
Verifying an Aircraft Collision Avoidance
Neural Network with Marabou

Cong Liu1(B), Darren Cofer1, and Denis Osipychev2

1 Collins Aerospace, Charlotte, USA
{cong.liu,darren.cofer}@collins.com

2 Boeing, Seattle, USA
denis.osipychev@boeing.com

Abstract. In this case study, we have explored the use of a neural net-
work model checker to analyze the safety characteristics of a neural net-
work trained using reinforcement learning to compute collision avoidance
flight plans for aircraft. We analyzed specific aircraft encounter geome-
tries (e.g., head-on, overtake) and also examined robustness of the neu-
ral network. We verified the minimum horizontal separation property by
identifying conditions where the neural network can potentially cause a
transition from a safe state to an unsafe state. We show how the prop-
erty verification problem is mathematically transformed and encoded as
linear-constraints that can be analyzed by the Marabou model checker.

1 Introduction

Machine Learning technologies such as neural networks (NN) have been used to
implement advanced functionality in complex systems, including safety-critical
aircraft applications. Before such systems can be deployed outside of an experi-
mental setting, it will be necessary to show that they can meet the verification
and certification requirements of the aerospace domain.

In a typical NN, much of the complexity and design information resides
in its training data rather than in the actual models or code produced in the
training process. One of the key principles of avionics software certification is the
use of requirements-based testing along with structural coverage metrics. These
activities not only demonstrate compliance with functional requirements, but
are intended to expose any unintended functionality by providing a measure of
completeness. However, since it is not possible to associate particular neurons or
lines of code in a NN with a specific requirement, these activities cannot provide
the required level of assurance [1].

The authors wish to thank Aleksandar Zeljic for his help using Marabou. This work
was funded by DARPA contract FA8750-18-C-0099. The views, opinions and/or find-
ings expressed are those of the author and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S. Government.
Approved for Public Release, Distribution Unlimited.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 79–85, 2023.
https://doi.org/10.1007/978-3-031-33170-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33170-1_5&domain=pdf
https://doi.org/10.1007/978-3-031-33170-1_5


80 C. Liu et al.

Formal methods tools are being developed for NNs and may be able to
address this challenge by providing a comprehensive analysis of a system over
its entire input space and showing the absence of unintended behaviors. In this
case study, we have used the Marabou model checker [7] to analyze a NN that
was trained to compute collision avoidance flight plans for aircraft. The main
contribution of the paper is to show the effectiveness of formal methods in iden-
tifying potential safety concerns in a real NN application. In fact, this NN was
flight tested in a controlled experiment with two general aviation-class airplanes,
but we were able to find a number of conditions which trigger unexpected (and
potentially unsafe) actions [2]. Furthermore, we suggest ways in which formal
analysis results can be incorporated to improve the training of future systems.

One of the unique aspects of this study is that it is focused on a NN trained
using Reinforcement Learning (RL). In earlier work on the ACAS-Xu system
for collision avoidance in small unmanned aircraft [5], the NN was trained using
supervised learning based on a complete tabular specification of correct behavior
and Reluplex [6] (a precursor of Marabou) was used to verify various safety
properties. Another ACAS-Xu study [3] used formal analysis tools to show the
equivalence of the NN to the tabular specification. In the current study, RL
was used to compute flight plans (rather than just the avoidance maneuvers
produced by ACAS-Xu), but our formal analysis exposes areas in which the
training process is incomplete.

Marabou is a state-of-the-art framework for verifying deep NN. It can answer
queries about NN properties by transforming each query to a satisfiability
problem. Currently it only supports linear constraints for inputs and outputs.
Marabou accepts three input formats: NNet, TensorFlow and ONNX. In the case
study, we exported the NN model parameters from the learning environment and
encoded them in the NNet format. We used the Marabou Python interface to
encode the constraints and perform the verification.

The collision avoidance NN and the Marabou verification scripts are available
at https://github.com/darrencofer/NFM-2023-case-study.

2 Aircraft Collision Avoidance Neural Network

We study the automated aircraft collision avoidance system described in [2]. The
system’s core is a NN model pre-trained on a surrogate simulation using RL. The
NN model modifies the course of the controlled airplane (ownship) to provide
a safe distance to another aircraft (intruder) and return to the original course
when safe. The RL environment simulates various potential collision scenarios
with aircraft performance similar to a Cessna 208 Caravan. The 2-D position
range is [−10,000, 10,000] m × [−10,000, 10,000] m. The heading range is (−180,
180] degree. The aircraft speed range is [50, 70] mps. The required minimum
separation distance (MSD) is 2,000 m. The initial and goal position are randomly
generated and remain fixed during each training scenario. During the encounter,
while the intruder maintains a constant direction and speed, the ownship adjusts
the flight direction and speed. Not maintaining the MSD results in a penalty,
while returning to the original route results in a reward.

https://github.com/darrencofer/NFM-2023-case-study


Verifying an Aircraft Collision Avoidance Neural Network with Marabou 81

Fig. 1. System geometry for potential collision.

In the experiments, a number of policies were developed. We chose a NN
that only controls the flight direction (i.e., fixed speed). It consists of 8 input
nodes, 1 output node, and 2 hidden layers with 64 nodes each. All hidden nodes
use rectified linear unit (ReLU) as the activation function. The output node
uses tanh as the activation function. Marabou does not support tanh activation
functions. So for the verification we removed the tanh activation function and
mapped its outputs (e.g. value or range) back to the corresponding function
input.

The NN inputs are: {d, dv, di, vr, βi, ψr, βg, βv}, where d is distance from own-
ship to intruder, dv is distance to vector, di is distance to initial position, vr is
relative speed, βi is angle to intruder, ψr is relative heading, βg is angle to goal,
βv is angle to vector. The vector is from the initial position to the goal. We
define vr = vi/vo − 1, ψr = ψi − ψo, βv = ψv − ψo, where vi is intruder speed,
vo is onwship speed, ψi is intruder heading, ψo is ownship heading, ψv is vector
heading. The system geometry in shown in Fig. 1.

Note that dv = di sinβg. This means that the NN inputs are not completely
independent. We capture this dependence by encoding the relation as a con-
straint. Since Marabou only supports linear constraints, we set βg as a constant
in each analysis.

All NN inputs are normalized: d, dv, di ∈ [0, 1], vr ∈ [−0.3, 0.4],
βi, ψr, βg, βv ∈ [−1, 1]. The NN output range is (−1, 1) due to the tanh func-
tion. It is linearly mapped to (−3, 3) to compute the turn rate (ω), unit in
degree per second. A positive and negative value indicates turning right and
left, respectively.

3 Verifying Minimum Separation Distance

The reachability problem of a closed-loop neural network control system with
non-linear dynamics is known to be undecidable [4]. Instead, we examine the
condition where the ownship transitions from a safe state (d = MSD) to a
unsafe state (d < MSD). This indicates that the distance function is decreasing



82 C. Liu et al.

Fig. 2. Distance between ownship and intruder changes during Δt.

at the MSD boundary. We mathematically derive the derivative of the distance
function and check when the neural network will generate an output action that
causes the derivative to be negative at the boundary. Although the derivative
function itself is non-linear due to trigonometric functions, we found that the
safety conditions can be characterized by a set of linear constraints, which can
be handled by Marabou. Figure 2 illustrates the derivative calculation. The filled
and open arrows represent the ownship and the intruder movement during the
time interval Δt, respectively, with d and d′ being the distance at time t and
t + Δt.

The distance d′ satisfies d′2 = a2 + b2, where:
a = voΔt sin ϕ − viΔt sin θ,
b = d − voΔt cos ϕ − viΔt cos θ.
Ignoring the higher order terms, we have (d′2 − d2)/Δt = −2d(vo cos ϕ +

vi cos θ). Applying the chain rule Δd2/Δt = 2dΔd/Δt, we have Δd/Δt =
−(vo cos ϕ + vi cos θ). By definition: ϕ = βi − ωΔt, θ = 180 − βi + ψr. Let-
ting α = βi − ψr, we rewrite the derivative as ḋ = vi cos α − vo cos ϕ.

Assuming vi = vo, ḋ < 0 implies cos α < cos ϕ. If 0 ≤ α ≤ 180, 0 ≤ ϕ ≤ 180,
then it implies α > ϕ (i.e., ωΔt > ψr). This means that at the MSD boundary,
the neural network has to generate a turn angle that is less than the relative
heading to prevent the distance from decreasing. Note that the turn rate ω is
limited to the range (−3, 3) degree per second and Δt = 1 second in simulation.
This means if ψr ≤ −3 or ψr ≥ 3, no matter what the neural network output
is, the derivative will always be negative or positive, respectively. Thus, in our
analysis we restrict to the scenarios where ψr ∈ (−3, 3). In other words, we only
look for the scenarios where the MSD violation could be avoided, but the neural
network does not generate such output.

Results. For the analysis, we sampled the intruder angle between 0 and 180◦,
and found MSD violations for each intruder angle. The simulation used in the
RL training process makes it unlikely that the critical conditions where safety
is violated (e.g., MSD boundary, relative heading range) are reached very often,
meaning that the NN likely has insufficient training in this region to make safe
decisions.

4 Robustness Analysis

Robustness analysis helps us to understand the stability of the NN controller.
In most cases, the output produced by the NN should not change dramatically



Verifying an Aircraft Collision Avoidance Neural Network with Marabou 83

in reponse to small input perturbations (such as sensor noise). We can perform
a δ-local-robustness [6] to quantify the bounded-input/bounded-output stability
of the NN.

To perform this analysis, we generated five arbitrary points covering a range
of input conditions and NN outputs. We computed a constant δ for an input
point x such that for all inputs x′ : ‖x − x′‖∞ ≤ δ, the neural network output
will not change sign (e.g., changing from turning left to right).

Table 1. Robustness analysis results.

δ = 0.1 δ = 0.05 δ = 0.02 δ = 0.01

Point 1 (weak right turn) SAT SAT SAT UNSAT

Point 2 (strong left turn) SAT SAT SAT UNSAT

Point 3 (strong right turn) SAT SAT UNSAT UNSAT

Point 4 (strong right turn) SAT UNSAT UNSAT UNSAT

Point 5 (strong left turn) SAT SAT UNSAT UNSAT

Results. The robustness analysis results are summarized in Table 1. SAT results
mean an adversarial input was found, while UNSAT results mean no such inputs
exist. The results show that the neural network may be not robust. In particular
at Point 2, a small input perturbation (δ = 0.02) causes the ownship to change
from turning strong-left to right. This may lead to unstable behavior in which
the aircraft oscillates between left and right turns.

5 Specific Scenarios

We examine six encounter scenarios (system snapshots), similar to [8], where
there are expected aircraft maneuvers (e.g., staying on course vs. turning left or
right). We check whether the action generated by the neural network aligns with
expectations. The following scenarios were considered.

Head-on. The ownship is on course and both airplanes are about to have a
head-on collision. We expect the ownship shall make a turn to avoid collision.

Overtake. The ownship is on course while the intruder flies in the same direction
and approaches from behind. We expect the ownship shall turn to avoid collision.

Parallel Same Direction. The ownship is on course while the intruder flies
side by side in the same direction and is close. We expect the ownship shall not
fly towards the intruder.

Parallel Opposite Direction. The ownship is on course while the intruder
flies side by side in the opposite direction and is dangerously close. We expect
the ownship shall not fly towards the intruder.



84 C. Liu et al.

Table 2. Verification of mid-air encounter scenarios. All times are in seconds.

Scenario Constraints Result Time

Head-on d = 2000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = 180, βg = 0, βv = 0, out = 0

SAT 0.02

Overtake d ≤ 2500, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = 0, βg = 0, βv = 0, out = 0

SAT 4.0

Parallel same direction d ≤ 2500, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = 0, βg = 0, βv = 0, out ≥ 0

UNSAT 12.3

Parallel opposite direction d = 2000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
90 ≥ βi ≥ 0, ψr = 180, βg = 0, βv = 0, out ≥ 0

SAT 0.03

Approach from right d = 2000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = −90, βg = 0, βv = 0, out ≥ 0.1

SAT 0.08

Far away d = 10000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βg = 0, βv = 0, out ≤ −5

SAT 18.7

Approach from Right. The ownship is on course while the intruder approaches
the ownship from right and is dangerously close. We expect the ownship shall
turn left.

Far Away. The ownship is on course while the intruder is far away. We expect
the ownship shall stay on its course and will not make strong turns.

Results. The encoding of the scenarios and the verification results are sum-
marized in Table 2. The NN generated outputs violating expectations in all but
one of the six scenarios. Based on the analysis, we believe that the RL training
method did not provide sufficient training data to cover these critical scenarios.
All experiments were performed on a Linux server with Intel Xeon E5-2698 v4
CPU @ 2.20 GHz and approximately 504 GB memory.

6 Conclusion and Future Work

We analyzed an aircraft collision avoidance NN using Marabou. We verified the
minimum horizontal separation property, analyzed robustness of the NN, and
investigated specific interesting scenarios. The results suggest that the RL NN
training approach was insufficient to guarantee safety of the system in many crit-
ical scenarios. This shows the value of formal analysis for identifying unintended
behaviors that may be present in a NN.

The counterexamples generated in the verification of a property could be
used to better train the NN. The counterexamples often represent hard-to-reach
corner cases. We could directly use them to train the NN in a Supervised Learn-
ing environment, because usually there are well-defined expected NN outputs.
We could also adjust the RL setup by directly setting these scenarios as the
initial states.

It would be interesting to combine the forward reachability analysis of NN
with our MSD property verification so that a simulation trace from the initial



Verifying an Aircraft Collision Avoidance Neural Network with Marabou 85

state to the violation state is generated. Also recall that at certain conditions, due
to the turn rate limit, the MSD property violation is unavoidable. We could use
backward reachability analysis to compute the corresponding previous system
states and actions, until the NN could potentially generate an action to deviate
from the collision course. These system states and desired actions could also be
added to the training set.

References

1. Cofer, D.: Unintended behavior in learning-enabled systems: detecting the unknown
unknowns. In: 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC),
pp. 1–7 (2021)

2. Cofer, D., et al.: Flight test of a collision avoidance neural network with run-time
assurance. In: 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC),
pp. 1–10 (2022)

3. Damour, M., et al.: Towards certification of a reduced footprint ACAS-Xu system: a
hybrid ml-based solution. In: Habli, I., Sujan, M., Bitsch, F. (eds.) Computer Safety,
Reliability, and Security, pp. 34–48. Springer International Publishing, Cham (2021)

4. Huang, C., Fan, J., Chen, X., Li, W., Zhu, Q.: Polar: a polynomial arithmetic
framework for verifying neural-network controlled systems. In: Bouajjani, A., Hoĺık,
L., Wu, Z. (eds.) Automated Technology for Verification and Analysis, pp. 414–430.
Springer International Publishing, Cham (2022)

5. Irfan, A., et al.: Towards verification of neural networks for small unmanned aircraft
collision avoidance. In: 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC), pp. 1–10. IEEE (2020)

6. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an effi-
cient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V.
(eds.) Computer Aided Verification, pp. 97–117. Springer International Publishing,
Cham (2017)

7. Katz, G., et al.: The marabou framework for verification and analysis of deep neural
networks. In: International Conference on Computer Aided Verification, pp. 443–452
(2019)

8. Manzanas Lopez, D., Johnson, T.T., Bak, S., Tran, H.D., Hobbs, K.L.: Evaluation of
neural network verification methods for air-to-air collision avoidance. J. Air Transp.
31(1), 1–17 (2023)


	Verifying an Aircraft Collision Avoidance Neural Network with Marabou
	1 Introduction
	2 Aircraft Collision Avoidance Neural Network
	3 Verifying Minimum Separation Distance
	4 Robustness Analysis
	5 Specific Scenarios
	6 Conclusion and Future Work
	References




