure

Since we have access to real data from a unionized establishment, we compare
the solution obtained from an actual negotiated salary structure to our closest
solution on the Pareto frontier in Fig. 6. The internal equity, external equity, and
additional cost objectives of the negotiated solution are computed following Eqs.
(34) to (36).

Looking at the job rankings, it is interesting to note that both solutions have
11 grades and the difference between the score boundaries remains comparable
(49 points versus 43 points). On the other hand, the optimized structure has two
more steps per grade, up to a maximum of 12 steps, so the maximum wage rates

220 263 307 351 395 439 483 527 571 615 659 703

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

110 158 207 256 305 354 403 452 501 550 599 648

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Job scores

1 2 3 4 5 6 7 8 9 10 1130k

35k

40k

45k

50k

55k

Grade

Sa
la

ry
 (

$)

Closest solution

Real negociated
structure

Salary structure

Fig. 6. Negotiated salary structure (internal equity: 2287, external equity: 54,577$ and
cost: 106,890$) compared with the closest solution on the Pareto frontier (internal
equity: 2208, external equity: 49,802$ and cost: 152,187$.

Multi-objective Optimization for the Design of Salary Structures 441

for the first grades are higher than those in the negotiated structure. This results,
not surprisingly, in a slightly higher payroll cost. Moreover, despite the proxim-
ity of the internal and external equity values for the negotiated and optimized
solution, the optimized one remains more expensive (152k$ versus 106k$). We
interpret this result by the fact that the maximum rates in the negotiated struc-
ture are based on a geometrical growth (constant percentage gaps) in contrast
to our model where it is linear (constant gaps). The negotiated structure thus
benefits from more flexibility by allowing salary ranges to start at a lower rate
and end at approximately the same rate as in our model. With lower maximum
rates, the resulting solution necessarily becomes less expensive.

While the negotiated structure required nearly a month of work and meetings,
our approach finds a similar solution (as well as multiple other ones) in only a
few hours of unattended time. The generation of solutions on the Pareto frontier
thus highlights the time and resource savings of using, in whole or in part,
combinatorial optimization techniques in the design of salary structures.

6 Conclusion

Our work shows that designing salary structures with multi-objective optimiza-
tion can definitely benefit companies that wish to obtain fair pay policies while
reducing their payroll operating costs. The resulting Pareto frontier allows to
explore and compare different solutions and trade-offs when implementing or
updating salary structures. A decision maker could use it in real time on nego-
tiation tables when renewing collective agreements. Finally, the efficiency of the
model makes it an interesting solution for both small and large organizations.

Future work may address some limitations of our approach. On the model
side, it would be interesting to validate the model on bigger instances to empiri-
cally test its scalability potential. Linearizing the problem (with some model sim-
plifications) or using parallel computing (since each point on the Pareto front
is independent) would be interesting options to decrease running time. Using
reinforcement learning to learn value selection heuristics [5] or perform a lexico-
graphic optimization to find the ε bounds values [9] could also be considered to
further reduce computation time. Nevertheless, this paper is an additional step
towards addressing the challenges of designing salary structures and hopefully
pave the way for more research on the subject.

References

1. Armstrong, M., Chapman, A.: The Reward Management Toolkit: A Step-By-Step
Guide to Designing and Delivering Pay and Benefits. Kogan Page, London (2011)

2. Barry, G., Newman, J.: Compensation, 13th edn. McGraw-Hill, New York (2019)
3. Branch, L.S.: Consolidated federal laws of Canada, Pay Equity Act (2021). https://

laws-lois.justice.gc.ca/eng/acts/p-4.2/FullText.html. Accessed 31 Aug 2021
4. Bruno, J.E.: Compensation of school district personnel. Manage. Sci. 17(10), B569–

B587 (1971). http://www.jstor.org/stable/2628995. INFORMS

https://laws-lois.justice.gc.ca/eng/acts/p-4.2/FullText.html
https://laws-lois.justice.gc.ca/eng/acts/p-4.2/FullText.html
http://www.jstor.org/stable/2628995

442 F.-A. Tremblay et al.

5. Chalumeau, F., Coulon, I., Cappart, Q., Rousseau, L.-M.: SeaPearl: a constraint
programming solver guided by reinforcement learning. In: Stuckey, P.J. (ed.)
CPAIOR 2021. LNCS, vol. 12735, pp. 392–409. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-78230-6_25

6. Downes, P.E., Choi, D.: Employee reactions to pay dispersion: a typology of existing
research. Hum. Resour. Manag. Rev. 24(1), 53–66 (2014). https://doi.org/10.1016/
j.hrmr.2013.08.009

7. Kassa, B.A.: A decision support model for salary structure design. Compensation
Benefits Rev. 52(3), 109–120 (2020). https://doi.org/10.1177/0886368720905696.
SAGE Publications Inc

8. Laumanns, M., Thiele, L., Zitzler, E.: An adaptive scheme to generate the pareto
front based on the epsilon-constraint method. In: Practical Approaches to Multi-
Objective Optimization, 7–12 November 2004. Dagstuhl Seminar Proceedings,
vol. 04461. IBFI, Schloss Dagstuhl, Germany (2005). https://doi.org/10.4230/
DagSemProc.04461.6

9. Laumanns, M., Thiele, L., Zitzler, E.: An efficient, adaptive parameter variation
scheme for metaheuristics based on the epsilon-constraint method. Eur. J. Oper.
Res. 169(3), 932–942 (2006). https://doi.org/10.1016/j.ejor.2004.08.029

10. Mavrotas, G.: Effective implementation of the epsilon-constraint method in multi-
objective mathematical programming problems. Appl. Math. Comput. 213(2),
455–465 (2009). https://doi.org/10.1016/j.amc.2009.03.037

11. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7_38

12. Singh, P., Long, R.J.: Strategic compensation in Canada, 6th edn. Nelson Educa-
tion Ltd., Ontario (2018). oCLC: 1292020761

13. St-Onge, S., Morin, G.: Gestion de la rémunération: théorie et pratique, 4e édition
edn. Chenelière éducation, Montréal (2020). https://doi.org/10.7202/000155ar

14. Wallace, M.J., Steuer, R.E.: Multiple objective linear programming in the design
of internal wage structures. Acad. Manage. Proc. 1, 251–255 (1979). https://doi.
org/10.5465/ambpp.1979.4977109

https://doi.org/10.1007/978-3-030-78230-6_25
https://doi.org/10.1007/978-3-030-78230-6_25
https://doi.org/10.1016/j.hrmr.2013.08.009
https://doi.org/10.1016/j.hrmr.2013.08.009
https://doi.org/10.1177/0886368720905696
https://doi.org/10.4230/DagSemProc.04461.6
https://doi.org/10.4230/DagSemProc.04461.6
https://doi.org/10.1016/j.ejor.2004.08.029
https://doi.org/10.1016/j.amc.2009.03.037
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.7202/000155ar
https://doi.org/10.5465/ambpp.1979.4977109
https://doi.org/10.5465/ambpp.1979.4977109

Scheduling Complex Observation Requests
for a Constellation of Satellites: Large

Neighborhood Search Approaches

Samuel Squillaci(B), Cédric Pralet, and Stéphanie Roussel

ONERA/DTIS, Université de Toulouse, Toulouse, France
{samuel.squillaci,cedric.pralet,stephanie.roussel}@onera.fr

Abstract. Nowadays, constellations of satellites have to deal with het-
erogeneous and complex observation requests, such as one-shot, video,
stereoscopic, and periodic requests. In this paper, we consider the prob-
lem of scheduling these requests in order to maximize a measure of
global utility. To solve this problem, we propose two Large Neighbor-
hood Search algorithms that exploit problem decompositions. These
algorithms explore large neighborhoods respectively based on heuris-
tic search and Constraint Programming. The experiments performed on
instances generated from real constellation features and weather data
show that the approaches improve the state of the art.

Keywords: Satellites constellation · Large Neighborhood Search ·
Heuristic Search · Constraint Programming

1 Introduction

In this paper, we consider a future Earth observation constellation composed of
16 low-orbit satellites that has to fulfill heterogeneous observation requests on
specific targets on Earth. Requests can consist in taking one picture of a target
area (one-shot requests), a video of a target (video requests), two temporally
close pictures of a target using two different observation angles (stereoscopic
requests), or one picture of a target every X hours (periodic requests). In this
paper, to deal with such heterogeneous requests in a unified way, we consider a set
of modes for each observation request, i.e. alternatives composed of elementary
observations that allow one to satisfy the request, even partially. Each mode has
a utility that represents not only the fulfillment of the pattern required by the
request but also the ability to get valid images depending on the cloud cover
forecast for each elementary observation in the mode.

Then, we consider the following problem: “given a set of candidate requests
along with a cloud cover forecast, choose a mode for each request and schedule
the associated observations over each satellite, in order to maximize the global
utility collected”. Note that despite the increasing size of today’s constellations,
the number of requests posted by end-users makes it impossible to satisfy them
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 443–459, 2023.
https://doi.org/10.1007/978-3-031-33271-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_29&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_29

444 S. Squillaci et al.

all, hence there is an actual need to solve an optimization problem to get the
best global performance for the system. Moreover, to be used in an operational
context, a tool for this problem must compute plans within a few minutes since
in practice, it is called several times per day so as to exploit the most recent
weather forecast and be reactive to urgent observation requests.

To create such a tool, we introduce two Large Neighborhood Search (LNS)
algorithms that exploit a temporal decomposition of the problem. As introduced
in [20], one basic idea is that the candidate observations can be partitioned
into temporal clusters. The first LNS algorithm consists in iteratively removing
requests from the current plans of the satellites and reinserting new ones based
on heuristic search. The second LNS algorithm exploits the Constraint Program-
ming (CP) model exposed in [20] to explore a neighborhood where the content
of a subset of the temporal clusters is revised at each step, one objective being to
exploit powerful CP techniques available for scheduling problems. Experiments
have been performed on a large set of instances generated from real constella-
tion features and cloud cover forecast that we have made publicly available. The
results show that the two LNS approaches outperform the state of the art.

The paper is organized as follows. Section 2 presents related work. Section 3
defines the Earth Observation Scheduling problem we consider. Section 4 intro-
duces the two LNS algorithms proposed. Section 5 describes the experiments and
analyzes the results. Finally, Sect. 6 concludes on future works.

2 Related Work

In the last decade, several optimization techniques were defined to manage con-
stellations of satellites, which offer the possibility to answer new user needs for
Earth observation compared to single-satellite systems. Thereupon, [19,20] deal
with heterogeneous observation requests such as one-shot requests or periodic
requests, respectively requiring one picture and one picture for each period in
a day. In [19], a Large Neighborhood Search is proposed to solve the associ-
ated observation scheduling problem and in [20], a greedy algorithm is designed
to work on different parts of the problem simultaneously. In parallel to hetero-
geneous observation requests, some authors studied multi-instrument observa-
tions [11,12]. For instance, in [11], the authors consider the choice of different
observation instruments providing different error measures for a soil moisture
estimation model, while in [12], an adaptive tabu search algorithm is proposed
for solving a scheduling problem involving a choice among different parameters
of satellite cameras. Meanwhile, other authors considered constellation schedul-
ing problems involving multiple users and proposed an auction-based algorithm
to optimize the sharing of the constellation resources among the users [15]. Fea-
tures of constraint programming solvers are also likely to be used to model and
solve satellite scheduling problems and other problems, as suggested in [9,10].

In a different direction, some authors exploited the fact that satellite con-
stellation planning problems are amenable to problem decomposition [7,8,20].
In [20], the authors cluster the candidate observations according to their time

[Scheduling Observation Requests for a Constellation: LNS Approaches] 445

windows and a greedy algorithm exploits this decomposition to perform several
insertions of observation tasks in parallel. In [8], a two-step algorithm first cre-
ates sub-problems by planning activities in overloaded parts of the time horizon,
and then uses MILP to optimize the plans in each sub-problem independently.
Similarly, parts of the problem that are temporally independent can be identified
as in [7] to apply a column generation process that exploits this decomposition.

Various other aspects were investigated in the literature related to satel-
lite constellation planning. For instance, the authors of [23] merge observations
beforehand using their time windows and the required observation angles. In [4],
the authors exploit a graph of infeasible sets of observations, i.e. observations
that cannot be inserted in the plan all together. A dispatch system that split
the scheduling problem of a constellation into multiple mono-satellite scheduling
problems is introduced in [3], using a neural network to predict the probability
to actually perform a task if the latter is allocated to a given satellite.

Also, several works reuse ideas developed for mono-satellite scheduling, such
as the Adaptive Large Neighborhood Search (ALNS) introduced in [13], or the
dynamic programming approach implemented in [14]. Finally, several references
take into account time-dependent effects [5,6,22], considering that the duration
of a satellite maneuver between two successive observations requiring different
pointing angles actually depends on the time at which the maneuver is triggered.

To finish this literature review, an analogy can be made between the satel-
lite constellation scheduling problem and the Vehicle Routing Problem (VRP),
especially its variant called the Team Orienteering problem with Time Windows
(TOPTW) where a fleet of vehicles must visit a set of (optional) customers. For
this problem, in [18], a large neighborhood search that iteratively removes and
inserts customers based on very efficient heuristics is implemented. A greedy ran-
domized adaptive search procedure to build good quality solutions is exploited in
[17]. Authors of [21] explore infeasible solutions through tabu search and compute
high-quality solutions by recombining the best solutions found. Finally, a par-
allel can be made between references using problem decomposition for satellite
constellation scheduling and clustered VRPTW (CluVRPTW) [1,2]. However,
while observations are usually clustered with regards to their time windows in
the satellite context, they are usually clustered according to their geographical
positions for CluVRPTW.

With regards to these existing works, our contribution corresponds to a sig-
nificant improvement of the techniques for managing heterogeneous requests
(strong need to satisfy the end-users) and extends the possible scope of applica-
tion of Earth observation systems.

3 Earth Observation Scheduling Problem

3.1 Problem Modeling

The Earth Observation Scheduling Problem (EOSP) we consider is defined by a
set of satellites S, a set of observation requests R and a set of download requests
D. In the following, we recall from [20] the definitions of these elements.

446 S. Squillaci et al.

Time Windows. The satellites we consider are on low Earth orbit. This means
that each target t on the Earth surface is visible only during some time win-
dows, i.e. temporal intervals during which a satellite passes over t and is able to
take a picture of it with respect to a maximum zenith-angle (angle between the
target-satellite direction and the vertical at the level of the target). A temporal
window w has an earliest start date Earliestw, a latest end date Latestw, and
an associated satellite satw in S. Each target is viewed several times per day by
the satellites of the constellation (the number of time windows is a function of
the altitudes of the satellites).

Observation Requests and Modes. The set of observation requests is denoted R.
An observation request r ∈ R is defined by a target tr on the Earth surface
and an observation duration δr. Each request r has an associated set of time
windows, denoted Wr. There are several ways to satisfy (or partially satisfy) a
request from an end-user point of view. The ways to satisfy a request r are called
its modes, denoted Mr, and depend of the type of r. In this paper, we consider
the following request types:

– one-shot request, requiring one observation of duration δr in one time window
of Wr. The set of modes Mr is a subset of {{w}, w ∈ Wr};

– video request, requiring one video of the target, i.e. several pictures that alto-
gether require 40 s to 1min. It can be seen as a one-shot request with a much
larger duration;

– stereoscopic request, requiring two observations of duration δr from different
angles with a single satellite. Formally, a mode m in Mr is a set {w1, w2}
containing two time windows in Wr such that satw1 = satw2 and the time
windows are close to each other;

– periodic request, requiring repetitive observations of duration δr, e.g. in three
periods [11am, 1pm], [3pm, 5pm] and [7pm, 9pm]. Each mode m in Mr is a
subset of Wr such that two windows w1 and w2 in m are not associated with
the same period. Set Mr can contain many modes for a periodic request,
however it does not need to be listed explicitly for the algorithms we propose.

To model the preferences of end-users, we define, for each request r and
each mode m in Mr, a utility um ∈ R. Such a utility can depend on the cloud
cover forecast associated with each time window, or on the satisfaction of the
periodicity in the case of periodic requests. More details on a possible way to
obtain these utilities are given in Sect. 5. Finally, the set of all windows associated
with the requests in R is denoted W. Formally, W =

⋃
r∈R Wr.

Download Request. For each communication window booked between a satellite
and a ground station, we consider that a download activity of duration Δ must be
performed (i.e. a data transfer from the satellite to the ground station) without
overlapping any observation. For simplicity, such download activities are modeled
within the observation request and mode framework defined previously. More
precisely, the set of download requests D contains one request rd per ground
station d. Its associated duration is δrd

= Δ, and the set of time windows in Wrd

[Scheduling Observation Requests for a Constellation: LNS Approaches] 447

contains one element per communication window booked for ground station d.
Moreover, there is a unique mode for rd that contains all elements in Wrd

. We
can define a null utility for this mode as it is mandatory anyway, and to get
more compact notations all download requests in D are added to R.

Maneuvers. The satellites we consider in this problem are agile, i.e. they have
to maneuver between successive activities in order to point to the right targets.
The satellites cannot observe targets or download data during maneuvers. For
two time windows w1 and w2 in W that respectively have target1 and target2
as targets, the time for any satellite of the constellation to go from a pointing
attitude to target1 to a pointing attitude to target2 is denoted τw1,w2 . Taking
into account the time-dependent effects mentioned before is left for future work.

Solution. The EOSP is generally over-constrained since it may not be possi-
ble to satisfy all the observation requests. Therefore, some requests must be
selected, and the associated observations must be scheduled on each satellite
while respecting the temporal constraints. Formally, a solution plan σ is defined
by:

– a subset of R, denoted R(σ), that represents the selected requests;
– for each selected request r ∈ R(σ), its selected mode m(r) ∈ Mr;
– for each satellite s ∈ S, a sequence seq(σ, s) that contains all windows w

that concern s and belong to the selected modes, that is all windows in {w ∈
W | satw = s} ∩

(⋃
r∈R(σ) m(r)

)
;

– a utility u(σ) =
∑

r∈R(σ) um(r) (sum of the utilities of the selected modes).

A solution σ is feasible if all download requests belong to R(σ) and for each
satellite s ∈ S and each window w ∈ seq(σ, s), it is possible to assign a start date
startw in [Earliestw,Latestw − δr] (with r the request associated with w) such
that there is no overlap between the successive activities of satellite s (including
maneuvers).1 The goal is to find a feasible solution having the maximum utility.

Example. Figure 1 presents a toy example involving four observation requests r1,
r2, r3, r4 that are respectively one-shot, video, stereoscopic, and periodic requests,
and a download request rd. Figure 1a gives the time windows associated with each
request for a constellation of two satellites (S = {s1, s2}). For instance, Wr1 =
{w1, w2}, with satw1 = s1 and satw2 = s2. Figure 1b lists modes associated with
the requests. One-shot request r1 and video request r2 have one mode for each
of their time windows. Stereoscopic request r3 has two modes. Periodic request
r4 aims at observing a target at dates t1, t2, and t3 which are the midpoints
of three periods. Suitable time windows for each of these dates are respectively
{w9}, {w10}, and {w11}. Therefore, the only mode that makes r4 fully satisfied
is mode {w9, w10, w11}. In this work, we allow a partial satisfaction of periodic
requests. In fact, end-users that ask for n observations might prefer having k <

1 Memory and energy aspects are ignored, as it is assumed that they are not restrictive.

448 S. Squillaci et al.

R = {r1 , r2 , r3 , r4 , rd }

timet1 t2 t3

s1
w5 w9

w6 w3

w10

w1

s2
w11w8

w7 w2 w4

w12

(a) Time windows wrt satellites

s1
w5 w9

w6 w3

w10

w1

s2
w11w8

w7 w2 w4

w12

(c) Solution example

Request Mode Time windows Utility
in mode

r1 m1,1 {w1} 0.5
(one-shot) m1,2 {w2} 0.9

r2 m2,1 {w3} 0.5
(video) m2,2 {w4} 0.8

r3 m3,1 {w5, w6} 1.2
(stereo.) m3,2 {w7, w8} 1.7

r4 m4,1 w9, w10, w11} 3.5
(periodic) m4,2 {w9, w10} 2.3

m4,3 {w9, w11} 1.8
m4,4 {w10, w11} 1.5
m4,5 {w9} 0.3
m4,6 {w10} 0.25
m4,7 {w11} 0.1

rd md {w12} -

(b) Modes and utilities

{

Fig. 1. Example of an EOSP involving four observation requests

n observations than nothing. In this example, we consider all combinations of
windows that contain at least one element, resulting in 7 modes.

Mode utilities aim to reflect end-users preferences. For instance, the fact
that um1,1 is less than um1,2 could indicate that the cloud coverage is better for
window w2 in m1,2. In this example, for request r4, we consider that the more
windows in the mode, the greater the associated utility, but such a property is
not always true in the general case. Moreover, mode utilities are not additive:
um4,1 is greater than the sum of um4,5 , um4,6 and um4,7 .

Figure 1c gives a solution σ where all requests are selected (R(σ) = R). The
selected modes are m(r1) = m1,2, m(r2) = m2,2, m(r3) = m3,2, m(r4) = m4,1,
and m(rd) = md. The sequences for satellites s1 and s2 are respectively [w9, w10]
and [w7, w8, w2, w11, w4, w12]. The utility of σ is equal to um1,2 +um2,2 +um3,2 +
um4,1 , that is to 6.9.

3.2 Connected Components

As introduced in [20], a connected component is a cluster of windows that are
temporally linked to each other, meaning that inserting one activity in one time
window of a component may impact the insertion of activities in other time win-
dows of that component. Formally, we define an undirected graph G containing
one node per window w in W. Then, we connect two nodes of G if and only if their
associated time windows w1 and w2 are on the same satellite (satw1 = satw2)
and overlap when considering maneuvers (neither Latestw1+τw1,w2 ≤ Earliestw2

nor Latestw2 + τw2,w1 ≤ Earliestw1 holds). The connected components of G rep-
resent the clusters of independent time windows that can be exploited by the
algorithms. The set of these connected components is denoted C.

[Scheduling Observation Requests for a Constellation: LNS Approaches] 449

Example. Figure 2 presents the connected components associated with the exam-
ple of Fig. 1. The set of connected components is C = {c1, c2, c3, c4}, with c1 =
{w5, w6, w9, w3}, c2 = {w7, w8, w2, w11}, c3 = {w10, w1} and c4 = {w4, w12}.

s1
w5 w9

w6 w3

c1
w10

w1

c3

s2
w11w8

w7 w2

c2

w4

w12

c4

w5

w9

w6

w3

c1

w7 w8

w2w11

c2

w10

w1

c3

w4

w12

c4

Fig. 2. Connected components obtained for the example of Fig. 1

4 Large Neighborhood Search Algorithms

In this section, we present two LNS approaches for solving EOSPs. We first
describe a generic LNS scheme and then detail the two algorithms based on
it. Without loss of generality, we assume that for every satellite s, there is no
conflict between two ground station communication windows booked for s. As
a result, the algorithms can take as an input an initial solution σd where all
download requests are already planned, and in the following we only consider
the decisions concerning the “actual” observation requests in R.

4.1 Generic Large Neighbourhood Search

The generic LNS scheme is presented in Algorithm 1. It starts with an initial-
ization step and then goes on with several neighborhood exploration steps until
a maximum computation time is reached.

Initialization. The algorithm first computes the connected components (Line 2).
It also initializes, for each request r, the set of windows A(r) that are usable to
build a mode for r. Set A(r) initially contains all windows associated with r.
Starting from solution σd that contains all the download activities, solution σ is
initialized by calling function greedyFill that iteratively inserts new observations
into the plan (Line 4, more details later on this point). This solution becomes the
best known solution σbest , and a counter called stableIt , that counts the number
of LNS iterations without improvement in the global utility, is initialized.

Neighborhood Exploration. While the maximum computation time given in the
input is not reached, we repetitively call the destroyAndRepair method (Line
8). The latter explores the current solution neighborhood based on destroy and
repair operations. This function is generic and two versions will be defined in
Sects. 4.3 and 4.4. If the solution returned (σ′) is strictly better than the cur-
rent solution, then the number of stable iterations is reset, σ′ becomes the new

450 S. Squillaci et al.

current solution, and the best-known solution is updated if needed (Lines 10-
12). Otherwise, the number of stable iterations is incremented and σ′ becomes
the new current solution only if it does not decrease the global utility (Line 15).
After that, if the maximum number of stable iterations (maxStableIt) is reached,
the stableIt counter is reset and the current solution is perturbed through the
generic perturb function (Line 18). Finally, the best solution is returned.

Algorithm 1. Generic Large Neighborhood Search
1: function LNSMain(σd, R, maxStableIt , maxTime)
2: C ← connectedComponents(R)
3: for all r ∈ R do A(r) ← Wr

4: σ ← greedyFill(σd, R, A, C,False)
5: σbest ← σ
6: stableIt ← 0
7: while timeSpent() < maxTime do
8: σ′ ← destroyAndRepair(σ, R, A, C)
9: if u(σ′) > u(σ) then

10: stableIt ← 0
11: σ ← σ′

12: if u(σ) > u(σbest) then σbest ← σ

13: else
14: stableIt ← stableIt + 1
15: if u(σ′) = u(σ) then σ ← σ′

16: if stableIt = maxStableIt then
17: stableIt ← 0
18: σ ← perturb(σ, R, A, C)
19: return σbest

4.2 Greedy Fill Method

Algorithm 2 details the greedyFill procedure. It takes as an input the current
solution σ, the set of observation requests R, the time windows allowed for the
requests A, the set of connected components C, and a Boolean reorder expressing
whether the observations already planned in σ can be reordered for the sake of
other observation insertions. Procedure greedyFill aims at inserting the best
modes of all requests that are unsatisfied so far (set R′ initialized at Line 2).
For each unsatisfied request r, its best possible mode m(r) is computed through
function getBestMode, which takes as an input the set of windows A(r) that are
still usable to build a mode for r (Line 3). Function getBestMode returns nil if
the request has no more feasible modes given set A(r).

Then, the algorithm tries to insert the best mode of all requests. In the
main loop of the greedy filling procedure (Lines 4–11), we select a request r∗

whose best mode has the highest utility among all unsatisfied requests (Line 5).
We then try to insert mode m(r∗) in the solution based on function tryInsert
(Line 6). The latter tries to insert every time window associated with m(r∗)

[Scheduling Observation Requests for a Constellation: LNS Approaches] 451

into its connected component. Following these insertion attempts, two cases can
occur:

1. every insertion attempt is accepted in its corresponding connected compo-
nent; in this case, the mode is accepted and the function returns the new
solution as well as an empty set fails;

2. or at least one connected component rejects the insertion; in this case, solution
σ is unchanged and set fails contains a set of time windows whose insertion
has been rejected.

In the first case, request r∗ is removed from the set of unsatisfied requests
(Line 8), while in the second case, we update the set of windows allowed for r∗

and generate a new mode for this request (Lines 10–11).

Algorithm 2. Greedy filling
1: function greedyFill(σ, R, A, C, reorder)
2: R′ ← R\R(σ)
3: for all r ∈ R′ do m(r) ← getBestMode(r, A(r))

4: while ∃r ∈ R′ | m(r) �= nil do
5: r∗ ← argmaxr∈R′|m(r) �=nil um(r)

6: σ, fails ← tryInsert(σ,m(r∗), C, reorder)
7: if fails = ∅ then
8: R′ ← R′ \ {r∗}
9: else

10: A(r∗) ← A(r∗) \ fails
11: m(r∗) ← getBestMode(r∗, A(r∗))

12: return σ

To detail, procedure tryInsert tries to insert every time window in m(r∗) into
the current plan based on two possible mechanisms. The first one is fast and used
in the initialization procedure while the second one is slower but more efficient.
The latter is used later in the algorithm. Both are described in the following:

– If flag reorder is set to False, then for each window w ∈ m(r∗), the procedure
simply searches for an insertion position for w that leads to a feasible plan.
More precisely, if [w1, . . . , wp] denotes the current sequence of windows to use
in the connected component of w, the procedure searches for a position i such
that sequence [w1, . . . , wi, w, wi+1, . . . , wp] is still feasible from a temporal
point of view, i.e. starting dates can be computed. If several feasible positions
exist, the algorithm chooses a position such that τwi,w + τw,wi+1 is minimum.
If no feasible insertion position is found, window w is rejected and is added
to set fails, hence using window w will not be allowed for the future steps.

– If flag reorder is set to True and if the greedy insertion seen before does not
work for a given window w, more effort is made to insert w into the plan. More
precisely, in this case, we call a recent state-of-the-art incomplete solver [16]
developed for solving Traveling Salesman Problem with Time Windows. This

452 S. Squillaci et al.

solver is requested to quickly find, for the connected component c associated
with w, a feasible solution performing all activities in the current plan of c,
plus the observation to be performed in w. This solver can reorder the current
sequence of c, contrarily to the greedy insertion method.

4.3 Greedy LNS Destroying Requests

In the first version of the LNS introduced in Algorithm 1, the destroyAndRepair
method works with the following settings.

For the destroy step, the algorithm first randomly selects a set of planned
requests and removes the mode of each of these requests from the current solu-
tion. This step also updates the sets of allowed time windows A(r) that is passed
as a parameter. More precisely, for every connected component c such that there
exists a removed request r impacting c (i.e. a request r such that m(r)∩ c �= ∅),
all time windows contained in c for all requests r′ are added to A(r′) again, since
the removal of r might have freed some space to insert new time windows.

For the repair step, the plan is refilled using the greedyFill method seen
before, but with the extended insertion process (parameter reorder set to True).

Finally, the perturbation method is identical to the destroyAndRepair pro-
cedure: it randomly removes some requests and fills the solution again with the
best modes (parameter reorder is also set to True). Note that the global LNS
algorithm accepts perturbations leading to a lower global utility.

4.4 Hybrid LNS Destroying Connected Components

We describe the second implementation of the generic LNS search scheme, which
revises the content of a subset of the components at each step.

Destroy Procedure. It consists in selecting a set C′ of K connected components
whose content is revised and a subset of requests R′ whose mode can change.

To select the first component c1 in C′, we set a probability to pick a component
c as proportional to the number of observations planned in c. Then, at each
step i ∈ [2..K], given the subset of components C′ = {c1, . . . , ci−1} selected so
far, we proceed as follows to select the ith component to revise. We compute
for any candidate c ∈ C\C′ a measure Common(c, C′) that counts the requests
involved both in c and in the components of C′. Formally, we first define such
a measure for all pairs (c, c′) such that c′ belongs to C′ by Common(c, c′) =
|{r ∈ R|(Wr ∩ c �= ∅) ∧ (Wr ∩ c′ �= ∅)}|, and then we define Common(c, C′) =∑

c′∈C′ Common(c, c′). Intuitively, this measure reflects the possibility to relocate
requests between the components in C′. Then, we pick the next component ci to
add to C′ according to a probability proportional to Common(ci, C′).

To restrict the size of the neighborhood, we define a subset of requests R′

whose mode is permitted to change wrt the current solution σ. This means that
for every request r ∈ R\R′, the current mode m(r) is mandatory for all solutions
in the neighborhood. Mandatory download requests never belong to R′.

[Scheduling Observation Requests for a Constellation: LNS Approaches] 453

CP-Based Repair Method. Following the destroy step, the goal is to determine
the new modes to use in order to maximize the total utility. To do this, for
each request r ∈ R, we compute in a preprocessing phase all modes that can be
considered for r, denoted as Mr(σ, C′,R′). If r is a fixed request in R \ R′, then
we simply have Mr(σ, C′,R′) = {m(r)}. If r ∈ R′, set Mr(σ, C′,R′) is typically
much more compact than the set of all modes of r in Mr, especially if set C′

contains just one or two connected components. As an illustration, if σ is the
solution given in Fig. 1c, C′ = {c1, c2} and R′ = {r3, r4}, then:

– Mr1(σ, C′,R′) = {{w2}} and Mr2(σ, C′,R′) = {{w4}} (fixed mode for
requests r1 and r2 that are not in R′);

– Mr3(σ, C′,R′) = {{w5, w6}, {w7, w8}} (two possible modes for request r3
when revising the content of components c1, c2);

– Mr4(σ, C′,R′) = {{w9, w10, w11}, {w9, w10}, {w10, w11}, {w10}} (four possible
modes where the selected window w10 in component c3 is still present);

– Mrd
(σ, C′,R′) = {{w12}} (fixed mode for the download request).

We also define the set of windows Wr(σ, C′,R′) to consider for request r ∈
R for the repair phase. This set contains the windows involved both in the
modes belonging to Mr(σ, C′,R′) and in the connected components in C′, that
is Wr(σ, C′,R′) = {w ∈ Wr | (w ∈ ∪c∈C′c) ∧ (w ∈ ∪m∈Mr(σ,C′,R′)m)}.

Then, we introduce the CP model given in Eqs. 1–5. For each request r whose
mode is not fixed (r ∈ R′), this CP model contains one decision variable ym ∈
{0, 1} per mode in Mr(σ, C′,R′). Variable ym takes value 1 if mode m is selected,
and value 0 otherwise. Equation (1) expresses that the objective is to maximize
the sum of the utilities of all the selected modes, while Eq. (2) imposes that at
most one mode is selected for each request. Note that choosing ym = 0 for each
candidate mode m in Mr(σ, C′,R′) is equivalent to not planning r and in this
case, all windows of r are removed from the solution.

The CP model models the temporal intervals over which activities are per-
formed through interval variables (examples of CP features are available in
[9,10]). For each request r ∈ R, we introduce one interval variable Itvw per
time window w ∈ Wr(σ, C′,R′), i.e. involved in a component over which the
repair phase works. Such an interval has a duration δr and must be inside time
interval [Earliestw,Latestw]. Several constraints are defined over these variables.
The first one imposes that intervals Itvw must be present in the solution for
time windows w belonging to the mode of a fixed request (Eq. 3). The second
constraint imposes that an interval Itvw associated with a non-fixed request r
is present if and only if it belongs to the mode chosen for r (Eq. 4). Finally, for
every component c ∈ C′, there must be no temporal overlap between the selected
intervals Itvw associated with c, given the transition duration matrix τ (Eq. 5).

max
∑

r∈R′,m∈Mr(σ,C′,R′) umym (1)

∀r ∈ R′,
∑

m∈Mr(σ,C′,R′) ym ≤ 1 (2)

∀r ∈ R\R′, ∀w ∈ Wr(σ, C′, R′), presenceOf (Itvw) = 1 (3)
∀r ∈ R′, ∀w ∈ Wr(σ, C′, R′), presenceOf (Itvw) =

∑
m∈Mr(σ,C′,R′)|w∈m ym (4)

∀c ∈ C′,noOverlap({Itvw | r ∈ R, w ∈ Wr(σ, C′, R′) ∩ c}, τ) (5)

454 S. Squillaci et al.

The repair method aims to provide a new better solution by solving the CP
model given a maximum CPU time limit. At the next iterations, other parts of
the current solution can be considered by choosing different sets C′ and R′.

5 Experiments

5.1 Instances

Constellation and Downloads. We consider a Walker constellation composed of
16 satellites dispatched equally on two distinct orbit planes at 800 km (low Earth
orbits). We consider a unique ground station in Toulouse, France. The duration
of download activities is set to Δ = 180 s. The time to maneuver between
two targets is proportional to the euclidean distance between them (from a few
seconds to several tens of seconds). The scheduling horizon is 24 h.

Targets. All targets are located in West Europe. We consider two types of
instances depending on the precise location of the targets. In the first type
of instances, namely spread target instances, we define latitude and longitude
bounds (respectively [−10◦, 10◦] and [40◦, 55◦]) and choose, for each target, a
random coordinate using a uniform probability inside these bounds. In the second
type of instances, namely concentrated target instances, we randomly choose 50
airports among West Europe ones. Then, for each request, we randomly choose
one of these airports and add a noise with a maximum amplitude of 1◦ in latitude
and longitude. Figure 3 illustrates both configurations for 1000 requests.

Fig. 3. Example of a spread instance (left) and a concentrated instance (right)

Requests. The instances contain from 50 to 1140 requests and vary in the number
of requests of each type. Duration of observations for each request are randomly
chosen following a truncated normal law N (5, 59, 1, 60)2 for one-shot requests,
N (50, 20, 40, 60) for video requests, N (5, 9, 1, 10) for stereoscopic requests, and
N (5, 19, 1, 20) for periodic requests. We generated 20 instance configurations in
which the number of requests and their types vary. Then, for each configura-
tion, we considered the spread target and concentrated target instances and 5
different seeds for target generation. For all these instances, the number of con-
nected components is around 125. In fact, such a number depends more on the
constellation features than on the considered number of requests.
2 N (μ, v, a, b): truncated normal law with mean μ, variance v, bounded by a and b.

[Scheduling Observation Requests for a Constellation: LNS Approaches] 455

Mode Utility. For each request r, all modes that contain at least one observation
are considered. Hence, for each periodic request, all modes containing at least
one period are taken into account. For each time window w in W, we associate a
utility uw that depends on the real cloud cover percentage ccw of that window,
obtained from real weather data. More precisely, if 1 − ccw belongs to range
[0, 0.5) (resp. [0.5, 0.6), [0.6, 0.7), [0.7, 0.8), [0.8, 0.9), [0.9, 1)), then uw = 0.05
(resp. 0.1, 0.4, 0.7, 0.95, 1). Then, for each request r that has type one-shot, video,
or stereoscopic, for each mode m ∈ Mr, um =

∑
w∈m uw. For each periodic

request r and for each mode m ∈ Mr, utility is computed through the follow-
ing non-additive formula : um =

∑
w∈m uw + 0.5 (nPeriods − maxGapPeriods),

where nPeriods is the number of periods in r and maxGapPeriods is the maxi-
mum number of consecutive periods of r that do not have a corresponding time
window in m.

All instances are available at https://github.com/ssquilla/Earth_
Observing_Satellites_benchmarks.git.

5.2 Experimental Setup

All the algorithms are implemented in Python 3.8.5. Experiments are run on
a 20-core Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz, 62GB RAM, with
a time out of 5min per run. Each run is allowed to use up to 10 cores. The
maxStableIt parameter is set to 15. The following algorithms are compared.
CP is the Constraint Programming approach presented in [20]. It amounts to
solving Eq. 1–5 with C′ = C and R′ = R\D (full revision of all the components).
BPCCAS (Batch Parallel Connected Component of Activities based Search) is
the state-of-the-art approach defined in [20] for EOSPs.
GLNS (Greedy LNS) is the LNS approach defined in Sect. 4.3, that uses a
request-based neighborhood explored by greedy search. The destroyAndRepair
method destroys 20% of the observation requests in the solution. One LNS pro-
cess is run on each of the 10 available cores, and the best solution is returned.
CPLNS (CP LNS) and MCPLNS (Multi-Core CP LNS) are the LNS
approaches using a component-based neighborhood explored with Constraint
Programming (Cplex Studio 20.1 used through docplex 2.22.213). We impose a
time limit equal to 3 s for each call to the CP solver and R′ is set to R\D. For
CPLNS (resp. MCPLNS), we consider a neighborhood with 1 (resp. 2) compo-
nent(s) revised at each step. Moreover, for CPLNS, we run 10 LNS threads in
parallel (one per core) and return the best solution found, while for MCPLNS,
we use only one LNS thread but permit the CP solver to use the 10 cores.

5.3 Results

Table 1 gives representative results. Each line of the table is the mean value
obtained over three runs on the same instance. For all instances (concentrated
and spread) involving 250 requests or less, all the algorithms find the same utility
except for CP . Moreover, the gaps associated with BPCCAS and CP increase
as the number of requests grows. Globally, all the LNS algorithms find the same

https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks.git
https://github.com/ssquilla/Earth_Observing_Satellites_benchmarks.git

456 S. Squillaci et al.

best utility except for instances involving a large number of periodic requests. In
that case, CPLNS and MCPLNS outperform GLNS. Last, the results provided
by CPLNS and MCPLNS are very close (if not equal) to the best solutions on
all instances, and they lead to gaps that are always less than 2%.

Table 1. Representative results (one line per instance). The columns are: number of
requests, per type (OS: One-Shot, V: Video, S: Stereo, P: Periodic), cardinality of W,
best utility obtained by the solvers, gaps (in percent) wrt the best utility for each
method (Let b the best reward and a the score provided by the algorithm. gap =
100(b − a)/b), along with the number of calls to destroyAndRepair (nDR).

Instance |W| best CP BPCCAS GLNS CPLNS MCPLNS
|R| OS V S P utility gap gap gap nDR gap nDR gap nDR

concentrated targets 50 50 0 0 0 2607 3.9 0.0 0.0 0.0 2620 0.0 9790 0.0 6778
50 0 50 0 0 2436 40.6 0.0 0.0 0.0 2755 0.0 11128 0.0 7539
50 0 0 0 50 568 82.8 0.0 0.0 0.0 4002 0.0 337 0.0 150
57 12 15 27 3 2125 24.6 0.0 0.0 0.0 2893 0.0 10329 0.0 6684
250 250 0 0 0 13149 16.6 1.81 0.0 0.0 275 0.0 4267 0.0 3015
250 0 250 0 0 12162 74.4 24.19 0.0 0.0 79 0.0 4165 0.0 3021
250 0 0 0 250 2359 400.0 31.15 6.72 5.95 217 0.0 107 0.38 94
285 60 75 135 15 10327 85.2 0.0 0.12 0.0 316 0.0 4372 0.0 1418
500 500 0 0 0 25646 50.7 12.23 0.0 0.0 25 0.0 1398 0.0 1064
500 0 500 0 0 25554 209.6 24.9 0.0 0.0 12 0.0 771 0.0 608
500 0 0 0 500 4786 754.4 49.96 14.16 12.43 44 0.0 92 0.16 84
570 120 150 270 30 19203 269.7 3.11 0.0 0.37 92 1.22 1767 1.0 399
1000 1000 0 0 0 51189 114.7 18.22 9.33 0.0 5 0.0 193 0.26 461
1000 0 1000 0 0 49149 530.4 23.06 21.95 0.0 2 0.19 56 0.41 21
1000 0 0 0 1000 9769 1157.3 60.69 80.8 30.24 3 0.0 73 1.24 49
1140 240 300 540 60 45985 252.3 39.67 28.02 0.04 4 0.0 277 0.04 108

spread targets 50 50 0 0 0 2438 7.2 0.0 0.0 0.0 2838 0.0 6790 0.0 7014
50 0 50 0 0 2427 28.8 0.0 0.0 0.0 2785 0.0 6816 0.0 7029
50 0 0 0 50 560 85.6 0.0 0.0 0.0 4239 0.0 194 0.0 181
57 12 15 27 3 2025 22.2 0.45 0.0 0.0 3215 0.0 7137 0.0 7275
250 250 0 0 0 12269 46.3 0.22 0.22 0.0 332 0.0 3887 0.0 3504
250 0 250 0 0 12190 184.9 0.0 0.59 1.14 226 1.51 4027 1.19 3611
250 0 0 0 250 2340 439.2 12.89 0.61 0.96 270 0.0 96 0.14 97
285 60 75 135 15 10467 145.1 0.0 0.0 0.0 365 0.07 3974 0.07 2170
500 500 0 0 0 24475 92.5 0.0 0.97 1.08 71 1.62 2494 0.97 2018
500 0 500 0 0 24326 358.8 5.71 0.0 0.53 28 1.39 2426 0.0 1906
500 0 0 0 500 4586 775.9 41.17 9.76 8.84 46 0.0 88 0.08 86
570 120 150 270 30 20820 266.6 3.49 0.08 0.0 75 0.98 962 0.3 499
1000 1000 0 0 0 49035 177.8 10.74 0.11 0.0 7 1.12 1094 0.79 674
1000 0 1000 0 0 48686 676.0 19.56 2.51 0.0 3 0.24 650 0.22 383
1000 0 0 0 1000 9154 1226.0 53.0 43.59 25.46 5 0.55 70 0.0 58
1140 240 300 540 60 41693 525.8 26.13 0.55 0.0 10 1.24 379 1.07 196

Figure 4 presents the value of the global utility wrt time for solvers GLNS,
BPCCAS and CPLNS on two large instances. As detailed in [20], BPCCAS
performs several iterations, where each iteration starts with an empty schedule
and consists in inserting modes with the highest utilities first until all requests
have been considered. At each iteration, the order of modes is modified. For
instances that do not contain periodic requests (left plot), BPCCAS performs

[Scheduling Observation Requests for a Constellation: LNS Approaches] 457

almost two iterations, which allows one to get a high utility solution. However, it
is far from finishing the first iteration for instances involving a large number of
periodic requests (right plot), which results in a low global utility in such cases.

For instances with few periodic requests, the starting solution of LNS
approaches has a higher utility. With more periodic requests, GLNS slowly
improves the solution because each insertion of a periodic request involves com-
putation on multiple components, impacting the number of destroys and repairs
that can be performed (nDR in Table 1). On such instances, the CPLNS neigh-
borhood exploration allows one to significantly improve the global utility. In
fact, the destroy phase partially destroys periodic requests, and the repair phase
allows one to assign modes that are not necessarily the best ones for each indi-
vidual request but give a higher global utility. This phenomenon is more notice-
able for concentrated target instances, where the higher targets concentration
causes more conflicts between requests. Therefore, in order to get good quality
solutions, one has to perform trade-offs between requests (i.e. assigning partial
modes instead of complete ones), which is particularly suited for CPLNS and
MCPLNS that optimize a global utility through their calls to the CP solver.

Time (s)

U
ti
li
ty

Time (s)

BPCCAS

GLNS

CPLNS

Fig. 4. Utility wrt time for instances 500 OS 500 S (left), and 1000 P (right).

6 Conclusion

In this paper, we proposed two LNS approaches outperforming the state of
the art for planning complex observation requests for a constellation of Earth
observing satellites. The first approach, which uses a destroy method centered on
Request Removals (destroyRR) and a repair method based on Heuristic Search
(repairHS), could be referred to as destroyRR-repairHS. The second approach,
which uses a destroy method centered on Connected Components (destroyCC)
and a repair method using CP (repairCP), could be referred to as destroyCC-
repairCP, and it leads to high quality solutions whatever the instance configura-
tion (number and location of targets or requests types). There exist other possi-
ble variants, such as “destroyCC-repairHS” (content of some components revised
by heuristic search) or “destroyRR-repairCP” (request removals and CP-based
reinsertions). Variant destroyCC-repairHS has been tested but is dominated by
destroyCC-repairCP, and variant destroyRR-repairCP is left for future works.

458 S. Squillaci et al.

Acknowledgments. This work has been performed with the support of BPI through
PSPC project “LiChIE” of the “Programme d’Investissements d’Avenir”.

References

1. Abbatecola, L., Fanti, M.P., Pedroncelli, G., Ukovich, W.: A new cluster-based
approach for the vehicle routing problem with time windows. In: 2018 IEEE 14th
International Conference on Automation Science and Engineering (CASE), pp.
744–749 (2018)

2. Dondo, R., Cerdá, J.: A cluster-based optimization approach for the multi-depot
heterogeneous fleet vehicle routing problem with time windows. Eur. J. Oper. Res.
176(3), 1478–1507 (2007)

3. Du, Y., Wang, T., Xin, B., Wang, L., Chen, Y., Xing, L.: A data-driven parallel
scheduling approach for multiple agile earth observation satellites. IEEE Trans.
Evol. Comput. 24(4), 679–693 (2020)

4. Eddy, D., Kochenderfer, M.: A maximum independent set method for scheduling
earth-observing satellite constellations. J. Spacecr. Rocket. 58, 1–14 (2021)

5. He, L., de Weerdt, M., Yorke-Smith, N.: Time/sequence-dependent scheduling: the
design and evaluation of a general purpose tabu-based adaptive large neighbour-
hood search algorithm. J. Intell. Manuf. 31(4), 1051–1078 (2020)

6. He, L., de Weerdt, M., Yorke-Smith, N., Liu, X., Chen, Y.: Tabu-based large neigh-
bourhood search for time-dependent multi-orbit agile satellite scheduling. In: Pro-
ceedings of the 11th Scheduling and Planning Applications Workshop (SPARK)
(2018)

7. Hu, X., Zhu, W., An, B., Jin, P., Xia, W.: A branch and price algorithm for EOS
constellation imaging and downloading integrated scheduling problem. Comput.
Oper. Res. 104, 74–89 (2019)

8. Kim, J., Ahn, J., Choi, H.L., Cho, D.H.: Task scheduling of multiple agile satellites
with transition time and stereo imaging constraints. J. Aerosp. Inf. Syst. 17(6)
(2020)

9. Laborie, P.: IBM ILOG CP optimizer for detailed scheduling illustrated on three
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol.
5547, pp. 148–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-01929-6_12

10. Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: IBM ILOG CP optimizer for schedul-
ing: 20+ years of scheduling with constraints at IBM/ILOG. Constraints 23(2),
210–250 (2018)

11. Levinson, R., Nag, S., Ravindra, V.: Agile satellite planning for multi-payload
observations for earth science. CoRR abs/2111.07042 (2021)

12. Liu, L., Dong, Z., Su, H., Yu, D., Lin, Y.: Research on a heterogeneous multi-
satellite mission scheduling model for earth observation based on adaptive genetic-
tabu hybrid search algorithm. In: IEEE 5th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), pp. 1684–1690 (2021)

13. Liu, X., Laporte, G., Chen, Y., He, R.: An adaptive large neighborhood search
metaheuristic for agile satellite scheduling with time-dependent transition time.
Comput. Oper. Res. 86, 41–53 (2017)

14. Peng, G., Dewil, R., Verbeeck, C., Gunawan, A., Xing, L., Vansteenwegen, P.:
Agile earth observation satellite scheduling: an orienteering problem with time-
dependent profits and travel times. Comput. Oper. Res. 111, 84–98 (2019)

https://doi.org/10.1007/978-3-642-01929-6_12
https://doi.org/10.1007/978-3-642-01929-6_12

[Scheduling Observation Requests for a Constellation: LNS Approaches] 459

15. Picard, G.: Auction-based and distributed optimization approaches for scheduling
observations in satellite constellations with exclusive orbit portions. In: Interna-
tional Conference on Autonomous Agents and Multiagent Systems (2021)

16. Pralet, C.: Iterated maximum large neighborhood search for the traveling salesman
problem with time windows and its time-dependent version. Comput. Oper. Res.
150, 106078 (2022)

17. Ruiz-Meza, J., Brito, J., Montoya-Torres, J.R.: A GRASP to solve the multi-
constraints multi-modal team orienteering problem with time windows for groups
with heterogeneous preferences. Comput. Ind. Eng. 162, 107776 (2021)

18. Schmid, V., Ehmke, J.F.: An effective large neighborhood search for the team
orienteering problem with time windows. In: ICCL 2017. LNCS, vol. 10572, pp.
3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68496-3_1

19. Squillaci, S., Roussel, S., Pralet, C.: Managing complex requests for a constellation
of earth observing satellites. In: International Workshop on Planning and Schedul-
ing for Space (2021)

20. Squillaci, S., Roussel, S., Pralet, C.: Parallel scheduling of complex requests for
a constellation of earth observing satellites. In: Passerini, A., Schiex, T. (eds.)
Frontiers in Artificial Intelligence and Applications. IOS Press (2022)

21. Su, X., Nan, H.: An enhanced heuristic for the team orienteering problem with
time windows considering multiple deliverymen. Soft Comput. 27(6), 2853–2872
(2022)

22. Wei, L., Xing, L., Wan, Q., Song, Y., Chen, Y.: A multi-objective memetic approach
for time-dependent agile earth observation satellite scheduling problem. Comput.
Ind. Eng. 159, 107530 (2021)

23. Wu, G., Wang, H., Pedrycz, W., Li, H., Wang, L.: Satellite observation scheduling
with a novel adaptive simulated annealing algorithm and a dynamic task clustering
strategy. Comput. Ind. Eng. 113, 576–588 (2017)

https://doi.org/10.1007/978-3-319-68496-3_1

Predicting Wildlife Trafficking Routes
with Differentiable Shortest Paths

Aaron Ferber1(B), Emily Griffin2, Bistra Dilkina1, Burcu Keskin3,
and Meredith Gore4

1 University of Southern California, Los Angeles, USA
{aferber,dilkina}@usc.edu

2 Babson College, Babson Park, USA
egriffin@babson.edu

3 University of Alabama, Tuscaloosa, USA
bkeskin@cba.ua.edu

4 University of Maryland, College Park, USA
gorem@umd.edu

Abstract. Wildlife trafficking (WT), the illegal trade of wild fauna,
flora, and their parts, directly threatens biodiversity and conservation
of trafficked species, while also negatively impacting human health,
national security, and economic development. Wildlife traffickers obfus-
cate their activities in plain sight, leveraging legal, large, and globally
linked transportation networks. To complicate matters, defensive inter-
diction resources are limited, datasets are fragmented and rarely inter-
operable, and interventions like setting checkpoints place a burden on
legal transportation. As a result, interpretable predictions of which routes
wildlife traffickers are likely to take can help target defensive efforts and
understand what wildlife traffickers may be considering when selecting
routes. We propose a data-driven model for predicting trafficking routes on
the global commercial flight network, a transportation network for which
we have some historical seizure data and a specification of the possible
routes that traffickers may take. While seizure data has limitations such
as data bias and dependence on the deployed defensive resources, this is a
first step towards predicting wildlife trafficking routes on real-world data.
Our seizure data documents the planned commercial flight itinerary of
trafficked and successfully interdicted wildlife. We aim to provide predic-
tions of highly-trafficked flight paths for known origin-destination pairs
with plausible explanations that illuminate how traffickers make decisions
based on the presence of criminal actors, markets, and resilience systems.
We propose a model that first predicts likelihoods of which commercial
flights will be taken out of a given airport given input features, and then
subsequently finds the highest-likelihood flight path from origin to desti-
nation using a differentiable shortest path solver, allowing us to automati-
cally align our model’s loss with the overall goal of correctly predicting the
full flight itinerary from a given source to a destination. We evaluate the
proposed model’s predictions and interpretations both quantitatively and
qualitatively, showing that the predicted paths are aligned with observed
held-out seizures, and can be interpreted by policy-makers.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 460–476, 2023.
https://doi.org/10.1007/978-3-031-33271-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_30&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_30

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 461

1 Introduction

Wildlife Trafficking (WT) broadly impacts biodiversity, human health, economic
development, and national security [37]. It encompasses a wide array of species
that originate from, and are transported to, supply and demand markets around
the world. WT spans over 150 countries and includes more than 37,000 species
of fauna and flora [37]. Transnational criminal organizations are known to lever-
age the increasingly interconnected air transportation network to move illegal
wildlife products from source to destination locations, generating $19 billion
annually in black market proceeds [18,28,38]. The massive scope, scale, and
diversity of wildlife trafficking networks present a complex and dynamic chal-
lenge for authorities and researchers trying to understand and interrupt the
transiting of illegal wildlife products using detection, interdiction, deterrence,
education, or other activities. Stakeholders working to combat wildlife traffick-
ing also face limited social, physical, and financial capital compared to other
illicit activities such as drug trafficking. Current practice is to rely heavily on
trusted and established personal relationships, “tip-offs” about specific flights,
use of specially trained sniffer dogs, and education of airport personnel; these
practices can be successful in one-off contexts but lack a desired deterrent effect.
Network interdiction models can assist in determining the optimal allocation of
scarce resources along known trafficking networks but have yet to be systemati-
cally applied to the transiting stage of wildlife trafficking supply chains [17,31].
Data-driven methods for understanding underlying wildlife trafficking patterns
could help advance on the ground practice and expand modeling techniques to
a novel domain space and are a necessary first step before targeted interdiction
allocation can be applied effectively and efficiently.

Recognizing the potential for data-driven methods to dramatically enhance
solutions to the problem of wildlife trafficking, multiple sectors have increased
their data collection activities. For example, The Convention on International
Trade in Endangered Species of Wild Fauna and Flora (CITES) is a global agree-
ment among governments to regulate international trade in species under threat
that was established in 1976 and is currently signed by 183 countries and the
European Union. TRAFFIC is an organization that was established in 1976 by
The World Wide Fund for Nature (WWF) and International Union for Conser-
vation of Nature (IUCN) as a wildlife trade monitoring network to undertake
data collection, analysis, and provision of recommendations to inform decision
making on wildlife trade. In 2015, the U.S. Agency for International Devel-
opment (IUCN) established the Reducing Opportunities for Unlawful Trans-
port of Endangered Species (ROUTES) Partnership to bring together transport
and logistics companies, government agencies, law enforcement, and conserva-
tion organizations to eliminate wildlife trafficking from the air transport supply
chain. Importantly, these efforts have contributed to collection and synthesis of
a limited but growing global database of illegal wildlife trade seizure data.

Overall, the flight network’s widespread use for moving illegal goods, as well
as the presence of structured data make it a promising setting for data analysis to
help inform defensive measures. Center for Advanced Defense Studies (C4ADS),

462 A. Ferber et al.

a nonprofit that is a member of ROUTES, produced in-depth summary analysis
of the global wildlife trade flight seizure data from 2009–2017 [38] and 2016–
2018 [39] and derived insights based on observed concentration of illegal activity
and outliers. Some studies and reports describe traffickers’ modus operandi, or
factors that may influence their decisions to traffic products through certain
ports over others [3,34]. Factors, such as larger airports with higher volume,
prevalence of corruption, lower financial costs, and smaller legal penalties, have
been shown to possibly be beneficial for traffickers [16]. However, there is limited
quantitative research into the factors that impact traffickers’ transit choices and
their relative importance [22,33,35]. In fact, to our knowledge, predictive models
have not been applied to the wildlife trafficking domain. Machine learning models
can be instrumental in extrapolating the patterns from the limited seizure data
to other airports and routes. They can highlight important factors and their
weights to provide insight into traffickers’ objectives that can be utilized when
making interdiction decisions and predicting trafficker responses.

To this end, in this paper, we formulate wildlife trafficking across the global
flight network as a route prediction problem on a graph, synthesize historical
seizure data with data that describes airport nodes and flight edges, and propose
a maximum likelihood machine learning model that exploits recent developments
in differentiable optimization. In particular, we model probabilities of traffick-
ing on each edge in the transportation network as a function of node and edge
features, and train the model by comparing the maximum likelihood path (iden-
tified by computing the shortest path in log space) to the ground truth paths. We
demonstrate the predictive power of our model. We analyze our model’s results
to understand the discrepancies between our predictions and the ground truth
seizure data. By utilizing an interpretable linear model with respect to input
features, we are also able to provide feature importance insights.

A key area of concern in combating WT is the convergence of multiple forms
of illicit trade [14,35]. Convergence can take a variety of forms. For instance,
revenue from WT activities can fund arms trafficking. Additionally, the people,
countries, and transit routes used for various forms of trafficking can substan-
tially overlap due to factors that are mutually beneficial. Convergence has long
been an area of concern but the amount of scientific, quantitative, evidence for
convergence is still limited [15]. Our work makes a step towards quantifying the
scale and impact of convergence by directly incorporating measures of other illicit
activities at given locations as features when predicting wildlife trafficking paths.
Understanding the impact of other illicit activities on the path probabilities of
traffickers provides a quantitative measure of geographic convergence.

2 Related Work

The overall problem of learning route choices may be considered an inverse opti-
mization problem, where we are given “solutions” to optimization problems and
we want to identify what optimization parameters yields those observed solutions
as optimal [1]. Indeed, previous work in trajectory prediction has modeled hidden

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 463

Fig. 1. Visualization of itineraries with historical seizures in red as well as a subset of
the global flight network in grey. (Color figure online)

latencies for travel networks by solving an inverse shortest path problem [42], or
learning transportation preferences for a road network which results in a given
traffic flow on the network [11]. The area of trajectory prediction [10,12,29,43]
aims to predict paths for individuals and thus tend to assume access to the start
location, or continually updating sequence of locations, and try to predict the
rest of the trajectory that the person will take. However, in our case, we have
generally-known source and destination pairs and try to understand what are
the most likely paths that traffickers will take without continuously updating
information.

Recent work in the machine learning literature has investigated how to
integrate optimization solvers as differentiable components in machine learn-
ing pipelines. This effectively allows the model designer to state that the model
predictions will be used downstream by a structured optimization problem which
will output an optimal solution to a problem with given predicted inputs. The
seminal OptNet paper [2] introduces the quadratic optimization program as a
differentiable layer for use in deep learning pipelines, by implicitly differentiating
through the KKT optimality conditions, with follow-up work extending the app-
roach to linear programs [40]. In a different vein, researchers investigated differ-
entiating through blackbox optimizers [26] and differentiating through maximum
likelihood estimation which can represent the optimal solution to a mathemati-
cal program [24]. Our approach directly builds off of [26] and leverages empirical
insights in order to speed up gradient computation. Lastly, several approaches
for smart predict then optimize have been proposed which compute subgradients
of the optimal solution with respect to the inputs in order to train the predic-
tive model [9]. This smart predict then optimize area has work on applicable
theoretical guarantees and integration with decision trees [4,8].

Prior work has successfully used machine learning in the context of wildlife
poaching in conservation areas, but poaching is only the “first” step in the wildlife

464 A. Ferber et al.

trafficking supply chain [13,23,41]. Poaching-oriented approaches consider clas-
sification models that predict the likelihood of snare detection at a given spatial
location to inform ranger patrolling efforts at the sourcing of wildlife. While
these works demonstrated the ability to predict poacher behavior at each pixel
of a given conservation area, here we address the global wildlife trade problem of
learning trafficker route choices on the broader international air transportation
network.

3 Flight Itinerary Prediction Formulation

We formulate the problem of predicting trafficker flight paths connecting a given
source airport s and intended destination d airport as a supervised learning
problem of predicting a path from s to d on a flight network represented as a
directed graph G. The flight network G represents airports as nodes and the
flights between them as directed edges. We augment the flight network with
WT-related features φ on both nodes φv and edges φe. We collect N ground-
truthed trafficker paths Dπ = {πsi,di

}N
i=1 from centralized databases of seizure

reports. These reports contain the traffickers’ intended itineraries between fixed
source si and destination di. We encode these WT itineraries πi as paths in the
flight network, representing them as either a sequence of airport nodes or flight
edges as needed.

Our data sources, collection, and synthesis are described in the section “Data
Sources”. To get a sense of the magnitude of the problem at hand, we visualize
the observed trafficker paths as well as 20% of the full flight network in Fig 1.
We subsample due to the density of the global flight network consisting of 14,118
flight edges connecting 1,933 airport nodes, rendering the image unreadable oth-
erwise.

Formally, we aim to train a model that correctly predicts the observed struc-
tured path πi given the input source si, destination di, flight network G, and
features φ.

3.1 Predictive Model: Edge Transition Estimator

In order to predict full flight paths from features on just edges and nodes, we
cannot simply predict how likely any individual path is, as the number of possible
simple paths is exponentially large in the size of the network. Instead, we consider
predicting a probability for each edge which then can be used to compute path
likelihood.

We propose an approach for modeling the path prediction problem by predict-
ing “transition” probabilities, or probabilities on which flight edges a trafficker
may take to exit a given “current” node. Since our setting requires a simple
model that can be easily handed off to domain experts and deliver actionable
insights for interdiction, we forego complex architectures in favor of a simplis-
tic predictive model. This models the trafficker as taking a biased random walk
from the source airport to the destination airport on the flight network where

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 465

our model learns the biased probabilities given edge and node features. With
this transition probability modeling approach, we can compute the probability
of taking any given source-destination path as being the product of individual
edge probabilities.

Formally, we model the problem as finding the probability P (i, j) of using
a directed edge (i, j) to leave a starting node i. Here, probabilities on all
edges leaving a given node i sum to 1. We use a parametrized model m, with
parameters θ, to obtain probability estimates given the relevant features i.e.
P̂ (i, j) = m

(
φe

i,j , φ
v
i , φv

j ; θ
)
. For notational simplicity, we consider the feature

vector for a given edge to be the concatenation of edge-specific features, origin
features, and destination features φi,j =

[
φe

i,j , φ
v
i , φv

j

]
. The edge probability pre-

diction model limits the number of trained parameters to prevent overfitting.
This parameter sharing means that the same model is used to predict which
flights will be taken out of an airport whether it is Addis Ababa or Charles de
Gaulle. Furthermore, by predicting edge probabilities from edge and node fea-
tures, we can understand how these features impact our model’s estimates and
thus better understand what factors may be driving wildlife trafficking. Hence,
in our experiments we use a linear model relating the features to the predicted
probabilities to ensure that the resulting model is interpretable.

We denote the set of edges leaving i as δ(i), and fully specify our linear
model as making predictions on each edge as computing logits with a linear
model, and using a softmax to normalize the edge logits based on the flight origin
node to ensure that the outgoing probabilities sum to one. Mathematically our
probability prediction model is described in Eq. 1.

P̂ (i, j) = m
(
φe

i,j , φ
v
i , φv

j ; θ
)
=

exp (θT φi,j)∑

j′∈δ(i)

exp (θT φi,j′)
(1)

Our formulation ensures that the output probability estimates are a differ-
entiable function of the parameters θ to be trained using standard deep learning
libraries like pytorch [25]. Additionally, we experimented using a 3-layer multi-
layer perceptron (MLP) as well as gradient-boosted decision trees but found poor
generalization of the MLP and the gradient-boosted decision trees performed on
par with our linear model so we opted for the linear model as it was interpretable
with no drawback in performance.

With the given formulation, the probability of a path P (π) is the product
of individual edge probabilities Π(i,j)∈πP̂ ((i, j)|i). Furthermore, we can identify
the model’s highest-likelihood path by finding a shortest path with edge weights
corresponding to the negative log probability. A path minimizing the sum of
negative log probabilities is a path that maximizes the sum of log probabilities
which, due to the logarithm’s product rule and monotonicity, is a maximum like-
lihood path. The goal now is to find model parameters θ such that the observed
trafficking paths π have the highest likelihood.

At deployment time, this edge transition model will enable us to identify
easily the highest-likelihood path by solving a shortest path problem in log prob-

466 A. Ferber et al.

ability space, obtain other highly-likely paths by identifying other near-optimal
solutions, and allows us to easily evaluate the likelihood of any other alternative
path.

3.2 Model Training: Path-Integrated Learning

Given that we want to predict full paths in the flight network, we propose training
the parameters θ to directly minimize differences between the predicted highest-
probability path and observed trafficking paths. We consider a differentiable
pipeline and loss function that directly aligns model training with the problem
of recovering the ground truth path, and can be optimized using gradient descent.

Using the above definition of our edge transition probability estimator, we
express model training as solving the optimization problem in Eq. 2 which min-
imizes the expected Hamming loss between a given ground-truth path πs,d with
corresponding source s and destination d against the highest-likelihood path π̂s,d

predicted by the model connecting that source to that destination. The highest-
likelihood path is computed by Single Source Single Destination shortest path
solver (SSSDSolver) over the negative log of predicted transition probabilities
P̂ . Transition probabilities P̂ are computed according to Eq. (1).

Ultimately, to train the model we compute gradients for the model param-
eters via backpropagation of the hamming loss to the predicted highest-
probability path π̂, back to the predicted transition probabilities P̂ , and then to
the model parameters θ.

min
θ

Eπs,d

[
H

(
πs,d,SSSDSolver

(
−log

(
P̂

)
; s, d

))]
(2)

For completeness, we can define the single source single destination shortest
path solver in Eq. (3) as finding the path minimizing the sum of weights on edges
used in the path π, which in our case are negative log probabilities.

SSSDSolver(w; s, d) = argmin
πs,d

(∑
(i,j)∈πs,d

wi,j

)
(3)

Here we can use any off-the-shelf shortest path solver without worrying about
negative edge weights since the probabilities are all between 0 and 1 (exclusive),
so the negative log of the probabilities are all positive values. In practice, we
use Dijkstra’s shortest path algorithm. Note that the forward pass to get pre-
dicted path π̂ is the same approach we use for determining the highest-likelihood
path, thus aligning our model’s training with the overall deployment pipeline of
correctly identifying the full path.

In order for us to use gradient descent to train our model parameters, we
need to ensure that all steps from the model predictions to the loss evaluation
are differentiable so that gradients may be easily computed using chain rule. All
of the components except for the SSSDSolver are readily differentiable functions
available in Pytorch [25], as a result we need to define a backward pass for the
shortest path solver to enable model training.

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 467

Using the formulation enabling differentiation of blackbox solvers proposed
in [26], we make our forward and gradient update explicit below. In the for-
ward pass, we simply solve the shortest path problem and cache the solution
π̂ := SSSDSolver(w; s, d). The backward pass itself expects incoming gradients
from the loss layer, and returns outgoing gradients with respect to the input
edge costs w. Overall, the intention of the gradient is to give an indication
of what changes in the edge costs w will produce the desired change in the
returned path to minimize the loss and better align the path with the ground
truth solution. The method for differentiating blackbox solvers introduced in
[26] essentially perturbs the input objective coefficients w in the direction of the
gradient to find a “locally-improved” solution. It then computes the gradients
as the difference between the resulting “locally-improved” solution and the pre-
viously predicted solution. When used in conjunction with the hamming loss,
the “locally-improved” objective coefficients are simply the input objective coef-
ficients with a given amount increased or decreased depending on whether the
decision component, such as the edge usage, should be used or not. In order to
specify the degree that the input costs should be perturbed, the authors use a
hyperparameter λ which determines the degree to which the weights w should
be perturbed in the desired direction. Formally, in the backward pass, we are
given input gradients ∇π̂L of the loss with respect to the shortest path π̂. We
compute improved edge weights w′ = w + λ∇π̂L. Then we re-solve the problem
with improved edge weights to find a better solution π′ = SSSDSolver(w′; s, d).
Finally, we compute gradients of this layer as − 1

λ (π̂ − π′).
In our setting, this method corresponds to solving the shortest path problem

with perturbed weights where weight is slightly decreased on edges that should
appear in the ground truth solution and slightly increased on edges that aren’t in
the ground truth solution. The gradient that is passed back to the edge costs is
the difference between the predicted path and the “locally-improved” path. Intu-
itively, the approach aims to decrease cost on edges that should be in the locally-
improved short path but aren’t in the predicted path, and increase cost on edges
that are in the outputted shortest path but don’t appear in the locally-improved
path. Additionally, in our initial experiments, we found that performant values of
λ were large enough so that the weight perturbation eclipsed the initial weights
themselves, meaning that overall the “locally-improved” solution was simply the
ground truth solution. As such, to cut the number of solves down by half, we
simply used the ground truth solution path π as the “locally-improved” solution.

Note that this approach is akin to updating the gradients such that it scores
the ground truth solution π to have better objective value than the predicted
solution π̂. Additionally, in this scenario we consider that the path π is encoded
as a 0–1 vector with a given entry indicating whether edge (i, j) is used in the
path or not. As such, the weight vector is updated by the difference between
path solutions.

468 A. Ferber et al.

3.3 Model Training: Edge-Myopic Learning

We compare our path-integrated learning method with an approach that is
trained to minimize the Kullback-Leibler (KL) divergence [19] between the edge
probabilities computed directly from training data P ′ to the edge probabilities
predicted as a function of features P̂ . This approach focuses on correctly pre-
dicting rates at which different edges are used for trafficking in the ground truth
rather than looking at full paths, and is a slight variant of baseline approaches
in previous work [5] that is adapted for our setting where we have known source
and destination locations, as well as network features. Previous work estimates
the transition probabilities between different locations, and here we estimate
these transitions with a logistic regression model to obtain a model of how the
features are related to the observed transitions. Using raw training data, we esti-
mate transition probabilities P ′(e) as the number of times that a given flight e
is used for trafficking divided by the number of times that the source airport
is used for trafficking. The predictive model’s parameters are then trained to
closely match these transition probabilities based on the given features. Given
probability predictions P̂ and data-driven estimates P ′(e), the KL divergence is
KL

(
P̂ ||P ′(e)

)
=

∑
e P̂e log P̂e

P ′(e) . Overall, the Edge-Myopic learning trains the
parameters θ to minimize this edge-level KL divergence.

4 Data Sources

Centralized and comprehensive data sources are critical for combating wildlife
trafficking [16]; however, they are often lacking in practice, complicating the
application of models to different domains. In our experiments, we leverage data
regarding wildlife trafficking seizures, flight pricing, available flights, and indices
of general crime prevalence and resilience infrastructure. The global flight net-
work was collected from OpenFlights.org which hosts open-source information
about airports, routes, and flights. The data was last updated on January 2017,
and we have manually added several airports and routes to ensure that we can
place as many seizure records on the flight network as possible. Overall, this
dataset allows us to construct a flight network of 1,933 airport nodes connected
by 14,118 flight edges.

For each flight edge, we record the distance and collect flight pricing esti-
mates using the Skyscanner API [30]. Since flight pricing depends on several
components such as the amount of time before the flight, we collect prices for
all flight routes one month in advance. For each flight edge, we used the API
on October 14, 2021 to request flight quotes for November 2021. The API did
not return valid responses for several airport pairs due to no valid flight plans
existing in the database accessed by the API which we determined manually
from searching google flights. Additionally, we note that data was collected dur-
ing the coronavirus pandemic impacting flight availability, as historical data was
not available.

Each airport is associated with its country’s metrics reported in the Global
Organized Crime Index for 2021 [7], the first year the indices were published by

https://openflights.org/

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 469

Table 1. Node and edge features of the flight network. Features in Bold were selected
by recursive feature elimination.

NODE FEATURES

METADATA
Population CITES membership
Flight Count
GITOC - CRIMINAL MARKETS
Criminal Markets (Average) Fauna Crimes
Human Trafficking Heroin Trade
Human Smuggling Cocaine Trade
Arms Trafficking Cannabis Trade
Flora Crimes Synthetic Drug Trade
Non-Renewable Resource Crimes
GITOC - RESILIENCE
Anti-Money Laundering Systems Resilience (Average)
Political Leadership And Governance Territorial Integrity
Govt. Transparency & Accountability Law Enforcement
Economic Regulatory Capacity International Cooperation
Victim & Witness Support National Policies & Laws
Judicial System And Detention Prevention
GITOC - CRIMINAL ACTOR
Criminal Actors (Average) State-Embedded Actors
Mafia-Style Groups Foreign Actors
Criminal Networks Non-State Actors
EDGE FEATURES
Price Distance

the Global Initiative Against Transnational Organized Crime (GITOC). These
indices represent expert opinion of a country’s relationship with various forms of
organized crime, including the prevalence of different criminal actors, strength
of resilience resources, and presence of criminal markets. These indices score
countries from 1 to 10 based on 5 rounds of anonymous and independent expert
reviews in 2020. We also add information about whether the airport’s country is
a member of CITES, the city’s population, and the number of flights that serve
the given airport. The node and edge features we collected are summarized in
Table 1.

We obtained seizure data from the Wildlife Trade Portal (WTP) [36] through
which TRAFFIC provides historical seizure data with detailed records like
intended itinerary (source, destination, transit points), trafficked wildlife, traf-
ficker details, and legal outcomes. In total, we accessed 1,067 records between

470 A. Ferber et al.

2017 and 2021 to synthesize a dataset of 454 itineraries of wildlife trafficking.
Only 362 of the 1,933 airport nodes in the global flight network are used by
traffickers in the historical seizure data, highlighting the data sparsity. Further-
more, in terms of the paths themselves, the data is biased towards shorter paths,
having 1-hop, 2-hop, 3-hop, and 4-hop paths making up 60.6%, 24.2%, 15%, and
0.2% of the data respectively.

Seizure data provides a glimpse of how WT networks operate, alert experts to
trends in supply and demand for different species, and point to key locations for
deterring wildlife crime [20]. However, it is important to understand the biases
in seizure data due to being collected by different law enforcement agencies,
using several means of detection, against various criminal agents [6,15]. As a
result, seizure data not only reflects the criminal network, but also the defensive
resources. Nevertheless, seizure data is one of the few tools we have available to
peer into WT networks in a scalable manner.

5 Experiments

Table 2. Summary statistics from 10-fold cross-validation of models using either the
full set of features or an algorithmically-selected subset. We evaluate two training meth-
ods, edge-myopic learning which aims to correctly predict how often individual edges
are used, and path-integrated learning which aims to identify the complete intended
source-destination path. We report the average performance across folds with 95%
confidence intervals.

Training Method Features Path recall ↑ Edge recall ↑ Edge precision ↑ Edit distance ↓
Edge-Myopic Selected 89.6% ± 1.2 83.1% ± 2.6 86.1% ± 1.0 0.115 ± 0.04
Path-Integrated Selected 92.4% ± 2.7 88.4% ± 4.3 90.5% ± 2.6 0.088 ± 0.03
Edge-Myopic All 89.2% ± 2.5 82.8% ± 3.5 85.5% ± 3.1 0.113 ± 0.03
Path-Integrated All 89.1% ± 3.1 82.6% ± 4.0 85.4% ± 3.4 0.113 ± 0.03

5.1 Feature Selection

Feature selection identifies the highest-impact features, limits overfitting, and
avoids correlated features. We use recursive feature elimination to iteratively
remove the least-useful feature from the current feature set by testing each of
them and evaluating the change in 10-fold path recall. Since node features appear
twice for a given edge, once for the edge’s head and again for the tail, we drop
both as needed. The full set and selected features in bold are in Table 1.

5.2 Metrics

We train the models using the Adam optimizer with amsgrad [27], and evalu-
ate the models using 10-fold cross-validation, splitting the dataset by source-
destination pair. This produces a prediction for every source-destination path
using a model that wasn’t trained on information from the given source-
destination pair. We evaluate using several metrics at the path and edge level.

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 471

Fig. 2. Visualization of discrepancies between Path-Integrated predicted itineraries in
blue and observed itineraries in red. Additionally, domain experts identified two likely
errors in Fig. d where our model’s predictions are unrealistic. (Color figure online)

Path Recall is the percent of the ground truth paths the model completely
predicted correctly. Given the N ground truth paths in the dataset Dπ, the path
recall is 1

N

∑
πs,d∈Dπ δ (πs,d = π̂s,d). Here δ is just a 1 if the paths are completely

equal (taking the same sequence of edges) and 0 otherwise. Higher values here
mean that our model is not likely to miss out on trafficked paths.

Edge Recall is the percent of trafficked edges that our model predicts to have traf-
ficking. Mathematically this is

(∑
πs,d∈Dπ

∑
e∈πs,d

δ (e ∈ π̂s,d)
)

/
∑

πs,d∈Dπ |πs,d|.
High values here mean that a large proportion of observed trafficked edges are
picked up by our model.

Edge Precision measures the percent of edges that our model predicts to have
trafficking which did in fact exhibit trafficking in the seizure data. Mathemat-
ically this is

(∑
πs,d∈Dπ

∑
e∈π̂s,d

δ (e ∈ πs,d)
)

/
∑

πs,d∈Dπ |π̂s,d|. High values here
mean that our model’s predictions are trustworthy and that domain users can
expect that the model’s predictions will likely contain trafficking.

472 A. Ferber et al.

Fig. 3. Feature importance boxplot of the model coefficients across 10 training folds.
Positive values suggest higher trafficking rates when the indicator is prevalent and
negative values indicate lower rates when the indicator is prevalent.

Edit Distance or Levenshtein distance [21], is the smallest number of “edits”
(additions, removals, or substitutions) needed to go from the predicted to ground
truth path, considering the itinerary to be a sequence of airports visited. Low
edit distance means that the predicted paths are similar to the observed paths.

5.3 Results Discussion

We present numerical results in Table 2, computing the average and standard
deviation in performance with 10-fold cross-validation. Given the data size of
only 454 itineraries, the differences in performance come from only a few pre-
dicted paths. Additionally, both models benefit from feature selection, with
feature-selected path-integrated learning improving over edge-myopic learning.
The performance of path-integrated learning with feature selection is high in
that the models are able to recall 92.4% of the paths completely, 88.4% of the
edges, and the predicted edges contain trafficking at a rate of 90.5%. Addition-
ally, breaking the results down by path length, we find that on the 1-hop, 2-hop,
3-hop, and 4-hop paths, path-integrated learning with selected features gets path
recalls of 98.9%, 83.1%, 80.7%, and 100%, respectively, and average Levenstein
distances of 0.031, 0.169, 0.192, and 0 respectively. On the other hand, across
1-hop, 2-hop, 3-hop, and 4-hop paths, the edge-myopic learning with selected
features has path recall of 100%, 83.1%, 58.6%, and 0%, respectively, with Lev-
enstein distances of 0.0, 0.261, 0.314, 2.0, respectively. Across all folds, our model
differs with 31 ground truth paths between 25 origin-destination pairs. We note
that our performance improvements aren’t statistically significant for most met-
rics, except for edge precision, due to our small sample size. However, given
that path-integrated learning gives fewer errors in our low data regime and are
promising for future work when more data is available for evaluation. Given the

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 473

data bias, the predicted alternate routes may contain wildlife trafficking even
though it is not present in the ground-truth data. We visualize representative
discrepancies between predicted and observed paths in Fig. 2 with predicted
paths in blue and observed paths in red. We categorize the discrepancies into 10
origin-destination pairs where our predictions shortcut the observed itinerary by
removing stops (Fig. 2a), and 13 cases where our model predicts different lay-
overs than the observed (Fig. 2b, 2c), identified as highly plausible in informal
consultations with experts. The two cases where our model predicted additional
layovers are visualized in Fig. 2d and are likely errors.

We visualize the path-integrated learning model’s feature importance in
Fig. 3. Here, positive values mean that high feature values induce high estimated
probability, whereas negative values mean that high feature values induce low
estimated probability. Overall, the model considers that traffickers are likely to
travel to locations with high arms trafficking as well as resilience against money
laundering. The convergence between wildlife trafficking and arms trafficking has
been documented and has broad implications for interdiction [32]. Additionally,
the model predicts that traffickers are less likely to enter regions with high flora
crime, criminal networks, or human trafficking. The negative value for the flight
destination’s flora crimes is interesting and warrants further investigation, and
may reflect seizure data bias, or traffickers wanting to flee suspicion. Some fea-
tures have 0 weight from selecting features based on edge-myopic learning, as
well as having correlated features. Ultimately, we propose a model and a train-
ing approach, presenting promising results with the best data available so far.
More in-depth and robust conclusions about wildlife trafficking route prediction
can be made in the future as more complete seizure data and richer feature sets
become available, which can leverage our modeling work.

5.4 Conclusion

We approach the problem of predicting wildlife trafficking on the flight trans-
portation network with differentiable optimization. To align our network training
with the goal of correctly identifying full paths, we train with a differentiable
highest-probability path solver We show that a path-integrated learning model
learns over the available airport and flight features with limited training data,
slightly improving over edge-myopic learning, and can likely further improve as
more seizure data is collected. Lastly, we identify several features that may con-
tribute to traffickers being more likely to take a given path. We hope that our
method will help inform interdiction efforts and the study of wildlife trafficking
networks, and we intend to use our predictions in conjunction with combinatorial
interdiction in future work.

Acknowledgments. All authors were supported by U.S. NSF awards CMMI-1935451;
Gore was also supported by IIS-2039951. The information contained herein does not
represent the opinions of the U.S. Government or any author affiliations.

474 A. Ferber et al.

References

1. Ahuja, R.K., Orlin, J.B.: Inverse optimization. Oper. Res. 49, 771–783 (2001).
https://doi.org/10.1287/opre.49.5.771.10607

2. Amos, B., Kolter, J.Z.: OptNet: differentiable optimization as a layer in neural net-
works. In: Proceedings of the 34th International Conference on Machine Learning.
Proceedings of Machine Learning Research, vol. 70, pp. 136–145. PMLR (2017)

3. Arroyave, F.J., Petersen, A.M., Jenkins, J., Hurtado, R.: Multiplex networks reveal
geographic constraints on illicit wildlife trafficking. Appl. Netw. Sci. 5(1), 1–20
(2020). https://doi.org/10.1007/s41109-020-00262-6

4. Balghiti, O.E., Elmachtoub, A.N., Grigas, P., Tewari, A.: Generalization bounds
in the predict-then-optimize framework. In: Advances in Neural Information Pro-
cessing Systems, vol. 32 (2019)

5. Choi, S., Yeo, H., Kim, J.: Network-wide vehicle trajectory prediction in urban
traffic networks using deep learning. Transp. Res. Rec. 2672(45), 173–184 (2018)

6. CITES: https://cites.org/eng ()
7. Global Initiative Against Transnational Organized Crime. The global organized

crime index (2021). https://globalinitiative.net/analysis/ocindex-2021/
8. Elmachtoub, A., Liang, J.C.N., McNellis, R.: Decision trees for decision-making

under the predict-then-optimize framework. In: International Conference on
Machine Learning, pp. 2858–2867. PMLR (2020). https://github.com/rtm2130/
SPOTree

9. Elmachtoub, A.N., Grigas, P.: Smart “predict, then optimize". Manage. Sci. 68(1),
9–26 (2021). https://doi.org/10.1287/mnsc.2020.3922

10. Feng, J., et al.: DeepMove: predicting human mobility with attentional recurrent
networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468
(2018)

11. Fosgerau, M., Paulsen, M., Rasmussen, T.K.: A perturbed utility route choice
model. Transp. Res. Part C Emerg. Technol. 136, 103514 (2022). https://doi.
org/10.1016/j.trc.2021.103514, https://www.sciencedirect.com/science/article/
pii/S0968090X21004976

12. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Next place prediction using
mobility Markov chains. In: Proceedings of the First Workshop on Measurement,
Privacy, and Mobility, pp. 1–6 (2012)

13. Gholami, S., et al.: Adversary models account for imperfect crime data: forecasting
and planning against real-world poachers (corrected version). In: 17th International
Conference on Autonomous Agents and Multiagent Systems (2018)

14. Gore, M.L., et al.: Transnational environmental crime threatens sustainable devel-
opment. Nat. Sustain. 2(9), 784–786 (2019)

15. Gore, M.L., Mwinyihali, R., Mayet, L., Baku-Bumb, G.D.M., Plowman, C.,
Wieland, M.: Typologies of urban wildlife traffickers and sellers. Glob. Ecol. Con-
serv. 27, e01557 (2021)

16. Gore, M.L., et al.: Voluntary consensus based geospatial data standards for the
global illegal trade in wild fauna and flora. Sci. Data 9(1), 1–8 (2022)

17. Haas, T.C., Ferreira, S.M.: Finding politically feasible conservation policies: the
case of wildlife trafficking. Ecol. Appl. 28(2), 473–494 (2018)

18. IATA: Combating wildlife trafficking. https://www.iata.org/en/programs/
environment/wildlife-trafficking/. Accessed 15 Aug 2022

19. Kullback, S.: Information theory and statistics. Courier Corporation (1997)

https://doi.org/10.1287/opre.49.5.771.10607
https://doi.org/10.1007/s41109-020-00262-6
https://cites.org/eng
https://globalinitiative.net/analysis/ocindex-2021/
https://github.com/rtm2130/SPOTree
https://github.com/rtm2130/SPOTree
https://doi.org/10.1287/mnsc.2020.3922
https://doi.org/10.1016/j.trc.2021.103514
https://doi.org/10.1016/j.trc.2021.103514
https://www.sciencedirect.com/science/article/pii/S0968090X21004976
https://www.sciencedirect.com/science/article/pii/S0968090X21004976
https://www.iata.org/en/programs/environment/wildlife-trafficking/
https://www.iata.org/en/programs/environment/wildlife-trafficking/

Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths 475

20. Kurland, J., Pires, S.F.: Assessing us wildlife trafficking patterns: how criminology
and conservation science can guide strategies to reduce the illegal wildlife trade.
Deviant Behav. 38(4), 375–391 (2017)

21. Levenshtein, V.I., et al.: Binary codes capable of correcting deletions, insertions,
and reversals. In: Soviet Physics Doklady, vol. 10, pp. 707–710. Soviet Union (1966)

22. Magliocca, N., et al.: Comparative analysis of illicit supply network structure and
operations: cocaine, wildlife, and sand. J. Illicit Econ. Dev. 3(1), 50–73 (2021)

23. Nguyen, T.H., et al.: Capture: a new predictive anti-poaching tool for wildlife
protection. In: Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, pp. 767–775 (2016)

24. Niepert, M., Minervini, P., Franceschi, L.: Implicit MLE: backpropagating through
discrete exponential family distributions. In: Advances in Neural Information Pro-
cessing Systems, vol. 34 (2021). https://github.com/nec-research/tf-imle

25. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp.
8024–8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

26. Pogančić, M.V., Paulus, A., Musil, V., Martius, G., Rolinek, M.: Differentiation of
blackbox combinatorial solvers. In: International Conference on Learning Repre-
sentations (2020). https://openreview.net/forum?id=BkevoJSYPB

27. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and Beyond. In:
International Conference on Learning Representations (2018). https://openreview.
net/forum?id=ryQu7f-RZ

28. ROUTES: How the aviation industry transformed to combat wildlife traffick-
ing (2022). https://www.internationalairportreview.com/article/173456/how-the-
aviation-industry-transformed-to-combat-wildlife-trafficking/. Accessed 15 Aug
2022

29. Rudenko, A., Palmieri, L., Herman, M., Kitani, K.M., Gavrila, D.M., Arras, K.O.:
Human motion trajectory prediction: a survey. Int. J. Robot. Res. 39(8), 895–935
(2020)

30. skyscanner (2020). https://skyscanner.github.io/slate/
31. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms.

Eur. J. Oper. Res. 283(3), 797–811 (2020)
32. Spevack, B.: Shared skies convergence of wildlife trafficking with other illicit activ-

ities in the aviation industry. In: C4ADS (2021). www.routespartnership.org
33. Stringham, O.C.: Text classification to streamline online wildlife trade analyses.

PLoS ONE 16(7), e0254007 (2021)
34. Stringham, O.C., et al.: Dataset of seized wildlife and their intended uses. Data

Brief 39, 107531 (2021). https://doi.org/10.1016/j.dib.2021.107531. https://www.
sciencedirect.com/science/article/pii/S2352340921008076

35. Stringham, O.C., et al.: A guide to using the internet to monitor and quantify the
wildlife trade. Conserv. Biol. 35(4), 1130–1139 (2021)

36. TRAFFIC: Wildlife trade portal (2021). www.wildlifetradeportal.org
37. UNODC: Enhancing the Detection, Investigation, and Disruption of Illicit Finan-

cial Flows from Wildlife Crime (2017). http://www.unodc.org/unodc/en/data-
and-analysis/wildlife.html

38. Utermohlen, M., Baine, P.: In plane sight: wildlife trafficking in the air trans-
port sector (2018). https://www.traffic.org/publications/reports/in-plane-sight/.
Accessed 15 Aug 2022

https://github.com/nec-research/tf-imle
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=ryQu7f-RZ
https://openreview.net/forum?id=ryQu7f-RZ
https://www.internationalairportreview.com/article/173456/how-the-aviation-industry-transformed-to-combat-wildlife-trafficking/
https://www.internationalairportreview.com/article/173456/how-the-aviation-industry-transformed-to-combat-wildlife-trafficking/
https://skyscanner.github.io/slate/
www.routespartnership.org
https://doi.org/10.1016/j.dib.2021.107531
https://www.sciencedirect.com/science/article/pii/S2352340921008076
https://www.sciencedirect.com/science/article/pii/S2352340921008076
www.wildlifetradeportal.org
http://www.unodc.org/unodc/en/data-and-analysis/wildlife.html
http://www.unodc.org/unodc/en/data-and-analysis/wildlife.html
https://www.traffic.org/publications/reports/in-plane-sight/

476 A. Ferber et al.

39. Utermohlen, M.: Runway to extinction: wildlife trafficking in the air transport
sector (2020). https://routespartnership.org/industry-resources/publications/
runway-to-extinction-report. Accessed 15 Aug 2022

40. Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: decision-
focused learning for combinatorial optimization. In: Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, 1658–1665 (2019). https://doi.org/10.
1609/aaai.v33i01.33011658

41. Xu, L., Bondi, E., Fang, F., Perrault, A., Wang, K., Tambe, M.: Dual-mandate
patrols: multi-armed bandits for green security. In: Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI-21) (2021)

42. Zhang, J., Paschalidis, I.C.: Data-driven estimation of travel latency cost functions
via inverse optimization in multi-class transportation networks. In: 2017 IEEE 56th
Annual Conference on Decision and Control, CDC 2017, pp. 6295–6300 (2018).
https://doi.org/10.1109/CDC.2017.8264608

43. Ziebart, B.D., et al.: Planning-based prediction for pedestrians. In: 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3931–3936. IEEE
(2009)

https://routespartnership.org/industry-resources/publications/runway-to-extinction-report
https://routespartnership.org/industry-resources/publications/runway-to-extinction-report
https://doi.org/10.1609/aaai.v33i01.33011658
https://doi.org/10.1609/aaai.v33i01.33011658
https://doi.org/10.1109/CDC.2017.8264608

Iterated Greedy Constraint Programming
for Scheduling Steelmaking Continuous

Casting

Dongyun Kim1 , Yeonjun Choi1 , Kyungduk Moon1 , Myungho Lee1 ,
Kangbok Lee1(B) , and Michael L. Pinedo2

1 Pohang University of Science and Technology, Pohang, South Korea
{dykim97,choichoi,kaleb.moon,hojoung10,kblee}@postech.ac.kr

2 Stern School of Business, New York University, New York, NY, USA
mlp5@stern.nyu.edu

Abstract. We consider a steelmaking-continuous casting (SCC)
scheduling problem in the steel industry, which is a variant of the hybrid
flow shop scheduling problem subject to practical constraints. Recently,
Hong et al. [Hong, J., Moon, K., Lee, K., Lee, K., Pinedo, M.L., Interna-
tional Journal of Production Research 60(2), 623-643 (2022)] developed
an algorithm, called Iterated Greedy Matheuristic (IGM), in which a
Mixed Integer Programming (MIP) model was proposed and its sub-
problems are iteratively solved to improve the solution. We propose a
new constraint programming (CP) formulation for the SCC scheduling
problem and develop an algorithm, called Iterated Greedy CP (IGC),
which uses the framework of IGM but replaces the MIP model with our
CP model. When we solve the CP subproblems iteratively, we also refine
them by adding appropriate constraints, reducing the domains of the
variables, and giving the variables hints derived from the current solu-
tion. From computational experiments in various settings, we show that
IGC implemented with an open-source CP solver can be competitive
with IGM running on a commercial MIP solver.

Keywords: Scheduling · steelmaking-continuous casting process ·
hybrid flow shop · constraint programming · computational
experiments

1 Introduction

Constraint Programming (CP) has been frequently used to solve classical
machine scheduling problems along with other methods such as exact algorithms
(e.g., Mixed Integer Programming (MIP) formulation with a solver, dynamic
programming (DP)), heuristics (e.g., dispatching, decomposition), and meta-
heuristics (e.g., genetic algorithm, artificial bee colony). Since CP recently has
improved benchmark results for many scheduling problems such as the classical
job shop [2], the open shop [6] and other complex shop scheduling problems [7,8],
it has received attention from the academic community. Although CP has the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 477–492, 2023.
https://doi.org/10.1007/978-3-031-33271-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_31&domain=pdf
http://orcid.org/0000-0003-3029-6968
http://orcid.org/0000-0001-6213-8900
http://orcid.org/0000-0002-1192-8854
http://orcid.org/0000-0002-1499-9367
http://orcid.org/0000-0002-3526-9865
http://orcid.org/0000-0001-7814-0642
https://doi.org/10.1007/978-3-031-33271-5_31

478 D. Kim et al.

potential to represent complicated constraints of practical scheduling problems,
metaheuristics are often preferred due to their capability of finding a fairly good
solution in a decent amount of time.

Recently, an algorithm called Iterated Greedy Matheuristic (IGM) was devel-
oped by Hong et al. [5] to solve a practical scheduling problem in the steel
industry. They proposed a MIP model and solved its subproblems iteratively
to improve the solution. IGM reportedly outperforms pure MIP and genetic
algorithms.

IGM can be regarded as a Large Neighborhood Search (LNS) algorithm, which
dynamically relaxes a part of the variables of an incumbent solution (and fixes
the remaining part to a certain extent) and reoptimizes by solving a smaller sub-
problem. First introduced by Shaw [13], LNS has been used to solve scheduling
problems in job shop environments [1,3] and in flexible job shop environments
[10]. In scheduling problems, LNS can be implemented by imposing precedence
relationships to the operations except the ones to be relaxed. The relaxed oper-
ations can be selected randomly, from a subset of machines, or within a time
window. We refer to [12] as a survey of LNS for various combinatorial optimiza-
tion problems.

In this paper, we propose Iterated Greedy CP (IGC), a revised version of IGM
by replacing a MIP model with a CP model. Our computational results show
that IGC implemented with an open-source CP solver can be competitive with
IGM using a commercial MIP solver. Hence, IGC seems to have the potential
to solve hard scheduling problems. We also compare the performances of CP
and MIP in the Iterated Greedy (IG) framework for practical SCC scheduling
problems, which has not often been done in the literature.

The comparison between IGC and IGM can be summarized as follows.

IGC IGM

Modeling CP or MIP

Main variable types interval, integer, binary continuous, binary

Logical implication optional & present vars big-M & binary vars

Tightening formulation domain reduction valid inequalities

Iteration in LNS

From previous iteration hints for some vars initial values for all vars

Fixing machine assignment fixing present vars fixing binary vars

Fixing precedence adding constraints fixing binary vars

The organization of the paper is as follows. In Sect. 2, we describe the problem
as a variant of the hybrid flow shop, and present a CP formulation. In Sect. 3, the
IGC algorithm is presented. Sect. 4 shows experimental settings, computational
results and analysis. Sect. 5 provides concluding remarks.

2 Problem Description

We consider a practical scheduling problem for the steel-making and continuous
casting (SCC) process, which is known as a bottleneck process. The steel industry

Iterated Greedy Constraint Programming for the SCC Scheduling 479

is one of the largest energy-consuming and pollution-generating industries in the
world. Due to its importance, scheduling for the SCC process has been studied
extensively in the last two decades [9,11,14]. We describe the SCC scheduling
problem considered in [5] as a variant of the hybrid flow shop scheduling problem
with additional constraints.

In the SCC scheduling problem, we consider a production unit called a charge
that corresponds to a job. The stages consisting of the SCC process have a fixed
order. A charge must be processed in the first and last stages, whereas it may
not be processed in some or all of the stages in between. Each charge has its own
predetermined route defined as a sequence of stages it has to go through. There
are unrelated parallel machines in each stage, and when a charge is brought to
the next stage, transportation time is required. If a charge is transported to the
next stage but cannot start its processing immediately, a waiting time occurs
and it cannot exceed the maximum waiting time limit. At the last stage, we con-
sider another production unit called a cast which is defined as a predetermined
sequence (serial batch) of charges, and each charge belongs to exactly one cast.
Charges in a cast must be processed at the same machine in the last stage in
a predetermined order without any idle time in between. A machine-dependent
setup time takes place before processing the first charge of every cast. As objec-
tives, we consider the minimization of a linear combination of the total waiting
time, earliness, and tardiness. The waiting time is computed for each transporta-
tion of a charge between stages. Earliness and tardiness are defined for the last
stage because each charge has a due date for its last operation. There should
not be any idle times between charges in a cast; we incorporate these constraints
as another objective term with a very large penalty called cast break penalty,
which is common in many papers dealing with the SCC scheduling problem.
As stated in [5], even the single-cast version of the described SCC scheduling
problem is more general than the hybrid flow shop scheduling problem, and thus
is NP-hard.

Table 1 shows the notations of the parameters and variables in the CP model.
We assume that all parameters and variables have integral values. All parameters
are adapted from [5] except the scheduling horizon H for the CP model. The for-
mula of H in Table 1 expresses the makespan of a schedule where the operations
of all charges are assigned to a common machine after time maxk∈Ω dk with their
largest processing times and the transportation times plus the maximum waiting
times. We assume that the setup times in the last stage are sufficiently small
enough compared with the processing times. Preliminary experiments showed
that using a small H value to reduce the domain of the variables significantly
enhances the performance of the CP solver.

We also further elaborate on the notations used in our CP model and in
our algorithm. An interval variable x is defined by three integer variables: start-
ing time s, duration d, and ending time e. Hereafter, s and e are denoted as
startOf(x) and endOf(x), respectively. An optional interval variable has an
additional Boolean variable, denoted as presenceOf(x) that represents if the
corresponding interval variable is present (True) or absent (False) within the

480 D. Kim et al.

Table 1. Notations used in the constraint programming model

Parameters

S The sequence of all stages, S = {1, ..., l, ..., L}
where L is the last stage for continuous casting

J The set of all casts, J = {1, ..., j, ..., m} where m is the number of casts

Ω The set of all charges, Ω = {1, ..., k, ..., n} where n is the number of charges

Ωj The sequence of charges in cast j, Ωj := {Ωj [1], Ωj [2], ..., Ωj [nj]}
where nj is the number of charges in cast j (∀j ∈ J)

Sk The sequence of stages in charge k’s route, Sk := {Sk[1], Sk[2], ..., Sk[ck]}
where ck is the number of stages in charge k’s route (∀k ∈ Ω)
and Sk[1] = 1, Sk[ck] = L

Ŝk The set of pairs of two consecutive stages in the route of charge k,
Ŝk := {(Sk[ρ], Sk[ρ + 1]) : ρ ∈ {1, 2, ..., ck − 1}} (∀k ∈ Ω)

Ml The set of machines at stage l (∀l ∈ S)

pik The processing time of charge k on machine i (∀k ∈ Ω, i ∈ ⋃
l∈Sk

Ml)

τii′ The transportation time from machine i to i′ (∀i, i′ ∈ ⋃
l∈S Ml)

rkl The earliest release time of charge k at stage l given as
rk1 := 0 and rkl′ := rkl + mini∈Ml,i

′∈Ml′ {pik + τii′} (∀k ∈ Ω, (l, l′) ∈ Ŝk)

sij The setup time of cast j on machine i at stage L (∀j ∈ J, i ∈ ML)

dk The due date of charge k at stage L (∀k ∈ Ω)

Wmax The maximum waiting time

π1-π4 Coefficients of penalty for (cast break / waiting time / earliness / tardiness)

H An upper bound of the time horizon defined as follows

H := max
k∈Ω

dk + (|S| − 1) ·
(

max
i,i′∈∪l∈SMl

τii′ + Wmax

)

+
∑

k∈Ω

∑

l∈Sk

max
i∈Ml

pik

Variables and domains

Chgilk Optional interval variable with fixed duration pik representing charge k
assigned to machine i at stage l (∀k ∈ Ω, l ∈ Sk, i ∈ Ml); Chgilk ∈ [rkl, H)

Chglk Interval variable for charge k assigned at stage l (∀k ∈ Ω, l ∈ Sk);
Chglk ∈ [rkl, H)

Cstij Optional interval variable for cast j assigned to machine i
at stage L (∀j ∈ J, i ∈ ML); Cstij ∈ [max{rΩj [1]L

− sij , 0}, H)

Cstj Interval variable for cast j assigned at stage L (∀j ∈ J);
Cstj ∈ [max{rΩj [1]L

− maxi∈L sij , 0}, H)

Uk The idle time between charge k and its following charge in the same cast at
stage L (∀k ∈ Ω \ ∪j∈J{Ωj [nj]}); 0 ≤ Uk ≤ H

Wkl The waiting time of charge k between stage l and its next stage l′ in its route
(∀k ∈ Ω, (l, l′) ∈ Ŝk); 0 ≤ Wkl ≤ Wmax

Trkll′ The transportation time of charge k from stage l to the next stage l′
in its route (∀k ∈ Ω, (l, l′) ∈ Ŝk); min

i∈Ml,i′∈Ml′
τii′ ≤ Trkll′ ≤ max

i∈Ml,i
′∈Ml′

τii′

Ek The earliness of charge k (∀k ∈ Ω); 0 ≤ Ek ≤ max{dk − rkL − min
i∈ML

pik, 0}
Tk The tardiness of charge k (∀k ∈ Ω); 0 ≤ Tk ≤ H − dk

Iterated Greedy Constraint Programming for the SCC Scheduling 481

schedule. For two Boolean variables b1 and b2, b1 ∧ b2 denotes the logical AND
operator applied to b1 and b2. Function max{u, v} denotes the maximum of two
integer values u and v. For two constraints C1 and C2, we denote the condi-
tional constraint “if C1 (is satisfied) then C2” as C1 ⇒ C2. We use constraint
alternative(x, {y1, ..., yn}) with interval variables x, y1, ..., yn in our model to
ensure that exactly one interval out of {y1, ..., yn} is present and has the same
starting time and ending time as interval x. Constraint noOverlap({y1, ..., yn})
ensures that the present intervals of {y1, ..., yn} do not mutually overlap. Using
Google OR-Tools CP-SAT solver, we can give hints when solving a CP. A hint
is a (partial) solution that the solver uses as a warm start to create its initial
feasible solution. It is allowed to give hints to some variables prior to solving a
CP problem; addHint(x, x̂) gives a variable x a value x̂ as a hint.

The CP model is described with an objective (1) and constraints (2)–(14).

The CP model
minimize

π1 ·
∑

j∈J

nj−1∑

κ=1

UΩj [κ] + π2 ·
∑

k∈Ω

ck−1∑

ρ=1

Wk,Sk[ρ] + π3 ·
∑

k∈Ω

Ek + π4 ·
∑

k∈Ω

Tk (1)

subject to
alternative(Chglk, {Chgilk}i∈Ml

) ∀k ∈ Ω, l ∈ Sk (2)
noOverlap({Chgilk}k∈{k′: l∈Sk′ }) ∀l ∈ S, i ∈ Ml (3)

alternative(Cstj , {Cstij}i∈ML
) ∀j ∈ J (4)

noOverlap({Cstij}j∈J) ∀i ∈ ML (5)
presenceOf(ChgiLk) = presenceOf(Cstij)

∀j ∈ J, k ∈ {Ωj [1], ..., Ωj [nj]}, i ∈ ML (6)

startOf(Chgl′k) = endOf(Chglk) + Wkl + Trkll′ ∀k ∈ Ω, (l, l′) ∈ Ŝk (7)
(
presenceOf(Chgilk) ∧ presenceOf(Chgil′k)

) ⇒ (Trkll′ = τii′)

∀k ∈ Ω, (l, l′) ∈ Ŝk, i ∈ Ml, i
′ ∈ Ml′ (8)

presenceOf(Cstij) ⇒ (
startOf(Cstj) = startOf(ChgLΩj [1]) − sij

)

∀j ∈ J, i ∈ ML (9)

presenceOf(Cstij) ⇒ (
endOf(Cstj) = endOf(ChgLΩj [nj])

)

∀j ∈ J, i ∈ ML (10)
endOf(ChgLΩj [κ]) + UΩj [κ] = startOf(ChgLΩj [κ+1])

∀j ∈ J, κ ∈ {1, ..., nj − 1} (11)
Ek = max{dk − endOf(ChgLk), 0} ∀k ∈ Ω (12)
Tk = max{endOf(ChgLk) − dk, 0} ∀k ∈ Ω (13)
Tk − Ek = endOf(ChgLk) − dk ∀k ∈ Ω (14)

482 D. Kim et al.

Objective (1) is the weighted sum of the total cast break penalty, total wait-
ing time, earliness, and tardiness of charges. Constraints (2) ensure that a charge
is present at exactly one machine in each stage along its route, and constraints
(3) mean that the present charge intervals at each machine must not overlap.
Constraints (4) and (5) are the analogies for each cast in the last stage. Con-
straints (6) ensure that a cast and its charges must be assigned to the same
machine in the last stage. Constraints (7) define the waiting time and trans-
portation time between two consecutive stages in a charge’s route. Constraints
(8) determine the machine-dependent transportation time of a charge between
two stages in its route. Constraints (9) and (10) define the starting time and
the ending time of a cast interval Cstj as the starting time of the setup for
cast j on the assigned machine and the ending time of the last charge in cast j,
respectively. Constraints (11) define the idle times between consecutive charges
of the same cast in the last stage. Fig. 1 illustrates an example of a cast inter-
val and its charge intervals. Constraints (12) and (13) define the earliness and
tardiness of each present charge, respectively. In addition, constraints (14) are
valid equalities involving the tardiness and earliness of each present charge.

… …

Fig. 1. Notations of a cast interval and its charge intervals

3 Iterated Greedy CP Algorithm

In this section, we describe our Iterated Greedy CP algorithm (IGC), a CP-
based IG framework for solving the SCC problem in detail. Our IG framework
consists of four procedures: LC, IH, DC, and CI. The LC procedure computes
lower bounds for each single cast scheduling problem. The IH procedure finds
an initial solution by a greedy heuristic. The DC procedure has two heuristics to
iteratively improve the solution. Lastly, the CI procedure solves the entire CP
model in search of a better solution than the incumbent solution. We refer to
[5] for the original MIP version of the Iterated Greedy Matheuristic (IGM). The
following notations are used throughout this section.

Iterated Greedy Constraint Programming for the SCC Scheduling 483

Notations used in IGC

CP(I) The CP model in Sect. 2 with restricted set of casts I ⊆ J

master CP The CP problem containing all casts, i.e., CP(J)

σ A partial or feasible solution (schedule) of a CP (sub)problem

Z(σ) The objective function value of solution σ to a CP (sub)problem

CLB An ordered list of LB constraints for the objective terms in CP(J)

(̂·)σ
The value of a variable determined by a solution σ

Hσ A set of hints that are derived from solution σ

〈C, H, T 〉 Control parameters in solving a CP (sub)problem;

C: a set of additional constraints, H: a set of hints, and T : a time limit

3.1 Lower Bound Computation

The first step of IGC is the Lower bound Computation (LC). We consider a
single-cast scheduling problem for charges in a single cast, and the optimal objec-
tive value serves as a lower bound of the contribution of that single cast to the
master problem’s objective. Denoting σj as an optimal solution of CP({j}), the
following constraint is valid.

π2 ·
∑

k∈Ωj

ck−1∑

ρ=1

Wk,Sk[ρ] + π3 ·
∑

k∈Ωj

Ek + π4 ·
∑

k∈Ωj

Tk ≥ Z(σj) (15)

This constraint for cast j ∈ J is saved and used as an additional constraint
throughout all procedures of IGC when solving a CP (sub)problem involving
cast j. Since the starting time of cast j in σj may represent the desired starting
time of cast j in the master CP, the casts are rearranged in nondecreasing order
of startOf(̂Cstj)σj values. Algorithm 1 summarizes the LC procedure.

When we solve CP({j}), the upper bound of the time horizon H in the CP
model is computed by considering only the charges in cast j as the entire charge
set. That is, denoting H0

j as the H value for CP({j}), we have

H0
j := max

k∈Ωj

dk + (|S| − 1) ·
(

max
i,i′∈∪l∈SMl

τii′ + Wmax

)
+

∑

k∈Ωj

∑

l∈Sk

max
i∈Ml

pik (16)

In order to use a better upper bound on the time horizon for the subsequent
procedures, we use the solutions σj (∀j ∈ J) obtained in the LC procedure
as follows. We define Rj := mink∈Ωj

{startOf(̂Chglk)σj : l ∈ S} and Hj :=
maxk∈Ωj

{endOf(̂Chglk)σj : l ∈ S}. Then, when we solve a CP(I) where I ⊆ J
(including the master CP) during the subsequent procedures, we take the H
value as the minimum of its original value and maxj∈I{Rj} +

∑
j∈I(Hj − Rj).

484 D. Kim et al.

Algorithm 1: Lower bound Computation (LC)

Input : A set of casts J
Output: CLB, a rearranged sequence of casts J ′

begin
CLB ← [] (an empty list);
for j in J do { σj ← Solve CP({j}); CLB[j] ← (15); }
J ′ ← Sort J in the increasing order of startOf(̂Cstj)σj for j ∈ J ;

return CLB, J ′

3.2 Initial Heuristic

Before describing the Initial Heuristic (IH) procedure, we define function Relo-
cate described in Algorithm 2 that contains a key idea of IG framework. We
will use Relocate in IH and DC heuristics described in the next subsec-
tion. Let σ be an input solution and Ω′ be a set of charges which we desire
to relocate (destruct and construct). Relocate(σ,Ω′) returns the set of con-
straints that fix the machine assignment of each present charge in Ω \ Ω′ and
the sequences of present charges in Ω \ Ω′ on each machine in solution σ. In
Algorithm 2, constraint presenceOf(Chgilk) = True fixes the machine assign-
ment of a charge interval Chgilk before solving a CP problem, and constraint
endOf(Chgilk) ≤ startOf(Chgilk′) fixes the relative positions of two consecutive
charge intervals Chgilk and Chgilk′ that are assigned to the same machine in
σ. Note that IGC adds corresponding constraints using Relocate, while IGM
fixes the corresponding variables.

We can also provide hints based on the current solution. For a given solu-
tion σ, we give the values startOf(̂Chglk)σ and endOf(̂Chglk)σ as hints for
variables startOf(Chglk) and endOf(Chglk), respectively for all k ∈ Ω, l ∈
Sk. In addition, we give values presenceOf(̂Chgilk)σ as hints to variables
presenceOf(Chgilk) for all optional charge intervals. If presenceOf(̂Chgilk)σ

equals True, we also give the values startOf(̂Chgilk)σ and endOf(̂Chgilk)σ as
hints for variables startOf(Chgilk) and endOf(Chgilk), respectively. For the rest
of this paper, we denote the set of these hints as Hσ.

In the Initial Heuristic (IH) procedure with a given ordered cast set J ′, we
compute an initial schedule by solving a CP subproblem for the charges of the
first cast in J ′. Then, we add the charges in the next cast of J ′ to the output
schedule by solving a corresponding CP subproblem and repeat the same with
the next cast until we schedule all charges. Algorithm 3 describes the entire IH
procedure.

When we schedule the charges in cast j, the input schedule σ is a partial
schedule for charges of casts 1, . . . , (j − 1). Since we do not relax any charges
in σ and maintain their machine assignments and relative positions, we use
Relocate(σ, ∅) to derive the constraints.

Iterated Greedy Constraint Programming for the SCC Scheduling 485

Algorithm 2: Relocate

Input : A partial solution σ, a set of charges Ω′ ⊆ Ω
Output: A set of constraints Cfix

begin
Cfix ← ∅;
σ ← the partial solution constructed from σ by removing the charges

in Ω′;
for charge k in Ω do

for stage l in Sk do
for machine i in Ml do

if presenceOf(̂Chgilk)σ = True then
Cfix ← Cfix ∪ {presenceOf(Chgilk) = True};

for stage l in S do
for machine i in Ml do

{k1, . . . , kβ} ← the sequence of charges on machine i in σ;
for α = 1 to β − 1 do

Cfix ← Cfix ∪ {endOf(Chgilkα
) ≤ startOf(Chgilkα+1

)};

return Cfix

Algorithm 3: Initial Heuristic (IH)

Input : A sorted list of casts J ′, a sorted list of lower bound constraints
CLB, a time limit T IH

Output: A feasible solution σ of the master CP
begin

C ← ∅, σ ← ∅, Hσ ← ∅;
for j in J ′ do

C ← C ∪ {CLB[j]};
Cfix ← Relocate(σ, ∅);
σ ← Solve CP({1, ..., j}) with 〈C ∪ Cfix,Hσ, T IH〉;

return σ

3.3 Destruction and Construction Heuristics

The Destruction and Construction (DC) heuristics attempt to improve a feasible
solution σ by relocating certain charges to better positions in the subsequent
solution. This is implemented by iteratively solving CP subproblems subject to
additional constraints.

Depending on how we define the set of charges to relocate, we use two types
of DC heuristics: DC-cast (DA) and DC-charge (DH). DA selects the charges

486 D. Kim et al.

in a cast and does loops over the casts. On the other hand, DH chooses the
charges completed within a time window and does loops over sliding windows.
DH sequentially relocates the charges in the set of charge intervals that overlap
with a time window in some stages. We repeatedly move the time windows
forward by a given step size and redefine the set of charge intervals accordingly.
Algorithm 4 and 5 illustrate the DA and DH, respectively.

Algorithm 4: DC-cast heuristic (DA)

Input : A set of casts J , a feasible solution σ, a sorted list of lower
bound constraints CLB, a time limit TDA

Output: An improved solution σ∗

begin
J ′ ← Sort J in the increasing order of startOf(̂Cstj)σ;
σ∗ ← σ;
for j in J ′ do

Cfix ← Relocate(σ∗, Ωj);
σ̂ ← Solve master CP with 〈CLB ∪ Cfix,Hσ∗

, TDA〉;
if σ̂ improves σ∗ then σ∗ ← σ̂;

return σ∗

3.4 CP Improvement

The last procedure of IGC is the CP Improvement (CI). This is done by solv-
ing the master CP with the incumbent solution σ obtained so far and control
parameters 〈CLB,Hσ, T 〉. We denote this procedure as CI(σ, CLB, T).

3.5 Iterated Greedy CP

The previous procedures define the steps in the Iterated Greedy CP (IGC).
Algorithm 6 describes the entire IGC algorithm. Parameters RDC, RDA, RDH

determine how many times we repeat the DC heuristics. Notice that when apply-
ing DA (or DH), if we do not obtain an improved solution within a given time
limit, we stop repeating DA (or DH) and move to the next procedure.

Iterated Greedy Constraint Programming for the SCC Scheduling 487

Algorithm 5: DC-charge heuristic (DH)

Input : A feasible solution σ, a window duration D, a step size Δ, a
sorted list of lower bound constraints CLB, a time limit TDH

Output: An improved solution σ∗

begin
σ∗ ← σ;
for l in {1, L} do

S̄l(σ) ← mink∈Ω startOf(Chglk);
C̄l(σ) ← maxk∈Ω endOf(Chglk);

δ ← min
{

S̄L(σ)−S̄1(σ)
L−1 , C̄L(σ)−C̄1(σ)

L−1

}
;

for l in S do {tsl ← (l − 1)δ + S̄1(σ); tel ← tsl + D; }
do

ΩD ← {k : k ∈ Ω,∃l ∈ Sk such that endOf(̂Chglk)σ∗ ∈ [tsl , t
e
l]};

Cfix ← Relocate(σ∗, ΩD);
σ̂ ← Solve master CP with 〈CLB ∪ Cfix,Hσ∗

, TDH〉;
if σ̂ improves σ∗ then σ∗ ← σ̂;
for l in S do { tsl ← tsl + Δ; tel ← tel + Δ; }

while ΩD is not empty;
return σ∗

Algorithm 6: Iterated Greedy CP (IGC)

Input : A set of jobs J , a window duration D, a step size Δ, time limits
T IH, TDA, TDH, T IGC, number of iterations RDC, RDA, RDH

Output: A feasible solution σ
begin

CLB, J ′ ← LC(J);
σ ← IH(J ′, CLB, T IH);
repeat RDC times

repeat RDA times σ ← DA(J, σ, CLB, TDA) until not improved;
repeat RDH times σ ← DH(σ,D,Δ, CLB, TDH) until not
improved;
until not improved;

σ ← CI(σ, CLB, T IGC − ElapsedTime);
return σ

488 D. Kim et al.

4 Experiments

4.1 Experimental Setting

Problem Instances. We use open problem instances which can be found from
[4], which are classified into three groups according to the numbers of casts and
charges: small, medium, and practical. Each group consists of 30 instances.

Size No. of casts(|J |) No. of charges in a cast(|Ωj |) No. of charges(|Ω|)
Small 2–3 3–4 6–12
Medium 3–4 5–6 15–24
Practical 4–7 3–9 30–36

Regardless of the size, the same environment data are used as follows.

Type Data Values or distributions

Machine L, Ml L = 5, (|M1|, |M2|, |M3|, |M4|, |M5|) = (4, 2, 2, 2, 4)
Charge Sk The probability of skipping stages = 2/3

pik U(45, 55) i ∈ M1, U(35, 45) i ∈ ML, U(30, 40) otherwise
dk U(100, 100 + 20n) where n = |Ω|

Time τii′ = 10 min, Wmax = 30 min, and sij = 30 min
Objective π1-4 (π1, π2, π3, π4) = (105, 1.5, 1, 1)

Algorithm Parameters. The parameters of IGC and IGM are adopted from
[5] as follows:

Module Parameters

IH T
IH

= 60 sec

DC RDC = 4, RDA = 2, RDH = 1, T
DA

= 60 sec, T
DH

= 60 sec
D = 90 min, Δ = 45 min

IGC (IGM) T
IGC

= T
IGM

= 600 sec

Computation Environment. We compare six algorithms: IGC, the master
CP (:= CP), IGM, the master MIP (:= MIP), the Non-dominated Sorting
Genetic Algorithm II (:= NSGA-II), and a regular GA (:= GA). We reused
the codes for MIP, IGM, NSGA-II, and GA developed by Hong et al. [5]; we
refer to the paper for the details of these algorithms. For a fair comparison, all
algorithms were tested with a single core in the same computation of environ-
ment with the following specifications.

Iterated Greedy Constraint Programming for the SCC Scheduling 489

Type Computation environment

Software Programming language: Python 3.10
Solver: Gurobi 9.5.2 (MIP solver), OR-Tools 9.4 (CP solver)

Hardware Desktop computer with Windows 10 OS,
CPU: Intel Core i9-12900K @ 3.19GHz processor, RAM: 32GB

4.2 Experimental Results

Table 2 summarizes the computational results. We computed the optimality gap
as (Z − LB)/LB where Z is the best objective value found within the time
limit, and LB is the best-known lower bound from IGC, CP, IGM, and MIP.
Both IGC and CP obtained the optimal solutions within a very short time (2.0
sec., 1.1 sec. each) for all small instances while IGM and MIP took 73.2 sec.,
and 68.4 sec., respectively. In fact, IGC and CP optimally solved all 30 instances
while IGM and MIP optimally solved 28 instances. NSGA-II and GA recorded
the average gaps of 2.80% and 2.86% each. For the medium size problems, CP

Table 2. Performance comparison of algorithms

Size IGC IGM CP MIP NSGA-II GA

Small Gap 0.00% 0.00% 0.00% 0.00% 2.80% 2.86%
(0.00%) (0.00%) (0.00%) (0.00%) (2.91%) (2.97%)

Time 2.02 73.2 1.10 68.4 384.6 287.9
(4.31) (152.9) (1.84) (162.5) (209.4) (181.6)

#opt 30 28 30 28 - -
Medium Gap 2.38% 2.87% 2.22% 5.75% 13.8% 13.0%

(4.06%) (4.20%) (4.13%) (6.61%) (12.0%) (10.6%)
Time 281.4 600.1 253.7 600.2 600.2 600.2

(274.7) (0.1) (272.5) (0.1) (0.1) (0.1)
#opt 18 0 20 0 - -

Practical Gap 4.87% 4.84% 5.16% 16.0% 34.3%† 37.1%†

(3.57%) (3.56%) (3.98%) (9.31%) (11.9%) (14.5%)
Time 566.7 600.4 562.1 600.4 600.4 600.3

(111.7) (0.1) (123.1) (0.2) (0.2) (0.3)
#opt 4 0 3 0 - -

Gap: the average optimality gap
Time: the average elapsed time under 600 sec. time limit
#opt: the number of instances proved to be optimally solved
(stdev): the value in parenthesis corresponds to the standard deviation
†Excluded one instance that resulted a cast break

490 D. Kim et al.

based algorithms (IGC and CP) outperform the other four algorithms in terms
of the optimality gap as well as the computational time. Moreover, IGC and CP
proved the optimality for 18, 20 instances each while IGM and MIP could not
prove any. The performance of the genetic algorithms deteriorates significantly
as the problem size becomes larger. For practical size problems, the algorithms
with the IG framework (IGC and IGM) perform better than solving the master
problem directly with either CP or MIP. We can conclude that IGC could be a
practical alternative because the optimality gap of IGC is comparable to that
of IGM and it proved the optimality for four instances while IGM could not
prove any. Figure 2 shows optimality gaps of four algorithms (IGC, IGM, CP,
and MIP) for all instances of medium and practical size. These results imply
that IGC implemented with an open-source solver can be as powerful as IGM
with a commercial solver even for large instances.

Fig. 2. The optimality gaps of four algorithms

In order to analyze the performance of each component of the IG framework,
we plotted the average optimality gap and total elapsed time at each step in
Fig. 3. ‘DAθ’ and ‘DHθ’ indicate the results obtained after the θ-th iteration of
DA and DH. ‘MI’ or ‘CI’ shows the result obtained after MIP or CP improve-
ment. Notably, the performance of IH under 50 sec. (see Fig. 3) is better than the
final result of MIP (see Table 2), which shows the excellence of the IG framework.
Compared to IGM, IH seems to run slightly slower in IGC, and DC heuristics
are terminated quicker with less improvement. Therefore, the optimality gap of
IGC is slightly higher than that of IGM before entering the CI step. On the
other hand, IGC showed more improvement than IGM in the CI step while IGM
showed little improvement in the MI step.

Iterated Greedy Constraint Programming for the SCC Scheduling 491

Fig. 3. The average optimality gap of IGC and IGM over steps and times

5 Concluding Remark

In this paper, we proposed a CP model for a practical scheduling problem of
the steelmaking-continuous casting process. Based on our CP model, we pro-
posed an iterative algorithm called IGC by adapting the IG framework of [5].
Our algorithm with an open-source CP solver outperforms the original IGM
with a commercial MIP solver for small and medium size instances and shows a
comparable performance for practical instances.

From the observation, we can consider various ways for improving IGC.
Reducing the domain range of each variable in the CP model can be extremely
helpful in the context of constraint programming. Hence, we can reduce the hori-
zon using information achieved by solving subproblems in future works. We can
also make our own propagation rules to expedite the solution process for the CP
(sub)problems.

In the current experiments, we did not change any parameters regarding the
algorithm design such as time limit and the number of loops in IGM. There are
chances to improve the performance of IGC by tuning parameters. For instance,
since the CI step in IGC showed more improvement than MI step in IGM, adjust-
ing the parameters like RDC, RDA, T

DA
, T

DH
would be helpful. A collaborative

framework of IGC and IGM may be a promising future research direction and
applications of our approach to new problems will also be interesting.

References

1. Abderrazzak, S., Hamid, A., Omar, S.: Adaptive large neighborhood search for
the just-in-time job-shop scheduling problem. In: 2022 International Conference
on Control, Automation and Diagnosis (ICCAD), pp. 1–6 (2022)

492 D. Kim et al.

2. Beck, J.C., Feng, T., Watson, J.P.: Combining constraint programming and local
search for job-shop scheduling. INFORMS J. Comput. 23(1), 1–14 (2011)

3. Carchrae, T., Beck, J.C.: Principles for the design of large neighborhood search. J.
Math. Model. Algorithms 8(3), 245–270 (2009)

4. Hong, J.: junetech/scc-process-scheduling-instances: 2021-07-23 version (2021).
https://doi.org/10.5281/zenodo.5126007

5. Hong, J., Moon, K., Lee, K., Lee, K., Pinedo, M.L.: An iterated greedy matheuristic
for scheduling in steelmaking-continuous casting process. Int. J. Prod. Res. 60(2),
623–643 (2022)

6. Malapert, A., Cambazard, H., Guéret, C., Jussien, N., Langevin, A., Rousseau,
L.M.: An optimal constraint programming approach to the open-shop problem.
INFORMS J. Comput. 24(2), 228–244 (2012)

7. Meng, L., Gao, K., Ren, Y., Zhang, B., Sang, H., Chaoyong, Z.: Novel MILP
and CP models for distributed hybrid flowshop scheduling problem with sequence-
dependent setup times. Swarm Evol. Comput. 71, 101058 (2022)

8. Meng, L., Zhang, C., Ren, Y., Zhang, B., Lv, C.: Mixed-integer linear programming
and constraint programming formulations for solving distributed flexible job shop
scheduling problem. Comput. Ind. Eng. 142, 106347 (2020)

9. Missbauer, H., Hauber, W., Stadler, W.: A scheduling system for the steelmaking-
continuous casting process. A case study from the steel-making industry. Int. J.
Prod. Res. 47(15), 4147–4172 (2009)

10. Pacino, D., Van Hentenryck, P.: Large neighborhood search and adaptive random-
ized decompositions for flexible jobshop scheduling. In: Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence - Volume Three,
Barcelona, Catalonia, Spain, pp. 1997–2002. AAAI Press (2011)

11. Pan, Q.K., Wang, L., Mao, K., Zhao, J., Zhang, M.: An effective artificial bee
colony algorithm for a real-world hybrid flowshop problem in steelmaking process.
IEEE Trans. Autom. Sci. Eng. 10(2), 307–322 (2013)

12. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.Y.
(eds.) Handbook of Metaheuristics, pp. 399–419. Springer, Boston (2010). https://
doi.org/10.1007/978-1-4419-1665-5 13

13. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp.
417–431. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49481-2 30

14. Tang, L., Luh, P.B., Liu, J., Fang, L.: Steel-making process scheduling using
Lagrangian relaxation. Int. J. Prod. Res. 40(1), 55–70 (2002)

https://doi.org/10.5281/zenodo.5126007
https://doi.org/10.1007/978-1-4419-1665-5_13
https://doi.org/10.1007/978-1-4419-1665-5_13
https://doi.org/10.1007/3-540-49481-2_30

Combining Incomplete Search and Clause
Generation: An Application

to the Orienteering Problems with Time
Windows

Trong-Hieu Tran1,2,3(B), Cédric Pralet2,3, and Hélène Fargier1,3

1 IRIT-CNRS, Toulouse, France
2 ONERA/DTIS, Toulouse, France

trantronghieu97@gmail.com
3 Université de Toulouse, Toulouse, France

Abstract. In this paper, we present a hybrid optimization architecture
which combines on one side incomplete search processes that are often
used to quickly find good-quality solutions to large-size problems, and
on the other side clause generation techniques that are known to be
efficient to boost systematic search. In this architecture, clauses are gen-
erated once a locally optimal solution is found. We introduce a generic
component to store these clauses generated step-by-step. This compo-
nent is able to prune neighborhoods by answering queries formulated by
the incomplete search process. We define three versions of this clause
basis manager and then experiment with an Operations Research prob-
lem known as the Orienteering Problem with Time Windows (OPTW)
to show the efficiency of the approach.

Keywords: Incomplete search · Clause generation · Orienteering
Problem with Time Windows

1 Introduction

Incomplete search methods are often used on large-size problems to quickly
produce good-quality solutions. Such methods include heuristic search, where
a solution is progressively built based on efficient heuristics, local search, where
various neighborhoods help improve the current solution, and metaheuristics like
tabu search, genetic algorithms, or iterated local search, to name just a few. To
increase the performance of these incomplete methods, several hybridizations
with complete search techniques developed for SAT and Constraint Program-
ming (CP) have been proposed in the past [24], and there is rich literature on
the topic both in terms of methods and applications.

In this paper, we study a new architecture combining incomplete search and
SAT techniques. This architecture, which is given in Fig. 1, is inspired by the effi-
cient complete search methods based on clause generation, namely CDCL [1,18]
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 493–509, 2023.
https://doi.org/10.1007/978-3-031-33271-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33271-5_32&domain=pdf
https://doi.org/10.1007/978-3-031-33271-5_32

494 T.-H. Tran et al.

Incomplete Search
Process (ISP)
[specific]

Clause Basis
(CB)

[generic]

Lazy Clause
Generator (CG)

[specific]

operations / queries

answers to queries

locally optimal solutions new clauses

Fig. 1. Incomplete search combined with a clause basis

and Lazy Clause Generation (LCG [28]). The global search scheme works as fol-
lows. Each time the Incomplete Search Process (ISP) converges to a locally opti-
mal solution, aClauseGenerator (CG) analyzes this solution and produces clauses
holding on Boolean decision variables of the problem. The clauses generated repre-
sent either the reasons why the current solution cannot be improved or conditions
forbidding the local optimum or regions around to be reached again in the future.
The clauses generated are then sent to a Clause Basis (CB). The latter is respon-
sible for storing the clauses and answering various queries that are relevant for the
main ISP to prune or to guide the neighborhood exploration. In this architecture,
the clauses are generated in a lazy way, only for the parts of the search space that
the ISP decides to explore. By doing so, the architecture involves a tight interac-
tion between ISP and CB as well as a less frequent clause generation phase.

With regards to tabu search [9], the architecture obtained memorizes clauses
instead of just storing recent local moves or recent solutions in a tabu list. One
impact is that the clause manager must be able to quickly reason about the clauses
collected, instead of just reading explicitly forbidden configurations. Concerning
CDCL or LCG, one key difference is that the ISP is free to assign or unassign
variables in any order, while the standard implication graph data structure used
by CDCL or LCG relies on the assumption that the variable ordering in different
layers of the graph is consistent with the order used for assigning and unassigning
the decision variables. All these points raise several basic research questions:

– Which generic clause basis data structure should be used to be able to follow
the decisions made in any order by an incomplete search process and to
quickly reason about the set of clauses memorized?

– What is the effort required to integrate an existing specific ISP within such
a generic architecture, and which key functions should the clause basis offer?

– What is the content of the clause generation module that analyzes the locally
optimal solutions?

– From a practical point of view, is clause generation beneficial for an incom-
plete search that might have to explore thousands of successive neighborhoods
per second?

To answer these questions, all along the paper, we take as an example a prob-
lem known as the Orienteering Problem with Time Windows (OPTW [32]). The
paper is organized as follows: first, we recall the definition of OPTW and present

Combining Incomplete Search and Clause Generation 495

a hybrid algorithm that combines a state-of-the-art search algorithm for OPTW
with a clause basis. Following this, we introduce clause generation mechanisms
and three data structures for the clause basis. We present experimental results
obtained on OPTW benchmarks to demonstrate that the architecture proposed
allows boosting the baseline ISP, while the integration effort required is rather
small. Finally, we compare our approach with relevant works in the literature.

2 Orienteering Problem with Time Windows

The OPTW belongs to the class of vehicle routing problems with profits, where
a vehicle has a limited time budget to visit a subset of nodes. Formally, we
consider a set of nodes i ∈ {0, 1, . . . , N + 1}, each with a reward Ri and a
predefined time window [ei, li]. Nodes 0 and N + 1 correspond to the start and
end depots, with R0 = RN+1 = 0 and a time window [0, Tmax] where Tmax is
the limited time budget. A non-negative travel time tij is associated with each
pair of nodes i �= j. A visit duration di can also be considered for each node, but
to keep it simple, we assume that the visit duration is already included in the
travel time. A solution is a sequence σ = [σ0, σ1, . . . , σK , σK+1] that starts at
node σ0 = 0, visits a set of distinct nodes σi ∈ {1, . . . , N}, and returns to node
σK+1 = N + 1. Early arrival to a particular node leads to a waiting time, and a
solution is feasible when it visits each selected node before its latest arrival time.
More precisely, the visit start time of node 0 is s0 = 0, and for two consecutive
nodes i, j in σ the visit start time of node j is sj = max(si +tij , ej), and solution
σ is feasible if and only if sj ≤ lj for every node j in σ. Next, an optimal solution
is a feasible solution σ that maximizes the total reward (

∑
i∈σ Ri). Basically, an

OPTW involves both selection and sequencing decisions, i.e. selection of a subset
of nodes S and search for a feasible visit order σ for these nodes. Regarding the
selection aspect, we introduce one Boolean decision variable xi ∈ {0, 1} per node
i, where xi = 1 means that node i is visited.

Challenging applications were modeled as OPTW in the past, such as delivery
problems, satellite planning problems, or tourist trip design problems [11,32].
Since OPTW is proven as NP-hard [10], many researches on the topic rely on
incomplete search. One first investigation in this direction was a tree heuristic
for building a single tour without violating the time windows constraints [16].
Incremental neighborhood evaluation methods were also introduced to quickly
determine the feasible node insertion moves given a current solution [29,31].
Later, [27] proposed an effective Large Neighborhood Search (LNS) strategy
that was shown to outperform the previous approaches. The basic idea is to
iteratively remove and reinsert nodes based on well-tuned removal and insertion
heuristics, and to use restarts from a pool of elite solutions.

3 Incomplete Search Using a Clause Basis

In the rest of the article, we integrate the state-of-the-art LNS algorithm for
OPTW defined in [27] within the hybrid architecture proposed. The enhanced

496 T.-H. Tran et al.

version, called LNS-CB for LNS with a Clause Basis, is depicted in Algorithm 1,
where the few changes made on the baseline LNS version are highlighted in gray.
Starting from an initial solution (Line 1), it iteratively destroys and repairs
the current solution following the standard concept of LNS (Lines 5–6). It also
uses an elite pool to record the best solutions obtained so far. This pool is
reset whenever a better solution is found, and extended when a new equivalent
solution is obtained (Line 9). When no improvement is found after R iterations,
a restart is performed by picking a random solution in the elite pool (Line 11).
The differences compared to the classical LNS algorithm are (a) the call to the
clause generation function each time a full solution is produced (Lines 2, 7), and
(b) the use of the CB as an argument to the repair function, the objective being
to improve the repair phase (Line 6).

Algorithm 1. LNS-CB

1: σ ← construct()
2: clauseGeneration(σ, CB,maxConfSize)
3: σ∗ ← σ; elitePool ← {σ}
4: while time limit is not reached do
5: σ ← destroy(σ);
6: σ ← repair(σ, CB)
7: clauseGeneration(σ, CB,maxConfSize)
8: if σ better than σ∗ then
9: σ∗ ← σ; update elitePool

10: else if no improvement after R iterations then
11: σ ← a random solution in elitePool
12: end if
13: end while
14: return σ∗

The new repair phase is detailed in Algorithm 2. It takes as an input the
current solution σ and the CB. We denote U as the set of unvisited nodes,
and F as the set of feasible insertion moves (n, p) defined by a node n ∈ U
and a position p in σ. All insertion alternatives for each unvisited node are
explored by evalNeighborhood(σ,U, CB) (Lines 2, 7). In this procedure, CB
is used to prune neighbors that are invalid according to the clauses registered.
Node insertions are iterated by selecting at each step a move that has the best
evaluation according to the well-tuned heuristics of the original LNS method
(Line 4), and they are performed until there is no more feasible move (Line 3).

The neighborhood evaluation function corresponds to Algorithm 3. It first
determines the unvisited nodes that must be visited according to CB (Line 1),
and if there is no such mandatory node, it determines the unvisited nodes that
can be visited according to CB (Line 3). Then, for each node selected, the algo-
rithm determines its best insertion position according to tuned insertion heuris-
tics and the algorithm returns all pairs made by a node and its best insertion
position.

Combining Incomplete Search and Clause Generation 497

Algorithm 2. repair(σ,CB)
1: U ← nodes that are not in σ
2: F ← evalNeighborhood(σ, U , CB)
3: while F �= ∅ do
4: (n∗, p∗) ← select(F)
5: Insert node n∗ at position p∗ in σ
6: U ← U \ {n∗}
7: F ← evalNeighborhood(σ, U , CB)
8: end while
9: return σ

Algorithm 3. evalNeighborhood(σ,U,CB)
1:U ′ ← {n ∈ U |CB allows decision [xn = 1] and forbids decision [xn = 0] }
2: if U ′ = ∅ then
3: U ′ ← {n ∈ U |CB allows decision [xn = 1]}
4: end if
5: F ← ∅
6: for each n ∈ U ′ do
7: p ← best feasible insertion position for n in σ
8: if p �= nil then
9: F ← F ∪ {(n, p)}

10: end if
11: end for
12: return F

4 Lazy Clause Generation Module

Several kinds of clauses are generated during the search, and the generation
of these clauses exploits problem-dependent techniques, as for cuts generated
in Logic-Based Benders decomposition [14]. Note that for OPTW, we consider
only clauses holding over the selection decisions, and not clauses related to the
detailed sequencing decisions defining the order of the visits.

4.1 Clauses Generated from Time-Window Conflicts

A Time-Window conflict (TW-conflict) is a subset Sc ⊆ [1..N] such that there
is no feasible solution visiting all nodes in Sc. In terms of clause generation, a
TW-conflict Sc corresponds to clause ∨i∈Sc

¬xi. Due to the exponential number
of possible sets Sc, we generate TW-conflicts in a lazy way i.e. only when a local
optimum is reached. Moreover, determining whether Sc defines a TW-conflict
is NP-hard [26], but it is an easy problem if |Sc| is bounded. This is why we
consider a predefined maximum TW-conflict size referred to as maxConfSize.

Technically, whenever a locally optimal sequence σ∗ is found over nodes in
S∗, we seek TW-conflicts preventing the other nodes from being added to σ∗.
In Algorithm 4, we try to find explanations for every unvisited node i (Line
1). With a predefined maxConfSize, the algorithm first heuristically selects a

498 T.-H. Tran et al.

Algorithm 4. clauseGeneration(σ∗,CB,maxConfSize)
1: for i �∈ σ∗ do
2: Sc ← select(σ∗, i, maxConfSize)
3: C ← extractMinTWconflicts(Sc ∪ {i})
4: for each TW-conflict C ∈ C do
5: Generate clause

∨
j∈C ¬xj

6: end for
7: end for
8: [optional] Generate a temporary clause

∨
j∈Y xj with Y a subset of the nodes that

are not selected in σ∗

set Sc ⊂ S∗ \ {0, N + 1} containing maxConfSize − 1 nodes in σ∗ that might
prevent node i from being visited. Then, in function extractMinTWcon-
flicts, a dynamic programming (DP) procedure determines whether Sc ∪{i} is
truly a TW-conflict. If so, it also extracts TW-conflicts of minimal cardinality
(Line 3). Indeed, the smaller the clauses the better, since smaller clauses prune
larger parts of the search space. Function extractMinTWconflicts takes as
an input a set of nodes S ⊆ [1..N] and determines all minimal sets S′ ⊆ S
(minimal in terms of cardinality) such that there is no feasible solution visiting
all nodes in S′. For space limitation reasons, we do not detail the pseudo-code
of extractMinTWconflicts, but the key idea is to compute, for each set
C ⊆ S, quantities of the form a(C, i) representing the earliest arrival time at
node i ∈ C for a path starting at node 0, visiting all nodes in C \{i}, and ending
at node i. As in existing methods for Traveling Salesman Problems with Time
Windows [3], these quantities are computed by increasing the size of C following
a recursive formula. Then, C ⊆ S is a TW-conflict when for every i ∈ C, either
a(C, i) > li or max{a(C, i), ei}+ ti,N+1 > Tmax. The first condition corresponds
to late arrivals for every candidate last node i, while the second one corresponds
to the violation of the time limit when returning to node N + 1.

4.2 Clauses Related to Local Optima: Lopt-Conflicts

To avoid revisiting again and again the same solution, whenever reaching a
locally optimal solution σ∗, it is possible to generate clause

∨
j �∈σ∗ xj to force

that at least one node unvisited in σ∗ must be selected in the future. Such a clause
is called a local optimum conflict or Lopt-conflict. To get small clauses that have
a higher pruning power, we consider a maximum clause size approxSize and
derive an approximate Lopt-conflict corresponding to a smaller clause

∨
j∈Y xj

where Y contains at most approxSize nodes that are not involved in σ∗ and
that are chosen in function of their rewards (Algorithm 4, Line 8). To avoid
pruning optimal solutions, such approximate clauses are used by CB only during
a certain number of steps called tabuSize, similarly to a tabu search procedure,
the main objective being to diversify search. We could also generate Pseudo-
Boolean constraint

∑
i∈{1,...,N} Rixi ≥ LB+1 whenever a new best total reward

LB is found, but we focus here on clause generation.

Combining Incomplete Search and Clause Generation 499

5 Clause Basis Data Structures

The CB part is responsible for storing the clauses generated during search.
Besides, the ISP needs to frequently query the clause basis, meaning that there
is a need for continuous and incremental interactions between these two com-
ponents. This raises many challenging questions about the choice of a specific
data structure for CB. In principle, a clause basis manager must be able to:

– quickly integrate all the clauses generated step-by-step and compactly rep-
resent them (possibly with some trashing when the size of CB becomes too
large);

– frequently update the partial assignment of the decision variables over which
the clauses hold, to keep up-to-date knowledge of the content of the current
solution considered by the main ISP. For LNS-CB, this occurs whenever a
node is selected or removed, and these assign/unassign decisions can be sent
to CB in any order;

– quickly answer to queries formulated by ISP, such as “evaluate whether deci-
sion [xi = 1] is feasible”. For OPTW, if CB proves that this decision is infea-
sible given the current assignment and the clauses generated, then testing
the insertion of node i in the current solution σ is unnecessary (neighbor-
hood pruning). Another example is: “evaluate whether decision [xi = 1] is
mandatory”. If so, node i must be inserted into σ.

In the following we study three generic versions for CB:

– CB-UnitPropagation, where CB stores a list of clauses and performs incre-
mental and decremental unit propagation to evaluate the consistency of the
clause store for a given partial assignment of the xi variables;

– CB-IncrementalSAT, where CB stores a list of clauses and employs power-
ful modern SAT solvers supporting incremental or assumption-based solving
[2,7,21];

– CB-OBDD, where the clauses are stored in an Ordered Binary Decision Dia-
gram (OBDD), a data structure defined in the field of knowledge compilation
that has good compactness and efficiency properties [4,6].

5.1 CB-UnitPropagation

For this version of CB, unit propagation is used to prune infeasible values for
the decision variables. In SAT, unit propagation can be achieved based on the
two-watched literals technique, which consists in maintaining, in each clause, two
distinct literals that can take value true [20]. In case there is no valid watched
literal for a clause c, an inconsistency is detected. If only a single valid watched
literal l is found, then clause c becomes unit and l must necessarily be true to
satisfy the clause. In this case, literal ¬l takes value false and unit propagation
is applied to other clauses to further detect other propagated decisions.

In SAT, one advantage of the watched literals is that no literal reference needs
to be updated when chronological backtracking occurs. But during incomplete

500 T.-H. Tran et al.

Fig. 2. Incremental and decremental unit propagation

search, variables can be assigned or unassigned in any order and some adapta-
tions are required to maintain the watched literals. Precisely, to handle random
variable unassignments and perform decremental unit propagation, we maintain
a list of complementary watched literals for each unit clause c (see Fig. 2). Clause
c is revised whenever one complementary watched literal l′ becomes free due to
unassignment decisions, and in this case l′ can directly become a watched literal
for c.

To answer the queries formulated by the ISP, we record a justification justif (l)
for each literal l. Basically, justif (l) =
 means that literal l takes value true
because of a decision received from the ISP, justif (l) = c means that literal l
is propagated by unit clause c, and justif (l) = nil means that there is no clue
about the truth value of l. Then, a decision like [x = 1] is allowed if and only if
literal ¬x is not propagated or decided yet, i.e. justif (¬x) = nil. The justification
of each literal is updated during incremental and decremental unit propagation.
Obviously, as unit propagation is incomplete, CB-UnitPropagation may not
detect some infeasible or mandatory node selections. For example, let us consider
four clauses c1 : ¬x1 ∨ ¬x2, c2 : ¬x4 ∨ ¬x5, c3 : x2 ∨ x3 ∨ x4, c4 : x2 ∨ x3 ∨ x5.
If decision [x1 = 1] is made, clause c1 becomes unit and we have justif (x1) =

and justif (¬x2) = c1. The other justifications take value nil . This implies that
decision [x3 = 0] is still evaluated as possible, even if it would lead to a dead-end.

5.2 CB-IncrementalSAT

The idea of using incremental SAT solving was first proposed to improve the
efficiency of the search for Minimal Unsatisfiable Sets [2]. In this case, the goal
is to reuse as much information as possible between the successive resolutions of
similar SAT problems. This is done by working with assumptions. Basically, an
assumption A is a set of literals {l1, . . . , lk} where each literal is considered as
an additional (unit) clause by the solver, but this unit clause is not permanently
added to the original CNF formula F defining the problem to be solved. For

Combining Incomplete Search and Clause Generation 501

OPTW, the assumptions are exactly the node selection decisions. Then, a call
solve(F ,A) to an incremental SAT solver tries to find a model of F that satisfies
all the assumptions in A. Doing this, the incremental solver can reuse some
previous knowledge and learn new clauses that will potentially be reused for
future calls solve(F ′,A′) using an updated CNF formula F ′ or an updated set
of assumptions A′.

At the level of CB, to determine whether literal l : [xi = a] can still be
assigned value true, it suffices to call solve(F ,A ∪ {l}) where A is the set of
assumptions representing the selection decisions made so far by the search engine.
Then, decision [xi = a] is forbidden by CB if and only if this call returns UNSAT.
Contrarily to CB-UnitPropagation, the CB-IncrementalSat method is
complete (it performs a full look ahead). One optimization allows us to reduce
the number of calls to the solve function: when searching for the possible
values of variable xi given a set of assumptions A, if solve(F ,A ∪ {xi}) or
solve(F ,A ∪ {¬xi}) returns a solution where another variable xj takes value 1,
then xj = 1 is allowed and calling solve(F ,A ∪ {xj}) is unnecessary.

5.3 CB-OBDD

Storing conflict clauses in an OBDD during a systematic search process has
been explored in the past, e.g. for a search process based on DPLL [15]. We
extend such an approach to deal with an incomplete search engine that again
can assign/unassign the decision variables of the problem in any order.

As illustrated in Fig. 3, an OBDD defined over a set of Boolean variables X
is a directed acyclic graph composed of one root node, two leaf nodes labeled by

 and ⊥, and non-leaf nodes labeled by a decision variable xi ∈ X. Each node
associated with variable xi has two outgoing arcs corresponding to assignments
[xi = 0] and [xi = 1] respectively (dotted and plain arcs in the figure). The
paths from the root node to leaf node
 correspond to the assignments that
satisfy the logical formula represented by the OBDD, while the paths leading to
leaf node ⊥ correspond to the inconsistent assignments. Additionally, OBDDs
are ordered, meaning that the variables always appear in the same order in any
path from the root to the leaves. In practice, they are also reduced, meaning
that redundant nodes (that have the same children) are recursively merged to
save some space. Such a data structure offers several advantages, including the
capacity to be exponentially more compact than an explicit representation of all
models of a logical formula, and the capacity to perform several operations and
answer several queries in polynomial time. For instance, given two OBDDs OF

and OG representing logical formulas f and g and that use the same variable
ordering, operation “OF ∧ OG” computes an OBDD representing f ∧ g in
polynomial time in the number of nodes in OF and OG.

In CB-OBDD, one OBDD referred to as OCB stores the clauses learned
during search. Initially, OCB only contains the leaf node
 since all models are
accepted. Each generated clause ck can be transformed into an OBDD Ock , and a
set of new clauses {c1, . . . , cn} is added to OCB by OCB ← [Oc1 ∧ . . . ∧ Ocn] ∧
OCB (conjunction of the elementary OBDDs associated with the new clauses

502 T.-H. Tran et al.

CNF:
(¬x1 ∨ ¬x2)
∧(¬x4 ∨ ¬x5)
∧(x2 ∨ x3 ∨ x4)
∧(x2 ∨ x3 ∨ x5)

x1

x2 x2

x3

x4

x5

⊥

Fig. 3. A conjunction of clauses and an equivalent OBDD

followed by a batch addition into OCB). During search, CB-OBDD records the
current list of assignments ACB made by the incomplete search process (the
assumptions). To determine whether a decision [x = 1] is allowed, it suffices to
condition OCB by ACB , and then to check that assignment x = 0 is not essential
(not mandatory) for the resulting OBDD. The conditioning primitive and the
search for essential variables are standard operations in OBDD packages. Their
time complexity is linear in the number of OBDD nodes.

6 Computational Study

We carried out experiments on standard OPTW benchmarks1 whose features
are summarized in Table 1. The best known total reward for each instance is
retrieved from [27]. All the experiments are performed on Intel(R) Core(TM)
i5-8265U 1.60 GHz processors with 32 GB RAM. All implementations2 are in
C++ and compiled in a Linux environment with g++17.

Table 1. Features of the OPTW benchmarks

Instance Set #instances #nodes remark

Solomon 1 (c1*, r1*, rc1*) 29 100 –

Solomon 2 (c2*, r2*, rc2*) 27 100 wider TW

Cordeau 1 (pr01-pr10) 10 48–288 –

Cordeau 2 (pr11-pr20) 10 48–288 wider TW

As the implementation of the state-of-the-art LNS algorithm [27] is not avail-
able online, we re-implemented it. We recover a similar performance even if there
are some differences wrt. the results provided in the original paper, possibly due
to random seeds or to a lack of information concerning a reset parameter R (we
set R = 50 in our LNS implementation). Anyway, our primary objective was to
determine whether conflict generation can help a baseline algorithm, therefore
the slight differences in performance are not a real issue. The three CB proposed
were implemented as follows:
1 https://www.mech.kuleuven.be/en/cib/op.
2 Github URL of the source code: https://github.com/thtran97/kb ls cpp.

https://www.mech.kuleuven.be/en/cib/op
https://github.com/thtran97/kb_ls_cpp

Combining Incomplete Search and Clause Generation 503

– The CB-UnitPropagation data structure was implemented from scratch.
– For CB-IncrementalSat, we reused CryptoMiniSat3 [30] that won the

Incremental Track in the SAT competition 2020.
– For CB-OBDD, we reused the CUDD library that offers many functions

to manage OBDDs.4 CB-OBDD uses the dynamic reordering operations of
CUDD [25]. Dynamic reordering can take some time but reducing the size of
OBDDs can pay off in the long term.

6.1 Parameter Settings for clauseGeneration

In the hybrid optimization architecture proposed, the clauseGeneration pro-
cedure is problem-specific. For OPTW, we observed that the length of time win-
dows has a large impact on the number of TW-conflicts generated for a given
value of maxConfSize: many TW-conflicts are generated for the Solomon 1 &
Cordeau 1 instances, contrarily to the Solomon 2 & Cordeau 2 instances that
involve longer time windows. This is reasonable since longer time windows make
the problem less constrained when considering only a few nodes. Besides, the
complexity of the dynamic programming algorithm producing the TW-conflicts
is exponential in maxConfSize. Thus, we decided to set maxConfSize = 4 after
the analysis of the global search efficiency.

Another parameter is the heuristic according to which, given a locally opti-
mal solution σ∗ visiting a set of nodes S∗, we choose a subset Sc ⊆ S∗ for trying
to explain why a customer i �∈ S∗ cannot be inserted into σ∗ (TW-conflicts).
For this, we use the NearestTimeWindow heuristic: to define Sc, we choose
maxConfSize−1 nodes j ∈ S∗ such that the distance between the midpoint of the
time window of j and the midpoint of the time window of i is as small as possible.
However, generating TW-conflicts all the time can slow down the global search.
Therefore, we define an explanation quota xpQuota for every node to reduce the
workload of function extractMinTWconflicts. This quota is decreased by
one unit each time a TW-conflict explaining the absence of i in a locally optimal
solution is looked for. When the quota of i becomes 0 after xpQuota searches
for TW-conflicts related to i, the absence of i in a locally optimal solution is
not explained anymore. With such an approach, there is somehow a warm-up
phase where TW-conflicts are learned, followed by an exploitation phase of these
conflicts. After performing tests with different values of xpQuota ∈ {20, 60, 100},
we decided to set xpQuota = 20.

Last, concerning the generation of Lopt-conflicts to diversify search, we need
to forbid during tabuSize iterations a region around a locally optimal solution,
where the region size is controlled by the approxSize parameter which defines
the maximum size of the approximate Lopt-conflicts. After several tests per-
formed with approxSize ∈ {3, 5, 7} and tabuSize ∈ {10, 50, 100, 200}, we set
approxSize = 7 and tabuSize = 50 for the experiments.

3 https://github.com/msoos/cryptominisat.
4 https://github.com/ivmai/cudd.

https://github.com/msoos/cryptominisat
https://github.com/ivmai/cudd

504 T.-H. Tran et al.

6.2 Performance of the Versions of CB

Experiments are performed for the three CB data structures presented before.
For LNS-CB-UnitPropagation (or shortly LNS-CB-UP), we actually con-
sider two versions: one called LNS-CB-UP where no Lopt-conflict is gener-
ated, and another called LNS-CB-UP-Lopt where Lopt-conflicts are generated.
For LNS-CB-IncrementalSAT (or shortly LNS-CB-Sat), we do not present
the results obtained with the Lopt-conflicts due to space limitation reasons.
For LNS-CB-OBDD, we do not use the temporary Lopt-conflicts as it would
require (a) maintaining an OBDD containing only permanent TW-conflicts, and
(b) making time-consuming conjunctions with the temporary Lopt-clauses that
are still active at the current iteration.

Overall Performance. To quickly compare the baseline incomplete search algo-
rithm (calledLNS-noCB) and the versions using a CB, we first measured, for each
solver and each instance, the average gap to the best known solution after five runs,
each within 1 min. This gap gs for solver s is defined by gs = 100 ∗ (bk − bf s)/bk
where bf s is the total reward of the best feasible solution found by s and bk is the
best known objective value. Table 2 shows that for 1-minute time limit, using CB-
UP globally improves the gaps (0.851% compared to 0.886% when using noCB),
while using CB-UP-Lopt also generates competitive results. On the contrary,
CB-Sat and CB-OBDD deteriorate the average gap (mean gaps equal to 1.739%
and 1.418% respectively). Moreover, we also implemented a simple tabu list that
prevents the algorithm from inserting (or removing) customers that were removed
(or inserted) during the last k iterations. This tabu list made the LNS method
highly effective for instances in the Solomon1 set, with an average gap of 0.083%.
However, the average gaps obtained on other three sets are much larger, leading to
a higher grand mean of the average gaps (2.332% for LNS-SimpleTabu, compared
to 0.851% for LNS-UP).

To further analyze the results, each version of the solver is executed during
10 000 LNS iterations and the total time elapsed over each set is measured. Then,
a speed-up rate compared to the noCB version is computed by speedUps = 100∗
(timeNoCB − timeWithCBs)/timeNoCB . Table 3 shows that the search process
is accelerated with CB-UP and CB-UP-Lopt almost all the time, especially on
the Cordeau instances where the speed-up reaches almost 50%. On the contrary,
the search process is drastically slowed down with CB-Sat and CB-OBDD.

Table 2. Average gap (%) over 5 runs (maxCPUtime=60s, best average gaps in bold)

Instance set Variants of CB in LNS

noCB UP UP-Lopt SAT OBDD simpleTabu

Solomon1 1.093 1.093 1.304 1.492 1.315 0.083

Solomon2 0.416 0.387 0.345 0.607 0.497 4.097

Cordeau1 0.139 0.078 0.351 1.125 0.903 1.540

Cordeau2 1.898 1.846 1.900 3.729 2.958 2.119

Grand mean 0.886 0.851 0.977 1.739 1.418 2.332

Combining Incomplete Search and Clause Generation 505

Table 3. Speed-up (%) when solving during 10 000 LNS iterations

Instance set Variant of CB in LNS

UP UP-Lopt SAT OBDD

Solomon1 −8.83 −18.66 −2517.14 −646.14

Solomon2 25.17 25.15 −492.75 −163.62

Cordeau1 48.66 47.04 −2779.32 −2446.31

Cordeau2 45.96 47.83 −2092.35 −610.95

Slow Convergence with CB-Sat and CB-OBDD. Despite the rapidity of incre-
mental solving with CryptoMiniSat, the results obtained show that the search
process is slower for the LNS-CB-Sat version. The main reason for this is that
there are numerous calls to solve(F ,A ∪ {l}), and each call must either find a
full solution or prove that none exists.

As for CB-OBDD, while querying in OBDD is fast, the results are not as
good as expected. Table 4 shows that the OBDDs obtained are globally com-
pact given the number of conflicts. But the reordering operations performed to
get such a compactness can take a lot of time: on some instances, CB-OBDD
spends more than 60% of the CPU time for reordering the variables. Alterna-
tively, it is challenging to heuristically compute in advance a good static variable
ordering for the OBDDs, since we do not have the entire information about the
conflicts when a static ordering must be defined. Meanwhile, we tested eight
problem-dependent heuristics (e.g. ordering the selection variables depending on
the rewards, the time windows, etc.), and as shown in Table 5, the best heuristics
give poor results on some instances.

Better and Faster Search with CB-UP. Figure 4 details the evolution of the
mean gap over each set of instances. Globally, we observe that LNS is boosted
by CB-UP. In particular, for set Cordeau 1 involving many TW-conflicts, the
search process converges much more quickly with the support of CB-UP. This is
because more LNS iterations are performed thanks to the effectiveness of neigh-
borhood pruning through CB-UP. The strength of CB-UP-Lopt is particularly
visible over instance sets Cordeau 2 and Solomon 2. In these cases, even with very
few TW-conflicts, the approximate Lopt-conflicts help guide the search towards
other interesting search regions.

Table 4. Size of CB for each instance group (CPU time: 10 s)

Instance
set

#OPTW
nodes

#conflicts
(average)

#OBDDnodes
(average)

reorderingtime
(%)

Solomon1 100 509.66 257.59 34.15

Solomon2 100 19.19 11.19 6.91

Cordeau1 48–288 109.10 303.50 67.73

Cordeau2 48–288 0.40 1.70 2.15

506 T.-H. Tran et al.

Table 5. Performance of the static and dynamic ordering strategies for OBDDs on
two instances (pr01: 48 variables, best static order found = “increasing opening time”;
pr06: 288 variables, best static order found = “decreasing rewards”)

instance LNS iteration #conflicts best-static-ordering dynamic-ordering

#nodes time(s) #nodes time(s)

pr01 1 0 1 0.0006 1 0.0012

2 2 7 0.0013 5 0.0026

3 8 36 0.0021 13 0.0041

4 8 36 0.0030 12 0.0054

pr06 1 0 1 0.0885 1 0.4886

2 55 69219 0.1803 477 2.5110

3 80 6342191 19.1407 533 2.6108

4 94 38250383 367.198 833 2.6422

7 Related Works

Incomplete search and SAT/CP were combined in Large Neighborhood
Search [23], where a sequence of destroy-repair operations is performed on an
incumbent solution. The destroy phase unassigns a subset S of the decision vari-
ables, while the repair phase can be delegated to a SAT/CP engine capable of
quickly exploring all possible reassignments of S given the current partial assign-
ment. Some authors also proposed to represent specific neighborhood structures
using a tailored CP model and to translate the solutions found for this model into
changes at the level of the global solution [22]. Others propose an efficient neigh-
borhood exploration algorithm with the help of restricted decision diagrams [8].
In the same spirit, our CB is built to quickly detect inconsistent assignments at
the selection level, therefore it can significantly reduce the neighborhood size to
explore in the repair phase, but one difference is that we generate new conflicts
during search and for the incomplete search process, CB only acts as a constraint
propagation engine.

Fig. 4. Evolution of the average gaps for CB-UP and CB-UP-Lopt

Combining Incomplete Search and Clause Generation 507

Other hybrid approaches exploit the strengths of incomplete search and com-
plete SAT/CP techniques at different search phases. As an illustration, in SAT,
Stochastic Local Search (SLS) has been combined with DPLL or Conflict Directed
Clause Learning (CDCL) [1,5,19]. For the SLS-CDCL version, the idea is that on
one side, SLS can be run first to help CDCL have a heuristic for choosing variable
values or to help CDCL update the activities of the variables, and on the other
side CDCL can help SLS espace local optima. Another example is the composi-
tion of traditional CP search and Constraint-Based Local Search (CBLS [12]),
where the two search approaches can exchange bounds, solutions, etc. In line
with previous studies, inconsistency explanations generated at each iteration
are stored in CB and then reused to help the search engine escape explored
or invalid regions. In our case, by taking into account the current search state
along with the clauses learned in the past iterations, CB may suggest mandatory
assignments to quickly lead the search to promising regions.

Another technique uses inference methods such as unit propagation or con-
straint propagation, initially developed for complete search strategies, to speed
up the neighborhood exploration during local search. One example following this
line for SAT is the unitWalk algorithm [13,17]. At each iteration, it considers a
complete variable assignment and performs a pass over this assignment to iter-
atively update the values of the variables with unit propagation. Compared to
this work, one of the novelties in CB-UP is the decremental propagation aspect.

Last, the use of an external CB coupled with incomplete search can be com-
pared with the use of a memory data structure in tabu search. On this point,
instead of a simple list of forbidden local moves or forbidden variable assignments
as in tabu search [9], CB memorizes logical formulas about the selection of nodes
in a long-term way (possibly with some trashing when the size of CB becomes
too large). CB is also equipped with efficient mechanisms to quickly reason about
the formulas collected, instead of just reading explicit forbidden configurations.
Another remark is that traditional tabu search is usually not recyclable i.e. the
memory is reset at each resolution, while the time window conflicts stored in
CB are easily recyclable for dynamic OPTWs where the reward associated with
each node can change.

8 Conclusion and Perspectives

This paper presented a new hybrid optimization architecture combining an
incomplete search process with clause generation techniques. Three generic
clause basis managers were studied instead of just arbitrarily choosing a unique
option, and the efficiency of the approach using unit propagation was demon-
strated. One next step is to apply the approach to other problems like Team
OPTW or flexible scheduling problems. Now that the generic clause bases are
defined, the main effort to tackle a new problem is the definition of the problem-
dependent clause generation procedure. Another perspective is to explore other
clause basis managers (e.g. based on 0/1 linear programming and reduced-cost
filtering), or knowledge bases covering pseudo-boolean constraints or cardinality
constraints.

508 T.-H. Tran et al.

References

1. Audemard, G., Lagniez, J.M., Mazure, B., Säıs, L.: Integrating conflict driven
clause learning to local search. In: 6th International Workshop on Local Search
Techniques in Constraint Satisfaction (LSCS 2009) (2009)

2. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39071-5 23

3. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM (JACM) 9(1), 61–63 (1962)

4. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. Comput.
IEEE Trans. 100(8), 677–691 (1986)

5. Crawford, J.: Solving satisfiability problems using a combination of systematic and
local search. In: Second Challenge on Satisfiability Testing organized by Center for
Discrete Mathematics and Computer Science of Rutgers University (1996)

6. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229–264 (2002)

7. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electron.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

8. Gillard, X., Schaus, P.: Large neighborhood search with decision diagrams. In:
International Joint Conference on Artificial Intelligence (2022)

9. Glover, F., Laguna, M.: Tabu search. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook
of Combinatorial Optimization, pp. 2093–2229. Springer, Boston (1998). https://
doi.org/10.1007/978-1-4613-0303-9 33

10. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logistics
(NRL) 34(3), 307–318 (1987)

11. Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: a survey of
recent variants, solution approaches and applications. Eur. J. Oper. Res. 255(2),
315–332 (2016)

12. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. The MIT Press,
Cambridge (2005)

13. Hirsch, E., Kojevnikov, A.: UnitWalk: a new SAT solver that uses local search
guided by unit clause elimination. Ann. Math. Artif. Intell. 43, 91–111 (2002)

14. Hooker, J., Ottosson, G.: Logic-based Benders’ decomposition. Math. Program.
Ser. B 96, 33–60 (2003)

15. Ignatiev, A., Semenov, A.: DPLL+ROBDD derivation applied to inversion of some
cryptographic functions. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol.
6695, pp. 76–89. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21581-0 8

16. Kantor, M.G., Rosenwein, M.B.: The orienteering problem with time windows. J.
Oper. Res. Soc. 43(6), 629–635 (1992)

17. Li, X.Y., Stallmann, M.F., Brglez, F.: QingTing: a fast SAT solver using local
search and efficient unit propagation. In: Proceedings of the Sixth International
Conference on Theory and Applications of Satisfiability Testing (SAT 2003) (2003)

18. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, pp. 133–182. IOS Press (2021)

19. Mazure, B., Sais, L., Grégoire, É.: Boosting complete techniques thanks to local
search methods. Ann. Math. Artif. Intell. 22(3), 319–331 (1998)

https://doi.org/10.1007/978-3-642-39071-5_23
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-1-4613-0303-9_33
https://doi.org/10.1007/978-3-642-21581-0_8
https://doi.org/10.1007/978-3-642-21581-0_8

Combining Incomplete Search and Clause Generation 509

20. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Proceedings of the 38th annual Design Automation
Conference, pp. 530–535 (2001)

21. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 19

22. Pesant, G., Gendreau, M.: A constraint programming framework for local search
methods. J. Heuristics 5(3), 255–279 (1999)

23. Pisinger, D., Ropke, S.: Large neighborhood search. In: Gendreau, M., Potvin, J.-
Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 99–127. Springer,
Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 4

24. Prestwich, S.: The relation between complete and incomplete search. In: Blum,
C., Aguilera, M.J.B., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Studies
in Computational Intelligence, vol. 114, pp. 63–83. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78295-7 3

25. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams.
In: Proceedings of 1993 International Conference on Computer Aided Design
(ICCAD), pp. 42–47. IEEE (1993)

26. Savelsbergh, M.W.: Local search in routing problems with time windows. Ann.
Oper. Res. 4(1), 285–305 (1985)

27. Schmid, V., Ehmke, J.F.: An effective large neighborhood search for the team
orienteering problem with time windows. In: ICCL 2017. LNCS, vol. 10572, pp.
3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68496-3 1

28. Schutt, A., Feydy, T., Stuckey, P., Wallace, M.: Solving RCPSP/max by lazy clause
generation. J. Sched. 16(3), 273–289 (2013)

29. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

30. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: 12th International Conference on Theory and Applications of Satisfiability
Testing (SAT), pp. 244–257 (2009)

31. Vansteenwegen, P., Souffriau, W., Berghe, G.V., Van Oudheusden, D.: Iterated
local search for the team orienteering problem with time windows. Comput. Oper.
Res. 36(12), 3281–3290 (2009)

32. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
a survey. Eur. J. Oper. Res. 209(1), 1–10 (2011)

https://doi.org/10.1007/978-3-642-31612-8_19
https://doi.org/10.1007/978-3-319-91086-4_4
https://doi.org/10.1007/978-3-540-78295-7_3
https://doi.org/10.1007/978-3-319-68496-3_1

Author Index

A
Allouche, David 417
Anjos, Miguel F. 124

B
Bai, Yiwei 1
Beck, J. Christopher 18
Beldiceanu, N. 378
Berthold, Timo 52
Besançon, Mathieu 52
Burlats, Auguste 320

C
Cai, Junyang 200
Carvalho, Margarida 219
Chembu, Aravinth 254
Chmiela, Antonia 114
Choi, Yeonjun 477
Codish, Michael 133
Cohen, Eldan 281

D
Dakle, Parag Pravin 299
de Givry, Simon 417
Dilkas, Paulius 395
Dilkina, Bistra 96, 460
Douence, R. 378
Dovier, Agostino 336
Dubois, Louis 427

E
Efthymiou, Nikolaos 238
ElAraby, Mostafa 219

F
Fargier, Hélène 493
Ferber, Aaron 96, 460
Flecker, Alexander 1
Formisano, Andrea 336

G
Gentzel, Rebecca 150
Gindullin, R. 378
Gleixner, Ambros 114
Gomes, Carla P. 1
Good, Aidan 200
Gore, Meredith 460
Griffin, Emily 460
Grimson, Marc 1

H
Hojny, Christopher 69
Houssin, Laurent 354
Hu, Xinyi 264
Huang, Taoan 96

I
Ito, Takehiro 167
Itzhakov, Avraham 133

J
Jeong, Jihwan 79
Juvin, Carla 354

K
Kadıoğlu, Serdar 299
Karahalios, Anthony 35
Katsirelos, George 417
Kawahara, Jun 167
Keskin, Burcu 460
Khalil, Elias B. 254
Kim, Dongyun 477
Koch, Thorsten 52
Korikov, Anton 18
Kumar, Akshat 79

L
Lee, Jasper C. H. 264
Lee, Jimmy H. M. 264
Lee, Kangbok 477

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. A. Cire (Ed.): CPAIOR 2023, LNCS 13884, pp. 511–512, 2023.
https://doi.org/10.1007/978-3-031-33271-5

https://doi.org/10.1007/978-3-031-33271-5

512 Author Index

Lee, Myungho 477
Lichocki, Pawel 114
Lodi, Andrea 184
Lopez, Pierre 354

M
Michel, Laurent 150, 336
Montalbano, Pierre 417
Moon, Kyungduk 477

N
Nakahata, Yu 167
Ngouonou, J. Cheukam 378
Nguyen, Khai-Nguyen 200

P
Peršak, Egon 124
Pesant, Gilles 320, 370
Pezzoli, Gauthier 370
Pfetsch, Marc E. 69
Piché-Meunier, Dominique 427
Pinedo, Michael L. 477
Pokutta, Sebastian 114
Politi, Regina 299
Pontelli, Enrico 336
Pralet, Cédric 443, 493

Q
Quimper, C. -G. 378

R
Raghavan, Preethi 299
Rallabandi, SaiKrishna 299
Roussel, Stéphanie 443

S
Sanner, Scott 79, 254
Santana, Ítalo 184
Serra, Thiago 200
Shi, Qinru 1
Shrestha, Nishant 200
Soh, Takehide 167
Squillaci, Samuel 443
Srinivasamurthy, Ravisutha 299
Steiner, Benoit 96
Suzuki, Akira 167

T
Tardivo, Fabio 336
Teruyama, Junichi 167
Tian, Yuandong 96
Toda, Takahisa 167
Tran, Trong-Hieu 493
Tremblay, François-Alexandre 427
Tu, Ruisen 200
Turner, Mark 52

U
Uppuluri, Karthik 299

V
van Hoeve, Willem-Jan 35, 150
Vidal, Thibaut 184

W
Werner, Tomáš 417
Wolf, Guy 219

Y
Yorke-Smith, Neil 238
Yu, Xin 200

Z
Zhe, Shandian 200

	 Preface
	 Organization
	 Contents
	Efficiently Approximating High-Dimensional Pareto Frontiers for Tree-Structured Networks Using Expansion and Compression
	1 Introduction
	2 Problem Formulation
	3 The Expansion Method
	4 The Compression Method
	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation Method
	5.3 Experimental Results
	5.4 Ablation Study

	6 Conclusion
	References

	Objective-Based Counterfactual Explanations for Linear Discrete Optimization
	1 Introduction
	2 Background
	2.1 Counterfactual Explanations
	2.2 Nearest Counterfactual Explanations
	2.3 Inverse Combinatorial Optimization

	3 Problem Definition
	3.1 Existence of an Explanation

	4 The NCXplain Algorithm
	5 Experimental Method
	5.1 Forward Problems
	5.2 NCEMILP Instances
	5.3 Computational Details

	6 Experimental Results
	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	References

	Column Elimination for Capacitated Vehicle Routing Problems
	1 Introduction
	2 Column Formulation for CVRP
	3 Decision Diagram Formulation for CVRP
	3.1 From Dynamic Programming to Decision Diagrams
	3.2 Dynamic Programming for Route Relaxations
	3.3 Exact and Relaxed Decision Diagrams
	3.4 Constrained Network Flow Formulation

	4 Column Elimination Procedure
	5 Lagrangian Relaxation
	6 Cutting Planes
	7 Reduced Cost-Based Arc Fixing
	8 Experimental Results
	9 Conclusion
	References

	Cutting Plane Selection with Analytic Centers and Multiregression
	1 Introduction
	2 Related Work
	3 Contributions and Methodology
	3.1 Analytic Center-Based Methods
	3.2 Multiple LP Solutions
	3.3 Properties and Limitations of the Distance Measures
	3.4 Multi-output Regression

	4 Experiments
	4.1 Root Node Results
	4.2 Branch and Bound Generalisation
	4.3 Regression Model Results

	5 Conclusion
	References

	Handling Symmetries in Mixed-Integer Semidefinite Programs
	1 Introduction
	2 Computing Symmetries
	3 Symmetry Detection
	4 Computational Results
	References

	A Mixed-Integer Linear Programming Reduction of Disjoint Bilinear Programs via Symbolic Variable Elimination
	1 Introduction
	2 Reducing a DBLP to a MILP: A Worked Example
	3 Symbolic Calculus with Case Representation
	3.1 Case Representation
	3.2 Basic Case Operators

	4 Symbolic Reduction of a DBLP to a MILP
	4.1 Symbolic Minimization of Linear Piecewise Linear Functions
	4.2 Symbolic Minimization of Disjointly Linear Piecewise Bilinear Functions

	5 Empirical Analysis
	6 Conclusion and Future Work
	References

	Local Branching Relaxation Heuristics for Integer Linear Programs
	1 Introduction
	2 Background
	2.1 ILP and Its LP Relaxation
	2.2 LNS for ILP Solving
	2.3 LB Heuristic

	3 Related Work
	3.1 LNS for ILPs
	3.2 LNS-Based Primal Heuristics in BnB
	3.3 LNS for Other COPs

	4 The Local Branching Relaxation Heuristic
	5 Empirical Evaluation
	5.1 Setup
	5.2 Results

	6 Conclusion
	References

	Online Learning for Scheduling MIP Heuristics
	1 Introduction
	2 Background
	3 Scheduling Primal Heuristics Online
	3.1 The Online Scheduling Framework
	3.2 Choosing a Reward Function
	3.3 Choosing a Bandit Algorithm

	4 Computational Results
	References

	Contextual Robust Optimisation with Uncertainty Quantification
	1 Introduction
	2 Robust Predict-then-Optimise
	3 Predictive Models with Uncertainty Quantification
	4 Conditional Ambiguity Sets
	5 Data-driven Robustness Parameter Specification
	6 Computational Evaluation and Discussion
	6.1 Simulated Problem

	References

	Breaking Symmetries with High Dimensional Graph Invariants and Their Combination
	1 Introduction
	2 Preliminaries and Notation
	3 Graph Invariants and Their Induced Graph Orderings
	4 Symmetry Breaking Constraints with Graph Invariants
	5 An Application: Generation of Cubic Graphs
	6 Conclusion
	References

	Optimization Bounds from Decision Diagrams in Haddock
	1 Introduction
	2 Background
	2.1 MDD as Layered Transition System
	2.2 State Properties
	2.3 Transition Functions
	2.4 Transition Existence Function
	2.5 Node Relaxation Functions
	2.6 MDD Language

	3 MDDs for Optimization
	4 Restricted Decision Diagrams
	4.1 Restricted MDDs in Haddock Propagation
	4.2 Relaxed MDDs in Haddock Propagation
	4.3 Restricted MDDs and Constraints External to the MDD

	5 Best-First Search
	6 Empirical Evaluation
	7 Conclusion
	References

	ZDD-Based Algorithmic Framework for Solving Shortest Reconfiguration Problems
	1 Introduction
	2 Preliminaries
	2.1 Reconfiguration Problems
	2.2 Zero-Suppressed Decision Diagram (ZDD)

	3 ZDD-Based Algorithmic Framework
	3.1 Algorithmic Framework
	3.2 Removal and Addition Operations

	4 Versatility of Proposed Algorithm
	4.1 Shortest, Farthest, and Connectivity Variants
	4.2 Token Jumping Model
	4.3 Reconfiguration Objects and Constraints

	5 Experimental Results
	6 Conclusion
	References

	Neural Networks for Local Search and Crossover in Vehicle Routing: A Possible Overkill?
	1 Introduction
	2 Methodology
	2.1 Hybrid Genetic Search
	2.2 Local Search Using Relatedness Measures
	2.3 Crossover Using Relatedness Measures

	3 Experimental Analyses
	3.1 Computational Environment
	3.2 Benchmark Instances
	3.3 Parametrization and Training of the GNN
	3.4 Calibration of the Local Search
	3.5 Experimental Results – Set XML
	3.6 Experimental Results – Set X

	4 Conclusions
	References

	Getting Away with More Network Pruning: From Sparsity to Geometry and Linear Regions
	1 Introduction
	2 Notation
	3 The Linear Regions of Pruned Neural Networks
	4 Pruning Based on Linear Regions
	5 Counting Linear Regions in Subspaces
	6 Computational Experiments
	7 Conclusion
	References

	OAMIP: Optimizing ANN Architectures Using Mixed-Integer Programming
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Neuron Importance Score
	3.1 MIP Constraints
	3.2 Bound Propagation
	3.3 MIP Objective

	4 OAMIP: Pruning Approach
	5 Empirical Results
	5.1 OAMIP Robustness
	5.2 Comparison to Random and Critical Pruning
	5.3 Generalization Between Different Datasets
	5.4 Comparison to SNIP

	6 Discussion
	References

	Predicting the Optimal Period for Cyclic Hoist Scheduling Problems
	1 Introduction
	2 Hoist Scheduling Problem
	3 Methodology
	3.1 Data
	3.2 ML Model Training

	4 Experimental Results
	4.1 Experiment 1: ML Predictive Power and Model Selection
	4.2 Experiment 2: Bounds and Solutions
	4.3 Experiment 3: Solver Performance with Predicted Bounds

	5 Related Work
	6 Conclusion and Future Work
	References

	Scalable and Near-Optimal -Tube Clusterwise Regression
	1 Introduction
	2 Related Work
	3 Optimal CLR with -Tube Objective
	3.1 Reduction of -Tube CLR to a MILP
	3.2 Row Generation Methodology

	4 Empirical Evaluation
	4.1 Synthetic Dataset Experiments
	4.2 Real Dataset Experiments

	5 Conclusion
	References

	Branch & Learn with Post-hoc Correction for Predict+Optimize with Unknown Parameters in Constraints
	1 Introduction
	2 Background
	3 Branch & Learn with Post-hoc Correction
	4 Case Studies
	4.1 Maximum Flow with Unknown Edge Capacities
	4.2 0-1 Knapsack with Unknown Weights
	4.3 Minimum Cost Vertex Cover with Unknown Costs and Edge Values

	5 Experimental Evaluation
	5.1 B&L-C Versus IntOpt-C
	5.2 Post-hoc Regret on More General Problems
	5.3 Different Combinations of Correction Functions and Penalty Functions

	6 Conclusion
	References

	Interpretable Clustering via Soft Clustering Trees
	1 Introduction
	2 Soft Clustering Trees
	2.1 Soft Decision Trees
	2.2 Soft Clustering Trees
	2.3 Sparsity in Soft Clustering Trees
	2.4 Learning Sparse Soft Clustering Trees Using Continuous Optimization
	2.5 Interpretable Spectral and Kernel-PCA Clustering
	2.6 Scalable Training of Soft Clustering Trees

	3 Experiments
	3.1 Implementation Details
	3.2 Datasets
	3.3 Evaluation
	3.4 Results

	4 Related Work
	5 Conclusion
	References

	Ner4Opt: Named Entity Recognition for Optimization Modelling from Natural Language
	1 Introduction
	2 Problem Description
	3 Our Approach
	3.1 Classical NLP
	3.2 Modern NLP
	3.3 Data Augmentation
	3.4 Hybrid Modeling

	4 Experiments
	4.1 Ner4Opt Dataset
	4.2 Comparisons
	4.3 Experimental Setup
	4.4 Evaluation Metrics
	4.5 Numerical Results
	4.6 Post-Mortem Analysis

	5 Related Work
	6 Conclusions
	References

	Exploiting Entropy in Constraint Programming
	1 Introduction
	2 Belief Propagation for CSPs
	3 Accuracy of BP-Estimated Marginals and Entropy
	4 Exploiting Entropy
	4.1 Deciding When to Use BP
	4.2 Deciding When to Stop BP Iterations
	4.3 Deciding When to Activate Damping
	4.4 Branching to Search for a Solution

	5 Experimental Evaluation
	5.1 Experimental Protocol
	5.2 Evaluation

	6 Conclusion
	References

	Constraint Propagation on GPU: A Case Study for the Cumulative Constraint
	1 Introduction
	2 Background
	2.1 Constraint Satisfaction/Optimization Problem
	2.2 Cumulative
	2.3 GPUs and CUDA

	3 Design and Implementation
	3.1 Parallelization

	4 Experiments
	4.1 Results and Analysis

	5 Conclusions
	References

	Constraint Programming for the Robust Two-Machine Flow-Shop Scheduling Problem with Budgeted Uncertainty
	1 Introduction
	2 Problem Statement
	2.1 Processing Times Uncertainty
	2.2 Worst-Case Evaluation

	3 Special Cases
	3.1 Global Budget and Preserved Order of Processing Times
	3.2 Machine-Dependent Budget = (1, 2)
	3.3 Unpreserved Order of Processing Times

	4 General Case
	4.1 Mixed-Integer Linear Programming Robust Counterparts
	4.2 Constraint Programming Robust Counterparts
	4.3 Column and Constraint Generation Algorithm

	5 Experimental Results
	5.1 Instances from Literature
	5.2 New Instances

	6 Conclusion
	References

	A Weighted Counting Algorithm for the Circuit Constraint
	1 Introduction
	2 An Unbiased Estimator for the Weighted Count of Hamiltonian Circuits
	2.1 A Sampling Algorithm
	2.2 Empirical Accuracy of the Estimator

	3 Integration in the CP-BP Framework
	3.1 CP-BP Framework
	3.2 Implementation of Weighted Counting for Circuit

	4 Combinatorial Search Guidance
	5 Conclusion
	References

	Boolean-Arithmetic Equations: Acquisition and Uses
	1 Introduction
	2 The Relevance of Boolean-Arithmetic Equations
	3 Describing Boolean-Arithmetic Expressions
	4 A Core Model for Acquiring BAE
	4.1 Problem Description
	4.2 A CP Core Model

	5 Enhancing the Core Model
	5.1 Linking the Number of Conditions, Their Arity, and the Number of Attributes
	5.2 Symmetry Breaking
	5.3 Pre-computing the Combinations of Possible Values of the Coefficients of a Condition

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Generating Random Instances of Weighted Model Counting
	1 Introduction
	2 Preliminaries
	3 Background on WMC Algorithms
	4 Random k-CNF Formulas with Varying Primal Treewidth
	4.1 Validating the Model

	5 Experimental Results
	5.1 Experiments on Random Instances
	5.2 Experiments on Competition Benchmarks

	6 Conclusions and Future Work
	References

	Virtual Pairwise Consistency in Cost Function Networks
	1 Introduction
	2 Background
	2.1 Weighted Constraint Satisfaction Problem
	2.2 Constraint Satisfaction Problem and Local Consistencies
	2.3 Soft Local Consistencies
	2.4 Dual Encoding of a Cost Function Network

	3 Virtual Pairwise Consistency
	4 Experimental Results on UAI 2022 Competition
	5 Conclusion
	References

	Multi-objective Optimization for the Design of Salary Structures
	1 Introduction
	2 Preliminary Concepts
	3 Optimization Model of Salary Structure Design
	3.1 Scoring Table
	3.2 Score Ranges
	3.3 Salary Structure
	3.4 Objective Functions
	3.5 Model Complexity

	4 Experiments
	4.1 Data
	4.2 Optimization Method
	4.3 Heuristic Search

	5 Results and Discussion
	5.1 Pareto Frontier
	5.2 Comparison with the Negotiated Structure

	6 Conclusion
	References

	Scheduling Complex Observation Requests for a Constellation of Satellites: Large Neighborhood Search Approaches
	1 Introduction
	2 Related Work
	3 Earth Observation Scheduling Problem
	3.1 Problem Modeling
	3.2 Connected Components

	4 Large Neighborhood Search Algorithms
	4.1 Generic Large Neighbourhood Search
	4.2 Greedy Fill Method
	4.3 Greedy LNS Destroying Requests
	4.4 Hybrid LNS Destroying Connected Components

	5 Experiments
	5.1 Instances
	5.2 Experimental Setup
	5.3 Results

	6 Conclusion
	References

	Predicting Wildlife Trafficking Routes with Differentiable Shortest Paths
	1 Introduction
	2 Related Work
	3 Flight Itinerary Prediction Formulation
	3.1 Predictive Model: Edge Transition Estimator
	3.2 Model Training: Path-Integrated Learning
	3.3 Model Training: Edge-Myopic Learning

	4 Data Sources
	5 Experiments
	5.1 Feature Selection
	5.2 Metrics
	5.3 Results Discussion
	5.4 Conclusion

	References

	Iterated Greedy Constraint Programming for Scheduling Steelmaking Continuous Casting
	1 Introduction
	2 Problem Description
	3 Iterated Greedy CP Algorithm
	3.1 Lower Bound Computation
	3.2 Initial Heuristic
	3.3 Destruction and Construction Heuristics
	3.4 CP Improvement
	3.5 Iterated Greedy CP

	4 Experiments
	4.1 Experimental Setting
	4.2 Experimental Results

	5 Concluding Remark
	References

	Combining Incomplete Search and Clause Generation: An Application to the Orienteering Problems with Time Windows
	1 Introduction
	2 Orienteering Problem with Time Windows
	3 Incomplete Search Using a Clause Basis
	4 Lazy Clause Generation Module
	4.1 Clauses Generated from Time-Window Conflicts
	4.2 Clauses Related to Local Optima: Lopt-Conflicts

	5 Clause Basis Data Structures
	5.1 CB-UnitPropagation
	5.2 CB-IncrementalSAT
	5.3 CB-OBDD

	6 Computational Study
	6.1 Parameter Settings for clauseGeneration
	6.2 Performance of the Versions of CB

	7 Related Works
	8 Conclusion and Perspectives
	References

	Author Index

