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Abstract. We present a novel approach to efficiently compute tight
non-convex enclosures of the image through neural networks with ReLU,
sigmoid, or hyperbolic tangent activation functions. In particular, we
abstract the input-output relation of each neuron by a polynomial
approximation, which is evaluated in a set-based manner using poly-
nomial zonotopes. While our approach can also can be beneficial for
open-loop neural network verification, our main application is reacha-
bility analysis of neural network controlled systems, where polynomial
zonotopes are able to capture the non-convexity caused by the neural
network as well as the system dynamics. This results in a superior per-
formance compared to other methods, as we demonstrate on various
benchmarks.

Keywords: Neural network verification · Neural network controlled
systems · Reachability analysis · Polynomial zonotopes · Formal
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1 Introduction

While previously artificial intelligence was mainly used for soft applications
such as movie recommendations [9], facial recognition [23], or chess comput-
ers [11], it is now also increasingly applied in safety-critical applications, such as
autonomous driving [32], human-robot collaboration [27], or power system con-
trol [5]. In contrast to soft applications, where failures usually only have minor
consequences, failures in safety-critical applications in the worst case result in
loss of human lives. Consequently, in order to prevent those failures, there is
an urgent need for efficient methods that can verify that the neural networks
used for artificial intelligence function correctly. Verification problems involving
neural networks can be grouped into two main categories:

– Open-loop verification: Here the task is to check if the output of the neural
network for a given input set satisfies certain properties. With this setup one
can for example prove that a neural network used for image classification is
robust against a certain amount of noise on the image.
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Fig. 1. Triangle relaxation (left), zonotope abstraction (middle), and polynomial zono-
tope abstraction (right) of the ReLU activation function.

– Closed-loop verification: In this case the neural network is used as a con-
troller for a dynamical system, e.g., to steer the system to a given goal set
while avoiding unsafe regions. The safety of the controlled system can be
verified using reachability analysis.

For both of the above verification problems, the most challenging step is to
compute a tight enclosure of the image through the neural network for a given
input set. Due to the high expressiveness of neural networks, their images usually
have complex shapes, so that convex enclosures are often too conservative for
verification. In this work, we show how to overcome this limitation with our novel
approach for computing tight non-convex enclosures of images through neural
networks using polynomial zonotopes.

1.1 State of the Art

We first summarize the state of the art for open-loop neural network verifi-
cation followed by reachability analysis for neural network controlled systems.
Many different set representations have been proposed for computing enclosures
of the image through a neural network, including intervals [43], polytopes [38],
zonotopes [34], star sets [40], and Taylor models [21]. For neural networks with
ReLU activation functions, it is possible to compute the exact image. This can
be either achieved by recursively partitioning the input set into piecewise affine
regions [42], or by propagating the initial set through the network using poly-
topes [38,48] or star sets [40], where the set is split at all neurons that are both
active or inactive. In either case the exact image is in the worst case given as
a union of 2v convex sets, with v being the number of neurons in the network.
To avoid this high computational complexity for exact image computation, most
approaches compute a tight enclosure instead using an abstraction of the neu-
ral network. For ReLU activation functions one commonly used abstraction is
the triangle relaxation [15] (see Fig. 1), which can be conveniently integrated
into set propagation using star sets [40]. Another possibility is to abstract the
input-output relation by a zonotope (see Fig. 1), which is possible for ReLU,
sigmoid, and hyperbolic tangent activation functions [34]. One can also apply
Taylor model arithmetic [26] to compute the image through networks with sig-
moid and hyperbolic tangent activation [21], which corresponds to an abstrac-
tion of the input-output relation by a Taylor series expansion. In order to better
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capture dependencies between different neurons, some approaches also abstract
the input-output relation of multiple neurons at once [28,36].

While computation of the exact image is infeasible for large networks, the
enclosures obtained by abstractions are often too conservative for verification.
To obtain complete verifiers, many approaches therefore use branch and bound
strategies [7] that split the input set and/or single neurons until the specification
can either be proven or a counterexample is found. For computational reasons
branch and bound strategies are usually combined with approaches that are
able to compute rough interval bounds for the neural network output very fast.
Those bounds can for example be obtained using symbolic intervals [43] that
store linear constraints on the variables in addition to the interval bounds to
preserve dependencies. The DeepPoly approach [35] uses a similar concept, but
applies a back-substitution scheme to obtain tighter bounds. With the FastLin
method [45] linear bounds for the overall network can be computed from linear
bounds for the single neurons. The CROWN approach [49] extends this concept
to linear bounds with different slopes as well as quadratic bounds. Several addi-
tional improvements for the CROWN approach have been proposed, including
slope optimization using gradient descent [47] and efficient ReLU splitting [44].
Instead of explicitly computing the image, many approaches also aim to verify
the specification directly using SMT solvers [22,30], mixed-integer linear pro-
gramming [8,37], semidefinite programming [31], and convex optimization [24].

For reachability analysis of neural network controlled systems one has to com-
pute the set of control inputs in each control cycle, which is the image of the cur-
rent reachable set through the neural network controller. Early approaches com-
pute the image for ReLU networks exactly using polytopes [46] or star sets [39].
Since in this case the number of coexisting sets grows rapidly over time, these
approaches have to unite sets using convex hulls [46] or interval enclosures [39],
which often results in large over-approximations. If template polyhedra are used
as a set representation, reachability analysis for neural network controlled sys-
tems with discrete-time plants reduces to the task of computing the maximum
output along the template directions [12], which can be done efficiently. Neural
network controllers with sigmoid and hyperbolic tangent activation functions
can be converted to an equivalent hybrid automaton [20], which can be com-
bined with the dynamics of the plant using the automaton product. However,
since each neuron is represented by an additional state, the resulting hybrid
automaton is very high-dimensional, which makes reachability analysis chal-
lenging. Some approaches approximate the overall network with a polynomial
function [14,18] using polynomial regression based on samples [14] and Bernstein
polynomials [18]. Yet another class of methods [10,21,33,41] employs abstrac-
tions of the input-output relation for the neurons to compute the set of control
inputs using intervals [10], star sets [41], Taylor models [21], and a combination
of zonotopes and Taylor models [33]. Common tools for reachability analysis of
neural network controlled systems are JuliaReach [6], NNV [41], POLAR [19],
ReachNN* [16], RINO [17], Sherlock [13], Verisig [20], and Verisig 2.0 [21],
where JuliaReach uses zonotopes for neural network abstraction [33], NVV sup-
ports multiple set representations, ReachNN* applies the Bernstein polynomial
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method [18], POLAR approximates single neurons by Bernstein polynomials [19],
RINO computes interval inner- and outer-approximations [17], Sherlock uses the
polynomial regression approach [14], Verisig performs the conversion to a hybrid
automaton [20], and Verisig 2.0 uses the Taylor model based neural network
abstraction method [21].

1.2 Overview

In this work, we present a novel approach for computing tight non-convex enclo-
sures of images through neural networks with ReLU, sigmoid, or hyperbolic
tangent activation functions. The high-level idea is to approximate the input-
output relation of each neuron by a polynomial function, which results in the
abstraction visualized in Fig. 1. Since polynomial zonotopes are closed under
polynomial maps, the image through this function can be computed exactly,
yielding a tight enclosure of the image through the overall neural network. The
remainder of this paper is structured as follows: After introducing some prelim-
inaries in Sect. 2, we present our approach for computing tight enclosures of
images through neural networks in Sect. 3. Next, we show how to utilize this
result for reachability analysis of neural network controlled systems in Sect. 4.
Afterwards, in Sect. 5, we introduce some special operations on polynomial zono-
topes that we require for image and reachable set computation, before we finally
demonstrate the performance of our approach on numerical examples in Sect. 6.

1.3 Notation

Sets are denoted by calligraphic letters, matrices by uppercase letters, and vec-
tors by lowercase letters. Given a vector b ∈ R

n, b(i) refers to the i-th entry. Given
a matrix A ∈ R

o×n, A(i,·) represents the i-th matrix row, A(·,j) the j-th column,
and A(i,j) the j-th entry of matrix row i. The concatenation of two matrices C
and D is denoted by [C D], and In ∈ R

n×n is the identity matrix. The symbols
0 and 1 represent matrices of zeros and ones of proper dimension, the empty
matrix is denoted by [ ], and diag(a) returns a diagonal matrix with a ∈ R

n

on the diagonal. Given a function f(x) defined as f : R → R, f ′(x) and f ′′(x)
denote the first and second derivative with respect to x. The left multiplication
of a matrix A ∈ R

o×n with a set S ⊂ R
n is defined as AS := {As | s ∈ S},

the Minkowski addition of two sets S1 ⊂ R
n and S2 ⊂ R

n is defined as
S1 ⊕ S2 := {s1 + s2 | s1 ∈ S1, s2 ∈ S2}, and the Cartesian product of two sets
S1 ⊂ R

n and S2 ⊂ R
o is defined as S1 × S2 :=

{
[sT

1 sT
2 ]T | s1 ∈ S1, s2 ∈ S2

}
. We

further introduce an n-dimensional interval as I := [l, u], ∀i l(i) ≤ u(i), l, u ∈ R
n.

2 Preliminaries

Let us first introduce some preliminaries required throughout the paper. While
the concepts presented in this work can equally be applied to more complex
network architectures, we focus on feed-forward neural networks for simplicity:
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Fig. 2. Step-by-step construction of the polynomial zonotope from Example 1.

Definition 1. (Feed-forward neural network) A feed-forward neural network
with κ hidden layers consists of weight matrices Wi ∈ R

vi×vi−1 and bias vec-
tors bi ∈ R

vi with i ∈ {1, . . . , κ + 1} and vi denoting the number of neurons in
layer i. The output y ∈ R

vκ+1 of the neural network for the input x ∈ R
v0 is

y := yκ+1 with y0 = x, yi(j) = μ

( vi−1∑

k=1

Wi(j,k) yi−1(k) + bi(j)

)
, i = 1, . . . , κ+1,

where μ : R → R is the activation function.

In this paper we consider ReLU activations μ(x) = max(0, x), sigmoid activa-
tions μ(x) = σ(x) = 1/(1 + e−x), and hyperbolic tangent activations μ(x) =
tanh(x) = (ex − e−x)/(ex + e−x). Moreover, neural networks often do not apply
activation functions on the output neurons, which corresponds to using the iden-
tity map μ(x) = x for the last layer. The image Y through a neural network is
defined as the set of outputs for a given set of inputs X0, which is according to
Def. 1 given as

Y =

{
yκ+1

∣
∣
∣
∣ y0 ∈ X0, ∀i ∈ {1, . . . , κ + 1} : yi(j) = μ

( vi−1∑

k=1

Wi(j,k) yi−1(k) + bi(j)

)}
.

We present a novel approach for tightly enclosing the image through a neural
network by a polynomial zonotope [2], where we use the sparse representation
of polynomial zonotopes [25]1:

Definition 2. (Polynomial zonotope) Given a constant offset c ∈ R
n, a genera-

tor matrix of dependent generators G ∈ R
n×h, a generator matrix of independent

generators GI ∈ R
n×q, and an exponent matrix E ∈ N

p×h
0 , a polynomial zono-

tope PZ ⊂ R
n is defined as

PZ :=
{

c +
h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(·,i) +

q∑

j=1

βjGI(·,j)

∣
∣
∣
∣ αk, βj ∈ [−1, 1]

}
.

The scalars αk are called dependent factors since a change in their value affects
multiplication with multiple generators. Analogously, the scalars βj are called
independent factors because they only affect the multiplication with one genera-
tor. For a concise notation we use the shorthand PZ = 〈c,G,GI , E〉PZ .
1 In contrast to [25, Def. 1], we explicitly do not integrate the constant offset c in G.

Moreover, we omit the identifier vector used in [25] for simplicity.
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Let us demonstrate polynomial zonotopes by an example:

Example 1. The polynomial zonotope

PZ =
〈[

4
4

]
,

[
2 1 2
0 2 2

]
,

[
1
0

]
,

[
1 0 3
0 1 1

]〉

PZ

defines the set

PZ =
{[

4
4

]
+

[
2
0

]
α1 +

[
1
2

]
α2 +

[
2
2

]
α3
1α2 +

[
1
0

]
β1

∣
∣
∣
∣ α1, α2, β1 ∈ [−1, 1]

}
.

The construction of this polynomial zonotope is visualized in Fig. 2.

3 Image Enclosure

We now present our novel approach for computing tight non-convex enclo-
sures of images through neural networks. The general concept is to approximate
the input-output relation of each neuron by a polynomial function, the image
through which can be computed exactly since polynomial zonotopes are closed
under polynomial maps. For simplicity, we focus on quadratic approximations
here, but the extension to polynomials of higher degree is straightforward.

The overall procedure for computing the image is summarized in Algorithm 1,
where the computation proceeds layer by layer. For each neuron in the current
layer i we first calculate the corresponding input set in Line 5. Next, in Line 6, we
compute a lower and an upper bound for the input to the neuron. Using these
bounds we then calculate a quadratic approximation for the neuron’s input-
output relation in Line 7. This approximation is evaluated in a set-based manner
in Line 8. The resulting polynomial zonotope 〈cq, Gq, GI,q, Eq〉PZ forms the j-th
dimension of the set PZ representing the output of the whole layer (see Line 9
and Line 12). To obtain a formally correct enclosure, we have to account for the
error made by the approximation. We therefore compute the difference between
the activation function and the quadratic approximation in Line 10 and add the
result to the output set in Line 12. By repeating this procedure for all layers,
we finally obtain a tight enclosure of the image through the neural network. A
demonstrating example for Algorithm 1 is shown in Fig. 3.

For ReLU activations the quadratic approximation only needs to be calcu-
lated if l < 0 ∧ u > 0 since we can use the exact input-output relations g(x) = x
and g(x) = 0 if l ≥ 0 or u ≤ 0 holds. Due to the evaluation of the quadratic
map defined by g(x), the representation size of the polynomial zonotope PZ
increases in each layer. For deep neural networks it is therefore advisable to
repeatedly reduce the representation size after each layer using order reduction
[25, Prop. 16]. Moreover, one can also apply the compact operation described
in [25, Prop. 2] after each layer to remove potential redundancies from PZ.
Next, we explain the approximation of the input-output relation as well as the
computation of the approximation error in detail.
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Algorithm 1. Enclosure of the image through a neural network
Require: Neural network with weight matrices Wi and bias vectors bi, initial set X0.
Ensure: Tight enclosure PZ ⊇ Y of the image Y.

1: PZ ← X0

2: for i ← 1 to κ + 1 do (loop over all layers)
3: c ← 0, G ← 0, GI ← 0, d ← 0, d ← 0
4: for j ← 1 to vi do (loop over all neurons in the layer)
5: PZj ← Wi(j,·)PZ ⊕ bi(j) (map with weight matrix and bias using (5))
6: l, u ← lower and upper bound for PZj according to Prop. 1
7: g(x) = a1 x2 + a2 x + a3 ← quad. approx. on [l, u] according to Sect. 3.1
8: 〈cq, Gq, GI,q, Eq〉PZ ← image of PZj through g(x) according to Prop. 2
9: c(j) ← cq, G(j,·) ← Gq, GI(j,·) ← GI,q, E ← Eq (add to output set)

10: d(j), d(j) ← difference between g(x) and activation function acc. to Sect. 3.2

11: end for
12: PZ ← 〈c, G, GI , E〉PZ ⊕ [d, d] (add approximation error using (6))
13: end for

3.1 Activation Function Approximation

The centerpiece of our algorithm for computing the image of a neural network is
the approximation of the input-output relation defined by the activation func-
tion μ(x) with a quadratic expression g(x) = a1 x2 + a2 x + a3 (see Line 7 of
Algorithm 1). In this section we present multiple possibilities to obtain good
approximations.

Polynomial Regression

For polynomial regression we uniformly select N samples xi from the interval
[l, u] and then determine the polynomial coefficients a1, a2, a3 by minimizing
the average squared distance between the activation function and the quadratic
approximation:

min
a1,a2,a3

1
N

N∑

i=1

(
μ(xi) − a1 x2

i − a2 xi − a3

)2
. (1)

It is well known that the optimal solution to (1) is
⎡

⎣
a1

a2

a3

⎤

⎦ = A†b with A =

⎡

⎢
⎣

x2
1 x1 1
...

...
...

x2
N xN 1

⎤

⎥
⎦ , b =

⎡

⎢
⎣

μ(x1)
...

μ(xN )

⎤

⎥
⎦ ,

where A† = (AT A)−1AT is the Moore-Penrose inverse of matrix A. For the
numerical experiments in this paper we use N = 10 samples.

Closed-Form Expression

For ReLU activations a closed-form expression for a quadratic approximation can
be obtained by enforcing the conditions g(l) = 0, g′(l) = 0, and g(u) = u. The
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solution to the corresponding equation system a1 l2+a2 l+a3 = 0, 2a1l+a2 = 0,
a1 u2 + a2 u + a3 = u is

a1 =
u

(u − l)2
, a2 =

−2lu

(u − l)2
, a3 =

u2(2l − u)
(u − l)2

+ u,

which results in the enclosure visualized in Fig. 1. This closed-form expression is
very precise if the interval [l, u] is close to being symmetric with respect to the
origin (|l| ≈ |u|), but becomes less accurate if one bound is significantly larger
than the other (|u|  |l| or |l|  |u|).
Taylor Series Expansion

For sigmoid and hyperbolic tangent activation functions a quadratic fit can be
obtained using a second-order Taylor series expansion of the activation function
μ(x) at the expansion point x∗ = 0.5(l + u):

μ(x) ≈ μ(x∗) + μ′(x∗)(x − x∗) + 0.5μ′′(x∗)(x − x∗)2 =

0.5μ′′(x∗)
︸ ︷︷ ︸

a1

x2 +
(
μ′(x∗) − μ′′(x∗)x∗
︸ ︷︷ ︸

a2

)
x + μ(x∗) − μ′(x∗)x∗ + 0.5μ′′(x∗)x∗2

︸ ︷︷ ︸
a3

,

where the derivatives for sigmoid activations are μ′(x) = σ(x)(1 − σ(x)) and
μ′′(x) = σ(x)(1 − σ(x))(1 − 2σ(x)), and the derivatives for hyperbolic tangent
activations are μ′(x) = 1− tanh(x)2 and μ′′(x) = −2 tanh(x)(1− tanh(x)2). The
Taylor series expansion method is identical to the concept used in [21].

Linear Approximation

Since a linear function represents a special case of a quadratic function, Algo-
rithm 1 can also be used in combination with linear approximations. Such
approximations are provided by the zonotope abstraction in [34]. Since closed-
form expressions for the bounds d and d of the approximation error are already
specified in [34], we can omit the error bound computation described in Sect. 3.2
in this case. For ReLU activations we obtain according to [34, Theorem 3.1]

a1 = 0, a2 =
u

u − l
, a3 =

−u l

2(u − l)
, d =

−u l

2(u − l)
, d =

u l

2(u − l)
,

which results in the zonotope enclosure visualized in Fig. 1. For sigmoid and
hyperbolic tangent activations we obtain according to [34, Theorem 3.2]

a1 = 0, a2 = min(μ′(l), μ′(u)), a3 = 0.5(μ(u) + μ(l) − a2(u + l)),

d = 0.5(μ(u) − μ(l) − a2(u − l)), d = −0.5(μ(u) − μ(l) − a2(u − l)),

where the derivatives of the sigmoid function and the hyperbolic tangent are
specified in the paragraph above.

We observed from experiments that for ReLU activations the closed-form
expression usually results in a tighter enclosure of the image than polynomial
regression. For sigmoid and hyperbolic tangent activations, on the other hand,



24 N. Kochdumper et al.

Fig. 3. Exemplary neural network with ReLU activations (left) and the correspond-
ing image enclosure computed with polynomial zonotopes (right), where we use the
approximation g(x) = 0.25 x2 + 0.5 x + 0.25 for the red neuron and the approximation
g(x) = x for the blue neuron. (Color figure online)

polynomial regression usually performs better than the Taylor series expansion.
It is also possible to combine multiple of the methods described above by exe-
cuting them in parallel and selecting the one that results in the smallest approx-
imation error [d, d]. Since the linear approximation does not increase the number
of generators, it represents an alternative to order reduction when dealing with
deep neural networks. Here, the development of a method to decide automati-
cally for which layers to use a linear and for which a quadratic approximation is
a promising direction for future research.

3.2 Bounding the Approximation Error

To obtain a sound enclosure we need to compute the difference between the
activation function μ(x) and the quadratic approximation g(x) = a1 x2+a2 x+a3

from Sec. 3.1 on the interval [l, u]. In particular, this corresponds to determining

d = min
x∈[l,u]

μ(x) − a1 x2 − a2 x − a3︸ ︷︷ ︸
d(x)

and d = max
x∈[l,u]

μ(x) − a1 x2 − a2 x − a3︸ ︷︷ ︸
d(x)

.

Depending on the type of activation function, we use different methods for this.

Rectified Linear Unit (ReLU)

For ReLU activation functions we split the interval [l, u] into the two intervals
[l, 0] and [0, u] on which the activation function is constant and linear, respec-
tively. On the interval [l, 0] we have d(x) = −a1 x2 − a2 x − a3, and on the
interval [0, u] we have d(x) = −a1 x2 + (1 − a2)x − a3. In both cases d(x) is a
quadratic function whose maximum and minimum values are either located on
the interval boundary or at the point x∗ where the derivative of d(x) is equal
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to zero. The lower bound on [l, 0] is therefore given as d = min(d(l), d(x∗), d(0))
if x∗ ∈ [l, 0] and d = min(d(l), d(0)) if x∗ �∈ [l, 0], where x∗ = −0.5 a2/a1. The
upper bound as well as the bounds for [0, u] are computed in a similar manner.
Finally, the overall bounds are obtained by taking the minimum and maximum
of the bounds for the intervals [l, 0] and [0, u].

Sigmoid and Hyperbolic Tangent

Here our high-level idea is to sample the function d(x) at points xi with distance
Δx distributed uniformly over the interval [l, u]. From rough bounds for the
derivative d′(x) we can then deduce how much the function value between two
sample points changes at most, which yields tight bounds db ≥ d and db ≤ d. In
particular, we want to choose the sampling rate Δx such that the bounds db, db

comply to a user-defined precision δ > 0:

d + δ ≥ db ≥ d and d − δ ≤ db ≤ d. (2)

We observe that for both, sigmoid and hyperbolic tangent, the derivative is
globally bounded by μ′(x) ∈ [0, μ], where μ = 0.25 for the sigmoid and μ = 1 for
the hyperbolic tangent. In addition, it holds that the derivative of the quadratic
approximation g(x) = a1 x2+a2 x+a3 is bounded by g′(x) ∈ [g, g] on the interval
[l, u], where g = min(2a1l + a2, 2a1u + a2) and g = max(2a1l + a2, 2a1u + a2).
As a consequence, the derivative of the difference d(x) = μ(x)− g(x) is bounded
by d′(x) ∈ [−g, μ − g]. The value of d(x) can therefore at most change by ±Δd
between two samples xi and xi+1, where Δd = Δx max(|−g|, |μ−g|). To satisfy
(2) we require Δd ≤ δ, so that we have to choose the sampling rate as Δx ≤
δ/ max(|−g|, |μ−g|). Finally, the bounds are computed by taking the maximum
and minimum of all samples: db = maxi d(xi) + δ and db = mini d(xi) − δ. For
our experiments we use a precision of δ = 0.001.

4 Neural Network Controlled Systems

Reachable sets for neural network controlled systems can be computed efficiently
by combining our novel image enclosure approach for neural networks with a
reachability algorithm for nonlinear systems. We consider general nonlinear sys-
tems

ẋ(t) = f
(
x(t), uc(x(t), t), w(t)

)
, (3)

where x ∈ R
n is the system state, uc : R

n × R → R
m is a control law, w(t) ∈

W ⊂ R
r is a vector of uncertain disturbances, and f : R

n ×R
m ×R

r → R
n is a

Lipschitz continuous function. For neural network controlled systems the control
law uc(x(t), t) is given by a neural network. Since neural network controllers are
usually realized as digital controllers, we consider the sampled-data case where
the control input is only updated at discrete times t0, t0 + Δt, t0 + 2Δt, . . . , tF
and kept constant in between. Here, t0 is the initial time, tF is the final time,
and Δt is the sampling rate. Without loss of generality, we assume from now on
that t0 = 0 and tF is a multiple of Δt. The reachable set is defined as follows:
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Algorithm 2. Reachable set for a neural network controlled system
Require: Nonlinear system ẋ(t) = f(x(t), uc(x(t), t), w(t)), neural network controller
uc(x(t), t), initial set X0, disturbance set W, final time tF , sampling rate Δt.
Ensure: Tight enclosure R ⊇ R([0, tF ]) of the reachable set R([0, tF ]).

1: t0 ← 0, R(t0) ← X0

2: for i ← 0 to tF /Δt − 1 do (loop over all control cycles)
3: Y ← image of R(ti) through the neural network controller using Algorithm 1

4: ̂R(ti) ← R(ti) × Y (combine reachable set and input set using (7))
5: ti+1 ← ti + Δt, τi ← [ti, ti+1] (update time)

6: ̂R(ti+1), ̂R(τi) ← reachable set for extended system in (4) starting from ̂R(ti)

7: R(ti+1) ← [In 0] ̂R(ti+1), R(τi) ← [In 0] ̂R(τi) (projection using (5))
8: end for
9: R ← ⋃tF /Δt−1

i=0 R(τi) (reachable set for the whole time horizon)

Definition 3. (Reachable set) Let ξ(t, x0, uc(·), w(·)) denote the solution to (3)
for initial state x0 = x(0), control law uc(·), and the disturbance trajectory w(·).
The reachable set for an initial set X0 ⊂ R

n and a disturbance set W ⊂ R
r is

R(t) :=
{
ξ(t, x0, uc(·), w(·)) ∣

∣ x0 ∈ X0,∀t∗ ∈ [0, t] : w(t∗) ∈ W}
.

Since the exact reachable set cannot be computed for general nonlinear systems,
we compute a tight enclosure instead. We exploit that the control input is piece-
wise constant, so that the reachable set for each control cycle can be computed
using the extended system

[
ẋ(t)
u̇(t)

]
=

[
f(x(t), u(t), w(t))

0

]
(4)

together with the initial set X0 × Y, where Y is the image of X0 through the
neural network controller. The overall algorithm is specified in Algorithm 2.
Its high-level concept is to loop over all control cycles, where in each cycle we
first compute the image of the current reachable set through the neural network
controller in Line 3. Next, the image is combined with the reachable set using
the Cartesian product in Line 4. This yields the initial set for the extended
system in (4), for which we compute the reachable set R̂(ti+1) at time ti+1 as
well as the reachable set R̂(τi) for the time interval τi in Line 6. While it is
possible to use arbitrary reachability algorithms for nonlinear systems, we apply
the conservative polynomialization algorithm [2] since it performs especially well
in combination with polynomial zonotopes. Finally, in Line 7, we project the
reachable set back to the original system dimensions.

5 Operations on Polynomial Zonotopes

Algorithm 1 and Algorithm 2 both require some special operations on polynomial
zonotopes, the implementation of which we present now. Given a polynomial
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zonotope PZ = 〈c,G,GI , E〉PZ ⊂ R
n, a matrix A ∈ R

o×n, a vector b ∈ R
o,

and an interval I = [l, u] ⊂ R
n, the affine map and the Minkowski sum with an

interval are given as

APZ ⊕ b = 〈Ac + b, AG,AGI , E〉PZ (5)
PZ ⊕ I = 〈c + 0.5(u + l), G, [GI 0.5 diag(u − l)], E〉PZ , (6)

which follows directly from [25, Prop. 8], [25, Prop. 9], and [1, Prop. 2.1].
For the Cartesian product used in Line 4 of Algorithm 2 we can exploit
the special structure of the sets to calculate the Cartesian product of
two polynomial zonotopes PZ1 = 〈c1, G1, GI,1, E1〉PZ ⊂ R

n and PZ2 =
〈c2, [G2 Ĝ2], [GI,2 ĜI,2], [E1 E2]〉PZ ⊂ R

o as

PZ1 × PZ2 =
〈 [

c1
c2

]
,

[
G1 0
G2 Ĝ2

]
,

[
GI,1 0
GI,2 ĜI,2

]
, [E1 E2]

〉

PZ

. (7)

In contrast to [25, Prop. 11], this implementation of the Cartesian product explic-
itly preserves dependencies between the two sets, which is possible since both
polynomial zonotopes have identical dependent factors. Computing the exact
bounds of a polynomial zonotope in Line 6 of Algorithm 1 would be computa-
tionally infeasible, especially since this has to be done for each neuron in the
network. We therefore compute a tight enclosure of the bounds instead, which
can be done very efficiently:

Proposition 1. (Interval enclosure) Given a polynomial zonotope PZ =
〈c,G,GI , E〉PZ ⊂ R

n, an enclosing interval can be computed as

I = [c + g1 − g2 − g3 − g4, c + g1 + g2 + g3 + g4] ⊇ PZ

with

g1 = 0.5
∑

i∈H
G(·,i), g2 = 0.5

∑

i∈H
|G(·,i)|, g3 =

∑

i∈K
|G(·,i)|, g4 =

q∑

i=1

|GI(·,i)|

H =
{

i

∣
∣
∣
∣

p∏

j=1

(
1 − E(j,i) mod 2)

)
= 1

}
, K = {1, . . . , h} \ H,

where x mod y, x, y ∈ N0 is the modulo operation and \ denotes the set difference.

Proof 1. We first enclose the polynomial zonotope by a zonotope Z ⊇ PZ
according to [25, Prop. 5], and then compute an interval enclosure I ⊇ Z of
this zonotope according to [1, Prop. 2.2]. ��

The core operation for Algorithm 1 is the computation of the image through a
quadratic function. While it is possible to obtain the exact image by introducing
new dependent factors, we compute a tight enclosure for computational reasons:
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Fig. 4. Image enclosures computed with zonotopes (red), star sets (green), Taylor mod-
els (purple), and polynomial zonotopes (blue) for randomly generated neural networks
with ReLU activations (left), sigmoid activations (middle), and hyperbolic tangent
activations (right). The exact image is shown in gray. (Color figure online)

Proposition 2. (Image quadratic function) Given a polynomial zonotope PZ =
〈c,G,GI , E〉PZ ⊂ R and a quadratic function g(x) = a1 x2 + a2 x + a3 with
a1, a2, a3, x ∈ R, the image of PZ through g(x) can be tightly enclosed by

{
g(x)

∣
∣ x ∈ PZ} ⊆ 〈cq, Gq, GI,q, Eq〉PZ

with

cq = a1c
2 + a2c + a3 + 0.5 a1

q∑

i=1

G2
I(·,i), Gq =

[
(2a1c + a2)G a1Ĝ

]
,

Eq =
[
E Ê

]
, GI,q =

[
(2a1c + a2)GI 2a1G a1Ǧ

]
,

(8)

where

Ĝ =
[
G2 2 Ĝ1 . . . 2 Ĝh−1

]
, Ê =

[
2E Ê1 . . . Êh−1

]
,

Ĝi =
[
G(i)G(i+1) . . . G(i)G(h)

]
, i = 1, . . . , h − 1,

Êi =
[
E(·,i) + E(·,i+1) . . . E(·,i) + E(·,h)

]
, i = 1, . . . , h − 1,

G =
[
G(1)GI . . . G(h)GI

]
, Ǧ =

[
0.5G2

I 2 Ǧ1 . . . 2 Ǧq−1

]
,

Ǧi =
[
GI(i)GI(i+1) . . . GI(i)GI(q)

]
, i = 1, . . . , q − 1,

(9)

and the squares in G2 as well as G2
I are interpreted elementwise.

Proof 2. The proof is provided in Appendix A.

6 Numerical Examples

We now demonstrate the performance of our approach for image computation,
open-loop neural network verification, and reachability analysis of neural net-
work controlled systems. If not stated otherwise, computations are carried out in
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MATLAB on a 2.9GHz quad-core i7 processor with 32GB memory. We integrated
our implementation into CORA [3] and published a repeatability package2.

Image Enclosure

First, we demonstrate how our approach captures the non-convexity of the image
through a neural network. For visualization purposes we use the deliberately
simple example of randomly generated neural networks with two inputs, two
outputs, and one hidden layer consisting of 50 neurons. The initial set is X0 =
[−1, 1]× [−1, 1]. We compare our polynomial-zonotope-based approach with the
zonotope abstraction in [34], the star set approach in [40] using the triangle
relaxation, and the Taylor model abstraction in [21]. While our approach and the
zonotope abstraction are applicable to all types of activation functions, the star
set approach is restricted to ReLU activations and the Taylor model abstraction
is limited to sigmoid and hyperbolic tangent activations. The resulting image
enclosures are visualized in Fig. 4. While using zonotopes or star sets only yields
a convex over-approximation, polynomial zonotopes are able to capture the non-
convexity of the image and therefore provide a tighter enclosure. While Taylor
models also capture the non-convexity of the image to some extent they are
less precise than polynomial zonotopes, which can be explained as follows: 1)
The zonotopic remainder of polynomial zonotopes prevents the rapid remainder
growth observed for Taylor models, and 2) the quadratic approximation obtained
with polynomial regression used for polynomial zonotopes is usually more precise
than the Taylor series expansion used for Taylor models.

Open-Loop Neural Network Verification

For open-loop neural network verification the task is to verify that the image
of the neural network satisfies certain specifications that are typically given by
linear inequality constraints. We examine the ACAS Xu benchmark from the
2021 and 2022 VNN competition [4,29] originally proposed in [22, Sec. 5], which
features neural networks that provide turn advisories for an aircraft to avoid col-
lisions. All networks consist of 6 hidden layers with 50 ReLU neurons per layer.
For a fair comparison we performed the evaluation on the same machine that
was used for the VNN competition. To compute the image through the neu-
ral networks with polynomial zonotopes, we apply a quadratic approximation
obtained by polynomial regression for the first two layers, and a linear approx-
imation in the remaining layers. Moreover, we recursively split the initial set
to obtain a complete verifier. The comparison with the other tools that partic-
ipated in the VNN competition shown in Table 1 demonstrates that for some
verification problems polynomial zonotopes are about as fast as the best tool in
the competition.

Neural Network Controlled Systems

The main application of our approach is reachability analysis of neural network
controlled systems, for which we now compare the performance to other state-of-
the-art tools. For a fair comparison we focus on published results for which the
2 https://codeocean.com/capsule/8237552/tree/v1.

https://codeocean.com/capsule/8237552/tree/v1
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Table 1. Computation timesa in seconds for different verification tools on a small but
representative excerpt of network-specification combinations of the ACAS Xu bench-
mark. The symbol - indicates that the tool failed to verify the specification.
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o
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1.9 1 0.37 1.37 111 3.91 0.66 48.7 0.41 - 1.44 0.71 - 0.53 0.55 0.31

2.3 4 - 0.95 1.78 1.91 0.57 12.2 0.06 - - 0.97 - 0.46 0.17 0.16

3.5 3 0.41 0.37 1.15 1.85 0.61 6.17 0.05 - - 0.58 34.1 0.42 0.25 0.32

4.5 4 - 0.35 0.20 1.82 0.61 5.57 0.08 0.24 - 0.48 - 0.42 0.21 0.16

5.6 3 0.38 0.63 2.27 1.82 0.66 6.51 0.08 - - 0.52 40.6 0.48 0.37 0.43

a Times taken from https://github.com/stanleybak/vnncomp2021 results and https://
github.com/ChristopherBrix/vnncomp2022 results.

Table 2. Computation timesb in seconds for reachability analysis of neural network
controlled systems considering different tools and benchmarks. The dimension, the
number of hidden layers, and the number of neurons in each layer is specified in paren-
thesis for each benchmark, where a = 100, b = 5 for ReLU activation functions, and
a = 20, b = 3 otherwise. The symbol - indicates that the tool failed to verify the
specification.
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B1 (2, 2, 20) - 49 69 23 2 - 48 - 25 8

B2 (2, 2, 20) 12 8 32 10 1 - - - 3 -

B3 (2, 2, 20) 98 47 130 37 3 98 43 128 38 3

B4 (3, 2, 20) 24 12 20 4 1 23 11 20 4 1

B5 (3, 3, 100) 196 1063 31 25 2 - 168 - 31 2

TORA (4, 3, a) 30 2040 13 136 83 13402 1 134 70 2524 1

ACC (6, b, 20) 4 1 2 - 1512 - 312 2

Unicycle (3, 1, 500) 526 93 3

Airplane (12, 3, 100) - 29 7

Sin. Pend. (2, 2, 25) 1 1 1

b Computation times taken from [33, Table 1] for Sherlock and JuliaReach, from [21,
Table 2] for Verisig, Verisig 2.0, and ReachNN*, and from [19, Tab. 1] for POLAR.

authors of the tools tuned the algorithm settings by themselves. In particular, we
examine the benchmarks from [33] featuring ReLU neural network controllers,
and the benchmarks from [21] containing sigmoid and hyperbolic tangent neural
network controllers. The goal for all benchmarks is to verify that the system
reaches a goal set or avoids an unsafe region. As the computation times shown

https://github.com/stanleybak/vnncomp2021_results
https://github.com/ChristopherBrix/vnncomp2022_results
https://github.com/ChristopherBrix/vnncomp2022_results
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in Table 2 demonstrate, our polynomial-zonotope-based approach is for all but
two benchmarks significantly faster than all other state-of-the-art tools, mainly
since it avoids all major bottlenecks observed for the other tools: The polyno-
mial approximations of the overall network used by Sherlock and ReachNN* are
often imprecise, JuliaReach loses dependencies when enclosing Taylor models by
zonotopes, Verisig is quite slow since the nonlinear system used to represent the
neural network is high-dimensional, and Verisig 2.0 and POLAR suffer from the
rapid remainder growth observed for Taylor models.

7 Conclusion

We introduced a novel approach for computing tight non-convex enclosures of
images through neural networks with ReLU, sigmoid, and hyperbolic tangent
activation functions. Since we represent sets with polynomial zonotopes, all
required calculations can be realized using simple matrix operations only, which
makes our algorithm very efficient. While our proposed approach can also be
applied to open-loop neural network verification, its main application is reacha-
bility analysis of neural network controlled systems. There, polynomial zonotopes
enable the preservation of dependencies between the reachable set and the set
of control inputs, which results in very tight enclosures of the reachable set.
As we demonstrated on various numerical examples, our polynomial-zonotope-
based approach consequently outperforms all other state-of-the-art methods for
reachability analysis of neural network controlled systems.
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Appendix A

We now provide the proof for Prop. 2. According to Def. 2, the one-dimensional
polynomial zonotope PZ = 〈c,G,GI , E〉PZ is defined as

PZ =
{

c +
h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(i)

︸ ︷︷ ︸
d(α)

+
q∑

j=1

βjGI(j)

︸ ︷︷ ︸
z(β)

∣
∣
∣
∣ αk, βj ∈ [−1, 1]

}

=
{
c + d(α) + z(β)

∣
∣ α, β ∈ [−1,1]

}
,

(10)
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where α = [α1 . . . αp]T and β = [β1 . . . βq]T . To compute the image through the
quadratic function g(x) we require the expressions d(α)2, d(α)z(β), and z(β)2,
which we derive first. For d(α)2 we obtain

d(α)2 =
( h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(i)

)( h∑

j=1

( p∏

k=1

α
E(k,j)

k

)
G(j)

)

=
h∑

i=1

h∑

j=1

( p∏

k=1

α
E(k,i)+E(k,j)

k

)
G(i)G(j)

=
h∑

i=1

( p∏

k=1

α
2E(k,i)

k

)
G2

(i) +
h−1∑

i=1

h∑

j=i+1

( p∏

k=1

α
E(k,i)+E(k,j)

k︸ ︷︷ ︸

α
̂Ei(k,j)
k

)
2G(i)G(j)︸ ︷︷ ︸

̂Gi(j)

(9)
=

h(h+1)/2∑

i=1

( p∏

k=1

α
̂E(k,i)

k

)
Ĝ(i),

(11)
for d(α)z(β) we obtain

d(α)z(β) =
( h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(i)

)( q∑

j=1

βjGI(j)

)

=
h∑

i=1

q∑

j=1

(
βj

p∏

k=1

α
E(k,i)

k

)

︸ ︷︷ ︸
βq+(i−1)h+j

G(i)GI(j)

(9)
=

hq∑

i=1

βq+i G(i),
(12)

and for z(β)2 we obtain

z(β)2 =
( q∑

i=1

βiGI(i)

)( q∑

j=1

βjGI(j)

)
=

q∑

i=1

q∑

j=1

βiβj GI(i)GI(j)

=
q∑

i=1

β2
i G2

I(i) +
q−1∑

i=1

q∑

j=i+1

βiβj 2GI(i)GI(j)

= 0.5
q∑

i=1

G2
I(i) +

q∑

i=1

(2β2
i − 1)

︸ ︷︷ ︸
β(h+1)q+i

0.5G2
I(i) +

q−1∑

i=1

q∑

j=i+1

βiβj︸︷︷︸
βa(i,j)

2 GI(i)GI(j)︸ ︷︷ ︸
Ǧi(j)

(9)
= 0.5

q∑

i=1

G2
I(i) +

q(q+1)/2∑

i=1

β(h+1)q+i Ǧ(i), (13)

where the function a(i, j) maps indices i, j to a new index:

a(i, j) = (h + 2)q + j − i +
i−1∑

k=1

q − k.
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In (12) and (13), we substituted the expressions βj

∏p
k=1 α

E(k,i)

k , 2β2
i − 1, and

βiβj containing polynomial terms of the independent factors β by new indepen-
dent factors, which results in an enclosure due to the loss of dependency. The
substitution is possible since

βj

p∏

k=1

α
E(k,i)

k ∈ [−1, 1], 2β2
i − 1 ∈ [−1, 1], and βiβj ∈ [−1, 1].

Finally, we obtain for the image
{
g(x)

∣
∣ x ∈ PZ}

=
{
a1 x2 + a2 x + a3

∣
∣ x ∈ PZ}

(10)
=

{
a1(c + d(α) + z(β))2 + a2(c + d(α) + z(β)) + a3

∣
∣ α, β ∈ [−1,1]

}

=
{
a1c2 + a2c + a3 + (2a1c + a2)d(α) + a1d(α)2

+ (2a1c + a2)z(β) + 2a1d(α)z(β) + a1z(β)2
∣
∣ α, β ∈ [−1,1]

}

(11),(12),(13)

⊆
〈

a1c2 + a2c + a3 + 0.5 a1

q∑

i=1

G2
I ,

[
(2a1c + a2)G a1Ĝ

]
,

[
(2a1c + a2)GI 2a1G a1Ǧ

]
,
[
E Ê

]
〉

PZ

(8)
= 〈cq , Gq , GI,q, Eq〉PZ ,

which concludes the proof.
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