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Abstract. An accurate calculation of steel stresses is essential for assessing rein-
forced concrete structures’ serviceability limit state, e.g., assessing crack widths.
The steel stresses in elements loaded in bending are not known but are estimated
by steel stress calculations. To get a more accurate crack width prediction, the
calculated steel stress should approximately represent the actual steel stress at
the location of the crack after the crack has been formed. Existing methods for
calculating steel stresses are frequently based on numerous assumptions; e.g., the
tensile stresses or tension softening effects in the cross-section are neglected, and
a linear stress-strain distribution is assumed for the concrete in compression. This
paper presents a method to calculate steel stresses based on existing constitutive
theoretical relations that consider concrete’s non-linear behaviour in compression
and tension. They are compared with strain measurements of the reinforcement
bars using distributed optical fiber sensors obtained from experiments described
in the literature. Results showed that existing methods frequently overestimated
the steel stress, especially when the first cracks were formed. Therefore, a method
was developed for an improved calculation of steel stresses in elements loaded in
bending with a rectangular cross-section. The paper demonstrated that the devel-
opedmethod could estimate steel stressesmore accurately from the first to the final
crack. The presented method applies to rectangular cross-sections with a single
reinforcement layer but can be straightforwardly extended to other shapes in a sim-
ilar procedure and can be used to assess the accuracy of crack width formulations
based on experimental results.
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1 Introduction

An accurate description of crack widths w is essential to check if crack width limits
wlim for ingress rates are met [1–3]. The values of w can be calculated by crack width
formulations, e.g., as described in EN1992–1-1 [4]. In these formulations, an important
parameter is the steel stressσs, at the location of the considered crack [5].σs can readily be
obtained for elements subjected to a pure tension force with symmetric reinforcement
since the strain over the height h of the cross section is uniform, leading to an equal
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force distribution in the reinforcement. However, obtaining an accurate value for σs for
elements loaded in bending, is more complex than for the pure tension case, since the
non-linear behavior at the compressive side of the element and the tension softening part
of the cracked section partly determine the internal force distribution in the concrete [6].
Therefore, numerous methods were developed based on simplifications to estimate σs
at the location of a crack, denoted as σ̂s [7–9]. The methods frequently assume a linear-
elastic behaviour of concrete in compression and neglect the contribution of concrete
in tension [10], leading to an overestimation of σs, especially for the stage when the
first cracks in the element are developing. This can lead to an overestimation of crack
widths, which results in a higher reinforcement ratio ρ, thus increasing costs. Moreover,
a comparison between various crack width formulations shows that the influence of
σ̂s on the crack width varies [5, 11]. To conclude, a workflow and method are needed
to accurately estimate these steel stresses in reinforced concrete elements loaded in
bending.

The goal of this paper is to develop a method to calculate σs for the entire cracking
process for elements loaded in bending. First, a short literature review discusses various
methods for calculating σs. Then, a new semi-analytical approach is presented, including
concrete’s non-linear compression and tension softening behaviour, based on existing
constitutive relations. Afterwards, the model is validated based on existing experiments
using distributed optical fiber sensors (DOFs). Finally, the paper discusses how the
results can be used for further research and how they can be improved.

2 Methods for Calculating σ s in Elements Loaded in Bending

2.1 Assuming a Triangular Compression Zone

Frequently, σ̂s is calculated based on equilibrium equations. The concrete compression
zone xc, in the case of a rectangular cross-section with a single layer of reinforcement,
is often derived analytically, based on horizontal equilibrium and under the assumption
of a triangular shape of the compression zone [7]. The triangular shape follows from the
assumption that plane sections remain plane, and a linear stress-strain relation is adopted
for concrete in compression. The formula for xc based on these assumptions is given by

xc = d

(
−αeρ +

√
(αeρ)2 + 2αeρ

)
, (1)

where d is the working height, ρ the longitudinal reinforcement ratio and αe = Es/Ec,
where Es denotes the modulus of elasticity of the reinforcement steel. In this paper, the
short-term modulus of elasticity of concrete Ec is used since it coincides with adopted
constitutive relations later in this paper that also make use of the short-term Ec. σ̂s, at
the location of a crack, can be calculated as

σ̂s = 1

As

Mext

d − xc
3

, (2)
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where Mext denotes the applied bending moment and As the reinforcement area. Equa-
tions (1) and (2) are based on the assumptions of a rectangular cross-section, the presence
of pure bending, the neglection of tensile stresses in the concrete below the neutral axis,
and an evenly distributed tensile force over the various reinforcement bars, having a
single layer of reinforcement. Van der Schrier [7] derived Eqs. (1) and (2); therefore, in
this paper, the method based on these equations is called the Schrier method.

2.2 Assuming Linear Interpolation Between Mext and MR

Another frequently used method is to estimate σs based on the ratio of the bending
moment Mext in the SLS, and the ultimate bending moment capacity MR. The latter is
calculated as

MR = Asfy

(
d − 14

27

Asfy
fcmb

)
(3)

and can be derived from horizontal and moment equilibrium. In Eq. (3), b denotes the
width of the cross-section, fcm themean value of the compressive strength of the concrete
and fy the yield strength of the reinforcement. The factor 14/27 is based on the stress-
strain relation for concrete classes up to C50/60 [4]. According to [8], σ̂s can now be
calculated as

σ̂s = fyMext/MR. (4)

This method is based on the same assumptions as the Schrier method, except that
the height of xc is based on an interpolation of Mext/MR. Equations (3) and (4) will be
called the Interpolation method in this paper.

3 Development of the New Semi-analytical Method

Like the previously presented methods, the derivation of the semi-analytical method
started with the analytical derivation of the horizontal and bending moment equilib-
rium equations. For the assumed directions in the equilibrium, see Fig. 1. The resulting
equations for the horizontal force and bending moment are, respectively, given by

Fc − Ft,1 − Ft,2 − Fs = 0 (5)

and

−Mext + Fc

(
h

2
− (xc − zc)

)
− Ft,1

(
h

2
− xc − 2xt,1

3

)
− Ft,2

(
h

2
− xc − xt,1 − zt,2

)
+ Fs

(
d − h

2

)
= 0, (6)

where the reference point for the bendingmomentswas taken on the horizontal symmetry
line. The various parts of Eqs. (5) and (6) are depicted in Fig. 1 and are further explained
and calculated in Eqs. (7)–(23).

A non-linear concrete compression stress-strain relation represents the concrete com-
pression behaviour. The assumed relation was adopted from EN1992–1-1 [4] and fib
Model Code 2010 [6] and is given by.

σc = fcm

(
η(k − η)

1 + η(k − 2)

)
for εc < εc,lim (7)



1050 I. A. van der Esch et al.

A. Equilibrium relations for case 1

B. Equilibrium relations for case 2

Fig. 1. Strain and stress plots for cases 1 and 2, used to derive equations Eqs. (5) and (6). For an
explanation of the various variables and the meaning of cases 1 and 2 is referred to the explanation
of Eqs. (7)–(23). N.A. = neutral axis, sym = symmetry line.

With

η = εc/εc,1, k = Ec,i/Ec,1, (8)

where σc denotes the concrete compression stress, fcm the average concrete compression
strength, εc the strain in the concrete element, which varies linearly over the height of the
cross-section by the adoption of the assumption that plane sections remain plane during
bending, εc,1 the strain atmaximumcompressive stress, εc,lim themaximumallowable εc,
Ec,i the tangent short-termmodulus of elasticity of concrete and Ec,1 the secant modulus
from the origin to the peak of the compression curve. The concrete compression force,
Fc, was then computed by integrating σc over the height of the compression zone, thus

Fc = b
xc∫
0

σcdz, (9)

The corresponding centre of gravity zc of Fc is given by

zc = (∫xc0 zσcdz
)
/
(∫xc0 σcdz

)
. (10)

The tensile part of the cross-section Ft,1, corresponding to σt ≤ fctm, is given by

Ft,1 = xt,1fctmb/2, (11)
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where xt,1 represents the height of the part of the cross-section related to Ft,1, and can
be calculated by

xt,1 = fctm
εc,topEc

xc, (12)

where εc,top denotes the strain at the top of the concrete element. xt,1 was calculated based
on the assumed distribution of εc over the height of the concrete element, see Fig. 1. For
the part related to σct > fctm, the tension softening curve developed by Hordijk et al.
[12–14] was selected, which is presented by

σct = fctm

[(
1 +

(
c1

�un
�un, ult

)3
)
exp

(
−c2

�un
�un, ult

)
− �un

�un, ult

(
1 + c31

)
exp(−c2)

]
,

(13)

where σct indicate the tensile stress, which is a function of the crackwidth�un according
to the tension softening curve. The implementation of the Hordijk curve allowed for a
non-linear calculation of σct. Linear softening stress-strain relationships also exist but
are simplifications of the non-linear ones [6]. The ultimate crack width �un, ult is the
crack width�un where the concrete still can transfer σct. c1 and c2 are coefficients which
define the shape of the tension softening curve. Eq. (13) is only valid for �un < �un,ult,
which is associated to case 1, otherwise σct is 0 MPa. If �un, ult in the cross section
is reached, then σct = 0 in the parts of a specific crack where w > �un,ult. This is
described by case 2. This implies that the distribution of w over the height of the crack
is needed. However, in this paper, it was assumed that w is proportional to the strain
distribution over the height of the cross-section, allowing that only one point of w needs
to be measured. In this paper measurements of w at the most tension face were used;
this will be discussed in the results section. If w ≤ �un, ult, tension softening according
to Eq. (13) Was applied; this is called case 1. �un,ult is calculated by

�un, ult = 5.136GI
f /fctm,GI

f = 73f 0.18cm , (14)

where GI
f represents the fracture energy according to fracture mode I and was estimated

according to [6]. To convert �un, ult to an ultimate strain εn,ult, �un, ult was smeared
over a crack bandwidth lcs according to [6] �un, ult can then be converted to an ultimate
strain by

εn, ult = 5.136
GI
f

fctm

1

lcs
, lcs = min

(
sr,m, y

)
. (15)

In Eq. (15), sr,m denotes the average crack spacing and y the distance from the N.A.
to the bottom tension fibre, evaluated based on a cracking analysis in the elastic phase,
neglecting the residual tensile strength of the concrete. Ft,2,case1, representing the force
related to the non-linear Hordijk Softening curve based on case 1, was then calculated
as

Ft,2,case1 = b ∫xt,2,case10 σctdz, (16)
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where the centre of gravity zt,2,case1 is described by

zt,2,case1 = (∫xt,2,case10 zσctdz
)
/
(∫xt,2,case10 σctdz

)
. (17)

Finally, the tensile force in the reinforcement Fs is given by

Fs = AsEsεc,top(d − xc)

xc
, (18)

derived again based on the strain distribution according to Fig. 1. By substituting Eqs.
(7)–(18) into Eqs. (5) and (6), the complete model was determined for case 1.

Ft,2 for case 2, Ft,2,case2, was obtained using a similar procedure; the ultimate strain
is reached in the cross-section, thus

Ft,2,case2 = xt,2
εn, ult

b ∫εn, ult
0 σctd�un. (19)

The height of the cross-section related to the tension softening zone for case 2,
xt,2,case2, is described by

xt,2,case2 = εn, ultxc
εc,top

− xt,1, (20)

and the centre of gravity is given by

zt,2,case2 = xt,2,case2
εn, ult

(∫εn, ult
0 �unσctd�un

)
/
(∫εn, ult

0 σctd�un
)
. (21)

Equations (19) and (21) were expressed in terms of strains instead of stresses by a
scaling factor in front of the integral in order to emphasize that the transition between
cases 1 and 2 is determined by εn,ult. Like case 1, for case 2, the strain distribution was
entirely determined by substituting Eqs. (7)–(15) and Eqs. (18)-(21) into Eqs. (5) and
(6). The derived non-linear Eqs. (5) and (6) were solved numerically for εc,top and xc,
making it a semi-analytical method. In order to find physically admissible solutions or
to increase the speed of convergence, an initial guess was used. The initial guess was
based on Eq. (1) since that equation expresses xc in closed form, leading to xc, init. From
the found xc, init, εc, top, init was based on an initial guess for εc,top. εc, top, init was derived
by applying moment equilibrium on the assumptions related to the Schrier method.
εc, top, init is given by

εc, top, init = 2Mext

Ecbxc, init
(
d − xc, init

3

) , (22)

Finally, from the solved xc and εc, top from Eqs. (5) and (6), xc and εc, top were back
substituted into Eq. (18), from which σ̂s was computed by

σ̂s = Fs/As. (23)

The complete calculation procedure is summarized in Fig. 2.
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Fig. 2. Workflow for calculating σ̂s of the developed method.

4 Results and Validation

Themodel was validated based on the experiments of Berrocal et al. [15]. In these experi-
ments, εs wasmeasured usingDOFs, andwwas estimated using digital image correlation
(DIC). In this paper, the measured value of εs was converted to σs by multiplying εs with
Es. The experimental program consisted of six beams, tested in a three-point bending
test, see Fig. 3. The load at mid-span was applied in a displacement-controlled manner.
From the experimental program by [15], beams no. (1) and (2) were selected, which
were monotonically loaded, to exclude the effect of load repetitions. The beams had
cross-section dimensions of b=100 mm, h=150 mm, and d=120 mm. The reinforcement
consisted of two reinforcement bars with a diameter ∅ of 10 mm and Es=200 GPa. The
span of the beams was 800 mm. Even though the slenderness λ = L/h of the beam is
close to 5; still the assumption of plane sections remaining plane was adopted due to
the lack of other experiments with larger values of λ. The mean cubic strength fcm,cube,
following from testing cubes 150x150x150 mm from the concrete batch, was 61 MPa
and fctm was based on a mean splitting tensile strength of 4 MPa. In this paper, based
on these provided material properties of [15], the characteristic cylindrical compression
strength fck, which is needed for further validating the developed model, was determined
by

fck = 0.8513fcm, cube − 5, fcm = fck + 8. (24)

Eq. (24) Was derived using linear regression applied to the concrete compression
properties described in [6]; the regression approach was inspired by Wijte et al. [16].
Applying Eq. (24) And inserting 61 MPa for fcm, cube led to a fck of 46.9 MPa.

Regarding the measurements of [15], the DOFs had a spatial resolution of 0.625mm
and a sampling rate of 5 Hz. This is larger than the sampling rate of the applied DIC
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system of 0.2 Hz. The spatial resolution of the DOFs was small compared to lcs, thus
the measurement of εs of the DIC in the vicinity of a crack was very similar to the
situation that εs would be measured in a crack. This implied that εs could be determined
accurately, whether the spatial point of the DOF was located in a crack or in the vicinity
of that specific crack. The noise value was 10 με (microstrain), corresponding to an
estimated noise for σs of 2 MPa. The crack pattern was also visualized using DIC, which
provided an accuracy of 8.5 μm for the described DIC setup.

Fig. 3. Experimental setup from [15]

During the experiments of [15], the applied force Fext was measured at the same
time intervals as the DIC. However, due to the difference between the sampling rates of
the DIC and DOFs and to be able to validate the presented method in this paper with
the provided data from [15], linear interpolation was performed on the forcing and time
scale of the DIC to compare results from DIC with DOFs.

The estimation of lcs according to Eq. (15) required the computation of sr,m and y. .
Since only crack (4) w was estimated by DIC, sr,m was in this paper calculated based on
the average of the crack spacing sr between crack (3) and (4) and the spacing between
crack (4) and crack (5), see Fig. 4. w was rather estimated than calculated since DIC
was used by [15] to analyze w at the tension face of the beams, which might differ from
w located at the reinforcement bars. Nonetheless, due to the limited width of 100 mm,
it was assumed that the estimated w is close to the observed w by DIC. This led for
beam (1) and (2) to sr,m = 101 mm and sr,m = 86 mm, respectively. These values were
comparable to the distance from the N.A. to the bottom fibre according to Eq. (15), hence
for lcs the mean crack spacing was implemented.

For beam (1) and beam (2), 4147 and 2, 4200 measurement points from [15] were
selected, respectively. The number of analyses was related to the selected applied forces
F resulting from the displacement controlled loading, which resulted in Mext at the
location of crack (4). The lower bound of F was selected as the point where for crack (4)
a width of 0.05 mmwas reached. The choice of 0.05 mmwas based on two reasons: 1) it
was used as a lower bound Flow for the determination of the crack locations in the paper
of [15]; 2) a small w ≤ 0.05 mm cannot be measured by DIC with the same relative
accuracy compared to a larger w. The upper bound Fup of the applied force was chosen
before some NaN values were encountered, close to the end of the measurements. With



Calculation of Steel Stresses in Cracked Reinforced Rectangular Concrete Elements 1055

A. Location of the cracks for beam 1. Loca-

tion of w.r.t. left support: 0.403 m.

B. Location of the cracks for beam 2, Loca-

tion of w.r.t. left support: 0.439 m.

Fig. 4. Location of cracks, A) beam 1, B) beam 2. The crack number i is denoted as (i). sr is
indicated with black arrows; the distances are indicated in m. u0 denotes the imposed deformation,
which represents the applied load on the concrete element, varying between a lower Flow and an
upper Fup bound.

these starting and ending points of the analyses, almost all available information was
considered. See Fig. 5 for the considered moments and the related crack widths, with
their corresponding time. The effect of the load due to a self-weight of 0.375 kN/m was
neglected since the applied external bending momentMext, , at the location of crack (4),
due to a load of Flow, was over 50 times the bending moment due to self-weight. The
results showed an approximately linear correlation between Mext and w.

Fig. 5. Loading sequences. Left figure: beam (1). Right figure: beam (2).

In Fig. 6, σ̂s is presented versus the estimated w according to DIC. σ̂s according to
the Schrier and Interpolation method are compared with the developed method in this
paper, and the computed σs according to the measured strains. The figure reveals that
all methods in these ranges were approximately describing a linear relation between σ̂s
and w. This is reasonable since a single crack is considered; thus, w is then more or
less proportional to σs. The developed method showed less overestimation of σ̂s with
respect to σs, calculated based on εs measured by the DOFs. The overestimation was still
most severe in the early stage of the cracking process, thus whenMext was close toMext
at Flow, but provided in these regions still ≈ 30 − 50% less overestimation compared



1056 I. A. van der Esch et al.

to the Schrier and Interpolation methods. The reason is that the strains over the height
of the cross-section, based on the assumption of the developed method, are relatively
small compared to the Schrier method, leading to a smaller value of εs. The εc, top for the
developedmethodcompared to the Interpolationmethod is small; however, the developed
method has a larger xc, leading to a smaller εs and thus a smaller σ̂s. This is depicted
in Fig. 7. Interestingly, the Interpolation method led to minor stresses than the Schrier
method. This was reasonable since the first method is computed as an interpolation of
Mext/MR, leading to smaller xc, consequently a larger z and thus a smaller σ̂s. The three
methods converge for larger w and thus a larger Fext. Since the tension softening effect
decreases for large loads, σ̂s according to the developed method leads to approximately
the same value of σ̂s according to the Schier and the Interpolationmethods. The described
behaviour was generally the same for beams (1) and (2).

Fig. 6. σs vs. estimated crack width w for the Schrier, Interpolation and the developed method for
the calculation of σ̂s. In red: σ̂s based on the measured values of εs according to [15], for beams
(1) and (2).

A. Developed method B. Schrier method C. Interpolation method

Fig. 7. Strain distribution over the height of the cross-section depicted for beam (1), for Mext at
Flow. The results of beam (2) show similar behaviour and are therefore not depicted.
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5 Conclusions and Discussion

This paper discussed the Schrier and Interpolation methods to calculate steel stresses
in reinforced concrete elements subjected to bending with a rectangular cross-section
and compared them with a method based on more complex constitutive relations for
reinforced concrete. It demonstrated that the existing Schrier and Interpolation methods
underestimate the steel stress, especially in the initial cracking stage. It also showed that
existing methods describe the steel stress relatively accurate at the end of the cracking
process. The developed method can estimate the steel stresses during the complete
cracking stage with less overestimation and more accuracy. Furthermore, the resulting
stresses have the same magnitude as those calculated based on DOFs. However, before
the developed method can be applied, it could be simplified and verified based on more
experiments tested with DOFs and DICs. More slender beams should be tested in future
experiments to satisfy the assumption that plane sections remain plane during bending
since that assumption was adopted for the presented semi-analytical method. The results
in this paper present a workflow and method for comparing various methods to calculate
steel stresses and are not meant for a final comparison since only measurements from
two beams were used. This can be done in future research using more measurements
from the combined application of DOFS and DICs. The presented method can easily be
extended to several cross-sections or more sophisticated reinforcement configurations
like multiple reinforcement layers. It can also describe steel stresses more accurately
when comparing crack width formulations.
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