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Abstract. We develop model checking algorithms for Temporal Stream
Logic (TSL) and Hyper Temporal Stream Logic (HyperTSL) modulo
theories. TSL extends Linear Temporal Logic (LTL) with memory cells,
functions and predicates, making it a convenient and expressive logic
to reason over software and other systems with infinite data domains.
HyperTSL further extends TSL to the specification of hyperproperties
– properties that relate multiple system executions. As such, HyperTSL
can express information flow policies like noninterference in software sys-
tems. We augment HyperTSL with theories, resulting in HyperTSL(T),
and build on methods from LTL software verification to obtain model
checking algorithms for TSL and HyperTSL(T). This results in a sound
but necessarily incomplete algorithm for specifications contained in the
∀∗∃∗

fragment of HyperTSL(T). Our approach constitutes the first soft-
ware model checking algorithm for temporal hyperproperties with quan-
tifier alternations that does not rely on a finite-state abstraction.

1 Introduction

Hyperproperties [20] generalize trace properties [2] to system properties, i.e.,
properties that reason about a system in its entirety and not just about indi-
vidual execution traces. Hyperproperties comprise many important properties
that are not expressible as trace properties, e.g., information flow policies [20],
sensitivity and robustness of cyber-physical systems, and linearizability in dis-
tributed computing [11]. For software systems, typical hyperproperties are pro-
gram refinement or fairness conditions such as symmetry.

For the specification of hyperproperties, Linear Temporal Logic [50] (LTL)
has been extended with trace quantification, resulting in Hyper Linear Temporal
Logic [19] (HyperLTL). There exist several model checking algorithms for Hyper-
LTL [19,23,37], but they are designed for finite-state systems and are therefore
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not directly applicable to software. Existing algorithms for software verification
of temporal hyperproperties (e.g., [1,9]) are, with the exception of [10], limited
to universal hyperproperties, i.e., properties without quantifier alternation.

In this paper, we develop algorithms for model checking software systems
against ∀∗∃∗ hyperproperties. Our approach is complementary to the recently
proposed approach of [10]. They require to be given a finite-state abstraction of
the system, based on which they can both prove and disprove ∀∗∃∗ hyperprop-
erties. We do not require abstractions and instead provide sound but necessarily
incomplete approximations to detect counterexamples of the specification.

The class of ∀∗∃∗ hyperproperties contains many important hyperproperties
like program refinement or generalized noninterference [47]. Generalized nonin-
terference states that it is impossible to infer the value of a high-security input by
observing the low-security outputs. Unlike noninterference, it does not require
the system to be deterministic. Generalized noninterference can be expressed
as ϕgni = ∀π∃π

′
. (iπ′ = λ ∧ cπ = cπ′). The formula states that replacing the

value of the high-security input i with some dummy value λ does not change the
observable output c.

The above formula can only be expressed in HyperLTL if i and c range
over a finite domain. This is a real limitation in the context of software model
checking, where variables usually range over infinite domains like integers or
strings. To overcome this limitation, our specifications build on Hyper Temporal
Stream Logic (HyperTSL) [22]. HyperTSL replaces HyperLTL’s atomic propo-
sitions with memory cells together with predicates and update terms over these
cells. Update terms use functions to describe how the value of a cell changes
from the previous to the current step. This makes the logic especially suited for
specifying software properties.

HyperTSL was originally designed for the synthesis of software systems,
which is why all predicates and functions are uninterpreted. In the context of
model checking, we have a concrete system at hand, so we should interpret func-
tions and predicates according to that system. We therefore introduce Hyper-
TSL(T) – HyperTSL with interpreted theories – as basis for our algorithms.

Overview. Following [41], we represent our system as a symbolic automaton
labeled with program statements. Not every trace of such an automaton is also
a valid program execution: for example, a trace assert(n = 0) ;n−−; (assert(n =
0))ω1 cannot be a program execution, as the second assertion will always fail.
Such a trace is called infeasible. In contrast, in a feasible trace, all assertions can,
in theory, succeed. As a first step, we tackle TSL model checking (Sect. 4) by
constructing a program automaton whose feasible accepted traces correspond to
program executions that violate the TSL specification. To do so, we adapt the
algorithm of [27], which constructs such an automaton for LTL, combining the
given program automaton and an automaton for the negated specification.

We then extend this algorithm for HyperTSL(T) formulas without quantifier
alternation (Sect. 5.1) by applying self-composition, a technique commonly used
for the verification of hyperproperties [5,6,30].

1
The superscript ω denotes an infinite repetition of the program statement.
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Next, in Sect. 5.2, we further extend this algorithm to finding counterex-
amples for ∀∗∃∗-HyperTSL(T) specifications (and, dually, witnesses for ∃∗∀∗

formulas). We construct an automaton that over-approximates the combinations
of program executions that satisfy the existential part of the formula. If some
program execution is not included in the over-approximation, this execution is
a counterexample proving that the program violates the specification.

More concretely, for a HyperTSL(T) formula ∀m∃n
ψ, we construct the prod-

uct of the automaton for ψ and the n-fold self-composition of the program
automaton. Every feasible trace of this product corresponds to a choice of exe-
cutions for the variables π1, . . . , πn such that ψ is satisfied. Next, we remove
(some) spurious witnesses by removing infeasible traces. We consider two types
of infeasibility: k-infeasibility, that is, a local inconsistency in a trace appearing
within k consecutive timesteps; and infeasibility that is not local, and is the
result of some infeasible accepting cycles in the automaton. In the next step, we
project the automaton to the universally quantified traces, obtaining an over-
approximation of the trace combinations satisfying the existential part of the
formula. Finally, all that remains to check is whether the over-approximation
includes all combinations of feasible traces.

Lastly, in Sect. 6, we demonstrate our algorithm for two examples, including
generalized noninterference.

Contributions. We present an automata-based algorithm for software model
checking of ∀∗∃∗-hyperproperties. We summarize our contributions as follows.

– We extend HyperTSL with theories, a version of HyperTSL that is suitable
for model checking.

– We adapt the approach of [27] to TSL(T) and alternation-free HyperTSL(T),
and thereby suggest the first model checking algorithm for both TSL(T) and
HyperTSL(T).

– We further extend the algorithm for disproving ∀∗∃∗ hyperproperties and
proving ∃∗∀∗ hyperproperties using a feasibility analysis.

Related Work. Temporal stream logic extends linear temporal logic [50] and
was originally designed for synthesis [35]. For synthesis, the logic has been suc-
cessfully applied to synthesize the FPGA game ‘Syntroids’ [39], and to synthe-
size smart contracts [34]. To advance smart contract synthesis, TSL has been
extended to HyperTSL in [22]. The above works use a version TSL that leaves
functions and predicates uninterpreted. While this choice is very well suited for
the purpose of synthesis, for model checking it makes more sense to use the inter-
pretation of the program at hand. TSL was extended with theories in [33], which
also analyzed the satisfiability problem of the logic. Neither TSL nor HyperTSL
model checking has been studied so far (with or without interpreted theories).

For LTL, the model checking problem for infinite-state models has been
extensively studied, examples are [13,16,25,27,38]. Our work builds on the
automata-based LTL software model checking algorithm from [27]. There are
also various algorithms for verifying universal hyperproperties on programs, for
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example, algorithms based on type theory [1,9]. Major related work is [10], which
(in contrast to our approach) requires on predicate abstractions to model check
software against ∀∗∃∗ HyperLTL specifications. They can also handle asyn-
chronous hyperproperties, which is currently beyond our scope. Another proposal
for the verification of ∀∃ hyperproperties on software is [52]. Here, generalized
constrained horn clauses are used to verify functional specifications. The app-
roach is not applicable to reactive, non-terminating programs. Recently, it was
also proposed to apply model checkers for TLA (a logic capable of expressing
software systems as well as their properties) to verify ∀∗∃∗ hyperproperties [45].

Beyond the scope of software model checking, the verification of hyperprop-
erties has been studied for various system models and classes of hyperproperties.
Model checking has been studied for ω-regular properties [21,31,37] and asyn-
chronous hyperproperties [7,12] in finite-state Kripke structures, as well as timed
systems [43], real-valued [49] and probabilistic hyperproperties [3,28,29] (some
of which study combinations of the above).

2 Preliminaries

A Büchi Automaton is a tuple A = (Σ,Q, δ, q0, F ) where Σ is a finite alphabet;
Q is a set of states; δ ⊆ Q×Σ ×Q is the transition relation; q0 ∈ Q is the initial
state; and F ⊆ Q is the set of accepting states. A run of the Büchi automaton
A on a word σ ∈ Σ

ω is an infinite sequence q0 q1 q2 ⋅ ⋅ ⋅ ∈ Q
ω of states such that

for all i ∈ N, (qi, σi, qi+1) ∈ δ. An infinite word σ is accepted by A if there is a
run on σ with infinitely many i ∈ N such that qi ∈ F . The language of A, L(A),
is the set of words accepted by A.

2.1 Temporal Stream Logic Modulo Theories TSL(T)

Temporal Stream Logic (TSL) [35] extends Linear Temporal Logic (LTL) [50]
by replacing Boolean atomic propositions with predicates over memory cells and
inputs, and with update terms that specify how the value of a cell should change.

We present the formal definition of TSL modulo theories – TSL(T), based on
the definition of [33], which extends the definition [35]. The definition we present
is due to [46] and it slightly differs from the definition of [33]; The satisfaction
of an update term is not defined by syntactic comparison, but relative to the
current and previous values of cells and inputs. This definition suites the setting
of model checking, where a concrete model is given.

TSL(T) is defined based on a set of values V with true, false ∈ V, a set of
inputs I and a set of memory cells C. Update terms and predicates are interpreted
with respect to a given theory. A theory is a tuple (F, ε), where F is a set of
function symbols; Fn is the set of functions of arity n; and ε ∶ (⋃n∈N Fn × V

n
) →

V is the interpretation function, evaluating a function with arity n. For our
purposes, we assume that every theory (TF, ε) contains at least {=,∨,¬} with
their usual interpretations.

A function term τF is defined by the grammar

τF ∶∶= c ∣ i ∣ f(τF , τF , . . . τF )
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where c ∈ C, i ∈ I, f ∈ F, and the number of elements in f matches its arity. An
assignment a ∶ (I ∪ C) → V is a function assigning values to inputs and cells.
We denote the set of all assignments by A. Given a concrete assignment, we can
compute the value of a function term.

The evaluation function η ∶ TF × A → V is defined as

η(c, a) = a(c) for c ∈ C

η(i, a) = a(i) for i ∈ I

η(f (τF1, τF2, . . . , τFn), a) = ε(f, (η(τF1), η(τF2), . . . , η(τFn))) for f ∈ F

A predicate term τP is a function term only evaluating to true or false. We
denote the set of all predicate terms by TP .

For c ∈ C and τF ∈ TF, �c ↢ τF � is called an update term. Intuitively, the
update term �c ↢ τF � states that c should be updated to the value of τF . If in the
previous time step τF evaluated to v ∈ V, then in the current time step c should
have value v. The set of all update terms is TU . TSL formulas are constructed
as follows, for c ∈ C, τP ∈ TP , τF ∈ TF.

ϕ ∶∶= τP ∣ �c ↢ τF � ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∣ ϕUϕ

The usual operators ∨, (“eventually”), and (“globally”) can be derived
using the equations ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ϕ = true Uϕ and ϕ = ¬ ¬ϕ.

Assume a fixed initial variable assignment ζ−1 (e.g., setting all values to zero).
The satisfaction of a TSL(T) formula with respect to a computation ζ ∈ A

ω and
a time point t is defined as follows, where we define ζ ⊧ ϕ as 0, ζ ⊧ ϕ.

t, ζ ⊧ τP ⇔ η(τP , ζt) = true
t, ζ ⊧ �c ↢ τF � ⇔ η(τF , ζt−1) = ζt(c)

t, ζ ⊧ ¬ϕ ⇔ ¬(t, ζ ⊧ ϕ)

t, ζ ⊧ ϕ ∧ ψ ⇔ t, ζ ⊧ ϕ and t, ζ ⊧ ψ

t, ζ ⊧ ϕ ⇔ t + 1, ζ ⊧ ϕ

t, ζ ⊧ ϕUψ ⇔ ∃t
′ ≥ t. t

′
, ζ ⊧ ψ and ∀t ≤ t

′′ < t
′
. t

′′
, ζ ⊧ ϕ

3 HyperTSL Modulo Theories

In this section, we introduce HyperTSL(T), HyperTSL with theories, which
enables us to interpret predicates and functions depending on the program
at hand. In [22], two versions of HyperTSL are introduced: HyperTSL and
HyperTSLrel. The former is a conservative extension of TSL to hyperproper-
ties, meaning that predicates only reason about a single trace. In HyperTSLrel,
predicates may relate multiple traces, which opens the door to expressing prop-
erties like noninterference in infinite domains. Here, we build on HyperTSLrel,
allowing, in addition, update terms ranging over multiple traces. Furthermore,
we extend the originally uninterpreted functions and predicates with an inter-
pretation over theories. We denote this logic by HyperTSL(T).
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Fig. 1. Left: A program automaton. Right: two traces π and π
′
of the program automa-

ton. We interpret each trace as a computation. When executing both traces simulta-
neously, every time point has a corresponding hyper-assignment that assigns values to
cπ and cπ′ . Those for the first four time steps are shown on the right. Together, they
define the hyper-computation ζ̂ ∶= â1(â2 â3 â4)

ω
, matching π and π

′
.

The syntax of HyperTSL(T) is that of TSL(T), with the addition that cells
and inputs are now each assigned to a trace variable that represents a com-
putation. For example, cπ now refers to the memory cell c in the computation
represented by the trace π. Formally, let Π be a set of trace variables. We define
a hyper-function term τ̂F ∈ T̂F as a function term using (I × Π) as the set of
inputs and (C × Π) as the set of cells.

Definition 1. A hyper-function term τ̂F is defined by the grammar

τ̂F∶∶= cπ ∣ iπ ∣ f(τ̂F , τ̂F , . . . τ̂F )

where cπ ∈ C×Π, iπ ∈ I×Π, f ∈ F, and the number of the elements in the tuple
matches the function arity. We denote by T̂F the set of all hyper-function terms.

Analogously, we define hyper-predicate terms τ̂P ∈ T̂P as hyper-function
terms evaluating to true or false; hyper-assignments Â = (I ∪ C) × Π → V as
functions mapping cells and inputs of each trace to their current values; hyper-
computations ζ̂ ∈ Â

ω as hyper-assignment sequences. See Fig. 1 for an example.

Definition 2. Let cπ ∈ C × Π, τ̂P ∈ T̂P , τ̂F ∈ T̂F . A HyperTSL(T) formula is
defined by the following grammar:

ϕ ∶∶=ψ ∣ ∀π. ϕ ∣ ∃π. ϕ

ψ ∶∶= τ̂P ∣ �cπ ↢ τ̂F � ∣ ¬ψ ∣ ψ ∧ ψ ∣ ψ ∣ ψ Uψ

To define the semantics of HyperTSL(T), we need the ability to extend a hyper-
computation to new trace variables, one for each path quantifier. Let ζ̂ ∈ Â

ω be
a hyper-computation, and let π, π

′ ∈ Π, ζ ∈ A
ω and x ∈ (I ∪ C). We define the

extension of ζ̂ by π using the computation ζ as ζ̂[π, ζ] (xπ′) = ζ̂(xπ′) for π
′ ≠ π,

and ζ̂[π, ζ] (xπ) = ζ(xπ) for π.

Definition 3. The satisfaction of a HyperTSL(T)-Formula w.r.t. a hyper- com-
putation ζ̂ ∈ Â

ω, a set of computations Z and a time point t is defined by

t, Z, ζ̂ ⊧ ∀π. ϕ ⇔ ∀ζ ∈ Z. t, Z, ζ̂[π, ζ] ⊧ ϕ

t, Z, ζ̂ ⊧ ∃π. ϕ ⇔ ∃ζ ∈ Z. t, Z, ζ̂[π, ζ] ⊧ ϕ
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The cases that do not involve path quantification are analogous to those of
TSL(T) as defined in Sect. 2.1. We define Z ⊧ ϕ as 0, Z,∅ω ⊧ ϕ.

4 Büchi Product Programs and TSL Model Checking

We now describe how we model the system and specification as Büchi automata,
adapting the automata of [27] to the setting of TSL. Then, we introduce our
model checking algorithm for TSL(T). In Sect. 5.2 we build on this algorithm to
propose an algorithm for HyperTSL(T) model checking.

We use a symbolic representation of the system (see, for example, [41]), where
transitions are labeled with program statements, and all states are accepting.

Definition 4. Let c ∈ C, τP ∈ TP and τF ∈ TF. We define the set of (basic)
program statements as

s0 ∶∶= assert(τP ) ∣ c ∶= τF ∣ c ∶= ∗

s ∶∶= s0 ∣ s; s

We call statements of the type s0 basic program statements, denoted by Stmt0;
statements of type s are denoted by Stmt. The assignment c ∶= ∗ means that
any value could be assigned to c.

A program automaton P is a Büchi automaton with Σ = Stmt , that is,
P = (Stmt , Q, q0, δ, F ) and δ ⊆ Q × Stmt × Q. When modeling the system we
only need basic statements, thus we have Stmt = Stmt0; and F = Q as all states
are accepting. See Fig. 3 for an illustration.

Using a program automaton, one can model if statements, while loops, and
non-deterministic choices. However, not every trace of the program automa-
ton corresponds to a program execution. For example, the trace (n ∶=
input1); assert(n > 0); assert(n < 0); assert(true)

ω does not – the second asser-
tion will always fail. Such a trace is called infeasible. We call a trace feasible if
it corresponds to a program execution where all the assertions may succeed. We
now define this formally.

Definition 5. A computation ζ matches a trace σ ∈ Stmtω
0 at time point t,

denoted by ζ ◃t σ, if the following holds:

if σt = assert(τP ) ∶ η(τP , ζt−1) = true and ∀c ∈ C. ζt(c) = ζt−1(c)

if σt = c ∶= τF ∶ η(τF , ζt−1) = ζt(c) and ∀c
′ ∈ C\{c}. ζt(c

′
) = ζt−1(c

′
)

if σt = c ∶= ∗ ∶ ∀c ∈ C\{c}. ζt(c) = ζt−1(c)

where ζ−1 is the initial assignment. A computation ζ matches a trace σ ∈ Stmtω
0 ,

denoted by ζ ◃ σ, if ∀t ∈ N. ζ ◃t σ.
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Definition 6. A program automaton P over Stmt0 satisfies a TSL(T)-formula
ϕ, if for all traces σ of P we have ∀ζ ∈ A

ω
. ζ ◃ σ ⇒ ζ ⊧ ϕ.

We now present an algorithm to check whether a program automaton P sat-
isfies a TSL(T) formula. It is an adaption of the automaton-based LTL software
model checking approach by [27], where the basic idea is to first translate the
negated specification ϕ into an automaton A¬ϕ, and then combine A¬ϕ and P
to a new automaton, namely the Büchi program product. The program satisfies
the specification iff the Büchi program product accepts no feasible trace.

In [27], the Büchi program product is constructed similarly to the standard
product automata construction. To ensure that the result is again a program
automaton, the transitions are not labeled with pairs (s, l) ∈ Stmt0 × 2AP ,
but with the program statement (s; assert(l)). A feasible accepted trace of the
Büchi program product then corresponds to a counterexample proving that the
program violates the specification. In the following, we discuss how we adapt the
construction of the Büchi program product for TSL(T) such that this property
– a feasible trace corresponds to a counterexample – remains true for TSL(T).

Let ϕ be a TSL(T) specification. For the construction of A¬ϕ, we treat all
update and predicate terms as atomic propositions, resulting in an LTL formula
¬ϕLTL, which is translated to a Büchi automaton.2 For our version of the Büchi
program product, we need to merge a transition label s from P with a transition
label l from A¬ϕLTL

into a single program statement such that the assertion of
the combined statement succeeds iff l holds for the statement s. Note that l is
a set of update and predicate terms. For the update terms �c ↢ τF � we cannot
just use an assertion to check if they are true, as we need to ‘save’ the value of
τF before the statement s is executed.

Our setting differs from [27] also in the fact that their program statements do
not reason over input streams. We model the behavior of input streams by using
fresh memory cells that are assigned a new value at every time step. In the
following, we define a function combine that combines a program statement s
and a transition label l to a new program statement as described above.

Definition 7. Let υ = {�c1 ↢ τF1�, . . . , �cn ↢ τFn�} be the set of update terms
appearing in ϕ, let ρ be the set of predicate terms appearing in ϕ. Let l ⊆ (υ∪ρ)
be a transition label of A¬ϕ. Let (tmpj)j∈N be a family of fresh cells. Let I =
{i1, . . . im}. We define the function combine ∶ Stmt × P(TP ∪ TU) → Stmt as
follows. The result of combine(s, l) is composed of the program statements in
save values l, s,new inputs, check preds l and check updates l. Then we have:

save values ∶= tmp1 ∶= τF1; . . . ; tmpn ∶= τFn

new inputs ∶= i1 ∶= ∗; . . . ; im ∶= ∗

check preds l ∶= assert
⎛
⎜
⎝
⋀

τP∈l

τP ∧ ⋀
τP∈ρ\l

¬τP

⎞
⎟
⎠

2
For the translation of LTL formulas to Büchi automata, see, for example, [4,48,51].
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check updates l ∶= assert
⎛
⎜
⎝

⋀
�cj↢τFj�∈υ

{
cj = tmpj if �cj ↢ τFj� ∈ l

cj ≠ tmpj else

⎞
⎟
⎠

combine(s, l) ∶= save values; s; new inputs; check preds l; check updates l

We can extend this definition to combining traces instead of single transition
labels. This leads to a function combine ∶ Stmtω ×P(TP ∪ TU)

ω → Stmtω. Note
that the result of combine is again a program statement in Stmt (or a trace
Stmtω) over the new set of cells C ∪ I ∪ (tmpj)j∈N, which we call C∗.

Example 1. Let I = {i}. Then the result of combine(n ∶= 42, {�n ↢ n + 7�, n >
0}) is tmp0 ∶= n + 7; n ∶= 42; i ∶= ∗; assert(n > 0); assert(n = tmp0).

As combine leads to composed program statements, we now need to extend
the definition of feasibility to all traces. To do so, we define a function flatten ∶
Stmtω → Stmt0

ω that takes a sequence of program statements and transforms it
into a sequence of basic program statements by converting a composed program
statement into multiple basic program statements.

Definition 8. A trace σ ∈ Stmtω matches a computation ζ, denoted by ζ ◃ σ if
ζ ◃ flatten(σ). A trace σ is feasible if there is a computation ζ such that ζ ◃ σ.

Definition 9 (Combined Product). Let P = (Stmt,Q, q0, δ,Q) be a program
automaton and A = (P(TP ∪TU), Q

′
, q

′
0, δ

′
, F

′
) be a Büchi automaton (for exam-

ple, the automaton A¬ϕLTL
). The combined product P ⊗ A is an automaton

B = (Stmt,Q × Q
′
, (q0, q

′
0), δB , FB), where

FB = {(q, q
′
) ∣ q ∈ Q ∧ q

′ ∈ F
′
}

δB = {((p, q), combine(s, l), (p′, q′)) ∣ (p, s, p
′
) ∈ δ ∧ (q, l, q

′
) ∈ δ

′
}

Theorem 1. Let P be a program automaton over Stmt0. Let ϕ be a TSL(T)
formula. Then P satisfies ϕ if and only if P⊗A¬ϕLTL

has no feasible trace.

Proof (sketch). If ζ ◃ σ is a counterexample, we can construct a computation ζ̃
that matches the corresponding combined trace in P⊗A¬ϕLTL

, and vice versa.
See the full version [32] for the formal construction.

We can now apply Theorem1 to solve the model checking problem by testing
whether P⊗A¬ϕLTL

does not accept any feasible trace, using the feasibility check
in [27] as a black box. The algorithm of [27] is based on counterexample-guided
abstraction refinement (CEGAR [18]). Accepted traces are checked for feasibility.
First, finite prefixes of the trace are checked using an SMT-solver. If they are
feasible, a ranking function synthesizer is used to check whether the whole trace
eventually terminates. If the trace is feasible, it serves as a counterexample.
If not, the automaton is refined such that it now does not include the spurious
counterexample trace anymore, and the process is repeated. For more details, we
refer to [27]. The limitations of SMT-solvers and ranking function synthesizers
also limit the functions and predicates that can be used in both the program
and in the TSL(T) formula.
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5 HyperTSL(T) Model Checking

We now turn to the model checking problem of HyperTSL(T). We start with
alternation-free formulas and continue with ∀∗∃∗ formulas.

5.1 Alternation-Free HyperTSL(T)

In this section, we apply the technique of self-composition to extend the algo-
rithm of Sect. 4 to alternation-free HyperTSL(T). First, we define what it means
for a program automaton to satisfy a HyperTSL(T) formula.

Definition 10. Let P be a program automaton over Stmt0, let ϕ be a Hyper-
TSL(T) formula and let Z = {ζ ∈ A

ω
∣ ∃σ. ζ ◃σ and σ is a trace of P}. We say

that P satisfies ϕ if Z ⊧ ϕ.

Definition 11. Let P = (Stmt , Q, q0, δ,Q) be a program automaton. The n-fold
self-composition of P is Pn = (Stmt ′, Qn

, q
n
0 , δ

n
, Q

n
), where Stmt ′ are program

statements over the set of inputs I × Π and the set of cells C × Π and where
Q

n = Q × ⋅ ⋅ ⋅ × Q, q
n
0 = (q0, . . . , q0) and

δ
n ={((q1, . . . , qn), ((s1)π1

; . . . ; (sn)πn
), (q

′
1, . . . , q

′
n))

∣ ∀1 ≤ i ≤ n. (qi, si, q
′
i) ∈ δ}

where (s)π renames every cell c used in s to cπ and every input i to iπ.

Theorem 2. A program automaton P over Stmt0 satisfies a universal Hyper-
TSL(T) formula ϕ = ∀π1. . . .∀πn. ψ iff Pn ⊗A¬ψLTL

has no feasible trace.

Theorem 3. A program automaton P over Stmt0 satisfies an existential Hyper-
TSL(T) formula ϕ = ∃π1. . . .∃πn. ψ iff Pn ⊗AψLTL

has some feasible trace.

The proofs of are analogous to the proof of Theorem 1, see the full version of
this paper [32] for details.

5.2 ∀∗∃∗ HyperTSL(T)

In this section, we present a sound but necessarily incomplete algorithm for
finding counterexamples for ∀∗∃∗ HyperTSL(T) formulas.3 Such an algorithm
can also provide witnesses ∃∗∀∗ formulas. As HyperTSL(T) is built on top of
HyperLTL, we combine ideas from finite-state HyperLTL model checking [37]
with the algorithms of Sect. 4 and Sect. 5.1.

Let ϕ = ∀m∃n
.ψ. For HyperLTL model checking, [37] first constructs an

automaton containing the system traces satisfying ψ∃ ∶= ∃n
.ψ, and then applies

3
Note that the algorithms of Sect. 4 and Sect. 5.1 are also incomplete, due to the
feasibility test. However, the incompleteness of the algorithm we provide in this
section is inherent to the quantifier alternation of the formula.
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complementation to extract counterexamples for the ∀∃ specification. Consider
the automaton Pn⊗AψLTL

from Sect. 4, whose feasible traces correspond to the
system traces satisfying ψ∃. If we would be able to remove all infeasible traces,
we could apply the finite-state HyperLTL model checking construction. Unfor-
tunately, removing all infeasibilities is impossible in general, as the result would
be a finite-state system describing exactly an infinite-state system. Therefore,
the main idea of this section is to remove parts of the infeasible traces from
Pn ⊗AψLTL

, constructing an over-approximation of the system traces satisfying
ψ∃. A counterexample disproving ϕ is then a combination of system traces that
is not contained in the over-approximation.

We propose two techniques for removing infeasibility. The first technique
removes k-infeasibility from the automaton, that is, a local inconsistency in a
trace, occurring within k consecutive time steps. When choosing k, there is a
trade-off: if k is larger, more counterexamples can be identified, but the automa-
ton construction gets exponentially larger.

The second technique removes infeasible accepting cycles from the automa-
ton. It might not be possible to remove all of them, thus we bound the number
of iterations. We present an example and then elaborate on these two methods.

Example 2. The trace t1 below is 3-infeasible, because regardless of the value of
n prior to the second time step, the assertion in the fourth time step will fail.

t1 = (n − −; assert(n >= 0)) (n ∶= 1; assert(n >= 0)) (n − −; assert(n >= 0))
ω

In contrast, the trace t2 = (n ∶= ∗) (n−−; assert(n >= 0))ω is not k-infeasible
for any k, because the value of n can always be large enough to pass the
first k assertions. Still, the trace is infeasible because n cannot decrease for-
ever without dropping below zero. If such a trace is accepted by an automaton,
n − −; assert(n >= 0) corresponds to an infeasible accepting cycle.

Removing k-Infeasibility. To remove k-infeasibility from an automaton, we
construct a new program automaton that ‘remembers’ the k − 1 previous state-
ments. The states of the new automaton correspond to paths of length k in the
original automaton. We add a transition labeled with l between two states p and
q if we can extend the trace represented by p with l such that the resulting trace
is k-feasible. Formally, we get:

Definition 12. Let k ∈ N, σ ∈ Stmtω. We say that σ is k-infeasible if there
exists j ∈ N such that σjσj+1 . . . σj+k−1; assert(true)

ω is infeasible for all possi-
ble initial assignments ζ−1. We then also call the subsequence σjσj+1 . . . σj+k−1

infeasible. If a trace is not k-infeasible, we call it k-feasible.4

Definition 13. Let P = (Stmt , Q, q0, δ, F ) be a program automaton. Let k ∈ N.
We define P without k-infeasibility, as Pk = (Stmt , Q′

, q0, δ
′
, F

′
) where

Q
′ ∶= {(q1, s1, q2 . . . , sk−1, qk) ∣ (q1, s1, q2) ∈ δ ∧ ⋅ ⋅ ⋅ ∧ (qk−1, sk−1, qk) ∈ δ} ∪

4
Whether a subsequence σjσj+1 . . . σj+k−1 is a witness of k-infeasibility can be checked
using an SMT-solver, e.g., [14,15,17,26].
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{(q0, s0, q1 . . . , sk′−1, qk′) ∣ k
′ < k − 1 ∧ (q0, s0, q1) ∈ δ ∧ . . .

∧ (qk′−1, sk′−1, qk′) ∈ δ}

δ
′ ∶= {((q1, s1, q2 . . . , sk−1, qk), sk, (q2, s2, . . . , qk, sk, qk+1)) ∈ Q

′ × Stmt × Q
′

∣ s1 . . . sk feasible} ∪

{((q0, s0, q1 . . . , sk′−1, qk′), sk′ , (q0, s0, . . . , qk′ , sk′ , qk′+1)) ∈ Q
′ × Stmt × Q

′

∣ k
′ < k − 1 ∧ s0 . . . sk′ feasible}

F
′ ∶= {(q1, s1, q2 . . . , sk−1, qk) ∈ Q

′
∣ qk ∈ F} ∪

{(q0, s0, q1 . . . , sk′−1, qk′) ∈ Q
′
∣ k

′ < k − 1 ∧ qk′ ∈ F}

Theorem 4. Pk accepts exactly the k-feasible traces of P.

The proof follows directly from the construction above. For more details, see full
version [32].

Removing Infeasible Accepting Cycles. For removing infeasible accepting
cycles, we first enumerate all simple cycles of the automaton (using, e.g., [44]),
adding also cycles induced by self-loops. For each cycle � that contains at least
one accepting state, we test its feasibility: first, using an SMT-solver to test if �
is locally infeasible; then, using a ranking function synthesizer (e.g., [8,24,40]) to
test if �

ω is infeasible. If we successfully prove infeasibility, we refine the model,
using the methods from [41,42]. This refinement is formalized in the following.

Definition 14. Let P = (Stmt , Q, q0, δ, F ) be a program automaton. Let � =
(q1, s1, q2)(q2, s2, q3) . . . (qn, sn, q1) be a sequence of transitions of P. We say
that � is an infeasible accepting cycle if there is a 1 ≤ j ≤ n with qj ∈ F and
(s1s2 . . . sn−1)

ω is infeasible for all possible initial assignments ζ−1.

Definition 15. Let P be a program automaton and C ⊆ (Q × Stmt × Q)
ω be a

set of infeasible accepting cycles of P. Furthermore, let

� = (q1, s1, q2)(q2, s2, q3) . . . (qn−1, sn−1, qn) ∈ C.

The automaton A	 for � is A	 = (Stmt , Q = {q0, q1, . . . qn}, q0, δ,Q\{q0}) where

δ = {(q0, s, q0) ∣ s ∈ Stmt}
∪ {(qj , sj , qj+1) ∣ 1 ≤ j < n} ∪ {(q0, s1, q2), (qn, sn, q1)}.

Then, A	 accepts exactly the traces that end with �
ω, without any restriction

on the prefix. See Fig. 2 for an example. To exclude the traces of A	 from P,
we define PC ∶= P\ (⋃	∈C A	).

5 This construction can be repeated to exclude
infeasible accepted cycles that are newly created in PC . We denote the result of
iterating this process k

′ times by PC(k′).

Finding Counterexamples for ∀∗∃∗ HyperTSL(T)-Formulas. Consider
now a HyperTSL(T) formula ϕ = ∀1⋯m∃m+1⋯n

.ψ and a program automaton P.
5

For two automata A1,A2 we use A1\A2 to denote the intersection of A1 with the
complement of A2, resulting in the language L(A1) \ L(A2).
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Fig. 2. Automaton A� for the infeasible
cycle � = (q1, n − −, q2)(q2, assert(n >
0), q1). Label ∗ denotes an edge for every
(relevant) statement.

For finding a counterexample, we first
construct the combined product Pn ⊗
Aψ. Each feasible accepted trace of
Pn ⊗ Aψ corresponds to a combi-
nation of n feasible program traces
that satisfy ψ. Next, we eliminate
k-infeasibility and remove k

′-times
infeasible accepting cycles from the
combined product, resulting in the
automaton (Pn ⊗Aψ)k,C(k′). Using this modified combined product, we obtain
an over-approximation of the program execution combinations satisfying the
existential part of the specification. Each trace of the combined product is a
combination of n program executions and a predicate/update term sequence.
We then project the m universally quantified program executions from a feasible
trace, obtaining a tuple of m program executions that satisfy the existential part
of the formula. Applying this projection to all traces of (Pn⊗Aψ)k,C(k′) leads to
an over-approximation of the program executions satisfying the existential part
of the specification. Formally:

Definition 16. Let P be a program automaton, let m ≤ n ∈ N, and let Aψ

be the automaton for the formula ψ. Let (Pn ⊗ A)k,C(k′) = (Stmt , Q, q0, δ, F ).
We define the projected automaton (Pm⊗A)

∀
k,C(k′) = (Stmt , Q, q0, δ

∀
, F ) where

δ
∀ = {(q, (s1; . . . ; sm), q

′
) ∣ ∃sm+1, . . . sn, l. (q, combine(s1; . . . ; sn, l), q

′
) ∈ δ}.

The notation s1; s2 refers to a sequence of statements, as given in Definition 4.
For more details on the universal projection we refer the reader to [36].

Now, it only remains to check whether the over-approximation contains all
tuples of m feasible program executions. If not, a counterexample is found. This
boils down to testing if Pm

\(Pn⊗Aψ)
∀
k,C(k′) has some feasible trace. Theorem 5

states the soundness of our algorithm. For the proof, see full version [32].

Theorem 5. Let ϕ = ∀1⋯m∃m+1⋯n
.ψ be a HyperTSL(T) formula. If the

automaton Pm
\(Pn ⊗Aψ)

∀
k,C(k′) has a feasible trace, then P does not satisfy ϕ.

6 Demonstration of the Algorithm

In this section, we apply the algorithm of Sect. 5.2 to two simple examples,
demonstrating that removing some infeasibilities can already be sufficient for
identifying counterexamples.

Generalized Noninterference Recall the formula ϕgni = ∀π. ∃π
′
. (iπ′ =

λ ∧ cπ = cπ′) introduced in Sect. 1, specifying generalized noninterference. We
model-check ϕgni on the program automaton P of Fig. 3 (left), setting λ = 0.
The program P violates ϕgni since for the trace (assert(i < 0) c ∶= 0)ω there
is no other trace where on which c is equal, but i = 0. The automaton for
ψ = (iπ′ = 0 ∧ cπ = cπ′) consists of a single accepting state with the self-loop
labeled with τP = (iπ′ = 0∧cπ = cπ′). For this example, it suffices to choose k = 1.



374 B. Finkbeiner et al.

Fig. 3. Left: The program automaton P used in the first example. Right: The program
automaton P2

. For brevity, we use A for assert and join consecutive assertions.

To detect 1-inconsistencies we construct P2 (Fig 3, right). Then, (P2 ⊗Aψ)k is
the combined product with all 1-inconsistent transitions removed (see Fig. 5 for
the combined product).

Fig. 4. program automaton (P2 ⊗Aψ)
∀
k

The automaton (P2 ⊗ Aψ)
∀
k is

shown in Fig. 4. It does not contain
the trace σ = assert(i < 0) (c ∶= 0)ω

which is a feasible trace of P. There-
fore, σ is a feasible trace accepted by
P\(P2 ⊗Aψ)

∀
k and is a counterexam-

ple proving that P does not satisfy
generalized noninterference – there is
no feasible trace that agrees on the value of the cell c but has always i = 0.

The Need of Removing Cycles. We now present an example in which remov-
ing k-infeasibility is not sufficient, but removing infeasible accepting cycles leads
to a counterexample. Consider the specification ϕ = ∀π∃π

′
. (pπ ≠ pπ′ ∧ nπ <

nπ′) and the program automaton Pcy of Fig. 6. The formula ϕ states that for
every trace π, there is another trace π

′ which differs from π on p, but in which
n is always greater. The trace π = (n ∶= ∗); (p ∶= ∗); assert(p = 0); (n − −)ω is
a counterexample for ϕ in Pcy as any trace π

′ which differs on p will decrease
its n by 2 in every time step, and thus nπ′ will eventually drop below nπ.

Fig. 5. The combined product (P2 ⊗Aψ)
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Fig. 6. Left: The program automaton Pcy, Right: The program automaton P2
cy.

The automaton P2
cy is shown in Fig. 6. In the combined product, the structure

of the automaton stays the same, and assert(pπ ≠ pπ′ ∧ nπ < n
′
π) is added to

every state. Removing local k-infeasibilities is not sufficient here; assume k = 1.
The only 1-infeasible transition is the transition from q2q2 to q3q3, and this does
not eliminate the counterexample π. Greater k’s do not work as well, as the
remaining traces of the combined product are not k infeasible for any k.

However, the self-loop at q3q4 is an infeasible accepting cycle – the sequence
(nπ−−; nπ′ ∶= nπ′ −2; assert(nπ < nπ′))

ω must eventually terminate. We choose
k
′ = 1 removing all traces ending with this cycle. Next, we project the automaton

to the universal part. The trace π is not accepted by the automaton (P2 ⊗
Aψ)

∀
1,C(1). But since π is in P and feasible, it is identified as a counterexample.

7 Conclusions

We have extended HyperTSL with theories, resulting in HyperTSL(T), and pro-
vided the first infinite-state model checking algorithms for both TSL(T) and
HyperTSL(T). As this is the first work to study (Hyper)TSL model checking,
these are also the first algorithms for finite-state model checking for (Hyper)TSL.
For TSL(T), we have adapted known software model checking algorithm for LTL
to the setting of TSL(T). We then used the technique of self-composition to gen-
eralize this algorithm to the alternation-free fragment of HyperTSL(T).

We have furthermore described a sound but necessarily incomplete algorithm
for finding counterexamples for ∀∗∃∗-HyperTSL(T) formulas (and witnesses
proving ∃∗∀∗ formulas). Our algorithm makes it possible to find program execu-
tions violating properties like generalized noninterference, which is only express-
ible by using a combination of universal and existential quantifiers.
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Finding model checking algorithms for other fragments of HyperTSL(T), and
implementing our approach, remains as future work.
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