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Aims and Scope 
Optimization has continued to expand in all directions at an astonishing rate. New 
algorithmic and theoretical techniques are continually developing and the diffusion 
into other disciplines is proceeding at a rapid pace, with a spot light on machine 
learning, artificial intelligence, and quantum computing. Our knowledge of all 
aspects of the field has grown even more profound. At the same time, one of the 
most striking trends in optimization is the constantly increasing emphasis on the 
interdisciplinary nature of the field. Optimization has been a basic tool in areas 
not limited to applied mathematics, engineering, medicine, economics, computer 
science, operations research, and other sciences. 

The series Springer Optimization and Its Applications (SOIA) aims to publish 
state-of-the-art expository works (monographs, contributed volumes, textbooks, 
handbooks) that focus on theory, methods, and applications of optimization. Topics 
covered include, but are not limited to, nonlinear optimization, combinatorial opti-
mization, continuous optimization, stochastic optimization, Bayesian optimization, 
optimal control, discrete optimization, multi-objective optimization, and more. New 
to the series portfolio include Works at the intersection of optimization and machine 
learning, artificial intelligence, and quantum computing. 

Volumes from this series are indexed by Web of Science, zbMATH, Mathematical 
Reviews, and SCOPUS.
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Preface 

As of 2023, it has been 3 years since the emergence of the novel coronavirus 
(COVID-19) and the declaration of this virus as a global public health crisis by 
the World Health Organization (WHO). During these 3 years, the COVID-19 virus 
has caused significant disruptions to daily life, the economy, and healthcare systems, 
due to the rapid spread of the virus globally. Fortunately, statistics released by the 
WHO between January 2022 and January 2023 show that the number of confirmed 
cases and deaths due to the COVID-19 pandemic dropped significantly worldwide. 

The improvement in health related to the COVID-19 pandemic is mainly due 
to the radical measures taken by the governments of each country affected by this 
pandemic. These measures include using face masks, promoting social distancing, 
and developing and distributing vaccines. Thanks to rapid scientific advancements 
of technological developments, smart tools have played active roles in developing 
and implementing these radical measures. 

Accordingly, mathematical modeling and intelligent control techniques have 
captured the attention of every healthcare industry for providing quality care to 
patients. In this regard, mathematical modeling and intelligent control have emerged 
as powerful computational models and have shown significant success in combating 
the COVID-19 pandemic or new variants of this virus. 

This book contains a total of 14 chapters classified into 2 main sections. The 
first part focuses on mathematical models that are useful in tackling the COVID-
19 crisis. The second part provides some machine-learning techniques related to 
COVID-19. This book will be ideal for individuals new to the notion and appli-
cation of mathematical modeling and intelligent control techniques in combating 
COVID-19 and for early career scholars. Additionally, advanced undergraduate-
and graduate-level students who wish to learn and further extend their knowledge 
of data-driven informatics in COVID-19 diagnosis and management may find this 
book of use. 

We want to take this opportunity to express our sincere thanks to the contributors 
to this volume and the reviewers for their outstanding efforts in reviewing and 
providing feedback to the authors of the chapters. The editors would like to thank 
Prof. Panos Pardalos (Series Editor), My Thai (Series Editor), Ms. Elizabeth Loew

v



vi Preface

(Executive Editor), and Ms. Kritheka Elango (Springer Project Coordinator) for 
the editorial assistance and support to help produce this important scientific work. 
Without this collective effort, this book would not have been possible. 

Taichung, Taiwan Zakia Hammouch 
Casablanca, Morocco Mohamed Lahby 
Cankaya, Turkey Dumitru Baleanu
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1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169 
2 Reinforcement Learning (RL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 

2.1 Definition and Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 
2.2 Main Concepts and Methods in Reinforcement Learning Domain. .  173 
2.3 Applications of RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 
2.4 Overview of RL Approaches to Vaccine Distribution . . . . . . . . . . . . . . .  175 

3 Illustrative Example of a RL-Based System for Vaccine 
Allocation and Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176 
3.1 Generic Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177 
3.2 Classes of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  178 
3.3 Components of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 
3.4 Typical Operations of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180 
3.5 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  181 
3.6 Incorporating Domain-Specific Knowledge and Constraints . . . . . . . .  182



Contents xi

4 Evaluation of RL for Vaccine Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183 
4.1 Benefits of RL for Vaccine Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183 
4.2 Challenges and Limitations of RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184 
4.3 Limitations and Risks of RL for Vaccine Distribution . . . . . . . . . . . . . . .  185 
4.4 Ethical and Social Implications of RL for Vaccine Distribution . . . .  186 

5 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 
5.1 Research Question 1: How Has RL Been Applied to 

Vaccine Distribution? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187 
5.2 Research Question 2: What Are the Potential Benefits and 

Limitations of Using RL for Vaccine Distribution? . . . . . . . . . . . . . . . . . .  188 
5.3 Research Question 3: What Is the Methodology for Using 

RL for Optimizing COVID-19 Vaccine Distribution 
Strategies, and What Are the Key Steps and Components 
Involved in This Process? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189 

6 Future Directions for Research and Development. . . . . . . . . . . . . . . . . . . . . . . . . .  190 
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192 

Incorporating Contextual Information and Feature Fuzzification 
for Effective Personalized Healthcare Recommender System . . . . . . . . . . . . . .  197 
Mohammed Wasid and Khalid Anwar 
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197 
2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199 
3 Proposed Recommendation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 

3.1 Phase 1 – Patient Profile Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 
3.2 Phase 2 – Similarity Computation and Neighborhood Set 

Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204 
3.3 Phase 3 – Prediction and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . .  205 

4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205 
4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 
4.2 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  206 

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 

Prediction of Growth and Review of Factors Influencing the 
Transmission of COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 
Gyanendra K. Verma 
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 
2 Review: Factors Influencing the Transmission of COVID-19 . . . . . . . . . . . . .  215 

2.1 Effect of Temperature and Humidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
2.2 Effect of Population and Social Distancing . . . . . . . . . . . . . . . . . . . . . . . . . .  216 
2.3 Effect of Population Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 
2.4 Effect of Air Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 
2.5 Effect of Other Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 

3 Methods Based on Computational Intelligence to Predict COVID-19 . . . .  218 
3.1 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218



xii Contents

3.2 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 
3.3 Evolutionary Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  219 
3.4 Swarm Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220 

4 Method to Predict Exponential Growth of Infected Cases . . . . . . . . . . . . . . . . .  221 
5 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222 
6 Findings and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  230 

COVID-19 Combating Strategies and Associated Variables 
for Its Transmission: An Approach with Multi-Criteria 
Decision-Making Techniques in the Indian Context . . . . . . . . . . . . . . . . . . . . . . . . .  233 
Debesh Mishra and Mohamed Lahby 
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233 
2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235 

2.1 COVID-19’s Vaccinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236 
2.2 COVID-19’s Transmission Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  238 
2.3 Vaccination’s Reluctances in India . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241 

3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241 
3.1 The Associated Variables and Sub-variables Identification 

for the COVID-19 Pandemic Transmission . . . . . . . . . . . . . . . . . . . . . . . . . .  242 
3.2 The Actions Undertaken in BWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244 
3.3 The Stages Undertaken in SWARA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245 

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246 
4.1 Ranking of the Available Vaccine’s Preferences in India . . . . . . . . . . . .  246 
4.2 Ranking of the COVID-19 Transmission Variables 

and Corresponding Sub-variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  246 
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  250 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251 

Crisis Management, Internet, and AI: Information in the Age 
of COVID-19 and Future Pandemics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259 
Karim Darban, Smail Kabbaj, and Khawla Esmaoui 
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259 
2 Monitoring the Content: The Use of AI Against Internet 

Misinformation During COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261 
3 Exploiting the Content: The Use of AI and Social Media 

to Manage Information in the Case of a Global Crisis . . . . . . . . . . . . . . . . . . . . .  263 
4 Conclusion and Future Research Recommendations. . . . . . . . . . . . . . . . . . . . . . .  267 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  268 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271



About the Editors 

Zakia Hammouch (https://orcid.org/0000-0002-7459-2438) is currently a full 
Professor at the Ecole Normale Supérieure of the University Moulay Ismail Meknès. 
She received her Master’s in Applied Mathematics and her PhD in Numerical 
Analysis and Fluid Mechanics from the University of Picardie Jules Verne, Amiens, 
France. She is Researcher at the Division of Applied Mathematics of Thu Dau Mot 
University, Binh Duong, Vietnam, and Consultant at the Department of Medical 
Research, China Medical University Hospital, Taichung, Taiwan. She is a Member 
of the European Women in Mathematics (EWM) Association, a Permanent Member 
of the Organization for Women in Science for the Developing World (OWSD), 
and an Advisory Member of the Abdus Salam School of Mathematical Sciences, 
Pakistan. She has published more than 100 articles and chapters in indexed journals 
and reputable books (Springer, Elsevier, . . . ). She is a member of editorial boards 
of several international indexed journals (Scopus, WOS, . . . ). 

Mohamed Lahby (https://orcid.org/0000-0002-8272-0487) is Associate Profes-
sor at the Higher Normal School (ENS) University Hassan II of Casablanca, 
Morocco. He was awarded a PhD in Computer Science from the Faculty of 
Sciences and Technology of Mohammedia, University Hassan II of Casablanca, 
in 2013. His research interests are wireless communication and network, mobility 
management, QoS/QoE, Internet of Things, smart cities, optimization, and machine 
learning. He has published more than 50 papers (book chapters, international 
journals, and conferences), 7 edited books, and 2 authored book. He has served 
and continues to serve on executive and technical program committees of numerous 
international conferences such as IEEE PIMRC, ICC, NTMS, IWCMC, WINCOM, 
and ISNCC. He also serves as a referee of many prestigious Elsevier journals: Ad 
Hoc Networks, Applied Computing and Informatics, and International Journal of 
Disaster Risk Reduction. He organized and participated in more than 40 conferences 
and workshops. He is the chair of many international workshops and special sessions 
such as MLNGSN’19, CSPSC’19, MLNGSN’20, MLNGSN’21, AI2SC’20 and 
WCTCP’20, CIOT’22. He has also edited many books published in Springer and 
Taylor & Francis.

xiii

https://orcid.org/0000-0002-7459-2438
https://orcid.org/0000-0002-7459-2438
https://orcid.org/0000-0002-7459-2438
https://orcid.org/0000-0002-7459-2438
https://orcid.org/0000-0002-7459-2438
https://orcid.org/0000-0002-7459-2438
https://orcid.org/0000-0002-7459-2438
https://orcid.org/0000-0002-8272-0487
https://orcid.org/0000-0002-8272-0487
https://orcid.org/0000-0002-8272-0487
https://orcid.org/0000-0002-8272-0487
https://orcid.org/0000-0002-8272-0487
https://orcid.org/0000-0002-8272-0487
https://orcid.org/0000-0002-8272-0487


xiv About the Editors

Dumitru Baleanu (https://orcid.org/0000-0002-0286-7244) is a Professor at the 
Institute of Space Sciences, Magurele-Bucharest, Romania, and a visiting staff 
member at the Department of Mathematics, Cankaya University, Ankara, Turkey. 
Dumitru got his PhD from the Institute of Atomic Physics in 1996. His fields 
of interest include the fractional dynamics and its applications, fractional differ-
ential equations and their applications, discrete mathematics, image processing, 
bio-informatics, mathematical biology, mathematical physics, soliton theory, Lie 
symmetry, dynamic systems on time scales, computational complexity, and the 
wavelet method and its applications. Dumitru is a pioneer of the fractional 
variational principles and their applications in control theory. He is one of the 
co-authors of the seminal paper, entitled Anomalous diffusion expressed through 
fractional order differential operators in the Bloch-Torrey equation, published in 
the Journal of Magnetic Resonance (2008), which plays now a fundamental role 
within diffusion weighted MRI. Dumitru had an important role in developing 
the non-singular operators with Mittag-Leffler kernels and their applications in 
real-world phenomena. He is a co-author of 15 books and he published more 
than 1000 papers indexed in ISI journals. His H index is 61 and he is a highly 
cited researcher in Mathematics and Engineering in 2019. He organized several 
prestigious international conferences in various countries. He won the ICFDA2018 
Award: Innovation in Fractional Calculus and 2019-Obada Prize. Dumitru is a co-
author of a Chinese Patent No: ZL 2014 1 0033835.7 regarding chaotic maps and 
its important role in information encryption. He is the Editor in Chief of Progress 
in Fractional Differentiation and Applications, and he is a Co-Editor in Chief of 
Discontinuity, Nonlinearity and Complexity. Dumitru is an editorial board member 
of Applied Numerical Analysis, Mathematics, Symmetry, Mathematical Methods in 
Applied Sciences, Fractional Calculus and Applied Analysis, Alexandria Journal 
of Engineering, Open Physics, Advances in Difference Equations, and Journal of 
Computational and Nonlinear Dynamics.

https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0002-0286-7244
https://orcid.org/0000-0002-0286-7244


Part I 
Mathematical Modelling and Analysis 

for Covid-19 Pandemic



An Extended Fractional SEIR Model 
to Predict the Spreading Behavior 
of COVID-19 Disease using Monte Carlo 
Back Sampling 

A. S. Khoojine, M. Shadabfar, H. Jafari, and V. R. Hosseini 

1 Introduction 

Modeling and forecasting of natural phenomena has long been of interest to scien-
tists and researchers [1–4]. These phenomena typically have complex structures, 
making them difficult to model [5, 6]. The design and implementation of these 
models depend on many factors and require advanced techniques to understand their 
behavior and predict their dynamics [7–9]. 

Mathematical Modeling Infectious disease models can be used to project how 
outbreaks will progress in order to predict the likely outcomes of epidemics. 

The objective of models is to estimate parameters for a variety of infectious 
diseases through the use of basic assumptions, collected statistics, and mathematics. 
These parameters are then used for calculating the impact of interventions like the 
programs proposed for mass vaccination programs, on the spread of the diseases 
[10–12]. Modeling the spread of infectious diseases is a challenging task as it 
requires sophisticated mathematical methods to accurately predict the course of the 
disease [13–16]. 
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Forecasting of infectious diseases is a rapidly growing area of research, espe-
cially in light of the current COVID-19 pandemic [17–19]. Modeling the transmis-
sion structure of such diseases can aid in the implementation of effective monitoring 
and control measures, thereby reducing the number of fatalities and mitigating the 
negative economic and social impacts of their spread [20–22]. 

Mathematical modeling is involved crucially in predicting the spread of infec-
tious diseases and shaping public health intervention strategies [23, 24]. There 
are various techniques used in mathematical modeling, including transmission, 
recovery, and mortality rate estimation, which help in visualizing the spread of 
the disease across different countries. The response of governments to outbreaks 
of infectious diseases can vary, and these responses are reflected in the transmission 
patterns of the disease [25, 26]. 

In the case of COVID-19, experts in the field developed and improved multiple 
modeling methods over time, taking into account real-world data and unique 
characteristics of the disease transmission. These models have been used to simulate 
the spread of the disease and to evaluate the impact of different intervention 
measures. Policymakers can then use the results from these models to predict the 
potential severity and magnitude of outbreaks and to plan for effective intervention 
measures. These models have proven to be a valuable tool for public health decision-
making, enabling a more informed and proactive approach to disease control 
[27, 28]. 

Many researchers have attempted to use various methods of statistical analysis 
in order to estimate the numbers of the patients with COVID-19. Stochastic 
computations as well as numerical procedures have been presented for assessing 
diverse dimensions of the spread of COVID-19. Katoch et al., for example, applied 
an autoregressive integrated moving average (ARIMA) model for forecasting 
COVID-19 dynamics in India [29]. Malki et al. originally estimated the second 
rebound of this disease based on the ARIMA model and estimated the full recovery 
of the pandemic [30]. Furthermore, Kumar et al. analyzed the spreading profile 
of COVID-19 in ten infected countries [31]. Sioofy et al. develop one of the 
network autoregressive (NAR) models to estimate the numbers of the infected 
people suffering from COVID-19 in Iran with the view of the interaction of disease 
within the adjacent countries in the respective region [32]. 

A compartmental model is a commonly used method in infectious disease 
modeling. This model divides the population into different compartments, each 
represented by a label, such as S (Susceptible), I (Infectious), or R (Recovered). The 
labels indicate the flow pattern of the population from one compartment to another. 
The progression from one compartment to another is typically modeled as a set of 
differential equations. 

Compartmental models have been widely used to simulate the spread of COVID-
19, like susceptible–exposed–infected–recovered (SEIR) model and the respective 
modified variants. These models can further our knowledge of the spread dynamics 
of the disease and how it impacts different populations. By incorporating various 
assumptions and data on the transmission rate, recovery rate, and other factors, these 
models can provide a comprehensive picture of the disease spread.
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Regarding COVID-19, the use of compartmental models has been instrumental in 
informing public health intervention strategies and decision-making. For example, 
the results of these models have been used to predict the potential impact of mass 
vaccination programs, social distancing measures, and other interventions on the 
spread of the disease. By providing a comprehensive view of the spread of the 
disease, compartmental models have proven to be a valuable tool in the fight against 
COVID-19 [33]. 

M. Nandhini et al. present a fractional-order model of COVID-19 with vacci-
nation that considers both the efficacy and the ineffectiveness of vaccines. The 
model calculates the reproduction number, determines equilibrium points, and 
analyzes stability. Mathematical techniques such as fixed-point theory, Adomian 
decomposition, and Laplace integral transformation are used to find the solution 
and analyze the disease dynamics with different fractional orders. The study aims to 
improve understanding of COVID-19 transmission for better health outcomes [34]. 

Dawit Denu and Seth Kermausuor develop one of the mathematical models of 
COVID-19 with lockdown using the Caputo fractional-order derivative. The model 
establishes exclusiveness as well as the presence of the solutions and studies its 
local and global stability. The authors use a model known as residual power series 
to approximate a fractional power series of the solution and provide numerical and 
graphical results to validate their findings [35]. 

Hasib Khan et al. study a COVID-19 mathematical model in a fractal–fractional 
state to examine a solution, computational results, and stability. This model is 
converted to an equivalent integral form to be qualitatively analyzed using iterative 
convergent sequences and fixed-point approaches. The authors also use Lagrange’s 
interpolation to create a numerical scheme for fractal–fractional model and test it 
with a case study, resulting in interesting findings [36, 37]. 

While mathematical models and compartmental approaches are useful in our 
knowledge of the speed and rates of the disease outbreak among society members, 
they come with some limitations. One significant drawback is that these models are 
deterministic, which raises two key concerns. Firstly, the accuracy of the models 
depends heavily on the quality and availability of data provided by governments 
and other organizations. The results generated by these models are only as credible 
as the data on which they are based. Secondly, the input variables, like recovery, 
infections, as well as the rate of mortalities, are often subject to uncertainty and 
variability, which can affect the accuracy of the results. 

To address these concerns, it is crucial for governments and organizations to 
provide comprehensive and reliable data on the spread of the disease. Additionally, 
to reduce the impacts of variability in input variables, statistical methods, such as 
Bayesian modeling, can be used to incorporate prior knowledge and to account 
for uncertainty in the input data. By combining these techniques, practitioners may 
reach more precise and robust results from mathematical models and to make more 
informed decisions on public health interventions. 

Assuming fixed input parameters in mathematical models can lead to unreliable 
results, as real-world disease transmission is inherently uncertain. A more rational 
approach to modeling the spread of infectious diseases is to incorporate this
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uncertainty by treating the input parameters as random variables, rather than fixed 
quantities. This probabilistic approach acknowledges the inherent variability in 
disease transmission and provides a more nuanced view of the disease spread. 

Additionally, this approach can be combined with other techniques, such as 
Bayesian inference, to incorporate prior knowledge and to account for additional 
sources of uncertainty in the input parameters. By taking a probabilistic approach to 
modeling the spread of infectious diseases, it is possible to generate more accurate 
and robust predictions of the disease trajectory and to inform decision-making with 
a more comprehensive understanding of the underlying uncertainty. 

The fractional SIR model is a mathematical approach used in infectious disease 
modeling that allows for the sub-compartments of susceptible and infected popula-
tions to be raised by exponents less than unity. This is an exclusive feature of the 
fractional SIR model, as it recognizes the importance of susceptibility in the initial 
steps of an epidemic, when the disease is spreading through the infected population 
to larger susceptible populations. 

In this context, it is more appropriate to scale the susceptible and infected 
populations as fractional powers, with susceptibility being given a higher weighting. 
This approach provides a more nuanced representation of the dynamics of disease 
spread during the initial stages of an outbreak and is in line with the observation that 
susceptibility is a key driver of the epidemic at this stage. 

Studies have supported the effectiveness of the fractional SIR model in modeling 
infectious diseases, and its use has been shown to inform decision-making during 
the early stages of an outbreak [38]. By taking into account the importance of 
susceptibility in the early stages of an epidemic, the fractional SIR model provides 
a valuable tool for understanding and predicting the outbreak of infectious illnesses. 
The idea of the fractional exponents originates from the growth model known as 
Norton–Simon–Massague (NSM), which employs established energy principles for 
the explanation of the growth of the biological organisms. The governing differential 
equation in this model is as follows: 

.
dg(t)

dt
= l1g(t)δ(t) − l1g(t). (1) 

Anabolism growth and defuse are measured by . l1 and . l2, respectively, in which we 
observe the rate proportional to the growing volume .g(t) with a power function, 
whereas the rate of the former process is linear with .g(t). Researchers utilized 
various fractional compartmental models for several infectious illnesses [39, 40]: 

This chapter proposes an innovative approach as follows: 

1. This chapter proposes a more comprehensive and accurate model, as it takes into 
account various influential compartments beyond those considered in existing 
models. 

2. The spread profile of COVID-19 is modeled using fractional differential equa-
tions, which accurately reflects the fractional nature of many natural phenomena.
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3. The Monte Carlo back sampling technique is employed to estimate the unknown 
parameters in the model, which leads to a robust and reliable prediction of the 
spread of the disease. 

4. Real-world data are used to calibrate the model, making it applicable to various 
real-world scenarios and providing valuable data into the COVID-19 spread 
dynamics. 

5. Fractional nature of the spread of COVID-19 is evaluated, which adds to our 
understanding of the nature of the disease and provides a basis for future research. 

The organization of the chapter is presented here: Sect. 2 defines the preliminary 
concepts of compartmental models and fractional derivatives. Section 3 provides 
an overview of the Extended SEIR model. The Monte Carlo-based back analysis 
procedure will be discussed in Sects. 4, and 5 describes the new model on real data. 
Finally, the chapter is summarized, and conclusions are drawn. 

2 Preliminaries 

2.1 Compartmental Models 

Research has shown SIR model as an easy-to-use compartmental model so that 
numerous derivative models are derived from it. Three compartments are included 
in the model: 

S: The number of individuals who are susceptible. An infectious individual 
contracts the disease when they come into “infectious contact” with a susceptible 
case. 

I: The numbers of individuals infected with the disease. A susceptible individual 
is one who has been infected and can infect others. 

R: The number of individuals who have been removed (and immune) or who have 
died. They have either recovered from the disease and included in the removed 
compartment, or they have died. 

Practitioners usually omit death and birth from simple compartmental models 
due to the epidemic dynamic, such as influenza virus. Using the ordinary differential 
equations system, we can describe the SIR system with no vital dynamic as follows: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −βIS

N
,

dI

dt
= βIS

N
− γ I,

dR

dt
= γ I,

(2)
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where S represents the stock of the susceptible individuals, I represents the stock 
of the infected individuals, and R represents the stock of the removed individuals 
(either recovery/or death). N represents the sum of the above 3 stocks. Although the 
system is nonlinear, we can derive its implicit analytic solution. The first thing to 
note is that 

.
dS

dt
+ dI

dt
+ dR

dt
= 0. (3) 

Therefore,
.S(t) + I (t) + R(t) = constant = N , an expression of the constancy of the 

population N in mathematical terms. Considering the above relationship, we only 
need to study the equations for two variables. 

In addition, the infectious class dynamics are governed by ratio (4): 

.R0 = β

γ
. (4) 

2.2 Fractional Derivatives 

In this subsection, the basic definitions of fractional calculus are presented, which 
will be utilized later. A variety of definitions have been proposed for integrals and 
derivatives of non-integer order in the past. There are many definitions of integrals, 
but Riemann–Liouville is perhaps the most notable [41, 42]. 

Definition Having the integrable function .f : [a, b] → R as well as a positive real 
number . η, we can define the fractional integral of f of order . η: 

.I
η
a+f (t) = 1

Γ (η)

∫ t

a

(t − τ)η−1f (τ)dτ, a < t < b and 0 < η < 1, (5) 

where . Γ denotes the Gamma function. 

Moreover, the Caputo fractional derivative, which is currently widely used, is 
determined via reformulation of the Riemann–Liouville fractional derivative to form 
a feasible solution for fractional initial value problems [43]. 

Definition The Caputo fractional derivative, so that .D = d/dt , defined as 

.
CD

η
a+f (t) = DnI

n−η
a+

[

f (t) −
n−1∑

k=0

f (k)(a)

k! (t − a)k

]

. (6)
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If we have f as the function of class . Cn, hence, its fractional derivative will be 
determined: 

.
CD

η
a+f (t) = 1

Γ (n − η)

∫ t

a

(t − τ)n−η−1f (n)(τ )dτ, n − 1 < η < n. (7) 

3 Extended SEIR Model 

3.1 Model Formation 

For developing one of the deterministic models for COVID-19 outbreak, we propose 
the use of an extended fractional SEIR model. In this model, the population will be 
grouped into 9 states, with the entire population initially as the susceptible (S). From 
there, individuals may either become insusceptible (P ) or exposed (E), based on 
the level of social exposure. If exposed, they may then become infected (I ). Upon 
diagnosis, individuals will enter quarantine (Q) and may eventually recover (R) or  
succumb to the disease and die (D). The relationships between these nine states are 
depicted in Fig. 1. 

Thus, a deterministic model for COVID-19 outbreak is developed using an 
extended fractional SEIR model in which the population is grouped into 9 states. 
The mathematical relationships between these states are defined using a system of 
the fractional differential equations. 

.
CD

η
a+S(t) = −β

S(t)I (t)

N
− αS(t) − ρS(t). (8) 

Fig. 1 The relationship between different compartments of extended SEIR model



10 A. S. Khoojine et al.

C D η 
a+E(t) = β 

S(t)I (t)  
N

− γE(t). (9) 

CD
η
a+I (t) = γE(t) − δI (t). (10) 

CD
η
a+Q(t) = δI (t) − Q(t)(λ(t) + κ(t) + ζ ). (11) 

CD
η
a+H(t) = ζQ(t) − H(t)(ψ + φ). (12) 

CD
η
a+R(t) = λ(t)Q(t) + ψH(t). (13) 

CD
η
a+P(t) = αS(t). (14) 

CD
η
a+V (t) = ρS(t). (15) 

CD
η
a+D(t) = κ(t)Q(t) + φH(t). (16) 

S(0) = S0, E(0) = E0, V (0) = V0,Q(0) = Q0, I (0) = I0, R(0) = R0,

P (0) = P0, V (0) = V0,H(0) = H0. (17) 

The parameters are defined as follows: . α implies the rate of protection and . β
refers to the rate of infection. . ρ stands for the rate of vaccination rate, . γ represents 
the average latent time, . δ presents the rate at which an infectious case enters 
quarantine, and . λ refers to the time-dependent recovery rate. Finally, . κ represents 
the time-dependent rate of deaths. 

Also, .S +E +V +Q+I +R+P +S +H = N , . (S,E, I,Q,H,R, P, V,D) ∈
R

+9, where N is the whole targeted population. 

3.2 Numerical Solution 

In order to solve the system of fractional differential equations of the extended SEIR, 
it is written as the general matrix form in this way: 

.
CD

η
a+Y (t) = A(t) · Y + F(t) = f (t, Y ) where 0 < η ≤ 1, . (18) 

where Y = [S,E, I,H,Q,R, P, V,D]T , . (19) 

A(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−α − ρ 0 0 0 0 0 0 0 0
0 −γ 0 0 0 0 0 0 0
0 γ −δ 0 0 0 0 0 0
0 0 δ −κ(t) − λ(t) − ζ 0 0 0 0 0
0 0 0 −ψ − φ ζ 0 0 0 0
0 0 0 φ λ(t) 0 0 0 0
α 0 0 0 0 0 0 0 0
ρ 0 0 0 0 0 0 0 0
0 0 0 φ κ(t) 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, . (20)
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and F(t)  = S(t)I (t)

[−β 
N 

, 
β 
N 

, 0, 0, 0, 0, 0, 0, 0
]T 

. (21) 

Another method called Adams–Bashforth–Moulton predictor–corrector has been 
developed as a numerical method for solving the matrix form of a given system. This 
method consists of two steps: prediction and correction. In the prediction stage, 
therefore, an accurate approximation of the intended quantity is calculated. This 
initial approximation is then refined in the correction step, which involves the use 
of a second method, typically an implicit one. The general formula for the Adams– 
Bashforth–Moulton method can be written as follows: 

.yn+1 = yn + h

24
(55fn − 59fn−1 + 37fn−2 − 9fn−3). (22) 

yn+1 = yn + h

24
(9fn+1 + 19fn − 5fn−1 + fn−2), (23) 

where h is the step size, . fn is the function to be evaluated, and . yn is the estimated 
value of the solution at the nth step. The Adams–Bashforth–Moulton method is 
a highly efficient numerical method that can provide accurate solutions to a wide 
range of differential equation problems. 

4 Monte Carlo Back Sampling 

We have established the formulation of the extended SEIR model, including the 
fractional form of the differential equations and their solution. Our goal is the 
determination of the optimal values of unknown parameters in that model, namely 
. β, . α, . γ , . δ, . λ0, . λ1, . κ0, . κ1, . ζ , . ρ, . ψ , and . φ, so that the model accurately represents 
the observed data. In this section, we present a modern two-step optimization 
algorithm that leverages Monte Carlo-based back analysis to find the best values 
of the parameters when . η is assumed to be 1.  

Therefore, parameters of the problem are treated as random variables in order 
to complete the back analysis approach. This allows for the evaluation of various 
combinations of these parameters and consideration of a range of values for them. 
We conceptualize the parameter combinations as a lattice, where the parameters 
are arranged within a set of defined ranges and the x- and y-axes represent the 
parameters in this range. It is assumed that a random walk on the lattice results in a 
range of parameter values. Table 1 displays the ranges of changes specified in each 
of the random variables [44–46]. 

The next step is to generate 10,000 realizations for each random variable. After 
introducing each realization into the differential equation system, a new extended 
SEIR problem is created that can be solved using the previously described method. 
In this way, 10,000 distinct predictions can be made regarding how the disease 
will spread over time. It is employed as an input for the back analysis algorithm
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Table 1 Random variables 
and the corresponding range 
of variations 

No. Parameters Distribution function Min Max 

1 .β Uniform 0.0 10.0 

2 .α Uniform 0.0 0.5 

3 .γ Uniform 0.0 0.05 

4 .δ Uniform 0.0 0.5 

5 .λ0 Uniform 0.0 0.5 

6 .λ1 Uniform 0.0 0.5 

7 .κ0 Uniform 0.0 0.5 

8 .κ1 Uniform 0.0 0.5 

9 .ζ Uniform 0.0 0.1 

10 .ρ Uniform 0.0 0.1 

11 .ψ Uniform 0.0 0.1 

12 .φ Uniform 0.0 0.1 

Fig. 2 Schema of the Monte Carlo sampling process 

to calculate I , R, D, and V based on the database. A schematic representation 
of the Monte Carlo sampling process can be found in Fig. 2. It is necessary to 
collect the actual observations of COVID-19, including I , R, D, and V , before 
implementing the back analysis method. An interval of 15% above and below the 
observed data is then used as a filter to select the cases that are closest to the 
observed data among the 10,000 realizations of I , R, D, and V . Consequently, 
the allowable area is determined by a sample selection criterion which guides the 
algorithm toward finding the best fit. In Fig. 1, the selection and rejection of samples 
is schematically depicted in Fig. 3. It is necessary to collect true observations of 
COVID-19, including I , R, D, and V , before implementing the back analysis 
method. An interval of 15% above and below the observed data is then applied 
as one of the filters for selecting the cases that are closest to the data found among 
10,000 realizations of I , R, D, and V . Consequently, the permissible region would 
be determined by a criterion for selecting the samples which guides the algorithm 
for discovering the best fit. In Fig. 1, the selection and rejection of samples is 
schematically depicted. When the proposed threshold is applied to the data, some 
of the 10,000 samples fall within the acceptable range. After that, a second-round 
selection is conducted using a new criterion to determine which sample is the best
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Fig. 3 Schematic diagram of the proposed back analysis method 

from those previously selected. Accordingly, the root mean square error (RMSE) 
between the predicted and observed time series of I , R, D, and V is calculated of 
the sample, as follows: 

.θ1,i =
√
√
√
√

tnow∑

t=0

(
I (t) − IS

i (t)
)2

, . (24) 

θ2,i =
√
√
√
√

tnow∑

t=0

(
R(t) − RS

i (t)
)2

, . (25) 

θ3,i =
√
√
√
√

tnow∑

t=0

(
D(t) − DS

i (t)
)2

, . (26) 

θ4,i =
√
√
√
√

tnow∑

t=0

(
V (t) − V S

i (t)
)2

, (27) 

where . θ1,i , . θ2,i , . θ3,i , and . θ4,i , respectively, stand for RMSE of the . ith sample 
for the infected, recovered, dead, and vaccinated, and .I (t), .R(t), .D(t), and .V (t), 
respectively, refer to true measurements of the infected, recovered, dead, and 
vaccinated cases. Finally, .IS

i (t), .RS
i (t), .DS

i (t), and .V S
i (t), respectively, represent 

time series of the infected, recovered, dead, and vaccinated cases for the ith sample 
that are computed by the new extended SEIR model. 

In order to define the final selection criterion, . θt , we must combine the RMSEs 
of the variables I , R, D, and V , using a square root of the sum of squares. 

.θt =
√

(
θ1,i

)2 + (
θ2,i

)2 + (
θ3,i

)2 + (
θ4,i

)2
. (28)
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5 Application of the Fractional Extended SEIR Model 

In this section, we apply the extended SEIR model to analyze Thailand COVID-19 
data. The actual observations of I , R, D, and V in Thailand were collected from 
the online databases of the World Health Organization (WHO) and are plotted in 
Fig. 4. The figure also displays intervals 15% above and below the observed data. 
With the selected threshold, 40 samples are chosen as the best fit the . θ1, . θ2, and . θ3
are calculated. Columns 6 and 12 of Table 2 present . θt results. 

In Table 2, the sample with the lowest . θt is selected as the best fit from the 
earlier assigned 40 samples. Table 3 presents optimal parameters of this sample. In 
addition, Fig. 5 is the time series of I , R, D, and V corresponding to the optimal 
parameters. 

The Extended SEIR model is presented in fractional form, which enables it to 
handle differential equations of orders less than unity, i.e., .η ≤ 1. This capability is a 
distinct advantage for optimization and regression models, as it provides a new level 
of flexibility in fitting the data to the model. Therefore, the order of the differential 
equations is signified as a decision variable, which can assume values less than unity 
and fractional form of the problem is then solved, and thus the final fit is evaluated 
to determine improvements in prediction accuracy. 

To investigate the effects of the decision variable on the performance of the 
model, eleven different values of . η, including .η = 0, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 
0.85, 0.9, 0.95, and 1, were considered. The fractional form of the extended SEIR 
problem was determined for each . η value using the method outlined in Sect. 3. 
The resulting time series of I , R, and D were stored and presented in Table 4, 
which shows the values of . θ1, . θ2, and . θ3, as well as . θ for each . η. Additionally, the 
corresponding time series of I , R, and D are drawn against various values of . η in 
Fig. 6. 

Fig. 4 Permissible interval presented above and below the observed data for (a) the infected, (b) 
recovered, (c) dead, and (d) vaccinated cases
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Table 3 The optimal values 
of parameters 

No. Parameter Value No. Parameter Value 

1 .β 5.1769 7 .κ0 0.0360 

2 .α 0.1599 8 .κ1 0.1239 

3 .γ 0.0294 9 .ζ 0.0061 

4 .δ 0.3246 10 .ρ 0.0837 

5 .λ0 0.1773 11 .ψ 0.0010 

6 .λ1 0.3034 12 .φ 0.0015 

Fig. 5 Predictions of the model based on the optimal parameters 

Table 4 RMSE values for different . η

No. .η . θ1 .(×104) . θ2 .(×104) . θ3 .(×106) . θ4 .(×102) . θt . (×106)

1 0.50 4.20 2.16 4.07 1.90 4.07 

2 0.55 5.29 2.29 3.89 2.19 3.89 

3 0.60 5.55 2.12 3.54 1.77 3.54 

4 0.65 2.96 2.12 3.59 1.41 3.59 

5 0.70 3.14 2.26 3.87 2.19 3.87 

6 0.75 5.72 2.21 4.10 2.00 4.10 

7 0.80 4.49 2.22 4.20 2.22 4.20 

8 0.85 3.39 2.27 3.43 2.03 3.43 

9 0.90 2.12 1.81 2.58 1.15 2.58 

10 0.95 4.74 2.21 3.37 1.90 3.37 

11 1.00 2.50 1.83 3.52 1.39 3.52
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Fig. 6 The resulting fit on the data for different . η

The most acceptable result is determined for .η = 0.9. Put differently, if .η = 0.9, 
a more acceptable fit to data is received, and . θt will be minimized. In comparison to 
the assumption .η = 1, . θt value changes from 3.52 to 2.58, which is a 27% decrease 
in the error measured. A recent study indicates that at the beginning of 2022, roughly 
4300 people will be infected, recovered, and dead in Thailand. Compared to the 
previous section, these results are based on a better and more reliable fit obtained 
using the fractional model. 

6 Conclusion 

As part of this chapter, a compartmental model is developed using a fractional 
extended SEIR model that is used for predicting the outbreak profile of Coronavirus 
disease. A Monte Carlo back analysis is conducted using the proposed model in 
which the parameters for the model are treated as random variables, namely . β, . α, . γ , 
. δ, . λ0, . λ1, . κ0, . κ1, . ζ , . ρ, and . ψ . Hence, with the generation of a set of random samples 
for each of the random variables, we observe that the Monte Carlo back analysis 
can determine if the parameters’ predictions are within a desired range around 
the observed values. In order to determine the best fit to the real data, therefore, 
the RMSE criterion would be utilized to the chosen samples. The accuracy of the 
fit is investigated using a sensitivity analysis. In addition, the proposed model is 
applied to Thailand’s COVID-19 data, and the fractional-order results indicate a 
more acceptable fit with the actual data. In conclusion, fractional extended SEIR 
model has been used to successfully forecast the outbreak profile of Coronavirus 
disease. Through incorporating fractional-order results, we observe improvement 
in the model accuracy. Consequently, this research findings could be employed for
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assisting in the design of effective control approaches to mitigate COVID-19 spread 
in the future. In addition, the proposed model can be extended to other diseases, such 
as influenza and malaria, and can be used to better understand the spread of these 
diseases and develop control strategies to reduce their impact. Furthermore, this 
study can be extended to include the effects of social distancing and other strategies 
on disease spread. Finally, this model can be applied for studying the impacts of 
various demographic characteristics on disease spread, such as age, gender, and 
socio-economic status. 
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Dynamics and Optimal Control Methods 
for the COVID-19 Model 

Saida Id ouaziz and Mohammed EL Khomssi 

1 Introduction 

In many different parts of the world, respiratory and gastrointestinal disorders are 
caused by a group of viruses known as coronaviruses. Respiratory conditions can 
include both the typical cold and more serious infections. Under a microscope, 
coronaviruses resemble coronas, hence their name. The virus’s genetic core is 
encased in an injected envelope. As a result, it has the appearance of a crown. Latin’s 
“corona” refers to the “diamond.” 

According to research on the Between Nations Disease Spread that was con-
ducted using an approximative mathematical model of COVID-19, the most sig-
nificant risk of importing an ill person from other affected regions is in the USA. 
The dynamics of COVID-19 have been studied using a variety of epidemic models. 
In [1], the authors explain in detail how to model COVID-19 using the omicron 
form and display their mathematical outcomes. In this study, they discuss the 
local and global steadiness of equilibria. They use the previously new digital 
procedure disclosed for solving fractional differential systems to show the digital 
representation of the model. A mathematical model was presented in [2] to examine 
the impacts of quarantine, self-isolation, and environmental load. The authors of [3] 
examined the mechanics of a fractional-order of a sample version of COVID-19. 
This fractional-order corona model is digitally resolved through an approach of effi-
cient computation. In [4], the coronavirus is a single-stranded, positively stranded 
encapsulated virus that belongs to the Nidovirales order and family Coronaviridae. 
The authors replicate the transmission of a specific illness and describe global parts 
at risk utilizing the spatial and temporal epidemiological template to investigate 
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the development of human infections over nations. The effect of immunization 
on COVID-19 transmission is examined by the authors of [5]. They perform a 
mathematical analysis to prove the positivity, the delimitation, the equilibrium of 
the free disease point, and the basic reproductive rate of the template. Also, they 
incorporate the COVID-19 data into the model results and investigate the impact of 
vaccination on the expansion of the pandemic, indicating a considerable diminution 
of the number of instances while accounting for uncertainties in all model states 
and factors that are not satisfactorily evident. The use of the fractional mathematical 
modeling approach may be found in [6] and offers a greater understanding of the 
dynamics of a variety of phenomena including infectious illnesses. The authors of 
[7] investigated the connection between corruption and the media, and they offered 
a brand-new nonlinear mathematics media effect model. Only when . R0 > 1, the  
endemic equilibrium does exist. The authors of [8] showed that the bioflavonoid 
rutin and the infectious drug doxycycline are the most effective inhibitors of the 
coronavirus genre linked to chronic strict respiratory syndrome (SARS). Seven 
distinct sections make up the entire chapter. The introduction is in Sect. 1. The  
template is provided in Sect. 2. A qualitative study of the model is discussed in 
Sect. 3. Model sensitivity is completed in Sect. 4. The regulated mathematical model 
is covered in Sect. 5. Section 6 gives a detailed explanation of the digital validation 
of the suggested template and offers ideas on the essential parameters that affect the 
COVID-19 dynamic. Section 7 concludes the chapter. 

2 Description of the Model 

The subordinate model divides the entire population denoted by N(t) into five cate-
gories: susceptible . SI , exposed . EI , infected or exhibiting symptoms I , people who 
are ill but not yet declared .Ud recovered R. The total population is correspondingly 
written as .N = SI + EI + I + Ud + R. Models based on this kind of structure 
just represent the behavior of the population of sick people without measuring the 
quantity of germs present within each individual. Figure 1, which illustrates the 
biological mechanism of coronavirus in humans, serves as the foundation for our 
model. Since it is a representation of the COVID-19 model, it contains all of the 
specifications of the variables included in Table 1. 

To investigate the effects of a phenomenon on a particular mathematical model, 
one must always adopt a set of circumstances. We list these conditions below as 
specified in the citation for [9]: 

1) According to the model, a net intake of vulnerable individuals occurs at . � per 
unit of time. 

2) It does not take zoonotic coronavirus infections into account and solely looks at 
how the pandemic spreads through people. 

3) There are no practical safeguards in place before April 10, 2020. 
4) The model allows for proportional natural mortality in every subpopulation 

which has some demographic repercussions.
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Fig. 1 Diagram of the COVID-19 transmission model 

Table 1 Parameters of the model 

Parameters Description 

.SI (t) Quantity of susceptible individuals that are in contact with an infected person 

.EI (t) Quantity of individuals who are exposed to I but do not execute them 

.I (t) Quantity of infected individuals 

.Ud (t) Quantity of infected person but undeclared 

.R(t) Quantity of recovered individuals 

.� Recruitment number 

.μ Natural death rate 

.ν Death rate from disease 

.β The interaction of . SI and . EI

.α Proportion of individuals that joins the infected subpopulation from the exposed 
compartment 

.δ The infection rate of exposed individuals 

.η Rate of recovered individuals from COVID-19 

.γ The interaction between . Ud and R 

The next set of five equations represents the interaction between the transmission 
of the infection and the population and can be written as follows: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSI

dt
= � − βSI I − μSI ,

dEI

dt
= βSI I − δEI − μEI ,

dI

dt
= αδEI − ηI − (μ + ν)I,

dUd

dt
= (1 − α)δEI − γUd − (μ + ν)Ud,

dR

dt
= ηI + γUd − μR,

(1)

with the initial condition
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. SI (0) = SI,0 ≥ 0, EI (0) = EI,0 ≥ 0, I (0) = I0 ≥ 0, Ud(0) = Ud,0 ≥
0, R(0) = R0 ≥ 0.

3 Qualitative Analysis of the Model 

Let N be the total population, then 

. N = SI + EI + I + Ud + R.

We have 

. 
dN

dt
= � − μ(SI (t) + EI (t) + I (t) + Ud(t) + R(t)) − ν(I + Ud)

= � − μN(t) − ν(I + Ud),

and then 

. 
dN

dt
= � − μN(t) − ν(I + Ud) ≤ � − μN(t),

. ⇒ N(t) ≤ �

μ
+ N(0)e−μt ,

followed by .N(t) ≤ �
μ

if we take .t → +∞. 
The feasible region for the model (1) is given by  

. 	 =
{
(SI , EI , I, Ud, R) ∈ R5+; SI , EI , I, Ud, R ≥ 0, N ≤ �

μ

}
.

Clearly, . 	 is positively invariant with the system presented by Eq. (1) in which 
the model is identified as mathematically valid and epidemiologically reliable. The 
transition plot for this model is presented in Fig. 1. 

3.1 The Solution’s Existence and Singularity 

The existence of the solution system is demonstrated by applying the fixed point 
theorem. 

Consider .H = (C(J ))5, and .C(J ) is a Banach field of continuous functions on 
the interval .J ⊂ R → R with the norm 

. ‖(SI (t), EI (t), I (t), Ud(t), R(t))‖ = ‖SI‖∞ +‖EI‖∞ +‖I‖∞ +‖Ud‖∞ +‖R‖∞,

where .‖.‖∞ indicates the standard of the supremum in .C(J ).
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For simplicity, we consider 

. 


1(t, SN) = � − βSI I − μSI ,


2(t, EI ) = βSI I − δEI − μEI ,


3(t, I ) = αδEI − ηI − (μ + ν)I,


4(t, Ud) = (1 − α)δEI − γUd − (μ + ν)Ud,


5(t, R) = ηI + γUd − μR.

For proving the above theorems, we shall assume that 
.‖SI‖ ≤ c1, ‖EI‖ ≤ c2, ‖I‖ ≤ c3, ‖Ud‖ ≤ c4, ‖R‖ ≤ c5, where .ci, i = 1, ..., 5, 
are positive constants. Thus, we note . κ1 = βc3 + μ, κ2 = αδ + δ + μ, κ3 =
η + μ + ν, κ4 = γ + μ + ν, and . κ5 = μ.

Theorem 3.1 The kernels, .
i=1,...5, are valid for the condition of Lipschitz and 
contraction if the presented inequality stands: 

. 0 ≤ κi < 1 for i = 1, ...., 5.

Proof Let .SI1 and .SI2 be two functions, then 
. ‖
1(t, SI1) − 
1(t, SI2)‖ = ‖ − (βI + μ)(SI1 − SI2)‖ ≤ (βc3 + μ)‖SN1(t) −

SN2(t)‖.
Thus, 

. ‖
1(t, SI1) − 
1(t, SI2)‖ ≤ κ1‖SI1(t) − SI2(t)‖.

Hence, for . 
1, the Lipschitz condition is obtained. Likewise, for . 
2, . 
3, . 
4, and 
. 
5, the Lipschitz condition can be conveniently verified and is the same as given 
above: 

. ‖
2(t, EI1) − 
2(t, EI2)‖ ≤ κ2‖EI1(t) − EI2(t)‖.
‖
3(t, I1) − 
3(t, I2)‖ ≤ κ3‖I1(t) − I2(t)‖.

‖
4(t, Ud1) − 
4(t, Ud2)‖ ≤ κ4‖Ud1(t) − Ud2(t)‖.
‖
5(t, R1) − 
5(t, R2)‖ ≤ κ5‖R1(t) − R2(t)‖.


�
Since model (1) follows the population of humans, all its variables of state and the 

relative parameters must be positive for the coming time. This shall be demonstrated 
by the theorem below: 

Theorem 3.2 All solutions .(SI , EI , I, Ud, R) are positive whenever .t ≥ 0.
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Proof Since the state variables are all continuous, it is simple to determine from the 
system (1) that 
. 
dSI

dt
≥ SI (0) exp(−(βI + μ)t) ≥ 0.

. 
dEI

dt
≥ EI (0) exp(−(δ + μ)t) ≥ 0.

. dI
dt

≥ I0(0) exp(−(η + μ + ν)t) ≥ 0.

. 
dUd

dt
≥ Ud(0) exp(−(γ + μ + ν)t) ≥ 0.

. dR
dt

≥ R0(0) exp(−μt) ≥ 0.

Consequently, the entire solution sets are positive for . t ≥ 0. 
�
The stability of the two points, the illness-free point, and the point where the 

infection persists in the COVID-19 epidemic model (1) are distinct and provided by 
.E0 = (S0

I , 0, 0, 0, 0) and .(S∗
I , E∗

I , I ∗, U∗
d , R∗), where 

. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
I = (η + μ + ν)(δ + μ)

αδβ
,

E∗
I = �(η + μ)μ(R0 − 1)

αδβ(δ + μ)
,

I ∗ = μ(R0 − 1)

β
,

U∗
d = (1 − α)(η + μ + ν)

(γ + μ + ν)
,

R∗ = ημ(γ + μ)(R0 − 1) + βγ (1 − α)(η + μ + ν)

βμ(γ + μ + ν)
.

3.2 Local Dynamic of the Covid-19 Free Equilibrium 

The model’s illness-free steady state (DFE) comes from setting all formulas of the 
template (1) to zero and allowing .EI = 0, I = 0, Ud = 0, and .R = 0. 

We then obtain .E0 = (S0
I , 0, 0, 0, 0), where . S0

I = �
μ

.

3.3 The Effective Reproduction Number R0 

The effective reproduction number of the model is important for analyzing the sta-
bility of the equilibrium points. Furthermore, .R0 is used to estimate the anticipated 
number of secondary connections arising from the introduction of a newly detected 
individual among a sensitive community. Based on the generation matrix method, 
we obtain .R0 directly from the model. As a first step to get . R0, we rewrite the 
equations of the model beginning with the recently infected categories:
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. 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dEI

dt
= βSI I − (δ + μ)EI ,

dI

dt
= αδEI − (η + μ)I,

dUd

dt
= (1 − α)δEI − (γ + μ)Ud,

dR

dt
= ηI + γUd − μR.

The rate .R0 is measured as the spectrum . ρ of the matrix .FV −1 (the generation 
matrix). 

The matrices of F and V are the result of the infected classes (i.e., .EI , I, Ud and 
R) at the equilibrium point . E0 and so we have 

.F =

⎛

⎜
⎜
⎝

0 βS0
I 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ and . V =

⎛

⎜
⎜
⎝

(δ + μ) 0 0 0
−αδ (η + μ + ν) 0 0

−(1 − α)δ 0 (γ + μ + ν) 0
0 −η −γ μ

⎞

⎟
⎟
⎠ .

Then, 

. FV −1 = 1

|V |

⎛

⎜
⎜
⎝

βS0
I c12 βS0

I c22 βS0
I c32 βS0

I c42

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

where .c32 = −μ, c22 = μ(δ +μ)(γ +μ+ν), c12 = μ(γ +μ+ν)αδ, and .c42 = 0. 
Hence, the effective number of breeders .R0 is given as follows: . R0 =

ρ(FV −1) = β�αδ
μ(η+μ+ν)(δ+μ)

Theorem 3.3 If .R0 < 1, the illness equilibrium state is locally asymptotically 
stable; otherwise, it becomes unsteady. 

Proof Evaluating the Jacobean matrix at the equilibrium . E0, we obtain 

. J (E0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−μ 0 −β�
μ

0 0

0 −(δ + μ)
β�
μ

0 0

0 αδ −(η + μ + ν) 0 0
0 (1 − α)δ 0 −(γ + μ + ν) 0
0 0 η γ −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Based on the Jacobian matrix, a characteristic polynomial was attained in the 
following form:
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. P(λ) = −(μ + λ)2(γ + μ + ν + λ)(λ)

= (δ + μ + λ)(η + μ + ν + λ) − αδβ�(μ + λ)

μ
, (2) 

.λ1 = −μ < 0, .λ2 = −(γ + μ + ν) < 0, λ3 = − (η+μ+ν+δ+μ)+√
�

2 < 0, and 

. λ4 = −(η+μ+ν+δ+μ)+√
�

2 ,

.λ4 < 0 for .R0 < 1. So that the virus can be removed to some extent if the starting 
population size of the infected members is in the bottom set of the point . E0. 
�

3.4 Global Dynamic of DFE 

Theorem 3.4 The DFE, E∗ of the model (1) is globally asymptotically stable if 
R0 < 1. 

Proof We shall consider the Lyapunov function as 

.V = χ1EI + χ2I, (3) 

where χ1 and χ2 are two positive values. If we differentiate Eq. (3) concerning t , we  
discover that 

. 
dV

dt
= χ1

dEI

dt
+ χ2

dI

dt

we get dV 
dt < (R0 − 1)I well then, from I <  I 0 and dV 

dt ≤ 0 for  R0 < 1 and 
dV 
dt = 0 if and only if I = 0. 

Hence, according to the principle of invariance of LaSalle, E0 becomes globally 
asymptotically stable in 	. 
�

3.5 Equilibrium Endemic Stability 

Theorem 3.5 The endemic point E∗ becomes locally asymptotically stable if the 
basic reproductive rate is less than one, and E∗ is unstable anyway, in addition. 

Proof The system (1) ’s Jacobian at E∗ seems to be

.J (E0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−(βI ∗ + μ) 0 βS∗
I 0 0

βI ∗ −(δ + μ) βS∗
I 0 0

0 αδ −(η + μ + ν) 0 0
0 (1 − α)δ 0 −(γ + μ + ν) 0
0 0 η γ −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.
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Here is the equation for the equivalent characteristics: P(λ) = (μ + λ)(γ + μ + 
λ)[ζ0 + λζ1 + ζ2λ

2 − λ3], 
where 
ζ0 = −(βI ∗ + μ)(δ + μ)(η + μ + ν) − (β2αδI ∗ + αδβ(βI ∗ + μ))S∗

I . 
ζ1 = −((βI ∗ + μ)(δ + μ) + (δ + μ + βI ∗)(η + μ + ν) − αδβS∗

I ). 
ζ2 = −(δ + μ + βI ∗ + η + μ + ν) < 0. 
Moreover, it is straightforward to show that the requirements of the Routh–Hurwitz 
stability criterion for a polynomial of degree three are satisfied IF 
R0 >

�(βI∗+δ+μ)(2βI∗+3μ+δ) 
(μ+η+ν)(δ+μ)(βI∗+η+δ+μ)S∗

I 
> 1. In light of this, the point E is locally in a 

stable state. 
�
Theorem 3.6 In the event that R0 > 1, the endemic equilibrium point is globally 
asymptotically stable. 

Proof Take into account the suitable Lyapunov function provided by (4) 

.
dL(SI , I )

dt
= χ1(1 − S̃I

SI

)
dSI

dt
+ χ2(1 − Ĩ

I
)
dI

dt
. (4) 

By substituting dSI

dt
and dI

dt
of model (1), we obtain 

. 

dL

dt
=χ1

SI

(SI − S̃I )(� − (βI + μ)SI ) + χ2

I
(I − Ĩ )(αδEI − (η + μ + ν)I )

< χ1
(SI − S̃I )

SI

� − χ1(βI + μ)(SI − S̃I ) + χ2(I − Ĩ )αδEI )

I
.

For χ1 = SI (I−Ĩ )  
(SI − S̃I ) 

and χ2 = 1, we have 

. 

dL

dt
< (� − R0(η + μ + ν)(δ + μ)(θ + μ)SI

αδ�
− (θ + μ)SI + αδEI

I
)(I − Ĩ ),

< (� − R0(η + μ + ν)(δ + μ)(θ + μ)SI

αδ�
+ αδEI

I
)(I − Ĩ ).

Thus, dL 
dt < 0 only if R0 >

�2αδ 
(η+μ+ν)(δ+μ)(θ+μ)

, and dL 
dt ≤ 0 if  I = Ĩ , and then 

the point E∗ is globally asymptotically stable. 
�

4 Model Sensibility 

The fundamental purpose of sensitivity analysis is to describe how resilient the 
reproduction number .R0 is to changes in the system characteristics. Moreover, it 
enables us to determine how a state variable has changed proportionally when a
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Table 2 Sensitivity index 
table 

Symbol of the parameter Index of sensitivity 

.μ . −0.8121

.ν . −0.2472

.δ . +0.1324

.� . +1

.β . +1

.η . −0.8653

.α . +1

system parameter changes, and it is crucial to understand the relative importance 
of the many elements involved for the novel coronavirus’s transmission in order to 
suggest the best ways to reduce human impermanence and morbidity. We determine 
the sensitivity indices with respect to . R0, to the parameters of the system (1) since 
the first illness transmission is entirely related to the reproduction number . R0. As a  
result, we formulate a sensitivity coefficient as such: 

. �R0
x = ∂R0

∂x

x

R0
.

. 

�R0
μ = −δ(η + μ) + 2μ(η + δ + 1) + 3μ2 + 3μ2

(δ + μ)(η + μ + ν)
.

�R0
η = − η

η + μ + ν
.

�
R0
δ = μ

(δ + μ)
.

�R0
ν = − nu

η + μ + ν
.

�
R0
β = 1.

�
R0
� = 1.

�R0
α = 1.

We have .�R0
δ ,�

R0
� ,�

R0
β ,�

R0
α > 0, while . �R0

μ ,�
R0
η ,�

R0
ν < 0.

This means that .R0 increased in . δ, . �, . β, and . α, when .R0 decreases in .μ, ν, and . η.

.R0 does not depend on . γ , and then .�R0
γ = 0 (Table 2). 

5 The Controlled Mathematical Model 

In the following part, a COVID-19 minimization problem based on the introduction 
of two time-dependent controls designated by .u1(t) and .u2(t) in the model is 
formulated (5). These time-dependent controls are being used to examine the impact
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of their fluctuation through time on the dynamics of COVID-19. The previously 
maintained constant stay-at-home order is recommended using the control variable 
.u1(t). The time-dependent control .u2(t) is developed to examine the effectiveness of 
an improvement in detention and a travel ban. The abovementioned control variables 
are thus added in the following manner to produce the COVID-19 control model: 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSI

dt
= � − β(1 − u1)SI I − μSI ,

dEI

dt
= β(1 − u1)SI I − δEI − μEI ,

dI

dt
= αδEI − (η + μ + ν)I − u2I,

dUd

dt
= (1 − α)δEI − (γ + μ + ν)Ud − u2Ud,

dR

dt
= ηI + γUd − μR + u2(I + ud).

(5) 

5.1 The Optimal Control Problem 

Minimizing the objective functional . J (u1, u2) = ∫ t

0 (I (t) + Ud(t) + A1
2 u2

1(t) +
A2
2 u2

2(t))dt is the challenge. 
When the cost coefficients .A1 > 0 and .A2 > 0 are present, they are chosen in 

order to compare the relative weights of .u1(t) and .u2(t) at time t, and T is the last 
instance. To put it another way, we aim to find the optimal controls . u∗

1 and . u∗
2 such 

that .J (u∗
1, u

∗
2) = min

u1,u2∈U
J (u1, u2), 

where U is the set of admissible controls defined by 

. U = {
u1, u2 ∈ U 0 ≤ u1(t) ≤ 1 and 0 ≤ u1(t) ≤ 1, t ∈ [0, T ] } .

5.2 Characterization of the Optimal Control 

We utilize the Hamiltonian at time t specified by and apply Pontryagin’s maximum 
principle to obtain the essential conditions for optimal control. 

. H̃ = I (t) + Ud(t) + A1

2
u2

1(t) + A2

2
u2

2(t) +
5∑

i=1

λi(t)fi(SI , EI , I, Ud, R),

where . fi represents the front of the difference equation (5) of the ith parameter
value.
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Theorem 5.1 Considering that we have state system solutions that minimize J 
on U and optimum controls . u∗

1, . u
∗
2 and .SI , EI , I, Ud , and R, .lambda1,dots, and 

.lambda5, respectively, adjacent variables, such as .λ1, . . . , and λ5, are used. 

. 

dλ1

dt
= λ1(β(1 − u1)I − μ) − λ2β(1 − u1)I.

dλ2

dt
= λ2(δ + μ) − λ3αδ − λ4(1 − α)δ.

dλ3

dt
= −1 + λ1β(1 − u1)SI − λ2β(1 − u1)SI + λ3(η + μ + ν + u2)

− λ5(η + u2).

dλ4

dt
= −1 + λ4(γ + μ + ν + u2) − λ5(γ + u2).

dλ5

dt
= λ5μ.

Including transversality conditions . λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) =
−1, λ4(tf ) = −1, and . λ5(tf ) = 0.

Proof In addition, 

. H̃ = I (t) + Ud(t) + A1

2
u2

1(t) + A2

2
u2

2(t) +
5∑

i=1

λi(t)fi(SI , EI , I, Ud, R),

where .f1 = � − β(1 − u1)SI I − μSI .f2 = β(1 − u1)SI I − δEI − μEI , . f3 =
αδEI − (η + μ + ν)I − u2I, .f4 = (1 − α)δEI − (γ + μ + ν)Ud − u2Ud , and 
. f5 = ηI + γUd − μR + u2(I + ud).

Then, by using Pontryagin’s maximum principle [ref], we have 

. 

dλ1

dt
= − ∂H̃

∂SI

= λ1(β(1 − u1)I − μ) − λ2β(1 − u1)I.

dλ2

dt
= − ∂H̃

∂EI

= λ2(δ + μ) − λ3αδ − λ4(1 − α)δ.

dλ3

dt
= −∂H̃

∂I
= −1 + λ1β(1 − u1)SI − λ2β(1 − u1)SI + λ3(η + μ + ν + u2)

− λ5(η + u2).

dλ4

dt
= − ∂H̃

∂Ud

= −1 + λ4(γ + μ + ν + u2) − λ5(γ + u2).

dλ5

dt
= −∂H̃

∂R
= λ5μ.

Therefore, from . ∂H̃
∂u1

= 0 and . ∂H̃
∂u2

= 0, the associated optimal controls . u∗
1 and . u∗

2
are determined. As a result, we established the characteristic equation involving the 
boundaries on the controls in the kind of proposed control argument as regards:
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. u∗
1 = min

{
1, max(0,

βSI I (λ2−λ1)
A1

)
}

.

. u∗
2 = min

{
1, max(0,

λ3I+λ4Ud−λ5(I+Ud)
A2

)
}

. 
�

6 Numerical Simulation and Discussions 

Analytical research will never be complete without numerical validation of the data. 
In the present section, we have presented some numerical simulations to follow the 
dynamics of the system (1) for various initial conditions and parameters given in 
Tables 3 and 4. Thus, to solve this system, we have used the fourth-order Runge– 
Kutta method in Matlab software. We took into account the parameters listed in 
Table 3 as well as the different values of the initial conditions given in Table 4. 

By using these parameters, we have calculated the reproduction number, and 
we find that .R0 = 0.3865. It is seen clearly from Fig. 2 that the solution profiles of 
system (1) converge to the COVID-19-free equilibrium . E0 = (0.059×107, 1.0535×
107, 0, 0, 0). Furthermore, it is seen from Fig. 3 that the solution of (1) converges to 
the endemic equilibrium . E∗ = (1.4978×107, 0.9096×107, 2.6159×107, 2.6581×
107, 3.8366 × 107, 2.5910 × 107) in all the three different initial values of . SE(0)

and .SN(0). Figure 4 shows the stability of the solution of (1) in the three different 
values of .EI (0) and .I (0), while Fig. 5 shows that the solution converges to the . E0
in the same three initial values of .Ud(0) with .α = 0.0002. It is clear from Fig. 6 
that the solution of (1) is stable and converges to the COVID-19-free equilibrium 
in all the three different initial values of individuals .Ud(0) = I (0). It implies that 

Table 3 Basic values for 
parameters of system (1) 

Parameter Value Source 

.β 0.8326 Presumption 

.α 0.4110 [9] 

.� 30.000 Presumption 

.δ .1/7day−1 [9] 

.η 0.1430 Presumption 

.μ .0.0062day−1 [9] 

.ν .0.022day−1 [10] 

.θ 0.013 Presumption 

Table 4 Initial values of 
variables of system (1) 

Initial values Case 1 Case 2 Case 3 

N 2,330,769 2,330,769 2,330,769 

.SI (0) 2,229,903 2,082,863 1,104,763 

.EI (0) 100 500 1000 

.I (0) 10 3000 400,000 

.Ud(0) 100 1000 7000 

.R(0) 50 400 2000
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Fig. 2 This graph indicates that system (1)’s illness equilibrium is equal to (. 0.059×107, 1.0535×
107, 0, 0). (a) Case 1. (b) Case 2  
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Fig. 3 This plot displays how the state of the endemic system (1) is (. 1.4978 × 107, 0.9096 ×
107, 2.6159 × 107, 2.6581 × 107, 3.8366 × 107). (a) Case 3. (b) Case 4  

as these listed parameters are raised (or lowered), the reproduction number values 
increase or decrease accordingly. The parameters .ν, μ, and . η, on the other hand, 
have negative indices. It denotes an inverse relationship with . R0, and, as a result, 
raising these parameters will lower . R0’s value and vice versa. We see a decline in 
the number of diseased and infected but undeclared people in Fig. 7, so following 
the realization of this approach, all citizens will be established to inform them of the 
seriousness of the COVID-19 virus. Figure 8 displays the value of sensitivity indices 
of the chosen parameters in graphical form. Finally, all outcomes of this section
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Fig. 4 Numerical solutions of the model (1) for parameters and different initial conditions of . EI

and I given in Tables  3 and 4, here .R0 = 0.3865, and the stability is for the COVID-19-free 
equilibrium. (a) Case 5. (b) Case 6  
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Fig. 5 Numerical solutions of the model (1) for parameters and different initial conditions of . Ud

given in Tables 3 and 4, here .R0 = 0.3865, and the stability is for the COVID-19-free equilibrium. 
(a) 7  

support the theoretical results of the local and the overall asymptotic stability of the 
undiseased and endemic state presented in the previous sections.



36 S. Id ouaziz and M. EL Khomssi

0  10 20 30 40 50 60 
Time t (years) 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

Po
pu

la
tio

n 

105 

Ud(0)=815 

Ud(0)=915 

Ud(0)=1000 

(a) 

Fig. 6 Numerical solutions of the model (1) for parameters and different initial conditions of 
.Ud = Ud(0) given in Tables 3 and 4, here .R0 = 1.8662, and the stability is for the endemic 
equilibrium. (a) 8  
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Fig. 7 Numerical solutions of the infected individuals and contaminated individuals but unde-
clared with controls. (a) Case 9. (b) Case 10  

7 Conclusion 

In this chapter, we construct a nonlinear mathematical model and analyze actual and 
estimated data to determine the impact of COVID-19 on society. A system of five 
ODEs mathematically captures the dynamics of the interaction between the com-
partments. The fixed point theorem is used in this essay to attempt to demonstrate the 
existence and originality of the solution to our issue. The fundamental reproduction
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Fig. 8 The result displays the basic reproduction number . R0’s normalized forward sensitivity 
indices relative to each of the standard parameter values used Table 3 

number, .R0 can be found using the generation matrix. Additionally, we calculated 
the equilibria and mentioned their local and global stability. Furthermore, by using 
the idea of normalized forward sensitivity, the research emphasizes the significance 
of each parameter to examine the role of approach factors in illness propagation and 
then to determine the most significant factors that raise or lower . R0. By putting the 
control theory findings to use, we were able to identify the appropriate controllers. 
We conduct numerical simulations describing the impact of various situations such 
as the stay-at-home order, a travel ban, and solitary confinement to study the 
effects of modeling essential factors on the mediation and control of the illness. 
Besides, by including time-dependent factors .u1(t) for staying at home and . u2(t)

for travel restrictions and solitary confinement, the suggested model is reorganized 
to achieve the optimal control model. The model is tuned, and the relevant optimality 
requirements are deduced using optimal control theory and Pontryagin’s maximum 
principle. Eventually, with the parameter values derived from the data fit, the digital 
approximation is applied to develop the graphical output of the template. Various 
plots represent the model parameters and how they affect disease eradication, and 
these numerical simulations are used to confirm the analytical result. Similarly, 
sample diagram outputs of the model with the appropriate parameters suggest that 
adherence to World Health Organization (WHO) guidelines can help reduce disease 
in the community.
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Optimal Strategies to Prevent COVID-19 
from Becoming a Pandemic 

Beyza Billur İskender Eroğlu and Dilara Yapışkan 

1 Introduction 

At the end of 2019, it was announced by the World Health Organization (WHO) that 
a new coronavirus (2019-nCoV) leading to pneumonia was identified inWuhan City, 
Hubei Province of China [1]. This coronavirus, which is thought to be caused by 
bats [2], is also called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2). The findings suggest that transmission may have started from the Huanan 
seafood wholesale market [3, 4] and then the virus spread rapidly among people, 
reaching all provinces of China. Therefore, the dynamics of the virus had to be 
revealed immediately to the prediction of the course of the epidemic. As is known, 
this can be achieved by mathematical models which have critical in comprehending 
the dynamics of transmissible illnesses and examining the process of the epidemic 
[5–7]. For this reason, the first spreading of coronavirus in Wuhan City was designed 
according to varied dynamics using ordinary differential equations (ODEs) [8–10]. 
Besides, the researchers examined the propagation of COVID-19 in various nations 
proposing different ODE models [11–14]. However, recent studies indicate that 
the spread of COVID-19 shows both power law and exponential law distributions 
[15]. Such complex behavior can be fitted by fractional calculus thanks to the 
singular and non-singular operators. Hence, fractional calculus has contributed to 
the effective resolution of many open problems in the literature [16–18]. In addition, 
many epidemiological models have been defined with fractional derivatives because 
fractional derivatives can properly reflect the characters of the epidemic [19–21]. 
On the other hand, epidemiological models have a critical threshold parameter that 
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provides information about whether the disease will turn into an epidemic. Suppose 
this parameter indicates that the disease has turned into a pandemic. In that case, 
various methods should be proposed to control and treat the epidemic. In this 
meaning, optimal control is one of the most effective control techniques because, 
while optimal control calculates the optimal value of the control variables, it takes 
into account their costs [22–25]. In addition, fractional optimal control [26, 27], 
which is an optimal control technique that includes fractional derivative terms in 
dynamic system or performance indexes, has recently taken its place among these 
techniques. However, the difference in the definition of derivative operators affects 
the necessary optimality and transversality conditions [28–30]. Since different types 
of fractional operators occur in modeling real-life phenomena to be compatible 
with their nature, various FOCPs have been proposed to control these phenomena 
[31–35]. Moreover, comparatively analyzing how fractional derivatives represent 
controlled dynamics has taken its place among the attractive topics in recent years 
[36, 37]. 

Various optimal control strategies have been proposed to prevent the spread of 
COVID-19 [38, 39]. In this chapter, the question of what measures could have been 
taken before the epidemic turned into a pandemic is replied. Therefore, we focus 
on a Reservoir–People model which is the starting point of the pandemic. In this 
meaning, we investigate the model created with real data proposed by [8] under 
power law and exponential law distributions compatible with the spreading of the 
virus. Thus, the organization of the chapter is planned as below. Firstly, in Sect. 1, 
the essential mathematical concepts are given. In Sect. 2, the Reservoir–Human 
model is introduced and then modified in terms of the Caputo derivative to examine 
it according to the distribution among people. In Sect. 3, the FOCP is formulated, 
and the optimality system is reached by the Pontryagin Maximum principle. In 
Sect. 4, Adam’s type PCM combined with the FBSA is used to achieve the numerical 
solution. The FOCP is also formulated with the ABC derivative in this section. Then, 
it is solved numerically following the similar steps. Finally, all graphical results 
belonging to both FOCPs are shown comparatively using MATLAB. 

1.1 Preliminaries 

The traditional and new generation fractional derivatives and some of their proper-
ties are introduced below. 

Definition 1 ([40]) The left and the right Caputo derivatives are, respectively, 
defined as 

. 
C
aD

α
t f (t) = 1

� (1 − α)

∫ t

a

(t − θ)−α

(
d

dθ

)
f (θ) dθ, 0 < α < 1,

. 
C
tD

α
b f (t) = 1

� (1 − α)

∫ b

t

(θ − t)−α

(
− d

dθ

)
f (θ) dθ, 0 < α < 1,

where .0 < α < 1.
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Definition 2 ([41]) The left and the right ABC derivatives are, respectively, defined 
as 

. 
ABC

aD
α
t f (t) = B (α)

1 − α

∫ t

a

df (θ)

dθ
Eα

[
− α

1 − α
(t − θ)α

]
dθ,

. 
ABC

tD
α
b f (t) = −B (α)

1 − α

∫ b

t

df (θ)

dθ
Eα

[
− α

1 − α
(θ − t)α

]
dθ,

where .0 < α < 1, .B (α) is the normalization function such that . B (0) = B (1) = 1
and . Eα is the Mittag–Leffler function. 

Definition 3 ([40]) For .x ∈ R, the generalized Mittag–Leffler function is 

. Eυ,ω (x) =
∞∑

m=0

xm

� (υm + ω)
, υ > 0, ω > 0.

1.2 Reservoir–People Transmission Biological Network Model 

The spread model of COVID-19 originated by Chen et al. [8] is evoked in this  
section. The model details the spread between people and the reservoir (the seafood 
market) in Wuhan City. The parameters at time t are represented as susceptible 
people with .Sp (t), exposed people with .Ep (t) , symptomatic infected with .Ip (t), 
asymptomatic infected people with .Ap (t), and recovered people with .Rp (t). Then, 
the total people population represented by .Np(t) corresponds to . Np(t) = Sp (t) +
Ep (t) + Ip (t) + Ap (t) + Rp (t). Additionally, the reservoir expressed as .W (t) is 
considered the source of COVID-19. The model is given by six compartment ODEs 
as follows: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSp(t)

dt
= �p − mpSp (t) − βpSp (t)

(
Ip (t) + κAp (t)

) − βwSp (t)W,

dEp(t)

dt
= βpSp (t)

(
Ip (t) + κAp (t)

) + βwSp (t)W − (
1 − δp

)
ωpEp (t)

− δpω̄pEp (t) − mpEp (t),

dIp(t)

dt
= (

1 − δp

)
ωpEp (t) − (

γp + mp

)
Ip (t) ,

dAp(t)

dt
= δpω̄pEp (t) − (

γ̄p + mp

)
Ap (t),

dRp(t)

dt
= γpIp (t) + γ̄pAp (t) − mpRp (t) ,

dW(t)
dt

= μpIp (t) + μ̄pAp (t) − εW.

(1)
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Since COVID-19 behaves compatibly with the power law and exponential law 
in a heterogeneous biological network, the model suggested by Chen et al. [8] is  
discussed in sense of the Caputo derivative. Taking account of unit consistency, 
only the people-to-people spread of COVID-19 is studied in this chapter. COVID-
19 is transmitted through direct or indirect contact. Droplets caused by sneezing, 
breath, speak or sing at a very close range, and airborne such as aerosol at long 
distances [42] can be given as examples. If vaccines are still missing in viral 
epidemics, non-pharmaceutical interventions such as mask usage, distance, and 
hygiene are effective ways to prevent the infection. If people have mild or no symp-
toms, pharmaceutical intervention can be accomplished with antiviral medications. 
However, if antiviral medications are unavailable or cannot be effective, plasma 
transfusion therapy is used as an effective method in severe viral epidemics [43]. 
The proposed preventive control strategies are adapted to the system (1) to avoid the 
spread of COVID-19 in Wuhan City from becoming a pandemic. Control function 
.u1 (t) stands for non-pharmaceutical intervention to protect susceptible people 
from infection. The control functions .u2 (t) and .u3 (t) also signify pharmaceutical 
intervention and plasma transfusion therapy, respectively, leading to the recovery 
of symptomatic infected and asymptomatic infected people. Thus, the controlled 
fractional-order model of COVID-19 is given as 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0 Dα

t S (t) = �α − (1 − u1 (t)) βαS (t) (I (t) + κA (t)) − mαS (t) ,

C
0 Dα

t E (t) = (1 − u1 (t)) βαS (t) (I (t) + κA (t)) − (1 − δ) ωαE (t)

− δω̄αE (t) − mαE (t),

C
0 Dα

t I (t) = (1 − δ) ωαE (t) − (γ α + mα)I (t) − u2 (t) R (t) I (t) ,

C
0 Dα

t A (t) = δω̄αE (t) − (γ̄ α + mα)A (t) − u3 (t) A (t) ,

C
0 Dα

t R (t) = γ αI (t) + γ̄ αA (t) − mαR (t) + u2 (t) R (t) I (t)

+ u3 (t) A (t) ,

(2) 

where the preventive control strategies are implemented to the system (1) during the 
period .

[
0, tf

]
, and the admissible set of control functions .u1 (t), .u2 (t), and . u3 (t)

are given as 

.Uad = {
(u1, u2, u3) | 0 ≤ u1u2, u3 ≤ 1, 0 ≤ t ≤ tf

}
. (3)
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2 Formulation of FOCPs and Its Optimality Systems 

In this section, an FOCP is considered to prevent the spread of COVID-19 from 
becoming a pandemic. For this aim, optimal preventive strategies are enhanced in 
accordance with the dynamics of system (2). The purpose of the objective functional 
is to minimize both the rate of exposed, symptomatic infected, and asymptomatic 
infected and the cost of non-pharmaceutical and pharmaceutical intervention, and 
plasma transfusion therapy. Thus, the objective functional is given by 

. J
(
E, I,A, u1,u2, u3

)
min

=
tf∫

0

(
ε1E (t) + ε2I (t) + ε3A (t) + η1u

2
1 (t) + η2u

2
2 (t)

+η3u
2
3 (t)

)
dt, (4) 

where .ε1, .ε2, .ε3, . η1, . η2, and . η3 are the positive weight coefficients. 
To solve the consist problem Eqs. (2–4), the Hamiltonian formulation . H of the 

FOCP is produced as 

.

H = ε1E (t) + ε2I (t) + ε3A (t) + η1u
2
1 (t) + η2u

2
2 (t) + η3u

2
3 (t)

+λ1 (t)
(
�α − (1 − u1 (t)) βαS (t)

(
Ip (t) + κA (t)

) − mαS (t)
)

+λ2 (t) ((1 − u1 (t)) βαS (t) (I (t) + κA (t)) − (1 − δ) ωαE (t)

−δω̄αE (t) − mαE (t))

+λ3 (t) ((1 − δ) ωαE (t) − (γ α + mα) I (t) − u2 (t) R (t) I (t))

+λ4 (t) (δω̄αE (t) − (γ̄ α + mα)A (t) − u3 (t) A (t))

+λ5 (t) (γ αI (t) + γ̄ αA (t) − mαR (t) + u2 (t) R (t) I (t)

+u3 (t) A (t)) .

(5) 

Now, the fractional necessary optimality conditions are revealed by Pontryagin’s 
Maximum Principle [44]. 

2.1 Optimality Systems 

Theorem 1 Let
(
u∗
1, u

∗
2, u

∗
3

) ∈ Uad be the optimal controls that minimize the 
objective functional (4) and (S∗, E∗, I ∗, A∗, R∗) is the optimal solution for the 
system (2). Thus, there are costate variables

(
λ1, λ2, λ3, λ4,λ5

)
that provide
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. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
tD

α
tf

λ1 (t) = −λ1 (t)
((
1 − u∗

1 (t)
)
βα (I ∗ (t) + κA∗ (t)) + mα

)
+λ2 (t)

((
1 − u∗

1 (t)
)
βα (I ∗ (t) + κA∗ (t))

)
,

C
tD

α
tf

λ2 (t) = ε1 − λ2 (t) ((1 − δ) ωα + δω̄α + mα) + λ3 (t) (1 − δ) ωα

+λ4 (t) δω̄α,
C
tD

α
tf

λ3 (t) = ε2 − λ1 (t)
((
1 − u∗

1 (t)
)
βαS∗ (t)

)
+λ2 (t)

((
1 − u∗

1 (t)
)
βαS∗ (t)

)
−λ3 (t)

(
γ α + mα + u∗

2 (t) R∗ (t)
) + λ4 (t)

(
γ α + u∗

2 (t) R∗ (t)
)
,

C
tD

α
tf

λ4 (t) = ε3 − λ1 (t)
((
1 − u∗

1 (t)
)
βαS∗ (t) κ

)
+λ2 (t)

((
1 − u∗

1 (t)
)
βαS∗ (t) κ

)
−λ4 (t)

(
γ̄ α + mα + u∗

3 (t)
) + λ5 (t)

(
γ̄ α + u∗

3 (t)
)
,

C
tD

α
tf

λ5 (t) = −λ4 (t) u∗
2 (t) I ∗ (t) + −λ5 (t)

(
u∗
2 (t) I ∗ (t) − mα

)
,

(6) 

with transversality conditions λi

(
tf

) = 0 (i = 1, 2, 3, 4, 5). Furthermore, the
optimal control variables

(
u∗
1, u

∗
2, u

∗
3

)
are achieved as

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u∗
1 (t) = max

{
min

{
(λ2(t)−λ1(t))β

α(I∗(t)+κA∗(t))
2η1

, 1
}

, 0
}

,

u∗
2 (t) = max

{
min

{
(λ3(t)−λ5(t))I

∗(t)R∗(t)
2η2

, 1
}

, 0
}

,

u∗
3 (t) = max

{
min

{
(λ4(t)−λ5(t))A

∗(t)
2η3

, 1
}

, 0
}

.

(7) 

Proof Since the state variables S, E, I, A, and R in the system (2) satisfy 
the Lipschitz condition, the existence of optimal control variables (u1, u2, u3) is 
provided [45, 46]. For the solution of the formulated FOCP, the necessary optimality 
conditions proposed by Agrawal in terms of the Caputo derivative are benefited [27]. 
Thus the fractional Euler–Lagrange equations are given as follows: 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

State system:
C
0D

α
t S = ∂H

∂λ1
, C

0D
α
t E = ∂H

∂λ2
, C

0D
α
t I = ∂H

∂λ3
,

C
0D

α
t A = ∂H

∂λ4
, C

0D
α
t R = ∂H

∂λ5
.

Costate system:
C
tD

α
tf

λ1 = ∂H
∂S

, C
tD

α
tf

λ2 = ∂H
∂E

, C
tD

α
tf

λ3 = ∂H
∂I

,
C
tD

α
tf

λ4 = ∂H
∂A

, C
tD

α
tf

λ5 = ∂H
∂R

.

Control system:
∂H
∂u1

= 0, ∂H
∂u2

= 0, ∂H
∂u3

= 0.

The costate system is acquired by using the fractional Euler–Lagrange equations as
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. 
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
tD

α
tf

λ1 (t) = −λ1 (t)
((
1 − u∗

1 (t)
)
βα (I ∗ (t) + κA∗ (t)) + mα

)
+λ2 (t)

((
1 − u∗

1 (t)
)
βα (I ∗ (t) + κA∗ (t))

)
,

C
tD

α
tf

λ2 (t) = ε1 − λ2 (t) ((1 − δ) ωα + δω̄α + mα)

+λ3 (t) (1 − δ) ωα + λ4 (t) δω̄α,
C
tD

α
tf

λ3 (t) = ε2 − λ1 (t)
((
1 − u∗

1 (t)
)
βαS∗ (t)

)
+λ2 (t)

((
1 − u∗

1 (t)
)
βαS∗ (t)

)
−λ3 (t)

(
γ α + mα + u∗

2 (t) R∗ (t)
) + λ4 (t)

(
γ α + u∗

2 (t) R∗ (t)
)

C
tD

α
tf

λ4 (t) = ε3 − λ1 (t)
((
1 − u∗

1 (t)
)
βαS∗ (t) κ

)
+λ2 (t)

((
1 − u∗

1 (t)
)
βαS∗ (t) κ

)
−λ4 (t)

(
γ̄ α + mα + u∗

3 (t)
) + λ5 (t)

(
γ̄ α + u∗

3 (t)
)
,

C
tD

α
tf

λ5 (t) = −λ4 (t) u∗
2 (t) I ∗ (t) + −λ5 (t)

(
u∗
2 (t) I ∗ (t) − mα

)

with transversality conditions λi

(
tf

) = 0 (i = 1, 2, 3, 4, 5). Similarly, the control 
system is arrived as 

. 

⎧⎪⎪⎨
⎪⎪⎩

∂H
∂u1

|
u1=u∗

1(t)
= 2η1u∗

1 (t) + (λ1 (t) − λ2 (t)) βα (t) (I ∗ (t) + κA∗ (t)) = 0,
∂H
∂u2

|
u2=u∗

2(t)
= 2η2u∗

2 (t) + (−λ3 (t) + λ5 (t)) I ∗ (t) R∗ (t) = 0,
∂H
∂u3

|
u3=u∗

3(t)
= 2η3u∗

3 (t) + (−λ4 (t) + λ5 (t)) A∗ (t) = 0.

According to admissible set Uad , the optimal control values of the control system 
are attained as in Eq. (7). 

3 Numerical Results and Discussion 

In this section, the impact of the proposed triple preventive control strategy on 
the spread of COVID-19 is shown with numerical results. Adam’s type PCM [47] 
combined with the FBSA is applied to the optimality system formed by (2), (6), and 
(7). The parameter values used are the values of the epidemics in the city of Wuhan 
given in Table 1. For numerical results, the final time is taken .tf = 50, and the initial 
conditions are assumed as .S (0) = 0.80, .E (0) = 0.07, .I (0) = 0.10, .A (0) = 0.03, 
and .R (0) = 0. Additionally, the weight coefficients are .ε1 = ε2 = ε3 = 10, 
.η1 = 0.05, and .η2 = η3 = 0.25. According to the values, the state, costate, and 
control systems are solved using MATLAB. The proposed FOCP for the initial 
spread of COVID-19 in the city of Wuhan is graphically discussed below, with 
single, double, and triple control strategies.
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Table 1 Interpretation of parameters in system (2) 

Parameter Description Value Unit 

.�α The birth rate of people in the total population .(0.0018)α [8] day. −α

.βα The infection rate from I and A to S .(0.6870)α [8] day. −α

.κ The transmissibility of A is . κ times that of I. 0.5 [8] unitless 

.mα The death rate of people .(0.0018)α [8] day. −α

.δ The proportion of asymptomatic infection rate of people 0.5 [8] unitless 

.ωα The incubation period of people .(0.1923)α [8] day. −α

.ω̄α The latent period of people .(0.1923)α [8] day. −α

.γ α The infectious period of symptomatic infection of people .(0.1724)α [8] day. −α

.γ̄ α The infectious period of asymptomatic infection of people .(0.1724)α [8] day. −α
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Fig. 1 Graphical comparison of single control strategies with Caputo derivative for . α = 0.90

3.1 Single Control Strategy 

In a single control strategy, appropriate objective functionals for non-pharmaceutical 
intervention, plasma transfusion therapy, and pharmaceutical intervention controls 
are determined and minimized. Figure 1 displays the effectiveness of these strategies 
for .α = 0.90. Non-pharmaceutical intervention control adapted to susceptible 
people reduces medication and hospitalizations as it protects against infection. 
Furthermore, it is shown that plasma transfusion therapy and pharmaceutical inter-
vention for symptomatic and asymptomatic infected people are influential. Although 
both controls treat infected people separately, pharmaceutical intervention displays 
a higher recovery rate. Compared to single control strategies, non-pharmaceutical 
intervention gives the most satisfactory result not only for susceptible people but 
also for the total population.
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3.2 Double Control Strategy 

Double control strategies are examined in different combinations. 

3.2.1 Strategy 1 

In this strategy, non-pharmaceutical intervention and plasma transfusion therapy 
controls are imposed to minimize the objective functional. Figure 2 exhibits the 
impact of the strategy with controlled and uncontrolled situations for .α = 0.90. 
According to this figure, symptomatic infected people recover with plasma transfu-
sion therapy, and exposed people are also reduced rapidly by non-pharmaceutical 
intervention. Thus, it is observed that the emergence of new infections is prevented. 
This strategy is observed to drop exposed people rapidly, thus preventing the 
emergence of new infections. 

3.2.2 Strategy 2 

In this strategy, the objective functional is minimized by utilizing non-
pharmaceutical intervention and pharmaceutical intervention controls. As can be 
seen in Fig. 3, Strategy 2 for  .α = 0.90 also effectively reduces the exposed people, 
greatly eliminating the infection. Strategy 1 and Strategy 2 are compared in Fig. 4 
for .α = 0.90 to decide which strategy yields more impact results. Although different 
medicines for symptomatic and asymptomatic people may make little difference, the 
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Fig. 2 The effects of Strategy 1 with Caputo derivative for .α = 0.90
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Fig. 3 The effects of Strategy 2 with Caputo derivative for . α = 0.90
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Fig. 4 Graphical comparison of Strategy 1 and Strategy 2 with Caputo derivative for . α = 0.90

strategies produce almost the same response for susceptible, exposed, and recovered 
people. Thus, it is concluded that both strategies are beneficial in controlling the 
infection.
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Fig. 5 The effects of Strategy 3 with Caputo derivative for . α = 0.90

3.2.3 Strategy 3 

In this strategy, plasma transfusion therapy and pharmaceutical intervention controls 
are implemented to minimize the objective functional. Figure 5 illustrates the 
effect of Strategy 3 for .α = 0.90. The infection rate gradually fades in that 
infected people are treated with plasma transfusion therapy and pharmaceutical 
intervention controls. But unfortunately, people are vulnerable to the infection 
without non-pharmaceutical intervention. Hence, the rate of susceptible people stays 
low compared to Strategy 1 and Strategy 2. 

3.3 Triple Control Strategy 

In the triple control strategy, non-pharmaceutical intervention, plasma transfusion 
therapy, and pharmaceutical intervention controls are performed in order to mini-
mize the objective functional. In Fig. 6, it is inferred that the implementing triple 
control strategy is fairly effective for .α = 0.90 because this control strategy 
protects susceptible people against infection, decreases exposed people, and resets 
symptomatic and asymptomatic infected people after the twentieth day. Thus, 
recovered people remain at a lower rate. The infection is almost eradicated, as the 
cases damping quickly. Therefore, the spread of COVID-19 is taken contain. As 
seen in Fig. 6, control .u1 (t) exerts more effort than controls .u2 (t) and .u3 (t) in the 
triple control strategy. As a result, it is deduced from Fig. 7 that the triple control 
strategy is the most satisfactory.
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Fig. 6 The effects of triple control strategy with Caputo derivative for . α = 0.90
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Fig. 7 Graphical comparison of triple control strategy, Strategy 1, and Strategy 2 with Caputo 
derivative for . α = 0.90

3.4 Comparative Analysis 

Considering COVID-19 has an exponential law in a heterogeneous biological 
network, the first spread model of COVID-19 is also appropriate to discuss with 
the ABC derivative. In line with this objective, the optimality system of the problem 
is achieved and the numerical method presented in [48] in terms of ABC derivative
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Fig. 8 Comparative analysis of Caputo and ABC derivatives with triple control strategy for . α =
0.90

is benefited in the solution. In addition, since the triple control strategy gives the 
best impact, all comparative results are analyzed with this strategy. 

Figure 8 demonstrates the triple preventive control strategy for .α = 0.90 in 
comparison with Caputo and ABC derivatives. Both fractional derivatives show 
similar behavior, reducing the infection until the fortieth day. However, after that 
day, the strategy proposed with the ABC derivative loses its effect and decreases at 
the rate of the susceptible people. So, there is an increase in exposed, symptomatic, 
and asymptomatic infected people compared to the Caputo derivative. The reason 
is that the controls display different behaviors according to the fractional operators. 
In particular, although the control .u1 (t) exerts the same effort for both derivatives 
until the fortieth day, the ABC derivative starts to wield less effort after that day. 
Therefore, it is concluded that the fractional operator affects the control behavior 
and changes the course of the disease. 

Figure 9 comparatively shows the triple preventive strategy of both derivatives 
for .α = 0.80. Compared to Fig. 8, the reduction in derivative order alters the spread 
of the infection. For .α = 0.80, the effort of the controls in the ABC derivative 
is still less than in the Caputo derivative, and however its effect fades after a few 
days compared to .α = 0.90. Such infections are required to destroy in that these 
infections are a burden to society in terms of health and the economy. For this 
reason, control measures are governed to eradicate the disease. Yet, Fig. 9 shows 
that the strategy with the ABC derivative increases toward the final time in exposed, 
symptomatic, and asymptomatic infected people. 

As a result, the proposed preventive control strategies provide the desired result 
in dealing with COVID-19 in a short period, allowing the epidemic in Wuhan City 
to fade quickly. It means that it does not produce a burden on the world in terms of
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Fig. 9 Comparative analysis of Caputo and ABC derivatives with triple control strategy for . α =
0.80

health and economy. Moreover, it is concluded that although the proposed strategies 
with both derivative operators control the spread, the Caputo derivative exhibits 
more stable behavior. 

4 Conclusions 

This chapter explores optimal preventive strategies that, if implemented, would 
prevent the COVID-19 epidemic from becoming a pandemic. For this purpose, 
an FOCP has been proposed for the model representing COVID-19 that started 
in Wuhan City, Hubei Province, China. First, the model has been modified in 
sense of the Caputo derivative to appropriately study the spread of COVID-19 in 
a heterogeneous biological network. Afterward, preventive control strategies have 
been adapted representing non-pharmaceutical intervention for susceptible people, 
plasma transfusion therapy for symptomatic infected people, and pharmaceutical 
intervention for asymptomatic infected people. The FOCP has been numerically 
solved using Adam’s type PCM combined with the FBSA with help of the 
MATLAB. Single, double, and triple control strategies have been compared with 
the graphical results. It has been observed that the triple control strategy delivered 
the most efficient result in the shortest period. Moreover, since COVID-19 also 
shows exponential law distribution, the model has been discussed in terms of ABC 
derivative and solved with the same numerical approach by implementing the triple 
control strategy. Caputo and ABC derivatives have been analyzed comparatively 
in different orders for the best response triple preventive control strategy. It has
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been examined from the graphs that this strategy quickly damped and contained 
the infection for both fractional derivatives. However, the Caputo derivative has 
been more suitable for this strategy as it more consistently reflected the expected 
result. As a result, it has been concluded that the triple control strategy is effective in 
controlling the aggressive spread in Wuhan City, thus preventing it from becoming 
a pandemic. 
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37. Eroğlu, B.B.İ., Yapışkan, D.: Comparative analysis on fractional optimal control of an SLBS 
model. J. Comput. Appl. Math. 421, 114840 (2023) 

38. Shen, Z.H., et al.: Mathematical modeling and optimal control of the COVID-19 dynamics. 
Results Phys. 31, 105028 (2021) 
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Modeling and Analysis of COVID-19 
Based on a Deterministic Compartmental 
Model and Bayesian Inference 

Touria Jdid, Mohammed Benbrahim, Mohammed Nabil Kabbaj, 
and Mohamed Naji 

1 Introduction 

COVID-19 has been spreading worldwide, affecting every aspect of our lives and 
resulting in over 6 million deaths as of December 13, 2022 [1]. The spread of 
COVID-19 has prompted several countries to undertake urgent non-pharmaceutical 
interventions and vaccination programs to contain the expansion of the outbreak 
and return to pre-pandemic life [2]. Understanding how COVID-19 spreads [3], 
evaluating the effectiveness of contingency plans [4], and predicting infection and 
death rates [5] in addition to intensive care unit admissions [6] are of great interest to 
policymakers and society. Over the past three years, mathematical models have been 
instrumental in mitigating the COVID-19 pandemic, so they have helped decision-
makers to take public health actions with greater efficiency [7]. 

In modeling COVID-19 dynamics, we used deterministic compartmental models 
[8], in which one can stratify the entire population into homogeneous groups known 
as compartments, classes, or categories. In a compartment, individuals are regarded 
to be in the same infectious state. The transition of individuals from one state to 
another is modeled using a system of ordinary differential equations. These models 
have been widely used in modeling, controlling, and forecasting COVID-19 [9] and 
[10]. In [11], a study has been conducted to evaluate the influence of a vaccine on 
controlling the pandemic of COVID-19 in the United States. In [12], the authors 
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introduced a compartmental framework for COVID-19 to assess vaccine efficacy 
and coverage required to stop the outbreak if social contact were to turn back to the 
levels before the pandemic and face mask usage was reduced. 

The robustness of the results produced by an epidemic model relies on the 
accuracy of its parameter estimates. Therefore, the number of research that performs 
inference techniques of COVID-19 spread within societies using mathematical 
models (compartmental and agent-based models) increases exponentially. In epi-
demiology, the commonly used approaches to estimate model parameters are the 
classical approach (curve fitting), where the parameters are fixed quantities and 
their values inferred from infectious disease count data using estimators, and the 
Bayesian inference, where the parameters are random variables sampled from 
the posterior distribution. The Bayesian statistical inference has some advantages 
compared to curve fitting. First, the foundation of the Bayesian framework on 
Markov Chain Monte Carlo (MCMC) algorithms makes it easier to obtain accurate 
estimates of model parameters and their percentiles and quantify uncertainties. 
Second, the sampling process in this framework explores both the posterior and 
marginal posterior density of the quantities of interest and the functions of these 
quantities, like threshold parameters. For illustration, in epidemiology, we are 
usually interested in a quantity called the basic reproduction number (. R0) [13]. 
This quantity behaves as a threshold parameter whose value is estimated from a 
mathematical model and tells whether an outbreak is likely to persist if . R0 has a 
value . >1 and to die out if . R0 is . <1. Third, in complex epidemic models with many 
parameters, the nonlinear correlations between parameters increase. So, in this case, 
using Bayesian inference helps us to identify the quantities of interest. 

In the literature, there are two fundamental types of MCMC algorithms: classical 
or standard MCMC algorithms [14], in which searching the parameter space is 
performed according to the random walk, and the HMC algorithm [15], whose 
foundation is based on differential geometry and Hamiltonian dynamics. We provide 
a detailed explanation of these algorithms in Sect. 3. Recently, many studies 
have used these algorithms to identify model parameters from the data [16] and 
[17]. In [18], Acuña-Zegarra et al. investigated the impact of behavior changes 
needed to diminish community transmission of COVID-19 based on a modified 
SEIR modeling. They simulated the model using the t-walk algorithm, an MCMC 
algorithm. Andrade et al. examined the performance of the HMC algorithm by 
fitting an SEIR epidemic model structured by age to synthetic data [19]. In doing 
so, they compared the performance of the HMC with the Nelder–Mead algorithm. 

In this study, we formulate a deterministic epidemiological model that contains 
nine compartments to study the evolution of COVID-19 propagation. The model 
accounts for the COVID-19 incubation time and the transmission of the infection 
by asymptomatic carriers. It allows tracking of infected patients quarantined at 
home and in the hospital. Furthermore, it provides the possibility to implement a 
vaccination strategy as it contains a compartment for the vaccinated individuals. 
We calibrate our model in the absence of vaccination on the Moroccan data, 
corresponding to the first wave of the outbreak, from March 2 to June 10, 2020. 
For this purpose, we apply two methods: curve fitting and Bayesian statistical
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inference using the HMC algorithm. Numerical simulations from fitting the model 
to the data for both methods showed that our model is consistent with the data and 
more accurately reproduces the COVID-19 epidemic in Morocco. The parameter 
estimates obtained by Bayesian inference using HMC are, on average, similar to 
those obtained by curve fitting using the Nelder–Mead optimization method. We 
further account for the dynamics of vaccination in the model by assuming a daily 
baseline vaccination rate of 0.008, a baseline vaccine characterized by .79% efficacy, 
and an immunity period of 183 days and simulate the model to assess vaccination 
programs. Results showed that we should increase the daily vaccination rate from its 
baseline and use a high-efficacy vaccine, greater than .79%, to protect people from 
COVID-19 infection. 

This chapter is organized as follows. A detailed description of our modeling 
framework is presented in Sect. 2. The methodology followed to calibrate the model 
using curve fitting and the HMC algorithm and the obtained numerical results are 
given in Sect. 3. Then, in Sect. 4, we introduce two scenarios to assess the effect 
of vaccination programs on the evolution of daily confirmed cases in Morocco. 
Section 5 contains a summary of the relevant findings and some discussions. 

2 Modeling Framework 

We propose a deterministic epidemic model (Fig. 1) for the COVID-19 dynamics 
stratified by infection state into nine classes, namely, Susceptible (S), Exposed 
(E), Symptomatic Infectious (. IS), Asymptomatic Infectious (. IA), Hospitalized (H), 
Quarantined (Q), Recovered (R), Dead (D), and Vaccinated (V). The population is 
assumed to be constant of size N (. N(t) = S(t) + E(t) + IS(t) + IA(t) + H(t) +
Q(t)+R(t)+V (t)), where S(t), E(t), .IS(t), .IA(t), H(t), Q(t), R(t), and V(t) stand for 
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Fig. 1 Flow chart of the epidemic model. Classes S, E, . IS , . IA, H, Q, R, D, and  V stand  
for the populations of susceptible, exposed, Symptomatic Infectious, Asymptomatic Infectious, 
hospitalized, quarantined, recovered, dead, and vaccinated individuals, respectively
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the number of individuals within each compartment at time t. The model assumes 
that all individuals are initially equally susceptible and become exposed upon 
effective contact with an infectious class (symptomatic or asymptomatic). Once 
the incubation period ends, exposed individuals become contagious and progress 
to either symptomatic or asymptomatic classes with a rate of . α. Depending on the 
severity of COVID-19 disease, symptomatic individuals move to hospitalized or 
quarantined classes at the transition rates . δH and . δQ, respectively. Asymptomatic 
individuals were supposed to have naturally recovered from the disease at a rate of 
. γQ. A proportion f of them is assumed to develop clinical symptoms with a delay of 
.1/ν day and move into the symptomatic compartment. We assume that hospitalized 
patients are in isolation, receive treatment, and cannot transmit the disease to the 
susceptible population. They are recovering from COVID-19 at a rate of . γH or 
moving to the deceased category at a rate of . dH . Individuals quarantined at home are 
followed and admitted to the hospital immediately as their condition progresses, at 
a rate of . σ . People in quarantine who refuse to be admitted to the hospital are likely 
to die from COVID-19 at a rate of . dQ. A fraction of them recover from COVID-19 
at a rate of . γQ. Individuals who recovered from natural COVID-19 infection are 
losing immunity at a rate of . μR and joining the susceptible population. People who 
die from the disease are not involved in the COVID-19 dynamics. Due to the short 
simulation time frame, the model does not include vital dynamics. 

In vaccination strategy, we consider the following assumptions: 

– Only susceptible, exposed, asymptomatic infectious, and recovered individuals 
can receive the vaccine. Infectious people with clinical symptoms and hospital-
ized and quarantined patients are not eligible for vaccination. 

– Only the COVID-19 variant is considered. 
– The effects of the vaccine are only seen in susceptible people. 
– A fraction of the susceptible population becomes vaccinated against COVID-19 

at a rate of . θV . 
– Depending on the vaccine profile, a candidate for vaccination is assumed to 

receive one or two doses. 
– The vaccine is assumed imperfect and has an efficacy, denoted by . EV , with . 0 <

EV < 1. 
– A fraction of those vaccinated are likely to be infected with COVID-19 with a 

probability .(1 − EV ). 
– Vaccinated people will lose immunity at the rate of . μV . 
– The induced immunity from the vaccine is equal to the natural immunity. 

The model parameters implicated are positive, and Table 1 summarizes them. The 
differential system that governs the dynamics of COVID-19 is described as follows:
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Table 1 Describing the parameters involved in Eq. (1) 

Parameter Description 

.N Population size 

.βS The rate at which a susceptible individual has effective contact with a 
symptomatic person 

.βA The rate at which a susceptible individual has effective contact with an 
asymptomatic person 

.α Incubation rate 

.ε Fraction of asymptomatic people 

.f Fraction of asymptomatic people who progress to the symptomatic class 

.ν Transfer rate from asymptomatic to symptomatic classes. 

.ρ Fraction of symptomatic people hospitalized due to COVID-19 

.δQ Transition rate from symptomatic class to quarantine class 

.δH Transition rate from symptomatic to hospitalized class 

.σ Transition rate from quarantined to hospitalized class 

.f1 Proportion of quarantined individuals recovering from COVID-19 

.f2 Proportion of quarantined people who die from COVID-19 

.γA Rate at which asymptomatic carriers remediate from the disease 

.γQ Rate at which quarantined people remediate from the disease 

.γH Rate at which hospitalized patients remediate from the disease 

.dQ Mortality rate induced by the disease caused by the quarantine class 

.dH Mortality rate induced by the disease caused by the hospitalized class 

.r Proportion of patients hospitalized who die of COVID-19 

.μR Rate of natural immunity loss 

.θV Vaccination rate 

.EV Vaccine efficacy 

.μV Waning rate of the vaccine 

.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
t

= μRR(t) + μV V (t) − (Λ + θV )S(t)
dE(t)

t
= ΛS(t) + ΛV V (t) − αE(t)

dIS(t)
t

= (1 − ε)αE(t) + f νIA(t) − (ρδH + (1 − ρ)δQ)IS(t)
dIA(t)

t
= εαE(t) − (f ν + (1 − f )γA)IA(t)

dH(t)
t

= ρδH IS(t) + (1 − f1 − f2)σQ(t) − (rdH + (1 − r)γH )H(t)
dQ(t)

t
= (1 − ρ)δQIS(t) − (f1γQ + f2dQ + (1 − f1 − f2)σ )Q(t)

dR(t)
t

= (1 − f )γAIA(t) + f1γQQ(t) + (1 − r)γH H(t) − μRR(t)
dD(t)

t
= rdH H(t) + f2dQQ(t)

dV (t)
t

= θV S(t) − (μV + ΛV )V (t).

(1) 

In the system of Eq. (1), . Λ and . ΛV refer to the forces of infection for susceptible and 
vaccinated individuals and are expressed, respectively, in the following equations: 

.Λ = βSIS(t) + βAIA(t)

N(t)
. (2) 

.ΛV = (1 − EV )Λ. (3)
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3 Model Calibration 

In the present section, we applied our epidemiological model to Morocco’s publicly 
available data on COVID-19 [20]. Daily confirmed count data on COVID-19 are 
analyzed from March 2 to June 10, 2020. Our primary objective is to identify from 
the data the effective contact rates (. βS , . βA) for symptomatic and asymptomatic 
individuals, the population fractions (f, . ρ, . f1, . f2, r), and the transition rate . δQ

from symptomatic to quarantine class. For the sake of reducing the complexity 
of the model (1), the remaining parameters (. α, . ε, . γA, . γQ, . γH ) are taken from 
the literature, and (. μR , . ν, . σ , . δH , . dQ, . dH ) are assumed on the basis of public 
information about COVID-19 (see Table 2). Because, as of March 2, 2020, the 
Moroccan authority reported the first confirmed case of COVID-19; we set the 
initial number of symptomatic individuals at one (.IS(0) = 1).  And as this first  
case was hospitalized, we put the initial number of hospitalized people at one 
(.H(0) = 1). We set the initial number of deaths, recovered, and vaccinated people 
at zero (.R(0) = D(0) = V (0) = 0), as SARS-CoV2 has never appeared before, 
and no vaccine was available. We fixed the initial size of individuals quarantined 
at home to zero (.Q(0) = 0). We assumed that the initial number of asymptomatic 
people equals one (.IA(0) = 1) and the initial number of exposed individuals is equal 
to four (.E(0) = 4). We then established the initial size of individuals susceptible to 
.S(0) = (N −E(0)− IS(0)− IA(0)−H(0)−Q(0)−R(0)−D(0)−V (0)), where 
N represents the size of the Moroccan population. According to [24], as of Monday, 
December 26, 2022, the Moroccan population is estimated at 37,994,215 million. 
In the identification process of model parameters, we employ a classical method 
known as curve fitting and a Bayesian inference method via the HMC algorithm. 
We explain both approaches in detail and provide numerical results obtained from 
each of them below. 

Table 2 Fixed and assumed 
parameter values in Eq. (1) 

Parameter Mean value .95% CI Source 

.α 0.1923 [0.1429, 0.2439] [21] 

.ε 0.1790 [0.1550, 0.2020] [22] 

.γA 0.1398 [0.0701, 0.2094] [23] 

.γQ 0.1162 [0.0388, 0.1937] [23] 

.γH 0.0714 [0.0476, 0.0909] [23] 

.μR 0.0050 – Assumed 

.ν 0.5000 – Assumed 

.σ 0.1429 – Assumed 

.δH 0.0314 – Assumed 

.dQ 0.0001 – Assumed 

.dH 0.0010 – Assumed
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3.1 Curve Fitting Method 

In the curve fitting approach, we consider the parameters of the model to be 
fixed quantities and estimate their values using estimators. To identify the set of 
parameters . βS , . βA, f, . ρ, . f1, . f2, r, and . δQ, we calibrate model (1) without vaccination 
(.θV = 0 and .V (0) = 0) to the daily COVID-19 count data; the data are smoothed 
using a moving average based on convolution. To do so, we used the Nelder–Mead 
(NM) Simplex method to minimize the sum of squares of the differences between 
the observed daily infections from the COVID-19 data and the daily infection 
estimates provided by the model (1). The NM Simplex Method is a direct local 
search method conceived for unconstrained minimization with no need to compute 
derivatives. It is simple to be applied as it does not calculate gradients and can be 
used to address nonlinear least-squares (NLS) problems. Due to its high sensitivity 
to the selected initial points, the NM Simplex method does not guarantee the global 
optimum. We denote the sum of the squared residuals by .SSR(Θ) and has the 
following expression: 

.SSR(Θ) =
n∑

i=1

(di − Mi(Θ))2. (4) 

In Eq. (4), . di represents the actual value of COVID-19 data, . n denotes the 
data size, .Mi(Θ) is the model output for observation . di as generated from the 
system (1), and . Θ represents the set of unknown . p parameters such that . Θ =
{βS, βA, f, ρ, f1, f2, r, δQ}. 

We perform numerical simulations via the LMFIT package in Python, and the 
result is illustrated in Fig. 2. The mean values of the estimated parameters with their 
.95% confidence intervals (CI) are presented in Table 3. 

To quantify the accuracy of fit between observed data and model predictions, we 
computed the root mean squared error (RMSE) metric. The RMSE is a measure 
of the standard deviation of the residuals. In addition, for the selection of a good 
statistical model purpose, we calculated two criteria based on information theory, 
the Akaike information criterion (AIC), and the Bayesian information criterion 
(BIC). AIC is a mathematical technique for evaluating the fit of a statistical model 
to the underlying data from which it was generated compared to different possible 
models. These three criteria are increasing functions of the residual. Therefore, a 
statistical model with the smallest value for RMSE, AIC, and BIC can be selected 
for inference. We define these criteria in Eqs. (5), (6), and (7), respectively, and their 
score values are given in Table 4. 

.RMSE = √
SSR/(n − p). (5) 

AIC = nln(SSR/n) + 2p. (6) 

BIC = nln(SSR/n) + pln(n). (7)
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Fig. 2 Calibrating system (1) to daily reported infection counts in Morocco. The black dots 
represent reported infections, the solid green curve shows the model estimation, and the green 
area represents .95% CI 

Table 3 Mean parameter estimates, standard deviations, and .95% confidence intervals 

Parameter Mean value Standard deviation .95% CI 

.βS 0.2052 0.0128 [0.1795, 0.2309] 

.βA 0.8962 0.1101 [0.6761, 1.1164] 

.f 0.2985 0.0403 [0.2179, 0.3792] 

.ρ 0.3325 0.0463 [0.2399, 0.4251] 

.f1 0.4008 0.0526 [0.2956, 0.5061] 

.f2 0.0999 0.0163 [0.0673, 0.1326] 

.r 0.0976 0.0098 [0.0781, 0.1171] 

.δQ 0.0509 0.0001 [0.0507, 0.0511] 

Table 4 Score values for 
RMSE, AIC, and  BIC  

Metric Score value 

RMSE 13.587 

AIC 529.493 

BIC 550.335 

In analyzing the results, Table 4 shows that the statistical metrics RMSE, AIC, and 
BIC have low values. In addition, the estimated values of the quantities of interest 
in Table 3 have scientific sense, and their .95% confidence intervals are reasonably 
close. Therefore, our modeling framework is consistent with the data and more 
accurately reproduces the COVID-19 outbreak in Morocco. 

From Table 3, we observe that the effective contact rate among symptomatic 
infected individuals (. βS) has a mean value of 0.205, while the effective contact rate 
among asymptomatic infected individuals (. βA) has a mean value of 0.896; . βA is 
higher than . βS . This result implies that asymptomatic carriers represent the primary
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drivers of the epidemic of COVID-19 in Morocco. However, in [25], the authors 
estimated that the viral load of COVID-19 in symptomatic and asymptomatic 
individuals was in the same range. This finding is therefore outlined mainly from the 
fact that asymptomatic people are unaware of their infection state, so they cannot be 
avoided by the susceptible population, in contrast to symptomatic people, who can 
be detected, admitted to the hospital, or tracked in quarantine at home. 

3.2 Bayesian Inference Method 

An alternative approach for identifying model parameters, given measurements, is 
to consider the unknown model parameters as random variables. To achieve this, we 
apply Bayesian statistical inference to the model update [26]. The model update 
can combine prior knowledge of the unknown quantities with observed data to 
generate a posterior probability distribution. This distribution is also called the target 
distribution. Thus, in a Bayesian identification procedure, we first assign for each 
unknown parameter a prior distribution that reflects the starting assumption on the 
parameter to be estimated before collecting the data. Then, given n independent 
and identically distributed data points .d1, d2, ..., dn, we update the prior knowledge 
by using a likelihood function according to Bayes’ theorem, resulting in a target 
distribution that contains all the information about the inferred parameters. Bayes’ 
theorem is given by 

.P(Θ | d) = P(d | Θ) · P(Θ)

P (d)
, (8) 

where . Θ is the vector of the parameters to be inferred, . d is data points, .P(d | Θ) is 
the likelihood function, .P(Θ) denotes the distribution of priors, .P(d) indicates the 
evidence, and .P(Θ | d) denotes the posterior probability distribution. 

In Bayesian inference problems, the standard MCMC algorithms are used to 
compute the posterior distribution. As an example of these algorithms, we can 
cite the Metropolis–Hastings and Gibbs sampling algorithms. These algorithms aim 
to search the parameter space and generate samples from a posterior probability 
distribution. In doing so, the algorithm makes a random jump in the parameter space 
based on the current sample and then accepts or rejects the jump, probabilistically, 
based on prior beliefs and observed data. For complex statistical models involving 
many parameters, these algorithms have the challenge of requiring a sufficiently 
long runtime to converge to the stationary distribution because they tend to search 
the parameter space through non-efficient random walks. 

Here, to calculate the target distribution, we employ an alternative algorithm, 
the HMC. The theoretical background of the HMC algorithm comes from physics, 
particularly from fields of differential geometry and Hamiltonian dynamics. The 
computation effort in the HMC algorithm is more demanding at each stage 
compared to the random walk algorithms due to the gradient calculations. Nev-
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ertheless, this property makes the HMC more robust and efficient in exploring 
high-dimensional posterior distributions even though the parameters are highly 
correlated. So, the HMC estimation process takes a few iterations to estimate the 
quantities of interest and quantify their uncertainties. To enhance the performance 
of the HMC, which is very sensitive to manual adjustment of some parameters by 
the user, Hoffman and Gelman introduced in [27] the No-U-Turn Sampler (NUTS) 
algorithm to implement the HMC. The NUTS algorithm, an extension of HMC, can 
efficiently carry out Bayesian statistical inference for complex models, including 
epidemic models, with minimal user intervention. To realize HMC, a team of 
researchers [28] developed an automatic system for Bayesian inference modeling 
called Stan, which employs NUTS as the default inference algorithm for parameters 
with continuous values. Stan’s algorithms are written in C++ with various user 
interfaces such as R, Python, and MATLAB. 

3.2.1 Observation Model 

In practice, the first step in inference modeling is to determine the observational 
model because the obtained data are not directly linked to the output derived from 
the mathematical model. Thus, we need to specify a link function .P(d | Θ), the  
so-called likelihood function, which must be proportional to the target distribution 
.P(Θ | d). The resultant proportionality relation up to a normalization constant is 
expressed in Eq. (9). The evidence, .P(d), acts as a normalization constant for Bayes’ 
theorem to assure that the target distribution integrates with 1. 

.P(Θ | d) ∝ P(d | Θ) · P(Θ). (9) 

In statistics, we generally model count data with a Poisson probability distribution.
However, to consider variability in the observed COVID-19 data, the likelihood
function relating daily observed symptomatic infections to the evolution in compart-
ment counts in the deterministic model (1) is assumed to follow a negative binomial 
distribution. The Negative Binomial probability distribution models over-dispersion 
in a Poisson distribution when the variance of count data is higher than the mean. 
We provide the observation model by the following equation: 

.di ∼ NB(Mi(Θ), φ), (10) 

where NB(.) stands for the Negative Binomial distribution, . di represents daily 
reported infections of COVID-19 in Morocco, .Mi(Θ) is the model output generated 
from the system of Eq. (1), and . φ refers to the dispersion parameter.
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3.2.2 Prior Specification 

We incorporate our epidemiological beliefs into the model parameters by assigning 
to each unknown quantity a prior probability distribution. So, from the previous 
results (Table 3), the estimated mean values of the transmission rates . βS and 
. βA are .0.205 and .0.896, respectively. Thus, we assume that the effective contact 
rates . βS and . βA follow a Gaussian distribution .N(1.0, 0.2) (.βS ∼ N(1.0, 0.2), 
.βA ∼ N(1.0, 0.2)). Then, we suppose that the population fractions (f, . ρ, . f1, . f2, 
r) and the transition rate . δQ from symptomatic to quarantine class follow a uniform 
distribution such that .f ∼ U(0.0, 0.4), .ρ ∼ U(0.3, 1.0), .f1 ∼ U(0.4, 1.0), . f2 ∼
U(0.0, 0.1), .r ∼ U(0.0, 0.1), and .δQ ∼ U(0.0, 0.05). The dispersion parameter 
is an unknown quantity that must be inferred from the data, so we assume that its 
inverse is exponentially distributed (.1/φ ∼ exp(5)). Thus, the vector of parameters 
we want to infer from the data becomes .Θ = {βS, βA, f, ρ, f1, f2, r, δQ, φ}. 

3.2.3 Simulations 

We used the NUTS algorithm through the RStan package in R version 4.2.1 to 
identify the parameters of interest from the data. We run the NUTS algorithm using 
four parallel chains, each with 2000 iterations. We fixed the number of iterations 
in the warm-up phase at 1000. As a result, the sampling process leads to 4000 
samples for each parameter of interest. These samples are used to calculate summary 
statistics for each parameter (mean, standard deviation, and quantiles) and provide 
probabilistic predictions. Table 5 shows the posterior mean estimates, standard 
deviations (sd), and percentiles of . 5%, .25%, .50%, .75%, and .95% for each quantity 
of interest as obtained from the posterior distribution. 

In assessing the goodness of fit, we first test whether our model (1) converges to 
the posterior distribution. By model convergence, we mean that the NUTS algorithm 
will eventually attain a stationary distribution. To do so, we plot the trace for the 
four MCMC chains for each model parameter, dispersion parameter and its inverse, 

Table 5 Mean posterior estimates, standard deviations, and percentiles 

Parameter Posterior mean sd .5% .25% .50% .75% . 95%

.βS 0.2322 0.0346 0.1743 0.2082 0.2317 0.2561 0.2900 

.βA 0.5125 0.1936 0.1973 0.3759 0.5114 0.6450 0.8360 

.f 0.0552 0.0604 0.0027 0.0139 0.0353 0.0743 0.1821 

.ρ 0.4349 0.0993 0.3122 0.3561 0.4161 0.4905 0.6288 

.f1 0.6980 0.1730 0.4283 0.5488 0.6989 0.8478 0.9682 

.f2 0.0503 0.0291 0.0055 0.0251 0.0499 0.0757 0.0952 

.r 0.0497 0.0298 0.0045 0.0235 0.0498 0.0760 0.0958 

.δQ 0.0471 0.0028 0.0417 0.0455 0.0477 0.0494 0.0506 

.φ 5.0307 0.9560 3.6041 4.3332 4.9605 5.6503 6.7314
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Fig. 4 Trace plots of the four MCMC chains at each iteration of the stationary phase for the 
dispersion parameter (. φ or phi), the inverse of the dispersion parameter (1/. φ or phi_inv), and the 
log-posterior (lp ). A line (sequence of samples) represents each MCMC chain 

and log-posterior in Figs. 3 and 4. Then, we plot the model estimation against the 
raw COVID-19 data and the .95% credible interval (CrI) in Fig. 5. Additionally, to 
test whether model (1), once calibrated, produces consistent simulations with actual 
COVID-19 data and the extent to which the model predictions are uncertain, we 
calculated the median predicted cases per day from this model and plotted them 
against the data points. The numerical simulations are illustrated in Fig. 6. 

3.2.4 Results 

From Figs. 3 and 4, we see that the plots of the four parallel MCMC chains are mixed 
and in agreement with each other for each parameter. This result demonstrates that 
the NUTS algorithm is robust and efficient in identifying model parameters. It also
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Fig. 5 Actual and estimated daily cases of COVID-19 in Morocco. The black dots represent 
observed confirmed cases, the solid green curve shows the model estimation, and the green area 
represents .95% CrI 
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Fig. 6 Actual and predicted daily cases of COVID-19 in Morocco. The black dots represent 
observed confirmed cases, the solid green curve shows the predicted median cases, the dark green 
area represents .75% CrI, and the light green area represents .95% CrI 

means that by running the algorithm only for 2000 iterations, model (1) converges 
to the stationary distribution. By analyzing Figs. 5 and 6, we observe that the model 
uncertainty (.75% (CrI) and .95% (CrI)) matches the variation of the data points, 
and both the best fit curve (Fig. 5) and the median predicted line (Fig. 6) fall inside 
the credible intervals. This implies that our model fits the COVID-19 data and can 
reproduce the COVID-19 epidemic in Morocco. Also, from the summary statistics 
(Table 5), we provide the mean posterior estimates for the dispersion parameter . φ as 
.5.03. This value indicates that the variance of the COVID-19 count data is greater
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than the mean, which confirms our assumption that the likelihood function follows 
a Negative Binomial distribution. 

Analyzing Table 5, we observe that the effective contact rate among symptomatic 
infected individuals (. βS) has a mean value of 0.232, whereas the effective contact 
rate among asymptomatic infected individuals (. βA) has a mean value of 0.513; 
. βA is greater than . βS . In other words, the estimated values of . βS and . βA are, 
on average, close to those in Table 3. Comparing the other parameters, we find 
that the estimated values obtained from Bayesian inference are, on average, close 
to those obtained from curve fitting. Therefore, estimating the model parameters 
using curve fitting and the HMC algorithm provides similar results that are coherent 
and illustrate the utility of our proposed modeling framework to investigate how 
COVID-19 propagates. 

Identifying the parameters of an HMC-based mathematical model seems to be 
a good choice, especially when the number of quantities we want to estimate 
increases. Because in Bayesian inference, the parameters are considered random 
variables, and if we have the distribution of a parameter, then we have all the 
information about it. 

4 Vaccination Impacts 

One of the effective measures we can take to prevent the spread of COVID-19 from 
an infectious person is to vaccinate a fraction of the susceptible population once 
an efficient vaccine is available. Thus, accelerating vaccine rollout remains crucial 
to slow down COVID-19 propagation and contain the pandemic. To assess how 
vaccination programs affect the evolution of the COVID-19 outbreak in Morocco, 
we simulated our epidemiological model (1) by accounting for vaccination from 
March 2, 2020 to July 20, 2020. We, therefore, assumed a daily baseline vaccination 
rate of .0.008, a baseline vaccine characterized by .79% efficacy, and an immunity 
period of 183 days. We used the estimated parameter values from Table 5 and the 
other fixed parameters from Table 2. 

In the first scenario, we used the reference vaccine with .79% efficacy (. EV =
0.79) and changed the vaccination rate. To do so, we simulated model (1) first  
without considering vaccination (.θV = 0 and .V (0) = 0), then setting the 
vaccination rate to its baseline value (.θV = 0.008), and then increasing the 
vaccination rate from its baseline value by .30% and .60%, respectively. In Fig. 7a, 
we give the simulation results of this scenario. In the second scenario, we set the 
vaccination rate at .0.008 and examined three types of COVID-19 vaccines approved 
for use in Morocco: Sinopharm, AstraZeneca, and Pfizer. The efficacy of these 
vaccines is .79%, .70%, and .95%, respectively [29]. The result obtained is shown 
in Fig. 7b. From Fig. 7a, we see that vaccination with a baseline rate of 0.008 
could protect the susceptible population from COVID-19 infection by reducing 
the epidemic peak of daily confirmed cases from .164 to . 130. Additionally, by 
increasing the value of the vaccination rate from its baseline by .30% and .60%,
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Fig. 7 The impact of vaccination against COVID-19 outbreak in Morocco. Daily evolution in 
confirmed cases (a) as a function of vaccination rate . θV and (b) as a function of vaccine efficacy . EV

we could reduce the peak incidence to 121 and 113, respectively. Similarly, Fig. 7b 
indicates that vaccinating a susceptible population using a vaccine of .79% efficacy 
by keeping constant the vaccination rate at .0.008 could result in a reduction in the 
peak incidence from .164 to . 130. If the same population is vaccinated with a vaccine 
of .95% efficacy, the maximum number of people infected drops from .164 to . 118. 
In contrast, using a .70% effective vaccine to vaccinate the vulnerable population is 
expected to decrease the maximum number of infected people to only . 136. 

Assessment of the impact of vaccination on the evolution of daily reported cases 
in Morocco shows that the portion of the susceptible population to be immunized to 
flatten the epidemic curve is related to the rate of vaccination per day and vaccine 
efficacy. Consequently, the higher the rate of vaccination and vaccine effectiveness, 
the better the vaccination program will protect people from catching COVID-19 
infection. 

5 Conclusion 

We proposed a deterministic population-based model for COVID-19 transmission 
dynamics that includes nine compartments. This compartmental model accounts 
for the COVID-19 incubation time and the transmission of the infection by 
asymptomatic carriers. It allows tracking of infected patients quarantined at home 
and in the hospital. Furthermore, it provides the possibility to implement a vac-
cination strategy as it contains a compartment for the vaccinated individuals. We 
parameterized the model developed here on the data of COVID-19 for Morocco 
from March 2 to June 10, 2020. 

To identify the epidemiological parameters, we calibrated the model on daily 
reported infections of COVID-19 data using two methods, curve fitting and 
Bayesian statistical inference through the HMC algorithm. We evaluated whether
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the model fits the data in the case of curve fitting by computing three metrics, the 
mean square error, the Akaike information criterion, and the Bayesian information 
criterion. The calculation results of these metrics gave lower values (13.587 for 
RMSE, 529.493 for AIC, and 550.335 for BIC). For Bayesian inference, we plotted 
the trace of the MCMC chains for each separate parameter. These plots showed 
that the four parallel MCMC chains are mixed and in agreement with one another. 
This result demonstrated that the algorithm (NUTS) we used in identifying model 
parameters is robust and efficient. We also calculated the median predicted cases 
by our model to test whether the model, once calibrated, produces consistent 
simulations with actual COVID-19 data. Numerical simulations indicated that the 
predicted median curve falls within the .75% credible interval and that the credible 
bands (.75% (CrI) and .95% (CrI)) capture the structure of the observed data. 

In addition, numerical simulations of fitting the model to the data in both methods 
showed that the model uncertainty (.95% CI or .95% CrI) matches the variation of the 
measurements, and the best fit line falls inside the confidence/credible interval. We 
also found that the parameter estimates obtained by Bayesian inference using HMC 
are, on average, close to those obtained by curve fitting using the NM optimization 
method. 

We further performed numerical simulations to assess how vaccination programs 
may affect the course of the epidemic if a vaccine were available. To this end, we 
incorporated vaccination dynamics into the model by assuming a daily baseline 
vaccination rate of 0.008, a baseline vaccine characterized by .79% efficacy, and 
an immunity period of 183 days. Simulations showed that we should increase the 
daily vaccination rate from its baseline and use a high-efficacy vaccine, greater than 
.79%, to protect people from COVID-19 infection. 

This research does have some limitations. In calibrating our model, we used data 
on confirmed COVID-19 cases, but death statistics are more reliable, and using 
them to fit the model could lead to more accurate results. Furthermore, we did not 
consider the preventive measures implemented by the authority of Morocco in the 
model. So, combining vaccination programs and non-pharmaceutical interventions 
could be leveraged under different scenarios to reach the best control strategy for 
COVID-19. The framework developed here is particularly suited to analyze the 
spread of COVID-19 among homogeneous populations, but human communities 
are more complex given certain heterogeneous factors. Consequently, population 
heterogeneity influences the transmission dynamics of infectious diseases and must 
be addressed in mathematical modeling. In future work, we will extend the current 
modeling framework to study COVID-19 in heterogeneous communities. 
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Predicting the Infection Level 
of COVID-19 Virus Using Normal 
Distribution-Based Approximation 
Model and PSO 

Samar Wazir, Gautam Siddharth Kashyap, Karan Malik, 
and Alexander E. I. Brownlee 

1 Introduction 

Many harmful diseases can now be treated because of advances in technology 
and medicine, but there are still several unique infectious diseases that spread 
quickly and kill millions of people before a vaccine is developed. The resulting 
pandemics put the global economy in jeopardy in addition to endangering human 
life. In 1918, the Spanish Flu claimed the lives of 50–100 million individuals [1], 
and on January 21, 2023, new coronavirus (COVID-19) had infected more than 
672,965,004 people, of whom 6,742,859 had died [2]. It is impossible to anticipate 
how long it will take to produce a pandemic vaccine, but during this time, the 
infection rate, human mortality, and economic damage can all be decreased by 
taking preventive measures. The amount and accessibility of medical supplies and 
medication is the key issue faced in the fight against the pandemic. Following an 
illness, each patient experiences different health issues. Because some people have 
robust immune systems, the infection rate is in check. These individuals merely 
require medicine and appropriate isolation (in the case of COVID-19). However, if 
the IL is high, the patient will require intensive care, a ventilator, or other equipment 
[3]. To make the best use of resources in the instance of COVID-19, the key elements 
should be kept in mind: 
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1. Calculating the expected future demand for ventilators. 
2. Predicting if a patient simply needed isolation or quarantine rather than hospital-

isation based on symptoms and illness infection patterns. 
3. How many days must pass before antibodies are produced and the patient can 

recuperate on their own? 
4. Calculate the degree of infection in the human body on a specific day following 

the onset of symptoms by taking into factors like age, smoking, BMI, chronic 
illness, and gender. 

For the above-discussed factors, an algorithm must first be developed before a 
mathematical model can be used to estimate the IL. The model should then be tested 
on a sizable volume and a diverse range of datasets to approximate the findings. 
This chapter takes an innovative method to figuring out the human body’s IL after 
a specified number of days is put forth. This technique takes advantage of the 
well-known Gaussian distribution, which turns out to be a very accurate predictor 
of IL. Later, a method for determining Total Infection (TI) in the human body 
is established by taking into account several significant risk factors connected to 
COVID-19. Using IL, an algorithm known as the Infection Level Predictor (ILP) 
was created and put to use on the dataset made available by [4]. The ILP can 
approximate the IL by observing the infection trends of both a single nation and all 
countries taken collectively. This work also introduces the PSO algorithm, which is 
used with the same datasets. Finally, the PSO and ILP are compared. 

This chapter is as follows: In the next section, we will see the related works of 
the approaches that had been used for determining COVID-19. The background of 
the bell curve is covered in Sect. 3. Section 4 provides examples to help explain the 
IL algorithm. The TI algorithm is detailed in Sect. 5. The ILP algorithm is presented 
in Sect. 6. The IL method is tested on a few examples as provided in Sect. 7. The  
background of PSO is explained in Sect. 8. The experimental findings of PSO are 
explained in Sect. 9. ILP and PSO outcomes are compared in Sect. 10, and this is 
concluded with some conclusions and recommendations for further research in Sect. 
11. 

2 Related Works 

The COVID-19 pandemic makes its debut in Wuhan City, China, in December 
2019 [5], and from there it quickly erupted across the entire nation. Because of 
this unidentified threat to human life, the majority of China’s cities were put 
on lockdown. The situation deteriorated from February to April 2020, when this 
infectious disease spread to the majority of the world’s nations and more than 4 
million infection cases, including 0.3 million deaths, were reported. The battle to 
create a vaccine and treatments for this virus begins. To reduce the risk to property 
and human life, several combined mathematical and computer science approach for 
Severe Acute Respiratory Syndrome (SARS) and COVID-19. These approaches’



Predicting the Infection Level of COVID-19 Virus Using Normal Distribution. . . 77

solutions are based on infection rates so that an estimate of the number of patients 
after a few days can be made. The SARS outbreak was anticipated using an ordinary 
differential equation by concentrating on the point of infection rate prediction [6]. 
When this data is reviewed and compared, the model’s forecast accurately reflects 
the characteristics of real-world data, such as the SARS outbreak in Singapore. 
By employing Markov switching models to find sluggish pandemics, H.M. Lu 
[7] extends the challenge of identifying outbreak patterns. In another instance, a 
streamlined Susceptible-Infectious-Removed (SIR) model is used to estimate the 
pandemic’s infection rate. This forecast indicates the incidence rate and the point 
at which mortality cases begin to decline [8]. The usage of a Polynomial Neural 
Network with Corrective Feedback (PNN+cf) [9] was suggested as another method 
for the frequency of COVID-19 illness. Similarly, in [10], a novel mathematical 
model for COVID-19 was employed to assess the transmission of the disease from 
Wuhan to other cities utilising datasets of cases both inside and outside of Wuhan. 
Controlling COVID-19 outbreaks also benefits from using the model for case 
isolation and contact tracing [11]. The COVID-19 epidemic in India is anticipated 
to start on January 30, 2020, and a mathematical model [12] employing Iterative 
Laplace Transform Method (ILTM) has been created to predict future cases, control, 
and prevention. The incubation period is crucial to a virus’s ability to spread. If 
precautions have been followed during this time, the chance of spreading can be 
significantly reduced. Numerous evolutionary algorithms have also been employed 
for this purpose, such as the PSO with Support Vector Machine (SVM) approach 
utilised in [13] by Sheela and Arun for COVID-19 screening and quantification. 
PSO using fuzzy series was used by Kumar and Susan [14] to estimate the  
COVID-19 infection. Likewise, [15–19], have been applied to prevent or optimise 
COVID-19 infections. 

The bell curve, one of the most common notions used in various mathematical 
models to distribute and forecast the success and failure of events in people’s lives, 
along with the Gaussian and normal distributions, has proven to be particularly 
useful. Similar to this, PSO-based techniques are particularly practical because they 
are simple to use and put into practice. The aforementioned techniques provide 
an overview of the issues with medical science. A prediction model can provide 
a rough answer that can be crucial for resource management, treatment planning, 
and diagnosis. In the case of COVID-19, it is exceedingly risky to interact with the 
patient; therefore, it will be very beneficial to become aware of IL in advance for the 
better treatment of medical professionals, employees, and equipment management. 

3 Background 

The COVID-19 infection pattern can be associated with the bell curve. We use the 
COVID19_open_line_list dataset for our research [4]. Take a look at Table 1, which 
displays an example of this data. Each entry in this dataset describes an event, 
between the beginning of symptoms and the patient’s death or discharge. These



78 S. Wazir et al.

Table 1 Dataset for age group 28–30 

ID Age S K1 K2 K3 S1 S2 S3 

671 28 1/20/2020 1/22/2020 1/23/2020 1/28/2020 2 3 8 
6136 28 1/29/2020 2/3/2020 2/3/2020 2/22/2020 5 5 24 
164 29 1/23/2020 1/23/2020 1/24/2020 1/28/2020 0 1 5 
649 30 1/3/2020 1/10/2020 1/15/2020 1/15/2020 7 12 12 
646 30 1/23/2020 1/24/2020 1/24/2020 2/12/2020 1 1 20 

Where, S = Date_Onset_Symptoms, K1 = Date_Admission_Hospital, K2 = Date_Confirmation,
K3 = Date_Death_Or_Discharge, S1 = Admission-Onset, S2 = Confirmation-Onset, S3
Death/Dis-Onset

=

Fig. 1 Bell curve of COVID-19 infection pattern 

occurrences appear to follow a pattern that corresponds to the rise and fall of IL in 
the human body. The bell curve shown in Fig. 1 can be used to correlate the data in 
Table 1 with it. On this curve, the various manifestations of COVID-19 infection in 
the human body can be plotted as follows:

• At point a infection starts.
• It will take 3–13 days for the onset of symptoms (incubation period) [20]. In this 

case, 13 days are considered and presented by point b.
• At point c, the patient was admitted to the hospital.
• At point d, patient test results have been confirmed.
• At point M (median, 22 days), the IL is maximum and it is assumed that on this 

day human body has developed antibodies and started fighting the virus by itself.
• At point e, the patient has been discharged or died.
• If it is discharged and recovered even when the virus stays in the body for 14 days 

[20] and can still spread infection to others. This is represented by point f.
• X and Y are the points where IL can be predicted. 

In this discussion, several highly significant factors that have the potential to alter 
the bell curve’s slope are referred to as COVID-19 risk factors [4, 20–25]. These are 
as follows: (1) Age (A), (2) Gender (G), (3) Chronic Disease (D), (4) Smoking 
(Sm), and (5) BMI (B). Because infection patterns vary depending on age group, it
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is crucial to utilise a separate bell curve for each age group. For example, infections 
in the elderly are more severe due to their weakened immune systems than in the 
young. The normal distribution formula can be used to create the bell curve as shown 
below: 

.X = 1

σ
√

2π
e

−(i−μ)2

2σ2 (1) 

Here, μ is the average value of the sample, σ is the standard deviation, and X is the
value given in Fig. 1 or the probability at a particular point. 

4 Problem Statement 1: How to Calculate Infection Level 
(IL) by Coronavırus in the Human Body 

In this case, the IL can be estimated using the normal distribution and risk factors. 
The age and number of days after infection can be utilised to predict the COVID-19 
infection pattern using the IL formula. 

4.1 Proposed Solution 

In this step, a database of COVID-19 patient records is considered as D with 
parameters: (1) N = The number of rows in the database, (2) ID= Id of the admitted 
patient, (3) A = Age of the patient, (4) S = Date of onset symptoms, and (5) Ki = 
Date of activities of patient, for example, date of admission to the hospital, date of 
confirmation of infection, and date of death/discharge. Where i = 1, 2, 3, . . . , n  is 
the number of activities. 

Definition 4.1 Calculation of the actual number of days. 

Let Si = amount of days spent on certain activities of the patient. Therefore, it 
can be said that 

.Si = Ki − S (2) 

Xi = An actual amount of days spent on certain activities of the patient after
infection. It is considered here that the incubation period is 13 days [10]. Therefore, 

.Xi = Si + 13 OR Xi = (Ki − S) + 13 (3) 

Definition 4.2 Selection of constant Cs and CE.
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Constant Cs can be defined as the start day of infection when the patient got 
infected by the virus. It is before the incubation period. Therefore, it is considered 
on the first day or Cs = 0. Constant CE can be defined as the end day of infection. 
It includes 14 days after the day when the symptom ends. It is considered here that 
the virus stays in the human body for 17 days (as per the guidelines [20]). Hence, 
CE can be calculated as follows: 

= 13+17 +14    = 44 

↓ ↓ ↓ ↓  

Incubation        Virus Active        Ending Time Period (4) 

Definition 4.3 Calculation of sample average 

Let μ be the sample average of the population which can be calculated as: 

.μ =
∑

i=1...n, j=1...N Xij + CS + CE

n × N + 2
(5) 

Definition 4.4 Calculation of Standard Deviation 

Let σ be the standard deviation, therefore σ can be calculated as: 

.σ =
√

∑
i=1...n, j=1...N

(
Xij − μ

)2 + (CS − μ)2 + (CE − μ)2

n × N + 2
(6) 

Definition 4.5 Calculation of IL 

The Cumulative Distribution Function of normal distribution can be used to 
determine the infection in the human body after x days for IL such as: 

.IL(x) =

⎧
⎪⎨

⎪⎩

∑x
i=1

1
σ
√

2π
e

−(i−μ)2

2σ2 f or x ≤ 22

1 − ∑x
i=1

1
σ
√

2π
e

−(i−μ)2

2σ2 f or x > 22
(7) 

4.2 Example 

Consider the Table 1 dataset which has been extracted from the COVID19_open_line 
_list dataset [4], for the age group of 28–30. The description of Table 1 columns 
are as follows: (1) ID: Patient ID, (2) Age: Patient age, (3) Data_onset_symptoms: 
date of first symptoms occur, (4) Date_admission_hospital: date of the patient 
admitted to hospital, (5) Date_confirmation: date of confirmation of infection,
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and (6) Date_death_or_discharge: date of death or discharge of patient. Note: In 
our proposed method, the above three are considered as different activities of the 
patient infection life cycle (Ki): (1) Admission-onset: The amount of days from 
the beginning of symptoms to admission, (2) Confirmation-onset: The amount of 
days between the beginning of symptoms and confirmation of infection, and (3) 
Death/dis-onset: Amount of days between the beginning of symptoms and death or 
discharge of patient. The IL can be calculated in Table 2 and its infection pattern is 
given in Fig. 2. 

Table 2 Calculation of mean, standard deviation, and Infection Level (IL) 

Si Xi with CS and CE (x) μ σ IL(x) 

NA 0 21.06 9.980951 0.01742834 
0 13 21.06 9.980951 0.20967821 
1 14 21.06 9.980951 0.2396753 
1 14 21.06 9.980951 0.2396753 
1 14 21.06 9.980951 0.2396753 
2 15 21.06 9.980951 0.2718735 
3 16 21.06 9.980951 0.30608944 
5 18 21.06 9.980951 0.37958001 
5 18 21.06 9.980951 0.37958001 
5 18 21.06 9.980951 0.37958001 
7 20 21.06 9.980951 0.45771092 
8 21 21.06 9.980951 0.49760179 
12 25 21.06 9.980951 0.34651297 
12 25 21.06 9.980951 0.34651297 
20 33 21.06 9.980951 0.11579389 
24 37 21.06 9.980951 0.05512815 
NA 44 21.06 9.980951 0.01077014 

Where, Si = The pattern of activities days

Fig. 2 Infection pattern for 
age group 28–30 
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Now consider the following: 

Scenario 1 A person of age 29 has been infected by COVID-19. If the person has 
been feeling the symptoms for the past 17 days. Then calculate the IL in the patient. 

In this case, Age = 29 ∈ Age group 28 − 30 

. x = 17 + 13 = 30

Therefore, from Table 2 

. μ = 21.06, and σ = 9.980951

Hence, IL can be calculated from Eq. (7) as follows:  

. IL(x) = 1

σ
√

2π
e

−(x−μ)2

2σ2

. IL(x) = 1 −
∑x

i=1

1

σ
√

2π
e

−(i−μ)2

2σ2 for x > 22

. IL(30) = 0.1852

If the patient’s IL is around 18.52% after 17 days and based on the bell curve 
for this group (Fig. 2), this patient does not require medication. For this patient, just 
quarantine is needed. At this point, the antibodies are more powerful than the virus. 

5 Problem Statement 2: How to Calculate Total Infection 
(TI) by Coronavırus in the Human Body by Considering 
Risk Factors 

The important risk factors that can affect infection of the virus can be as follows: 

1. Age (A): It has been observed [26] that the chances of infection are higher in 
people having old age (maybe more than 60 years) or in children (maybe less 
than 5 years) due to weak immunity. In the proposed research, IL is calculated 
based on age groups. 

2. Gender (G): It has been detected that male is more infected compared to females. 
Therefore, TI is calculated by considering the percentage of males or females in 
the database of a particular country or region.
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3. Chronic disease (D): People having diseases like diabetes, cancer, lung infection, 
and others are at increased COVID-19 pose a high risk of serious disease. 

4. Smoking (Sm): Smoking negatively impacts lung health and the COVID-19 virus 
attacks the lungs as well. Therefore, after the infection, conditions can be very 
bad for a smoker or chain smoker. 

5. BMI (B): The BMI is also an important risk factor and if BMI is not in under 
normal range then the chances of infection become very high. As per the 
guideline [4, 20–25], the normal range of BMI is from 18.5 to 30.0. Persons 
having BMI below 18.5 or above 30.0 are highly vulnerable to COVID-19 illness. 
Hence, the value of B can be calculated as follows: 

.B =

⎧
⎪⎨

⎪⎩

0 if BMI ≥ 18.5 and BMI ≤ 30.0
BMI
100 if BMI < 18.5

18.5−BMI+30.0
100 if BMI > 30.0

(8) 

5.1 Total Infection (TI) 

TI can be calculated by the average of the risk factors (rf ). So TI can be represented 
as follows: 

.T I = rf

t
(9) 

Here, rf is the sum of risk factors value and t is the number of risk factors. In our
case, five risk factors have been considered. Therefore, TI can be denoted as follows:

.T I = IL + G + D + Sm + B

5
(10) 

Now consider the following: 

Scenario 2 An individual who is 29 years old has a COVID-19 infection in India. 
If the individual has experienced the symptoms over the last 17 days, then figure out 
the patient’s IL. If the infected individual is a diabetic man with a blood sugar level 
of 210 mg/dL and a BMI of 32.5, determine the TI if the subject has COVID-19 
infection. (The maximum blood sugar level allowed is 300 mg/dL, and the normal 
range is 140 mg/dL; there are 100,000 infected people in India, of which 78,000 are 
men [27]). 

In this case, 
IL can be calculated as given in Scenario 1.
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So, 

. IL = 0.1852,

. G = 78, 000

100, 000
= 0.78,

. D = 210 − 140

300 − 140
= 70

160
= 0.4375,

. Sm = 0,

. BMI = 18.5 − 32.5 + 30

100
= 0.16

Total infection can be calculated from Eq. (10) as follows:  

. T I = 0.1852 + 0.78 + 0.4375 + 0 + 0.16

5
= 0.3125 ≈ 32%

6 Infection Level Predictor (ILP) Algorithm 

Based on the patient’s age as well as the amount of days since the beginnings of 
symptoms, the ILP algorithm is used to forecast the likelihood of IL. The level of 
prediction is determined by studying a database of people in the same age group. 
ILP algorithm is as follows: 

ILP (Age A, Days x, Database DB) 

1. arr[N×n],arr[0]=0, arr[N×n -1]  
2. LB = A - ( A % 10 ), UB = LB+10 
3. If ( A > LB &&A ≤ UB ) 
4. for i = 1 to arr.size-1  
5. S = DB.on_set_symptoms 
6. for k = 1 to n  
7. arr[i] = DB.activity(k) – S +13 
8. end for 
9. end for 

10. end if 
11. μ = mean. arr[i]
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12. σ = stddev. arr[i] 

13. . IL(x) =

⎧
⎪⎨

⎪⎩

∑x
i=1

1
σ
√

2π
e

−(i−μ)2

2σ2 f or x ≤ 22

1 − ∑x
i=1

1
σ
√

2π
e

−(i−μ)2

2σ2 f or x > 22

In the given ILP algorithm, the input is the age of the patient, the number of days 
after that IL is predicted and the database in the given format as in Table 1. First, an  
array arr of size N × n is declared followed by the calculation of the age group from 
Lower Bound (LB) to Upper Bound (UB). Second, from lines 3 to 10, the pattern of 
the count of days is recorded in arr for that particular age group. Finally, the mean 
and standard deviation is predicted for deciding the IL. 

7 Model Validation 

The prediction of IL is primarily based on the pattern of infection whose speed 
may be different in diverse climates or regions. Therefore, IL can be predicted for 
a particular region based on the database of that specific region. In this case, the 
COVID19_open_line_list dataset [4] from Wuhan, China, is used. This dataset has 
a record of 13,479 patients from 0.08 to 96 years of age. As discussed earlier, the 
total survival time of the virus has been taken as 44 days so 22 days can be assumed 
as the peak time of infection. The database is divided into different age groups and 
80% of the data of each age group is used for training purposes, that is, for drawing 
the bell curve, the other data is used for testing purposes, that is, for predicting the 
IL and comparing it with training data prediction level. The precise division of data 
in different age groups and RMSE value is shown in Table 3. 

Table 3 Age groups of COVID19_open_line_list dataset 

Age group Total records Records in training Records in testing RMSE 

0–10 21 17 4 0.009712 
11–20 22 18 4 0.009165 
21–30 160 144 16 0.029310 
31–40 264 245 19 0.011038 
41–50 256 240 18 0.033060 
51–60 195 181 16 0.009427 
61–70 138 124 16 0.018123 
71–80 61 51 12 0.012309
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8 Background of PSO 

Eberhart and Kennedy [28] developed PSO, a population-based stochastic optimisa-
tion approach. The social behaviour of fish schooling and bird grouping encourages 
it. PSO is a technique that uses a swarm of moving particles, each of which is 
treated as a possible solution to the optimisation problem under consideration. 
These particles can move in a variety of multi-dimensional spaces. Assume that 
the position and velocity of particle x at time step y are represented by vectors px(y) 
and vx(y), respectively. Each particle’s position is modified based on its own and the 
swarm’s collective experience. The particle, to be more accurate, moves away from 
its current position px(y) to the next position px(y + 1) as follows: 

.px (y + 1) = px(y) + vx (y + 1) (11) 

The velocity of particle x can be updated as follows: 

.vx (y + 1) = vx(y) + c1r1 [pbest − px(y)] + c2r2 [pcurrent − px(y)] (12) 

where, pbest = the particle best position; pcurrent = the particle current posi-
tion; c1 and c1 = constants; r1 and r1 = random values in the range [0, 1];
pbest − px(y) = cognitive components of particle x; pcurrent − px(y) = social
components of particle x.

The cognitive component is derived from the optimisation experience and data 
of individual particles. The social component, on the other hand, is based on data 
exchange among all particles. The particle search method was combined in both 
components. 

9 Experimental Results of PSO 

The fundamental concept is to reduce the error between the model’s predictions 
and the actual data by using PSO to optimise the model’s parameters, such as 
transmission rates and recovery rates. This can be achieved by utilising the PSO 
algorithm to iteratively alter the model’s parameters until the difference between 
predictions and observed data is reduced. It would be possible to create more precise 
forecasts of the COVID-19 viral IL by modifying the ILP model’s parameters using 
PSO. Following is the proposed pseudocode: 

1. Prepare the data for modelling by importing the dataset. 
2. Choose a mathematical model to describe the viral spread, such as the ILP 

model. 
3. In addition to the original data model’s predictions and the data observed is the 

objective function that needs to be optimised. 
4. Set each particle’s initial position and speed in the swarm.
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Table 4 Age groups of COVID19_open_line_list dataset using PSO 

Age group Total records Records in training Records in testing RMSE 

0–10 21 17 4 0.009648 
11–20 22 18 4 0.009781 
21–30 160 144 16 0.024802 
31–40 264 245 19 0.016089 
41–50 256 240 18 0.02359 
51–60 195 181 16 0.013433 
61–70 138 124 16 0.014453 
71–80 61 51 12 0.016945 

5. Use the chosen mathematical model and the collected data to assess the fitness, 
or objective function, of each particle. 

6. Update the best-known position of each particle according to its current fitness. 
7. According to the best-known position of all particles, and determine the global-

known position of the swarm. 
8. Update each particle’s velocity in relation to its best-known position, global-

known position, and current position. 
9. Depending on each particle’s new velocity, adjust each one’s position. 

10. For a predetermined optimal solution or until a stopping criterion is satisfied, 
repeat steps 5 through 9. 

11. Make forecasts about future infection levels using the PSO algorithm’s optimal 
position. 

The proposed algorithm has been implemented on Google Colab on a PC with 
AMD E1-6010 APU 1.35 GHz-4GB RAM. The proposed algorithm has been run 
on the same parameters as the ILP algorithm mentioned in Sect. 7 and the results 
were obtained after 30 sample runs. The precise division of data in different age 
groups and RMSE value is shown in Table 4 using PSO. 

10 Comparisons of ILP and PSO 

The ILP is a numerical model that approximates viral proliferation using a normal 
distribution, while PSO is a method of optimisation that is employed in order to 
improve the characteristics of the model to best fit the data. Both ILP and PSO 
provide information about the performance of the model for different age groups, 
including the total amount of records used, the records used for testing and training, 
and the RMSE of the model’s predictions. One of the main differences between 
ILP and PSO is the method used to train and test the model. Another difference 
between the ILP and PSO is the performance of the model, as measured by the 
RMSE values as shown in Fig. 3. The RMSE values in PSO are generally very small, 
ranging from 0.009648 to 0.016945. This suggests that the model’s predictions for
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Fig. 3 Difference between ILP versus PSO 

the different age groups are very accurate. On the other hand, the RMSE values in 
ILP are generally higher, ranging from 0.009427 to 0.033060. This suggests that the 
predictions for the different age groups may not be as accurate when using ILP. 

It is worth mentioning that perhaps the RMSE is a result of the variation between 
anticipated and actual values, and that a lower RMSE is better value represents a 
better performance of the model. Therefore, based on the RMSE values, it seems 
that the PSO has a better performance than the ILP. The results of ILP and PSO also 
show that the performance of the model varies for different age groups. For example, 
in PSO, the RMSE values for the age groups 0–10 and 11–20 are particularly low, 
at 0.009648 and 0.009781, respectively, indicating that the model’s predictions for 
these age groups are very accurate. On the other hand, the RMSE values for the age 
group 21–30 are higher, at 0.024802, indicating that the model’s predictions for this 
age group may not be as accurate. Similarly, in ILP, the RMSE values for the age 
group 61–70 and 71–80 are higher compared to the other age groups, indicating that 
the model’s predictions for these age groups may not be as accurate. 

It is also worth noting that the sample size for each age group also varies, and 
that may affect the accuracy of the predictions. For instance, age groups 0–10 and 
11–20 have fewer records, which may make the predictions more uncertain. On the 
other hand, age groups 21–30 and 31–40 have more records and thus the predictions 
may be more accurate. Another point to consider is that the model’s predictions 
are only as good as the data and information used to train and test it. Therefore, it 
is important to make sure that the data used is relevant and reliable, and that the 
model is trained and tested using appropriate techniques. In conclusion, ILP and 
PSO present the results of a model that was used to predict the IL of COVID-19.
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11 Conclusion and Future Directions 

The authors have demonstrated that it is possible to estimate the COVID-19 viral IL 
using a normal distribution-based approximation model and PSO. In this chapter, 
a mathematical model that simulates the transmission of the virus using a normal 
distribution is used, and PSO is then employed to optimise the model’s parameters 
to best match the data. Three algorithms have been used in this work to predict 
COVID-19 infections. The IL algorithm has been implemented in the first section 
of this chapter along with a few examples to validate the suggested algorithm. To 
forecast the overall IL of COVID-19, an ILP method has also been constructed in 
addition to the IL algorithm. The output of the ILP method is founded on the pattern 
of viral infection in a particular area or nation, and it is effective at predicting the IL 
in a patient after a certain number of days. The speed at which a virus spreads might 
vary depending on the weather; for example, in dry weather, the speed is slower than 
in cold weather. In such a circumstance, the spread pattern changed, and IL changed 
as a result. To compare the outcomes of the ILP method on the same datasets with 
the same settings, a PSO algorithm is also employed. According to experimental 
findings, PSO performs better than the ILP algorithm. Any forecasts produced using 
this or any other method, though, must be regarded with caution because COVID-19 
is a complicated and continuously evolving issue. Additionally, it is crucial to take 
into account every aspect that could influence the COVID-19 outbreak, including 
population density, travel, and public health initiatives. 

In future research, more variables can be taken into account and added to the IL or 
TI forecast, such as the fact that different nations have varied childhood vaccination 
programmes, which might change their inhabitants’ immunity and, as a result, alter 
the infection pattern. Using more sophisticated optimisation methods, like genetic 
algorithms or other metaheuristic optimisation algorithms, to optimise the model’s 
parameters is another topic of future research. 
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An Optimal Vaccination Scenario 
for COVID-19 Transmission Between 
Children and Adults 

Derya Avcı and Mine Yurtoğlu 

1 Introduction 

The WHO declared pneumonia cases with unknown causes in Wuhan, in 2019. 
Then, the WHO announced this threat as a new coronavirus outbreak that has not 
been seen before in humans. In a short time, the epidemic turned into a pandemic 
named by COVID-19 and affected the whole world [1]. Coronaviruses are single-
stranded RNA viruses. These viruses primarily occur in wild animals and spread 
from there to humans. Since they are viruses with high mutation ability, they are 
defined as pathogens with a high epidemic rate. 

Typical symptoms of COVID-19 are high fever, the loss of taste and smell, and 
persistent dry cough. In particular, people with chronic diseases such as diabetes, 
cardiac insufficiency, pneumonia, and hypertension are in the risk group. Also, 
especially children and teenagers are at high risk of infection because they are in 
close contact with their infected parents [2]. The well-known way of spreading the 
virus is through droplets and direct contact. Unfortunately, these are very common 
in social life due to close contact. For this reason, it can be said that the most difficult 
to implement among the COVID-19 measures is social distance. Vaccination can be 
considered one of the most effective methods due to its feasibility and sustainability 
as experienced in many epidemics. 

The COVID-19 pandemic, which brought many negative changes in our social 
and individual lives, has been the focus of attention of many branches of science. 
One of them is the analysis of the system properties of the mathematical models 
developed for the COVID-19 pandemic. Thus, it is possible to predict the course of 
the disease more efficiently and economically. The epidemiological model proposed 

D. Avcı (�) · M.  Yurtoğlu 
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by Kermack and McKendrick was accepted as the basis of mathematical epidemiol-
ogy in the literature [3]. Today, the increase in epidemics and their interactions with 
each other has led to a more complex structure in mathematical models [4–6]. In this 
sense, many studies have been carried out to develop new COVID-19 models. In the 
reference [7], the authors have introduced a novel model that discusses quarantined 
and hospitalized individuals with real data for the COVID-19 outbreak in Portugal. 
In [8], the effect of mask use was investigated in a generalized SEIR model that 
considers asymptomatic infectious individuals. Recently, Nainggolan et al. [9] have  
studied the system analysis and optimal control of a COVID-19 model regarding 
symptomatic and asymptomatic infected individuals in Indonesia. Similarly, Saha 
et al. [10] have proposed a new COVID-19 model for Hong Kong and performed 
stability and bifurcation analyzes of the model by fitting the real data and also 
determined the optimal vaccination strategy. Rois et al. [11] have introduced a novel 
model for Indonesia in the case of comorbidity and have also analyzed the effect 
of training and treatment optimal control parameters on the model. Ojo et al. [12] 
have also examined the optimal control measures for a model that represents the 
interaction of tuberculosis and COVID-19 diseases. In [13], masking and hygiene 
have been examined as optimal control parameters for a model developed using 
real data from the USA, Italy, South Africa, and Nigeria. Also, different types of 
mathematical models and corresponding optimal control formulations have been 
constructed for Peru [14], India [15], Bangladesh [16], and so on. 

On the other hand, although integer-order derivatives are often used to model 
epidemics, fractional-order derivatives also have advantages such as hereditary 
and memory properties while modeling the disease transmissions. Some of the 
COVID-19 studies addressed with fractional derivatives can be mentioned as 
follows: Baleanu et al. [17] have proposed a COVID-19 model with Caputo– 
Fabrizio fractional derivative. Azroul and Hammouch [18] have introduced an 
SIQR model with Mittag–Leffler kernel and have studied on the existence of 
the solutions, stability analysis, and numerical solutions. Al-Husban et al. [19] 
have proposed the existence and uniqueness of the solutions and also the global 
stability of a fractional incommensurate order COVID-19 model. From a different 
perspective, Abbes et al. [20] have presented a discrete-time fractional-order model 
by adapting real data. Joshi et al. [21] have modeled the transmission of COVID-
19 with fractional derivative for a double-vaccinated population. Moualkia [22] 
has presented a variable-order model for the Omicron variant of the COVID-
19 pandemic with a stochastic viewpoint. Özköse et al. [23] have proposed a 
COVID-19 model with fractional derivative by taking real data from Congo and 
by considering comorbidity. 

Controlling the spread of a disease is as significant as modeling it to secure 
the social and economic interests of society. For this purpose, preventive measures 
considered as control strategies should be carefully determined by using the 
available resources in the most effective and least costly way. Such problems are 
among the research topics of optimal control theory [24–28]. With the emergence 
of COVID-19, the optimal control problems (OCPs) of epidemics have come to the 
fore again, and the interest in them has increased [29–33]. In the literature, different 
optimal prevention and treatment strategies for COVID-19 have been researched
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so far, such as vaccination, medication, social distancing, hygiene, and non-drug 
interventions. Among them, Zamir et al. [34] have researched the OCP with non-
pharmaceutical intervention for a new model of COVID-19. Gatyeni et al. [35] have  
proposed a COVID-19 model by fitting the data from South Africa and formulated 
the OCP with the control parameters: mask usage, social distance, testing, and 
continuous screening. Butt et al. [36] have constructed a COVID-19 model for 
determining the optimal quarantine rates for different compartments. 

Recently, fractional disease models have also been frequently studied in optimal 
control theory. If the system and/or cost function contains fractional derivative, it is 
named by fractional optimal control problem (FOCP). Among the studies on FOC 
of COVID-19, Sweilam et al. [37] have presented the optimal control of COVID-
19 applying a hybrid method consisting of nonstandard finite difference and the 
Grünwald–Letnikov numerical methods. Zamir et al. [38] have studied the influence 
of non-pharmaceutical controls for a COVID-19 model governed by fractional 
derivative. Bonyah et al. [39] have investigated global stability, existence and 
uniqueness of solutions, and optimal measures for a COVID-19 spreading model 
equipped with Mittag–Leffler kernel. Eroğlu and Yapışkan [40] have discussed an 
optimal control strategy combining the plasma transfusion and vaccination for a 
fractional COVID-19 model. By an unusual technique, Vellappandi and Govindaraj 
[41] have obtained the optimality conditions for an FOCP constructed on a COVID-
19 model using the Gateaux derivative. Baba et al. [42] have suggested a fractional 
COVID-19 model by fitting real data from Thailand and have adapted vaccination 
control to the model. 

In this chapter, vaccination control for the adults is adapted to the model repre-
senting the COVID-19 transmission between adults and children. The optimality 
system is solved by the joint implementation of the fourth-order Runge–Kutta 
(RK4) method and the forward–backward sweep algorithm. Numerical simulations 
are performed in MATLAB software. It is concluded that although only adults 
are vaccinated in the proposed optimal control strategy, a remarkable reduction of 
infected children is also observed. This shows how important vaccination is, even 
if it is applied to a bounded group. Section 2 presents the controlled model with its 
parameters. The OCP is formulated in Sect. 3. The numerical results for controlled 
and uncontrolled cases are graphically illustrated and interpreted comparatively in 
Sect. 4. 

2 Model Description 

The rates of transmission and recovery of COVID-19 disease differ in children and 
adults. This chapter presents the OCP for an age-based COVID-19 model that takes 
this important distinction into account. The discussed model has been first proposed 
by Lazebnik and Bunimovich-Mendrazitsky [43] in sense of system analysis. The 
model consists of . Sc (susceptible children ), . Sa (susceptible adults), . Ic (infected 
children), . Ia (infected adults), . Rc (recovered children), and . Ra (recovered adults). 
Also, death individual compartments are added to the model so that . Dc and .Da
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represent death children and deceased adults, respectively. The total children and 
adult populations are, respectively, represented by . Nc and . Na . Hence, the total 
population is .N = Nc + Na . 

The basis model is as follows: 

.

dSc(t)
dt

= −Sc(t)
βccIc(t)+βcaIa(t)

Nc(t)
− αSc(t),

dSa(t)
dt

= αSc(t) − Sa(t)
βacIc(t)+βaaIa(t)

Na(t)
,

dIc(t)
dt

= Sc(t)
βccIc(t)+βcaIa(t)

Nc(t)
− αIc(t) − γcIc(t),

dIa(t)
dt

= Sa(t)
βacIc(t)+βaaIa(t)

Na(t)
+ αIc(t) − γaIa(t),

dRc(t)
dt

= γcρcIc(t) − αRc(t),

dRa(t)
dt

= αRc(t) + γaρaIa(t),

dDc(t)
dt

= γcψcIc(t),

dDa(t)
dt

= γaψaIa(t).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1) 

The parameters of the model can be detailed as follows: 
. A : the COVID-19 threshold age for children, which is considered to be an average 
of 13 years in days 

.α = 1
A

: the transition rate from children to adults per day 
.βac : the infection rate of a susceptible adult because of an infected child per day 
.βca : the infection rate of a susceptible child because of an infected adult per day 
.βcc : the infection rate of a susceptible child because of an infected child per day 
.βaa : the infection rate of a susceptible adult because of an infected adult per day 
.γc : mean recovery time of infected children 
.γa : mean recovery time of infected adults 
.ρc : the recovery rate of children 
.ρa : the recovery rate of adults 
.ψc : the rate of a child not recovering 
.ψa : the rate of an adult not recovering 
In this chapter, vaccination policy is applied only to susceptible individuals in 

accordance with the reality. Vaccinated adults leave the susceptible compartment 
and transition to the recovered compartment. In the cost functional, the control 
function .u(t) denotes the cost of vaccination. Also, . tf represents the length of 
vaccination period. 

The set of admissible control functions is defined as 

.Uad = {
u(t) | 0 ≤ u(t) ≤ 1, 0 ≤ t ≤ tf

}
. (2)
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Thus, the model to which the control is adapted is as follows: 

.

dSc(t)
dt

= −Sc(t)
βccIc(t)+βcaIa(t)

Nc(t)
− αSc(t),

dSa(t)
dt

= αSc(t) − Sa(t)
βacIc(t)+βaaIa(t)

Na(t)
− u(t)Sa(t),

dIc(t)
dt

= Sc(t)
βccIc(t)+βcaIa(t)

Nc(t)
− γcIc(t) − αIc(t),

dIa(t)
dt

= Sa(t)
βacIc(t)+βaaIa(t)

Na(t)
− γaIa(t) + αIc(t),

dRc(t)
dt

= γcρcIc(t) − αRc(t),

dRa(t)
dt

= γaρaIa(t) + αRc(t) + u(t)Sa(t),

dDc(t)
dt

= γcψcIc(t),

dDa(t)
dt

= γaψaIa(t)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3) 

with the initial conditions in [43]. 
It is clear that all parameters in the model satisfy the non-negativity condition. 

3 Problem Formulation with Vaccination Control 

As mentioned in the earlier, WHO-approved vaccines are available for COVID-19. 
The optimum effectiveness of vaccination programs depends on their feasibility. 
In this process, the length of time period and the cost of vaccination are quite 
important. For any underdeveloped and developing country, a continuous vaccina-
tion program may not be a socially and economically rational strategy. People in 
these countries need low-cost production to access the vaccine. Hence, in this study, 
considering all these realities, a control .u(t) representing the vaccination is adapted 
to the system. It is aimed to maximize vaccinated adults in a limited time period 
with minimum cost. 

3.1 Description of Cost Function 

For introducing the OCP, the costs to be optimized should be determined to 
describe the functional meaning the main objective. Since the purpose can change 
in the problems of optimal control of diseases, the cost function naturally differs 
depending on the main aim. In the present OCP, the cost of disease burden 
proportional to infected adults is represented by



98 D. Avcı and M. Yurtoğlu

. 

tf∫

0

Ia(t)dt,

and the cost of disease burden proportional to infected children is defined by 

. 

tf∫

0

Ic(t)dt.

Similarly, the total cost of the vaccination program is as follows: 

. 

tf∫

0

w

2
u2(t)dt.

The cost function in the problem is in a quadratic form according to the control 
variable. In some OCPs, it can also be defined in a quadratic form according to 
the effect level of the control. w is an important positive weighting coefficient that 
offsets the cost of vaccination. 

Thus, the cost function to be minimized is defined as 

.J [u] =
tf∫

0

[
Ia(t) + Ic(t) + w

2
u2(t)

]
dt. (4) 

As a result, the Lagrangian necessary to determine the optimal system is as 
follows: . L = Ic(t) + Ia(t) + w

2 u2(t).

3.2 Existence of Optimal Control 

After describing the total cost, the main question that comes to mind is: does 
the objective functional called J really reach its minimum value? The following 
theorem [44] ensures this: 

Theorem 1 There is at least one optimal control function in the set of admissible 
controls to minimize the cost function 

.min J [u] =
tf∫

0

[
Ia(t) + Ic(t) + w

2
u2(t)

]
dt
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if the following conditions are provided: 

(1) .Uad and the set of state solutions are not empty. 
(2) .Uad is bounded and convex. 
(3) The right side of the system (3) is continuous. Also, state and control equations 

are bounded. 
(4) The Lagrangian . L is convex on .Uad and is bounded. 
(5) The Lagrangian . L satisfies the following inequalities: .c1, c2 > 0, and . η > 1

. Ia(t) + Ic(t) + w

2
u2(t) ≥ c1

(
|u|2

) η
2 − c2.

The proof of this theorem can be seen simply by the steps detailed in [44, 45]. 

3.3 Characterization of Optimal Control 

Pontrayagin’s Maximum Principle is applied to find the optimality conditions. Thus, 
the optimal control function is achieved. For this, the Hamiltonian function . H is 
described by 

.

H = L+
8∑

i=1
λifi,

= Ia + Ic + w
2 u2

+λ1(t)
[
−Sc(t)

βccIc(t)+βcaIa(t)
Nc(t)

− αSc(t)
]

+λ2(t)
[
αSc(t) − Sa(t)

βacIc(t)+βaaIa(t)
Na(t)

− u(t)S(t)
]

+λ3(t)
[
Sc(t)

βccIc(t)+βcaIa(t)
Nc(t)

− αIc(t) − γcIc(t)
]

+λ4(t)
[
Sa(t)

βacIc(t)+βaaIa(t)
Na(t)

+ αIc(t) − γaIa(t)
]

+λ5(t) [γcρcIc(t) − αRc(t)] + λ6(t) [γaρaIa(t) + αRc(t) + u(t)S(t)]

+γcψcλ7(t)Ic(t) + γaψaλ8(t)Ia(t).

(5) 

Here, .λi(t), i = 1, ...8, denotes the adjoint variables and . fi represents the right side 
of the system (3).
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Theorem 2 Suppose . u∗ is the optimal control function and . 
(
S∗

c , I ∗
c , R∗

c ,D∗
c , S∗

a I ∗
a ,

R∗
a,D∗

a

)
is the optimal solution set that minimize the cost function (4). Hence, there 

are .λi (t) (i = 1, ..., 8) adjoint functions that provide the following system: 

. 
dλ1

dt
= λ1 (t)

{[
βccI

∗
c (t) + βcaI

∗
a (t)

] [
I ∗
c (t) + R∗

c (t) + D∗
c (t)

]

(
N∗

c (t)
)2 + α

}

− λ2 (t) α

−λ3 (t)

{[
βccI

∗
c (t) + βcaI

∗
a (t)

] (
I ∗
c (t) + R∗

c (t) + D∗
c (t)

)

(
N∗

c (t)
)2

}

,

dλ2

dt
= λ2 (t)

{[
βacI

∗
c (t) + βaaI

∗
a (t)

] [
I ∗
a (t) + R∗

a (t) + D∗
a (t)

]

(
N∗

a (t)
)2 + u∗ (t)

}

−λ4 (t)

{[
βacI

∗
c (t) + βaaI

∗
a (t)

] [
I ∗
a (t) + R∗

a (t) + D∗
a (t)

]

(
N∗

a (t)
)2

}

− λ6 (t) u∗ (t) ,

.
dλ3

dt
= −1 + λ1 (t)

{
S∗

c (t)
[
βcc

(
S∗

c (t) + R∗
c (t) + D∗

c (t)
) − βcaI

∗
a (t)

]

(
N∗

c (t)
)2

}

+ λ2 (t)
S∗

a (t) βac

N∗
a (t)

−λ3 (t)

{
S∗

c (t)
[
βcc

(
S∗

c (t) + R∗
c (t) + D∗

c (t)
) − βcaI

∗
a (t)

]

(
N∗

c (t)
)2 − γc − α

}

−λ4 (t)

(
S∗

a (t) βac

N∗
a (t)

+ α

)

− λ5 (t) γcρc − λ7 (t) γcψc,

dλ4

dt
= −1 + λ1 (t)

S∗
c (t) βca

N∗
c (t)

+ λ2 (t)

{
S∗

a (t)
[
βaa

(
D∗

a (t) + S∗
a (t) + R∗

a (t)
)]

(
N∗

a (t)
)2

}

−λ2 (t)
βacI

∗
c (t)S∗

a (t)
(
N∗

a (t)
)2 − λ3 (t)

S∗
c (t) βca

N∗
c (t)

−λ4 (t)

{
S∗

a (t)
[
βaa

(
S∗

a (t) + R∗
a (t) + D∗

a (t)
) − βacI

∗
c

]

(
N∗

a (t)
)2 − γa

}

−λ6 (t) γaρa − λ8 (t) γaψa,

dλ5

dt
= −λ1 (t)

[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2 + λ3 (t)

{[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2

}

+λ5 (t) α − λ6 (t) α,

dλ6

dt
= −λ2 (t)

[
βaaI

∗
a (t) + βacI

∗
c (t)

]
S∗

a (t)
(
N∗

a (t)
)2 + λ4 (t)

[
βaaI

∗
a (t) + βacI

∗
c (t)

]
S∗

a (t)
(
N∗

a (t)
)2 ,

dλ7

dt
= −λ1 (t)

[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2 + λ3 (t)

[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2 ,

dλ8

dt
= −λ2 (t)

[
βacIc∗(t) + βaaI

∗
a (t)

]
S∗

a (t)
(
N∗

a (t)
)2 + λ4 (t)

[
βacI

∗
c (t) + βaaIa (t)

]
S∗

a (t)
(
N∗

a (t)
)2 .
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such that the transversality conditions are as follows: 

. λi(tf ) = 0, (i = 1, ..., 8) .

As a result, the corresponding optimal control function is 

.u∗ = min

{

max

{
(λ2 − λ6) S∗

a (t)

w
, 0

}

, 1

}

. (6) 

Proof The optimality conditions that consist of the state, adjoint, and control 
systems are, respectively, given by 

.

State system:

dSc(t)

dt
= ∂H

∂λ1
,
dSa(t)

dt
= ∂H

∂λ2
,
dIc(t)

dt
= ∂H

∂λ3
,
dIa(t)

dt
= ∂H

∂λ4
,

dRc(t)

dt
= ∂H

∂λ5
,
dRa(t)

dt
= ∂H

∂λ6
,
dDc(t)

dt
= ∂H

∂λ7
,
dDa(t)

dt
= ∂H

∂λ8
.

Adjoint system :

dλ1

dt
= −∂H

∂Sc

,
dλ2

dt
= − ∂H

∂Sa

,
dλ3

dt
= −∂H

∂Ic

,
dλ4

dt
= −∂H

∂Ia

,

dλ5

dt
= − ∂H

∂Rc

,
dλ6

dt
= − ∂H

∂Ra

,
dλ7

dt
= − ∂H

∂Dc

,
dλ8

dt
= − ∂H

∂Da

.

Control system:

∂H
∂u

= 0.

(7) 

It is obviously seen that the original system represents the state system in optimality
conditions. We acquire the adjoint system from (7) in the following: 

.
dλ1

dt
= − ∂H

∂S∗
c

= λ1 (t)

{[
βccI

∗
c (t) + βcaI

∗
a (t)

] [
I ∗
c (t) + R∗

c (t) + D∗
c (t)

]

N2
c (t)

+ α

}

− λ2 (t) α

−λ3 (t)

{[
βccI

∗
c (t) + βcaI

∗
a (t)

] [
I ∗
c (t) + R∗

c (t) + D∗
c (t)

]

(
N∗

c (t)
)2

}

,
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. 
dλ2

dt
= − ∂H

∂S∗
a

= λ2 (t)

{[
βacI

∗
c (t) + βaaI

∗
a (t)

] [
I ∗
a (t) + R∗

a (t) + D∗
a (t)

]

N2
a (t)

+ u∗ (t)

}

−λ4 (t)

{[
βacI

∗
c (t) + βaaI

∗
a (t)

] [
I ∗
a (t) + R∗

a (t) + D∗
a (t)

]

(
N∗

a (t)
)2

}

−λ6 (t) u∗ (t) ,

. 
dλ3

dt
= − ∂H

∂I ∗
c

= −1 + λ1 (t)

{
S∗

c (t)
[
βcc

(
S∗

c (t) + R∗
c (t) + D∗

c (t)
) − βcaI

∗
a (t)

]

(
N∗

c (t)
)2

}

+λ2 (t)
S∗

a (t) βac

N∗
a (t)

−λ3 (t)

{
S∗

c (t)
[
βcc

(
S∗

c (t) + R∗
c (t) + D∗

c (t)
) − βcaI

∗
a (t)

]

(
N∗

c (t)
)2 − γc − α

}

−λ4 (t)

(
S∗

a (t) βac

N∗
a (t)

+ α

)

− λ5 (t) γcρc − λ7 (t) γcψc,

.
dλ4

dt
= − ∂H

∂I ∗
a

= −1 + λ1 (t)
S∗

c (t) βca

N∗
c (t)

+λ2 (t)

{
S∗

a (t)
[
βaa

(
S∗

a (t) + R∗
a (t) + D∗

a (t)
)]

(
N∗

a (t)
)2

}

−λ2 (t)
βacI

∗
c (t)Sa (t)

(
N∗

a (t)
)2 − λ3 (t)

S∗
c (t) βca

N∗
c (t)

−λ4 (t)

{
S∗

a (t)
(
βaa

[
S∗

a (t) + R∗
a (t) + D∗

a (t)
] − βacI

∗
c

)

(
N∗

a (t)
)2 − γa

}

−λ6 (t) γaρa

−λ8 (t) γaψa,
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. 
dλ5

dt
= − ∂H

∂R∗
c

= −λ1 (t)

[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2

+λ3 (t)

[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2 + λ5 (t) α − λ6 (t) α,

. 
dλ6

dt
= − ∂H

∂R∗
a

= −λ2 (t)

[
βacI

∗
c (t) + βaaI

∗
a (t)

]
S∗

a (t)
(
N∗

a (t)
)2

+λ4 (t)

[
βacI

∗
c (t) + βaaIa (t)

]
S∗

a (t)
(
N∗

a (t)
)2 ,

. 
dλ7

dt
= − ∂H

∂D∗
c

= −λ1 (t)

{[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2

}

+λ3 (t)

{[
βccI

∗
c (t) + βcaI

∗
a (t)

]
S∗

c (t)
(
N∗

c (t)
)2

}

,

. 
dλ8

dt
= − ∂H

∂D∗
a

= −λ2 (t)

[
βacI

∗
c (t) + βaaI

∗
a (t)

]
S∗

a (t)
(
N∗

a (t)
)2

+λ4 (t)

[
βacI

∗
c (t) + βaaI

∗
a (t)

]
Sa∗ (t)

(
N∗

a (t)
)2

subject to the transversality conditions . λi(tf ) = 0
.(i = 1, ..., 8). In addition, the optimal control function satisfies 

.
∂H
∂u

∣
∣
∣
∣
u=u∗

= wu∗ (λ6(t) − λ2(t)) S∗
a (t) = 0 (8) 

such that

.u∗ = (λ2 − λ6) S∗
a (t)

w
. (9)
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4 Numerical Simulations and Discussion 

In this part, we will analyze the behavior of the model with or without the 
vaccination effect. In the graphs, the system is considered as with and without 
control effect. In addition, the effect of the weight coefficient, which is an important 
parameter for the cost function, will be interpreted with graphics. 

All numerical calculations are made by performingMATLAB software. The RK4 
method is applied to find the numerical solutions of optimal system. In this iterative 
method, first, the state system given by Eq. (3) is solved by the forward RK4 method 
with the predictive control, and then the adjoint system obtained by Theorem 2 
is solved by the backward RK4 method. The algorithm continues to run until the 
difference between the consecutive values of the iteration is less than the specified 
tolerance value. Problem parameters used for the simulations are .A = 4745 . (13
.years), .α = 0.00021 [46], .γc = 0.5 .γa = 0.0714, .βca = 0.266, . βac = 0.0001,
.βcc = 0.308, .βaa = 0.308, .ρa = 0.942, .ρc = 0.99, .ψa = 0.05, . ψc = 0.0001
[43]. The initial conditions are: .Sc(0) = 0.280, .Sa(0) = 0.719, .Ic(0) = 0, . Ia(0) =
0.001, .Rc(0) = 0, . Ra(0) = 0, . Dc(0) = 0, . Da(0) = 0. As can be clearly seen 
from the figures, the numerical results are illustrated by normalizing the real values 
of .N = 1000, .Na = 720, and .Nc = 280. In addition, the time period of vaccination 
is accepted as .tf = 30days. 

From Fig. 1, a significant reducing effect is also observed in the number of 
infected children, even though only adults are vaccinated. In addition, the number of 
recovered adults is increased considerably, and the number of dead adults is almost 
zero during the vaccination period. As a natural result of this graph, the serious 
decrease in the number of infected children has also led to a decrease in the number 
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Fig. 1 The impact of adult vaccination on model
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Fig. 2 The effect of weight coefficient w 

of recovered children. The reduction of infected children is especially important for 
the continuity of education life. This is an important result for children. For adults, 
the continuity of their working life is also very important. 

The weight parameter, which determines the efficiency level of the optimal con-
trol, is worth examining [47, 48]. In Fig. 2, we examine the behavior of controlled 
and uncontrolled systems with different weighting coefficients. Here, .tf = 20 days 
and all the remaining parameters and initial conditions are the same as in Fig. 1. 
Graphs are obtained by changing the weight coefficient w, which represents the 
cost of the adult vaccination control. By choosing three values of .w : w = 0.0001, 
.w = 1, and .w = 10, respectively, we investigated the effect of control on the system 
dynamics, consisting of child and adult populations. Vaccination is of course a good 
precaution. However, governments also care about cost analysis in their vaccination 
policy. Unfortunately, when costs increase, there is a decrease in the vaccination 
rate. In Fig. 2, when the value of the weight coefficient increases, the control effect, 
i.e., vaccination rate, naturally decreases. This means that as the cost of vaccination 
increases, the number of vaccinated individuals will decrease, and the number of 
infected individuals will increase. This is also a predictable result of the problem. In 
conclusion, the contribution of the present OCP to the literature is to show the lower 
the cost of vaccination, the more people are vaccinated.
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5 Concluding Remarks 

This chapter proposes an optimal vaccination scenario for a COVID-19 spreading 
model represented the transmission between children and adults. The aim of 
the suggested OCP is reducing the number infected people with the minimum 
cost of vaccination. In the proposed scenario, only the vaccination of adults is 
considered. The optimality conditions have been calculated by Hamilton’s principle. 
The RK4 method is applied with the forward–backward sweep algorithm to get the 
numerical results. Although only adults have been vaccinated, the rate of infection 
in both adults and children decreased significantly. This clearly shows how effective 
vaccination is. As it is already remembered, the development of different vaccines 
has been an important threshold in stopping the spread of COVID-19 because the 
most effective way in such viral epidemics is to improve herd immunity. Although 
this is not the ultimate goal of this chapter, strategies such as hygiene, masking, 
training, and treatment can also be evaluated as control parameters in addition to 
the vaccination. For the future studies, the present model can be discussed with 
combined control strategies. The effect of fractional operators on the model can 
also be researched comparatively. In addition, the effect of various incidence and 
treatment rates on the model is among the subjects worth investigating. 
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Part II 
Intelligent Control Techniques 

and Covid-19 Pandemic



The Role of Artificial Intelligence and 
Machine Learning for the Fight Against 
COVID-19 

Andrés Iglesias, Akemi Gálvez, and Patricia Suárez 

1 How COVID-19 Pandemic Affected Our Lives and It Is 
Still Doing So 

The COVID-19 (sometimes also written Covid) pandemic is a global health crisis 
caused by the novel coronavirus SARS-CoV-2 [1, 2]. The first outbreak was 
identified in Wuhan, China in December 2019 and has since spread rapidly, being 
declared a worldwide pandemic by the World Health Organization [3]. The COVID-
19 pandemic has had a significant impact on the world in almost all aspects of our 
daily life in many different ways. Some areas of major impact of the disease are: 

– Physical health: The COVID-19 has infected hundreds of millions of people 
globally, causing significant morbidity and mortality. Although the figures may 
differ strongly depending on the source and procedures followed for data record, 
storage, and analysis, it is generally acknowledged that at the time this work 
is written, the number of coronavirus cases has exceeded the seven hundred 
millions, with more than seven million of deceased, and probably millions of 
people affected by long-term effects, called post-COVID-19 syndrome, and also 
for post-acute sequelae of Covid infection (PASC). On the positive side, vaccines 
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for COVID-19 have been developed to limit the spread of the disease, and they 
have shown to be effective [4]. However, as the coronavirus mutates, new variants 
are appearing worldwide, putting an additional stress on the development of new 
vaccines to cope with the new variants more effectively. 

– Mental health and social issues: The pandemic has significantly impacted our 
mental health [5]. Many parts of the world have endured harsh lockdowns, 
forcing their population into long periods of social isolation, with many people 
experiencing increased stress, anxiety, and depression. The pandemic has high-
lighted the need for greater investment in mental health resources and support 
services and has disrupted social interactions, leading to increased feelings of 
loneliness and isolation for many people. It has also highlighted the importance 
of community support and the role of social connections in promoting health and 
well-being [6]. 

– Healthcare systems: The pandemic has put a tremendous strain on healthcare 
systems around the world, with many hospitals and healthcare workers over-
whelmed by the surge in cases. Additionally, the pandemic has highlighted the 
importance of public health measures such as hand hygiene, mask wearing, not 
hand shaking, or vaccination, among others. New procedures have been raised to 
curb the spread of the disease, ranging from new healthcare protocols to social 
distancing [7]. 

– Economy and job market: The COVID-19 has caused widespread economic 
disruption. The pandemic’s economic impact has been extremely severe, causing 
job losses and a significant decline in economic growth worldwide, as reported by 
the International Monetary Fund [8]. Due to strict lockdowns, reduced mobility, 
and other factors, many businesses have been forced to close, with many people 
losing their jobs as a result [9]. Governments around the world have implemented 
a range of economic stimulus measures to try to mitigate the impact of the 
pandemic, but the economic effects will still be felt for years to come. On the 
other hand, COVID-19 has forced many people to work from home, which has 
highlighted the importance of remote work and flexible working arrangements. 
It has also led to a shift in how businesses operate and communicate, with many 
companies embracing digital tools and online collaboration. 

– Travel industry and tourism: The pandemic has severely impacted the travel 
industry, with many countries imposing travel restrictions and border closures 
[10]. This has led to a significant reduction in international travel and has had a 
major impact on the tourism industry. 

– Education: The pandemic has led to widespread school closures and disruptions 
to education, with many students forced to learn remotely. This has highlighted 
the importance of access to technology and Internet connectivity, as well as the 
need for innovative approaches to education [11]. 

– Technology: The pandemic has sped up the adoption of digital technologies in 
many areas, from telemedicine to online shopping [12]. It has also highlighted 
the importance of access to technology, particularly for vulnerable populations 
who may not have reliable Internet access or the necessary digital skills.
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– Environment: In the environment, while the reduction in travel and economic 
activity has led to lower greenhouse gas emissions and improved air quality in 
some areas, it has also led to an increase in plastic waste and a decline in recycling 
rates [13]. 

– Politics and governance: The pandemic has had a significant impact on politics 
and governance, with many countries implementing emergency measures to 
manage the public health crisis. This has raised questions about civil liberties 
and the role of government in responding to pandemics. 

– Others: The pandemic has highlighted the need for global cooperation and 
collaboration, particularly in the areas of public health and scientific research. It 
has also exposed the vulnerabilities of global supply chains and the importance 
of preparedness for future pandemics. And finally the pandemic has highlighted 
the critical role of scientific research in understanding and responding to public 
health crises. It has also exposed the challenges and limitations of scientific 
communication and the importance of clear and accurate public messaging. 

As shown in this section, the COVID-19 pandemic has impacted dramatically 
on various aspects of life, including health, education, the economy, and the 
environment. The development of effective vaccines for COVID-19 has shown 
promise in controlling the disease. However, the pandemic’s long-term impact on 
society and the economy remains uncertain so far, as the world is still coping with 
the pandemic. 

2 Artificial Intelligence and Machine Learning Against 
COVID-19 

The coronavirus pandemic has spawned an unprecedented public health crisis that 
has impacted societies worldwide. Healthcare providers and public health systems 
have had to rapidly adapt to new and evolving challenges in order to contain the 
expansion of the virus. Artificial intelligence (AI) and machine learning (ML) have 
played a significant role in the pandemic response, offering innovative and efficient 
solutions to the challenges posed by the virus. 

The ability of AI to quickly process and analyze vast amounts of data has proven 
essential for the fight against the virus. Here are some examples of how AI has been 
applied to address the covid pandemic [14–17]: 

– Medical diagnosis: One potential benefit of using AI and machine learning in 
COVID-19 diagnosis is the ability to process huge amounts of data quickly 
and accurately. This could help to identify patterns or markers that might not 
be detectable with more traditional methods. On the other hand, advanced 
AI algorithms have been developed to help diagnose COVID-19 based on 
medical imaging, e.g., computer tomography (CT) scans or X-ray images. These 
algorithms can quickly and accurately detect COVID-19 pneumonia, which can
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help with early diagnosis and treatment. For example, the paper in [18] developed 
an AI algorithm to detect COVID-19 from chest CT scans. The method achieved 
a total accuracy of 89.5% in its internal validation, with 0.87 of sensitivity and 
0.88 of specificity. Regarding the external testing dataset, it showed a 79.3% of 
total accuracy, with 0.67 of sensitivity and 0.83 of specificity. In addition, the 
results of the first two nucleic acid tests were negative for a set of 54 images, 
while 46 images were predicted by the algorithm as positive in COVID-19, 
yielding an accuracy of 85.2%. Another potential benefit is the ability to reduce 
the risk of transmission by allowing for contactless screening and diagnosis. This 
could be especially useful in settings like airports, hospitals, and other high-traffic 
areas. Despite the potential benefits, there are also some concerns about the use 
of AI and machine learning in coronavirus diagnosis. For example, there is a risk 
that algorithms could be biased or produce inaccurate results, especially if they 
are trained on incomplete or biased datasets. 

– Drug discovery: AI has been used to help accelerate drug discovery for COVID-
19. The researchers have also used Machine Learning (ML) algorithms to screen 
thousands of potential drug candidates and identify those that are most likely to 
be effective against the virus [19]. For example, the startup Insilico Medicine 
used AI to identify a potential drug candidate for Covid in a very short time. On 
February 23, 2023, it has been announced in newspapers and other media that the 
world’s first generative AI-designed COVID drug will soon begin clinical trials 
[20]. 

– Contact tracing and tracking: At the dawn of the pandemic, some experts 
suggested that AI and machine learning could be applied to help track the virus 
spreading in real time, potentially allowing for earlier identification of outbreaks 
and more targeted interventions. Following these remarks, AI has been used 
to help with contact tracing, which involves identifying individuals who may 
have been exposed to the virus [21]. Contact tracing apps use AI to identify 
potential transmission chains and notify individuals with potential close contact 
with someone tested positive. For example, the authors were required to install 
and activate the COCOA (Contact-Confirming Application) app in their personal 
smartphones for COVID-19 tracking during their stays in Japan in 2021 and 
2022. A study published in [22] found that digital contact tracing could be 
effective in controlling the Covid propagation when combined with other public 
health measures. 

– Vaccine development: AI and ML have played a significant role in the develop-
ment of vaccines for Covid, by aiding in the identification of potential vaccine 
targets and in the optimization of vaccine production processes. This has enabled 
the development of vaccines in record time, paving the way for global vaccination 
efforts. 

– Predictive modeling: AI has been used to develop predictive models to forecast 
the spread of COVID-19 and to guide public health interventions. These models 
take into account factors such as infection rates, population demographics, and 
mobility patterns to predict how the virus is likely to spread. For example, 
the University of California Los Angeles developed an AI model capable of
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predicting the Covid spreading up to three weeks in advance with an accuracy of 
94%. A remarkable advantage of that model is its accuracy. The primary reason 
to explain it is that the model does not rely only on confirmed COVID-19 cases 
and fatalities, but it also infers additional data fields (i.e., the number of untested 
and unreported cases) by data analysis of the model. Such inferences are then 
used to predict how quickly the disease will spread [23]. As a result, this model 
is claimed to be more accurate than most other alternatives currently available. 
After that work, other epidemic models that take into account the multiple factors 
affecting the rate of disease spread have been generated worldwide. In the work in 
[24], prediction algorithms were developed and validated for estimating the risk 
of mortality related to the COVID-19 as well as the rate of hospital admission for 
adults in UK after they received one or two doses of COVID-19 vaccination. 

– Public health management: AI and ML are used to develop prediction models for 
Covid dissemination, enabling public health officials to make informed decisions 
regarding resource allocation and disease containment efforts. Many health 
management-related decision-making plans have been set up based on such 
epidemic models. For instance, AI and ML can be applied to help predict which 
patients are most likely to require hospitalization or intensive care, allowing for 
more efficient allocation of resources [25, 26]. 

– Robotics: AI-powered robots have been used in hospitals and other medical 
institutions to perform tasks such as delivering medications or cleaning patient 
rooms. These robots can help minimize the risk of infection for healthcare 
workers, patients, and their relatives. For example, the Danish company UVD 
Robots developed a robot that uses UV light to disinfect hospital rooms [27]. 
The robot uses ultraviolet light for disinfection and killing of several viruses, 
bacteria, and other types of harmful microorganisms by breaking down their 
DNA structure. The robot is said to be effective at a ratio of 99,99% of the 
bacteria and viruses. 

As a summary of this section, the use of AI and ML has been instrumental to 
fight against the coronavirus. The ability of AI and ML to analyze huge amounts 
of data, identify patterns, and make predictions has helped the researchers and 
healthcare professionals in the development of vaccines, tracking the evolution of 
the virus, and predicting potential outbreaks. Moreover, AI and ML have enabled the 
automation of some tasks that are crucial in the fight against the pandemic, reducing 
the workload on healthcare professionals and allowing for quicker response times 
and more efficient and better informed measures. 

3 AI and ML for COVID-19 Diagnosis 

The Covid pandemic has brought unprecedented challenges to healthcare systems 
and the global economy. As the figures of confirmed cases worldwide continue to 
rise, the need for innovative solutions to manage and mitigate the spread of the virus
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has become critical. The use of AI and ML in COVID-19 diagnosis has been an area 
of intensive research since the outbreak of the pandemic. AI and ML have shown 
promising results in the early detection, diagnosis, and management of COVID-19 
[21, 22, 28]. 

One potential use of AI and ML in this area is the analysis of medical imaging, 
mainly chest X-rays, and CT scans. By analyzing these images, deep learning 
algorithms and other AI methods can identify patterns and markers that are 
indicative of COVID-19 and can help clinicians to make a more accurate diagnosis. 
In [29], the network Mobile Net, a state-of-the-art deep learning architecture 
based on the popular convolutional neural networks (CNNs), was trained from 
scratch and applied to investigate the relevance of different extracted features 
for a classification task. A large dataset of images associated with 6 different 
diseases and comprised of 3,905 X-ray images was used to train the network 
MobileNet v2. The results showed that this strategy of training the convolutional 
networks from scratch leads to superior results with respect to other transfer learning 
techniques, not only in distinguishing the X-ray images among the seven classes 
but also between the COVID-19 and non-COVID-19 scenarios. In particular, they 
achieved an accuracy of 87.66% for the classification task among the seven classes. 
In addition, an accuracy of 99.18% is achieved for the detection of COVID-19, 
with a sensitivity of 97.36%, and a specificity of 99.42%. These results are a 
clear indication that performing training from scratch on CNNs may reveal vital 
biomarkers. Furthermore, such biomarkers can be related to the COVID-19 disease 
but are not necessarily limited to that case. On the other hand, the high accuracy 
achieved for classification seems to suggest that further examination is required to 
harness the full potential of X-ray imaging for this task. 

In a study conducted in China, the researchers developed an AI method for 
diagnosis of COVID-19 from chest CT scans with 96% of accuracy [21]. The AI 
algorithm was trained using a deep learning method referred to as COVNet based 
on a CNN, which can analyze and classify image features. The CNN architecture 
used in the study was a 3D version of the popular ResNet-50 model, consisting 
of multiple layers that can learn and extract features from the input images. The 
input of this deep learning model is a set of CT images corresponding to a sequence 
of slices, while the output is a set of generated features for the slices, which are 
subsequently combined by using a max-pooling operation. The resulting feature 
map is inputted to a fully connected layer using softmax (i.e., the normalized 
exponential function) as the activation function. This generates a probability score 
for each category from the three classes: COVID-19, CAP (community-acquired 
pneumonia), and other lung conditions. The dataset used in this work was comprised 
of 4,352 chest CT scans from 3,322 patients. The per-scan sensitivity for COVID-19 
detection in the independent test set was 90% (with 95% confidence interval [CI]: 
83%, 94%; a total of 114 out of 127 scans), while the specificity was 96% (95% 
CI: 93%, 98%; a total of 294 out of 307 scans). The results of this work indicate 
that AI and ML can be valuable tools for the timely and accurate diagnosis of the 
COVID-19 disease.
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In a work published in [30], a deep learning AI algorithm for Covid detection 
from frontal chest radiographs called DeepCOVID-XR was trained and tested on a 
large clinical data set, where the coronavirus tests are conducted through the reverse-
transcription polymerase chain reaction (RT-PCR). Essentially, DeepCOVID-XR is 
an ensemble of CNNs carefully tailored for coronavirus detection. The network 
was trained and validated on 14,788 images (4,253 positive for the disease) and 
then tested on 2,214 images (1,192 positive). The performance of the algorithm 
was compared with the assessments of five experienced thoracic radiologists on 300 
random test images. The data sets included a total of 5,853 patients (mean age, 58 
years . ± 19; 3101 women). For the whole data set, the accuracy of the method was 
83%, with an AUC (area under the characteristic curve) of 0.90. These results show 
that the performance of DeepCOVID-XR for coronavirus detection compares well 
with that of experienced thoracic radiologists, a solid evidence of the ability of this 
network to detect the disease. 

In [31], the authors developed a deep learning model for detection of patients 
affected by COVID-19 from CT images. The model, called Details Relation 
Extraction neural network (DRENet), was based on the pretrained ResNet50 neural 
network, enriched with Feature Pyramid Network (FPN) for feature extraction of the 
top-K details of each image. Under such architecture, the deep learning algorithm 
has proved to be effective in capturing subtle differences in medical images. The 
model was trained with images of chest CT scans of patients from hospitals in 
two provinces in China. The training data set consisted of 777 CT images from 
88 patients with Covid, 505 images from 100 patients with bacterial pneumonia, 
and 708 images from 86 healthy people. The authors concluded that the model can 
perform accurate discrimination of the COVID-19 patients with respect to the group 
of patients with bacteria pneumonia. From their experiments, they obtained an AUC 
of 0.95 and values of 0.96 and 0.79 for the sensitivity and the precision, respectively. 

Another potential use of AI and ML in Covid diagnosis is in the analysis of 
patient data, such as vital signs, laboratory test results, and medical histories. By 
analyzing these data, AI algorithms can assist in the prediction of which patients 
are at highest risk of developing severe disease. The systematic review published in 
[26] evaluated the accuracy of prediction models for diagnosis and prognosis of the 
disease. The authors found that several ML-based models showed high performance. 
They can be used, for instance, to track the evolution of the disease by analyzing 
data recording the movements and interactions of infected individuals [32]. For 
example, the South Korean government used AI to trace the movements of infected 
individuals and identify potential contacts. AI and ML are also helpful to develop 
prediction models to assist in the identification of those patients most likely to 
require hospitalization or simply those who mostly benefit from certain treatments. 
This can help allocate healthcare resources more efficiently and ensure that patients 
receive the most appropriate care for their clinical condition. 

Recently, some researchers have developed an AI system that can identify 
individuals who may have been exposed to Covid using as input the sound of their 
coughs [33], one of the most visible and persistent manifestations of the COVID-
19 disease. The model incorporated four deep learning algorithms, embodied as
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two multilayer perceptrons, a convolutional neural network, and an ensemble called 
MSCCov19Net combining all features from the other three models. This architecture 
was trained using supervised learning with public datasets, which allowed it to 
learn to differentiate between cough sounds from coronavirus positive and negative 
individuals. The model then underwent testing to assess its accuracy in identifying 
COVID-19 positive cases. The results show a system accuracy of 61.5 and 90.4% for 
two different datasets. Other initiatives in this line of research have been described 
in the literature, ranging from the COUGHVID data set in [34] to the  works in  
[35, 36] and [37] for computational architectures designed for preliminary screening 
and diagnosis of Covid from cough sounds. Other AI-based approaches for Covid 
diagnosis from cough recordings can also be found in [38, 39]. These works reveal 
that deep learning methods have a strong potential as low-cost non-invasive scalable 
tools for identifying potential Covid cases in large populations from a very simple 
and economic input. However, they also noted that further research and validation 
are needed before it can be implemented as a diagnostic tool in clinical settings. 

Another interesting AI-based approach is the use of AI-powered wearable 
devices that can track and monitor individuals’ movements, allowing for more 
efficient contact tracing [40]. One example of such a device is TraceTogether, a 
wearable token developed by the Singaporean government. The device uses Blue-
tooth signals to communicate with other devices in close proximity, recording the 
duration and distance of the interaction. If a user is tested positive for coronavirus, 
his/her device’s data could be used to quickly identify and contact those who were in 
close proximity to the infected individual, allowing for more targeted and efficient 
contact tracing. In other cases, wearables have been used to detect early signs of 
the disease through different physiological signals, like the heartbeat rate [41] or  
the temperature of the body [42]. Other illustrative examples of this approach are 
given in [43–47]. Interested readers are kindly referred to [48] and [49] for  two  
comprehensive reviews about wearable devices and sensors for health monitoring 
systems and with regard to the COVID-19 monitoring, respectively. 

4 AI and ML for COVID-19 Drug Discovery and 
Repurposing 

AI and ML can also be used to accelerate drug discovery by predicting which 
compounds are most likely to be effective against COVID-19 [50]. Traditional drug 
discovery methods can be time-consuming and expensive, and many potential drug 
candidates are often missed due to limitations in data analysis. AI-based methods 
can rapidly scan large datasets and identify patterns and relationships that would be 
difficult for humans to discern [51]. 

In [52], different ML approaches for prediction of repurposed drugs are consid-
ered and analyzed. The pool of methods include support vector machine (SVM), 
random forest (RF), K-Nearest Neighbor (K-NN), artificial neural networks, and
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deep learning. All these models were applied to the prediction of promising 
repurposed drug candidates to fight against Covid, selected from pre-scanning using 
the DrugBank [53, 54]. 

The review in [55] introduced guidelines on the use of AI techniques for accel-
erating drugs repurposing or repositioning for the COVID-19 disease. The paper 
in [56] discusses how AI methods are changing the current landscape with regard 
to drug discovery and repurposing. Deep learning applications to these purposes 
are also discussed in [57]. A hybridization of convolutional neural networks and 
random forests is used in [58] for learning drug functions from chemical structures. 
Drug target prediction using deep neural networks andML is discussed, for instance, 
in [59–65]. 

The researchers have used AI and ML tools to identify potential treatments 
and repurpose existing drugs for Covid patients. These algorithms are used to 
analyze the molecular structure of existing drugs and identify several drugs that 
could be repurposed for efficient treatment of COVID-19. Some drugs identified 
by these algorithms are currently being tested in clinical trials. In January 2020, 
scientists at AI platform BenevolentAI used AI to identify the rheumatoid arthritis 
drug baricitinib as a potential candidate for COVID-19 treatment [66]. This drug 
has since been approved for emergency use in the USA, in particular, for the 
treatment of hospitalized COVID-19 adult patients requiring mechanical ventilation, 
supplemental oxygen, or ECMO (extracorporeal membrane oxygenation). 

The research approach of BenevolentAI platform involves the use of AI to 
analyze large datasets and identify potential drug candidates. The company has 
developed its own proprietary AI platform, which combines natural language 
processing, machine learning, and knowledge graphs to extract information from 
various sources such as scientific literature, clinical trial data, and electronic health 
records. In the case of COVID-19, BenevolentAI’s AI platform has analyzed various 
types of data, including genomic and proteomic data, to identify potential targets for 
drug development. The platform can identify protein–protein interactions, predict 
the effects of small molecules on protein activity, and suggest potential drug 
candidates for repurposing, which involves finding new uses for existing drugs 
based on their similarity or their ability to target specific molecular pathways. This 
approach can significantly shorten the time it takes to develop a new drug, as the 
safety and pharmacokinetics of the drug are already established. However, the drug 
must still be rigorously tested in clinical trials to establish its safety and efficacy for 
the new uses and indications. In addition to drug discovery, BenevolentAI is also 
using its AI platform to identify biomarkers for COVID-19 diagnosis and prognosis. 
By analyzing patient data, the platform can identify patterns that may be indicative 
of disease severity or progression, which could help clinicians make more informed 
treatment decisions. 

A research team from the University of California, San Francisco, used AI 
to screen over 1 billion small molecules and identify 23 that were predicted to 
be effective against the virus. The researchers used a computational tool called 
MoleculeNet, which is a deep learning platform for drug discovery that uses 
multiple AI algorithms to analyze large datasets of chemical compounds [67]. The
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tool uses virtual screening to predict the properties of small molecules and how they 
interact with biological targets. To screen the large library of small molecules, the 
researchers used the computational resources of the OpenPandemics—COVID-19 
project, which is a collaboration between the researchers at UCSF and the University 
of Washington, as well as volunteers from around the world who donate their 
computer processing power. The team trained MoleculeNet on a large dataset of 
small molecules and their biological activities to predict which compounds would 
be most effective against the virus. Then, they validated the predictions using 
laboratory experiments and found that several of the small molecules were effective 
at inhibiting the replication of the virus in cell cultures. 

5 AI and ML for COVID-19 Forecasting 

Another way AI and ML have been utilized against Covid is in the forecasting of 
the pandemic. AI and ML models have been developed to predict the evolution and 
expansion of the virus, the number of cases, and the potential impact of different 
interventions. These models use a range of data, including epidemiological, clinical, 
and social data, to generate forecasts. In [68], the authors developed an app named 
PMCP, for mortality prediction of COVID-19 patients at the time of admission at a 
hospital. In a study conducted in Iran and the UK with 797 patients diagnosed with 
COVID-19, the researchers applied an AI model to predict the risk of mortality and 
the severity of the disease for patients at intensive care units (ICUs) to determine and 
optimize their treatment strategies [69]. From a set of 66 documented parameters, 
they identified 15 factors proved to have the highest predictive value. They include 
general factors such gender and age, clinical parameters such as blood urea nitrogen, 
albumin, creatinine, white blood cell count, international normalized ratio (INR), 
mean corpuscular volume (MCV), lymphocyte count, segmented neutrophil count, 
mean cell hemoglobin (MCH), and red cell distribution width (RDW), in addition 
to the history of neurological, cardiovascular, and respiratory disorders. The model 
had a sensitivity of 70% and a specificity of 75% and was able to identify the areas 
most in need of resources and interventions. 

The researchers in [70] used a machine learning model using the UK Biobank 
(UKBB) data for risk forecasting of the chances to develop severe or fatal infections, 
while also uncovering major factors of risk involved. In their approach, they used 
hospitalization as an indicator for the severity of the disease and a group of 97 
clinical variables as predictors. Such variables were collected before COVID-19 
outbreak and included demographic factors, blood measurements, comorbidities, 
anthropometric measures, and some other risk factors such as heavy drinking 
or smoking. The prediction models were created using XGboost with gradient-
boosted trees. State-of-the-art techniques such as MissForest (a random forest-based 
ML algorithm for data imputation) and multiple imputation by chained equation 
(MICE) were used for missing data imputation of datasets. From their experimental 
results, they concluded that XGboost ML models exhibit a good predictive power,
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particularly noticeable for mortality. In fact, their models worked notably better for 
mortality prediction than for the severity of disease, with an AUC of 81–83% for the 
former. Overall, the researchers found that their machine learning model had a good 
prediction rate. They also found that their model could be used to identify countries 
that were likely to be particularly hard hit by the pandemic, which could help the 
policymakers prepare and allocate resources more effectively. 

The work in [71] proposes an ML forecasting model to predict the number of 
Covid cases in India. They suggests that accurate forecasting of COVID-19 cases 
can help public health officials in resource allocation and policymaking. The authors 
applied linear regression, vector autoregression, and multilayer perceptrons on the 
Kaggle dataset with 80 instances to forecast the number and trend of infected cases 
in India. 

The work in [72] aimed to investigate whether Google Trends data might be 
used as predictors of the number of COVID-19 infections in the United States. 
The authors utilized ML models to analyze the relationships between Google 
Trends data and COVID-19 cases. To this purpose, the authors collected the daily 
cumulative counts of confirmed infections, along with the number of deceases, 
obtained from a public repository of Johns Hopkins University. Although the data 
contained 422 symptoms with potential relationship with the disease, they limited 
their experiments to nine symptoms: hypoxemia, hypoxia, ageusia, dysgeusia, 
pneumonia, fever, chills, anosmia, and shortness of breath. Then, they used LSTM 
(long short-term memory) networks to create predictive models for four forecasting 
tasks related to the COVID-19. This work suggests that Google search trends data 
can be a useful tool to predict the spread of the disease and that they can arguably 
improve the performance of ML-based forecasting models. However, the authors 
note that further research is needed to validate these findings and to develop more 
accurate models. 

The work in [73] developed a hidden pattern detection-enabled ML model on 
reported COVID-19 cases to forecast potential infections. First, a dimensionality 
reduction was carried out to identify the key parameters allowing to uncover 
hidden patterns. Then, a forecasting analysis was conducted through an unbiased 
hierarchical Bayesian estimator to ascertain past infections from current deceases. 
As a result, they were able to predict the number of undetected infections in USA 
and Canada. A different machine learning forecasting model used to predict ICU 
admission, length of stay, and mortality of COVID-19 patients at admission-time at 
hospitals is reported in [74]. 

The paper in [75] applied a combination of genetic algorithms with an improved 
SEIR model for epidemic trend forecasting in China. The paper in [76] applied 
genetic operators to optimize convolutional networks for COVID-19 detection from 
X-ray images of the chest. In [77], a computational architecture comprised of 
three main components, an unsupervised feature extractor based on a convolutional 
autoencoder, a feature selector based on a multi-objective genetic algorithms, and 
a binary classifier based on a set of support vector machines, was applied for the 
automatic identification of undetected COVID-19 cases from medical images. In 
[78], a new algorithm called GABFCov 19 was introduced for identification of
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positive cases of the disease. The work in [79] combined genetic evolution and 
an ML classifier for COVID-19 diagnosis from blood samples. The paper in [80] 
applies a genetic-based image reconstruction algorithm for COVID-19 detection 
from X-ray images via digital holography. 

The COVID-19 pandemic has posed significant challenges for hospitals and 
healthcare providers worldwide, leading to the development of new tools and 
technologies to help manage the influx of patients. The authors in [81] developed 
a CDSS (clinical decision support system) for COVID-19 patients classification at 
hospital admission based on the severity of the disease. The work used a multicenter 
cohort of COVID-19 patients from hospitals in China, Italy, Spain and Belgium. 
The data collected from these patients included demographic information, clinical 
characteristics, laboratory values, and treatment outcomes. The study utilized a 
range of statistical and ML techniques to develop and validate the CDSS. The 
CDSS is based on an ML model that uses clinical features to predict the severity 
of COVID-19 in patients at hospital admission and to triage patients into one of 
the three severity risk groups (low, intermediate, or high). This system provides 
a valuable tool for healthcare providers to triage COVID-19 patients at hospital 
admission, based on their severity risk score. Other recent related works can be 
found in [82, 83]. 

6 Conclusion 

The pandemic of COVID-19 has created an unprecedented need for innovative 
solutions to manage and mitigate the spread of the virus. During this painful 
process, AI and ML have been revealed as valuable tools for the fight against 
the disease. The researchers and experts have turned to artificial intelligence and 
machine learning to develop models and tools that can help with the diagnosis, 
forecasting, and management of COVID-19 [84]. These tools have been used to 
diagnose the virus, forecast its spread, and identify potential treatments, and they 
have shown promising results in identifying COVID-19 biomarkers from medical 
images, accurately diagnosing the virus using X-ray and CT scan images, and 
predicting hospitalization and mortality rates. AI-enabled analysis of worldwide 
data has also been used to predict the potential of drug repurposing for COVID-19. 
As the pandemic continues to evolve and new variants are being reported over the 
time, AI and ML will continue to play a critical role in the global effort to manage 
and control the evolution of the coronavirus and its variants. 

One of the lessons learned after three years of COVID-19 pandemic is that AI 
and ML have played a major role in the fight against the disease, offering innovative 
and efficient solutions to the challenges posed by the pandemic [85]. Overall, the 
pandemic of COVID-19 has demonstrated the potential of AI and ML in healthcare 
and has provided an opportunity for us to improve our understanding of how these 
technologies can be used to address global health challenges [86]. The pandemic has 
also highlighted the relevance of technology in addressing global health challenges,
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and the role that AI and ML can play in advancing healthcare. As such, it is likely 
that we will continue to see increased adoption of these technologies in healthcare, 
not just in the fight against pandemics but also in everyday healthcare settings. As 
we move forward, there is a need for continued research and development in the 
field, in order to fully realize the potential of these powerful tools in healthcare and 
public health. By harnessing the power of AI and ML, we can continue to fight 
COVID-19 and mitigate its effects. 

It is important to note however that the use of AI and ML in healthcare is not 
without its challenges. There are ethical concerns around their use in healthcare 
more broadly, including questions around data privacy and security, bias, data 
ownership, and the potential for algorithmic decision-making to exacerbate existing 
social inequalities and other social problems [87, 88]. Also, there are critical voices 
and many open questions about the lack of proper regulation to tackle these issues. 
As with any new technology, it will be important to continue to evaluate and refine 
the use of AI and ML for COVID-19 and other pandemics, in terms of both its 
accuracy and effectiveness and its broader social and ethical implications [89, 90]. 
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Mfundo Monchwe, Ibidun C. Obagbuwa, and Alfred Mwanza 

1 Introduction 

A component of artificial intelligence (AI), computer vision, enables computers to 
perceive and comprehend the visual environment [2, 11, 29]. One key aspect of this 
field is deep learning. This method mimics the human brain’s ability to process 
information and carry out actions such as object detection and tracking, speech 
recognition, natural language processing, and decision-making [2, 9, 11, 29]. Deep 
learning models identify and classify objects from video feeds and cameras and react 
to these identifications or classifications in a specified way. Computer vision and 
neural networks are the basis for deep learning [2, 9, 26]. Deep learning combines 
various types of computer vision techniques and is the foundation for many 
advanced applications in the field. These techniques include image segmentation 
[2, 9, 26], image classification [16], object detection [14], and object tracking [19]. 
Image segmentation involves dividing an image into smaller sections for further 
analysis, while object detection involves identifying specific objects within an image 
for identification. 

The coronavirus outbreak has profoundly impacted individuals and communities, 
generating dread and death. The virus primarily affects the lungs and respiratory 
system, making lung imaging a crucial tool for detecting its presence. In the 
diagnostic process, lung images are analyzed to identify the presence of coronavirus 
within the lungs. With the advancement of technology, scientists are utilizing 
computer vision and deep learning techniques to aid in the identification of COVID-
19 in individuals. The likelihood of false positive and false negative errors in 
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the identification and diagnosis of disease is reduced by the application of deep 
learning to the processing of COVID-19 radiography pictures [12, 29]. This method 
offers a unique opportunity to give patients quick, affordable, and secure diagnostic 
services. Given the importance of public health security and pandemic management, 
COVID-19 early detection is crucial. Testing is critical, as the virus may not present 
symptoms for 7–14 days (incubation period) [17]. 

Early diagnosis of COVID-19 using the reverse transcript polymerase chain 
reaction (RT-PCR) test is difficult based on an individual’s symptoms [17, 29]. In the 
aftermath of the worldwide health disaster, the healthcare industry is looking for new 
technology and strategies to identify and control the coronavirus epidemic. Several 
studies have been conducted to use deep learning to address the shortcomings of 
COVID-19 diagnostic tests using radiological lung image datasets [4, 5, 12]. Many 
studies have used radiological image dataset and focused on using the global glass 
detection method to detect coronavirus with different accuracies. Previous studies 
in this area have primarily utilized nonprobabilistic machine learning methods, 
with popular algorithms including decision trees (DT) and others that fall under 
supervised machine learning. However, one of the limitations of nonprobabilistic 
machine learning approaches does not provide opportunities for making decisions 
under uncertainty and building models using both data and domain knowledge [21]. 
There is a growing need for an approach or a system for classifying images and 
measuring the degree of uncertainty or confidence in the predictions made by the 
neural networks. 

A probabilistic framework for representing and managing uncertainty in models 
and predictions was presented in [13]. Within this framework, Bayesian convo-
lutional neural networks (BCNNs) are a type of probabilistic machine learning 
technique. The study [7] developed the “Bayes-SAR Net,” a Bayesian CNN capable 
of robustly classifying SAR image classification while evaluating the degree of 
uncertainty or confidence of the CNN’s decision-making process. In this chapter, 
Bayesian CNNs were utilized for the classification of coronavirus lung images, 
as it has been established as the most efficient method for decision-making that 
incorporates uncertainty quantification [7, 10, 13, 21]. 

1.1 Problem Statement 

The coronavirus pandemic continues to pose a significant threat, resulting in 
numerous deaths and infections worldwide. One question that arises is how we 
can aid healthcare professionals in detecting and predicting the virus. Given that 
previous research has shown that RT-PCR tests can take an amount of duration 
to yield results and often have low sensitivity, alternative approaches are needed. 
Another area for improvement is that the models examined in the literature on 
COVID-19 need quantification of uncertainty, making it challenging to gauge 
confidence in their predictions. Nonprobabilistic machine learning methods can 
identify whether a patient has the virus or not, but they do not incorporate
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domain knowledge or provide quantification of uncertainty in their predictions. The 
probabilistic machine learning approach will help create a probabilistic machine 
learning solution for measuring uncertainty and convergence [7, 10, 13, 21]. A 
coronavirus prediction model employing lung imaging datasets with inevitability 
is the goal of this work, which sets out to construct this model using probabilistic 
machine learning techniques. 

2 Related Work 

Numerous articles discuss the current coronavirus problem and look into using deep 
learning and machine learning approaches to help predict and track the disease’s 
spread and how it affects our daily life [18, 19, 27]. Covid-19 was identified in 
December 2019. Symptoms of Covid-19 include coughing, fever, chills, shortness 
of breath, painful muscles, sore throat, and loss of taste or smell. The Middle East 
respiratory syndrome, also known as severe acute respiratory syndrome, may result 
from the virus’ high contagiousness and capacity to transmit from person to person 
[18]. 

The RT-PCR test is a widely used method for identifying the presence of 
coronavirus in individuals [5]. The procedure involves collecting a sample from 
the nose or throat of a patient using a swab and then analyzing it in a machine 
that detects the virus [17]. The RT-PCR test requires samples to be transported to 
a testing facility where the machines for analysis are located. This process can be 
time-consuming, and there is a possibility of the virus being inactive by the time 
the results are obtained. RT-PCR can produce negative results in an infected person. 
RT-PCR was shown to have a significant probability of producing false negatives 
and many false positives [17]. The sensitivity of the RT-PCR test could be higher, 
which raises concerns about the level of confidence (frequentist) or how credible 
(Bayesian) is in the results it produces. This uncertainty is further reinforced by the 
test’s lower chance of detecting the virus in the early stages of infection. 

Using deep convolutional neural network (CNN) model, Jain et al. demonstrated 
how COVID-19 can be detected from X-ray images. The model’s efficiency was 
evaluated using a collection of X-ray images of people with viral pneumonitis, 
lung opacity, and COVID-19 [16]. Jain et al. revealed that a deep learning model 
based on convolutional neural networks (CNNs) was used to successfully identify 
COVID-19 X-ray images and that the model had a high accuracy rate in classifying 
X-ray images that are either COVID-19 or not. Furthermore, the model’s capacity 
to distinguish between COVID-19, lung opacity, and viral pneumonia emphasizes 
its potential for real-world applications. However, the study indicates certain 
limitations associated with the use of X-ray images for COVID-19 identification, 
such as the low sensitivity of X-rays in identifying early-stage COVID-19 and 
the limited availability of X-ray images of COVID-19 patients [16]. Jain et al. 
concluded by providing useful insights into deep learning for detecting COVID-19 
in X-ray pictures, and their findings indicate that this methodology has the potential
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to build a viable method for COVID-19 identification. However, further research is 
necessary to address the limitations of using X-ray images for the identification of 
COVID-19 [16]. 

Gozes et al. developed a rapid AI development process for detecting and 
monitoring COVID-19 using CT image analysis and deep learning [14]. They 
introduced a 3-D deep learning architecture that uses both 2-D and 3-D global 
representative characteristics to improve the precision of COVID-19 identification. 
To preprocess the 3-D CT scan, Unet-17-based extraction of the lung region’s region 
of interest using segmentation was utilized. After pre-processing, the image is sent 
to COVNet for prediction. Gozes et al. generate feature vectors for each slice, which 
are then used for COVID-19 detection. They report that the proposed technique 
obtained good classification accuracy, recall, and precision in COVID-19 detection 
and that the majority of coronavirus opacities were discovered around the lungs’ 
margins [14]. The quantification of uncertainty was not introduced; therefore, the 
researcher is uncertain about how confident the model is in prediction. 

Using CT images, Xu et al. [28] published a deep learning system that screens 
for novel coronavirus disease pneumonia. XU et al. proposed utilizing a deep 
convolutional neural network (DCNN) model to analyze CT scans to reduce the 
number of false negative cases [24, 28, 30].The study utilized a set of CT scans from 
COVID-19 patients, achieving a high accuracy rate of 97.5% in detecting the virus 
and a low false positive rate of 94.4%. According to Xu et al. [28], the suggested 
deep learning system has the potential to be employed as a COVID-19 screening 
tool in clinical settings [28]. 

Li et al. [19] examined and analyzed the utility of AI to detect COVID-19 and 
community-acquired pneumonia (CAP) using lung CT images. Li et al. utilized 
a deep learning system that was trained on a set of CT images from COVID-
19 patients, CAP patients, and patients with other respiratory disorders. The AI 
system has a good diagnosis accuracy for COVID-19, according to the study, with 
an area under the receiver operating characteristic curve (AUC) of 0.97. With 
an AUC of 0.95, the algorithm also demonstrated a high diagnostic accuracy for 
CAP. Furthermore, the algorithm could distinguish between COVID-19 and CAP 
with an AUC of 0.98. The AI algorithm was able to perform better compared to 
radiologists’ interpretation of the CT images. Li et al. suggested that using AI to 
detect COVID-19 and CAP in lung CT scans can improve diagnostic accuracy and 
reduce the workload for radiologists [19]. Overall, the results of this study were 
awe-impressive. However, the sample size of this study is relatively small, and 
further research with a larger scale and different dataset is required to confirm these 
findings. 

The study by Ghaderzadeh and Asadi [12] was a comprehensive evaluation of 
the utilization of deep learning algorithms in identifying and diagnosing COVID-19 
utilizing radiological modalities. Ghaderzadeh and Asadi reviewed various studies 
that have utilized CT and X-ray images along with deep learning to identify COVID-
19, analyzed the performance of the models used in these studies, and discussed 
the advantages and limitations of utilizing deep learning for the identification of 
COVID-19. In addition, they emphasized the significance of data annotation in
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influencing the effectiveness of deep learning models. Overall, in-depth information 
about the state of deep learning technology is provided in this chapter for COVID-19 
detection using radiology modalities [12]. 

Agrawal and Choudhary [1] suggested “FocusCOVID,” a deep learning algo-
rithm, to detect COVID-19 using chest X-ray images [1]. Agrawal and Choudhary 
developed a deep learning model employing a CNN architecture on a collection of 
chest X-ray pictures. The CNN was created using a dataset of chest X-ray pictures 
from COVID-19 positive and negative patients, and it was tested on a second 
dataset. The suggested model accurately predicted COVID-19 from chest X-ray 
pictures, according to the study [1]. This study has a significant advantage in that 
it uses deep learning to detect COVID-19 from chest X-ray pictures, a reasonably 
inexpensive and widely available imaging modality. This can be a valuable tool for 
more advanced imaging modalities in areas with limited resources. A limitation 
of this study is that it is based on a small dataset of chest X-ray images. As a 
result, the model’s performance may not generalize to larger, more diverse datasets. 
Additionally, the study did not evaluate the model’s performance in a multi-ethnic 
population, which may affect the model’s performance in different populations. 

Alazab et al. [5] recommended utilizing deep learning approaches to identify and 
forecast COVID-19 using X-ray images. Alazab et al. suggested a deep learning 
model that categorizes X-ray pictures as positive or negative for COVID-19 using a 
combination of convolutional neural networks (CNNs) and long short-term memory 
(LSTM) networks. To train and assess the model, they employed a dataset of X-ray 
images from COVID-19 patients and healthy persons, and they found that their 
model obtained an overall accuracy of 96.7% in detecting COVID-19 [5]. One 
potential advantage of this approach is that it can be faster and more accurate in 
detecting COVID-19 than traditional methods. However, a limitation of this study 
is that the dataset used needs to be bigger, which may affect the generalizability of 
the findings. Additionally, Alazab et al. [5] needed to provide information on the 
performance of their model on unseen data, which limits the interpretability of their 
results. 

Paluru et al. [22] presented a deep learning model called “AnamNet,” which is 
intended for segmentation of anomalies in COVID-19 chest CT images. Paluru et 
al. claimed that the model is lightweight, which allows it to be deployed in resource-
constrained environments such as mobile devices [22]. The model was constructed 
and analyzed utilizing a dataset of patients’ COVID-19 chest CT images, and its 
performance was contrasted to that of other cutting-edge approaches, and the results 
showed that AnamNet achieved high accuracy and outperformed other models in 
terms of computational efficiency. The results showed that AnamNet achieved high 
accuracy and outperformed other models in terms of computational efficiency. The 
anamNet method can be a diagnostic aid in identifying COVID-19 patients and 
can be useful in resource-constrained environments. However, one limitation of this 
study is that it is based on a relatively small dataset of chest CT images, and future 
research can investigate the performance of the model on more extensive and more 
diverse datasets [22].
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Al-Waisy et al. [3] describe Covid-DeepNet, a deep learning system aiming 
to improve the identification of COVID-19 pneumonia in chest X-ray images. To 
boost detection accuracy, the system employs a hybrid multimodal deep learning 
technique that integrates various deep learning models. According to the study, the 
system performed well in detecting COVID-19 instances, with an overall accuracy 
of 97.17% [3]. The implementation of a hybrid multimodal deep learning approach 
in this chapter has the potential to improve detection accuracy [3]. One potential 
disadvantage is that the study only examined the system’s performance on chest 
X-ray pictures, which may not be generalizable to other imaging modalities [3]. 

Burdick et al. [6] described a machine learning model that uses electronic 
health record data to predict respiratory decompensation in COVID-19 patients. 
The study was conducted using data from the “Rapid Emergency Department Sepsis 
Trial” (READY), a multicenter observational study of patients with COVID-19 [6]. 
Modified Early Warning Score (MEWs) is superior to the diagnostic ratio produced 
by the suggested model. Out of all these accomplishments and more, the suggested 
model is more sensitive (0.90) and more specific.(p < 0.05) than the MEWS model. 
Burdick et al. discovered that the machine learning model could accurately predict 
respiratory decompensation in COVID-19 patients. One advantage of this approach 
is that it can identify patients at high risk of respiratory failure early, allowing for 
timely intervention and improving patient outcomes [6]. However, one limitation is 
that the study is based on a limited dataset and does not quantify the uncertainty in 
prediction and may also not generalizable to other populations. 

Hu et al. provided a methodology for training and fine-tuning the model using 
weak annotation (image-level labels) [15]. The study examined the suggested 
framework’s performance on a large dataset of CT scans, and the results revealed 
that the proposed method had achieved good accuracy and sensitivity in detecting 
COVID-19 infections. This method can be a valuable tool for early diagnosis and 
triage of COVID-19 patients, which can help to enhance COVID-19 pandemic 
management [15]. One advantage of this approach is a promising approach for 
improving the diagnostic accuracy of COVID-19. It could help promptly diagnose 
the disease, which is vital for preventing its spread [15]. However, the study does 
not provide information about the real-world performance of the model and its 
generalizability across different institutions and imaging modalities. 

The increasing demand for principled machine learning approaches by non-
specialists in various fields led to the increased support of probabilistic modeling 
[20, 25]. This is due to the need for transparent models with quantification of 
uncertainty, specifically models that can be very knowledgeable when they do not 
know [20, 25]. This will be mainly useful in determining the level of certainty of the 
prediction made and understanding why a certain prediction was made. However, 
probabilistic machine learning is concerned with problems of decision-making [13]. 

Based on a thorough review of current literature, deep learning models have 
been effectively utilized in classifying COVID-19 patients using radiographical 
lung images. However, it is worth noting that there need to be more studies that 
adopt a probabilistic machine learning approach, specifically Bayesian CNNs, in the 
prediction of COVID-19 using radiographical lung images. As a result, this chapter
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aims to bridge that gap by utilizing a Bayesian CNNs approach in the classification 
of lung images in COVID-19 patients, offering a unique perspective and potential 
advancements in the field. 

2.1 Nonprobabilistic and Probabilistic Classification 

Duerr et al. explained that traditional deep learning models, such as feedforward 
neural networks, are typically trained with a nonprobabilistic approach, meaning 
they output a single-point estimate of the class or value of interest [8]. This can be 
very problematic because it needs to consider the prediction’s uncertainty, which 
can lead to overconfidence in the model’s results. Duerr et al. discussed how this 
lack of uncertainty can be addressed through probabilistic models, such as Bayesian 
neural network. These models can output probability distributions over the class or 
value of interest, which can provide a more nuanced understanding of the model’s 
predictions [20, 21]. 

Additionally, Duerr et al. also mention that probabilistic deep learning models 
can be used to regularize traditional deep learning models. This can be done by intro-
ducing a probability distribution over the model weights, which can help prevent 
overfitting and improve the model’s generalizability [8]. One of the main advantages 
of probabilistic classification is that it allows for modeling uncertainty. For example, 
it can consider the possibility of misclassification and provide more accurate 
predictions when the decision boundary is uncertain. Additionally, probabilistic 
classification can generate probabilistic models for other machine learning tasks, 
such as clustering and density estimation. However, probabilistic classification also 
has its limitations. For example, it can be computationally expensive, particularly 
with large datasets. Furthermore, probabilistic classification can be sensitive to the 
choice of model and prior distributions, making it difficult to interpret the results. 
In summary, Duerr et al. in the book “Probabilistic Deep Learning” argue that 
nonprobabilistic deep learning models can lead to overconfidence in predictions 
and can be improved by incorporating probabilistic models such as Bayesian neural 
networks [8]. These models can provide a more nuanced understanding of the 
model’s predictions and can also be used to regularize traditional deep learning 
models [8, 20, 21]. 

2.2 Bayesian Neural Networks 

Bayesian neural networks (BNNs) probabilistic machine learning models combine 
strengths of neural networks and Bayesian method [21]. In traditional neural 
networks, the model’s parameters are fixed, meaning the model’s predictions are 
deterministic [20, 21]. However, BNNs model the uncertainty in the parameters, 
which allows them to make probabilistic predictions. One of the key advantages
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of BNNs is that they can quantify the uncertainty in their predictions [20, 21]. 
This is particularly useful in applications where accurate uncertainty estimates 
are crucial, such as medical diagnosis. Capturing the generated uncertainty in the 
posterior prediction distribution is frequently beneficial. This may be accomplished 
by calculating and marginalizing the parameters given the Eq. (1) below: 

.p(a|s,D) =
∫

p(a|s, θ)p(θ |D)dθ. (1) 

One way to interpret Bayesian neural networks is a collection of various neural
networks that differ in their weights [21]. By averaging out the uncertainty in the 
parameters, it becomes much more possible to circumvent the issue of overfitting 
[21]. 

2.3 Bayesian Learning 

Murphy explored the use of Bayesian methods in neural networks [21]. Integrating 
epistemic uncertainty, which accounts for the model’s parameters, is an essential 
feature of Bayesian neural networks. This contrasts aleatoric uncertainty, which 
accounts for uncertainty in the data. By marginalizing the parameters, Bayesian neu-
ral networks can avoid overfitting and provide a more robust approach to machine 
learning. Furthermore, Bayesian neural networks can be seen as an ensemble of 
differently weighted neural networks, further enhancing their performance. Overall, 
the incorporation of Bayesian methods in neural networks provides a powerful tool 
for probabilistic machine learning [21]. 

2.4 Variational Inference 

The goal of variational inference is to use a simpler distribution to approximate 
the posterior distribution, in a similar process to the Laplace method but in a 
more elaborate way [21]. We can compute this simpler distribution by solving an 
optimization problem of finding the closest possible distribution to the posterior 
using quantifying closeness. A common way of measuring closeness between 
distributions is using the Kullback–Leibler (KL) divergence. A useful metric for 
comparing the similarity of two probability distributions is the Kullback–Leibler. 
A useful metric for comparing the similarity of two probability distributions is 
the Kullback–Leibler [21]. Given a training dataset . D, the KL divergence can 
be employed in the context of neural networks to estimate the actual posterior 
distribution of the network’s weights, denoted by . w. Unfortunately, it is impossible 
to analytically solve the posterior distribution .p(w|D). As a result an approximation 
is made using variational distribution .q(w|θ) of a given functional form, with
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parameters denoted by . θ . In order to minimize the KL divergence between the 
variational distribution and the true posterior, the parameters should be estimated 
[21]. 

.F(D, θ) = KL(q(w|θ) || p(w)) − Eq(w|θ) logp(D|w). (2) 

The optimization goal, often known as the cost function, is formally expressed
by Eq. (2). The KL divergence .KL(q(w|θ) || p(w)) is a measure of the dissimi-
larity between two probability distribution. The second term of the cost function 
.Eq(w|θ) logp(D|w) is also known as the variational energy [21]. Minimizing this 
cost function, we may identify the ideal of the parameters values . θ that minimize 
the dissimilarity between the variational distribution and true posterior [21]. 

3 Research Methodology 

Ghahramani [13] presented the Bayesian approach as a framework for understand-
ing and making inferences in machine learning and artificial intelligence [13]. The 
usage of Bayes’ theorem, which states that the posterior probability of a hypothesis 
given certain data is proportional to the product of the likelihood of the data given 
the hypothesis and the prior probability of the hypothesis, is the core premise of this 
technique [13]. Mathematically, this is expressed as 

.p(θ |D) = p(D|θ)p(θ)

p(D)
. (3) 

In Eq. (3), . θ represents the model parameters, D represents the data, . p(θ |D)

represents the posterior probability of the parameters given the data, . p(D|θ)

represents the likelihood of the data given the parameters, .p(θ) represents the prior 
probability of the parameters, and .p(D) represents the marginal likelihood of the 
data [13]. Given the data, we may use this equation to infer model parameters based 
on our prior knowledge and ideas about the parameters. Equation (3) can also be 
verbalized as Eq. (4) such as 

.posterior = likelihood ∗ prior

marginallikelihood
. (4) 

3.1 Probabilistic Framework 

The Bayesian approach provides a natural framework for incorporating uncertainty 
and incorporating prior knowledge into machine learning models [13]. It also 
provides a way to perform model selection and to evaluate the relative plausibility
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of different models, given the data. The Bayesian approach is particularly useful 
in the context of deep learning, where the high dimensionality of the model makes 
it difficult to obtain a point estimate of the parameters [13, 20, 21]. Instead, the 
Bayesian approach allows us to represent the uncertainty in the parameters using 
probability distributions [13]. 

3.1.1 Why Probabilistic Framework 

– Probabilistic models make predictions that take into account the inherent uncer-
tainty in the data and make more informed decisions. 

– Offers a common framework across different fields [13, 21]. 

3.2 Dataset Description 

The COVID radiography dataset is comprised of X-ray images separated into four 
distinct categories: COVID, lung opacity, normal, and viral pneumonia. This chapter 
aimed to utilize the dataset to classify and predict the coronavirus presence in 
the lungs using standard CNNs and Bayesian convolutional neural network. The 
Bayesian neural network will provide probabilities for each class, will sum up to 
one. Click on this link to access dataset Dataset link. 

Let us have a preview of dataset in Fig. 1. 

3.3 Research Design 

The Bayesian approach is a widely utilized method for determining the parameters 
of a probabilistic model and estimating the uncertainty associated with these 
parameters [8]. The Bayesian modeling approach incorporates a novel form of 
uncertainty known as epistemic uncertainty. This results in improved prediction 
accuracy and more accurate quantification of the uncertainty in the predicted 
outcome distribution [8]. 

This chapter will implement data pre-processing techniques after collecting the 
COVID-19 radiography data, which includes cleaning and normalizing the images 
in the dataset. The implementation of TensorFlow library will be used in the model, 
and it will consist of two layers, namely the convolutional2DReparameterization 
layer, which takes into consideration the aleatoric uncertainty caused by the 
quality of the data, and the DenseReparameterization layer, which takes into 
consideration the epistemic uncertainty arising from the model itself [8]. Finally, 
the Bayesian CNN model will be employed to classify and predict COVID-19 in 
the radiographical lung image dataset.
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(a) COVID-image 

(b) Lung-Opacity-image 

(c) Normal-image 

(d) Viral-Pneumonia-image 

Fig. 1 In the dataset, the total number of images is 21,165 lung images, where by (a) has 3,616 
images, (b) has 6,012 images, (c) has 10,192 images, and lastly (d) has 1,345 images
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3.4 Modeling Process 

Below are the steps: 

1. Loading the COVID radiography image dataset 
2. Creating Standard CNN model 
3. Creating Bayesian model 

The COVID-radiography dataset was utilized, which can be freely accessed on 
Kaggle (refer to Sect. 3.2 for further details). The dataset is described in more detail 
in Sect. 3.2. One needs to download the zip file and extract it to a location of choice 
to obtain the dataset. Then, you can proceed to the coding stage. 

3.4.1 Loading the COVID-Radiography Image Dataset 

Upon opening the dataset, it will become apparent that it does not come pre-divided 
into training and test data files. However, we will manually perform this division. 
To start, the following necessary libraries will be imported: 

Listing 1 Sample code for python libraries 

import  t e n s o r f l ow  a s  t  f  
import  t e n s o r f l o w _ p r o b a b i l i t y  a s  t f p  
from t e n s o r f l ow  .  k e r a s  .  models  import  S e q u e n t i a l  
from t e n s o r f l ow  .  k e r a s  .  l a y e r s  import  Dense  ,  F l a t t e n  ,  

Conv2D , MaxPooling2D 
from t e n s o r f l ow  .  k e r a s  .  l o s s e s  import  S p a r s eC a t e g o r i c a l  

C r o s s e n t r o py  
import  numpy a s np 
import  os  
import  ma t p l o t l i b  .  p y p l o t  a s  p l t  
import  pandas  a s  pd  
import  s p l i t f o l d e r s  
t f d  =  t f p  .  d i s t r i b u t i o n s  
t  f  p  l  =  t f p  .  l a y e r s  

The split-folders library is used to split the COVID-radiography dataset into training 
and test folders. The process is simple and efficient. In the code implementation, 
the input path and folder name of the dataset to be split are specified, followed by 
the path and folder name of the output folders. The code implementation is shown 
below: 

Listing 2 Sample code for splitting the dataset 

import  s p l i t f o l d e r s  
i n p u t _ d i r  =  os  .  p a t h  .  j o i n  (  ’C  : / . . /  d a t a s e t  /  ’  )  
o u t p u t _ d i r  =  os  .  p a t h  .  j o i n  (  ’C  : / . /  d  a  t  a  s  e  t  _  s  p  l  i  t  t  e  d  /  ’  )
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s  p  l  i  t  f  o  l  d  e  r  s  .  r a t i o  (  i n p u t _ d i r  ,  o u t p u t = o u t p u t _ d i r  ,  
s e ed  =1337  ,  r a t i o  = ( . 8  , . 2 ) )  

The splitting of the folder into training and test sets is performed using the split-
folders library, as shown in Listing 2. The process of splitting is simple and easy to 
follow. The first step is to specify the path and name of the folder to be split. Then, 
specify the path and name of the output folder. The following code demonstrates the 
implementation of the splitting process using the library. The ratio of the split is set 
to 80% for training and 20% for validation. The output of the code is a new folder 
named “COVID-19 Radiography Dataset splitted,” which contains separate folders 
for training and validation. The next step is to define the training and test datasets 
from these new folders. 

Listing 3 Sample code for test and train 

t r a i n _ d i r  =  os  .  p a t h  .  j o i n  (  ’C  :  /  .  .  .  /  d a t a s e t  /  t r a i n  /  ’  )  
t  e  s  t  _  d  i  r  =os  .  p a t h  .  j o i n  (  ’C  :  /  .  .  .  /  d a t a s e t  /  v a l  /  )  

The following code implements the use of an image generator from TensorFlow to 
generate and label both the training and test data: 

Given the function in Fig. 2, it is called to generate training and test sets by 
passing the variables train-dir and test-dir: 

From Fig. 3, it is discovered that about 16,930 images belong to 4 classes for 
train generator and about 4,235 images belong to 4 classes for test generator. The 
figures shown in the dataset are loaded, and the next step is coronavirus classification 
model. The purpose of this chapter is to show comparison between standard CNN 
and Bayesian CNNs. 

Fig. 2 Image generator
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Fig. 3 Calling out functions 
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Fig. 4 Simple representation of CNN 

3.4.2 Creating Standard CNN Model 

Note that standard CNN model is referred as nonprobabilistic model that is already 
discussed in Sect. 2.1 about the specifics and the behavior of it: 

Figure 4 depicts the architecture for a standard CNN model, while Fig. 5 
shows the model sequential, and the model in total has 197,548 parameters with 
6152 parameters at the beginning and 2052 at the end. Figure 6 presents the 
implementation code for creating the CNN. We later compared these parameters 
with Bayesian model. In the next step, the model was compiled using Adam 
optimizer. Since the problem is a classification problem, categorical cross-entropy 
as the loss function was used. In Fig. 7, the model is compiled using Adam optimizer 
for the model and categorical cross-entropy as the loss function and metrics accuracy 
used. While, in Fig. 8, the model is trained in total of 100 epochs, since 100 epochs 
is enough for the loss function to converge. 

Finally, make predictions based on images in the test set with the trained model. 
First create a function to preprocess the image that we want to predict and assign 
the model to make a prediction based on the image in Fig. 9. 

3.4.3 Creating Bayesian CNN Model 

To build a Bayesian CNN, first import necessary libraries which is already. This 
chapter used TensorFlow probability library to create first and last layers for the 
neural networks model.
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Fig. 5 Output CNN 

This time is building the CNN model with a Bayesian perspective. The archi-
tecture will be the same as the standard CNN model that was built before refer to 
Sect. 3.4.1. The model has 4 convolutional layers before flattening it and using dense 
layer at a very end. 

Now let us halt for moment, you might be wondering if thee CNN architecture 
will be the same, then what is the difference between the standard CNN model and 
the Bayesian CNN model. The differences are the first convolutional layer and last 
layer of the model. 

Convolutional2DReparameterization Layer 

Previous studies that detected COVID-19 using x-ray images, those studies [6, 15, 
23, 28] deviate from the conventional Conv2D layer in the first layer of their model 
and adopt the Convolutional2DReparameterization layer. This layer is designed
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Fig. 6 Standard CNN 

Fig. 7 Compile part 

Fig. 8 Train cell 

to incorporate aleatoric uncertainty, which arises from the inherent variability in 
the data. Unlike the standard CNN model that outputs a deterministic value, this 
layer outputs a value drawn from a distribution, adding an additional layer of 
uncertainty in the analysis. This layer creates an output from a distribution, and 
then the researcher needs to define several notes as the argument: 

– Prior for kernel and bias parameters—This is the prior assumption about how 
the distribution appears before the data are considered. The research creates the 
prior for both the kernel and bias parameters using TensorFlow’s default normal 
distribution function. This normal distribution has non-trainable parameters, 
which is consistent with our prior.
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Fig. 9 Predicting function 

– Posterior for kernel and bias parameters—This is the posterior belief about 
how the distribution appears after looking at the data. Because this is a belief 
formed after viewing the data, we must specify the posterior with trainable 
parameters. As a result, the researcher employed TensorFlow’s default function 
for normal distribution. 

– Kullback–Leibler divergence—This is the approach for determining how 
different one distribution is from the reference distribution. This approach is 
employed in this situation to measure the divergence of our prior and posterior. 
The lower the value, or when it is zero, the two distributions are derived from the 
same distribution. To define the KL divergence, the research uses the available 
function from TensorFlow. The researcher makes sure to scale KL divergence 
such that it is only applied once per epoch. A rule of thumb to scale this KL 
divergence is by dividing it by the total number of the training images. The stack 
of layers after this layer is the same as the previous standard CNN Fig. 6. Instead 
of using a normal dense layer, the researcher uses DenseReparameterization 
layer. 

DenseReparameterization 

If the convolutional2DReparameterization section 
“Convolutional2DReparameterization Layer” is to take aleatoric uncertainty into 
account, then this DenseReparameterization layer is applied to take epistemic 
uncertainty into account. Epistemic uncertainty is the uncertainty that arises from 
the model itself. To apply this layer, the research passes the same arguments as 
in Conv2dReparameterization, the kernel prior and posterior, the bias prior and 
posterior, as well as the divergence function for KL divergence. As an output, the 
researcher passes his dense layer to a final one-hot categorical layer of 4 units Fig. 1 
as the researcher has 4 classes in the COVID-19 lung image classification. Below is 
the entire implementation to build the Bayesian CNN model:
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Bayesian CNN model, from Fig. 11. We can tell there’s much difference com-
pared to the output from Fig. 5, but this research will discuss in detail in Sect. 4. 

4 Analysis and Results 

4.1 Introduction 

In this chapter, the comparison of the standard CNN model Fig. 6 and Bayesian 
CNN model Fig. 10 shall be done. The research also exposes the outputs and how 
they are different from each other in terms of prediction. 

4.2 Comparisons of Two Models Output 

As shown in Fig. 11, the model summary that the chapter generated from the 
Bayesian CNN model, it is shown that at the first convolutional layer and last denser 
layer, the number of parameters is twice as many as the parameter in standard CNN 
model in Fig. 5. 

This is simply due to change of weight parameters from a single deterministic 
value into a value that is drawn from a distribution. Since the research used a normal 

Fig. 10 BCNN code
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Fig. 11 BCNN architecture 

distribution, then it has two parameters instead of just one: the mean and standard 
deviation. Let us begin with prediction using the standard CNN model from the test 
set: 

As shown in Fig. 12, the standard CNN model predicts with 0.956 probability 
that the image belongs to COVID class. This means that the model is very certain 
that the image is COVID. Again let us pick another image from the test set, to see if 
the model can predict the image of viral pneumonia correctly. 

The standard CNN model predicts with 0.996 probability that the image belongs 
to viral pneumonia class. This means that the model is very certain that the image 
is COVID. The model looks great in the sense it managed to predict two of the 
images from the test correctly. However, the research does not know how certain is 
the model in assigning that 0.956 in Fig. 12 and 0.996 in Fig. 13 probability on each 
of the images above. Is the model really that confident to assign high-probability
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Fig. 12 Output for COVID prediction using standard CNN 

Fig. 13 Output for viral pneumonia prediction using standard CNN
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values to the images? The chapter does not know if the model knows what it does 
not know. Hence, the research took the Bayesian approach to cover such uncertainty. 

4.3 Predicting Images from Test Data 

Even though the research created a probabilistic model, this research will not obtain 
the same probability value while predicting an image. As a result, the research will 
assign the model to estimate our image several times rather than just once. In this 
research, the model will be asked to predict a single image 400 times rather than 
simply once as shown in Fig. 14. 

Next step, based on that 400 predictions, this research creates 95% prediction 
interval for probabilities. Figure 14 depicts the function implementation: 

Function takes two arguments with a for loop that ranges for 400 predictions for 
95% prediction interval for probabilities and setting green as true label. 

Now this research moves to predicting images from the test set and sees how the 
model predicts the image. For the predictions, the research in the code predicted for 
all classes but for the purpose of report will show two images just like the same way 
for standard CNN above: the COVID and viral pneumonia 

Fig. 14 Predict function for BCNN
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The model correctly predicts the image with a probability of 0.76. Which is 
great? However, when you observe the results from the Bayesian CNN model, the 
aleatoric and epistemic uncertainties exist when predicting COVID image. 

Now let us predict for the second image, which is viral pneumonia: 

– The aleatoric uncertainty is shown as the model assigns a little bit of high 
probability to lung opacity class that is close to the COVID class as shown in 
Fig. 15. 

– The epistemic uncertainty is shown as the model is not certain how to assign 
probability values to each of the classes. 

With our prior standard CNN, the model accurately predicts that the picture is 
viral pneumonia with a probability value of 0.988. However, when looking at the 
Bayesian CNN model findings depicted in the Fig. 16, the aleatoric and epistemic 
exist while predicting the viral pneumonia picture. 

Fig. 15 Output for COVID using BCNN
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Fig. 16 Output for viral pneumonia using BCNN 

5 Conclusion 

In this chapter, a probabilistic machine learning approach, Bayesian convolutional 
neural network (BCNN), was developed to classify COVID-19 images. The BCNN 
model is equipped with the ability to assess uncertainty and produce more reliable 
predictions in diagnosing COVID-19. The model was applied to predict COVID 
images 400 times, and the results demonstrate that the BCNN model can provide 
varying probabilities in each run, enabling it to identify complex cases. The 
chapter’s findings suggest the potential of BCNNs in medical imaging and disease 
diagnosis, and the results serve as a starting point for further exploration and 
development in this area. 

In terms of accuracy, the study does not compare the BCNN model with other 
methods, so it needs to be clarified how it stacks up in terms of performance. 
Potential avenues for future work in this area include enhancing the accuracy of 
the BCNN model by fine-tuning its parameters and incorporating a more extensive 
image dataset. Additionally, the model can be evaluated on other imaging data 
types, such as X-rays and CT scans, to determine its potential for diagnosing other 
illnesses.
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However, the chapter has certain limitations, including the limited sample size of 
the images utilized for training the model, which may have impacted the predictions’ 
accuracy. In the future, a more extensive and varied image dataset should be used 
for model training. Another challenge is the computational cost associated with 
Bayesian convolutional neural networks, which may pose difficulties in real-world 
implementation. 

Despite these limitations, the findings of this chapter suggest the potential of 
BCNNs in the field of medical imaging and disease diagnosis. They are a starting 
point for further exploration and development in this area. 
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Identify Unfavorable COVID Medicine 
Reactions from the Three-Dimensional 
Structure by Employing Convolutional 
Neural Network 

Pranab Das and Dilwar Hussain Mazumder 

1 Introduction 

The unfavorable COVID medicine reactions are the adverse reactions of medicine 
in the patient’s body [1]. Knowing the toxic reactions or adverse responses of the 
medicines in COVID therapy will be vital for medicine development. Nowadays, 
COVID medicine development is an essential task in modern medicine discovery 
[2]. The world currently faces a complex situation in developing an effective 
medicine for coronavirus disease to treat patients by the scientific community. Most 
researchers are investigating developing an adequate medicine to treat this disease. 

Medicine development is the time needed, expensive, and the success rate of 
medicine is poor [3, 4]. One of the reasons for the unsuccess of medicine is 
unfavorable reactions, which can waste chemical compounds, time, and capital. 
Therefore, the computational approach is needed to learn about a newly developed 
medicine. Several computational approaches are employed in medicine develop-
ment [5, 6]. One of the most popular and effective computational approaches is 
CNN [7]. The reason behind choosing CNN classifier over the traditional machine 
learning classifier is that CNN performs well on image data compared to the other 
machine learning approaches. Because of unfavorable medicine reactions, most 
medicines fail during discovery, development, and design. Due to some medicine 
unfavorable reactions, patients may die [8]. So, an efficient approach is needed 
to analyze the unfavorable reactions of newly developed medicines. Studies of 
hazardous medicine reactions enhance the efficacy of medicine development and 
the safety of patient health. Correctly identifying hazardous medicine reactions 
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enhances medicine safety and minimizes the time, chemical wastage, and cost of 
medicine discovery. 

The preliminary contribution of this chapter is to present a CNN framework to 
predict COVID medicine reactions from the three-dimensional structure that have 
not been previously used to predict unfavorable reactions of COVID medicine. 

Following the introduction section, literature review works have been provided, 
followed by the proposed framework to identify unfavorable COVID medicine 
reactions, which includes a description of the medicine structure and their haz-
ardous response and an explanation for the stated problem solution. Further, the 
performance measure method and experiment parameter settings with the results 
have been presented in the section on experiment performance evaluation. Finally, 
the experiment outcome has been summarized. 

2 Related Work 

This section summarizes various strategies and medicine descriptors employed to 
identify medicine’s unfavorable reactions. 

In their work, Das et al. [9] identify unfavorable medicine reactions from drug 
functions. They applied random forest, decision tree, k-nearest neighbor, extra 
tree classifiers, and multi-layer perceptron neural network to identify unfavorable 
medicine reactions. They found that the extra tree classifier acquired 99.95% 
accuracy. In a different work, Das et al. [10] analyzed unfavorable medicine 
reactions from the integrated medicine properties (drug function, one-dimensional 
structure of medicine, and 17 molecules properties). The authors employed a deep 
neural network on the combination drug descriptors. They reported the highest 
ROC score of 99.99% achieved on the combination of drug function and the one-
dimensional structure of medicine. Ietswaart et al. [11] associated harmful reactions 
with medicine by employing a random forest classifier. The authors utilized a 
pharmacovigilance assay as an input feature to associate harmful reactions with 
medicine. There presented methodology achieved the lowest hamming—loss of 
9%. An artificial neural network model is presented by Shankar et al. [12] to  
identify medicine pair unfavorable reactions from the one-dimensional structure of 
medicine and gene expression. Their artificial neural network classifier reported an 
accuracy score of 82%. Antidepression unfavorable medicine reactions are predicted 
by Gunes et al. [13] from biological properties (medicine target, enzyme, and 
transporter) and the one-dimensional structure of medicine. The authors applied k-
nearest neighbors, multi-layer perceptron, and support vector machine to integrate 
medicine properties. They found that the multi-layer perceptron classifier performed 
and got the highest AUC value of 69.50%. Hatmal et al. [14] identify COVID vac-
cine unfavorable reactions from demographic data by online survey. They employed 
multi-layer perceptron, XGBoost, K-star, and random forest and obtained that the 
random forest model acquired an accuracy value of 80%. In their work, Swathi et al. 
[15] analyze unfavorable medicine reactions from medical health forms. Random
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forest, support vector machine, decision tree, naive Bayes, and logistic regression 
classifier are utilized to predict unfavorable medicine reactions. The author noticed 
that the random forest reported the best accuracy value of 62.40%. Wang et al. 
[16] provided a deep neural network to detect unfavorable medicine reactions from 
biological properties, 17 molecule properties, and biomedical literature information. 
They compared their model with a linear support vector machine, Gaussian naive 
Bayes, and probability matrix factorizer. The authors found that the presented deep 
neural network achieved the best AUC value of 84.40%. Jamal et al. [17] predict 
unfavorable cardiovascular medicine reactions from the one-dimensional structure 
of medicine, phenotypic, and biological properties. The authors applied random 
forest and sequential minimization optimization approach. Further, they found that 
the random forest classifier and sequential minimization optimization approach 
reached the best accuracy value of 93.83% on the phenotypic and biological drug 
descriptors. In a different work [18], Jamal et al. predict unfavorable neurological 
medicine reactions from the one-dimensional structure of medicine, phenotypic, 
and biological properties. They applied a support vector machine on the distinct 
combination of drug properties. They achieved the highest accuracy score of 94.18% 
on combining the one-dimensional structure of medicine, phenotypic, and biological 
properties. Pouliot et al. [19] predict unfavorable medicine reactions from body 
organ class by employing logistic regression and report the best AUC value of 92%. 
Liu et al. [20] detected unfavorable medicine reactions from medical reports with 
the help of a support vector machine and obtained an AUC value of 85%. Jahid et 
al. [21] presented an ensemble approach to predict unfavorable medicine reactions 
by applying a one-dimensional structure of medicine. Their ensemble approach 
achieved the highest AUC value of 62%. Jiang et al. [22] detected unfavorable 
medicine reactions from the tweet using naive Bayes, support vector machine, and 
maximum entropy. They found that the ME approach reported the highest F1 value 
of 84%. Potential unfavorable medicine reactions are identified from integrated 
drug properties (protein–protein interaction, medicine target, and one-dimensional 
structure of medicine) by Huang et al. [23]. For the prediction task, a support 
vector machine has been employed and reported a 70% AUC score. Labute et al. 
[24] identified unfavorable medicine reactions by employing a logistic regression 
model from protein targets. Their logistic regression model achieved an AUC value 
of 74%. Zhang et al. [25] provided a feature-selection-based multi-label nearest-
neighbor method to predict unfavorable medicine reactions from medicine targets 
and chemical information. Their proposed approach acquired the best AUPR value 
of 48.02%. Niu et al. [26] identified unfavorable medicine reactions from the one-
dimensional structure of medicine from medicine targets, chemical descriptors, and 
chemical substructure. The authors employed a support vector machine, sparse 
canonical correlation analysis, k-nearest neighbor, and neural network to identify 
unfavorable medicine reactions. Their neural network model achieved the highest 
AUC value of 89.59% on medicine target properties. 

There are various computational approaches (k-nearest neighbor, sparse canoni-
cal correlation analysis, decision tree, maximum entropy, artificial neural network, 
random forest, future-selection-based k-nearest neighbor, deep neural network,
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extra tree classifiers, probability matrix factorization, naive Bayes, logistic regres-
sion, sequential minimization optimization, XGBoost, and support vector machine) 
available for identifying unfavorable medicine reactions. From the above liter-
ature survey, it can be noticed that drug function, one-dimensional structure 
of medicine, 17 molecule drug-like properties, pharmacovigilance assay, gene 
expression, medicine target, enzyme, transporter, demographic data, online elec-
tronic health form, protein–protein interaction, gene ontology, biomedical literature, 
phenotypic descriptors, system organ class, patient medical report, and Twitter post 
have been employed to identify unfavorable medicine reactions. However, the three-
dimensional structure of medicine still needs to be employed to identify unfavorable 
reactions. 

3 The Proposed Procedure and Dataset 

The problem of identifying unfavorable COVID medicine reactions from the three-
dimensional structure has been defined in this section. The dataset and proposed 
procedure for addressing the stated problem have also been demonstrated. 

3.1 Dataset 

The procedure of preparing the COVID Unfavorable Medicine Reactions Dataset 
(CUMRD) for executing the proposed framework is illustrated diagrammatically in 
Fig. 1 and will be discussed further below. 

Fig. 1 Preparation process of the COVID drug side effects dataset
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3.1.1 Medicine 

Several medicines are available to treat coronavirus disease in Drugs.com [27]. 
Among them, only 18 medicine with three-dimensional structures are available 
in PubChem, including Remdesivir, Colchicine, Dexamethasone, Hydroxychloro-
quine, Protein kinase inhibitors 1, Methylprednisolone, Peginterferon Lambda, 
Umifenovir, Hydroxychloroquine sulfate, Ritonavir, PF-07321332, Bemcentinib, 
Zyesami, Chloroquine phosphate, Fluvoxamine, MK-4482, Favipiravir, and Barici-
tinib. 

3.1.2 Three-Dimensional Structure of Medicine 

To build the CNN classifier, first, three-dimensional structures of medicine were 
collected from PubChem [28]. The three-dimensional structure of medicine is an 
image data type showing the organization of atoms and bonds in a molecule. This 
structure is collected from PubChem with the help of the “urllib.request” python 
package. Each structure is collected by giving the Compound IDentifier (CID) 
number of each medicine, which are collected from Drugs.com [27]. 

3.1.3 Unfavorable COVID Medicine Reactions 

A medicine can have unfavorable reactions, which may harm the patient. Unfa-
vorable COVID medicine reactions are harmful, adverse, and unwanted reactions. 
The unwanted medicine reactions are obtained from the WebMD [29], which 
consists of 29 unfavorable COVID medicine reactions (Muscle Pain, Headache, 
Swelling, Changes in Taste, Abdominal Cramps, Weakness, Liver Function Test 
Abnormal, Rash, Irregular Heartbeat, Abdominal Pain, Seizures, Blood Pressure 
Increased, Nausea, Fever, Decreased Appetite, Trouble Breathing, Drowsiness, 
Asthma Attack, Sore Mouth, Stomach Upset, Heartburn, Diarrhea, Vomiting, Chills, 
Sweating, Trouble Sleeping, Constipation, Tired and Heavy, and Dizziness) on 
human health, corresponding to 18 medicine. Therefore, unfavorable medicine 
reaction identification is an essential task in medicine discovery. 

3.2 Problem Statement 

This section defines the problem statement. Let medicine = {.Medicine1, 
.Medicine2, .Medicine3, ..., .Medicinek , ..., .Medicinem} be the set of Medicine, 
IF = {.IF1, .IF2, .IF3, ..., . IFl , ..., .IFr} be the set of image features (IF) of 
medicine, and UMR = {.UMR1, .UMR2, .UMR3, ..., .UMRo, ..., . UMRp} be  
the set of Unfavorable Medicine Reactions (UMR) where each UMRo represents 
the Unfavorable Medicine Reactions for a .Medicinek with image features IF.
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Fig. 2 Problem statement for identifying unfavorable COVID medicine reactions from the three-
dimensional structure 

Table 1 Example of multiple unfavorable COVID medicine reactions 

Irregular Stomach Trouble 

Medicine Rash heartbeat upset Nausea breathing ...... Vomiting 

Remdesivir 1 1 0 1 1 ...... 1 

A .medicinek can have multiple unfavorable medicine reactions. Therefore, 
identifying unfavorable medicine reactions is a multi-label identification issue 
[25, 30]. Figure 2 illustrates the multi-label unfavorable medicine reactions 
corresponding to their three-dimensional structure. Here, unfavorable medicine 
reactions are denoted by a binary number, where zero signifies the absence and 
one implies the existence of unfavorable medicine reactions. Table 1 shows the 
multi-label unfavorable medicine reactions for Remdesivir medicine, whose some 
of the unfavorable reactions are Rash, Irregular Heartbeat, Vomiting, Nausea, and 
Trouble Breathing, etc. 

3.3 The Proposed Architecture 

Figure 3 depicts the proposed methodology of working architecture. It takes the 
three-dimensional structure of medicine corresponding to different medicine as 
input to identify unfavorable medicine reactions. The main focus of this chapter 
is to present an efficient CNN classifier model to identify unfavorable medicine 
reactions. This work employs a multi-label CNN classifier to investigate the 
unfavorable medicine reactions from the three-dimensional structure of medicine. 
Based on the problem statement, a multi-label CNN classifier is developed to 
identify potential hazardous reactions of COVID medicine.



Identify Unfavorable COVID Medicine Reactions from the Three-Dimensional. . . 161

Fig. 3 Working process of the presented architecture 

4 Setup and Results of the Experiment 

4.1 Performance Measure Definition 

For evaluating the performance, the example-based (EB) method is used with the 
CNN classification algorithm and pre-trained models, and the following metrics 
have been used: Accuracy (A), Hamming Loss (H-L), Precision (P), Recall (R), F1, 
and ROC–AUC score [31]. Consider .Dk = {(di, Yi)|i = 1, 2, ..., N} is a collection 
of multi-label (ML) data, where . Yi is the actual set of the class labels for data sample 
. di unseen by the classifier model F. ML: .di .→ .2|Y | and .Zi = FML : (di) is the 
predicted set of the label by the classifier, and N represents the overall number of 
samples: 

– Accuracy (A): For each sample, accuracy is defined as the proportion of 
accurately predicted labels to all labels for that sample, and the final accuracy 
is the average among all samples. 

.AccuracyEB(FML,Dk) = 1

N

N∑

i=1

|Yi∩Zi |
|Yi ∪ Zi | . (1)
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– Precision (P): For each sample, the proportion of accurately predicted labels to 
all actual labels is known as precision, and the overall precision is the average 
among all samples. 

.PrecisionEB(FML,Dk) = 1

N

N∑

i=1

|Yi∩Zi |
|Zi | . (2) 

– Recall (R): For each instance, recall is the proportion of a certain label that the 
classifier has predicted as belonging to that label. The overall recall is the average 
among all samples. 

.RecallEB(FML,Dk) = 1

N

N∑

i=1

|Yi∩Zi |
|Yi | . (3) 

– F1 Measure: F1 measure is determined by the harmonic mean of both recall and 
precision. The F1 measure indicates a balanced precision and recall score. 

.F1EB(FML,Dk) = 1

N

N∑

i=1

2|Yi∩Zi |
|Yi | + |Zi | . (4) 

– Hamming Loss (H-L): It is the portion of the wrongly predicted labels to the 
overall number of labels. Here . Δ is the symmetric difference of the actual and 
predicted sets, and Q represents the number of possible class labels. 

.Hamming − LossEB(FML,Dk) = 1

N

N∑

i=1

1

Q
|YiΔZi |. (5) 

– ROC-AUC: ROC-AUC is generally used for multi-label binary classification 
problems, which shows how the recall versus precision correlation interchange 
for each cut-off. ROC-AUC indicates how well the classification model separates 
the positive and negative classes. 

4.2 Setup of the Experiment 

The parameters of the CNN and pre-trained model classifiers are provided in 
this section. The three-dimensional structures are used as an input feature of the 
CNN classifier to execute the experiment. The CNN model and pre-trained models 
are implemented using TensorFlow in Google Colab. The leave-one-out cross-
validation approach is utilized to split the training and testing medicine structure 
to identify harmful reactions. Each three-dimensional chemical structure is used to
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test the model, and the remaining chemical three-dimensional structure is used to 
train the model. RGB channel is used, and the structures are resized to 100*100 
pixels with the 15 epochs in the CNN and pre-trained classifiers. For the loss 
function, binar_crossentropy is set, and learning_rate is set to 0.0001 with the Adam 
optimizer. For the convolutional layer and output layer, the ReLU and sigmoid 
activation functions are set, respectively. Dropout is used to overcome the issue of 
classifier overfitting problem and set to 0.2 dropouts after each layer. The quantity 
of units inside the CNN classifier output layer is set to the equal number of labels 
in the COVID Unfavorable Medicine Reactions Dataset (CUMRD). The threshold 
of the CNN classifier is set to 0.5 for the outcome; if the value predicted by the 
model is equal to or higher than 0.5, then it assumes that the unfavorable reactions 
of medicine belong to that specific label, otherwise, not. The convolutional layer 
and the number of units in each layer affect the CNN classifier performance. So 
different convolutional layers are tested for the experiment. The model was also 
tested with the distinct convolutional unit, and it is found that the first layer with 
16 units, the second layer with 32 units, the third layer with 64, and the fourth 
layer with 128 units performed best. The CNN classifier with one convolutional 
layer performs better than the other layer. Similarly, all the pre-trained models 
have also been tested with different parameters and obtained that DenseNet201, 
Inceptionv3, MobileNetv2, ResNet50, and VGG19, with a dropout rate of 0.2, and 
setting GlobalAveragePooling2D achieved good results. All other parameters are 
the same as mentioned for the CNN model. 

4.3 Results and Discussions 

The performance of the CNN classifier on the three-dimensional structure to identify 
unfavorable COVID medicine reactions is shown in Table 2. In one convolutional 
layer, the CNN classifier achieved the highest accuracy (A) value of 87.16%, 
the lowest Hamming (L-H) loss of 12.83%, and the highest precision score of 
77.88%, recall value of 70.76%, the highest F1 measure of 72.07%, and highest 
ROC-AUC value of 80.97%. The CNN model outperformed the performance 

Table 2 Performance of CNN and pre-trained classifiers on the three-dimensional structure to 
identify unfavorable COVID medicine reactions 

# Model A H-L P R F1 ROC-AUC 

CNN 87.16% 12.83% 77.88% 70.76% 72.07% 80.97% 

DenseNet201 85.44% 14.55% 77.47% 66.36% 68.42% 78.36% 

InceptionV3 86.78% 13.21% 77.40 % 69.91% 71.16% 80.23% 

MobileNetV2 85.63% 14.36% 76.87% 70.98% 71.48% 79.44% 

ResNet50 80.07% 19.92% 67.63% 51.20% 55.97% 68.96% 

VGG19 78.58% 22.41% 61.57% 37.72% 43.87% 63.42%
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of pre-trained models (DenseNet201, InceptionV3, MobileNetV2, ResNet50, and 
VGG19). Among the pre-trained models, InceptionV3 performs well compared 
to DenseNet201, MobileNetV2, ResNet50, and VGG19 models. It achieved an 
accuracy score of 86.78%, a recall score of 69.91%, a hamming loss of 13.21%, a 
precision value of 77.40%, an F1 measure value of 71.16%, and an ROC-AUC value 
of 80.23%. On the other hand, the DenseNet201 model achieved 85.44% accuracy, 
14.55% hamming loss, 77.47% precision, 66.36% recall, 68.42% F1 score, and 
78.36% ROC-AUC score. The MobileNetV2 transfer learning model achieved an 
accuracy score of 85.63%, a hamming loss of 14.36%, a precision score of 76.87%, a 
recall score of 70.98%, a F1 measure value of 71.48%, and an ROC-AUC of 79.44%. 
The ResNet50 classifier achieved an accuracy value of 80.07%, a hamming loss of 
19.92%, a precision score of 67.63%, a recall value of 51.20%, an F1 measure of 
55.97%%, and an ROC-AUC value of 68.96%. VGG19 model achieved an accuracy 
score of 78.58%, a recall score of 37.72%, a hamming loss of 22.41%, a precision 
value of 61.57%, an F1 measure value of 43.87%, and an ROC-AUC value of 
63.42%. 

The presented multi-label convolutional neural network model performance sug-
gests that the three-dimensional structures of medicine are adequate for identifying 
unfavorable COVID medicine reactions. It also outperformed the performance 
of pre-trained transfer learning models (DenseNet201, MobileNetV2, ResNet50, 
VGG19, InceptionV3 models) and achieved the highest accuracy score of 87.16%. 
The suggested CNN model can also be utilized to identify unfavorable COVID 
medicine reactions during medicine discovery, design, and development. 

4.4 ROC-AUC Curve 

The ROC-AUC curve of the CNN classifier and pre-trained models on three-
dimensional structures have been discussed in this section. The convolutional neural 
network classifier ROC-AUC value varies with respect to distinct convolutional 
layers. The convolutional neural network classifier with one convolutional layer 
achieved the best receiver operator characteristic curves among all convolutional 
layers on the three-dimensional structure. It reports the best ROC-AUC value of 
80.97%. On the other hand, it can be observed from Fig. 4b the InceptionV3 model 
performed best and acquired an ROC-AUC value of 80.23%% compared to other 
pre-trained models (MobileNetV2, DenseNet201, ResNet50, and VGG19 models). 
The MobileNetV2 model achieved an ROC-AUC value of 79.44%, which can be 
seen from Fig. 4c. DenseNet201, ResNet50, and VGG19 models achieved ROC-
AUC scores of 78.36%, 68.96%, and 63.42%, respectively, which can be observed 
from Figs. 4d–f.
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 4 ROC-AUC curve of CNN and pre-trained models. (a) ROC-AUC curve of CNN. (b) 
ROC-AUC curve of InceptionV3. (c) ROC-AUC curve of MobileNetV2. (d) ROC-AUC curve 
of DenseNet201. (e) ROC-AUC curve of ResNet50. (f) ROC-AUC curve of VGG19 

5 Conclusion 

Identifying COVID unfavorable medicine reactions of the novel medicine is an 
attractive approach to speed up the medicine development process. This chapter 
provided a CNN classifier for identifying unfavorable COVID medicine reactions 
from the three-dimensional structure of medicine. The three-dimensional chemical 
structure is obtained from PubChem, and unfavorable medicine reactions are 
collected from WebMD to perform the experiment, which is illustrated in Fig. 1. 
The identification power of the three-dimensional structure of medicine shows that
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COVID unfavorable medicine reactions can be identified effectively. A medicine 
can have more than one unfavorable reaction, as shown in Fig. 2. Therefore, a multi-
label CNN framework has been presented in the current work, shown in Fig. 3. 
The presented CNN model outperformed the pre-trained model’s performance 
(DenseNet201, MobileNetV2, ResNet50, VGG19, InceptionV3 models). Its high 
performance on the three-dimensional structure of medicine justifies its prominence 
in adequacy and dependability in modern medicine discovery, development, and 
design. Based on the ROC-AUC score wise, the models can be ranked as CNN 
. > InceptionV3 . > MobileNetV2 . > DenseNet201 . > ResNet50 . > VGG19, which 
scores are presented in Fig. 4. The presented CNN classifier achieved an accuracy 
score of 87.16%, and the model can effectively identify adverse medicine responses. 
Employing a more advanced CNN classifier can give more effective results in the 
three-dimensional structure of medicine. Further, it can be integrated with other 
medical information such as amino acid sequence, MEDLINE literature infor-
mation, gene ontology, protein information, and chemical interaction to identify 
unfavorable reactions. Therefore, there is still scope for more research into building 
effective computational models by combining different medicine properties. 
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Using Reinforcement Learning 
for Optimizing COVID-19 Vaccine 
Distribution Strategies 

Robertas Damaševičius, Rytis Maskeliūnas, and Sanjay Misra 

1 Introduction 

The COVID-19 pandemic is a global health crisis caused by the novel coronavirus 
SARS-CoV-2. It first emerged in Wuhan, China, in late 2019 and rapidly spread 
across the world, leading to the World Health Organization declaring it a global 
pandemic in March 2020. As of February 2023, the pandemic has affected over 200 
million people globally and caused over 4 million deaths. The COVID-19 pandemic 
has had a profound impact on virtually all aspects of society, including healthcare 
systems [1], the global economy [2], researcher collaboration [3], and day-to-
day life [4]. In response to the pandemic, governments and health organizations 
around the world have implemented a range of measures, including lockdowns, 
travel restrictions, and widespread testing and vaccination programs. The COVID-
19 pandemic clearly indicates that economic and social well-being are strongly 
linked to population health [5]. 

Vaccination has emerged as a key tool in the fight against the pandemic, with 
several vaccines having been developed and authorized for emergency use [6]. 
The successful deployment of these vaccines is critical to controlling the spread 
of the virus and reducing the number of COVID-19 cases and deaths. One of the 
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key challenges in responding to the pandemic has been the efficient and effective 
distribution of vaccines to curb the spread of the virus [7, 8]. The complex and 
rapidly changing nature of the pandemic has made it challenging for traditional 
methods of vaccine allocation and delivery to keep up and has highlighted the 
need for innovative approaches to address this problem [9]. Traditional methods 
of vaccine allocation and delivery involve a combination of centralized planning 
and on-the-ground implementation [10]. Centralized planning typically involves 
forecasting demand for vaccines, determining which populations should receive 
priority, and allocating vaccine supplies based on these factors. This process can 
be informed by data on the number of confirmed COVID-19 cases, the number of 
hospitalizations, and the age and health status of individuals in the population [11]. 
Once vaccines are allocated, the process of delivering them to individuals can be 
complex and multi-faceted. In many cases, vaccines are delivered through healthcare 
providers, such as hospitals, clinics, and pharmacies. In some instances, mobile 
teams may be deployed to provide vaccinations in communities that are remote or 
have limited access to healthcare facilities. Delivery of vaccines can also be influ-
enced by a range of logistical and operational challenges, such as limited storage and 
transportation capabilities, the need for cold chain management, and the availability 
of personnel to administer the vaccines [12]. Forecasting demand for vaccines can 
be difficult, particularly in the context of a rapidly evolving pandemic. This can 
result in over-allocation or under-allocation of vaccine supplies, which can have 
significant implications for public health outcomes [13]. Traditional approaches 
are often based on predetermined allocation plans and delivery schedules, which 
can be slow to respond to changes in demand or supply. This lack of flexibility 
can limit the ability to quickly respond to emerging needs, such as changes in 
the number of confirmed COVID-19 cases or the emergence of new variants of 
the virus. Traditional methods of vaccine delivery may not be well-suited to reach 
all individuals in a population, particularly those who are marginalized or have 
limited access to healthcare services. This can result in unequal distribution of 
vaccines, which can impact public health outcomes and exacerbate existing health 
disparities [14]. The process of delivering vaccines can be complex and resource-
intensive and is subject to a range of logistical and operational challenges, such as 
limited storage and transportation capabilities, the need for cold chain management, 
and the availability of personnel to administer the vaccines [15]. Public resistance 
or hesitancy to receive COVID-19 vaccines can also impact the effectiveness of 
traditional approaches [16]. This can include concerns about vaccine safety, efficacy, 
or the speed at which vaccines have been developed and approved [17]. Addressing 
these challenges and overcoming vaccine hesitancy will be critical to ensuring 
the success of traditional approaches to vaccine allocation and delivery. These 
challenges can have a significant impact on the speed and efficiency of vaccine 
delivery and may limit the number of individuals who can be vaccinated in a given 
time frame. 

Artificial intelligence (AI) has been utilized in several ways to help address 
the COVID-19 pandemic, including: predictive modeling [18–20], contact tracing, 
image analysis, drug discovery, and virus protein analysis [21]. AI has been useful in
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assisting healthcare workers, researchers, and policymakers in their response to the 
pandemic and finding solutions to its related problems. Reinforcement learning (RL) 
is a type of AI that has emerged as a promising approach for optimizing complex 
systems in real time [22]. RL algorithms use trial-and-error learning to identify the 
best actions to take in a given situation, based on their expected outcomes. RL has 
been applied to a wide range of domains, including healthcare [23, 24], economics 
and finance [25], transportation [26], education [27], and robotics [28], among 
others. In the context of vaccine distribution, RL has the potential to provide real-
time optimization of vaccine allocation and delivery strategies, taking into account 
a range of factors such as vaccine storage and transport requirements, population 
demographics, and regulatory restrictions, among others [29]. This can help to 
ensure that vaccines are distributed in a way that maximizes public health outcomes, 
taking into account the complex and rapidly changing nature of the pandemic 
[30]. The use of RL for optimizing COVID-19 vaccine distribution strategies is an 
area of growing interest and research [31–34]. However, there are also significant 
challenges and limitations associated with using RL in this context, such as limited 
data availability, complex system dynamics, and ethical and social implications. 
Additionally, the field is still in its infancy, and there is a need for further research 
and development to better understand the impact of RL on vaccine distribution 
outcomes and to develop more effective and efficient RL algorithms for this domain 
[35]. 

This survey aims to provide a comprehensive overview of the use of RL for 
optimizing COVID-19 vaccine distribution strategies and its potential impact on 
public health outcomes. The authors will review the state of the art in RL applied 
to vaccine distribution, discuss the challenges and limitations of using RL in this 
context, and suggest future directions for research and development in this field. 
The chapter is dedicated to researchers, practitioners, and policymakers working in 
the areas of AI, public health, and vaccine distribution. 

The aims of this chapter are as follows: 

– To provide a comprehensive overview of RL and its applications to vaccine 
distribution 

– To review the current state of the art in RL for optimizing COVID-19 vaccine 
distribution strategies and to analyze the potential benefits and limitations of 
using RL in this context 

– To identify the challenges and limitations of using RL for COVID-19 vaccine 
distribution and to suggest directions for future research and development in this 
field 

– To discuss the ethical and social implications of using RL for COVID-19 vaccine 
distribution and to provide recommendations for addressing these implications 

– To provide insights and recommendations for researchers, practitioners, and 
policymakers working in the areas of AI, public health, and vaccine distribution 

We formulate the following research questions and objectives of this chapter: 

– How has RL been applied to vaccine distribution?
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– What are the potential benefits and limitations of using RL for vaccine distribu-
tion? 

– What is the methodology for using RL for optimizing COVID-19 vaccine 
distribution strategies, and what are the key steps and components involved in 
this process? 

The remaining parts of this chapter are structured as follows. Section 2 provides 
a detailed description of the methodology for using RL for optimizing COVID-19 
vaccine distribution strategies, including the problem formulation, data collection 
and preparation, model development, model validation and evaluation, and deploy-
ment and real-time monitoring. The section also provides a review of the existing 
literature on RL and vaccine distribution and highlights the gaps and opportunities 
for further research. Section 3 as an illustrative example describes the generic archi-
tecture of the RL-based system for vaccine allocation and distribution. Section 4 
evaluates the benefits and challenges of RL for vaccine distribution task. Section 5 
presents the answers to research questions of this study. The section also provides 
an analysis of the benefits and limitations of using RL for vaccine distribution 
and provides recommendations for future research and development. Section 6 
discusses future directions for research and development based on using RL for 
vaccine distribution. Section 7 provides a conclusion to the study, summarizing the 
main findings and contributions of the study, and highlighting the potential of RL 
for optimizing COVID-19 vaccine distribution strategies. The section also provides 
recommendations for future research and development in this area. 

2 Reinforcement Learning (RL) 

2.1 Definition and Key Concepts 

This chapter uses several key concepts and definitions that are important to 
understand in order to fully grasp the scope and objectives of the research. In this 
section, we will define and provide explanations of the most important terms used 
in the study. 

RL is a type of machine learning that focuses on learning how to make decisions 
in an environment by observing the consequences of those decisions. The goal of 
RL is to learn a policy, or a mapping from states to actions, that maximizes some 
notion of cumulative reward over time. Formally, let S be the set of states, A be the 
set of actions, .R(s, a) the reward function that maps states and actions to rewards, 
and .π(a|s) the policy that maps states to actions. The objective of RL is to find the 
policy .π∗(a|s) that maximizes the expected cumulative reward, defined as 

.J (π) = Eπ

[ ∞∑
t=0

γ tR(st , at )

]
,
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where .s0, s1, ..., st are the states visited according to the policy . π , .a0, a1, ..., at are 
the actions taken according to the policy . π , and .γ ∈ [0, 1) is a discount factor that 
determines the importance of future rewards. 

2.2 Main Concepts and Methods in Reinforcement Learning 
Domain 

A mind map of concepts in the RL domain is presented in Fig. 1. 

Fig. 1 Mind map of reinforcement learning concepts
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The mind map represents the various concepts and sub-topics in the field of 
RL. State representation is the description of the current situation or environment 
in a form that can be processed by the RL algorithm. Action space is the set 
of possible actions that can be taken in the environment. Policy is the mapping 
of states to actions, representing the strategy or behavior of the agent. Reward 
function is the function that defines the reward signal for the agent, used to 
measure its performance. Models describe the interaction between the agent and the 
environment in RL. Markov decision process (MDP) is a mathematical model that 
defines the relationship between the state, action, and reward. Partially observable 
MDP (POMDP) is an extension of MDP for situations where the state is not fully 
observable [36]. In multi-agent RL, multiple agents interact with each other and 
the environment. In RL with function approximation, the policy is represented 
as a function approximation rather than a table. Q-Learning is an off-policy RL 
algorithm that uses the Q-function to learn the optimal policy. SARSA is an on-
policy RL algorithm that uses the action-value function to learn the optimal policy. 
Deep Q-Network (DQN) is a variant of Q-learning that uses deep neural networks to 
represent the Q-function. Advantage actor critic (A2C) is an algorithm that uses both 
an actor and a critic to learn the optimal policy [37]. Proximal policy optimization 
(PPO) is an algorithm that uses gradient ascent to update the policy in a stable 
manner [38]. Methods are different approaches used to solve RL problems. Monte 
Carlo (MC) method that uses sample-based estimates to evaluate the expected 
return. Temporal-difference (TD) method that uses the prediction error to update the 
estimate of the return [39]. Dynamic programming method that uses value iteration 
or policy iteration to solve the RL problem. In model-based RL, the model of the 
environment is used to plan the optimal policy. In model-free RL, the policy is 
learned directly from experience without a model of the environment. 

These definitions and concepts provide the foundation for the research questions 
and objectives of this study and are central to understanding the methodology, 
results, and conclusions of the study. 

2.3 Applications of RL 

RL has a wide range of potential applications in various fields, including robotics, 
gaming, autonomous systems, and more recently, healthcare. Some of the most 
notable applications of RL include: 

– Robotics: RL has been used to train robots to perform various tasks, such as 
grasping objects, walking, and flying. In these applications, the robot learns to 
take actions in its environment to achieve a desired goal, such as picking up an 
object or reaching a target location [28]. 

– Gaming: RL has been applied to game AI, allowing game agents to learn to 
play games such as chess, Go, and even video games, by trial and error. The 
game agent learns to make decisions based on the outcome of its actions, such as 
winning or losing the game [27].
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– Autonomous systems: RL has been used to control autonomous systems such 
as self-driving cars, drones, and robots. In these applications, the RL algorithm 
learns to make decisions based on sensory information, such as camera inputs 
or GPS data, in order to achieve a desired goal, such as avoiding obstacles or 
reaching a target location [26]. 

– Healthcare: RL has recently been applied to healthcare, including COVID-19 
vaccine distribution. In these applications, the RL algorithm learns to make deci-
sions based on various factors, such as vaccine supply and demand, population 
demographics, and public health policies, in order to optimize the distribution of 
the vaccine [40, 41]. 

These are just a few examples of the potential applications of RL. With the 
increasing popularity of machine learning and AI, the potential applications of RL 
are likely to continue to grow and expand in the coming years. 

2.4 Overview of RL Approaches to Vaccine Distribution 

Over the past few years, there has been growing interest in using RL to optimize 
COVID-19 vaccine distribution strategies [42, 43]. This is due to the complex and 
rapidly changing nature of the pandemic, which requires dynamic and adaptable 
solutions that can respond to changing conditions in real time. RL provides a 
powerful and flexible framework for addressing these types of problems, as it allows 
the agent to learn from experience and make decisions based on the outcomes of its 
actions. COVID-19 vaccine distribution refers to the process of transporting and 
administering the COVID-19 vaccine to eligible individuals [33, 44]. The vaccine 
distribution process is a complex and dynamic system that is influenced by factors 
such as vaccine supply and demand, population demographics, and public health 
policies. 

Optimization refers to the process of finding the best solution to a problem, given 
certain constraints and objectives. In the context of this study, optimization refers to 
finding the best strategy for COVID-19 vaccine distribution that meets the objectives 
of efficiently distributing the vaccine to eligible individuals, while also considering 
factors such as vaccine supply and demand, population demographics, and public 
health policies. RL has been applied to optimize COVID-19 vaccine distribution 
strategies, as a way to address the complex and rapidly changing nature of the 
pandemic. The goal of these applications is to determine the most effective way to 
allocate limited vaccine supplies to various populations, taking into account factors 
such as vaccine efficacy, demand, and distribution costs. 

One approach to using RL for vaccine distribution is to model the problem as 
a MDP, where the state of the system is defined by the distribution of the vaccine 
and the actions of the agent are decisions about how to allocate the vaccine. The 
reward function is designed to capture the desired behavior of the agent, such as 
maximizing the number of people vaccinated or minimizing the spread of the virus.
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The agent learns to make decisions based on the outcomes of its actions, in order to 
maximize the reward over time. 

Another approach is to use multi-agent RL (MARL), where multiple agents 
represent different entities in the vaccine distribution system, such as hospitals, 
clinics, and government agencies [45]. The agents learn to coordinate their actions 
to achieve a common goal, such as maximizing the number of people vaccinated. In 
this approach, the agents need to take into account not only the state of their own 
environment, but also the state of other agents and the impact of their actions on the 
overall system. 

There has also been a significant amount of research on the development 
of reward functions for vaccine distribution [31, 46]. The reward function is a 
critical component of the RL algorithm, as it determines the behavior of the agent. 
Researchers have explored the use of various reward functions, including those that 
prioritize the number of people vaccinated, the speed of the vaccine rollout, and 
the minimization of the spread of the virus. These studies have demonstrated the 
importance of carefully considering the design of the reward function, as it can have 
a significant impact on the behavior of the agent. RL-based approaches to vaccine 
distribution have been shown to be effective in simulation studies, where they can 
be tested under different scenarios and conditions [33]. For example, simulations 
have been used to compare the performance of RL-based approaches to traditional 
optimization methods, such as linear programming, and to evaluate the impact of 
different reward functions on the behavior of the agent [47]. 

Despite the promising results of these studies, there are still several challenges 
and limitations that need to be addressed in order to apply RL to vaccine distribution 
in real-world settings. For example, there may be limited data available to train the 
RL algorithms, or there may be constraints on the actions of the agent, such as legal 
or ethical considerations. Additionally, the rapidly changing nature of the pandemic 
means that the environment is constantly evolving, and the agent must be able to 
adapt to these changes in real time. 

Summarizing, the state of the art in RL for vaccine distribution is still in its 
early stages, but there is a growing body of research that demonstrates its potential 
as a powerful tool for optimizing vaccine distribution strategies. With ongoing 
research and development, RL is likely to become an increasingly important tool for 
improving public health outcomes and addressing the challenges posed by COVID-
19. 

3 Illustrative Example of a RL-Based System for Vaccine 
Allocation and Distribution 

As an illustrative example demonstrating the use of RL for vaccine allocation and 
distribution, we present a description of a hypothetical RL-based vaccine allocation 
and distribution system.
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3.1 Generic Architecture 

A generic architecture of a RL-based system for vaccine allocation and distribution 
can have the following components: 

– Environment: The environment in this case would be the vaccine distribution 
network, including storage and transportation systems, healthcare facilities, and 
population demographics. 

– State representation: The state representation would consist of the current 
inventory levels of the vaccine at different storage and healthcare facilities, 
the number of vaccines administered, and the number of people in different 
demographics who are eligible for the vaccine. 

– Action Space: The action space would consist of different decisions that the 
system can make, such as the allocation of vaccines to different healthcare 
facilities, the transportation of vaccines from one facility to another, and the 
administration of vaccines to eligible individuals. 

– Reward Function: The reward function would measure the success of the 
system’s decisions and provide feedback on how to improve future decisions. For 
example, the reward function might prioritize higher vaccination coverage, faster 
vaccine administration, or a more equitable distribution of vaccines to different 
demographics [48]. 

– Policy: The policy would be the algorithm that the RL system uses to make 
decisions. This could be a deep neural network, a decision tree, or another type 
of machine learning model that is trained on the environment and the reward 
function to optimize vaccine distribution outcomes. 

– Model: The model would be the internal representation of the environment 
that the policy uses to make decisions. This could be a simplified or abstract 
representation of the vaccine distribution network that is updated over time as 
the system interacts with the environment. 

– Simulation: The system would be tested and trained through simulations, 
allowing for the exploration and optimization of different policies and models. 
The simulation results would provide insight into the effectiveness of different 
approaches and inform the development of a final implementation strategy. 

This generic architecture outlines the key components of an RL-based system 
for vaccine allocation and distribution. However, the specifics of each component 
will vary depending on the specific challenges and requirements of the vaccine 
distribution network. Future research could focus on refining and optimizing these 
components to improve the overall efficiency and effectiveness of the RL-based 
vaccine distribution system. 

The generic architecture of an RL-based system for vaccine allocation and 
distribution is given in Fig. 2. 

In this architecture, the “Environment” component represents the dynamic 
and changing vaccine stock and demand information. The “Agent” component 
represents the decision-making process, including the policy, RL algorithm, and 
value function. The “Evaluation” component represents the metrics and perfor-
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Fig. 2 Generic architecture of RL-based vax allocation and distribution system 

Fig. 3 Class diagram of RL-based vax allocation and distribution system 

mance tracker used to evaluate the effectiveness of the vaccine allocation and 
distribution strategy. The arrows represent the flow of information and decision-
making processes in the system. 

3.2 Classes of the System 

We assume that the system is designed using the principles of object-oriented 
design. The class diagram of the system is given in Fig. 3. 

This class diagram defines the classes VaccineAllocationSystem, State, Action, 
Reward, Location, Population, VaccineSupply, VaccinationRate, Amount, Effi-
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ciency, and Equity. The VaccineAllocationSystem class is the main class that 
performs the vaccine allocation and distribution using RL. It has methods for 
learning from the past decisions and rewards, choosing the best action based on 
the current state, and allocating the vaccine based on the selected action. The State 
class represents the current state of the system and includes information about 
the location, population, vaccine supply, and vaccination rate. The Action class 
represents the action that can be taken by the system and includes information 
about the amount of vaccine to allocate and the destination. The Reward class 
represents the reward received after taking the action and includes information about 
the efficiency and equity of the allocation. The other classes represent additional 
information and data used by the system, such as location, population, vaccine 
supply, vaccination rate, amount, efficiency, and equity. 

3.3 Components of the System 

The component diagram of the system is given in Fig. 4. 
“Vaccine Stock” component keeps track of the available quantity of vaccines 

at different locations. “Vaccine Allocation” component decides the distribution 

Fig. 4 Component diagram of RL-based vax allocation and distribution system
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of vaccines among different regions based on factors such as population den-
sity, healthcare infrastructure, and priority groups. “Vaccine Request” component 
receives requests for vaccines from healthcare facilities and other entities. “Delivery 
Route Planner” component plans the most efficient delivery route for vaccines 
to reach the destination. “Delivery Scheduler” component schedules the delivery 
of vaccines based on the availability of delivery vehicles, delivery personnel, and 
other resources. “Delivery Vehicle Management” component manages the delivery 
vehicles, such as assigning vehicles to delivery routes and monitoring the status 
of vehicles during delivery. “Delivery Status Monitor” component monitors the 
delivery status of vaccines, such as whether they have been delivered, are in transit, 
or have encountered any issues. “State Representation” component represents the 
current state of the vaccine distribution system, which includes information about 
the vaccine stock, delivery status, and other relevant factors. “Policy” component 
represents the decision-making mechanism in the RL-based system, which maps 
states to actions. “Action Space” component defines the possible actions that the 
RL-based system can take in a given state. “Reward Function” component defines 
the reward signal used by the RL-based system to learn the optimal policy, which 
maps states and actions to a scalar reward value. 

3.4 Typical Operations of the System 

The typical operations of the system are described in Fig. 5. 

Fig. 5 Typical operations of RL-based vax allocation and distribution system
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In this diagram, the central control (C) acts as the decision-maker for the vaccine 
allocation and distribution system. It communicates with the vaccine storage (V) 
to request and confirm the supply of vaccines. The healthcare facilities (H) receive 
allocated vaccine doses and administer them to patients (P). Patients report the status 
of their vaccines back to the healthcare facilities, which then report the information 
back to the central control. The central control uses this information to update the 
state of the system and communicates with the reinforcement learning component 
(RL) to get recommendations on vaccine allocation strategies. The central control 
then implements the recommended strategy and allocates vaccine doses to the 
healthcare facilities. 

3.5 Deployment 

The deployment diagram of the system is given in Fig. 6. 

Fig. 6 Deployment diagram of RL-based vax allocation and distribution system
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The deployment diagram represents the flow of information between components 
in the RL-based system for vaccine allocation and distribution and shows the 
physical deployment of these components. The diagram shows two packages, the 
reinforcement learning system and the delivery management system. The compo-
nents within the reinforcement learning system include [Vaccine Stock], [Vaccine 
Allocation], [Vaccine Request], [State Representation], [Policy], [Action Space], 
and [Reward Function]. The components within the delivery management system 
include [Delivery Route Planner], [Delivery Scheduler], [Delivery Vehicle Manage-
ment], and [Delivery Status Monitor]. The diagram represents the flow of data and 
information between these components. [Vaccine Stock] provides information to 
[Vaccine Allocation], and [Vaccine Request] is also input into [Vaccine Allocation]. 
The output of [Vaccine Allocation] is used by the [Delivery Route Planner], which 
provides input to the [Delivery Scheduler]. The [Delivery Scheduler] provides 
input to the [Delivery Vehicle Management], which in turn provides information 
to the [Delivery Status Monitor]. The [Delivery Status Monitor] provides input 
to the [State Representation], which is used by the [Action Space]. The [Policy] 
and [Action Space] both provide input to the [Reward Function], and [Vaccine 
Allocation] is also an input to the [Reward Function]. The output of the [Reward 
Function] is used by [Policy] and [Action Space] to adjust the [Vaccine Allocation]. 

3.6 Incorporating Domain-Specific Knowledge and 
Constraints 

RL is a powerful tool for optimizing COVID-19 vaccine distribution strategies, 
but its effectiveness is dependent on the ability to incorporate domain-specific 
knowledge and constraints [49]. Domain-specific knowledge refers to information 
about the particular problem or environment being addressed, such as the logistics 
of vaccine distribution, the behavior of individuals and communities in response 
to the pandemic, and the regulations and policies in place [50]. Constraints refer 
to limitations on the actions that can be taken by the RL agent, such as ethical 
considerations, legal requirements, and resource limitations. 

One of the key challenges in incorporating domain-specific knowledge and 
constraints into RL is defining the reward function. The reward function is used 
to guide the RL agent toward making decisions that achieve the desired objectives, 
such as minimizing the spread of the virus or maximizing the number of people 
vaccinated. However, defining the reward function in a way that accurately reflects 
the domain-specific knowledge and constraints can be a complex task. One approach 
to addressing this challenge is to incorporate domain experts into the design and 
implementation of the RL algorithm. This can involve consulting with public health 
experts, epidemiologists, and other specialists to ensure that the reward function 
accurately reflects the goals and constraints of the vaccine distribution process. 
Additionally, the use of expert-generated heuristics, which are rules of thumb based
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on experience and knowledge of the domain, can help to improve the accuracy of 
the reward function and the performance of the RL algorithm. 

Another approach is to use techniques such as transfer learning, which allows 
the RL algorithm to leverage experience from related problems to improve its 
performance in the current environment [34, 46]. This can be particularly useful 
in situations where data are limited, as it allows the agent to leverage knowledge 
from similar problems to make better decisions. Incorporating constraints into the 
RL algorithm can also be a challenge. For example, there may be legal requirements 
or ethical considerations that restrict the actions of the agent. To address this, the RL 
algorithm can be designed to include these constraints as part of the reward function, 
or they can be implemented as constraints on the action space. Additionally, it is 
important to carefully consider the potential consequences of the decisions made by 
the agent, as the actions taken by the agent may have unintended consequences that 
impact public health outcomes. 

Incorporating domain-specific knowledge and constraints into RL is crucial 
for optimizing COVID-19 vaccine distribution strategies. This requires careful 
consideration of the reward function and the constraints on the agent’s actions 
and can be achieved through collaboration with domain experts and the use of 
transfer learning and constraint-based techniques. By taking these steps, the RL 
algorithm can be designed to accurately reflect the goals and constraints of the 
vaccine distribution process and to make decisions that are aligned with the overall 
goals of improving public health outcomes. 

4 Evaluation of RL for Vaccine Distribution 

4.1 Benefits of RL for Vaccine Distribution 

RL has the potential to significantly impact COVID-19 vaccine distribution by 
providing optimized strategies for allocating vaccines, resources, and personnel. 
Some of the key benefits of using RL for vaccine distribution include: 

– Optimization: RL algorithms can continuously learn from the outcomes of their 
actions and adjust their strategies over time to achieve better results. This makes 
RL well-suited for addressing complex problems such as vaccine distribution, 
where multiple objectives and constraints must be considered [30, 35, 42, 51– 
53]. 

– Flexibility: RL algorithms can adapt to changing circumstances, such as changes 
in the distribution of the virus or in the availability of vaccines, making them 
well-suited for addressing dynamic and unpredictable environments. The agent 
can be programmed to consider a variety of different factors, such as the number 
of people vaccinated, the speed of the vaccine rollout, and the minimization 
of the spread of the virus. This allows the agent to find the optimal trade-
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off between different objectives, which is important in a complex and rapidly 
evolving situation like the COVID-19 pandemic [43]. 

– Improved accuracy: By incorporating domain-specific knowledge and constraints 
into the reward function, RL algorithms can make more accurate decisions that 
align with the overall goals of improving public health outcomes. 

– Enhanced decision-making: RL algorithms can provide decision-makers with 
insights and recommendations for optimizing vaccine distribution, taking into 
account a wide range of variables such as vaccine supply, population demograph-
ics, and local regulations [35, 51, 53]. 

– Increased efficiency: RL algorithms can help to minimize waste and optimize 
resource allocation, leading to more efficient use of vaccines, personnel, and 
resources [32, 35]. 

– Improved transparency: By using a data-driven approach, RL algorithms can 
provide a transparent and easily understandable explanation of the decision-
making process, helping to increase public trust in the vaccine distribution 
process. 

– Improved scalability: RL algorithms can be easily scaled to address vaccine 
distribution on a national or even global scale, allowing for more efficient and 
effective coordination of resources and personnel [51]. 

– Learnability: The agent can continuously improve its behavior based on the 
outcomes of its actions, which is particularly important in a rapidly changing 
environment like the COVID-19 pandemic. Additionally, RL allows the agent to 
make decisions in real time, which is critical in a situation where time is of the 
essence and quick action is needed to minimize the spread of the virus. 

The use of RL for vaccine distribution has the potential to significantly improve 
public health outcomes by providing optimized strategies for allocating vaccines, 
resources, and personnel. RL has several strengths that make it an attractive 
approach for optimizing COVID-19 vaccine distribution strategies. By leveraging 
the strengths of RL, decision-makers can make more informed and accurate 
decisions that align with the overall goals of improving public health. 

4.2 Challenges and Limitations of RL 

Despite its many potential applications and successes, RL also faces several 
challenges and limitations that need to be addressed. Some of the most significant 
challenges and limitations of RL include: 

– Credit assignment problem: One of the main challenges in RL is determining 
which actions of the agent are responsible for the outcomes that it experiences. 
This is known as the credit assignment problem and can lead to slow and 
suboptimal learning [54]. 

– Exploration–exploitation trade-off: Another challenge in RL is balancing the 
need for exploration and exploitation. The agent needs to explore its environment
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to gather information about its possible outcomes, but also needs to exploit that 
information to make the best decisions. Balancing this trade-off is a key challenge 
in RL [55]. 

– Scalability: RL algorithms can be computationally expensive, especially as the 
size of the state and action spaces increase. This can make RL difficult to scale 
to large and complex environments [56]. 

– Model uncertainty: In many RL algorithms, the agent must model its environ-
ment in order to make decisions. Model uncertainty, or the lack of certainty in 
the model, can lead to suboptimal decisions and slow learning [51]. 

– Reward design: The choice of reward function can have a significant impact 
on the behavior of the agent. Designing an appropriate reward function that 
effectively captures the desired behavior of the agent can be challenging. 

– Availability of data: In order for the RL algorithm to learn, it needs to have access 
to large amounts of data about the vaccine distribution process. However, in many 
cases, there may be limited data available, which can make it difficult to train the 
agent effectively. 

– Complexity: RL algorithms can be computationally intensive, which can make it 
challenging to implement them in real-world scenarios, particularly in resource-
constrained environments such as healthcare systems. Additionally, there may be 
ethical or legal constraints on the actions of the agent, which can make it difficult 
to implement RL in a way that is consistent with these constraints [35, 42]. 

These are just a few of the challenges and limitations of RL that need to be 
considered, particularly in terms of the availability of data, the complexity of the 
algorithms, and the rapidly changing nature of the pandemic. Addressing these 
challenges and limitations is a key area of research in RL, and the development of 
new algorithms and techniques to overcome these challenges is ongoing. Despite 
these challenges, RL is a promising tool for improving public health outcomes 
and addressing the challenges posed by COVID-19, and ongoing research and 
development is likely to lead to significant advances in this field. 

4.3 Limitations and Risks of RL for Vaccine Distribution 

While RL has the potential to significantly impact COVID-19 vaccine distribution, 
it is important to acknowledge the limitations and risks associated with its use. Some 
of the key challenges and limitations include: 

– Data quality and availability: RL algorithms require high-quality and reliable 
data to learn from, and decisions made by these algorithms are only as good as 
the data they are trained on. This can be a challenge in the context of vaccine 
distribution, where data may be incomplete, biased, or unavailable in real time. 

– Model complexity: RL algorithms can be complex and difficult to interpret, 
making it challenging for decision-makers to understand how the algorithms are 
making decisions [35, 42].
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– Model bias: RL algorithms can be biased if the data used to train them are biased, 
which can result in suboptimal or unethical decisions. 

– Lack of transparency: Some RL algorithms may be seen as black boxes, making it 
difficult for decision-makers to understand the logic behind the recommendations 
made by the algorithms. 

– Technical limitations: RL algorithms can be computationally intensive and 
require significant computational resources to run, which can be a challenge for 
organizations with limited computational capacity. 

– Ethical considerations: The use of RL for vaccine distribution raises important 
ethical considerations, such as fairness and equity in vaccine allocation [42], 
privacy, and the impact on vulnerable populations. 

– Model robustness: RL algorithms may not perform well in the face of new or 
unexpected situations, such as changes in the distribution of the virus or in the 
availability of vaccines, which can result in suboptimal or incorrect decisions 
[51]. 

– Rigidity: The rapidly changing nature of the COVID-19 pandemic means that 
the environment is constantly evolving, which can make it difficult for the 
RL algorithm to keep up with these changes. This requires the agent to be 
highly adaptable and able to quickly respond to new information and changing 
conditions, which can be a significant challenge. 

Therefore, while RL has the potential to significantly impact COVID-19 vaccine 
distribution, it is important to be aware of the limitations and risks associated with 
its use. Careful consideration of these challenges is necessary to ensure that the use 
of RL for vaccine distribution is safe, effective, and ethical. 

4.4 Ethical and Social Implications of RL for Vaccine 
Distribution 

The use of RL for COVID-19 vaccine distribution raises important ethical and social 
implications that must be carefully considered. Some of the key ethical and social 
implications include: 

– Fairness and equity: RL algorithms may make decisions that are not fair or 
equitable, such as favoring certain populations over others. This can result in 
unequal access to vaccines, which can perpetuate existing social and health 
disparities [42]. 

– Privacy: RL algorithms may collect, store, and use sensitive personal informa-
tion, such as health information, which can raise concerns about privacy and data 
security. 

– Bias: RL algorithms can perpetuate existing biases and discrimination if the data 
used to train them are biased. This can result in unfair or unequal treatment of 
certain populations.
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– Impact on vulnerable populations: RL algorithms may have unintended conse-
quences for vulnerable populations, such as those who are marginalized, elderly, 
or have underlying health conditions [57]. 

– Public trust: The use of RL algorithms for vaccine distribution may be perceived 
as opaque and lacking in transparency, which can undermine public trust in the 
distribution process [58]. 

– Responsibility and accountability: The use of RL algorithms for vaccine distribu-
tion raises questions about who is responsible and accountable for the decisions 
made by the algorithms [59]. 

– Societal and cultural factors: The use of RL algorithms for vaccine distribution 
must take into account cultural and societal factors, such as cultural attitudes 
toward vaccines, trust in healthcare systems, and public attitudes toward technol-
ogy [60]. 

The use of RL for COVID-19 vaccine distribution raises important ethical and 
social implications that must be carefully considered. The potential benefits of 
RL must be balanced against the potential risks and negative consequences, and 
appropriate measures must be taken to ensure that the use of RL is safe, ethical, and 
equitable. 

5 Answers to Research Questions 

5.1 Research Question 1: How Has RL Been Applied to 
Vaccine Distribution? 

RL has been applied to vaccine distribution in several ways, including optimization 
of vaccine allocation and delivery strategies, real-time monitoring of vaccine supply 
chains, and dynamic adjustment of vaccine distribution strategies in response to 
changing conditions on the ground [61–63]. Some examples of RL applied to 
vaccine distribution include: 

– Optimizing vaccine allocation: RL algorithms can be used to optimize the allo-
cation of vaccines to different regions or populations, taking into account factors 
such as vaccine storage and transport requirements, population demographics, 
and regulatory restrictions, among others [30, 52, 64, 65]. 

– Real-time monitoring of vaccine supply chains: RL algorithms can be used 
to monitor the movement of vaccines through the supply chain in real time, 
providing insights into bottlenecks, delays, and other issues that may affect 
vaccine distribution outcomes [66]. 

– Dynamic adjustment of vaccine distribution strategies: RL algorithms can be 
used to dynamically adjust vaccine distribution strategies in response to changing 
conditions on the ground, such as changes in the number of cases or the 
emergence of new variants of the virus [32].
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5.2 Research Question 2: What Are the Potential Benefits and 
Limitations of Using RL for Vaccine Distribution? 

The key benefits of using RL for COVID-19 vaccine distribution include: 

– Real-time optimization: RL algorithms can provide real-time optimization of 
vaccine distribution strategies, allowing for dynamic and effective allocation of 
vaccines in response to changing conditions on the ground [67]. 

– Improved efficiency: RL algorithms can help to optimize the efficiency of vaccine 
distribution, reducing waste, increasing vaccine uptake, and reducing the impact 
of vaccine hesitancy [68]. 

– Increased transparency: RL algorithms can provide increased transparency into 
vaccine distribution outcomes, helping to identify areas for improvement and 
to ensure that decisions are being made in an ethical and socially responsible 
manner [69]. 

Despite the potential benefits of using RL for vaccine distribution, there are 
also significant challenges and limitations associated with using RL for COVID-19 
vaccine distribution: 

– Limited data availability: The use of RL for vaccine distribution requires high-
quality data on population demographics, vaccine supply chains, and other 
relevant factors. However, data availability is often limited, particularly in low-
and middle-income countries, which can make it difficult to develop accurate RL 
algorithms [70]. 

– Complex system dynamics: The vaccine distribution system is complex and 
rapidly changing, making it challenging to develop accurate RL algorithms that 
can adapt to changing conditions in real time [56]. 

– Ethical and social implications: The use of RL for vaccine distribution has 
significant ethical and social implications, such as potential biases in vaccine 
allocation and the impact of RL algorithms on vulnerable populations. 

– Lack of transparency: Some RL algorithms are highly complex and lack trans-
parency, which can make it difficult to understand how decisions are being made 
and to ensure that decisions are being made in an ethical and socially responsible 
manner [69]. 

The state of the art in RL for optimizing COVID-19 vaccine distribution strate-
gies has the potential to provide real-time optimization and increased efficiency 
of vaccine distribution. However, further research and development is needed to 
address the limitations and challenges associated with using RL for this purpose, 
including limited data availability, complex system dynamics, ethical and social 
implications, and lack of transparency.



Using Reinforcement Learning for Optimizing COVID-19 Vaccine Distribution. . . 189

5.3 Research Question 3: What Is the Methodology for Using 
RL for Optimizing COVID-19 Vaccine Distribution 
Strategies, and What Are the Key Steps and Components 
Involved in This Process? 

The methodology for using RL for optimizing COVID-19 vaccine distribution 
strategies involves several key steps and components, including: 

– Problem formulation: The first step in using RL for vaccine distribution is to 
formulate the problem in terms of the decision-making process, the state space, 
the action space, and the reward function. This involves defining the objectives 
of the vaccine distribution process, the available information and constraints, and 
the criteria for success. 

– Data collection and preparation: The second step is to collect and prepare 
high-quality data on population demographics, vaccine supply chains, and other 
relevant factors. These data are used to train and validate the RL algorithms and 
to evaluate the performance of the vaccine distribution strategy. 

– Model development: The third step is to develop an RL model that can learn 
from the collected data and optimize vaccine distribution strategies in real time. 
This involves selecting an appropriate RL algorithm, such as deep reinforcement 
learning or multi-agent reinforcement learning, and defining the architecture and 
parameters of the model. 

– Model validation and evaluation: The fourth step is to validate and evaluate 
the RL model using the collected data. This involves testing the model with 
simulated scenarios and evaluating its performance in terms of vaccine coverage, 
vaccine waste, and other relevant metrics. 

– Deployment and real-time monitoring: The final step is to deploy the RL model 
in real-world settings and to monitor its performance in real time. This involves 
integrating the RL model into the vaccine distribution system and using real-
time data to dynamically adjust the vaccine distribution strategy in response to 
changing conditions on the ground. 

The methodology for using RL for optimizing COVID-19 vaccine distribution 
strategies involves several key steps and components, including problem formu-
lation, data collection and preparation, model development, model validation and 
evaluation, and deployment and real-time monitoring. Effective implementation of 
this methodology requires a strong interdisciplinary collaboration between com-
puter scientists, epidemiologists, and public health experts and a deep understanding 
of the complexities of the vaccine distribution system.
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6 Future Directions for Research and Development 

Future research directions on advancing RL approaches for vaccine distribution can 
be stated as follows: 

– Developing explainable RL: RL algorithms can be complex and difficult to 
interpret, making it challenging for stakeholders to understand their decisions 
and the underlying logic. There is a need to develop explainable RL algorithms 
that can provide clear, interpretable explanations of the decisions being made. 
This will help ensure that the decisions made by the algorithms are trustworthy 
and that stakeholders can understand how and why decisions are being made 
[71]. 

– Enhancing fairness and equity: RL algorithms must be designed to ensure 
fairness and equity and to minimize bias and discrimination. This can be 
achieved by using unbiased data, designing algorithms that incorporate fairness 
constraints, and using counterfactual reasoning to assess the potential impact of 
decisions on different populations [72]. 

– Improving privacy and security: RL algorithms must be designed to protect 
sensitive information, such as health information, and to ensure the privacy and 
security of data. This can be achieved by using privacy-preserving methods, such 
as differential privacy, and by incorporating security measures into the algorithms 
[73]. 

– Evaluating real-world impact: RL algorithms must be evaluated in real-world 
settings to assess their effectiveness and impact. This will help determine the 
extent to which RL can help optimize vaccine distribution and improve public 
health outcomes [74]. 

– Incorporating real-world data: By using real-world data to train and evaluate RL 
algorithms, future research can improve the accuracy and effectiveness of the 
algorithms and ensure that the results are generalizable to real-world settings. 
For example, RL algorithms can be enhanced by incorporating patient-specific 
information, such as age, health status, and prior vaccine history, to make more 
informed decisions about vaccine distribution [75]. 

– Enhancing scalability and robustness: RL algorithms must be designed to be 
scalable and robust, so that they can handle large and complex real-world 
problems. This will help ensure that the algorithms can be effectively used in 
real-world settings to improve public health outcomes. 

– Improving decision-making under uncertainty: RL algorithms must be designed 
to make decisions under uncertainty, such as predicting future disease spread, 
and to adapt to changing circumstances. This will help ensure that the algorithms 
are effective in unpredictable and rapidly changing situations, such as pandemics 
[76]. 

– Incorporating population health metrics: RL algorithms must be designed to 
incorporate population health metrics, such as the overall health of the popu-
lation, to make informed decisions about vaccine distribution [77].
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– Improving data quality: RL algorithms are heavily dependent on the quality of 
the data used to train and evaluate them. Future research can focus on improving 
the quality of the data used in RL to ensure that the algorithms make accurate 
and effective decisions [78]. 

– Addressing ethical and social considerations: RL algorithms must be designed to 
address ethical and social considerations, such as fairness and equity, to ensure 
that the decisions made by the algorithms are safe, ethical, and equitable [79]. 

– Enhancing robustness: RL algorithms must be designed to be robust, so that they 
can handle large and complex real-world problems. Future research can focus 
on enhancing the robustness of RL algorithms to ensure that the algorithms are 
effective in real-world settings [80]. 

7 Conclusion 

In this chapter, we have explored the potential of reinforcement learning (RL) for 
optimizing COVID-19 vaccine distribution strategies, which has not been done 
before. We reviewed the state of the art in RL for vaccine distribution, including 
the strengths and limitations of RL approaches, the ethical and social implications 
of using RL for vaccine distribution, and the challenges and limitations of RL. Our 
research has shown that RL can be an effective approach for optimizing vaccine 
distribution strategies by taking into account a wide range of factors, including 
the available resources, vaccine demand, and the spread of the virus. However, 
RL algorithms must be designed to address ethical and social considerations, 
such as fairness and equity, and to be robust, interpretable, and adaptable to 
changing circumstances. To improve the public health outcomes through RL, future 
research must focus on incorporating domain-specific knowledge, improving data 
quality, enhancing interpretability, and addressing ethical and social considerations. 
Additionally, future research must focus on improving the decision-making ability 
of RL algorithms under uncertainty, to ensure that the algorithms are effective in 
unpredictable and rapidly changing situations. 

RL has the potential to be a valuable tool for optimizing COVID-19 vaccine 
distribution strategies and improving public health outcomes. However, the limita-
tions and challenges of RL must be addressed to ensure that the algorithms are used 
safely, effectively, and in a manner that considers ethical and social considerations. 
One of the key limitations of this study is the current state of data availability and 
quality. Although significant efforts are being made to collect and analyze data on 
the COVID-19 pandemic and the vaccine distribution process, there is still a need for 
high-quality data that can be used to train and validate RL algorithms. Additionally, 
the complexity of the vaccine distribution system, including the interplay between 
vaccine supply and demand, population demographics, and public health policies, 
poses a significant challenge for the development and deployment of effective 
RL models. Another limitation of this study is the limited understanding of the 
underlying mechanisms of RL and the lack of consensus on the best practices for
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using RL in real-world settings. This requires ongoing research and development to 
refine the methodology and to address the limitations of this approach. 

Future research can address or mitigate these limitations and challenges of RL 
and ensure that RL is used safely, effectively, and in a manner that considers 
ethical and social considerations. Despite these limitations, the potential of RL for 
optimizing COVID-19 vaccine distribution strategies is significant, and the results 
of this study can serve as a foundation for further research and development in 
this area. The study provides valuable insights into the benefits and limitations of 
using RL for vaccine distribution and can inform the development of more effective 
and efficient vaccine distribution strategies that can help to mitigate the impact of 
the COVID-19 pandemic. Still, there is a need for further research to advance RL 
approaches for COVID-19 vaccine distribution. This will help ensure that the use of 
RL is safe, ethical, and effective and that the potential benefits of RL are realized in 
practice. 
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32. Beigi, A., Yousefpour, A., Yasami, A., Gómez-Aguilar, J.F., Bekiros, S., Jahanshahi, H.: 
Application of reinforcement learning for effective vaccination strategies of coronavirus 
disease 2019 (covid-19). Eur. Phys. J. Plus 136(5), 609 (2021) 

33. Awasthi, R., Guliani, K.K., Khan, S.A., Vashishtha, A., Gill, M.S., Bhatt, A., Nagori, A., 
Gupta, A., Kumaraguru, P., Sethi, T.: Vacsim: learning effective strategies for covid-19 vaccine 
distribution using reinforcement learning. Intell. Based Med. 6, (2022). https://doi.org/10. 
1016/j.ibmed.2022.100060 

34. Trad, F., El Falou, S.: Towards using deep reinforcement learning for better covid-19 vaccine 
distribution strategies. In: 2022 7th Int. Conf. on Data Science and Machine Learning 
Applications, CDMA 2022, pp. 7–12 (2022) 

35. Hao, Q., Huang, W., Xu, F., Tang, K., Li, Y.: Reinforcement learning enhances the experts: 
large-scale covid-19 vaccine allocation with multi-factor contact network. In: ACM SIGKDD 
Int. Conf. on Knowledge Discovery and Data Mining, pp. 4684–4694 (2022) 

36. Zhou, Z., Lai, L., Dong, Y.: Quantification of value of information associated with optimal 
observation actions within partially observable Markov decision processes. KSCE J. Civil 
Eng. 26(12), 5173–5186 (2022) 

37. Babaeizadeh, M., Frosio, I., Tyree, S., Clemons, J., Kautz, J.: Reinforcement learning through 
asynchronous advantage actor-critic on a GPU. In: 5th Int Conf on Learning Representations, 
ICLR 2017 - Conference Track Proceedings (2017) 

38. Sun, Y., Yuan, X., Liu, W., Sun, C.: Model-based reinforcement learning via proximal policy 
optimization. In: 2019 Chinese Automation Congress, CAC 2019, pp. 4736–4740 (2019) 

39. Devraj, A.M., Kontoyiannis, I., Meyn, S.P.: Differential temporal difference learning. IEEE 
Trans. Autom. Control 66(10), 4652–4667 (2021) 

40. Coronato, A., Naeem, M., De Pietro, G., Paragliola, G.: Reinforcement learning for intelligent 
healthcare applications: a survey. Artif. Intell. Med. 109, (2020). https://doi.org/10.1016/j. 
artmed.2020.101964 

41. Yu, C., Liu, J., Nemati, S., Yin, G.: Reinforcement learning in healthcare: a survey. ACM 
Comput. Surv. 55(1), 1–36 (2021) 

42. Munguía-López, A.C., Ponce-Ortega, J.M.: Fair allocation of potential covid-19 vaccines using 
an optimization-based strategy. Process Integr. Optim. Sustain. 5(1), 3–12 (2021) 

43. Valizadeh, J., Boloukifar, S., Soltani, S., Jabalbarezi Hookerd, E., Fouladi, F., 
Andreevna Rushchtc, A., Du, B., Shen, J.: Designing an optimization model for the 
vaccine supply chain during the covid-19 pandemic. Expert Syst. Appl. 214, (2023). https:// 
doi.org/10.1016/j.eswa.2022.119009 

44. Gedikli, T., Cayir Ervural, B.: Identification of Optimum COVID-19 Vaccine Distribution 
Strategy Under Integrated Pythagorean Fuzzy Environment. In: Lecture Notes in Mechanical 
Engineering (2022) 

45. Zong, K., Luo, C.: Reinforcement learning based framework for COVID-19 resource 
allocation. Comput. Ind. Eng. 167, 107960 (2022) 

46. Faris, J.G., Orbidan, D., Wells, C., Petersen, B.K., Sprenger, K.G.: Moving the needle: 
Employing deep reinforcement learning to push the boundaries of coarse-grained vaccine 
models. Front. Immunol. 13, (2022). https://doi.org/10.3389/fimmu.2022.1029167 

47. Nguyen, Q.D., Prokopenko, M.: A general framework for optimising cost-effectiveness of 
pandemic response under partial intervention measures. Sci. Rep. 12(1), 19482 (2022) 

48. Bubar, K.M., Reinholt, K., Kissler, S.M., Lipsitch, M., Cobey, S., Grad, Y.H., Larremore, 
D.B.: Model-informed covid-19 vaccine prioritization strategies by age and serostatus. Science 
371(6532), 916–921 (2021) 

49. Khandker, S.S., Godman, B., Jawad, M.I., Meghla, B.A., Tisha, T.A., Khondoker, M.U., Haq, 
M.A., Charan, J., Talukder, A.A., Azmuda, N., Sharmin, S., Jamiruddin, M.R., Haque, M., 
Adnan, N.: A systematic review on covid-19 vaccine strategies, their effectiveness, and issues. 
Vaccines 9(12), 1387 (2021) 

50. Ibrahim, D., Kis, Z., Tak, K., Papathanasiou, M.M., Kontoravdi, C., Chachuat, B., Shah, N.: 
Model-based planning and delivery of mass vaccination campaigns against infectious disease: 
application to the COVID-19 pandemic in the UK. Vaccines 9(12), 1460 (2021)

https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.ibmed.2022.100060
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.artmed.2020.101964
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.1016/j.eswa.2022.119009
https://doi.org/10.3389/fimmu.2022.1029167
https://doi.org/10.3389/fimmu.2022.1029167
https://doi.org/10.3389/fimmu.2022.1029167
https://doi.org/10.3389/fimmu.2022.1029167
https://doi.org/10.3389/fimmu.2022.1029167
https://doi.org/10.3389/fimmu.2022.1029167
https://doi.org/10.3389/fimmu.2022.1029167
https://doi.org/10.3389/fimmu.2022.1029167


Using Reinforcement Learning for Optimizing COVID-19 Vaccine Distribution. . . 195

51. Thul, L., Powell, W.: Stochastic optimization for vaccine and testing kit allocation for the 
covid-19 pandemic. Eur. J. Oper. Res. 304(1), 325–338 (2023) 

52. Kumar, A., Kumar, G., Ramane, T.V., Singh, G.: Optimal covid-19 vaccine stations location 
and allocation strategies. Benchmarking (2022). https://doi.org/10.1101/2020.12.31.20249099 

53. Libotte, G.B., Lobato, F.S., Platt, G.M., Silva Neto, A.J.: Determination of an optimal 
control strategy for vaccine administration in covid-19 pandemic treatment. Comput. Methods 
Programs Biomed. 196, (2020). https://doi.org/10.1016/j.cmpb.2020.105664 

54. Feng, L., Xie, Y., Liu, B., Wang, S.: Multi-level credit assignment for cooperative multi-agent 
reinforcement learning. Appl. Sci. 12(14), 6938 (2022) 

55. Bastani, H., Drakopoulos, K., Gupta, V., Vlachogiannis, I., Hadjichristodoulou, C., Lagiou, P., 
Magiorkinis, G., Paraskevis, D., Tsiodras, S.: Efficient and targeted COVID-19 border testing 
via reinforcement learning. Nature 599(7883), 108–113 (2021) 

56. Chen, J., Chou, S.-Y., Yu, T.H.-K., Rizqi, Z.U., Hang, D.T.: System dynamics analysis on 
the effectiveness of vaccination and social mobilization policies for COVID-19 in the United 
States. PLOS ONE 17(8), e0268443 (2022) 

57. Belenguer, L.: AI bias: exploring discriminatory algorithmic decision-making models and the 
application of possible machine-centric solutions adapted from the pharmaceutical industry. 
AI Ethics 2(4), 771–787 (2022) 

58. Hardt, K., Schmidt-Ott, R., Glismann, S., Adegbola, R., Meurice, F.: Sustaining vaccine 
confidence in the 21st century. Vaccines 1(3), 204–224 (2013) 

59. Martin, K., Waldman, A.: Are algorithmic decisions legitimate? the effect of process and 
outcomes on perceptions of legitimacy of AI decisions. J. Bus. Ethics (2022) 

60. Ilogu, L.C., Lugovska, O., Vojtek, I., Prugnola, A., Callegaro, A., Mazzilli, S., Van Damme, 
P.: The intent of students to vaccinate is influenced by cultural factors, peer network, and 
knowledge about vaccines. Hum. Vaccin. Immunother. 18(1), 1938492 (2021) 

61. Volpp, K.G., Loewenstein, G., Buttenheim, A.M.: Behaviorally informed strategies for a 
national covid-19 vaccine promotion program. J. Am. Med. Assoc. (JAMA) 325(2), 125–126 
(2021) 

62. Foy, B.H., Wahl, B., Mehta, K., Shet, A., Menon, G.I., Britto, C.: Comparing covid-19 vaccine 
allocation strategies in India: a mathematical modelling study. Int. J. Infect. Dis. 103, 431–438 
(2021) 

63. Tuite, A.R., Zhu, L., Fisman, D.N., Salomon, J.A.: Alternative dose allocation strategies to 
increase benefits from constrained covid-19 vaccine supply. Ann. Intern. Med. 174(4), 570– 
572 (2021) 

64. Ferranna, M., Cadarette, D., Bloom, D.E.: Covid-19 vaccine allocation: modeling health 
outcomes and equity implications of alternative strategies. Engineering 7(7), 924–935 (2021) 

65. Lemaitre, J.C., Pasetto, D., Zanon, M., Bertuzzo, E., Mari, L., Miccoli, S., Casagrandi, R., 
Gatto, M., Rinaldo, A.: Optimal control of the spatial allocation of covid-19 vaccines: Italy as 
a case study. PLoS Comput. Biol. 18(7), (2022). https://doi.org/10.1371/journal.pcbi.1010237 

66. Rolf, B., Jackson, I., Müller, M., Lang, S., Reggelin, T., Ivanov, D.: A review on reinforcement 
learning algorithms and applications in supply chain management. Int. J. Prod. Res., 1–29, 
(2022). https://doi.org/10.1080/00207543.2022.2140221 

67. Scroggins, S., Goodson, J., Afroze, T., Shacham, E.: Spatial optimization to improve COVID-
19 vaccine allocation. Vaccines 11(1), 64 (2022) 

68. Sallam, M.: COVID-19 vaccine hesitancy worldwide: a concise systematic review of vaccine 
acceptance rates. Vaccines 9(2), 160 (2021) 

69. Bernal, J., Mazo, C.: Transparency of artificial intelligence in healthcare: insights from 
professionals in computing and healthcare worldwide. Appl. Sci. 12(20), 10228 (2022) 

70. Hu, H., Xu, J., Liu, M., Lim, M.K.: Vaccine supply chain management: an intelligent system 
utilizing blockchain, IoT and machine learning. J. Bus. Res. 156, 113480 (2023) 

71. Heuillet, A., Couthouis, F., Díaz-Rodríguez, N.: Explainability in deep reinforcement learning. 
Knowl. Based Syst. 214, 106685 (2021)

https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1101/2020.12.31.20249099
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1016/j.cmpb.2020.105664
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1371/journal.pcbi.1010237
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221
https://doi.org/10.1080/00207543.2022.2140221


196 R. Damaševičius et al.
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Incorporating Contextual Information 
and Feature Fuzzification for Effective 
Personalized Healthcare Recommender 
System 

Mohammed Wasid and Khalid Anwar 

1 Introduction 

Today, the advancements in information and communication technologies have 
paved the way for innovations and developments in several fields. In this context, 
recommender systems (RSs) are one of the efficient tools used for decision-making 
and information filtering in many real-world problems. In today’s technology-
aided world, RSs extract information from users’ reviews and ratings to know 
their choices and sentiments and accordingly generate recommendations for them 
[1]. Recommender systems recommend everything from movies, news, books 
[2], songs, and websites to more personalized recommendations for matrimonial 
matches, job opportunities, healthcare service, etc. A typical recommender system 
is shown in Fig. 1. 

Generally, recommender systems are categorized into three types depending on 
how recommendations are made [3]. Accordingly, content-based filtering (CB), 
collaborative filtering (CF), and hybrid filtering are recognized as the major filtering 
techniques of recommender systems. The CB technique utilizes items description 
and users’ past preferences to recommend products. In contrast, the CF technique 
is based on the notion of the neighborhood and generates recommendations to the 
users by using the ratings of similar users who are known as neighbors. The CF 
technique is the most extensively used technique for designing the RSs, but it has 
certain issues like cold start and data sparsity. Similarly, the CB technique has issues 
like long tail, new user, and overspecialization. It means each recommendation 
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Fig. 1 A typical representation of a recommender system 

technique has certain benefits and downsides. Therefore, to overcome the limitations 
of CB and CF techniques, hybrid filtering techniques are developed by combining 
different filtering techniques [4]. A typical recommender system uses any one or 
combination of techniques for making effective recommendations for the users [5]. 

In real-life scenarios, people are searching for pertinent health information about 
which they are worried. The Internet is a rich source of this information, but we must 
exercise caution if we do not want to obtain hazardous details. Health recommender 
systems (HRSs) are becoming a new trend for relevant health information as these 
systems recommend the most pertinent data based on the needs of the patient [6]. 
The primary objectives of HRS are to obtain reliable health information from the 
Internet, to analyze which is suited for the patient profile, to adapt their selection 
methods to the knowledge domain, and to learn from the best recommendations. 
Health recommendation systems are a viable alternative when it comes to offering 
tools to aid physicians with disease diagnosis, particularly during pandemics. 
During COVID-19, doctors were mainly concerned with the symptoms of the 
disease, as in some cases, the mild cold cough symptoms caused confusion about 
COVID-19. Therefore, if the symptoms of a disease can be identified correctly, 
then treatment can be given accordingly. Moreover, in any healthcare recommender 
system, it is necessary to identify the context associated with the disease, for 
example, whether the people are suffering from a disease in a particular season 
spring, summer, autumn, or winter. Similarly, weather conditions also play an 
important role, for example, sunny, rainy, stormy, snowy, or cloudy. Some diseases 
generally spread in rainy weather conditions. 

RSs have a vital role in the health sector in terms of supporting individual 
health-related decision-making. The proposed approach is intended to build a 
recommendation framework for helping patients in the decision-making processes 
in healthcare services using a collaborative filtering technique. Health recommenda-
tion systems enhance the utility of technologies and decrease information overload.
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2 Literature Review 

Literature suggests that many recommender systems are designed in the healthcare 
domain for various purposes. Different applications of HRS are drug recom-
mendation, food recommendation, healthcare service recommendation, and doctor 
recommendation by analyzing the health condition of an individual. In the past, 
drug recommender systems were developed to reduce the human error involved 
in medicine prescriptions to patients. The drug RS helps doctors identify and 
recommend more accurate medicine by analyzing the historical records of the 
patients [7]. Many researchers have developed the drug RS for specific diseases. 
For example, authors in [8] applied a multi-criteria decision-making approach to 
patient oncology and developed an anti-diabetic drug recommendation approach. 
On the other hand, [9] used ontologies to describe information regarding patient 
characteristics and anti-diabetes drugs. In addition to combining ontologies with 
rule-based decision-making, this system imposes constraints on treatment goals and 
dosage prescriptions. The established rules recommend medications for each patient 
according to their characteristics. 

Authors in [10] developed a RS that enables physicians to search for phar-
macological information and recommends medications to patients depending on 
their condition, allergies, and previous drug interactions. This RS stores drug-
related rules and interactions using ontologies and ICD codes. These rules are the 
inputs that the RS uses to develop the best appropriate medications for patients. 
Similarly, authors in [11] developed a semantic framework known as PANACEA 
to aid physicians in prescribing pharmaceuticals based on the indications of the 
drugs’ active substances. PANACEA makes drug recommendations based on stan-
dardized medical terminologies and criteria controlling drug-drug and drug-disease 
interactions. In another study, authors in [12] developed a drug recommender 
system that would assist physicians in recommending more appropriate and precise 
prescriptions for migraine-disease patients. In this RS, the information about 
patients is stored in a graph database. Nodes and edges structure the database. Nodes 
represent information about patients, allergies, diseases, and medications, whereas 
the relationships between these nodes are shown using edges. 

Moreover, a collaborative filtering technique was used to develop a RS that 
predicts the risk factors for a patient with chronic disease [13]. In contrast, authors in 
[14] developed a hybrid recommender system by combining CB and CF techniques 
for recommending workout sessions based on historical behaviors, preferences, and 
physical condition of individuals. Similarly, authors in [15] developed iDoctor, 
which is a personalized RS for recommending doctors to an individual based on 
their sentiments. The RS analyzes the ratings and reviews of the users to explore 
their feelings and sentiments, and preferences. The RS consists of three modules: 
topic modeling, sentiment analysis, and hybrid matrix factorization. The sentiment 
analysis module computes the emotional offset of user testimonials. The topic 
modeling module collects user preferences and doctor characteristics based on user 
ratings (e.g., prescribing behavior, specialty, and fee range). The collected data is
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utilized by the module for hybrid matrix factorization in order to compute doctors’ 
ratings and recommend the doctor accordingly. 

In another study, authors in [16] designed a HRS framework for monitoring 
and self-assessment during the isolation of COVID-19. The HRS also recommends 
medicine and self-care measures during the isolation period based on the symptoms 
of the patient. The HRS was trained by taking the data of people who suffered from 
COVID in the past. The HRS was based on the CF technique and used Pearson 
correlation for computing the similarities. Similarly, authors in [17] developed a 
HRS that computes the similarities between COVID-19 patients based on the X-
ray images of their chests. The HRS recommends health resources like doctors and 
medicine to patients who are infected with COVID-19 by analyzing the medical 
history of similar patients. While authors in [18] developed a drug recommender 
system for patients suffering from infectious diseases, the RS takes different 
symptoms of the patients as input, find similar patients from the database, and 
accordingly recommends the drugs to the patients. The HRS is highly efficient and 
effective in recommending drugs to patients suffering from infectious diseases by 
ensuring the safety of other patients and health workers. 

By going through the above-discussed studies, we analyze that healthcare 
systems are being developed using various intelligent techniques. However, most 
of these studies do not consider similar patients based on their historical health 
records, and also situational or contextual cases have not been explored to the best 
of our knowledge. 

3 Proposed Recommendation Framework 

The prime motive of a framework is to stimulate the process of completing 
the assigned task successfully and establish a better understanding of the main 
components or phases of the recommendation process. There are following three 
phases in our recommendation framework, as shown in Fig. 2. 

• Phase 1 – Patient Profile Formation 
• Phase 2 – Similarity Computation and Neighborhood Set Formation 
• Phase 3 – Prediction and Recommendations 

3.1 Phase 1 – Patient Profile Formation 

The patient profile is basically a collection of the patient’s personal information, 
which may be referred to as a simplified model of the patient. A patient may 
be modeled based on the type and amount of patient-specific information stored 
in the patient profile. The majority of prior work on patient profile modeling 
relied solely on overall ratings [19]. These methods fail while dealing with diverse
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Fig. 2 Block diagram of the proposed recommendation framework 

Table 1 Typical profile of a patient 

Rating Age Gender Occupation Symptoms presence Contextual factor 

4 30 Male/0 Teacher/19 00110000000010010 Crc1 Crc2 Crc3 Crc4 

information, such as demographic data and situation-related information. Therefore, 
this phase ensures that all information should be considered for building a patient 
profile, which is used for computing similarity. A representative patient profile 
would properly reflect the patient’s history, preferences, and records in every aspect. 
Table 1 depicts a patient profile having demographic features of the patient, and the 
total number of symptoms shown in the patient is represented by “1s.” 

For better understanding, we consider Table 2 of only three patients who have 
suffered from multiple diseases based on four symptoms. In columns Si, i = 1, 2, 
3, 4, one (1) indicates the symptom present in the patient, and 0 otherwise. Also, a 
non-zero value in the patient rating columns specifies the level (1 – low, 5 – very
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Table 2 Example dataset for patient-disease ratings 

Disease Corresponding symptoms Patient ratings 
S1 S2 S3 S4 Patient 1 Patient 2 Patient 3 

1 1 0 1 0 1 3 0 
2 0 0 1 0 5 2 4 
3 1 1 0 1 0 1 3 
4 0 1 0 1 4 0 3 
5 1 0 1 0 0 0 4 
6 0 0 1 1 2 5 0 
7 1 1 1 0 0 0 2 
8 1 0 0 1 0 3 3 
9 0 1 1 0 1 5 3 
10 0 1 0 0 0 3 3 

high) by which the patient has suffered from that disease, and zero indicates that the 
patient has not suffered from that disease. 

In order to identify the seriousness of a disease in a patient, we need to identify 
those symptoms which are the most affecting the health of a patient. Based on 
the genre interestingness measure [20], we created a disease seriousness measure 
(DSM) which considers various symptoms s of the patient p on multiple diseases. 

.DSM (p, s) = 2 × nf × RDR (p, s) × MRDC (p, s)

RDR (p, s) + MRDC (p, s)
, (1) 

where MRDC denotes the modified relative disease count of symptoms s for patient
p and considers only those diseases which have rating values 3, 4, and 5. The MRDC
can be computed using the following equation:

.MRDC (p, s) =
∑

d∈Dj ⊂Ci
�3

(
rp,d

) + 2 × �4
(
rp,d

) + 3 × �5
(
rp,d

)

3 × T C(p)
, (2) 

While the Relative Disease Rating (RDR) only considers diseases with ratings of 
2 or higher and the total number of ratings (TR) provided by the patient. 

.RDR (p, s) =

∑

d∈Dj ⊂Ci≥3
rp,d

T R(p)
, (3) 

In Eq. (1), nf is used for normalizing purpose. In this work, the maximum rating 
in the system is selected as the value of nf, and it can also be selected as the global 
average rating (TR(p)/TC(p)), where total count (TC) refers to the total number of 
diseases the patient has diagnosed with. 

Moreover, age and DSM have been identified as fuzzy features in order to address 
the uncertainty associated with them. Old, middle-aged, and young are the three
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fuzzy sets derived from the “age” attribute after fuzzification [21]. The membership 
functions of these fuzzy sets are as follows. 

.Young (z) =
⎧
⎨

⎩

1, z ≤ 20,
(35 − z) /15, 20 < z ≤ 35,
0, z > 35,

(4a) 

.Middle (z) =

⎧
⎪⎪⎨

⎪⎪⎩

0, z ≤ 20, z > 60,
(z − 20) /15, 20 < z ≤ 35,
1, 35 < z ≤ 45,
(60 − z) /15, 45 < z ≤ 60,

(4b) 

.Old (z) =
⎧
⎨

⎩

0, z ≤ 45,
(z − 45) /15, 45 < z ≤ 60,
1, z > 60,

(4c) 

On the basis of the severity of the disease, the DSM can also be classified into six 
fuzzy sets, namely, very bad (VB), bad (B), average (A), good (G), very good (V), 
and excellent (E). Equation (5) shows their corresponding membership functions 
[20]. 

.V B(z) =
{
1 − z, z ≤ 1,
0, z > 1,

(5a) 

.T(y)(z) =
⎧
⎨

⎩

0, z ≤ y − 2, z > y,

z − y + 2, y − 2 < z ≤ y − 1,
y − z, y − 1 < z ≤ y,

(5b) 

where T(y) depicts the bad, average, good, and very good for each y = 2, 3, 4, and 5,
respectively.

.E(z) =
{

0, z ≤ 4,
z − 4, 4 < z ≤ 5,

(5c) 

After applying DSM and fuzzy operations to the attributes in Table 1, Table 3 
displays the patient profile. Let us assume DSM is 2.80 for the sake of conceptual 
understanding. 

Table 3 Patient profile after applying DSM and fuzzification 

Age Disease seriousness measure 
Quantifier Young Middle Old Very bad Bad Average Good Very good Excellent 

Membership value 0.733 0.267 0 0 0 0.2 0.8 0 0
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Now, we identified four different contextual variables to be incorporated into 
the patient profile to make situational health recommendations. A concise context 
variable can be written as Cv{at1, at2, at3, . . . , atm}, where m is the number 
of attributes the context variable Cv is associated with. For example, SEASON 
{Spring, Summer, Autumn, Winter} has four different attributes. Now, we apply the 
following contextual rating count CRC(x,y) method to find the normalized count for 
the attribute y of context x. 

.CRC (x, y) =
∑|D|

d∈m rd,y

| D | , (6) 

where rn, y shows the historical rating count of attribute y for the disease d, and D is
the number of diseases a patient is infected with.

In the same way, profiles of all patients can be created, which are then used in 
the similarity computation and neighborhood set (similar patients) formation phase. 

3.2 Phase 2 – Similarity Computation and Neighborhood Set 
Formation 

Having built a patient profile, RSs match the active patient to the available database 
according to a suitable similarity measure. According to the computed similarity 
values, the relationship between the active patient and with remaining patients 
is established, which enables RSs to form a neighborhood set for the active 
patient. The selection of a similarity measure is application-dependent and actually 
based on the nature of the patient profile features [22]. Some modifiers to the 
similarity function have also been introduced to refine or enhance the ability of 
the recommender system to find close neighbors [23]. 

Once patient profiles are generated, the RS computes the similarity among the 
patient profiles to form the neighborhood sets using the modified Euclidean global 
fuzzy distance formula. 

.Gfd (P,Q) =
√
√
√
√

z∑

k=1

Lfd(pk, qk)
2 +

c∑

l=1

dis (pl, ql) , (7) 

where P and Q are the profile vector of length z, and c is the number of contextual
variables. Lfd is the local fuzzy distance and is computed as

.Lfd
(
pk, qk

) = dis (pk, qk) × d (pk, qk) , (8)

where d(pk, qk) represents the difference between vectors p and q. The size of the
vectors is m, and dis(pk, qk) is the Euclidean distance which can be calculated using
the following equation:
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.dis (pk, qk) =
√
√
√
√

m∑

e=1

(
pk,e − qk,e

)2
, (9) 

where pk,e denotes the membership value of the kth feature in the eth fuzzy set.
After computing, the similarity between the active patient and other patients in 

the system, the neighbors of the active patient can be identified. The top-N patients 
or the patients whose similarity is greater than a certain threshold could be chosen 
to fix the neighborhood set’s size [24]. 

3.3 Phase 3 – Prediction and Recommendations 

In the phase above, after obtaining the neighborhood set, the RS predicts the rating 
of the unseen patient p based on the average ratings of the patients who are present 
in the neighborhood set. The active patient’s medication is collectively prescribed 
by the patients in the neighborhood set. The following formula is used to calculate 
the patient’s predicted rating, Prep,d for disease d. 

.prep,d = rp + Nf

∑

q∈N

Gf d (P,Q) × (
rq,d − rq

)
, (10) 

Gfd(P,Q) is the similarity/distance between active patient p and neighborhood 
patient q. . rp is the average of the ratings made by patient p to all diseases. The 
multiplier Nf is a normalizing factor and is usually defined as 

.Nf = 1
∑

q∈N | Gf d (P,Q) | (11) 

The weighted sum (Eq. 10), which is also called Resnick’s prediction formula 
[25], is an extensively used prediction function. Because patients usually vary in 
their use of rating scales, Resnick’s prediction formula compensates for rating scale 
variations. This will keep predicted ratings for a given patient to fall around the 
mean rating of a given active patient. 

4 Experiments and Results 

We chose to run our tests on the LDOS-CoMoDa dataset because it is well known 
in the recommendation field even though, as far as we are aware, there is no 
data available regarding patients’ historical ratings of the disease with contextual 
variables.
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4.1 Experimental Settings 

The experiments were performed on the LDOS-CoMoDa dataset. The dataset was 
pre-processed and only those patients were extracted who have recorded at least 5 
ratings. The refined dataset thus left with 48 patients and 1144 diseases with 1964 
ratings. From the pre-processed dataset, we have generated ten random experiment 
sets. For each random experiment set, 5 patients were chosen randomly as active 
patients and the remaining 43 patients as training. Such a random separation was 
intended to perform extensive experiments, where all the experiments are repeated 
ten times, once with each experiment set. These experiment sets are referred to as 
experiment set-1, experiment set-2, . . . , and experiment set-10. The entire ratings 
were randomly divided into training (66%) and testing (34%) sets. The training set 
was used to find a set of neighbors for each patient, while the test set was used to 
test the performance of the RS. The top 20 most similar neighbors were selected 
as a neighborhood set. Overall, many experiments were conducted to compare the 
performance of the following approaches. 

• Pearson Recommender System (PRS) – uses Pearson correlation measure for 
identifying similar patients. 

• Fuzzy Recommender System (FRS) – uses a modified fuzzy distance method for 
identifying similar patients. 

• Context-Aware Fuzzy RS (CFRS) – incorporates contextual features {Season, 
Location, Weather, Mood} in FRS using a contextual rating count approach. 

4.2 Experimental Results and Discussion 

The MAE, RMSE, and coverage for all ten experiment sets for the examined 
methods are presented and discussed in this section. Results presented in Tables 
4 and 5 show that CFRS outperforms PRS and FRS for all ten experiment sets in 
terms of MAE and RMSE, respectively. Both FRS and CFRS are developed using 
collaborative filtering techniques with using additional user-item information and 
fuzzy logic. 

Results presented in Table 6 give coverage of different recommendation methods 
for all ten experiment sets. The coverage value of CFRS is always higher than the 
PRS and FRS approaches for all ten experiment sets. The high coverage of the RS 
indicates the effectiveness of the proposed approach. 

From the above-presented results, we found that the contextual recommender 
system always shows better performance than the PRS and FRS in terms of MAE, 
RMSE, and coverage. 

We have compared the examined methods based on each experiment set, but 
in reality, the final effectiveness of a RS depends on its overall ability to generate 
effective recommendations. Therefore, Figs. 3, 4, and 5 depicts the graphical repre-
sentation of the complete systems MAE, RMSE, and coverage, respectively. From
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Table 4 Performance 
comparison of PRS, FRS, and 
CFRS in terms of MAE 

Experiment set no. PRS FRS CFRS 

1 0.8447 0.5657 0.51 
2 0.9087 0.534 0.493 
3 0.9843 0.7857 0.7581 
4 0.9944 0.6306 0.54 
5 1.481 1.3059 0.9963 
6 1.4636 1.3546 0.9969 
7 0.6522 0.6422 0.621 
8 0.8347 0.6574 0.5543 
9 1.3091 0.9639 0.9078 
10 1.2015 1.1107 0.954 
Average 1.0674 0.8550 0.7331 

Table 5 Performance 
comparison of PRS, FRS, and 
CFRS in terms of RMSE 

Experiment set no. PRS FRS CFRS 

1 1.0955 0.6939 0.6402 
2 1.0714 0.6919 0.6774 
3 1.0078 0.9076 0.8856 
4 1.2626 0.7938 0.7522 
5 1.8696 1.3681 1.254 
6 1.8758 1.8389 1.398 
7 0.8007 0.7918 0.789 
8 1.2033 0.7725 0.7201 
9 1.735 1.2476 1.1211 
10 1.422 1.3416 1.1966 
Average 1.3343 1.0447 0.9434 

Table 6 Performance 
comparison of PRS, FRS, and 
CFRS in terms of coverage 

Experiment set no. PRS FRS CFRS 

1 0.3576 0.3793 0.4772 
2 0.381 0.4062 0.4821 
3 0.3102 0.3119 0.3554 
4 0.5284 0.5323 0.541 
5 0.5217 0.5072 0.5587 
6 0.3125 0.25 0.3644 
7 0.4286 0.4286 0.4663 
8 0.4432 0.4462 0.6533 
9 0.3415 0.3415 0.367 
10 0.479 0.3902 0.4889 
Average 0.41037 0.39934 0.47543 

Fig. 3, we can infer that the contextual recommender system (CFRS) significantly 
outperforms compared to PRS and FRS in terms of MAE. Similarly, Fig. 4 compares 
the overall performance of all examined approaches in terms of RMSE. 

Figure 5 shows the superiority of CFRS in terms of coverage compared to other 
approaches with notable margin. Moreover, the FRS method exposed improved
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Fig. 3 Comparison of different RS on the basis of the average MAE of ten experiment sets 

Fig. 4 Comparison of different RS on the basis of average RMSE of ten experiment sets 

MAE and RMSE than PRS method, but it fails to maintain its superiority in terms 
of coverage of the system. 

Overall, the results presented above reveal that the context-aware recommender 
system-based method has better performance in terms of MAE, RMSE, and 
coverage. Results also proved that the contextual features play an important role 
in enhancing the effectiveness of RS.
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Fig. 5 Comparison of different RS on the basis of average coverage of ten experiment sets 

5 Conclusion 

The developed HRS framework is intended to enhance interaction by giving 
the patient better health-related recommendations. Increased user interaction and 
increased convenience are the direct benefits of providing just relevant recom-
mendations. The framework for recommendations is based on patient data, and 
collaborative filtering is used to discover patients with comparable symptoms for 
certain health-related conditions. Hence, similar medications can be recommended 
to patients depending on their medical histories. A fuzzy set has been introduced 
to address the issue of ambiguity connected with a patient’s condition and illness 
characteristics, and it has been utilized to create hybrid patient profiles. This enables 
patients to determine the most similar neighborhood for a more accurate recom-
mendation. The experimental results demonstrate the importance of incorporating 
contextual information for enhancing the effectiveness in terms of MAE with a 46% 
improvement, RMSE with a 41% improvement, and coverage prediction accuracy 
with a 14% improvement. By observing the results, we can say that the patient 
modeling using diverse information improved the performance as the chosen data 
was highly sparse where disease ratings were relatively low compared to the total 
number of diseases. In future, the proposed framework can be tested on a real-world 
healthcare dataset with multimodal features, and one can extend it by designing the 
appropriate fuzzy sets for the contextual variables.
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Prediction of Growth and Review 
of Factors Influencing the Transmission 
of COVID-19 

Gyanendra K. Verma 

1 Introduction 

Coronavirus (SARS-CoV-2) broke out in China. It caused 1,521,252 confirmed 
contamination cases and 92,798 deaths as of April 10, 2020 (Fig. 1). The World 
Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020 
due to the alarming spread of infection in more than 113 countries. COVID-19 is 
a member of a family of enveloped, non-segmented, positive series RNA viruses 
widely distributed in the clan of mammals, humans, and animals collectively known 
as the corona. Four of its ancestors have become mild to the extent that they merely 
cause the symptom of cough and cold. SARS, a severe acute respiratory disease 
caused by a coronavirus strain, first appeared in 2003. SARS peaked in the winter 
and began to subside in the summer. 

The influenza season typically lasts from the start of October until the end of 
spring. Consequently, SARS did not deviate from the seasonal trend of influenza. 
Hence, it is partially known to our race. However, with an overall mortality rate of 
about 2%, COVID-19 is too mistaken to be one of the lines. The cause of concern 
is its infectiousness; its exponential spread makes it a genuine health hazard to the 
globe. 

Certain studies [2–4] have created the perception that COVID-19 cannot survive 
in high temperatures. Hence, there is some misplaced pleasure that with the rise 
of mercury in months to come in India and similar tropical countries, and it will 
become self-limiting. We are afraid that this shifting sand of expectation may cause 
tragic consequences. 
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Fig. 1 Globally confirmed case of COVID-19 as of now 10th April 2020 [1] 

This endeavors to predict the likely infected cases and fatalities for different 
population sizes based on mathematical modeling with various permutations. 
Furthermore, we have reviewed the following factors influencing the transmission 
of COVID-19: 

– Effect of temperature and humidity 
– Effect of social distancing 
– Effect of population density 
– Effect of air pollution 
– Other factors 

Our submission is that even if high temperature and humidity dampen the 
reproductive ratio, it has no consequence on the transmission of COVID-19. On 
the contrary, social distancing is an effective measure to reduce the transmission of 
COVID-19. The aspect of various modes of social distancing remains unexplored. 

The key contributions of this chapter are outlined below: 

1. We have formulated the prediction of the exponential growth of infected cases of 
COVID-19 based on two parameters. 

2. A detailed report on COVID-19 prediction methods based on Computational 
Intelligence is presented.



Prediction of Growth and Review of Factors Influencing the Transmission of COVID-19 215

3. We have also reviewed the effect of temperature, humidity and social distancing, 
air pollution, population density, and other factors responsible for the spread of 
COVID-19. 

4. The model is significant in reducing the transmission of COVID-19. 

The rest of the chapter is organized as follows. In Sect. 2, we reviewed  
three factors influencing the transmission of COVID-19. A mathematical model is 
proposed in Sect. 3. Section 4 is dedicated to results, analysis, and discussions. We 
have summarized the findings in Sect. 5. 

2 Review: Factors Influencing the Transmission of 
COVID-19 

2.1 Effect of Temperature and Humidity 

There are studies [5, 6] assigning the significant effect of temperature and humidity 
on the transmission of COVID-19. As per Fig. 2, the outbreak region of COVID-
19 worldwide has been limited to a narrow east–west strip along 30–50 N 
approximately. The temperature and humidity in the very region range from 5– 
11. ◦C and 47–79%, respectively. During the same period, the spread of COVID-19 
is limited to countries adjacent to South China. The number of infected cases and 
the death toll are reported less in these adjacent regions. Mao Wang claims [5] 
that a 1. ◦C rise in the average temperature (minimum and maximum) diminishes 
the infection by 0.83. At the same time, the cumulative number is decreased by 
a factor of 0.86 on a 1. ◦C increase in minimum temperature in the single-factor 
model. Neeltje van Doremalen et al. [5] analyzed the aerosol and surface stability 
of HCoV-19 and found that COVID-19 can be viable in aerosols even after 3 h 
with reduced infectivity at room temperature. The stability of the same virus in 
plastic and steel is up to 72 h. K. H. Chan [2] reported the infectivity of SARS 
CoV (SARS coronavirus) was lost after heating at 56. ◦C for 15 min. Araujo M. B. 
et al. [6] reported significant correlations between temperature and humidity and 
the outbreak of COVID-19. They established an inverse relationship between the 
incidence of coronavirus and humidity as SARCCoV incidences diminish quickly 
with the increase in temperature from 15. ◦C to 29. ◦C. 

COVID-19 has a good chance of long-term survival in subtropical nations like 
Malaysia, Indonesia, and Thailand due to the favorable environmental conditions. 
The virus can remain infectious for up to two weeks in low-humidity environments, 
which could aid in the spread of the disease in a community like Hong Kong, which 
is located in a subtropical climate. We can see the increase in the temperature in 
April–June 2020 in subtropical regions. It is predicted that the number of infected 
cases will significantly increase in the coming days. In the meantime, the graph 
increases if we correlate the number of infected cases with the temperature. It clearly
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Fig. 2 COVID-19 outbreak regions [adopted from 9] 

shows that the growth factor is increasing due to the physical interaction of a person 
with the infected person. 

2.2 Effect of Population and Social Distancing 

Their preventive measures, such as social distancing, may significantly influence 
the transmission of the COVID-19 pandemic. Social distancing removes all social 
contact with people in public areas. A complete social distancing is impossible, 
as people need various commodities for livelihood. The authorities can impose 
a complete or a partial lockdown to isolate contact among people. A report on 
Coronavirus [7] states that around 20% of the global population is under coronavirus 
lockdown. 

The impact of social distancing depends upon the following factors: 

1. How many infected people exhibit symptoms and whether they isolate them-
selves 

2. The timing of isolation following the appearance of symptoms 
3. The length of the infectious period prior to the onset of apparent symptoms 

Early self-isolation for social distancing is vital if the symptoms are not severe [8]. 
These factors are linked to the transmission of COVID-19. A large number of coun-



Prediction of Growth and Review of Factors Influencing the Transmission of COVID-19 217

tries imposed lockdowns to ban mass gatherings. For effective implementation, they 
also seal borders at providences and district levels. However, it seems ineffective 
as the supplies of essential articles are continued, and people need to obey the 
government’s instructions in many places. A new high is likely if restrictions are 
eased after a few months to prevent a severe economic impact. These significant 
problems are to blame for the rapidly increasing frequency of COVID-19 infections. 

2.3 Effect of Population Density 

The pandemic’s ability to spread is strongly influenced by population density. 
It measures the average number of people residing in an area of one kilometer 
(Number of persons/km. 2) [9]. The more the population density, the faster diseases 
can spread. One crucial aspect affecting a location’s susceptibility to the virus is 
likely population density. COVID-19 has spread over the world and has had a 
significant impact on a variety of venues. One kind is defined by sizable, crowded, 
superstar cities like New York and London, which draw massive numbers of tourists, 
have a diverse worldwide population, and have dense residential districts. A second 
category comprises industrial hubs linked by supply chains, such as Wuhan, Detroit, 
and Northern Italy. A third category includes popular tourist destinations worldwide, 
such as the ski resorts in France, Switzerland, and Italy. The virus has attacked 
nursing homes for the elderly, cemeteries, and offshore cities. 

2.4 Effect of Air Pollution 

Air pollution is one type of environmental pollution caused due to the presence of 
harmful particles and gases. Carbon dioxide, Carbon monoxide, and Sulfur oxide are 
significant contributors to air pollution. Before the COVID-19 pandemic in 2020, 
CO. 2 emissions increased roughly 1% yearly. By early April 2020, daily worldwide 
CO. 2 emissions were 17% (11 to 25%) lower than the mean levels of 2019, with 
decreases in surface transport responsible for just under half of this effect. When 
emissions were at their lowest, the average for each country fell by 26% [10]. 

2.5 Effect of Other Factors 

Humans are impacted by the altitudes as well. People who live at higher altitudes 
are exposed to more sunlight, which is the primary source of vitamin D. Vitamin 
D is crucial for controlling innate and adaptive immune responses beyond its roles 
in maintaining bone and calcium homeostasis [11]. However, as the altitude rises,
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atmospheric pressure falls, and oxygen in the air drops [12]. Above 2400 m, a lack 
of oxygen can worsen respiratory and viral illnesses [13]. 

3 Methods Based on Computational Intelligence to Predict 
COVID-19 

3.1 Fuzzy Sets 

Fuzzy sets are one of the main approaches in computational intelligence. It is based 
on mathematical set theory. Fuzzy sets have been successfully utilized in various 
applications. Many researchers have also used Fuzzy sets to predict COVID-19. This 
section throw light on some of the studies. A computerized behavioral model was 
developed by Lauraitis et al. [14] to forecast and compare the reaction conditions of 
HD patients and healthy people using Fuzzy logic and a neural network to develop 
a smartphone app. The neural network’s backpropagation technique with a fuzzy 
logic system produced the best results [14]. 

Awotunde et al. [15] developed a fuzzy logic-based medical diagnostic system 
using prolog programming. They claimed improved system performance using 
statistical measures such as precision and recall. They established that a fuzzy-based 
system is more efficient for medical diagnostics. To forecast cholera, a fuzzy logic 
model was also created. The factors that contribute to cholera were investigated 
using this model. A forecasting algorithm was created to determine the chance of 
cholera illness and assist health personnel in making wise decisions [16]. 

3.2 Artificial Neural Networks 

The study [17] presents an Artificial Neural Network to predict COVID-19 spread. 
The predictor was built using a traditional method with an “NAdam” optimizer 
for learning the training model. They used data from government agencies and 
open repositories for the training. In order to offer a potentially extensive range 
of values for the expected COVID-19 spread, prediction results were presented for 
both nations and regions. They claimed and demonstrated great accuracy, which 
sometimes exceeds 99%. 

An ANN-based time series prediction of COVID-19 was presented by [18]. In all 
three scenarios, the article projects the numbers for the following day, or for April 
21, and compares the outcomes to the values that were actually reported. India’s 
deviation was found to be 6%, whereas it was less than 3.5% for the other three 
nations. The authors advise that the modified multilayer neural network (MMLNN) 
model be incorporated into the health policy of the nations battling the spread of 
the virus due to the high accuracy prediction capacity. The short-term forecasts of
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the viral infection’s spread, in particular, can be used to inform decisions on health 
measures like movement restrictions. 

Peipel W. et al. [19] proposed a new hybrid model based on LSTM-CA for 
epidemic simulation and forecasting. They simulated the spatio-temporal epidemic 
propagation based on fine-grained actual patient location for the first time. They 
claimed improved accuracy with LSTM-CA against a single LSTM or CA model. 
The experiments were performed to analyze the effectiveness of their proposed 
LSTM-CA model for predicting the spread of COVID-19 in China. 

The research proposed by [20] was to develop a hybrid system to predict COVID-
19. An EEMD with ANN was used with the real-time COVID-19 time series data 
for the prediction. The dataset used in this study was from January to May 2020. 
The training of the system was done using denoised time series data. 

This study [21] forecast COVID-19 using ARIMA models and polynomial 
functions. This study’s key finding was to analyze a correlation between COVID-19 
behavior and population in a particular area. These findings open up the possibility 
of developing more forecasting models to predict COVID-19 and factors influencing 
the behavior considering, among other things, variables like humidity, environment, 
and culture. 

M. Pourhomayoun and M. Shakibi [22] proposed a prediction model using AI 
and ML as an essential building block for COVID-19 patients. Several Machine 
learning algorithms were utilized to predict the death rate in COVID-19 patients. 
Using a different dataset of COVID-19 patients, the model was assessed. The 
results were shown using the sensitivity and specificity of the proposed model and 
confusion matrix. 

This research [23] suggests a convolutional neural network model to identify 
COVID-19 illness. A KNN classifier that considers the neighborhood labeling 
agreement replaces the final SoftMax CNN layer in the proposed technique to 
increase accuracy. The proposed evolutionary algorithm incorporates three potent 
evolutionary operators into the search process: Cauchy Mutation (CM), etc. This 
quickens convergence and strikes the ideal balance between the exploration and 
exploitation phases. The suggested evolutionary technique is then utilized to 
automatically acquire the best CNN hyperparameter values, resulting in a notable 
improvement in the classification accuracy of the proposed method. 

3.3 Evolutionary Computing 

The research [24] offers a prediction model that looks at how non-pharmaceutical 
treatments (NPIs) affect the development of COVID-19 and is based on the recur-
rent gated unit (GRU). Multi-population evolutionary algorithm, a meta-heuristics 
technique, was created to find the best mitigation tactics that limit COVID-19 cases 
while minimizing economic and other adverse effects. The MPEA-DE model’s 
recommended mitigation tactics were compared to three standard search tactics.
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This study [25] deals with a technique for calculating the development of the 
epidemiological parameters of an SIRD model (short for susceptible, infected, 
recovered, and deceased persons), which enables to assess the efficacy of the 
government’s sanitary actions in controlling the COVID-19 epidemic in Spain. To 
reduce the square sum of errors, they only consider the number of fatalities among 
the several time series that measure the pandemic. The four sub-periods in the 
time series of fatalities under consideration, which spans from March to the end 
of September, illustrate the various forms of isolation employed by the Spanish 
government. 

In order to identify COVID-19 situations, this study [26] proposes and creates 
a computational intelligence-based framework employing convolutional neural 
networks (CNNs) and genetic algorithms (GAs). A computational intelligence-
based algorithm was proposed that utilizes the newest 5G mobile technology of 
multi-access edge computing and a novel CNN framework for identifying COVID-
19. This method implies that the CNN-based automated COVID-19 identification 
tool should be accessible to everyone with a 5G device (such as a 5G mobile phone). 
The model incorporates a unique CNN structure with the genetic algorithm (GA) for 
hyperparameter adjustment as part of the suggested automated model. 

3.4 Swarm Intelligence 

For COVID-19, scientists use various prediction models to help them make educated 
judgments and enact effective control measures. The old models needed better 
accuracy since there were much uncertainty and insufficient essential data. BB 
Hazarika et al. [27] proposed a wavelet-based model to predict COVID-19. Modern 
support vector regression (SVR) and traditional RVFL were used for prediction. 
The data obtained from wavelet analysis were fed to the RVFL. The top 5 worst-
hit countries’ COVID data were utilized as input for the model. Their findings also 
include daily forecasting for the next 60 days. 

This study [28] reviewed the dangerous aspects of COVID-19 using prominent 
ML algorithms. They utilized regression, SVM, and Least Absolute Shrinkage and 
Selection Operator (LASSO); they claimed that Exponential Smoothing outper-
formed followed by regression and LASSO, which are effective at forecasting the 
number of new confirmed cases, the death rate, and the percentage of patients who 
recover. At the same time, SVM performs poorly in all scenarios where predictions 
are made based on the currently available dataset. 

Study [29] provides a co-evolutionary transfer learning (CETL) technique for 
predicting the requirements of a group of medical supplies, which is essential for 
COVID-19 prevention and management. The CETL recycles data from disasters 
that were both natural and artificial, as well as from other epidemics like the avian 
flu and SARS. The CETL uses a fuzzy deep Contractive Auto Encoder (CAE) for 
each prediction job. All prediction networks are cooperatively evolved via intra-
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Table 1 COVID-19 prediction systems with the method used, modalities, and performance 

Methods Algorithms Study Modality 

Fuzzy sets Fuzzy logic Awotunde et al. 2014 
[15] 

Prolog programming 

Fuzzy logic 
and NN 

Lauraitis et al. [14] Backpropagation 

Fuzzy logic Aroyehun et al. [16] Fuzzy logic model 

Artificial 
neural 
networks 

ANN Wieczorek, M. [17] NAdam optimizer 

MMLNN Majhi, B. [18] Modified multilayer neural network 

LSTM-CA Wang, P. et al. [19] Spatio-temporal propagation 

ANN time 
series 

Hasan, N. [20] Time series data 

AI and ML Pourhomayoun, M. et al. 
[22] 

ML building blocks 

Evolutionary 
computing 

MPEA-DR 
and GRU 

Bi, L. et al. [24] Gated recurrent unit 

Evolutionary 
DL 

Jalali, S. M. J. et al. [23] X-ray images 

Swarm 
intelligence 

GA Hassan, M. R. et al. [26] Genetic algorithm 

SIRD Acosta-González et al. 
[25] 

Epidemiological parameters 

Others Linear 
regression 

Rustam, F. et al., 2020 
[28] 

Exponential smoothing 

SVR and 
RVFL 

Hazarika, B. B. et al. [27] Wavelet analysis 

ANIMA Hernandez-Matamoros et 
al. [21] 

ARIMA models 

population and inter-population evolution to acquire task-specific knowledge within 
each domain and standard information shared across the domains. 

Noticeable studies based on Computational Intelligence are summarized in 
Table 1. 

4 Method to Predict Exponential Growth of Infected Cases 

According to data [30], the number of cases is multiple of 1.15 to 1.25 to the number 
of previous days. If the number of given cases is .Nd and the average number of 
people someone infected is exposed to each day is E, and each one of those people 
has a probability p of becoming a new infection. Then, the new cases on a given 
day can be given as 

.ΔNd = E.p.Nd (1)
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where .ΔNd is change over a day 

.ΔNd+1 = Nd + E.p.Nd (2) 

.Nd+1 = (1 + E.p)Nd (3) 

If the number of new cases is proportional to the number of existing cases, it means
that each day multiplies by a constant.

.Nd = (1 + E.p)dN0 (4) 

For a random shuffling model,

.p = 1 − Nd

PopulationSize
(5) 

For N cases,

.
dN

dt
= C

(
1 − Nd

PopulationSize

)
N (6) 

The growth rate is defined as

.R = ΔNd

ΔNd−1
(7) 

These two factors play a crucial role in the growth of newly infected cases.

5 Results and Discussions 

We have considered the three population sizes of 10 million, 1 billion, and 10 billion. 
The reproductive ratio varies from country to country; therefore, we have divided the 
reproductive rate into two categories, i.e., slow (.R0 = 1.8) and high with .R0 = 2.2. 
The growth prediction for each category with different percentages of transmission 
is estimated. The prediction has its intrinsic limitation as various parameters that 
influence the transmission of COVID-19 might not be accounted for. The analyses 
also considered the different preventive measures taken by the different state agents 
after the outbreak alarm. 

Our analysis is based on (i) no intervention, (ii) intervention after 30 days, and 
(iii) intervention after 60 days. It proved from existing studies [31] that the delay in 
adopting preventive measures results in excess mortality. 

The preventive measures adopted by the countries are social distancing by 
imposing complete lockdown. It is impossible to achieve a 100% lockdown;
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therefore, we have considered a standard 71% decrease in transmission during the 
lockdown. We have predicted the growth of COVID-19 without intervention, with 
results shown in Tables 2, 3, 4, 5, 6, 7. The reproductive rate is kept at 1.8 and 
2.2 for three different population categories: Tables 2, 3 for 10 million populations, 
Tables 4, 5 for 1 billion populations, and Tables 6, 7 for 10 billion populations. 
The highest infection is 6.63% with .R0 = 2.2. The number of people infected with 
peak infection is 66 million, and the mortality will be 15 million in a population of 
10 billion. In the same duration, approximately 12% of people are exposed to the 
disease. 

The second analysis was carried out with preventive actions such as social 
distancing and lockdowns imposed by the authorities after 30 and 60 days of starting 
the pandemic. The total social distance includes removing all social contact other 
than the household. Generally, it is seen that essential services are in operation 
during the lockdown period; therefore, it is impossible to achieve sent percent social 
distancing. We assume that the transmission is decreased by 71% during social 
distancing. Partial dock down or social distancing is ineffective; it must be above 
70% for an effective decrease in the transmission of a pandemic. The results show 
(Figs. 4–9a) the highest rate for three categories (exposed, infectious, and fatalities) 
for all sizes of the population (10M, 1B, and 10B) without adapting to preventive 
measures. These values are valid if the government or authorities take no preventive 
measures such as social distancing and lockdown. For the larger population and 
with the high reproductive rate, the highest infection rate will be 6.63% of the total 
population. 

Our analysis is given under two categories: (i) intervention after 30 days and (ii) 
intervention after 60 days. The results show that the first category is very effective 
in bringing down the number of infected cases. With the high reproductive ratio, 
the number of infections is 16,705 under the first category in contrast to 652,771 
under the second category. The number of infected cases significantly increased if 
the lockdown was imposed after 60 days. Figure 4(a) depicts a total population of 
54.91% will be exposed, with 4.19% infected persons. Figure 4(b) and 4(c) shows 
intervention after 30 and 60 days with a total of 0.05% and 0.60% infected cases, 
respectively. As seen in Fig. 4(c), there is a sharp increment in infected cases and 
fatality rates. Therefore, rapid and quick social distancing is desirable within 1 
month to reduce the number of infections and mortality significantly. 

6 Findings and Conclusion 

We have presented a mathematical model for the growth prediction of COVID-19. 
Since the spread varies with age and population, our analysis is based on three popu-
lation sizes, i.e., 10 million, 1 billion, and 10 billion. The different reproductive rate 
has been evident for COVID-19; therefore, we have considered two reproductive 
rates, high and low. All the analysis is based on different population sizes and the 
two reproductive ratios. In this study, we showed that the number of infections and
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the probability of becoming a new infection significantly affect the transmission 
of COVID-19, irrespective of the temperatures and humidity. The temperature and 
humidity may affect it up to some extent. However, the transmission is proportional 
to the contact of humans with infected humans. The findings of this study are as 
follows: 

– To end the pandemic COVID-19, we must reduce the R, which can only be 
possible by reducing the contact of humans with infected humans. 

– More than 70% population must be isolated for a practical impact of social 
distancing to prevent the spread of the pandemic. 

– The effect of temperature and humidity on the spread of COVID-19 is limited. 
– The transmission of COVID-19 would not be limited during the April–June 

months of 2020 in high-temperature region countries like India, Pakistan, Sri 
Lanka, etc. 

Several factors, including temperature and humidity, are responsible for the spread 
of COVID-19. However, we have established that understanding the relationship 
between two parameters, namely p and E, is essential for predicting the growth and 
end time of the pandemic COVID-19. 
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COVID-19 Combating Strategies 
and Associated Variables for Its 
Transmission: An Approach 
with Multi-Criteria Decision-Making 
Techniques in the Indian Context 

Debesh Mishra and Mohamed Lahby 

1 Introduction 

The ‘Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2)’ was the 
pathogen’s new designation as of February 11, 2020, according to the ‘International 
Committee on Taxonomy of Viruses’ [39], whereas COVID-19 was the label given 
to the outbreak by ‘World Health Organization (WHO)’. The following stages of 
COVID-19 disease transmission include the following: A preliminary phylogenetic 
study of Stage-1 virus COVID-19 suggested that it may be zoonotic. Stage-2 
includes the spreading of COVID-19 to people from animals [3]. Furthermore, 
the COVID-19 viruses have a 2- to 14-day period of incubation [3, 20, 71] 
and Stage-3 with the potential for human-to-human transmissions from coughing 
droplets, contaminated surfaces, or surroundings. Stage-4 will then follow with the 
COVID-19 epidemic and community transmission [116], and Stage-5 with COVID-
19 progressively spreading globally and the number of active cases increasing 
exponentially [46]. Development of a novel virus suggests that knowledge of 
dissemination patterns and the related risk factors for infections will be restricted 
early in outbreaks [125]. Numerous scholarly works have examined COVID-19 
prevalence, transmission among people with the disease, and prophylaxis among 
those patients’ close contacts [72]. 

With the exception of Antarctica, more instances of the coronavirus (COVID-
19) have been documented globally since incidences of the disease were first noted 
in Wuhan (China), in December 2019. The ‘World Health Organization’ classified 
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COVID-19 as an epidemic as a result of the rate of increase exceeding the rate 
of patients [126]. The SARSCoV-2 is the virus responsible for COVID-19 with 
around 71,000,000 verified cases and 1,600,000 confirmed deaths worldwide as 
of December 15, 2020 [126]. When a person who is infected coughs, sniffles, or 
spits, the virus is discharged from their respiratory secretions. These droplets can 
infect other persons when they come into touch with them [102]. Most infections 
are frequently self-limited. In the elderly and those with existing medical conditions, 
it might lead to more severe sickness [128]. According to current data, fever is 
present in 88% of cases, exhaustion in 38%, dyspnoea in 18.7%, myalgias in 
14.9%, and a dry-cough in 67% of cases at the time of illness’s beginning [24, 
25]. The most frequent consequence is pneumonia. A mortality rate of 2.3–5% is 
seen in extreme symptoms [128]. Other than supportive care, there are currently no 
confirmed particular therapies for people with the new virus. Many patients have 
obtained off-label and benevolent use medications in China, France, Italy, Turkey, 
Spain, and now the United States [126]. So far, a variety of strategies have been 
employed to combat the infection. Currently only few limited vaccines are utilized 
as the main approaches in India, while the efficacy of various medications is yet 
uncertain [34, 37, 74, 88]. 

The virus COVID-19 is regarded as infectious and has been classified as a 
pandemic. Each country is taking precautions to lessen the rate of transmission 
after the virus spread to several countries. International health organizations like 
the WHO routinely issue advisory recommendations urging rigorous action against 
the causes of COVID-19 transmission. Businesses are seeing the interruption to 
their supply chain and discrepancy between supply and demand for ‘products and 
services’ as a result of the COVID-19 worldwide outbreak. Due to travel restrictions 
and restricted borders, it is often difficult for enterprises to discover alternate transit 
and logistic networks. The only approach to identify efficient and secure therapies 
for COVID-19 and potential future outbreaks is through the quick and concurrent 
blending of supportive care and arbitrary control trials. The supporting systems 
that provide decision-makers with the details they need about the options and their 
attributes are known as ‘decision-making models’. The total number of verified 
cases has recently begun to decline as a result of administrative interventions, 
enforced controls (like shutting down public transit), adjustments to standard 
personal hygiene practices (like always wearing a facemask and avoiding physical 
intimacy), and so on [131]. According to Schippers and Rus [105], resolving the 
COVID-19 issue might be seriously compromised by group thinking, a limited 
emphasis on the virus containment issue, and an increase in commitment. The 
predictions of different responsible factors associated with the pandemic can guide 
to take precautions accordingly [36, 115]. Despite the exponential global spread 
of COVID-19, the mortality rate is still manageable, allowing people everywhere 
to regain their faith in their ability to combat this pandemic collectively. However, 
only a small amount of scholarly research has examined the causes of the COVID-
19 disease’s spread among people in various nations [46]. In this situation, a variety 
of variables contribute to the individuals’ COVID-19 infection spread. Therefore, 
by taking into account only a few variables, policymakers, health authorities, and
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immunologists cannot determine the level of dissemination and therefore prepare 
for mitigation. As a result, policymakers and health authorities must conduct a 
thorough review of the variables contributing to COVID-19’s transmission and take 
all of them into account when developing mitigation and preventative policies. 
Consequently, methods for ‘multi-criteria decision-making (MCDM)’ are most 
appropriate [70]. 

The following ‘research-questions (R-Qs)’ were briefly addressed in this chap-
ter:

• R-Q1: What are the main preferences of COVID-19 vaccines among the Indian 
community?

• R-Q2: What are the essential variables that contribute to the spread of COVID-
19?

• R-Q3: Which of them require immediate attention and are the most serious?
• R-Q4: In light of these variables, how should policymakers rank them? 

Following is the arrangement for the remaining portion of this chapter. In 
Sect. 2, the current literature was discussed on COVID-19 vaccinations; COVID-
19 transmission variables; and vaccination’s reluctances in India. The research 
methodology used in this chapter was discussed in Sect. 3. In Sect. 4, the results 
related to the findings was given, which was followed by Sect. 5 with discussion. 
Finally, in Sect. 6, the conclusion of this chapter was presented. 

2 Literature Review 

In periods of crisis, the success of policymakers’ decisions is highly dependent on 
their capacity to synthesize and understand information. Governments are faced 
with the challenging tasks of decision-making in the interests of public safety and 
health due to the COVID-19 issue. In essence, decision-makers act in response 
to potential threats whose scopes are unclear while operating under significant 
time constraints and uncertainties. However, the government should implement an 
appropriate set of strategies as soon as feasible given that the death rate for serious 
conditions has been found to be 10% [36]. In a numerical study of COVID-19, Bai 
et al. [11] analysed the features of the recovery and transmission rate and forecasted 
the future trend. Decision trees and prior algorithms have been used to analyse the 
COVID-19 virus’s routing information [61], but there is still a potential that some 
data may be overlooked and more algorithms will need to be included to ensure 
system results. In a study [8], the spread of COVID-19 in China’s Hubei region 
was anticipated and simulated, but the features of the population, such as the impact 
of age, the presence of other health issues, and the measures taken to avoid the 
spread, were not investigated. By using a time-series and kinetic-analysis model, 
Yichi et al. [129] have demonstrated how the Chinese government’s emergency 
measures, such as its ban on individuals leaving the country, have a significant effect 
on the spread of the outbreak. As per experimental findings, deceased people’s
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body do not cause further infection, and those who have recovered get benefits 
from the developed antibodies already present in their systems, which help to avoid 
future virus replications. According to He et al. [47], the delayed diagnosis of the 
symptoms and the manufacture of Chinese medication have been identified as the 
variables leading to the abnormal dynamic characteristics of COVID-19. 

Healthcare decision-making involves a sophisticated network of meaningful 
relationships between several stakeholders [92]. Currently, there are few mathemat-
ical models or methods utilized to facilitate the selection of an effective vaccine 
for combating pandemics and outbreaks. Literature on the variables that could 
influence a person’s decision to accept or reject a vaccination among vaccine 
alternatives is limited. A clinical decision assistance system has been built using the 
‘analytic hierarchy process (AHP)’ approach [59]. The ‘BAILEY’s model’ was a 
quantitative decision-making tool utilized by Kumar and Roy [68] in the preclusion 
and management of COVID-19. Importantly, the criteria and methods for choosing a 
vaccination among vaccine options are hardly discussed in the literature. Therefore, 
it is crucial to create a discrete choice model to examine the many selection criteria 
for vaccines among the options available. The prevention and treatment of world-
wide outbreaks all depend on scientific understanding. Some of this information 
may be condensed in plans for pandemic response and preparation (at both the 
national and global levels) or may be effectively acquired from panels of experts 
with knowledge in pertinent fields of study, such as virologists, communicable 
diseases data analysts, and sociologists [84]. In a catastrophe like the COVID-
19 pandemic, the top-government policy experts have a serious decision-making 
challenge. When a novel infectious illness initially develops, policymakers may 
try to restrict spreading by quick actions to stop further dissemination. Before the 
pandemic, the infection was treated with a variety of medications and techniques. 
Evaluating COVID-19 treatment alternatives by using MCDM techniques have been 
claimed to be highly valuable because, to yet, no viable treatment option has been 
discovered and only success was obtained on case based [130]. The COVID-19 
virus’s properties, such as its virulence, transmissibility, and historical background, 
were unclear during the outbreak [9]. The dynamics of the system are unclear given 
the current state of information, which makes the effects of potential policy-actions 
like shutting institutions or donning masks in public. Policymakers can better 
appreciate the scope of an issue by considering the different levels of uncertainty, 
such as uncertainty about-models, across-models, and inside-models [44, 45, 75]. 

The comprehensive literature on COVID-19’s vaccinations, transmission, and 
variables contributing to its transmission are presented and discussed in the follow-
ing sections. 

2.1 COVID-19’s Vaccinations 

The COVID-19 pandemic’s epicentre has been moving from China to Europe and 
eventually the United States during the entire year 2020. India has become the new
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location of the COVID-19 virus’s epicentre as the second wave spreads throughout 
the nation. Since April 2021, India has recorded almost 3 lakh COVID-19 instances 
every day, which is a more dangerous, and ominous trend than the initial wave. 
The extremely infectious double mutated version of COVID-19, the simplicity of 
therapies, and people’s careless behaviour are the key causes of this increase in 
COVID-19 cases [127]. Since COVID-19 (SARS-CoV-2) has a far greater infection 
rate than previous viruses like ‘MERS-CoV and SARS-CoV’, it can spread quickly 
around the world and result in a worldwide epidemic [23]. Droplets, aerosols, and 
fomites are the principal means of human-to-human COVID-19 transmission [122]. 
Additionally, according to certain research, COVID-19 dust might also spread via 
the air [97, 108, 110]. The COVID-19 pandemic’s transmission channels, however, 
are the subject of a contentious disagreement among academics and experts, even 
if everyone in the globe abides by WHO norms. To prevent exposure to the virus, 
it is crucial to adopt preventative measures such hand washing, quick isolation of 
patient’s with symptoms or diagnosed, social distance, and the use of sanitizers 
and masks [29]. Even with the aforementioned measures, this illness continues to 
have a high mortality rate and afflict all nations in the world [90]. The transmission 
of COVID-19 is attributed to a number of variables, including social distances 
[63], climate-related variables [55], safety- and hygiene-related variables [35], and 
cognitive variables [101]. Therefore, it is necessary to employ various preventatives 
and control techniques, both locally and globally. 

There are about 30 vaccine contenders being developed in India, all at different 
levels. Two are at the most advanced level of these. These include ‘COVAXIN’ 
from the ‘Indian Council of Medical Research (ICMR)’ and alliance with ‘Bharat 
Bio-tech’, as well as ‘COVISHIELD’ from ‘Serum Institute of India (SII)’ [82, 
96]. The ‘National AIDS Research Institute (NARI)’ in Pune and the ICMR 
are responsible for overseeing all studies. The ‘Department of Biotechnology 
(DBT)’ and the ‘Department of Science and Technology (DST)’ are funding other 
vaccine alternatives that are in various research stages [21, 78, 79]. Six of these 
potential vaccines are now undergoing clinical trials. The preclinical trial stage 
is being experienced by the remainder [119]. The ‘COVISHIELD’, ‘COVAXIN’, 
and ‘Sputnik-V’ are the leading contenders. A phase-III human clinical study 
for COVISHIELD, a non-replicating adenovirus type-5 vector-vaccine, is now 
taking place in India. A locally created complete virion inactivated vaccine called 
COVAXIN is also undergoing Phase III human clinical trials. On January 3, 2021, 
the ‘Central Drugs and Standards Committee (CDSCO)’ formally authorized both 
of these vaccination candidates [117, 119]. Sputnik-V vaccine began Phase-III in 
the first week of August 2020 after successfully completing the Phase-II study. This 
Russian-based vaccine, created by the ‘Gamaleya Research Institute’, is based on 
the common cold virus and has demonstrated the ability to stimulate the production 
of antibodies by the immune system [82]. Larger human studies are being conducted 
there, and this vaccine will also be produced there [83]. The subsequent creation of 
a successful and enhanced approach is largely dependent on the discovery of the
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COVID-19’s transmission variables. As a result, this chapter aims to identify and 
describe the potential sources of COVID-19 viral transmission through the existing 
literature. 

2.2 COVID-19’s Transmission Variables 

According to research findings, it is crucial to keep COVID-19 from spreading 
by maintaining good cleanliness, safety, sensitivity, social, demographic, and 
psychological variables. In the next sub-sections, the major and significant COVID-
19’s transmission variables are elaborated. 

2.2.1 Climate-Related Variables 

Climate-related variables including air quality, temperature, wind speed, rainfall, 
humidity, and solar radiation help the new COVID-19 virus spread quickly [4, 67]. 
Relative humidity, temperature, and wind speed are significant determinants in the 
spread of COVID-19, according to an analysis by Chen et al. [24, 25] regarding 
the link between environmental conditions and the severity degree of transmission. 
According to Wang et al. [123], who studied how temperature affects COVID-
19’s transmission, low-temperature nations should enact strict control measures to 
stop COVID-19’s transmission. In humid continental locations, warmth periodicity 
also promotes COVID-19’s transmission favourably [95]. Furthermore, research 
shows that the COVID-19’s transmission is influenced by the relative humidity and 
everyday temperatures [51]. A few studies, for example, found that low humidity 
may have facilitated COVID-19’s transmission [10, 123]. For limiting the spread 
so that the heart and lungs can fight off the infections, the relatively high humidity 
(>95%) is recommended [65]. However, other investigations discovered that the rate 
of COVID-19’s transfer and wind speed had an inverse association [13]. As a result, 
the transmitting rate is increased when the wind blows more slowly. In addition to 
transfer from person to person, Coccia [28] found that air pollution may speed up 
the spread of COVID-19. 

2.2.2 Safety- and Hygiene-Related Variables 

First and foremost, everyone who has had direct touch with a COVID-19 patient is 
at high infection risks [125]. According to recent studies, those who are infected 
with the COVID-19 virus but do not exhibit any symptoms (i.e. those who are 
asymptomatic) are also responsible for spreading the disease [50]. On February 
17, 2020, 189 asymptomatic travellers out of 1723 travellers tested positive for the 
COVID-19 virus [85]. The ‘personal protective equipment (P.P.E.)’ such as ‘masks 
and face-shields’ help to safeguard medical professionals from COVID-19 patients,
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while also protecting the general public [112]. The WHO has previously issued 
a warning on the serious disruptions of the availability of P.P.E. products on a 
worldwide scale and urges business and governments to enhance output by about 
40% to satisfy the growing demand on a global scale. The COVID-19 illness can 
spread widely through the air and surfaces, in both ‘intensive-care units (I.C.U.)’ 
and to medical-ward designated COVID-19, according to Guo et al. [41], suggesting 
a significant potential danger of spreading among the physicians and medical staffs. 
Therefore, it is essential to have a sufficient and timely supply of P.P.E. to reduce 
the transmitting rates. Additionally, used tissues, masks, gowns, and gloves from 
households and hospitals that are medical wastes might potentially spread the 
dangerous COVID-19. As a result of routinely handling unlabelled wastes properly, 
the sanitation workers and rag pickers are vulnerable to COVID-19’s infection. 

2.2.3 Making Decisions with Attentiveness 

Worldwide, significant behavioural-based intrusions have been made to slow the 
development of COVID-19 [64]. To slow the pace of transmission, some nations 
have issued full travel bans [40], lockdowns [66], and forced quarantines [94]. Due 
to decreased vehicle traffic and better air quality in several Indian cities, lockdown 
has had a considerable beneficial influence on lowering COVID-19 transmission and 
pollution levels [53]. In the provinces of Wuhan and Ezhou, China implemented a 
lockdown on January 23, restricting all public transportation and social activities. 
Many nations announced border control measures to stop visitors from China after 
the WHO designated COVID-19 a global health emergency on January 30, 2020. 
A 14-day obligatory quarantine period and a ban on international travellers from 
China, Hong Kong, and Macao were implemented by the Philippines on February 2, 
2020 [31]. Impact of human travel and mobility on the transmission of the COVID-
19 virus was examined and shown to be extensive by Gondauri and Batiashvili [38]. 
Additionally, delays in COVID-19 identification and quarantine have accelerated 
COVID-19 spread [124]. To prevent the spread of COVID-19 and increase response 
to the existing overburdened healthcare systems, governments in several nations are 
officially enforcing quarantines and travel restrictions. 

2.2.4 Social- and Demographic-Variables 

Social cohesion (mass assembling), density of population, and age range are the 
primary social- and demographic-variables [76]. Religious events, panic-related 
movements, worker interstate travel, and other conditions can cause large crowds, 
which can speed up the spread of COVID-19. For instance, in China, the COVID-
19 epidemic occurred at the same time as the Lunar New Year celebrations. From 
Wuhan city, the COVID-19 epicentre, it was projected of five million people 
travelling to the world’s various parts [24, 25]. From another occurrence, several 
pilgrims who had attended massive prayers in Iran and returned to Pakistan tested
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positive for COVID-19, and amid the COVID-19 crisis, over 10,000 pilgrims 
congregated in Bangladesh for prayer. In Malaysia, there have been more than a 
hundred new COVID-19 infection cases since a large meeting in Kuala Lumpur 
in February 2020. According to statistics, the Sri Pentatig mass gathering was 
directly responsible for more than 35% of the COVID-19 cases in Malaysia [22]. 
Nearly 30% of COVID-19 cases in India were linked to large religious gatherings, 
according to studies. To prevent social gatherings, the majority of countries quickly 
closed places of worship, retail centres, workplaces, and cancelled sporting events. 
As a result, huge religious assemblies and religious tourism are among the major 
causes of COVID-19 spreading [86]. High population density may be another 
important demographic variable contributing to the COVID-19 virus spreading 
more quickly. Researchers discovered a link between the COVID-19 transfer rate 
and population density [107]. Mumbai is the most severely impacted city in India 
because of its dense population and most of its locations are quite susceptible to 
COVID-19 infection [57]. Using a mask and maintaining a distance from others are 
two self-protective behaviours that have been shown to reduce individual infection 
risk and stop the spread of disease [93]. Unfortunately, social distance regulations 
(such as suspending activities, shutting down companies and schools, and issuing 
orders to stay at home) have a terrible financial and societal impact [2, 17]. 

2.2.5 Psychological-Related Variables 

Every pandemic has an impact on a person’s psychology, and thus making people 
aware of them, providing health-related education, and taking preventative actions 
to minimize disease spread are crucial [56]. For instance, Ilesanmi and Alele (2020) 
investigated the impact of Ebola virus infection’s knowledge, attitudes, and percep-
tions among Nigerians. Their findings indicate that the majority of the population 
lacked awareness and had a poor attitude about the viral spread. Similar to this, Roy 
et al. [103] conducted a survey of regular people to evaluate their awareness of, 
attitudes about, and practices related to the COVID-19 epidemic. According to their 
research, social isolation, knowledge of COVID-19, travel restrictions, quarantine, 
and hygiene precautions were crucial. The majority of participants concurred that 
taking these precautions and cultivating a positive outlook might aid in preventing 
the potential illness. Participants expressed anxiety and dread over the reintegration 
of recovering patients into society. As a result, the community’s behaviour has been 
impacted by the dread and worry caused by the extremely contagious COVID-19. 
Ample public knowledge is thus required in order to influence people’s attitudes 
toward recovering patients and prevents social discriminations [32].
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2.3 Vaccination’s Reluctances in India 

The digital gap is more pronounced in India, where a sizeable section of the 
population lives in rural areas without access to formal schooling [19, 109, 118]. 
This suggests that vaccination reluctance may perhaps be more prevalent than 
previously assumed. According to a study, between 29% and 39% of Indians were 
unwilling to get vaccines at the beginning of 2021 [27]. Another longitudinal study 
conducted from January to June of 2021 indicated that 12.7% of adult Indians will 
not receive the COVID-19 vaccination [120]. Other studies have discovered that 
worries about the safety and adverse effects of the current vaccinations are the main 
causes of vaccine reluctance and rejection in India [30]. The COVID-19 vaccine 
awareness programmes and communication should be based on research, regionally 
targeted, culturally appropriate, multifaceted, and led by politicians, healthcare 
experts, dependable voices from the area, and role models. In the extremely varied 
India’s population, researches need to be made on the best ways in spreading the 
benefits in receiving the COVID-19’s vaccine, as well as to alleviate fears and 
eliminate misunderstandings and misleading facts [60, 104]. 

Nearly half of Indians have acquired at least single dose of the COVID-19 vacci-
nation by October 2021 [91]. India will now have to deal with COVID-19 resistant 
and reluctant groups when vaccination rates stagnate [12, 111]. Government should 
see COVID-19 vaccine reluctance as a severe public health concern. Even a small 
percentage of vaccine scepticism in India might result in millions of COVID-19 
vaccination-refusing citizens throughout the country, which would encourage the 
emergence of new variations and frequent outbreaks for a very long period. 

3 Research Methodology 

This research involved an exhaustive literature analysis, followed by interaction 
with healthcare specialists to identify the underlying vulnerabilities with the 
COVID-19 pandemic outbreak in Indian context. Moreover, in order to address 
the aforementioned global health issues, further in-depth investigation is needed 
to pinpoint and examine the causes of COVID-19’s transmission globally. In this 
chapter, the decision-making model for vaccine’s selection was made based on the 
appropriateness of the available vaccines for COVID-19 patients in the setting of 
India with various comorbidities. The experts evaluated the vaccine’s suitability in 
terms of four criteria, including the following: vaccine’s availability that relies on 
its ease of access and manufacturing-location; vaccine’s effectiveness [77], which 
can increase the value of vaccine; the likelihood of vaccine-related adverse effects, 
which may be severe or moderate, and their frequency; and cost savings that include 
vaccine, transport, and storage costs; respectively [1]. 

Additionally, despite the fact that other MCDM methods have been established, 
or the discovery of criteria’s estimates and picking in view of their proclivities, one
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Table 1 Characteristics of expert participants 

Sexual orientation 
Healthcare expert’s competence areas Male Female Years of experience (average) 

Pulmonologist 10 2 Beyond 20 
Neurologist 6 3 Beyond 16 
General physician 3 2 Beyond 23 

of the most popular methods that utilize comparisons was already considered as 
the ‘Best-Worst Method (BWM)’ with even less data needs and more trustworthy 
comparability [98]. Rezaei et al. [100] observed that the BWM is suitable when there 
are fewer criterions to be taken into consideration and that it also produces more 
consistent findings with fewer pair-wise comparisons [80]. The ‘SWARA (Step-
wise Weight Assessment Ratio Analysis)’ approach, another MCDM method that 
can handle a variety of criteria in any complicated situation, has also demonstrated 
its unique use for diverse decision-making processes [81, 134]. Additionally, various 
research has recommended combining MCDM methods to effectively manage more 
complex problems, such as SWARA and the ‘complex proportional assessment 
(COPRAS) method’ [133]; and SWARA and ‘VlseKriterijumska Optimizacija 
I Kompromisno Resenje (VIKOR) analysis’ [6]. However, there are not many 
researches that take complicated problems into account when integrating BWM and 
SWARA methods. Therefore, in this chapter, a novel effort was made by combining 
two MCDM methods, such as the BWM and SWARA methods in order to rank the 
significant variables that contribute to spreading of COVID-19. 

Initially, considering the existing availability, the main preferences of COVID-
19’s vaccines, such as ‘COVISHIELD’, ‘COVAXIN’, and ‘Sputnik-V’ among 
the Indian community was done by the use of SWARA approach. Further, in 
order to rank the essential and significant variables that contribute in spreading 
COVID-19 and according to how best to prioritize them, the associated significant 
variables were ranked using the BWM technique. Further, the associated sub-
variables were ranked using the SWARA approach, which took into account the 
variable’s optimized-weight values when determining the final weight values of 
the corresponding sub-variables. The 26 experts who participated in the decision-
making stages for the research are enumerated in Table 1, along with information 
about their typical years of experience, higher education, and sexual orientation. 

3.1 The Associated Variables and Sub-variables Identification 
for the COVID-19 Pandemic Transmission 

According to literature, and experts’ views, the COVID-19’s transmission variables 
and the corresponding sub-variables were identified as depicted in Table 2.
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Table 2 Summary of COVID-19 pandemic transmission variables and the corresponding sub-
variables 

Sl. no. 
Variables Sub-variables Source(s) 

1 Climate-related variables 
(V1) 

Air-quality (SV11) 
Temperature (SV12) 
Rainfall (SV13) 
Humidity (SV14) 
Wind-speed (SV15) 

Ahmadi et al. [4]; Coccia 
[28]; Hossain [49]; Wang 
et al. [123] 

2 Safety- and 
hygiene-related variables 
(V2) 

Unawareness of hygiene 
(SV21) 
P.P.E.’s shortages (SV22) 
Spitting (SV23) 
COVID patient’s waste 
disposals (SV24) 
Close contacts (SV25) 

Ghernaout and Elboughdiri 
[35]; Sohrabi et al. [113]; 
Vordos et al. [121] 

3 Making decisions with 
attentiveness (V3) 

Quarantine-delay (SV31) 
Lockdown-delay (SV32) 
Travel-restrictions (SV33) 

Chinazzi et al. [26]; Kludge 
et al. [62]; Nicola et al. [89]; 
Sohrabi et al. [113] 

4 Social- and 
demographic-variables 
(V4) 

Social-discrimination and
-cohesiveness (SV41) 
Age-group (SV42) 
Population-density (SV43) 

Ahmed and Memish [5]; 
Bavel et al. [14]; Chen et al. 
[24, 25]; Mufsin and Muhsin 
[87] 

5 Psychological-related 
variables (V5) 

Knowledge, attitude, and 
activities (SV51) 
Impulsive purchases (SV52) 
Concealing past travels 
(SV53) 

Bavel et al. [14]; 
Chakraborty and Maity [18]; 
Ho et al. [48]; Zhong et al. 
[132] 

The five sub-variables under ‘Climate-related variables (V1)’ included ‘Air-
quality (SV11); Temperature (SV12); Rainfall (SV13); Humidity (SV14); and 
Wind-speed (SV15)’. The five sub-variables identified under ‘Safety- and hygiene-
related variables (V2)’ included ‘Unawareness of hygiene (SV21); P.P.E.’s shortages 
(SV22); Spitting (SV23); COVID patient’s waste disposals (SV24); and Close 
contacts (SV25)’. Similarly, three sub-variables identified under ‘Making decisions 
with attentiveness (V3)’ included ‘Quarantine-delay (SV31); Lockdown-delay 
(SV32); and Travel-restrictions (SV33)’. The three sub-variables under ‘Social- and 
demographic-variables (V4)’ included ‘Social-discrimination and -cohesiveness 
(SV41); Age-group (SV42); and Population-density (SV43)’. The three sub-
variables under ‘Psychological-related variables (V5)’ included ‘Knowledge, 
attitude and activities (SV51); Impulsive purchases (SV52); and Concealing past 
travels (SV53)’; respectively.
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3.2 The Actions Undertaken in BWM 

As noted by Rezaei [99], the following actions were portions of the BWM: 

Action-1 A collection of decision-criteria was formed, comprising of ‘n’ distinct 
criteria as: {C1, C2, . . .  , Cn}, based on a literature review and the opinions of 
experts. 

Action-2 From the most important or most enviable criterion and the least impor-
tant or least enviable criterion, the ‘worst-criteria (WC) and best-criteria (BC)’ were 
selected. 

Action-3 Using values between ‘1 and 9’, it was decided that the BC should take 
precedence over all other factors. The resulting ‘best-to-others (BTO)’ vector was 
provided by: ABC = {aBC1, aBC2, . . . , aBCn}, where, aBCi = BC’s choice over j, and 
aBCBC = 1. 

Action-4 Similar to previous action, other criteria’s choices over WC were 
obtained. The resulting ‘others-to-worst (OTW)’ vector was provided by: Aw = 
{a1W, a2W, . . . , anW}T, where, ajWC = j’s choice over WC, and aWCWC = 1. 

Action-5 The ‘optimized-weights (AIW)’ that were found were . 
{
WC∗

1, WC∗
2, . . . ,

WC∗
n

}
. 

Calculating AIw for minimizing the greatest absolute-differences, that is, 
{|WCBC − (aBCjWCj)|, |WCj − (ajWCWCWC)|} for all j was the primary goal 
of this stage. The ‘minimax-model’ that resulted was as follows: 

. Minimax
{∣∣WCBC − (

aBCjWCj
)∣∣ ,

∣∣WCj − (
ajWCWCWC

)∣∣}

Subject to, 

.

∑

j

WCj = 1,
{
WCj ≥ 0 for all j

}
(1) 

Then, continuing with ‘Model-(1)’, the following linear model was developed: 

. Minimax ξ∗

Subjected to, 

.

∣∣WCBC − [
aBCjWCj

]∣∣ ≤ ξ∗,
∣∣WCj − ajWCWCWC

∣∣ {for all j}∑
jWCj = 1,

{
WCj ≥ 0 for all j

} (2) 

The aforementioned ‘Model-(2)’ was solved to determine AIW as well as the 
‘optimized-value (ξ*)’. A number ‘closer to 0’ was essential for evaluating the 
comparison’s ‘consistency ( . C∗

i )’, which was another key consideration [100].



COVID-19 Combating Strategies and Associated Variables for Its. . . 245

Table 3 Values of CI in BWM 

aBCWC 9 8 7 6 5 4 3 2 1 
CI (Maximum ξ∗ ) 5.23 4.47 3.73 3.00 2.30 1.63 1.00 0.44 0 

However, the CI in Eq. (3) below helps to determine the . C∗
i . 

.C∗
i = [

ξ∗/CI
]

(3) 

The values of ‘consistency-index (CI)’ that were utilized, was as shown in 
Table 3. 

3.3 The Stages Undertaken in SWARA 

The subsequent stages, according to Stanujkic et al. [114], were used to prioritize 
more and less crucial factors. 

Stage 1 Clustering the criteria according to order of importance 
In this stage, experts evaluated the proportional weights assigned to each criterion 

to rate them. The more significant criterion was initially placed first, and only then 
was the less significant criterion added in the end destination. 

Stage 2 Assessing how relevant typical values are in comparison 
Depending on how important criterion (cj) was in comparison to criterion (cj+1), 

the relative-importance of ‘average values (sj)’ was established beginning with the 
criterion that has been placed second. 

Stage 3 Coefficients’ (kj) computation as given: 

.kj =
{

1, j = 1
sj + 1, j > 1

(4) 

Stage 4 Recalculated-weights’ (qj) calculation as stated below: 

.qj =
{

1, j = 1
qj−1
kj

, j > 1
(5) 

Stage 5 Final weights’ (wj) computation of the ‘evaluation-criteria’ for n number 
of criteria, as given: 

.wj = qj

n∑

k=1
qk

(6)
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Table 4 wj of available vaccines 

Vaccines Relative-importance of sj kj qj wj Rank based on wj value 

COVAXIN 1 1 0.396 1 
COVISHIELD 0.21 1.21 0.826 0.327 2 
Sputnik-V 0.18 1.18 0.700 0.277 3 

4 Results 

The ranking of the available vaccine’s preferences in India and the COVID-19 
transmission variables with the corresponding sub-variables was described in the 
following sub-sections. 

4.1 Ranking of the Available Vaccine’s Preferences in India 

The wj values of different available vaccines were obtained by using SWARA 
approach as illustrated in Table 4. It may be noted the experts’ suggestion were 
taken for sorting the available vaccines according to their preferences. The ranking 
based on wj values of different vaccines revealed the preference for COVAXIN at 
first level, which was followed by the subsequent preferences for COVISHIELD 
and Sputnik-V at second and third levels. 

4.2 Ranking of the COVID-19 Transmission Variables 
and Corresponding Sub-variables 

4.2.1 Variable’s Ranking by BWM 

The BC and WC were chosen based on the experts’ opinion and the respective 
importance of each of the five selected Vs. Then, on a scale of ‘1 to 9’, experts 
were interviewed to decide which variables were favoured as BC over all others. By 
using the same evaluation values, the opinions of other variables associated to the 
WC were also established. Additionally, the AIw values for each of the criteria in 
addition to the . C∗

i was derived using the ‘BWM-Solver.xlsx software’, and equation 
(ii) was used to finalize the preference scores for all five Vs. 

The variable V2 was chosen as the BC and V2 as WC. Table 5 illustrated the 
comparisons of V2 to all Vs, while Table 6 illustrated the comparisons of all Vs to 
V5. Table 7 illustrated the AIw values for each variable, such as AIw1 = 0.229; 
AIw2 = 0.448; AIw3 = 0.114; AIw4 = 0.153; and AIw5 = 0.054. Additionally, 
.C∗

i was found to be 0.011, as shown in Table 7. Then, taking criterion on X-axis 
and values of AIw on Y-axis, a graph was created as shown in Fig. 1. The AIw
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Table 5 The comparison of 
V2 to all Vs 

BTO V1 V2 V3 V4 V5 

V2 2 1 4 3 8 

Table 6 All Vs comparison 
to V5 

OTW V1 V2 V3 V4 V5 

V5 4 8 2 3 1 

Table 7 Vs’ AIw values Vs AIw .C∗
i Rank 

V2 0.448 0.011 1 
V1 0.229 2 
V4 0.153 3 
V3 0.114 4 
V5 0.054 5 

Fig. 1 Values of AIw for all Vs 

for different Vs revealed that ‘Safety- and hygiene-related variables (V2)’ to be 
rated in the first level, and was followed by ‘Climate-related variables (V1); Social-
and demographic-variables (V4); Making decisions with attentiveness (V3); and 
Psychological-related variables (V5)’; respectively. 

4.2.2 Sub-variable’s Ranking by SWARA 

The ‘final revised-weight (FRwj) values’ for each of the sub-variables under each 
of the different Vs were calculated using the AIw of the various Vs found in BWM 
as presented in Tables 8, 9, 10, 11, and 12, respectively. The FRwj of each sub-
variable was calculated using the AIw [58]. It should be mentioned that the experts’
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Table 8 FRwj of all sub-variables of V1 

Sub-variables Relative-importance of sj kj qj wj 
#FRwj 

SV15 1 1 0.269 0.061 
SV14 0.20 1.17 0.854 0.229 0.052 
SV11 0.18 1.18 0.724 0.194 0.044 
SV12 0.19 1.19 0.608 0.163 0.037 
SV13 0.15 1.15 0.529 0.142 0.032 

#FRwj of, SV14 = 0.229 × 0.229 = 0.052; SV13 = 0.142 × 0.229 = 0.032

Table 9 FRwj of all sub-variables of V2 

Sub-variables Relative-importance of sj kj qj wj FRwj 

SV21 1 1 0.258 0.115 
SV25 0.15 1.15 0.869 0.224 0.100 
SV24 0.13 1.13 0.769 0.198 0.088 
SV22 0.16 1.16 0.663 0.171 0.076 
SV23 0.15 1.15 0.576 0.148 0.066 

Table 10 FRwj of all sub-variables of V3 

Sub-variables Relative-importance of sj kj qj wj FRwj 

SV31 1 1 0.390 0.044 
SV33 0.19 1.19 0.840 0.327 0.037 
SV32 0.16 1.16 0.724 0.282 0.032 

Table 11 FRwj of all sub-variables of V4 

Sub-variables Relative-importance of sj kj qj wj FRwj 

SV43 1 1 0.379 0.058 
SV41 0.15 1.15 0.869 0.329 0.050 
SV42 0.13 1.13 0.769 0.291 0.044 

Table 12 FRwj of all sub-variables of V5 

Sub-variables Relative-importance of sj kj qj wj FRwj 

SV51 1 1 0.384 0.020 
SV53 0.17 1.17 0.854 0.328 0.017 
SV52 0.14 1.14 0.749 0.288 0.015
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Table 13 Final weight’s summary 

Variables and 
sub-variables AIw and FRwj 

Variable’s ranking based on 
AIw 

Sub-variable’s ranking based 
on FRwj 

V1 0.229 2nd – 
SV11 0.044 – 10th 
SV12 0.037 – 11th 
SV13 0.032 – 12th 
SV14 0.052 – 8th 
SV15 0.061 – 6th 
V2 0.448 1st – 
SV21 0.115 – 1st 
SV22 0.076 – 4th 
SV23 0.066 – 5th 
SV24 0.088 – 3rd 
SV25 0.100 – 2nd 
V3 0.114 4th – 
SV31 0.044 – 8th 
SV32 0.032 – 7th 
SV33 0.037 – 11th 
V4 0.153 3rd – 
SV41 0.050 – 9th 
SV42 0.044 – 10th 
SV43 0.058 – 7th 
V5 0.054 5th – 
SV51 0.020 – 13th 
SV52 0.015 – 15th 
SV53 0.017 – 14th 

recommendations were followed regarding the respective importance of the sub-
variables under the various Vs. 

Following the above calculations, Table 13 provided a summary of the weights 
assigned to each relevant variables and sub-variables, together with their rela-
tive rankings in relation to the AIw and FRwj values. It was observed that the 
safety- and hygiene-related variables ranked at first level, which was followed 
by climate-related variables; social- and demographic-variables; making decisions 
with attentiveness; and psychological-related variables. The sub-variables in the 
descending order of ranking included the following: Unawareness of hygiene; 
Close contacts; COVID patient’s waste disposals; P.P.E.’s shortages; Spitting; 
Wind-speed; both Lockdown-delay and Population-density; both Humidity and 
Quarantine-delay; Social-discrimination and -cohesiveness; both Air-quality and 
Age-group; both Temperature and Travel-restrictions; Rainfall; Knowledge, attitude 
and activities; Concealing past travels; and Impulsive purchases; respectively.
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5 Discussion 

As COVID-19 spreads, it poses a serious threat to government agencies and 
decision-makers worldwide [52, 54]. There is a pressing need for effective and 
safe vaccinations as a result of this continued growth [43]. Public health initiatives 
to encourage the usage of the vaccine as a means of putting an end to the deadly 
pandemic might be seriously undermined by external forces that have an influence 
on the vaccine approval process [16]. Consideration of several psychological and 
social variables is necessary for the recommended and widespread acceptance of 
vaccines [106]. Irrespective of vaccination effectiveness, it has been demonstrated 
that COVID-19’s vaccine allocation for older persons (more than 60 years) resulted 
in subsequent decrease in mortality [33]. According to a study on the vaccination 
habits of nurses, nurses’ COVID-19-related job demands were linked to greater 
work stress and, as a result, a larger intention to get the COVID-19’s vaccine 
[69]. The COVID-19 pandemic highlights the difficulties that governments and 
international organizations have in deciding which feasible interventions will be 
most successful. The best available scientific data, which is often offered by expert 
opinions and relevant studies, would be combined to create the logical strategic 
decision [7, 15, 42]. 

The ideal course of action is for the decision-makers to consult vaccination 
experts in addition to experts in other disciplines, such as for analysing cost-
analysis and social-factors. Depending on the characteristics of the system and other 
important factors, a decision may require a certain group of experts [73]. The choice 
of vaccination by the public can undoubtedly be influenced by media coverage, but 
decision-makers’ views should not be impacted by it [1]. 

6 Conclusion 

This chapter provided a novel hybrid MCDM framework to identify variables and 
sub-variables that are responsible for COVID-19’s transmission. In order to rank the 
significant variables that contribute to spreading of COVID-19, an effort was made 
by combining both the ‘Best-Worst-Method (BWM)’ and ‘Step-Wise Assessment 
and Ratio-Analysis (SWARA)’ methods establishing a hybrid MCDM framework. 
Apart from this, it also analysed the existing available vaccines preferences among 
the Indian community. A ‘safe and healthy’ environment can be achieved by revising 
healthcare plans and policies in light of the results and underlying consequences. 
This work has several shortcomings despite these original contributions; thus, it 
provides some suggestions for further research. First of all, because COVID-19 is 
a novel virus that may transmit in a variety of ways, virology and observational 
studies are still in their infancy. The analysis can be repeated in the future with the 
addition of new variables and sub-variables that affect COVID-19’s transmission.
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Crisis Management, Internet, and AI: 
Information in the Age of COVID-19 
and Future Pandemics 

Karim Darban, Smail Kabbaj, and Khawla Esmaoui 

1 Introduction 

Social media applications help people around the world to connect, share moments, 
stay informed, and exchange information’s almost instantly. One of the most 
important social trends of the past decade has been the launch and rise of the 
social media’s Facebook and Twitter [6]. However, it also enables people to 
share and amplify fake news, kindle crises, and hold onto their beliefs, which are 
sometimes in opposition to reality, a psychological mechanism behind the current 
excesses of disinformation that might entail refuting scientific truths with little to 
no arguments, which explain the popularity of online-made communities like anti-
vaxxers and flat-earthers [24]. Opinions like these have likely always been there, 
the only distinction is that they did not reach the broad and enormous audience that 
was reserved for the mass media because they were limited to small circles and 
their propagation was very slow. Social networks have democratized massification, 
making it less the exclusive domain of traditional media. From that point forward, 
the characteristics of “information” deviate from historical norms: In order to 
provide logical safeguards for the information spread, mass-information resulting 
in general opinion was shared by official sources and certified (public or private) 
professional media. Now, this is not the case, or more accurately, the traditional 
media have lost the relative monopoly they once had [31]. 

Unlike traditional media, social media operates under a different logic: With 
traditional media, the consumer could adopt one of two attitudes, depending on 
his preferences and affinities: to watch or not to watch said media. His capacity for 
choice expands thanks to social media in two ways: there are many more platforms 
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available, and he can create content on his own. This initially results in a dispersion 
of the offer, with each one trying to more or less mimic the norms of the traditional 
media. However, as the process develops, this tendency lessens to the point where 
consumers will cluster according to their shared interests and tolerate less and less 
“information” that contradicts their initial beliefs, this will be accomplished both 
manually, as the user will unfollow untolerated or uninteresting information, and 
vice versa, and automatically, as the algorithms of these social-apps keeps filtering 
the “likable” content for each user depending on the earlier manual information 
filtering [16]. 

Since its outbreak, the COVID-19 pandemic has been linked to the construct 
of an infodemic, in which misinformation fill knowledge gaps or serve as the 
counterpoint to a deluge of occasionally contradictory information coming from 
different sources, which causes mass confusion and nervousness [28]. Some authors 
of controversial but highly consumed and shared content over the internet (on the 
wearing of masks, treatments, or vaccinations) will even trespass the fence from 
digital to traditional media, like Didier Raoult, depicted in Fig. 1, author of more 

Fig. 1 Comparison of the number of pronunciations of the terms “chloroquine” promoted by 
Didier Raoult and “Raoult” on the major French news channels continuously for 2 weeks. (Source: 
French National Audiovisual Institute [14])
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than a hundred YouTube videos with 400k to 4M views (by December 2022), 
making the internet and its social medias not only more consumed than traditional 
media [26] but a rudder that directs the content and the speakers of traditional media 
and thus the general opinion, a ruder that can, dangerously enough, be held by 
anyone in times of crisis. 

2 Monitoring the Content: The Use of AI Against Internet 
Misinformation During COVID-19 

The COVID-19 pandemic has had a significant impact on the way we communicate 
and access information. With lockdowns and social distancing measures in place, 
social media and other digital platforms have become an important way for people to 
stay connected and informed. At the same time, the rapid spread of misinformation 
about COVID-19 has made it difficult for people to distinguish between reliable and 
unreliable sources of information. Artificial intelligence (AI) has played a crucial 
role in monitoring and combating the spread of false information about COVID-19. 

AI has been used in a number of ways to monitor and combat the spread of 
misinformation about COVID-19. One approach is the use of machine learning 
algorithms to detect and flag misinformation on social media platforms. Machine 
learning techniques involve the use of algorithms that can learn from data and 
improve their performance over time. These algorithms can be trained on large 
datasets of true and false information, allowing them to learn the characteristics 
of each. Once trained, these algorithms can be used to classify new pieces of 
information as true or false. One example of a machine learning technique is the 
use of support vector machines, which can be used to classify text or image data, 
so these algorithms will be able to analyze the text and images in a post, as well 
as the interactions and reactions of users, to determine whether it is likely to be 
misinformation. Once flagged, the post can be removed or labeled with a warning, 
reducing its visibility and impact. For example, as shown in Fig. 2, Facebook has 
used it to identify and remove false or misleading content related to COVID-19 [13]. 
It has also been used by Twitter to identify and remove accounts that are spreading 
misinformation about COVID-19 [29]. 

Another approach is the use of natural language processing (NLP) to identify and 
classify misinformation on social media platforms. NLP algorithms can analyze the 
text of a post and classify it as true, false, or partially true based on its content and 
context. This allows for the creation of fact-checking systems that can automatically 
identify and flag misinformation for further review [9, 10]. Artificial intelligence 
was also useful to track and analyze the spread of misinformation about COVID-19 
on social media platforms. This can be done by analyzing the patterns of sharing and 
engaging with misinformation, as well as the sources and channels through which it 
is disseminated. This information can be used to identify and target misinformation 
at its source, and to develop strategies for mitigating its spread [8].
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Fig. 2 Life cycle of Facebook images as they get matched against a database of certified 
misinformation. (Source: Facebook [13]) 

Researchers have also used AI to track the spread of misinformation about 
COVID-19 on social media platforms [4]. This has included identifying false or 
misleading content, as well as analyzing the way in which such content is shared 
and disseminated on social media. For instance, academics have used AI to analyze 
Twitter data to understand how people’s attitudes toward COVID-19 and related 
policies have changed over time [11]. Pattern recognition techniques involve the 
use of algorithms to identify patterns and characteristics of false information. These 
algorithms can analyze the language, tone, and other features of a piece of content 
to determine whether it is likely to be true or false. One example of a pattern 
recognition technique is the use of sentiment analysis, which involves analyzing 
the emotional content of a piece of text to determine its overall sentiment. 

Despite the potential of AI in monitoring and combating the spread of mis-
information about COVID-19, there are a number of challenges and limitations 
to these approaches. One challenge is the need for high-quality training data to 
ensure the accuracy and effectiveness of machine learning algorithms. This can 
be difficult to obtain, especially in the context of rapidly evolving events such as 
the COVID-19 pandemic. This can also result in deleting safe content or falsely 
banning their authors. Another challenge is the issue of bias in AI systems. If the 
training data is biased, the algorithms will be biased as well, potentially leading to 
the amplification of misinformation or the suppression of accurate information. This 
issue has been particularly problematic in the context of social media platforms, 
where the algorithms used to identify and flag misinformation may be influenced 
by the biases of their creators. There are also still limitations to the ability of 
AI to understand and interpret the context and nuance of every language, which
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can affect its accuracy in identifying and classifying misinformation. Additionally, 
AI systems can be vulnerable to manipulation and spoofing, making it easier for 
misinformation to evade detection. Finally, the constantly evolving nature of the 
COVID-19 pandemic, which requires the AI systems to be updated and refined 
on an ongoing basis, as new information becomes available and the spread of 
the virus changes, the algorithms need to be able to adapt and accurately identify 
misinformation related to the current situation. 

AI has played a significant role in the effort to monitor and combat the spread 
of misinformation about COVID-19. However, it is important to recognize the 
challenges and limitations of these approaches, and to take steps to address them 
in order to effectively mitigate the impact of misinformation on public health. 

3 Exploiting the Content: The Use of AI and Social Media 
to Manage Information in the Case of a Global Crisis 

In recent years, social media has become an increasingly important source of 
information during crises and emergencies. From pandemics to natural disasters, 
individuals and organizations rely on platforms like Twitter, Facebook, and Insta-
gram to stay informed and share updates in real time. However, the vast amount 
of data generated by social media can be overwhelming, making it difficult for 
crisis management teams to identify and prioritize relevant information. Artificial 
intelligence (AI) can be used to effectively sort and analyze social media data, 
providing crisis management teams with valuable insights and helping them make 
more informed decisions. 

Internet and its social medias are frequently portrayed as an infrastructure that 
enables organizations such as governments, local authorities, and companies to com-
municate with citizens from top to bottom and, on the other hand, to increase citizen 
feedback information from the down to top to improve the observation of an event 
[27]. The research in the area of crisis informatics [25] has emphasized the changes 
brought about by social media and how individuals have used them to progressively 
communicate about an occurrence, inform themselves, and organize themselves to 
act. According to the academics, social networks have quickly emerged as a crucial 
channel for communication and information exchange. Karimiziarani et al. [21] 
and Interdonato et al. [19] demonstrated that crisis management organizations were 
already interested in extracting information from social network data, whether in 
the form of reports, “useful” sorting, or summaries of the information gathered. 
Even if the chance to use a fresh source of information to comprehend the crisis’s 
theater and better respond to it is fully absorbed, the truth remains that its use 
might be expensive in terms of human resources, even when the circumstance calls 
for managers to act promptly. This is how a new aspect of the use of artificial 
intelligence (AI) in crisis management has opened up.
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Table 1 Computer or artificial intelligence (AI)-assisted systems for social media content filtering 

Tweedr Twitris ESA AIDR Twitcident 

Ashktorab et al. [3] Jadhav et al. [20] Cameron et al. [7] Imran et al. [17] Abel et al. [1] 

Based on a review of the literature, Imran et al. [18] list the typical use of data 
from social networks in crisis management: Binary classifications that determine 
whether the data is relevant or not, data segmentation that allows semantically 
similar tweets to be grouped together and reduces the amount of information 
that humans will ultimately have to read and interpret, automated generation of 
summaries that once again allows for a reduction in the amount of information 
that needs to be processed by humans, information verification, and named entity 
recognition that enables semantically enriched data are all examples of data analysis 
techniques. 

One particular goal is persistent and has long been the primary one when 
leveraging AI data from social networks: situational awareness, which is described 
as “understanding the crisis situation” [15]. Concretely, the goal is to give the 
crisis management cells a shared understanding of the crisis situation (common 
operational picture – COP). A number of computer or artificial intelligence (AI) 
systems can be given as illustrated in Table 1. 

Twitcident [1], for instance, is a structure for filtering and evaluating tweets that 
was developed by scientists from the Delft University of Technology to crowdsource 
data about crises. The system, whose architecture is described in Fig. 3, has been 
put through testing as a support program for the Dutch police and fire department 
in 2012. Their paper presents the results of an empirical study that sought to 
investigate the impact of Twitter on information diffusion in emergency situations. 
The results show that Twitter is an effective platform for quickly disseminating 
accurate information about emergency situations. The authors found that Twitter 
users are more likely to spread information quickly and accurately than traditional 
media outlets, and the accuracy of the information is largely unaffected by time, 
location, or the size of the network. Furthermore, the study revealed that Twitter 
users tend to spread both accurate and inaccurate information, with the accuracy of 
the information increasing over time. In conclusion, the authors suggest that Twitter 
could be an effective tool for disseminating accurate information during a crisis. 

The authors explain the significance of going beyond situational awareness in 
[12, 32] and of providing, at the output of the AI processing module, data from 
social networks, information targeted to the specific needs of decision-makers. 
They discuss a comprehensive architecture for an actionable collaborative Common 
Operational Picture (COP) in crisis situations, powered by social media data. The 
architecture is composed of three layers: the knowledge layer, the interaction layer, 
and the communication layer. The knowledge layer is responsible for collecting 
and analyzing social media data, while the interaction layer is responsible for 
providing the collaboration functions such as group chat and audio/video con-
ferencing. Finally, the communication layer is responsible for providing a secure
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Fig. 3 Twitcident architecture [1] 

communication infrastructure. They also present a prototype application based on 
the proposed architecture and its evaluation results. 

We continue to acknowledge that social media’s contribution to crisis manage-
ment has both an organizational and an informational component: Informational in 
the sense that all of the released content serves as a source of pertinent data for 
assessing what is occurring in the present, and organizational in terms of working 
together to address the issue. The crisis is usually taking place in an exceptional 
setting, and while it may come as a surprise and be marked by uncertainty, it is still 
important to know how to respond appropriately and instantaneously. To achieve 
this, the so-called useful knowledge to be communicated to crisis supervisors must 
be tailored to their particular requirements and the situational constraints must be 
taken into consideration in the choice and deployment of the AI modules. 

There have been a number of AI models created with regard to crisis management 
and Benaben et al. [5] recall the COSIMMA metamodel, designed to set up 
a cooperative reaction to a crisis (whose ideas mirror those of the BPMN2.0). 
The Collaborative Situation Metamodel for crisis management (COSIMMA) is 
structured in two layers: a core layer that describes concepts and relations of any 
collaborative situation and a specific layer dedicated to crisis management that 
inherits concepts from the core layer and adds more specific concepts related to
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the domain. The specific layer is structured into four packages: Context, Partners, 
Objectives, and Behavior. The Context package includes concepts related to the 
environment and characteristics of the crisis situation, such as Good, People, Natural 
site, Civilian society, Territory, Danger, and Intrinsic risk. The Partners package 
includes concepts related to stakeholders and their resources and services, such 
as Actor, Resource on site, Service, Actor service, and Mediation service. The 
Objectives package includes concepts related to the goals and effects of the crisis 
management, such as Emerging risk, Effect, and Objective. The COSIMMA model 
along with social media can help crisis managers in multiple ways. First, they can 
provide real-time updates on the crisis, and can detect trends in the data, which can 
help managers make more informed decisions. Second, they can identify influencers 
and stakeholders, allowing managers to better target their communications and 
resources. Third, they can use the data to create and evaluate different scenarios, 
which can help managers better respond to the crisis. Finally, they can use the data 
to track the progress of the crisis, and make adjustments as needed. 

The methodology used in Kropczynski et al. [22] is quite unique; after con-
ducting discussions and examinations with offline crisis professionals, the authors 
aimed to identify the questions that 911 service representatives must try to answer 
for every operation. The 6 Ws came from the concept of the six questions: Who, 
What, When, Where, Why, and Weapons. The 6Ws can be used as an AI model 
to collect and analyze social media content related to a crisis. For example, the 
Who question can help identify who is responsible for the crisis, who is affected 
by it, and who is responding to it. The What question can be used to determine 
what is happening, what kind of content is being shared, and what type of crisis 
it is. The When question can help to determine when the crisis started, when new 
developments are occurring, and when the crisis is likely to end. The Where question 
can be used to identify where the crisis is occurring and where it is spreading. The 
Why question can be used to identify the root causes of the crisis and the motivations 
of the people involved. 

Term frequency-inverse document frequency (TF-IDF) is a statistical measure 
used to evaluate the importance of a word in a document or a collection of 
documents [23]. It can be used by AI to monitor social media content in a similar 
way to how it is used by humans, by identifying the most important words or phrases 
in a piece of text and using them to track trends, identify key themes or topics, 
and understand the sentiment of users on social media. One way that AI can use 
TF-IDF to monitor social media content in case of crisis is by integrating it into a 
machine learning model. For example, a model could be trained on a large dataset 
of social media posts or comments, with the TF-IDF values of the words in each 
post or comment serving as features. The model could then be used to classify new 
posts or comments as positive, negative, or neutral based on their TF-IDF values. 
Another way that AI can use TF-IDF to monitor social media content is by using 
it as part of a natural language processing (NLP) system. By integrating TF-IDF 
into an NLP system, the system can identify the most important words or phrases 
in a piece of text and use them to understand the overall meaning and sentiment 
of the text. Al-Khateeb and Epiphaniou [2] used TF-IDF in their paper to find
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potentially abusive language in social media posts, by comparing the frequency 
of certain words or phrases with that of other posts in the same corpus. The TF-
IDF score indicates which words and phrases are more likely to be associated with 
abusive language. This can help law enforcement identify potential cyber-stalkers 
and online groomers, as well as provide a better understanding of the context in 
which such activities take place. 

Graph theory can also be used as an AI algorithm to massively analyze the 
relationships and connections between social media users in the case of crisis [30]. 
A social media graph is a mathematical representation of the connections between 
users, with each user represented as a node and the connections between them 
represented as edges. One application of graph theory in social media monitoring 
is the identification of key influencers within a particular network. For example, if 
we were interested in understanding how a particular topic was being disseminated 
through a social media platform, we might look for users with high betweenness 
centrality, as they are likely to be key spreaders of information. Another application 
is the identification of communities within a social media platform. By analyzing 
the connections between users, it is possible to identify clusters of users who are 
more closely connected to each other than to users outside of their cluster. These 
clusters may represent communities of users who share similar interests or beliefs, 
and can be useful for understanding how certain ideas or topics are being created 
or discussed within different parts of a social media platform. However, there are 
also some limitations to this approach. One is the potential for privacy concerns, by 
analyzing the connections between social media users. Overall, the combination of 
AI and graph theory offers a powerful toolkit for organizations looking to effectively 
monitor and analyze social media data. By automating the process of extracting and 
classifying relevant information, as well as analyzing the connections between users, 
it is possible to gain valuable insights into the dynamics of social media platforms. 

4 Conclusion and Future Research Recommendations 

This chapter has analyzed the role of AI and social media in crisis management 
during the COVID-19 pandemic. Our findings show that AI and social media can 
be valuable tools for detecting and combating the spread of misinformation on 
social media platforms, as well as for facilitating communication and the flow of 
information during a crisis. We have explored various machine learning techniques, 
including support vector machines, named entity recognition, and graph theory, that 
can be used to analyze and monitor social media content during a crisis. 

The use of AI and social media in the context of the COVID-19 pandemic 
illustrates the potential of these technologies to both facilitate and disrupt com-
munication and the flow of information. On the one hand, AI and social media 
have provided a valuable way for people to stay connected and informed during the 
pandemic. On the other hand, the spread of misinformation has posed significant 
challenges, and the use of AI by social media platforms to combat this problem
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has raised questions about the role of these platforms in moderating content 
and protecting users from misinformation. Our analysis has identified potential 
challenges, such as the potential for biased algorithms. There have been concerns 
that AI systems may reflect the biases of their creators or the data they are trained 
on, leading to discriminatory outcomes. In the context of crisis management, this 
could have serious consequences, as biased algorithms of such private organizations 
could result in the suppression of important information or the amplification of 
misinformation. 

Despite these challenges, the use of AI and social media in crisis management has 
the potential to be highly beneficial. AI can help monitor and analyze social media 
activity in real time, providing valuable insights into the spread of misinformation 
and the effectiveness of crisis management. 

Moving forward, our study suggests several future directions for research in this 
area. Some potential recommendations for future research include the following: 

Incorporating real-time data from multiple sources: Future research could focus 
on ways to more effectively incorporate real-time data from a variety of sources, 
including traditional news outlets and government agencies, into AI and social 
media analysis. This could help crisis managers get a more comprehensive under-
standing of a crisis situation and make more informed decisions. 

Enhancing the accuracy and precision of AI and social media analysis: While 
current techniques such as natural language processing, deep learning, and machine 
learning have shown promise in analyzing social media data during a crisis, there is 
still room for improvement in terms of accuracy and precision. Research could be 
conducted to identify ways to further refine these techniques and make them more 
effective in crisis situations. 

Exploring the ethical and societal implications of using AI and social media 
in crisis management: As AI and social media become more prevalent in crisis 
management, it will be important to consider the ethical and societal implications of 
their use. Research could be conducted to identify and address any potential negative 
consequences of using these technologies in crisis situations. 

Developing strategies for managing and mitigating misinformation: Misinforma-
tion can be a major issue during times of crisis, and research could be conducted 
on ways to effectively manage and mitigate the spread of false information through 
social media and other channels. 

Overall, further research and development in these areas will be crucial for 
effectively utilizing AI, social media, and related technologies in crisis management 
in the future. 
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