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Preface

This publication contains the proceedings of the 15th NASA Formal Methods Sym-
posium (NFM 2023), which was held May 16–18 2023 at the University of
Houston-Clear Lake in Houston, Texas, USA.

The widespread use and increasing complexity of mission-critical and safety-critical
systems at NASA and in the aerospace industry require advanced techniques that
address these systems’ specification, design, verification, validation, and certification
requirements. The NASA Formal Methods Symposium (NFM) is a forum to foster
collaboration between theoreticians and practitioners from NASA, academia, and
industry. NFM’s goals are to identify challenges and to provide solutions for achieving
assurance for such critical systems.

New developments and emerging applications like autonomous software for
uncrewed deep space human habitats, caretaker robotics, Unmanned Aerial Systems
(UAS), UAS Traffic Management (UTM), and the need for system-wide fault detec-
tion, diagnosis, and prognostics provide new challenges for system specification,
development, and verification approaches. The focus of these symposiums is on formal
techniques and other approaches for software assurance, including their theory, current
capabilities and limitations, as well as their potential application to aerospace, robotics,
and other NASA-relevant safety-critical systems during all stages of the software
life-cycle.

The NASA Formal Methods Symposium is an annual event organized by the NASA
Formal Methods (NFM) Steering Committee, comprised of researchers spanning
several NASA centers. NFM 2023 was hosted by the University of Houston-Clear
Lake (UHCL). It was organized by a collaboration between UHCL, University of
Texas at Austin, Iowa State University, and NASA-Johnson Space Center in Houston,
Texas.

NFM was created to highlight the state of the art in formal methods, both in theory
and in practice. The series is a spin-off of the original Langley Formal Methods
Workshop (LFM). LFM was held six times in 1990, 1992, 1995, 1997, 2000, and 2008
near NASA Langley in Virginia, USA. The 2008 reprisal of LFM led to the expansion
to a NASA-wide conference. In 2009 the first NASA Formal Methods Symposium was
organized at NASA Ames Research Center in Moffett Field, CA. In 2010, the Sym-
posium was organized by NASA Langley Research Center and NASA Goddard Space
Flight Center, and held at NASA Headquarters in Washington, D.C. The third NFM
symposium was organized by the Laboratory for Reliable Software at the NASA Jet
Propulsion Laboratory/California Institute of Technology, and held in Pasadena, CA in
2011. NFM returned to NASA Langley Research Center in 2012 in nearby Norfolk,
Virginia. NASA Ames Research Center organized and hosted NFM 2013, the fifth
Symposium in the series. NFM 2014 was organized via a collaboration between NASA
Goddard Space Flight Center, NASA Johnson Space Center, and NASA Ames
Research Center, and held at JSC. NASA JPL hosted the seventh NFM in 2015 in



Pasadena, CA. In 2016, the eighth NFM Symposium visited the University of Min-
nesota, hosted by a collaboration between academia and NASA. 2017 brought the ninth
NFM back to NASA Ames Research Center. NASA Langley hosted NFM’s 10th
anniversary edition in 2018. NFM 2019 was organized by a collaboration between Rice
University, NASA JSC, and Iowa State University. In the years 2020 and 2021, NFM
was held virtually, organized by NASA Ames and NASA Langley respectively. NFM
returned in hybrid (online and in-person) format in 2022, where it was held at Caltech
and organized by a collaboration between Caltech, University of Southern California,
JPL, and NASA.

NFM 2023 encouraged submissions on cross-cutting approaches that bring together
formal methods and techniques from other domains such as machine learning, control
theory, robotics, probabilistic reasoning, and quantum computing among others. The
topics covered by the Symposium include but are not limited to: formal verification,
including theorem proving, model checking, and static analysis; advances in automated
theorem proving including SAT and SMT solving; use of formal methods in software
and system testing; run-time verification; techniques and algorithms for scaling formal
methods, such as abstraction and symbolic methods, compositional techniques, as well
as parallel and/or distributed techniques; code generation from formally verified
models; safety cases and system safety; formal approaches to fault tolerance; theoretical
advances and empirical evaluations of formal methods techniques for safety-critical
systems, including hybrid and embedded systems; formal methods in systems engi-
neering and model-based development; correct-by-design controller synthesis; formal
assurance methods to handle adaptive systems.

Two lengths of papers were considered: regular papers describing fully developed
work and complete results, and two categories of short papers: (a) tool papers
describing novel, publicly-available tools; (b) case studies detailing complete appli-
cations of formal methods to real systems with publicly-available artifacts, or sub-
stantial work-in-progress describing results from designing a new technique for a new
application, with appropriate available artifacts. Artifacts enabling reproducibility
of the paper’s major contributions were strongly encouraged and considered in PC
evaluations. Artifacts may appear in online appendices; websites with additional arti-
facts, e.g., for reproducibility or additional correctness proofs, were encouraged.

The Symposium received 75 submissions: 63 regular papers, and 12 short papers (9
tool papers and 3 case studies) in total. Out of these, a total of 29 papers, 26 regular
papers and 3 short papers, were accepted, giving an overall acceptance rate of 38% (a
41% rate for regular papers and a 25% rate for short papers). All submissions went
through a rigorous reviewing process, where each paper was read by at least three (and
on average 3.9) reviewers. Submitting authors listed affiliations from 21 countries;
NFM 2023 received the most submissions from institutions in the United States (109),
Germany (32), the United Kingdom (12), France (11), Japan (10), Denmark (9), Israel
(9), Spain (8), Austria (7), and the Netherlands (7).

In addition to the refereed papers, the symposium featured three invited talks.
Representing NASA JSC, Dr. Julia Badger delivered a keynote talk on “Formal
Guarantees for Autonomous Operation of Human Spacecraft.” Professor Sanjit A.
Seshia from UC Berkeley gave a keynote talk on “Design Automation for Verified

vi Preface



AI-Based Autonomy.” Professor Ken McMillan from UT Austin delivered a keynote
talk on “Proof-Based Heuristics for Quantified Invariant Synthesis.”

The organizers are grateful to the authors for submitting their work to NFM 2023
and to the invited speakers for sharing their insights. NFM 2023 would not have been
possible without the collaboration of the Steering Committee, Program Committee, our
many external reviewers, and the support of the NASA Formal Methods community.
We are also grateful to our collaborators at University of Houston-Clear Lake’s College
of Science and Engineering, including for financial support and local organization.
The NFM 2023 website can be found at https://conf.researchr.org/home/nfm-2023.

March 2023 Kristin Yvonne Rozier
Swarat Chaudhuri
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Design Automation for Verified AI-Based
Autonomy

Sanjit A. Seshia

EECS Department, University of California, Berkeley
sseshia@eecs.berkeley.edu

Abstract. Cyber-physical systems (CPS) integrate computation with physical
processes. The past decade has seen tremendous growth in autonomous and
semi-autonomous CPS, including autonomous vehicles and robotics, enabled by
innovations in artificial intelligence (AI) and machine learning. However, the
wider deployment of AI-based autonomy is being held back by the limitations of
current technology with respect to safety, reliability, security, and robustness.
Verified artificial intelligence (AI) is the goal of designing AI-based systems

that have strong, ideally provable, assurances of correctness with respect to
formally specified requirements [3]. This talk will review the challenges to
achieving Verified AI, and the initial progress the community has made towards
this goal. Building on this progress, there is a need to develop a new generation
of design automation techniques, rooted in formal methods, to enable and
support the routine development of high assurance AI-based autonomy. I will
describe our work on the design and verification of AI-based autonomy in CPS,
implemented in the open-source Scenic [2] and VerifAI [1] toolkits. The use
of these tools will be demonstrated on industrial case studies involving deep
learning-based autonomy in ground and air vehicles. Our vision is to facilitate
the computer-aided design of provably safe and robust AI-based autonomy in a
manner similar to that enabled today by tools for the design automation of
reliable integrated circuits.

References

1. Dreossi, T., et al.: VerifAI: a toolkit for the formal design and analysis of artificial intelli-
gencebased systems. In: Proceedings Computer Aided Verification (CAV) (2019)

2. Fremont, D.J., et al.: Scenic: a language for scenario specification and data generation. Mach.
Learn. J. (2022). https://doi.org/10.1007/s10994-021-06120-5

3. Seshia, S.A., Sadigh, D., Sastry, S.S.: Toward verified artificial intelligence. Commun. ACM
65(7), 46–55 (2022)
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Formal Guarantees for Autonomous Operation
of Human Spacecraft

Abstract. As NASA embraces the Artemis Program goal of a sustained human
presence on the Moon, the consideration of technologies needed for Martian
exploration remains at the forefront. One significant technology gap is the ability
to autonomously control complex, safety-critical, integrated spacecraft systems
across the operational range of the vehicle and mission. The Gateway lunar
space station has focused on autonomous spacecraft control as a major opera-
tional goal with the addition of a new software distributed hierarchical control
architecture. The Vehicle Systems Manager (VSM) sits atop this control
architecture and provides autonomous control for mission, fault, and resource
management at the vehicle level. This novel functionality depends strongly on
correct behavior at every level of the architecture, and verification of this new
system will require special consideration. The Autonomous Systems Manage-
ment Architecture (ASMA) uses formally specified assume-guarantee contracts
between the distributed and hierarchical control system components to assess
proper behavior of the overall system. This talk will discuss the design, archi-
tecture, and plans for formal methods analysis of the Gateway ASMA and VSM.



Proof-Based Heuristics for Quantified
Invariant Synthesis

Kenneth L. McMillan

The University of Texas at Austin, USA
kenmcm@cs.utexas.edu

Abstract. The problem of generating inductive invariants for parameterized or
infinite-state systems has attracted continuous interest over the last several
decades. The fact that the invariants require quantifiers presents challenges both
in heuristically synthesizing them and in verifying them. Many approaches
attempt to transform the synthesis problem in an incomplete way to finding
finite-state or quantifier-free invariants, or attempt to generalize from proofs of
finite instances in some way. Other methods go at the problem more directly,
using some form of inductive synthesis (i.e., synthesis from examples). We will
discuss some recent progress in this area and consider whether proof-based
heuristics might also have a role to play in the problem synthesizing quantified
invariants.
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Verification of LSTM Neural Networks
with Non-linear Activation Functions

Farzaneh Moradkhani(B) , Connor Fibich , and Martin Fränzle

Carl von Ossietzky Universität, 26111 Oldenburg, Germany
{farzaneh.moradkhani,connor.fibich,martin.fraenzle}@uol.de

Abstract. Recurrent neural networks are increasingly employed in
safety-critical applications, such as control in cyber-physical systems, and
therefore their verification is crucial for guaranteeing reliability and cor-
rectness. We present a novel approach for verifying the dynamic behavior
of Long short-term memory networks (LSTMs), a popular type of recur-
rent neural network (RNN). Our approach employs the satisfiability mod-
ulo theories (SMT) solver iSAT solving complex Boolean combinations
of linear and non-linear constraint formulas (including transcendental
functions), and it therefore is able to verify safety properties of these
networks.

Keywords: Formal verification · Recurrent neural networks ·
LSTM · SMT solving · iSAT

1 Introduction

Intelligent systems employing artificial neural networks (ANNs) have become
widespread. ANNs have in particular gained popularity as a useful computa-
tional paradigm for classification, clustering, and pattern recognition, thereby
mechanizing potentially safety-critical decisions in cyber-physical systems.

A key obstacle in the deployment of neural networks to critical infrastruc-
tures and systems is the lacking comprehensibility and predictability of their
computational mechanisms, calling for formal verification of their function. Such
verification, however, is complicated both by the sheer size of ANNs, often com-
prising millions of artificial neurons, and the underlying computational paradigm
of massively parallel analog data flow devoid of any focusing control flow. Due to
size and non-linearity, neural network verification is difficult especially for their
state-based variants like recurrent neural networks, as nowadays widely used
in speech recognition, natural language processing, sequential data processing,
and prediction of trajectories and maneuvers on autonomous cars [18]. Many
deep neural networks, such as convolutional neural networks (CNN), are feed-
forward networks, meaning that form analog combinational circuits where the

This work is supported by the German Research Foundation DFG through the Research
Training Group “SCARE: System Correctness under Adverse Conditions” (DFG-GRK
1765/2) and project grant FR 2715/5-1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 1–15, 2023.
https://doi.org/10.1007/978-3-031-33170-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33170-1_1&domain=pdf
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http://orcid.org/0000-0002-2912-2429
http://orcid.org/0000-0002-9138-8340
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2 F. Moradkhani et al.

signal moves only in one direction from the input layer through a sequence of
hidden layers to the output layer, and they do not maintain state in that they
store previous data or computation results. Recurrent neural networks (RNNs)
in contrast have a feedback layer through which the network output, along with
the next input, is fed back to the network. An RNN can thus remember previous
state information and exploit this memory to process subsequent inputs. These
types of neural networks are particularly useful for processing series or sequen-
tial data, in which processing can maintain an internal state or memory to store
information related to previous input.

Although some studies have been conducted so far to formally and machani-
cally verify feed-forward neural networks [9,13,15,16], verifying recurrent neural
networks is a relatively young research area. Akintunde et al. [7] realize formal
verification by unraveling RNNs into FFNNs and compiling the resulting verifi-
cation problem into a Mixed-Integer linear program (MILP). Jacoby et al. [12]
proposed a method for the formal verification for systems composed of a stateful
agent implemented by an RNN interacting with an environment. Their method
relies on the application of inductive invariants for the reduction of RNN veri-
fication to FFNN verification. These techniques remained currently confined to
piecewise linear, ReLU-Type neural networks. More general and flexible classes
of RNN, including LSTMs and generative adversarial networks (GAN), how-
ever contain layers that feature nonlinear transfer functions such as sigmoid and
tanh. Therefore, Mohammadinejad et al. [14] proposed a differential verification
method for verifying RNN with nonlinear activation functions, where their veri-
fication goal is to certify the approximate equivalence of two structurally similar
neural network functions, rather than verifying behavioral invariants.

In this paper, aiming at RNN verification against a formal safety specifica-
tion, we investigate an automatic RNN verification strategy based on expanding
the core of the SMT solver iSAT [10] to handle networks with nonlinear acti-
vation functions like sigmoid and tanh. iSAT is well-suited for this task, as it
(1.) was designed specifically for dealing with complex Boolean combinations
of non-linear arithmetic facts involving transcendental functions, and (2.) has
mechanisms for bounded model checking (BMC) [8] built in.

The rest of the paper is organized as follows. We start in Sect. 2 with some
background on LSTM. Our verification approach is described in Sect. 3, and
we demonstrate it on case studies of automatic braking and collision detection
between satellites and orbiting objects in Sect. 4. We conclude with Sect. 5.

2 Background

Recurrent neural networks are a type of neural networks that is particularly use-
ful for processing series or sequential data by being able to maintain an internal
state or memory to store information related to previous input. This feature
is especially important in various applications related to discovering structures
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Fig. 1. Recurrent neural network element (left). The behavior at any time point is
given by the unfolding of its time-discrete feedback behavior (right).

in series or consecutive data, such as time series, speech, text, financial data,
audio, video, and so on. On such data structures, the recursive neural network
can provide computational power that feedforward networks cannot due to their
inability to maintain, retrieve, and process non-local information. As an exam-
ple, a feedforward network can only learn bounded-range addition while being
inapt to do arbitrary length addition; an RNN in contrast could learn to pursue
digitwise addition of unlimited length (yet not unbounded multiplication).

Figure 1 shows a recursive network cell. It first takes x0 from the input
sequence and then delivers h0 as the output, which together with the next input
x1 is fed to the next time step. Therefore, h0 and x1 are the basis of the network
computation in the next time-step, which otherwise is stateless. This computa-
tion scheme carries on recursively such that state ht−1 along with input xt the
basis of the computation in step t.

LSTM Networks [11] are an improved version of such basic recurrent neural
networks that actively controls when to remember past data via a fixed memory
structure [11,20]. The problem of gradients vanishing during the training of
recurrent neural networks is addressed hereby. LSTMs are suitable for classifying,
processing, and predicting time series in the presence of time delays of unknown
duration. The network is trained using back-propagation.

A crucial difference between an LSTM and a basic RNN is that LSTMs
comprise so-called gates, which actively regulate the flow of information between
memory and computational units. This permits active control of the lifetime
of stored information and overcomes basic RNN’s difficulties in remembering
properties overarching long sequences and in storing information for long periods.
Therefore, LSTM networks are a special type of recursive neural networks that
have the ability to learn long-term dependencies.

2.1 LSTM Architecture

Figure 2 shows the structure of an LSTM cell. It uses a series of ‘gates’, which
control how the information in a sequence of data comes into, is stored in, and
leaves the memory part of the network. Though some variants exist, there typi-
cally are three gates in an LSTM cell: a forget gate, an input gate, and an output
gate, and these gates can be thought of as filters for information flow.
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Fig. 2. LSTM structure. The auxiliary variables represented by ψt, φt, ζt, δt, �t and
θt with dashed circles are only required for the iSAT encoding. [20].

The input gate is built to update the value (and thus the information) stored
in the cell state ct. A weighted sum of the input information of the new step
xt and the stored state information from the previous step ht−1 enters this gate
and passes through the sigmoid function to decide whether state information in
ct−1 is stored (gate value close to 1) or nulled out (gate value close to 0).

it = σ(wh,iht−1 + wi,ixt + bh,i + bi,i) (1)

The cell state is the horizontal line going through the top of the Fig. 2. The
input information of the new step xt, along with the hidden state information of
the previous step ht−1, enters a tanh function to normalize their values into the
range -1 to 1. Finally, the output of the sigmoid function and tanh are multiplied
together so that they decide with which weight the data should be passed to the
cell state. The characteristic equations of its dynamic behavior, as shown in (2)
and (3).

gt = tanh(wh,ght−1 + wi,gxt + bh,g + bi,g) (2)

ct = it � gt + ft � ct−1 (3)

The forget gate can be said to decide whether to store or to forget state infor-
mation. The input information of the new step xt, together with the hidden state
information of the previous step ht−1, enters this gate and passes through the
sigmoid function. The sigmoid function looks at the previous state ht−1 and the
input xt, and for each number in the ct−1 cell state, returns a number between
0 (delete this) and 1 (hold this) as output. Intermediate values are possible;
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the closer the output is to zero, the smaller is its impact of previous stored
information on the next stored value. The characteristic equation is:

ft = σ(wh,fht−1 + wi,fxt + bh,f + bi,f ) (4)

The output gate prepares the state information to be stored. First, the input
information of the new step is entered along with the hidden state information of
the previous step of a sigmoid function. The updated cell state value is entered
into the tanh function. The output of these two functions is multiplied together
to decide what information the hidden state will take with it to the next step.
Finally, the new cell state and the new hidden state are moved to the next time
step.

ot = σ(wh,oht−1 + wi,oxt + bh,o + bi,o) (5)

The cell output is the output of the cell to its vicinity as well as to the state
feedback for the next time step. It is defined as:

ht = yt = ot � tanh(ct) (6)

3 Approach to LSTM Verification

The main focus of our research is to investigate automatic functional verification
of LSTMs with the help of the SMT solver iSAT [10]. The core of iSAT is based
on a tight integration of recent CDCL-style SAT solving techniques with inter-
val constraint propagation (ICP), which is one of the subtopics of the area of
constraint programming and is an incomplete procedure to efficiently reduce the
domain of a set of variables concerning the conjunction of constraints, thereby
enclosing the set of possible solutions to the constraints. iSAT can be used for
determining the satisfiability of formulas containing arbitrary Boolean combina-
tions of linear and non-linear (including transcendental functions) constraints.
With its bounded model checking layer, iSAT is able to falsify safety invariants
and related properties for systems containing non-linear dynamics. Therefore,
we suggest iSAT as a verification tool to solve safety queries for neural networks
containing activation functions beyond those encountered in the piecewise linear
ReLU networks, especially for sigmoid and tanh activation functions as present
in LSTMs. The mathematical operators in iSAT are shown in Table 1. By reduc-
tion to these, it is possible to encode nonlinear activation functions that comprise
transcendental arithmetic. For instance, the sigmoid and tanh functions can be
reduced to equation systems containing the exponential function ex [16]. Con-
sider xi−1 being the input and θi,j the output of a sigmoid activation function
in the jth node in the ith layer. Then the following Eq. (8) is the characteris-
tic Eq. (7) of this node. using standard algebraic transformations to eliminate
division, this can be translated into iSAT syntax as Eq. (8).

θi,j = σsigma(xi−1) =
1

1 + exi−1
(7)



6 F. Moradkhani et al.

Table 1. Arithmetic operation in iSAT [5].

Operator Args Meaning

ite 3 If-then-else

exp, exp2, exp10 1 Exponential function regarding bases e, 2, 10

Log, log2, log10 1 Logarithmic function regarding bases e, 2,10

sin 1 Sine(unit: radian)

cos 1 Cosine(unit: radian)

abs 1 absolute value

min 2 minimum

max 2 maximum

pow 2 nth power, (2nd argument) has to be an integer, n ≥ 0

nrt 2 nth root, (2nd argument) has to be an integer, n ≥ 1

θi,j ∗ (1 + exp(xi−1)) = 1 (8)

With its bounded model checking layer unravelling symbolic transition rela-
tions, iSAT can falsify invariant safety properties for systems containing non-
linear dynamics. To encode such symbolic transition systems, variables in iSAT
may occur in primed x′ or unprimed x form [5]. A primed variable x′ reflects the
value of the variable x at the next step. For instance, we will use h′ and c′ to
model LSTM memory. The characteristic equations, translated to iSAT syntax,
here represent computation of next state values ht and ct based on inputs and
current cell state ct−1 and hidden state ht−1.

There are three implementations of the iSAT algorithm, staring from the first
implementation named HySAT [10]. New operators specifically targeting non-
linear neural networks by natively dealing with sigmoid and tanh have recently
been introduced to the input language of the second version, now known as
iSAT. To more clearly distinguish between the iSAT algorithm and the second
implementation of iSAT, in the following we refer to this version as iSAT2. The
most recent iSAT version is named iSAT3 [17] and is commercially available.
While HySAT and iSAT2 both operate directly on simple bounds, iSAT3 takes
a step back towards a slightly more lazy approach and explicitly maps each
simple bound to a abstracting Boolean literal again.

3.1 Encoding LSTMs into iSAT

In order to obtain the recurrent neural network to be verified, we train a neural
network containing LSTMs nodes. As usual, this training factually alternates
between training and testing phases until the network is empirically found to be
well-behaved. We then proceed to verification by first extracting all parametric
features that have been adjusted, i.e. learned, during the training . This means
we have to export all weights W and biases B for every gate in the LSTM
that have been determined during the training by the optimization procedure of
back-propagation.
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Assume a layer in the LSTM ν that has n inputs forming an input vector
X = [x0, x1, x2, ..., xn] ranging over xi ∈ [Lx, Ux] ⊂ R, where Li and Ui are the
lower bound and upper bound, resp. These inputs can be the outputs from
another neural network layer like a fully connected layer, or inputs to the overall
network. The neural network layer then receives input sequences, where xi,t is
i-th input at time-step t. Similarly, the layer features outputs yi with an output
interval yi ∈ [Ly, Uy] ⊂ R. As the LSTM is a stateful network, there also are
states H = [h0, h1, h2, ..., ht−1, ht] and C = [c0, c1, c2, ..., ct−1, ct] in some layers,
representing hidden and cell state as inputs from the previous and current time-
step. O = [o1, o2, o3, ..., ot] is the output of the last layer and thus of the whole
LSTM.

In our subsequent discussion of an LSTM network, all units are pooled to
a vector: g is the vector of cell input, i is the vector of input gates, f is the
vector of forgetting gate, c is the vector of memory cell states, o is the vector of
output gates, and y is the vector of cell outputs. Weight and bias values, unlike
input and output values, are constants entering the verification phase and are
known prior to the verification by extraction from the trained LSTM. W is the
overall weight vector. For an LSTM cell, the weights Wi = [wi,f , wi,i, wi,g, wi,o]
and Wh = [wh,g, wh,i, wh,f , wh,o] correspond to the weights of the connections
between inputs and cell input, input gate, forget gate, and output gate. The
vectors B = [bg, bi, bf , bo] are the bias vectors of cell inputs, input gates, forget
gates, and output gates, respectively. The LSTM also generates the signals ct and
ht providing the state output to the next time step, specializing the respective
mechanism from an RNN. We consider variable μ to count time steps across the
recursive network evaluation process.

We encode the dynamic behaviour of the LSTM as a symbolic transition
system, employing the primed-variable notation of iSAT to encode as h′ and c′

the next-state values of LSTM cell states ct+1 and hidden state ht+1 .
The following Eqs. (9)–(23) illustrate translation of an LSTM node, where

μ = t to iSAT. In that respect, for example, the Eq. (10) is a direct translation
of Eq. (1). The � between the two variables here refers to the elementwise mul-
tiplication of two input vectors with k elements. All variables occurring in the
formula to be solved have to be declared in iSAT. Types supported by iSAT
are bounded intervals of reals, of computational floats, or of integers, as well as
Boolean. For simplicity let denote ψt, φt, ζt, δt and 	t the auxiliary variables of
input, forget, cell, output gates and cell output respectively, as shown in Fig. 2.

Translation of input gate

ψt = wh,ih
′ + wi,ixt + bh,i + bi,i (9)

it = σ(ψt) translates to it ∗ (1 + exp10(ψt)) = 1 (10)

Translation of forget gate

φt = wh,fh′ + wi,fxt + bh,f + bi,f (11)
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ft = σ(φt) translates to ft ∗ (1 + exp10(ft)) = 1 (12)

Translation of cell gate

ζt = wh,gh
′ + wi,gxt + bh,g + bi,g (13)

gt = tanh(ζt) translates to gt ∗ (exp10(ζt) + exp10(−ζt)) = (ζt) − exp10(−ζt)) ∗ 1 (14)

ct = it � gt + ft � c′ (15)

δi,t = i1,t ∗ g1,t + i2,t ∗ g2,t + ... + ik,t ∗ gk,t (16)

δj,t = f1,t ∗ c′
1 + f2,t ∗ c′

2 + ... + fk,t ∗ c′
k (17)

ct = δi,t + δj,t (18)

Output gate

	t = wh,oh
′ + wi,oxt + bh,o + bi,o (19)

ot = σ(	t) translates to ot ∗ (1 + exp10(	t)) = 1 (20)

Translation of cell output

yt = ot � tanh(ct) (21)

θt = tanh(ct) translates to θt ∗ (exp10(ct) + exp10(−ct)) = (ct) − exp10(−ct)) ∗ 1 (22)

yt = o1,t ∗ θ1,t + o2,t ∗ θ2,t + ... + ok,t ∗ θk,t (23)

The above translation scheme provide a compositional translation of an LSTM
into a symbolic transition system of size linear in the size of the LSTM.

4 Case Study

In order to evaluate our translation and verification method, the suggested tech-
nique was tested on two different LSTM networks. First, a network trained on
a data set of recorded traffic from the NGSIM project [3] and second satellite
collision avoidance released by the European Space Agency (ESA) [2].
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Table 2. NGSIM database [3].

Vehicle ID Frame ID Local X Local Y Length Width Vel Acc Lane ID Leading

288 1570 50.366 267.751 14 6.5 18.74 9.79 4 292

288 1757 51.159 314.237 14 6.5 0 −1.78 4 292

288 1948 24.405 699.007 14.5 7.4 51.31 11.25 1 291

288 1911 52.399 313.651 14 6.5 0.04 0 4 292

289 2086 19.455 2154.879 15.5 5.9 2 50 −5.33 300

289 903 41.523 1045.145 17 8.4 5 2.89 3 291

Fig. 3. Visualization of the distance between cars.

4.1 NGSIM

The data set comprises information about the positions, speeds, accelerations,
and lanes used by cars traveling on US Highway 101 between 7:50 am and
8:35 a.m. The study area is 640 m long and consists of five lanes. Table 2 illus-
trates a snippet of this data set. The data covers several vehicles, each identified
by a unique number. As this identifier is recorded in the Vehicle ID column,
individual cars can be tracked over an extended duration of time by filtering for
the rows featuring the respective identifier, providing a time series for the move-
ments of Vehicle ID. A classifier network predicting near collisions can thus be
trained on these data. As the data set represents time series of state snapshots
and as the dynamics has to be recovered from correlating these snapshots, we
decided to train an LSTM for this classification task (Fig. 3).

Our proof obligation, to be discharged by iSAT, then was to check whether
the trained network correctly detects near collisions.

The safe distance between two vehicles is defined by the Vienna Convention
as a “sufficient distance [. . . ] to avoid a collision if the vehicle in front should
suddenly slow down or stop” [1]. As a result, a safe distance between the ego
vehicle and the leading vehicle must always be maintained, and this distance
has to be large enough for safely avoiding collision even when an emergency
deceleration happens up front.

Two cars with a distance of d from each other may collide if the car in front,
the vehicleleading, suddenly slows down or stops. Therefore, the distance from
vehicleego to vehicleleading must always be maintained large enough to accom-
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modate sudden maximal deceleration. A corresponding distance requirement can
easily be computed from the laws of Newtonian mechanics, physical parameters
of the cars, and reaction times as follows, such that a close-form safety specifi-
cation can be established as basis of the formal verification follow.

The future position of a vehicle for a point in time t ≥ 0 is according to the
laws of accelerated movement:

x(t) = x0 + vt +
1
2
at2 (24)

If the position of the vehicle at t0 is x0 ∈ R then the ego vehicle collides with
the leading vehicle iff their positions are equal for some future t ≥0. A collision
thus can happen if

∃ t ≥ 0 : xego(t) = xleading(t), 0 ≤ t ≤ tmax (25)

is true.
Then based on (24) and (25) we have a potential for an unavoidable collision

iff the following constraint system (31) is satisfiable

vegot +
1
2
at2 = x + vleadingt +

1
2
at2 ∧ 0 ≤ t ≤ vego

a
, (26)

where a is the maximum deceleration (which for simplicity is assumed to be the
same for both cars; generalizations, also such involving reaction times, are easy
to obtain). We derive Eq. (27) specifying a physically justified braking demand
by removing the identical summand 1

2at2 occurs on both sides and simplifying
Eq. (26):

statebrake ⇐⇒ 0 ≤ xa ≤ vego ∗ (vego − vleading) (27)

Here, a is the maximum deceleration of the ego vehicle respectively. The ego
vehicle could intrude into the leading vehicle’s safety envelope or even collide
with that if the right-hand side of the implication in Eq. (27) becomes true. This
right-hand side predicate thus constitutes a specification of braking demand, as
needed to maintain safe distance.

Equation (27) consequently provides the formal specification for the braking
advisories, both used for labelling training cases in supervised learning and for
the verification. Note that such verification still is necessary even if the very
same predicate was used as a label in supervised learning, as a neural network
will neither generate a loss (i.e., error rate) of 0 across all training points nor is
it predictable how it will generalize between training points.

To train a neural network for giving emergency braking advisories, the
experiments were performed on the following computer configuration: Intel(R)
Core(TM) i7-4600U CPU @ 2.10GHz, 64 GB Memory, and Ubuntu OS. We
created a classification model with 50 LSTM nodes with 4 time steps and 3
fully connected layers. The safe and unsafe labels were being assigned during
the training by Eq. (27). This provided a supervised learning problem based on



Verification of LSTM Neural Networks with Non-linear Activation Functions 11

Table 3. The result of verifying the case study.

Target pego vego pleading vleading Ptime−second State

statebrake and !statenn brake 148 22 155 1 120.02 candidate solution

!statebrake and statenn brake - - - - 200.41 Unsatisfiable

the features frame ID, lane ID, velocity, acceleration of, and positions of ego and
leading vehicles extracted from 1,048,576 recorded of NGSIM database which was
divided into train and test datasets. The training resulted in ca. 98% accuracy
across the test dataset. The trained LSTM network was subsequently translated
into iSAT constraint format [5,10] according to the translation rules exposed in
Sect. 3 and in [16]. The iSAT constraint formula, thus reflecting the behavior of
the full LSTM, is called Φ subsequently.

The LSTM network features two float-valued outputs γunsafe and γsafe and
classifies the situation based on which of these two evidences appears stronger:
Whenever the outputs satisfy γunsafe > γsafe then the network detects a criti-
cal condition, i.e., generated a braking advisory. Verification amounts to showing
that the LSTM outputs, as defined by the LSTM structure and weights or, equiv-
alently, its logical encoding φ, always agree to the output required by Eq. (27).
The output of the LSTM can be recovered from its logical encoding φ as

statenn brake ⇐⇒ φ ∧ (γsafe < γunsafe) (28)

Functional verification of the LSTM now amounts to showing that the Eqs. (27)
and (28) are consistent in so far that the LSTM can never, i.e. under no input
sequence, reach a state where its output statenn brake defined according to con-
straint system (28) is different from the expected label statebrake due to Eq. (27).

Conditions when, according to the requirement defined in formula (27), an
emergency braking maneuver is required, yet the neural networks based on con-
dition (28) fails to offer an emergency braking advisory are of particular interest:
In this case study, we aim to see whether the neural network may ever fail to
provide the necessary braking advice, i.e. whether (28) can provide a no-braking
advisory when (27) determines emergency braking necessary. By providing the
following verification target (29), iSAT2 can be asked to check for satisfiability
of this condition (and provides a satisfying assignment, i.e. a counterexample to
safety of the LSTM, if such exists).

Target :statebrake ∧ ¬statenn brake (29)

iSAT, when asked to solve the conjoined system (27) ∧ (28) with the reacha-
bility target (29), returns a candidate solution as a result: when the position
of ego vehicle is at 148 m with a speed of 22 m/s and at the same time the
leading vehicle is at 155 m with a speed of 1 m/s, then obviously emergency
braking would be overdue, but the trained LSTM provides a wrong generaliza-
tion from its training points here, reporting ¬statenn brake. This obviously is a
highly critical problem. For the opposite, less critical problem of the LSTM pro-
viding a braking advisory where it should not (i.e., the verification target being
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Fig. 4. Visualization of the density of objects orbiting the low Earth orbit [4,6].

Target :¬statebrake ∧ statenn brake), iSAT did not find any satisfying instance,
showing that this cannot happen (Table 3).

4.2 Satellite Collision Detection

We investigate the scalability of our proposed method in the second case study,
which provides information about satellites and objects orbiting in space. A
typical low Earth orbit (LEO) satellite nowadays sends out hundreds of hazard
alerts each week for close encounters with other space objects such as satellites
or space debris. According to estimates made by the European Space Agency
(ESA) in January 2019, more than 34,000 objects that are larger than 10 cm
orbit our planet, of which 22,300 are monitored, and their locations are reported
in a shared database around the world [2]. Figure 4 shows how the spatial density
of objects in LEO orbits is represented.

Preventing spacecraft collisions has become crucial to satellite operations.
Various operators are informed by elaborate and frequently updated calculations
of the collision risk between orbiting objects, and can then devise risk reduction
strategies. When a probable near approach with any object is identified, the
collected data is put together in a Conjunction Data Message (CDM). Each
CDM carries a variety of information regarding the approach, including the time
of closest approach (TCA), the satellite’s name, the type of prospective collider
item, the relative position between the chaser and target, etc. It also includes a
self-reported risk that was calculated utilizing various CDM elements. Generally,
for each potential near approach, 3 CDMs are recorded daily over the duration
of one week. Therefore, for each event, there is a time series of CDMs.

The ESA provided a significant compiled dataset comprising data regard-
ing close approach events in the form of conjunction data messages (CDMs)
from 2015 to 2019. This dataset was used in the Spacecraft Collision Avoidance
Challenge, a machine-learning competition where teams had to create models
to forecast the likelihood of an orbiting object colliding with another [19]. An
event is deemed to be of high risk when its last recorded risk is greater than -6,
and of low risk when it is less than or equal to -6 (the possible ranges for these
values are -30 (lowest risk) to 0 (maximum risk)).
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Table 4. Memory usage and time solving of iSAT2 and iSAT3 on satellite collision
detection dataset.

Nodes variabels iSAT2 iSAT3

State Memory Time(second) State Memory Time(second)

Sg20 12,768 UNSAT 1.14 1.160 UNSAT 1.14 0.227

Sg40 42,001 UNSAT 1.14 3.152 UNSAT 1.14 0.847

Sg60 88,130 UNSAT 1.14 6.891 UNSAT 1.14 1.963

Sg80 151,054 UNSAT 1.14 11.835 UNSAT 1.14 5.734

Sg100 230,782 UNSAT 1.13 18.412 UNSAT 1.14 6.162

Sg120 327,308 UNSAT 1.14 26.327 UNSAT 1.14 9.933

Sg140 440,628 UNSAT 990.70 35.544 UNSAT 1.14 12.128

Sg160 570,736 UNSAT 1,562.94 47.017 UNSAT 1.14 15.97

Sg180 717,645 UNSAT 1,562.94 59.463 UNSAT 1.14 21.107

S200 881,349 UNSAT 1,562.94 73.186 UNSAT 8,111.68 54.483

Sg400 3,441,142 UNSAT 1,823.22 290.076 TIMEOUT

Sg600 7,676,411 UNSAT 1,823.22 669.826 TIMEOUT

Sg800 9,691,159 UNSAT 283,417.80 1,271.90 ML

Sg1000 15,085,373 UNSAT 299,361.27 1,993.22 ML

Th20 12,732 UNSAT 1.14 0.846 UNSAT 1.1367 0.235

Th40 42,122 UNSAT 1.14 3.163 UNSAT 1.14 0.885

Th60 88,311 UNSAT 1.14 6.258 UNSAT 1.14 2.166

Th80 151,298 UNSAT 1.14 12.254 UNSAT 1.14 4.586

Th100 231,088 UNSAT 1.13 22.246 UNSAT 1.14 7.295

Th120 327,672 UNSAT 1.14 24.761 TIMEOUT

Th140 441,050 UNSAT 990.70 32.305 TIMEOUT

Th160 571,218 UNSAT 1,562.94 1,102.19 TIMEOUT

Th180 718,208 TIMEOUT TIMEOUT

In a formal verification using our LSTM encoding technique, we could employ

Target : γ0 > −6 (30)

with the output γ0 being the characteristic output of the trained neural network,
to reflect a dangerous condition, and check satisfiability of (30). The verification
processes were run on Oldenburg University’s high performance computing clus-
ter CARL using a node equipped with two Intel Xeon E5-2650 v4 12C CPUs
at 2.2GHz and each process being limited to 300 GB of RAM and 24 h process-
ing time limitation. We selected seven out of 103 features like the team which
achieved the final score in the competition [19]. In order to test scalability, our
trained models consist of varying numbers of LSTM nodes in two layers, with
the last three CDM serving as a time step.

To compare the scalability of LSTM verification using iSAT2 and iSAT3, we
measured the performance of each solver with respect to the Solver time and
also Memory usage to evaluate the trained LSTM networks with two different
activation functions, tanh and sigmoid. Solver time refers to the CPU time in
seconds which each solver used during the verification process to determine sat-
isfiability. Memory usage was retrieved from the cluster’s workload management
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system SLURM for each verification process and is reported in megabyte. The
provided values are a slight overestimation since the workload management sys-
tem can only measure how much memory is allocated to the process and does
not provide any information about the memory actually used during the verifi-
cation process. Table 4 shows the performance comparison between iSAT2 and
its successor iSAT3. Sg and Th represent the total number of LSTM nodes in
every trained network with sigmoid and tanh activation function, respectively.

TIMEOUT and ML denote that the solving process was aborted due to
exceeding the time or memory limit, respectively. The findings seem to indi-
cate that iSAT2, employing an embedding of Boolean reasoning into real-valued
intervals and interval constraint propagation and thus saving a SAT-modulo-
theory style Boolean abstraction of (arithmetic) theory constraints by means of
Boolean trigger variables for theory atoms, on LSTM verification benchmarks for
larger instances outperforms its commercially successful successor iSAT3, which
employs Boolean literal abstraction of theory atoms. This is an issue requiring
further investigation, as it may prompt ideas on the development of dedicated
solvers for LSTM verification. LSTM verification problems are by their very
nature characterized by extremely large numbers of variables spanning a vast
search space for constraint solving, like in example Sg1000 with around 15 mil-
lions of real-valued variables, and Boolean literal abstraction for theory-related
facts seems to become detrimental here.

5 Conclusion

Recent breakthroughs in autonomous and robotic systems, in which neural net-
works are incorporated in parts of the design, render formal verification of the
resulting systems both necessary and extremely difficult. This research proposes
a new approach to verify LSTMs, a general class of recurrent neural networks.
The SMT solver iSAT, which solves large Boolean combinations of linear and
non-linear constraint formulae (including transcendental functions, thus espe-
cially covering the sigmoidal and tanh-shaped transfer functions occurring in
LSTMs) and has built-in functionality for bounded model checking by unravel-
ing a symbolic transition relation, is exploited for checking safety of recurrent
neural networks with non-linear activation functions. First experiments show this
approach feasible for non-trivial recurrent neural networks of LSTM type, but
also indicate the need for specialized solver structures overcoming the overhead
induced by the Boolean trigger literal abstraction usually used in SAT-modulo-
theory based constraint solving.
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Abstract. We present a novel approach to efficiently compute tight
non-convex enclosures of the image through neural networks with ReLU,
sigmoid, or hyperbolic tangent activation functions. In particular, we
abstract the input-output relation of each neuron by a polynomial
approximation, which is evaluated in a set-based manner using poly-
nomial zonotopes. While our approach can also can be beneficial for
open-loop neural network verification, our main application is reacha-
bility analysis of neural network controlled systems, where polynomial
zonotopes are able to capture the non-convexity caused by the neural
network as well as the system dynamics. This results in a superior per-
formance compared to other methods, as we demonstrate on various
benchmarks.

Keywords: Neural network verification · Neural network controlled
systems · Reachability analysis · Polynomial zonotopes · Formal
verification

1 Introduction

While previously artificial intelligence was mainly used for soft applications
such as movie recommendations [9], facial recognition [23], or chess comput-
ers [11], it is now also increasingly applied in safety-critical applications, such as
autonomous driving [32], human-robot collaboration [27], or power system con-
trol [5]. In contrast to soft applications, where failures usually only have minor
consequences, failures in safety-critical applications in the worst case result in
loss of human lives. Consequently, in order to prevent those failures, there is
an urgent need for efficient methods that can verify that the neural networks
used for artificial intelligence function correctly. Verification problems involving
neural networks can be grouped into two main categories:

– Open-loop verification: Here the task is to check if the output of the neural
network for a given input set satisfies certain properties. With this setup one
can for example prove that a neural network used for image classification is
robust against a certain amount of noise on the image.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 16–36, 2023.
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Fig. 1. Triangle relaxation (left), zonotope abstraction (middle), and polynomial zono-
tope abstraction (right) of the ReLU activation function.

– Closed-loop verification: In this case the neural network is used as a con-
troller for a dynamical system, e.g., to steer the system to a given goal set
while avoiding unsafe regions. The safety of the controlled system can be
verified using reachability analysis.

For both of the above verification problems, the most challenging step is to
compute a tight enclosure of the image through the neural network for a given
input set. Due to the high expressiveness of neural networks, their images usually
have complex shapes, so that convex enclosures are often too conservative for
verification. In this work, we show how to overcome this limitation with our novel
approach for computing tight non-convex enclosures of images through neural
networks using polynomial zonotopes.

1.1 State of the Art

We first summarize the state of the art for open-loop neural network verifi-
cation followed by reachability analysis for neural network controlled systems.
Many different set representations have been proposed for computing enclosures
of the image through a neural network, including intervals [43], polytopes [38],
zonotopes [34], star sets [40], and Taylor models [21]. For neural networks with
ReLU activation functions, it is possible to compute the exact image. This can
be either achieved by recursively partitioning the input set into piecewise affine
regions [42], or by propagating the initial set through the network using poly-
topes [38,48] or star sets [40], where the set is split at all neurons that are both
active or inactive. In either case the exact image is in the worst case given as
a union of 2v convex sets, with v being the number of neurons in the network.
To avoid this high computational complexity for exact image computation, most
approaches compute a tight enclosure instead using an abstraction of the neu-
ral network. For ReLU activation functions one commonly used abstraction is
the triangle relaxation [15] (see Fig. 1), which can be conveniently integrated
into set propagation using star sets [40]. Another possibility is to abstract the
input-output relation by a zonotope (see Fig. 1), which is possible for ReLU,
sigmoid, and hyperbolic tangent activation functions [34]. One can also apply
Taylor model arithmetic [26] to compute the image through networks with sig-
moid and hyperbolic tangent activation [21], which corresponds to an abstrac-
tion of the input-output relation by a Taylor series expansion. In order to better
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capture dependencies between different neurons, some approaches also abstract
the input-output relation of multiple neurons at once [28,36].

While computation of the exact image is infeasible for large networks, the
enclosures obtained by abstractions are often too conservative for verification.
To obtain complete verifiers, many approaches therefore use branch and bound
strategies [7] that split the input set and/or single neurons until the specification
can either be proven or a counterexample is found. For computational reasons
branch and bound strategies are usually combined with approaches that are
able to compute rough interval bounds for the neural network output very fast.
Those bounds can for example be obtained using symbolic intervals [43] that
store linear constraints on the variables in addition to the interval bounds to
preserve dependencies. The DeepPoly approach [35] uses a similar concept, but
applies a back-substitution scheme to obtain tighter bounds. With the FastLin
method [45] linear bounds for the overall network can be computed from linear
bounds for the single neurons. The CROWN approach [49] extends this concept
to linear bounds with different slopes as well as quadratic bounds. Several addi-
tional improvements for the CROWN approach have been proposed, including
slope optimization using gradient descent [47] and efficient ReLU splitting [44].
Instead of explicitly computing the image, many approaches also aim to verify
the specification directly using SMT solvers [22,30], mixed-integer linear pro-
gramming [8,37], semidefinite programming [31], and convex optimization [24].

For reachability analysis of neural network controlled systems one has to com-
pute the set of control inputs in each control cycle, which is the image of the cur-
rent reachable set through the neural network controller. Early approaches com-
pute the image for ReLU networks exactly using polytopes [46] or star sets [39].
Since in this case the number of coexisting sets grows rapidly over time, these
approaches have to unite sets using convex hulls [46] or interval enclosures [39],
which often results in large over-approximations. If template polyhedra are used
as a set representation, reachability analysis for neural network controlled sys-
tems with discrete-time plants reduces to the task of computing the maximum
output along the template directions [12], which can be done efficiently. Neural
network controllers with sigmoid and hyperbolic tangent activation functions
can be converted to an equivalent hybrid automaton [20], which can be com-
bined with the dynamics of the plant using the automaton product. However,
since each neuron is represented by an additional state, the resulting hybrid
automaton is very high-dimensional, which makes reachability analysis chal-
lenging. Some approaches approximate the overall network with a polynomial
function [14,18] using polynomial regression based on samples [14] and Bernstein
polynomials [18]. Yet another class of methods [10,21,33,41] employs abstrac-
tions of the input-output relation for the neurons to compute the set of control
inputs using intervals [10], star sets [41], Taylor models [21], and a combination
of zonotopes and Taylor models [33]. Common tools for reachability analysis of
neural network controlled systems are JuliaReach [6], NNV [41], POLAR [19],
ReachNN* [16], RINO [17], Sherlock [13], Verisig [20], and Verisig 2.0 [21],
where JuliaReach uses zonotopes for neural network abstraction [33], NVV sup-
ports multiple set representations, ReachNN* applies the Bernstein polynomial
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method [18], POLAR approximates single neurons by Bernstein polynomials [19],
RINO computes interval inner- and outer-approximations [17], Sherlock uses the
polynomial regression approach [14], Verisig performs the conversion to a hybrid
automaton [20], and Verisig 2.0 uses the Taylor model based neural network
abstraction method [21].

1.2 Overview

In this work, we present a novel approach for computing tight non-convex enclo-
sures of images through neural networks with ReLU, sigmoid, or hyperbolic
tangent activation functions. The high-level idea is to approximate the input-
output relation of each neuron by a polynomial function, which results in the
abstraction visualized in Fig. 1. Since polynomial zonotopes are closed under
polynomial maps, the image through this function can be computed exactly,
yielding a tight enclosure of the image through the overall neural network. The
remainder of this paper is structured as follows: After introducing some prelim-
inaries in Sect. 2, we present our approach for computing tight enclosures of
images through neural networks in Sect. 3. Next, we show how to utilize this
result for reachability analysis of neural network controlled systems in Sect. 4.
Afterwards, in Sect. 5, we introduce some special operations on polynomial zono-
topes that we require for image and reachable set computation, before we finally
demonstrate the performance of our approach on numerical examples in Sect. 6.

1.3 Notation

Sets are denoted by calligraphic letters, matrices by uppercase letters, and vec-
tors by lowercase letters. Given a vector b ∈ R

n, b(i) refers to the i-th entry. Given
a matrix A ∈ R

o×n, A(i,·) represents the i-th matrix row, A(·,j) the j-th column,
and A(i,j) the j-th entry of matrix row i. The concatenation of two matrices C
and D is denoted by [C D], and In ∈ R

n×n is the identity matrix. The symbols
0 and 1 represent matrices of zeros and ones of proper dimension, the empty
matrix is denoted by [ ], and diag(a) returns a diagonal matrix with a ∈ R

n

on the diagonal. Given a function f(x) defined as f : R → R, f ′(x) and f ′′(x)
denote the first and second derivative with respect to x. The left multiplication
of a matrix A ∈ R

o×n with a set S ⊂ R
n is defined as AS := {As | s ∈ S},

the Minkowski addition of two sets S1 ⊂ R
n and S2 ⊂ R

n is defined as
S1 ⊕ S2 := {s1 + s2 | s1 ∈ S1, s2 ∈ S2}, and the Cartesian product of two sets
S1 ⊂ R

n and S2 ⊂ R
o is defined as S1 × S2 :=

{
[sT

1 sT
2 ]T | s1 ∈ S1, s2 ∈ S2

}
. We

further introduce an n-dimensional interval as I := [l, u], ∀i l(i) ≤ u(i), l, u ∈ R
n.

2 Preliminaries

Let us first introduce some preliminaries required throughout the paper. While
the concepts presented in this work can equally be applied to more complex
network architectures, we focus on feed-forward neural networks for simplicity:
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Fig. 2. Step-by-step construction of the polynomial zonotope from Example 1.

Definition 1. (Feed-forward neural network) A feed-forward neural network
with κ hidden layers consists of weight matrices Wi ∈ R

vi×vi−1 and bias vec-
tors bi ∈ R

vi with i ∈ {1, . . . , κ + 1} and vi denoting the number of neurons in
layer i. The output y ∈ R

vκ+1 of the neural network for the input x ∈ R
v0 is

y := yκ+1 with y0 = x, yi(j) = μ

( vi−1∑

k=1

Wi(j,k) yi−1(k) + bi(j)

)
, i = 1, . . . , κ+1,

where μ : R → R is the activation function.

In this paper we consider ReLU activations μ(x) = max(0, x), sigmoid activa-
tions μ(x) = σ(x) = 1/(1 + e−x), and hyperbolic tangent activations μ(x) =
tanh(x) = (ex − e−x)/(ex + e−x). Moreover, neural networks often do not apply
activation functions on the output neurons, which corresponds to using the iden-
tity map μ(x) = x for the last layer. The image Y through a neural network is
defined as the set of outputs for a given set of inputs X0, which is according to
Def. 1 given as

Y =

{
yκ+1

∣
∣
∣
∣ y0 ∈ X0, ∀i ∈ {1, . . . , κ + 1} : yi(j) = μ

( vi−1∑

k=1

Wi(j,k) yi−1(k) + bi(j)

)}
.

We present a novel approach for tightly enclosing the image through a neural
network by a polynomial zonotope [2], where we use the sparse representation
of polynomial zonotopes [25]1:

Definition 2. (Polynomial zonotope) Given a constant offset c ∈ R
n, a genera-

tor matrix of dependent generators G ∈ R
n×h, a generator matrix of independent

generators GI ∈ R
n×q, and an exponent matrix E ∈ N

p×h
0 , a polynomial zono-

tope PZ ⊂ R
n is defined as

PZ :=
{

c +
h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(·,i) +

q∑

j=1

βjGI(·,j)

∣
∣
∣
∣ αk, βj ∈ [−1, 1]

}
.

The scalars αk are called dependent factors since a change in their value affects
multiplication with multiple generators. Analogously, the scalars βj are called
independent factors because they only affect the multiplication with one genera-
tor. For a concise notation we use the shorthand PZ = 〈c,G,GI , E〉PZ .
1 In contrast to [25, Def. 1], we explicitly do not integrate the constant offset c in G.

Moreover, we omit the identifier vector used in [25] for simplicity.
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Let us demonstrate polynomial zonotopes by an example:

Example 1. The polynomial zonotope

PZ =
〈[

4
4

]
,

[
2 1 2
0 2 2

]
,

[
1
0

]
,

[
1 0 3
0 1 1

]〉

PZ

defines the set

PZ =
{[

4
4

]
+

[
2
0

]
α1 +

[
1
2

]
α2 +

[
2
2

]
α3
1α2 +

[
1
0

]
β1

∣
∣
∣
∣ α1, α2, β1 ∈ [−1, 1]

}
.

The construction of this polynomial zonotope is visualized in Fig. 2.

3 Image Enclosure

We now present our novel approach for computing tight non-convex enclo-
sures of images through neural networks. The general concept is to approximate
the input-output relation of each neuron by a polynomial function, the image
through which can be computed exactly since polynomial zonotopes are closed
under polynomial maps. For simplicity, we focus on quadratic approximations
here, but the extension to polynomials of higher degree is straightforward.

The overall procedure for computing the image is summarized in Algorithm 1,
where the computation proceeds layer by layer. For each neuron in the current
layer i we first calculate the corresponding input set in Line 5. Next, in Line 6, we
compute a lower and an upper bound for the input to the neuron. Using these
bounds we then calculate a quadratic approximation for the neuron’s input-
output relation in Line 7. This approximation is evaluated in a set-based manner
in Line 8. The resulting polynomial zonotope 〈cq, Gq, GI,q, Eq〉PZ forms the j-th
dimension of the set PZ representing the output of the whole layer (see Line 9
and Line 12). To obtain a formally correct enclosure, we have to account for the
error made by the approximation. We therefore compute the difference between
the activation function and the quadratic approximation in Line 10 and add the
result to the output set in Line 12. By repeating this procedure for all layers,
we finally obtain a tight enclosure of the image through the neural network. A
demonstrating example for Algorithm 1 is shown in Fig. 3.

For ReLU activations the quadratic approximation only needs to be calcu-
lated if l < 0 ∧ u > 0 since we can use the exact input-output relations g(x) = x
and g(x) = 0 if l ≥ 0 or u ≤ 0 holds. Due to the evaluation of the quadratic
map defined by g(x), the representation size of the polynomial zonotope PZ
increases in each layer. For deep neural networks it is therefore advisable to
repeatedly reduce the representation size after each layer using order reduction
[25, Prop. 16]. Moreover, one can also apply the compact operation described
in [25, Prop. 2] after each layer to remove potential redundancies from PZ.
Next, we explain the approximation of the input-output relation as well as the
computation of the approximation error in detail.
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Algorithm 1. Enclosure of the image through a neural network
Require: Neural network with weight matrices Wi and bias vectors bi, initial set X0.
Ensure: Tight enclosure PZ ⊇ Y of the image Y.

1: PZ ← X0

2: for i ← 1 to κ + 1 do (loop over all layers)
3: c ← 0, G ← 0, GI ← 0, d ← 0, d ← 0
4: for j ← 1 to vi do (loop over all neurons in the layer)
5: PZj ← Wi(j,·)PZ ⊕ bi(j) (map with weight matrix and bias using (5))
6: l, u ← lower and upper bound for PZj according to Prop. 1
7: g(x) = a1 x2 + a2 x + a3 ← quad. approx. on [l, u] according to Sect. 3.1
8: 〈cq, Gq, GI,q, Eq〉PZ ← image of PZj through g(x) according to Prop. 2
9: c(j) ← cq, G(j,·) ← Gq, GI(j,·) ← GI,q, E ← Eq (add to output set)

10: d(j), d(j) ← difference between g(x) and activation function acc. to Sect. 3.2

11: end for
12: PZ ← 〈c, G, GI , E〉PZ ⊕ [d, d] (add approximation error using (6))
13: end for

3.1 Activation Function Approximation

The centerpiece of our algorithm for computing the image of a neural network is
the approximation of the input-output relation defined by the activation func-
tion μ(x) with a quadratic expression g(x) = a1 x2 + a2 x + a3 (see Line 7 of
Algorithm 1). In this section we present multiple possibilities to obtain good
approximations.

Polynomial Regression

For polynomial regression we uniformly select N samples xi from the interval
[l, u] and then determine the polynomial coefficients a1, a2, a3 by minimizing
the average squared distance between the activation function and the quadratic
approximation:

min
a1,a2,a3

1
N

N∑

i=1

(
μ(xi) − a1 x2

i − a2 xi − a3

)2
. (1)

It is well known that the optimal solution to (1) is
⎡

⎣
a1

a2

a3

⎤

⎦ = A†b with A =

⎡

⎢
⎣

x2
1 x1 1
...

...
...

x2
N xN 1

⎤

⎥
⎦ , b =

⎡

⎢
⎣

μ(x1)
...

μ(xN )

⎤

⎥
⎦ ,

where A† = (AT A)−1AT is the Moore-Penrose inverse of matrix A. For the
numerical experiments in this paper we use N = 10 samples.

Closed-Form Expression

For ReLU activations a closed-form expression for a quadratic approximation can
be obtained by enforcing the conditions g(l) = 0, g′(l) = 0, and g(u) = u. The
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solution to the corresponding equation system a1 l2+a2 l+a3 = 0, 2a1l+a2 = 0,
a1 u2 + a2 u + a3 = u is

a1 =
u

(u − l)2
, a2 =

−2lu

(u − l)2
, a3 =

u2(2l − u)
(u − l)2

+ u,

which results in the enclosure visualized in Fig. 1. This closed-form expression is
very precise if the interval [l, u] is close to being symmetric with respect to the
origin (|l| ≈ |u|), but becomes less accurate if one bound is significantly larger
than the other (|u|  |l| or |l|  |u|).
Taylor Series Expansion

For sigmoid and hyperbolic tangent activation functions a quadratic fit can be
obtained using a second-order Taylor series expansion of the activation function
μ(x) at the expansion point x∗ = 0.5(l + u):

μ(x) ≈ μ(x∗) + μ′(x∗)(x − x∗) + 0.5μ′′(x∗)(x − x∗)2 =

0.5μ′′(x∗)
︸ ︷︷ ︸

a1

x2 +
(
μ′(x∗) − μ′′(x∗)x∗
︸ ︷︷ ︸

a2

)
x + μ(x∗) − μ′(x∗)x∗ + 0.5μ′′(x∗)x∗2

︸ ︷︷ ︸
a3

,

where the derivatives for sigmoid activations are μ′(x) = σ(x)(1 − σ(x)) and
μ′′(x) = σ(x)(1 − σ(x))(1 − 2σ(x)), and the derivatives for hyperbolic tangent
activations are μ′(x) = 1− tanh(x)2 and μ′′(x) = −2 tanh(x)(1− tanh(x)2). The
Taylor series expansion method is identical to the concept used in [21].

Linear Approximation

Since a linear function represents a special case of a quadratic function, Algo-
rithm 1 can also be used in combination with linear approximations. Such
approximations are provided by the zonotope abstraction in [34]. Since closed-
form expressions for the bounds d and d of the approximation error are already
specified in [34], we can omit the error bound computation described in Sect. 3.2
in this case. For ReLU activations we obtain according to [34, Theorem 3.1]

a1 = 0, a2 =
u

u − l
, a3 =

−u l

2(u − l)
, d =

−u l

2(u − l)
, d =

u l

2(u − l)
,

which results in the zonotope enclosure visualized in Fig. 1. For sigmoid and
hyperbolic tangent activations we obtain according to [34, Theorem 3.2]

a1 = 0, a2 = min(μ′(l), μ′(u)), a3 = 0.5(μ(u) + μ(l) − a2(u + l)),

d = 0.5(μ(u) − μ(l) − a2(u − l)), d = −0.5(μ(u) − μ(l) − a2(u − l)),

where the derivatives of the sigmoid function and the hyperbolic tangent are
specified in the paragraph above.

We observed from experiments that for ReLU activations the closed-form
expression usually results in a tighter enclosure of the image than polynomial
regression. For sigmoid and hyperbolic tangent activations, on the other hand,
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Fig. 3. Exemplary neural network with ReLU activations (left) and the correspond-
ing image enclosure computed with polynomial zonotopes (right), where we use the
approximation g(x) = 0.25 x2 + 0.5 x + 0.25 for the red neuron and the approximation
g(x) = x for the blue neuron. (Color figure online)

polynomial regression usually performs better than the Taylor series expansion.
It is also possible to combine multiple of the methods described above by exe-
cuting them in parallel and selecting the one that results in the smallest approx-
imation error [d, d]. Since the linear approximation does not increase the number
of generators, it represents an alternative to order reduction when dealing with
deep neural networks. Here, the development of a method to decide automati-
cally for which layers to use a linear and for which a quadratic approximation is
a promising direction for future research.

3.2 Bounding the Approximation Error

To obtain a sound enclosure we need to compute the difference between the
activation function μ(x) and the quadratic approximation g(x) = a1 x2+a2 x+a3

from Sec. 3.1 on the interval [l, u]. In particular, this corresponds to determining

d = min
x∈[l,u]

μ(x) − a1 x2 − a2 x − a3︸ ︷︷ ︸
d(x)

and d = max
x∈[l,u]

μ(x) − a1 x2 − a2 x − a3︸ ︷︷ ︸
d(x)

.

Depending on the type of activation function, we use different methods for this.

Rectified Linear Unit (ReLU)

For ReLU activation functions we split the interval [l, u] into the two intervals
[l, 0] and [0, u] on which the activation function is constant and linear, respec-
tively. On the interval [l, 0] we have d(x) = −a1 x2 − a2 x − a3, and on the
interval [0, u] we have d(x) = −a1 x2 + (1 − a2)x − a3. In both cases d(x) is a
quadratic function whose maximum and minimum values are either located on
the interval boundary or at the point x∗ where the derivative of d(x) is equal
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to zero. The lower bound on [l, 0] is therefore given as d = min(d(l), d(x∗), d(0))
if x∗ ∈ [l, 0] and d = min(d(l), d(0)) if x∗ �∈ [l, 0], where x∗ = −0.5 a2/a1. The
upper bound as well as the bounds for [0, u] are computed in a similar manner.
Finally, the overall bounds are obtained by taking the minimum and maximum
of the bounds for the intervals [l, 0] and [0, u].

Sigmoid and Hyperbolic Tangent

Here our high-level idea is to sample the function d(x) at points xi with distance
Δx distributed uniformly over the interval [l, u]. From rough bounds for the
derivative d′(x) we can then deduce how much the function value between two
sample points changes at most, which yields tight bounds db ≥ d and db ≤ d. In
particular, we want to choose the sampling rate Δx such that the bounds db, db

comply to a user-defined precision δ > 0:

d + δ ≥ db ≥ d and d − δ ≤ db ≤ d. (2)

We observe that for both, sigmoid and hyperbolic tangent, the derivative is
globally bounded by μ′(x) ∈ [0, μ], where μ = 0.25 for the sigmoid and μ = 1 for
the hyperbolic tangent. In addition, it holds that the derivative of the quadratic
approximation g(x) = a1 x2+a2 x+a3 is bounded by g′(x) ∈ [g, g] on the interval
[l, u], where g = min(2a1l + a2, 2a1u + a2) and g = max(2a1l + a2, 2a1u + a2).
As a consequence, the derivative of the difference d(x) = μ(x)− g(x) is bounded
by d′(x) ∈ [−g, μ − g]. The value of d(x) can therefore at most change by ±Δd
between two samples xi and xi+1, where Δd = Δx max(|−g|, |μ−g|). To satisfy
(2) we require Δd ≤ δ, so that we have to choose the sampling rate as Δx ≤
δ/ max(|−g|, |μ−g|). Finally, the bounds are computed by taking the maximum
and minimum of all samples: db = maxi d(xi) + δ and db = mini d(xi) − δ. For
our experiments we use a precision of δ = 0.001.

4 Neural Network Controlled Systems

Reachable sets for neural network controlled systems can be computed efficiently
by combining our novel image enclosure approach for neural networks with a
reachability algorithm for nonlinear systems. We consider general nonlinear sys-
tems

ẋ(t) = f
(
x(t), uc(x(t), t), w(t)

)
, (3)

where x ∈ R
n is the system state, uc : R

n × R → R
m is a control law, w(t) ∈

W ⊂ R
r is a vector of uncertain disturbances, and f : R

n ×R
m ×R

r → R
n is a

Lipschitz continuous function. For neural network controlled systems the control
law uc(x(t), t) is given by a neural network. Since neural network controllers are
usually realized as digital controllers, we consider the sampled-data case where
the control input is only updated at discrete times t0, t0 + Δt, t0 + 2Δt, . . . , tF
and kept constant in between. Here, t0 is the initial time, tF is the final time,
and Δt is the sampling rate. Without loss of generality, we assume from now on
that t0 = 0 and tF is a multiple of Δt. The reachable set is defined as follows:
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Algorithm 2. Reachable set for a neural network controlled system
Require: Nonlinear system ẋ(t) = f(x(t), uc(x(t), t), w(t)), neural network controller
uc(x(t), t), initial set X0, disturbance set W, final time tF , sampling rate Δt.
Ensure: Tight enclosure R ⊇ R([0, tF ]) of the reachable set R([0, tF ]).

1: t0 ← 0, R(t0) ← X0

2: for i ← 0 to tF /Δt − 1 do (loop over all control cycles)
3: Y ← image of R(ti) through the neural network controller using Algorithm 1

4: ̂R(ti) ← R(ti) × Y (combine reachable set and input set using (7))
5: ti+1 ← ti + Δt, τi ← [ti, ti+1] (update time)

6: ̂R(ti+1), ̂R(τi) ← reachable set for extended system in (4) starting from ̂R(ti)

7: R(ti+1) ← [In 0] ̂R(ti+1), R(τi) ← [In 0] ̂R(τi) (projection using (5))
8: end for
9: R ← ⋃tF /Δt−1

i=0 R(τi) (reachable set for the whole time horizon)

Definition 3. (Reachable set) Let ξ(t, x0, uc(·), w(·)) denote the solution to (3)
for initial state x0 = x(0), control law uc(·), and the disturbance trajectory w(·).
The reachable set for an initial set X0 ⊂ R

n and a disturbance set W ⊂ R
r is

R(t) :=
{
ξ(t, x0, uc(·), w(·)) ∣

∣ x0 ∈ X0,∀t∗ ∈ [0, t] : w(t∗) ∈ W}
.

Since the exact reachable set cannot be computed for general nonlinear systems,
we compute a tight enclosure instead. We exploit that the control input is piece-
wise constant, so that the reachable set for each control cycle can be computed
using the extended system

[
ẋ(t)
u̇(t)

]
=

[
f(x(t), u(t), w(t))

0

]
(4)

together with the initial set X0 × Y, where Y is the image of X0 through the
neural network controller. The overall algorithm is specified in Algorithm 2.
Its high-level concept is to loop over all control cycles, where in each cycle we
first compute the image of the current reachable set through the neural network
controller in Line 3. Next, the image is combined with the reachable set using
the Cartesian product in Line 4. This yields the initial set for the extended
system in (4), for which we compute the reachable set R̂(ti+1) at time ti+1 as
well as the reachable set R̂(τi) for the time interval τi in Line 6. While it is
possible to use arbitrary reachability algorithms for nonlinear systems, we apply
the conservative polynomialization algorithm [2] since it performs especially well
in combination with polynomial zonotopes. Finally, in Line 7, we project the
reachable set back to the original system dimensions.

5 Operations on Polynomial Zonotopes

Algorithm 1 and Algorithm 2 both require some special operations on polynomial
zonotopes, the implementation of which we present now. Given a polynomial
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zonotope PZ = 〈c,G,GI , E〉PZ ⊂ R
n, a matrix A ∈ R

o×n, a vector b ∈ R
o,

and an interval I = [l, u] ⊂ R
n, the affine map and the Minkowski sum with an

interval are given as

APZ ⊕ b = 〈Ac + b, AG,AGI , E〉PZ (5)
PZ ⊕ I = 〈c + 0.5(u + l), G, [GI 0.5 diag(u − l)], E〉PZ , (6)

which follows directly from [25, Prop. 8], [25, Prop. 9], and [1, Prop. 2.1].
For the Cartesian product used in Line 4 of Algorithm 2 we can exploit
the special structure of the sets to calculate the Cartesian product of
two polynomial zonotopes PZ1 = 〈c1, G1, GI,1, E1〉PZ ⊂ R

n and PZ2 =
〈c2, [G2 Ĝ2], [GI,2 ĜI,2], [E1 E2]〉PZ ⊂ R

o as

PZ1 × PZ2 =
〈 [

c1
c2

]
,

[
G1 0
G2 Ĝ2

]
,

[
GI,1 0
GI,2 ĜI,2

]
, [E1 E2]

〉

PZ

. (7)

In contrast to [25, Prop. 11], this implementation of the Cartesian product explic-
itly preserves dependencies between the two sets, which is possible since both
polynomial zonotopes have identical dependent factors. Computing the exact
bounds of a polynomial zonotope in Line 6 of Algorithm 1 would be computa-
tionally infeasible, especially since this has to be done for each neuron in the
network. We therefore compute a tight enclosure of the bounds instead, which
can be done very efficiently:

Proposition 1. (Interval enclosure) Given a polynomial zonotope PZ =
〈c,G,GI , E〉PZ ⊂ R

n, an enclosing interval can be computed as

I = [c + g1 − g2 − g3 − g4, c + g1 + g2 + g3 + g4] ⊇ PZ

with

g1 = 0.5
∑

i∈H
G(·,i), g2 = 0.5

∑

i∈H
|G(·,i)|, g3 =

∑

i∈K
|G(·,i)|, g4 =

q∑

i=1

|GI(·,i)|

H =
{

i

∣
∣
∣
∣

p∏

j=1

(
1 − E(j,i) mod 2)

)
= 1

}
, K = {1, . . . , h} \ H,

where x mod y, x, y ∈ N0 is the modulo operation and \ denotes the set difference.

Proof 1. We first enclose the polynomial zonotope by a zonotope Z ⊇ PZ
according to [25, Prop. 5], and then compute an interval enclosure I ⊇ Z of
this zonotope according to [1, Prop. 2.2]. ��

The core operation for Algorithm 1 is the computation of the image through a
quadratic function. While it is possible to obtain the exact image by introducing
new dependent factors, we compute a tight enclosure for computational reasons:
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Fig. 4. Image enclosures computed with zonotopes (red), star sets (green), Taylor mod-
els (purple), and polynomial zonotopes (blue) for randomly generated neural networks
with ReLU activations (left), sigmoid activations (middle), and hyperbolic tangent
activations (right). The exact image is shown in gray. (Color figure online)

Proposition 2. (Image quadratic function) Given a polynomial zonotope PZ =
〈c,G,GI , E〉PZ ⊂ R and a quadratic function g(x) = a1 x2 + a2 x + a3 with
a1, a2, a3, x ∈ R, the image of PZ through g(x) can be tightly enclosed by

{
g(x)

∣
∣ x ∈ PZ} ⊆ 〈cq, Gq, GI,q, Eq〉PZ

with

cq = a1c
2 + a2c + a3 + 0.5 a1

q∑

i=1

G2
I(·,i), Gq =

[
(2a1c + a2)G a1Ĝ

]
,

Eq =
[
E Ê

]
, GI,q =

[
(2a1c + a2)GI 2a1G a1Ǧ

]
,

(8)

where

Ĝ =
[
G2 2 Ĝ1 . . . 2 Ĝh−1

]
, Ê =

[
2E Ê1 . . . Êh−1

]
,

Ĝi =
[
G(i)G(i+1) . . . G(i)G(h)

]
, i = 1, . . . , h − 1,

Êi =
[
E(·,i) + E(·,i+1) . . . E(·,i) + E(·,h)

]
, i = 1, . . . , h − 1,

G =
[
G(1)GI . . . G(h)GI

]
, Ǧ =

[
0.5G2

I 2 Ǧ1 . . . 2 Ǧq−1

]
,

Ǧi =
[
GI(i)GI(i+1) . . . GI(i)GI(q)

]
, i = 1, . . . , q − 1,

(9)

and the squares in G2 as well as G2
I are interpreted elementwise.

Proof 2. The proof is provided in Appendix A.

6 Numerical Examples

We now demonstrate the performance of our approach for image computation,
open-loop neural network verification, and reachability analysis of neural net-
work controlled systems. If not stated otherwise, computations are carried out in
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MATLAB on a 2.9GHz quad-core i7 processor with 32GB memory. We integrated
our implementation into CORA [3] and published a repeatability package2.

Image Enclosure

First, we demonstrate how our approach captures the non-convexity of the image
through a neural network. For visualization purposes we use the deliberately
simple example of randomly generated neural networks with two inputs, two
outputs, and one hidden layer consisting of 50 neurons. The initial set is X0 =
[−1, 1]× [−1, 1]. We compare our polynomial-zonotope-based approach with the
zonotope abstraction in [34], the star set approach in [40] using the triangle
relaxation, and the Taylor model abstraction in [21]. While our approach and the
zonotope abstraction are applicable to all types of activation functions, the star
set approach is restricted to ReLU activations and the Taylor model abstraction
is limited to sigmoid and hyperbolic tangent activations. The resulting image
enclosures are visualized in Fig. 4. While using zonotopes or star sets only yields
a convex over-approximation, polynomial zonotopes are able to capture the non-
convexity of the image and therefore provide a tighter enclosure. While Taylor
models also capture the non-convexity of the image to some extent they are
less precise than polynomial zonotopes, which can be explained as follows: 1)
The zonotopic remainder of polynomial zonotopes prevents the rapid remainder
growth observed for Taylor models, and 2) the quadratic approximation obtained
with polynomial regression used for polynomial zonotopes is usually more precise
than the Taylor series expansion used for Taylor models.

Open-Loop Neural Network Verification

For open-loop neural network verification the task is to verify that the image
of the neural network satisfies certain specifications that are typically given by
linear inequality constraints. We examine the ACAS Xu benchmark from the
2021 and 2022 VNN competition [4,29] originally proposed in [22, Sec. 5], which
features neural networks that provide turn advisories for an aircraft to avoid col-
lisions. All networks consist of 6 hidden layers with 50 ReLU neurons per layer.
For a fair comparison we performed the evaluation on the same machine that
was used for the VNN competition. To compute the image through the neu-
ral networks with polynomial zonotopes, we apply a quadratic approximation
obtained by polynomial regression for the first two layers, and a linear approx-
imation in the remaining layers. Moreover, we recursively split the initial set
to obtain a complete verifier. The comparison with the other tools that partic-
ipated in the VNN competition shown in Table 1 demonstrates that for some
verification problems polynomial zonotopes are about as fast as the best tool in
the competition.

Neural Network Controlled Systems

The main application of our approach is reachability analysis of neural network
controlled systems, for which we now compare the performance to other state-of-
the-art tools. For a fair comparison we focus on published results for which the
2 https://codeocean.com/capsule/8237552/tree/v1.

https://codeocean.com/capsule/8237552/tree/v1
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Table 1. Computation timesa in seconds for different verification tools on a small but
representative excerpt of network-specification combinations of the ACAS Xu bench-
mark. The symbol - indicates that the tool failed to verify the specification.
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o
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1.9 1 0.37 1.37 111 3.91 0.66 48.7 0.41 - 1.44 0.71 - 0.53 0.55 0.31

2.3 4 - 0.95 1.78 1.91 0.57 12.2 0.06 - - 0.97 - 0.46 0.17 0.16

3.5 3 0.41 0.37 1.15 1.85 0.61 6.17 0.05 - - 0.58 34.1 0.42 0.25 0.32

4.5 4 - 0.35 0.20 1.82 0.61 5.57 0.08 0.24 - 0.48 - 0.42 0.21 0.16

5.6 3 0.38 0.63 2.27 1.82 0.66 6.51 0.08 - - 0.52 40.6 0.48 0.37 0.43

a Times taken from https://github.com/stanleybak/vnncomp2021 results and https://
github.com/ChristopherBrix/vnncomp2022 results.

Table 2. Computation timesb in seconds for reachability analysis of neural network
controlled systems considering different tools and benchmarks. The dimension, the
number of hidden layers, and the number of neurons in each layer is specified in paren-
thesis for each benchmark, where a = 100, b = 5 for ReLU activation functions, and
a = 20, b = 3 otherwise. The symbol - indicates that the tool failed to verify the
specification.
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B1 (2, 2, 20) - 49 69 23 2 - 48 - 25 8

B2 (2, 2, 20) 12 8 32 10 1 - - - 3 -

B3 (2, 2, 20) 98 47 130 37 3 98 43 128 38 3

B4 (3, 2, 20) 24 12 20 4 1 23 11 20 4 1

B5 (3, 3, 100) 196 1063 31 25 2 - 168 - 31 2

TORA (4, 3, a) 30 2040 13 136 83 13402 1 134 70 2524 1

ACC (6, b, 20) 4 1 2 - 1512 - 312 2

Unicycle (3, 1, 500) 526 93 3

Airplane (12, 3, 100) - 29 7

Sin. Pend. (2, 2, 25) 1 1 1

b Computation times taken from [33, Table 1] for Sherlock and JuliaReach, from [21,
Table 2] for Verisig, Verisig 2.0, and ReachNN*, and from [19, Tab. 1] for POLAR.

authors of the tools tuned the algorithm settings by themselves. In particular, we
examine the benchmarks from [33] featuring ReLU neural network controllers,
and the benchmarks from [21] containing sigmoid and hyperbolic tangent neural
network controllers. The goal for all benchmarks is to verify that the system
reaches a goal set or avoids an unsafe region. As the computation times shown

https://github.com/stanleybak/vnncomp2021_results
https://github.com/ChristopherBrix/vnncomp2022_results
https://github.com/ChristopherBrix/vnncomp2022_results
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in Table 2 demonstrate, our polynomial-zonotope-based approach is for all but
two benchmarks significantly faster than all other state-of-the-art tools, mainly
since it avoids all major bottlenecks observed for the other tools: The polyno-
mial approximations of the overall network used by Sherlock and ReachNN* are
often imprecise, JuliaReach loses dependencies when enclosing Taylor models by
zonotopes, Verisig is quite slow since the nonlinear system used to represent the
neural network is high-dimensional, and Verisig 2.0 and POLAR suffer from the
rapid remainder growth observed for Taylor models.

7 Conclusion

We introduced a novel approach for computing tight non-convex enclosures of
images through neural networks with ReLU, sigmoid, and hyperbolic tangent
activation functions. Since we represent sets with polynomial zonotopes, all
required calculations can be realized using simple matrix operations only, which
makes our algorithm very efficient. While our proposed approach can also be
applied to open-loop neural network verification, its main application is reacha-
bility analysis of neural network controlled systems. There, polynomial zonotopes
enable the preservation of dependencies between the reachable set and the set
of control inputs, which results in very tight enclosures of the reachable set.
As we demonstrated on various numerical examples, our polynomial-zonotope-
based approach consequently outperforms all other state-of-the-art methods for
reachability analysis of neural network controlled systems.
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Appendix A

We now provide the proof for Prop. 2. According to Def. 2, the one-dimensional
polynomial zonotope PZ = 〈c,G,GI , E〉PZ is defined as

PZ =
{

c +
h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(i)

︸ ︷︷ ︸
d(α)

+
q∑

j=1

βjGI(j)

︸ ︷︷ ︸
z(β)

∣
∣
∣
∣ αk, βj ∈ [−1, 1]

}

=
{
c + d(α) + z(β)

∣
∣ α, β ∈ [−1,1]

}
,

(10)
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where α = [α1 . . . αp]T and β = [β1 . . . βq]T . To compute the image through the
quadratic function g(x) we require the expressions d(α)2, d(α)z(β), and z(β)2,
which we derive first. For d(α)2 we obtain

d(α)2 =
( h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(i)

)( h∑

j=1

( p∏

k=1

α
E(k,j)

k

)
G(j)

)

=
h∑

i=1

h∑

j=1

( p∏

k=1

α
E(k,i)+E(k,j)

k

)
G(i)G(j)

=
h∑

i=1

( p∏

k=1

α
2E(k,i)

k

)
G2

(i) +
h−1∑

i=1

h∑

j=i+1

( p∏

k=1

α
E(k,i)+E(k,j)

k︸ ︷︷ ︸

α
̂Ei(k,j)
k

)
2G(i)G(j)︸ ︷︷ ︸

̂Gi(j)

(9)
=

h(h+1)/2∑

i=1

( p∏

k=1

α
̂E(k,i)

k

)
Ĝ(i),

(11)
for d(α)z(β) we obtain

d(α)z(β) =
( h∑

i=1

( p∏

k=1

α
E(k,i)

k

)
G(i)

)( q∑

j=1

βjGI(j)

)

=
h∑

i=1

q∑

j=1

(
βj

p∏

k=1

α
E(k,i)

k

)

︸ ︷︷ ︸
βq+(i−1)h+j

G(i)GI(j)

(9)
=

hq∑

i=1

βq+i G(i),
(12)

and for z(β)2 we obtain

z(β)2 =
( q∑

i=1

βiGI(i)

)( q∑

j=1

βjGI(j)

)
=

q∑

i=1

q∑

j=1

βiβj GI(i)GI(j)

=
q∑

i=1

β2
i G2

I(i) +
q−1∑

i=1

q∑

j=i+1

βiβj 2GI(i)GI(j)

= 0.5
q∑

i=1

G2
I(i) +

q∑

i=1

(2β2
i − 1)

︸ ︷︷ ︸
β(h+1)q+i

0.5G2
I(i) +

q−1∑

i=1

q∑

j=i+1

βiβj︸︷︷︸
βa(i,j)

2 GI(i)GI(j)︸ ︷︷ ︸
Ǧi(j)

(9)
= 0.5

q∑

i=1

G2
I(i) +

q(q+1)/2∑

i=1

β(h+1)q+i Ǧ(i), (13)

where the function a(i, j) maps indices i, j to a new index:

a(i, j) = (h + 2)q + j − i +
i−1∑

k=1

q − k.



Open- and Closed-Loop Neural Network Verification 33

In (12) and (13), we substituted the expressions βj

∏p
k=1 α

E(k,i)

k , 2β2
i − 1, and

βiβj containing polynomial terms of the independent factors β by new indepen-
dent factors, which results in an enclosure due to the loss of dependency. The
substitution is possible since

βj

p∏

k=1

α
E(k,i)

k ∈ [−1, 1], 2β2
i − 1 ∈ [−1, 1], and βiβj ∈ [−1, 1].

Finally, we obtain for the image
{
g(x)

∣
∣ x ∈ PZ}

=
{
a1 x2 + a2 x + a3

∣
∣ x ∈ PZ}

(10)
=

{
a1(c + d(α) + z(β))2 + a2(c + d(α) + z(β)) + a3

∣
∣ α, β ∈ [−1,1]

}

=
{
a1c2 + a2c + a3 + (2a1c + a2)d(α) + a1d(α)2

+ (2a1c + a2)z(β) + 2a1d(α)z(β) + a1z(β)2
∣
∣ α, β ∈ [−1,1]

}

(11),(12),(13)

⊆
〈

a1c2 + a2c + a3 + 0.5 a1

q∑

i=1

G2
I ,

[
(2a1c + a2)G a1Ĝ

]
,

[
(2a1c + a2)GI 2a1G a1Ǧ

]
,
[
E Ê

]
〉

PZ

(8)
= 〈cq , Gq , GI,q, Eq〉PZ ,

which concludes the proof.
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Abstract. It is known that deep neural networks (DNNs) classify an
input image by paying particular attention to certain specific pixels; a
graphical representation of the magnitude of attention to each pixel is
called a saliency-map. Saliency-maps are used to check the validity of
the classification decision basis, e.g., it is not a valid basis for classi-
fication if a DNN pays more attention to the background rather than
the subject of an image. Semantic perturbations can significantly change
the saliency-map. In this work, we propose the first verification method
for attention robustness, i.e., the local robustness of the changes in the
saliency-map against combinations of semantic perturbations. Specifi-
cally, our method determines the range of the perturbation parameters
(e.g., the brightness change) that maintains the difference between the
actual saliency-map change and the expected saliency-map change below
a given threshold value. Our method is based on activation region traver-
sals, focusing on the outermost robust boundary for scalability on larger
DNNs. We empirically evaluate the effectiveness and performance of our
method on DNNs trained on popular image classification datasets.

1 Introduction

Classification Robustness. Deep neural networks (DNN) are now dominant
solutions in computer vision, notably for image classification [20]. However, qual-
ity assurance is essential when DNNs are used in safety-critical systems [2]. From
an assurance point of view, one key property that has been extensively studied
is the robustness of the classification against input perturbations [16]. In partic-
ular, a long line of work has focused on robustness to adversarial input perturba-
tions [35]. However, DNNs have been shown to also be vulnerable to input per-
turbations likely to naturally occur in practice, such as small brightness changes,
translations, rotations, and other spacial transformations [7,8,11,19,40]. In this
paper we focus on such semantic perturbations. A number of approaches have
been proposed to determine the range of perturbation parameters (e.g., the
amount of brightness change and translation) that do not change the classifi-
cation [3,23]. However, we argue that classification robustness is not a sufficient
quality assurance criterion in safety-critical scenarios.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Classification Validity. It is known that DNNs classify an input image by
paying particular attention to certain specific pixels in the image; a graphical
representation of the magnitude of attention to each pixel, like a heatmap, is
called saliency-map [28,34]. A saliency-map can be obtained from the gradients
of DNN outputs with respect to an input image, and it is used to check the
validity of the classification decision basis. For instance, if a DNN classifies the
subject type by paying attention to a background rather than the subject to be
classified in an input image (as in the case of “Husky vs. Wolf [26]”), it is not
a valid basis for classification. We believe that such low validity classification
should not be accepted in safety-critical situations, even if the classification
labels are correct. Semantic perturbations can significantly change the saliency-
maps [12,13,24]. However, existing robustness verification methods only target
changes in the classification labels and not the saliency-maps.

Our Approach: Verifying Attention Robustness. In this work, we propose
the first verification method for attention robustness1, i.e., the local robustness of
the changes in the saliency-map against combinations of semantic perturbations.
Specifically, our method determines the range of the perturbation parameters
(e.g., the brightness change) that maintains the difference between (a) the actual
saliency-map change and (b) the expected saliency-map change below a given
threshold value. Regarding the latter (b), brightness change keeps the saliency-
map unchanged, whereas translation moves one along with the image. Although
the concept of such difference is the same as saliency-map consistency used
in semi-supervised learning [12,13], for the sake of verification, it is necessary
to calculate the minimum and maximum values of the difference within each
perturbation parameter sub-space. Therefore, we specialize in the gradient-based
saliency-maps for the image classification DNNs [28] and focus on the fact that
DNN output is linear with respect to DNN input within an activation region [14].
That is, the actual saliency-map calculated from the gradient only is constant
within each region; thus, we can compute the range of the difference by sampling
a single point within each region if the saliency-map is expected to keep, while
by convex optimization if the saliency map is expected to move. Our method is
based on traversing activation regions on a DNN with layers for classification and
semantic perturbations; it is also possible to traverse (i.e., verify) all activation
regions in a small DNN or traverse only activation regions near the outermost
robust boundary in a larger DNN. Experimental results demonstrate that our
method can show the extent to which DNNs can classify with the same basis
regardless of semantic perturbations and report on performance and performance
factors of activation region traversals.

Contributions. Our main contributions are:

– We formulate the problem of attention robustness verification; we then pro-
pose a method for verifying attention robustness for the first time. Using our

1 In this paper, the term “attention” refers to the focus of certain specific pixels in
the image, and not to the “attention mechanism” used in transformer models [39].
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method, it is also possible to traverse and verify all activation regions or only
ones near the outermost decision boundary.

– We implement our method in a python tool and evaluate it on DNNs trained
with popular datasets; we then show the specific performance and factors of
verifying attention robustness. In the context of traversal verification meth-
ods, we use the largest DNNs for performance evaluation.

2 Overview

Situation. Suppose a situation where we have to evaluate the weaknesses of
a DNN for image classification against combinations of semantic perturbations
caused by differences in shooting conditions, such as lighting and subject posi-
tion. For example, as shown in Fig. 1, the original label of the handwritten text
image is “0”; however, the DNN often misclassifies it as the other labels, with
changes in brightness, patch, and translations. Therefore, we want to know in
advance the ranges of semantic perturbation parameters that are likely to cause
such misclassification as a weakness of the DNN for each typical image. How-
ever, classification robustness is not sufficient for capturing such weaknesses in
the following cases.

Case 1. Even if the brightness changes so much that the image is not visible to
humans, the classification label of the perturbed image may happen to match
the original label. Then vast ranges of the perturbation parameters are evalu-
ated as robust for classification; however, such overestimated ranges are naturally
invalid and unsafe. For instance, Fig. 2 shows the changes in MNIST image “8”
and the actual saliency-map when the brightness is gradually changed; although
the classification seems robust because the labels of each image are the same, the
collapsed saliency-maps indicate that the DNN does not pay proper attention
to text “8” in each image. Therefore, our approach uses the metric attention
inconsistency, which quantifies the degree of collapse of a saliency-map, to fur-
ther evaluate the range of the perturbation parameter as satisfying the property
attention robustness ; i.e., the DNN is paying proper attention as well as the
original image. Attention inconsistency is a kind of distance (cf. Fig. 4) between
an actual saliency-map (second row) and an expected one (third row); e.g., the
saliency-map of DNN-1 for translation perturbation (column (T)) is expected
to follow image translation; however, if it is not, then attention inconsistency is
high. In addition, Fig. 2 shows an example of determining that attention robust-
ness is satisfied if each attention inconsistency value (third row) is less than or
equal to threshold value δ.

Case 2. The classification label often changes by combining semantic perturba-
tions, such as brightness change and patch, even for the perturbation parameter
ranges that each perturbation alone could be robust. It is important to under-
stand what combinations are weak for the DNN; however, it is difficult to ver-
ify all combinations as there are many semantic perturbations assumed in an
operational environment. In our observations, a perturbation that significantly
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Fig. 1. Misclassifications caused by combinations of semantic perturbations.

Fig. 2. Perturbation-induced changes in images (first row), saliency-maps (second row)
and the metric quantified the degree of collapse of each saliency-map (third row); where
δ denotes the threshold to judge a saliency-map is valid or not.

Fig. 3. The outermost boundaries of classification robustness (left) and attention
robustness (right); the origin at the bottom-left corresponds to the input image without
perturbation, and each plotted point denotes the perturbed input image (middle). The
shapes of the boundaries indicate the existence of regions that the DNN successfully
classifies without sufficient evidence.

Fig. 4. Differences in changes in saliency-maps for two DNNs. Each saliency-map of
DNN-1 above is more collapsed than DNN-2’s: where columns (O), (B), (P), and (T)
denote original (i.e., without perturbations), brightness change, patch, and translation,
respectively.
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collapses the saliency-map is more likely to cause misclassification when com-
bined with another perturbation because another perturbation can change the
intensity of pixels to which the DNN should not pay attention. Therefore, to
understand the weakness of combining perturbations, our approach visualizes
the outermost boundary at which the sufficiency of robustness switches on the
perturbation parameter space. For instance, Fig. 3 shows connected regions that
contain the outermost boundary for classification robustness (left side) or atten-
tion robustness (right side). The classification boundary indicates that the DNN
can misclassify the image with a thin patch and middle brightness. In contrast,
the attention boundary further indicates that the brightness change can collapse
the saliency-map more than patching, so we can see that any combinations with
the brightness change pose a greater risk. Even when the same perturbations
are given, the values of attention inconsistency for different DNNs are usually
different (cf. Fig. 4); thus, it is better to evaluate what semantic perturbation
poses a greater risk for each DNN.

3 Problem Formulation

Our method targets feed-forward ReLU-activated neural networks (ReLU-FNNs)
for image classification. A ReLU-FNN image classifier is a function f : X → Y

mapping an Nf -dimensional (pixels × color-depth) image x ∈ X ⊆ R
Nf

to a classification label argmaxj∈Y fj(x) in the Kf -class label space Y =
{1, . . . , Kf}, where fj : X → R is the confidence function for the j-th class.
ReLU-FNNs include fully-connected neural networks and convolutional neural
networks (CNNs).

The ReLU activation function occurs in between the linear maps performed
by the ReLU-FNN layers and applies the function max(0, xl,n) to each neuron
xl,n in a layer l ∈ Lf (where Lf is the number of layers of ReLU-FNN f). When
xl,n > 0, we say that xl,n is active; otherwise, we say that xl,n is inactive. We
write apf (x) for the activation pattern of an image x given as input to a ReLU-
FNN f , i.e., the sequence of neuron activation statuses in f when x is taken as
input. We write AP f for the entire set of activation patterns of a ReLU-FNN f .

Given an activation pattern p ∈ AP f , we write arf (p) for the corresponding
activation region, i.e., the subset of the input space containing all images that
share the same activation pattern: x ∈ arf (p) ⇔ apf (x) = p. Note that, neu-
ron activation statuses in an activation pattern p yield half-space constraints in
the input space [14,18]. Thus, an activation region arf (p) can equivalently be
represented as a convex polytope described by the conjunction of the half-space
constraints resulting from the activation pattern p.

Classification Robustness. A semantic perturbation is a function g : Θ×X →
X applying a perturbation with Ng parameters θ ∈ Θ ⊆ R

Ng

to an image
x ∈ X to yield a perturbed image g(θ, x) def= gNg (θNg , ·) ◦ · · · ◦ g1(θ1, x) =
gNg (θNg , . . . g1(θ1, x), . . . ) ∈ X, where gi : R×X → X performs the i-th atomic
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semantic perturbation with parameter θi (with gi(0, x) = x for any image x ∈
X). For instance, a brightness decrease perturbation gb is a(n atomic) semantic
perturbation function with a single brightness adjustment parameter β ≥ 0:
gb(β, x) def= ReLU(x − 1β).

Definition 1 (Classification Robustness). A perturbation region η ⊂ Θ sat-
isfies classification robustness—written CR(x; η)—if and only if the classifica-
tion label f(g(θ, x)) is the same as f(x) when the perturbation parameter θ is
within η: CR(x; η) def= ∀θ ∈ η. f(x) = f(g(θ, x)).

Vice versa, we define misclassification robustness when f(g(θ, x)) is always
different from f(x) when θ is within η: MR(x; η) def= ∀θ ∈ η. f(x) 
= f(g(θ, x)).

The classification robustness verification problem ProbCR def= (f, g, x0, Θ)
consists in enumerating, for a given input image x0, the perturbation parameter
regions ηCR, ηMR ⊂ Θ respectively satisfying CR(x0; ηCR) and MR(x0; ηMR).

Attention Robustness. We generalize the definition of saliency-map from [28]
to that of an attention-map, which is a function mapj : X → X from an
image x ∈ X to the heatmap image mj ∈ X plotting the magnitude of the
contribution to the j-th class confidence fj(x) for each pixel of x. Specifically,

mapj(x) def= filter
(

∂fj(x)
∂x1

, . . . ,
∂fj(x)
∂x

Nf

)
, where filter(·) is an arbitrary image pro-

cessing function (such as normalization and smoothing) and, following [28,36],
the magnitude of the contribution of each pixel x1, . . . , xNf is given by the
gradient with respect to the j-th class confidence. When filter(x) def= |x|, our
definition of mapj matches that of saliency-map in [28]. Note that, within an
activation region arf (p), fj is linear [14] and thus the gradient ∂fj(x)

∂xi
is a con-

stant value.
We expect attention-maps to change consistently with respect to a seman-

tic image perturbation. For instance, for a brightness change perturbation, we
expect the attention-map to remain the same. Instead, for a translation per-
turbation, we expect the attention-map to be subject to the same translation.
In the following, we write g̃(·) for the attention-map perturbation correspond-
ing to a given semantic perturbation g(·). We define attention inconsistency as
the difference between the actual and expected attention-map after a seman-
tic perturbation: ai(x; θ) def=

∑
j∈Y dist

(
mapj

(
g(θ, x)

)
, g̃

(
θ,mapj(x)

))
, where

dist : X ×X → R is an arbitrary distance function such as Lp-norm (||x−x′||p).
Note that, when dist(·) is L2-norm, our definition of attention inconsistency
coincides with the definition of saliency-map consistency given by [12].

Definition 2 (Attention Robustness). A perturbation region η ⊂ Θ satisfies
attention robustness—written AR(x; η, δ)—if and only if the attention inconsis-
tency is always less than or equal to δ when the perturbation parameter θ is
within η: AR(x; η, δ) def= ∀θ ∈ η. ai(x; θ) ≤ δ.
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Outermost CR boundary

CR boundary of an enclave

Blue denotes regions satisfying CR.
Red denotes regions satisfying MR.
Yellow denotes regions not satisfying
both CR and MR.

Reachable boundary Farthest reachable boundary point 

Path-
connected

Fig. 5. Illustration of outermost CR boundary on a 2-dimensional perturbation param-
eter space. The origin 0 is the original image without perturbation.

When the attention inconsistency is always greater than δ, we have inconsis-
tency robustness: IR(x; η, δ) def= ∀θ ∈ η. ai(x; θ) > δ.

The attention robustness verification problem ProbAR def= (f, g, x0, Θ, δ) con-
sists in enumerating, for a given input image x0, the perturbation parameter
regions ηAR, ηIR ⊂ Θ respectively satisfying AR(x0; ηAR, δ) and IR(x0; ηIR, δ).

Outermost Boundary Verification. In practice, to represent the trend of the
weakness of a ReLU-FNN image classifier to a semantic perturbation, we argue
that it is not necessary to enumerate all perturbation parameter regions within
a perturbation parameter space Θ. Instead, we search the outermost CR/AR
boundary, that is, the perturbation parameter regions η that lay on the CR/AR
boundary farthest away from the original image.

An illustration of the outermost CR boundary is given in Fig. 5. More for-
mally, we define the outermost CR boundary as follows:

Definition 3 (Outermost CR Boundary). The outermost CR boundary of
a classification robustness verification problem, obCR(ProbCR), is a set of per-
turbation parameter regions HS ⊂ P(Θ) such that:

1. for all perturbation regions η ∈ HS, there exists a path connected-space from
the original image x0 (i.e., 0 ∈ Θ) to η that consists of regions satisfying CR
(written Reachable(η;x0));

2. all perturbation regions η ∈ HS lay on the classification boundary, i.e.,
∃θ, θ′ ∈ η. f(g(θ, x0)) = f(x0) ∧ f(g(θ′, x0)) 
= f(x0);

3. there exists a region η ∈ HS that contains the farthest reachable perturbation
parameter point θ̃ from the original image, i.e., θ̃ = maxθ∈Θ||θ||2 such that
Reachable({θ};x0).

The definition of the outermost AR boundary is analogous. Note that not all
perturbation regions inside the outermost CR/AR boundary satisfy the CR/AR
property (cf. the enclaves in Fig. 5).

The outermost CR boundary verification problem and outermost AR bound-
ary verification problem ProbCR

ob = (f, g, x0, Θ) and ProbAR
ob = (f, g, x0, Θ, δ)
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consist in enumerating, for a given input image x0, the perturbation parame-
ter regions ηCR

ob and ηAR
ob ) that belong to the outermost CR and AR boundary

obCR(ProbCR) and obAR(ProbAR).

4 Geometric Boundary Search (GBS)

In the following, we describe our Geometric Boundary Search (GBS ) method
for solving ProbCR

ob , and ProbAR
ob shown in Algorithm 1 and 2. In Appendix H.8,

we describe a baseline Breadth-First Search (BFS ) method for solving ProbCR,
and ProbAR (enumerating all perturbation parameter regions).

4.1 Encoding Semantic Perturbations

After some variables initialization (cf. Line 1 in Algorithm 1), the semantic
perturbation g is encoded into a ReLU-FNN gx0 : Θ → X (cf. Line 2).

In this paper, we focus on combinations of atomic perturbations such as
brightness change (B), patch placement (P), and translation (T). Nonetheless,
our method is applicable to any semantic perturbation as long as it can be
represented or approximated with sufficient accuracy.

For the encoding, we follow [23] and represent (combinations of) semantic
perturbations as a piecewise linear function by using affine transformations and
ReLUs. For instance, a brightness decrease perturbation gb(β, x0) def= ReLU(x0−
1β) (cf. Sect. 3) can be encoded as a ReLU-FNN as follows:

gb(β, x0) encode−→

⎡
⎢⎢⎣

1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1

⎤
⎥⎥⎦ ReLU

⎛
⎜⎜⎝

⎡
⎢⎢⎣

−1 1 0 . . . 0
−1 0 1 . . . 0

. . .
−1 0 0 . . . 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

β
x01
. . .

x0Nf

⎤
⎥⎥⎦

⎞
⎟⎟⎠ + 0

which we can combine with the given ReLU-FNN f to obtain the compound
ReLU-FNN f ◦ gx0

b to verify. The full encoding for all considered (brightness,
patch, translation) perturbations is shown in Appendix H.5.

4.2 Traversing Activation Regions

GBS then performs a traversal of activation regions of the compound ReLU-FNN
f◦gx0 near the outermost CR/AR boundary for ProbCR

ob /ProbAR
ob . Specifically, it

initializes a queue Q with the activation pattern apf◦gx0
(0) of the original input

image x0 with no semantic perturbation, i.e., θ = 0 (cf. Line 3 in Algorithm 1, we
explain the other queue initialization parameters shortly). Given a queue element
q ∈ Q, the functions p(q), isFollowing(q), and lineDistance(q) respectively
return the 1st, 2nd, and 3rd element of q.

Then, for each activation pattern p in Q (cf. Line 6), GBS reconstructs
the corresponding perturbation parameter region η (subroutine constructActi-
vationRegion, Line 7) as the convex polytope resulting from p (cf. Sect. 3 and η
in Fig. 6(1a)).
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(1a) (2a) (3a) (4a)

(2b) (3b) (4b)(1b) (5b)

Fig. 6. A running example of GBS. The upper row shows the basic traversing flow,
while the lower row shows the flow of avoiding enclaves. hl,n denotes a half-space
corresponding to neuron activity pl,n.

Next, for each neuron xl,n in f ◦ gx0 (cf. Line 11), it checks whether its acti-
vation status cannot flip within the perturbation parameter space Θ, i.e., the
resulting half-space would have no feasible points within Θ (subroutine isStable,
Line 12, cf. half-space h1,5 in Fig. 6(1a)). Otherwise, a new activation pattern
p′ is constructed by flipping the activation status of xl,n (subroutine flipped,
Line 13) and added to a local queue Q′ (cf. Line 9, and 23, 25) if p′ has not been
observed already (cf. Line 14) and it is feasible (subroutine calcInteriorPointOn-
Face, Lines 15–16, cf. point θF and half-space h1,2 in Fig. 6(1a)).

The perturbation parameter region η is then simplified to η̃ (subroutine
simplified, Line 2 in Algorithm 2; e.g., reducing the half-spaces used to rep-
resent η to just h1,2 and h1,3 in Fig. 6(1a)). η̃ is used to efficiently calculate
the range of attention inconsistency within η (subroutine calcRange, Line 3 in
Algorithm 2, cf. Sect. 4.4), and then attention/inconsistency robustness can be
verified based on the range (Line 5 and 8 in Algorithm 2). Furthermore, classifi-
cation/misclassification robustness can be verified in the same way if subroutine
calcRange returns the range of confidence ff(x0)(gx0(θ)) − fj(gx0(θ)) within η̃

(cf. Sect. 4.4) and δ = 0 ∧ wδ = 0. At last, the local queue Q′ is pushed onto Q
(cf. Line 29 in Algorithm 1).

To avoid getting stuck around enclaves inside the outermost CR/AR bound-
ary (cf. Fig. 5) during the traversal of activation regions, GBS switches status
when needed between “searching for a decision boundary” and “following a found
decision boundary”. The initial status is set to “searching for a decision bound-
ary”, i.e., ¬isFollowing when initializing the queue Q (cf. Line 3). The switch
to isFollowing happens when region η is on the boundary (i.e., lo ≤ δ ≤ up)
or near the boundary (i.e., δ − wδ ≤ lo ≤ δ + wδ, cf. Line 15 in Algorithm 2
and Fig. 6(3a,1b,3b)), where wδ is a hyperparameter to determine whether the
region is close to the boundary or not. The hyperparameter wδ should be greater
than 0 to verify attention/inconsistency robustness because attention inconsis-
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Algorithm 1. gbs(f, g, x0, Θ; δ, w) → (HCR,HMR,HCB ,HAR,HIR,HAB)
Input: f, g, x0, Θ, δ
Output: HCR, HMR, HCB , HAR, HIR, HAB ⊂ P(Θ)
1: HCR, HMR, HCB , HAR, HIR, HAB ← {}, {}, {}, {}, {}, {}
2: gx0 ← g(·, x0) // partially applying x0 to g; i.e, gx0(θ) = g(θ, x0).

3: Q ⊂ AP f◦gx0 × B × R ← {(apf◦gx0
(0), ⊥, 0)} // queue for boundary search.

4: OBS ⊂ AP f◦gx0 ← {} // observed activation patterns.
5: while #|Q| > 0 // loop for geometrical-boundary search. do
6: q ← popMaxLineDistance(Q); p ← p(q); OBS ← OBS ∪ {p}
7: η ← constructActivationRegion(f ◦ gx0, p)
8: FS ⊂ Z × Z ← {} // (l, n) means the n-th neuron in l-th layer is a face of η

9: Q′ ⊂ AP f◦gx0 × B × R ← {} // local queue for an iteration.
10: // Push each activation region connected to η.
11: for l = 1 to #layers of f ◦ gx0; n = 1 to #neurons of the l-th layer do
12: continue if isStable(p, l, n, Θ) // skip if activation of xl,n cannot flip in Θ.
13: p′ ← flipped(p, l, n) // flip activation status for neuron xl,n.
14: continue if p′ ∈ OBS else OBS ← OBS ∪ {p′} // skip if p′ was observed.
15: θF ← calcInteriorPointOnFace(η, l, n)
16: continue if θF = null // skip if p′ is infeasible.
17: FS ← FS ∪ {(l, n)} // (l,n) is a face of η.
18: θL ← calcInteriorPointOnLine(η, l, n)
19: if isFollowing(q) ∧ θL 	= null ∧ ||θL||2 > lineDistance(q) then
20: q ← (p, ⊥, lineDistance(q)) // Re-found the line in boundary-following.
21: end if
22: if ¬isFollowing(q) ∧ θL 	= null then
23: Q′ ← Q′ ∪ {(p′, ⊥, ||θL||2)} // continue line-search.
24: else
25: Q′ ← Q′ ∪ {(p′, isFollowing(q), lineDistance(q))} // continue current.
26: end if
27: end for
28: (...Verify η...) // See Algorithm 2 for AR/IR (analogous for CR/MR)
29: Q ← Q ∪ Q′ // Push
30: end while

tency changes discretely for ReLU-FNNs (cf. Sect. 4.3). GBS can revert back to
searching for a decision boundary if, when following a found boundary, it finds a
reachable perturbation parameter region that is farther from 0 (cf. Lines 19–20
in Algorithm 1 and Fig. 6(2b)).

4.3 Calculating Attention Inconsistency

Gradients within an Activation Region. Let p ∈ AP f◦gx0
be an activation

pattern of the compound ReLU-FNN f ◦gx0. The gradient ∂fj(g
x0(θ))

∂θs
is constant

within arf◦gx0
(p) (cf. Sect. 3). We write gx0

i (θ) for the i-th pixel xi of a perturbed
image in {gx0(θ) | θ ∈ arf◦gx0

(p)} ⊂ X. The gradient ∂gx0
i

∂θ = ∂xi

∂θ is also a
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Algorithm 2. (Expanding from Algorithm 1 for AR(x0; η, δ)/IR(x0; η, δ))
1: (...Verify η...)
2: η̃ ← simplified(η, FS) // limit the constraints on η to FS.
3: (lo, up) ← calcRange(x0; η̃) // the range ([lower and upper) of ai within η̃.
4: nearBoundary ← (lo ≤ δ ≤ up)∨ (δ −wδ ≤ lo ≤ δ +wδ)∨ (δ −wδ ≤ up ≤ δ +wδ)
5: if lo ≤ up ≤ δ /* satisfying AR */ then
6: HAR ← HAR ∪ {η̃}
7: Q′ ← {} if isFollowing(q)∧¬nearBoundary // no traversing connected regions.
8: else if δ < lo ≤ up /* satisfying IR */ then
9: HIR ← HIR ∪ {η̃}

10: Q′ ← {} if ¬nearBoundary // no traversing connected regions.
11: else
12: HAB ← HAB ∪ {η̃}
13: end if
14: if ¬isFollowing(q) ∧ nearBoundary then
15: (...Update Q′ such that ∀q′ ∈ Q. isFollowing(q′)...) // switch to boundary-

following.
16: end if

constant value. By the chain rule, we have ∂fj(x)
∂xi

= ∂fj(g
x0(θ))/∂θs

∂xi/∂θs
. Thus ∂fj(x)

∂xi

is also constant. This fact is formalized by the following lemma:

Lemma 1. ∂fj(x)
∂xi

= C (x ∈ {gx0(θ) | θ ∈ arf◦gx0
(p)})

(cf. the small example in Appendix H.7). Therefore, the gradient ∂fj(x)
∂xi

can
be computed as the weights of the j-th class output for ReLU-FNN f about
activation pattern apf (ẋ); where, ẋ = gx0(θ̇) and θ̇ is an arbitrary sample within
arf◦gx0

(p) (cf. Appendix H.1). For the perturbed gradient g̃(θ, ∂fj(x)
∂xi

), let g̃(θ)

be the ReLU-FNN g
∂fj(x)

∂xi (θ′). Thus, the same consideration as above applies.

Attention Inconsistency (AI). We assume both filter(·) and dist(·) are con-
vex downward functions for calculating the maximum/minimum value by convex
optimization. Specifically, filter(·) is one of the identity function (I), the abso-
lute function (A), and the 3 × 3 mean filter (M). dist(·) is one of the L1-norm
(L1) and the L2-norm (L2): where, w is the width of image x ∈ X.

4.4 Verifying CR/MR and AR/IR

Our method leverages the fact that the gradient of a ReLU-FNN output with
respect to the input is constant within an activation region (cf. Sect. 3); thus,
CR/MR can be resolved by linear programming, and AR/IR can be resolved
by just only one sampling if the saliency-map is expected to keep or convex
optimization if the saliency-map is expected to move.

Verifying CR/MR. When x0 is fixed, each activation region of the ReLU-
FNN f(g(θ, x0)) : Θ → Y is a region in the perturbation parameter space Θ.
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Table 1. ReLU-FNNs used in our experiments. Networks with name prefix “M-” (“F-”)
is trained on MNIST (Fashion-MNIST). In column Layers, “FC’ denotes fully connected
layers while “Conv” denotes convolutional layers.

Name #Neurons Layers
M-FNN-100 100 FC×2
M-FNN-200 200 FC×4
M-FNN-400 400 FC×8
M-FNN-800 800 FC×16
M-CNN-S 2,028 Conv×2,FC×1
M-CNN-M 14,824 Conv×2,FC×1

Name #Neurons Layers
F-FNN-100 100 FC×2
F-FNN-200 200 FC×4
F-FNN-400 400 FC×8
F-FNN-800 800 FC×16
F-CNN-S 2,028 Conv×2,FC×1
F-CNN-M 14,824 Conv×2,FC×1

Within an activation region η ⊂ Θ of the ReLU-FNN f(g(θ, x0)), CR(f, g, x0, η)
is satisfied if and only if the ReLU-FNN output corresponding to the label of
the original image x0 cannot be less than the ReLU-FNN outputs of all other
labels, i.e., minj∈Y \{f(x0)},θ∈ηff(x0)(x)−fj(g(θ, x0)) > 0 ⇔ CR(f, g, x0, η) Each
DNN output fj(g(θ, x0)) is linear within η, and thus, the left-hand side of the
above equation can be determined soundly and completely by using an LP solver
(Eq. 3(c) in Appendix H.1). Similarly, MR(f, g, x0, η) is satisfied if and only if
the ReLU-FNN output corresponding to the label of the original image x0 cannot
be greater than the ReLU-FNN outputs of any other labels.

Verifying AR/IR. Within an activation region η ⊂ Θ of the ReLU-FNN
f(g(θ, x0)), AR(f, g, x0, η, δ) is satisfied if and only if the following equation
holds: maxθ∈ηai(θ, x0) ≤ δ ⇔ AR(f, g, x0, η, δ) If filter(·) and dist(·) are both
convex downward functions (CDFs), as the sum of CDFs is also a CDF, the
left-hand side of the above equation can be determined by comparing the values
at both ends. On the other hand, IR(f, g, x0, η, δ) is satisfied if and only if the
following equation holds: minθ∈ηai(θ, x0) > δ ⇔ IR(f, g, x0, η, δ) The left-hand
side of the above equation can be determined by using a convex optimizer. Note
that if the saliency-map is expected to keep against perturbations, the above
optimization is unnecessary because ai(θ ∈ eta, x0) is constant.

Thus, it is straightforward to conclude that our GBS method is sound and
complete for verifying CR/MR and AR/IR over the explored activation regions:

Theorem 1. Our GBS method shown in Algorithm 1 and 2 is sound and con-
ditionally complete for solving ProbCR

ob , and ProbAR
ob .

– If the outermost CR/AR boundary truly exists in Θ and the boundary bisects
Θ into two parts, one with the origin 0 and the other with its diagonal point
(cf. Fig. 5), then our GBS method always explores the boundary.

– Otherwise, our GBS method does not always find CR/AR boundaries (includ-
ing enclaves) that should be considered the outermost CR/AR boundary.
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5 Experimental Evaluation

Our GBS method is implemented as an open-source Python tool. It is avail-
able at https://zenodo.org/record/6544905. We evaluated GBS on ReLU-FNNs
trained on the MNIST [6] and Fashion-MNIST [41] datasets. Table 1 shows the
different sizes and architectures used in our evaluation. During each experiment,
we inserted semantic perturbation layers (cf. Sect. 4.1) with a total of 1,568
neurons in front of each ReLU-FNN. All experiments were performed on vir-
tual computational resource “rt C.small” (with CPU 4 Threads and Memory 30
GiB) of physical compute node “V” (with 2 CPU; Intel Xeon Gold 6148 Proces-
sor 2.4GHz 20 Cores (40 Threads), and 12 Memory; 32 GiB DDR4 2666MHz
MHz RDIMM (ECC)) in the AI Bridging Cloud Infrastructure (ABCI) [1].

In our evaluation, we considered three variants of GBS: gbs-CR, which
searches the CR boundary, gbs-AR, which searches the AR boundary, and
gbs-CRAR, which searches the boundary of the regions satisfying both CR
and AR. For gbs-AR and gbs-CRAR we used the definitions filter(x) def= x,
dist(x, x′) def= ||x − x′||2, δ

def= 3.0, and wδ = 0.2 (for gbs-CR we used δ = 0 and
wδ = 0, cf. Sect. 4.2).

(a) AR statuses (b) Time vs. Neurons

(c) CR statuses (d) Regions vs. Perturbations

Fig. 7. Experimental Results. (Color figure online)

https://zenodo.org/record/6544905
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Figure 7a and 7b show the breakdown of the verification result for gbs-AR
and gbs-CR over 10 images (not used for training) from each dataset consid-
ering three combinations of semantic perturbations (brightness+patch (BP),
translation+patch (TP), translation+brightness (TB)). The blue, red, gray, and
black bars denote robust (i.e., all explored activation regions were verified to be
robust), not-robust (i.e., all activation regions on the outermost CR/AR bound-
ary were explored and at least one of them was found to violate robustness),
timed out, and out-of-memory, respectively. We used a time out of two hours for
each robustness verification. The figures show that gbs-AR timed out at a higher
rate for smaller size DNNs than gbs-CR. This is due to the fact that gbs-AR ver-
ified robustness for more images and generally explored more activation regions
than gbs-CR as also shown in Fig. 7d, which compares the number of verified
(explored) activation regions for each combination of perturbations. Looking
further into this difference, it turns out that the choice of the hyperparameter
wθ = 0.2 also caused gbs-AR to explore the AR boundary more extensively than
necessary. It remains for future work to study how to choose a good value for wθ

to narrow this search. Overall, however, Fig. 7d shows that GBS (which searches
the outermost CR/AR boundary) reduces as intended the number of explored
activation regions with respect to the baseline BFS (which enumerates all per-
turbation parameter regions). This, in turn, directly affects the performance of
the algorithms as demonstrated in Fig. 7c, which shows the trend of increasing
computation time with increasing the number of neurons for each algorithm as
a box plot on a log scale. The figure also shows that the median computation
time increases exponentially with the number of neurons for all algorithms. This
result is expected [9,18,42] and suggests that incorporating abstractions and
approximate verification methods [25,30,43] is needed in order to scale to very
large DNNs such as VGG16 [29].

6 Related Work

Robustness Verification. To the best of our knowledge, we are the first to for-
mulate and propose an approach for the attention robustness verification prob-
lem (see, e.g., recent surveys in the area [2,16,38]). [30] first verified classifica-
tion robustness against image rotation, and [3] verified classification robustness
against other semantic perturbations such as image translation, scaling, shearing,
brightness change, and contrast change. However, in this paper, we have argued
that attention robustness more accurately captures trends in weakness for the
combinations of semantic perturbations than existing classification robustness
in some cases (cf. Sect. 2). In addition, approximate verification methods such
as DeepPoly [30] fail to verify near the boundary [32] while our GBS method
enables verification near the boundary by exploratory and exact verification.

[23] proposed that any Lp-norm-based verification tools can be used to verify
the classification robustness against semantic perturbations by inserting special
DNN layers that induce semantic perturbations in the front of DNN layers for
classification. In order to transform the verification problem on the inherently
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high-dimensional input image space X into one on the low-dimensional pertur-
bation parameter space Θ, we adopted their idea, i.e., inserting DNN layers
for semantic perturbations (Θ → X) in front of DNN layers for classification
(X → Y ). However, it is our original idea to calculate the value range of the
gradient for DNN output (∂fj(g(θ, xi))/∂xi) within an activation region on the
perturbation parameter space (cf. Sects. 4.3–4.4).

Traversing Activation Regions. Since [18] first proposed the method to tra-
verse activation regions, several improvements and extensions have been pro-
posed [9,21]. All of them use all breadth-first searches with a priority queue
to compute the maximum safety radius or the maxima of the given objective
function in fewer iterations. In contrast, our algorithm GBS uses a breadth-first
search with a priority queue to reach the outermost CR/AR boundary in fewer
iterations while avoiding enclaves.

[9] responded to the paper reviewer that traversing time would increase expo-
nentially with the size of a DNN [10]. Our experiment also showed that larger
DNNs increase traversing time due to the denser activation regions. The rapid
increase in the number of activation regions will be one of the biggest barri-
ers to the scalability of traversing methods, including our method. Although the
upper bound theoretical estimation for the number of activation regions increases
exponentially with the number of layers in a DNN [14,15] reported that actual
DNNs have surprisingly few activation regions because of the myriad of infea-
sible activation patterns. Therefore, it will need to understand the number of
activation regions of DNNs operating in the real world. To improve scalabil-
ity, there are several methods of targeting only low-dimensional subspaces in
the high-dimensional input space for verification [22,31,33]. We have similarly
taken advantage of low-dimensionality, e.g., using low-dimensional perturbation
parameters to represent high-dimensional input image pixels as mediator vari-
ables (i.e., partially applied perturbation function gx0(θ) = x′) to reduce the
elapsed time of LP solvers, determining the stability of neuron activity from
few vertices of perturbation parameter space Θ. Another possibility to improve
scalability is the method of partitioning the input space and verifying each par-
tition in a perfectly parallel fashion [37]. Our implementation has not been fully
parallelized yet but it should be relatively straightforward to do as part of our
future work.

Saliency-Map. Since [28] first proposed the method to obtain a saliency-map
from the gradients of DNN outputs with respect to an input image, many
improvements and extensions have been proposed [5,27,34]. We formulated an
attention-map primarily using the saliency-map definition by [28]. However,
it remains for future work to formulate attention robustness corresponding to
improvements, such as gradient-smoothing [5] and line-integrals [34].

It is known that semantic perturbations can significantly change the saliency-
maps [12,13,24]. [12] first claimed the saliency-map should consistently follow
image translation and proposed the method to quantify saliency-map consis-
tency. We formulated attention inconsistency ac primarily using the saliency-
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map consistency by [12]. While there have been works on the empirical studies
of the attribution robustness [4,17], the verification of it has not been studied.

7 Conclusion and Future Work

We have presented a verification method for attention robustness based on
traversing activation regions on the DNN that contains layers for semantic per-
turbations and layers for classification. Attention robustness is the property that
the saliency-map consistency is less than a threshold value. We have provided
a few cases that attention robustness more accurately captures trends in weak-
ness for the combinations of semantic perturbations than existing classification
robustness. Although the performance evaluation presented in this study is not
yet on a practical scale, such as VGG16 [29], we believe that the attention
robustness verification problem we have formulated opens a new door to quality
assurance for DNNs. We plan to increase the number of semantic perturbation
types that can be verified and improve scalability by using abstract interpreta-
tion in future work.

H Appendix

H.1 Linearity of Activation Regions

Given activation pattern p ∈ AP f as constant, within activation region arf (p)
each output of ReLU-FNN fj(x ∈ arf (p)) is linear for x (cf. Fig. 8) because
all ReLU operators have already resolved to 0 or x [14]. i.e., fj(x ∈ arf (p)) =
A′

jx + b′
j : where, A′

j and b′
j denote simplified weights and bias about activation

pattern p and class j. That is, the gradient of each ReLU-FNN output fj(x)
within activation region arf (p) is constant, i.e., the following equation holds:
where C ∈ R is a constant value.

Fig. 8. An example of activation regions [14]. ReLU-FNN output is linear on each
activation region, i.e., each output plane painted for each activation region is flat.
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Feasiblef (p ∈ AP f ) ⇒ ∂fj(x)
∂xi

= C (x ∈ arf (p)) (1)

An activation region can be interpreted as the H-representation of a convex
polytope on input space R

Nf

. Specifically, neuron activity pl,n and p have a
one-to-one correspondence with a half-space and convex polytope defined by the
intersection (conjunction) of all half-spaces, because f

(l)
n (x) is also linear when

p ∈ AP f is constant. Therefore, we interpret activation region arf (p) and the
following H-representation of convex polytope HConvexf (x; p) each other as
needed: where, A′′ and b′′ denote simplified weights and bias about activation
pattern p, and A′′

l,nx ≤ b′′
l,n is the half-space corresponding to the n-th neuron

activity pl,n in the l-th layer.

HConvexf (x; p) def= A′′x ≤ b′′ ≡
∧
l,n

A′′
l,nx ≤ b′′

l,n (2)

H.2 Connectivity of Activation Regions

When feasible activation patterns p, p′ ∈ AP f are in a relationship with each
other that flips single neuron activity pl,n ∈ {0, 1}, they are connected regions

because they share single face HFacef
l,n(x; p) def= A′′

l,nx = b′′
l,n corresponding

to flipped pl,n [18]. It is possible to flexibly traverse activation regions while
ensuring connectivity by selecting a neuron activity to be flipped according to
a prioritization; several traversing methods have been proposed [9,18,21]. How-
ever, there are generally rather many neuron activities that become infeasible
when flipped [18]. For instance, half-spaces h1,3 is a face of activation region η in
Fig. 6(1a); thus, flipping neuron activity p1,3, GBS can traverse connected region
η in Fig. 6(1b). In contrast, half-space h1,1 is not a face of activation region η in
Fig. 6(1a); thus, flipping neuron activity p1,1, the corresponded activation region
is infeasible (i.e., the intersection of flipped half-spaces has no area).

H.3 Hierarchy of Activation Regions

When feasible activation patterns p, p′ ∈ AP f are in a relationship with each
other that matches all of L′f -th upstream activation pattern p≤L′f

def= [pl,n |
1 ≤ l ≤ L′f , 1 ≤ n ≤ Nf

l ] (1 ≤ L′f ≤ Lf ), they are included parent activa-

tion region arf
≤L′f (p) corresponding to convex polytope HConvexf

≤L′f (x; p) def=∧
l≤L′f ,n A′′

l,nx ≤ b′′
l,n [21]. That is, ∀x ∈ arf (p). x ∈ arf

≤L′f (p) and ∀x ∈
R

Nf

. HConvexf (x; p) ⇒ HConvexf
≤L′f (x; p).

Similarly, we define L′f -th downstream activation pattern as p≥L′f
def= [pl,n |

L′f ≤ l ≤ Lf , 1 ≤ n ≤ Nf
l ] (1 ≤ L′f ≤ Lf ).
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H.4 Linear Programming on an Activation Region

Based on the linearity of activation regions and ReLU-FNN outputs, we can use
Linear Programming (LP) to compute (a) the feasibility of an activation region,
(b) the flippability of a neuron activity, and (c) the minimum (maximum) of a
ReLU-FNN output within an activation region. We show each LP encoding of
the problems (a,b,c) in the SciPy LP form2: where, p ∈ AP f is a given activation
pattern of ReLU-FNN f , and pl,n is a give neuron activity to be flipped.

(a) ∃x ∈ R
Nf

. HConvexf (x; p) encode−→ min
x

0x s.t., A′′x ≤ b′′

(b) ∃x ∈ R
Nf

. HConvexf (x; p) ∧ HFacef
l,n(x; p)

encode−→ min
x

0x s.t., A′′x ≤ b′′, A′′
l,nx = b′′

l,n

(c) min
x

fj(x) s.t., HConvexf (x; p) encode−→
(
min

x
A′

jx s.t., A′′x ≤ b′′
)

+ b′
j

(3)

H.5 Full Encoding Semantic Perturbations

We focus here on the perturbations of brightness change (B), patch (P), and
translation (T), and then describe how to encode the combination of them into
ReLU-FNN gx0 : Θ → X: where, |θ(l)| = dim θ(l), w is the width of image x0,
px, py, pw, ph are the patch x-position, y-position, width, height, and tx is the
amount of movement in x-axis direction. Here, perturbation parameter θ ∈ Θ
consists of the amount of brightness change for (B), the density of the patch for
(P), and the amount of translation for (T). In contrast, perturbation parameters
not included in the dimensions of Θ, such as w, px, py, pw, ph, tx, are assumed
to be given as constants before verification.

g(θ, x0) encode−→ gx0(θ) // partially applying given constant x0 to g.

gx0(θ) = g(5)(θ ◦ x0) // concat x0

g(1)(μ) = A(T )μ // translate

g(2)(μ) = A(P )g(1)(μ) // patch

g(3)(μ) = A(B)g(2)(μ) // brightness change

g(4)(μ) = −ReLU(g(3)(μ)) + 1 // clip max(0, xi)

g(5)(μ) = −ReLU(g(4)(μ)) + 1 // clip min(1, xi)

A(B) =
[
a(B)

r,c

]
, A(P ) =

[
a(P )

r,c

]
, A(T ) =

[
a(T )

r,c

]

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html
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Fig. 9. MNIST images used for experiments.

Fig. 10. Fashion-MNIST images used for experiments.

a(B)
r,c =

⎧
⎪⎨

⎪⎩

1 (c = 1 ∧ r ≥ |θ(l+1)|) // add θ
(l)
1

1 (c = r + 1) // copy θ
(l)
≥2 and xi

0 (otherwise)

a(P )
r,c =

⎧
⎪⎨

⎪⎩

1 (c = 1 ∧ On(r)) // add θ
(l)
1

1 (c = r + 1) // copy θ
(l)
≥2 and xi

0 (otherwise)

On(r)
def
= let i:=r − |θ(l+1)|. (px ≤ �i/w� ≤ px + pw) ∧ (py ≤ i mod w ≤ py + ph)

a(T )
r,c =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 (c = r + 1 ∧ r ≤ |θ(l+1)|) // copy θ
(l)
≥2

0 (c = 1 ∧ ¬(1 ≤ t(r) ≤ s(r) ≤ N)) // zero padding
x0tgt(r) − x0src(r) (c = 1 ∧ r ≥ |θ(l+1)|) // add θ

(l)
1 Δx0i

1 (c = s(r) + |θ(l)| ∧ r > |θ(l+1)|) // copy x0i

0 (otherwise)

s(r) def= let i:=r − |θ(l+1)|. (�i/w� + tx − 1)w + (i mod w)

t(r) def= let i:=r − |θ(l+1)|. (�i/w� + tx − 2)w + (i mod w)

H.6 Images Used for Our Experiments

We used 10 images (i.e., Indexes 69990–69999) selected from the end of the
MNIST dataset (cf. Fig. 9) and the Fashion-MNIST dataset (cf. Fig. 10), respec-
tively. We did not use these images in the training of any ReLU-FNNs.
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H.7 An Example of Lemma 1

Lemma 1 is reprinted below (Fig. 11).

∂fj(x)
∂xi

= C (x ∈ {gx0(θ) | θ ∈ arf◦g(p)})

A small example of Lemma 1 (cf. Figure 11)

Let X = [0, 1]3, Y = R
2, Θ = [0, 1]1, x0 ∈ X = (1, 0.5, 0.1), gx0(θ ∈ Θ) ∈

X = ReLU(−θ1+ x0), and f(x ∈ X) ∈ Y = ReLU(x1 + x2, x1 + x3).
Because gx0(0.6) = ReLU(0.4,−0.1, −0.5) and f(gx0(0.6)) =
ReLU(0.4, 0.4), p = apf◦g(0.6) = [1, 0, 0|1, 1] ∈ AP f◦g.
Then, p≥2 = [1, 1] = apf (gx0(0.6)) ∈ AP f .
Here, arf◦g(p) corresponding to HConvexf◦g(θ; p) ≡ −θ+1 ≥ 0∧−θ+0.5 ≤
0∧−θ+0.1 ≤ 0∧−θ+1 ≥ 0∧−θ+1 ≥ 0 ≡ 0.5 ≤ θ ≤ 1, on the other hand,
arf (p≥2) corresponding to HConvexf (x; p≥2) ≡ x1 + x2 ≥ 0∧ x1 + x3 ≥ 0.
Because 0 ≤ x1 + x2 = x1 + x3 = 1 − θ ≤ 0.5 (θ ∈ arf◦g(p)),
∀θ ∈ arf◦g(p). gx0(θ) ∈ arf (p≥2).

Fig. 11. An image for a small example of Lemma 1.

H.8 Algorithm BFS

Algorithm BFS traverses entire activation regions in perturbation parameter
space Θ, as shown in Fig. 12.

Algorithm BFS initializes Q with apf◦gx0
(0) (Line 3). Then, for each acti-

vation pattern p in Q (Lines 5–6), it reconstructs the corresponding activation
region η (subroutine constructActivationRegion, Line 8) as the H-representation
of p (cf. Eq. 2). Next, for each neuron in f ◦ gx0 (Line 12), it checks whether
the neuron activity pl,n cannot flip within the perturbation parameter space Θ,
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Fig. 12. Examples of BFS results. (Near the edges, polygons may fail to render, result-
ing in blank regions.)

i.e., one of the half-spaces has no feasible points within Θ (subroutine isStable,
Line 13). Otherwise, a new activation pattern p′ is constructed by flipping pl,n

(subroutine flipped, Line 14) and added to the queue (Line 20) if p′ is feasi-
ble (subroutine calcInteriorPointOnFace, Lines 17–18). Finally, the activation
region η is simplified (Line 24) and used to verify CR (subroutine solveCR and
solveVR, Lines 25–27, cf. Sect. 4.4) and V R (subroutine solveAR and solveIR,
Lines 32–34, cf. Sect. 4.4).

H.9 Details of Experimental Results

Table 2 shows the breakdown of verification statuses in experimental results for
each algorithm and each DNN size (cf. Sect. 5). In particular, for traversing AR
boundaries, we can see the problem that the ratio of “Timeout” and “Failed (out-
of-memory)” increases as the size of the DNN increases. This problem is because
gbs-AR traverses more activation regions by the width of the hyperparameter
wδ than gbs-CR. It would be desirable in the future, for example, to traverse
only the small number of activation regions near the AR boundary.
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Table 2. Breakdown of verification statuses. “Robust” and “NotRobust” mean algo-
rithm found “only robust regions” and “at least one not-robust region”, respectively.
“Timeout” and “Failed” mean algorithm did not finish “within 2 h” and “due to out-
of-memory”, respectively.

algorithm #neurons Robust NotRobust Timeout Failed

bfs 100 13 22 25 0

bfs 200 11 15 34 0

gbs-CR 100 16 44 0 0

gbs-CR 200 17 43 0 0

gbs-CR 400 14 46 0 0

gbs-CR 800 17 43 0 0

gbs-CR 2028 16 44 0 0

gbs-CR 14824 4 0 0 56

gbs-AR 100 14 35 11 0

gbs-AR 200 19 27 14 0

gbs-AR 400 30 13 17 0

gbs-AR 800 28 3 28 1

gbs-AR 2028 15 4 33 8

gbs-AR 14824 4 0 0 56

gbs-CRAR 100 14 41 5 0

gbs-CRAR 200 19 33 8 0

gbs-CRAR 400 30 14 16 0

gbs-CRAR 800 28 6 26 0

gbs-CRAR 2028 15 8 32 5

gbs-CRAR 14824 4 0 0 56
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Algorithm 3. bfs(f, g, x0, Θ, δ) → (HCR,HMR,HCB ,HAR,HIR,HAB)
Input: f, g, x0, Θ, δ
Output: HCR, HMR, HCB , HAR, HIR, HAB ⊂ P(Θ)
1: HCR, HMR, HCB , HAR, HIR, HAB ← {}, {}, {}, {}, {}, {}
2: gx0 ← g(·, x0) // partially applying x0 to g; i.e, gx0(θ) = g(θ, x0).

3: Q ⊂ AP f◦gx0 ← {apf◦gx0
(0)} // queue for breadth-first search.

4: OBS ⊂ AP f◦gx0 ← {} // observed activation patterns.
5: while #|Q| > 0 // loop for breadth-first search. do
6: p ← pop(Q)
7: OBS ← OBS ∪ {p}
8: η ← constructActivationRegion(f ◦ gx0, p)

9:
10: // Push the connected activation regions of η.
11: FS ⊂ Z × Z ← {} // (l, n) means the n-th neuron in l-th layer is a face of η
12: for l = 1 to the layer size of DNN f ◦ gx0, n = 1 to the neuron size of the l-th

layer do
13: continue if isStable(p, l, n, Θ) // skip if neuron activity pl,n cannot flip within

Θ.
14: p′ ← flipped(p, l, n) // flip neuron activity pl,n.
15: continue if p′ ∈ OBS // skip if p′ has already observed.
16: OBS ← OBS ∪ {p′}
17: θF ← calcInteriorPointOnFace(η, l, n)
18: continue if θF = null // skip if p′ is infeasible.
19: FS ← FS ∪ {(l, n)}
20: Q ← Q ∪ {p′} // push.
21: end for

22:
23: // Verify activation region η.
24: η̃ ← simplified(η, FS) // limit the constraints on η to FS.
25: if solveCR(x0; η̃) then
26: HCR ← HCR ∪ {η̃}
27: else if solveMR(x0; η̃) then
28: HMR ← HMR ∪ {η̃}
29: else
30: HCB ← HCB ∪ {η̃}
31: end if
32: if solveAR(x0; η̃) then
33: HAR ← HAR ∪ {η̃}
34: else if solveIR(x0; η̃) then
35: HIR ← HIR ∪ {η̃}
36: else
37: HAB ← HAB ∪ {η̃AB}
38: end if
39: end while
40: return HCR, HMR, HCB , HAR, HIR, HAB
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Abstract. Verification of neural networks relies on activation functions
being piecewise affine (pwa)—enabling an encoding of the verification
problem for theorem provers. In this paper, we present the first formal-
ization of pwa activation functions for an interactive theorem prover tai-
lored to verifying neural networks within Coq using the library Coqueli-
cot for real analysis. As a proof-of-concept, we construct the popular
pwa activation function ReLU. We integrate our formalization into a
Coq model of neural networks, and devise a verified transformation from
a neural network N to a pwa function representing N by composing pwa
functions that we construct for each layer. This representation enables
encodings for proof automation, e.g. Coq’s tactic lra – a decision pro-
cedure for linear real arithmetic. Further, our formalization paves the
way for integrating Coq in frameworks of neural network verification as
a fallback prover when automated proving fails.

Keywords: Piecewise Affine Function · Neural Network · Interactive
Theorem Prover · Coq · Verification

1 Introduction

The growing importance of neural networks motivates the search of verification
techniques for them. Verification with automatic theorem provers is vastly under
study, usually targeting feedforward networks with piecewise affine (pwa) acti-
vation functions since the verification problem can be then encoded as an SMT
or MILP problem [2]. In contrast, few attempts exist on investigating interactive
provers. Setting them up for this task though offers not only a fallback option
when automated proving fails but also insight on the verification process.

That is why in this paper, we work towards this goal by presenting the
first formalization of pwa activation functions for an interactive theorem prover
tailored to verifying neural networks with Coq. We constructively define pwa
functions using the polyhedral subdivision of a pwa function [26] since many
algorithms working on polyhedra are known [27] with some tailored to reasoning
about reachability properties in neural networks [31]. Motivated by verification,
we restrict pwa functions by a polyhedron’s constraint to be non-strict in order
to suit linear programming [30] and by employing finitely many polyhedra to fit
SMT/MILP solvers [12,30]. We use reals supported by the library Coquelicot
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https://doi.org/10.1007/978-3-031-33170-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33170-1_4&domain=pdf
http://orcid.org/0000-0002-4717-4206
http://orcid.org/0000-0002-8988-0053
https://doi.org/10.1007/978-3-031-33170-1_4


Piecewise Affine Activation Functions of Neural Networks in Coq 63

to enable future reasoning about gradients and matrices with Coq’s standard
library providing the tactic lra – a decision procedure for linear real arithmetic.
As a proof-of-concept, we construct the activation function ReLU– one of the
most popular in industry [21] and formal verification [9]. Furthermore, we devise
a sequential Coq model of feedforward neural networks integrating pwa activa-
tion layers. Most importantly, we present a verified transformation from a neural
network N to a pwa function representing N with the main benefit being again
encodings for future proof automation. To this end, we introduce two verified
binary operations on pwa functions – usual function composition and an oper-
ator to construct a pwa function for each layer. In particular, we provide the
following contributions with the corresponding Coq code available on GitHub1:

1. a constructive formalization of pwa functions based on a polyhedral subdi-
vision tailored to verification of neural networks (Sect. 3),

2. a construction of the popular activation function ReLU (Sect. 3),
3. a sequential model for feedforward neural networks with parameterized layers,

one of which for pwa layers (Sect. 4),
4. composition for pwa functions and an operator for constructing higher dimen-

sional pwa functions out of lower dimensional ones (Sect. 4), and
5. a verified transformation from a feedforward neural network with pwa acti-

vation to a single pwa function representing the network (Sect. 4).

Related Work. A variety of work on using automatic theorem provers to ver-
ify neural networks exists with the vast majority targeting feedforward neural
networks with pwa activation functions [7,9,13,16,19,20,25]. In comparison, lit-
tle has been done regarding interactive theorem provers with some mechanized
results from machine learning [5,23], a result on verified training in Lean [28]
and, relevant to this paper, pioneering work on verifying networks in Isabelle [8]
and in Coq [3]. Apart from [8] targeting Isabelle instead of Coq, both net-
work models are not generalized by entailing a formalization of pwa functions
and they do not offer a model of the network as a (pwa) function – both contri-
butions of this paper.

2 Preliminaries

We clarify notations and definitions important to this paper. We write dom(f)
for a function’s domain, dim(f) for the dimension of dom(f) and (f ◦ g)(x)
for function composition. For a matrix M , MT is the transposed matrix. We
consider block matrices. To clarify notation, consider a block matrix made out
of matrices M1, ...,M4: [

M1 M2

M3 M4

]

1 Athttps://github.com/verinncoq/formalizing-pwawithmatrix extensions.v(Sect. 2),
piecewise affine.v (Sect. 3.1), neuron functions.v (Sect. 3.2), neural networks.v
(Sect. 4.1 and 4.4) and pwaf operations.v (Sect. 4.2 and 4.3).

https://github.com/verinncoq/formalizing-pwa
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2.1 Piecewise Affine Topology

We give the important definitions regarding pwa functions [24,26,33]. In all
following definitions, n ∈ N.

Definition 1. (Linear Constraint). For some c ∈ R
n, b ∈ R, a linear con-

straint is an inequality of form cTx ≤ b for any x ∈ R
n.

Definition 2. (Polyhedron2). A polyhedron P is the intersection of finitely
many halfspaces, meaning P := {x ∈ R

n|cT1 x ≤ b1 ∧ ... ∧ cTmx ≤ bm} with
ci ∈ R

n, bi ∈ R and i ∈ {1, ...,m}.
We denote the constraints of P as C(P ) := {(cT1 x ≤ b1), ..., (cTmx ≤ bm)} for
readability even though a constraint is given by ci and bi while x is arbitrary.

Definition 3. (Affine Function3). A function f : Rm → R
n is called affine

if there exists M ∈ R
n×m and b ∈ R

n such that for all x ∈ R
m holds: f(x) =

Mx + b.

Definition 4. (Polyhedral Subdivision). A polyhedral subdivision of
S ⊆ R

n is a finite set of polyhedra P := {P1, . . . , Pm} such that (1) S =
⋃m

i=1 Pi

and (2) for all Pi, Pj ∈ P, x ∈ Pi ∩ Pj, and for all ε > 0 there exists x′ ∈ R
n

such that |x − x′| < ε, and x′ /∈ Pi ∩ Pj.

Definition 5. (Piecewise Affine Function) A continuous function f : D ⊆
R

m → R
n is piecewise affine if there is a polyhedral subdivision P = {P1, . . . , Pl}

of D and a set of affine functions {f1, . . . , fl} such that for all x ∈ D holds
f(x) = fi(x) if x ∈ Pi.

2.2 Neural Networks

Neural networks approximate functions by learning from sample points during
training [10] with arbitrary precision [11,15,17]. A feedforward neural network
is a directed acyclic graph with the edges having weights and the vertices (neu-
rons) having biases and being structured in layers. Each layer first computes the
weighted sum (an affine function) and then applies an activation function (non-
linear, possibly pwa). In many machine learning frameworks (e.g. PyTorch),
these functions are modelled as separate layers followed up by each other. Every
network has an input and an output layer with optional hidden layers in between.

2 In literature often referred to as a convex, closed polyhedron.
3 A linear function is a special case of an affine function [32]. However, in literature,

the term linear is sometimes used for both.
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2.3 Interactive Theorem Prover COQ & Library COQUELICOT

We use the interactive theorem prover Coq [29] providing a non-turing-complete
functional programming language extractable to selected functional program-
ming languages and a proof development system – a popular choice for formal
verification of programs and formalization of mathematical foundations. Addi-
tionally, we use the real analysis library Coquelicot [6] offering derivatives,
integrals, and matrices compatible with Coq’s standard library.

Extensions in Coq: Column Vectors & Block Matrices. For this paper, we for-
malized column vectors and block matrices on top of Coquelicot. A column
vector colvec is identified with matrices and equipped with a dot product dot
on vectors and some lemmas to simplify proofs. Additionally, we formalized
several notions for Coquelicot’s matrix type. We provide multiplication of
a matrix with a scalar scalar mult, noted as ( * )%scalar, and transposi-
tion transpose of matrices. We provide operations on different shapes of matri-
ces and vectors such as a right-to-left construction of block diagonal matri-
ces block diag matrix, a specialization thereof on vectors colvec concat and
extensions of vectors with zeroes on the bottom extend colvec at bottom or

top extend colvec on top, denoted as follows:
[
M1 0
0 M2

]
,

[
�v1
�v2

]
,

[
�v
�0

]
, and

[
�0
�v

]
.

We proved lemmas relating all operations, new and existing, with each other, and
overloaded the notations * and +. The extension is tightly coupled to reals, but
could be generalized to Ring and may serve as a foundation of matrix operations
on shapes as widely used in scientific computing.

3 Formalization of Piecewise Affine Functions in Coq

We formalize pwa functions tailored to neural network verification with pwa
activation. As a proof-of-concept, we construct the activation function Rectified
Linear Unit (ReLU) – one of the most popular activation functions in indus-
try [21] and formal verification [9].

3.1 Inductive Definition of PWA Functions

We define a linear constraint with a dimension dim and parameters, vector
c ∈ R

dim and scalar b ∈ R, being satisfied for a vector x ∈ R
dim if c · x ≤ b:

Inductive LinearConstraint (dim:nat) : Type :=
| Constraint (c: colvec dim) (b: R).

Definition satisfies_lc {dim: nat} (x: colvec dim) (l: LinearConstraint dim)
: Prop := match l with | Constraint c b ⇒ (c ∗ x)%v <= b end.

We define a polehydron as a finite set of linear constraints together with a
predicate stating that a point lies in a polyhedron:
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Inductive ConvexPolyhedron (dim: nat) : Type :=
| Polyhedron (constraints: list (LinearConstraint dim)).
Definition in_convex_polyhedron {dim: nat} (x: colvec dim) (p:

ConvexPolyhedron dim) :=
match p with | Polyhedron lcs ⇒
forall constraint, In constraint lcs → satisfies_lc x constraint end.

Finally, we define a pwa function as a record composed of the fields body
holding the polyhedral subdivision for piecewise construction, and prop for the
property that functions of intersecting polyhedra coincide in the intersection
such that all “pieces” together yield indeed a function. We call this property
univalence (also called right-definiteness or right-uniqueness), not to be confused
with the same term used in type theory.

Record PWAF (in_dim out_dim: nat): Type := mkPLF {
body: list (ConvexPolyhedron in_dim ∗ ((matrix out_dim in_dim) ∗ colvec

out_dim));
prop: pwaf_univalence body; }.

Piecewise Construction. We construct a pwa function f by a list of polyhedra
and corresponding affine functions (P, fP ) with fP = (M, b) defining a “piece”
of f by an affine function with fP (x) = Mx + b if x ∈ P . For evaluation, we
search a polyhedron containing x and compute the affine function:

Fixpoint pwaf_eval_helper

{in_dim out_dim: nat}
(body: list (ConvexPolyhedron in_dim ∗ ((matrix (T:=R) out_dim in_dim) ∗

colvec out_dim)))
(x: colvec in_dim) :=
match body with

| nil ⇒ None

| body_el :: next ⇒
match body_el with

| (polyh, affine_f) ⇒
match polyhedron_eval x polyh with

| true ⇒ Some affine_f

| false ⇒ pwaf_eval_helper next x

end end end.

The presented function either outputs None in case when no such polyhedron
is found (i.e. x /∈ dom(f)) or returns body el such that the pwa function is
evaluated using M and b. The final output is computed in the wrapper function
pwaf eval not presented here. For the purpose of proving, we define a predicate
in pwaf domain for the existence of a polyhedron for an input and a predicate
is pwaf value for stating the function is evaluated to a certain value.
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Univalence. We enforce the construction to be a function by stating univalence,
i.e. all pairs of polyhedra having coinciding affine functions in their intersection,
requiring a proof for each instance of type PWAF:

Definition pwaf_univalence {in_dim out_dim: nat}
(l: list (ConvexPolyhedron in_dim ∗

((matrix out_dim in_dim) ∗ colvec out_dim))) :=
ForallPairs (fun e1 e2 ⇒ let p1 := fst e1 in let p2 := fst e2 in

forall x, in_convex_polyhedron x p1 ∧ in_convex_polyhedron x p2 →
let M1 := fst (snd e1) in let b1 := snd (snd e1) in

let M2 := fst (snd e2) in let b2 := snd (snd e2) in

((M1 ∗ x) + b1 = (M2 ∗ x) + b2)%M) l.

Class of Formalized PWA Functions. Motivated by pwa activation functions in
the context of neural network verification, our pwa functions are restricted by

(1) all linear constraints being non-strict, and
(2) being defined over a union of finitely many polyhedra.

Restriction (1) is motivated by linear programming usually dealing with non-
strict constraints [30], and restriction (2) by MILP/SMT solvers commonly
accepting finitely many variables [12,30]. Since we use that every continuous
pwa function on R

n admits a polyhedral subdivision of the domain [26], all
continuous pwa functions with a finite subdivision can be encoded.

For pwa functions not belonging to this class, consider any discontinuous
pwa function since discontinuity violates restriction (1), and any periodic pwa
function as excluded by restriction (2) due to having infinitely many “pieces”.

Choice of Formalization. We use real numbers (instead of e.g. rationals or floats)
to enable Coquelicot’s reasoning about derivatives – interesting for neural
networks’ gradients. Coquelicot builds up on the reals of Coq’s standard
library allowing the use of Coq’s tactic lra – a Coq-native decision procedure
for linear real arithmetic. An alternative would be the library MathComp-
Analysis4 which, at the time of development, did not support the lra tactic
for reals.5 Beyond, Coquelicot provides lemmas and tactics for derivation and
integration which do not (yet) have equivalents in MathComp-Analysis.

Moreover, we use inductive types since they come with an induction prin-
ciple and therefore ease proving. Besides that, the type list (e.g. used for
the definition of pwa functions) enjoys extensive support in Coq. For exam-
ple, pwaf univalence is stated using the list predicate ForAllPairs and proofs
intensively involve lemmas from Coq’s standard library.

A constructive definition using the polyhedral subdivision is interesting since
many efficient algorithms are known that work on polyhedra [27] with some being
tailored to neural network verification [31]. We expect that such algorithms are
4 https://github.com/math-comp/analysis.
5 https://github.com/math-comp/algebra-tactics/pull/54.

https://github.com/math-comp/analysis
https://github.com/math-comp/algebra-tactics/pull/54
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implementable in an idiomatic functional style using our model. Furthermore,
we anticipate that encodings for pwa functions [2] are also usable for proof
automation in Coq.

3.2 Example: Rectified Linear Unit Activation Function

We construct ReLU as a pwa function defined by two “pieces” each of which
being a linear function. The function is defined as:

ReLU(x) :=

{
0, x < 0
x, x ≥ 0

Piecewise Construction. The intervals, (−∞, 0) and [0,∞), each correspond to
a polyhedron in R defined by a single constraint: Pleft := {x ∈ R

1|[1] · x <= 0}
and Pright := {x ∈ R

1|[−1] · x <= 0}.6 We define these polyhedra as follows:7

Definition ReLU1d_polyhedra_left := Polyhedron 1 [Constraint 1 Mone 0].
Definition ReLU1d_polyhedra_right

:= Polyhedron 1 [Constraint 1 ((−1) ∗ Mone)%scalar 0].

ReLU’s construction list contains these polyhedra each associated with a
matrix and vector, in these cases ([0], [0]) and ([1], [0]), for the affine functions:

Definition ReLU1d_body: list (ConvexPolyhedron 1 ∗ (matrix (T:=R) 1 1 ∗
colvec 1))

:= [( ReLU1d_polyhedra_left, (Mzero, null_vector 1));
(ReLU1d_polyhedra_right, (Mone, null_vector 1))].

Univalence. Note that while ReLU’s intervals are distinct, the according poly-
hedra with non-strict constraints are not. To ensure the construction to be a
function, we prove univalence by proving that only [0] ∈ (Pleft ∩ Pright):

Lemma RelU1d_polyhedra_intersect_0:
forall x, in_convex_polyhedron x ReLU1d_polyhedra_left ∧
in_convex_polyhedron x ReLU1d_polyhedra_right → x = null_vector 1.

Finally, we ensure for each polyhedra pair holds [1] · [0] + [0] = [0] · [0] +
[0], and instantiate a PWAF by Definition ReLU1dPWAF := mkPLF 1 1 ReLU1d_body

ReLU1d_pwaf_univalence.

On the Construction of pwa Functions. Besides ReLU being an important
activation function, we chose it as an introductory example to focus on the
6 Matrices involved are one-dimensional vectors since ReLU is one-dimensional. For

technical reasons, in Coq, the spaces R and R
1 differ with the latter working on

one-dimensional vectors instead on scalars.
7 Mone is Coquelicot’s identity matrix which in this case is a one-dimensional vector.
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structure of pwa functions. Nevertheless, this example is extendable to ReLU
variants, e.g. PReLU by adding a parameter for the function slope to the “left”
polyhedron. Other activation functions sharing its features of consisting of a few
polyhedra and being one-dimensional work similarly. We can also construct a
multi-dimensional function out of its one-dimensional version as we will illustrate
for ReLU in Sect. 4.3. Different types of pooling [10] require more effort though
due to a non-trivial polyhedra structure and inherent multi-dimensionality. This
effort motivates a future shift towards tailored tactics easing the construction of
pwa functions.

4 Verified Transformation of a Neural Network to a PWA

Function

We present our main contribution: a formally verified transformation of a feed-
forward neural network with pwa activations into a single pwa function. First,
we introduce a Coq model for feedforward neural networks (Sect. 4.1). We fol-
low up with two verified binary operations on pwa functions at the heart of the
transformation, composition (Sect. 4.2) and concatenation (Sect. 4.3), and finish
with the verified transformation (Section 4.4).

4.1 Neural Network Model in COQ

We define a neural network NNSequential as a list-like structure containing layers
parameterized on the type of activation, and the input’s, output’s and hidden
layer’s dimensions with dependent types preventing dimension mismatch:

Inductive NNSequential {input_dim output_dim: nat} :=
| NNOutput : NNSequential
| NNPlainLayer {hidden_dim: nat}:

(colvec input_dim → colvec hidden_dim)
→ NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim)
→ NNSequential

| NNPWALayer {hidden_dim: nat}:
PWAF input_dim hidden_dim

→ NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim)
→ NNSequential

| NNUnknownLayer {hidden_dim: nat}:
NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim)
→ NNSequential.

The network model has four layer types: NNOutput as the last layer propagates
input values to the output; NNPlainLayer is a layer allowing any function in
Coq defined on real vectors; NNPWALayer is a pwa activation layer – the primary
target of our transformation; and NNUnknownLayer is a stub for a layer with an
unknown function.
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Informally speaking, the semantics of our model is as follows: for a layer
NNOutput the identity function8 is evaluated, for NNPlainLayer the passed func-
tion, for NNPWALayer the passed pwa function, and for NNUnknownLayer a failure
is raised. Thus, the NNSequential type does not prescribe any specific functions
of layers but expects them as parameters.

An Example of a Neural Network. We define specific layers for a network, in
this case the pwa layers Linear and ReLU. The Linear layer implements
the generic affine function f(x) = Wx + b computing the weighted sum. As an
example, we consider a neural network with these two hidden layers.

Definition NNLinear {input_dim hidden_dim output_dim: nat}
(W: matrix hidden_dim input_dim) (b: colvec hidden_dim)
(NNnext: NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim))
:= NNPWALayer (LinearPWAF W b) NNnext.

Definition NNReLU {input_dim output_dim: nat}
(NNnext: NNSequential (input_dim:=input_dim) (output_dim:=output_dim))
:= NNPWALayer (input_dim:=input_dim) ReLU_PWAF NNnext.

Definition example_weights: matrix 2 2 := [[2.7, 0],[1, 0.01]].
Definition example_biases: colvec 2 := [[1], [0.25]].
Definition example_nn := (NNLinear example_weights example_biases

(NNReLU (NNOutput (output_dim:=2)))).

From a Trained Neural Network into the World of Coq. As illustrated, we can
construct feedforward neural networks in Coq. Another option is to convert a
neuronal network trained outside of Coq into an instance of the model. In [3] a
python script is used for conversion from PyTorch to their Coq model with-
out any correctness guarantess, while in [8] an import mechanism from Ten-
sorFlow into Isabelle is used, where correctness of the import has to be
established for each instance of their model. We are working with a converter
expecting a neural network in the ONNX format (i.e. exchange format sup-
ported by most frameworks) [4] to produce an according instance in our Coq
model [14].9 This converter is mostly written within Coq with its core func-
tionality being verified. Note that fitting pwa activation functions have to be
supplied by the Coq model.

Choice of Model. While feedforward neural networks are often modeled as
directed acyclic graphs [1,18] a sequential model of layers is often employed
alongside similar to our Coq model. A graph-based model is extendable to recur-
rent networks but is also adding complexity. In [8] the authors showed a sequen-
tial model to be superior to a graph-based model for verification in Isabelle.
Hence, we expect that the need for a sequential Coq model to stay even in the

8 We use the customized identity function flex dim copy.
9 A bachelor thesis supervised by one of the authors and scheduled for publication.
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presence of a generic graph-based model. The introduced model is inspired by,
to our knowledge, the only published neural network model in Coq [3], and gen-
eralizes it by having parameterized layers instead of being restricted to ReLU
activation. Moreover, we decided for reals instead of customized floats in order
to ease verification and to support Coquelicot’s real analysis as a foundation
for future proof automation tailored to neural networks in Coq. All efforts have
been done with a verification process in mind starting from a trained network
outside of Coq which is trustfully converted into an instance of the Coq model
for which safety properties are semi-automatically verified – no extraction is
intended.

4.2 Composition of PWA Functions

Besides composition being a general purpose binary operation closed over pwa
functions [26], it is needed in our transformation to compose pwa layers. Since,
for pwa functions f : Rl → R

n and g : Rm → R
l, their composition z = f ◦g is a

pwa function, composition in Coq produces an instance of type PWAF requiring
a construction and a proof of univalence:

Definition pwaf_compose {in_dim hidden_dim out_dim: nat}
(f: PWAF hidden_dim out_dim) (g: PWAF in_dim hidden_dim)
: PWAF in_dim out_dim := mkPLF in_dim out_dim

(pwaf_compose_body f g) (pwaf_compose_univalence f g).

Piecewise Construction of Composition. Assume a pwa function f defined on the
polyhedra set Pf = {P f

1 , . . . , P f
k } with affine functions given by the parameter

set Af = {(Mf
1 , bf1 ), . . . , (Mf

k , bfk)}. Analogously, g is given by Pg and Ag. For
computing a composed function z = f ◦ g at any x ∈ R

m, we need a polyhedron
P g
j ∈ Pg such that x ∈ P g

j to compute g(x) = Mg
j x + bgj with (Mg

j , bgj ) ∈ Ag.
Following, we need a polyhedron P f

i ∈ Pf with g(x) ∈ P f
i to finally compute

z(x) = Mf
i g(x) + bfi with (Mf

i , bfi ) ∈ Af .
We consider function composition on the level of polyhedra sets to construct

z’s polyhedra set Pz. For each pair P f
i ∈ Pf , P g

j ∈ Pg, we create a polyhedron
P z
i,j ∈ Pz such that x ∈ P z

i,j iff x ∈ P g
j and Mg

j x + bgj ∈ P f
i with (Mg

j , bgj ) ∈ Ag.
Consequently, C(P g

j ) ⊆ C(P z
i,j) while the constraints of P f

i have to be modified.
For (ci · x ≤ bi) ∈ C(P f

i ) we have the modified constraint ((cTi Mg
j ) · x ≤ bi − ci ·

bgj ) ∈ C(P z
i,j). We construct a polyhedra set accordingly in Coq including empty

polyhedra in case no qualifying pair of polyhedra exists:

Definition compose_polyhedra_helper

{in_dim hidden_dim: nat}
(M: matrix hidden_dim in_dim)
(b1: colvec hidden_dim)
(l_f: list (LinearConstraint hidden_dim)) :=
map (fun c ⇒ match c with Constraint c b2 ⇒
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Constraint in_dim (transpose ((transpose c) ∗ M)%M) (b2 − (c ∗ b1)%v)
end) l_f.

Definition compose_polyhedra {in_dim hidden_dim: nat}
(p_g: ConvexPolyhedron in_dim)
(M: matrix hidden_dim in_dim) (b: colvec hidden_dim)
(p_f: ConvexPolyhedron hidden_dim) :=
match p_g with | Polyhedron l1 ⇒

match p_f with | Polyhedron l2 ⇒
Polyhedron in_dim (l1 ++ compose_polyhedra_helper M b l2)

end end.

Further, each (Mz
i,j , b

z
i,j) ∈ Az is defined as (Mf

j Mg
i ,Mf

j bgi + bfj ) as a result
of usual composition of two affine functions:

Definition compose_affine_functions {in_dim hidden_dim out_dim: nat}
(M_f: matrix (T:=R) out_dim hidden_dim) (b_f: colvec out_dim)
(M_g: matrix (T:=R) hidden_dim in_dim) (b_g: colvec hidden_dim) :=
(M_f ∗ M_g, (M_f ∗ b_g) + b_f)%M.

Univalence of Composition. Due to the level of details, the Coq proof for the
composed function z satisfying univalence is omitted in this paper (see Theo-
rem pwaf compat univalence).

Composition Correctness. For establishing the correctness of the composition,
we proved the following theorem:

Theorem pwaf_compose_correct:
forall in_dim hid_dim out_dim x f_x g_x

(f: PWAF hid_dim out_dim) (g: PWAF in_dim hid_dim),
in_pwaf_domain g x → is_pwaf_value g x g_x →
in_pwaf_domain f g_x → is_pwaf_value f g_x f_x →
let fg := pwaf_compose f g in

in_pwaf_domain fg x ∧ is_pwaf_value fg x f_x.

4.3 Concatenation: Layers of Neural Networks as PWA Functions

While some neural networks come with each layer being one multi-dimensional
function, many feature layers where each neuron is assigned the same lower
dimensional function independently then applied to each neuron’s input. Moti-
vated by the transformation of a neural network into a single pwa function, we
introduce a binary operation concatenation that constructs a single pwa func-
tion for each pwa layer of a neural network. Besides, concatenation is interesting
by itself to construct a multi-dimensional pwa function. That is why, we finish
on concatenation with the illustration of a multi-dimensional ReLU layer.

Concatenation of pwa functions has to yield an instance of type PWAF since
being closed over pwa functions. Concatenation is defined as follows:
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Definition 6 (Concatenation). Let f : R
m → R

n and g : R
k → R

l. The
concatenation ⊕ is defined as:

(f ⊕ g)(
[
xf

xg

]
) :=

[
f(xf )
g(xg)

]

Piecewise Construction of Concatenation. Assume some f, g, Pf ,Pg,Af and Ag

as previously used, and z = f ⊕ g. The polyhedra set Pz contains the pairwise
joined polyhedra of Pf and Pg but with each constraint of a polyhedron lifted
to the dimension of z’s domain. Consider a pair P f

i ∈ Pf and P g
j ∈ Pg. For

constraints (cfi · xf ≤ bfi ) ∈ C(P f
i ) and (cgj · xg ≤ bgj ) ∈ C(P g

j ) with
[
xf

xg

]
∈

R
dim(f)+dim(g), the following higher dimensional constraints are in C(P z

i,j) with

P z
i,j ∈ Pz:

[
cfi
0

]
·
[
xf

xg

]
≤ bfi and

[
0
cgj

]
·
[
xf

xg

]
≤ bgj .

Thus, we get
[
xf

xg

]
∈ P z

i,j iff xf ∈ P f
i and xg ∈ P g

j .

Hence, the concatenation requires the pairwise join of all polyhedra Pf and
Pg each with their constraints lifted to the higher dimension of z’s domain:

Definition concat_polyhedra {in_dim1 in_dim2: nat}
(p_f: ConvexPolyhedron in_dim1) (p_g: ConvexPolyhedron in_dim2):
ConvexPolyhedron (in_dim1 + in_dim2) :=
match p_f with | Polyhedron l1 ⇒

match p_g with | Polyhedron l2 ⇒
Polyhedron (in_dim1 + in_dim2)

(extend_lincons_at_bottom l1 (in_dim1 + in_dim2) ++
extend_lincons_on_top l2 (in_dim1 + in_dim2))

end end.

The Coq code uses two functions for insertion of zeros similar to the dimension
operations (see Sect. 2). The corresponding affine function of P z

i,j is then:

(Mz
i,j , b

z
i,j) := (

[
Mf

i 0
0 Mg

j

]
,

[
bfi
bgj

]
).

Univalence of Concatenation. The lengthy technical proof of concatenation being
univalent is omitted in this paper (see Theorem pwaf concat univalence).

Concatenation Correctness. We proved the correctness of the concatenation:

Theorem pwaf_concat_correct:
forall in_dim1 in_dim2 out_dim1 out_dim2 x1 x2 f_x1 g_x2

(f: PWAF in_dim1 out_dim1) (g: PWAF in_dim2 out_dim2),
in_pwaf_domain f x1 → is_pwaf_value f x1 f_x1 →
in_pwaf_domain g x2 → is_pwaf_value g x2 g_x2 →
let fg := pwaf_concat f g in



74 A. Aleksandrov and K. Völlinger

let x := colvec_concat x1 x2 in

let fg_x := colvec_concat f_x1 g_x2 in

in_pwaf_domain fg x ∧ is_pwaf_value fg x fg_x.

The proof relies on an extensive number of lemmas connecting matrix operations
to block matrices and vector reshaping.

Example: ReLU Layer. Using concatenation, we construct a multi-dimensional
ReLU layer using one-dimensional ReLU (see Sect. 4.1). To construct a ReLU
layer R

n → R
n, we perform n concatenations of one-dimensional ReLU:

Fixpoint ReLU_PWAF_helper (in_dim: nat): PWAF in_dim in_dim :=
match in_dim with

| 0 ⇒ ZeroDimPWAF

| S n ⇒ pwaf_concat ReLU1dPWAF (ReLU_PWAF_helper n)
end.

In this listing, ZeroDimPWAF is a stub for a total function with signature R0 → R
0.

We did prove that there is a unique x ∈ R
0, which implies that there is only one

function with this signature.

4.4 Transforming a Neural Network into a PWA Function

Building up on previous efforts, the transformation of a feedforward neural net-
work with pwa activation functions into a single pwa function is straightfor-
ward. Using concatenation, we construct multi-dimensional pwa layers and then
compose them to one pwa function representing the whole neural network as
conceptually illustrated in Fig. 1 and implemented as follows in Coq:

Fixpoint transform_nn_to_pwaf {in_dim out_dim: nat}
(nn: NNSequential (input_dim := in_dim) (output_dim := out_dim))
: option (PWAF in_dim out_dim) :=
match nn with

| NNOutput ⇒ Some (OutputPWAF)
| NNPlainLayer _ _ _ ⇒ None

| NNUnknownLayer _ _ ⇒ None

| NNPWALayer _ pwaf next ⇒
match transform_nn_to_pwaf next with

| Some next_pwaf ⇒ Some (pwaf_compose next_pwaf pwaf)
| None ⇒ None

end end.

Correctness of Transformation. For this transformation, we proved the following
theorem in Coq to establish its correctness with nn eval computing a network’s
output:
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Fig. 1. Transformation of a feedforward network N with pwa activation functions into
its representation as a pwa function FN by concatenating neuron activation within
each layer followed up by composing pwa layers.

Theorem transform_nn_to_pwaf_correct:
forall in_dim out_dim (x: colvec in_dim) (f_x: colvec out_dim) nn

nn_pwaf,
Some nn_pwaf = transform_nn_to_pwaf_correct nn →
in_pwaf_domain nn_pwaf x →
is_pwaf_value nn_pwaf x f_x ↔ nn_eval nn x = Some f_x.

For a neural network N and its transformed pwa function fN , the theorem states
that for all inputs x ∈ dom(fN ) holds fN (x) = N (x). The proof of this theorem
relies on several relatively simple properties of the composition. Note that for
dom(fN ) = ∅ the theorem trivially holds, and in fact an additional proof is
required for fN ’s polyhedra being a subdivision of dom(N ) (i.e. dom(fN (x)) =
dom(N (x))).

On the Representation of a Neural Network as a pwa Function. The main benefit
of having a pwa function obtained from a neural network lies in the option
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to use simple-to-implement encodings of pwa functions for different solvers,
e.g. Coq’s tactic lra or MILP/SMT solvers [2]. Hence, this representation
paves the way for proof automation when stating theorems about the input-
output relation of a network in Coq. Furthermore, a representation as a pwa
function moves the structural complexity of a neural network to the polyhedral
subdivision of the pwa function. This is interesting since local search can be
applied to the set of polyhedra for reasoning about reachability properties in
neural networks [31]. Furthermore, one may estimate the size of a pwa function’s
polyhedral subdivision for different architectures of neural networks [22].

5 Discussion

We were working towards neural network verification in Coq with a verified
transformation from a network to a pwa function being the main contribution.

Summary. We presented the first formalization of pwa activation functions for
an interactive theorem prover. For our constructive formalization, we used a
pwa function’s polyhedral subdivision due to the numerous efficient algorithms
working on polyhedra. Our class of pwa functions is on-purpose restricted to
suit linear programming by using non-strict constraints and to fit SMT/MILP
solvers by employing finitely many polyhedra. With ReLU, we constructed one
of the most popular activation functions. We presented a verified transformation
from a neural network to its representation as a pwa function enabling encodings
for proof automation for theorems about the input-output relation. To this end,
we devised a sequential model of neural networks, and introduced two verified
binary operation on pwa functions – usual function composition together with
an operator to construct a pwa function for each layer.

Future Work. Since the main benefit of having a pwa function obtained from
a neural network lies in the many available encodings [9,13] targeting different
solvers, we envision encodings for our network model. These encodings have to be
adapted to the verification within Coq with our starting point being the tactic
lra – a Coq-native decision procedure for linear real arithmetic. Moreover, mov-
ing the structural complexity of a neural network to the polyhedral subdivision
of a pwa function, opens up on investigating algorithms working on polyhedra
for proof automation with our main candidate being local search on polyhedra
for reasoning about reachability properties in neural networks [31]. Further, for
our model of neural networks, we intend a library of pwa activation functions
with proof automation to ease construction. We also plan on a generic graph-
based model for neural networks in Coq but as argued, we expect the sequential
model to stay the mean of choice for feedforward networks. Additionally, since
tensors are used in machine learning to incorporate complex mathematical oper-
ations, we aim to integrate a formalization of tensors tailored to neural network
verification.
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Abstract. In this case study, we have explored the use of a neural net-
work model checker to analyze the safety characteristics of a neural net-
work trained using reinforcement learning to compute collision avoidance
flight plans for aircraft. We analyzed specific aircraft encounter geome-
tries (e.g., head-on, overtake) and also examined robustness of the neu-
ral network. We verified the minimum horizontal separation property by
identifying conditions where the neural network can potentially cause a
transition from a safe state to an unsafe state. We show how the prop-
erty verification problem is mathematically transformed and encoded as
linear-constraints that can be analyzed by the Marabou model checker.

1 Introduction

Machine Learning technologies such as neural networks (NN) have been used to
implement advanced functionality in complex systems, including safety-critical
aircraft applications. Before such systems can be deployed outside of an experi-
mental setting, it will be necessary to show that they can meet the verification
and certification requirements of the aerospace domain.

In a typical NN, much of the complexity and design information resides
in its training data rather than in the actual models or code produced in the
training process. One of the key principles of avionics software certification is the
use of requirements-based testing along with structural coverage metrics. These
activities not only demonstrate compliance with functional requirements, but
are intended to expose any unintended functionality by providing a measure of
completeness. However, since it is not possible to associate particular neurons or
lines of code in a NN with a specific requirement, these activities cannot provide
the required level of assurance [1].
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Formal methods tools are being developed for NNs and may be able to
address this challenge by providing a comprehensive analysis of a system over
its entire input space and showing the absence of unintended behaviors. In this
case study, we have used the Marabou model checker [7] to analyze a NN that
was trained to compute collision avoidance flight plans for aircraft. The main
contribution of the paper is to show the effectiveness of formal methods in iden-
tifying potential safety concerns in a real NN application. In fact, this NN was
flight tested in a controlled experiment with two general aviation-class airplanes,
but we were able to find a number of conditions which trigger unexpected (and
potentially unsafe) actions [2]. Furthermore, we suggest ways in which formal
analysis results can be incorporated to improve the training of future systems.

One of the unique aspects of this study is that it is focused on a NN trained
using Reinforcement Learning (RL). In earlier work on the ACAS-Xu system
for collision avoidance in small unmanned aircraft [5], the NN was trained using
supervised learning based on a complete tabular specification of correct behavior
and Reluplex [6] (a precursor of Marabou) was used to verify various safety
properties. Another ACAS-Xu study [3] used formal analysis tools to show the
equivalence of the NN to the tabular specification. In the current study, RL
was used to compute flight plans (rather than just the avoidance maneuvers
produced by ACAS-Xu), but our formal analysis exposes areas in which the
training process is incomplete.

Marabou is a state-of-the-art framework for verifying deep NN. It can answer
queries about NN properties by transforming each query to a satisfiability
problem. Currently it only supports linear constraints for inputs and outputs.
Marabou accepts three input formats: NNet, TensorFlow and ONNX. In the case
study, we exported the NN model parameters from the learning environment and
encoded them in the NNet format. We used the Marabou Python interface to
encode the constraints and perform the verification.

The collision avoidance NN and the Marabou verification scripts are available
at https://github.com/darrencofer/NFM-2023-case-study.

2 Aircraft Collision Avoidance Neural Network

We study the automated aircraft collision avoidance system described in [2]. The
system’s core is a NN model pre-trained on a surrogate simulation using RL. The
NN model modifies the course of the controlled airplane (ownship) to provide
a safe distance to another aircraft (intruder) and return to the original course
when safe. The RL environment simulates various potential collision scenarios
with aircraft performance similar to a Cessna 208 Caravan. The 2-D position
range is [−10,000, 10,000] m × [−10,000, 10,000] m. The heading range is (−180,
180] degree. The aircraft speed range is [50, 70] mps. The required minimum
separation distance (MSD) is 2,000 m. The initial and goal position are randomly
generated and remain fixed during each training scenario. During the encounter,
while the intruder maintains a constant direction and speed, the ownship adjusts
the flight direction and speed. Not maintaining the MSD results in a penalty,
while returning to the original route results in a reward.

https://github.com/darrencofer/NFM-2023-case-study
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Fig. 1. System geometry for potential collision.

In the experiments, a number of policies were developed. We chose a NN
that only controls the flight direction (i.e., fixed speed). It consists of 8 input
nodes, 1 output node, and 2 hidden layers with 64 nodes each. All hidden nodes
use rectified linear unit (ReLU) as the activation function. The output node
uses tanh as the activation function. Marabou does not support tanh activation
functions. So for the verification we removed the tanh activation function and
mapped its outputs (e.g. value or range) back to the corresponding function
input.

The NN inputs are: {d, dv, di, vr, βi, ψr, βg, βv}, where d is distance from own-
ship to intruder, dv is distance to vector, di is distance to initial position, vr is
relative speed, βi is angle to intruder, ψr is relative heading, βg is angle to goal,
βv is angle to vector. The vector is from the initial position to the goal. We
define vr = vi/vo − 1, ψr = ψi − ψo, βv = ψv − ψo, where vi is intruder speed,
vo is onwship speed, ψi is intruder heading, ψo is ownship heading, ψv is vector
heading. The system geometry in shown in Fig. 1.

Note that dv = di sinβg. This means that the NN inputs are not completely
independent. We capture this dependence by encoding the relation as a con-
straint. Since Marabou only supports linear constraints, we set βg as a constant
in each analysis.

All NN inputs are normalized: d, dv, di ∈ [0, 1], vr ∈ [−0.3, 0.4],
βi, ψr, βg, βv ∈ [−1, 1]. The NN output range is (−1, 1) due to the tanh func-
tion. It is linearly mapped to (−3, 3) to compute the turn rate (ω), unit in
degree per second. A positive and negative value indicates turning right and
left, respectively.

3 Verifying Minimum Separation Distance

The reachability problem of a closed-loop neural network control system with
non-linear dynamics is known to be undecidable [4]. Instead, we examine the
condition where the ownship transitions from a safe state (d = MSD) to a
unsafe state (d < MSD). This indicates that the distance function is decreasing
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Fig. 2. Distance between ownship and intruder changes during Δt.

at the MSD boundary. We mathematically derive the derivative of the distance
function and check when the neural network will generate an output action that
causes the derivative to be negative at the boundary. Although the derivative
function itself is non-linear due to trigonometric functions, we found that the
safety conditions can be characterized by a set of linear constraints, which can
be handled by Marabou. Figure 2 illustrates the derivative calculation. The filled
and open arrows represent the ownship and the intruder movement during the
time interval Δt, respectively, with d and d′ being the distance at time t and
t + Δt.

The distance d′ satisfies d′2 = a2 + b2, where:
a = voΔt sin ϕ − viΔt sin θ,
b = d − voΔt cos ϕ − viΔt cos θ.
Ignoring the higher order terms, we have (d′2 − d2)/Δt = −2d(vo cos ϕ +

vi cos θ). Applying the chain rule Δd2/Δt = 2dΔd/Δt, we have Δd/Δt =
−(vo cos ϕ + vi cos θ). By definition: ϕ = βi − ωΔt, θ = 180 − βi + ψr. Let-
ting α = βi − ψr, we rewrite the derivative as ḋ = vi cos α − vo cos ϕ.

Assuming vi = vo, ḋ < 0 implies cos α < cos ϕ. If 0 ≤ α ≤ 180, 0 ≤ ϕ ≤ 180,
then it implies α > ϕ (i.e., ωΔt > ψr). This means that at the MSD boundary,
the neural network has to generate a turn angle that is less than the relative
heading to prevent the distance from decreasing. Note that the turn rate ω is
limited to the range (−3, 3) degree per second and Δt = 1 second in simulation.
This means if ψr ≤ −3 or ψr ≥ 3, no matter what the neural network output
is, the derivative will always be negative or positive, respectively. Thus, in our
analysis we restrict to the scenarios where ψr ∈ (−3, 3). In other words, we only
look for the scenarios where the MSD violation could be avoided, but the neural
network does not generate such output.

Results. For the analysis, we sampled the intruder angle between 0 and 180◦,
and found MSD violations for each intruder angle. The simulation used in the
RL training process makes it unlikely that the critical conditions where safety
is violated (e.g., MSD boundary, relative heading range) are reached very often,
meaning that the NN likely has insufficient training in this region to make safe
decisions.

4 Robustness Analysis

Robustness analysis helps us to understand the stability of the NN controller.
In most cases, the output produced by the NN should not change dramatically
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in reponse to small input perturbations (such as sensor noise). We can perform
a δ-local-robustness [6] to quantify the bounded-input/bounded-output stability
of the NN.

To perform this analysis, we generated five arbitrary points covering a range
of input conditions and NN outputs. We computed a constant δ for an input
point x such that for all inputs x′ : ‖x − x′‖∞ ≤ δ, the neural network output
will not change sign (e.g., changing from turning left to right).

Table 1. Robustness analysis results.

δ = 0.1 δ = 0.05 δ = 0.02 δ = 0.01

Point 1 (weak right turn) SAT SAT SAT UNSAT

Point 2 (strong left turn) SAT SAT SAT UNSAT

Point 3 (strong right turn) SAT SAT UNSAT UNSAT

Point 4 (strong right turn) SAT UNSAT UNSAT UNSAT

Point 5 (strong left turn) SAT SAT UNSAT UNSAT

Results. The robustness analysis results are summarized in Table 1. SAT results
mean an adversarial input was found, while UNSAT results mean no such inputs
exist. The results show that the neural network may be not robust. In particular
at Point 2, a small input perturbation (δ = 0.02) causes the ownship to change
from turning strong-left to right. This may lead to unstable behavior in which
the aircraft oscillates between left and right turns.

5 Specific Scenarios

We examine six encounter scenarios (system snapshots), similar to [8], where
there are expected aircraft maneuvers (e.g., staying on course vs. turning left or
right). We check whether the action generated by the neural network aligns with
expectations. The following scenarios were considered.

Head-on. The ownship is on course and both airplanes are about to have a
head-on collision. We expect the ownship shall make a turn to avoid collision.

Overtake. The ownship is on course while the intruder flies in the same direction
and approaches from behind. We expect the ownship shall turn to avoid collision.

Parallel Same Direction. The ownship is on course while the intruder flies
side by side in the same direction and is close. We expect the ownship shall not
fly towards the intruder.

Parallel Opposite Direction. The ownship is on course while the intruder
flies side by side in the opposite direction and is dangerously close. We expect
the ownship shall not fly towards the intruder.
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Table 2. Verification of mid-air encounter scenarios. All times are in seconds.

Scenario Constraints Result Time

Head-on d = 2000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = 180, βg = 0, βv = 0, out = 0

SAT 0.02

Overtake d ≤ 2500, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = 0, βg = 0, βv = 0, out = 0

SAT 4.0

Parallel same direction d ≤ 2500, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = 0, βg = 0, βv = 0, out ≥ 0

UNSAT 12.3

Parallel opposite direction d = 2000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
90 ≥ βi ≥ 0, ψr = 180, βg = 0, βv = 0, out ≥ 0

SAT 0.03

Approach from right d = 2000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βi ≥ 0, ψr = −90, βg = 0, βv = 0, out ≥ 0.1

SAT 0.08

Far away d = 10000, di ≥ 0, 0.4 ≥ vr ≥ −0.3, dv = 0,
βg = 0, βv = 0, out ≤ −5

SAT 18.7

Approach from Right. The ownship is on course while the intruder approaches
the ownship from right and is dangerously close. We expect the ownship shall
turn left.

Far Away. The ownship is on course while the intruder is far away. We expect
the ownship shall stay on its course and will not make strong turns.

Results. The encoding of the scenarios and the verification results are sum-
marized in Table 2. The NN generated outputs violating expectations in all but
one of the six scenarios. Based on the analysis, we believe that the RL training
method did not provide sufficient training data to cover these critical scenarios.
All experiments were performed on a Linux server with Intel Xeon E5-2698 v4
CPU @ 2.20 GHz and approximately 504 GB memory.

6 Conclusion and Future Work

We analyzed an aircraft collision avoidance NN using Marabou. We verified the
minimum horizontal separation property, analyzed robustness of the NN, and
investigated specific interesting scenarios. The results suggest that the RL NN
training approach was insufficient to guarantee safety of the system in many crit-
ical scenarios. This shows the value of formal analysis for identifying unintended
behaviors that may be present in a NN.

The counterexamples generated in the verification of a property could be
used to better train the NN. The counterexamples often represent hard-to-reach
corner cases. We could directly use them to train the NN in a Supervised Learn-
ing environment, because usually there are well-defined expected NN outputs.
We could also adjust the RL setup by directly setting these scenarios as the
initial states.

It would be interesting to combine the forward reachability analysis of NN
with our MSD property verification so that a simulation trace from the initial
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state to the violation state is generated. Also recall that at certain conditions, due
to the turn rate limit, the MSD property violation is unavoidable. We could use
backward reachability analysis to compute the corresponding previous system
states and actions, until the NN could potentially generate an action to deviate
from the collision course. These system states and desired actions could also be
added to the training set.
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Abstract. A central task in control theory, artificial intelligence, and
formal methods is to synthesize reward-maximizing strategies for agents
that operate in partially unknown environments. In environments mod-
eled by gray-box Markov decision processes (MDPs), the impact of the
agents’ actions are known in terms of successor states but not the stochas-
tics involved. In this paper, we devise a strategy synthesis algorithm for
gray-box MDPs via reinforcement learning that utilizes interval MDPs as
internal model. To compete with limited sampling access in reinforcement
learning, we incorporate two novel concepts into our algorithm, focusing
on rapid and successful learning rather than on stochastic guarantees
and optimality: lower confidence bound exploration reinforces variants
of already learned practical strategies and action scoping reduces the
learning action space to promising actions. We illustrate benefits of our
algorithms by means of a prototypical implementation applied on exam-
ples from the AI and formal methods communities.

1 Introduction

Many machine learning methods take inspiration from the inner-workings of the
human brain or human behavior [29]. For instance, learning based on neural
networks mimics the human brain at a structural level by explicitly modeling its
neurons and their activation. Taking a more high-level view, reinforcement learn-
ing (RL) [38] formalizes human learning behavior by reinforcing actions that are
repeatedly associated with successful task solving [3]. The usual application of
RL is to learn reward-optimizing strategies in environments modeled as Markov
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decision processes (MDPs) [31] where the agent has only partial knowledge and
learns based on guided exploration through sample runs. Existing RL approaches
prioritize stochastic guarantees and convergence to a globally optimal strategy,
leading to slow learning performance and infeasibility for small sample sizes [38].
In contrast, human decision making can compete with limited sampling access,
not focusing on strict optimality but on efficiency. The more urgent a task and
the less time available for its solving, the more humans tend to exploit previously
learned strategies – possibly sacrificing optimality but increasing the chance of
finishing the task in time [32]. In the extremal case, humans rely on habits [43],
i.e., sequences of actions that, once triggered, are executed mostly independent
from reasoning about the actual task [7]. Habits avoid further costly exploration
during learning by restricting the action space.

In this paper, we take inspiration from humans’ ability to reason efficiently
with few explorations, shaping novel RL algorithms that rapidly synthesize
“good” strategies. Specifically, our learning task amounts to an agent being able
to determine a strategy with high expected accumulated reward until reaching
a goal, given a limited number of samples. We consider the setting where the
environment is modelled as a contracting MDP, i.e., goal states are almost surely
reached under all strategies, on which the agent has a gray-box view, i.e., knows
the reward structures and the topology but not the exact probabilities [4]. We
tackle this task of sample-bounded learning towards nearly-optimal strategies
by introducing two new concepts: lower confidence bound (LCB) sampling and
action scoping. Classical reward-based sampling in RL is based on upper confi-
dence bounds (UCB) [2], balancing the exploration-exploitation dilemma [38]. In
contrast, our LCB sampling method favors situations already shown viable dur-
ing the learning process. Hence, exploration is limited when there are no good
reasons for leaving well-known paths, similar to what humans do with habit-
ual sequences of actions [43]. The second learning component is action scoping,
restraining exploration actions when shown to be suboptimal in past samples.
Scoping is parametrized to tune the degree of exploration and balance between
fast strategy synthesis or increasing the chance of learning optimal strategies.

To implement our novel concepts, we provide technical contributions by pre-
senting an RL algorithm on contracting gray-box MDPs with arbitrary rewards
and various sampling methods. The learning algorithm is a sample-based app-
roach that generates an interval MDP (IMDP) to approximate the environment
and whose intervals are iteratively refined. While methods for analyzing IMDPs
have already been considered in the literature [17,44], and IMDPs have been
used in the context of RL algorithms [36], we provide a new connection of their
use in PAC RL algorithms. We devise our human-inspired RL algorithms, includ-
ing LCB and action scoping, by modeling knowledge of the agent as IMDP using
concepts from model-based interval estimation (MBIE) [35] and probably almost
correct (PAC) statistical model checking (SMC) [4]. We show that our algo-
rithms on IMDPs are PAC for UCB and LCB sampling, i.e., the probability of
a suboptimal strategy can be quantified by an arbitrarily small error tolerance.
This, however, cannot be guaranteed in the case of action scoping. Towards an
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evaluation of LCB and action scoping, we implemented our algorithms in a pro-
totypical tool [1]. By means of several experimental studies from the RL and
formal-methods community, e.g., on multi-armed bandits [41] and RaceTrack
[10], we show that LCB and action scoping foster fast strategy synthesis, provid-
ing better strategies after fewer sample runs than RL-style PAC-SMC methods.
We discuss the impact of scoping parameters and related heuristics, as well as
combinations of sampling strategies. In summary, our contributions are:

– A (model-based) RL algorithm for contracting gray-box MDPs with integer
rewards relying on IMDP and sampling strategy refinements (see Sect. 3)

– Instances of this RL algorithm subject to lower and upper confidence bound
sampling and tunable action scoping (see Sect. 4).

– A prototypical implementation of our RL algorithms and an evaluation in
examples from both the RL and formal-methods communities.

Supplemental material and a reproduction package for the experiments of this
paper are publicly available [1,9].

Related Work. SMC [28] for unbounded temporal properties in stochastic sys-
tems is most related to our setting, establishing algorithms also in gray-box set-
tings [20,45]. Given a lower bound on transition probabilities, SMC algorithms
have been presented for Markov chains [15], MDPs, and stochastic games [4].
Recent SMC algorithms for MDPs also include learning [4,13] but only for
reachability problems. IMDPs have been investigated outside of the RL con-
text in formal verification [14,33] for ω-regular properties, for positive rewards
in contracting models [44] by an extension of the well-known value-iteration algo-
rithm [38], and in the performance-evaluation community in the discounted set-
ting [17]. In particular, the RL algorithms we present in this paper use an adap-
tation of the latter algorithm without discounting as a subroutine to successively
tighten bounds on the maximal expected accumulated rewards. More recently,
algorithms with convergence guarantees for reachability objectives in (interval)
MDPs have been presented [6,19]. Interval estimation for RL has been intro-
duced by Kaelbling [24] towards Q-learning [40] and extended to model-based
approaches [42] such as MBIE [34] and the UCRL2 algorithm [23] using an error
tolerance based on the L1-norm opposed to the L∞-norm employed in interval
MDPs. In contrast, the linearly updating intervals [36] algorithm utilizes IMDPs
but uses potentially unsafe intervals and focuses on learning on changing environ-
ments. Besides UCB sampling, the exploration-exploitation dilemma in reward-
based learning has also be addressed with exploration bonuses [24,25,37,39],
performing well when applied to MBIE [22,35] or in other RL methods such as
E3 [27] and Rmax [12].

2 Preliminaries

A distribution over a finite set X is a function μ : X → [0, 1] where
∑

x∈X μ(x) =
1. The set of distributions over X is denoted by Dist(X).
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Markov Decision Processes (MDPs). An MDP is a tuple M =
(S,A, ı,G,R, T ) where S, A, and G ⊆ S are finite sets of states, actions, and
goal states, respectively, ı ∈ S is an initial state, R : S → R is a reward func-
tion, and T : S×A ⇀ Dist(S) is a partial transition probability function. For
state s ∈ S and action a ∈ A we say that a is enabled in s if T (s, a) is defined.
We assume the set Act(s) of all enabled actions to be empty in goal states
s ∈ G and non-empty in all other states. For (s, a, s′) ∈ S×A×S we define
T (s, a, s′) = T (s, a)(s′) if T (s, a) is defined and T (s, a, s′) = 0 otherwise. The
successors of s via a are denoted by Post(s, a) = {s′ | T (s, a, s′) > 0}. A run of
M is a sequence π = s0a0s1a1 . . . sn where s0 = ı, sn ∈ S, (si, ai) ∈ (S\G) × A,
and si+1 ∈ Post(si, ai) for i = 0, . . . , n−1. The set of all runs in M is denoted
by Runs(M). The accumulated reward of π is defined by R(π) =

∑n−1
i=0 R(si).

An interval MDP (IMDP) is a tuple U = (S,A, ı,G,R, T̂ ) where S,A, ı,G,
and R are as for MDPs, and T̂ : S×A ⇀ Intv(S) is an interval transition function.
Here, Intv(S) denotes the set of interval functions ν : S → {[a, b] | 0 < a ≤ b ≤
1}∪{[0, 0]} over S. A distribution μ ∈ Dist(S) is an instantiation of ν ∈ Intv(S)
if μ(s) ∈ ν(s) for all s ∈ S. We again say a is enabled in s if T̂ (s, a) is defined
and denote the set of enabled actions in s as Act(s), assumed to be non-empty
for all s ∈ (S \ G). For each s ∈ S and a ∈ Act(s) we denote by T a

s the set
of all instantiations tas of T̂ (s, a) and define Post(s, a) = {s′ | T (s, a, s′) > 0}.
The MDP M is an instantiation of U if T (s, a) ∈ T a

s for all s ∈ S, a ∈ A. We
denote by [U ] the set of all instantiations of U . Note that as all instantiations of
an IMDP U share the same topology, the set of runs Runs(M) is the same for
all instantiations M ∈ [U ].

The semantics of the MDP M is given through strategies, i.e., mappings
σ : S → Dist(A) where σ(s)(a) = 0 for all a �∈ Act(s). We call a run
π = s0a0s1a1 . . . sn in M a σ-run if σ(si)(ai) > 0 for all i = 0, . . . , n−1. The
probability of π is defined as Prσ(π) =

∏n−1
i=0 σ(si)(ai) · T (si, ai, si+1) if π is

a σ-run and Prσ(π) = 0 otherwise. The probability of some B ⊆ Runs(M)
w.r.t. strategy σ is defined by Prσ(B) =

∑
π∈B Prσ(π). If Prσ(B) = 1, then the

expected (accumulated) reward is defined as E
σ(B) =

∑
π∈B Prσ(π) · R(π). We

call M contracting [26] if Prσ(♦G) = 1 for all strategies σ, i.e., a goal state
is almost surely reached for any strategy. The semantics of an IMDP U is the
set of its instantiations [U ]. An IMDP U is contracting iff all MDPs in [U ] are
contracting.

Value and Quality Functions. A value function VM : S → R of MDP M is
the solution of the Bellman equations [11] given by VM(s) = R(s) for s ∈ G and

V (s) = R(s) + maxa∈Act(s)

∑
s′∈S VM(s′) · T (s, a, s′) for s �∈ G.

The quality QM : S × A ⇀ R of M is defined for all s ∈ S and a ∈ Act(s) by

QM(s, a) = R(s) +
∑

s′∈Post(s,a) VM(s′) · T (s, a, s′)

Intuitively, the quality represents the value of choosing an action a in state
s continuing with a reward-maximizing strategy. For an IMDP U , the value
function differs between instantiations, leading to Bellman equations
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Fig. 1. Schema of reinforcement learning in gray-box MDPs. (Color figure online)

V U (s) = minM∈[U ] VM(s) V U (s) = maxM∈[U ] VM(s)

for the lower and upper bounds on possible instantiations, respectively. These
value functions are naturally lifted to quality functions for IMDPs. We omit
subscript M or U if clear from the context. Further, we define the pessimistically
optimal strategy σ for all s ∈ (S \ G) as σ(s) = arg maxa∈Act(s)Q(s, a) and
similarly the optimistically optimal strategy as σ(s) = arg maxa∈Act(s)Q(s, a).

3 Interval MDP Reinforcement Learning

In this section, we establish an RL algorithm for contracting gray-box MDP
that generates a white-box IMDP and successively shrinks the transition proba-
bility intervals of the IMDP while updating the sampling strategy. Let M =
(S,A, ı,G,R, T ) be a contracting MDP as above, serving as environmental
model. With RL in a gray-box setting, the agent’s objective is to determine
reward-maximizing strategies knowing all components of M except transition
probabilities T . We further make the common assumption [4,6,16] that there is
a known constant pmin that is a lower bound on the minimal transition proba-
bility, i.e., pmin ≤ min{T (s, a, s′) | T (s, a, s′) > 0}.

To learn strategies in M, samples are generated according to a sampling
strategy determining the next action an agent performs in each state. Figure 1
shows the overall schema of the algorithm, which runs in episodes, i.e., batches
of samples. The sampling strategy is updated after each episode by refining an
internal IMDP model based on the sample runs and an IMDP value iteration.

3.1 Generating IMDPs from Sampled Gray-Box MDPs

Let #(s, a, s′) denote the number of times the transition (s, a, s′) occurred in
samples thus far and let #(s, a) =

∑
s′∈Post(s,a) #(s, a, s′). The goal of each

episode is to approximate M by an IMDP U = (S,A, ı,G,R, T̂ ) that is (1-δ)-
correct, i.e., the probability of M being an instantiation of U is at least 1−δ for a
given error tolerance δ ∈ R. Formally

∏
(s,a)∈S×A P

(
T (s, a) ∈ T̂ (s, a)

)
� 1−δ [4],

where P refers to the probabilistic behaviour of the algorithm due to sampling
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Algorithm 1: IMDP RL(M, δ,K,N)
Input : gray-box MDP M = (S, A, ı, G, R, ·), error tolerance δ, K, N ∈ N

Output: pessimistically and optimistically optimal strategies σ and σ, value
function bounds V and V

1 forall the (s, a) ∈ S × A do
2 σ(s)(a) := 1/|Act(s)| // initialize

3 forall the s′ ∈ Post(s, a) do T̂ (s, a, s′) := [pmin, 1]

4 U := (S, A, ı, G, R, T̂ )

5 forall the k ∈ {1, . . . , K} do
6 forall the n ∈ {1, . . . , N} do SAMPLE(M, σ) // sample runs U :=

UPDATE PROB INTERVALS(U , δ) // build IMDP model

7 (V , V ) := COMPUTE BOUNDS(U , k) // IMDP value iteration

8 σ := UPDATE STRATEGY(U , V , V ) // compute sampling strategy

9 forall the s ∈ (S \ G) do

10
(
σ(s), σ(s)

)
:=

(
arg maxa∈Act(s)Q(s, a), arg maxa∈Act(s)Q(s, a)

)

11 return σ, V , σ, V

the gray-box MDP. The idea towards (1−δ)-correct IMDPs is to distribute the
error tolerance δ over transitions by defining a transition error tolerance η ∈ R.
Given a state s ∈ S, an action s ∈ Act(s) and a successor s′ ∈ Post(s, a), we
define the interval transition probability function T̂η : S×A → Intv(S) as

T̂η(s, a, s′) =
[
#(s,a,s′)
#(s,a) − c(s, a, η), #(s,a,s′)

#(s,a) + c(s, a, η)
]

∩ [pmin, 1] .

where c(s, a, η) =
√

log η/2
−2#(s,a) . Hoeffding’s inequality [21] then yields Tη(s, a) ∈

T̂ (s, a) with probability at least 1−η. To instantiate an environment approxima-
tion, we distribute the error tolerance δ uniformly, i.e., to define T̂η and obtain
U we set η = δ/Nt where Nt is the number of probabilistic transitions in M,
i.e., Nt = |{(s, a, s′) | s′ ∈ Post(s, a) and |Post(s, a)| > 1}|. Note that Nt only
depends on the topology of the MDP and is thus known in a gray-box setting.

Value Iteration on Environment Approximations. We rely on value iter-
ation for IMDPs [17,44] to solve the interval Bellman equations for all possible
instantiations of our environment approximation IMDP U . Standard value iter-
ation for IMDPs does not exhibit a stopping criterion to guarantee soundness
of the results. For soundness, we extend interval value iteration [6,19] with a
conservative initialization bound for the value function. For technical details of
the value iteration on IMDPs we refer to the appendix.

3.2 IMDP-Based PAC Reinforcement Learning

Piecing together the parts discussed so far, we obtain an IMDP-based RL algo-
rithm sketched in Algorithm 1 (cf. also Fig. 1), comprising K episodes with N
sample runs each, updating the model and performing a value iteration (see
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Line 5 and Line 6, respectively). Both K and N can be seen as parameters lim-
iting the sampling access of the agent. The function SAMPLE in Line 6 interacts
with the environment M and chooses either a yet not sampled action, or sam-
ples an action according to σ. A run ends when entering a goal state s ∈ G,
or upon reaching a length of |S|. The latter is to prevent runs from acquiring a
large number of samples by simply staying inside a cycle for as long as possi-
ble. In Algorithm 6, the subroutine UPDATE PROB INTERVALS incorporates
the fresh gathered samples from the environment into the internal IMDP repre-
sentation as outlined in Sect. 3.1, updating transition probability intervals. The
IMDP value iteration COMPUTE BOUNDS in Line 7 yields new upper and
lower value functions bounds. The number of value iteration steps is k · |S|, i.e.,
increases with each episode to guarantee that the value function is computed with
arbitrary precision for a large number of episodes, also known as bounded value
iteration [4,13]. The computed bounds are then used in UPDATE STRATEGY
in Line 8 to update the sampling strategy for the next episode. The environment
approximation U can be achieved following several strategies according to which
samples are generated [2]. A strategy that is widely used in SMC [4] or tabular
RL [5,23,34,35] is upper confidence bound (UCB) sampling. The UCB strategy
samples those actions a in state s that have highest upper bound on the quality
Q(s, a), resolving the well-known exploration-exploitation dilemma in RL. This
principle is also known as “optimism in the face of uncertainty” (OFU), referring
to UCB allocating uncertain probability mass to the best possible outcome [2].
In our framework, standard UCB sampling will serve as the baseline approach.
Lastly, we compute and return pessimistic and optimistic strategies along with
their value function bounds, before returning them.

Theorem 1. Let V ∗ be the solution to the Bellman equations of a given MDP
M. Then for all δ ∈ ]0, 1[ and K,N ∈ N the value function bounds V and V
returned by IMDP RL(M, δ,K,N) as of Algorithm 1 contain V ∗ with probability
at least 1 − δ, i.e., P

(
V (s) � V ∗(s) � V (s)

)
� 1 − δ for all s ∈ S.

4 Learning Under Limited Sampling Access

Previous work has shown that RL algorithms utilizing the OFU principle con-
verge towards an optimal solution [38]. However, they are known to converge
rather slowly, requiring lots of sampling data and training time. In this section,
we use our IMDP-RL algorithm presented in Algorithm 1 in a setting where
sampling access is limited, i.e., the parameters K and N are fixed. Then, the
OFU principle might be not suitable anymore, as the strategy is learnt under an
optimistic view for increasing confidence in the actions’ impacts, which requires
lots of samples for every action. We propose to focus on finding “good” strate-
gies within the bounded number samples rather than on guaranteed convergence
to an optimal strategy. Specifically, we present two complementary methods to
reduce the action spaces during sampling: lower confidence bound sampling and
action scoping. Both methods are parametrizable and thus can be adapted to
the model size as well as the bound imposed on the number of samples.
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4.1 Lower Confidence Bound Sampling

As new sampling strategy incorporated in Line 8 of Algorithm 1, we propose to
choose an action a in a state s if it has the highest lower bound Q(s, a) instead of
the highest upper bound as within UCB sampling. While then the agent still nat-
urally chooses actions that were already sampled often with high rewards, this
avoids further exploring actions with high transition uncertainty. However, such
a lower confidence bound (LCB) sampling might result in performing exploita-
tions only. Hence, we include an ε-greedy strategy [38] into LCB sampling: In
each step, with probability 1−ε the action with the highest LCB is sampled
and with probability ε a random action is chosen. In the following, we iden-
tify LCB sampling with a degrading ε-greedy LCB strategy. Note that also any
other exploration strategies, such as sampling with decaying ε or softmax action
selection [38], can easily be integrated into LCB sampling.

While our focus of LCB sampling is on exploiting “good” actions, we can
still guarantee convergence towards an optimal strategy in the long run:

Theorem 2. Algorithm 1 with LCB sampling converges towards an optimal
solution, i.e., for K → ∞ both V and V converge pointwise towards V ∗, and
their corresponding strategies σ and σ converge towards optimal strategies.

Similar to how UCB sampling can provide PAC guarantees [4], we can pro-
vide PAC guarantees for the value function bounds returned by Algorithm 1
as Theorem 1 guarantees that the solution is in the computed interval with
high probability 1 − δ and Theorem 2 guarantees that the interval can become
arbitrarily small converging towards the optimal solution from both sides.

4.2 Action Scoping

As another approach to compete with resource constraints, we propose to per-
manently remove unpromising actions from the learned IMDP model, forcing
the agent to focus on a subset of enabled actions from the environment MDP.
We formalize this idea by setting the scope of a state to the set of actions that
the agent is allowed to perform in that state.

Scope Formation. As depicted in Fig. 1, scopes are introduced after each
episode based on the samples of that episode. Initially, all enabled actions are
within a scope. Removing an action a from the scope in s is enforced by modifying
the interval transition function T̂ of U to the zero interval function at (s, a), i.e.,
T̂ (s, a, s′) = [0, 0] for all s′ ∈ Post(s, a). Scope formation has several notable
advantages. First, removing action a from a scope in s reduces the action space
Act(s), leading to more sampling data for remaining actions as σ(s)(a) = 0 for
all future episodes. Further, the removal of actions may also reduce the state
space in case states are only reachable through specific actions. These positive
effects of scoping come at its cost of the algorithm not necessarily converging
towards an optimal strategy anymore (cf. Theorem 2). The reason is in possibly
removing an optimal action due to unfortunate sampling.
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Eager and Conservative Scopes. We introduce two different scoping
schemes: eager and conservative. Both schemes are tunable by a parameter
h ∈ ]0, 1[ that specifies the transition error tolerance similar as η = δ/Nt does
in our IMDP construction (see Sect. 3.1). Intuitively, while the formal analysis
by means of Line 7 in Algorithm 1 guarantees 1−δ correctness, we allow for dif-
ferent confidence intervals depending on h when forming scopes. Here, greater h
corresponds to higher tolerance and hence smaller action scopes.

To define scopes, we introduce Uh = (S,A, ı,G,R, T̂h). That is, Uh is an
IMDP with the same topology as the internal model U , but allows an error
tolerance of h in each transition. We denote the corresponding solution to the
interval Bellman equations of Uh by V h and V h, respectively, and the quality
functions as Q

h
and Qh. Additionally, the mean quality function Q̇ is computed

from the solution of the Bellman equations on the maximum likelihood MDP
Ṁ = (S,A, ı,G,R, Ṫ ) where Ṫ (s, a, s′) = #(s, a, s′)/#(s, a) are the maximum
likelihood estimates of the transition probabilities.

In state s an action a is eagerly removed from its scope if Q̇(s, a) < V h(s),
i.e., if the mean quality of a is lower than the lower bound of the (presumably)
best action. The idea is that a is most likely not worth exploring if its expected
value is lower than what another action provides with high probability. Likewise,
an action a is conservatively removed from the scope of a state s if Qh(s, a) <
V h(s), i.e., the upper bound quality of a is lower than the lower bound of the
(presumably) best action. Here the idea is similar as for eager scoping but with a
more cautious estimate on the expected value from action a (observe Qh(s, a) >
Q̇(s, a)). Note that the parameter h is only used as an error tolerance in Uh in
order to reduce the action scopes. The bound V and V returned in Algorithm 1
still use an error tolerance of δ/Nt per transition.

5 Implementation and Evaluation

To investigate properties of the algorithms presented, we developed a proto-
typical implementation in Python and conducted several experimental studies,
driven by the following research questions:

(RQ1) How do UCB and LCB influence the quality of synthesized strategies?
(RQ2) Does action scoping contribute to synthesize nearly optimal strategies

when limiting the number of samples?

5.1 Experiment Setup

We ran our experiments on various community benchmarks from the formal-
methods and RL communities. All our experiments were carried out using
Python 3.9 on a MacBook Air M1 machine running macOS 11.5.2. For each
system variant and scoping parameter, we learn M strategies (i.e., run the algo-
rithm M times) in K = 50 episodes each with batch size N as the number of
state-action pairs that have a probabilistic successor distribution. Plots show
results averaged over the M learned strategies. We chose an error tolerance
δ = 0.1, a total of k·|S| value iteration steps in the k-th episode, and an explo-
ration of ε = 0.1.
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Models. For an evaluation, we focus on two models: RaceTrack and multi-
armed bandits. Results for all other experiments can be found in the appendix.

In RaceTrack [8,10,18,30], an agent controls a vehicle in a two-dimensional
grid where the task is to reach a goal position from some start position, not col-
liding with wall tiles. Figure 2 depicts two example tracks from Barto et al. [10],
which we identify as “small track” (left) and “big track” (right). At each step, the
movement in the last step is repeated, possibly modified by 1 tile in either direc-
tion, leading to 9 possible actions in each state. Environmental noise is modelled
by changing the vehicle position by 1 in each direction with small probability.
We formulate RaceTrack as RL problem by assigning goal states with one
reward and all other states with zero reward. In the case that the vehicle has
to cross wall tiles towards the new position, the run ends, not obtaining any
reward. In RaceTrack experiments, we learn M = 10 strategies constrained
by N = 940 sample runs.

The second main model is a variant of multi-armed bandits with one initial
state having 100 actions, each with a biased coin toss uniformly ranging from
0.25 to 0.75 probability, gaining one reward and returning to the initial state.
Here, we learn M = 100 strategies constrained by N = 101 sample runs.

5.2 Sampling Methods (RQ1)

We investigate the differences of UCB and LCB sampling within RaceTrack.

State-Space Coverage. UCB and LCB sampling differ notably in covering the
state space while learning. With UCB sampling, actions with high uncertainty
are more likely to be executed, lowering their upper bound and thus increasing
the chance of other actions with higher uncertainty in the next sample run.
Hence, UCB sampling leads to exploration of many actions and thus to a high
coverage of the state space. In contrast, LCB sampling increases confidence in
one particular action shown viable in past samples, leading to sample the same
action sequences more often. Hence, LCB sampling is likely to cover only those
states visited by one successful sampling strategy, showing low coverage of the
state space. This can be also observed in our experiments. Figure 2 shows the
frequency of visiting positions in the small and big example tracks, ranging from
high (red) to low (white) frequencies. Both tracks already illustrate that UCB
sampling provides higher state-space coverage than LCB sampling. The small
track is symmetric and for each strategy striving towards a lower path, there
is a corresponding equally performing strategy towards an upper path. UCB
sampling treats both directions equally, while the LCB sampling method in
essential learns one successful path and increases its confidence, which is further
reinforced in the following samples. reached by one of the symmetric strategies.

Robustness. A further difference of the sampling methods is in dealing with
less-explored situations, where UCB sampling is likely to explore new situations
but LCB sampling prefers actions that increase the likelihood of returning to
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Fig. 2. RaceTrack exploration visualization of UCB sampling (top) and LCB sam-
pling (bottom), tiles are colored by start (yellow), goal (green), wall (dark gray), and
visit frequency (red-white). (Color figure online)

known states of an already learned viable strategy. This is due to those states
having smaller confidence intervals and thus a greater lower bound on the value
and quality functions. Figure 2 shows this effect in the frequency plot of the
big track: LCB sampling leads to only few isolated positions with high visit
frequencies, while UCB shows a trajectory of visited positions.

Guaranteed Bounds. The different characteristics of UCB and LCB sampling
can also be observed during the learning process in the small track. In Fig. 3 on
the left we show V and V after each episode. Note that these bounds apply
to different strategies, i.e., the optimistically optimal strategy σ maximizes V ,
while the pessimistically optimal strategy σ maximizes V . Here, LCB provides
values V more close to the optimum and, due to its exploitation strategy, gains
more confidence in its learned strategy. However, unlike UCB sampling, it can-
not improve on V significantly, since parts of the environment remain mostly
unexplored. We plot bounds under the single fixed strategy σ on the right. After
50 episodes, UCB then can provide value function bounds [0.29, 0.75], while LCB
provides [0.33, 0.53], being closer to the optimal value of 0.49.

LCB is also favourable under limited sampling access, e.g., in (mostly) sym-
metric environments as the small track: UCB explores the symmetry and requires
at least double samples for achieving a similar confidence on the learned strategy.

Concerning (RQ1), we showed that LCB sampling can provide better strate-
gies with high confidence than UCB sampling, while UCB sampling shows
better bounds when ranging over all strategies.
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Fig. 3. Comparison of obtained bounds under all strategies (left) and under pessimisti-
cally optimal strategy σ (right).
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Fig. 4. Action-space reduction by action scoping (UCB left, LCB right).

5.3 Impact of Scoping (RQ2)

We now investigate the impact of action scoping and its parameter h on the
multi-armed bandit experiment.

Action-Space Reduction. Figure 4 shows the number of state-action pairs in
the IMDP after each episode w.r.t. UCB and LCB sampling. Here, eager and
conservative action scoping is considered with various scoping parameters h.
As expected, more actions are removed for greater h. Since Q̇(s, a) � Qh(s, a),
eager scoping leads to more actions being removed than conservative scoping
(cf. eager plots in the lower part of the figures). Observe that the choice of eager
or conservative scoping has more impact than the choice of h. In terms of the
sampling method we observe that for conservative scoping with UCB sampling
more actions are removed from scopes than with LCB sampling. A possible
explanation is that in LCB sampling, suboptimal actions do not acquire enough
samples to sufficiently reduce the upper bound of their expected reward.
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Fig. 5. Bounds of the subsystem obtained by scoping (UCB left, LCB right).
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Fig. 6. Bounds for pessimistically optimal strategy (UCB left, LCB right).

Strategy Bounds. Next, we investigate the bounds obtained by the strategies
returned by Algorithm 1. For brevity, we focus here on the cases h = δ/Nt

and h = 0.05. Our results are plotted in Fig. 5 and Fig. 6 for V and V on the
subsystem obtained by applying action scopes with both σ and σ and solely σ,
respectively. For UCB sampling, we observe that bounds tighten faster the more
actions are removed from scopes and reduce the system size, i.e., particularly
for eager scoping and for h=0.05. For LCB, scopes do not have such a drastic
influence, since actions are only leaving the scope if there is an alternative action
with high V , in which case the latter action is sampled mostly anyway.

Sampling Strategy Quality. In Fig. 7 we plot the expected total reward of the
employed sampling strategy σ in Algorithm 1 after each episode. Eager scoping
tremendously improves the quality of the sampling strategy for both UCB and
LCB sampling. For the UCB strategy we observe an initial monotonic increase of
the online performance that eventually drops off. This is because a lot of actions
cannot improve on the trivial upper bound of 1 until a lot of samples are acquired.
In the first roughly 20 episodes increasingly more, mostly suboptimal, actions
have their upper bound decreased, explaining the initial monotonic increase.
Once all actions have and upper bound below 1, the fluctuations stem from the
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fact that UCB sampling may explore a particular action takes the full N runs
of an episode, even if the action is suboptimal and only has a high upper bound
due to a lack of samples. Especially here, scoping helps to eliminate such actions
and avoids sampling them for a full episode just to confirm the action was indeed
suboptimal. For LCB sampling the better performance with scoping is due to
suboptimal actions being removed and thus not eligible in the exploration step
with probability ε.

Subsystem Bounds. With the introduction of scopes, our RL algorithm is not
guaranteed to converge to optimal values. To determine whether optimal actions
are removed from scopes in practice, we find the optimal strategy that only con-
siders actions within the computed scope. Note that for the transition function
we use the exact probabilities as in the environment MDP. The results are given
in Table 1. Without scoping the subsystem is just the entire environment. When
introducing scopes, we did not remove the optimal action via conservative scop-
ing a single time with either sampling method, even for h = 0.05. Only with
eager scoping we saw the optimal action being removed from the scope, but the
optimal strategy in the subsystem still performs reasonably well compared to
the overall optimal strategy. The fact we observe this only with eager scoping
is not surprising, as removing more actions from scopes (recall Fig. 4) of course
increases the chance of removing the optimal action in a state.

For (RQ2), we conclude that for both UCB and LCB sampling, scoping and
especially eager scoping significantly improves the quality of learned strategies
after few samples, while only slightly deviating from the optimal strategy. In
the UCB setting, scoping leads to further exploitation and thus better bounds.
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Table 1. Values of the optimal strategy in the multi-armed bandit model.

no UCB-cons. UCB-eager LCB-cons. LCB-eager

scoping h=δ/Nt h=0.05 h=δ/Nt h=0.05 h=δ/Nt h=0.05 h=δ/Nt h=0.05

value 0.75 0.75 0.75 0.75 0.742 0.75 0.75 0.746 0.739

5.4 Further Examples

We ran our algorithms on several other environment MDPs from the RL and
formal-methods communities (cf. [9]). In general, the strategy learned from LCB
yields equal or higher lower bounds and tighter bounds for single strategies, while
UCB sampling gives tighter bounds for the entire system. Employing action
scoping generally tightens the bounds further with the eager scoping emphasizing
this effect. The margins of the differences vary between the examples. In general,
both LCB sampling and scoping have biggest impact on large action spaces and
on models with high probability deviations such as with small error probabilities.
On the flipside, we observed that LCB performs poorly when mostly or fully
deterministic actions or even runs are available, as those incur little uncertainty
and thus tend to have relatively large lower bounds even with few samples.

6 Concluding Remarks

We devised novel model-based RL algorithms that are inspired by efficient human
reasoning under time constraints. Similar to humans tending to stick and return
to known situations during strategy learning, LCB exploration favors to return to
states with high confidence and proceeding with viable learned strategies. On the
action level, scoping implements a reduction of the exploration space as humans
do when favoring known actions without further exploration. As for humans
acting under resource constraints, both ingredients have been shown to yield
better strategies after few sample runs than classical RL methods, especially
when choosing high scoping parameters that foster action scoping. While our
methods synthesize good strategies faster, an optimal strategy might be not
achievable in the limit.

We mainly discussed applications of our techniques in the setting of reinforce-
ment learning. Nevertheless, they can well be utilized also in the formal methods
domain, providing a variant for statistical model checking of MDPs, asking for
the existence of a strategy to reach a goal with accumulating a certain reward.

While not the main focus of this paper, for future work it is well possible to
extend our approach also to a black-box setting, i.e., without knowledge about
the topology of the MDP, using similar techniques as in [4]. One advantage of
using the gray-box setting is in also ensuring applicability to the instance of
infinite state MDPs with finitely many actions if this MDP can be effectively
explored. For this, it suffices to consider only a finite fragment of the MDP and
restricting the sample lengths to a fixed bound.
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Abstract. We present a technique for learning explainable timed
automata from passive observations of a black-box function, such as an
artificial intelligence system. Our method accepts a single, long, timed
word with mixed input and output actions and learns a Mealy machine
with one timer. The primary advantage of our approach is that it con-
structs a symbolic observation tree from a concrete timed word. This
symbolic tree is then transformed into a human comprehensible automa-
ton. We provide a prototype implementation and evaluate it by learn-
ing the controllers of two systems: a brick-sorter conveyor belt trained
with reinforcement learning and a real-world derived smart traffic light
controller. We compare different model generators using our symbolic
observation tree as their input and achieve the best results using k-tails.
In our experiments, we learn smaller and simpler automata than existing
passive timed learners while maintaining accuracy.

1 Introduction

In recent years, machine learning has been integrated into more and more areas
of life. However, the safety of such systems often cannot be verified due to
their complexity and unknown internal structure. For such black-box systems,
model learning can provide additional information. Model learning [14] typically
deduces an executable representation either by monitoring the System Under
Learning (SUL) (passive learning), or by prompting the SUL (active learning).
Either approach produces a model consistent with the observations. These mod-
els can be used for verification methods like model checking, but often simply
obtaining a graphical illustration of the internal workings of the system can
provide an increase in confidence that it works as intended. The approach is
especially useful for artificial intelligence (AI) systems, where a function is con-
structed from training data and no human-readable explanation might exist.

Active algorithms like Angluin’s L* [4] have shown promising results. How-
ever, they can be difficult to apply in practice, as many systems exist that provide
no way for a learner to interact with them. An example of such a system could be
the controller of a smart traffic light, where the inputs are the arrival of cars in a
street lane. Luckily, in the modern era of big data, many systems are monitored
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Fig. 1. Inference workflow: Find initial conditions and split into trace database (1),
compute symbolic observation tree from database (2), generate MM1T (3).

throughout their deployment in the real world, producing log files that can span
over months or years. Passive learning algorithms like (timed) k-tails [22,23] take
large numbers of such traces, convert them into a tree-like structure, and apply
state-merging techniques to collapse them into cyclic automata.

We propose the generation of a symbolic oracle, which can be used as a pre-
processing step to apply both active and passive learning algorithms. Figure 1
shows our proposed workflow. The first step in creating the oracle is to instantiate
a trace database from a single concrete execution trace by defining symbolic
conditions on what constitutes an initial location, i.e., where the system has
reset to its default configuration. This approach supports learning when only
a single trace is available (e.g., a long traffic log for the controller of a specific
intersection). Next, we show how to build symbolic representations of the traces.
These can be exhaustively enumerated to build a symbolic observation tree.

By constructing a trace database and symbolic observation tree from a log
of system operation, we enable both active and passive learning approaches. We
demonstrate active learning using the Mealy machine learner by Vaandager et
al. [26]. Instead of the learner interacting with the system directly, it answers
membership queries using the symbolic observation tree. For equivalence queries
we use random runs from the trace database for estimating the correctness of
the hypothesis. Since learning algorithms designed for use with a complete oracle
might ask queries that the trace database cannot answer, the inferred models
will, in general, not be minimal (distinguishing states for missing information).
We minimize the resulting Mealy Machine with a Single Timer (MM1T) via a
partial Mealy minimization algorithm that greedily merges compatible states.

For passive learning, we directly use the symbolic tree, that, by construc-
tion, contains all the information in the database. It can be transformed into
a final model by existing approaches like k-tails [22,23], or via partial Mealy
minimization.

Contribution. First, we show how to turn one long trace into a trace database
of short traces starting with an initial condition. We show how to identify initial
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conditions along the trace, based on symbolic queries, and discuss what might
constitute an initial condition in a black-box system. Then, we present how to
derive a symbolic observation tree from these traces, which seems to carry the
right level of abstraction for human readability. Finally, we discuss and compare
several post-processing methods to retrieve human-readable automata. One of
these methods shows how active learning algorithms can be applied in a passive
setting. We demonstrate how the readability and explainability of the produced
models provide a significant advantage over previous approaches.

Case Studies. We will use a brick sorter and a smart traffic controller for an
intersection as demonstrating examples. The brick sorter is inspired by [17]. It
randomly receives either red or black blocks. These are scanned by a color sensor
and transported along a conveyor belt for three seconds. Finally, a controller will
eject red bricks, and let black bricks pass through. We use a timed automaton
controller, trained using reinforcement learning with Uppaal Stratego, as a
basis for the experiments. The inputs to the SUL are {red , black} and the outputs
are {eject , pass}. The SUL contains an intentional bug: if two blocks arrive within
three seconds, the variable storing the scanned color will be overwritten.

The traffic controller is based on the control system of a real intersection
located in the city of Vejle in Denmark. The intersection is a four way crossing
equipped with radar sensors that report the arrival of incoming cars, and can
switch between five modes for the lights. Inputs are cars arriving at the different
lanes of the streets. Outputs are the active traffic lights, e.g., a1 + a2 when
the main road on both sides has a green light. We use real-word traffic data
gathered over seven consecutive days, combined with outputs generated from a
digital twin of the intersection. The digital twin is a model created in the tool
Uppaal according to a detailed specification of the traffic light controller.

2 Preliminaries

We denote the non-negative real number at which an action occurred as its
timestamp. We refer to a finite set of actions, also known as an alphabet, as
Σ = I ∪ O where I is the set of input actions and O is the set of output actions
where I ∩ O = ∅. The special actions �I and �O are used in symbolic queries
and represent any input or output, respectively. The partial order � relates
actions in I ∪ {�I} such that any pair of inputs i1, i2 ∈ I are incomparable
when i1 �= i2 and �I is an upper bound of I (∀i ∈ I. i � �I) and the same
applies for O∪{�O}. Given a finite alphabet Σ, a timed word is a pair ρ = 〈σ, τ〉
where σ is a non-empty finite word over the alphabet Σ, and τ is a strictly
increasing sequence of timestamps with the same length as σ. We call the set of
all finite timed words TΣ∗. We also write a sequence of pairs of actions in Σ and
timestamps to represent a timed word: (σ0, τ0), (σ1, τ1), . . . , (σn, τn).

A constrained symbolic timed word is a pair 〈S, ϕ〉 where S is a symbolic
timed word and ϕ is a boolean combination of constraints on the symbolic times-
tamps of S. The set of all symbolic timestamps is V. A symbolic timed word over
the finite alphabet Σ is a pair 〈σ, v〉 where σ is a finite word over Σ, and v ∈ V

∗
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is a sequence of symbolic timestamps the same length as σ. We also write a
sequence of pairs (σ0, v0), (σ1, v1), . . . , (σn, vn) for a constrained symbolic timed
word of length n + 1. We write τi/vi to denote that vi takes the value τi.

We say that a concrete timed word models (written |=) a constrained symbolic
timed word when both sequences of actions are equal, and the constraints on
the symbolic timestamps are satisfied by the corresponding concrete timestamps.
We use a partial order to relate actions instead of strict equality so that we can
reuse the model’s definition later with �I and �O as possible symbolic actions.

Definition 1 (Modeling of Symbolic Word). Given a concrete timed word
ρ = 〈σ, τ〉 and a constrained symbolic timed word 〈S, ϕ〉 where S = 〈σ′, v〉, we
say that ρ |= 〈S, ϕ〉 iff for all indices i we have σi � σ′

i and τ0/v0 . . . τn/vn |= ϕ.

Example 1. In the brick-sorter example, suppose a constrained symbolic timed
word 〈S, ϕ〉 = 〈(black, v0), (eject, v1), v0 +3 ≤ v1〉 and a timed word that models
it ρ = (black, 0), (eject, 3). We see that ρ |= 〈S, ϕ〉 since σ0 = black � S0 = black,
σ1 = eject � S1 = eject, and 0 + 3 ≤ 3.

We concatenate constrained symbolic timed words 〈S1, ϕ1〉 and 〈S2, ϕ2〉 by
concatenating the symbolic timed words S1 and S2 and conjoining the time
constraints ϕ1 ∧ ϕ2, letting 〈S1, ϕ1〉 · 〈S2, ϕ2〉 ≡ 〈S1 · S2, ϕ1 ∧ ϕ2〉.
Mealy Machines with One Timer
We learn Mealy machine models with one timer. The timer can be reset to
values in N on transitions. We assume a special input timeout that triggers the
expiration of the set timer and the corresponding change of a machine’s state. We
also assume a special output “-” that indicates no output on a transition. We first
define the structure of these Mealy machines and then specify their semantics.
Our definition extends the original definition by Vaandrager et al. [26] to model
explicitly when a timer is reset or disabled and to allow a timer to be set already
in the initial state. For a partial function f : X ⇀ Y , we write f(x)↓ to indicate
that f is defined for x and f(x)↑ to indicate that f is not defined for x. We fix
a set of actions Σ = I ∪ O and use Ito as a shorthand for I ∪ {timeout}.

Definition 2 (Mealy Machine with One Timer). A Mealy machine with
one timer (MM1T) is a tuple M = 〈I,O, Q, q0, δ, λ, κ, t0〉 with

– finite set I of inputs,
– finite set O of outputs disjoint from Ito,
– set of states Q = Qoff ∪ Qon, partitioned into states with and without a timer

(Qoff ∩ Qon = ∅), respectively, with initial state q0 ∈ Q,
– transition function δ : Q × Ito ⇀ Q
– output function λ : Q × Ito ⇀ O ∪ {-},
– timer reset κ : Q × Ito ⇀ {∞,⊥} ∪ N, satisfying

• δ(q, i) ∈ Qoff ⇐⇒ κ(q, i) = ∞, where no timer is set,
• q ∈ Qoff ∧ δ(q, i) ∈ Qon ⇐⇒ κ(q, i) ∈ N, where the timer is set,
• q ∈ Qon ∧ δ(q, i) ∈ Qon ⇐⇒ κ(q, i) ∈ {⊥} ∪ N, where the timer either

continues or is set to a new value,
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• δ(q, timeout) ∈ Qon ⇐⇒ q ∈ Qon, where timeouts only happen if the
timer is running, and

– initial timer t0 ∈ {∞} ∪ N s.t. t0 = ∞ if q0 ∈ Qoff and t0 ∈ N if q0 ∈ Qon.

The transition function, output function, and timer reset have identical domains,
i.e., δ(q, i)↑ iff λ(q, i)↑ iff κ(q, i)↑ for q ∈ Q and i ∈ I.

For a MM1T 〈I,O, Q, q0, δ, λ, κ, t0〉 we write q
i,o,t−−→ q′ for a transition from state

q to q′ for input i, output o, and new timer value t. If the given transition is
possible, we must have that δ(q, i)↓.

Example 2. Figure 2 shows the MM1T for the brick-sorter example, as learned
by our experiments, and illustrates the typical concepts of an MM1T. It shows
MM1T M = 〈I,O, Q, q0, δ, λ, κ, t0〉 with I = {black, red},O = {pass, eject},
and Q = {q0, q1, q2}, where q0 ∈ Qoff and q1, q2 ∈ Qon. Additionally, we have
that δ(q0, red) = q1, λ(q0, red) = -, κ(q0, red) = 3, and t0 = ∞. We omit the
remainder of transition, output, and timer reset functions for readability.

Untimed Semantics. The untimed semantics maps an untimed run to the last
observed output on that run: The partial function M = 〈I,O, Q, q0, δ, λ, κ, t0〉
�M� : I+

to ⇀ O × ({∞,⊥} ∪ N) represents the behavior of the machine at
the abstract level of how the timer is affected by the inputs. The function is
defined for an untimed word w = i0, . . . , in ∈ I∗

to if there exists a corresponding

sequence of transitions in M, i.e., let �M�(w) ↓ if transitions qj
ij ,oj ,tj−−−−→ qj+1

exist for 0 ≤ j < n, where q0 is the initial state of M. We call a sequence of such
transitions an untimed run, as there is no information on exactly when transitions
are taken. Finally, if we have that �M�(w)↓, the nth step of a sequence w can be
found by �M�(w) = (on, tn). Input-enabledness (i.e., totality of �M�) can easily
be achieved by fixing a special undefined output, allowing us to use the active
learning algorithms for Mealy machines in LearnLib [16].

Symbolic Runs. Before defining timed semantics on concrete timed words, we
define symbolic runs as an intermediate construct that we will also use when
generating MM1Ts from concrete traces. We need one auxiliary concept that we
define inductively over the complete sequence of transitions: the current symbolic

Fig. 2. Learned MM1T of the brick-sorter conveyor-belt example.
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timer value θi at every transition. This has to be defined inductively as on some
transitions a running timer is not reset. The initial timeout is θ0 = v0 + t0, for
the start of the run at symbolic time v0. Then, let

θi =

{
θi−1 for ti = ⊥ (no reset)
vi + ti otherwise (reset).

The symbolic run is constructed from an untimed run of the form

q0
i1,o1,t1−−−−−→ q1 , . . . , qn−1

in,on,tn−−−−−→ qn

The symbolic run is then represented by a constrained symbolic timed word
and constructed as follows. In every step, we define a short constrained symbolic
timed word 〈Si, ϕi〉 and concatenate these to form a constrained symbolic timed

word for the whole sequence of transitions. For transition qj−1
ij ,oj ,tj−−−−→ qj let

〈Sj , ϕj〉 =

⎧⎪⎨
⎪⎩

〈(oj , vj), vj = θj−1〉 if ij = timeout
〈(ij , vj), vj−1 < vj < θj−1〉 else if oj = -

〈(ij , vj) (oj , v′
j), vj−1 < vj = v′

j < θj−1〉 else.

The complete symbolic run is then 〈S1, ϕ1〉 · ··· · 〈Sn, ϕn〉. Finally, every word
in w ∈ I∗

to with �M�(w) ↓ takes a unique sequence of transitions in M and
consequently has a unique symbolic run, denoted by sr(w). We extend sr(·) to
sets of words by word-wise application and write sr(M) for the set of symbolic
runs for words in the domain of �M�.

Timed Semantics. Our definition of the concrete timed semantics of M
leverages symbolic runs. The concrete timed semantics of M then is the set
traces(M) ⊆ TΣ∗ of timed words over actions Σ = I ∪ O such that

ρ ∈ traces(M) ⇔ ρ |= 〈S, ϕ〉 for some 〈S, ϕ〉 ∈ sr(M).

Example 3. For the brick sorter, an untimed run could be

q0
red,-,3−−−−→ q1

black,-,⊥−−−−−−→ q2
timeout,pass,∞−−−−−−−−−−→ q3

Then, assuming v0 = 0 and t0 = ∞ would lead to the symbolic run

〈(red, v1), 0 < v1 < 0+∞〉·〈(black, v2), v1 < v2 < v1+3〉 · 〈(pass, v3), v3 = v1+3〉

3 Trace Database

To learn an MM1T M, we must find concrete timed words produced by the
SUL that model constrained symbolic timed words in the symbolic runs of M.
However, we want to learn a model of a long-running black-box system to support
more realistic logs. As such, we assume only a single timed word from which
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to learn1, and we do not assume that the word begins or ends in an initial
configuration. This makes learning more difficult since we cannot simply iterate
over the recorded words starting from the initial state. Instead, we construct a
trace database that is instantiated with a query to find initial conditions. The
sub-words that model the initial conditions mark the positions in the timed word
where the SUL has been reset to its initial state.

A symbolic query is an extension of a constrained symbolic timed word that
supports queries for unknown inputs or outputs, and that can be modeled by
timed words with stuttering actions. A stuttering action might occur in a con-
crete word several times in a row, all of which may be matched by one action
in a symbolic query. We require stuttering to learn models where the initial
state has transitions leading back to itself. These self-loops are common in many
controllers, including our traffic controller case study, where an output is peri-
odically triggered by a timer without any new inputs. We now describe symbolic
queries before explaining how they are used to configure initial conditions.

Formally, a symbolic query is a triple 〈S, ϕ, γ〉 where S is a pair 〈σ, v〉, ϕ
is a constraint on the symbolic timestamps of S, and γ ∈ B

∗ is a sequence of
Booleans the same length as σ where truth indicates that stuttering is allowed
for the action at the same index. Here, σ is a finite word over the alphabet
Σ ∪{�I ,�O} and v is a series of symbolic timestamps the same length as σ. The
special symbols �I and �O represent any input or output action, respectively.
We use the convention that omitting γ when we write a symbolic query (i.e.,
writing 〈S, ϕ〉) means that γ is false for all actions in S.

We now define when a concrete trace models a symbolic query. The difference
between a symbolic query and a constrained symbolic timed word is that a
symbolic query may include the symbolic actions �I and �O and may permit
stuttering on actions. Given an action σi and a symbolic timestamp vi, the
function repeat(σi, vi) = {(σi, vi,0), . . . , (σi, vi,j),

∨
vi,j = vi | j ≥ 0} produces a

set of all constrained symbolic timed words with σi repeated finitely many times
and constraints that require one symbolic timestamp vi,j to be equal to vi.

Definition 3 (Modeling of Symbolic Query). Given a concrete timed word
ρ and a symbolic query〈S, ϕ, γ〉 where S = 〈σ, v〉, ρ |= 〈S, ϕ, γ〉 when there exists
a constrained symbolic timed word u such that ρ |= u, where

u ∈
{

〈S ′
0, ϕ

′
0〉 · · · · · 〈S ′

n, ϕ′
n〉 | 〈S ′

i, ϕ
′
i〉 =

{
repeat(σi, vi) if γi
(σi, vi), ϕ otherwise

}

Initial Conditions. A trace database is a timed word instantiated with an
initial condition that serves to break it into smaller pieces and a special query to
prepend to requests from the learner. The initial conditions are specified using
a symbolic query and each index of the word is tested against the query to see
if it satisfies the condition. If the query is satisfied, then the index is marked
as a starting index for a word in the database. Subsequently, when the learner
submits a symbolic query, it has no information about the initial conditions of

1 Note that the approach also works with more than one word.
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Table 1. Action statistics for our case studies. For the brick sorter, inputs are detected
brick colors and outputs are sorting actions. For the intersection, inputs are lanes with
detected cars and outputs are signalling configuration changes.

the trace database. As such, queries from the learner must be modified before
testing against the trace database: they must be augmented with any additional
actions matched by the initial condition.

Formally, a trace database is a triple D = 〈ρ, 〈SI , ϕI , γI〉, 〈SP , ϕP , γP 〉〉 where
ρ is a concrete timed word, 〈SI , ϕI , γI〉 is a symbolic query that defines initial
conditions, and 〈SP , ϕP , γP 〉 is a symbolic query that is prepended to trace
database queries to match the initial conditions and define the beginning of a
word. We require that 〈SP , ϕP , γP 〉 defines the symbolic timestamp v0, thereby
providing a relative timestamp from which offsets may be computed.

We can now define a function query that computes a response to a symbolic
query from an instantiated trace database. Note that more than one sub-word of
the database may match a query and, in that case, one such matching sub-word
will be chosen non-deterministically. In practice, the choice of word does not
matter since any fulfill the constraints of the query.

Definition 4. Given a trace database D = 〈ρ, 〈SI , ϕI , γI〉, 〈SP , ϕP , γP 〉〉 where
ρ = (σ, τ) and a symbolic query〈S, ϕ, γ〉, we define query(D, 〈S, ϕ, γ〉) =
ρi, . . . , ρn where i ∈ {j | ∃k > j · ρj , . . . , ρk |= 〈SI , ϕI , γI〉} and ρi, . . . , ρn |=
〈SP , ϕP , γP 〉 · 〈S, ϕ, γ〉.

The initial conditions for a trace database are specific to each SUL and are a
form of prior knowledge about which the learner has no information. However, in
many cases the initial conditions can be safely assumed to be whatever happens
when the SUL is fed no inputs for a long period of time. In this case, the only
information provided by a human is how long to wait before the SUL can be
assumed to have reset. This number need not be precise, only long enough that
a reset occurs and short enough that the condition is met sufficiently often.

Example 4. Table 1 shows frequency and timing information for the most fre-
quent inputs and outputs of our two case studies. Table 1a shows that bricks
arrived and either passed or were rejected a similar number of times. Table 1c
shows that the mean times between brick-sorter inputs and outputs diverged
by about 2 s, but the standard deviation was the same. This tells us that the
output timing is probably closely related to the input timing. We set initial condi-
tions 〈SI , ϕI , γI〉 = 〈(�O, v0), (�I , v1), v0+10 < v1, (true, false)〉 meaning that we
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search for any output (possibly stuttering) followed by any input after 10 (∼ 9.8)
seconds. We set the word beginnings with 〈SP , ϕP , γP 〉 = 〈(�O, v0), true, (true)〉.
Table 1c shows the timing of inputs and outputs for the intersection appear
largely unrelated, with outputs occurring at a fixed interval, and Table 1b
shows that one output action dominates the others. We set initial conditions
〈SI , ϕI , γI〉 = 〈(a1 + a2, v0), (�I , v1), v0 + 10 < v1, (true, false)〉 meaning that we
search for an a1 + a2 output (possibly stuttering) followed by any input after
10 s. We set the word beginnings with 〈SP , ϕP , γP 〉 = 〈(a1 +a2, v0), true, (true)〉.

4 From Concrete Traces to Symbolic Runs

We use symbolic queries to construct a symbolic observation tree from a trace
database. A symbolic observation tree is a tree-shaped MM1T. For a given set
of actions Σ = I ∪ O, we generate input sequences w ∈ I+

to and for these try
to infer the corresponding symbolic runs of the target MM1T from which the
trace database was recorded. The trace database provides a concrete timed word
ρ = (σ, τ) for the symbolic query〈S, ϕ, γ〉 where we can use wildcards �I and
�O to be matched by any input action and any output action, respectively. We
do not use action stuttering when constructing the symbolic observation tree as
this feature is needed only for specifying trace database initial conditions. As
such, we omit γ when writing symbolic queries in this section. Intuitively, we
mimic the inference process (i.e., interacting with the oracle) that is used for
constructing an observation tree in [26]. However, while Vaandrager et al. can
derive concrete timed queries for the symbolic relations and values they want to
infer, we have to find adequate traces in the database, not having full control
over timing. We leverage that, in general, a symbolic run is modeled by many
timed words, most of which can be used interchangeably. One notable difference
from an active learning setting is that the trace database may be incomplete.
In this section, we focus on showing that the generated symbolic runs may be
incomplete but will be consistent with all the information in the trace database.
The quality of inferred models will depend on the quality of data in the database.

We initialize the symbolic observation tree 〈I,O, Q, q0, δ, λ, κ, t0〉 with initial
state q0, i.e., initially Q = {q0}, and use a timed symbolic query 〈(�O, v1), v0 <
v1〉 to observe the initial timer τ1 from timed word (o1, τ1), setting t0 = τ1.
Recall that v0 will be defined in the initial conditions of the trace database. If
we cannot find a concrete trace in the database, we assume that no timer is set
initially, setting t0 = ∞. This is consistent with the database as in this case all
traces in the database start with an input.

Now, assume the path from the root q0 of the tree leads to an unexplored
state q, along already inferred transitions q0

i1,o1,t1−−−−−→ q1 . . . qk−1
ik,ok,tk−−−−−→ qk = q

(or empty sequence of transitions in the case of the initially unexplored state
q0). Let 〈Sq, ϕq〉 denote the corresponding symbolic run. For q0, we use symbolic
run 〈ε, true〉, where ε denotes the empty word. The currently active symbolic
timer (cf. Section 2) after the run is θq = vi + ti for the most recent set timer,
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i.e., such that ti �= ⊥ and tj = ⊥ if i < j. If the sequence of transitions is empty
or no such τi exists, then θq = v0 + t0.

We generate a series of queries to the trace database and extend the symbolic
tree based on the responses, adding new transitions from q to newly created
states based on every input i ∈ Ito. We distinguish two basic cases: transitions
for regular inputs and transitions on timeouts.

Timeouts. For i = timeout, the symbolic tree only needs to be extended with
a new state if a timer is currently running, i.e., if ti �= ∞ in active timer θq. In

this case, we want to add new state r and new transition q
timeout,o,t−−−−−−−−→ r and

need to compute o and t. In the best case, both values can be computed from
symbolic query 〈Sq, ϕq〉 · 〈(�O, vk+1), vk+1 = θq〉 · 〈(�O, vk+2), vk+1 < vk+2〉.

If a corresponding concrete timed word exists in the database, then it ends
with . . . , (ok+1, τk+1), (ok+2, τk+2). The word immediately provides o = ok+1 and
t = τk+2 − τk+1 is the time observed between the two subsequent timeouts. If no
such word can be found, we can ask for the shorter 〈Sq, ϕq〉 · 〈(�O, vk+1), vk+1 =
θq〉. A corresponding concrete timed word provides o and we assume that no new
timer is set, i.e., that t = ∞. Here, we conflate the case that we do not have
complete information with the case that no new timer is set. This is consistent
with the trace database by the same argument given above: there can only be
continuations with an input as the next action in the database.

In case the trace database also does not contain a concrete word for the
second query, we do not add a new transition to the symbolic tree. Since we do
not have enough information in the database for computing the transition, we
stop exploring in this direction.

Regular Inputs. For i �= timeout, we want to add new state r and new
transition q

i,o,t−−→ r and need to observe o and infer t. This case is slightly more
complex than timeouts since we have to account for the immediate output of
the transition and the fact that input transitions can either continue the existing
timer, reset it, or disable it. We start by asking symbolic query

〈Sq, ϕq〉 · 〈(i, vk+1), vk+1< θq〉 · 〈(�O, v′
k+1), v

′
k+1= vk+1〉 · 〈(�O, vk+2), vk+2 �= θq〉

which, answered with a timed word ending in . . . , (i, τk+1), (ok+1, τ
′
k+1),

(ok+2, τk+2), provides enough information. We set o = ok+1 and t = τk+2 −τ ′
k+1.

Since we observed a timeout that cannot be explained by the currently running
timer (as vk+2 �= θq), we can infer that the new transition sets a timer.

If no matching timed word is found and there is a currently running timeout,
i.e., if ti �= ∞ in θq, we alter the query slightly to

〈Sq, ϕq〉 · 〈(i, vk+1), vk+1< θq〉 · 〈(�O, v′
k+1), v

′
k+1= vk+1〉 · 〈(�O, vk+2), vk+2= θq〉

and try to observe the already running timer expiring. If a corresponding timed
word is found, we set o as before and t = ⊥. This may actually be wrong: the
transition we observe could have reset the timer to a value that (accidentally)
equals the remaining time on the previously running timer. However, from the
unsuccessful first query, we know that our choice is consistent with the database.
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If the second query also does not produce a timed word, we try the shorter
query 〈Sq, ϕq〉 · 〈(i, vk+1), vk+1 < θq〉 · 〈(�O, v′

k+1), v′
k+1 = vk+1〉. If success-

ful, we observe o as above and assume t = ∞, which, again, conflates missing
information and disabling the timer but is consistent with the information in
the trace database.

In case all three queries fail, we do not add a transition or new state.

Fig. 3. Symbolic observation tree with symbolic run to q3.

Example 5. Figure 3 shows a fragment of a symbolic observation tree and the
corresponding symbolic run from the root q0 to inner node q3: The initial timer
is set to 20. The transition from q0 to q1 does not reset the timer, the transition
from q1 to q2 disables the timer, and the transition from q2 to q3 sets a timer to
t3. The corresponding symbolic run consists of all observed inputs and outputs
along the sequence of transitions and constrains symbolic times to obey the
active initial timer that is triggered by the second transition.

Consistency. For a trace database that could have been generated by a MM1T,
i.e., with consistent timer behavior, the symbolic observation tree is consistent
with the trace database: we only stop extending the tree when no concrete
continuations to traces exist and in every single step we ensure that the symbolic
representation is consistent with the trace database.

5 Application in Model Learning Scenarios

To evaluate the utility of our proposed symbolic abstraction in different learning
pipelines, we define five pipelines and execute them on symbolic observations gen-
erated from single logs for the brick-sorter model and the intersection controller.2

We report on their quantitative performance and discuss the human-readability
of the created models.

Evaluation Setup. To identify the best learning setup, we assembled five learn-
ing pipelines, illustrated in Fig. 4: timed k-tails (TkT) without post-processing
2 A note on the experiment design: since the symbolic abstraction is not learned (i.e.,

does not extrapolate beyond certain knowledge), we do not evaluate its performance
but focus on the utility in model learning. We fix adequate initial conditions for
computing the trace databases.
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Fig. 4. The five evaluated learning pipelines.

(1), TTT without post-processing (2), TTT with subsequent refinement (3),
symbolic tree recovery with subsequent k-tails (4), and symbolic tree recovery
with subsequent refinement (5). We use the following three approaches to gen-
erate an initial model:

The TkT (baseline) approach performs passive learning on the trace database
without symbolic abstraction using a modified version of the TkT algorithm
[22,23]. We use a single non-resetting timer, no end events, k = 2, and a relaxed
merge criterion (states are equal if one’s k-tails are a subset of the other’s).3

The TTT approach performs active learning of a Mealy machine using the
novel symbolic abstraction oracle described in Sect. 4. We use the TTT [15]
algorithm provided by LearnLib [16] and approximate equivalence queries with
randomly generated runs with a fixed maximal length.

The Symbolic Tree Recovery queries the symbolic abstraction oracle exhaus-
tively to recover a symbolic tree from the inputs.

We also implemented two post-processing steps that can be used in conjunc-
tion with the latter two learning approaches. The k-Tails approach performs
an additional passive learning step on a set of symbolic runs by applying the
k-tails passive learning algorithm [5]. Again, we use k = 2 and the relaxed
merge criterion described above and follow this with a determinization step.
The Partial Mealy Minimizer post-processing step performs greedy, partition-
refinement-inspired minimization on a partial model.

Quantitative Evaluation. We executed the pipelines described above on both
the brick-sorter and intersection logs. For the intersection, we also consider sce-
narios with a reduced input alphabet. E.g., “Intersection(Ai, Bi)” only considers
vehicles on straight lanes. TkT does not support such scenarios since it operates
on the concrete log where it is not obvious how to project to a subset of inputs.

3 A problem with applying TkT to the intersection’s logs is that an unbounded number
of inputs can occur before a relevant output (i.e., cars being detected before the signal
switches). As a result, no k can be chosen that would avoid overfitting.
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Table 2. Performance of our learning pipelines on the different scenarios.

TTT Symbolic Tree

Symb. Tree TkT No Post-pr. Part. Ref. k-Tails Part. Ref.

Scenario d Q acc. [%] Q acc. [%] Q acc. [%] acc. [%] Q

Brick Sorter 2 7 139 7 100 3 100 3 100 3 100 3
Intersection(Ai, Bi) 4 6 581 n/a1 97 5 98 2 98 6 99 2
Intersection(Ai, BLeft) 3 6 638 n/a1 99 2 99 2 100 4 86 19
Intersection(Ai, Bi, BLeft) 5 6 970 n/a1 86 9 83 7 97 11 81 29
Intersection(Ai, Bi, ATurn) 8 6 1’351 n/a1 93 7 93 3 97 10 77 37
Intersection(complete) 11 6 1’839 749 81 13 81 13 94 23 77 50

1 TkT cannot be used: projection of concrete trace to subset of inputs not obvious.

The results of the evaluation are shown in Table 2. For each scenario, the
table provides some information about the symbolic tree: the number of inputs
|I|, the depth d to which the symbolic tree was explored and the number of
resulting leaves |�| (i.e., unique symbolic traces). For each learning pipeline, the
accuracy in the model learning step (acc. [%]), i.e., the percentage of symbolic
runs in the recovered symbolic tree that is correctly represented by the final
model, and size of the resulting automaton |Q| w.r.t. the traces contained in the
symbolic tree are shown in the order described in the last section. By design,
TkT always yields perfect accuracy, so this information is omitted.

The accuracy of the TTT-based approach degrades faster than using k-tails
for post-processing in experiments with more inputs and sparser logs. There is a
trade-off between learning extra states, distinguished from other states by miss-
ing information and querying the trace database more extensively during equiv-
alence queries. As the experiments show, greedy minimization cannot effectively
mitigate missing information (either on the models inferred with TTT or on the
symbolic tree directly): obtained models are often less accurate than the original
models.

Summarizing, post-processing the symbolic tree yields the best results: the
approach scales to the complete intersection and the automata are not too large,
while preserving very high accuracy.

Explainability. We also examined the human-readability of the generated
models. To judge human-readability, we rendered the learned models using
GraphViz [11] and examined them manually.

Since TkT operates on log entries, input and output actions are independent
in the automaton and timeouts have to be inferred from the timing intervals. The
resulting edge labels are non-symbolic, e.g., <pass through,[17,32]>, indicat-
ing that the system can be expected to let the brick pass in 17–32 time units.
Additionally, the number of generated locations is far greater than the underlying
model’s number of states, indicating that no semantic meaning can be assigned
to the states. As a result, the model (available in the repeatability package [9])
is not easily comprehensible for a human reader.
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In contrast, the workflows using the symbolic tree fully recover
the correct automaton shown in Fig. 2. The symbolic tree generation
yields MM1T transitions that combine input, output and timing behavior

. One can comprehend the sys-
tem’s behavior “at a glance”, e.g., the bug in the brick sorter’s behavior can be
seen in the generated model by following the execution path for insertion of two
different-colored bricks.

These results extend to the intersection scenarios. One can see how the inter-
section controller behaves by inspection of the learned model: the signals change
to accommodate arriving cars on blocked lanes. While the automata generated,
e.g., by symbolic tree recovery with k-tails refinement do increase in size (up to
23 states) when the input alphabet is enlarged, their comprehensibility surpasses
the 749-state automaton generated by TkT.

Threats to Validity. On the conceptual level, we assume that our scenarios can
a) be correctly modeled using MM1Ts and b) initial conditions can be identified
via queries. Vaandrager et al. [26] argue that MM1Ts are applicable to many
real-life scenarios and we have anecdotally found that the quality of final learned
models is not very sensitive to the precision of initial conditions. The primary
internal threat is the parameterization of our k-tails, especially the choice of
k = 2. We selected that value based on its frequent selection in the literature
for similar use cases, e.g. in [6,7,10]. External validity may be threatened by
our approach overfitting the two case studies. We designed our method to be as
general as possible, and selected two dissimilar case studies to mitigate this risk.

6 Related Work

Many passive timed model learning methods construct and minimize trees. Pas-
tore et al. [22,23] proposed the TkT algorithm for inference of timed automata
with multiple clocks. It normalizes traces, turns them into Timed Automata
(TAs) trees and merges locations to gain a general structure. Verwer et al. [28]
proposed the RTI algorithm for learning deterministic real-time automata. It
forms an “augmented” prefix tree with accepting/rejecting states, and merges
and splits them to compress the trees into automata. Maier et al. [19] learned
TAs online by constructing a prefix tree automaton and merging its states. Unlike
RTI, their method does not require negative examples. Recently, Coranguer
et al. [8] constructed tree-shaped automata, merged states (ignoring timing
constraints) and then used timing information to split states. They presented
promising results in comparison to TkT (in some respects) and RTI. Grinchtein
et al. [12] learned event-recording TAs. They built timed decision trees, and
then folded them into a compact automaton. Henry et al. [13] also proposed
a method for learning event-recording TAs where not all transitions must reset
clocks. Dematos et al. [20] presented a method and proof of concept for learning
stochastic TAs by identifying an equivalence relation between states and merging
them.



118 S. Dierl et al.

Other formalism used in passive approaches are as follows: Narayan et
al. introduced a method to mine TAs using patterns expressed as Timed Regular
Expressions (TREs) [21]. The technique passively mines variable bindings from
system traces for TREs templates provided by a user. Verwer et al. [27] present
an algorithm for the identification of deterministic one-clock TAs. The algorithm
is efficient in the limit, i.e., it requires polyonomial time to identify the learned
model. Tappler et al. [24] used genetic algorithms for learning TAs based on
passive traces. Later, the approach was adapted to the active setting [2]. An et
al. [3] proposed two methods for actively learning TAs. In one the learner needs
to guess which transitions carry clock resets, and in the other the teacher has a
method of telling if clock-resets occur. Recently, Tappler et al. [25] proposed a
learning method for TAs that is based on SMT-solving. SMT-solving can handle
cases with partial information (as experienced in the traffic controller), and still
provide solutions satisfying the given constraints. However, the long traces we
are dealing with will likely introduce too many variables and formulas to scale.

Aichernig et al. [1] compared active and passive learning approaches in a
network protocol setting. They show that passive learning is competitive when
utilizing sparse data, a result matching our observations when comparing TTT
to passive learning-based symbolic tree post-processing.

A recent work by Vaandrager et al. defined MM1T and then used an adapter
interface to actively mine them using existing Mealy machine mining algorithms
in LearnLib [26]. This technique is used as one of the post-processing steps in
our approach, and we use an equivalent definition of MM1Ts. We complement
this approach via our symbolic observation oracle.

Jeppu et al. [18] recently introduced a method to construct automata from
long traces by extracting counterexamples from attempting to prove that no such
model exists. It found smaller models than traditional state-merging methods.

7 Conclusion

We presented a novel technique for abstracting a single concrete log of a timed
system into a MM1T. The abstraction can be used as an oracle by active learning
algorithms following the MAT framework such as TTT or to create a symbolic
tree view of the system. We evaluate four approaches for learning a model of the
system based on this abstraction in combination with different post-processing
methods on two real-world-derived use cases, a brick sorting system and a traffic
intersection signaling controller. We examined if our approach can be used to
provide explainability for complex or machine learned black-box systems. We
found that the proposed symbolic trees in combination with post-processing via
k-tails yields concise and symbolic human-readable automata.

We plan to apply our approach to more use cases to verify its performance
in more scenarios and on different automata classes (e.g., automata with data).
Moreover, we can not yet formally relate the quality of our models to the input’s
completeness and aim at finding such a relation in future work.
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Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4 32

17. Iversen, T.K., et al.: Model-checking real-time control programs: verifying lego
mindstorms tm systems using uppaal. In: Proceedings 12th Euromicro Conference
on Real-Time Systems. Euromicro RTS 2000, pp. 147–155. IEEE (2000)

18. Jeppu, N.Y., Melham, T., Kroening, D., O’Leary, J.: Learning concise models from
long execution traces. In: 2020 57th ACM/IEEE Design Automation Conference
(DAC), pp. 1–6 (2020). https://doi.org/10.1109/DAC18072.2020.9218613

19. Maier, A.: Online passive learning of timed automata for cyber-physical produc-
tion systems. In: IEEE International Conference on Industrial Informatics (INDIN
2014), pp. 60–66. IEEE (2014). https://doi.org/10.1109/INDIN.2014.6945484

20. de Matos Pedro, A., Crocker, P.A., de Sousa, S.M.: Learning stochastic timed
automata from sample executions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012.
LNCS, vol. 7609, pp. 508–523. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34026-0 38

21. Narayan, A., Cutulenco, G., Joshi, Y., Fischmeister, S.: Mining timed regular speci-
fications from system traces. ACM Trans. Embed. Comput. Syst. 17(2), 46:1–46:21
(2018). https://doi.org/10.1145/3147660

22. Pastore, F., Micucci, D., Guzman, M., Mariani, L.: TkT: automatic inference of
timed and extended pushdown automata. IEEE Trans. Softw. Eng. 48(2), 617–636
(2022). https://doi.org/10.1109/TSE.2020.2998527

23. Pastore, F., Micucci, D., Mariani, L.: Timed k-tail: automatic inference of timed
automata. In: 2017 IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 401–411. IEEE, New York, March 2017. https://
doi.org/10.1109/ICST.2017.43, ICST 2017

24. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to learn – learning
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Abstract. Reinforcement learning is increasingly often used as a learn-
ing technique to implement control tasks in autonomous systems. To
meet stringent safety requirements, formal methods for learning-enabled
systems, such as closed-loop neural network verification, shielding, falsi-
fication, and online reachability analysis, analyze learned controllers for
safety violations. Besides filtering unsafe actions during training, these
approaches view verification and training largely as separate tasks. We
propose an approach based on logically constrained reinforcement learn-
ing to couple formal methods and reinforcement learning more tightly
by generating safety-oriented aspects of reward functions from verified
hybrid systems models. We demonstrate the approach on a standard
reinforcement learning environment for longitudinal vehicle control.

Keywords: Theorem proving · Differential dynamic logic · Hybrid
systems · Reinforcement learning · Reward shaping

1 Introduction

Complex (autonomous) systems increasingly often employ learning techniques to
implement control tasks, which poses serious safety challenges. Formal methods
for learning-enabled systems—such as closed-loop neural network verification
(e.g., Verisig [15,16], NNV [27]), falsification [6], shielding [1,17], Neural Sim-
plex [24], input-output behavior explanations [3], and online reachability analysis
and hybrid systems monitoring [9,10,21]—address these challenges by analyzing
trained controllers for safety violations and explanations of their behavior, or
by filtering the actions proposed by controllers with formally verified artifacts.
Besides filtering unsafe actions during training, the training setup itself typically
is not supported with formal methods. A particularly attractive approach for
training controllers is reinforcement learning, for its seemingly straightforward
way of specifying desired behavior with a reward function. Designing reward
functions, however, is challenging, not least because they need to balance safety-
oriented requirements with goal-oriented ones.
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In this paper, we base on ideas from logically constrained reinforcement learn-
ing [11–13] to develop a formal approach to generating the safety-oriented aspects
of reward functions from verified predictive hybrid systems models. The main
intuition behind our approach is that hybrid systems models describe safety
envelopes that can be turned into formally verified runtime monitors [22]. These
runtime monitors not only distinguish safe from unsafe behavior, but with an
appropriate quantitative interpretation can be used to measure the robustness
of actions with respect to such safety envelopes. The challenge in deriving a
useful (for reinforcement learning) robustness measure from a formal model is
that relative importance of safety aspects is not immediately obvious from the
formal model alone, and that differences in units makes comparison of the mag-
nitude of robustness values across different aspects of the formal model difficult.
For example, an autonomous vehicle model may encode brake force limits and
speed limits: as the vehicle approaches a speed limit, it is acceptable to experi-
ence decreased robustness in brake limit in order to not violate the posted speed
limit. Another challenge is that measure-zero safety aspects can hide progress or
regression in other requirements.

We address these challenges by adapting robustness measures from metric-
temporal logic [7] and signal-temporal logic [5], and by developing signal rescal-
ing [28] operators to adjust the relative importance of competing safety aspects.

The benefits of this approach are that the safety specification is rigorously
checked for correctness and the resulting reward function inherits the predictive
nature of the hybrid systems model and its safety guarantees. The contributions
of this paper are threefold: based on [7,22] we develop a quantitative interpreta-
tion of hybrid systems models with an account for measure-zero requirements;
we develop signal rescaling [28] operators to specify relative importance of (com-
peting) safety aspects in the formal model; and we evaluate our approach on a
standard reinforcement learning environment for longitudinal vehicle control [4].

2 Background

In this section, we summarize background theory and introduce notation.

2.1 Differential Dynamic Logic

Differential dynamic logic dL [25] is a formal language for hybrid systems written
as hybrid programs. The syntax of hybrid programs (HP) is described by the
following grammar where α, β are hybrid programs, x is a variable and e, f(x) are
arithmetic expressions (terms) in +,−, ·, / over the reals, Q is a logical formula:

α, β : : = x := e | x := ∗ | ?Q | {x′ = f(x) & Q} | α ∪ β | α;β | α∗

Assignment x := e assigns the value of term e to x (e.g., compute accelera-
tion to meet speed limit after T time a := (v − vdes)/T ), and nondeterministic
assignment x := ∗ assigns any real value to x. Tests ?Q abort execution and
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discard the run if Q is not true, possibly backtracking to other nondeterministic
alternatives. A typical modeling pattern combines nondeterministic assignments
with tests to restrict the chosen values to some set (e.g., choose control within
brake and acceleration limits: a := ∗; ? − B ≤ a ≤ A). Differential equations
{x′ = f(x) & Q} are followed along a solution of x′ = f(x) for any duration as
long as the evolution domain constraint Q is true at every moment along the
solution (e.g., speed changes according to acceleration/deceleration, but does
not revert when hitting brakes {v′ = a & v ≥ 0}). Nondeterministic choice
α ∪ β runs either α or β (e.g., either accelerate or brake), sequential composi-
tion α;β first runs α and then β on the resulting states of α (e.g., first control,
then motion), and nondeterministic repetition α∗ runs α any natural number of
times (e.g., repeated control and environment loop).

The formulas of dL describe properties of hybrid programs and are described
by the following grammar where P,Q are formulas, f, g are terms, ∼ ∈ {<,≤,=
, �=,≥, >}, x is a variable and α is a hybrid program:

P,Q : : = f ∼ g | ¬P | P∧Q | P∨Q | P → Q | P ↔ Q | ∀xP | ∃xP | [α] P | 〈α〉P

The operators of first-order real arithmetic are as usual with quantifiers ranging
over the reals. For any hybrid program α and dL formula P , the formula [α] P
is true in a state iff P is true after all runs of α. Its dual, 〈α〉P is true in a state
iff P is true after at least one run of α.

The semantics of dL is a Kripke semantics in which the states of the Kripke
model are the states of the hybrid system. A state is a map ω : V → R, assigning
a real value ω(x) to each variable x ∈ V in the set of variables V. We write
�Q� to denote the set of states in which formula Q is true, ω ∈ �Q� if formula
Q is true at state ω, ω�e� to denote the real value of term e in state ω, and
ωe

x to denote the state ν that agrees with ω except that ν(x) = ω�e�. We write
FV(P ) for the set of free variables in formula P , and BV(α) to denote the bound
variables of program α, see [25]. The semantics of hybrid programs is expressed
as a transition relation �α� [25]. The differential equations and nondeterministic
alternatives in hybrid programs make them an expressive specification language,
but require computationally expensive methods similar to online reachability
analysis for execution, which is detrimental to their use in reward functions in
reinforcement learning. Next, we review ModelPlex [22] as a method to shift
much of this computational complexity offline.

2.2 ModelPlex

ModelPlex [22] combines a universal offline safety proof [α] P with an existential
reachability check whether two concrete states ω, ν are connected by the program
α, i.e., whether (ω, ν) ∈ �α�. The safety proof witnesses that all states reachable
by model α satisfy P , while passing the reachability check witnesses that the
two concrete states ω, ν are connected by the program α, and so state ν inherits
the safety proof, i.e., ν ∈ �P �. The reachability check is equivalently phrased
in dL as a monitor specification 〈α〉

∧
x∈BV(α)(x = x+) [22]. The dL monitor
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specification allows ModelPlex, in contrast to online reachability analysis, to
shift computation offline by using theorem proving to translate a hybrid systems
model into a propositional ModelPlex formula over arithmetic expressions. Note
that the reachability check is inherently a property of the runtime execution
and, therefore, the dL monitor specification and the resulting ModelPlex formula
are never valid (they introduce fresh variables x+, which means the existential
reachability proof will not succeed offline for all states). Instead, the proof can
be finished at runtime for two concrete states (a state ω providing values for x
and a state ν providing values for x+) by plugging in concrete measurements for
all variables of the ModelPlex formula.

The set M of ModelPlex formulas φ : S×S → B is generated by the following
grammar (∼ ∈ {≤, <,=, �=, >,≥} and θ, η form the arithmetic expressions of the
set T of ModelPlex terms in +,−, ·, / over the reals, i.e., θ : S × S → R):

φ, ψ : : = θ ∼ η | ¬φ | φ ∧ ψ | φ ∨ ψ

When a ModelPlex formula φ ∈ M is satisfied over states ω, ν, we write (ω, ν) |=
φ as shorthand for ω

ν(x)
x+ ∈ �φ�, or in other words, φ(ω, ν) is true.

ModelPlex formulas are quantifier- and program-free, and are therefore easy
(and computationally inexpensive) to evaluate from concrete measurements at
runtime, which makes them attractive for use in reinforcement learning.

The predictive nature of ModelPlex monitors also makes them useful for
safeguarding learned controllers during training and during operation [9,10], in
a shielding-like approach [20] based on hybrid systems models. In this paper, we
take a complementary approach to shielding by interpreting ModelPlex monitors
quantitatively in rewards.

2.3 Reinforcement Learning and Reward Shaping

Reinforcement learning involves training an agent to reach a goal by allowing
the agent to explore an environment while trying to maximize its reward. The
agent attempts different actions from the set of actions A. For every action the
agent makes, the environment takes a transition from state s ∈ S to a new state
s′ ∈ S. A reward function then signals to the agent how useful the outcome of
action a is: a negative reward signals that taking action a to reach state s′ is
discouraged, while positive reward encourages action a. Put differently, nega-
tive rewards encourage leaving “bad” states, while positive rewards encourage
dwelling in “good” states. In Sect. 4, we develop a principled approach to gener-
ate safety-oriented aspects of the reward function from hybrid systems models.

Often, the agent has to learn multiple (competing) aspects of control (e.g.,
reaching a destination fast while respecting posted speed limits and conserving
energy). This process of augmenting the reward function with multiple aspects
is referred to as reward shaping. The motivation behind reward shaping is to
provide additional reward for accomplishing subtasks that could lead towards
the goal in the hopes to improve convergence and efficiency of training.
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3 Related Work

Shielding (e.g., [1,17], see [19] for a survey) prevents reinforcement learning
agents during training and operation from taking actions that violate the spec-
ification. Specifications of shields are typically in linear temporal logic (LTL)
and focus on discrete environments. Some approaches based on dL [9] target
continuous environments, even from visual inputs [14]. Note that shields during
training can be detrimental to safety in operation [20] if not specifically trained
to return to safe states [9]. Neural Simplex [24] performs shielding with the addi-
tional feature of transferring control back to the learned controller when safe.
In order to give feedback about compliance with shields to the learning agent
during training and as a way of measuring robustness during operation, we fol-
low logically constrained reinforcement learning (see e.g. [11–13]), but instead
of LTL we use differential dynamic logic combined with signal rescaling [24] to
shape safety-oriented rewards.

Previous works [2,18] involving logic-based rewards include using
environment-based temporal logic formulas as additional award augmented
through potential-based reward shaping. Results have shown faster conver-
gence and optimal policy performance; however, these have been only tested for
average-reward learning algorithms rather than discounted-reward [18]. Addi-
tionally, reward functions can be augmented with specifications in signal tem-
poral logic for desired agent behavior [2].

4 Rewards from Hybrid Systems Models

We take a complementary approach to shielding by interpreting hybrid systems
models quantitatively through their relational abstraction as ModelPlex moni-
tors. To this end, we define a hybrid systems normal form that is designed to
align states of the hybrid systems model with states in the training process.

Definition 1 (Time-triggered normal form). A hybrid systems model α in
time-triggered normal form is of the shape (u := ctrl(x); t := 0; {x′ = f(x, u), t′ =
1 & t ≤ T})∗, where u := ctrl(x) is a discrete hybrid systems model not men-
tioning differential equations.

A hybrid program in time-triggered normal form models repeated interaction
between a discrete controller u := ctrl(x) that acts with a latency of at most
time T and a continuous model t := 0; {x′ = f(x, u), t′ = 1 & t ≤ T} that
responds to the control choice u. Note that the discrete controller u := ctrl(x)
typically focuses on safety-relevant features (such as collision avoidance) while
abstracting from goal-oriented features (such as desired cruise speed). The goal of
this section is to develop a principled approach to reward shaping to translate the
safety-relevant insights of formal verification to reinforcement learning. Figure 1
illustrates how the states of a formal model correspond to states in reinforcement
learning (note that unlike in usual RL notation, where states are responses of
the environment and actions are drawn from a separate set, the states of the
formal model include the values of actions).
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(
u := ctrl(x)

Agent

; t := 0; {x′ = f(x, u), t′ = 1 & t ≤ T}
Environment )∗

s0 s1 s2
RS(s0, s1)

R(s0, u, s2)

Fig. 1. Overview of aligning states in the formal model and the training process. The
reward R(s0, u, s2) is given for the transition (s0, u, s2), whereas the states of a formal
model include the values of actions, so taking action u traverses to intermediate state
s1 from which the environment responds by producing state s2. Therefore, we can give
separate reward RS(s0, s1) from the predictive formal model for choosing action u in
state s0.

Let s0 ∈ S be the state before executing u := ctrl(x), s1 ∈ S be the state after
executing u := ctrl(x) (and before executing t := 0; {x′ = f(x, u), t′ = 1 & t ≤
T}), and s2 ∈ S be the state after executing t := 0; {x′ = f(x, u), t′ = 1 & t ≤ T}
(which becomes s0 in the next loop iteration). These states relate to the training
process in reinforcement learning as illustrated in Fig. 1: s0 corresponds to the
state before the agent picks an action, s1 is the state after the agent chose
an action u ∈ A (but before it is actuated in the environment), and s2 is the
result state of executing the action in the environment. In typical reinforcement
learning setups, the reward associated with the transition (s0, u, s2) is computed
by a reward function R : S × A × S → R. We provide separate reward RS :
S × S → R directly for choosing action u in state s0 from the predictive formal
hybrid systems model, which requires a quantitative interpretation of ModelPlex
formulas, as discussed next.

4.1 Quantitative Interpretation of ModelPlex Formulas

We adapt MTL/STL robustness measures [5,7,8] to define a quantitative inter-
pretation of ModelPlex formulas, which describes how robustly satisfied a mon-
itor is over two states.

Definition 2 (Quantitative ModelPlex). The function Q : M → T inter-
prets a ModelPlex formula φ ∈ M quantitatively as an arithmetic expression
θ ∈ T in +,−, ·, / over the reals (θ : S × S → R):

Q(θ ≥ 0)(s0, s1) 
 θ(s0, s1)
Q(θ > 0)(s0, s1) 
 θ(s0, s1)
Q(θ = 0)(s0, s1) 
 Q(θ ≥ 0 ∧ −θ ≥ 0)(s0, s1)
Q(θ �= 0)(s0, s1) 
 Q(θ > 0 ∨ −θ > 0)(s0, s1)
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Q(φ ∧ ψ)(s0, s1) 


⎧
⎪⎨

⎪⎩

Q(ψ)(s0, s1) if φ ≡ θ=0 and (s0, s1) |= θ=0
−|θ(s0, s1)| if φ ≡ θ=0 and (s0, s1) �|= θ=0
(Q(φ) � Q(ψ))(s0, s1) otherwise

Q(φ ∨ ψ)(s0, s1) 
 (Q(φ) � Q(ψ))(s0, s1)
Q(¬φ)(s0, s1) 
 −Q(ψ)(s0, s1)

where � is max, � is min, the atomic propositions in φ are normalized to θ =
0, θ �= 0, θ ≥ 0, θ > 0, and conjunctions are reordered to list all θ = 0 before
inequalities.

Note that equalities θ = 0 result in measure-zero robustness when they are
satisfied: in a sense, their robustness is only meaningful when violated, since there
is only a single way to satisfy θ = 0. In conjunctions of the shape θ = 0 ∧ φ,
the chosen robustness definition avoids unnecessary measure-zero robustness by
evaluating to Q(φ) when θ = 0 is satisfied. In contrast, the naive phrasing
Q(θ = 0 ∧ φ) 
 min(Q(θ ≥ 0),Q(−θ ≥ 0),Q(φ)) would evaluate to 0 when
θ = 0 is satisfied and thus hide changes in robustness in φ, which can be valu-
able reward signals to the agent. Quantitative ModelPlex maintains safety by
overapproximating the original monitor verdict, see Lemma 1.

Lemma 1 (Mixed Quantitative ModelPlex Overapproximates Ver-
dict). The quantitative interpretation maintains the monitor verdict, i.e., the
following formulas are valid: Q(φ) > 0 → φ and Q(φ) < 0 → ¬φ for all Mod-
elPlex formulas φ ∈ M.

Proof. By structural induction on ModelPlex formula and term operators. ��

Mixed inequalities in Lemma 1 require for the quantitative interpretation
to be conservative in the sense of causing false alarms on weak inequalities (a
robustness measure of 0 is inconclusive). When comparisons are restricted to only
weak inequalities or only strict inequalities, we maintain equivalence between the
quantitative and the Boolean interpretation of ModelPlex, see Corollary 1.

Corollary 1 (Weak/Strict Quantitative ModelPlex Maintains Ver-
dict). When comparisons are restricted to weak/strict inequalities, the quantita-
tive interpretation maintains the monitor verdict, i.e., the following formula is
valid for weak inequalities Q(φ) ≥ 0 ↔ φ (for strict inequalities Q(φ) > 0 ↔ φ)
for all ModelPlex formulas φ ∈ M restricted to weak inequalities ≥,= in atomic
propositions (strict inequalities >, �=, respectively) and Boolean connectives ∧,∨.

Proof. By structural induction on ModelPlex formula and term operators. ��

With a quantitative interpretation of how robustly the choices of a reinforce-
ment learning agent satisfy the formal model, we next discuss several ways of
combining the safety reward with other goal-oriented reward elements.
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4.2 Logical Constraint Reward

In order to include feedback about the constraints of a formal model into the
reward function, the agent receives goal-oriented reward when operating safely
according to the model (safety monitor is satisfied), but receives the goal-oriented
reward adjusted with a penalty from the monitor when operating unsafely.

Definition 3 (Logical Constraint Reward). Let P ∈ M be a ModelPlex
formula for 〈u := ctrl(x)〉

∧
x∈BV(u:=ctrl(x))(x = x+), let RG be a goal-oriented

reward function, and RS = Q(P ) be the safety reward function from the quan-
titative interpretation of P . Let s0, s1, s2 be the states before the agent chooses
an action, after it chooses an action, and after the action is executed in the
environment, respectively. The logical constraint reward is defined as:

R(s0, s1, s2) =

{
RG(s0, s2) if (s0, s1) |= P

RG(s0, s2) + RS(s0, s1) otherwise

Definition 3 discourages the agent to violate the assumptions of the formal
model, while ignoring the safety reward when satisfied. The intuition behind this
is that positive reward from the formal model is largest when robustly inside
the boundary of the formal model’s safety envelope, which may encourage the
agent to make overly cautious (robust) action choices instead of making progress.
Whether Definition 3 prioritizes goal-oriented reward or safety-oriented reward
is entirely determined by the relative magnitude of RG(s0, s2) vs. RS(s0, s1).
This can sometimes be undesirable since it does not necessarily encourage the
agent to avoid safety violations. In order to emphasize safety and prioritize some
aspects of the formal model over other aspects (e.g., satisfying a speed limit vs.
satisfying deceleration assumptions) we introduce reward scaling to change the
magnitude of rewards while preserving the safety verdict.

4.3 Reward Scaling

The logical constraint reward of Sect. 4.2 does not prioritize goal- vs. safety-
oriented reward. Moreover, ModelPlex monitors do not distinguish between
quantities of different units and sort in the formal model (e.g., a monitor conflates
acceleration verdict, speed verdict, and position verdict into a single robustness
measure). When used in a reward function, however, we may want to prioritize
some safety aspects. For example, “violating” the brake assumptions of the for-
mal model by having better brakes is acceptable and should not be penalized as
hard as violating a speed limit. Here, we develop signal rescaling functions [28]
to emphasize the verdict of the entire monitor or certain aspects of it.

Definition 4 (Scaling Function). A scaling function C : R → R scales the
result of a logical constraint reward function RS such that the sign of its verdict
remains unchanged, i.e., C(0) = 0 and ∀r �=0. C(r) · r > 0.

Note that in the examples below we use C(θ) as a notation to indicate that
the scaling function applies to a specific term θ.
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Example 1 (Strong penalty). In order to emphasize that violating the formal
model is highly undesirable, the following scaling function penalizes monitor
violations while maintaining rewards for safety, see Fig. 2a:

C(RS(s0, s1)) =

{
RS(s0, s1) if RS(s0, s1) > 0
RS(s0, s1)3 otherwise

Example 2 (Boundary preference). In order to encourage behavior that follows
close to a safety boundary (i.e. drive close to but not past a speed limit), the
following scaling function gives more reward when the state’s boundary distance
is very small while giving less reward otherwise, see Fig. 2b:

C(RS(s0, s1)) =

{
1

RS(s0,s1)
if RS(s0, s1) > 0

RS(s0, s1) otherwise

Example 3 (Distance preference). In order to encourage behavior that follows
a certain distance from a safety boundary (i.e. drive 10 km/h below but not
past a speed limit), the following scaling function gives more reward when the
state’s boundary distance is close to the desired distance while giving less reward
otherwise, see Fig. 2c:

C(RS(s0, s1)) =

{
e(−(RS(s0,s1)−1.5)2) if RS(s0, s1) > 0
RS(s0, s1) otherwise
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Fig. 2. Reward scaling function illustrations.

Uniform scaling maintains the sign of the monitor verdict, but emphasizes
its importance relative to the goal-oriented components of a reward function.
If the goal-oriented reward is designed to encourage reaching a goal fast (i.e.,
RG(s0, s2) ≤ 0 for all states s0, s2 ∈ S), the logical constraint reward should be
restricted to safety violations and offset to “exceed” the goal-oriented reward:
min(RS(s0, s1), 0)−|δ|, where δ is the minimum attainable goal-oriented reward.

The states s checked with a monitor RS are composed of different aspects of
the environment and agent behavior that can be scaled component-wise within
RS so certain aspects are given more weight in the monitor verdict.
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If desired, reward scaling can decrease the importance of safety through
decreasing the penalty for unsafe behavior, implying that violating safety for
brief moments in time is allowed. This behavior has shown up briefly in our
experiments when penalization for violating safety constraints was too low.

Definition 5 (Component-wise Scaling). Scaling C↓V
: T →T applies scal-

ing function C to components in variables V of a safety-reward function RS:

C↓V
(RS) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min(f, g) 
 min(C↓V
(f), C↓V

(g))
max(f, g) 
 max(C↓V

(f), C↓V
(g))

f 
 C(f) if FV(f) ⊆ V

f 
 f otherwise

Component-wise scaling maintains the sign of safety-reward function RS:

∀s0, s1 ∈ S
(
RS(s0, s1) = 0 ∧ C↓V

(RS)(s0, s1) = 0

∨ RS(s0, s1) �= 0 ∧ C↓V
(RS)(s0, s1) · RS(s0, s1) > 0

)
.

Example 4 (Emphasizing speed). In order to emphasize that violating a speed
limit is unsafe, while being close to it is desirable, we scale the difference between
current speed v and speed limit vdes as follows.

C1(vdes − v) =

⎧
⎪⎨

⎪⎩

(vdes − v) if vdes − v > 0
(vdes − v)1/3 if 0 ≥ vdes − v > −1
(vdes − v)3 otherwise

C2(v − vdes) =

⎧
⎪⎨

⎪⎩

(v − vdes) if v − vdes > 0
(v − vdes)3 if 0 ≥ v − vdes > −1
(v − vdes)1/3 otherwise

We apply the scaling to reward components in {v, vdes}: C1(v − vdes)↓{v,vdes}
and C2(vdes − v)↓{v,vdes}

. The above functions scale two different speed verdicts,
v − vdes and vdes − v, which in a formal model and thus a monitor may arise
for different control choices (e.g., requiring to slow down when current velocity,
v, exceeds the speed limit, vdes vs. allowing to speed up when v < vdes). When
vdes − v ≤ 0, safety is violated and therefore C1 scales the negative verdict more
aggressively by applying an exponential function. When v − vdes ≤ 0, safety is
satisfied, but going much slower than vdes is undesirable; therefore, C2 scales the
negative verdict using a fractional exponential function, see Fig. 3.

4.4 Potential-Based Logical Constraint Reward

Reward shaping may cause unexpected behavior from the trained agent, as the
reward directly influences what actions the agent takes and may cause the agent
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Fig. 3. Component-wise scaling to emphasize speed rewards.

to learn a suboptimal policy [23]. To prevent unforeseen and unwanted behav-
ior, potential-based reward shaping [23] provides additional reward to the agent
while guaranteeing the agent will learn the optimal policy of the original reward
function. The additional reward is specified using the transition from the current
to the future state, and this transition is formalized as the difference in “poten-
tial” of the two states. Let Φ(s) characterize certain features of a state s ∈ S
(e.g., safety). Potential-based reward is then RP(s, a, s′) = γΦ(s′)−Φ(s), where s
is the current state, a is the action taken to reach a future state s′, and γ is some
discount factor, which gets added to the original reward: R(s, a, s′)+RP(s, a, s′).
The main intuition [23] why the policy is still optimal under this modified reward
function is that the potential function itself does not prefer one policy over the
other. Therefore, the original optimal policy is still preferred when the potential
difference is added to the original reward function.

Example 5 (Potential-based Logical Constraint Reward). The original reward
function R(s, a, s′) is augmented with additional reward that is calculated using
the predictive formal model. We align the loop iterations of the model in time-
triggered normal form with the learning states s and s′ of the reward function:
let s0, s1, s2=s be the states from the formal model leading up to learning state
s, and let s′

0=s2=s, s′
1, s

′
2=s′ be the states of the formal model corresponding

to the transition (s, a, s′). Since monitors are evaluated over two model states,
the safety potential associated with learning state s is a function of the previous
action Φ(s) = RS(s0, s1), whereas the safety potential associated with learning
state s′ is according to the safety of the current action Φ(s′) = RS(s′

0, s
′
1). Then,

the additional reward is RP(s, a, s′) = γΦ(s′) − Φ(s) with γ = 1, and the final
reward function is: R’(s, a, s′) = R(s, a, s′) + RP(s, a, s′).

5 Evaluation

Formal Model. In our evaluation, we adapt an existing formal model of a train
protection system [26] and apply it to a standard reinforcement learning envi-
ronment for longitudinal vehicle control [4]. The goal of the agent in longitudi-
nal vehicle control is to drive forward as fast as possible while respecting posted
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Model 1. Speed limit control, adapted from [26, Fig. 5]

spd

∣
∣
∣
∣
∣

1
(
(?v ≤ vdes; a := ∗; ? − B ≤ a ≤ A)

2 ∪ (?v ≥ vdes; a := ∗; ? − B ≤ a ≤ 0)
)

;

atp
∣
∣ 3 if

(

e − p ≤ v2 − d2

2B
+

(
A

B
+ 1

) (
A

2
ε2 + vε

))

then a := −B fi

drive

∣
∣
∣
∣
∣

4 t := 0;

5 {p′ = v, v′ = a, t′ = 1 & v ≥ 0 ∧ t ≤ ε}

speed limits. The speed limit control model (Model 1) comes with 3 components:
a speed controller spd in lines 1–2 chooses acceleration to a desired cruising speed
vdes, the automatic train protection atp in line 3 may override the choice of spd
if the remaining distance to the speed limit d is unsafe, and the motion model
drive in lines 4–5 describes how the vehicle position p and speed v change in
response to the agent’s acceleration choice.

From Model 1, we use [22] to obtain a ModelPlex formula, whose main com-
ponents reflect the model structure:

slc ≡ 0 ≤ v ≤ vdes ∧ −B ≤ a+ ≤ A ∧ e − p > S

∨ 0 ≤ vdes ≤ v ∧ −B ≤ a+ ≤ 0 ∧ e − p > S

∨ 0 ≤ v ∧ a+ = −B ∧ e − p ≤ S

where S ≡ v2 − d2

2B
+

(
A

B
+ 1

) (
A

2
ε2 + vε

)
(1)

Environment. LongiControl [4] provides a longitudinal vehicle control envi-
ronment with state space [x(t), v(t), a(t), aprev(t), vlim(t),vlim,fut(t),dlim,fut(t)] of
vehicle position x(t), speed v(t), acceleration a(t), previous acceleration aprev(t),
current speed limit vlim(t), upcoming two speed limits vlim,fut(t), and distances
to the upcoming two speed limits dlim,fut(t). The action space is continuous accel-
eration in the interval [−3, 3]m/s2, and the sampling time is 0.1 s. The environ-
ment has posted speed limits of 50 km/h at [0, 250)m, 80 km/h at [250, 500)m,
40 km/h at [500, 750)m, and 50 km/h after 750m.

We map the environment to the ModelPlex formula (1) as follows: x(t) �→
p, v(t) �→ v, a(t) �→ a+, vlim(t) �→ vdes, 3 �→ A, 3 �→ B, 0.1 �→ ε with two separate
configurations in order to demonstrate how the formal model can influence the
behavior of the trained reinforcement learning agent:

Configuration 1 encourages behavior similar to Model 1, satisfying a speed
limit before the speed limit begins: vlim,fut(t)1 �→ d, x(t) + dlim,fut(t)1 �→ e, i.e.,
the first elements of the speed limit and speed limit position vectors are handed
to the monitor
Configuration 2 to illustrate the effectiveness of the monitor in influencing
learned behavior, this configuration encourages “unusual” behavior opposing
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rforward (2) by favoring meeting the posted speed limit by the end (rather than
the beginning) of the speed limit: vlim(t) �→ d, x(t) + dlim,fut(t)1 �→ e

Reward Function. For evaluation, we use the reward function from [4, p. 1034] as
a baseline, with weighted penalties for slow driving (rforward), energy consump-
tion (renergy), jerk (rjerk), and speeding (rsafe):

−ξforwardrforward − ξenergyrenergy − ξjerkrjerk
︸ ︷︷ ︸

RG

− ξsafersafe︸ ︷︷ ︸
RS

(2)

We obtain a safety robustness measure Q(slc) from formula (1), and then replace
the speeding penalty with the (scaled) safety reward function as follows:

Logical constraint reward (LCR) with RS = min(0,Q(slc)(s0, s1)) − 1 to
ignore the safety robustness measure when satisfied and offset safety violations
to exceed the largest magnitude of the RG components in (2).
Logical constraint reward scaling (LCRS) applies the component-wise scal-
ing of Example 4 to the safety robustness measure Q(slc).
Potential-based reward shaping (PBRS) applies the potential-based
reward shaping of Example 5 to the safety robustness measure Q(slc).

We used reward function LCR with Configuration1 and reward functions
LCR,LCRS,PBRS with Configuration 2.

Model Training. Using these different reward functions, we train several agents
with the Soft Actor-Critic (SAC) method1 and the hyperparameters of Longi-
Control [4, Table 4] with a learning rate of 1e-5. We trained the baseline agent
with a learning rate of 1e-4.

Evaluation Metrics. We evaluate the training process in terms of number of
epochs until convergence, and the safety of the resulting agents in terms of the
number and magnitude of speed limit violations. We also quantify how successful
the agents are in reaching the goal, which is to drive as fast and as close to the
speed limit as possible, by measuring the accumulated reward per (2) and the
difference between agent speed v and the posted speed limits vdes during an
evaluation period. Note that training and evaluation episodes do not terminate
early under unsafe behavior of the agent but instead invoke a negative reward
as a penalty. Below are the results of our experiments.

Results. Figure 4 displays the average accumulated reward across several evalua-
tion periods at every tenth epoch during training. Note, that during training we
use different reward functions, which means their magnitude is not directly com-
parable. For the baseline reward function, we see that the reward converges to
around −200 at 3000 epochs. The logical constraint reward using Configuration
1 converges to −300 at 1250 epochs. The following experiments using Configu-
ration 2 converge to −325 at 1750 epochs for the logical constraint reward, −310
1 GitHub of environment: https://github.com/dynamik1703/gym longicontrol.

https://github.com/dynamik1703/gym_longicontrol
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at 3000 epochs for logical constraint reward scaling, and −300 at 2250 epochs
for potential-based reward shaping (faster or at the same rate as the baseline
model). This helps with efficiency regarding how many epochs are required to
finish training a reinforcement learning agent.

Figure 5a plots the accumulated reward according to the baseline reward
function (2), so can be compared relative to each other. The baseline agent has
the highest accumulated reward, indicating that it operates more aggressively
(less robustly) than other agents. The robustness nature of the other agents can
also be seen in Fig. 5b, which plots the vdes − v to compare how well the agents
achieve the goal of driving close to the speed limit.
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When evaluating the agents for Configuration 1, we compare LCR(1), logical
constraint reward, model against the baseline agent as their desired behavior is
to drive as close to the speed limit as possible while satisfying the speed limit.
After modifying the safety-oriented reward with the safety robustness measure
from ModelPlex Q(slc), the resulting LCR(1) experiments resulted in agents
that successfully satisfied the safety requirement by driving below the speed
limit, while there were also some agents that violated safety when the upcoming
speed limit was less than the current speed limit; using reward scaling to penalize
unsafe behavior more can address this issue. The safe logical constraint reward
agents had more robust behavior regarding maintaining safety as they left a
larger gap to the desired speed limit as seen in Fig. 5b.

For the agents using Configuration 2, we also see that they are generally more
robust compared to the baseline agent by the increased distance to desired speed
in Fig. 5b. Note that for Configuration 2, the purpose was to demonstrate how
the formal model can influence the behavior of the learned agent, which is most
prominent when emphasizing speed with LCRS(2), logical constraint reward
scaling: the agent’s behavior shows a preference for reaching the 80 km/h speed
limit at the end of the speed limit at 500m in Fig. 5b. This behavior extends into
violating the monitor when passing into the subsequent 40 km/h speed limit.

The other Configuration 2 models, LCR(2) and PBRS(2) did not violate
safety defined by the monitor.

In summary, the experiments suggest that training from modified reward
functions LCR(1) converges faster, and LCR(2),PBRS(2) generally satisfies
safety. In addition, modifying aspects that correspond to the formal model can
effectively change the agent’s behavior LCRS(2), which can help with designing
the reward function for different goals of reinforcement learning problems.

6 Conclusion

We explored using predictive hybrid models with formalized safety specifications
as an alternative to manually defining safety-oriented aspects of reward functions
in reinforcement learning.2 Based on logically constrained reinforcement learn-
ing, the agents we trained were implemented using dL-formalized safety rewards.
The logical constraints of the safety-oriented reward are combined with the goal-
oriented reward of the agent through reward scaling and potential-based reward
shaping. We found that partly auto-generated reward functions produce agents
that generally maintain the level of safety of hand-tuned reward functions and
that reward scaling can be used to emphasize certain aspects of the generated
reward functions. There were still agents that violated safety, specifically within
logical constraint reward functions, and including dL-based shielding [9] can
address these safety concerns. In addition, we observed faster convergence dur-
ing training when using augmented reward functions, specifically for the logically
constrained reward and the potential-based reward functions.
2 GitHub for experiment code: https://github.com/marianqian/gym longicontrol for

mal methods.

https://github.com/marianqian/gym_longicontrol_formal_methods
https://github.com/marianqian/gym_longicontrol_formal_methods
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Future work includes generating goal-oriented rewards from liveness proofs,
and extending the formal modeling language to specify scaling functions directly
in the formal model, e.g., as design annotations. We also plan to use the predic-
tive nature of the formal model for additional forms of reward shaping, e.g., to
interpret the continuous dynamics of the formal model as a reward predictor for
some reward aspects that are sustained over an extended time period, because
they cannot be influenced instantaneously but only through affecting motion.
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Abstract. Generating accurate runtime safety estimates for autonom-
ous systems is vital to ensuring their continued proliferation. However,
exhaustive reasoning about future behaviors is generally too complex to
do at runtime. To provide scalable and formal safety estimates, we pro-
pose a method for leveraging design-time model checking results at run-
time. Specifically, we model the system as a probabilistic automaton (PA)
and compute bounded-time reachability probabilities over the states of
the PA at design time. At runtime, we combine distributions of state
estimates with the model checking results to produce a bounded time
safety estimate. We argue that our approach produces well-calibrated
safety probabilities, assuming the estimated state distributions are well-
calibrated. We evaluate our approach on simulated water tanks.

Keywords: Runtime Monitoring · Probabilistic Model Checking ·
Calibrated Prediction

1 Introduction

As autonomous systems see increased use and perform critical tasks in an open
world, reasoning about their safety and performance is critical. In particular, it
is vital to know if a system is likely to reach an unsafe state in the near future.

The field of predictive runtime monitoring offers ways for performing this
reasoning. The basic idea is to reason about the expected future behaviors of
the system and its properties. However, accurately computing future system
states is computationally infeasible at runtime, as it requires running expensive
reachability analysis on complex models. Previous works have computed libraries
of reachability analysis results at design time and used them at runtime [9]. But
these approaches require the system dynamics to have certain invariances to
reduce the number of times reachability analysis must be called offline.

Other lines of work use system execution data to learn discrete probabilistic
models of the system, which are then used to perform predictive runtime mon-
itoring, as there is rich literature for runtime monitoring of discrete automata.
These models range from discrete-time Markov chains (DTMCs) [2] to hidden
Markov models (HMMs) [4] to Bayesian networks [17]. However, it is difficult
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 140–156, 2023.
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to provide guarantees relating the performance of the automata models to the
real system, due to the fact that they are fit using finite data. Of particular
interest is ensuring the models are conservative: it is essential to avoid run-time
overconfidence in the safety of the dynamical system.

In this paper, we propose a method for predictive run-time monitoring of
safety probabilities that builds on the strengths of the existing works. We use a
mix of conservative modeling techniques and data-driven modeling techniques to
transform the dynamical system into a probabilistic automaton (PA).1 We then
employ probabilistic model checking (PMC) to compute the safety of the model
over all its states offline. Finally, we synthesize lightweight monitors that rely on
the model checking results and a well-calibrated state estimator to compute the
probability of system safety at runtime.

Under the assumption that the PA model is conservative and that the state
estimator is well-calibrated, we prove that our runtime monitors are conservative.
We demonstrate that our modeling technique is likely to result in conservative
PA models. Finally, we show that our method produces well-calibrated, accurate,
and conservative monitors on a case study using water tanks.

The contributions of this paper are threefold:

– We present a method for conservatively modeling dynamical systems as PAs
and using PMC results at runtime to monitor the system’s safety.

– We prove that if our PA models are conservative then the monitor safety
estimates will be conservative.

– We demonstrate our approach on a case study of water tanks. We empirically
show that our PA models and runtime monitors are both conservative.

The rest of the paper is structured as follows. We give an overview of the related
work in Sect. 2, provide the necessary formal background in Sect. 3, and for-
mulate the problem in Sect. 4. Section 5 goes over our proposed approach and
Sect. 6 provides formal conservatism guarantees for the approach. We describe
the results of our case study in Sect. 7 and conclude in Sect. 8.

2 Related Work

We divide the previous works in the area of predictive runtime monitoring into
two bins. The first bin analyzes dynamical system models, while the second
analyzes automata models.

Dynamical Systems Approaches. A large portion of the predictive moni-
toring for dynamical systems literature focuses on reasoning about the safety of
autonomous vehicles. Prior work has employed reachability analysis to estimate
the future positions of other cars to estimate the safety of a proposed vehicle tra-
jectory [1]. In [18], the authors develop techniques to estimate the probability of

1 In our scope, PAs are equivalent to Markov Decision Processes (MDPs) without
rewards: both have finite states with probabilistic and non-deterministic transitions.
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a proposed trajectory resulting in a collision with other vehicles, which are given
as distributions of states predicted by neural networks (NNs). In [9], the authors
use precomputed reachability analysis and Bayesian inference to compute the
probability of an autonomous vehicle colliding with static obstacles. This app-
roach requires the system dynamics to have certain invariances to ensure the
reachability analysis can be feasibly run at design time. This approach is con-
ceptually similar to ours, but we employ automata-based abstractions instead of
making invariance assumptions about the system dynamics.

Previous works have also addressed the problem of synthesizing runtime
monitors for signal temporal logic (STL) properties of dynamical systems.
Approaches range from conformal prediction [8,25], design time forward reach-
ability analysis [33], computing safe envelopes of control commands [32], online
linear regression [15], and uncertainty aware STL monitoring [26].

Automata Approaches. The first works of this type developed predictive LTL
semantics, also called LTL3 [24,34], for discrete automata. The LTL3 semantics
allowed to the system to determine if every infinite extension of an observed
finite trace would satisfy or not satisfy a specification. Recent work has extended
these ideas to timed systems [28], multi-model systems [12], and systems with
assumptions [10]. Another approach uses neural networks to classify if unsafe
states of a hybrid automaton (HA) can be reached from the current state of the
HA [5–7]. They additionally use conformal prediction to get guarantees about the
accuracy of their predictions [31]. However, these frameworks give very coarse
predictions, as they can only determine if a system is guaranteed to be safe,
guaranteed to be unsafe, or not sure.

Another thread of work uses data to learn probabilistic models that can then
be used in conjunction with predictive monitoring techniques. In [4], the authors
learn an HMM model of the system from simulation data and perform bounded
reachability analysis to determine the probability of an LTL specification being
violated from each state of the HMM. This work was extended using abstraction
techniques to simplify the learned models [3]. In [2], the same authors employ
importance sampling to efficiently learn discrete-time Markov chain (DTMC)
models from data, which they then use to synthesize predictive monitors. In [17],
the authors use Bayesian networks to model temporal properties of stochastic
timed automata. The Bayesian networks are updated online to improve their
performance. Finally, in [13] the authors use process mining techniques to learn
predictive models of systems, which are in turn used to synthesize predictive
runtime monitors. An interesting line of future work for us is exploring applying
our runtime monitoring technique using these models as they are updated from
new observations online.

The most similar work to ours presents two methods for synthesizing predic-
tive monitors for partially observable Markov decision processes (POMDPs) [19].
The first approach combines precomputed safety probabilities of each state with
POMDP state estimators to estimate the probability that the system will remain
safe. However, state estimation of POMDPs is computationally expensive since
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the set of potential state distributions increases exponentially due to the non-
determinism in the model. The second approach uses model checking of condi-
tional probabilities to directly compute the safety of the system based on the
observation trace. A downside of this approach is that it requires running model
checking at runtime. Our method, on the other hand, avoids expensive computa-
tions at run time while maintaining design-time scalability through abstraction.

3 Background

In the following Definitions 1 to 3, borrowed from Kwiatkowska et al. [23], we
use Dist(S) to refer to the set of probability distributions over a set S, ηs as
the distribution with all its probability mass on s ∈ S, and μ1 × μ2 to be the
product distribution of μ1 and μ2.

Definition 1. A probabilistic automaton (PA) is a tuple M = (S, s̄, α, δ, L),
where S is a finite set of states, s̄ ∈ S is the initial state, α is an alphabet of
action labels, δ ⊆ S × α × Dist(S) is a probabilistic transition relation, and
L : S → 2AP is a labeling function from states to sets of atomic propositions
from the set AP.

If (s, a, μ) ∈ δ then the PA can make a transition in state s with action label
a and move based on distribution μ to state s′ with probability μ(s′), which is
denoted by s

a−→ μ. If (s, a, ηs′) ∈ δ then we say the PA can transition from state
s to state s′ via action a. A state s is terminal if no elements of δ contain s. A
path in M is a finite/infinite sequence of transitions π = s0

a0,μ0−−−→ s1
a1,μ1−−−→ . . .

with s0 = s̄ and μi(si+1) > 0. A set of paths is denoted as Π. We use M(s) to
denote the PA M with initial state s.

Reasoning about PAs also requires the notion of a scheduler, which resolves
the non-determinism during an execution of a PA. For our purposes, a scheduler
σ maps each state of the PA to an available action label in that state. We use
Πσ

M for the set of all paths through M when controlled by scheduler σ and SchM

for the set of all schedulers for M. Finally, given a scheduler σ, we define a
probability space Prσ

M over the set of paths Πσ
M in the standard manner.

Given PAs M1 and M2, we define parallel composition as follows:

Definition 2. The parallel composition of PAs M1 = (S1, s̄1, α1, δ1, L1) and
M2 = (S2, s̄2, α2, δ2, L2) is given by the PA M1 || M2 = (S1 × S2, (s̄1, s̄2), α1 ∪
α2, δ, L), where L(s1, s2) = L1(s1)∪L2(s2) and δ is such that (s1, s2)

a−→ μ1 ×μ2

iff one of the following holds: (i) s1
a−→ μ1, s2

a−→ μ2 and a ∈ α1 ∩ α2, (ii)
s1

a−→ μ1, μ2 = ηs2 and a ∈ (α1 \ α2), (iii) μ1 = ηs1 , s2
a−→ μ2 and a ∈ (α2 \ α1).

In this paper, we are concerned with probabilities that the system will not
enter an unsafe state within a bounded amount of time. These are represented
as bounded-time safety properties, which we express using metric temporal logic
(MTL) [21]. Following the notation from [20], we denote these properties as

�≤T s /∈ Sunsafe,
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where Sunsafe ⊂ S is the set of unsafe states and T ≥ 0 is the time bound.

Definition 3. For MTL formula ψ, PA M, and scheduler σ ∈ SchM, the prob-
ability of ψ holding is:

Prσ
M(ψ) := Prσ

M{π ∈ Πσ
M | π |= ψ},

where π |= ψ indicates that the path π satisfies ψ in the standard MTL seman-
tics [21]. We specifically consider MTL safety properties, which are MTL speci-
fications that can be falsified by a finite trace though a model.

Probabilistically verifying an MTL formula ψ against M requires checking
that the probability of satisfying ψ meets a probability bound for all schedulers.
This involves computing the minimum or maximum probability of satisfying ψ
over all schedulers:

Prmin
M (ψ) := infσ∈SchM

Prσ
M(ψ)

Prmax
M (ψ) := supσ∈SchM

Prσ
M(ψ)

We call σ a min scheduler of M if Prσ
M(ψ) = Prmin

M (ψ). We use Schmin
M to

denote the set of min schedulers of M.

Remark. For the rest of this paper, we use Pr when referring to model-checking
probabilities and P for all other probabilities.

Calibration and Conservatism. Consider a scenario where a probability esti-
mator is predicting probability p̂ that a (desirable) event E will occur (e.g., a
safe outcome). We define the calibration for the probability estimates (adapted
from Equation (1) of [16]):

Definition 4 (Calibration). The probability estimates p̂ of event E are well-
calibrated if

P (E | p̂ = p) = p, ∀p ∈ [0, 1] (1)

Next, we define conservatism for the probability estimates:

Definition 5 (Conservative Probability). The probability estimates p̂ of a
desirable event E are conservative if

P (E | p̂ = p) ≥ p, ∀p ∈ [0, 1] (2)

In other words, the estimates p̂ are conservative if they underestimate the
true probability of event E. Note that any monitor that is well-calibrated (Def-
inition 4) is guaranteed to be conservative (Definition 5), but not vice versa.

Two standard metrics for assessing the calibration of the p̂ estimates are
expected calibration error (ECE) [16] and Brier score [29]. The ECE metric
is computed by dividing the p̂ values into equally spaced bins in [0, 1], within
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each bin taking the absolute difference between the average p̂ and the empirical
probability of event E, and weighted-averaging across bins with their sizes as
weights. So ECE penalizes discrepancies between the estimator confidence and
empirical probability of E within each bin. The Brier score is the mean squared
error of the probability estimates

∑

i

(p̂i − 1Ei
)2

4 Problem Statement

Consider the following discrete-time stochastic system titled MOS with dynamics:

X(t + 1) = f(X(t), U(t))),
Y (t) = g(X(t), V (t)),

X̄(t), Z̄(t) = h(Z̄(t − 1), Y (t),W (t)),
U(t) = c(X̄(t)),

(3)

where X(t) ∈ S ⊂ R
n is the system state (with bounded S); Y (t) ∈ R

p are
the observations; X̄(t) ∈ R

n is the estimated state of the system; Z̄(t) ∈ R
z

is the internal state of the state estimator (e.g., a belief prior in a Bayesian
filter); U(t) ∈ U ⊂ R

m is the control output, which we discretize, resulting
in a finite number |U| of control actions, the functions f : R

n × R
m → R

n,
g : Rn × R

v → R
p, h : Rz × R

p × R
w → R

n × R
z describe the system dynamics,

perception map, and state estimator respectively; the function c : R
p → R

m

is a stateless controller; and V (t) ∈ Dv ⊆ R
v and W (t) ∈ Dw ⊆ R

w describe
perception and state estimator noise. The V (t) noise models inexact perception,
such as an object detector missing an obstacle. The W (T ) noise accounts for
state estimators that use randomness under the hood. A common example of
this is particle filters randomly perturbing their particles so that they do not
collapse to the exact same value.

Let Sunsafe ⊂ S denote the set of unsafe states of MOS. At time t, we are
interested in whether MOS will lie in Sunsafe at some point in the next T time
steps. This is represented by the bounded time reachability property

ψMOS = �≤T (X /∈ Sunsafe) (4)

Let P (ψMOS | Z̄(t)) denote the probability of MOS satisfying ψMOS . Our goal
is to compute calibrated (Definition 4) and conservative (Definition 5) estimates
of P (ψMOS | Z̄(t)) at runtime, which we denote as P̂

(
ψMOS | Z̄(t)

)
.

5 Overall Approach

Our approach consists of a design time and runtime portion. At design time,
a PA of the system (including its dynamics, perception, state estimation, and
controller) is constructed using standard conservative abstraction techniques.
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Then the bounded-time safety probability for each state of the model is computed
using model checking and stored in a look-up table. At runtime, the estimated
state (or distribution of states) from the real system’s state estimator is used
to estimate the abstract state (or distribution of abstract states) of the abstract
system. This abstract state (or distribution of states) is used in conjunction with
the lookup table to estimate the bounded-time safety of the real system.

5.1 Design Time

The design time aspect of our approach has two parts. First, we convert the orig-
inal system MOS into a probabilistic automaton MAS. Then we use probabilistic
model checking to compute the bounded time safety of MAS for each state in
the model.

Model Construction. To convert MOS into a probabilistic automaton, MAS,
we first need to create probabilistic models of the perception g and state esti-
mation h components of MOS. To do this, we simulate MOS and record the
perception errors X(t) − X̄(t). We discretize the domain of these errors and
estimate a categorical distribution over it. For example, this distribution would
contain information such as “the perception will output a value that is between
2m/s and 3m/s greater than the true velocity of the car with probability 1/7.”

To convert the system dynamics f and controller c to a probabilistic automa-
ton, we use a standard interval abstraction technique. The high-level idea is to
divide the state space S of MOS into a finite set of equally sized hyperrectangles,
denoted as S′. So every s′

1 ∈ S′ has a corresponding region S1 ⊂ S. MAS then
has a transition from s′

1 to s′
2 (in MAS) if at least one state in S1 has a transi-

tion to a state in S2 (in MOS) under some control command u ∈ U. Note that
state s′

1 can non-deterministically transition to multiple states in S′ because it
covers an entire hyperrectangle of states in MOS. This ensures that the interval
abstraction is conservative, as it overapproximates the behaviors of MOS.

Finally, the perception error model, controller, and interval abstraction are
all parallel-composed into a single model as per Definition 2.

Remark. In describing the construction of the MAS, we have not mentioned
anything about initial states: we do not keep track of a singular initial state
for MAS. Instead, we will later run model checking for the full range of initial
states of MAS to anticipate all runtime scenarios. For our purposes, the “initial
state-action space” of MAS consists of every abstract state and control action.
We include the control action in the initial state space because when using the
model’s safety probabilities online, we know what the next control action will be.

Safety Property. We need to transform the bounded time safety property on
MOS given in Eq. (4) into an equivalent property on MAS. To do this, we compute
the corresponding set of unsafe states on MAS, which is defined as

S′
unsafe = {s′ | ∃s ∈ Sunsafe, s

′ corresponds to s}
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Letting s′ denote the state of MAS, the bounded time safety property for
MAS is

ψMAS := �≤T
(
s′ /∈ S′

unsafe

)
(5)

Probabilistic Model Checking. The final design-time step of our approach
computes the safety probability of MAS for every state in the model. This step
amounts to computing the below values using standard model checking tools:

Prmin
MAS(s′,u)(ψMAS), ∀s′ ∈ S′, ∀u ∈ U

This requires running model checking on MAS for a range of initial states,
which can be a time-consuming process. To mitigate this, we note that MAS is
simpler to analyze than MOS, since the size of the state space gets reduced during
the interval abstraction process. Additionally, one can lower the time bound T
on the safety property to further speed up the model checking.

The probabilities from the model checking are stored in a lookup table, which
we denote as G(s′, u). It will be used at runtime to estimate the likelihood of
the system being unsafe in the near future.

Remark. This approach would work for any bounded time MTL properties, how-
ever more complex formulas may take longer to model check.

5.2 Runtime

At runtime, we observe the outputs of the state estimator and controller and run
them through the lookup table to compute the probability of the system avoiding
unsafe states for the next T time steps. We propose two different ways of utilizing
the state estimator. The first way is to simply use the point estimate from the
state estimator. In cases of probabilistic estimators, this means taking the mean
of the distribution. The second way uses the estimated state distribution from
the state estimator. This requires an estimator with a probabilistic output, but
most common state estimators, such as particle filters and Bayesian filters, keep
track of the distribution of the state. The second way takes full advantage of the
available state uncertainty to predict safety.

Point Estimate. At time t, the state estimator outputs state estimate X̄(t).
The controller then outputs control command U(t) = c(X̄(t)). Finally, we get a
safety estimate P̂mon

point(X̄(t), U(t)) by plugging X̄(t) and U(t) into G:

P̂mon
point(X̄(t), U(t)) = G(X̄(t), U(t)) (6)

State Distribution. Now assume that at time t state estimator additionally
outputs a state estimate X̄(t) and a finite, discrete distribution of the state,
denoted as PX̄(t). The controller still outputs control command U(t) = c(X̄(t)).
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To estimate the safety of the system, we compute a weighted sum of the safety
of each state in PX̄(t) using G and U(t):

P̂mon
dist (PX̄(t), U(t)) =

∑

s∈Supp(PX̄(t))
PX̄(t)(s) · G(s′, U(t)) (7)

where Supp
(
PX̄(t)

)
denotes the (finite) support of PX̄(t), PX̄(t)(s) denotes the

estimated probability of MOS being in state s according to PX̄(t), and s′ ∈ S′ is
the state in MAS that corresponds to state s ∈ S in MOS.

6 Conservatism Guarantees

This section proves that our state-distribution monitoring produces safety esti-
mates that are conservative and well-calibrated ; that is, we underestimate the
probability of safety. We require two assumptions for that. The first assumption
is the conservatism of abstract model MAS, by which we mean that its probability
of being safe is always less than that of MOS for the same initial condition. The
second assumption is the calibration of the state estimator, which means that it
produces state probabilities that align with the frequencies of these states. Below
we formalize and discuss these assumptions before proceeding to our proof.

Definition 6 (Model Conservatism). Abstraction MAS is conservative with
respect to system MOS if

PMOS(s,u)(ψ) ≥ Prmin
MAS(s′,u)(ψ) ∀s ∈ S, u ∈ U (8)

where s′ ∈ S′ is the state in MAS that corresponds to state s in MOS.

In general, it is difficult to achieve provable conservatism of MAS by con-
struction: the model parameters of complex components (e.g., vision-based per-
ception) are estimated from data, and they may have complicated interactions
with the safety chance. Instead, we explain why our approach is likely to be
conservative in practice and validate this assumption in the next section.

Consider MOS and MAS as compositions of two sub-models: dynamics/control
and perception/state estimation. We construct MAS such that its dynam-
ics/control component always overapproximates the dynamics/control portion
of MOS. That means that any feasible sequence of states and control actions
from MOS is also feasible in MAS. This follows from the use of reachability anal-
ysis over the intervals of states to compute the transitions of MAS.

It is unclear how to formally compare the conservatism of perception/state
estimation portions of MAS and MOS when they are created from simulations of
the perception/state estimation component of MOS. First, these components are
not modeled explicitly due to the high dimensionality of learning-based percep-
tion. Thus, when estimating probabilities from samples, we essentially approxi-
mate the average-case behavior of the component. Second, it is often unknown
in which direction the probabilities need to be shifted to induce a conservative



Conservative Safety Monitors of Stochastic Dynamical Systems 149

shift to the model. One opportunity is to use monotonic safety rules [11]; for
now, this remains a promising and important future research direction.

To summarize, the dynamics/control portion of MAS overapproximates that
of MOS, while the perception/state estimation portion of MAS approximates the
average-case behavior of MOS. So one would expect, on average, MAS to be
conservative with respect to MOS, even though we cannot formally prove that.

Next, we define the calibration for the state estimator (adapted from Equa-
tion (1) of [16]):

Definition 7 (Calibration). Given the dynamical system from Eq. (3) and
state estimator h that outputs a discrete, finite distribution of the estimated
state, denoted Px̄(t), we say that h is well-calibrated if

P (x(t) = s | Px̄(t)(s) = p) = p, ∀p ∈ [0, 1] (9)

Intuitively, what this definition means is that if the state estimator says that
there is probability p that the system is in state s, then the system will be in
state s with probability p. Calibration is an increasingly common requirement
for learning-based detectors [14,16,27,30] and we validate it in our experiments.

Now we are ready for our main theoretical result: assuming that MAS is
conservative with respect to MOS and that the state estimator is well-calibrated,
we show that the safety estimates of our monitoring are conservatively calibrated.

Theorem 1. Let the system MOS in Eq. (3) be given with a well-calibrated state
estimator (Definition 7). Let MAS be a conservative model of MOS (Definition 6).
Finally, assume that the safety of MOS conditioned on the true state of the system
is independent of the safety estimate from the monitor. Given state estimator
distribution PX̄(t) and control command U ∈ U, the safety estimates from the
state distribution monitor (Eq. (7)) are conservative:

P (ψMOS
| P̂mon

dist (PX̄(t), U(t)) = p) ≥ p ∀p ∈ [0, 1] (10)

Proof. We start with conditioning the safety of the system on the state of the
system and proceed with equivalent transformations:

P (ψMOS | P̂mon
dist (PX̄(t), U(t)) = p) =

∫

s∈S

P
(
ψMOS | X(t) = s, P̂mon

dist

(
PX̄(t), U(t)

)
= p

)
·

P
(
X(t) = s | P̂mon

dist

(
PX̄(t), U(t)

)
= p

)
ds =

∫

s∈S

P (ψMOS | X(t) = s) · PX̄(t)(s)ds =
∑

s∈PX̄(t)

P (ψMOS | X(t) = s) · PX̄(t)(s) =

∑

s∈PX̄(t)

PMOS(s,U(t))(ψ) · PX̄(t)(s) ≥
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∑

s∈PX̄(t)

Prmin
MAS(s↓,U(t))(ψ) · PX̄(t)(s) = p

��
The first step comes from marginalizing the state X(t) into the left side of

Eq. (10). The second step comes from the assumption that the safety of the
system given the state is independent of the monitor output and the assumed
calibration of the monitor from Eq. (9). The third step follows from the discrete,
finite support of the state estimator output and the calibration. The fourth step
comes from substituting and rearranging terms. The final step comes from the
assumed conservatism of MAS in Definition 6.

7 Case Study

Our experimental evaluation aims to demonstrate that the safety estimates from
our monitoring approach are conservative and accurate. Additionally, we com-
pare the effect of using the point-wise and distribution-wise state estimation. We
perform the evaluation on a simulated water tank system and use the PRISM
model checker [22] to perform the probabilistic model checking. The code and
models for the experiments can be found on Github.

7.1 Water Tanks

Consider a system consisting of J water tanks, each of size TS, draining over
time, and a central controller that aims to maintain some water level in each
tank. With wi[t] as the water level in the ith tank at time t, the discrete-time
dynamics for the water level in the tank is given by:

wi[t + 1] = wi[t] − outi[t] + ini[t], (11)

where ini[t] and outi[t] are the amounts of water entering (“inflow”) and leaving
(“outflow”) respectively the ith tank at time t. The inflow is determined by the
controller and the outflow is a constant determined by the environment.

Each tank is equipped with a noisy sensor to report its current perceived
water level, ŵ, which is a noisy function of the true current water level, w. The
noise on the sensor outputs is a Gaussian with zero mean and known variance.
Additionally, with constant probability the perception outputs ŵ = 0 or ŵ = TS.

Each water tank uses a standard Bayesian filter as a state estimator. The
filter maintains a discrete distribution over the system state. On each perception
reading, the filter updates its state distribution using a standard application of
the Bayes rule. The mean of the state distribution at this point is the estima-
tor’s point prediction, which is sent to the controller. Once the control action
is computed, the filter updates its state distribution by applying the system
dynamics.

The central controller has a single source of water to fill one tank at a time
(or none at all) based on the estimated water levels. Then this tank receives a
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constant value in > 0 of water, whereas the other tanks receive 0 water. Each
tank has a local controller that requests itself to be filled when its water level
drops below the lower threshold LT and stops requesting to be filled after its
water level reaches the upper threshold UT . If several tanks request to be filled,
the controller fills the one with the lowest water level (or, if equal, it flips a coin).

At runtime, we are interested in the probability that a tank will neither be
empty or overflowing, represented by the bounded-time safety property:

ψwt:=�≤10 ∨i=1..J (wli > 0 ∧ wli < TS)

Model Construction. We construct the MAS model for J = 2 water tanks,
in = 13.5, outi[t] = 4.3, TS = 100, LT = 10, UT = 90, and water level intervals
of size 1 by following the description in Sect. 5.1. To model the combination of
perception and state estimation, we estimated the state distributions with 100
trials of 50 time steps. Figure 1 shows a histogram of the state estimation errors.

Fig. 1. Histogram of state estimation errors for the water tanks.

Model Checking. The initial state of MAS comprises the water level of each
tank, the low-level control command of each tank, and the filling command of the
central controller. There are 101 discrete water levels in each tank and 5 possible
configurations of the 3 control commands, for a total of 51005 different initial
states of MAS. We model-checked ψwt in these initial states on a server with
80 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz CPUs by running 50 parallel
PRISM instances at a time. The full verification process took approximately
24 h, which is acceptable for the design-time phase.

7.2 Results

To test our approach, we ran 500 trials of the water tanks starting from water
levels between 40 and 60. Each trial lasted for 50 time steps (recall that the model
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checking checked 10 time steps into the future) and 74 trials resulted in a water
tank either over- or underflowing. We evaluated three different monitors in our
approach. One used the point estimates from the Bayesian filter (“point estimate
monitor”), another used the estimated distribution from the state estimator
(“state distribution monitor”), and the last used the true state of the system
(“true state monitor”, for comparison only).

Qualitative Performance. Figure 2 shows the safety estimates of the monitors
for one safe and one unsafe trial. The monitors keep high safety estimates for the
entirety of the safe trial. In the unsafe trial, the failure occurred at time step 42
due to a tank overflowing. The safety estimates are high at first but then begin
to drop around time step 30, predicting the failure with a 10-step time horizon.

(a) Safe trial (b) Unsafe trial

Fig. 2. Monitor safety estimates for two water tank trials.

Calibration. Next, to examine the overall calibration of our safety estimates,
we bin the safety estimates into 10 bins of width 0.1 ([0−0.1, 0.1−0.2, . . . , 0.9−1])
and compute the empirical safety chance within each bin. The results are shown
in Fig. 3, with the caveat that we only plot bins with at least 50 samples to
ensure statistical significance. The point estimate monitor and true state monitor
are conservative for all of their bins. On the other hand, the state distribution
monitor has the best overall calibration. We also computed the ECE and Brier
scores for the monitors, which are shown in Table 1. To assess the conservatism of
the monitors, we introduce a novel metric called expected conservative calibration
error (ECCE). It is similar to ECE, except that it only sums the bins where the
average monitor confidence is greater than the empirical safety probability (i.e.,
the cases where the monitor is overconfident in safety). The ECCE values for the
monitors are also shown in Table 1. Note that ECE ≥ ECCE, because ECCE
only aggregates a subset of the bins that ECE does. Our results show that the
monitors are well-calibrated and conservative, and that the state distribution
monitor manages to capture the uncertainty particularly well.
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(a) Point estimate monitor (b) State distribution mon-
itor

(c) True state monitor

Fig. 3. Calibration plots for the three monitors. The x-axis shows the binned safety
estimates reported by the monitor and the y-axis shows the empirical safety probability.
The diagonal dashed line denotes perfect calibration. Bars higher than the dashed line
represent under-confidence (i.e., conservatism) and bars lower than the dashed line
represent over-confidence.

Accuracy. Finally, we are interested in the ability of the monitors to distin-
guish safe and unsafe scenarios. To do this, we computed a receiver operating
characteristic (ROC) curve for the three monitors, shown in Fig. 4, and areas
under curve (AUC) in Table 1. As expected, the state distribution monitor and
true state monitor outperform the point estimate monitor. One surprising aspect
is that the state distribution monitor performs about as well as the true state
monitor. We hypothesize that this is because the state distribution contains
information about how well the state estimator will perform in the near future.
Investigating this potential phenomenon is another area of future work.

Fig. 4. ROC curves for the three monitors.
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Table 1. Calibration and classification metrics for the monitors.

Monitor Type ECE ECCE Brier Score AUC

State estimate 0.0157 0.00818 0.0292 0.828

State distribution 0.00252 0.000899 0.0275 0.867

True state 0.0129 0.00459 0.0273 0.870

Validation of Assumptions. First, we empirically validate whether MAS is
conservative with respect to MOS. Directly verifying this claim is infeasible,
since it requires computing PMOS(s,u)(ψ) for an infinite number of states s ∈ S.
However, we can examine the performance of the true state monitor as a proxy
for the conservatism of MAS: the true state monitor obtains the probabilities
from MAS using the true state, avoiding any sensing and state estimation noise.
The slightly underconfident true state monitor bins in Fig. 3 and the very low
ECCE in Table 1 both provide strong evidence that MAS is indeed conservative.

Second, we examine the calibration assumption of the state estimator. We
computed its ECE across all water levels, resulting in the negligible value of
0.00656. We conclude that this state estimator gives calibrated results in practice.

8 Conclusion

This paper introduced a method for synthesizing conservative and well-calibrated
predictive runtime monitors for stochastic dynamical systems. Our method
abstracts the system as a PA and uses PMC to verify the safety of the states
of the PA. At runtime, these safety values are used to estimate the true safety
of the system. We proved that our safety estimates are conservative provided
the PA abstraction is conservative and the system’s state estimator is well-
calibrated. We demonstrated our approach on a case study with water tanks.
Future work includes applying our method to existing approaches that learn dis-
crete abstractions directly from data, exploring how to construct conservative
perception/state estimation abstractions, using our prior work in [11] to reduce
the number of model checking calls, and investigating the effects of the estimated
state distribution’s variance on the future system safety.
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Abstract. This paper focuses on the formal verification of invariant
properties of a C code that describes the dynamics of a discrete-time
linear parameter-varying system with affine parameter dependence. The
C code is annotated using ACSL, and the Frama-C’s WP plugin is used to
transform the annotations and code into proof objectives. The invariant
properties are then formally verified in both the real and float models
using the polynomial inequalities plugin of the theorem prover Alt-Ergo.
The challenges of verifying the invariant properties in the float model
are addressed by utilizing bounds on numerical errors and incorporating
them into the real model.
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1 Introduction

Ellipsoidal invariant sets constitute an important concept in the field of control
theory, specifically in the context of dynamical systems and system stability
analysis. These sets are defined by the property that all state trajectories starting
from any point within the set remain inside the set for all future times. In
other words, if the system’s state lies initially inside an ellipsoidal invariant
set, then the state evolution is guaranteed to stay within the boundaries of the
set. Similarly, invariants in the field of formal methods refer to properties or
conditions that hold true throughout the entire or part of the execution of a
program, system, or algorithm [26]. The relationship between the two concepts
is evident when considering that if a state is inside the ellipsoidal invariant set,
then the next states will also be inside of this set. This situation is akin to an
invariant property, where the current state being inside the ellipsoidal invariant
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set acts as a precondition that implies the next states will remain within the set.
There has been a significant amount of research on ellipsoidal invariant sets in the
literature. Early work in this area focused on the use of ellipsoidal invariant sets
for analyzing the stability of linear systems [5,20]. Several methods have been
developed to construct invariant sets, including methods based on Lyapunov’s
stability theorem [18], linear matrix inequality (LMI) techniques [6], and sum-
of-squares (SOS) programming [30]. Each of these methods has its own benefits
and limitations, and the choice of method depends on the specific characteristics
of the system being analyzed.

This paper focuses on the formal verification of some invariant properties of
the C code describing the dynamics of a discrete-time linear parameter-varying
(LPV) system with affine parameter dependence. Specifically, we formally verify
that, if the state of the system lies in an ellipsoidal invariant set at the initial
time, then it resides in this set at all time instants, and, further, the output of the
system resides in another ellipsoid at all time instants as well for all permissible
pointwise-bounded inputs and parameter trajectories. These sets are obtained
by applying new results developed in [17] for computing state- and output-
bounding sets for discrete-time uncertain linear fractional transformation (LFT)
systems using pointwise integral quadratic constraints (IQCs) to characterize
the uncertainties and the S-procedure. Uncertainties that admit pointwise IQC
characterizations include static linear time-invariant and time-varying pertur-
bations, sector-bounded nonlinearities, and uncertain time-varying time-delays.
An affine LPV system can be expressed as an LFT on static linear time-varying
perturbations, and so the aforementioned results are applicable in our case. The
positive definite matrices defining the ellipsoids are obtained by solving semidef-
inite programs [7]. These solutions of the semidefinite programs, obtained by
applying the IQC-based analysis approach, serve as a certificate that proves
that the system satisfies the desired properties at the algorithmic level. More-
over, these solutions can be employed to annotate the C code describing the
system dynamics with logical expressions, which indicate the set of reachable
program states. The annotations are done in ACSL (ANSI/ISO C Specification
Language) [3], Frama-C’s formal annotation language. Additionally, we utilize
WP, a Frama-C plugin based on the weakest precondition calculus and deduc-
tive methods, to transform annotations and code into proof objectives. Thus, the
software verification in our case focuses on translating the guarantees obtained
at the algorithmic level, using the analysis results from [17], and expressing
them at the code level. Then, we revalidate the invariant properties at the code
level using Alt-Ergo-Poly [28], an extension of the SMT solver Alt-Ergo [8] with
a sound Sum-of-Squares solver [22,27], to discharge positive polynomial con-
straints. Last, we instrument the contract to account for floating-point errors
in the code, ensuring the validity of our contracts despite the noise caused by
floating-point inaccuracy.

One of the motivations for this work is analyzing the C code of gain-
scheduled controllers, for instance, the robustly stable LPV path-following con-
troller designed in [24] for a small, fixed-wing, unmanned aircraft system (UAS),
where the scheduling parameter is the inverse of the radius of curvature of the
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path to be traversed. If the output-bounding ellipsoid in this case lies within the
actuator saturation limits, then we have a guarantee that the actuators would
not saturate for the considered pointwise-bounded measurements.

The paper is structured as follows. In Sect. 2, we introduce affine LPV systems
and explain how to determine state and output invariant ellipsoids. In Sect. 3, we
outline the steps for setting up the necessary Frama-C environment to formally
verify the invariant properties at code level. In Sect. 4, we demonstrate the formal
verification of these properties using the real model. In Sect. 5, we present the
verification of these properties in the float model, which involves the use of
bounds on numerical errors and their integration into the real model. The paper
concludes with Sect. 6.

2 Affine LPV Systems and Ellipsoidal Invariant Sets

Consider a stable discrete-time LPV system G described by

x(k + 1) = A(δ(k))x(k) + B(δ(k))d(k),
y(k) = C(δ(k))x(k) + D(δ(k))d(k),

(1)

where x(k) ∈ R
nx , y(k) ∈ R

ny , d(k) ∈ R
nd , and δ(k) = (δ1(k), . . . , δnδ

(k)) ∈ R
nδ

designate the values of the state, output, input, and scheduling parameters at
the time instant k, respectively, where k is a nonnegative integer. The state-
space matrix-valued functions of G are assumed to have affine dependence on the
scheduling parameters; for instance, the state matrix A(δ(k)) can be expressed as

A(δ(k)) = A0 +
nδ∑

i=1

δi(k)Ai, (2)

where the matrices Ai are known and constant for i = 0, . . . , nδ, and the schedul-
ing parameters δi(k) ∈ [δi, δ̄i] for all integers k ≥ 0 and i = 1, . . . , nδ. The
analysis results used in this paper also allow imposing bounds on the parameter
increments dδi(k) = δi(k + 1) − δi(k) for i = 1, . . . , nδ and all integers k ≥ 0.

The analysis results in [17] are used to determine the state-invariant and
output-bounding ellipsoids of system G. To apply these results, system G is first
expressed as a linear fractional transformation (LFT) on uncertainties, where
the uncertainties in this case are the static linear time-varying perturbations
δi for i = 1, . . . , nδ. That is, system G is expressed as an interconnection of a
stable nominal linear time-invariant (LTI) system and an uncertainty operator.
The set of allowable uncertainty operators is described using the so-called IQC
multipliers. Namely, an IQC multiplier is used to define a quadratic constraint
that the input and output signals of the uncertainty operator must satisfy. In the
work [17], this quadratic constraint must be satisfied at every time instant and
is hence referred to as a pointwise IQC. A pointwise IQC is more restrictive than
the standard IQC [23], which involves an infinite summation of quadratic terms.
However, the uncertainty set in our problem admits a pointwise IQC charac-
terization. The approach in [17] allows representing the exogenous input d as a
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pointwise bounded signal, where its value lies in some closed, convex polytope
Γ for all time instants or an ellipsoid E . While the analysis conditions provided
in [17] are generally nonconvex, they can be relaxed into convex conditions by
applying the multiconvexity relaxation technique [1], along with gridding. Thus,
the positive definite matrices defining the state-invariant and output-bounding
ellipsoids can be obtained by solving semidefinite programs.

Let D be the set of admissible inputs of system G and X ∈ S
n
++, where S

n
++

denotes the set of n × n positive definite matrices. With every X ∈ S
n
++, we

associate an ellipsoid EX := {x ∈ R
n |xT Xx ≤ 1}, whose shape and orientation

are determined by X. Let EP and EQ be the state-invariant and output-bounding
ellipsoids, respectively, obtained by applying the results of [17], where P ∈ S

nx
++

and Q ∈ S
ny

++. This means that, if x(k) ∈ EP , then x(k + 1) ∈ EP and y(k) ∈ EQ

for any integer k ≥ 0, all d(k) ∈ D, and all admissible δ(k). The objective of this
paper is to formally verify that the ellipsoids EP and EQ are state-invariant and
output-bounding, respectively, for the affine LPV system G under all admissible
inputs D and all possible scheduling parameters. These properties will be referred
to as the state and output invariant properties in the rest of the paper.

3 Frama-C Setup

Frama-C is a suite of tools for the analysis of the source code of software written
in C. These tools can be used for tasks such as static analysis, automatic proof
generation, testing, and more [9]. In the following, we will use ACSL (ANSI/ISO
C Specification Language), Frama-C’s formal annotation language, as well as
WP, a Frama-C plugin that relies on weakest precondition calculus and deductive
methods, to transform annotations and code into proof objectives that are later
solved by SMT solvers such as Z3 [12], CVC4 [2], or Alt-Ergo [8]. ACSL is a
specification language that can be used to annotate C code and provide precise,
machine-readable descriptions of the behavior of C functions and other code
elements [4]. These annotations can be used by Frama-C and other tools to
perform various kinds of analysis. In Frama-C, ACSL annotations can be used
to specify properties of C code, such as preconditions and postconditions for
functions, invariants for loops, and more. These annotations can then be checked
by the Frama-C tools to ensure that the code adheres to the specified properties.
This can be especially useful for developing safety-critical software, where it is
important to ensure the code behaves correctly under all possible circumstances.

3.1 C Code of System Dynamics

To express the dynamics of a discrete-time system G in C, we define the func-
tion “updateState” that updates the state vector of the system and the func-
tion “updateOutput” that computes the output vector at the current time-step.
These functions use the state and output equations in (1).

In the following code, the “struct state” defines a new data type that
represents the state vector of the system. It has nx fields: x1, . . ., xnx

, which cor-
respond to the nx state variables of the system. Similarly, the “struct output”
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defines a new data type that has ny fields: y1, . . ., yny
, which correspond to

the ny output variables of the system. The updateOutput function takes in the
current state of the system x, the current input variables d1, . . ., dnd

, and the
current values of the scheduling parameters δ1, . . ., δnδ

. It computes the output
vector of the system and stores the result in a “struct output” called y, fol-
lowing the output equation in (1). The updateState function takes in the same
inputs as the previous function, stores the values of the current state variables
in temporary variables (pre x1, . . ., pre xnx

), and computes the next state of
the system based on the difference state equation in (1). The state vector at the
next time-step is then stored in the “struct state” x.

typedef struct { double x1, . . ., xnx ; } state;

typedef struct { double y1, . . ., yny
; } output;

void updateOutput(state *x, output *y, double d1, . . .,
double dnd , double δ1, . . ., double δnδ ){

// Compute the output

y->y1 = . . .;
y->yny

= . . .;}

void updateState(state *x, double d1, . . ., double dnd , double

δ1, . . ., double δnδ ){

//Store the current state in temporary variables

double pre_x1 = x->x1, . . ., pre_xnx = x->xnx ;

// Compute the next state

x->x1 = . . .;
x->xnx = . . .;}

C

3.2 Invariant Set ACSL Annotation

Let X ∈ S
n
++, then a vector z ∈ R

n ∈ EX if and only if

zT Xz =
n∑

i=1

Xiiz
2
i + 2

n−1∑

i=1

n∑

j=i+1

Xijzizj ≤ 1. (3)

The invariant properties of the state-invariant ellipsoid EP and the output-
bounding ellipsoid EQ must be annotated in ACSL to enable Frama-C to ensure
that the codes adhere to them. This is achieved by defining the predicates
stateinv and outputinv in ACSL as follows:

//@ predicate stateinv(real x1, . . ., real xnx , real λ) =

(P11 * x1 * x1 + 2 * P12 * x1 * x2 + . . . + Pnxnx * xnx * xnx

<= λ);
//@ predicate outputinv(real y1, . . ., real yny

, real λ) =

(Q11 * y1 * y1 + 2 * Q12 * y1 * y2 + . . .+ Qnyny
* yny

* yny

<= λ);

ACSL
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The predicate stateinv takes in the elements of the state vector at a given time
instant along with a scalar λ. Similarly, outputinv takes in the elements of the
output vector at a given time instant along with a scalar λ.

For λ equal to 1, the stateinv and outputinv predicates correspond to (3)
with X = P and X = Q, respectively. In this case, when true, these predicates
imply that the vectors x =

[
x1, . . . , xnx

]T and y =
[
y1, . . . , yny

]T
belong to EP

and EQ, respectively.

Remark 1. The ACSL language allows predicates to be defined directly on C
structs or pointers, but doing so may make it more difficult for automated
solvers to prove the generated proof obligations. Based on our observation, it
is more effective to define the predicate in a parameterized form, using all of the
state/output variables as parameters. This approach may be more amenable to
automated proofs and may improve the ability of automated solvers to prove the
proof obligations. Note, however, that this observation may change with future
versions of the tool or improvements in the solvers.

3.3 Contract-Based Verification

A contract is a set of preconditions, postconditions, and other specifications
that describe the expected behavior of a piece of software. Preconditions are
conditions that must be met in order for the software to be used correctly,
and postconditions are conditions that must be satisfied after the software has
been used. Contract-based verification is important for ensuring that the soft-
ware behaves correctly and that certain properties are maintained under dif-
ferent possible circumstances. In ACSL, preconditions are expressed using the
requires and assumes commands, while postconditions are expressed using the
ensures command. Consider the simplest contract // requires P; ensures
E;. It is equivalent to the contract // requires \true; ensures \old(P)

==>E;, where \old(P) denotes the evaluation of predicate P before the execution
of the function.

/*@ requires P;

@ behavior b1:

@ assumes A1;

@ ensures E1;

@ behavior b2:

@ assumes A2;

@ ensures E2; */

ACSL

Fig. 1. Behaviors in ACSL con-
tracts.

As outlined in the ACSL manual
[3, §2.3.3], we can rely on named behaviors
to structure requirements. For example, the
contract sketched in Fig. 1 amounts to requir-
ing property P to hold for all cases but only
requiring property E1 to hold when the pre-
condition A1 is valid. It is syntactic sugar to
express // ensures \old(P) ==> ((\old(
A1) ==> E1) && (\old(A2) ==> E2));.
This use of named behaviors allows to sep-
arate concerns and prevent a non-proven
behavior from negatively impacting the anal-
ysis of other behaviors.
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Remark 2 (Beware of pointers and use of \old()) \old() must be used with
care since \old(x)->x0 denotes the value of field x0 for the previous value of
the pointer x, while \old(x->x0) denotes the previous value of the field x0.

In the upcoming contracts, we assume that the scheduling parameter δi(k)
belongs to [δi, δ̄i], for i = 1, . . . , nδ and a given time-step k. Now, we define the
preconditions of our various contracts.

Zero Input Contract: The input set D = {0}, i.e., for a given time-step k, if
d(k) ∈ D, then di(k) = 0 for i = 1, . . . , nd.

/*@ behavior zero_input_contract :

assumes d1 == 0 && . . . && dnd == 0;

assumes δ1 <= δ1 <= δ̄1 && . . . && δnδ
<= δnδ <= δ̄nδ ; */

ACSL

Polytope Bounded Input Contract: The input set D is a polytope. Partic-
ularly, if D is a hyper-rectangle defined such that, given a time-instant k, di(k)
belongs to [di, d̄i] for i = 1, . . . , nd, we write the following contract:

/*@ behavior polytope_input_contract :

assumes d1 <= d1 <= d̄1 && . . . && dnd
<= dnd <= d̄nd ;

assumes δ1 <= δ1 <= δ̄1 && . . . && δnδ
<= δnδ <= δ̄nδ ; */

ACSL

Ellipsoid Bounded Input Contract: The input set D is an ellipsoid EM ,
where M ∈ S

nd
++. In this case, the predicate ellipinput must be defined simi-

larly to the stateinv and outputinv predicates in Sect. 3.2, and the contract is
expressed as follows:

//@ predicate ellipinput(real d1, . . ., real dnd , real λ) =

(M11 * d1 * d1 + 2 * M12 * d1 * d2 + . . . + Mndnd * dnd * dnd

<= λ);
/*@ behavior ellipsoid_input_contract :

assumes ellipinput(d1, . . ., dnd , 1);

assumes δ1 <= δ1 <= δ̄1 && . . . && δnδ
<= δnδ <= δ̄nδ ; */

ACSL

4 Validating Contracts: Real Model

In Frama-C, the real model is based on the mathematical model of real numbers.
As a result, single and double precision floating-point numbers are mapped to real
types in proof objectives. This simplification can make the proof process easier,
but it does not take into account the actual computation that is performed using
machine-code floating-point numbers. This means that the real model may not
accurately reflect the behavior of the system when it is implemented in machine
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code. Nevertheless, in our setting, using the real model is a reasonable first step
since the system analysis has been performed assuming real computation. The
validity of the real model in our setting will be further addressed in the next section
by taking into account the potential for numerical errors.

To validate the invariant properties of the system G, we combine the codes in
Sects. 3.1, 3.2, and 3.3, and we add the missing preconditions and postconditions.

typedef struct { double x1, . . ., xnx ; } state;

typedef struct { double y1, . . ., yny
; } output;

//@ predicate stateinv(real x1, . . ., real xnx , real λ) =

(P11 * x1 * x1 + 2 * P12 * x1 * x2 + . . . + Pnxnx * xnx * xnx

<= λ);
//@ predicate outputinv(real y1, . . ., real yny

, real λ) =

(Q11 * y1 * y1 + 2 * Q12 * y1 * y2 + . . .+ Qnyny
* yny

* yny

<= λ);

/*@ requires \valid(x) && \valid(y);

requires \separated(&(x->x1), . . .,&(x->xnx ),&(y->y1), . . .,
&(y->yny

));

assigns *y;

behavior contract_name:

assumes . . .;
ensures stateinv(\old(x->x1),..., \old(x->xnx ),1) ==>

outputinv(y->y1, . . .,y->yny
,1);

*/

void updateOutput (...) {...}

/*@ requires \valid(x);

requires \separated(&(x->x1), . . .,&(x->xnx ));

assigns *x;

behavior contract_name:

assumes . . .;
ensures stateinv(\old(x->x1), . . ., \old(x->xnx ),1) ==>

stateinv(x->x1, . . .,x->xnx ,1);

*/

void updateState (...) {...}

C+ACSL

In this code, the \valid, \separated, and assigns annotations are used
for expressing constraints on the memory layout of the program and specifying
which variables or memory locations may be modified by the code. Precisely, the
\valid annotation is used to specify that a certain pointer or array refers to a
valid, allocated region of memory, the \separated annotation is used to specify
that certain variables or memory locations must be separated from each other in
order for the code to be executed, and the assigns annotation is used to specify
which variables or memory locations may be modified by the code. As shown in
the above script, it is generally recommended to place an annotation before the
code it is associated with.
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To formally verify the invariant properties, we use the polynomial inequalities
plugin of Alt-Ergo in the WP framework of Frama-C. This plugin, unlike other
solvers, can deal with the type of predicates considered. The following command
runs the formal verification process and returns the verification results:

frama-c -wp -wp-model real -wp-prover Alt-Ergo-Poly source_file.c

Many options and arguments can be used with the frama-c -wp command
to customize and control the analysis process. For example, the -wp-timeout
option is used to set a time limit for the analysis, which can be helpful in cases
where the analysis is expected to take a long time. In our experiment, Alt-Ergo-
Poly (the SOS plugin) was the only solver able to discharge any of our proof
objectives. For instance, running the above command returned the following
result:

[wp] 51 goals scheduled
[wp] Proved goals: 51 / 51

Qed: 18 (2ms-7ms-14ms)
Alt-Ergo-Poly : 33 (5ms-150ms-843ms) (3290)

The goals associated with the memory-related annotation were validated using
the simpler internal solver Qed, while all the ellipsoid-related goals required the
use of Alt-Ergo-Poly.

5 Validating Contracts: Float Model

In C, floating-point numbers are represented using a binary floating-point for-
mat, which is a method for representing real numbers with a fixed number of bits
allocated to the mantissa (the fractional part of the number) and the exponent
(the power of 2 by which the mantissa must be multiplied). The floating-point
model in Frama-C adheres to the IEEE 754 standard for floating-point repre-
sentation. This standard defines various floating-point formats for representing
real numbers, including single-precision (32-bit) and double-precision (64-bit)
formats.

5.1 Issues with Deductive Methods and the Floating-Point Model

While the float model is a more accurate representation of computation, it can
produce proof goals that are more difficult to solve. This can be illustrated with
the following simple example:

/*@ requires x > 0 && x <= 10;

@ ensures \result > 0; */

double f(double x) { return x + 0.25; }

C+ACSL

This contract is easily solved using the real model:
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% frama-c -wp -wp-model real -wp-prover z3,cvc4,alt-ergo simple.c
[wp] Proved goals: 1 / 1
------------------------------------------------------------
Prover Z3 4.11.2 returns Valid (Qed:0.81ms) (30ms) (21112)
Prover CVC4 1.8 returns Valid (Qed:0.81ms) (40ms) (5926)
Prover Alt-Ergo returns Valid (Qed:0.81ms) (8ms) (8)
------------------------------------------------------------

However, if we analyze the same program using a more accurate encoding of
floats, i.e., by omitting the option -wp-model real, we get

Prove: .0 < of_f64(add_f64(x, to_f64((1.0/4)))).
Prover Z3 4.11.2 returns Failed Unknown error
Prover CVC4 1.8 returns Timeout (Qed:2ms) (10s)
Prover Alt-Ergo returns Timeout (Qed:2ms) (10s)

Given the limitations of automated provers in handling simple verification
conditions involving floats, there are two primary alternatives to consider. One
approach involves using proof assistants, like Gappa [11], which require more
manual intervention but offer precise axiomatization of floating-point computa-
tions. Alternatively, static analysis tools such as FPTaylor [29], Fluctuat [13],
and Rosa [10], which employ techniques like Taylor expansion or affine arith-
metic, provide more systematic error bounding solutions.

In the following, instead of using the float model, we rely on such a static anal-
ysis to bound the numerical imprecision of the computation. For instance, in this
example, using interval arithmetic, which will be discussed in Sect. 5.2, we can
bound the values of \result by [0.25, 10.25] + ±2.275958E−15, where the first
interval denotes the interval of double [0.25, 10.25] and the term ±2.275958E−15
denotes the over-approximation of accumulated errors. The contract can then be
instrumented, and the floating-point “noise” can be included in the \ensures
statement as follows:

/*@ requires x > 0 && x <= 10;

@ ensures \forall real λ, -1 <= λ <= 1 ==> \result + λ *

2.275958 E-15 > 0; */

ACSL

With this approach, we can use the real model for analysis to formally verify the
postcondition in the float model:

% frama-c -wp -wp-model real -wp-prover z3,cvc4,alt-ergo simple2.c
[wp] Proved goals: 1 / 1

Qed: 0 (2ms)
Alt-Ergo : 1 (9ms) (12)

------------------------------------------------------------
Prover Alt-Ergo returns Valid (Qed:2ms) (9ms) (12)
------------------------------------------------------------
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([x1, x2], e) + ([y1, y2], f) =

⎛

⎝
[fl (x1 + y1) , fl(x2 + y2)], enew

with enew = max
(−fl−∞ −e − f − e+(x1, y1)

)
,

fl+∞ e+ f + e+(x2, y2)
)

)
⎞

⎠ ,

([x1, x2], e) ∗ ([y1, y2], f) =
([

min(fl(x1y1) , fl(x1y2) , fl(x2y1) , fl(y1y2)),
max(fl(x1y1) , fl(x1y2) , fl(x2y1) , fl(y1y2))

]
, enew

)
,

where e+(a, b) is defined as (|a| + |b|)eps and e∗(a, b) as |a ∗ b| eps+ eta and with

enew = max

⎛

⎜⎜⎜⎜⎜⎜⎝

−fl−∞

⎛

⎝
min(fl−∞ (−ey1) , fl−∞ (−ey2) , fl−∞ (ey1) , fl−∞ (ey2))
+min(fl−∞ (−x1f) , fl−∞ (x1f) , fl−∞ (−x2f) , fl−∞ (x2f))
−min(e∗(x1, y1), e∗(x1, y2), e∗(x2, y1), e∗(x2, y2))

⎞

⎠ ,

fl+∞

⎛

⎝
max(fl+∞ (−ey1) , fl+∞ (ey2) , fl+∞ (ey1) , fl+∞ (ey2))
+min(fl+∞ (−x1f) , fl+∞ (x1f) , fl+∞ (−x2f) , fl+∞ (x2f))
+min(e∗(x1, y1), e∗(x1, y2), e∗(x2, y1), e∗(x2, y2))

⎞

⎠

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Fig. 2. Addition and multiplication on intervals with floating-point errors.

5.2 Bounding Numerical Errors

We refer the reader to [15,16,21] for more details on means to bound floating-
point accumulated rounding errors. We recall the characterization of floating-
point values for addition and multiplication of floating-point numbers:

(u + eu) + (v + ev) = (u + v) + (eu + ev + e+(u, v)), (4)
(u + eu) ∗ (v + ev) = (u ∗ v) + (eu ∗ v + ev ∗ u + e∗(u, v)), (5)

with |e+(u, v)| ≤ |u + v| eps and |e∗(u, v)| ≤ |u ∗ v| eps + eta.
In the following discussions, fl(e) denotes the floating-point approximation of

value e using a “round to the nearest” mode. Rounding towards −∞ and +∞ are
denoted by fl−∞(·) and fl+∞(·), respectively. The constants eps and eta denote
the precision of the floating-point format and its precision in case of underflows,
respectively. For single precision floating-point numbers, eps = 2−22 ≈ 10−7

and eta = 2−149 ≈ 10−45, while for double precision, eps = 2−52 ≈ 10−16 and
eta = 2−1074 ≈ 10−324.

Equations (4) and (5) can be adapted to intervals, as detailed in Fig. 2. The
interval [a, b] with additional error ±e is denoted by ([a, b], e). This method allows
to characterize both the actual values, obtained by floating-point computation
in the value part, and a safe error term. In case of a deterministic loopless code
computing an expression exp, one would obtain the abstract value [x, x] ± e
where the singleton interval for the value part denotes exactly the value x that
would have been obtained when computing fl(exp). Thanks to the handling
of floating-point errors, the computation of exp with reals is guaranteed to lie
within [fl−∞ (x − e) ,fl+∞(x + e)].
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5.3 Error Hyper-Rectangle Approach

For the analysis that follows, we will assume that the initial state of the system
G is represented by a floating-point number that belongs to the state-invariant
ellipsoid. The vector z ∈ R

n serves as a placeholder for both the updated state
and output vectors of the system. The floating-point representation fl(z) of the
exact vector z satisfies the following inequalities:

z − e � fl(z) � z + e, (6)

where � denotes the componentwise inequality and e =
[
e1, . . . , en

]T is the
“error” vector whose ith element is an over-approximation of the accumulated
error associated with the computation of the ith component of z using float model
arithmetic. Consequently, it is clear that fl(z) belongs to a hyper-rectangle Γ
that is symmetric about the exact vector z and that has 2n vertices ẑi, where
i = 1, . . . , 2n. Assume that z ∈ EX is formally verified in the real model. Then,
to prove that fl(z) ∈ EX , it is sufficient to verify that Γ ⊂ EX . This sufficient
condition can be established using either of the following two methods.

Method 1: Checking All Points in the Hyper-Rectangle. The first
method to verify that Γ ⊂ EX is to formally verify that all the points in Γ
belong to EX , i.e., for all ze ∈ Γ , ze ∈ EX . To express this condition in ACSL,
we first need to know how to express all the vectors that belong to Γ . We notice
that the ith component of any vector ze belonging to Γ can be expressed as
ze,i = z + liei, where li ∈ [−1, 1] for i = 1, . . . , n. This formulation of ze can be
expressed in ACSL using the universal quantifier ∀ (\forall) and n bound vari-
ables (l1, . . ., ln), each belonging to [−1, 1]. For instance, in the case of formally
verifying the state invariant property, the postcondition is the following:

//State Invariant Postcondition

ensures \forall real l1; . . .;\forall real lnx ; -1 <= l1 <= 1

==> . . . ==> -1 <= lnx <= 1 ==> stateinv(\old(x->x1), . . .,
\old(x->xnx ),1) ==> stateinv(x->x1+l1*e1, . . ., x->xnx +lnx *

enx ,1);

ACSL

In this code, nx bound variables are used with the universal quantifier \forall
to represent all the vectors xe belonging to Γ . Similarly, when formally verifying
the output invariant property, the following postcondition is used:

// Output Invariant Postcondition

ensures \forall real l1; . . .;\forall real lny ; -1 <= l1 <= 1

==> . . . ==> -1 <= lny <= 1 ==> stateinv(\old(x->x1), . . .,
\old(x->xnx ),1) ==> outputinv(y->y1+l1*e1, . . ., y->yny

+lny *

eny ,1);

ACSL
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Method 2: Checking Each Vertex. The second method to verify that Γ ⊂
EX benefits from the convexity of the quadratic function zT Xz. Precisely, by
leveraging the convexity of the quadratic function zT Xz, the following holds:
Γ ⊂ EX if and only if all the vertices ẑi, for i = 1, . . . , 2n, of Γ belong to
EX . Therefore, to formally verify that fl(z) ∈ EX , we must formally verify that
the vertices of Γ belong to EX . The vertices ẑi, for i = 1, . . . , 2n, of Γ can
be expressed in ACSL using the universal quantifier ∀ (\forall) and n bound
variables (l1, . . ., ln), each belonging to {−1, 1}. The postconditions for verifying
the state and output invariant properties of the system using this method are
similar to the ones used in the first method, with the exception that the bound
variables’ inequalities (-1<=li<=1) are replaced by (li==-1 || li==1).

Assessment of Both Methods. While it is possible to formally verify that
Γ ⊂ EX using the methods described before, the use of quantifiers may lead
to a proliferation of variables or constraints, which can make it difficult for the
automated prover to discharge the proof: this may either lead to an extended
time to prove the goals or to a solver failure. For instance, in our experiments,
it was possible to verify the invariant properties of an LTI system with 16 state
variables, 10 inputs, and 4 outputs in the float model using Method 1, but it
was not possible to do so for any of the considered affine LPV systems with 4
state variables, 2 inputs, 2 outputs, and up to 2 scheduling parameters. On the
other hand, using Method 2, it was possible to verify the invariant properties of
these affine LPV systems and corresponding LTI systems in the float model, but
it was not possible to do so for the large LTI system verified using Method 1.
To address this issue, we present a different approach in the next section for
formally verifying the invariant properties in the float model without the use of
quantifiers.

5.4 Error Ball Approach

Consider the “error ball” Be centered around the exact vector z with a radius r
such that Be covers the hyper-rectangle Γ . The ball Be is defined as Be = {ze ∈
R

n| ze = z + ru, ‖u‖2 ≤ 1}, where ‖.‖2 is the standard Euclidean norm. Since
fl(z) ∈ Γ , it follows that fl(z) ∈ Be as well. Therefore, to verify that fl(z) ∈ EX ,
it is sufficient to show that Be ⊂ EX . Clearly, Be ⊂ EX if and only if all the
points belonging to Be also belong to EX . In other words, Be ⊂ EX if and only
if, for all u ∈ R

n such that ‖u‖2 ≤ 1,

zT
e Xze = (z + ru)T X(z + ru) = zT Xz + 2ruT Xz + r2uT Xu ≤ 1.

It is not difficult to prove that the following inequality holds [7]:

zT
e Xze ≤ zT Xz + 2r‖X‖2‖z‖2 + r2‖X‖2, (7)

where ‖X‖2 is the matrix 2-norm induced by the vector Euclidean norm, i.e.,
‖X‖2 = λmax(X), where λmax(X) is the maximum eigenvalue of X. We recall
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that, by assumption, it is formally verified in the real model that the exact vector
z belongs to EX . Based on this assumption, we can find the maximum 2-norm
of z such that z ∈ EX by solving the following nonconvex optimization problem:

maximize zT z

subject to zT Xz ≤ 1.
(8)

This optimization problem is a special case of a nonconvex problem discussed in
[7, Chapter 5.2.4], for which strong duality holds [7,25], i.e., the optimal value,
‖z∗‖22, of the primal problem is equal to the optimal value of the following dual
problem:

minimize α

subject to X−1 � αI.
(9)

The optimal value of the dual problem is α∗ = λmax(X−1) = 1
λmin(X) , where X−1

is the inverse of X and λmin(X) is the minimum eigenvalue of X. Accordingly, the
optimal value of the primal nonconvex problem is ‖z∗‖22 = α∗ = (λmin(X))−1.
Then, for all z ∈ EX , the following inequalities hold:

zT
e Xze ≤ zT Xz + 2r‖X‖2‖z‖2 + r2‖X‖2

≤ zT Xz + rλmax(X)
(
2 (λmin(X))− 1

2 + r
)

.
(10)

Therefore, it is sufficient to formally verify that

zT Xz ≤ 1 − rλmax(X)
(
2 (λmin(X))− 1

2 + r
)

(11)

to conclude that zT
e Xze ≤ 1 for all ze ∈ Be, and that Be ⊂ EX . In other words, if

(11) is formally verified, then fl(z) ∈ EX and the ellipsoidal invariant property is
verified in the float model. To formally verify (11), we need to compute the radius
r of Be such that Γ ⊂ Be, as well as the maximum and minimum eigenvalues
of X. Since Γ is a symmetric hyper-rectangle about z, the smallest radius of Be

such that Be covers Γ is r = ‖e‖2 [7], where e is the error vector satisfying (6).
Then, for any r ≥ ‖e‖2, Be covers Γ . One acceptable choice of r is r = n‖e‖∞,
where ‖e‖∞ = maxi=1,...,n |ei| is the ∞-norm of e. This choice is valid because
‖e‖2 ≤ √

n ‖e‖∞. For our analysis, it is a better choice to set r = n‖e‖∞, as
this computation only requires one operation compared to the 2n operations
required for computing ‖e‖2, which minimizes the accumulated floating-point
error during the computation of r. The error vector e is computed outside of
Frama-C and injected in the contract. As for the computation of the maximum
and minimum eigenvalues of X, there are several algorithms that can be used to
compute the eigenvalues of a matrix, such as the diagonalization, power iteration,
and QR algorithms, and singular value decomposition (SVD) methods [14,31].
These algorithms are generally reliable and can be expected to produce accurate
results in most cases. For instance, iterative methods like the power iteration
algorithm can be employed to compute the eigenvalues of a matrix, starting with
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a random initial vector [19]. This approach allows for an over-approximation of
the converged value by estimating it from above. The over-approximation is then
fed back into the algorithm as input for subsequent iterations, which refines the
approximation and helps ensure its validity.

Hence, to formally verify the state and output invariant properties of the
system G in the float model, we add float model contracts to the code in
Sect. 4 as follows:

/*@ behavior contract_name_float_model:

assumes . . .;
ensures stateinv(\old(x->x1), . . ., \old(x->xnx ),1) ==>

outputinv(y->y1, . . .,y->yny
,1 - 2 * r_y * norm_Q *

norm_y_max - r_y * r_y * norm_Q);*/

void updateOutput (...) {...}

/*@ behavior contract_name_float_model:

assumes . . .;
ensures stateinv(\old(x->x1), . . ., \old(x->xnx ),1) ==>

stateinv(x->x1, . . .,x->xnx ,1 - 2 * r_x * norm_P *

norm_x_max - r_x * r_x * norm_P));*/

void updateState (...) {...}

C+ACSL

In this code, the implied expressions in the postconditions correspond to inequal-
ity (11). The terms norm P, norm Q, r x, r y, norm x max, and norm y max cor-
respond to ‖P‖2, ‖Q‖2, the radii of the error balls centered around the updated
state and output vectors x and y, (λmin(P ))− 1

2 , and (λmin(Q))− 1
2 , respectively.

This approach allows for the formal verification of the invariant properties of all
considered affine LPV and LTI systems in the float model.

6 Conclusion

This paper demonstrates a process for formally verifying the invariant properties
of a C code describing the dynamics of a discrete-time LPV system with affine
parameter dependence. The ACSL language and the WP plugin in Frama-C are
used to express the invariant properties and generate proof obligations, and the
polynomial inequalities plugin in Alt-Ergo is used discharge these proof obliga-
tions. The invariant properties were successfully verified in both the real and
float models, with the latter requiring the use of bounds on numerical errors and
their incorporation into the real model. This process can be applied to other sys-
tems with similar properties. The installation instructions of the tools used in
this work along with the experiments are available at https://github.com/ploc/
verif-iqc. Additionally, a dockerfile is also available at https://hub.docker.com/
r/ekhalife/verif-iqc, and the instructions for using the dockerfile can be found in
the same GitHub repository. In future work, we plan to extend this approach to
more general classes of uncertain systems.

https://github.com/ploc/verif-iqc
https://github.com/ploc/verif-iqc
https://hub.docker.com/r/ekhalife/verif-iqc
https://hub.docker.com/r/ekhalife/verif-iqc
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Abstract. The formal verification of distributed real-time systems is
challenging due to the interaction between the local computation and
the communication between the different nodes of a network. The overall
correctness of the system relies on local properties and timing exchange
of data between components. This requires to take into account the drift
of local clocks and their synchronization. The reference time of local
properties may be given by skewed and resettable (thus non-monotonic)
clocks.

In this paper, we consider automated reasoning over MTLSK, a vari-
ant of MTL over Resettable Skewed Clocks. We focus on metric operators
with lower and upper parametric bounds. We provide an encoding into
temporal logic modulo the theory of reals and we solve satisfiability with
SMT-based model checking techniques. We implemented and evaluated
the approach on typical properties of real-time systems.

1 Introduction

Distributed Real-Time Systems (DRTS) consist of different real-time compo-
nents connected by a communication network. Each component, therefore,
responds to input data or events within a specified period of time or gener-
ates output data or events periodically. The correctness of the overall DRTS
depends not only on the logic of the input/output functions but also on the
timing constraints on the data/events. The formal verification of temporal prop-
erties of DRTS is thus very challenging due to the need for reasoning about both
communication and timing constraints. Since local clocks of components are
usually not perfect and drift from each other, DRTS employ various consensus
algorithms to synchronize them.

In formal verification, the properties are typically specified in temporal logics
such as Linear-time Temporal Logic (LTL) [19], which can specify temporal con-
straints on the succession of events or exchange of messages. When dealing with
real-time systems, one of the most popular temporal logics is Metric Temporal
Logics (MTL) [16], which enriches the temporal operators with bounds to con-
strain the time intervals in which formulas must be satisfied. Another variant,
the Event Clock Temporal Logic (ECTL) [20] uses event clock constraints to
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specify bounds on the time since the last time or until the next time a formula
holds. Timed Propositional Temporal Logic (TPTL) [1], instead, uses freezing
quantifiers to compare and constrain time at different points.

When these logics are used to formalize properties of DRTS, they must be
extended in two directions. First, the local properties should use local clocks as
the reference time for the timing constraints. Second, the local clocks should be
possibly skewed and resettable to consider the potential drift and synchronization
of clocks. Therefore, distributed variants of MTL and ECTL use local temporal
operators that refer to local times (e.g., [18]). Moreover, in [4], the logic MTLSK
was introduced where specific variants of the metric temporal operators overcome
the issue of standard operators when the reference time is not monotonic as for
resettable clocks.

In this paper, we address the problem of automated reasoning over MTLSK
properties. We focus on metric operators with either lower or upper parametric
bounds. We consider local properties of DRTS components that use local clocks
that are occasionally reset for synchronization and, so, that may be not mono-
tonic. We use assumptions on drift and synchronization mechanisms to entail
global properties. This compositional reasoning is formalized into MTLSK.

The main contribution of the paper is a procedure that reduces the satisfia-
bility of the new logic to Satisfiability Modulo Theories (SMT) of discrete-time
First-Order LTL [9,23]. The encoding takes into account that a clock c may
be not monotonic, which implies that interval constraints such as c ≤ p may be
true in disjoint time intervals. Thus, differently from the monotonic case, it is not
sufficient to guess the first point at which a subformula is satisfied. Guess vari-
ables are introduced to predict minimum/maximum values of the local clocks,
for which subformulas hold. The correctness of the encoding exploits the assump-
tions that local clocks, although resettable, are diverging (i.e. do not converge
to a finite value).

We implemented the approach on top of the timed features of nuXmv [8]
using bounded model checking for finding traces and the k-zeno algorithm to
prove the validity of formulas. We evaluated them on typical patterns of real-
time properties real-time systems also showing scalability on tautologies derived
from compositional reasoning.

The remainder of the paper is organized as follows: in Sect. 2, we describe
a motivating example to explain the kind of automated reasoning addressed
in the paper; in Sect. 3, we compare our approach with other related work; in
Sect. 4, we provide preliminary knowledge about first-order LTL and temporal
satisfiability modulo theory; in Sect. 5, we recall the definition of MTLSK; in
Sect. 6 we show the reduction to satisfiability modulo theories; in Sect. 7 we
provide the results of an experimental evaluation of our work; finally, in Sect. 8,
we draw the conclusions and some future directions.
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2 Motivating Example

2.1 Semantics with Resettable Skewed Clocks

In this section, we describe the type of compositional reasoning that we address in
this paper. In the following, we use standard LTL operators such as G (always in
the future) and F (eventually in the future), as well as their distributed metric
variants. We informally recall the semantics and refer the reader to the next
sections for a formal definition.

The formula F c
≤pb is true in a time point t whenever b holds in some future

point within p time units. The superscript c indicates that the time constraint
must be evaluated using a clock c. Thus b must hold in a point t′ such that
c(t′)− c(t) ≤ p. The dual formula Gc

≤pb requires b to be true in all points t′ such
that c(t′) − c(t) ≤ p.

As an example, consider the plot in Fig. 1. Let us first refer to the perfect
clock c (black line). The formula F c

≤5(y1 ≥ 2) is true in 0 because there is a
point between time 4 and 5 where y1 ≥ 2. For the same reason, the formula
Gc

≤5(y1 ≤ 2) (which is equivalent to the negation of the first one) is false. If we
consider instead y2, the formula Gc

≤5(y2 ≤ 2) is true.
Let us now consider the skewed clock sc (orange line), which runs too fast

and is reset at points 2 and 5 to approximately the correct value (black line).
If we consider again F sc

≤5(y1 ≥ 2), the formula is now false because of the drift
as y1 ≥ 2 should hold before. Note however that thanks to the reset the points
where sc(t) ≤ 5 lie in disconnected intervals, namely [0, 4] and [5, 16/3]. Thus,
while Gc

≤5(y1 ≤ 2) is true, Gc
≤5(y2 ≤ 2) is false.

Time0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

c

sc
y1

y2

Fig. 1. Examples of real functions, including
a perfect and a skewed resettable clock (Color
figure online)

To better characterize the inten-
ded semantics over non-monotonic
clocks, we consider the variant F

c

≤p

and G
c

≤p introduced in [4], which
consider only the first interval where
c(t′) − c(t) ≤ p. Thus, in our exam-
ple, G

sc

≤5(y1 ≤ 2) is true, Gc
≤5(y2 ≤

2) is true.
Finally, note that we are dealing

with a super-dense model of time,
which augments the interpretation
of time over real numbers with
instantaneous discrete steps such as
resets and discrete variable updates.
Thus, in the example above, there
are two-time points where the real-
time is 2: in the first point, sc is equal to 3, while in the second point, due to
a reset, sc is equal to 2 even if real-time does not change. We use the func-
tional symbol next to refer to next value after a discrete step. For example, the
above-mentioned reset point satisfies next(sc) = sc − 1.
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2.2 Compositional Reasoning Example

Consider a system composed of two components. The first component sends
an alive signal (variable alv) to the second component unless there is a fault
(variable flt). The second component monitors the alive signal and, if absent,
raises an alarm (variable alm). Globally, we expect that if there is a fault, an
alarm is triggered in due time. The components use clocks cl1 and cl2, while the
global clock is cl.

The compositional reasoning is formalized with the following formula:

(G(flt → Gcl1
≤p¬alv) ∧ G(Gcl2

≤p¬alv → (F cl2
≤p alarm))) → G(flt → F cl

≤palm)

The formula is valid if the clocks are not skewed. If instead the clocks diverge,
the formulas Gcl1

≤p¬alv and Gcl2
≤p¬alv are not equivalent anymore (similarly for

F cl2
≤p alm and F cl

≤palm). In this case, we need to consider safety margins in the
guarantees of the two components. Let us assume that the error on the clock
derivatives is bounded by ε. For simplicity, let us also consider for the moment
no reset. In this case, given = ε̃ = 1+2ε/(1− ε), we can prove that the following
formula is valid:

(G(flt → Gcl1
≤pε̃¬alv) ∧ G(Gcl2

≤p¬alv → (F cl2
≤p alm))) → G(flt → F cl

≤pε̃alm)

Let us now consider resets. Intuitively, assuming that the clocks are reset with
period q and that q is much smaller than p, we can reduce the safety margins.
In particular, the resulting formula is:

(G((Reset(cl1) → next(cl1) = cl) ∧ (Reset(cl2) → next(cl2) = cl) ∧ (¬Reset(cl)

)) ∧ GF cl
≤q(next(cl) = cl1) ∧ GF cl

≤q(next(cl) = cl2) ∧ r ≥ q(1 + 2ε/(1 − ε))∧

G(flt → G
cl1

≤p¬alv) ∧ G(G
cl2

≤p−4r¬alv → (F
cl2

≤palm))) → G(flt → F
cl

≤p+2ralm)

First, note that we use the “first-interval” variants. In fact, we require that
after a fault the alive signal of the first component is down for an interval without
discontinuity; similarly, when the second component sends an alarm it cannot
rely on a future reset and must send it within the first interval in which the local
clock is below the given bound.

Second, let us consider the assumptions on the resets. The first row says that
whenever the clocks cl1 and cl2 are reset, they are set to the value of cl, and
cl is never reset. The second row requires that at most every q time units the
clocks are reset.

Summarizing, the logic addressed by the paper considers metric operators
with parametric upper (or lower) bounds, super-dense semantics, resettable
skewed clocks, and first-order constraints on the clocks and parameters.

3 Related Work

Various works customized the modal operators of temporal logics to better suit
the specification of DRTS. TPTL was extended in [24] by using explicitly multi-
ple local clocks and supporting inequalities to express constraints on the prece-
dence between local clock readings. In [18], a distributed variant of ECTL is
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proposed. Similarly, [17] defines a distributed modal logic where the time varies
independently in each component of the system, represented by a network of
timed automata. In all these works, local times are assumed strictly increasing,
thus, not addressing the semantic issues of the temporal operators when the time
is not monotonic.

The problem of modelling DRTS with drifting and synchronized clocks was
considered in [21], where specific patterns of timed automata were proposed and
verified. Similarly, [5] considers the problem of parametrized verification of 8N1
and Biphase Mark protocols with skewed clocks using the SAL model checker
[14]. These works focus on the modelling of clock drifts and synchronizations,
but do not consider the specification of timed properties that refer to skewed
synchronized clocks.

The problem of validating the correctness of drifted clocks synchronization
algorithms have been studied in other works using theorem provers, e.g., [2,22].

The work closer to the problem addressed in this paper is focused on the sat-
isfiability of MTL and TPTL over non-monotonic time, which has been studied
in [7] in the more general context of data words. Timed words are considered a
special case, although [7] considers only discrete time. A decision procedure is
given for the fragment without negation and only temporal operators X and F .
Instead, we address an undecidable fragment of MTLSK with SMT-based model
checking.

Last, we mention [15], which focuses on runtime verification of MTL formulas
in a distributed system. Here, the authors address the problem of monitoring
global properties on all traces that are compatible with a given sequence of
local observations with timestamps taking into account the possible drift of local
clocks. Thus, the metric operators are not, as in our case, used in local properties
and related to local clocks.

4 First-Order LTL over Discrete or Super-Dense Time

4.1 Discrete and Super-Dense Time

A time model is a structure τ = 〈T,<,0, v〉 with a temporal domain T , a total
order < over T , a minimum element 0 ∈ T , and a function v : T → R

+
0 that

represents the real-time of a time point in T . A time point is an element of T . A
time interval sequence is a sequence I0, I1, I2, . . . of intervals of reals such that,
for all i ≥ 0, Ii and Ii+1 are almost adjacent (subsequent intervals can overlap
in at most one point) and

⋃
i≥0 Ii = R

+
0 .

– In discrete time models, T = N, 0 and < are the standard zero and order
over natural numbers, v(0) = 0 and v(0), v(1), v(2), . . . is a non-decreasing
divergent sequence.

– In super-dense time models, 1) T ⊂ N × R
+
0 such that the sequence of sets

I0, I1, I2, . . . where, for all i ≥ 0, the set Ii := {r | 〈i, r〉 ∈ T}, is a time interval
sequence, 2) 〈i, r〉 < 〈i′, r′〉 iff i < i′ or i = i′ and r < r′, 3) 0 = 〈0, 0〉 ∈ N×R

+
0 ,

and 4) v(〈i, r〉) = r.
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Intuitively, super-dense time models consist of the union of discrete sets of
points in the form 〈i, r〉, 〈i+1, r〉, . . . (with the same timestamp r) and dense sets
(containing an uncountable number of time points with different timestamps) of
the form 〈i, r〉, 〈i, r′〉, 〈i, r′′〉, . . . (with the same counter i). If 〈i, r〉, 〈i+1, r〉 ∈ T ,
we say that there is a discrete step in 〈i, r〉 and we define a partial function succ
as succ(〈i, r〉) = 〈i + 1, r〉 if there is a discrete step in 〈i, r〉.

4.2 Linear Temporal Logic

We consider First-Order Linear-time Temporal Logic that we denote as LTL for
short. LTL formulas are interpreted over discrete and super-dense time models.
Following [9], the “tomorrow”1 operator X is generalized to the super-dense
time case and we include its “dense counterpart” X̃. Intuitively, Xφ holds in t
whenever there is a discrete step in t and φ holds in succ(t), while X̃φ holds in
t whenever there is no discrete step in t and φ holds in a right neighborhood
of t (formally defined below). It should be noted that Xϕ is equivalent to ⊥Ũϕ
where Ũ is until with the “strict” semantics (in which t′ ≥ t is replaced by t′ > t
in the semantics). ⊥Ũϕ disallow t′ to have a point t′′ such that t < t′′ < t′;
thus, t′ must be succ(t). Moreover, X̃ϕ is equivalent to ¬X� ∧ ϕŨ�: there is
no discrete step and all points t′′ preceding t′ satisfy ϕ.

First-order formulae are composed of Boolean logic connectives, a given set
of variables V and a first-order signature Σ.

Definition 1. Given a signature Σ and a set of variables V , LTL formulas ϕ
are built with the following grammar:

φ := pred(u, . . . , u) | φ ∧ φ | ¬φ | φUφ | Xφ | X̃φ

u := c | x | next(x) | f(u, . . . , u) | ite(ϕ, u, u)

where c, f , and pred are respectively a constant, a function, and a predicate of
the signature Σ and x is a variable in V .

Note that atomic formulas can constrain the “current” and “next” value of vari-
ables. We call a predicate with no occurrence of next a state predicate, otherwise
an event predicate. Event predicates are evaluated between two states during dis-
crete transitions, next symbols are evaluated considering the subsequent state
while current symbols are evaluated in the current state.

We use standard abbreviations:

ϕ1∨ϕ2 := ¬(¬ϕ1∧¬ϕ2), ϕ1Rϕ2 := ¬(¬ϕ1U¬ϕ2), Fϕ := (�Uϕ), Gϕ := ¬F¬ϕ.

A state s = 〈M,μ〉 is given by a first-order structure M and an assignment μ
of variables of V into the domain of M . Given a state s = 〈M,μ〉 and a symbol
c in Σ or variable x ∈ V , we use s(c) to denote the interpretation of c in M and
s(x) to denote the value μ(x) assigned by μ to x. Given M , let V M be the set of
states with first-order structure M . A trace π = 〈M, τ, μ〉 is given by a first-order
structure M , a time model τ , and a mapping μ from the domain of τ to V M .
1 Note:“next” is used to refer to next instead of X.
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Given a trace π = 〈M, τ, μ〉 and t ∈ τ , we denote by π(t) the state 〈M,μ(t)〉.
Note that the first-order structure M is shared by all time points, meaning that
the interpretation of the symbols in the signature Σ is rigid (it does not vary
with time). Terms that do not contain variables are called parameters and the
interpretation does not depend on the time point.

We assume a Σ first-order theory T to be given. Given a Σ first-order struc-
ture M , an assignment μ to variables of V , and a Σ first-order formula φ over
V , we use the standard notion of 〈M,μ〉 |=T φ. In the rest of the paper, we omit
the first-order signature Σ and theory T for simplicity.

Given a trace π = 〈M, τ, μ〉, a time point t of τ , and a Σ formula φ, we define
π, t |= φ as follows:

– if α is a state predicate, π, t |= α iff π(t) |= α
– if α is an event predicate, π, t |= α iff there is a discrete step in t and π(t) ·

π(succ(t)) |= α
– π, t |= φ1 ∧ φ2 iff π, t |= φ1 and π, t |= φ2

– π, t |= ¬φ iff π, t |= φ
– π, t |= φ1Uφ2 iff there exists t′ ≥ t such that π, t′ |= φ2 and for all t′′, t ≤

t′′ < t′, π, t′′ |= φ1

– π, t |= Xφ iff there is discrete step in t and π, succ(t) |= φ
– π, t |= X̃φ iff there is not a discrete step in t and there exists t′ > t, for all

t′′, t < t′′ < t′, π, t′′ |= φ

Finally, π |= φ iff π,0 |= φ. We say that φ is satisfiable iff there exists π such
that π |= φ. We say that φ is valid iff, for all π, π |= φ.

5 MTL with Skewed Clocks and Resets

In this section, we define a variant of the logic MTLSK introduced in [4], where
time constraints of metric operators use parametrized lower and upper bounds,
as described in Sect. 2. Moreover, we consider only skewed clocks and super-
dense time, and we consider other standard logics as fragments (dense time and
standard metric operators over perfect clocks).

We first formally define some assumptions on the clocks to ensure that,
despite the resets, they are diverging. We assume to be given two constants
ε and λ that are used as bounds for the drift and resets, respectively.

Definition 2. A “resettable skewed clock” (henceforward, simply, “clock”) is a
real variable c ∈ V such that, for every trace π = 〈M, τ, μ〉 and t = 〈i, r〉 ∈ τ ,

1. π(t)(c) is differentiable in Ii with dπ(t)(c)
dt ∈ [1 − ε, 1 + ε].

2. If t is a discrete step |π(succ(t))(c) − ν(t)| ≤ λ.

In particular, the clocks are piecewise continuous and strictly monotonic, with
at most countably many resets where the clock can decrease.
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Definition 3. Given a signature Σ, a set of variables V , and a set of clock
variables C ⊆ V , MTLSK formulas are built with the following grammar:

φ :=pred(u, . . . , u) | φ ∧ φ | ¬φ | Xφ | X̃φ | φU c
�uφ | φU c

�uφ | φU
c

�uφ

where c ∈ C, � ∈ {<,≤}, � ∈ {>,≥}, and u is defined as in LTL but clock
variables can occur only in event predicates.

Abbreviations are defined as in the standard case.
Note that metric operators use a clock variable in C as its reference for the

timing constraints instead of the real-time, as done in [18] for ECTL.
We just define the semantics of metric operators, while the other cases are

defined as for LTL. We assume here that the background first-order theory con-
tains the theory of reals and that the clock variables and each parametric bound
has real type.

– π, t |= ϕU c
�pψ iff there exists t′ ≥ t such that π(t′)(c) − π(t)(c) � π(p) and

π, t′ |= ψ and for all t′′, t ≤ t′′ < t′, π, t′′ |= ϕ
– π, t |= ϕU c

�pψ iff there exists t′ ≥ t such that π(t′)(c) − π(t)(c) � π(p) and
π, t′ |= ψ and for all t′′, t ≤ t′′ < t′, π, t′′ |= ϕ

– π, t |= ϕU
c

�pψ iff there exists t′ ≥ t such that π(t′)(c) − π(t)(c) � π(p),
π, t′ |= ψ, and for all t′′, t ≤ t′′ < t′, π, t′′ |= ϕ and π(t′′)(c) − π(t)(c) � π(p)

We recall the theorem proved in [4], which holds also for the parametric variant
proposed here.

Theorem 1. For all trace π, formulas ϕ, ψ: π |= ϕU
c

�pψ ⇒ π |= ϕU c
�pψ.

If there is no reset (weakly monotonic case),

π |= ϕU
c

�pψ ⇔ π |= ϕU c
�pψ

Also, if there is no drift and no reset, i.e., ε = 0 ∧ λ = 0 (perfect clocks), then

π |= ϕU
c

�pψ ⇔ π |= ϕU�pψ ⇔ π |= ϕU c
�pψ

Remark. As we discussed in Sect. 2, the non-monotonicity of the resettable clocks
create some challenges as the time constraints defined by the metric operators
are not simple intervals of R

+
0 . In fact, if we consider the formula F c

≤psend,
Fig. 2a shows an execution in which send occurs in the near future but the clock
difference is negative.

Most important, as shown in Sect. 2, the time intervals may be disconnected.
Thus, it is not sufficient to look at the first occurrence of the subformulas, but
we have to consider the minimum value of clocks. Consider for example the
liveness property φBR := G(receive(msg) → F c

≤1send(ACKmsg)) representing
the bounded response of a component when it receives a message. Figure 2b
shows an execution where the component receives the message at instant t = 1
while the local clock exits the time interval bounded by 1 but is later reset to a
value lower than c(t) + 1. The component then sends the acknowledgement for
the message msg within the time constraint and the property holds.
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(b) Example trace satisfying φBR with an
ack after a reset

Fig. 2. .

The key observation here is that it is sufficient to track the minimum value
of c after t where the acknowledgement is sent and check if that is within the
bound. With the operator F

c

≤p instead we can express the property that the ack
is sent within the first interval before t + p. In this case, we can therefore track
the first point at which the acknowledgement is sent making sure that the time
constraint was not violated before.

6 Encoding and Verification

In this section, we define an encoding2 from MTLSK to first-order LTL. The
encoding is divided into 3 parts: the first part considers a novel intermediate logic
LTL-min-max that can express MTLSK properties through a straightforward
rewriting Υ ; the second part defines a discretization process of LTL-min-max
based on the discretization proposed in [23]; the last part defines an encoding
from LTL-min-max to First-order LTL.

6.1 LTL-min-max Definition and Rewriting

We construct a new intermediate logic LTL-min-max extending First-order LTL
with minimum and maximum operators. The intuition behind this logic fol-
lows from the remark of Sect. 5: while the satisfaction of bounded operators in
MTL0,+∞ can be achieved by looking at the value of time in the next occurrence
of the formula, in MTLSK due to non-monotonicity of time we have to analyze
the minimum and maximum time in which the property holds.

Definition 4. Given a signature Σ, a set of variables V , and a set of clock
variables C ⊆ V , LTL-min-max formulas are built with the following grammar:

φ :=p(u, . . . , u) | tu � cu | φ ∧ φ | ¬φ | φUφ | Xφ | X̃φ

2 All the proofs can be found in https://es-static.fbk.eu/people/bombardelli/papers/
nfm23/main ext.pdf.

https://es-static.fbk.eu/people/bombardelli/papers/nfm23/main_ext.pdf
https://es-static.fbk.eu/people/bombardelli/papers/nfm23/main_ext.pdf
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u :=cu | x | f(u, . . . , u) | ite(φ, u, u) | next(u)
tu :=time | c | minΔc

φUφ | f(tu, . . . , tu) | next(c) | maxΔc
φUφ | maxbef Δc

φ

cu :=p | f(cu, . . . , cu)

where �∈ {≤,≥, <,>} and clock variables can occur only in event predicates and
in min-max operator superscripts i.e. minΔc

φUψ, maxΔc
ϕUψ and maxbef Δc

ϕ.

Definition 5. The semantics of LTL-min-max new operators is defined as fol-
lows:

If π, t |= ϕUψ then π(t)(minΔc
ϕUψ) = min(π(t)(U c

ϕUψ)) − π(t)(c)

If π, t |= (ϕUψ) ∧ ΦfinU then π(t)(maxΔc
ϕUψ) = max(π(t)(U c

ϕUψ)) − π(t)(c)

If π, t |= Fϕ then π(t)(maxbef Δc
ϕ) = max(Befc

π(t, ϕ)) − π(t)(c)

where: ΦfinU := F (¬ϕ ∨ G¬ψ),

π(t)(U c
ϕUψ) :={π(t′)(c)|t′ ≥ t : π, t′ |= ψ and for all t ≤ t′′ < t′ : π, t′′ |= ϕ},

π(t)(Befc
ϕ) :={π(t′)(c)|t′ ≥ t : for all t < t′′ < t′ : π, t′′ � ϕ}.

π(t)(U c
ϕUψ) represents the value of each π(t′)(c) such that ψ holds at point t′ and

each point between t and t′ (excluded) satisfies ϕ. This set takes all the witnesses
of π satisfying ϕUψ from point t; then, it extracts the value of c at point t′ i.e.
when ψ holds. minΔc

ϕUψ and maxΔc
ϕUψ represent respectively the minimum

and the maximum of that set. The existence of the minimum of π(t)(U c
ϕUψ) is

guaranteed if ϕUψ holds. π, t |= ϕUψ is a sufficient condition because clocks
diverge (see Definition 2) and ψ contains clocks only inside event predicates.
Similarly, the assumptions on maxΔ guarantee that the maximum exists if the
property holds and it holds only finitely many times. If ΦfinU does not hold,
then the maximum does not exist because the clock diverges.

π(t)(Befc
ψ) is the set containing all clock values from point t to the first point

such that ψ holds after t. maxbef Δc
ψ represents the maximum in that set. Fϕ

guarantees the existence of the maximum of that set.

Definition 6. We define the rewriting Υ from MTLSK to LTL-min-max as
follows:

Υ (ϕU c
�pψ) :=Υ (ϕUψ) ∧ minΔΥ (ϕUψ) � p

Υ (ϕU c
�pψ) :=Υ (G(ϕ ∧ Fψ)) ∨ Υ (ϕUψ) ∧ maxΔΥ (ϕUψ) � p

Υ (ϕU
c

�pψ) :=Υ (ϕUψ) ∧ maxbef Δc
Υ (ψ) � p

Theorem 2. ϕ and Υ (ϕ) are equisatisfiable

Proof (Sketch). ϕU c
�	pψ is true at point t only if there exist a point t′ such

that ψ hold, π(t′)(c) − π(t)(c) � π(p) and all points from t to t′ satisfy ϕ. Since
minΔc

ϕUψ and maxΔc
ϕUψ are respectively the minimum/maximum of the set

containing the evaluation of c in each t′ point minus π(t)(c), then the translation
holds. The same applies to ϕU

c

�pψ. In that case, the property holds iff ϕUψ holds
and each value of π(t′′)(c) with t ≤ t′′ ≤ t′ is not greater than the upper bound
π(t)(c)+π(p). Thus, it is sufficient to verify that the max(π(t)(Bef))−π(t)(c)�
π(p).
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6.2 LTL-min-max Discretization

We apply our discretization process based on the one defined in [23]. The dis-
cretization process defines time evolution as a sequence of open or singular inter-
vals. The discretization process assumes that the satisfiability of each subformula
of φ does not vary inside intervals. That assumption is ensured because MTLSK
allows clocks only as part of event predicates.

Singular intervals are encoded by the fresh variable ι while the time elapsed
in each interval is encoded by δ. The real variable ζ encodes an arbitrary accumu-
lation of sums of δ. ζ is used to guarantee the divergence of the global time. For
each skewed clock c, we introduce two fresh variables: δc and diffc . δc encodes the
clock time elapse in each transition while diffc represents the difference between
the global time and the current clock value c. We encode c using diffc to guar-
antee the divergence of c relying on the divergence of global time.

The rewritten formula φD is composed of four parts: the constraints defining
time and forcing discrete variables to stutter when time elapses (ψtime), the
constraints defining each clock c according to Definition 2 (ψc

clock), the constraint
to define when an interval is open or when it is singular (ψι) and the discretized
formula (D(φ)). The whole transformation is as follows:

φD :=ψtime ∧
∧

c∈C

ψc
clock ∧ ψι ∧ D(φ)

ψtime :=time = 0 ∧ G(next(time) − time = δ) ∧ G(δ > 0 →
∧

v∈V

(next(v) = v))

ψc
clock :=diffc = 0 ∧ G(next(diffc) − diffc = δc − δ)∧

G((δ > 0 → δc ∈ [δ(1 − ε), δ(1 + ε)]) ∧ (δ = 0 → |diffc | ≤ λ))
ψι :=ι ∧ G((ι ∧ δ = 0 ∧ Xι) ∨ (ι ∧ δ > 0 ∧ X¬ι) ∨ (¬ι ∧ δ > 0 ∧ Xι))∧

G((next(ζ) − ζ = δ) ∨ (ζ ≥ 1 ∧ ζ = 0)) ∧ GF (ζ ≥ 1 ∧ next(ζ) = 0)

Definition 7. The discretization rewriting D is defined as follows:

D(Xϕ) := ι ∧ X(ι ∧ D(ϕ)) D(X̃ϕ) := (¬ι ∧ D(φ)) ∨ X(¬ι ∧ D(ϕ))

D(ϕUψ) := D(ψ) ∨ (D(ϕ)Uψ̃) D(maxbef Δc
ϕ) := maxbef Δc

D(ϕ)

D(minΔc
ϕUψ) := ite(D(ψ) ∧ 0 ≤ minΔc

D(ϕ)Uψ̃
, 0,minΔc

D(ϕ)Uψ̃
)

D(maxΔc
ϕUψ) := ite(D(ψ) ∧ 0 ≥ maxΔc

D(ϕ)Uψ̃
, 0,maxΔc

D(ϕ)Uψ̃
)

where ψ̃ = D(ψ) ∧ (ι ∨ D(ϕ)).

Xϕ is discretized forcing a discrete transition i.e. ι∧Xι. X̃ϕ requires that either
ϕ holds now in an open interval or it holds in the next state in an open interval.
Until forces either ψ to hold now or ϕ has to hold until ψ holds; moreover, if ψ
holds in an open interval also ϕ must hold in that point too. The discretization
of minΔc

ϕUψ and maxΔc
ϕUψ is similar to the one of until. It considers the current

point in the minimum/maximum computation as a candidate min/max and then
applies the discrete operator on the discretized until.

Theorem 3. φ and φD are equisatisfiable
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6.3 LTL-min-max Discrete Encoding

The discrete setting enables recursive definitions of minimum and maximum.
Consider for instance the set Sv

� which stores the values of variable v at
each time point. π(t)(Sv

�) can be defined by the following recursive definition:
π(t)(Sv

�) = {π(t)(v)} ∪ π(t + 1)(Sv
�). Our discrete encoding of LTL-min-max

exploits this inductive structure of U c
ϕUψ and Befc

ϕ to provide a sound transla-
tion to first-order LTL. Our encoding introduces new monitor variables repre-
senting minΔc

ϕUψ, maxΔc
ϕUψ and maxbef Δc

ϕ. Each operator is replaced with the
monitor in the formula and the formula is implied by the monitor constraints.

In the remainder of this section, we denote ρ′ := next(ρ), δc := c′ − c and Ũ
as the “strict” version of U operator (also expressible as ϕŨψ := ϕ ∧ X(ϕUψ)
in the discrete setting).

Repl(Ψ,minΔc
ϕUψ) := G(ϕUψ → ρminΔc

ϕUψ
=

ite(ψ ∧ (¬(ϕŨψ) ∨ 0 ≤ ρ′
minΔc

ϕUψ
+ δc), 0, ρ′

minΔc
ϕUψ

+ δc)∧
(F (ψ ∧ ρminΔc

ϕUψ
= 0))) → Ψ�minΔc

ϕUψ/ρminΔc
ϕUψ

�

The value of ρminΔc
ϕUψ

is evaluated as the minimum only when ϕUψ holds;
otherwise, min(U c

ϕUψ) would be undefined. The ite expression evaluates the
minimum between 0 and ρ′

minΔc
ϕUψ

+δc (min(π(succ(t))(U c
ϕUψ)). Finally, F (ψ ∧

ρminΔc
ϕUψ

= 0) guarantees that a minimum exists.

Theorem 4. Ψ and Repl(Ψ,minΔc
ϕUψ) are equisatisfiable

Repl(Ψ,maxΔc
ϕUψ) := G((ϕUψ) ∧ ΦfinU → ρmaxΔc

ϕUψ
=

ite(ψ ∧ (¬(ϕŨψ) ∨ 0 ≥ ρ′
maxΔc

ϕUψ
+ δc), 0, ρ′

maxΔc
ϕUψ

+ δc)∧
(F (ψ ∧ ρmaxΔc

ϕUψ
= 0))) → Ψ�maxΔc

ϕUψ/ρmaxΔc
ϕUψ

�

The encoding of maxΔ is the same as the one of minΔ only flipping the sign
and introducing the constraint ΦfinU from Definition 5 to evaluate the monitor
only if the maximum exists i.e. the formula holds finitely often.

Theorem 5. Ψ and Repl(Ψ,maxΔc
ϕUψ) are equisatisfiable

Repl(Ψ,maxbef Δc
ϕ) := G(Fϕ → ρmaxbef Δc

ϕ
=

ite(ϕ ∨ 0 ≥ ρ′
maxbef Δc

ϕ
+ δc, 0, ρ′

maxbef Δc
ϕ

+ δc)) → Ψ�maxbef Δc
ϕ/ρmaxbef Δc

ϕ
�

The encoding of maxbef Δ evaluates the maximum of c before and including the
first point in which ϕ holds.

Theorem 6. Ψ and Repl(Ψ,maxbef Δc
ψ) are equisatisfiable
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Table 1. Some MTLSK properties and their verification results.

Formula Time in sec. λ ε alg valid

G(F
c
≤pa → F c

≤pa) 2.81 any any ic3 True

F (c = p) → F (((G
c
≤pa) ∧ (G

c
≥p¬a)) → ⊥) 3.62 any 0.4 kzeno True

(q ≥ p) → G((G
c
≤qa) → (G

c
≤pa)) 0.38 any any ic3 True

Gc
≤pa → G(a ∨ c > p) 9.03 any any kzeno True

Gc
≤pa → G(a ∨ c > p) 1.09 any any ic3 True

(q ≥ p) → G((Gc
≥pa) → (Gc

≥qa)) 2.22 any any ic3 True

Φexp := q = p(2 + ε) + 2λ ∧ (G(fault →
G¬alive) ∧ G(G

cl
≤p¬alive →

(F
cl
≤palarm))) → G(fault → F[0,q]alarm)

94.26 14.0 0.1 ic3 True

(G((Reset(cl1) → next(cl1) =
cl) ∧ (¬Reset(cl))) ∧ GF cl

≤q(next(cl) =
cl1)) → G(cl − cl1 ≤ q ∗ (1 + 2ε/(1 − ε)))

7.05 any any kzeno True

G(f → G
cl1
≤p¬alv) ∧ G(G

cl2
≤p−4r¬alv →

(F
cl2
≤palm))) → G(f → F

cl
≤p+2ralm)

19.86 any any ic3 True

G(F c
≤pa → F

c
≤pa) 0.27 any any bmc False

G((a ∨ Xa) → (F c
≤0a ∧ F c

≥0a)) 0.18 any any bmc False

Bounded Response invalid with 11 clocks 1.36 any any bmc False

7 Results

In this section, we present the implementation and experimental analysis of
the procedure we described in the previous section to prove the validity and
satisfiability of MTLSK formulas.

7.1 Implementation

We implemented MTLSK verification as an extension of timed nuXmv [8]. We
used the following model-checking algorithms to verify the validity and satis-
fiability of the formulas: kzeno [11] in lockstep with bmc, ic3-ia [10], bmc [8]
(with diverging variables). The algorithms used inside nuXmv are constructed
on top of MathSAT5 [12] SMT-solver, which supports combinations of theories
such as LIA, LRA and EUF . Unlike the logic definition of Sect. 5, our imple-
mentation permits the usage of formulas containing clocks in state predicates
(e.g., G(c − c1 ≤ p) is allowed). Indeed, we introduced continuity constraints
of [23] inside the discretization process to relax this syntactic restriction. Our
implementation considers λ and ε constants from Sect. 5 to instantiate bounds
for resettable clocks. These parameters are defined inside the SMV model either
as scalar values (DEFINE) or as a parameter (FROZENVAR).
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(a) λ evaluation (b) ε evaluation

(c) Fischer experimental evaluation (d) BR experimental evaluation

Fig. 3. Parametric experimental evaluations

7.2 Experimental Evaluation

We are not aware of other tools supporting MTLSK or other variations of MTL
over resettable skewed clock; therefore, our experimental evaluation is performed
only on our implementation. The experiments3 were run in parallel on a cluster
with nodes with Intel Xeon CPU running at 2.40 GHz with 12CPU, 64 GB. The
timeout for each run was one hour and the memory cap was set to 1 GB. The
experimental evaluation considers the scalability of the tool concerning λ, ε,
formulas size and until bound.

Benchmarks. Our experiment is divided into the following groups:
The first group of formulas is composed of a chain of bounded response (BR)

where each local component i sends to its successor message ai in at most p
time unit where p is a parameter and time is interpreted as the local clock ci.
Finally, given a parametrized maximum bound r between local clocks and the
global clock, the bounded response chain guarantees that q = 2n(p + r) is the
right bound for the global bounded response.

G(
∧

0≤i<n ((ai → F
ci

≤pai+1) ∧ (c − ci ≤ r ∧ ci − c ≤ r))) → G(a0 → F
c

≤qan)

3 The results of the experimental evaluation can be found at https://es-static.fbk.eu/
people/bombardelli/papers/nfm23/nfm23.tar.gz.

https://es-static.fbk.eu/people/bombardelli/papers/nfm23/nfm23.tar.gz
https://es-static.fbk.eu/people/bombardelli/papers/nfm23/nfm23.tar.gz
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The second group of formulas is a Fischer algorithm benchmark taken from
[8] MTL experimental evaluation and adapted for MTLSK. The pool of formulas
is parametrized over the number of components. Each component has its skewed
clock and a local formula representing its behaviour, the conjunction of all the
formulas is used to imply a property of the first component.

The third group of formulas are a variation of the example proposed in Sect. 2
that instantiates the parameters p, λ and ε to study their impact on the validity
checking performance. We also considered a timed and simplified version of a
Wheel Brake System model of [13]. Given a redundant signal of the brake pedal,
a redundant braking component, the property states that the hydraulic system
should brake before a specified time threshold if the redundant components do
not fail at the same time. This property has been translated to MTLSK and
each component has been augmented with a local clock.

The last group is a collection of roughly 100 MTLSK specifications, 60 valid
and 40 invalid, defined to validate the semantics and the implementation.

Experimental Results. Table 1 shows the results on a subset of formulas. The
solver proves most of the tautologies of group 4 in less than 10 s and 38 prop-
erties were proved in less than 2 s. All the invalid properties of this group were
disproved in less than 2 s with the bmc algorithm. Moreover, we performed an
experimental evaluation using the example defined in Sect. 2. We were able to
prove the example by splitting the property into two parts. First, we proved that
q is an upper bound for the maximum distances between c and c1 if c1 is syn-
chronized to c every r time unit. Second, we proved that assuming a maximum
distance between c and the other clocks the property holds.

The experiments on λ and ε pointed out the instability brought by instanti-
ating these parameters to an arbitrary value. In particular, Fig. 3a and Fig. 3b
show the impact of the two constants increasing their values. The plots show a
strong instability with jumps in execution time with both λ and ε.

Figure 3c shows the experimental evaluation of the Fischer algorithm formula.
The IC3 algorithm proves the correctness of the formula with 11 components in
less than one hour. Figure 3d shows the Bounded Response experimental evalua-
tion. No algorithm can prove the formula with 6 components. Indeed, this model
is challenging because to prove that the global component sees an before q time
units we need to ensure that each component skewed does not delay too much
the response. Moreover, this model is parametrized over λ, ε, p and r; thus, the
solver needs to explore a larger state space.

8 Conclusions

In this paper, we addressed the problem of automated reasoning with MTLSK
properties, a variant of MTL for DRTS with local clocks that are skewed and
resettable. To cope with the non-monotonicity of timing constraints in the pres-
ence of resets, we introduce min/max operators that guess the min/max value
of clocks when subformulas are satisfied. We described and implemented an
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encoding into LTL satisfiability modulo theory. The results show that the app-
roach is feasible and can be used to assess the validity of formulas for different
configurations of the skewed resettable clocks. In the future, we would like to
investigate more efficient techniques to find counterexamples based on bounded
model checking with different clocks as in [6]; we would study the impact of non-
monotonic resets on the compositional reasoning with input/output data [3]; we
would like to cover a deeper case study concerning real life examples such as
8N1 protocol and Biphase Mark protocol; we would like to relax the constraints
of resettable clocks to match more realistic assumptions on the system; finally,
we would extend distributed runtime verification as in [15] to MTLSK.
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Future AI Research (PE00000013), under the NRRP MUR program funded by the
NextGenerationEU.
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Abstract. We address the challenge of centralized multi-agent motion
planning for tasks described in Signal Temporal Logic (STL) which
require both adherence to spatial constraints and simultaneous execution
of team behaviors. Existing methods to satisfy STL specifications includ-
ing spatial constraints use decentralized planning approaches. These
decentralized methods are unable to enforce temporal constraints jointly
across agents and therefore cannot require multiple agents to complete
simultaneous team behaviors. We present a mixed-integer quadratic pro-
gram (MIQP) encoding of the search for multi-agent trajectories to sat-
isfy team STL specifications in a gridworld environment. We experimen-
tally evaluate the solve time of the centralized MIQP encoding against a
centralized mixed-integer linear program (MILP) encoding in scenarios
with different types of spatial constraints. Numerical results uncover that
the solve time for the MIQP encoding is more suitable for problems with
inter-agent spatial constraints, such as collision avoidance constraints,
while the MILP encoding better suits constraints between agents and
static objects in the environment. Our findings provide valuable design
recommendations for implementation of either approach according to the
type of spatial constraints which must be supported.
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warehouse management. Motion planning for a mobile robot team often requires
enforcing safety and liveness properties that take the form of temporal and spa-
tial constraints relating to the environment and other robots. These constraints
enable team behaviors such as reaching goals while avoiding collisions. It is also
often necessary for multiple robots to work together on a task, further imposing
spatiotemporal constraints. Signal Temporal Logic (STL) provides a language
for such rule specification using concrete timing over continuous signals [9].

The use of mixed-integer linear programming (MILP) is a popular choice
for control synthesis to satisfy STL specifications [10]. However, since spatial
constraints are often initially expressed as Euclidean distance inequalities, linear
formulations are not always amenable to rapid plan generation due to the growth
in the number of constraint variables required to reformulate the quadratic form
of Euclidean distances into a linear form. Thus, a mixed-integer quadratic pro-
gram (MIQP) formulation may be beneficial for centralized motion planning
when encoding spatial constraints. It is not obvious when to select either option,
since existing solvers are heavily optimized for solving linear problems.

We present the following contributions: 1) an MIQP encoding of multi-agent
planning problems leveraging a MILP encoding of STL satisfaction, 2) experi-
mental results showing the solve times for the MIQP encoding and an equivalent
MILP encoding under differing environmental and objective conditions, and 3)
recommendations for when to use each type of encoding for motion planning.

2 Related Work

There has been significant research interest in generating plans for mobile robots
to satisfy complex goals. Temporal logics provide a useful tool for specifying
plans for individual robots and teams of robots [1,5]. Many works for multi-agent
synthesis have focused on Linear Temporal Logic (LTL) [7,8,11]. These works
can handle many complex problems, such as large teams [11], heterogeneous
agents [8] and collaborative tasks [7] for tasks with sequence-based specifications.

Nonetheless, planning problems that require properties involving continuous
signals and concrete timing (rather than merely sequence) motivates the use of
STL. In this work, we consider planning in a centralized manner for a multi-
agent system to satisfy a global STL specification. In [6], a scalable method for
solving large planning problems for heterogeneous agents was introduced. That
method is based on a fragment of STL called Capability Temporal Logic (CaTL)
whose semantics are defined over counts of agents. In this work, we present
an extension of their approach that considers full STL and spatial constraints,
both of which are not considered in that work. Two other closely-related works
are [2,12]. In [2], the authors present a method for finding optimal trajectories
for a team of agents while ignoring spatial constraints such as collision avoidance.
Such constraints are handled in a sequential motion planning algorithm after a
region-level plan has been synthesized from an STL formula. Additionally, their
method assumes each agent has its own defined specification, assuming task
assignment has already been completed. In this paper, we introduce an encod-
ing for a team specification that allows us to solve such spatial constraints and
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task assignment directly as part of the synthesis problem. The authors of [12]
similarly present a method for synthesizing team plans from a fragment of STL
called Multi-Agent STL (MA-STL). While their approach can handle objectives
such as collision avoidance, it restricts temporal operators to individual agent
trajectories. This restriction makes it difficult to compactly specify goals that
must be achieved simultaneously by different agents. Because it uses full STL,
our method can specify simultaneous actions in a straightforward and compact
manner. We demonstrate the ability of our method to synthesize plans given a
team specification that includes spatial constraints and simultaneous task exe-
cution, a rich problem space that cannot be easily handled by related methods.

3 Problem Formulation

We address the problem of multi-agent synthesis for a homogeneous agent team
which must complete individual tasks as well as simultaneously execute team
tasks, all while abiding by spatial constraints. We focus our approach on a grid-
world domain, with constraints inspired by military ground maneuvers as well
as tasks that might be performed by a team of flying robots.

3.1 Environment

Definition 1. We adopt the definition presented in [6] as our Environment,
given by the tuple Env = (Q,E,W,AP,L) where:

1. Q is a finite set of states that corresponds to occupiable cells in the gridworld;
2. E ⊆ Q×Q is a set of edges such that (q, q′) ∈ E iff the two cells corresponding

to states q and q′ are non-diagonally adjacent in the gridworld;
3. W : E → R is an edge weight such that W (q, q′) is the maximum amount of

time required for an agent to travel from q before entering q′;
4. AP is a set of atomic propositions that define environment state types;
5. L : Q → 2AP is a mapping that labels each state of the environment according

to its state type.

Un-occupiable cells in the gridworld, such as cells where obstacles are located,
are omitted from Q, and transitions to and from those cells are omitted from E.
We assume a gridworld where each edge weight W is equivalent.

The set of propositions AP corresponds to state types in the environment.
We use three categories of state types to represent key environment features that
are tracked in our problem formulation: objective state types, team action state
types, and the static object state type. Objective state types represent locations
where individual agent tasks must be completed. A mapping of L(q) = πoi

represents the ith objective is at state q. Team action state types represent states
where execution of a certain team action is possible. The mapping L(q) = πta�

represents the �th team action can be executed at state q. The existence of a
static object at a state q is represented by the static object state type L(q) = πob.
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3.2 Agents

We similarly adopt the definitions from [6] describing single agent and team
trajectories, however with the assumption of homogeneous agent capability.

Definition 2. Let J be a finite index set representing all agents. An Agent j ∈ J
is given by a state Aj = q0,j where q0,j ∈ Q is the agent’s initial state.

Definition 3. An input signal for agent j is defined as the mapping uj(t) =
R → E ∪ {∅}, where uj(t) = e specifies that agent j begins to travel on edge e
at time t. An input signal uj(t) = e, where e = (q, q′), describes an agent that
is at state q at time t. An input signal has the property uj(t) = e =⇒ uj(τ) =
∅,∀τ ∈ (t, t+W (e)). In other words, the input signal must be none while an agent
is traveling on an edge. From the input signal we receive a piecewise constant
trajectory of an agent sj(t) = R → Q∪{∅}, which describes the agent’s movement
between environment states. The agent trajectory sj has the properties sj(0) =
q0,j , and uj(t) = (q, q′) =⇒ sj(τ) = (q, q′),∀τ ∈ (t, t+W (e))∧sj(t+W (e)) = q′.

Definition 4. The team trajectory is a mapping from each time t to the team
state sJ(t) = [nQ(t), nE(t)] ∈ Z

(|Q|+|E|)
≥0 . The matrices nQ = [nq(t)]q∈Q ∈ Z

|Q|
≥0

and nE = [ne(t)]e∈E ∈ Z
|E|
≥0 are defined as

nq(t) =
∑

j∈J

I(sj(t) = q) (1a)

ne(t) =
∑

j∈J

I(sj(t) = e) (1b)

where I is the indicator function. Therefore, nq(t) and ne(t) represent the num-
ber of agents at state q and edge e, respectively. That is, the team trajectory
represents the number of agents on each state and edge at each point in time.

3.3 Signal Temporal Logic

The syntax of STL [9] is given in Backus-Naur form as

φ := 
|μ|¬φ|φ1 ∧ φ2|φ1U[a,b]φ2 , (2)

where 
 is the logical True; μ is a predicate; φ, φ1, and φ2 are STL formulas;
¬ and ∧ are Boolean negation and conjunction; and U[a,b] is the time-bounded
until operator. Other common operators such as disjunction (φ1∨φ2 := ¬(¬φ1∧
¬φ2)), time-bounded eventually (F[a,b]φ := 
U[a,b]φ), and time-bounded always
(G[a,b]φ := ¬F[a,b]¬φ) can be defined from these operators. In this work, we
consider predicates of the form μ := f(x(t)) ≥ c, where f : R

n → R for an
n-dimensional signal x and a constant c.
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The semantics of an STL formula φ with respect to a trajectory sJ at time
t are defined as

(sJ , t) |= μ ⇔ f(sJ(t)) ≥ c

(sJ , t) |= ¬φ ⇔ ¬((sJ , t) |= φ)
(sJ , t) |= φ1 ∧ φ2 ⇔ (sJ , t) |= φ1 ∧ (sJ , t) |= φ2

(sJ , t) |= φ1U[a,b]φ2 ⇔ ∃t′ ∈ [t + a, t + b]s.t.(sJ , t′) |= φ2

∧∀t′′ ∈ [0, t′](sJ , t′′) |= φ1 .

(3)

In addition to the semantics defined above, STL also has the notion of quan-
titative semantics or robustness degree, ρ. The robustness of a signal sJ at time
t with respect to formula φ is defined as [3]

ρ(sJ , t, μ) = f(sJ(t)) − c

ρ(sJ , t,¬φ) = −ρ(sJ , t, φ)
ρ(sJ , t, φ1 ∧ φ2) = min(ρ(sJ , t, φ1), ρ(sJ , t, φ2))
ρ(sJ , t, φ1U[a,b]φ2) =

max
t′∈[t+a,t+b]

(ρ(sJ , t′, φ2), min
t′′∈[t,t′]

ρ(sJ , t′′, φ1)).

(4)

3.4 Problem Statement

We address the challenge of multi-agent motion planning to satisfy spatial con-
straints in scenarios where agents must execute individual tasks and as well as
team tasks. Table 1 lists the symbols used in problem formulation.

STL operators can be applied to specify the appropriate time bounds in
which each objective must be achieved. For example, in the most general case
we can specify that all n objectives must eventually be reached with

φobjectives =
n∧

i=1

F[0,T ](Objectivei) , (5)

where T is the ending time of the scenario. The predicate Objectivei is true if
any agent is in state q ∈ L−1(πoi

).
Team actions refer to a team task which must be completed simultaneously

by all agents on the team. The �th team action can only be executed when each
agent is located in any state where the �th team action can be executed. STL
operators can be used to enforce constraints such as requiring all m team actions
to be performed at least once every time interval h with the formula

φteam.action =
m∧

�=1

G[0,T ](F[0,h](Team.Action�)) , (6)

where Team.Action� is true if each agent is located in any state q ∈ L−1(πta�
).

Spatial constraints are grouped into two categories: dynamic (constraints on
inter-agent distances) and static (constraints on distances between agents and
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static objects in the environment). Dynamic spatial constraints are placed on
the Euclidean distance d(j, j′) ∈ R between each pair of agents (j, j′) ∈ [J ]2,
where [J ]2 represents all subsets of J with cardinality 2.

A global upper bound, rd
max, and lower bound, rd

min, can be enforced on
inter-agent distances with the constraints

φdynamic.lower(rd
min) =

∧

(j,j′)∈[J]2

G[0,T ](d(j, j′) ≥ rd
min) (7a)

φdynamic.upper(rd
max) =

∧

(j,j′)∈[J]2

G[0,T ](d(j, j′) ≤ rd
max), (7b)

where φdynamic(rd
min, rd

max) = φdynamic.lower(rd
min) ∧ φdynamic.upper(rd

max).
A static spatial constraint on the distance between all agents and all static

objects of type ob can be enforced as a global upper bound rs
max, and lower

bound, rs
min,

φstatic.lower(rs
min) =

∧

j∈J,q∈L−1(πob)

G[0,T ](d(j, q) ≥ rs
min) (8a)

φstatic.upper(rs
max) =

∧

j∈J,q∈L−1(πob)

G[0,T ](d(j, q) ≤ rs
max), (8b)

where φstatic(rs
min, rs

max) = φstatic.lower(rs
min)∧φstatic.upper(rs

max). We represent
the overall STL specification for the team of agents as

Φ = φobjectives ∧ φteam.action ∧ φdynamic(rd
min, rd

max) ∧ φstatic(rs
min, rs

max), (9)

and we aim to find a plan subject to agent dynamics which satisfies Φ.

Problem 1a (Satisfaction) Given a team of agents {Aj}j∈J operating in a shared
environment Env = (Q,E,W,AP, l), and a STL specification Φ, find a set of
input signals {uj}j∈J such that Φ is satisfied.

Problem 1b (Maximize robustness) Solve Problem 1a such that ρ(sJ , t,Φ) is max-
imized.

4 Mixed Integer Programming Encodings

We formulate Problem 1 as an equivalent MIQP, then as an equivalent MILP
with a different spatial constraint encoding. We make the same assumption as
in [6] that agent transitions between states can only happen at a set of discrete
times, and all transition times are integer. Formally, we assume edge weight
functions (transition times) are defined such that W (q, q′) = vδt, v ∈ N where
δt is a time step no larger than the minimum value of W , and uj(t) = ∅,∀t /∈
{vδt}v∈N. We define a mapping W : Q×Q → N which describes a discretized edge
weight such that W (q, q′) = W(q, q′)δt, ∀q �= q′. We assume all discretized edge
weights W(q, q′) = 1 for simplicity, however this is not a necessary assumption
for the formulation. Additionally, a “self-loop” edge W(q, q) = 1 is defined for
each state to enable agents to remain at a state for a single time step. The
planning horizon K denotes the total timesteps δt that we plan for our agents.
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Table 1. Table of symbols corresponding to the problem variables and the
MIQP/MILP variables. Symbols are listed in alphabetical order in each section.

Problem Variables
AP set of atomic propositions
e ∈ E edge in the environment
J index set of all agents
K index set for discrete time horizon
k ∈ K discrete time index
oi ith objective
q ∈ Q state in the environment
qc column location of state q

qr row location of state q

sJ team trajectory
sj trajectory of agent j

ta� �th team action
W (q, q′) environment edge weighting
W(q, q′) discretized environment edge weighting
δt environment discretization size
πob static object proposition
πoi ith objective proposition
πta� �th team action available proposition
MIQP/MILP Variables
dd
max(k) upper bound on distances between all agent pairs

dd
min(k) lower bound on distances between all agent pairs

ds
max(k) upper bound on distances between all agents and static objects

ds
min(k) lower bound on distances between all agents and static objects

ue,j(k) binary encoding of if agent j is entering edge e at time k

zc,j(k) column location of agent j at time k

zoi (k) satisfaction of ith objective at time k

zq,j(k) binary encoding of if agent j is in state q at time k

zq,ta� (k) number of agents performing �th team action in state q at time k

zr,j(k) row location of agent j at time k

zta� (k) execution of �th team action at time k

4.1 Agent Dynamics

We apply the team dynamics encodings from [6] on the level of each agent in order
to track individual agent locations required to incorporate spatial constraints.
We define a variable zq,j(k) ∈ {0, 1} that we wish to be 1 if agent j is at state q
at time k. The initial positions of each agent are set with equality constraints

zq,j(0) = q0,j , ∀j ∈ J. (10)
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where q0,j describes the known initial position of agent j. Agents’ movement
between nodes is governed by node and edge balance equations

zq,j(k) =
∑

(q′,q)∈E

u(q′,q),j(k − W(q′, q)) (11a)

∑

(q,q′)∈E

u(q,q′),j(k) =
∑

(q′,q)∈E

u(q′,q),j(k − W(q′, q)), (11b)

∀q ∈ Q, j ∈ J, k = 0, ...,K.

We define the location of each agent at each time step in order to enforce spatial
constraints. Two variables are created to represent the integer value for the
column location zc,j(k) ∈ N and row location zr,j(k) ∈ N of agent j at time t.
The agent location variables are related to agent dynamics with the constraints

zc,j(k) =
∑

q∈Q

zq,j(k) · qc (12a)

zr,j(k) =
∑

q∈Q

zq,j(k) · qr, (12b)

∀j ∈ J, k = 0, ...,K.

4.2 Objective Satisfaction

An objective at state q is reached at time k if any agent is in state q at time k.
We define a variable zoi

(k) ∈ {0, 1}, that we wish to be valued 1 if any agent is
at the state where objective oi is located at time k. This variable captures the
satisfaction of objective oi with the constraints

zoi
(k) ≤

∑

j∈J

zq,j(k) (13a)

M · zoi
(k) ≥

∑

j∈J

zq,j(k), (13b)

∀q ∈ L−1(πoi
), k = 0, ...K,

where M is a sufficiently large number, i.e. M ≥ 1+ |J |. We assume |L−1(πoi
)| =

1, in other words the ith objective is located in one state.

4.3 Team Actions

The �th team action can be executed at time k if each agent on the team is
located in any state q ∈ L−1(πta�

), not necessarily the same state. We first define
a variable zq,ta�

(k) ∈ [0, |J |] which represents the number of agents performing
the �th team action in state q at time k. We require an agent to be located at
a state q and remain at state q for one time step while executing a team action
with the constraints

zq,ta(k) ≤ u(q,q)(k), ∀q ∈ L−1(πta�
), k = 0, ...,K. (14)
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We next define a variable zta�
(k) ∈ {0, 1} which we wish to be valued at least 1

if all agents are executing the �th team action at time k, thus capturing whether
a team action is completed at time k with the constraints

−M · zta�
(k) +

∑

q∈L−1(πta)

zq,ta�
(k) ≥ |J | − M, ∀k = 0, ...,K. (15)

4.4 Quadratic Spatial Constraint Encoding

Our quadratic encoding of spatial constraints requires the calculation of
Euclidean distance using the integer values for agents’ row and column location
at a given time step. We use the function dquad(j, q)k to represent the quadratic
encoding of the Euclidean distance between an agent j and a state q at time k,
where dquad(j, q)k =

√|zc,j(k) − qc|2 + |zr,j(k) − qr|2. The same calculation and
notation is used to represent the distance between two agents. Upper and lower
bounds on the distance between each agent and each static object of a given
type in the environment are encoded with constraints

ds
min(k) ≤ dquad(j, q)k ≤ ds

max(k), ∀j ∈ J, q ∈ L−1(πob), k = 0, ...,K, (16)

Upper and lower bounds on the distance between each pair of agents are similarly
encoded with constraints

dd
min(k) ≤ dquad(j, j′)k ≤ dd

max(k), ∀(j, j′) ∈ [J ]2, k = 0, ...K. (17)

4.5 Linear Spatial Constraints Encoding

We compare our quadratic encoding of spatial constraints to a linear encoding,
which is much more common in the synthesis literature. Our linear formulation
uses pre-calculated Euclidean distances between each pair of states, as well as
the known state location of each agent at each time step. Bounds on the distance
between each agent and static object are encoded with constraints

ds
min(k) ≤

∑

q∈Q

zq,j(k) · d(q, q′) ≤ ds
max(k), ∀q′ ∈ L−1(πob), j ∈ J, k = 0, ...,K,

(18)

where d(q, q′) represents a precalculated Euclidean distance.
In order to linearly encode dynamic spatial constraints, we first define a

binary variable zq,q′,j,j′(k) ∈ {0, 1} that we wish to be valued at least 1 if agent
j is in state q and agent j′ is in state q′ at time k. We enforce this relationship
with constraints

zq,q′,j,j′(k) ≤ zq,j(k) (19)
zq,q′,j,j′(k) ≤ zq′,j′(k) (20)

M · zq,q′,j,j′(k) ≥ zq,j(k) + zq′,j′(k) − 1, (21)

∀q ∈ Q, q′ ∈ Q, (j, j′) ∈ [J ]2, k = 0, ...,K.
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The general intuition is that only one variable zq,q′,j,j′(k) will be equal to 1 for
each pair of agents (j, j′) at time k. We can use a combination of these variables
with the precalculated Euclidean distance to represent the distance between each
agent pair at each time step. We place lower and upper bounds on the distance
between each agent pair at each time step with the constraints

dd
min(k) ≤

∑

q∈Q

∑

q′∈Q

zq,q′,j,j′(k) · d(q, q′) ≤ dd
max(k), ∀(j, j′) ∈ [J ]2, k = 0, ...,K.

(22)

4.6 Formula Satisfaction

The satisfaction of an STL formula can be converted to a set of mixed integer
linear constraints using encodings given in [1]. Boolean and temporal opera-
tors are formulated recursively according to those encodings, while the formu-
lations of predicates are given as follows. A binary variable is created for each
Objectivei predicate and for each Team.Action� predicate for each time step.
The binary variables for a predicate Objectivei at each time step are equated
to a variable zoi

(k) such that zoi
(k) = 1 ⇐⇒ (sJ , kδt) |= Objectivei. The

binary variables for a predicate Team.Action� at each time step are equated to
a variable zta�

(k) such that zta�
(k) = 1 ⇐⇒ (sJ , kδt) |= Team.Action�. An

integer variable is be created for each φdynamic.lower, φdynamic.upper, φstatic.lower,
and φstatic.upper proposition for each time step. We equate these proposition vari-
ables respectively to the model variables dd

min(k), dd
max(k), ds

min(k), and ds
max(k)

such that (dd
min(k) ≥ rd

min) ∧ (dd
max(k) ≤ rd

max) ⇐⇒ (sJ , kδt) |= φdynamic and
(ds

min(k) ≥ rs
min) ∧ (ds

max(k) ≤ rs
max) ⇐⇒ (sJ , kδt) |= φstatic.

5 Experiments

We present the results from experiments evaluating the solve times for the given
encodings under different spatial constraint types and problem sizes.

5.1 Case Studies

We present three case studies on similarly-sized maps showcasing complex prob-
lems the centralized encodings can address, and we compare the solve times of
both linear and quadratic spatial constraint encoding types (Table 2). Each case
study map contains 100 or 105 cells, 2 agents, and 2 objectives. Each encoding
model was solved 64 times using Gurobi 9.5.2 [4], and all reported solve times
reflect Gurobi model solve times (excluding time to build the model). Timeouts
are the number of solves exceeding 700 s, and all other reported statistics exclude
the timeouts. Data greater than 1.5 times the interquartile range below the first
quartile or above the third quartile are considered outliers. Case studies were
solved for both problems: find a satisficing solution, and maximize robustness
(referenced as ‘+R’).
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We use a hostiles and objectives domain to present our case studies. Agents
(blue circles) are tasked with reaching objectives (green squares). The location
of hostile objects (red diamonds) dictate the states in which agents are able to
take cover (yellow squares). Taking cover (‘x’ on agent path) represents a team
action executed by all agents simultaneously, and requires each agent to be in
a covered state to execute the action. The example plans depicted on each map
were all generated by the MIQP encoding to solve the problem of maximizing
robustness. Similar to an expected practical workflow, an upper bound on time
was estimated based on grid size, objective locations, and initial agent locations.
All selected time bounds were at least 2 time steps longer than the length of the
shortest satisficing solution.

Case Study 1 (Static Spatial Constraint). Agents are required to reach
both objectives while maintaining a minimum distance from hostiles, which rep-
resent a static object. Additionally, agents must complete a team action (take
cover) at least once. The STL formula used is

Φ = F[0,12](Objective1) ∧ F[0,12](Objective2) ∧ F[0,20](Team.Action1) (23)
∧ G[0,20](ds

min ≥ 2),

which gives an initial time window in which agents must reach both objectives,
and a broader time frame for agents to perform a team action (take cover). The
map used in the case study with an example plan overlaid is shown in Fig. 1,
along with a comparison of the encoding solve times. The box plots clearly show
that both linear encodings outperform the quadratic encodings in this case.

Case Study 2 (Inter-Agent Distance Upper Bound Constraint). Agents
are required to reach both objectives while staying within a certain distance of

Case Study 1 Solve Times Case Study 1 Map

Fig. 1. Case Study 1 results. Agents remaining at a cell for a time step not shown
on any case study map. Box plots depict median (red bar) and outliers (open circles).
(Color figure online)
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each other. This could exemplify a scenario where agents must maintain prox-
imity to enable communication. The governing STL formula used

Φ = F[0,20](Objective1) ∧ F[0,20](Objective2) (24)

∧ G[0,20]F[0,8](Team.Action1) ∧ G[0,20](dd
max ≤ 10)

also requires agents to take cover at least once within a repeating time interval.
Figure 2 provides the map and solve time comparisons; the separation between
box plots show that both quadratic encodings outperform the linear encodings
by about two orders of magnitude.

Case Study 2 Solve Times Case Study 2 Map

Fig. 2. Case Study 2 results. MILP solve timeouts are not included in box plots.

Case Study 3 (Inter-Agent Distance Lower Bound Constraint). Agents
are required to reach both objectives, take cover at least once, and maintain a
minimum inter-agent distance to avoid collision. The formula used

Φ = F[0,21](Objective1) ∧ F[0,21](Objective2) ∧ F[0,21](Team.Action1) (25)

∧ G[0,21](dd
min ≥ 1.01)

indicates agents must maintain a minimum of 1.01 cells from each other. A 1.01
cell minimum distance (instead of a 1 cell minimum distance) prevents agent
collision that would occur from a pair of agents switching cells with each other
during a single time step. Figure 3 provides the map and solve time comparisons.
All MILP solves resulted in timeouts. Hostiles are not included in the map; in this
scenario the team action is any action that must be collaboratively completed by
the agent team at pre-specified locations, not specifically the take cover action.

5.2 Scaling Experiments

We additionally evaluated encoding performance on maps of increasing size and
number of agents. Experiments were conducted with maps of three sizes (without
obstacles): 10× 10 cells with 2 agents, 20 × 20 cells with 5 agents, and a 30 × 30
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Case Study 3 Solve Times Case Study 3 Map

Fig. 3. Case Study 3 results. All MILP solves resulted in timeouts and are not shown.
Agents travel through the narrow opening at different times.

Table 2. Case study (CS) experimental results for linear (L) and quadratic (Q) encod-
ings when finding a satisficing solution and maximizing the degree of robustness (+R).
Solve time statistics reference all 64 solves but exclude timeouts; t̃: median solve time; t̄:
mean solve time; t1: minimum solve time; tn: maximum solve time; #O: number of out-
liers; #T : number of timeouts. Model properties #VC ,#VI ,#Cl, and #Cq, respectively
represent the numbers of continuous variables, integer variables, linear constraints, and
quadratic constraints in each encoding. In Case Study 3, all 64 MILP solves for both
problems resulted in a timeout and further statistics are not reported.

CS Encoding t̃ (s) t̄ (s) t1 (s) tn (s) #T #O #VC #VI #Cl #Cq

CS1 L 1.02 1.02 1.02 1.03 0 2 68 19672 8462 0
L+R 0.88 0.88 0.87 0.88 0 0 69 19672 8462 0

Q 3.31 3.33 3.30 4.17 0 10 68 19672 8378 84
Q+R 9.16 9.16 9.13 9.24 0 3 69 19672 8378 84

CS2 L 160.42 162.09 156.77 255.52 5 1 92 211751 578193 0
L+R 257.04 259.76 250.28 277.59 5 11 93 211751 578193 0

Q 0.97 0.97 0.96 1.01 0 4 92 22226 9597 21
Q+R 1.35 1.35 1.34 1.35 0 0 93 22226 9597 21

CS3 L – – – – 64 – 88 204673 555886 0
L+R – – – – 64 – 89 204673 555886 0

Q 13.23 13.24 13.15 13.95 0 6 88 22491 9318 22
Q+R 1.09 1.09 1.08 1.09 0 0 89 22491 9318 22

cells with 10 agents. The same STL formula was used for each map, requiring
agents to reach all objectives while avoiding collisions with the formula

Φ = G[0,10](dd
min ≥ 1.01)

n∧

i=1

F[0,10](Objectivei) (26)
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where n represents the number of objectives in a given map and is always equal
to the number of agents in the map.

For each map size, 16 maps were randomly generated and used across both
encodings. Maps had each agent and each objective placed more than 5 cells
(Euclidean distance) away from every other agent and objective. This requires
that each agent travel to an objective to satisfy Φ. Additionally, each objective
was required to be reachable by at least two agents, and each agent was placed
such that there were two possible objectives it could reach, though not that it
could reach both in the same trajectory. Thus, a solution must exist, and an
implicit task assignment problem must be solved for each map.

Experiment results are shown in Fig. 4 and Table 3. Each of the 16 maps was
solved twice for each combination of encoding and problem type using Gurobi
9.5.2 and a solve time limit of 1000 s. Reported solve times exclude model con-
struction. We ultimately did not measure the MILP encoding solve time on the
30× 30 maps as all but eight MILP solves timed out for all 20 × 20 maps. The
MILP model also becomes intractable to build for a 30 × 30 map with 10 agents.

10 x 10 Map, 2 Agents 20 x 20 Map, 5 Agents 30 x 30 Map, 10 Agents

Fig. 4. Box plots of encoding solve times for both problem definitions across three
map sizes. The MILP encoding is shown in pink and the MIQP encoding is shown
in teal. The MILP encoding box plots for the 20× 20 map only represent six data
points (Linear) and two data points (Linear + R) due to timeouts. A red dashed line
represents the solve timeout set at 1000 s (Color figure online).

Table 3. Scaling experiment results reported using same notation as Table 2. Map
refers to map size and number of agents in parentheses. Solve time statistics are
reported out of 32 total model solves (2 solves each for the 16 maps) and exclude
outliers. All maps of the same size result in models with the same variable and con-
straint counts.

Map Encoding t̃ (s) t̄ (s) t1 (s) tn (s) #T #O #VC #VI #Cl #Cq

10× 10 (2) L 2.56 3.14 1.74 8.60 0 4 33 123321 335526 0
L+R 6.79 26.82 2.85 129.18 0 6 34 123321 335526 0

Q 0.18 0.18 0.07 0.30 0 0 33 13321 5515 11
Q+R 0.08 0.12 0.05 0.05 0 4 34 13321 5515 11

20× 20 (5) L 555.55 552.53 526.31 570.87 26 0 66 17737383 52854142 0
L+R 879.32 879.32 877.92 880.73 30 0 67 17737383 52854142 0

Q 6.62 12.51 3.49 31.15 0 0 66 137383 54032 110
Q+R 7.85 13.17 0.91 36.42 0 0 67 137383 54032 110

30× 30 (10) Q 247.39 314.42 29.69 844.94 0 6 121 624953 242627 495
Q+R 412.18 450.62 44.29 894.00 2 0 121 624953 242627 495
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6 Discussion

Our experiments demonstrate significant differences in the relative performance
of the presented MILP and MIQP encodings depending on the type of spa-
tial constraint required. Case Study 1 demonstrates that the linear encoding of
spatial constraints solves faster than the quadratic encoding when the spatial
constraints govern the relationship between agents and static objects. However,
when inter-agent spatial constraints are required as in Case Study 2 and 3, the
quadratic encoding of spatial constraints solves significantly faster than the lin-
ear encoding. In Case Study 3, when inter-agent distance was constrained to
achieve collision avoidance, the MILP encoding was not even able find a solution
for either problem type before timing out. These findings are further supported
by our scaling experiment in which we found the quadratic encoding of spa-
tial constraints to better support increases in map size and agent count when
inter-agent constraints were required. The results demonstrate that the MIQP
encoding can be solved quickly for maps sized 20 × 20 with five agents, and
within a reasonable timeout for maps sized 30 × 30 with ten agents.

Our findings support key design recommendations for centralized multi-agent
planning in domains that can be discretized into a gridworld environment. We
demonstrate that problems containing inter-agent spatial constraints, such as
collision avoidance constraints, can be solved faster by utilizing an MIQP encod-
ing as opposed to a MILP encoding. However, in applications where spatial
constraints are only required to govern the distance between agents and static
objects, we find a MILP encoding to be better suited. We additionally show
that the MIQP encoding solves much faster on static spatial constraints than
the MILP encoding solves on dynamic spatial constraints. This suggests appli-
cations that require both constraint types may be best supported by an MIQP
encoding, although future work could explore a combination of encoding types in
the same model. Finally, the scaling experiment provides upper limits for feasible
applications of the presented MILP and MIQP encodings.

7 Conclusion

In conclusion, we present an MIQP formulation of the search for multi-agent
trajectories to satisfy team STL specifications which include spatial constraints
and team actions. Through experimentation, we find the presented MIQP app-
roach to outperform a MILP approach in applications where inter-agent spatial
constraints are required, and we show application of the MIQP approach on
maps sized up to 30 × 30 with 10 agents. We provide valuable design recom-
mendations for the best applications of both approaches, and we demonstrate
that the presented MIQP encoding can be a powerful tool for multi-agent plan-
ning to achieve coordinated team behaviors and adherence to inter-agent spatial
constraints.
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Abstract. Semantic remote attestation is a process for gathering and
appraising evidence to determine the state of a remote system. Remote
attestation occurs at the request of an appraiser or relying party and
proceeds with a target system executing an attestation protocol that
invokes attestation services in a specified order to generate and bundle
evidence. The appraiser may then reason about the evidence to establish
trust in the target’s state. Attestation Protocol Negotiation is the pro-
cess of establishing a mutually agreed upon protocol that satisfies the
appraiser’s desire for comprehensive information and the target’s desire
for constrained disclosure. Here we explore formalization of negotiation
focusing on a definition of system specifications through manifests, pro-
tocol sufficiency and soundness, policy representation, and negotiation
structure. By using our formal models to represent and verify negoti-
ation’s properties we can statically determine that a provably sound,
sufficient, and executable protocol is produced.

1 Introduction

Establishing trust in a networked peer is a difficult problem. Martin et al. (2008)
state trust may be exhibited through unambiguous identification, unhindered
operation, and direct observation of good behavior or indirect observation by a
trusted third party. One possible technique allowing a communicating peer to
establish trust in a target system’s execution is semantic remote attestation (Hal-
dar et al., 2004). Shown in Fig. 1 a relying party (RP ) or appraiser (A) sends
an attestation request (r : (R,n, a)) to a target (T ) where attestation generates
and returns evidence and meta-evidence (e : (E,n)) that can be appraised to
determine trust.

Coker et al. (2011, 2008) define a remote attestation model where a tar-
get executes an attestation protocol that gathers evidence and generates meta-
evidence. The protocol sequences the execution of attestation services that per-
form measurement, generate cryptographic signatures, and make requests of
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RP T
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{(R,n, a)}A−1

{(E,n)}T−1

Fig. 1. Remote attestation architecture showing a relying party making an attestation
request of a target.

other systems. These protocols are executed by one or many attestation man-
ager(s) associated with the relying party and target.

The design of attestation systems are guided by the following five principles
(Coker et al., 2011). Summarized here, these properties ensure evidence used by a
relying party represents the system being appraised temporally and functionally:

1. Fresh information – Evidence gathered should reflect the system at the time
it was gathered. This extends from boot-time evidence to run-time.

2. Comprehensive information – Evidence should provide a comprehensive view
and attestation should access sufficient information about the target state.

3. Constrained disclosure – The target should control what is revealed to the
relying party based on the relying party’s identity and security context.

4. Semantic explicitness – Evidence should have a well-defined uniform and log-
ical semantics.

5. Trustworthy mechanism – Evidence of attestation infrastructure trustworthi-
ness must be provided to the relying party. Such evidence is called meta-
evidence.

Most principles are upheld through the existing attestation infrastructure.
However, the principles of comprehensive information and constrained disclo-
sure require additional mechanisms to support their satisfaction. To meet the
goal of comprehensive information, the relying party must have some idea of the
target’s measurement capabilities allowing them to select a comprehensive mea-
surement. To meet the goal of constrained disclosure, the target must have some
mechanism to distinguish measurements that would expose sensitive informa-
tion. These contradictory goals can be difficult to mutually satisfy as the relying
party would like the most descriptive evidence while the target would like to
protect its information thus performing minimal measurements.

Our contributions can be summarized as follows. First, we introduce negoti-
ation: a networked communication scheme whereby a target and relying party
may mutually agree upon a protocol that satisfies conflicting goals of comprehen-
sive information and constrained disclosure. We then formally define and prove
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important properties surrounding negotiation including protocol executability,
soundness, and sufficiency. By establishing these properties are decidable, we
show they can be checked during negotiation and produce decision procedures
for that purpose.

Verified decision procedures for soundness and sufficiency criteria are crit-
ical to negotiation. Running a protocol that is unsound—not executable or in
violation of local policy—will at best fail and waste resources or at worst result
in erroneous attestation results. Running a protocol that is insufficient will not
satisfy an appraiser’s need for comprehensive information. Our results provide
tools and models that prevent an ineffective negotiation procedure. All formal
models are realized using the Coq (Bertot and Castéran, 2013) environment and
are available publicly at git@github.com:ku-sldg/nfm2023.git

2 Background

Negotiation builds upon security associations (Maughan et al., 1998), attestation
protocols Ramsdell et al. (2019); Coker et al. (2011), and attestation manager
(AM) manifests. ISAKMP is a protocol for finding a security association among
relying party and target that instantiates a common vocabulary and establishes
a secure communication. Copland is a formally specified, domain-specific lan-
guage for representing and reasoning about attestation protocols. Manifests are
formally specified, abstract descriptions of attestation managers that define pro-
tocol execution capabilities and communication paths. Qualities of an attesta-
tion protocol can be determined by reasoning about it in the context of both a
manifest and identities of the communicating peers.

2.1 ISAKMP

Negotiation begins with the establishment of a security association through
the Internet Security Association and Key Management Protocol (ISAKMP)
(Maughan et al., 1998). A security association (SA) is an agreement between
communicating peers protecting all subsequent traffic. Within the security asso-
ciation, peers state their identities, define cryptographic primitives, identify the
situation, and instantiate a domain of interpretation.

Identities and cryptographic primitives are trivial security services. More
interestingly, the situation and domain of interpretation are unique, specialized
fields critical to the success of negotiation. Within the situation, the relying party
and target realize context specific information to instantiate policy. Additionally,
the domain of interpretation solves any naming conflicts allowing the relying
party and target a means to enforce a common understanding of measurement
objects. A working implementation of ISAKMP is strongSwan (Steffen, 2021)
which uses IKE for key management and authentication protocols (Carrel and
Harkins, 1998).
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2.2 Copland

Copland (Ramsdell et al., 2019; Helble et al., 2021) is a formally specified, domain
specific language designed specifically for attestation protocols. Copland inter-
preters are available on multiple execution platforms (Petz and Alexander, 2019);
Copland’s formal semantics denotationally and operationally define protocol exe-
cution (Ramsdell et al., 2019) and are captured and verified in Coq (Bertot and
Castéran, 2013). Copland is effectively parameterized over work allowing arbi-
trary, distributed measurements over complex systems (Helble et al., 2021).

The Copland grammar allows for Copland phrases to specify measurement
place, measurement target, and any meta-evidence, such as signatures or nonces.
It also allows for the combination of measurements through sequencing operators.
The grammar appears as follows:

← A | @p t | (t → t) | (t π≺ t) | (t π∼ t)
A ← ASP m ā p r | CPY | SIG | HSH | · · ·

Fig. 2. Copland Phrase Grammar

The terminal A is used to specify measurement operations and meta-
evidence. Measurements are performed using attestation service providers
(ASPs) which are minimal work units. Meta-evidence is an operation over evi-
dence such as hashing or signing that enhances trustworthiness. The nontermi-
nal t allows for terminal measurements combinations through sequencing (→)
and parallel operators (

π≺ and π∼) (Ramsdell et al., 2019). @p t is necessary for
dispatching measurement operations to distinct attestation managers present
within the attestation system. A term in the language may appear as follows:

@p (m ā q t)

where p is the measurement place, m is the specified ASP, ā is a list of input argu-
ments, and q is the place where the measurement target, t is located (Petz and
Alexander, 2019). For the remainder of this work, we assume no measurements
require input evidence and can therefore safely omit this field.

Layered attestation is the act of combining various measurements across plat-
forms to provide a more comprehensive view of the target. For example, we can
strengthen the previous Copland phrase by first measuring t’s operational envi-
ronment. Say this operational environment has an attestation manager located
at place s with some ASP aOS that measures the operating system target os.
We can linearly sequence the measurements to make stronger guarantees about
t with the following Copland phrase:

@os (aOS s os) → @p (m q t)

Helble et al. (2021) reasoned about a variety of measurement orderings for
different attestation scenarios eventually coining them the flexible mechanisms.
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These mechanisms are a collection of formally defined attestation scenarios where
one such scenario is the certificate style attestation. In this case, a relying party
wishes to determine trust in some attester through the appraisal of evidence
where the result is summarized as a certificate.

Fig. 3. Certificate-style remote attestation mechanism as seen in Helble et al. (2021).

In the certificate style presented in Fig. 3, the attester performs a measure-
ment of their system (sys). The appraiser is some trusted party which the attester
knows of but runs a separate attestation manager to verify the attester’s evidence
value(s). P0 begins the attestation sequence by prompting P1 with a nonce and
some measurement request. It is important to note that, without negotiation,
the requested measurement operation must be provisioned by a knowledgeable
user who has identified said phrase as executable. P1 performs the measurement
request to generate evidence that is then sent to be appraised by P2. P2 appraises
the evidence and generates a certificate that contains the appraisal result. The
certificate is sent back to P1 where it is forwarded to P0. The Copland protocol
for this scenario appears as follows (Helble et al., 2021):

*PO,n: @P1 [(attest P0 sys ) → @P2[(appraise P2sys) →
(certificate P2 sys)]]

These flexible mechanisms are important not only because they distinguish
attestation scenarios but they also introduce the idea that the attester and
appraiser may be distinct. That is, in some situations, the appraiser and relying
party are conflated but here they are disjoint. This motivates the need to cap-
ture each attestation component’s capabilities in a formal way such that existing
peers are able to realize their capabilities to formulate meaningful measurement.

2.3 Manifests

Manifests describe attestation manager-specific information and minimally
include a list of existing and operational ASPs, a context relation, a knows of
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relation, and a local policy. The list of ASPs must be explicitly captured to
realize measurement capabilities of an attestation manager. To understand the
attestation manager’s dependencies, we introduce the context relation (C) which
lists all attestation managers which the current attestation manager depends on.
This distinction is motivated by the idea that a trust decision of any higher level
component depends on the assurance of the lower level components. To capture
existing attestation managers which the current attestation manager is aware
of and can request measurement from, we introduce the knowsOf relation (K).
Capturing this relation is necessary to ensure we can perform @ operations to
gain a comprehensive system view. The local policy is a context-specific policy
that applies constraints to measurement operations. The target’s local policy is
their privacy policy. It is enforced to uphold the principle of constrained disclo-
sure and as such is a means to distinguish sensitive information in the context
of some relying party. The relying party’s local policy is their selection policy.
This policy is applied to select a protocol that meets the goal of comprehensive
information and as such describes the sufficiency of a protocol in some context.

Below is our formalization of manifests using Coq. We abstractly reason
about other attestation managers using Plc. Currently, policy here represents
the privacy policy as such representation is necessary for reasoning during refine-
ment. The policy is written relationally and states which ASPs can share mea-
surements with other specified peers (represented as Plc).

Record Manifest := {
ASPs : list ASP ;
K : list Plc ;
C : list Plc ;
Policy : ASP → Plc → Prop ; }.

An environment is a set of AMs each defined by a manifest. The domain of
an environment provides names for each manifest. A collection of environments
is known as a system. Within Coq, we realize these structures formally below.

Definition Environment : Type := Plc → (option Manifest).

Definition System := list Environment.

For implementation purposes, a manifest also includes public keys, addresses,
and trusted platform module (TPM) initialization information. A future goal is
to abstractly write manifests and compile them into attestation components.
This is currently out of scope.

3 Negotiation

We introduce negotiation to provide communicating peers a means to mutually
determine an attestation protocol that correctly describes the target’s infras-
tructure, is executable on the target system, and meets the target’s goal of
constrained disclosure. These three goals can be formally defined as sufficiency,
executability, and soundness. Our negotiation procedure aims to satisfy these
three properties through the following protocol presented in Fig. 4.
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Fig. 4. Processing sequence for Negotiation, Selection, Attestation and Appraisal dur-
ing remote attestation.

Negotiation begins with the establishment of a security association through
ISAKMP. This multi-step procedure includes sharing necessary information,
such as keys and identities, to establish a secure connection. Additional shared
information includes instantiating the situation which is a function of identity
and context. Together, these fields ultimately result in a security association
(SA) which is valid for some predetermined length of time.

Once the network traffic is protected under the SA, the relying party sends
a request ({(R,n, a)}A−1) which lists potentially many preferred measurement
operations. The request is composed of the following four attributes:

– n – nonce
– R – list of protocols (Copland phrases)
– a – situational identifier
– {·}A−1 – signature (by appraiser or relying party)

The most important piece of the request is R: a list of protocols which
describe specific ASPs and measurement targets together as Copland phrases.
Requesting evidence might be a useful concept but evidence reflects concrete
values and we believe it is more useful to request abstract values in the form
of Copland phrases. With the measurement operations abstractly outlined in
R, the target can map requested operations to one or many suitable attesta-
tion components such that the request is satisfied. In addition to R, the request
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includes a situational identifier a previously determined during ISAKMP. a is
necessary to describe the context of the attestation and may be used to help
the communicating peers realize policy. The request also includes a nonce n and
signature {·}A−1 which are necessary for security purposes, namely freshness and
authentication.

The process of mapping requested terms to existing, executable, and sound
protocols is called refinement. Once the target receives a request, they may refine
said request using specifications outlined in the System to generate terms that
are either specifically requested or variations of those requested. The target may
reason about existing attestation components using the list of existing ASPs, the
knowsOf relation, and context relation found within the manifest. The target
may combine measurement operations within the manifests, within the environ-
ment, or within the system through Copland sequencing and parallel operators.
As protocols are gathered for the proposal, the target recursively applies its
privacy policy to ensure proposed protocols are sound. The target also recur-
sively proves any proposed term is executable. Refinement ultimately produces
the proposal 〈P 〉 which is a collection of protocols that satisfy the request, are
executable on the target system, and do not expose sensitive information.

Once the relying party receives the proposal, they must select the best proto-
col for attestation. To do so, the relying party orders the protocols based on some
situationally determined criteria realized by the selection policy. One obvious
ordering respects the goal of comprehensive information where the best protocol
is the most comprehensive. Another possible ordering may be one that respects
resource consumption and thus the best protocol is the one that consumes the
fewest system resources. For any of these potential orderings, the arrangement
of protocols naturally forms a lattice structure where the best protocol is at the
top of the lattice and an empty protocol, or failed negotiation, is at the bottom.

The selection of a best protocol p ends the negotiation procedure. The relying
party sends p to the target, signifying the beginning of the attestation sequence.
Once received, the target performs measurement operations specified in p to
generate some evidence E. The evidence is packaged ({(E,n)}T−1) and delivered
to an appraiser for assessment. The evidence package consists of:

– n – nonce
– E – bundled evidence
– {·}T−1 – signature (by the target)

where the nonce is the same nonce sent in the attestation request to ensure
freshness. Bundled evidence (Rowe, 2016b) is evidence gathered by the appraisal
and the signature ensures authenticity and integrity of the evidence.

4 Verification

The commuting diagram in Fig. 5 shows the relationship between attestation
requirements and a correct implementation. At the requirements level a request
is received and transformed by the attestation system into evidence as originally
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defined in Fig. 1. The evidence lattice (E,�,�,⊥) captures evidence ordering
reflecting the relying party’s need for comprehensive information.

At the implementation level, a collection of ASPs run to generate measure-
ments that are bundled into an evidence package and returned. If implementation
is correct, the correct ASPs run on the correct places in the correct order.

R

E

(E,�,�,⊥){(R,n, a)}A−1 {(E,n)}T−1

Fig. 5. Commuting diagram showing attestation correctness.

Verifying an implementation against requirements may be infeasible, thus we
work step-wise from requirements to implementation through a series of refine-
ment steps. The verification stack in Fig. 6 is a commuting diagram capturing
attestation as defined in Fig. 1 at multiple abstractions. Using the canonical
approach for compiler verification, we verify each refinement against its require-
ments. Because each refinement serves as requirements for the next refinement,
the separate verification steps plug together into the stack from requirements to
implementation shown in Fig. 6.

Figure 6 can be decomposed into two major activities. The request, R,
through Selection producing P is negotiation while protocol P through ASPs
is execution. Protocol execution is performed by compiling and running on an
attestation manager. The attestation manager has been verified in earlier work
by Petz and Alexander (2022). Thus, if we can verify a correct protocol results
from negotiation, we will have a fully verified attestation process.

Primary requirements for negotiation are choosing a protocol that: (i) satisfies
constrained disclosure requirements on the target; and (ii) satisfies comprehen-
sive information requirements on the relying party. We refer to these proper-
ties as soundness and sufficiency respectively. Soundness is defined in terms of
executability and privacy policy enforcement. Sufficiency is defined in terms of
evidence ordering (E,�,�,⊥) .

Executability is a static guarantee that a proposed protocol can run on a
target. This can be confirmed by knowing all protocol ASPs are available for exe-
cution on the target and all places referenced by dispatch commands are known.
A manifest’s ASPs list contains the set of available ASPs and its knowsOf list
contains the set of attestation managers it can communicate with. The defini-
tion of executable is recursive implying that when a target dispatches a phrase
to another attestation manager, that phrase must in turn be executable.
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Definition 1 (Executability). A protocol is executable with respect to a tar-
get, manifest, and environment if: (i) all necessary ASPs are available; (ii) all
specified places are known, and (iii) all dispatched protocols are executable on
their target.

Fig. 6. Verification stack showing certification dependencies and execution path. Solid
lines represent implementations while dashed lines represent mathematical definitions.

We formally represent executability with the Coq definition executable. One
can see that given a term, place, and environment, any term may be recursively
evaluated to determine executability. For any term with an ASP, executable
checks that the environment has the ASP. For any @p(t) operation, executable
ensures that the requesting place knows of the receiving place and that the
term is executable at the receiving place. For sequencing and parallel operations,
executability recurses into subterms.

We prove the decidability of executable with the theorem executable_dec
from Fig. 7.1 executable_dec must produce a proof that executable is either true
or false for every combination of term, place, and environment.

An executable protocol is sound if it does not violate the privacy policy
of its target, including protocols dispatched to other attestation managers. To
reason about soundness, we must first capture policy to realize if protocols expose
sensitive information.
1 For those unfamiliar with Coq, the type {p}+ {∼p} is a sum type whose values are

lifted proofs of p or ∼p.
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Fig. 7. Definition and decidability theorem for executable.

Definition 2 (Privacy Policy). Privacy policy applies to the target and rela-
tionally defines the information that may be shared with a communicating peer.

Local policy is specified by the manifest as a relation among ASPs and places.
Local policy, for the target, is synonymous with privacy policy. If the relation
(Policy a p) exists and is specified in the manifest then a protocol from place
p may ask the current attestation manager to run a. If all ASPs referenced by
a protocol are allowed by a place’s local policy, then that protocol may run on
that place.

Like executability, we prove that policy enforcement is decidable. Given any
local policy, p, any place plc, and any requesting ASP asp, it is decidable whether
the request is allowed:

∀ p asp plc,{(p asp plc)}+{˜(p asp plc)}.

Proving this theorem requires that the local policy relation be decidable.
Specifically, for any ASP and place, it must be decidable whether the place can
request an ASP’s execution. When the local policy is defined as an inductive
relation this proof is bulky, but straightforward. We have many examples of
decidability proofs for individual policies and a rough Ltac tactic. However,
when local policy is stated as an unqualified relation, we have not found a proof.

If we assume the local policy application is decidable we can prove decidabil-
ity of access control checks over full protocols. The proof takes a form similar to
the proof of executability:
Theorem checkTermPolicy dec:∀ t k e,

(∀ p0 a0, {(checkASPPolicy p0 e a0 )} + {˜(checkASPPolicy p0 e a0 )}) →
{(checkTermPolicy t k e)}+{˜(checkTermPolicy t k e)}.

The trade-off is assuming local policy decidability places the burden of proof
on the system implementer. Before a full protocol can be checked for policy
adherence, the implementer needs to provide a proof that local policy defined
over ASPs is decidable. With this assumption satisfied, policy enforcement over
protocol terms is decidable and may be statically checked prior to execution.
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With executability and policy enforcement proved decidable, it is a simple
step to prove that soundness is decidable. Informally, soundness is defined as
the combination of decidability and policy adherence:

Definition 3 (Soundness). A protocol is sound with respect to a target man-
ifest if: (i) it is executable; and (ii) it does not violate local privacy policy.

The Coq definition of soundness and the associated theorem rely on the
previously defined specifications for executability and policy adherence, as seen
below.
Definition sound (t :Term)(k :Plc)(e:Environment) :=

(executable t k e) ∧ (checkTermPolicy t k e).

Theorem sound dec: ∀ t p e,
(∀ p0 a0, {(checkASPPolicy p0 e a0 )} + {˜(checkASPPolicy p0 e a0 )})
→ {sound t p e}+{˜(sound t p e)}.

We have shown that for any protocol, place, and environment soundness is
decidable and may be determined statically given local policy enforcement is
statically decidable. Thus, our system can determine soundness during negotia-
tion, prior to execution and use the result to help select a protocol. Furthermore,
Curry-Howard allows using decidability proofs as functions (Howard, 1969). A
call to sound dec t p e will determine if protocol t running at place p in envi-
ronment e is sound. The soundness check can be synthesized to CakeML for
inclusion in our fielded attestation manager implementation (Barclay, 2022).

While soundness applies to the target, sufficiency applies to the relying party.
If a protocol produces evidence that is sufficient for its trust assessment then
the protocol is sufficient for the relying party.

Definition 4 (Sufficiency). A protocol is sufficient with respect to a relying
party if it meets the relying party’s comprehensive information requirements.

The evidence lattice (E,�,�,⊥) shown in Fig. 5 captures comprehensive
information requirements of the relying party as an ordering of evidence types
producible by available protocols. The Copland semantics (Ramsdell et al., 2019)
defines a formal evidence semantics that maps a protocol to its evidence type.
Thus, given an evidence type we know which protocol(s) produced it and can
use the evidence lattice to determine protocol sufficiency. Unfortunately, Rowe
(2016a; 2016b) demonstrates that under certain conditions the same evidence
type might be produced by different protocols. This problem can be avoided by
restricting protocols considered, but the burden of this task falls to the user.

In the evidence lattice, E is the set of evidence produced by protocols con-
sidered in negotiation with a target. E is partially ordered by �, a partial order
we refer to informally as the evidence order. � and ⊥ define all evidence and no
evidence respectively as required by the lattice definition.

Every negotiation defines evidence type emin : E that specifies minimally
sufficient comprehensive information for the relying party. Any evidence e such
that emin � e is acceptable to the relying party and satisfies its comprehensive
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information requirements. In turn, any protocol producing e is considered suffi-
cient for the situation.

Protocol soundness and sufficiency are separate and potentially conflicting
goals. A simple negotiation correctness definition requires producing a protocol
that is both sound and sufficient.

Definition 5 (Negotiation Correctness). Negotiation between a relying
party and a target is correct if it produces a sound and sufficient protocol.

This definition holds whenever negotiation produces a protocol that meets
minimum requirements of a relying party while satisfying constrained disclosure
and executability for the target.

While soundness and sufficiency are both statically predicted, Rowe (2016a;
2016b)’s result establishing that the same evidence can be generated by differ-
ent protocols implies that we cannot infer from otherwise good evidence that the
correct protocol ran. Similarly, we cannot infer from evidence that a target’s pri-
vacy policy is actually enforced. Thus, we are obligated to gather meta-evidence
of protocol execution in addition to evidence of system behavior. Thus the need
for layered attestations and attestation protocols.

5 Example

An example attestation scenario used across our work is a relying party
determining if an attester is running an acceptable, properly configured virus
checker (Petz and Alexander, 2022). Figure 8 shows this architecture where P0

is the location of the relying party, P1 is the location of the attestation man-
ager responsible for measurement of the virus checker and local signature file,
and P2 is the location of the attestation manager responsible for measuring the
signature file server.

Manifests for this scenario are specified as (with reformatting for readability):

P0:={|asps:=[]; K:=[P1]; C:=[]; Policy:={}|}
P1:={|asps:=[aVC,aHSH]; K:=[P0,P2]; C:=[]; Policy:={(P0 aVC),(P0 aHSH)}|}
P2:={|asps:=[aSFS]; K:=[P1]; C:=[]; Policy:={(P1 aSFS)}|}

Three Copland phrases describe potential attestation protocols available to
P0 for inclusion in proposals:

p0 = @P1 [(aVC P1 vc)]
p1 = @P1 [(aVC P1 vc) → (aHSH P1 sf)]
p2 = @P1 [(aVC P1 vc) → (aHSH P1 sf) → @P2 (aSFS P2 sfs)]

In protocol p0, the ASP aVC is used to measure vc, the virus checking target
located at P0. In p1, the virus checking measurement is followed by aHSH, a
measurement that hashes the signature file sf co-located at P1. Finally, in p2, the
protocol invokes aVC and aHSH followed by a remote call to P2 to invoke ASP aSFS
to measure the signature file server sfs itself. While we are not limited to three
protocols, this set defines a collection of increasingly informative attestations.



220 A. Fritz and P. Alexander

Fig. 8. Example remote attestation mechanism motivated by the flexible mechanisms
presented in (Helble et al., 2021).

To begin negotiation the relying party sends the request {(R,n, a)}RP−1 to P1

for a measurement of the target’s virus checker. When P1 receives the request, it
returns a subset of its three protocols. The relying party selects protocols based
on soundness. In the current configuration, all three protocols are executable
and satisfy policy and are thus chosen. If the aHSH entry were removed from P1’s
policy, protocols p1 and p2 would not be chosen because privacy policy will not
allow them to run. Similarly, if aSFS were not available to P2, protocol p2 would
not be selected because the required ASP is not available.

sound dec determines the soundness of each protocol, but is unwieldy as
defined. Two helper functions customize sound dec for each system being exam-
ined. sound local policies takes a specific environment and ensures checkASP-
Policy is decidable for each manifest. The resulting lemma is used to instantiate
the assumption of sound dec resulting in sound system dec that determines if
a protocol is sound with respect to a place given. Specializing functions for a
specific place simplifies exploration of the design space.

An alternative negotiation approach builds a proposal for each request. The
knowsOf relation reveals P1 knows of P2 and therefore may request measure-
ments involving the signature file server in addition to local measurements. The
attester thus generates the proposal, 〈p0, p1, p2〉. Since p2 is a more complex
measurement, it may expose sensitive information not suitable for all appraisers.
Privacy policy can be modified to prevent access to aSFS making p2 unsound
and thus not included in the proposal. However, both p0 and p1 are sound and
included in the proposal 〈p0, p1〉. Again, our verified soundness decision proce-
dure statically guarantees the soundness of each proposed protocol.

In this example, the evidence lattice used by the relying party is trivial. If
comprehensive information is the goal, protocols should be ordered p0 � p1 � p2
with � = p2 and ⊥ = ∅. The relying party then chooses emin appropriately for
the situation.
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6 Related Work

Existing work in attestation protocol negotiation is minimal. Helble et al. (2021)
briefly introduce the negotiation scheme stating that it is needed to mutually
satisfy the situational requirements of the target and appraiser. The specific
formalisms and overall scheme of negotiation are not considered in detail. Pen-
dergrass et al. (2017) introduce Maat, a measurement and attestation platform
that performs negotiation for security services such as cryptographic hashing and
signing algorithms. Similar to the negotiation work done in Maat, Huang and
Peng (2009) introduce an automated negotiation model which exchanges keys
and identities to authenticate attesting peers. ISAKMP Maughan et al. (1998)
and IKE Carrel and Harkins (1998) both perform limited negotiation for defining
security associations, but at an earlier stage in the communication process.

Protocol analysis is a critical part of selecting a situationally best protocol.
In works by Rowe (2016a), authors introduce a mathematical representation
of protocols concluding that measurement order directly impacts the protocols
vulnerability to an adversary. CHASE is a first order model finder used to reason
about protocol ordering in the context of an attacker (Ramsdell, 2020). Petz et
al. (2021) detail the process of using CHASE to instantiate such reasoning. Baez
(2022) also reason about Copland protocols using CHASE. In both works by Petz
et al. (2021) and Baez (2022),authors provision Copland phrases as knowledge
system users rather than mutually agreed upon protocols.

VRASED (Nunes et al., 2019) and HYDRA Eldefrawy et al. (2017) are
remote attestation systems using formal verification in their design. VRASED
uses a co-design approach that results in formally verified attestation systems.
Similarly, HYDRA uses a verified microkernel to achieve attestation guarantees.
Both of these projects focus on attestations during boot and system initialization
in contrast to this work that focuses on layered, runtime attestation.

7 Conclusions and Future Work

We propose a negotiation framework allowing communicating peers to establish a
mutually agreed upon attestation protocol satisfying constrained disclosure and
comprehensive information requirements. Using system manifests that describe
attestation managers we derive a decision procedure for soundness and define
an ordering relationship to establish sufficiency. Thus, for any communicating
peers, an attestation protocol can be selected such that the goals of constrained
disclosure and comprehensive information hold prior to execution.

This work represents an intermediate step in our longer term goal of verified
attestation systems. Our current proofs are pedestrian and will not scale. We
are using Coq proof engineering capabilities to construct simpler, reusable proof
infrastructure. We are exploring synthesis and selection of a optimal attestation
protocol that satisfies semantic appraisal goals in addition to soundness and
sufficiency. Additionally, we are investigating techniques for automatically gen-
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erating proposals to reduce protocol design and selection burden. Finally, we are
developing techniques for verifying manifest compilation to ensure implementa-
tions satisfy assumptions made during design.
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Abstract. Multi-agent coordination under Signal Temporal Logic
(STL) specifications is an exciting approach for accomplishing complex
temporal missions with safety requirements. Despite significant progress,
these approaches still suffer from scalability limitations. Decomposition
into subspecifications and corresponding subteams of agents provides
a way to reduce computation and leverage modern parallel computing
architectures. In this paper, we propose a rewrite-based approach for
jointly decomposing an STL specification and team of agents. We provide
a set of formula transformations that facilitate decomposition. Further-
more, we cast those transformations as a rewriting system and prove that
it is convergent. Next, we develop an algorithm for efficiently exploring
and ranking rewritten formulae as decomposition candidates, and show
how to decompose the best candidate. Finally, we compare to previous
work on decomposing specifications for multi-agent planning problems,
and provide computing and energy grid case studies.

1 Introduction

Coordination and control of multi-agent systems from high-level specifications is
a challenging and active area of research. As with many areas of formal methods
and multi-agent systems, scalability is often a limiting factor. Ideally, an oper-
ator would provide a single global specification for a large team of multi-agent
systems, and the system would assign tasks and roles accordingly and synthe-
size a plan and controllers. Here, we aim to formalize a method for analyzing
a signal temporal logic (STL) specification for a principled approach to jointly
decompose and distribute the specification among a team of agents.

Most STL work in multi-agent systems assumes either centralized con-
trol from a global specification [4,11,15] or decentralized control from local
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specifications [16,17]. In contrast, several methods for multi-agent planning with
linear temporal logic (LTL) specifications have identified methods for automati-
cally decomposing a specification into sub-specifications and assigning agents or
sub-teams of agents to execute those sub-specifications [2,7,21,23].

Unlike LTL, STL has the advantage of specifying concrete timing require-
ments over continuous, real-valued signals, but there has been comparatively lit-
tle work focused on decomposition of STL. [6] focused on decomposing an STL
formula given an a priori set of disjoint sub-teams. In this work, we decompose
the formula and team jointly, in an attempt to achieve a task-based set of sub-
teams. We take inspiration from [14], but our approach is based on an abstract
reduction system, providing guarantees on its convergence. We also perform for-
mula transformation and assignment as two separate stages, reducing the search
space of the assignment problem to those that are feasible for a given trans-
formation. Additionally, our approach works for STL in general, whereas [14]
focuses only on a fragment of STL. Another closely related work is [22], which
looks at a multi-agent fragment of STL and assigns sub-formulae to individual
agents. The assignment is an implicit part of their synthesis framework. Here, we
focus only on an explicit assignment and decomposition, and we do not consider
the synthesis problem. The method presented in this work could be used as a
pre-processing step for their proposed synthesis and motion planning work, as
well as most other existing multi-agent STL synthesis approaches.

φ

φ′ φ′′

φdecNF

�→U �→�

�→� �→U

(a) (b)

φ

φ′ φ′′

φdecNF

�→U �→�

�→� �→U

(c) (d)

Fig. 1. Decomposition framework: build a DAG of all possible formula rewrites (1a,
Sect. 3); build an AST for each resulting formula (1b, Sect. 4); score each node in
the DAG according to its AST (1c, Sect. 4.3); and select best node and evaluate its
decomposed specification (1d, Sect. 4.2).

The main contribution of this paper is an algorithm for simultaneous decom-
position of STL formulae and heterogeneous agent subteam assignment con-
sisting of 1) a rewriting system for reasoning about changes to STL formulae,
with proof of termination and confluence; 2) a normal form of decomposed STL
formulae that provides bounds on the ability to decompose a formula; and 3)
an optimization approach for selecting the best decomposition and assignment
based on a directed acyclic graph (DAG) constructed by the rewriting system.
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2 Background and Problem Definition

In this work, we focus on requirements in the form of Signal Temporal Logic
(STL) specifications [18]. The syntax of STL is given in Backus-Naur form as

φ := � | P | ¬φ | φ1 ∧ φ2 | φ1U[a,b)φ2 , (1)

where φ, φ1, and φ2 are STL formulae; � is the symbol for logical true; P is a
predicate of the form π(x(t)) ≥ c for x ∈ R → R

m, π ∈ R
m → R, and c ∈ R; ¬

and ∧ are Boolean negation and conjunction; and U[a,b) is the temporal operator
Until, with a, b ∈ R and a ≤ b. Other operators ∨ (disjunction, ¬(¬φ1 ∧ ¬φ2)),
♦ (finally, �U[a,b)φ), and � (globally, ¬♦[a,b)¬φ) can be defined from the other
operators. We use the notation pred(φ) to denote all predicates in φ, and conj (φ)
for all the top-level conjuncts of formula φ.

Example 1. Let Pi be STL predicates, and φ := P1U[a,b)P2 ∧ �[c,d)(P3 ∧ P4):

pred(φ) := {P1, P2, P3, P4}
conj (φ) := {P1U[a,b)P2,�[c,d)(P3 ∧ P4)}

Note that although P3 ∧ P4 contains a conjunction, it is not at the top-level.

The semantics of STL with respect to a signal x at time t are defined as

(x, t) |= π(x(t)) ≥ c ⇔π(x(t)) ≥ c

(x, t) |= ¬φ ⇔(x, t) �|= φ

(x, t) |= φ1 ∧ φ2 ⇔(x, t) |= φ1 and (x, t) |= φ2

(x, t) |= φ1U[a,b)φ2 ⇔∃t′ ∈ [t + a, t + b]s.t.(x, t′) |= φ2 and
∀t′′ ∈ [0, t′](x, t′′) |= φ1 .

(2)

In addition to the semantics defined above, STL also has the notion of quan-
titative semantics or robustness degree, ρ. The robustness of a signal x at time t
with respect to formula φ is defined as [9]

ρ(x, t, π(x(t)) ≥ c) :=π(x(t)) − c

ρ(x, t,¬φ) := − ρ(x, t, φ)
ρ(x, t, φ1 ∧ φ2) := min(ρ(x, t, φ1), ρ(x, t, φ2))
ρ(x, t, φ1U[a,b)φ2) := max

t′∈[t+a,t+b]
(ρ(x, t′, φ2), min

t′′∈[t,t′]
ρ(x, t′′, φ1))

(3)

The horizon of an STL formula is the maximum execution time before the
satisfiability of the specification can be determined [8]. The formula horizon,
hzn, is defined recursively as:

hzn(π(x(t)) ≥ c) :=0
hzn(¬φ) :=hzn(φ)
hzn(φ1 ◦ φ2) :=max (hzn(φ1), hzn(φ2)) for ◦ ∈ {∧,∨}
hzn(φ1U[a,b)φ2) :=max (hzn(φ1) + b − 1, hzn(φ2) + b)

(4)
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Definition 1 (Agent). An agent is a tuple A = (x(t), u), where x(t) ∈ R
n is

its n-dimensional state at time t, and u ∈ R
n serves as an element-wise upper

bound on x(t). The lower bound is assumed to be an n-dimensional zero vector.

The upper- and lower-bounds on x(t) do not change with time. Rather, they
bound x(t) across all time. For convenience, we often drop the explicit depen-
dence of x(t) on t and simply write x. We denote the signal for a team of agents as
x ∈ R

m. This can be obtained via concatenation, summation or other operation
over individual agent signals. We assume this can be done but are agnostic to
how. We use the term agent to be consistent with the related robotics literature,
but agents represent any entities or processes that can be controlled separately.
We say that an agent “services” a predicate if it is responsible for maintaining
a signal that satisfies that predicate (or contributes to its satisfaction).

For a team of agents indexed by set J , we denote the jth agent as Aj , where
j ∈ J . If two agents have the same upper bound u, we consider them to belong
to an equivalence class gu. For a team of agents, we denote the set of all such
equivalence classes as G.

Given a (sub)team of agents A = {Aj}j∈J , we define the robustness upper
bound, ρub, recursively as:

ρub(π(x(t)) ≥ c),A) := (Σa∈Aπ(a.u)) − c

ρub(¬φ,A) := −ρub(φ,A)
ρub(φ1 ∧ φ2,A) := min(ρub(φ1,A), ρub(φ2,A))
ρub(φ1 ∨ φ2,A) := max (ρub(φ1,A), ρub(φ2,A))

ρub(φ1U[a,b)φ2,A) := min(ρub(φ1,A), ρub(φ2,A))

(5)

This is the typical robustness definition evaluated over the agent upper bounds
for every agent in the given team. Note that it no longer depends on x or t. If
the robustness upper bound is negative, there does not exist a synthesized plan
for agents A that satisfies the formula.

Example 2. To illustrate our notion of agents, we consider an example from
computing. For a large computing cluster, each compute node can be modeled
as an agent, with the state x capturing its resource utilization between its CPU,
GPU, and RAM. Different predicates in an STL formula φ might request different
combinations of resources. For a node with 16 CPU cores, 800 GPU cores, and
64 GB of RAM, its state is 3-dimensional with upper bound u = {16, 800, 64}
representing 100% utilization. Let the class of this agent be denoted g1. Any other
agent with exactly the same values of u would also belong to g1, otherwise, the
agent would belong to a separate class. The team signal, x, is a concatenation
of the agent signals.

Assumption 1. We assume the existence of a synthesis method, Synth. Given
a team of agents J and an STL specification φ, Synth(J, φ) synthesizes a plan
for the agent(s) J to satisfy φ, if such a plan exists.
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Synthesis is not the focus of this work, and there are many synthesis tools
available depending on the specific problem under consideration. Assumption 1
simply states that a user of our proposed method has an appropriate synthesis
tool available.

We are now ready to state the problem under consideration. We seek a
method for decomposing a synthesis problem, consisting of a team of agents
and an STL specification, into a set of smaller, disjoint subproblems that can
each be solved independently. The goal of this decomposition is to achieve a
faster solution than solving the original problem, without rendering the problem
infeasible in the process of decomposing it. However, there is no known method
for determining the feasibility of a synthesis problem without running the synthe-
sis procedure, which is expensive. Therefore we rely on robustness upper bound,
which is a necessary condition for feasibility.

Problem 1. Given a team of agents {Aj}j∈J and an STL formula φ, find a team
partition R and a set of formulae {φr}r∈R such that

1. φ is satisfied if each subteam r ∈ R satisfies its specification φr;
2. Solving the set of synthesis problems Synth(r, φr), including the time to

decompose, is faster than Synth(J, φ); and
3. Robustness upper bound for all teams is non-negative.

Assumption 2. We assume that the original synthesis problem has a solution.

The focus of this work is on decomposition of a problem into subproblems
whose solution guarantees solution of the original problem. For our analysis,
Assumption 2 restricts us to feasible problems, since every infeasible problem
will yield at least one infeasible subproblem.

Our approach is depicted in Fig. 1. The first step generates various transfor-
mations of the original formula that are easier to decompose. Next, the tech-
nique builds an abstract syntax tree (AST) for each of these formulae, efficiently
explores the possible transformations and scores each rewritten formula. Finally,
it selects the best node and decomposes the specification into subspecifications
and associated subteams. We cover each of these steps in the following sections.

3 An STL Rewriting System

We start by describing a technique for modifying STL formulae to be more
amenable to decomposition, while still guaranteeing satisfaction of the original
formula. We accomplish this by developing a rewriting system for STL. Rewriting
operates on abstract syntax trees (ASTs). Every STL formula can be represented
as an AST with each node representing an operator or predicate. See Definition 7
in the Supplementary Material for a formal definition.

Formulae consisting of top-level conjunctions are the easiest to decompose.
Top-level conjuncts are represented in an AST as the children of the root node,
which is a conjunction operator. Logically, if each top-level conjunct is satisfied,
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then the entire formula is satisfied. There is no logical dependence between any of
the top-level conjuncts. In this section, we provide three formula transformations
that can add top-level conjuncts to facilitate decomposition. Not all of these
transformations produce an equisatisfiable formula. However, we ensure that
the transformation only strengthens the formula. Let φ be an STL formula and
τ a transformation operator, then we only consider transformations such that
τ(φ) |= φ. This ensures that any plan found for the transformed formula is
guaranteed to satisfy the original formula.

Definition 2 (Rewriting System). A rewriting system is a tuple, (T,→),
where T is a set of terms, and →⊆ T × T is a rewriting relation on T . If the
terms y and z are in →, we write y → z.

We now define our rewriting system for STL, (S,→STL), where S is the set
of all STL formulae, and →STL:= {�→�, �→♦, �→U} is a collection of rewrite rules
defined below. Let φ1 and φ2 be STL formulae, and a ≤ b be real-valued time
instances. We consider the following rewriting rules in →STL:

�[a,b)(φ1 ∧ φ2) �→� �[a,b)(φ1) ∧ �[a,b)(φ2) (split-globally)

♦[a,b)(φ1 ∧ φ2) �→♦ �[a,b)(φ1) ∧ �[a,b)(φ2) (split-finally)

φ1U[a,b)φ2 �→U �[0,b)(φ1) ∧ ♦[a,b)(φ2) (split-until)

Of these rewriting rules, only (split-globally) produces an equisatisfiable for-
mula. The other two entail the original formula as required, but are not satisfied
by every trace that satisfies the original formula.

Remark 1. Our (split-finally) transformation is the most conservative of several
possible choices for splitting ♦ over a conjunction. Both ♦[a,b)(φ1) ∧ �[a,b)(φ2)
and �[a,b)(φ1) ∧ ♦[a,b)(φ2) also entail the original formula. We choose the sym-
metric option for simplicity of presentation.

Remark 2. We include two other transformations that produce a formula equi-
satisfiable to the input. If two like temporal operators appear next to each
other in the formula, we adjust their time bounds accordingly. That is,
�[a,b)�[c,d)φ �→�� �[a+c,b+d)φ and likewise ♦[a,b)♦[c,d)φ �→♦♦ ♦[a+c,b+d)φ. We
omit these rewrite rules from our presentation for simplicity, but all subsequent
proofs and analyses hold for these rewrites as well.

Theorem 1. The rewriting system (S,→STL) terminates.

Proof (Sketch). By Lemma 2.3.3 of [1], a finitely branching rewriting system
(T,→) terminates if there exists a monotone embedding ϕ from (T,→) into
(N, >). In our case, ϕ has two components – the sum of distances of conjuncts
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and until operators from the root, and the number of occurrences of conjunction
and until operators in the formula. Namely,

ϕ =
n∧,U∑

i=1

di + (n∧,U + 1)nU , (6)

where n∧ and nU are the number of conjunction and until operators appearing
in the formula, n∧,U = n∧ + nU , and di is the distance of the ith conjunction or
until from the root in the formula AST. For all replacement rules we consider, ϕ
is a monotone embedding into (N, >), and our rewriting system terminates. �

Let → be an arbitrary reduction system containing a nonempty set of reduc-
tion mappings �→i, and ∗→ be its reflexive, transitive closure. Terms y and w are
joinable, denoted y ↓ w, iff there is a z such that y

∗→ z
∗← w.

Definition 3 (Confluence). A reduction system is confluent if ∀y . w1
∗←

y
∗→ w2 =⇒ w1 ↓ w2.

Theorem 2. The reduction system generated by (split-globally), (split-finally),
and (split-until) is confluent.1

Proof (Sketch). To prove confluence, we break our formula rewriting reduction
system into three independent reduction systems:

1. →�:= {�→�}: reduction system for (split-globally)
2. →♦:= {�→♦}: reduction system for (split-finally)
3. →U := {�→U}: reduction system for (split-until)

We prove confluence by proving that each individual reduction system is
confluent and commutative, then building up to our full reduction system,
→STL:= {�→�, �→♦, �→U}. Each reduction system alone is trivially confluent.
We now look at combinations of reduction systems.

→� and →♦ act on different temporal operators. Therefore each can be
applied independently, making local changes to non-overlapping regions of the
AST (see Sect. 4), and the final ASTs are the same. This implies that →�♦:=→�
∪ →♦ is confluent. The same logic applies to →�♦ and →U , and therefore
→:=→�♦ ∪ →U=→� ∪ →♦ ∪ →U is also confluent. �

Complete proofs for Theorems 1 and 2 can be found in the Supplementary
Materials. Because our STL formula rewriting system is terminating and con-
fluent, it is convergent. This implies that any STL formula can be reduced to
a unique normal form through the application of our rewriting rules. We will
call this form decomposition normal form (decNF). Importantly, satisfaction of
a formula in decNF form implies satisfaction of the original formula, but not
vice-versa. The number of top-level conjuncts in an STL formula in decNF is an
upper bound on the number of subteams our method will produce.
1 We assume that there is a global subterm ordering that puts equivalent formulae in

a normal form, i.e., b ∧ a → a ∧ b so that a ∧ b and b ∧ a are known to be identical.
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3.1 Formula Rewrite DAG

Given (S,→STL) and an STL formula, we can consider all possible formulae
obtained by repeated application of the rewriting rules to subformulae.

Definition 4 (Rewrite DAG). A Formula Rewrite DAG, G := 〈Φ,E〉, is a
directed acyclic graph where each node in Φ is an STL formula and each directed
edge in E goes from φ1 to φ2 such that φ1 →STL φ2.

We denote the Formula Rewrite DAG for a formula, φ, as G(φ). For all φ,
G(φ) has a single source node (in-degree of 0) corresponding to the original
formula, φ, and a single sink node (out-degree of 0) corresponding to the decNF
form of φ.

Example 3. Let φ be the formula from Example 1. One edge in G(φ) would
connect φ (the root) to P1U[a,b)P2∧�[c,d)P3∧�[c,d)P4. This edge would be tagged
with the transformation →� and the conjunct it was applied to, �[c,d)(P3 ∧P4).
Figure 2 shows the complete rewrite DAG.

P1U[a,b)P2 ∧ �[c,d)(P3 ∧ P4)

�[0,b)P1 ∧ ♦[a,b)P2 ∧ �[c,d)(P3 ∧ P4) P1U[a,b)P2 ∧ �[c,d)P3 ∧ �[c,d)P4

�[0,b)P1 ∧ ♦[a,b)P2 ∧ �[c,d)P3 ∧ �[c,d)P4

�→U �→�

�→� �→U

Fig. 2. Example of a rewrite DAG illustrating confluence and termination from the
spec in Example 1. P1, P2, P3, and P4 represent STL predicates. a, b, c, and d are real-
valued time bounds. The initial (root) formula is in the top gray box. Decomposition
normal form is indicated by the double rectangle. Rewrite operations are indicated on
the edges between formulae in the DAG.

Theorem 3. Constructing a rewrite DAG by enumerating all possible formula
transformations terminates with a finite graph.

Proof. This follows directly from Theorem 1.

4 Decomposing STL

Having created a rewrite DAG as described in Sect. 3 above, we now describe
how to analyze the candidate formula at each node in the DAG. For an STL
formula at a given node in the DAG, we wish to assign agents to that formula
in a way that is amenable to decomposition.
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4.1 Agent Assignments

We now define agent assignments, followed by their use in STL decomposition.

Definition 5 (Agent Assignment). An agent assignment for STL formula φ
is a mapping α : conj (φ) → 2J .

The mapping records agent assignments to top-level conjuncts of the specifi-
cation. These are the children of the root AST node. The assignment is extended
to all AST nodes by adopting the agent assignment of parent nodes. The root
node agent assignment is defined to be all agents.

4.2 Decomposition

An agent assignment for a given STL specification induces a team partition R
and a set of subspecifications, {φr}r∈R. Recall that J is the set of agent indices,
thus R is a set of (nonempty) subsets that partition the agents. Formally, each
element of R is a subset r ⊆ J such that ∀r ∈ R . |r| > 0 and ∀ri, rj ∈ R . i �=
j → ri ∩ rj = ∅.

Given an agent assignment, α, R is computed as the largest valid parti-
tion such that ∀r ∈ R ∀c ∈ conj (φ) . α(c) ⊆ r ∨ α(c) ∩ r = ∅. Intuitively,
this is computed by starting with agent assignments for each top-level con-
junct, and combining any conjuncts that have overlapping agent assignments.
Let match(r, φ) := {c|c ∈ conj (φ)∧α(c) ∈ r}. This denotes all top-level conjuncts
associated with agent partition r. For each r ∈ R, there is a corresponding sub-
specification, φr :=

∧
c∈match(r,φ) c. Let a decomposition, DR := 〈R, {φr}r∈R〉,

be a pair containing the agent partition and corresponding subspecifications.
A decomposition generates |R| synthesis subproblems that can be solved

independently with no coordination between them. Note that
∧

r∈R φr ≡ φ.
Thus, for φ := τ(ψ), if Synth(r, φr) returns a valid solution for each subproblem,
then the combined solutions satisfy the original specification ψ.

Remark 3. The decomposition method ensures that satisfied subproblems log-
ically entail the original problem. However, we must also guarantee noninter-
ference between signal generators of different teams, i.e., that two subteams do
not have opposing goals when servicing predicates. This is problem-dependent:
in our experimental results we have one case that avoids this via monotonicity
(all goals are to increase signals), one that avoids it via mutual exclusion (never
driving the same signal), and one that avoids it with an additional constraint
that groups all relevant signals in the same subteam.

4.3 Comparison of Decomposition Candidates

There are many possible decompositions given a team of agents and an STL
specification. Our main algorithm requires a method of ranking these candidate
decompositions. The algorithm is fully parameterized by the choice of a score,
ξ, for each decomposition. Here, we define our choice for this operator.
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Since the robustness upper bound condition is necessary but not sufficient,
we also introduce the costs cap and cpp to produce a principled heuristic method
for decomposition. These costs consist of a startup cost cap : G × pred(φ) →
R, capturing the maximum initial cost for an agent of class g ∈ G to begin
servicing a predicate, and a switching cost cpp : G × pred(φ) × pred(φ) → R,
capturing the cost for switching from servicing one predicate to another. These
costs abstract dynamics or other system properties that influence the feasibility
of the synthesis process. The abstraction provides a way of incorporating some
dynamics information while remaining computationally efficient (i.e., not solving
the full synthesis problem).

For mobile robots, these costs might simply correspond to travel times
between regions of the environment. We opt for this more general concept of
costs to allow flexibility in the type of problem our framework can be applied
to. We assume an analysis procedure that can either exactly or approximately
determine these costs given the agent start state, dynamics, and predicate(s). In
our experiments, costs are either provided explicitly, or agent states are nodes in
a graph, for which we can use standard graph traversal algorithms to determine
both startup and switching costs.

Example 4. Let us revisit the computing scenario from Example 2. Since starting
from idle has little overhead, cap can be quite small, representing a few millisec-
onds to start any arbitrary computing request. However switching from a request
that uses many GPU resources to one that requests many CPU resources typ-
ically has much higher overhead. Therefore cpp would be higher for switching
from GPU-intensive to CPU-intensive tasks or vice-versa.

To design a score, we start by defining the following metrics for a given
decomposition:

1. N - number of subteams: |R| (prefer larger)
2. Cap - maximum startup cost: maximum value of cap over all agents and

predicates in the subteam and corresponding subspecification (prefer smaller)
3. Cpp - maximum switching cost: maximum value of cpp over all pairs of pred-

icates in a subspecification (prefer smaller)
4. h - maximum horizon: the maximum subspecification horizon (prefer smaller)
5. ρub - minimum robustness upper bound: minimum over all subproblem robust-

ness upper bounds; relates predicates to maximum signal value with given
decomposition (prefer larger)

Our primary goal is to maximize the number of subteams. More subteams
results in smaller synthesis subproblems; however, we include the other metrics
(defined in Sect. 2) to discourage “uneven” decompositions that contain sub-
problems of widely varying difficulty. If one subproblem is nearly as difficult as
the original problem, then it still dominates the synthesis time.

Definition 6 (Decomposition Score). For a given formula φ and its decom-
position DR, our heuristic decomposition score, ξ := 〈N,−Cap,−Cpp,−h, ρub〉
collects the heuristic scores in a tuple.
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Let D1 and D2 be two possible decompositions for STL specification, φ. For
each Di, let our score choice be ξi := 〈N i,−Ci

ap,−Ci
pp,−hi, ρi

ub〉. Given these
metrics, we compare D1 and D2 with ξ1 >L ξ2, where >L is a lexicographic
comparison. Note that metrics which are preferred to be smaller are negated to
prioritize smaller values in the greater-than comparison. We prefer decomposi-
tions with a higher score. A decomposition Di is guaranteed to be infeasible if
ρi

ub < 0. Beyond a cheap feasibility check, we included ρi
ub in our decomposition

score to break ties between otherwise equally scored decomposition candidates.

5 Exploring the Formula Rewrite DAG

We now describe an algorithm for decomposing an STL planning task into sub-
specifications and agent subteams. We directly explore all possible formula trans-
formations using a Formula Rewrite DAG and choose the formula that gives the
best decomposition according to heuristic measures. For efficiency, we also avoid
processing nodes of the DAG that do not add a top-level conjunct (and thus can-
not increase the number of subteams). Furthermore, we leverage the following
theorem to prune nodes that are not worth visiting.

Theorem 4. Let φ be the formula at a node in a Formula Rewrite DAG such
that conj (φ) = N . If φ has no decomposition into N subteams (one subteam
per top-level conjunct) with a nonnegative robustness, then its children do not
have decompositions into N + 1 subteams. See the Supplementary Materials for
a proof sketch.

Intuitively, Algorithm 1 explores the Formula Rewrite DAG starting from
the root and attempting to decompose each transformed formula φ into conj (φ)
subteams. It stops the search at nodes with guaranteed infeasible decompositions
and compares the decomposition candidates using >L.

Lines 1–2 initialize empty data structures used for tracking nodes to process
and infeasible nodes, respectively. Lines 3–4 initialize the candidate to a null
value, and the score to the worst possible score. Line 5 pushes the root node
of the Formula Rewrite DAG as the start of the search. The loop starting at
line 6 processes nodes in the DAG in a breadth-first order until all nodes have
been processed or skipped. We assume the queue automatically caches and skips
nodes that have already been processed. Lines 7–9 obtain the next node to
process and skip it if it is known to be infeasible. Lines 10–13 check if the
node has the same number of conjuncts as the parent. If so, it cannot have a
greater number of subteams and is skipped. Note that the number of conjuncts
only stays the same or increases with formula transformations, so we must still
process its children. Line 14 obtains a decomposition assignment and robustness
upper bound for the formula. The number of subteams is the number of top-level
conjuncts, because we assume each conjunct is assigned a unique subteam. The
algorithm still works without this assumption. However, this restriction allows
the algorithm to conclude that a formula and all its descendants are infeasible in
lines 15–18, by leveraging Theorem 4. If the robustness upper bound is negative,
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Algorithm 1. Main decomposition algorithm
Input: Formula Rewrite DAG G, Set of agents A
Output: Decomposition DR

1: Q ← empty queue � Nodes to explore
2: D ← ∅ � Set to store dropped nodes
3: c ← null � Start with a null candidate
4: ξ ← worst � Initialize score with worst possible values
5: push(Q, G.root)
6: while ¬empty(Q) do
7: n ← pop(Q)
8: if n ∈ D then
9: continue � Formula is known to be infeasible

10: if |conj (n)| = |conj (Parent(n))| then
11: push(Q, children(n))
12: push(D, n)
13: continue � Cannot improve on parent

14: Dn, ρn
ub ← compute assignment(n, A)

15: if ρn
ub < 0 then � Infeasibility condition

16: push(D,Descendants(n)) � Descendants are all infeasible
17: push(D, n)
18: continue
19: push(Q,Children(n))
20: ξn ← compute score(Dn, A)
21: if ξn >L ξ then � lexicographic comparison
22: ξ ← ξn

23: c ← Dn

return c

all descendants are marked as infeasible to avoid processing them unnecessarily
in case they appear on another path of the DAG. Line 19 adds all the node’s
children onto the end of the queue for future processing and line 20 computes the
heuristic score. Lines 21–23 update the best score and candidate decomposition
if this is the best score seen thus far according to a lexicographic comparison.
Finally, the best decomposition is returned after processing or skipping all nodes
in the Formula Rewrite DAG.

The implementation of compute score is specific to the particular heuristic
score choice. Depending on the score, there could be additional early-stopping
checks before computing the entire decomposition. We efficiently compute the
decomposition and score by solving mixed-integer linear programs (MILPs). We
provide further information on our MILP encodings for compute decomp and
compute score in the Supplementary Material.

Limitations. Our assumption that decomposition assigns a unique subteam
to each top-level conjunct allows us to prune descendants. However, it might
also rule out solutions that combine top-level conjunctions of a more heavily
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rewritten formula and achieve a higher number of subteams overall. Although
we might miss alternative decompositions, it is important that the decomposi-
tion procedure runs quickly. Our goal is to cheaply find a decent decomposition,
and let the synthesis procedure proceed from there. Too much upfront compu-
tation can be counterproductive for the larger synthesis problem. Empirically,
this approach works well.

Despite the computed score, it is still possible that the best decomposition
contains an infeasible subproblem that is only revealed during the synthesis pro-
cedure. In this case, we can return to the DAG and recover a different decom-
position that does not contain the same infeasible subproblem. Future work can
investigate weaker transformations that present less risk of creating infeasible
problems. Note that between two decomposition options with the same score,
the algorithm will pick the one closer to the root node by design of the search
procedure. This is desirable because transformations only strengthen the for-
mula, making it harder to satisfy. That is another reason that our restriction
to decomposition assignments with one subteam per conjunct is a reasonable
heuristic. It tends to stop the search earlier in the DAG even if it produces fewer
subteams overall.

Table 1. Results from computing and energy grid case studies. Note that runtime for
decomposition is by solving the resulting synthesis problems serially.

Example Runtime (s) % Speedup |R| DAG
Size

N
Agents

Decomp
Time (s)

Largest
Subproblem
Time (s)No

Decomp
With
Decomp

Computing 8.05 1.51 81.2 11 5 12 0.59 0.12

Energy Grid 329.37 165.90 49.6 10 128 45 19.74 35.09

6 Experiments and Results

We now provide evidence that this approach surpasses the state-of-the-art, and
give two case studies of its application in practical domains. Our implemen-
tation is written in Python and encodes MILPs using the PuLP Python linear
programming toolkit [19]. We instantiate Synth with a MILP-based synthesis
approach for STL [3]. All results were obtained on a 2.10 GHz Intel Xeon Sil-
ver 4208 with 64 GB of memory. We used Gurobi 9.5.1 [12] as the underlying
solver for both decomposition and synthesis. Gurobi had access to 16 physical
cores with hyperthreading. All comparisons include the time to solve all decom-
posed subproblems serially. This is an upper bound on the real time, assuming
in practice some would be solved in parallel. See the Supplementary Material
for more information on our experiments, including an evaluation with the SCIP
optimizer 7.0.3 [10] where decomposition has an even larger impact.
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Fig. 3. Comparison of our approach rw-decomp to the SMT-based CaTL decomposition
approach. Runtime includes the time to decompose and solve each of the subproblems
serially.

6.1 CaTL Example

First, we compare against the decomposition technique of [14] for a fragment
of STL, Capability Temporal Logic (CaTL). Their approach uses a Satisfiabil-
ity Modulo Theories (SMT) solver to find agent assignments, and only makes
formula transformations after obtaining an assignment. We evaluate our algo-
rithm against theirs on the same set of template formulae used in their paper
which vary from 10 to 50 (by tens) randomly-generated agents on a randomly-
generated environment. We run 10 trials for each number of agents seeded with
the trial number (0–9). We use a timeout of 5 min. Figure 3 depicts our results.
Our technique is faster for any value below the diagonal. We define a degenerate
decomposition as a decomposition with only a single subteam. Our approach had
no degenerate solutions and one timeout. The other technique had 2 degenerate
solutions and 15 timeouts.

Their technique is faster to decompose than ours (up to 1 s vs. up to 13 s),
but finds less desirable decompositions. This is expected because their technique
does not optimize or explore the space of formula rewrites. Both techniques
improve the runtime compared to monolithic synthesis.
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6.2 Case Studies

We now apply decomposition to two case studies. Table 1 summarizes the results.

Computing Example. We consider a computing cluster whose processor nodes
are each equipped with either a CPU or GPU. Each processor has a number of
cores available, and can be assigned to process jobs. There is a startup cost
associated with sending jobs to processors, and a switching cost for switching
from a serial job to parallel and vice versa. The overall formula for a day’s
requests is

φcluster = ♦[0,12)φbatch ∧ �[3,12)φadmin, (7)

where φbatch captures the overnight batch jobs, φadmin captures administrative
events that must be performed periodically. Both φbatch and φadmin are con-
junctions over sets of individual requests. These requests may specifically ask
for a number of CPU cores, a number of GPU cores, or may specify that the
job can be accomplished with a CPU and/or GPU. We assume that if a job is
running on a node, no other job can start on that node until the previous job
has finished. This mitigates the interference concerns in Remark 3.

Energy Grid. We develop an energy grid problem. There are ten towns and
a daily specification over half-hour increments. There are two energy companies
and each has a power station for each type of energy: coal, natural gas, wind,
nuclear, and solar. The specification ensures that each town receives the required
power along with additional constraints imposed by each town for cost or green
initiatives, such as limiting the amount of coal. Each agent represents 1 GWh
from a particular power plant. Since this specification has both less-than and
greater-than predicates, we must directly mitigate the interference concerns of
Remark 3. We accomplish this with an additional constraint that all signals for
a given town must be grouped in the same subteam. This may require bundling
several top-level conjuncts into a single conjunct by editing the AST. This pre-
vents the situation in which one subteam is trying to increase a signal while
another subteam attempts to decrease it. This specification has a natural geo-
graphic decomposition, but the specification needs to be rewritten so that this is
possible. Due to the predicate grouping constraint, the original formula can only
be decomposed into 3 subteams, but after rewriting we obtain 10 subteams.

7 Conclusions

This work proposed an abstract rewriting system for STL, with proofs of ter-
mination and confluence. The rewriting system forms the basis for a method
of decomposing an STL specification and distributing it among a heterogenous
team of agents. It outperforms a closely related method on a fragment of STL,
and is effective on general STL case studies.

Future work includes investigating refinement of formula time bounds in
the rewriting system, further formalization of the decomposition procedure, and
potential relaxations of the noninterference condition mentioned in Remark 3.
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Abstract. Belief-Desire-Intention (BDI) agents feature probabilistic
outcomes, e.g. the chance an agent tries but fails to open a door, and
non-deterministic choices: what plan/intention to execute next? We want
to reason about agents under both probabilities and non-determinism to
determine, for example, probabilities of mission success and the strategies
used to maximise this. We define a Markov Decision Process describing
the semantics of the Conceptual Agent Notation (Can) agent language
that supports non-deterministic event, plan, and intention selection, as
well as probabilistic action outcomes. The model is derived through an
encoding to Milner’s Bigraphs and executed using the BigraphER tool.
We show, using probabilistic model checkers PRISM and Storm, how to
reason about agents including: probabilistic and reward-based properties,
strategy synthesis, and multi-objective analysis. This analysis provides
verification and optimisation of BDI agent design and implementation.

Keywords: BDI Agents · Quantitative Verification · Strategy
Synthesis · Markov Decision Process · Bigraphs · PRISM · Storm

1 Introduction

BDI agents [1] are a popular architecture for developing rational agents where
(B)eliefs represent what an agent knows, (D)esires what the agent wants to bring
about, and (I)ntentions the desires the agent is currently acting on. BDI agents
have inspired many agent programming languages including AgentSpeak [2],
Can [3], 3APL [4], and 2APL [5] along with a collection of mature software
including JACK [6], Jason [7], and Jadex [8].

In BDI languages, desires and intentions are represented implicitly by defin-
ing a plan library where the plans are written by programmers in a modular
fashion. Plans describe how, and under what conditions (based on beliefs), an
agent can react to an event (a desire). The set of intentions are those plans that
are currently being executed. A desirable feature of agent-based systems is that
they are reactive [9]: an agent can respond to new events even while already
dealing with existing events. To allow this, agents pursue multiple events and
execute intentions in an interleaved manner. This requires a decision making
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 241–259, 2023.
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process: which event to handle first (event selection) and which intention to
progress next (intention selection). When handling events, we must also decide
on which plan is selected from a set of possible plans (plan selection).

The deployment of BDI-based systems raises concerns of trustworthiness. For
example, erroneous plans can cause incorrect behaviour. Even with a correct
plan library, careless decisions for interleaving intention progression can result
in failures/conflicts, e.g. the execution of one intention can make it impossible
to progress another. This negative tension between modularised plan design
and interleaved execution is difficult to identify using traditional non-exhaustive
testing approaches as there is no guarantee we see all interleavings. Furthermore,
the outcome of an action may be probabilistic due to imprecise actuation. As a
result, there is a growing need for formal techniques that can handle quantitative
properties of agent-based systems [10]. Given the number of decisions faced by
an agent, we may want to synthesise a strategy to determine ahead-of-time the
decisions an agent should make e.g. to avoid the worst-case execution.

Verifying BDI agent behaviours through model checking and theorem prov-
ing has been well explored. For example, the authors apply the Java PathFinder
model-checker (resps. Isabelle/HOL proof assistant) to verify BDI programs in
the work [11] (resp. [12]). Unfortunately, they do not adequately represent agent
behaviours in cyber-physical robotics systems (e.g. surveyed in [13]) with impre-
cise actuators. To reason with the quantitative behaviours of BDI agents, the
authors of [14] investigate the probabilistic semantics and resulting verification
of BDI agents with imprecise actuators by resolving non-determinism in various
selections through manually specified strategies (fixed orders, round-robin fash-
ion, or probabilistic distribution). However, these hand-crafted strategies may
not be optimal. Determining effective strategies is complex and often requires
advanced planning algorithms [15,16].

We show how to combine and apply quantitative verification and strategy
synthesis [17,18] within BDI agents allowing us to both determine, e.g. the proba-
bility an agent successfully completes a mission under environmental uncertainty,
and also a method to resolve the non-determinism required for intention/event/-
plan selection. We focus on the Can language [3,19] which features a high-level
agent programming language that captures the essence of BDI concepts with-
out describing implementation details such as data structures. As a superset of
most well-known AgentSpeak [2], Can includes advanced BDI agent behaviours
such as reasoning with declarative goals and failure recovery, which are necessary
for our examples discussed in Sect. 4. Importantly, although we focus on Can,
the language features are similar to those of other mainstream BDI languages,
and the same modelling and verification techniques would apply to other BDI
programming languages.

We build on our previous work [14] developing an executable probabilis-
tic semantics of Can [3], based on Milner’s Bigraphs [20]. Specifically, we
use probabilistic bigraphs [21], that assigns probabilities to transitions (graph
rewrites). Previously, we used manually-crafted strategies (e.g. fixed schedule) to
resolve non-determinism. Instead, we keep these selections as non-deterministic
choices and encode them using action bigraphs [21] (which supports modelling
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non-deterministic actions). This provides a model of Can based on a Markov
decision process (MDP) [22], that we denote as Canm. The MDP formalisation
of agent behaviours enables us to model certain unknown aspects of a system’s
behaviour e.g. the scheduling between intentions executing in parallel and rep-
resent uncertainty arising from, for example, imprecise actuator. For analysis,
we export, using BigraphER [23], the underlying MDP to the popular proba-
bilistic model checkers PRISM [24] and Storm [25]. This includes probabilistic
and reward-based properties, strategy synthesis, and multi-objective analysis. In
particular, temporal logics provide an expressive means of formally specifying
the requirement properties when synthesising strategies that are guaranteed to
be correct (at least with respect to the specified model and properties).

We make the following research contributions:

– an MDP model of the Can semantics, supporting non-deterministic selections
and probabilistic action outcomes;

– an executable MDP model of Can with BigraphER for quantitative verifica-
tion and (optimal) strategy synthesis through PRISM and Storm;

– a simple example of smart manufacturing computes the probability analysis
of mission success and strategy synthesis, and a simple example of a rover
computes the reward probability of mission success and strategy synthesis.

Outline. In Sect. 2 we recall BDI agents and an MDP. In Sect. 3 we propose our
approach. In Sect. 4 we evaluate our approach to smart manufacturing and rover
examples. We discuss related work in Sect. 5 and conclude in Sect. 6.

2 Background

2.1 CAN

Can language formalises a classical BDI agent consisting of a belief base B and a
plan library Π. The belief base B is a set of formulas encoding the current beliefs
and has belief operators for entailment (i.e. B |= ϕ), and belief atom addition
(resp. deletion) B ∪{b} (resp. B \ {b})1. A plan library Π is a collection of plans
of the form e : ϕ ← P with e the triggering event, ϕ the context condition, and
P the plan-body. The triggering event e specifies why the plan is relevant, while
the context condition ϕ determines when the plan-body P is applicable.

The Can semantics are specified by two types of transitions. The first,
denoted →, specifies intention-level evolution on intention-level configurations
〈B, P 〉 where B is the belief base, and P the plan-body currently being executed.
The second type, denoted ⇒, specifies agent-level evolution over agent-level con-
figurations 〈Ee,B, Γ 〉, detailing how to execute a complete agent where Ee is the
set of pending external events to address (desires) and Γ a set of partially exe-
cuted plan-bodies (intentions). The intention-level Can configurations 〈B, P 〉
can be seen a special case of 〈Ee,B, Γ 〉 where Ee is an arbitrary set of event and
P ∈ Γ . We denote configurations as C.
1 Any logic is allowed providing entailment is supported.
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act : ψ ← 〈φ−, φ+〉 B � ψ

〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉 act
ϕ : P ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 → 〈B, P � e : (| Δ \ {ϕ : P} |)〉 select

〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1‖P2)〉 → 〈B′, (P ′
1‖P2)〉

‖1
〈B, P2〉 → 〈B′, P ′

2〉
〈B, (P1‖P2)〉 → 〈B′, (P1‖P ′

2)〉
‖2

Fig. 1. Examples of intention-level Can semantics.

e ∈ Ee

〈Ee, B, Γ 〉 ⇒ 〈Ee \ {e}, B, Γ ∪ {e}〉 Aevent
P ∈ Γ 〈B, P 〉 → 〈B′, P ′〉

〈Ee, B, Γ 〉 ⇒ 〈Ee, B′, (Γ \ {P}) ∪ {P ′}〉 Astep

P ∈ Γ 〈B, P 〉 �

〈Ee, B, Γ 〉 ⇒ 〈Ee, B, Γ \ {P}〉 Aupdate

Fig. 2. Agent-level Can semantics.

Figure 1 gives some semantics rules for evolving an intention. For example, act
handles the execution of an action (in the form of act = ψ ← 〈φ−, φ+〉), when the
pre-condition ψ is met, resulting in a belief state update (B\φ−∪φ+). Rule select
chooses an applicable plan from a set of relevant plans (i.e. B |= ϕ and ϕ : P ∈ Δ)
while retaining un-selected plans as backups (i.e. P �e : (| Δ\{ϕ : P} |)). Rules
‖1 and ‖2 specify how to execute (interleaved) concurrent programs (within an
intention). The full intention-level semantics is given in Appendix A. The agent-
level semantics are given in Fig. 2. The rule Aevent handles external events, that
originate from the environment, by adopting them as intentions. Rule Astep

selects an intention and evolves a single step w.r.t. the intention-level transition,
while Aupdate discards unprogressable intentions (either succeeded, or failed).

2.2 Markov Decision Processes

A Markov decision process (MDP) [22] is a tuple M = (S, s̄, α, δ) where S
is a set of states, s̄ an initial state, α a set of actions (atomic labels), and
δ : S × α → Dist(S) a (partial) probabilistic transition function where Dist(S)
is the set of the probability distribution over states S. Each state s of an MDP M
has a (possibly empty) set of enabled actions A(s) def= {a ∈ α | δ(s, a) is defined}.
When action a ∈ A(s) is taken in state s, the next state is determined probabilis-
tically according to the distribution δ(s, a), i.e. the probability that a transition
to state s′ occurs is δ(s, a)(s′). An MDP may have an action reward structure
i.e. a function of the form R : S × α → R≥0 that increments a counter when
an action is taken. An adversary (also known as a strategy or policy) resolves
non-determinism by determining a single action choice per state, and optimal
adversaries are those that e.g. minimise the probability some property holds.
This can be used to ensure, for example, the chance of system failure events is
minimised.
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3 An MDP Model of CAN Semantics

MDPs model systems with nondeterministic and probabilistic behaviour. To use
an MDP with the Can semantics we associate Can rules with MDP actions and
Can states to MDP states. We refer to the MDP model of Can as Canm.

States in Canm are given by the agent-level configuration 〈Ee,B, Γ 〉 of Can.
The state space is S ⊆ 2Ee × 2B × 2Γ where the exact subset of states is deter-
mined by the specific program we are modelling2. An initial state of a Canm is
s̄ = 〈Ee

0 ,B0, Γ0〉. In practice, including our examples in Sect. 4, this usually has
the form Ee

0 = {e1, · · · , ej} (a set of tasks), B0 = {b1, · · · , bk} (an initial set of
beliefs, e.g. about the environment), Γ0 = ∅ (no intentions yet), and j, k ∈ N

+.
The Can semantics are defined using operational semantics with transitions

over configurations C → C′ (see Sect. 2.1). As we reason with probabilistic action
outcomes of agents, we instead use probabilistic transitions C →p C′, i.e. this
transition happens with probability p [26]. In our case, probabilities are intro-
duced by uncertain action outcomes of the agents (see Sect. 3.1).

To translate a (probabilistic) semantic rule named rule (Eq. (1)) to an MDP
action, we include an MDP action arule in the set of all MDP action labels and
define the transition function δ such that Eqs. (2) and (3) hold:

λ1 λ2 · · · λn

C →p C′ rule (1)

δ(C, arule) is defined iff λi holds in C with i ∈ {1, 2, · · · , n} (2)
δ(C, arule)(C′

) = p (3)

Condition (2) says a transition of Canm is only enabled if the transition
would be enabled in Can, i.e. the premises λi of rule are all met. Condition (2)
defines the probability of transitioning from C to C′ in Canm as the same as
the probability of transitioning in Can. The mapping of semantic rules to MDP
actions is applied to both intention and agent-level rules from Can.

The overview of our translation from Can to an MDP is depicted in Fig. 3.
Can features non-deterministic transition, e.g. for plan selection and choices
appear throughout both the agent and intention level transitions. Furthermore,
agent actions have probabilistic outcomes sampled from a distribution. The right-
hand of Fig. 3 presents our MDP model of Can with translated MDP actions
for each semantic rules. We detail this translation in the next sections.

3.1 Probabilistic Action Outcomes

Probabilistic transitions occur when we add support for probabilistic action out-
comes for agents. In Can, the semantic rule act gives a fixed outcome (belief
changes in the semantics; but also environment changes in real application) when
an agent action is executed. In practice agent actions often fail, e.g. there is a
chance an agent tries to open a door but cannot. To capture these uncertain
outcomes in agent actions, we introduce a new probabilistic semantic rule (same

2 We determine this by symbolically executing the program as we convert to an MDP.
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Fig. 3. Left: Can semantic rule possibilities highlighting event, intention, plan, and
concurrency selection, and probabilistic agent action outcomes. Solid lines are agent-
level transitions and dashed lines are intention-level. Right: Corresponding MDP model
of Can semantic rules with empty circles as states and solid circles as MDP actions.

as in [14]) actp where μ = [(φ−
1 , φ+

1 ) �→ p1, . . . , (φ−
n , φ+

n ) �→ pn] is a user-specified
outcome distribution where μ(φ−

i , φ+
i ) = pi and

∑n
i=1 pi = 1.

act : ψ ← μ μ(φ−
i , φ+

i ) = pi B � ψ

〈B, act〉 →pi 〈(B \ φ−
i ∪ φ+

i ), nil〉 actp

For mapping intention-level Can configurations to MDP states we use the
fact that 〈B, P 〉 is a special case of 〈Ee,B, Γ 〉 where Ee is an arbitrary set of
event and P ∈ Γ allowing us to translate the intention-level semantic rules to
MDP actions according to the rule translation template in Eqs. (2) and (3). The
probabilistic nature of actp is reflected in the MDP action aactp :

δ(C, aactp)(C′) = pi s.t. C = 〈B, act〉, act : ψ ← μ, B � ψ,
μ(φ−

i , φ+
i ) = pi, and C′ = 〈B \ φ−

i ∪ φ+
i , nil〉

3.2 Intention-Level Semantics

The intention-level semantics (Fig. 1) specify how to evolve any single intention.
Most rules have deterministic outcomes with the exception of some rules such as
select (Fig. 1) which is non-deterministic, i.e. when we select a single applicable
plan from the set of relevant plans. To use rules like this in Canm we need to
lift the non-determinism, hidden within the rules, to non-determinism between
rules. We do this by introducing a new rule for each possible choice, e.g. a rule
for each possible plan that can be selected. As notation, we describe this set of
rules via a parameterised rules, e.g. select(n) as follows:

〈n, ϕ : P 〉 ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 →1 〈B, P � e : (| Δ \ {〈n, ϕ : P 〉} |)〉 select(n)

where n is an identifier for the plan and can be trivially assigned using positions
in the plan library (i.e. 1 ≤ n ≤ |Π|). Once we chose a plan rule, it is always
successful (p = 1) and it can be similarly translated into an MDP action, denoted
as aselect(n), using the previous translation template.
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3.3 Agent-Level Semantics

Agent-level Can rules (Fig. 2) determine how an agent responds to events and
progresses/completes intentions. There are three rules and each has a non-
deterministic outcome: Aevent that selects one event to handle from a set of
pending events; Astep that progresses one intention from a set of partially exe-
cuted intentions; and Aupdate that removes an unprogressable intention from a
set of unprogressable intentions. As with select in Sect. 3.2, to use these in the
Canm model we need to move from non-deterministic rules to a set of determin-
istic rules parameterised by the outcome. The new rules are:

〈n, e〉 ∈ Ee

〈Ee, B, Γ 〉 ⇒1 〈Ee \ {〈n, e〉}, B, Γ ∪ {〈n, e〉}〉Aevent(n)

〈n, P 〉 ∈ Γ 〈B, 〈n, P 〉〉 →p 〈B′, 〈n, P ′〉〉
〈Ee, B, Γ 〉 ⇒p 〈Ee, B′, (Γ \ {〈n, P 〉}) ∪ {〈n, P ′〉}〉Astep(n)

〈n, P 〉 ∈ Γ 〈B, 〈n, P 〉〉 �1

〈Ee, B, Γ 〉 ⇒1 〈Ee, B, Γ \ {〈n, P 〉}〉Aupdate(n)

Event parameters are specified by numbering them based on an ordering
on the full set of events, e.g. 〈n, e〉 with n ∈ N

+ as an identifier. We identify
(partially executed) intentions based on the identifier of the top level plan that
led to this intention, e.g. for P ∈ Γ we assign a label n ∈ N

+ that is passed
alongside the intention. This style of labelling assumes only one instance of an
event can be handled at once (this is enough to imply the top level plans are also
unique). As with select the transition probability is 1 in the cases of Aevent(n)
and Aupdate(n) as the rule, if selected, always succeeds. The (omitted) MDP
actions for rules Aevent(n) and Aupdate(n) can be similarly given as aAevent(n)

and aAupdate(n), respectively. The rule Astep(n) says that agent-level transitions
depend on the intention-level transitions and we need to account for this in the
transition probabilities. Formally, we have:

δ(〈Ee, B, Γ 〉, aAstep(n))(〈Ee, B′, Γ \ {〈n, P 〉}) ∪ {〈n, P ′〉}) = p iff
〈n, P 〉 ∈ Γ and δ(〈B, 〈n, P 〉〉, arule)(〈B′, 〈n, P ′〉〉) = p

where arule denotes the MDP action for the equivalent semantic rule in Can
that handles the intention-level transition of 〈B, 〈n, P 〉〉 →p 〈B′, 〈n, P ′〉〉.

3.4 Rewards

While an MDP allows action rewards to be assigned to any action, and there-
fore Can rule, they are particularly useful for the parameterised rules. In
practice, as it is difficult to specify all current states of an agent (needed for
the configuration), we apply rewards based only on the action chosen, e.g.
R(C, arule) = R(arule) = rrule. With this, we can choose preferred parame-
ters by assigning higher reward values, e.g. R(aselect(1)) < R(aselect(2)). Usually
we give non-zero rewards to MDP actions that correspond to selection (e.g. plan
selection) for strategy synthesis later on. For other MDP actions the reward is 0.
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Fig. 4. Left: MDP action act applying to state s0 with a probability pi reaching to the
state si ((i ∈ {1, · · · , n}). Right: corresponding bigraph reaction rules to encode act.

4 Implementation and Examples

Using a simple smart manufacturing and rover example, we show how our app-
roach can quantitatively analyse/verify agent programs and synthesise the (opti-
mal) strategies. Specifically, we evaluate the probabilistic properties for smart
manufacturing and reward-based properties for the rover example together with
their optimal strategy synthesis. The results show we can detect undesired exe-
cutions (that result in mission failure) and generate different optimal strategies
that can maximise either probability-based or reward-based objective. While we
only give details of two simple cases, users of the executable model can “run”
models with different external events and plan libraries. The examples shown in
this paper and instructions on reproducibility are open available in [27].

4.1 Bigraph Encoding of CANm Model

We use Milner’s bigraphs [20]—a graph-based rewriting formalism—to encode
our Canm model. As a graph-based rewriting formalism, over customised rules
called reaction rules, bigraphs provide an intuitive diagrammatic representation
to model the execution process of the systems. Applying a reaction rule, L � R,
replaces an occurrence of bigraph L (in a bigraph) with bigraph R. Given an
initial bigraph (i.e. initial system state) and a set of reaction rules (i.e. system
dynamics), we obtain a transition system capturing system behaviours for for-
mal verification. Bigraphs allow reaction rules to be weighted, e.g. r = L

3 �R

and r′ = L
1 � R′, such that if both (and only) r and r′ are applicable then r

is three times as likely to apply as r′. Non-deterministic choices (e.g. an MDP
action) can be modelled as a non-empty set of reaction rules. For example, we
can have an MDP action a = {r, r′} and once it is executed, it has a distri-
bution of 75% transition from L to R and 25% from L to R′. Figure 4 depicts
how to encode any MDP action in bigraphs. To execute our bigraph model,
we employ BigraphER [23], an open-source language and toolkit for bigraphs. It
allows exporting transition systems of an MDP, and states may be labelled using
bigraph patterns that assign a state predicate label if it contains (a match of) a
given bigraph. The labelled MDP transition systems are exported for quantita-
tive analysis and strategy synthesis in PRISM and Storm. We use PRISM3 (for
3 PRISM currently does not support reward import.
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non-reward properties) and Storm (for reward-based properties) by importing
the underlying MDPs produced by BigraphER. We reason about the minimum
or maximum values of properties such as Pmax=?F[φ] in Probabilistic Compu-
tation Tree Logic (PCTL) [28]. Pmax=?F[φ] expresses the maximum probability
of φ holding eventually in all possible resolutions of non-determinism.

4.2 Example: Smart Manufacturing

We revisit the robotic packaging scenario from [14] where a robot packs prod-
ucts and moves them to a storage area. Previously, this example was quantita-
tively analysed using probabilistic model checking, but all non-determinism was
resolved using pre-defined strategies (fixed, round-robin, probabilistic choice).
Here, we wish to find a good strategy without assuming one.

The example is as follows: a robot is designed to pick a product from a
production line, insulate them with either cheap or expensive wrapping bags
(to prevent decay) and then move them to storage. Complexity arises from: (1)
success depends on when a product is packed (e.g. before it decays), (2) when a
product is packed determines which wrappings are applicable as earlier packing
means cheaper bags, and (3) both wrappings introduce uncertainty as they may
fail to insulate or break.

The agent program for a scenario with two initial products is given in List-
ing 1.1. We assume the agent uses a propositional logic with numerical compar-
isons. Products awaiting processing are captured by external events in line 4. The
agent responds to the events using a declarative goal on line 6 stating it wants
to achieve the state success1 (i.e. wrapped and moved) through addressing the
(internal) event process product1; failing if failure1 (i.e. dropped or decayed) ever
becomes true. Two plans (in lines 7–8), representing the different wrappings,
handle the event process product1 depending on the deadline for the product.
Event product2 is handled similarly (line 9–11). We encode (discrete) temporal
information for the deadline as agent belief atoms. This should not be viewed
as general support clocks in an MDP. Instead, these temporal information is
simply modelled as numerical belief atoms and we update these belief atoms
in the background, without executing any explicit MDP action. The deadline
decreases after a step of any intention or the selection of any event. We have
deadline1 = 10 and deadline2 = 14 as initial deadlines of product1 and product2
in line 2. The choice of these initial values was made by the agent designer. Our
approach enables the analysis of alternative values quantitatively before deploy-
ing the agent. There is a probabilistic outcome for the agent action of both
wrap standard1 and move product standard1, such that they carry a 30% chance
of causing the belief failure1 to hold by failing to insulate and dropping the prod-
uct accidentally. Meanwhile, there is only 10% change of causing insulation fail-
ure or product dropping by action wrap premium1 and move product premium1.
Due to space limits, we omit the action descriptions. Full agent examples are
online [27].
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Listing 1.1. Can agent for smart manufacturing

1 // Initial belief bases
2 deadline1 = 10, deadline2 = 14
3 // External events
4 product1 , product2
5 // Plan library
6 product1 : true <- goal(success1 ,process_product1 ,failure1).
7 process_product1 : deadline1 ≥ 3 <- wrap_standard1; move_product_standard1.
8 process_product1 : deadline1 ≥ 0 <- wrap_premium1; move_product_premium1.
9 product2 : true <- goal(success2 ,process_product2 ,failure2).

10 process_product2 : deadline2 ≥ 3 <- wrap_standard2; move_product_standard2.
11 process_product2 : deadline1 ≥ 3 <- wrap_premium2; move_product_premium2.

Listing 1.2. A list of properties with its associated value for smart manufacturing
where PS1 and PS2 denote product1 and product2 successfully being processed, and
Pch1 and Pch2 denote cheap bag selected for product1 and product2, respectively.

1 Pmin=?F[PS1 ∧ PS2] (value 0)
2 Pmax=?F[PS1 ∧ PS2] (value 0.6561)
3 Pmax=?F[PS1 ∧ PS2 ∧ Pch1 ∧ Pch2] (value 0)
4 Pmax=?F[PS1 ∧ PS2 ∧ (Pch1 ∨ Pch2)] (value 0.3969)

Quantitative Verification and Strategy Synthesis. For analysis we label
states where properties of interest hold. We use PS1 and PS2 to denote product1
and product2 being successfully processed by the robot. Pch1 and Pch2 hold
when the cheaper bag was selected to handle product1 and product2 respectively.
A full list of properties checked for this example is in Listing 1.2.

Property Pmin=?F[PS1∧PS2] checks the minimum probability of both prod-
ucts being processed successfully over all possible adversaries. This property
returns a value of 0 meaning there is a possible situation where the robot fails to
handle both products, e.g. careless decision making causes failed deadlines. Prop-
erty Pmax=?F[PS1 ∧ PS2] determines the best possible outcome (both products
processed) and returns a value of 0.65614, which implies there exists an adver-
sary that the robot can handle both products with moderate success. Given
this property, PRISM can automatically synthesise an adversary (strategy) for
achieving this property. That is, a list of MDP actions to be taken in each state.
Here the optimal adversary instructs the robot to wrap more urgent products
(i.e. product1) first until it is packed and then switch to wrap the other prod-
uct. As expected, in both cases the expensive bag is used. Only after both are
wrapped does the robot move them to storage.

The property Pmax=?F[PS1 ∧ PS2 ∧ Pch1 ∧ Pch2] checks if there is a way
to successfully handle both products while using cheap bags for both of them.
The value is 0, confirming it is impossible to do so. We can use the property
Pmax=?F[PS1∧PS2∧ (Pch1∨Pch2)] to determine if it is possible to use a cheap
bag for either product. This is possible (p = 0.3969) by adapting the optimal
strategies from before to use a cheap bag for product1.

4 This probability is never 1 as there is always a chance bags fail regardless of type.
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Fig. 5. Value of the property Pmax=?F[PS1∧ PS2] and Pmax=?F[PS1∧ PS2∧ (Pch1∨
Pch2)] with increasing failure probability in cheap and expensive bags.

Action Outcome Analysis. The effects of different failure probability for
cheap and expensive bag are shown in Fig. 5 where the probability of bag failing
to insulate or breaking is increased from 0 to 1. We can see that the value of the
property Pmax=?F[PS1∧PS2] and Pmax=?F[PS1∧PS2∧ (Pch1∨Pch2)] shows a
decreasing trend with increasing failure probability in both cheap and expensive
bag. When the failure probability of both types of bags equals to 0 or 1, the
values of these two properties coincide with each other with either total success
of probability 1 or total failure of probability 0. As expected, the probability of
successfully handling two products is always higher than the one which requires
cheap bags to be used because of the larger failure probability from the cheap
bag than the expensive bag.

4.3 Example: Rover

We consider a rover scenario where the rover travels to a set of sites assigned
by the mission centre for scientific experiments, e.g. to collect rocks or analyse
soil. Given multiple sites to visit, the rover must choose one. Once chosen, the
robot must then decide the route to use: some routes are shorter than others
(plan selection). The mission is to successfully visit all sites, perform required
experiments, and return to base.

To illustrate how much impact careless interleavings can make to the resulting
agent behaviours, we use a very simplified scenario with only two sites to visit
(i.e. a very small plan library). The agent program is in Listing 1.3. The rover
has two sites to visit, which are captured by external events site1 and site2 in
line 4, and is initially at the base (at base in line 2). To address event site1,
the plan on line 6 instructs the rover to pursue two ordered (internal) events,
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Listing 1.3. Can agent for rover.

1 // Initial belief bases

2 at_base

3 // External events

4 site1 , site2

5 // Plan library

6 site1 : true <- experiment_site1 ;return_to_base.

7 site2 : true <- experiment_site2 ;return_to_base.

8 experiment_site1 : at_base <- move_base_to_site1; perform_experiment_site1.

9 experiment_site1 : at_site1 <- perform_experiment_site1.

10 experiment_site1 : at_site2 <- move_site2_to_site1; perform_experiment_site1.

11 experiment_site2 : at_base <- move_base_to_site2; perform_experiment_site2.

12 experiment_site2 : at_site1 <- move_site1_to_site2; perform_experiment_site1.

13 experiment_site2 : at_site2 <- perform_experiment_site2.

14 return_to_base: at_base <- do_nothing.

15 return_to_base: at_site1 <- move_site1_to_base.

16 return_to_base: at_site2 <- move_site2_to_base.

namely experiment site1 and return to base. The first event experiment site1 can
be achieved by plans from lines 8 to 10 depending on where the rover is. For
example, if the rover is at the base, the plan on line 8 instructs it to move to site 1
and perform necessary experiments. After successfully performing experiments
the rover returns to base (return to base) through plans in lines 14–16. Event
site2 can be handled in a similar way. In this case, we assume each moving agent
action (e.g. move base to site1) always succeeds. It allows us to easily reason
about reward-based properties as any state with the reachability probability of
less than 1 will always give an infinite reward. Full agent examples including
action descriptions are online [27]. We use SS1 and SS2 to denote site1 and site2
successfully being processed by the rover and use Storm for model analysis.

We first check property Pmin=?F[SS1 ∧ SS2] to see if there is a case where
neither site visit is successful and, unexpectedly, the return value of 0 confirms
this is possible. This shows, even in such a simple case, careless interleaving can
cause issues: in this case movements back and forth between different locations
without processing. For example, the rover may have moved to site 1, but before
performing the experiment at site 1, it decides to address event site2 and moves
to site 2. This behaviour then repeats in reverse. As the Can semantics (seman-
tic rule �⊥ in Appendix A) remove used plans on failure, the rover can enter a
situation where there is no plan left to move and the mission cannot continue. We
then check the property Pmax=?F[SS1∧SS2] whose value is 1, confirming there is
a way to analyse both sites. However, the optimal adversary (regarding the prob-
ability) returned by Storm makes unnecessary, but non-detrimental, movement
between locations. To ensure the rover achieves the tasks while minimising trav-
elling distance, we use rewards properties Rmin=?F[SS1∧SS2] and the expected
strategy (visit and process each in turn and then return) is synthesised.



Quantitative Verification and Strategy Synthesis for BDI Agents 253

0
0.2
0.4
0.6
0.8
1

0 0.2 0.4 0.6 0.8 1

Pmax=?F[Pch1 ∨ Pch2]

Pmax=?F[PS1 ∧ PS2]

Fig. 6. Trade-offs between property Pmax=?F[PS1 ∧ PS2] (successfully handling two
products) and Pmax=?F[Pch1∨Pch2] (using cheap bag for either product). The red and
blue point stand for two possible deterministic adversaries that always make the same
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and blue point represents a pair of mission objectives having randomised adversaries.
(Color figure online)

4.4 Discussion

Our framework gives agent designers an indication of the type of strategies
that may be needed for a given application. For example, it gives confidence
to either use a fixed strategy, such as the ordered schedule in the rover example,
or justify the need for advanced planning capability. As we target the semantics
rather than a specific implementation, it is possible to modify these in future to
determine if other languages might be more suitable before implementation. For
instance, in the rover example, the decision by Can to throw away failed plans
caused issue, while a different language design could avoid this pitfall.

The framework also allows verifying several, possibly conflicting, quantitative
properties of an agent system. For example, we can ask how to maximise the
probability of achieving the packing tasks while using cheap bags. PRISM can
compute (approximately) the Pareto curve [29] shown in Fig. 6, which provides
a useful visualization of trade-offs between different mission objectives and can
help the agent designers prioritize objectives. Once the agent designer selects
a combination of mission objective values in the line, a corresponding strategy
can be automatically synthesized. In detail, the blue and red points stand for
two pairs of objective values that have deterministic adversaries i.e. they always
make the same choice in a state of the model. Any point (e.g. the black dot) on
the line (except blue and red points) represents the pair of objective values that
can be achieved by randomised strategy that makes an initial one-off random
non-deterministic choice. However, it remains unclear how to interpret these
randomised strategies, and this is an interesting area for future work.

We also note it is difficult to reason about the accumulated rewards for
reaching some target set of states if these states cannot be eventually reached
with probability 1. A good example would be to maximise the probability of
achieving a mission state while minimising the cost of reaching it. It is due to a
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choice that both PRISM and Storm made when designing the reward property
specification. They assume that if there is a non-zero probability of not reaching
the target state (i.e. the probability of reaching it is less than 1), it is reasonable
to say the path continues indefinitely without reaching the target state (i.e. the
overall expected reward for being infinite). A potential solution is to use the
state reward (a certain amount of rewards is assigned if a certain state holds).
Then the reward information can be specified as a temporal formula in property
specifications. (e.g. what is the maximum probability of reaching this state which
gives some certain reward). Unfortunately, this makes modelling and reasoning
more cumbersome, and future work is required to investigate this.

5 Related Work

Optimal decision-making under uncertainty is a core problem in Artificial Intel-
ligence (AI). A prime example is planning [15,16]: studying how to find good or
optimal strategies to maximise rewards or the probability of reaching a goal and
MDPs are also used as a fundamental mathematical models for planning. For-
mal verification coincides with planning when formulas in temporal logic express
reachability goals (i.e. a set of final desired states) and verification methods are
used to extract a particular evolution of the system that makes temporal for-
mulas true. That is, verification focuses on checking if (reachability) properties
hold for a system and obtaining strategies is a side effect. Our aim is not to
compete with AI planning, but to use planning-like benefits in our verification
framework for BDI agents. A prominent sub-field for finding good strategies is
through reinforcement learning (RL) [30]. RL automatically trains agents to take
actions to maximise a reward in an uncertain environment. Here, a concise spec-
ification of an MDP (capturing both the agent and the environment) is executed
in an initially random manner and over time RL improves the reward of every
state-action pair executed to yield good strategies. There has been promising
work unifying planning, learning and verification [31].

The BDI community is interested in event, plan and intention selection
strategies and this is usually done through modifying or replacing the orig-
inal BDI reasoning entirely with other decision-making techniques. Although
most BDI agent languages specify selection choices (e.g. plan selection) made
by the agent in non-deterministic fashion, it is typical in practice to constrain
the overwhelming non-determinism through ordering—either statically [7] or at
run-time [32]—to enforce simple deterministic behaviours. While desirable to
exploit the highest ordered choices, it may be worthwhile exploring other non-
highest order ones every now and then to avoid being stuck in a local maximum.
Some selection strategies use advanced planning algorithms [33,34]. For exam-
ple, in [35] agent programs are compiled to TÆMS framework to represent the
coordination relations e.g. “enables” and “hinders” between tasks and employ
the Design-To-Criteria scheduler for intention selection. Other works show many
of the intention progress issues can be modelled as AI planning problems and
resolved through suitable planners [36]. An increasingly popular topic is inten-
tion progression [37], e.g. the contest [38], that helps the agent to make better
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decisions on event/plan/intention selection. Our approach not only ensures the
safety of agent behaviours through formal verification, but also the quality of
agent decision-making through optimal adversary generation. Finally, it is not a
new idea to integrate advanced decision-making techniques into BDI. There is a
large body of work [33] to employ planning to synthesise new plans to achieve an
event when no pre-defined plan worked or exists. For example, work [39] shows
how the integration of planning and BDI can be done at the semantic level.

Verifying BDI agents using model checking, via Java PathFinder [11], and
theorem proving, using Isabelle/HOL [12] has also been explored. However, these
use fixed schedulers for agent selections strategies, e.g. first-in-first-out for inten-
tion selection, and do not allow probabilistic action outcomes for the agents.
Verification and strategy synthesis have also been successfully applied to many
traditional probabilistic systems (e.g. security systems or protocols) overviewed
in [18]. The contribution of our work applied both verification and strategy syn-
thesis to ensure correct and optimal BDI agent behaviours (which features non-
deterministic choices and probabilistic action outcomes) with the potentiality
such as for multi-objective analysis.

6 Conclusions

Quantitative verification is a powerful technique for analysing systems that
exhibits non-deterministic and probabilistic behaviours, allowing us to verify
and synthesise strategies for autonomous agents operating in uncertain environ-
ments.

We have translated the Can language, which formalises the behaviour of a
classical BDI agent, to an Markov Decision Process model. This supports both
non-deterministic decision-making (e.g. which plan to select) and probabilistic
agent action outcomes (e.g. imprecise actuators). The resulting model, Canm,
is encoded and executed using Milners bigraphs and the BigraphER tool. This
allows quantitative analysis and strategy synthesis using popular probabilistic
model checking tools including PRISM and Storm.

Through two simple examples, we have shown our approach can help the
agent developers to reason about probability and reward-based properties and
synthesise optimal strategies. We also reflect on how quantitative verification
and strategy synthesis can aid or improve BDI agent system design and imple-
mentation, and propose some future work (e.g. multi-objective analysis).
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A Appendix

The language used in the plan-body in Can is defined by the grammar:

±b | act | e | P1;P2 | P1 � P2 | P1 ‖ P2 | goal(ϕs,P , ϕf )

where ±b stands for belief addition and deletion, act a primitive agent action,
and e is a sub-event (i.e. internal event). Actions act take the form act = ψ ←
〈φ+, φ−〉, where ψ is the pre-condition, and φ+ and φ− are the addition and
deletion sets (resp.) of belief atoms, i.e. a belief base B is revised to be (B\φ−)∪
φ+ when the action executes. To execute a sub-event, a plan (corresponding to
that event) is selected and the plan-body added in place of the event. In this way
we allow plans to be nested (similar to sub-routine calls in other languages). In
addition, there are composite programs P1;P2 for sequence, P1�P2 that executes
P2 in the case that P1 fails, and P1 ‖ P2 for interleaved concurrency. Finally, a
declarative goal program goal(ϕs,P , ϕf ) expresses that the declarative goal ϕs

should be achieved through program P , failing if ϕf becomes true, and retrying
as long as neither ϕs nor ϕf is true (see in [19] for details).

Figure 7 gives the complete set of semantic rules for evolving an intention.
For example, act handles the execution of an action, when the pre-condition ψ
is met, resulting in a belief state update. Rule event replaces an event with the
set of relevant plans, while rule select chooses an applicable plan from a set of
relevant plans while retaining un-selected plans as backups. With these backup
plans, the rules for failure recovery �;, �
, and �⊥ enable new plans to be
selected if the current plan fails (e.g. due to environment changes). Rules ; and
;
 allow executing plan-bodies in sequence, while rules ‖1, ‖2, and ‖
 specify
how to execute (interleaved) concurrent programs (within an intention). Rules
Gs and Gf deal with declarative goals when either the success condition ϕs

or the failure condition ϕf become true. Rule Ginit initialises persistence by
setting the program in the declarative goal to be P � P , i.e. if P fails try P
again, and rule G; takes care of performing a single step on an already initialised
program. Finally, the derivation rule G� re-starts the original program if the
current program has finished or got blocked (when neither ϕs nor ϕf is true).
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act : ψ ← 〈φ−, φ+〉 B � ψ

〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉 act

Δ = {ϕ : P | (e′ = ϕ ← P ) ∈ Π ∧ e′ = e}
〈B, e〉 → 〈B, e : (| Δ |)〉 event

ϕ : P ∈ Δ B |= ϕ

〈B, e : (| Δ |)〉 → 〈B, P � e : (| Δ \ {ϕ : P} |)〉 select

〈B, P1〉 → 〈B′, P ′
1〉

〈B, P1 � P2〉 → 〈B′, P ′
1 � P2)〉 �; 〈B, (nil � P2)〉 → 〈B′, nil〉 ��

P1 �= nil 〈B, P1〉 � 〈B, P2〉 → 〈B′, P ′
2〉

〈B, P1 � P2〉 → 〈B′, P ′
2〉

�⊥

〈B, P 〉 → 〈B′, P ′〉
〈B, (nil;P )〉 → 〈B′, P ′〉 ;�

〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1;P2)〉 → 〈B′, (P ′
1;P2)〉 ;

〈B, P1〉 → 〈B′, P ′
1〉

〈B, (P1‖P2)〉 → 〈B′, (P ′
1‖P2)〉 ‖1

〈B, P2〉 → 〈B′, P ′
2〉

〈B, (P1‖P2)〉 → 〈B′, (P1‖P ′
2)〉

‖2

〈B, (nil‖nil)〉 → 〈B, nil〉 ‖�

B |= ϕs

〈B, goal(ϕs,P , ϕf )〉 → 〈B, nil〉 Gs
B |= ϕf

〈B, goal(ϕs,P , ϕf )〉 → 〈B, ?false〉 Gf

P �= P1 � P2 B � ϕs B � ϕf

〈B, goal(ϕs,P , ϕf )〉 → 〈B, goal(ϕs,P � P, ϕf )〉 Ginit

B � ϕs B � ϕf 〈B, P1〉 → 〈B′, P ′
1〉

〈B, goal(ϕs, P1 � P2, ϕf )〉 → 〈B′, goal(ϕs, P ′
1 � P2, ϕf )〉 G;

B � ϕs B � ϕf 〈B, P1〉 �

〈B, goal(ϕs, P1 � P2, ϕf )〉 → 〈B, goal(ϕs, P2 � P2, ϕf )〉 G�

Fig. 7. Complete intention-level Can semantics.
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Abstract. Allocation and planning with a collection of tasks and a
group of agents is an important problem in multiagent systems. One com-
monly faced bottleneck is scalability, as in general the multiagent model
increases exponentially in size with the number of agents. We consider
the combination of random task assignment and multiagent planning
under multiple-objective constraints, and show that this problem can be
decentralised to individual agent-task models. We present an algorithm
of point-oriented Pareto computation, which checks whether a point cor-
responding to given cost and probability thresholds for our formal prob-
lem is feasible or not. If the given point is infeasible, our algorithm finds
a Pareto-optimal point which is closest to the given point. We provide
the first multi-objective model checking framework that simultaneously
uses GPU and multi-core acceleration. Our framework manages CPU
and GPU devices as a load balancing problem for parallel computation.
Our experiments demonstrate that parallelisation achieves significant run
time speed-up over sequential computation.

Keywords: Multiagent System · Task Assignment · Planning ·
Probabilistic Model Checking · GPU and Multi-Core Acceleration

1 Introduction

Markov Decision Processes (MDPs) [26] are a fundamental model for multiagent
planning in stochastic environments, where actions of an agent at a state may
lead to uncertain outcomes. Multiagent task allocation and planning is concerned
with enabling a group of agents to divide up tasks amongst themselves and carry
out their planning and execution. Scalability is a commonly faced bottleneck for
this kind of problems, as in general an MDP that models a multiagent system
(MAS) increases exponentially in size with a linear increment in the number of
agents in the system [5].

Probabilistic model checking (PMC) is a verification technique to establish
rigorous guarantees about the correctness of real-life stochastic systems [1]. PMC
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provides methods to compute the optimal values of reachability rewards for an
MDP, and the optimal probabilities that an MDP satisfies properties formalised
with Linear Temporal Logic (LTL). A fragment of LTL, called co-safe LTL, has
a deterministic finite-state automaton (DFA) representation [19], and thus is
suitable to specify tasks that must be completed in finite time. Task execution
in finite time is important in multiagent planning because we typically want to
re-use the agents to execute further tasks.

In practice, coordination of agents usually involves conflicting solutions to the
multiple objectives that an MAS is required to satisfy, for example, agents may
need to balance execution time with energy consumption. When simultaneous
verification of multiple objectives is concerned, we require the multi-objective
MDP (MOMDP) [30] whose reward structure specifies reward vectors (rather
than scalars). The solution space of an MOMDP is a convex polytope [10,13],
which makes the MOMDP model checking problem tractable. Currently three
kinds of queries are considered in MOMDP model checking [14]: The achievabil-
ity query is the most basic query, which asks whether there exists a scheduler to
meet all objective thresholds; the numerical query is a numerical variant of the
first query, which computes the optimal value of one objective while meeting all
other objective thresholds; the Pareto query is the most expensive query, which
computes approximately the Pareto curve of all objectives.

The classical assignment problem finds an assignment, namely a one-to-one
mapping from tasks to agents, which results in a maximal assignment reward.
The multi-objective assignment problem is to determine an assignment such that
the vectorised assignment reward is Pareto optimal. The classical assignment
problem can be solved efficiently (e.g., using the Hungarian algorithm [18]), but
the multi-objective assignment problem is much harder [33]. The multi-objective
random assignment (MORA) problem pursues a randomised distribution over
assignments such that the expected assignment reward is Pareto optimal.

The combination of (single-objective) task assignment and multiagent plan-
ning has been considered for non-stochastic agent models (i.e., transition sys-
tems) [32] and stochastic agent models (i.e., MDPs) [11]. In this paper, we extend
MOMDP model checking to a setting of multi-objective random assignment and
planning (MORAP) in an MAS, and present a novel implementation with hybrid
GPU-CPU acceleration. Our main contributions are as follows:

– We show the convexity of our formal problem (MORAP), and that a practical
approach to solve this problem can rely on a decentralised model, which avoids
the exponential model size growth with agent-task numbers.

– Our main algorithm is a new point-oriented Pareto computation comple-
menting the existing achievability and Pareto queries [13]. For a given point
corresponding to cost and probability thresholds, our algorithm finds a point
which is feasible for the MORAP problem and closest to the given point under
a general vector norm.

– To the best of our knowledge, we provide the first multi-objective model check-
ing framework that utilises simultaneous GPU and multi-core acceleration.
Our framework manages CPU and GPU devices as a load balancing problem
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for parallel computation. We evaluate the performance of our implementation
in a smart-warehouse example.

The remainder of this paper is organised as follows: Sect. 2 provides the pre-
liminaries for the problem; Sect. 3 gives the approach to the problem, model
construction and algorithms; Sect. 4 provides details on the hybrid implementa-
tion and parallel architecture; Sect. 5 analyses the performance of our approach;
Sect. 6 provides related work; and finally Sect. 7 concludes the paper. Formal
proofs of theorems are included in the appendix of the long version of this paper
[28].

2 Preliminaries

Deterministic Finite Automata. A deterministic finite automaton (DFA)
A is given by the tuple (Q, q0, QF , Σ, δ) where (i) Q is a set of locations, (ii)
q0 ∈ Q is an initial location, (iii) QF ⊆ Q is a set of accepting locations, (iv)
Σ = 2AP (where AP is a non-empty set of atomic propositions) is the alphabet,
and (v) δ : S × Σ → S is the transition function. If δ(q,W ) = q′ for some
W ⊆ AP , we call q a predecessor of q′ and q′ a successor of q. Let pre(q) and
suc(q) denote the set of predecessors or successors of q, respectively. A location
q is a sink if suc(q) = {q}. In this paper, it suffices to consider DFAs whose
accepting locations are sinks. A run in A is a sequence of locations q1, . . . , qm

such that qi+1 ∈ suc(qi) for all 1 ≤ i ≤ m − 1. We call q a trap if there is no run
to any q′ ∈ QF from it. Let QR be the set of traps in A.

Co-Safe LTL. LTL is a compact representation of linear time properties. The
syntax of LTL is ϕ ::= � | a | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ, where a ∈ AP . The
operators X and U stand for “next” and “until”, respectively. Let Fϕ := �Uϕ,
and Gϕ := ¬F¬ϕ. The semantic relationship σ |= ϕ where σ ∈ Σω is standard
where Σω denotes the set of all infinite words over Σ. We are interested in the co-
safe fragment of LTL formulas. Informally, ϕ is co-safe if any σ such that σ |= ϕ
includes some good prefix (which is accepting in some DFA) prefgood(ϕ) denoted
acc(A). Syntactically, any LTL formula containing only the temporal operators
X (next), U (until), and F (eventually) in positive normal form (PNF) is co-safe.
A formal characterisation in the semantic level is included the appendix of [28].

Markov Decision Process. A (labelled) MDP is given by the tuple M =
(S, s0, A, P, L) where (i) S is a finite nonempty state space, (ii) s0 ∈ S is an
initial state, (iii) A is a set of actions, (iv) P : S × A × S → [0, 1] is a transition
probability function such that

∑
s′∈S P (s, a, s′) ∈ {0, 1}, and (v) L : S → Σ is a

labelling function. Let A(s) = {a ∈ A | ∑
s′∈S P (s, a, s′) = 1}, i.e., A(s) is the set

of enabled actions at s. The size of M is |M| = |S|+|P |, where |P | = |{(s, a, s′) ∈
S × A × S | P (s, q, s′) > 0}|. A reward function or structure for M is a function
ρ : {(s, a) ∈ S × A | a ∈ A(s)} → R. We write M[ρ] to explicitly indicate the
reward structure ρ for M. An (infinite) path π is a sequence s1a1s2a2 . . . such
that P (si, ai, si+1) > 0 for all i ≥ 1. Let L(π) denote the word L(s1)L(s2) . . . ∈
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Σω. Let IPath be the set of paths in M and IPath(s) be the subset of IPath
containing the paths originating from s. The set of probability distributions over
A is denoted by Dist(A). A memoryless scheduler (or scheduler for short) for
M, is a mapping μ : s 	→ Dist(A(s)) for all s ∈ S. If μ is a simple (or pure)
if μ(s)(a) = 1 for each s ∈ S and some a ∈ A(s). The set of schedulers (resp.,
simple schedulers) is denoted by Sch(M) (resp., SchS(M)).

Reachability Reward. Given any LTL formula FB with B being a Boolean
formula, let ρ(π|FB) =

∑n
i=1 ρ(si, ai) where π = s1a1s2a2 . . . ∈ IPath(s1) and n

is the smallest number such that L(sn) |= B and L(si) 
|= B for all i < n; if such
n does not exist, let ρ(π|FB) = ∞. Let PrM,μ be the probability measure over
paths in IPath(s).1 The expectation EM[ρ],μ(FB) .=

∫
π

ρ(π|FB)dPrM,μ, a.k.a.
reachability reward [21], is the expected reward accumulated in a path of M
under μ until reaching states satisfying B. We say M[ρ] is reward-finite w.r.t.
FB if supμ∈Sch(M) E

M[ρ],μ(FB) < ∞.

Product MDP. Given M = (S, s0, A, P, L) and A = (Q, q0, QF , Σ, δ), a product
MDP is a tuple M ⊗ A = (S × Q, (s0, q0), A, P ′, L′) where (i) P ′ : S × Q × A ×
S × Q → [0, 1] is a transition probability function such that

P ′(s, q, a, s′, q′) =
{

P (s, a, s′) if q′ = δ(q, L(s′))
0 otherwise

and (ii) L′ : S ×Q → 2Σ is a labelling function s.t. L′(s, q) = L(s). Let M[ρ]⊗A
refer to (M ⊗ A)[ρ] where ρ(s, q, a) = ρ(s, a) for all (s, q) ∈ S × Q, a ∈ A(s).

Geometry. For a point (i.e., vector) v ∈ R
n for some n, let vi denote the ith

element of v. A weight vector w is a vector such that wi ≥ 0 and
∑n

i=1 wi = 1.
The dot product of v and u, denoted v · u, is the sum

∑n
i=1 viui. For a set

Φ = {v1, . . . ,vm} ⊆ R
n, a convex combination in Φ is

∑m
i=1 wivi for some

weight vector w ∈ R
m. The downward closure of the convex hull of Φ, denoted

down(Φ), is the set of vectors such that for any u ∈ down(Φ) there is a convex
combination v = w1v1 + . . . + wmvm such that ui ≤ vi. Let Ψ ⊆ R

n be any
downward closure of points. We say u dominates v from above, denoted v ≤ u,
if vi ≤ ui for all 1 ≤ i ≤ n. A vector u ∈ Ψ is Pareto optimal if u is no point
in Ψ dominates it from above. A Pareto curve in Ψ is the set of Pareto optimal
vectors in Ψ . The following lemma follows from the separating hyperplane and
supporting hyperplane theorems.

Lemma 1 ([6]). Let Ψ ⊆ R
n be any downward closure of a convex hull con-

structed from a set of points x ∈ R
n. For any v 
∈ Ψ , there is a weight vector

w such that w · v > w · x for all x ∈ Ψ . We say that w separates v from Ψ .
Also, for any u on the Pareto curve of Ψ , there is a weight vector w′ such that
w′ · u ≥ w′ · x for all x ∈ Ψ . We say that {x ∈ R

n | w′ · x = w′ · u} is a
supporting hyperplane of Ψ .

1 This probability measure is defined on the discrete-time Markov chain induced by
the scheduler μ of M (c.f. Definition 10.92 in [2]).
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Bistochastic Matrix. For a matrix U ∈ R
n×n for some n, let ui,j denote the

element of U in the ith row and jth column. U is bistochastic if ui,j ≥ 0 and∑n
i′=1 ui′,j =

∑n
j′=1 ui,j′ = 1 for all 1 ≤ i, j ≤ n. A bistochastic matrix U is a

permutation matrix if U has exactly one element with value 1 in each row and
each column. We recall the following Birkhoff-von Neumann Theorem:

Lemma 2 ([3]). A bistochastic matrix U of order n is equivalent to a convex
combination of permutation matrices U1, . . . ,Uk for some k ≤ n2 − 2n + 2.

Random Assignment. Given a set I (resp., J) of agents (resp., tasks) with
|I| = |J |, a (balanced) assignment is a bijective function f : J → I. Denote
the set of assignments of J to I by F . A random assignment ν is a randomised
distribution over F (or, equivalently, a convex combination of assignments in
F). For convenience, let I = J = {1, . . . , n}. Let νj→i = ν({f ∈ F | f(j) = i}),
namely, the marginal probability of assigning task j to agent i according to ν.
Clearly, any assignment is equivalent to a permutation matrix. Moreover, by
Lemma 2 any bistochastic matrix U is equivalent to a random assignment ν
such that ui,j = νj→i.

3 Problem and Approach

3.1 Problem Statement

In our MAS setting, each agent is an MDP (with a reward structure) and each
task is a DFA (equivalently, a co-safe LTL formula), and the rewards are the
probabilities of accomplishing the tasks and the costs (as negative rewards) of
agents executing tasks. Therefore, we aim to compute a random task assignment
and schedulers for all agents and tasks, which must meet multiple probability
and cost requirements. Intuitively, we consider the task assignment and agent
planning scenario satisfying the following two conditions [32]:

C1. The tasks are mutually independent.
C2. The behaviours of agents do not impact each other.

For each (i, j) ∈ I × J ,2 we define an agent-task (product) MDP Mi⊗j [ρi]
.=

Mi[ρi] ⊗ Aj and include an atomic proposition donej such that

Li,j(s, q) |= donej iff q ∈ Qj,F ∪ Qj,R

which indicates “task j is ended (either accomplished or failed).” For each j ∈ J
we define a designated reward function ρj+|I| :

⋃· i∈I(Si × Qj × Ai) → {0, 1}
such that ρj+|I|(s, q, a) = 1 iff q /∈ Qj,F and suc(q) ⊆ Qj,F . If such a pre-sink
q does not exist, we can modify Aj to include q without altering acc(Aj). In
words, ρj+|I| provides a one-off unit reward whenever an accepting location will
be traversed for the first time. Informally, ρj+|I| expresses “the probability of

2 Throughout the paper we assume I = J = {1, . . . , n} for some n (unless explicitly
stated otherwise) but still use I, J to indicate the agent or task references.



Multi-objective Task Assignment and Multiagent Planning 265

Maximise

j∈J (s,q)∈Si×Qj a∈Ai(s)
ρi(s, q, a)xs,q,a ∀i ∈ I

i∈I (s,q)∈Si×Qj a∈Ai(s)
ρj+|I|(s, q, a)xs,q,a ∀j ∈ J

Subject to ∀i ∈ I, j ∈ J, (s, q) ∈ Si × Qj :
⎧
⎪⎨

⎪⎩

a∈Ai(s)
xs,q,a − I(s,q)=(si,0,qj,0)xi,j

= (s ,q )∈Si×Qj a ∈Ai(s ) Pi,j(s , q , a , s, q)xs ,q ,a

xs,q,a ≥ 0; xi,j ≥ 0; i ∈I xi ,j = 1; j ∈I xi,j = 1

Fig. 1. The multi-objective linear program for MORAP

accomplishing task j.” As the atomic proposition donej is fixed for each Mi⊗j ,
we abbreviate EMi⊗j [ρk],μi,j (F donej) as EMi⊗j [ρk],μi,j where k = j or k = j+|I|.
As the reachability rewards for agents may be infinite and cause instability in
computation, similar to the multi-objective verification literature [13,15], we
require that Mi⊗j [ρi] is reward-finite (w.r.t. F donej) for all (i, j) ∈ I × J .

Definition 1 (MORAP). A multi-objective random assignment and planning
(MORAP) problem is finding a bistochastic matrix (xi,j)i∈I,j∈J and a set of
schedulers {μi,j ∈ Sch(Mi⊗j) | i ∈ I, j ∈ J} such that the following two kinds
of requirements, namely R1 and R2, are satisfied:

(R1. Probability)
∑

i∈I xi,jEMi⊗j [ρj+|I|],μi,j ≥ pj for all j ∈ J ,
(R2. Cost)

∑
j∈J xi,jEMi⊗j [ρi],μi,j ≥ ci for all i ∈ I,

where the probability thresholds (pj)j∈J ∈ [0, 1]|J| and the cost thresholds
(ci)i∈I ∈ R

|I| are given. If the above requirements are satisfied, we say that
the MORAP problem is feasible with given thresholds or just that the thresholds
are feasible.

Definition 1 is an adequate formulation in the presence of conditions C1 and
C2. First, since tasks are mutually independent (C1), the probability require-
ments only need to address the successful probability of each task. Second, since
the execution of any task by each agent does not impact other agents (C2), the
cost requirements only need to consider the cost of each agent. In practice, we
can relax the condition |I| = |J | to |I| ≥ |J | (e.g., adding dummy tasks whose
probability threshold is 0).

3.2 Convex Characterisation and Centralised Model

An essential characteristic of our MORAP problem is convexity, namely, the
downward closure of feasible probability and cost thresholds is a convex polytope
(i.e., the downward convex hull of some finite set of points). This follows from
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the fact that the MORAP problem can be expressed as a multi-objective lin-
ear program (LP) by using a similar technique which underpins multi-objective
verification of MDPs [10,13,24]. Figure 1 includes the multi-objective LP for
MORAP. Intuitively, for each (i, j) ∈ I × J , xi,j represents the probability of
assigning j to i (c.f., Lemma 2), and for each (s, q) ∈ Si×Qi, xs,q,a is the expected
frequency of visiting (s, q) and taking action a. A memoryless scheduler can be
defined as follows: μi,j(s, q)(a) = xs,q,a/xs,q where xs,q =

∑
a∈Ai(s)

xs,q,a. Thus,
a MORAP problem has the following time complexity:

Theorem 1. The feasibility of a MORAP problem is decidable in time polyno-
mial in

∑
i∈I,j∈J |Mi⊗j |.

LP is not efficient for large problems, and value- and policy-iteration meth-
ods are more scalable methods in practice. For this purpose, we define a new
MDP which combines all agent-task MDPs and includes an additional variable
indicating which agents have been assigned with tasks. This MDP is targeted
directly at solving the random assignment problem in a centralised way

Definition 2 (Centralised MDP). A centralisd MDP is Mct = (Sct, sct0 , Act,
P ct, Lct) where (i) Sct =

⋃· i∈I

⋃· j∈J Si × Qj × 2I , (ii) sct0 = (s1,0, q1,0, ∅), (iii)
Act =

⋃
i∈I Ai ∪· {b1, b2, b3}, (iv) P ct = Sct × Act × Sct → [0, 1] such that:

– P ct(s, q, �, a, s′, q′, �) = Pi,j(s, q, a, s′, q′) if s, s′ ∈ Si, q, q′ ∈ Qj, a ∈ Ai(s)
and i ∈ � for some i, j,

– P ct(s, q, �, b1, s, q, � ∪ {i}) = 1 if s = si,0, q = qj,0 and i /∈ � for some i, j,
– P ct(s, q, �, b2, s′, q, �) = 1 if s = si,0, q = qj,0 and s′ = si′,0 with i′ = min{i′′ ∈

I | i′′ > i, i′′ /∈ �} for some i, j,
– P ct(s, q, �, b3, s′, q′, �) = 1 if s ∈ Si, q ∈ Qj,F ∪ Qj,R, i ∈ �, s′ = si′,0 with

i′ = min{i′′ ∈ I | i′′ /∈ �}, and q′ = qj+1,0 for some i, j < |J |,
(v) Lct : Sct → 2{done} such that Lct(s, q) |= done iff q ∈ Qj,F ∪ Qj,R.

Intuitively, � ⊆ I indicates agents who have worked on some tasks; b1 indicates
“a task is assigned to the current agent”; b2 indicates “a task is forwarded to the
next agent”; and b3 indicates “the next task is considered”. The model behaves
as an individual product MDP when working on the assigned tasks.

Given any reward structure ρ for Mi⊗j , we view ρ as a reward structure for
Mct by letting ρ(s, q, �, a) = ρ(s, q, a) if a ∈ Ai(s) and ρ(s, q, �, a) = 0 otherwise
for all (s, q, �, a). Similarly, given any reward structure ρ for Mct, a restriction of
ρ on Si × Qj × Ai is a reward structure for Mi⊗j . Similar to agent-task MDPs,
we abbreviate EMct[ρ],μ(F done) as EMct[ρ],μ for a given ρ.

Theorem 2. The MORAP problem in Definition 1 is feasible with respect to
(pj)j∈J and (ci)i∈I if and only if there is μ ∈ Sch(Mct) such that EMct[ρj+|J|],μ ≥
pj and EMct[ρi],μ ≥ ci for all i ∈ I, j ∈ J .

With the above theorem, one can work on the centralised MDP Mct (e.g.,
by using value-iteration) to solve a MORAP problem. Therefore, existing prob-
abilistic model checking tools for multi-objective MDP verification (e.g., Prism
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Algorithm 1: Point-oriented Pareto computation

Input: {Mi⊗j}(i,j)∈I×J , ρ = {ρk}|I|+|J|
k=1 , t (a concatenation of c and p), ε ≥ 0

1 t↑ := −∞; t↓ := t; Φ := ∅; Λ := ∅; w := (1, 0, . . . , 0);
2 while ‖t↓ − t↑‖ > ε do
3 if Φ �= ∅ then
4 Find x ∈ down(Φ) minimising ‖t − x‖;
5 t↑ := x;
6 w := M (t − t↑)/‖M (t − t↑)‖1;

7 Find r s.t. {y | w · y = w · r} is a supporting hyperplane of C ;
8 Φ := Φ ∪ {r}; Λ := Λ ∪ {(w, r)};
9 if w · r < w · t↓ then

10 Find z minimising ‖t − z‖ s.t. w′ · r′ ≥ w′ · z for all (w′, r′) ∈ Λ;
11 t↓ := z;

[20] and Storm [17]) can be employed. However, the state space of Mct is expo-
nential with respect to the agent team size |I|. Therefore, this approach is hard
to scale to a relatively large |I|.

3.3 Point-Oriented Pareto Computation by Decentralised Model

We present a decentralised method solve a given MORAP problem, especially
when the agent number (i.e., task number) is large. Besides deciding whether the
problem is feasible or not, for a non-feasible problem our method also computes
a new feasible threshold vector on the Pareto curve of the problem, and nearest
the original threshold vector up to some numerical tolerance.

Let C0 = {(EMct[ρk],μ)1≤k≤|I|+|J| | μ ∈ Sch(Mct)}. The reward-finiteness
implies that C0 is non-empty and bounded. Let C be the downward closure of
C0, i.e., namely, C is the set of feasible threshold vectors in Definition 1. The
main algorithm for our method is presented in Algorithm 1 with the support-
ing hyperplane computation (i.e., Line 7) detailed in Algorithm 2. Algorithm 1
works by iteratively refining a lower approximation, encoded as Φ, and an upper
approximation, encoded as Λ, for C . It computes a vector t↑ (resp., t↓) which is
the closest point from the origin threshold vector t to the lower (resp., upper)
approximation such that t↑ and t↓ converge eventually.

The algorithm uses a general norm ‖ · ‖ to measure the distance between
vectors, as in practice one may prefer to differentiate the importance of proba-
bility and cost thresholds. An inner product of v,u ∈ R

m (m a positive integer),
denoted 〈v,u〉, is the matrix-vector multiplication vT Mu, where M is a sym-
metric positive-definite matrix. Note that if M is the identity matrix then 〈v,u〉
is v · u. Then, ‖v| = 〈v,v〉. Let ‖ · ‖1 denote vector 1-norm. The weight vector
w computed in Line 6 is the (opposite) direction of projecting t onto down(Φ).
Moreover, w · ρ denotes a weighted combination of reward functions in ρ.
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Algorithm 2: Supporting hyperplane computation in Line 7 of Alg. 1

Input: {Mi⊗j}(i,j)∈I×J , ρ = {ρk}|I|+|J|
k=1 , w

1 foreach (i, j) ∈ I × J do
/* Line 2 is computed by policy iteration. */

2 ci,j := EMi⊗j [w ·ρ ],μi,j with μi,j := arg maxμ EMi⊗j [w ·ρ ],μ;

3 Find an assignment f ∈ F maximising
∑

j∈J cf(j),j ;

4 foreach j ∈ J do
/* Lines 5-6 are computed by value iteration. */

5 rj+|I| := EMf(j)⊗j [ρj+|I|],μf(j),j ;

6 rf(j) := EMf(j)⊗j [ρf(j)],μf(j),j ;

7 return (rk)
|I|+|J|
k=1 ;

Theorem 3. Algorithm 1 terminates for any ε ≥ 0. Throughout the execution
of Algorithm 1, the following properties hold: (i) t↑ ∈ C . (ii) If t ∈ C then
t↓ = t. (iii) ‖t − t↓‖ ≤ minu∈C ‖t − u‖ ≤ ‖t − t↑‖.
Corollary 1. Suppose ε = 0. After Algorithm 1 terminates, the following prop-
erties hold: (i) t↑ = t↓. (ii) t ∈ C if and only if t↓ = t. (iii) If t /∈ C then t↓ is
on the Pareto curve of C .

Algorithm 2 finds a supporting hyperplane of C for a given orientation w.
As probabilistic model checking is employed in the two inner loops, it is usually
an expensive computation. To see the significance of Algorithm 2, we point
out that C is a convex set defined on the centralised model Mct whose size is
O(2|I|). But instead of dealing with Mct, Algorithm 2 works on a decentralised
model consisting of {Mi⊗j}(i,j)∈I×J . The first inner loop includes |I| × |J | (i.e.,
|I|2) policy-iteration processes to compute optimal schedulers and reachability
rewards. The second inner loop uses 2|I| value-iteration processes under a fixed
scheduler.3 The model selection is computed by using the Hungarian algorithm
[18] (Line 3) whose run time is O(|I|3). Another important implication of using
a decentralised model is the parallel execution of the two inner loops, which we
elaborate on in Sect. 4. Also notice that if Mi⊗j = Mi′⊗j′ for some (i, j) 
=
(i′, j′), then some models can be skipped in the two inner loops.

In the implementation we should choose some positive ε for the following
three reasons: First, the policy and value iterations for computing the two inner
loops are approximate. Second, small numerical inaccuracy (e.g., rounding) usu-
ally occurs in the solving optimisation problems in the algorithm. Third, as the
worst-case number of iterations in Algorithm 1 is exponential on the model size
and agent number [13], a suitable ε can terminate the algorithm earlier with an
approximate threshold vector whose precision is acceptable in practice.

For synthesis purposes, we can extract a random assignment and a collection
of schedulers. Assume that the while loop iterates  times in total. Let {μι

i,j | i ∈
3 The methods for computing the two inner loops are detailed in the appendix of [28].
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Fig. 2. Example MOMDP agent and corresponding execution of Algorithm 1.

I, j ∈ J, } and fι be generated in Lines 2–3 in Algorithm 2, respectively, in the
ιth iteration. Let v1r1 + . . . + v�r� ≥ t↑ for some weight vector v (this v exists
since t↑ ∈ down(Φ)). The convex combination of assignments v1f1 + . . . + v�f�

defines a random assignment (i.e., bistochastic matrix). After an assignment fι

is chosen randomly according to probability vι, the schedulers for planning are
those from {μι

i,j | j ∈ J, fι(j) = i}.

Example. Figure 2 is a simple example consisting of one agent and one task
to demonstrate an execution of Algorithm 1. Figure 2a shows the agent MDP,
where ρ(s, a) = −1 for each a ∈ A(s) and s ∈ S, and the task is ϕ := ¬xU y.
Let ε = 0.001. Figure 2b shows the computation with a feasible threshold vec-
tor ta = (−2.5, 0.7). Initially, w = (1, 0), which results in r1 = (−1.1, 0.1) and
the hyperplane w · x = w · r1 = −1.1. Here, ‖t↓ − t↑‖ = 0.6 and so another
iteration is needed. The algorithm finds w = (0.4, 0.6) and the corresponding
r2 = (−2.1, 0.71). As ta is contained in down({r1, r2}), the algorithm termi-
nates. Figure 2c shows the case with a non-feasible tu = (−1.8, 0.9). Similar to
the previous case, the algorithm finds w = (1, 0) and r1, and then w = (0.4, 0.6)
and r2. As w · r2 < w · tu, it finds a new threshold vector t↓ = (−1.97, 0.61) in
Line 10. Now as ‖t↓ − t↑‖ < ε, the algorithm terminates.

4 Hybrid GPU-CPU Implementation

In modern systems, GPU and multi-core CPU hardware is readily available. We
developed an implementation for our MORAP framework, which utilises het-
erogeneous GPU and multi-core CPU resources to accelerate the computation.
The acceleration is based on non-shared data within the two probabilistic model
checking loops in Algorithm 2, which takes up the majority of run time for Algo-
rithm 1 in practice. Parallel execution on GPU and CPU is by allocating models
to each available GPU device and CPU core. For GPU, further (massive) par-
allelisation can be achieved on the low-level matrix operations for probabilistic
model checking.

Implementation Goal. The main goal of our framework is to maximise
throughput and parallelism. Combination of multiple devices is a load balanc-
ing problem in which we can effectively schedule model checking problems to
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Fig. 3. Parallel architecture of MORAP framework.

Table 1. Thread roles in MORAP implementation

Component Functionality

Main Thread Loading models to the main memory and running all computation

except the two (inner) loops in Alg. 2; generating and allocating

models to queues for worker threads and kernels

Manager Thread Managing the bounded FIFO queues; (one thread) spawning CPU

Worker Threads; (the other threads) calling GPU kernels, incl. copying

data between the host memory and GPU device memory;

communicating with each other via a messaging channel for load

balancing

Worker Thread Computing the loops in Alg. 2; each thread bounded on one CPU core

and handling one model each time

Kernel on GPU Computing the loops in Alg. 2; each kernel running on one GPU device

and handling one model each time

keep all devices optimally busy, and reduce run time. We say that computations
run on GPU are called device operations. A multi-core processor can leverage
shared memory with negligible latency before computing. The main concern
with parallelism when using a multi-core processor is thread-blocking and con-
text switching overhead which should be avoided. Moreover, because low level
computations are sequential a processor’s execution run time will correspond
to the size of a model’s state space. On the other hand, the major issue with
computing on GPU is data transfer between the host and the device.

Design. Figure 3 shows the parallel architecture of our framework, and Table 1
explains the roles of thread types. In particular, there are k+1 manager threads
controlling k + 1 FIFO queues of agent-task models Mi⊗j , where k is the num-
ber of available GPU devices. One particular manager thread is responsible for
spawning worker threads bound on each available CPU-core, while the others
call kernel functions on the GPU. As each worker thread is dedicated to com-
puting one Mi⊗j , response time and context switching overhead are minimised.
Manager threads are not required to be bound to any CPU core as program man-
agement is not demanding. The computation workload between GPU devices
and CPU cores is controlled through a work stealing approach [4], that is, if
a processor or device is idle and its queue is empty then its manager thread
will request (i.e., steal) a model from another queue. In this way, hardware is
optimally loaded with work, and all threads operate asynchronously.
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Programming and Data Structure. We implemented our framework with
multiple languages including Rust (framework API), CUDA C (GPU device con-
trol), and a Python user interface, where the Rust API calls to C, and Python via
a foreign function interface (FFI). Our implementation uses the affine property
[25] of the type system in Rust [22] to ensure that owned variables can be used at
most once in the application with move-only types. This feature is particularly
useful in a parallel architecture, as Mi⊗j can be owned by at most one thread
at a time, and thread computation side-effects are inconsequential to any other
thread. Isolating data access to each Mi⊗j mitigates the requirement of shared
memory access, freeing the framework from data races and data starving. Con-
sequently, the problem is embarrassingly parallel. Constructing the architecture
in this way ensures that our implementation approaches the upper-bound of par-
allelism. Our implementation uses explicit data structures (i.e., sparse matrices)
to store the transition probability function and reward structures for each Mi⊗j .
Parallel low-level matrix operations on GPU are implemented using the CUDA
cuSPARSE API, which guarantees thread-safety. The reduce operation of state-
action values for finding an optimal policy in Line 2 is also computed in parallel
with one kernel launch. Optimal occupancy for a GPU kernel is managed through
a kernel launcher and a call to CUDA cudaOccupancyMaxPotentialBlockSize.

5 Experiments

Fig. 4. A smart warehouse layout

One realistic example for our MORAP
problem is a smart-warehousing or robotic
mobile fulfilment system (RMFS), which
usually controls tasks centrally with lim-
ited communication between robots [35].
The environment, as depicted in Fig. 4,
is a W × H two-dimensional grid typi-
cally consisting of movable racks (shelves),
storage locations, and workstations where
order picking and replenishment can take
place [23]. Robots maneuver in the ware-
house to carry out tasks such as order picking and replenishment.

The state of robots is described by the robot position, the internal robot state
(e.g., carrying a rack or not) and the environment parameters (e.g., the rack loca-
tions) and is discrete. Robots can perform such actions as Rotate Left/Right,
Go Forward, Load/Unload Rack. The MORAP problem in this example is (ran-
dom) assignment n tasks to n robots, and task planning for robots, under the
multi-objective requirements of running costs and task fulfilment probabilities.
We considered replenishment tasks for agents, which are informally described as
follows: “While not carrying anything, go to a rack position in the warehouse,
get the rack and carry it to the feed for replenishment, then carry the rack and
drop back at a specific rack position.” Formally, each replenishment task can
be specified as a co-safe LTL formula or as a DFA. Other tasks such as picking
tasks can be specified in a similar way.
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Table 2. Evaluation of average run time (sec.) per iteration in Algorithm 1 for cen-
tralised and decentralised models, where states and transitions refer to reachable states
and reachable transitions, respectively.

W.H.
size
W × H

agent
(task)
num.
n

Decentralised Centralised

Dec. Time per iter. Cent. Time per iter.

Model Size Hybrid Mult GPU CPU Model Size CPU GPU

states trans CPU states trans

6×6 2 17k 104k 0.016 0.01 0.037 0.025 21.2K 136K 0.059 0.017

5 106k 652k 0.023 0.02 0.2 0.36 3.5M 22.5M 6.1 2.35

6 152K 940K 0.03 0.022 0.96 0.38 24.9M 162M timeout 15.2

50 10.6M 65.3M 1.36 1.0 27.2 11.1 memerr memerr - -

100 42.4M 261M 4.8 3.9 90.8 31.9 - - - -

12×12 2 254k 1.5M 0.18 0.14 0.13 0.09 190k 1.2M 1.08 1.5

4 1.0M 6.1M 0.36 0.38 0.33 1.78 635k 4.2M 9.8 2.1

6 2.2M 13.8M 0.7 0.9 0.7 4.0 memerr memerr - -

8 4.1M 24.5M 1.1 1.6 1.2 7.2 - - - -

10 6.4M 38.3M 1.8 4.23 2.46 11.7 - - -

20 25.4M 153M 6.5 17.3 9.8 45.7 - - - -

30 57.2M 345M 15.3 38.8 22.1 timeout - - - -

We conducted two experiments to evaluated our MORAP implementation
using Algorithm 1 in our smart warehousing example with different warehouse
dimensions W × H and different agent (task) numbers n. Notice that we evalu-
ated run time per iteration (rather than its end-to-end run time) for our main
algorithm (i.e., Algorithm 1). Experiment 1 included two comparisons : First,
it compared the model size of the centralised and decentralised models. Sec-
ond, it compared the run time of hybrid GPU-CPU, (pure) GPU, multi-core
CPU and single-core CPU computation. Note that the hybrid GPU-CPU and
multi-core CPU computation is applicable to the decentralised model only. To
benchmark the performance of our implementation with the probabilistic model
checking tools Prism and Storm which do not support task assignment prob-
lems, Experiment 2 compared the verification-only average run time for the
centralised model for our implementation, against Prism and Storm. Prism, and
Storm work in a similar way to Algorithm 1 by iteratively generating a weight
vector w and computing a new Pareto point. In all cases which we had per-
formed, the number of iterations ranged from 2 to 16.

All experiments were conducted on Debian with an AMD 2970WX 24 Core
3.0GHz Processor PCIe 3.0 32Gbps bandwidth, 3070Ti 1.77GHz 8Gb 6144
CUDA Cores GPU, and 32Gb of RAM. An artefact to reproduce the exper-
iments is available online4. A single GPU was used and therefore k = 1 for
the number of GPU management threads. Prism configuration included using
explicit data structures, the Java heap size and hybrid maxmem were set to 32Gb
to avoid memory exceptions. The default configuration was sufficient for Storm.

4 https://github.com/tmrob2/hybrid-motap.

https://github.com/tmrob2/hybrid-motap
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Table 3. Comparison of verification-only average run time (sec.) per iteration for a
centralised model with one agent and one task

W.H. Size
W × H

Model Size Time per iter.

states trans CPU GPU Prism Storm

3×3 334 2.17k 1e-4 0.03 0.005 0.038

6×6 4.2k 18.8k 0.004 0.038 0.025 0.058

8×8 12.9k 78.5k 0.017 0.041 0.081 0.114

10×10 30.9k 187k 0.048 0.046 0.17 0.33

The value iteration stopping threshold was set to 10−6. Running time cut-off
was set to 180 s, if the run time exceeds the cut-off time a timeout error was
recorded. If the GPU device runs out of memory, a memerr was recorded. The
Pareto curve threshold ε (see line 2 in Algorithm 1) was set to 0.01.

The results for Experiment 1 are included in Table 2. It can be observed that,
in general, the run time performance of the decentralised model is significantly
improved over the centralised model. As expected, the centralised model run
time grows exponentially with the increment on the agent and task numbers,
while the growth for the decentralised model is linear. Table 2 also shows that
parallel implementation of some form achieved improved run time performance.
For a 6×6 warehouse size, multiple CPU achieved almost 10 times improvement
over single-CPU. For a 12×12 warehouse size, the hybrid GPU-CPU achieved
a similar performance increase. When conducting this experiment, we observed
that one performance indicator is the ratio of model checking time to model
(data) copying time: A higher (resp., lower) ratio implies more (resp., less) effec-
tive GPU acceleration. This ratio was higher in a 12×12 warehouse than in a
6×6 warehouse, as the former size led larger individual agent-task models than
the latter size. In particular, we observed that a high ratio is important to the
hybrid GPU-CPU approach. For larger individual agent-task models, the hybrid
approach achieved significant improvement over both pure GPU acceleration and
multi-core CPU acceleration.

Experiment 2 compared the performance of our implementation and the
multi-objective model checking function in Prism and Storm. This experiment
was conducted on a centralised model regarding one agent and one task, which
was essentially a standard MOMDP model acceptable by those two tools. For
our implementation, we restricted the MORAP problem to the verification-only
setting, achieved by replacing Lines 10–11 in Algorithm 1 with a break statement
to terminate the algorithm. (Thus, the break statement is executed if and only if
the verification returns false.) For Prism and Storm, we specified the same prob-
lem as an achievabilty query. The comparison included model checking time only
and excluded the model building time. The results, as shown in Table 3, indicate
that our implementation can still achieve competitive performance compared
against the existing tools. It can be seen that, even without utilising the paral-
lelism of the decentralised model, our implementation is an efficient framework
for multi-objective probabilistic model checking.
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6 Related Work

Multi-objective optimisation considers the domain of planning where objectives
may be conflicting, and Pareto-optimal solutions are of interest. These problems
are often the focus of multi-objective model checking [30]. Efficient synthesis
of a set of Pareto optimal schedulers maximising expected total rewards for
multi-objective model checking are covered in [7,9,10,12,13,29]. While step and
reward bounded reachability probabilities are covered in [13,16]. Recently, a
computationally efficient procedure for multi-objective model checking of long-
run average and total mixed rewards is presented in [27], a generalisation of [13].
Our point-oriented Pareto computation is a new method complementing the
existing multi-objective queries in [13] specifically targeting scalability in multi-
agent systems. Different from existing approaches, if a given threshold point is
non-feasible, our algorithm computes a Pareto-optimal point which is nearest
the given point.

GPU acceleration for MOMDP is studied in [8], but is problem specific with-
out task verification. A parallel GPU accelerated sparse value iteration algo-
rithms are presented in [31,34]. The implementation in [31] is similar to ours,
particularly value iteration within Line 2 of Algorithm 2 including the reduce
kernel operation for action comparison, but does not consider multiple objec-
tives, or task specification. The GPU acceleration considered in [34], requires
specific strongly connected component topologies to achieve optimal parallel
performance. In contrast, our parallel implementation takes advantage of multi-
agent and task factorisation, and are always present in our problem.

The approach in [11] aims to reduce the redundant complexity in the multi-
agent MDP [5] for problems in which agents do not collaborate on tasks, only
that an agent optimally completes its allocated tasks. We consider the classical
random assignment problem for which agents may only work independently on
a single task. The model generated in [11] is not suitable for solving our problem
as no mechanism exists for tracking which agents have been assigned a particular
task. Moreover, by decentralising the task allocation model, this work achieves
linear scalability with respect to the numbers of agents and tasks.

7 Conclusion

In this paper, we presented an approach addressing the problem of simulta-
neous random task assignment and planning in an MAS under multi-objective
constraints. We demonstrated that our problem is convex and solvable in polyno-
mial time, and that an optimal random assignment and schedulers can be com-
puted in a decentralised way. We provided a hybrid GPU-CPU multi-objective
model checking framework which optimally manages the computational load on
GPU devices and multiple CPU-cores. We conducted two experiments to show
that decentralising the problem results in a parallel implementation which can
achieve linear scaling and significant run time improvement. Our experiments
also demonstrated that the multi-objective model checking performance of our
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framework is competitive compared with the probabilistic model checkers Prism
and Storm. Future work consists of further optimisation of the implementation
utilising CUDA streams to alleviate the PCI bottleneck for small individual
agent-task models. We are also interested to extend our MORAP problem to
include tasks expressed as ω-regular temporal properties and limiting behaviours
(e.g., mean pay-offs).
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Abstract. We establish a framework to reason about test campaigns
described formally. First, we introduce the notion of a test structure—
an object that carries i) the formal specifications of the system under
test, and ii) the test objective, which is specified by a test engineer. We
build on test structures to define test campaigns and specifications for
the tester. Secondly, we use the algebra of assume-guarantee contracts
to reason about constructing tester specifications, comparing test struc-
tures and test campaigns, and combining and splitting test structures.
Using the composition operator, we characterize the conditions on the
constituent tester specifications and test objectives for feasibly combin-
ing test structures. We illustrate the different applications of the quotient
operator to split the test objective, the system into subsystems, or both.
Finally, we illustrate test executions corresponding to the combined and
split test structures in a discrete autonomous driving example and an
aircraft formation-flying example. We anticipate that reasoning over test
specifications would aid in generating optimal test campaigns.

Keywords: Testing Autonomous Systems · Assume-Guarantee
Reasoning · Contracts

1 Introduction

Rigorous test campaigns have to be designed, implemented, and executed to
aid in certification of safety-critical autonomous systems [30]. Testing complex
autonomous systems is a key challenge that remains to be solved to achieve
human confidence in the system’s behavior in a real world setting, ranging from
autonomous driving to military and space missions and beyond [9,12,19,32].
Currently, test campaigns are designed by test engineers, who rely on their
product know-how and experience, and the resulting test scenarios are fine-tuned
using simulation-based falsification to find the desired test execution [4,15]. Exe-
cuting these test campaigns in real-world settings can be prohibitive for some
systems, such as those involved in space missions, due to the immense cost and
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impracticality of the tests. Thus, carefully choosing the constituent tests of a
test campaign is necessary. Instead of the test engineer designing the entire test
manually, we require them to specify the objective of the test. For example, an
autonomous car required to operate safely at a busy T-intersection, while two
tester cars arrive at the same time as the system, could be the test objective.
Prior work in [2,17], takes this high-level input from the test engineer, and pro-
vides algorithms for synthesizing test environments and tester strategies that
meet the test objective.

We provide a brief overview of prior work that has used assume-guarantee
reasoning for testing safety-critical systems. In [11], assume-guarantee contracts
have been used for compositional verification of system models, and verified
components have been reused in the certification process for new system archi-
tectures. In [7,16], the authors use assume-guarantee reasoning to (i) generate
component-level tests that convey system-level information, (ii) limit the scope
of component testing by focusing on tests that meet a component’s assump-
tions, and (iii) perform predictive testing. In [8], assume-guarantee reasoning is
used in the context of input output conformance testing [31]. Assume-guarantee
methodologies have been provided for testing web-services [10,13,18], and to
distribute the burden of testing by augmenting subsystems with the ability to
test their environment and neighboring subsystems during runtime [1].

We propose a framework grounded in assume-guarantee contract algebra to
aid the test engineer in reasoning over a test campaign. We make use of a test
objective in the form of a specification, which together with the system specifi-
cation is used to characterize an assume guarantee contract for the test environ-
ment. This allows us to define tests as pairs of contracts, and reason over these
tests using operators from contract theory. This approach reasons over the spec-
ifications for the system and the tester to construct a test specification which
is then used in synthesizing a test environment. Overall, our approach is com-
plementary to falsification—test environments synthesized for the tester specifi-
cations discussed in this paper could be used to seed falsification algorithms to
find a worst-case test execution. We seek to address the following questions by
using operators from contract algebra to reason over test objectives and system
specifications.

(Q1) Constructing Tests: How do we generate a specification for the test envi-
ronment so that a desired behavior, characterized by the test objective, is
demonstrated? See Sect. 3.

(Q2) Comparing Tests: When can we say that one test is a refinement of the
other, and define an ordering of tests? See Sect. 5.

(Q3) Combining Tests: Is it possible to check for multiple unit test objectives
in a single test execution? See Sect. 4.

(Q4) Splitting Tests: Is it possible to derive unit test objectives from a more
complex test objective? See Sect. 6.

The focus of this paper is on reasoning about tests at the specification level, not
on synthesizing tests from these specifications. We illustrate different possible
test executions for a combined and a split test on a discrete autonomous car
example and a formation flying example.
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2 Background

To reason about the specifications, we will make use of the contract-based-design
framework first introduced as a design methodology for modular software sys-
tems [14,23,24] and later extended to complex cyber-physical systems [5,26,29].
We will adopt the mathematical framework presented by Benveniste et al. [6]
and Passerone et al. [27].

Definition 1 (Assume-Guarantee Contract). Let B be a universe of behaviors,
then a component M is a set of behaviors M ⊆ B. A contract is the pair
C = (A,G), where A are the assumptions and G are the guarantees. A com-
ponent E is an environment of the contract C if E |= A. A component M is an
implementation of the contract, M |= C if M ⊆ G∪¬A, meaning the component
provides the specified guarantees if it operates in an environment that satisfies
its assumptions. There exists a partial order of contracts, we say C1 is a refine-
ment of C2, denoted C1 ≤ C2, if (A2 ≤ A1) and (G1 ∪ ¬A1 ≤ G2 ∪ ¬A2). We say
a contract C = (A,G) is in canonical, or saturated, form if ¬A ⊆ G.

Multiple operations are known for assume guarantee contracts—see [21]. Assume
the following contracts are in canonical form. The meet or conjunction of two
contracts exists [5] and is given by C1 ∧ C2 = (A1 ∪ A2, G1 ∩ G2) . Composition [6]
yields the specification of a system given the specifications of the components:
C1 ‖ C2 = ((A1 ∩ A2) ∪ ¬(G1 ∩ G2), G1 ∩ G2) . Given specifications C and C1,
the quotient is the largest specification C2 such that C1 ‖ C2 ≤ C. It is given
by [20]: C/C1 = (A ∪ G1, (G ∩ A1) ∪ ¬(A ∪ G1)) . Strong merging [27] yields a
specification obeyed by a system that obeys two given specifications C1 and C2:
C1 • C2 = (A1 ∩ A2, (G1 ∩ G2) ∪ ¬(A1 ∩ A2)) . The reciprocal (or mirror) [25,27]
is a unary operation which inverts assumptions and guarantees: C−1 = (G,A).
The relationships among contract operations are illustrated in Fig. 1.

C

C C1

C/C

C1

(a) Composition and quotient.

C1 • C2

C1 C1 C2 C2

C1 ∧ C2

(b) Order of operations.

Fig. 1. Contract operators and the partial order of their resulting objects.

To state the requirements on the system and the test, we will make use of
linear temporal logic (LTL), although any specification formalism can be used.
LTL is a temporal logic describing linear-time properties, allowing reasoning over
the timing of events, where each point in time has a single successor. The use of
LTL for formally verifying properties of computer programs was first introduced
by Pnueli in 1977 [28].
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Definition 2 (Linear Temporal Logic (LTL) [3]). The syntax of linear temporal
logic (LTL) is given as:

ϕ ::= � | a| ϕ1 ∧ ϕ2 |¬ϕ | © ϕ | ϕ1Uϕ2,

with a ∈ AP , where AP are the set of atomic propositions, the Boolean connec-
tors conjunction ∧ and negation ¬, and the temporal operators ‘next’ © and
‘until’ U . From conjunction and negation, we can derive the entirety of propo-
sitional logic including disjunction ∨, implication →, and equivalence ↔. The
temporal operators ‘always’ � and ‘eventually’ ♦ can be derived from U as

♦ϕ = � U ϕ, �ϕ = ¬♦¬ϕ.

From these temporal operators we can derive ‘always eventually’ �♦ and ‘even-
tually always’ ♦�, which specify that a proposition will be true infinitely often
(progress) or eventually forever (stability) respectively. Let ϕ be an LTL for-
mula over AP . The semantics of LTL formula ϕ are defined over an infinite
word σ = s0s1 · · · as follows

σ |= �,
For a ∈ AP , σ |= a iff σ0 |= a,
σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2,
σ |= ¬ϕ,
σ |= ©ϕ iff σ[1, · · · ] = s1s2 · · · |= ϕ,
σ |= ϕ1Uϕ1 iff ∃j ≥ 0, σ[j, · · · ] |= ϕ2 and σ[i, · · · ] |= ϕ1, for all 0 ≤ i < j,

where σ[j, · · · ] denotes the word fragment sjsj+1 · · · .

3 Test Structures and Tester Specifications

For conducting a test, we need i) the system under test and its specification to
be tested and ii) specifications for the test environment that ensure that a set
of behaviors (specified by the test engineer) can be observed during the test.
These sets of desired test behaviors are characterized by the test engineer in the
form of a specification. The system specifications make some assumptions about
the test environment. The test objective, together with the system specification,
is used to synthesize a test environment and corresponding strategies of the
tester agents. As a result, the test objective is not made known to the system
since doing so would reveal the test strategy to the system. These concepts are
formally defined below.

Definition 3. The system specification is the assume-guarantee contract
denoted by Csys = (Asys, Gsys), where Asys are the assumptions that the sys-
tem makes on its operating environment, and Gsys denotes the guarantees that
it is expected to satisfy if Asys evaluates to �. In particular, Asys are the assump-
tions requiring a safe test environment, and ¬Asys

i ∪ Gsys
i are the guarantees on

the specific subsystem that will be tested.

Csys = (Asys,¬Asys ∪
⋂

i

(¬Asys
i ∪ Gsys

i )).



282 A. Badithela et al.

Definition 4. A test objective Cobj = (�, Gobj), where Gobj characterizes the
set of desired test behaviors, is a formal description of the specific behaviors that
the test engineer would like to observe during the test.

These contracts can be refined or relaxed using domain knowledge. Using Defi-
nitions 3 and 4, we define a test structure, which is the unitary object that we
use to establish our framework and for the analysis in the rest of the paper.

Definition 5. A test structure is the tuple t = (Cobj, Csys) comprising of the
test objective and the system requirements for the test.

Given the system specification and the test objective, we need to determine
the specification for a valid test environment, which will ensure that if the system
meets its specification, the desired test behavior will be observed. The resulting
test execution will then enable reasoning about the capabilities of the system.
If the test is executed successfully, the system passed the test, and conversely, if
the test is failed, it is because the system violated its specification and not due
to an erroneous test environment.

Fig. 2. Block diagram showing contracts specifying the system specification Csys, the
test objective Cobj, and the test environment Ctester.

Now we need to find the specification of the test environment, the tester con-
tract Ctester, in which the system can operate and will satisfy the test objective
according to Fig. 2, with I,O denoting the inputs and outputs of the system
contract. This contract can be computed as the mirror of the system contract,
merged with the test objective, which is equivalent to computing the quotient
of Cobj and Csys [21]:

Ctester = (Csys)−1 • Cobj = Cobj/Csys.

The tester contract can therefore directly be computed as

Ctester = (Gsys, Gobj ∩ Asys ∪ ¬Gsys). (1)

Remark: Since it is the tester’s responsibility to ensure a safe test environment,
Asys, a test is synthesized with respect to the following specification,

⋂

i

(¬Asys
i ∪ Gsys

i ) → Asys ∩ Gobj. (2)
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(a) Assumptions A of the contract. (b) Guarantees ¬A∪G of the contract.

Fig. 3. Geometric interpretation of an assume-guarantee contract (A, G) as a pair of
sets of behaviors. The first element of the pair describes the set of behaviors for which
the assumptions A hold, and the second element describes the set of behaviors for
which G holds or A does not hold. The tester failing to provide the guarantees G
(square) does not satisfy the contract. The set of desired test executions is in the
intersection of the assumptions and guarantees (star), and the set of test executions
that fall outside the assumptions (diamond) are because the system under test failed
to satisfy its requirements.

A successful test execution lies in the set of behaviors Asys ∩ Gsys ∩ Gobj,
and an unsuccessful test execution is the sole responsibility of the system being
unable to satisfy its specification. Thus, any implementation of Ctester will be
an environment in which the system can operate and satisfy Cobj if the system
satisfies its specification, a geometric interpretation is shown in Fig. 3.

4 Combining Tests

We now provide a framework to combine unit test campaigns into a single
system-level test structure. Suppose we have test structures (Cobj

i , Csys
i ) for

i ∈ {1, 2} with test environment (tester) contracts Ctester
i . We interpret the spec-

ifications Ctester
i as viewpoints of the tester that apply to different specifications

of the system. When we merge the tester specifications, we obtain a single test
structure given as follows:

Proposition 1. Ctester
1 • Ctester

2 = (Cobj
1 ‖ Cobj

2 )/ (Csys
1 ‖ Csys

2 ).

Proof. Merging tester contracts yields

Ctester
1 • Ctester

2 = (Cobj
1 /Csys

1 ) • (Cobj
2 /Csys

2 )

= (Cobj
1 • (Csys

1 )−1) • (Cobj
2 • (Csys

2 )−1) ([22], Sect. 3.1)

= (Cobj
1 • Cobj

2 ) • (
(Csys

1 )−1) • ((Csys
2 )−1)

)

= (Cobj
1 • Cobj

2 ) • (Csys
1 ‖ Csys

2 )−1 ([21], Table 6.1)

= (Cobj
1 • Cobj

2 )/ (Csys
1 ‖ Csys

2 )

= (Cobj
1 ‖ Cobj

2 )/ (Csys
1 ‖ Csys

2 ) , (Aobj
1 = Aobj

2 = �))
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which is the list (Cobj
1 ‖ Cobj

2 , Csys
1 ‖ Csys

2 ). ��
The resulting contract is the tester contract for the test structure given by the

parallel compositions of the objective contracts and system contracts, separately.
As we are defining the system specification as requirements on the subsystem to
be tested, the composition of the system specifications represents a system con-
sisting of the individual subsystems. We use Proposition 1 to define an operation
on test structures directly:

Definition 6. Given test structures ti = (Cobj
i , Csys

i ) for i ∈ {1, 2}, we define
their composition t1 ‖ t2 as

(Cobj
1 , Csys

1 ) ‖ (Cobj
2 , Csys

2 ) = (Cobj
1 ‖ Cobj

2 , Csys
1 ‖ Csys

2 ).

For the composition of the test structures to correspond to a valid test, we require
the composed test objective and the resulting tester contract to be satisfiable.

Example 1. Consider a test setup with a single lane road and a pedestrian on a
crosswalk. The agent under test is an autonomous car, which has to detect the
pedestrian and come to a stop in front of the crosswalk under different visibility
conditions. These requirements are encoded in the system specification and the
test objective. The setup for this test is shown in Fig. 4. Three unit test objective
contracts are specified by the test engineer. The first test objective is as follows:

Cobj
1 =

(�, ϕcar
init ∧ �ϕvis

low ∧ ♦ϕped
cw ∧ ϕped

cw → ♦ϕstop
cw

)
,

where ϕvis
low := ϕvis |= low, denotes low visibility conditions, ϕcar

init the initial
conditions of the car (position xcar and velocity vcar), ϕped

cw denotes the pedestrian
being on the crosswalk, and ϕstop

cw := xcar ≤ Ccw−1 ∧ vcar = 0 the stopping
maneuver at least one cell in front of the crosswalk cell Ccw. The second test
objective is given as

Cobj
2 =

(
�, ϕcar

init ∧ �ϕvis
high ∧ ♦ϕped

cw ∧ ϕped
cw → ♦ϕstop

cw

)
,

where ϕvis
high := ϕvis |= high denotes high visibility conditions; and lastly the

third test objective is given as:

Cobj
3 =

(�, ∃k : (vcar = Vmax ∧ xcar = Ck) → ♦ϕstop
k+dbraking

)
,

where the car has to drive at a specified speed of Vmax in an arbitrary cell Ck

and stop within the allowed braking distance dbraking. This test represents the
mechanical requirement of stopping without specifying any interaction with a
pedestrian. Note that neither of the test objective contracts hold information
about the system’s capabilities to detect a pedestrian, only that the system
needs to stop in front of a pedestrian.

The system capabilities are encoded in the system specifications, which are
provided by the system and test engineers. For each test objective, we are given
the corresponding system specification, which describes the required capabilities
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of the system for that test objective (e.g. perception, mechanical requirements,
etc.). Each system specification relies on the system being in a safe environment,
where the transitions of the environment agents are ensured to be safe. This is
denoted as Asys = �ϕped

dyn ∧ �ϕvis
dyn, where ϕped

dyn, and ϕvis
dyn denote the dynamics

of the pedestrian, and the visibility conditions, respectively. We use the same
notation for the set and formula Asys, which can be inferred from context. The
system contract Csys

1 corresponding to the first test objective is given as

Csys
1 =

(
Asys, �ϕcar

dyn ∧ � (ϕvis
low → v ≤ Vlow) ∧

�
(
detectablepedlow → ♦ϕstop

ped

) ∨ ¬Asys
)
,

where ϕcar
dyn, describes the dynamics of the car. The maximum speed that the

car is allowed to drive at in low visibility conditions is Vlow, and detectablepedlow

is defined as

detectablepedlow := xcar + distlowmin ≤ xped ≤ xcar + distlowmax,

which describes the pedestrian being in the ‘buffer’ zone in front of the car,
where distlowmin denotes the minimum distance such that the car can come to a
full stop, and distlowmax denotes the maximum distance at which the car can detect
a pedestrian in low visibility conditions. The system specification for the second
test objective, the system contract Csys

2 , is given as

Csys
2 =

(
Asys, �ϕcar

dyn ∧ � (ϕvis
high → v ≤ Vmax) ∧

� (detectablepedhigh → ♦ϕstop
ped ) ∨ ¬Asys

)
,

describing driving in high visibility conditions with a maximum speed of Vmax

and detectablepedhigh denoting the pedestrian being detectable in the ‘buffer’ zone
for high visibility conditions. The third system specification Csys

3 is given as

Csys
3 =

(
Asys, �ϕcar

dyn ∨ ¬Asys
)
,

with the braking distance as a function of speed being part of the car’s dynamics
denoted by ϕcar

dyn. For each pair of system specifications and test objectives, we
can synthesize the test environment according to Eq. (2). Now we will find
combinations of these tester structures ti = (Cobj

i , Csys
i ), that we can use instead

of executing all tests individually. We will start by computing the combined test
structure t = t2 ‖ t3. The combined test objective contract Cobj is computed as

Cobj = Cobj
2 ‖ Cobj

3 =
(�, ϕcar

init ∧ �ϕvis
low ∧ ♦ϕped

cw ∧ ϕped
cw → ♦ϕstop

cw ∧
∃k : (vcar = Vmax ∧ xcar = Ck) → ♦ϕstop

k+dbraking

)
.

(3)

The combined system contract is computed as

Csys = Csys
2 ‖ Csys

3 =
(
Asys ∪ ¬(Gsys

2 ∩ Gsys
3 ), Gsys

2 ∩ Gsys
3

)
.
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We will relax this system contract by removing ¬(Gsys
2 ∩Gsys

3 ) from the assump-
tions to ensure that the assumptions are in the same form as we require for the
system contract in Definition 3. Consequently, the tester contract resulting from
this system contract is more refined. So the system contract becomes

Csys =
(
Asys, �ϕcar

dyn ∧ � (ϕvis
high → v ≤ Vmax) ∧

�(detectablepedhigh → ♦ϕstop
ped ) ∨ ¬Asys

)
.

(4)

From Eqs. (3) and (4), we construct the test structure t = (Cobj, Csys), where
every implementation that satisfies to Eq. (2) describes a valid test environment
for this combined test. This merged tester specification describes a test environ-
ment where we will see the car decelerate from Vmax and stop in front of the
crosswalk in high visibility conditions.

(a) Low visibility with a
stationary pedestrian.

(b) High visibility with a
stationary pedestrian.

(c) High visibility with a
reactive pedestrian.

Fig. 4. Test execution snapshots of the car stopping for a pedestrian. Figure (a) shows
a test execution satisfying Ctester

1 , Figure (b) satisfies Ctester
2 and Figure (c) satisfies

Ctester
2 and Ctester

3 .

To ensure that test structures can be combined, we need to check whether
the resulting test objective, and the corresponding tester contract are satisfiable.
We will now explain which combinations of the given test structures cannot be
implemented for either of these reasons. Computing the composition t1 ‖ t2 is
not possible, as the composition of the test objectives Cobj

1 ‖ Cobj
2 results in a

contract with empty guarantees. This is the case, because �ϕvis
low and �ϕvis

high

are disjoint, as the visibility conditions cannot be high and low at the same
time. Thus these two test structures are not composable with each other. The
composition t1 ‖ t3, does not result in a feasible test—the test objective requires



Reasoning over Test Specifications Using Assume-Guarantee Contracts 287

a maximum speed of Vmax, but the system is constrained to a maximum speed
of Vlow < Vmax in low visibility conditions, resulting in Gsys ∩ Gobj = ∅.

Figure 4 shows snapshots of manually constructed test executions satisfying
the tester contracts corresponding to t1, t2, and t2 ‖ t3. The simulation is in a grid
world setting, where the car will move one cell forward if it has a positive speed
v, and can accelerate or decelerate by one unit during every time step, meaning
if the car is driving at a higher speed, it will take more cells to come to a stop. In
the low visibility setting, the car can drive at a maximum speed of v = 2 and it
can detect a pedestrian up to two cells away. So in Fig. 4a it is able to detect the
pedestrian and come to a full stop in front of the crosswalk. In a high visibility
setting, the car can drive at a maximum speed of vmax = 4, and it can detect
the pedestrian up to 5 cells ahead. In Fig. 4b we can see that the pedestrian is
detected and the car slows down gradually until is reaches the cell in front of the
crosswalk. Figure 4c shows a test for the tester contract corresponding to t2 ‖ t3,
where we see the pedestrian entering the crosswalk in high visibility conditions
when the car is driving at its maximum speed of v = 4 and is exactly dbraking = 4
cells away from the pedestrian. This test execution now checks the test objective
of detecting a pedestrian in high visibility conditions and executing the braking
maneuver with the desired constant deceleration from its maximum speed down
to zero. �

Remark: Sometimes in addition to the combined test contract, the test execu-
tions must satisfy further constraints, informed by domain knowledge, to provide
useful information to the test engineer. In the case of combining tests, a met-
ric can be useful in determining whether we get the desired information from
the execution of the combined test. In [17], to ensure that a merged test execu-
tion respects causality in satisfying all unit guarantees, temporal constraints are
added to refine the merged test objective. Instead of refining the test structure,
such additional constraints can also be handled during test environment synthe-
sis. This can be helpful in determining if and how tests can be combined for a
given available environment and the desired test information.

5 Comparing Test Campaigns

Justifying the choice of a test campaign from a list of possibilities requires a
method of comparing test campaigns. A more refined test campaign is preferable
to execute, because the system will be tested for a more refined set of test
objectives and possibly for a more stringent set of system specifications. Let
ti = (Cobj

i , Csys
i ) be test structures for 1 ≤ i ≤ n. When generating tests for ti,

we want to ensure that our test execution satisfies the constraints set out by
Cobj

i in the context of system behaviors defined by Csys
i . As seen in Sect. 3, the

tester contract can be computed using the quotient operator. We characterize
a test campaign, TC = {ti}n

i=1, as a finite list of test structures specified by the
test engineer. Definition 7 allows us to generate a single test structure from a
test campaign.
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Definition 7. Given a test campaign TC = {ti}n
i=1, the test structure generated

by this campaign, denoted τ(TC), is

τ(TC) = t1 ‖ . . . ‖ tn.

To define a notion of order for test campaigns, we need a notion of order for
test structures. Comparing two test structures becomes important for defining
the quotient of test structures (see Sect. 6) for splitting tests.

Definition 8. We say that the test structure (Cobj
1 , Csys

1 ) refines the struc-
ture (Cobj

2 , Csys
2 ), written (Cobj

1 , Csys
1 ) ≤ (Cobj

2 , Csys
2 ), if contract refinement occurs

element-wise, i.e., if Csys
1 ≤ Csys

2 and Cobj
1 ≤ Cobj

2 .

We use the order between test structures (see Definition 8) to know when a test
campaign is more refined than another (see Definition 9). A test campaign can
be replaced by a more refined test campaign because the refined test campaign
includes more stringent specifications in more stringent settings.

Definition 9. Given two test campaigns TC and TC′, we say that TC ≤ TC′ if
τ(TC) ≤ τ(TC′).

6 Splitting Tests

In this section, we explore the notion of splitting test structures. One of our
motivations for doing this is failure diagnostics, in which we wish to look for
root causes of a system-level test failure. To split test structures, we look for the
existence of a quotient—see [22]. Suppose there exists a test structure t that we
want to split, and suppose one of the pieces of this decomposition, t1, is given
to us. Our objective is to find t2 such that t1 ‖ t2 ≤ t. The following result tells
how to compute the optimum t2. This optimum receives the name quotient of
test structures.

Proposition 2. Let t = (Cobj, Csys) and t1 = (Cobj
1 , Csys

1 ) be two test structures
and let tq = (Cobj/Cobj

1 , Csys/Csys
1 ). For any test structure t2 = (Cobj

2 , Csys
2 ), we

have
t2 ‖ t1 ≤ t if and only if t2 ≤ tq.

We say that tq is the quotient of t by t1, and we denote it as t/t1.

Proof. t2 ≤ tq ⇔ Csys
2 ≤ Csys/Csys

1 and Cobj
2 ≤ Cobj/Cobj

1 ⇔ (Cobj
2 ‖

Cobj
1 , Csys

2 ‖ Csys
1 ) ≤ (Cobj, Csys) ⇔ t2 ‖ t1 ≤ t. ��

Remark: The method of constructing the quotient test structure in Proposi-
tion 2 involves taking the quotient of the system contracts as well as the test
objectives, meaning that we remove a subsystem from the overall system, and
remove a part of the test objective. Depending on the use case, we can con-
sider two further situations, where we can define the test structure t1 such that:
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i) only removing a subsystem from the overall system, which gives the quo-
tient tq = (Cobj, Csys/Csys

1 ); and ii) only separating a part of the test objective:
tq = (Cobj/Cobj

1 , Csys). The quotient test structures of type (i) could be useful
in adding further test harnesses to monitor sub-systems under for the same test
objective, and test structures of type (ii) could be useful in monitoring overall
system behavior under a more unit test objective. In future work, we will study
automatically choosing the relevant quotient test structure for specific use cases.

(a) Executions satisfying the original test structure.

(b) Left: Given unit test. Center and right: Possible executions for the split test.

Fig. 5. Front view of test executions satisfying the original test structure and the split
test structure.

Example 2. Consider two aircraft, a1 and a2, flying parallel to each other under-
going a formation flying test shown in Fig. 5a where two aircraft need to swap
positions longitudinally in a clockwise or counterclockwise spiral motion. Assume
that during this test execution a system-level failure has been observed, but it
is unknown which aircraft is responsible for the failure during which stage of
the maneuver. We will make use of our framework to split test structures to
help identify the subsystem responsible for the failure. The aircraft communi-
cate with a centralized computer that issues waypoint directives to each aircraft
in a manner consistent to the directives issued to other aircraft to ensure that
there are no collisions. The dynamics of aircraft ai on the gridworld is specified
by Gdyn

i , and the safety or no collision requirement on all aircraft is given in
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Gsafe. The swap requirement, Gswap
i , specifies the maneuver that each aircraft

must take in the event that a directive is issued.

Gswap
i = �

(
directivecwswap(ai) → executecwswap(ai)

)∧
�

(
directiveccwswap(ai) → executeccwswap(ai)

)
.

(5)

For example, in the case of a counter-clockwise swap directive issued to aircraft
a1 starting in region R1, the aircraft must eventually reach the counter-clockwise
swap goal, R2, by traveling in the counter-clockwise direction, and upon reaching
the goal must stay there as long as no new directive is issued. These maneuvers
are specified in the execute subformulas in Table 1. The swap goals, gi, for the
aircraft are determined by their respective positions, xinit,i, when the directives
are issued (see Table 1).

Table 1. Subformulas for constructing Gsys and Gobj.

Label Formula

ϕsetgoal �(xinit,i = R1 → xg,i = R2) ∧ �(xinit,i = R2 → xg,i = R1)

executeccwswap(ai) ♦(xi = gi) ∧ �(xi = gi → ©(xi = gi)) ∧ �ϕccw
traj,i

executecwswap(ai) ♦(xi = gi) ∧ �(xi = gi → ©(xi = gi)) ∧ �ϕcw
traj,i

ϕcw
swap,i �

(
directivecwswap(ai) → ♦(xi = gi)

)

ϕccw
swap,i �

(
directiveccwswap(ai) → ♦(xi = gi)

)

ϕcw ♦directivecwswap(a1) ∧ ♦directivecwswap(a2)

ϕccw ♦directiveccwswap(a1) ∧ ♦directiveccwswap(a2)

In this example, the tester fills the role of the supervisor. If the tester decides
on all aircraft swapping clockwise, then the clockwise directives to each aircraft
will be issued: ϕcw = ♦directivecwswap(a1)∧♦directivecwswap(a2). Similarly, ϕccw

denotes the eventual issue of counter-clockwise swap directives to both aircraft.
All the temporal logic formulas required to construct the test structure associ-
ated with this example are summarized in Table 1. Moreover, no new directives
are issued until all current directives are issued and all aircraft have completed
the swap executions corresponding to the current directives (labeled as Gdir

limit).
Finally, the aircraft are never issued conflicting swap directions—all aircraft are
instructed to go clockwise or counterclockwise (labeled as Gdir

safe). For simplicity,
we choose not to write out Gdir

limit and Gdir
safe in their extensive forms. Thus, the

requirements for the system under test are as follows:

Csys = (Asys, Gsys) = (Gdir
limit ∧ Gdir

safe, Gsafe ∧
∧

i

Gswap
i ∧ Gdyn

i ). (6)

That is, assuming that the supervisor issues consistent directives, and issues new
directives only when all aircraft have completed the executions corresponding to
the current round of directives, the aircraft system is required to guarantee safety
and successful execution of the swap maneuver corresponding to the current
directive. If we were to write the system requirements for a single aircraft, the
corresponding contract would be similar:
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Csys
i = (Asys

i , Gsys
i ) = (Gdir

limit ∧ Gdir
safe, Gswap

i ∧ Gdyn
i ). (7)

Cobj = (�, Gobj), where

Gobj = (ϕcw ∧ ¬ϕccw) ∨ (ϕccw ∧ ¬ϕcw).
(8)

Observe that Gobj represents the tester issuing either clockwise or counter-
clockwise swap directives. One of the unit tests is to the have the aircraft
a1 starting at xinit,1 = R1 (and as a result, xg = R2) get the counter-
clockwise swap directive to reach xg = R2. The corresponding unit test structure
t1 = (Cobj

1 , Csys
1 ) can be written as follows,

Cobj
1 = (�, Gobj

1 ) = (�,♦directiveccwswap(a1)) (9)

Csys
1 = (Asys

1 , Gsys
1 ) = (Gdir

limit ∧ Gdir
safe, Gswap

1 ∧ Gdyn
1 ). (10)

Following Proposition 2, the second unit test structure can be derived by sep-
arately applying the quotient operator on the test objectives and the system
contract. Applying the quotient on the test objective, we substitute � for the
assumptions to simplify, and we refine the quotient contract Cobj/Cobj

1 by replac-
ing its assumptions with �:

Cobj/Cobj
1 = (A ∩ Gobj

1 , G ∩ Aobj
1 ∪ ¬(A ∩ Gobj

1 ))

= (Gobj
1 , G ∪ ¬Gobj

1 ) ≥ (�, Gobj ∪ ¬Gobj
1 ).

Designer input is important for refining this contract resulting from applying the
quotient; a similar observation has been documented for quotient operators in
previous work [20]. Domain knowledge can be helpful in refining the contracts.
Using ¬Gobj

1 as context, the contract (�, Gobj ∪ ¬Gobj
1 ) can be simplified to

(�,¬Gobj
1 ∨ ϕ1 ∨ ϕ2), where ϕ1 =

(
♦directiveccwswap(a2) ∧ ¬ϕcw

)
and ϕ2 =

ϕcw ∧ ¬ϕccw. Then, ¬Gobj
1 is discarded and the test objective of the second unit

test can be defined as a refinement of this simplified contract arising from the
quotient:

Cobj
a2

= (�, ϕ1 ∨ ϕ2) ≤ (�,¬Gobj
1 ∨ ϕ1 ∨ ϕ2). (11)

In Eq. (11), there are two types of test executions that would be the unit contract
obtained by applying the quotient operator: i) A counter-clockwise directive is
issued to aircraft a2 and no clockwise directives are issued to either aircraft, or ii)
Both aircraft are issued clockwise directives and no counter-clockwise directives.
Note that ϕ1 and ϕ2 cannot be implemented in the same test by construction.
Finally, the unit system contract can also by found by applying the quotient
operator:

Csys/Csys
1 =

(
Asys ∩ Gsys

1 , Gsys ∩ Asys
1 ∪ ¬(Asys ∩ Gsys

1 )
)

=
(
Gdir

limit ∧ Gdir
safe ∧ Gswap

1 ∧ Gdyn
1 , (Gsafe ∧ Gswap

2 ∧ Gdyn
2 )

∨ ¬(Gswap
1 ∧ Gdyn

1 ∧ Gdir
limit ∧ Gdir

safe)
)

= (Gdir
limit ∧ Gdir

safe ∧ Gswap
1 ∧ Gdyn

1 , (Gsafe ∧ Gswap
2 ∧ Gdyn

2 )).

(12)
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Remark: Observe that Eq. (12) carries the swap and dynamics requirements of
aircraft a1 in its assumptions. Since we choose to separate aircraft a1 from the
overall aircraft system, this quotient contract can be satisfied by making aircraft
a1 a part of the tester. For a test execution of t2, the tester can choose to keep
aircraft a1 as a part of the test harness for the operational test involving aircraft
a2, or choose to not deploy a1 during the test execution.

The system requirement Csys
2 = Csys/Csys

1 and the test objective together
result in the following possible tester specifications,

Ctester
ϕ1

=
(
Gsafe ∧ Gswap

2 ∧ Gdyn
2 , Gdir

limit ∧ Gdir
safe ∧ Gswap

1 ∧ Gdyn
1

∧ ♦directiveccwswap(a2) ∧ ¬ϕcw
)
.

(13)

Ctester
ϕ2

=
(
Gsafe ∧ Gswap

2 ∧ Gdyn
2 , Gdir

limit ∧ Gdir
safe ∧ Gswap

1 ∧ Gdyn
1

∧ ♦directivecwswap(a1) ∧ ♦directivecwswap(a2) ∧ ¬ϕccw
)
.

(14)

From Eq. (13), we see that the tester does not require aircraft a1 for any dynamic
maneuvers, so it need not be deployed. In Eq. (14), even though aircraft a1 would
be a part of the test harness, it needs to be deployed for the tester contract,
Ctester

ϕ2
, to be satisfied. These tests resulting from the quotient test structure will

help with determining the source of the failure that arose in the more complex
test. �

7 Conclusion and Future Work

We have developed formal notions for constructing, comparing, combining, and
splitting test structures. We reason at the specification level of the test struc-
tures to find more refined test campaigns, and derive the tester specification
from which a test environment can be synthesized. We give the conditions for
when test structures are composable, allowing for simultaneous execution of test
objectives when possible.

We briefly discussed the use of splitting tests for the application of failure
diagnosis to find the root cause of a system-level test failure. Using the splitting
operation on the test structure, we can isolate the components and verify their
operation, assuming we can make use of a test harness, allowing us to mon-
itor certain subsystem inputs and outputs. For future work, we can annotate
which sub-component was used in context to satisfy a formula and thus use this
additional information to track potential sources of a system-level failure. Addi-
tionally, we aim to construct an algorithm that will find a refined test campaign
from a given test campaign that is optimal for a certain user-defined metric,
e.g., test time or cost or coverage, while also accounting for test environment
constraints.
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Abstract. Recent research in both academia and industry has success-
fully used deductive verification to design hardware and prove its cor-
rectness. While tools and languages to write formally proved hardware
have been proposed, applications and use cases are often overlooked.
In this work, we focus on Dynamic Random Access Memories (DRAM)
controllers and the DRAM itself – which has its expected temporal and
functional behaviours described in the standards written by the Joint
Electron Device Engineering Council (JEDEC). Concretely, we associate
an existing Coq DRAM controller framework – which can be used to
write DRAM scheduling algorithms that comply with a variety of cor-
rectness criteria – to a back-end system that generates proved logically
equivalent hardware. This makes it possible to simultaneously enjoy the
trustworthiness provided by the Coq framework and use the generated
synthesizable hardware in real systems. We validate the approach by
using the generated code as a plug-in replacement in an existing DDR4
controller implementation, which includes a host interface (AXI), a phys-
ical layer (PHY) from Xilinx, and a model of a memory part Micron
MT40A1G8WE-075E:D. We simulate and synthesise the full system.

Keywords: Coq · DRAM · Hardware Design · Code Generation

1 Introduction

The limitations of approaches such as model checking and satisfiability solving
– widely adopted in industrial hardware (HW) verification – are well-known [6]:
1) Verification effort is focused on (relatively) small components of full systems;
2) Relatively weak properties are proved, with considerable abstraction gaps
from the natural correctness criteria described in the specifications; and 3) The
state-space-explosion problem. Conversely, proof assistants (i.e., deductive veri-
fiers, or theorem provers) rely on the functional paradigm and on rich expressive
high-order logic specification languages to describe systems at a high abstraction
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level – allowing programmers to implement systems and state correctness theo-
rems naturally, without scalability constraints. The most significant caveats are
arguably a higher entry bar, given the complexity of specification languages and
proof scripts, and the lack of automation. Proof assistants, like Coq, also allow
users to extract proved programs, which can then be compiled and executed.

In this work, we use Coq to propose a trustworthy design workflow for
Dynamic Random Access Memory (DRAM) controllers – whose timing and func-
tional correctness is essential for a variety of computing systems (e.g., critical
real-time systems, our main focus, but also parallel and distributed systems).
The correct behaviour of DRAM modules, and thus that of DRAM controllers,
is described in standards [10] written by the Joint Electron Device Engineering
Council (JEDEC). Furthermore, given that the standards use textual natural
language (English) to describe correctness criteria along with timing diagrams,
choosing Coq to model such systems is highly convenient – given the expressivity
provided by its functional high-order logic specification language.

Precisely, we connect an existing Coq framework used to develop correct
DRAM scheduling algorithms [13] – which in this work will be referred to as
CoqDRAM for brevity – to a back-end that generates logically equivalent Regis-
ter Transfer Level (RTL) representations in SystemVerilog. The back-end, which
will be referred to as CavaDRAM, is developed in Cava,1 a Domain Specific Lan-
guage (DSL) written in Coq for designing and proving properties about circuits.

The connection between CoqDRAM and CavaDRAM plays a vital role in
the design workflow proposed in this work – presented below as a list of steps:

1. Describe a DRAM scheduling algorithm in CoqDRAM and prove its correct-
ness against the JEDEC standards;

2. Describe the controller circuit in Cava;
3. Prove bisimilarity between the two representations;
4. Extract a SystemVerilog circuit from the Cava controller (automatically),

which can then be used as a plug-in replacement in existing hardware designs.

On the one hand, CoqDRAM – written in plain Coq – has been conceived to
design, explore, model, and finally prove the correctness of DRAM arbitration
algorithms, abstracting from actual HW implementations. It has little to no
size constraints, a fact that allows users to use powerful abstractions to prove
strong properties. On the other hand, CavaDRAM derives real memory con-
troller HW implementations. This means that HW limitations become relevant,
e.g., CoqDRAM uses queues that can grow to arbitrary sizes to store incoming
requests, which is evidently not possible in a HW model. Therefore, a logical
equivalence proof will require the queue to be limited in size. This duality is
formalised through a series of assumptions – which are presented further – that
allow us to limit the scope of CoqDRAM algorithms.

In summary, this work proposes the following contributions:

– A design workflow to design correct-by-construction DRAM controllers, going
from correctness criteria described in the JEDEC standards to RTL code;

1 https://github.com/project-oak/silveroak.

https://github.com/project-oak/silveroak
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– A proved proof-of-concept controller implementation, corresponding to one
of the controllers originally proposed in CoqDRAM;

– A methodology to validate the generated RTL code in an existing design, and
consequently, validate both the CoqDRAM and CavaDRAM models;

– An extension of the CoqDRAM to include REFRESH commands and its
underlying correctness criteria.

The remainder of the paper is organised as follows: Sect. 2 gives a concise
background on the two building blocks of our work: CoqDRAM and Cava;
besides presenting some fundamental concepts about DRAM systems; Sect. 3
introduces our novel contributions with an architectural overview of the system
and presents how memory controllers (and transition systems, more generally)
that are logically equivalent to CoqDRAM implementations can be written in
Cava; Sect. 4 elaborates on our use of the term “logical equivalence”, which is
de facto a bisimilarity relationship. Moreover, it presents the theorem and key
insights of the proof procedure; Sect. 5 details the RTL generation phase, explains
how the generated code is plugged into the existing DDR4 controller implementa-
tion (written in SystemVerilog), and presents the setup and the results regarding
both simulation and synthesis; Sect. 6 reviews and compares the state-of-the-art
with our work; and Sect. 7 concludes by revisiting our contributions and giving
pointers for future research directions.

2 Background

2.1 DRAM Basics

DRAM controllers are responsible for servicing memory requests by issuing com-
mands to the DRAM module (among other tasks, such as translating addresses
into DRAM bank groups, banks, rows, and columns; and applying some schedul-
ing algorithm to service requests). Moreover, each bank in a DRAM module has
a row-sized buffer (the row-buffer) that serves as a “cache” for the bank, stor-
ing chunks of data that can be accessed with lower latency. Although several
types of commands exist, the main ones used to directly service requests are:
ACT (Activate), used to transfer one row of a bank into the row-buffer; PRE
(Precharge), used to re-write the content of the row-buffer back into the matrix
of memory cells; and CAS (Column Address Strobe), used to access one of the
columns from the row-buffer (a CAS can be either a RD or a WR). Addition-
ally, the controller has to issue REF (Refresh) commands periodically to restore
the charge of cell capacitors.

2.2 CoqDRAM

CoqDRAM [13] models DRAM devices as command traces. Correctness criteria
coming from the JEDEC standards [10] are modelled as proof obligations (POs)
over traces and cover both functional and timing properties. Listing 1 shows
such modelling: Trace_t is a record (much like structures in C), with constructor
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mkTrace. The trace itself is the member Commands (of type Commands_t). It is
implemented as a standard Coq list type, where elements of the list are of type
Command_t, the type of DRAM commands (not shown here).

Record Trace_t := mkTrace {
Commands : Commands_t;
Time : nat;
(* PO: Ensures that the time between an ACT and a CAS commands to the

same bank respects T_RCD *)

Cmds_T_RCD_ok : forall a b, a \in Commands → b \in Commands →
isACT a → isCAS b → Same_Bank a b → Before a b

→ a.(CDate) + T_RCD <= b.(CDate); }
Listing 1. Command trace.

The record member Time is the trace length, and Cmds_T_RCD_ok is one of
many POs: it states that for any two commands a and b members of the list, if
a is an ACT command, b is a CAS command, they both target the same DRAM
bank, a is issued before b, then the proposition a.( CDate) + T_RCD <= b.(CDate)

must hold, where T_RCD is a constraint defined in the JEDEC standards. In other
words, T_RCD is a lower bound between the issue dates of a and b. Besides JEDEC
properties, essential characteristics of real-time systems are also modelled, such
as non-starvation and controller semantics (e.g., memory consistency models).

Listing 2 shows CoqDRAM’s definition of a memory controller. It is
made of a function (Arbitrate) that, for a given request arrival model
(Arrival_function_t), produces a trace of DRAM commands (Trace_t) of length
defined by a nat parameter (the number of clock cycles). The class member
Requests_handled is a proof obligation: it states that any request that has arrived
will eventually have a corresponding CAS command in the trace (i.e., requests
cannot starve).2

Class Controller_t {AF : Arrival_function_t} := mkController {
Arbitrate : nat → Trace_t;

Requests_handled : forall ta req, req \in (Arrival_at ta)
→ exists tc, (CAS_of_req req tc) \in (Arbitrate tc).(Commands); }.

Listing 2. Memory controller definition.

Class Implementation_t := mkImplementation {
(* Init takes a set of incoming requests and produces a state *)

Init : Requests_t → State_t;
(* Next takes a set of incoming requests, a state, and produces a new

state, a command and the request currrently being serviced *)

Next : Requests_t → State_t → State_t ∗ (Command_kind_t ∗ Request_t); }.

Listing 3. Implementation interface for memory controllers.

2 CAS commands tell the memory to start the data transfer – its issue date is consid-
ered to be the completion date of the corresponding request.



From the Standards to Silicon: Formally Proved Memory Controllers 299

Concretely, memory controllers are implemented as transition systems (TS).
The user of CoqDRAM has to implement the type class Implementation_t (shown
in Listing 3), made of functions Init and Next. The Next function, for instance,
takes a set of arriving requests (Requests_t) at an arbitrary clock cycle, an
arbiter state (State_t), and produces a new state and an output pair made of
a DRAM command (Command_kind_t) and the request currently being serviced
(Request_t). These functions together define a canvas, in some sense, for imple-
menting controllers as transition systems.

Furthermore, it is typical of high-level abstraction models of memory con-
trollers to ignore REF commands and its impact on timing. This is however not
possible in a HW implementation. Hence, we extend CoqDRAM to model REF
commands, including POs that guarantee timing and functional correctness.

2.3 Cava

Cava is a DSL written in Coq designed to specify, implement and prove circuits,
greatly inspired by Lava [2]. It was developed by researchers at Google as part of
the Silver Oak project, which focuses on the verification of high assurance com-
ponents of the OpenTitan3 silicon root of trust, i.e., a set of inherently trusted
functions within a platform. Cava, much like other recent Coq DSLs for hardware
design (e.g., Kami [6] and Kôika [4]), follows the highly automated proof and
design style proposed by Adam Chlipala in his book Certified Programming with
Dependent Types [5]. We choose Cava over other Coq DSLs for a few reasons: 1)
Cava circuit simulations generate a list of values, where each element represents
the value of a wire at a given clock cycle – this emulates time, a key element of
command traces in CoqDRAM; 2) Cava is relatively simpler and faster to get
acquainted to; and 3) Cava designs resemble classic RTL design style in some
sense, whereas other DSLs take an approach closer to the rule-based design of
Bluespec SystemVerilog [15].

Cava combines shallow and deep embedding techniques to describe combi-
national and sequential circuits, respectively. In other words, sequential circuits
are implemented as inductive types (which includes a wrapper to combinational
circuits). Thanks to its inductive nature, circuits can be interpreted in differ-
ent ways [2], a feature that allows Cava users to prove correctness, simulate,
and generate a netlist from a single circuit definition. Furthermore, sequential
circuits in Cava are transition systems, much like controllers in CoqDRAM.

While we lack the space to formally present Cava’s syntax and semantics, we
will try to give the reader an intuitive understanding of how sequential circuits –
and transition systems, more generally – can be designed with the DSL. Listing 4
is a sequential circuit definition in Cava (Fig. 1). Circuit Foo takes an input i

of type inputType and produces an outout o of type outputType. Possible signal
types in Cava are: Void, an empty type; Bit, which is interpreted in Coq as
a boolean; Vec, which takes another Cava signal type and the vector’s size;
and ExternalType, which is a non-interpreted type. Moreover, circuit Foo has an

3 https://opentitan.org/.

https://opentitan.org/
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internal state of type stateType, a register with initial value s_init. The loop
body f is a combinational function with type (stateType,inputType)→ (stateType

,outputType). In other words, although the internal state s (a given name) is not
visible from outside Foo, the loop body f takes a pair of type (stateType ∗
inputType) as input and produces another pair of type (stateType,outputType).
Lastly, Cava loops can be nested in order to form circuits that have multiple
internal state signals.

Definition Foo : Circuit
(i : inputType) (o : outputType) :=
LoopInit (s_init : stateType) (
Comb (f)
(* f : (stateType * inputType) →
(stateType,outputType) *)

).

Listing 4. Sequential circuit in Cava. Fig. 1. Sequential circuit diagram.

3 Coupling CoqDRAM and CavaDRAM

Figure 2 illustrates the coupling between CoqDRAM and CavaDRAM. The
design path starts at the JEDEC standards, modelled by Trace_t in CoqDRAM
(c.f. Listing 1). Specifically, the CoqDRAM specification covers the DDR3 and
DDR4 JEDEC standards. Next, for scheduling algorithms implemented in Coq-
DRAM, we introduce provably equivalent controllers in CavaDRAM (equivalence
is defined in Sect. 4). The RTL code produced from a controller implementation
(using Cava’s code extraction) can be used in existing designs. In our case, it
is used as a plug-in replacement in an existing DDR4 controller implementa-
tion [20]. From a framework point of view, the additional workload introduced
by the back-end coupling consists solely of writing the equivalent controllers in
Cava and the equivalence proof with the representation in CoqDRAM.

3.1 Controller Implementation Constraints

Hardware controller implementations impose constraints that are not captured
by CoqDRAM. The setup we use for simulation and synthesis, for instance, is
equipped with an AXI bus interface, which expects an interface to communicate
with the memory controller. As a consequence, CavaDRAM controllers have to
implement an interface containing the following input and output signals: a) the
arrival of a new request is signalled by a 1-bit pending_i input signal; b) a single
request_i is provided as a bit vector input; and c) the circuit has to produce
a 1-bit ack_o signal as output. The pending_i/ack_o signals allow to perform a
handshake (used in many bus implementations besides AXI).
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Fig. 2. System architecture (Figure 2 omits several components and does not represent
a complete architecture, as its goals are to ease comprehension and provide an overview
of the system). CoqDRAM classes, Introduced workload, DDR4 hardware sim-
ulation setup.

This interface is less generic than the CoqDRAM implementation. An equiv-
alence proof thus can only succeed by introducing two additional assumptions
that constrain the arrival model of CoqDRAM:

Assumption 1. The arrival function needs to be constrained to a single incom-
ing request per cycle. In Coq, we model this constraint with a PO that limits the
number of requests in the incoming arrival list; the PO is denoted by HW_single

in Listing 5. For one, this models the limitation of the AXI bus mentioned in the
interface above. In addition, this reflects a fundamental limitation on memories,
which are typically used to implement queues in hardware: the implementation
cost of memories increases drastically with the number of read/write ports. In
our case (Distributed/BRAM of FPGAs), it is limited to a single read/write
port each. Bear in mind that the proofs in CoqDRAM are valid for all possible
arrival functions without any limitations, including HW_Arrival_function.

Class HW_Arrival_function_t {AF : Arrival_function_t} := mkHW_AF {
HW_single : forall t, size (Arrival_at t) <= 1; (* Assumption 1 *)

(* Assumption 2 consisting of two POs *)

pending_i : nat → signal Bit; (* pending input for controller circuit *)

request_i : nat → signal request_t; (* request as input *)

HW_arrived : forall t, size (Arrival_at t) = 1 ↔ (ack_o t) ∧ (pending_i t);
HW_request : forall t, size (Arrival_at t) = 1 →

EqReq (Arrival_at t) (request_i t);
}.

Listing 5. Assumption reflecting hardware-level implementation constraints.
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Assumption 2. Note that Assumption 1 does not constrain the number of
outstanding requests from the requestors, it is just a constraint on the bus inter-
facing with requestors and memories of queues. The interface described before
also comprises a handshake protocol, which allows a controller to accept (or not)
newly in-coming requests. CoqDRAM only considers requests that are accepted
by the controller, i.e., from the moment that the request is processed by the
controller. Consequently, arrival functions have to be constrained to take the
handshake protocol into account: a request arrives when the request is provided
on the request input port and both the pending and ack_o signals are asserted.
The two POs HW_arrived and HW_request from Listing 5 establish this relation.

3.2 From CoqDRAM to CavaDRAM Implementation

As a Proof-of-Concept, we implement a controller based on the First-In-First-
Out (FIFO) scheduling policy, as originally proposed in CoqDRAM. The con-
troller serves an arbitrary number of requestors. Requests are served in arrival
order, without distinction between requestors. Each request is processed in a slot
large enough to fit every necessary DRAM command while respecting all tim-
ing constraints. The controller issues DRAM commands following a closed-page
policy, i.e., it always issues the same sequence of commands: PRE-ACT-CAS.

Representing States. Listing 6 shows CoqDRAM’s FIFO state definition, an
inductive type with three possible values: IDLE, RUNNING, and REFRESHING. Addi-
tionally, each value carries a series of arguments that extends the set of states:
Cnt_t is a counter used to count clock cycles within a FIFO slot; Cnt_ref_t

is another counter used to manage memory REFRESH operations, i.e., keep
track of clock cycles until a REF command is needed; and Reqs_t is the infinite
sequence of requests in the queue, i.e., waiting to be serviced. Note also that
the RUNNING state carries an additional value of type Req_t, used to remember
the request currently being processed by the controller. The counters are imple-
mented in Coq as bounded integers (which carry a proof stating that the counter
value is always strictly smaller than its bound) and the queue is a standard Coq
list (of arbitrary size). Reqs_t being an unbounded list is obviously not possi-
ble in a HW model. Assumptions 1 and 2 (presented in Sect. 3.1) mitigate this
problem, as they make it impossible for Reqs_t to grow arbitrarily. In connection
with Listing 3, FIFO_state_t is a valid instance of State_t.

Inductive FIFO_state_t :=
| IDLE : Cnt_t → Cnt_ref_t → Reqs_t → FIFO_state_t

| RUNNING : Cnt_t → Cnt_ref_t → Reqs_t → Req_t → FIFO_state_t

| REFRESHING : Cnt_ref_t → Reqs_t → FIFO_state_t.

Listing 6. CoqDRAM FIFO state.
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Cava Implementation. A simplified version of the FIFO CavaDRAM imple-
mentation can be seen in Listing 7.4 Figure 3 is a diagram of the resulting circuit.5

A few points are worth emphasising:

Definition FIFO : Circuit (pending ∗ request) (ack ∗ request ∗ command) :=
Loop (Loop (Loop ( (* one loop for each resigster *)

ReadLogic >==>Queue >==>NextCR >==>CmdGen >==>Update)))

Listing 7. Simplified version of the FIFO implementation in CavaDRAM.

Fig. 3. FIFO circuit implementation in Cava.

1. We use nested Loop constructors to manipulate multiple internal state
signals, allowing us to mimic CoqDRAM states. A correspondence can be estab-
lished between elements of Listing 7/Fig. 3 and CoqDRAM’s FIFO state def-
inition (Listing 6): the register state corresponds to the state identifier (IDLE
/RUNNING/REFRESHING); register cnt corresponds to the counter Cnt_t, and has
as many bits as necessary to count up to the counter’s bound; similarly, regis-
ter cref corresponds to Cnt_ref_t. The request queue in CoqDRAM (Reqs_t)
corresponds to Queue. Lastly, Req_t in RUNNING is a register of circuit NextCR.

2. Queue is implemented as a dual-ported memory (one port for reads and one
for writes, recall Assumption 1), with additional combinational logic to deter-
mine whether the queue is full or empty using internal write and read pointers.

3. The signals pending_i and request_i (highlighted in green on the left hand
side of Fig. 3) are the circuit’s inputs: both signals are fed directly to the queue.
The pop_i signal, however, comes from the Read Logic module, which is based
on the register values and on the state of the queue itself, will produce a read
enable signal. The queue produces three outputs: empty_o, used in the following

4 In the listing, the notation >==> stands for circuit composition.
5 Initial register values are omitted from the figure.
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modules; data_o, the request at the head of the queue; and ack_o, a signal used
to complete the handshake with the bus arbiter and possibly stall the arrival of
incoming requests (recall Assumption 2).

4. Besides ack_o, the circuit produces two output signals: a) request_o is
the request currently being serviced by the controller and is eventually fed to
the DRAM address bus, it contains the target bank, row, and column; and b)
command_o, generated by CmdGen. These output signals are similar to those pro-
duced by CoqDRAM algorithms (see Listing 3). They are generated by circuits
NextCR and CmdGen, respectively, and take as input the register values, i.e., the
current state, as well as the signals empty_o and data_o from Queue.

5. Update implements the transition function: it is made of three separate
combinational functions that calculate the next value of each register and thus
determine the next state.

4 The Equivalence Proof

We used the word equivalence between transition systems throughout the paper.
Here, we define equivalence, which is de facto a bisimilarity relation. Bisimilarity
was introduced (formulated by Park [16], refining ideas from Milner [14]) as the
notion of behavioural equality for processes [17].

Definition 1 (Bisimulation and Bisimilarity [18]). Given an LTS (S,Λ,
→), where S is a set of states, Λ is a set of labels, and →⊆ (S × Λ × S) is a
transition relation, written P

µ→ Q for 〈P, μ,Q〉 ∈→. A binary relation R on
the states of the LTS is a bisimulation if whenever P R Q:

1. for all P ′, with P
µ→ P ′, there is Q′ such that Q → Q′ and P ′ R Q′;

2. the converse, on the transitions emanating from Q: for all Q′, with Q → Q′,
there is P ′ such that P → P ′ and P ′ R Q′;

Bisimilarity, written ∼, is the union of all bisimulations; thus P ∼ Q holds if
there is a bisimulation R with P R Q.

Remark [18]. Note that although bisimulation and bisimilarity are defined on a
single LTS, it is also a valid definition for distinct LTS with the same alphabet
of actions; as the union of two LTSs is again an LTS.

Intuitively, two bisimilar systems match each other’s moves, i.e., if we assume
that two agents were playing a game according to some rules, the agents could
not be distinguished from the other by an observer.

In Coq, we start by giving meaning to the R binary relation of Definition 1.
Listing 8 shows the definition of State_Eq, a predicate that defines the equal-
ity between CoqDRAM and CavaDRAM states for the FIFO controller. In the
listing, fs is the state coming from CoqDRAM (defined as shown in Listing 6),
and cs is the Cava FIFO state (of type State_t). The identifiers with prefix cs_

come from get_ functions applied to cs (as in Line 2). These functions retrieve
individual signals/registers from cs, which contains every other internal signal.
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1 Definition State_Eq (fs : FIFO_state_t) (cs : State_t) : bool :=
2 let cs_state := get_state cs in ... (* every cs_ variable comes from cs *)

3 match fs with

4 | IDLE cnt cref P ⇒ (cs_state =? STATE_IDLE_VEC) && (cs_cnt =? cnt2Bv

cnt)
5 && (cs_cref =? cref2Bv cref) && (EqMem P cs_mem) && (EqQueue P wra

rda)
6 | RUNNING cnt cref P r ⇒ ... (* similar *)

7 | REFRESHING cref P ⇒ ... (* similar *)

8 end.

Listing 8. Predicate for state equality.

Note the pattern matching on fs in Line 3. If, for instance, the fs state is
an IDLE state, has a Cnt_t denoted by cnt, Cref_t denoted by cref, and Reqs_t

denoted by P, then, the predicate should evaluate to true only if a series of
conjunctions are satisfied: cs_state – the register carrying the information if the
circuit is either IDLE, RUNNING, or REFRESHING – has to evaluate to STATE_IDLE_VEC,
a literal representing the idle state; cs_cnt has to be numerically equivalent to
cnt, cs_cref has to be numerically equivalent to cref, et cetera.

The predicates EqMem and EqQueue are recursive functions that establish a
connection between both representations of the request queue. A simplified def-
inition of EqMem is shown in Listing 9. The predicate states that each element
in CoqDRAM_Q has a logical correspondence in CavaDRAM_Q. The correspondence is
defined by the predicate EqReq, which takes as arguments a CoqDRAM request and
a CavaDRAM request and outputs true if they are equal. Note that x, the element
at the head of CoqDRAM_Q, maps to nth rda CavaDRAM_Q, the element of CavaDRAM_Q
at index rda, the read address, where nth is a function used to access indexed
list elements. The following element maps to index rda + 1, and so on. We omit
the definition of EqQueue and nth for brevity.

1 Fixpoint EqMem_ {W} CoqDRAM_Q CavaDRAM_Q (rda : Bvector W) :=
2 match CoqDRAM_Q with

3 | [ ::] ⇒ true

4 | x :: x0 ⇒ (EqReq x (nth rda CavaDRAM_Q)) && (EqMem_ x0 (rda + 1)
CavaDRAM_Q)

5 end.

Listing 9. Equality of memories/request queues.

Listing 10 shows the Coq version of Definition 1 applied to our problem.
Consider an arbitrary Cava FIFO state (c_state) and an arbitrary CoqDRAM
FIFO state (f_state) – obtained through t calls to HW_Default_arbitrate. The
reason for having t – the number of clock cycles (i.e., the trace length) – explicit
is to access the incoming request at time t, denoted by R := Arrival_at t and
c_req := request_i for CoqDRAM and CavaDRAM respectively.
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1 Theorem TS_Bisimulation : forall c_state (t : nat),
2 let f_state := (HW_Default_arbitrate t).(Implementation_State) in

3 let R := Arrival_at t in let c_req := request_i t in

4 State_Eq f_state c_state →
5 let f_nextstate := fst (Next_state R f_state) in

6 exists c_nextstate,
7 (c_nextstate = fst (step FIFOSM c_state (pending_i t,c_req))) ∧
8 State_Eq f_nextstate c_nextstate.
9 Proof. ... (* Proof script not shown *) Qed.

Listing 10. The bisumulation theorem.

The rest of the theorem is equivalent to clause (1) of Definition 1, it reads:
if whenever State_Eq f_state c_state, then, for all derivative states of f_state,
denoted by f_nextstate, there exists a derivative state of c_state, denoted by
c_nextstate, such that State_Eq f_nextstate c_nextstate holds. Note that the
universal quantifier of Definition 1 is encoded into f_nextstate itself. Further-
more, f_nextstate and c_nextstate are respectively obtained through calls to
Next_state – an implementation of Next (c.f. Listing 3) – and step, a Cava func-
tion that produces a new circuit state given the previous state and inputs. The
converse theorem, corresponding to clause (2) of Definition 1, i.e., a challenge of
c_state (with universally quantified transitions) against f_state, is also true (we
omit the converse lemma for brevity). We recall that from Definition 1, proving
that a bisimulation exists proves that the two transition systems are bisimilar.

The main strategy used to drive the proof is case analysis on CoqDRAM
state definitions (such as the one in Listing 6). Moreover, the step function in
Listing 10 is unfolded and applied to every sub-circuit in a composite circuit. As
a consequence, the proof of TS_Bisimulation is structured with lemmas stating
the equivalence of individual circuits, such as in Listing 11. It states that the
step function applied to the CmdGen circuit with an input containing a cref value
equal to CNT_REF_PREA, a literal containing the counter value that dictates when
the controller should issue a PREA command,6 will indeed output a PREA.

Lemma CmdGen_equiv_idle_to_ref (c : circuit_state CmdGen) cnt cref:
(cref =? CNT_REF_PREA) = true → (* when cref reaches CNT_REF_PREA *)

snd (step CmdGen c (STATE_IDLE_VEC,true,cnt,cref,REQUEST_NIL)) = PREA_VEC.
Proof. ... (* Proof script not shown *) Qed.

Listing 11. A lemma part of the proof tree: Equivalence of CmdGen.

We use Coq’s Ltac language extensively in order to build automated proof
procedures and thus facilitate the proofs for future implementations. The
methodology for writing and proving different memory controller implementa-
tions is similar and/or follow a very specific pattern; hence, the implementation
provided here, although simple, can be effectively used as a template.

6 PREA commands are PRE commands sent to every bank at once.
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Lastly, for the FIFO controller, the proof of Theorem TS_Bisimulation has a
total of 3117 lines of code, and checking the proof takes an average of 22.54 min on
a system with the following specifications: Intel(R) Core(TM) i5-10210U CPU
@ 1.60 GHz, 8 GB RAM, and Ubuntu 22.04. The memory usage during proof
checking peaks at 5.83 GB, measured with time. The high computational load
required to check proofs about Cava circuits comes from design choices of Cava
itself – Cava circuit states are large tuples that result in lengthy terms in the
goals, therefore reducing the performance of reduction and rewriting tactics.

5 Simulation and Synthesis

With the goal validating our methodology in a “real world” setup, we start by
(certifiably) extracting the CavaDRAM code to Haskell, using standard Coq
extraction. Then, an additional Haskell script, part of the Cava tool-chain, anal-
yses the circuit AST to generate a gate-level netlist in SystemVerilog. Next,
as a host “hardware environment” for the generated code, we choose a DDR4
controller implementation for Transprecision Computing [20], which is publicly
available7 and will be referred to as DDR4cntrl for brevity.

Fig. 4. An illustration of DDR4cntrl [20] with our modifications highlighted.

Figure 4 illustrates the DDR4cntrl architecture, with our modifications
highlighted. In summary, we replace a module called rank machine with the
CavaDRAM controller. Originally, rank machine was responsible for scheduling
requests, generating and issuing DRAM commands, as well as managing REF
commands; the same tasks performed by the CavaDRAM controller.

Every other functionality is kept unchanged: the AXI logic and its interface
to the controller, the logic to control the read and write data buffers, the PHY,
and the memory model. The PHY, a Xilinx IP in this case, generates the signal
timing and sequencing required to interface to the memory device, e.g. phase

7 https://github.com/oprecomp/DDR4 controller.

https://github.com/oprecomp/DDR4_controller


308 F. L. Malaquias et al.

alignment between DQ and DQs signals, logic for initialising the DRAM after
power-up, and conversion of slow clock to fast clock.8

Simulation. We validate the approach with the two testbenches provided in
DDR4cntrl . The simulation is filled with SVA, which trigger if timing constraints
are not respected, invalid commands are issued, or transactions do not complete.
The simulation goes through with no assertions triggered.

We emphasise that achieving good performance is not the goal of this work,
but rather present the methodology and provide a proof-of-concept. Considering
that, although RTL code generated from Cava performs as well as standard Sys-
temVerilog designs,9 both simulation time and controller bandwidth worsen, for
two straightforward reasons: 1) The CavaDRAM controller was not designed to
exploit the ratio between the different clock domains of the system and the mem-
ory; therefore, it only operates at 1/4 of the available bandwidth in DDR4cntrl.
2) The FIFO algorithm does not offer competitive bandwidth compared to state-
of-the-art memory controllers.

Synthesis. Using a testbench, which is part of the DDR4cntrl source code,
we synthesise the FIFO CavaDRAM controller. A comparison of synthesis util-
isation metrics between the original DDR4cntrl and the modified CavaDRAM
version can be seen in Table 1. The results were obtained with a Xilinx Virtex
UltraScale 095FFVB2104-2 board, considering a request queue in CavaDRAM
that can store up to 256 requests.

Table 1. Key metrics from the synthesis report showing the resource utilisation on a
Xilinx Virtex UltraScale 095FFVB2104-2.

LUTs Flip-Flops bram fifo 52x4

DDR4cntrl rank_machine 8195 4644 16

Full Design 9263 6129 16

CavaDRAM CavaDRAM 5312 8605 0

Full Design 6344 9832 0

8 Inasmuch as the PHY runs at the system clock frequency (1/4 of the DRAM clock
frequency), it expects four command/address per system clock and issues them seri-
ally on consecutive DRAM clock cycles on the DRAM bus. This means that the PHY
interface provides four command slots: 0,1,2, and 3, which it accepts each system
clock. To cope with the different clock domains, we insert CavaDRAM commands
always in the first slot. The proofs in CoqDRAM do not lose validity, as lower-bounds
still hold. The only proofs that need adapting are REF related proofs, as they are
upper bounds on the spacing between REF commands. We write modified version
of such constraints considering the different clock domains.

9 https://silm-seminar.gitlabpages.inria.fr/season2/episode5/singh.pdf.

https://silm-seminar.gitlabpages.inria.fr/season2/episode5/singh.pdf
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Unsurprisingly, the CavaDRAM version uses fewer LUTs, since the FIFO
scheduling logic is simpler than what had been originally proposed in DDR4cntrl.
The total number of Flip-Flops (FFs) in the design augments, since the Vivado
synthesizer chooses to represent Cava queues with FFs rather than native FPGA
FIFOs (accessible through the bram fifo 52x4 macro). Note also that DDR4cntrl
took 88,46% and 75,77% of the total amount of LUTs and FFs in the design,
respectively. For CavaDRAM, these percentages are 83,73% and 87,52%, respec-
tively. These results show that the generated code introduces only a negligible
imbalance w.r.t. resource utilisation, compared to the replaced module.

6 Related Work

DRAM and Formal Methods. The idea of applying formal methods to verify
that DRAM controllers comply to the standards was first introduced by Datta
et al. [7]. The authors perform a manual translation of the DDR2 standards into
SystemVerilog Assertions (SVA). Kayed et al. [11] improves this idea by auto-
matically deriving SVA from timing diagrams in the standards. More recently,
Steiner et al. [19] go further by proposing automatic generation of SVA from
DRAMml scripts, a DSL that models the functional and timing properties from
JEDEC standards as Petri nets. While these approaches have incrementally
succeeded at automatically capturing and formally verifying JEDEC properties,
they cannot be used to verify broader aspects, such as latency bounds, controller
semantics, and security properties.

Li et al. [12] use the Uppaal model checker [1] to analyse memory controller
models described as Timed Automata (TA). However, in order to keep the state-
space manageable, they assume that each requestor has at most one outstanding
request, i.e., they constrain how requests arrive in the system. Moreover, there is
a large abstraction gap from the standards to the TA models, as they are complex
and written by hand [13]. Moreover, Hassan et al. [9] use Linear Temporal Logic
(LTL) formulas to specify the correctness of DRAM controllers. However, the
specification is not used to prove the actual implementation correct. Instead,
counterexamples are obtained from models by bounded model checking, which
are then used to build a test bench for the validation of the implementation.
This latter approach can be seen as complimentary.

Hardware and Deductive Verification. The idea of describing circuits
using functional programming languages was first introduced by Bjesse et al. in
Lava [2], a DSL written in Haskell. The verification part of Lava, however, was
limited, since logical formulas extracted from circuit definitions were exported
to automatic theorem provers (ATPs), and therefore limited to decidable prop-
erties. Cava implements the key concepts of Lava in Coq, allowing its user to
prove circuit properties directly from its definitions. Cava’s most notable use
case is an Advanced Encryption Standard (AES) implementation proven correct
against the AES NIST standard [8].
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Other DSLs for hardware design in Coq are Kami [6] and Kôika [4]. The
former has been used to verify a RISC-V implementation against simple ISA
semantics [3]. In short, the latter extends Kami by providing mechanisms to
enhance per-cycle performance of designs. In this work, we use Cava – which,
like the other DSLs, is built to describe circuits at a low level – to bridge the
gap from a high-level framework (CoqDRAM, written in plain Coq) to actual
synthesizable RTL. CoqDRAM captures correctness criteria directly from the
standards in their most natural form and is mainly used to prove algorithms,
using general Coq abstractions and ignoring HW limitations. Conversely, prov-
ing the properties captured by CoqDRAM directly from a Cava or Kami circuit
definition would be certainly more difficult. In our approach, by doing a sin-
gle equivalence proof, the properties ensured by CoqDRAM are inherited by
the CavaDRAM HW implementations (under some assumptions modelling HW
limitations).

7 Conclusion

We developed a framework for designing correct-by-design, standard-compliant
DRAM controllers. The feasibility of the methodology is demonstrated by one
proof-of-concept implementation. We use the generated RTL as a plug-in replace-
ment in an existing hardware design – the simulation and synthesis results pro-
vide confidence in the correctness of the Coq models. In the future, we plan
to implement state-of-the-art bus arbiters and memory controllers using this
methodology. Another research path would be to develop a DSL tailored to the
needs of DRAM controller algorithms (handling of queues and DRAM request-
s/commands) that allows an automatic translation to Cava, while maintaining
the versatility of plain Coq used in the current version of CoqDRAM.
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Abstract. The correct-by-construction state-based Event-B formal
method lacks the ability to express liveness properties using temporal
logic. To address this challenge, two approaches can be envisioned. First,
embed Event-B models in another formal method supporting liveness
properties verification. This method is cumbersome and error-prone, and
the verification result is not guaranteed on the source model. Second,
extend Event-B to support the expression of and reasoning on liveness
properties, and more generally temporal properties. Following the second
approach, in [20], J.-R. Abrial and T. S. Hoang proposed an axiomatisa-
tion of linear temporal logic (LTL) for Event-B with a set of proof obli-
gations (POs) allowing to verify these properties. These POs are math-
ematically formalised, but are neither implemented nor generated auto-
matically. In this paper, using the reflexive EB4EB framework [37,38]
allowing for manipulation of the core concepts of Event-B, we propose
to formalise and operationalise the automatic generation of proof obli-
gations associated to liveness properties expressed in LTL. Furthermore,
relying on trace-based semantics, we demonstrate the soundness of this
formalisation, and provide a set of intermediate and generic theorems to
increase the rate of proof automation for these properties. Finally, a case
study is proposed to demonstrate the use of the defined operators for
expressing and proving liveness properties.

Keywords: Proof and state-based methods · Event-B and Theories ·
Meta-theory · Reflexive EB4EB framework · Temporal logic · Liveness
properties · Traces and soundness

1 Introduction

Event-B is a formal method based on explicit state expression, refinement and
formal proof. It enables the design of complex systems using a correct by con-
struction approach. This method has been used successfully for the design of
many complex systems in various engineering areas such as aeronautics [42], rail-
way systems [8,9], health and medicine [40], etc. In particular, it has shown its
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effectiveness in establishing properties related to system functionalities, safety,
security, reachability, compliance with some temporal requirements, and so on.

Event-B models are machines that express state-transition systems using set
theory and first-order logic (FOL). A mechanism of proof by induction enables
the demonstration of inductive properties based on the preservation of properties
at initialization and by each transition (event). Refinement, on the other hand, is
defined by a weak simulation relation in which proof obligations guarantee the
preservation of behaviours between levels of abstraction. The Rodin platform
supports the development of Event-B models. It offers an environment for model
editing, automatic and interactive proofs, animation, model checking, etc.

However, Event-B, like every formal methods, lacks some capabilities. It sup-
ports the verification of a fragment of temporal logic properties: � using invari-
ants and theorem clauses and ♦ using variants and convergence proof obligations.
However, there is a lack of composition of temporal logic operators, as well as the
ability to express and reason about liveness properties. To remedy this absence,
two solutions are possible in general. The first solution consists in embedding
an Event-B model in another formal method offering the possibility of express-
ing and reasoning about liveness properties such as TLA+ [25], NuSMV [12],
PRISM [23], PAT [43], Spin [22], Uppaal [3], ProB [27] etc. However, tracing
the verification results on the source Event-B models is difficult and care must
be taken to guarantee the correctness of this embedding. This approach is very
popular and is followed by many authors who use other formal methods allowing
to express and verify this type of property without worrying about the correct-
ness of the transformation. However, there exist several approaches to ensuring
the transformation’s correctness [7,18,26,35]. The second solution consists in
extending the Event-B method to allow the expression of and reasoning on live-
ness properties. This second approach requires the expression of the semantics
and the proof system of the temporal logic in Event-B, as well as establishing
the soundness of this extension.

Based on the second approach, JR. Abrial and TS. Hoang [20] proposed an
axiomatisation of linear temporal logic (LTL) for Event-B in their article enti-
tled “Reasoning about liveness properties in Event-B”. This work has defined a
set of proof obligations allowing to establish temporal properties such as reacha-
bility, progress, persistence or until. However, these proof obligations are math-
ematically formalised in that paper but are neither implemented nor generated
automatically. They must be explicitly described in Event-B by the developer
for each model, thus leading to formalization errors. Moreover, their proofs are
cumbersome and require too much manual effort to proving them.

Relying on the reflexive EB4EB framework [37–39] defined in Event-B, we
propose to formalise and operationalise the automatic generation of proof obli-
gations associated with liveness properties expressed in LTL temporal logic. We
define an extension of EB4EB including a set of operators expressing these prop-
erties on traces. In addition, we demonstrate the soundness of these properties
on model traces. Finally, a set of intermediate and generic theorems are also
proposed to increase the rate of proof automation.
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Table 1. Global structure of Event-B Contexts, Machines and Theories
Context Machine Theory

CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATATYPES

THEOREMS Tctx THEOREMS Tmch (x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1: T1, ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1: T1, ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)
THEN direct definition D1

x :| BAP(α, x, x′) AXIOMATIC DEFINITIONS

END TYPES A1, ...
... OPERATORS

END AOp2 <nature> (p1: T1, ...): Tr

well−definedness WD(p1, ...)
AXIOMS A1, ...

THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Note that our proposed approach is non-intrusive (self-contained) and does
not require the use of any other formal techniques or tools; it is fully formalised
in Event-B and mechanised on the Rodin platform.

This paper is organised as follows. Section 2 describes the Event-B modelling
language and its Theory plugin extension. Section 3 recalls linear temporal logic,
and the EB4EB framework is described in Sect. 4. Section 5 presents the trace-
based semantics of Event-B, and its soundness properties. Section 6 describes a
case study that will be used as a running example to show how to use defined LTL
operators. Section 7 presents the temporal logic proof rules encoded as EB4EB
proof obligations. Their correctness is discussed in Sect. 8. Section 9 summarises
related work, and Sect. 10 concludes the paper.

2 Event-B

Event-B [1] is a state-based, correct-by-construction formal method, where sys-
tems are modelled with a set of events representing state changes, using first-
order logic (FOL) and set theory.

Contexts and Machines (Tables 1.a and 1b). Contexts (Table 1.a) encom-
pass the model’s static part: carrier sets s and constants c, as well as their
properties, through axioms A and theorems Tctx . Machines (Table 1.b) describe
the model’s behaviour, using a set of events evt , each of which may be guarded
G and/or parameterized by α. An event models the evolution of a set of vari-
ables x using a Before-After Predicate (BAP) that links the before (x) and
after (x′) value of the variables. Safety properties are encoded using invariants
I(x) and theorems Tmch(x), and variants V (x) may be defined to demonstrate
the machine’s convergence. Model consistency is established by discharging a
number of automatically generated POs (Table 2).

Refinements. One strength of Event-B is its refinement operation, which is
used to transform an abstract model into a more concrete one, adding infor-
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Table 2. Relevant Proof Obligations for Event-B contexts and machines

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)

(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)

(3) Initialisation (Init) A(s, c) ∧ BAP(x′)⇒ I(x′)

(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)

(5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)

(6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

mation (refined states) and behavioural (refined events) details gradually, while
retaining a similar observational behaviour (simulation relationship). Refinement
correctness is established with the help of a gluing invariant, and ensures prop-
erties are preserved from the abstract to the concrete model.

Extension with Theories. Being based on set theory and FOL, the Event-
B formalism is mathematically low-level and thus very expressive. However, it
lacks features to build up more complex structures. The theory extension has
been proposed to address this issue [10]. A theory is a type of component that
makes it possible to define new type-generic datatypes together with constructive
and axiomatic operators, specific theorems and axioms and even proof rules (see
Table 1.c). The resulting theories consistency can be established by providing
witnesses for axioms and definitions, ensuring conservative extensions of Event-
B. Once defined, elements of a theory become seamlessly available in an Event-B
model and its proofs.

This extension is central for embedding, as data types, concepts that are
unavailable in core Event-B, similar to Coq [4], Isabelle/HOL [32] or PVS [33].
Many theories have been defined, for supporting real numbers, lists, differential
equations and so on.

Well-Definedness (WD). Beyond machine-related POs, one key aspect of
model consistency is the well-definedness (WD) of the expressions involved in
it. This notion supplements the one of syntactical correctness with the idea of a
formula being “meaningful”, i.e. it can always be safely evaluated (e.g., dividing
by a term that is provably non 0). Each formula of a model is associated to a
WD PO, usually consisting in checking that operators are correctly used and
combined. Once proven, WDs are added to set of hypotheses of other POs.

Note that theories allow designers to provide custom WD conditions for par-
tially defined operators in order to precisely characterise their proper use.

The Rodin Platform. Rodin is an open source integrated development plat-
form for designing, editing and proving Event-B models. It also supports model
checking and animation with ProB, as well as code generation. Being based
on Eclipse, it also allows the definition of plug-ins, including theory extensions.
Many provers for first-order logic as well as SMT solvers are plugged to Rodin
for helping the proof process.
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3 Linear Temporal Logic

This section recalls the principles of linear temporal logic (LTL) following the
definition of Manna and Pnueli [28]. Linear temporal logic is defined syntactically
as an extension of propositional logic. A valid LTL formula consists of literals
(usually, predicates on the state of the system), the usual logical connectors (∧,
∨, ¬ and ⇒) as well as modal operators �, ♦ and U . The semantics of LTL is
expressed in terms of traces of a system. Given a trace tr = s0 �→ s1 �→ . . ., then
tri (i ∈ N) denotes the suffix trace of tr, starting from si, tri = si �→ si+1 �→ . . .

A state that satisfies a predicate P is called a P -state. LTL semantics are
given with the following rules:

1. For any state predicate P , tr � P iff s0 is a P-state.
2. tr � φ1 ∧ φ2 iff tr � φ1 and tr � φ2

3. tr � φ1 ∨ φ2 iff tr � φ1 or tr � φ2

4. tr � ¬φ iff not tr � φ
5. tr � φ1 ⇒ φ2 iff not tr � φ1 or tr � φ2

6. tr � �φ iff for all k, trk � φ
7. tr � ♦φ iff there exists a i such that tri � φ
8. tr � φ1Uφ2 iff there exists a i such that tri � φ2, and for all j < i, trj � φ1

A machine M satisfies a property φ, denoted M � φ if and only if for all
traces tr of M , that trace satisfies φ (tr � φ).

4 The EB4EB Framework

The EB4EB framework [37,38] proposes to extend the reasoning capabilities of
Event-B by enabling the access of Event-B components as first-class citizens
within Event-B models (reflection), thereby making it possible to express new
reasoning mechanism at the meta-level.

THEORY EvtBTheo
TYPE PARAMETERS St, Ev
DATATYPES Machine ( St , Ev)
CONSTRUCTORS

Cons machine(
Event : P(Ev),
State : P(St),
Init : Ev,Progress : P(Ev)
V ariant : P(St × Z),
AP : P(St),
BAP : P(Ev × (St × St)),
Grd : P(Ev × St),
Inv : P(St) ,
. . .)

Listing 1: Machine Data type

Event WellCons <pred icate>
(m : Machine(St, Ev))

direct def init ion
partition(Event(m), {Init(m)}, Progress(m))

. . .
Machine WellCons <pred icate>

(m : Machine(St, Ev))
direct def init ion

Event WellCons(m) ∧ . . .

Listing 2: Operators to check well-defined
data type (static semantics)
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Machine Structure. Event-B is formalised in an Event-B theory. A machine
is represented using the data-type Machine (see Listing 1) parameterised by
generic types with event labels (Ev) and states (St). Constructor Cons machine
gathers the components of a machine, such as Event, State, Grd, Inv, BAP, etc.

Well-Construction. A machine built using Cons machine may not be consis-
tent, despite being syntactically correct. Thus, additional operators are defined
to encode the well-construction of a machine, i.e. the consistency of its com-
ponents with regard to each others (Listing 2). For instance, Event WellCons
ensures that events are partitioned between initialisation and progress events.

Machine Proof Obligations. For any machine expressed in the framework, its
associated proof obligations are provided under the form of operators (see List-
ing 3). Such operators are predicates that rely on the set-theoretical definition
of the machine and guarded transition system semantics.

In particular, for a given machine m the predicate Mch INV(m) holds if and
only if the invariants of m hold with regard to m’s behaviour, corresponding to
PO INV (see Table 2). Following similar principles, every machine-related POs
of the Event-B method is formalised in the theory.

Mch INV Init <pred ica te> (m : Machine(St, Ev))
direct def init ion AP (m) ⊆ Inv(m)

Mch INV One Ev <pred ica te> (m : Machine(St, Ev), e : Ev)
well−definedness e ∈ Progress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch INV <pred ica te> (m : Machine(St, Ev))
direct def init ion

Mch INV Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch INV One Ev(m, e))
. . .

Listing 3: Well-defined data type operators (behavioural semantics)

Finally, the PO operators are all gathered in a conjunctive expression within
the check Machine Consistency operator (Listing 4), which thus encode the
correctness condition for the machine. It uses Machine WellCons as WD condi-
tion. At instantiation, it is used as a theorem to ensure machine correctness.

check Machine Consistency <pred ica te> (m : Machine(St, Ev))
well−definedness Machine WellCons(m)
direct def init ion Mch INV (m) ∧ . . .

Listing 4: Operator for Event-B machine consistency

Remark. The EB4EB framework makes accessible all the features of Event-B
machines, and thus enables the formalisation and verification of the fragment of
temporal logic properties already supported by classical Event-B machines: �
using invariants and theorem clauses and ♦ using variants and convergence proof
obligations. However, it does not support the composition of these operators nor
any of the other temporal logic properties.

Instantiation of the meta-theory is used to define specific Event-B machines
(instantiation) using the Cons machine constructor. An Event-B context where
values for the type parameters St and Ev are provided.
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5 Trace-Based Semantics of Event-B

Establishing the correctness of the POs provided in the EB4EB framework
requires modelling of Event-B trace-based semantics. We express traces in an
Event-B theory and relate them to an EB4EB machine. It becomes possible to
prove that a PO defined in EB4EB encodes correctly the property it formalises.

5.1 Semantics: Traces of Event-B Machines in EB4EB

A machine m consists of state variables and events describing their evolution. A
trace tr of m is a sequence of states tr = s0 �→ s1 �→ . . . �→ sn �→ . . . such that:

1. the initial state s0 satisfies the after predicate (AP) of the initialisation event
2. each pair of consecutive states si, si+1 corresponds to the activation of an

event e of m, i.e.: 1) si verifies the guard, and 2) si �→ si+1 verifies the BAP
3. if tr is finite, its final state deadlocks (i.e., system cannot progress any more)

In EB4EB, traces are encoded in a theory (Listing 5) extending EvtBTheo.
They are linked to machines. A trace is a partial function tr ∈ N �→St such that,
for any n in the domain, tr(n) = sn is the n-th state of the trace.

THEORY EvtBTraces IMPORT EvtBTheo
TYPE PARAMETERS St ,Ev
OPERATORS

IsANextState pred i ca t e (m : Machine(St,Ev) ,s : St ,sp : St )
direct def init ion

∃e · e ∈ Progress(m) ∧ s ∈ Grd(m)[{e}] ∧ s �→ sp ∈ BAP(m)[{e}]
IsATrace pred i ca t e (m : Machine(St,Ev) , tr : P(N × St))

direct def init ion
(tr ∈ N → St ∨ (∃n · n ∈ N ∧ tr ∈ 0..n → St ∧ tr(n) /∈ Grd(m)[Progress(m)]))∧
tr(0) ∈ AP(m)∧
(∀i, j · i ∈ dom(tr) ∧ j ∈ dom(tr) ∧ j = i + 1 ⇒ IsANextState(m, tr(i), tr(j)))

. . .
END

Listing 5: Theory of Event-B Traces

The operator IsATrace captures the relation between machines and traces. A
transition associated to an event in a trace is defined by the IsANextState oper-
ator. Considering a machine m and two states s and sp, the operator checks that
there exists an event e such that: 1) s verifies the guard of e (s ∈ Grd(m)[{e}]),
and 2) the pair s �→ sp verifies the BAP of e (s �→ sp ∈ BAP (m)[{e}]).

5.2 Correctness Principle

Soundness properties can be expressed with the formalisation of the semantics
using traces, in particular the correctness of the newly defined POs [38]. A generic
principle can be stated as follows.



Formalising Liveness Properties in Event-B 319

In Listing 6, each PO [PO] is associated with a thm of Correctness of [PO]
soundness theorem in the Theo4[PO]Correctness theory. It states that the [PO]
predicate definition (see Sect. 7) implies the PO predicate definition expressed
on traces using the PO Spec On Traces expression. Such theorems have been
proved for each PO introduced in the EB4EB framework.

THEORY Theo4 [PO] Correc tnes s IMPORT EvtBTraces , Theo4 [PO]
TYPE PARAMETERS St, Ev
THEOREMS

t hm of Correc tness o f [PO] :
∀m, tr · m ∈ Machine(St,Ev) ∧ Machine WellCons(m)∧

IsATrace(tr ,m) ∧ . . . ∧ [PO](m, args) ⇒ P O Spec On T races(. . .)

Listing 6: Liveness Analyses Correctness

Example: Soundness of the Invariant PO (INV). The theorem of
Listing 7 states that for any well-constructed machine m, if the invariant
PO holds (Mch INV (m)) then for any trace tr associated to this machine
(IsATrace(tr ,m)), each state of that trace is in the invariant of the machine
(tr(i) ∈ Inv(m)).

It has been proved, by induction on the indexes of the traces, using the Rodin
platform provers. This principle is applied for all the newly introduced POs, in
particular for the temporal logic properties POs introduced in this paper.

THEORY EvtBCorrectness IMPORT EvtBTraces , EvtBPO
TYPE PARAMETERS St, Ev
THEOREMS

thm of Correctness of Invar iant PO : ∀m, tr · m ∈ Machine(St,Ev)∧
Machine WellCons(m) ∧ IsATrace(tr ,m) ∧ Mch INV (m)

⇒ (∀i · i ∈ dom(tr) ⇒ tr(i) ∈ Inv(m))
END

Listing 7: Theorem of correction of the proof obligation

This approach follows the work presented in [2]. It has been used in particular
for hybrid systems as well [13].

6 A Case Study: A Read Write Machine

In the original paper [20], the authors used the read-write case study to illustrate
their approach. For comparison purposes, we use the same case study.
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MACHINE RdWrMch
VARIABLES r , w
INVARIANTS

inv1−2 : r ∈ N , w ∈ N

inv3−4 : 0 ≤ w − r , w − r ≤ 3
EVENTS

INITIALISATION
THEN

act1 : r, w := 0, 0
END

read
WHERE grd1 : r < w
THEN act1 : r := r + 1
END

write
WHERE grd1 : w < r + 3
THEN act1 : w := w + 1
END

END

(a)

CONTEXT RdWr
SETS Ev
CONSTANTS rdwr , init , read , write
AXIOMS

axm1 : partition(Ev , {init}, {read}, {write})
axm2 : rdwr ∈ Machine(Z × Z,Ev)
axm3 : Event(rdwr) = Ev
axm5 : State(rdwr) = Z × Z

axm6 : Init(rdwr) = init
axm7 : Inv(rdwr) = {r �→ w | r ∈ N ∧ w ∈ N∧

0 ≤ w − r ∧ w − r ≤ 3}
axm8 : AP(rdwr) = {0 �→ 0}
axm9 : BAP(rdwr) = {e �→ (

(r �→ w) �→ (rp �→ wp)) |
(e = read ∧ rp = r + 1 ∧ wp = w)

∨(e = write ∧ rp = r ∧ wp = w + 1)}
axm10 : Grd(rdwr) = {e �→ (r �→ w) |

(e = read ∧ r < w)∨
(e = write ∧ w < r + 3)}

axm11 : Progress(rdwr) = {read,write}
. . .
thm1 : check Machine Consistency(rdwr)

END

(b)

Listing 8: Read write machine in Event-B (a) and instantiation with EB4EB (b)

The system requirements are: Req1 – The reader process reads data from
the buffer; Req2 – The writer process writes data to the buffer; Req3 – The
reader and the writer share the same buffer; Req4 – The shared buffer has a
fixed size of 3; Req5 – The system does not stop when data is written and not
read; and Req6 – The reader eventually reads L, L ∈ N, pieces of data.

Listing 8.a proposes the RdWrMch Event-B machine fulfilling the above
requirements. The reader (resp. writer) is modelled by variable r (resp. w) cor-
responding to its position in the buffer and by event read (resp. write) that
represents the associated input/output operation and increments the pointer
(Req1 and Req2). The shared buffer is captured by interval r + 1..w (Req3).
The correct formalisation of the events, i.e. data that has not been written yet
is not read and the amount of data in the buffer does not exceed 3 (Req4), is
guaranteed by invariants inv3-4. Listing 8.b shows the context obtained when
instantiating the EvtBTheo theory (Listing 1) of the EB4EB framework. The
thm1 theorem guarantees the consistency of the RdWrMch Event-B machine.

Missing Requirements. Req5 and Req6 are not safety properties in the usual
sense and are not present in the current model. Event-B does not natively provide
explicit constructs for handling them. Additional modelling effort is necessary,
like introducing variants and new theorems and altering events.
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7 Temporal Logic Proof Rules as EB4EB POs

To support temporal logic properties and handle the
THEORY Theo4Liveness
IMPORT EvtBTheo
TYPE PARAMETERS Ev ,St
. . .

Listing 9: Liveness
operators Theory

missing requirements, we propose an Event-B exten-
sion relying on the EB4EB framework. This section
presents the formalisation of the liveness properties,
introduced in [20], that are missing in core Event-B.
For this purpose, we extend the EB4EB framework to
introduce the corresponding PO definitions. All the
definitions are formalised in the Theo4Liveness theory (see Listings 9) extend-
ing the EvtBTheo theory of EB4EB using a set of operators, defined for each
proof rule defined in [20]. Each of these definitions is introduced below. Note
that each of the following tables contain two parts, where (a) is from [20] and
(b) our corresponding formalization.

Notations. For a predicate P on states of St, we define the subset P̂ of states
satisfying the property P as P̂ = {x ∈ St | P (x)}.

7.1 Liveness Properties

This section presents core definitions for expressing formal definition of liveness
properties. We first describe the basic building operators.

Machine M Leads From P1 to P2, P1 � P2 (TLLeads From P1 To P2 Oper-
ator). For a machine M , given two state formulas P1 and P2, we state that
M leads from P1 to P2 if for every trace of M with two successor states
such that si ∈ P̂1 then si+1 ∈ P̂2. The given property of Table 3(a) is for-
mally defined by the operator TLLeads From P1 To P2 with a machine m and
two set of states P̂1 and P̂2 as parameters. Its direct definition is a predicate
BAP (m)[{e}][P̂1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ P̂2 stating that for all progress
events of machine m that preserve invariant, states of P̂1 lead to P̂2.

Table 3. Leads from P1 to P2 encoded in EB4EB

The Sequent Rule for � Associated Operator in EB4EB

TLLeads From P1 To P2 <predicate>

(m : Machine(St, Ev), P̂1 : P(St), P̂2 : P(St))

P1 � P2 ≡ ∀v, v′, x· direct definition

P1(v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ P2(v
′) ∀e · e ∈ Progress(m) ⇒

BAP (m)[{e}][P̂1 ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ P̂2

(a) (b)

Machine M is Convergent in P , ↓ P (TLConvergent In P Operator). For a
given property P , a machine M is convergent in P if it does not allow for an infi-
nite sequence of P -states (i.e. states satisfying the property P ). It is formalised
in Table 4(a) by the predicate operator TLConvergent In P on machine m, set
of states P̂ and variant v. The operator’s WD condition ensures that the variant
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Table 4. Convergence in P encoded in EB4EB

The Sequent Rule of ↓ Associated Operator in EB4EB

TLConvergent In P <predicate>

(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z))

well−definedness v ∈ St → Z

↓ P ≡ ∀x, v, v′· direct definition

(P (v) ∧ G(x, v) ⇒ V (v) ∈ N)∧ ∀e · e ∈ Progress(m) ⇒ (

(P (v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ V (v′) < V (v)) v[P̂ ∩ Grd(m)[{e}] ∩ Inv(m)] ⊆ N∧
(∀s, s′ · s ∈ Inv(m) ∧ s ∈ P̂∧

s ∈ Grd(m)[{e}] ∧ s′ ∈ BAP (m)[{e}][{s}]

⇒ v(s′) < v(s)))

(a) (b)

is associated to each state. The operator states that, for all progress events e,
when its before-after-states s and s′ satisfy P , variant v decreases (v(s′) < v(s)).

Machine M is Divergent in P , ↗ P (TLDivergent In P Operator). Diver-
gence property guarantees that any infinite trace of a machine M ends with an
infinite sequence of P -states. The operator TLDivergent In P of Table 5(a) is
identical to the previous convergent operator, except that the variant does not
decrease strictly (v(s′) ≤ v(s)) allowing divergent sequences of P -states.

Table 5. Divergence in P encoded in EB4EB

The Sequent Rule of ↗ Associated Operator in EB4EB

TLDivergent In P <predicate>

↗ P ≡ ∀x, v, v′· (m : Machine(St, Ev), P̂ : P(St), v : P(St × Z))

(¬P (v) ∧ G(x, v) ⇒ V (v) ∈ N) ∧ well−definedness v ∈ St → Z

(¬P (v) ∧ G(x, v) ∧ A(x, v, v′) ⇒ direct definition

V (v′) < V (v)) ∧ TLConvergent In P (m, St \ P̂ , v)∧
(P (v) ∧ G(x, v) ∧ A(x, v, v′) ∧ V (v′) ∈ N ⇒ ∀e · e ∈ Progress(m) ⇒ (

V (v′) ≤ V (v)) (∀s, s′ · s ∈ Inv(m) ∧ s ∈ P̂ ∧ s ∈ Grd(m)[{e}]

∧ s′ ∈ BAP (m)[{e}][{s}] ∧ v(s′) ∈ N

⇒ v(s′) ≤ v(s)))

(a) (b)

Machine M is Deadlock-free in P , � P (TLDeadlock Free In POperator).
The deadlock-freeness states that a trace of a machine M never reaches a P -state
where no event is enabled. It requires that, in a P -state, at least one event of
M is enabled. This property is defined in Table 6(a) and is formalised by the
operator TLDeadlock Free In P in Table 6(b).

The expression P̂ ∩ Inv(m) ⊆ Grd(m)[ Progress(m)] ensures that at least
one progress event of the Progress(m) set is enabled in a P -state satisfying the
invariant.
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Table 6. Deadlock-freeness in P encoded in EB4EB

The Sequent Rule of � Associated Operator in EB4EB

� P ≡ ∀v · P (v) ⇒ ∨
i(∃x · Gi(x, v))

TLDeadlock Free In P <predicate>

(m : Machine(St, Ev), P̂ : P(St))

direct definition

P̂ ∩ Inv(m) ⊆ Grd(m)[Progress(m)]

(a) (b)

7.2 Deadlock Freeness � P applied to the Read-Write machine

CONTEXT RdWrDeadlockFree
EXTENDS RdWr
THEOREMS

thmDeadlockFreeInP :
TLDeadlock Free In P(rdwr ,

{r �→ w | w ∈ Z ∧ r ∈ Z ∧ r < w})
END

Listing 10: Generation of Proof
Obligation of Deadlock Free In P

We illustrate how the operators
defined above work in the extended
EB4EB framework on the read
write case study, with the case
of the deadlock-freeness property
ensuring requirement Req5.

A context RdWrDeadlockFree,
extending the context RdWr of List-
ing 8 is defined with a theorem,
thmDeadlockFreeInP. This theorem uses the predicate operator Deadlock-
Free In P, previously formalised. Here, the P̂ parameter is composed of the pair
of state variables r �→ w and the property P defined by w ∈ Z ∧ r ∈ Z ∧ r < w.
Indeed, the machine does not deadlock if it reads less data than it writes. Remem-
ber that when a theorem is stated, a PO is automatically generated requiring to
prove it.

7.3 Temporal Operator Proof Rules

Section 7.1 presents a formalisation of the basic temporal operators allowing to
define liveness properties. This section is devoted to the formalisation of more
complex temporal properties, relying on the operators previously defined, like
TLGlobally, TLExistence TLUntil, TLProgress, and TLPersistence. Each of
them is defined in the same manner as the previous ones.

Invariance, �I (TLGlobally Operator). In Event-B, safety properties are
commonly described as invariants. Although this property is already available
in core Event-B, it can be formalised in EB4EB as well.

Table 7(a) expresses this property using two sequents. The first one is the
inductive invariant proof rule and the second one defines, as theorems, all of the
entailed stronger invariants. The TLGlobally operator of Table 7(b) defines this
property as Inv(m) ⊆ Î; it reuses the native invariant PO of EB4EB.
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Table 7. Invariance encoded in EB4EB

The Sequent Rule of � Associated Operator in EB4EB

� init ⇒ I M � I � I
M � �I

TLGlobally <predicate>

(m : Machine(St, Ev), Î : P(St))

� J ⇒ I M � �J
M � �I

direct definition

Inv(m) ⊆ Î

(a) (b)

Existence, �♦P (TLExistence Operator). The existence temporal property
states that a property P always eventually holds for machine M . To express
existence �♦P in a machine M , we rely on convergence and deadlock-freeness.
Indeed, the machine shall be convergent on ¬P -states, i.e., sometimes ¬P does
not hold and ¬P -states are not deadlocks. The defined TLExistence predicate
operator is defined as the conjunction of the two corresponding previously defined
operators on a set P̂ and a variant v (Table 8).

Table 8. Existence encoded in EB4EB

The Sequent Rule of �♦ Associated Operator in EB4EB

M � ↓ ¬P M � � ¬P

M � �♦P

TLExistence <predicate>

(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z)

well−definedness v ∈ St → Z

direct definition

TLConvergent In P (m, St \ P̂ , v)∧
TLDeadlock Free In P (m, St \ P̂ )

(a) (b)

Until, �(P1 ⇒ (P1UP2)) (TLUntil Operator). The Until property states that
a P1-state is always followed eventually by a P2-state. Its definition relies on
the leads-to and existence properties we have introduced. The Until property
requires two antecedents, a leads to from P1∧¬P2 to P1∨P2 in the next state and
the second is the existence of ¬P1∨P2 (see Table 9(a)). This proof rule is directly
formalises using the TLUntil operator (see Table 9(b)). It requires two properties
P1 (P̂1 set) and P2 (P̂2 set) and a variant v. It is defined as the conjunction of
the TLLeads From P1 To P2 and TLExistence predicate operators.
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Table 9. Until encoded in EB4EB

The Sequent Rule of �(P1 ⇒ (P1UP2) Associated Operator in EB4EB

TLUntil<predicate> (m : Machine(St, Ev),

A ≡ (P1 ∧ ¬P2) � (P1 ∨ P2)
P̂1 : P(St), P̂2 : P(St), v : P(St × Z)

B ≡ �♦(¬P1 ∨ P2)
well−definedness v ∈ St → Z

M � A M � B
M � �(P1 ⇒ (P1UP2))

direct definition

Leads From P1 To P2(

m, P̂1 ∩ (St \ P̂2), P̂1 ∪ P̂2)

∧ TLExistence(m, (St \ P̂1) ∪ P̂2, v)

(a) (b)

Progress, �(P1 ⇒ (♦P2)) (TLProgress Operator). Close to the Until prop-
erty, a more general property, namely Progress can be defined. It states that
always P1-states reaches P2-states. This property does not require P1 to always
hold before reaching P2-states. To describe this property, an intermediate prop-
erty P3 holding before P2 holds is introduced. It acts as a local invariant between
P1-states and P2-states.

Table 10. Progress encoded in EB4EB

The Sequent Rule of �(P1 ⇒ ♦P2) Associated Operator in EB4EB

TLProgress<predicate> (m : Machine(St, Ev),

A ≡ �(P1 ∧ ¬P2 ⇒ P3) P̂1 : P(St), P̂2 : P(St), P̂3 : P(St), v : P(St × Z)

B ≡ �(P3 ⇒ (P3UP2)) well−definedness v ∈ St → Z

M � A M � B
M � �(P1 ⇒ (♦P2))

direct definition

TLGlobally(m, P̂3 ∪ P̂2 ∪ (St \ P̂1))∧
TLUntil(m, variant, P̂3, P̂2)

(a) (b)

The Progress proof rule of Table 10(a) has two antecedents. One states that
always P1 ∧ ¬P2 ⇒ P3 and the second uses the previously defined Until prop-
erty as �(P3 ⇒ (P3UP2)). The TLProgress predicate operator is the conjunc-
tion of the application of the two predicate operators, Leads From P1 To P2 and
TLUntil on the P̂1, P̂2 and P̂3 sets and the variant v, encoding the antecedents.

Persistence, ♦�P (TLPersistence Operator). Persistence is the last prop-
erty we formalise. It states that a predicate P must eventually hold for-
ever (♦�P ). The two antecedents of the associated proof rule, presented in
Table 11(a), state that P -states are divergent ¬P -states are deadlock-free. The
TLPersistence predicate operator is defined as a conjunctive expression of
TLDivergent In P and TLDeadlock Free In P operators with the P̂ for the
property P and the variant v as input parameters.
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Table 11. Persistence encoded in EB4EB

The Sequent Rule of ♦� Associated Operator in EB4EB

M � ↗ P M � � ¬P

M � ♦�P

TLPersistence <predicate>

(m : Machine(St, Ev), P̂ : P(St), v : P(St × Z)

well−definedness v ∈ St → Z

direct definition

TLDivergent In P (m, P̂ , variant)∧
TLDeadlock Free In P (m, St \ P̂ )

(a) (b)

7.4 Existence �♦P applied to the read write machine

CONTEXT RdWrExistence
EXTENDS RdWrDeadlockFree
CONSTANTS L
AXIOMS

axm1 : L ∈ N

thmExistence : TLExistence(
rdwr , {r �→ w | w ∈ Z ∧ r ≥ L},
{(r �→ w) �→ v |

v = ((L − r) + (L + 3 − w))})
END

Listing 11: Generation of Proof Obligation
of Existence

The temporal operators defined
in [20] have been successfully for-
malised in the EB4EB as predi-
cate operators used as theorems
to be proved for any Event-B
machine.

Here, we show how Req6 (the
reader eventually reads L, L ∈ N,
pieces of data) expressed for the
read write case study is fulfilled
thanks to the TLExistence operator. Like for deadlock freeness in Sect. 7.2, we
introduce a new Event-B context RdWrExistence (see Listing 11), extending the
RdWr context of Listing 8, with a theorem stating the existence property. The
existence operator is used with a set of states {r �→ w | w ∈ Z ∧ r ≥ L} and a
variant v = ((L − r) + (L + 3 − w))}).

8 Correctness of the Temporal Logic Properties Proof
Rules

The last step establishes the correctness
THEORY Theo4LivenessCorrectness

IMPORT Theo4Liveness , EvtBTraces
TYPE PARAMETERS St, Ev
. . .

Listing 12: Theory of correctness

of our formalisation with respect to the
semantics of trace, i.e. the defined proof
rules actually hold on the traces of the
Event-B machines. The verification prin-
ciple of Sect. 5.2 is set up for this pur-
pose. A theory Theo4LivenessCorrectness (Listing 12) provides a list of cor-
rectness theorems for each of the defined operators. It imports the previously
developed theories related to liveness properties Theo4Liveness and Event-B
traces EvtBTraces.

Below, we present the correctness theorem for the TLExistence property. All
the other theorems are formalised1 and proved using the Rodin Platform.
1 https://www.irit.fr/∼Peter.Riviere/models/.

https://www.irit.fr/~Peter.Riviere/models/


Formalising Liveness Properties in Event-B 327

Existence in Pcorrectness theorem �♦P (TLExistence). The correctness
of the existence property follows the principle of Sect. 5.2. It is supported by
the proved thm of correctness of Existence theorem stating that a prop-
erty P always eventually holds in traces of a machine m. It states that for
any well constructed (Machine WellCons(m)) and consistent (check Machine-
Consistency(m)) machine, and for any trace tr of this machine satisfying the

existence property TLExistence(m, P̂ , variant), then for all i there exists j with
j ≥ i where tr(j) satisfies the property P .

THEOREMS

t hm of Correc tness o f Ex i s t ence : ∀m, tr , v , P̂ · v ∈ STATE → Z∧
m ∈ Machine(STATE ,EVENT) ∧ Machine WellCons(m)∧
check Machine Consistency(m) ∧ IsATrace(m, tr) ∧ TLExistence(m, P̂ , v)

⇒ (∀i · i ∈ dom(tr) ⇒ (∃j · j ≥ i ∧ j ∈ dom(tr) ∧ tr(j) ∈ P̂ ))
. . .

Listing 13: Theorem of correctness of the operators Existence

9 Related Work

Reflexive modelling is present under various forms in formal methods. For
instance, the ASM-Metamodel API (AsmM) for Abstract State Machines (ASM)
has been developed to be able to handle ASM-related concepts. This leads to sev-
eral extensions, analyses and tools for ASMs [36]. This is also the case when using
Mural to modify a VDM specification [5]. Furthermore, the reflexive modelling
is also addressed with proof assistants like Coq with MetaCoq [41], Agda [34],
PVS [31], HOL [15] and Lean [14] and Event-B with EB4EB [37,38].

Correctness of the Event-B method and its modelling components has been
tackled in various previous work. A meta-level study of Event-B context struc-
ture is proposed in particular to validate the expected properties of theorem
instantiation [6]. Event-B has also been formalised as an institution in category
theory [16,17], with the aim to facilitate and enable composition of heteroge-
neous semantics and of different model specifications. Similarly, Event-B has
been embedded in Coq [11] in order to establish the correctness of refinement,
i.e. that the refinement POs entail the validity of refinement in the trace-based
semantics. Last, a form of shallow embedding of Event-B in itself has been pro-
posed and serves as the basis of a methodology for proving the correctness of
decomposition and re-composition of Event-B machines [19].

Event-B’s methodology is mainly aimed at defining and proving safety prop-
erties (that must always hold), or possible convergence. Expressing liveness prop-
erties (that must hold at some point [24]) is not as trivial, and many authors
address this issue. For Event-B, the ProB model-checker [27] handles Event-B
models and enables the expression and verification of liveness properties. Some
liveness operators have been formalised to be used in Event-B, together with their
related hypotheses [20], making it possible to express some liveness properties.
However, it is to be noted that liveness properties are not generally preserved by
refinement. To address this latter issue, additional conditions on the refinement



328 P. Rivière et al.

must be posed, leading to the definition of particular refinement strategies [21],
which are proven to preserve liveness properties through to the concrete model.
In addition, the problem of fairness has also been studied. For instance, the work
of [30] proposes to check fairness of Event-B machines in TLA (on a per-machine
basis). Refinement strategies have been defined as well to ensure that fairness
and liveness properties are preserved [44].

Our proposed approach is based on the reflexive modelling of Event-B on
itself, which is fully integrated into Rodin development environment using the
Theory Plugin [10]. Our framework is fully formalised in Event-B and relies
solely on FOL and set theory, similar to other approach like MetaCoq [41] with
dependent type. Such characteristic makes it possible to export models expressed
using the framework to any other formalism based on FOL and set theory while
preserving the state-transition semantics of the model. Therefore, the issue of
the translation of the universe and the semantics’ preservation are not related
to our work due to the reflexive modelling.

10 Conclusion

This paper has presented a formalisation of liveness properties for Event-B mod-
els by encoding LTL temporal logic expressions on the Rodin platform using the
reflexive EB4EB framework. LTL logic expressions of properties are formalised
within the defined framework. Automatic generation of proof obligations related
to the expressed properties and the soundness of the defined proof rules using
a trace based semantics have been addressed as well. The proposed approach
relies on the definition of algebraic theories offering the capability to define new
operators. The read write machine case study was borrowed from [20] to illus-
trate our approach. Other case studies have been developed as well (Peterson
algorithm [39] and behavioural analyses in human computer interaction [29]).

The proposed framework supports non-intrusive analysis for Event-B mod-
els, allowing liveness properties to be expressed and verified on any size Event-B
formal model and at any refinement level without resorting to any other for-
mal methods. Since our framework allows checking temporal properties at any
refinement level, it avoids dealing with the preservation of temporal properties by
refinement. Furthermore, the proof process has been enhanced with relevant and
proven rewrite rules, which have been incorporated into Rodin tactics, resulting
in a high level of proof automation. All the developments illustrated in this paper
have been fully formalised and proved using the Rodin platform. They can be
accessed on https://www.irit.fr/∼Peter.Riviere/models/

This work leads to several perspectives. First, we plan to study the capability
to allow compositional definitions of LTL properties relying on the defined basic
operators. In addition, the proposed approach makes it possible to define other
Event-B model analyses or domain specific theories shared by many Event-B

https://www.irit.fr/~Peter.Riviere/models/


Formalising Liveness Properties in Event-B 329

models. Last, we believe that our approach can be scaled up to other state
based methods provided that a reflexive meta-model is available.
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11. Castéran, P.: An explicit semantics for event-b refinements. In: Ait-Ameur, Y.,
Nakajima, S., Méry, D. (eds.) Implicit and Explicit Semantics Integration in Proof-
Based Developments of Discrete Systems, pp. 155–173. Springer, Singapore (2021).
https://doi.org/10.1007/978-981-15-5054-6 8

https://doi.org/10.1007/978-3-031-07727-2_2
https://doi.org/10.1007/978-3-031-07727-2_2
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-54834-3_23
https://doi.org/10.1007/3-540-54834-3_23
https://doi.org/10.1007/978-3-030-77543-8_5
https://doi.org/10.1007/978-3-319-68499-4_5
https://doi.org/10.1007/978-3-030-58298-2_8
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-3-642-39698-4_5
https://doi.org/10.1007/978-981-15-5054-6_8


330 P. Rivière et al.

12. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

13. Dupont, G., Aı̈t Ameur, Y., Singh, N.K., Pantel, M.: Event-B hybridation: a proof
and refinement-based framework for modelling hybrid systems. ACM TECS 20(4),
35:1–35:37 (2021)

14. Ebner, G., Ullrich, S., Roesch, J., Avigad, J., de Moura, L.: A metaprogramming
framework for formal verification. ACM PACMPL 1(ICFP), 34:1–34:29 (2017)

15. Fallenstein, B., Kumar, R.: Proof-producing reflection for HOL. In: Urban, C.,
Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 170–186. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22102-1 11

16. Farrell, M., Monahan, R., Power, J.F.: An institution for Event-B. In: James, P.,
Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 104–119. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 8

17. Farrell, M., Monahan, R., Power, J.F.: Building specifications in the Event-B insti-
tution. Log.Methods Comput. Sci. 18(4) (2022). https://doi.org/10.46298/lmcs-
18(4:4)2022

18. Halchin, A., Ameur, Y.A., Singh, N.K., Ordioni, J., Feliachi, A.: Handling B models
in the PERF integrated verification framework: formalised and certified embedding.
Sci. Comput. Program. Elsevier 196, 102477 (2020)

19. Hallerstede, S., Hoang, T.S.: Refinement of decomposed models by interface instan-
tiation. Elsevier SCP 94, 144–163 (2014)

20. Hoang, T.S., Abrial, J.-R.: Reasoning about liveness properties in Event-B. In: Qin,
S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 456–471. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24559-6 31

21. Hoang, T.S., Schneider, S., Treharne, H., Williams, D.M.: Foundations for using
linear temporal logic in Event-B refinement. Formal Aspects Comput. 28(6), 909–
935 (2016). https://doi.org/10.1007/s00165-016-0376-0

22. Holzmann, G.: Spin Model Checker, The: Primer and Reference Manual, first edn.
Addison-Wesley Professional, Boston (2003)

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

24. Lamport, L.: Proving the correctness of multiprocess programs. IEEE TSE 3(2),
125–143 (1977)

25. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc., Boston
(2002)
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Abstract. Verification of hardware-based cryptographic accelerators
connects a low-level RTL implementation to the abstract algorithm itself;
generally, the more optimized for performance an accelerator is, the more
challenging its verification. This paper introduces a verification method-
ology, model validation, that uses a formalized high-level synthesis lan-
guage (FHLS) as an intermediary between algorithm specification and
hardware implementation. The foundation of our approach to model val-
idation is a mechanized denotational semantics for the ReWire HLS lan-
guage. Model validation proves the faithfulness of FHLS models to the
RTL implementation and we summarize a model validation case study
for a suite of pipelined Barrett multipliers.

Keywords: Programming languages and models · Verifying
cryptographic systems · Automated theorem proving

1 Introduction

This paper presents the mechanized semantics for the functional high-level syn-
thesis (HLS) language ReWire [48,53], where ReWire is an embedded DSL in
Haskell for expressing synchronous hardware designs. This semantics is the cor-
nerstone of a hardware verification methodology called model validation that
we also introduce with the verification case study of a family of cryptographic
accelerators for fully homomorphic encryption. With model validation, ReWire
plays a dual role as a language for both formal modeling and implementation.

Fig. 1. Model Validation Methodology.

Model validation (Fig. 1) estab-
lishes that a Verilog design pro-
duces the same results as a ver-
ified correct ReWire model. The
first path (model; embed; verify) cre-
ates a ReWire model, embeds it in
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a theorem prover via ReWire’s formalized semantics, and verifies its functional
correctness. The second path (model ; validate) validates the fidelity of the ReWire
model to the Verilog design by establishing functional equivalence using the
model-checking capabilities in YoSys [59].

Synchronous circuitry never terminates and, consequently, neither do ReWire
programs. ReWire syntax and semantics are structured by reactive resumption
monads over state (RRS), where computations in RRS monads [18,34,43,45,
57] resemble potentially infinite sequences of stateful actions. Non-terminating
computation can be challenging to mechanize with a theorem prover and, for the
ReWire semantics, this challenge is overcome by an alternative representation
of RRS monads using infinite streams. This stream-based RRS representation
allows an embedding of ReWire directly into any prover with a stream library—
we provide example embeddings of the semantics in Isabelle, Coq, and Agda [12].
The semantics resembles a Reynolds-style definitional interpreter [52], although
our semantics targets theorem prover object languages rather than a general-
purpose functional programming language as Reynolds’ classic paper did. The
shallow embedding uses effect labels [41] to distinguish between the termination
behavior of ReWire terms and to selectively pick the appropriate denotations.

This focus of this paper is primarily on the embed arrow in Fig. 1 and we
leave a broader discussion of model validation and its uses for follow-on publica-
tions. The remainder of this section introduces background on ReWire. Section 2
presents the formalization of ReWire as a typed λ-calculus and the embedding
of this semantics in three theorem proving systems: Isabelle, Coq, and Agda. It
is with the Isabelle embedding that we perform the formal verification of the
family of pipelined Barrett multipliers in Sect. 3. Section 3 describes the BMM
case study at a high-level due to lack of space. Section 4 reviews related work and
Sect. 5 summarizes our results and outlines future directions for this research.

ReWire is a domain-specific language (DSL) embedded in Haskell for express-
ing, implementing, and verifying hardware designs. All ReWire programs are
Haskell programs (but not necessarily vice versa). We assume of necessity that
the reader is familiar with functional languages and especially with the use of
monads to model effects in functional programming (see Appendix A for an
overview). We first illustrate ReWire syntax and semantics in terms of two sim-
ple examples: Mealy machines and carry-save adders.

Fig. 2. Mealy Machines (a); Corresponding Mealy Template in ReWire (b).
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Mealy machines (Fig. 2a) are a common mental model for designers of sequen-
tial circuitry [26,35]. Given current values of the input (i), internal storage (s),
and output (o), the internal combinational logic of the Mealy machine computes
the storage and output values for the next clock cycle. Figure 2b presents a
ReWire template encoding the Mealy machine. The type constructors, Re i s o
and ST s, refer, respectively, to a reactive resumption monad over state and to
the state monad. The type variables i, s, and o in Re i s o correspond directly
to the Mealy machine’s input, storage, and output types. Monads like Re i s o
and ST s possess their respective monadic unit (return) and bind (>>=) opera-
tors (that are typically overloaded in both Haskell and ReWire). Operations in
ST s read and write storage typed in s. The Re operation lift injects a stateful
computation into Re and signal performs synchronous input-output.

It is possible to describe what mealy does intuitively before presenting any
formal semantics (although readers experienced with monadic semantics may
find Fig. 4 useful at this point). Calls to onecycle describe exactly one clock cycle
of circuit execution, while calls to mealy describe an entire circuit computation
itself. The internal action of a cycle, lift (internal i), in combination with
the current internal storage (of type s), updates that storage, and computes the
next output o. The signal operator sends its argument to the output ports
and, then, returns the next input. Producing a signal, (signal o), sends the
computed output to the output port, and signifies the completion of a clock cycle;
mealy then continues, ad infinitum. ST (resp., Re) operations will ultimately be
compiled into combinational (resp., sequential) circuitry by the ReWire compiler.

Fig. 3. ReWire source code for Carry-Save Adder Functions. The operators &, |, and
⊕ are bitwise and, inclusive or, and exclusive or. Operator << is shift-left.
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A carry-save adder (CSA) is a function which takes in three n-bit words a,
b, and c, and computes two n-bit words s and c′, such that a + b + c = s + c′.
Figure 3 presents three ReWire functions for CSA circuits for n = 8. The function
f defines the carry-save operation, so that, for example, f 40 25 20 = (48, 37),
representing W8 words as integers for readability. The answer Ans data type
indicates whether an output is valid. Function csa accepts inputs a, b, and c
on each clock cycle, computes their carry-save sum, and sends that sum to the
outport port before starting again. The behavior of scsa is the same as csa,
but scsa also stores the result in a local store of type (W8, W8)—this difference
is reflected in the types of csa and scsa in Fig. 3. Function pcsa is pipelined,
accepting inputs on successive clock cycles and computing the carry-save sum
when the third input, c, is available. While it waits, DC is signaled, and, once
all three arguments are available, Val of the carry-save sum is signaled.

The bad function in Fig. 3 is not valid ReWire because it is not signal-
productive—i.e., there is no output-producing call to signal. Signal-productivity
means that ReWire programs regularly produce outputs analogously to how syn-
chronous circuits (e.g., mealy in Fig. 2a) produce outputs on every clock signal.
Signal-productivity is enforced by the type system below in Sect. 2 (e.g., so that
bad does not type check).

The ReWire compiler can translate functions like mealy, csa, scsa, and
pcsa into synthesizable VHDL or Verilog (as shorthand, we call such func-
tions devices). But not every Haskell function with codomain Re i s o a is a
device—there are three main provisos arising from the nature of synchronous
hardware—and none of these provisos is enforced by the Haskell type system.
The first proviso limits recursion in devices to tail recursion, because tail recur-
sion only requires a fixed memory footprint. Arbitrary recursive Haskell functions
may require a stack and heap and such dynamic allocation is anathema to hard-
ware. The second proviso requires that devices never terminate—i.e., just like a
synchronous circuit, they should (in principle) never terminate on any inputs.
The third proviso is that they be signal-productive—the Haskell function bad
in Fig. 3 is not signal-productive and, hence, is not a ReWire device. The effect
type system described in Sect. 2 enforces each these requirements so that Re∞

(Re+) is the type for devices (resp., signal-productive, terminating terms).
A conventional formulation of Re appears in Fig. 4. In ReWire, Re is con-

structed using Haskell monad transformers, but rather than introducing that
notational overhead here, we define Re directly in Fig. 4. The functor part of Re
is written in a categorical style followed by the definitions of its unit (return)
and bind (>>=). Additional structure includes lift (which lifts a stateful com-
putation into Re) and signal (which sends o to the “output port”). We include
these definitions for reference and to make the article self-contained.

2 Formalizing ReWire

The ReWire formalization is a conventionally structured denotational semantics
of the form, �−� : (Γ � t) → EnvΓ → �t� , mapping a well-typed term and suit-
able environment into a domain of values. We first present the term and type

https://en.wikipedia.org/wiki/Carry-save_adder
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Fig. 4. Reactive Resumption Monads over State. Re is a synchronous concurrency
monad allowing expression of both terminating and non-terminating threads; it consti-
tutes a core part of ReWire’s syntax and semantics. The codebase includes a Haskell
rendering of this semantics [12].

syntax of the formalized ReWire effect calculus and then the mechanization of
RRS monads. RRS monads originated in the denotational semantics of concur-
rent and parallel languages [18,34,43,45,57]; much of the challenge of formalizing
ReWire originates in representing them in a theorem prover.

We use the term denotational advisedly for our semantics, because the term
may evoke expectations in some readers of some explicit form of CPO semantics.
The ReWire semantics takes the form of, to borrow a term from Reynolds [52], a
definitional interpreter—i.e., an embedding of a source language into a conven-
tional functional programming language. Here, however, the embedding maps a
typed syntax for ReWire into the object language of a theorem prover (specif-
ically Isabelle, Agda, and Coq). The domain semantics displayed in Fig. 6a is
based on infinite streams of snapshots and this enabled the straightforward
definitional embedding of ReWire into Isabelle, Coq, and Agda, because each
of these provers possesses a stream library. This obviated the need for a deep
embedding of the denotational semantics in the manner of, for example, Huff-
man et al. [24,25] or Schröder [54]. We present the Agda formalization because
Agda’s syntax is simpler to read than either that of Coq or Isabelle [12], and
within that code, several syntactic simplifications have been made to improve
readability (e.g., removing certain quantifiers or implicitly-passed variables, etc.).

ReWire is a computational λ-calculus (in the sense of Moggi [37]) with
monadic constructs corresponding to the Re and ST monads from Fig. 4. The
type language in Fig. 5a includes effect labels indicating the termination and pro-
ductivity behavior of expressible programs. The intrinsically-typed term syntax
encodes typing rules in the constructors. The type language contains base types
specific to hardware: bit and the standard logic vector type constructor (slv)
that takes a natural number representing bit vector size. We elide operations on
low-level data types in Fig. 5a because they are not remarkable.

The syntax is parameterized by productivity labels, 0, +, and ∞, which are
ordered linearly so that p � q returns the maximum of labels p and q. Terms
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Fig. 5. ReWire as an Effect Calculus.
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of 0-productivity are created with liftr and returnr or binds of 0-productive
computations. Such computations correspond to computations by combinational
circuitry between clock cycles. Terms of +-productivity are created with signal
or binds, x >>= f, in which at least one of x or f is a +-productive computations.
Computations typed in Re+ correspond to signal-productive, terminating com-
putations spanning at least one clock cycle. One could define >>=pq for cases in
which p and/or q is ∞, but we have not done so here. In Haskell, for example,
x>>=f is identical to x when x is non-terminating; such terms are not of use
in expressing hardware designs in ReWire. Terms of ∞-productivity—i.e., what
we previously called devices—may be only created with the recursion-binder
loop. To represent the mealy program from Fig. 2b in the ReWire Calculus,
one would refactor its definition with loop so that mealy : i → Re∞i s o and
mealy = loop onecycle. Refactoring with a recursion operator is a common
syntactic change of representation in denotational semantics.

Figure 5b defines the denotational semantics of the ReWire calculus. It is
worth remarking on its structure and organization now, but detailed discussion
is deferred until the end of this section. The domain semantics (�−�) maps each
type Ty into a corresponding Agda Set. For the RRS monadic type constructors,
there are corresponding constructions indexed by effect labels and these are
defined in the next section. Most of the cases in the semantics of terms (�−�) are
similarly not remarkable except in the monadic cases. Corresponding to syntactic
binds (i.e., >>=pq) are semantic binds (i.e., <>=pq) and corresponding to recursive
syntactic operator (loop) is the semantic recursive operator (iterRe).

Reynolds et al. [53] formulated a small-step, operational semantics for ReWire
in Coq. A deep embedding formalizing ReWire’s denotational semantics [47] in
terms of mechanized domain theory (e.g., Huffman [24,25], Benton et al. [5], or
Schröder [54]) is possible as well. However, both the deep embedding and the
small-step operational approaches seemed too unwieldy at the scale of our case
studies. Recent work [22] introduced the Device Calculus, a λ-calculus with types
and operations for constructing Mealy machines and our semantics extends the
Device Calculus semantics to RRS monads.

Figure 6a presents the semantics for reactive resumption monads over state
in which the productivity-labelled constructors are expressed in terms of “snap-
shots” of the form (i, s, o). State s is the familiar state monad over s. A
(Writer+ s a) is a list-like structure for which the constructor � corresponds
to list cons—intuitively, it is a non-empty list that ends in an a-value—and is
used to model ReWire terms typed in Re+. It is used to represent terminating
signal-productive hardware computations—i.e., those that operate over multiple
clock cycles, produce snapshots and terminate. A hardware computation typed
in Re∞ corresponds to sequential circuitry. The intuition is that, given the cur-
rent snapshot of a circuit (Fig. 2a) and a stream of all its future inputs, the result
is a stream of all snapshots (i.e., a Stream (i × s × o)).

Signal-productive computations (i.e., those corresponding to terms of type
Re+i s o a) are represented in the domain DomRe+ �i� �s� �o� �a�. The intu-
ition underlying this structure is that, given an initial snapshot (i, s, o) and a
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Fig. 6. Domain Semantics & Semantic Operators.

stream of inputs in i, signal-productive computations will express a finite, non-
zero number of additional snapshots, represented in Writer+(i × s × o)a. The
intuition underlying DomRe∞ �i� �s� �o� �a� is similar, except that it produces
a stream expressing the entire circuit as a “transcript” of snapshots. The intu-
ition underlying a value in DomRe0 �i� �s� �o� �a� is simple—it produces no
snapshots because it represents computation that occurs between clock cycles;
hence it is simply a state monad computation.

The type declarations for effect-labeled bind operators are shown in Fig. 6b.
The monad laws for these were verified in Coq [12]. We chose to verify these laws
in Coq and, although this choice was somewhat arbitrary, it does however illus-
trate the utility of Reynold-style definitional shallow embedding of the ReWire
formalization. The Coq syntax below is different from the Agda syntax we have
adopted throughout; e.g., bindRePP stands for (>>=++), etc. A typical theorem,
showing the associativity of (>>=++), is below:

Theorem AssocPP {i s o a b c} : forall (x : RePlus i s o a),

forall (f : a -> RePlus i s o b), forall (g : b -> RePlus i s o c),

bindRePP x (fun va => bindRePP (f va) g) = bindRePP (bindRePP x f) g.

Figure 6b presents the type declaration of the corecursion operator, iterRe.
ReWire devices typically take the form of mutually recursive co-equations and
such co-equations may be encoded in the ReWire calculus using a standard
approach from denotational semantics. Two ReWire co-equations (left) are rep-
resented in the calculus by (iterRe f), where f is defined as (right):
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fi :: ai → Re i s o ()
f1 a1 = x1 >>= f2
f2 a2 = x2 >>= f1

f : (a1 ⊕ a2) → Re
+

i s o

f (inl a1) = x1 >>=
+0 (returnr ◦ inr)

f (inr a2) = x2 >>=
+0 (returnr ◦ inl)

Figure 5b presents the mechanized denotational semantics for ReWire. It
closely resembles the Device Calculus semantics referred to previously [22],
except for the monadic fragment of the calculus, which is represented by the
constructions of Fig. 6a. The state monadic operators (returnST, >>=ST, get,
and set) have an unremarkable semantics. Lifting and unit (respectively, liftr

and returnr) are treated as state monad computations as one would expect from
the type semantics in Fig. 6a. Lifting is the identity function and the denotation
for returnr is identical to that of returnST. The productivity-labelled bind is
mapped to the appropriate operator from Fig. 6b. The denotation of signal
computes a snapshot (i , s , o) based on the current internal state (s), the
head of the input stream (i), and the output argument it has been passed (o),
returning the next input and the remaining stream of inputs. The semantics of
loop applies iterRe to the denotation of f.

3 Case Study: Cryptographic Hardware Verification

We performed the model validation process on a substantial case study: a family
of pipelined Barrett modular multipliers (BMM) that are based on hardware
algorithms published by Zhang et al. [62]. The formal methods team was pro-
vided with Verilog designs created by hand by a team of hardware engineers
and it was our task was to formally verify the correctness of these designs. The
designs in question were highly optimized using a variety of techniques (e.g.,
specialized encodings for compression/decompression) to enhance area and time
performance of the synthesized circuits. The technical focus heretofore has been
on the embed arrow from Fig. 1. This section summarizes the BMM case study
(i.e., the verify arrow in Fig. 1) and we provide sufficient information to under-
stand the its essentials, although the presentation is necessarily at a high-level
due to space limitations. A complete description is left for future publications.

It is important to note that the Verilog designs for BMM were not designed
with formal verification in mind. Model validation is a hybrid approach mixing
interactive theorem-proving with user-guided, but otherwise, fully automated
equivalence checking. We developed this approach, in part, because we were
concerned that a fully-automated approach would not scale up to the large size
of several of the designs. All of the relevant materials to this case study are
available [12]; these include Verilog designs for the multipliers, the Isabelle proof
scripts that specify and verify the hardware designs, as well as the semantics for
ReWire formalized in Isabelle, Coq, and Agda.

BMM Case Study (model). Creating a ReWire model of the BMM Verilog
design constitutes the model phases of the model validation process illustrated in
Fig. 1. The task required formally verifying instances of this input RTL for word
sizes: W = 64, 128 , 256, 512, and 1024. This section illustrates this process using
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Fig. 7. Case Study: Modeling Hardware Designs in ReWire. The bmm function (b) is
an instance of the ReWire’s Mealy pattern that mimics the original hardware design
(a). Haskell’s do notation is syntactic sugar for >>=.

relevant parts of the BMM case study. An excerpt of the input BMM Verilog
code is presented in Fig. 7a. The top-level input and output declarations are
displayed (not all register declarations are included for reasons of space).

The Verilog I/O port declarations that are captured as ReWire tuple types,
Inp and Out, in Fig. 7b. The Verilog register declarations are encoded as the
ReWire tuple type, Reg, although it does not appear in the figure. The ReWire
compiler unfolds boolean vector types to built-in ReWire types (e.g., for N =
128, BV(N) becomes the built-in ReWire word type W128).

One notable difference between the Verilog input ports and the ReWire type
Inp in Fig. 7 is the absence of a clock type in the latter. This reflects the implicit
timing inherent in the Re monad. Figure 7b excerpts the ReWire formal model
that mimics the input Verilog BMM design—this is a ReWire function, bmm,
that has type Inp →Re Inp Reg Out. The ReWire function bmm is an instance
of the Mealy design pattern from Fig. 2b. In our experience, most of the effort in
the model phase of model validation derives from specifying the input, storage,
and output types (e.g., Inp, Reg, and Out) and, also, from the formulation of the
internal function that represents the combinational output and next-state logic.
Developing the ReWire model was, for the case study presented here, entirely
by hand, although we believe that future work can automate (at least parts of)
the process (see Sect. 5 for further discussion).

BMM Case Study (embed). The final part of the embed arrow in Fig. 1 for
this case study is the semantic translation of the ReWire model into the logic
of the Isabelle theorem prover. (Some liberties have been taken with Isabelle
syntax for readability.) The semantic foundation expressed in Figs. 5 and 6 was
developed as a theory file in Isabelle. This development was along the lines
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of Reynold’s notion of definitional interpreters [52] as remarked upon in the
previous section—i.e., because Isabelle possesses a stream library, the defini-
tional embedding of the ReWire semantics was straightforward. For example,
the semantic domain DomRe∞ i s o is formulated in Isabelle in Fig. 8. Given
this semantic foundation formulated as an Isabelle theory, a translation into this
theory based on the denotational semantics from Fig. 5b was written in Haskell.
This translation, in most respects, simply transliterates ReWire abstract syntax
into the constructions of the Isabelle semantic theory, making use of the built-in
monadic syntax in Isabelle/HOL. Figure 8 presents the Isabelle translation of
the ReWire mimic of the original BMM design (from Fig. 7b). Note the struc-
tural similarity between body and onecycle from Fig. 2b. Note also that body
is typed in the Isabelle version of DomRe+ from Fig. 6a. The translator analyses
recursive definitions (e.g., the original bmm from Fig. 7b) and reformulates them
using iterRe, but, otherwise, the translations of ReWire definitions in Fig. 8 are
unremarkable. The use of Oxford brackets emphasizes that this Isabelle decla-
ration defines the denotational semantics of bmm from Fig. 7b.

Fig. 8. Embedding of bmm from Fig. 7b in Isabelle.

BMM Case Study (verify). This section presents the verify phase of the model
validation process illustrated in Fig. 1. The compute bmm function in Fig. 9 defines
the calling convention for the bmm ReWire device. In the figure, the initial values,
i0, s0, and o0, are tuples of zeros, represented as bit vectors of appropriate sizes
(e.g., o0 is just W128). The function applies � bmm � to the appropriate inputs
thereby producing a stream of snapshots. The computed bmm value is the output
of the fifth such snapshot (calculated with projection π3, stream take stake,
and the list indexing operation “!”). The correctness theorem embedding eq in
Fig. 9 is expressed in Isabelle as an equation relating the results computed by the
compute bmm Isabelle embedding (lhs) to the value computed by the high-level
algorithm, barrett fws word (rhs).

BMM Case Study (validate). This section overviews the validate phase of
the model validation process illustrated in Fig. 1 as applied to the BMM case
study. The successful proof of the correctness theorem embedding eq in Isabelle
verifies the functional correctness of the ReWire representation of the BMM
target design. This alone provides a strong assurance story, but there remains
a question as to the accuracy of the hand translation of Verilog BMM design
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into ReWire model—what evidence is there that the ReWire model faithfully
represents the input design? Model validation goes further and demonstrates the
soundness of the model through the use of model checking technology.

Fig. 9. Formal Specification of bmm.

The yosys (Yosys Open SYnthesis Suite) toolchain [59] supports the synthesis
of Verilog (and, through an extension, VHDL) designs, providing an array of
options for transformation, optimization, and model checking. In particular for
our use case, yosys integrates the ABC system [9] for sequential logic synthesis
and formal verification. Here, we use yosys to carry out an equivalence check
between two circuits: those synthesized from the input Verilog BMM design and
the Verilog output by compiling the verified ReWire model.

The ReWire compiler provides a Verilog backend and we can thus perform
an apples-to-apples comparison of the two Verilog circuits using yosys. Because
the ReWire model mimics the modular and algorithmic structure of the hand-
written circuit, yosys can quickly identify common substructures in support of
automatic equivalence verification of the two circuits. Even with the high degree
of similarity between the two circuits, some of the more complex equivalence
checks proved challenging for the automated tooling. To break down the prob-
lem further, we applied compositional verification, in which subcomponents are
verified individually and those results are used to verify higher-level components.
After we verify equivalence for a submodule, we instruct yosys to treat references
to that submodule by both the implementation and ReWire specification as a
blackbox library. “Blackboxing” modules can streamline equivalence checking.

The yosys scripts we used may be found in the codebase [12]. Our initial
experimentation focused on purely combinational circuits, provable using the
yosys equiv simple command. This worked “out of the box” for a number of sub-
modules. However, much of the target design consists of sequential circuits, which
require additional configuration to manage timing and state. In this case, with
the equiv induct command, yosys proves such circuits equivalent by temporal
induction over clock cycles.

4 Related Work

We coined the term model validation because of its similarities to translation
validation [17,40,44,46]. Translation validation begins with a given source pro-
gram and compiler and, then, establishes the correctness relation between the
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source and its implementation (i.e., the compiled source program). Translation
validation establishes the correctness of individual compiler translations rather
than verifying the whole compiler itself. Model validation starts from a given
implementation (i.e., the HDL circuit design) and high-level correctness criteria
(e.g., an algorithm given in pseudocode) and, then, establishes the equivalence
of the two to a ReWire formal model that mimics the circuit design. The (model
; validate) path in model validation proceeds in the “opposite direction” from
translation validation. Translation validation for HLS has been applied before
(e.g., Kundu [29] and Ramanathan et al. [49,50]), but model validation is novel
to the best knowledge of the authors.

High-level synthesis (HLS) adapts software high-level languages to hardware
development. The motivation to do so has been to bring software engineering
virtues—e.g., modularity, comprehensibility, reusability, etc.—to the whole hard-
ware development process [2] but also more recently to translate software formal
methods into a hardware context [7,14,53]. Herklotz and Wickerson [23] and Du
et al. [13] make compelling arguments for applying software formal methods to
HLS languages and compilers as a means of bringing a level of maturity and reli-
ability to HLS that justifies its use in critical systems. Formal methods applied
to software compilers have been explored for at least five decades now [38] and
the state of the art is at a high-level of sophistication [30].

Gordon outlined the challenges of semantic specification of hardware defini-
tion languages [19], focusing specifically on Verilog, although his analysis applies
equally to VHDL. There have been previous attempts to formalize VHDL as
well [28,58] that have succeeded only on small parts of the language. One way
of coping with the lack of formal semantics for commodity HDLs is to identify
a formalizable subset of the language in question. Gordon [20], Zhu et al. [63],
Meredith et al. [36], Khan [27], and Lööw and Myreen [32] do so for Verilog.
Another approach creates a new hardware language and compiler with formal-
ization as a specific requirement (e.g., Kami [11], Bluespec [7], and CHERI [42]).
HLS generally seeks to adapt software languages to hardware—ReWire, being a
DSL embedded in Haskell, is in this camp.

The original motivation for high-level synthesis was to promote software-like
development to hardware design by introducing software-like abstractions and
methodologies. In particular, functional language approaches to high-level syn-
thesis have a long pedigree, including muFP [55], Cλash [15], ForSyDe, Lava [6],
Kiwi [56], and Chisel [4]. There is a growing awareness of the utility of language-
based approaches (including HLS) for hardware formal methods (e.g., a sample
of very recent publications [3,7,8,21,22,31,32,42,53] can be found in the refer-
ences). This language-based approach has been particularly successful in formal
development of instruction set architectures [3,42,51].

There has been work formalizing monads with theorem provers as a basis
for verifying functional programs [1,10,16,33,39]. Simple monads (e.g., Haskell’s
Maybe) can be transliterated into a theorem prover, but more complex monads—
e.g., RRS monads—require more care [24,25,53,54]; their mechanization here is,
by comparison, a shallow embedding. Effect labels in the ReWire calculus type

https://forsyde.github.io/
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system were essential because they allow fine-grained distinctions with respect
to signal-productivity and non-termination to be made in the construction of
terms that, in turn, determine the appropriate denotation domain.

5 Summary, Conclusions, and Future Work

The research described here was performed as part of a project to develop for-
mally verified hardware accelerators to improve upon the existing algorithmic
gains to fully-homomorphic encryption (FHE). ReWire’s role is to bridge the gap
between the hardware design and algorithm by establishing 1) the equivalence
of the algorithm to the model and 2) the equivalence of the model to the circuit
design. Equivalence between the algorithm and the ReWire model is verified
with a ReWire semantics formalized in the Isabelle theorem prover. Equivalence
between the ReWire model and the input circuit design is established by produc-
ing binary circuits from each (using commodity synthesis tools and the ReWire
compiler) and applying an automated binary equivalence checker.

Model validation addresses the following kind of scenario. A team of hardware
engineers produces a circuit design C in a commodity HDL (e.g., VHDL or
Verilog) to implement an algorithm A (written in informal, imperative style
pseudocode) in hardware and then a formal methods team is given the task
of evaluating whether C implements A correctly. There is significant distance
between the notions of computation underlying A (i.e., store-passing in some
form) and C (i.e., clocked, synchronous parallelism) and so formally relating
the two is non-trivial and requires care. We have shown how a formalized HLS
language like ReWire can bridge this gap to reduce this conceptual distance.

The first path of model validation—the composite arrow (model; embed; verify)
in Fig. 1—is, in some respects, a conventional hardware verification flow with a
theorem prover: a formal model is abstracted from an HDL design, encoded in
the prover logic, and then properties of that model are verified. The interposed
formalized HLS language may provide some benefits with respect to proof engi-
neering via libraries of theorems that may be reused later. We have developed
such libraries of theorems and tactics over the course of this project that will
be shared as open source. The second path of the model validation process—
the composite arrow (model ; validate)—speaks to the fidelity of the formal model
itself to the input circuit design. Establishing the fidelity of a formal model to
the object it models addresses a broad issue in formal methods research that can
be difficult to explore: how can we gauge the accuracy of a formal model itself?

The class of high-level algorithms of which the BMM case study is a mem-
ber are generally informally specified as C-style pseudocode (see, for instance,
Zhang et al. [62]). One approach for future work would be to develop a formalized
domain-specific language for this class of high-level algorithms that can be lifted
automatically into ReWire. This would accelerate the model validation process
as it would automate the otherwise time-consuming, by-hand model phase. Such
a language-based approach would support, among other things, a correct-by-
construction approach to hardware development based in program transforma-
tion. Another potential accelerator applies recent work by Zeng et al. [60,61]



346 W. Harrison et al.

that seeks to automatically generate update functions of type i → s → (o × s)
from Verilog designs. Automatic recovery of such update functions would go a
long way towards automating the model phase of model validation.

We have successfully applied the model validation methodology to several
substantial case studies, including the BMM case study from Sect. 3 and another
on a 4096-bit iterative Montgomery modular multiplier (MMM) that we will
describe in future work. Why develop a new methodology at all? Several members
of the formal methods team have extensive experience with Cryptol, for example,
and we did experiment with it. For example, we specified some of the basic
encoder components from the MMM in Cryptol, but the automated equivalence
check of these against the relevant components failed to terminate after several
days. It seemed unlikely, then, that this fully automated approach would scale
up to a 4096-bit multiplier. One of the key reasons for our success in these case
studies is the extensive automation available in Isabelle—that motivated our
choice of Isabelle over Coq. ReWire is open source and the success of the (model
; validate) path in Fig. 1 relied on our ability to make customizations to its Verilog
code generator in support of Yosys equivalence checking.

Table 1. Performance Comparison: ReWire vs. Handwritten Barrett Multipliers.

Fmax (GHz) Area (μm2)

Width ReWire Original Δ% ReWire Original Δ%

64 1.588 2.127 +25% 13399 12126 +10%

128 1.357 2.134 +36% 42970 41650 +3%

256 1.229 1.952 +37% 150463 157214 –4%

512 1.074 1.789 +40% 554612 578506 –4%

1024 0.954 1.473 +35% 2109037 2106714 +0.1%

Comparing the performance of the compiled ReWire models in Sect. 3 against
those of the original Verilog designs was in some respects surprising to us. Table 1
displays performance numbers (maximum clock frequency and area) for the case
study for each word size of pipelined Barrett multipliers. The columns labeled
“Original” are those for the original Verilog design created by hand and those
labeled “ReWire” are for the mimic designs created as formal models. While the
maximum clock frequency numbers for the ReWire models are between 25%–40%
slower than the Original designs, the area of the circuits is roughly equivalent
and, in some cases, slightly better than those produced for the handwritten
designs. Future work will explore the optimization of the ReWire compiler to
bring these performance characteristics into line with hand-written Verilog and
VHDL designs as much as possible.
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A Monads, Monad Transformers, and Reactive
Resumption Monads over State in Haskell

This appendix includes background material on reactive resumption monads over
state and, specifically, their representation in Haskell.

A.1 Monads in Haskell

A Haskell monad is a type constructor m with associated operations return and
>>= with types:

return :: a → m a
(>>=) :: m a → (a → m b) → m b
(>>) :: m a → m b → m b — “null” bind
x >> y =x >>= λ . y

A term of type m a is referred to as a computation of a, whereas a term of
type a is a value—the distinction between values and computations is funda-
mental to monadic denotational semantics [37]. The return operation creates
an a-computation from an a-value. The (>>=) operation is a kind of “backwards
application” for m, meaning that, in x>>=f, an a-value is computed by x and
then f is applied to that value. Null bind performs computation x, ignores its
result, and then performs computation y.

Monadic return and bind operations are overloaded in Haskell and this over-
loading is resolved via the type class system.

The return and bind of a monad generally obey the “monad laws” that
signify that >>= is associative and that return is a left and right unit of >>=.
What makes monads useful in language semantics and functional programming,
however, is not this basic infrastructure, but rather the other operations definable
in terms of the monad (e.g., the state monad has operations for reading and
writing to and from state).

A.2 Identity Monad

The type constructor for the identity monad is given by:

data Identity a = Identity a

It is conventional in Haskell to use Identity for both the type and data con-
structors for the identity monad. For Identity, return and bind are defined
by:

return = Identity
(Identity a) >>= f = f a
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A.3 Monad Transformers in Haskell

A monad transformer is a construction t such that, for any monad m, t m is a
monad. Monads created through applications of monad transformers to a base
monad (e.g., Identity) are referred to as modular monads. For example, (Re i
s o) from Fig. 4 is a modular monad; see Appendix A.6 below. For each monad
transformer t, there is a lifting operation lift :: ma → tma used to redefine m’s
operations for t m.

A.4 StateT Monad Transformer

Return and bind for the monad StateT s m are defined in terms of m:

return a = StateT (returnm a)
(StateT x) >>= f = StateT (x >>=m λ(a , s). deStateT (f a) s)

The return and bind operations are disambiguated by attaching an m subscript
to m’s operations.

In addition to the standard return and bind operations, the state monad
transformers also defines three other operations: get (to read the current state),
set (to set the current state), and the overloaded lift (that redefines m com-
putations as StateT s m computations):

get :: StateT s m s
get = StateT (λs. returnm (s , s))
set :: s → (StateT s m ())
set s = StateT (λ . returnm (() , s))
lift :: m a → StateT s m a
lift x = StateT (λs. x >>=m λa. returnm (a , s))

A.5 ReacT Monad Transformer

The reactive resumption monad transformer is given by:

data ReacT i o m a = ReacT (m (Either a (o , i → ReacT i o m a)))

Return and bind for the monad ReacT i o m are defined in terms of m:

return a = ReacT (returnm (Left a))
(ReacT x) >>= f = ReacT (x >>=m λr. case r of

Left a → f a

Right (o , k) → returnm (o , λi. (k i) >>= f) )

The additional operations in ReacT i o m are:

signal :: o → ReacT i o m i
signal o = ReacT (returnm (o , return)))
lift :: m a → ReacT i o m a
lift x = ReacT (x >>=m (Left ◦ returnm))
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A.6 Reactive Resumption Monads over State in Haskell

In ReWire, device specifications have a type constructed using monad trans-
formers defined above. The type constructor for devices is given by the type
synonym Re—this is the Haskell definition equivalent to that from Fig. 4.

type Re i s o = ReacT i o (StateT s Identity)

ReWire allows a slightly more flexible formulation in which there are multiple
StateT applications, although one such application as above suffices for the
purposes of this work.

There are also projections from the monad transformer type constructors:

deStateT :: StateT s m a → s → m (a, s)
deStateT (StateT x) = x

deReacT :: ReacT i o m a → m (Either a (o , i → ReacT i o m a))
deReacT (ReacT x) = x
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18. Goncharov, S., Schröder, L.: A coinductive calculus for asynchronous side-effecting
processes. In: Proceedings of the 18th International Conference on Fundamentals
of Computation Theory, pp. 276–287 (2011)

19. Gordon, M.J.C.: The semantic challenge of Verilog HDL. In: Proceedings of 10th
Annual IEEE LICS, pp. 136–145 (1995)

20. Gordon, M.J.C.: Relating event and trace semantics of hardware description lan-
guages. Comput. J. 45(1), 27–36 (2002)

21. Harrison, W.L., Allwein, G.: Verifiable security templates for hardware. In: Pro-
ceedings of the Design, Automation, and Test Europe (DATE) Conference (2020)

22. Harrison, W.L., Hathhorn, C., Allwein, G.: A mechanized semantic metalanguage
for high level synthesis. In: 23rd International Symposium on Principles and Prac-
tice of Declarative Programming (PPDP 2021) (2021)

23. Herklotz, Y., Wickerson, J.: High-level synthesis tools should be proven correct. In:
Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE)
(2021)

24. Huffman, B.: HOLCF 2011: A Definitional Domain Theory for Verifying Functional
Programs. Ph.D. thesis, Portland State University (2012)

25. Huffman, B.: Formal verification of monad transformers. In: Proceedings of the
17th ACM SIGPLAN International Conference on Functional Programming, ICFP
2012, pp. 15–16 (2012)

26. Katz, R.H.: Contemporary Logic Design, 2nd edn. Addison-Wesley Longman Pub-
lishing Co. Inc., Boston (2000)

27. Khan, W., Tiu, A., Sanan, D.: Veriformal: an executable formal model of a hard-
ware description language. In: Roychoudhury, A., Liu, Y. (eds.) A Systems App-
roach to Cyber Security: Proceedings of the 2nd Singapore Cyber-Security R&D
Conference (SG-CRC 2017), pp. 19–36. IOS Press (2017)

28. Kloos, C., Breuer, P. (eds.): Formal Semantics for VHDL. Kluwer Academic Pub-
lishers (1995)

https://www.dropbox.com/s/r59xg34qzh0arri/codebase_paper4262.tar.gz?dl=0
https://www.dropbox.com/s/r59xg34qzh0arri/codebase_paper4262.tar.gz?dl=0
https://doi.org/10.1109/DSD.2011.69


Formalized High Level Synthesis with Applications 351

29. Kundu, S., Lerner, S., Gupta, R.K.: Translation Validation of High-Level Synthesis,
pp. 97–121. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9359-
5 7

30. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)
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Abstract. PLCverif is an actively developed project at CERN, enabling
the formal verification of Programmable Logic Controller (PLC) pro-
grams in critical systems. In this paper, we present our work on improv-
ing the formal requirements specification experience in PLCverif through
the use of natural language. To this end, we integrate NASA’s FRET, a
formal requirement elicitation and authoring tool, into PLCverif. FRET
is used to specify formal requirements in structured natural language,
which automatically translates into temporal logic formulae. FRET’s
output is then directly used by PLCverif for verification purposes. We
discuss practical challenges that PLCverif users face when authoring
requirements and the FRET features that help alleviate these problems.
We present the new requirement formalization workflow and report our
experience using it on two critical CERN case studies.

1 Introduction

Over the past few years, formal verification has become a crucial part in the pro-
cess of software development for critical applications. To this end, CERN’s open-
source tool PLCverif [3] opened the door for the verification of Programmable
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Logic Controller (PLC) programs [6,12,13] and it has successfully been used to
verify several safety-critical applications [7–9].

Given PLC code and a set of requirements formalized in either computation
tree logic (CTL) or future-time linear temporal logic (LTL), PLCverif automat-
ically transforms these to an intermediate mathematical model, i.e., control flow
automata (CFA) [5]. Once the intermediate model is obtained, PLCverif supports
its translation into the input language of various model checkers for verification.
Finally, analysis results are presented to the user in a convenient and easy-to-
understand format.

The aforementioned process relies on control and safety engineers formal-
izing requirements. Prior to this work, PLCverif already supported the use of
natural language templates, which are a set of pre-made templates with “blanks”
where expressions containing variables of the PLC program can be added (e.g.,
“{expression1} is always true at the end of the PLC cycle”). During formaliza-
tion, pattern instantiations are translated to LTL or CTL based on the pre-made
templates. However, the expressive power of the existing templates is limited.

In this paper, we present the integration of NASA Ames’ Formal Require-
ments Elicitation Tool (FRET [1]) into PLCverif, which provides a structured
natural requirements language with an underlying temporal logic semantics.
The integration of FRET within PLCverif helps users express and formalize
a greater range of requirements and understand their semantics. The toolchain
was successfully used in two critical CERN case studies: a safety program of a
superconducting magnet test facility and a module of a process control library.

2 Integrating FRET into PLCverif

FRET is an open source project for writing, understanding, formalizing, and
analyzing requirements [1,10,11]. FRET’s user interface was designed with
usability in mind; engineers with varying levels of experience in formal meth-
ods can express requirements using a restricted natural language plus standard
Boolean/arithmetic expressions, called FRETish with precise, unambiguous
meaning. For a FRETish requirement, FRET produces textual and diagram-
matic explanations of its exact meaning and temporal logic formalizations in
LTL. FRET also supports interactive simulation of the generated logical formu-
lae to increase confidence that they capture the intended semantics.

2.1 Limitations of Requirement Formulation in PLCverif

As already anticipated in the introduction, patterns have significant limitations:

1. they offer a limited set of 9 pre-made templates only,
2. they do not offer any tool for validation of complex requirements; i.e., methods

for checking if the created requirement is the same as the intended one.

FRET is able to improve on the current limitations the following ways:

Expressive Power. Users are able to formulate requirements in FRETish as con-
strained and unambiguous sentences, which are then automatically transformed
to LTL expressions.
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PLCverif
Model
CheckerPattern

Edit in FRET

PLCverif
LTL/CTL

Variable Glossary,
Requirement

Fretish
Editor Simulator

Fretish
Requirement +

LTL

FRET integration
plugin

FRET

Fig. 1. Requirement formalization workflow in PLCverif. Features integrated into
PLCverif in this work are shown in bold.

Validation. FRET has a built-in simulator, allowing the user to check different
temporal variable valuations. Furthermore, FRET generates a textual and dia-
grammatic description of the requirement to further help precise understanding.

2.2 Realization of the New Workflow with FRET

The bold parts of Fig. 1 show how FRET fits into the workflow of PLCverif.
If “Edit in FRET” is chosen, FRET is opened and the user can work in the
requirement editor. Once the requirement is written in FRETish and formalized,
it is then sent back to PLCverif.

The External Mode of FRET. The feature set of FRET covers much more than
what PLCverif could currently utilize (e.g., requirement hierarchies). PLCverif
handles each requirement in a separate verification case, thus only the following
features are utilized: the requirement editor, the formalization component and
the requirements simulator. To facilitate integration with external tools including
PLCverif, we developed a Node.js script for running the aforementioned features
as a standalone tool. This new mode also implements the ability to import a
variable glossary into the requirement editor of FRET.

Variable Glossary. PLCverif extracts the list of variable names and types by
parsing the PLC code. Now the resulting variable glossary can also be exported
to a JSON file for FRET to use. This enables features such as autocompletion
of variable names in the FRET requirement editor. It also facilitates the pro-
cess of creating formalized properties that can be directly used by PLCverif for
verification as these requirement variables directly match PLC code variables.

Since variable names used in PLC code may include other characters besides
alphanumeric, we extended the FRET editor to support identifiers with periods,
percents, or double-quoted identifiers that can contain any special character.

The supported data types differ between the two tools (e.g., PLC programs
might use arrays, while FRET only has scalar types). Assigning a data type to
a variable is not mandatory in FRET and in this work it is only utilized by
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the simulator to show what possible values a variable can be assigned. Thus
implementing a best-effort mapping proved to be adequate (e.g., sending each
array element as a separate variable).

Preparing FRET for PLCs. The working principle of a PLC is described by the
so-called PLC Scan Cycle, consisting of three steps: (1) read sensor values, (2)
execute the PLC program and (3) write the actuator values. PLC requirements
must be able to express cycles, e.g. “next cycle” or “at the end of the cycle”.

To enable this, FRET’s formalization algorithm was extended to express
new built-in predicates nextOcc(p,q) and prevOcc(p,q), and FRETish was
extended with the phrases “at the next/previous occurrence of p, q ” meaning:
at the next (previous) time point where p holds (if there is such), q also holds.
These are expanded into the following LTL formulae, where $L$ ($R$) is the
formula that specifies the left (right) endpoint of the scope interval:

– Future for nextOcc
($R$ | (X (((!p & !$R$) U p) => ((!p & !$R$) U (p & q)))))

– Past for prevOcc
($L$ | (Y (((!$L$ & !p) S p) => ((!$L$ & !p) S (p & q)))))

Based on our experience, many PLC program requirements are checked at
the end of PLC cycles. This is the most critical moment since the calculated
values are sent to the actuators of the system. In the FRET PLC requirements,
a variable called PLC_END can be used to express this exact moment.

In addition, FRET allows the creation of templates to help users write com-
mon requirements. For this work, we have created new FRET templates for
PLCverif (e.g., In PLC_END [COMPONENT] shall always satisfy [RESPONSE] ).
For further details on the workflow, we refer readers to our technical report [14].

3 Case Studies

The integration has been used in two CERN critical systems. The PLC programs
and the properties are real cases at CERN. The first case study utilizes the
validation capabilities, while the second employs the improved expressiveness.
Only two properties per case study are shown due to a lack of space.

We give a brief description of the FRETish syntax used in the case stud-
ies. For a complete description please refer to [11]. A FRETish requirement is
composed of six sequential fields: scope, condition, component , shall, timing and
response. The optional condition field is a Boolean expression preceded by the
word when that triggers the response Boolean expression to be satisfied when
the condition expression becomes true from false. FRETish provides a variety
of timings. In this case study, we use always and eventually .

3.1 Safety PLC Program

The safety PLC program of the SM18 Cluster F, a superconducting magnet
test facility at CERN, is meant to protect the personnel and the equipment
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Fig. 2. Property of the SIF01_PC20K safety function.

of this installation. The SM18 cluster F is dedicated to test the new super-
conducting magnet technology for the High Luminosity Large Hadron Collider
(HL-LHC) [2], an upgrade of the existing LHC particle accelerator. Its main
risks are related to the cryogenic system and the powerful power converters up
to 20.000 Amps.

Error Property. The property of this case study corresponds to the expected
logic of one of the safety functions (SIF01_PC20K ):

if at the end of the PLC cycle (PLC_END) the flow (*_FSL) or thermo (*_TSH)
switches monitoring the cooling system detect a low flow or a high temperature, and
the power converter (PC20k) is connected to the magnet (*_LSW20_POS), then
the safety function should shut down the power converter (SIF01_PC20K).

Figure 2 shows how the property is expressed in FRETish and in LTL.

Validation. Before verifying this property with PLCverif, the user should make
sure that the formalized property behaves as expected. The main challenge is
the number of operators and parentheses, making manual validation difficult.
FRET’s simulator aids by allowing the user to check any temporal valuation
and whether it satisfies the property or not as shown in Fig. 2c.

3.2 Standard PLC Program

This case study is concerned with UNICOS [4], a CERN framework for the devel-
opment of hundreds of industrial control systems. The selected program library
is called the OnOff object. Its purpose is to control physical equipment driven by
digital signals, which can be composed of different types of devices. This makes
its PLC program highly configurable and its associated logic complex.
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Error Property. The property presented here is related to the transitions between
two operation modes shown in Fig. 3: (1) Auto mode, where the OnOff object
is driven by the control logic of a higher object of the hierarchy of the program,
and (2) Manual mode, where the operator drives the object.

Fig. 3. OnOff operation modes specifica-
tion.

The property extracted from the
specification is: When the OnOff object
is in Manual mode (MMoSt) and
the control logic requests to move
to Auto mode (AuAuMoR) at any
point in the PLC cycle, the OnOff
object should move to the Auto mode
(AuMoSt). Figure 4 shows the prop-
erty in FRETish and the LTL for-
mula.

Fig. 4. PLCverif property for the OnOff object.

Fig. 5. PLCverif property for the OnOff object using the nextOcc predicate

Thanks to the new “at the next occurrence of” phrase, we can verify that this
property is satisfied at the end of the current cycle (which is more precise and
strict), as shown in Fig. 5.

These properties can not be expressed with the current PLCverif patterns,
but they are expressible with the restricted natural language of FRET. Now
PLCverif users can express a large variety of requirements in a natural language
and validate these in the simulator.
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4 Conclusion

The creation of requirements in FRET fits well into the verification workflow
and improves both usability and expressiveness, as shown by the case studies.
PLCverif [3] and FRET [1] are both open source.

Plans for improvements include the support of verification of time properties
in PLCverif and the support for different type widths in the FRET simulator
(e.g. 16/32 bit integers).

To the best of our knowledge, this is the first attempt to specify formal
requirements using a structured natural language for PLC program verification.
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Abstract. We develop model checking algorithms for Temporal Stream
Logic (TSL) and Hyper Temporal Stream Logic (HyperTSL) modulo
theories. TSL extends Linear Temporal Logic (LTL) with memory cells,
functions and predicates, making it a convenient and expressive logic
to reason over software and other systems with infinite data domains.
HyperTSL further extends TSL to the specification of hyperproperties
– properties that relate multiple system executions. As such, HyperTSL
can express information flow policies like noninterference in software sys-
tems. We augment HyperTSL with theories, resulting in HyperTSL(T),
and build on methods from LTL software verification to obtain model
checking algorithms for TSL and HyperTSL(T). This results in a sound
but necessarily incomplete algorithm for specifications contained in the
∀∗∃∗

fragment of HyperTSL(T). Our approach constitutes the first soft-
ware model checking algorithm for temporal hyperproperties with quan-
tifier alternations that does not rely on a finite-state abstraction.

1 Introduction

Hyperproperties [20] generalize trace properties [2] to system properties, i.e.,
properties that reason about a system in its entirety and not just about indi-
vidual execution traces. Hyperproperties comprise many important properties
that are not expressible as trace properties, e.g., information flow policies [20],
sensitivity and robustness of cyber-physical systems, and linearizability in dis-
tributed computing [11]. For software systems, typical hyperproperties are pro-
gram refinement or fairness conditions such as symmetry.

For the specification of hyperproperties, Linear Temporal Logic [50] (LTL)
has been extended with trace quantification, resulting in Hyper Linear Temporal
Logic [19] (HyperLTL). There exist several model checking algorithms for Hyper-
LTL [19,23,37], but they are designed for finite-state systems and are therefore
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not directly applicable to software. Existing algorithms for software verification
of temporal hyperproperties (e.g., [1,9]) are, with the exception of [10], limited
to universal hyperproperties, i.e., properties without quantifier alternation.

In this paper, we develop algorithms for model checking software systems
against ∀∗∃∗ hyperproperties. Our approach is complementary to the recently
proposed approach of [10]. They require to be given a finite-state abstraction of
the system, based on which they can both prove and disprove ∀∗∃∗ hyperprop-
erties. We do not require abstractions and instead provide sound but necessarily
incomplete approximations to detect counterexamples of the specification.

The class of ∀∗∃∗ hyperproperties contains many important hyperproperties
like program refinement or generalized noninterference [47]. Generalized nonin-
terference states that it is impossible to infer the value of a high-security input by
observing the low-security outputs. Unlike noninterference, it does not require
the system to be deterministic. Generalized noninterference can be expressed
as ϕgni = ∀π∃π

′
. (iπ′ = λ ∧ cπ = cπ′). The formula states that replacing the

value of the high-security input i with some dummy value λ does not change the
observable output c.

The above formula can only be expressed in HyperLTL if i and c range
over a finite domain. This is a real limitation in the context of software model
checking, where variables usually range over infinite domains like integers or
strings. To overcome this limitation, our specifications build on Hyper Temporal
Stream Logic (HyperTSL) [22]. HyperTSL replaces HyperLTL’s atomic propo-
sitions with memory cells together with predicates and update terms over these
cells. Update terms use functions to describe how the value of a cell changes
from the previous to the current step. This makes the logic especially suited for
specifying software properties.

HyperTSL was originally designed for the synthesis of software systems,
which is why all predicates and functions are uninterpreted. In the context of
model checking, we have a concrete system at hand, so we should interpret func-
tions and predicates according to that system. We therefore introduce Hyper-
TSL(T) – HyperTSL with interpreted theories – as basis for our algorithms.

Overview. Following [41], we represent our system as a symbolic automaton
labeled with program statements. Not every trace of such an automaton is also
a valid program execution: for example, a trace assert(n = 0) ;n−−; (assert(n =
0))ω1 cannot be a program execution, as the second assertion will always fail.
Such a trace is called infeasible. In contrast, in a feasible trace, all assertions can,
in theory, succeed. As a first step, we tackle TSL model checking (Sect. 4) by
constructing a program automaton whose feasible accepted traces correspond to
program executions that violate the TSL specification. To do so, we adapt the
algorithm of [27], which constructs such an automaton for LTL, combining the
given program automaton and an automaton for the negated specification.

We then extend this algorithm for HyperTSL(T) formulas without quantifier
alternation (Sect. 5.1) by applying self-composition, a technique commonly used
for the verification of hyperproperties [5,6,30].

1
The superscript ω denotes an infinite repetition of the program statement.
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Next, in Sect. 5.2, we further extend this algorithm to finding counterex-
amples for ∀∗∃∗-HyperTSL(T) specifications (and, dually, witnesses for ∃∗∀∗

formulas). We construct an automaton that over-approximates the combinations
of program executions that satisfy the existential part of the formula. If some
program execution is not included in the over-approximation, this execution is
a counterexample proving that the program violates the specification.

More concretely, for a HyperTSL(T) formula ∀m∃n
ψ, we construct the prod-

uct of the automaton for ψ and the n-fold self-composition of the program
automaton. Every feasible trace of this product corresponds to a choice of exe-
cutions for the variables π1, . . . , πn such that ψ is satisfied. Next, we remove
(some) spurious witnesses by removing infeasible traces. We consider two types
of infeasibility: k-infeasibility, that is, a local inconsistency in a trace appearing
within k consecutive timesteps; and infeasibility that is not local, and is the
result of some infeasible accepting cycles in the automaton. In the next step, we
project the automaton to the universally quantified traces, obtaining an over-
approximation of the trace combinations satisfying the existential part of the
formula. Finally, all that remains to check is whether the over-approximation
includes all combinations of feasible traces.

Lastly, in Sect. 6, we demonstrate our algorithm for two examples, including
generalized noninterference.

Contributions. We present an automata-based algorithm for software model
checking of ∀∗∃∗-hyperproperties. We summarize our contributions as follows.

– We extend HyperTSL with theories, a version of HyperTSL that is suitable
for model checking.

– We adapt the approach of [27] to TSL(T) and alternation-free HyperTSL(T),
and thereby suggest the first model checking algorithm for both TSL(T) and
HyperTSL(T).

– We further extend the algorithm for disproving ∀∗∃∗ hyperproperties and
proving ∃∗∀∗ hyperproperties using a feasibility analysis.

Related Work. Temporal stream logic extends linear temporal logic [50] and
was originally designed for synthesis [35]. For synthesis, the logic has been suc-
cessfully applied to synthesize the FPGA game ‘Syntroids’ [39], and to synthe-
size smart contracts [34]. To advance smart contract synthesis, TSL has been
extended to HyperTSL in [22]. The above works use a version TSL that leaves
functions and predicates uninterpreted. While this choice is very well suited for
the purpose of synthesis, for model checking it makes more sense to use the inter-
pretation of the program at hand. TSL was extended with theories in [33], which
also analyzed the satisfiability problem of the logic. Neither TSL nor HyperTSL
model checking has been studied so far (with or without interpreted theories).

For LTL, the model checking problem for infinite-state models has been
extensively studied, examples are [13,16,25,27,38]. Our work builds on the
automata-based LTL software model checking algorithm from [27]. There are
also various algorithms for verifying universal hyperproperties on programs, for
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example, algorithms based on type theory [1,9]. Major related work is [10], which
(in contrast to our approach) requires on predicate abstractions to model check
software against ∀∗∃∗ HyperLTL specifications. They can also handle asyn-
chronous hyperproperties, which is currently beyond our scope. Another proposal
for the verification of ∀∃ hyperproperties on software is [52]. Here, generalized
constrained horn clauses are used to verify functional specifications. The app-
roach is not applicable to reactive, non-terminating programs. Recently, it was
also proposed to apply model checkers for TLA (a logic capable of expressing
software systems as well as their properties) to verify ∀∗∃∗ hyperproperties [45].

Beyond the scope of software model checking, the verification of hyperprop-
erties has been studied for various system models and classes of hyperproperties.
Model checking has been studied for ω-regular properties [21,31,37] and asyn-
chronous hyperproperties [7,12] in finite-state Kripke structures, as well as timed
systems [43], real-valued [49] and probabilistic hyperproperties [3,28,29] (some
of which study combinations of the above).

2 Preliminaries

A Büchi Automaton is a tuple A = (Σ,Q, δ, q0, F ) where Σ is a finite alphabet;
Q is a set of states; δ ⊆ Q×Σ ×Q is the transition relation; q0 ∈ Q is the initial
state; and F ⊆ Q is the set of accepting states. A run of the Büchi automaton
A on a word σ ∈ Σ

ω is an infinite sequence q0 q1 q2 ⋅ ⋅ ⋅ ∈ Q
ω of states such that

for all i ∈ N, (qi, σi, qi+1) ∈ δ. An infinite word σ is accepted by A if there is a
run on σ with infinitely many i ∈ N such that qi ∈ F . The language of A, L(A),
is the set of words accepted by A.

2.1 Temporal Stream Logic Modulo Theories TSL(T)

Temporal Stream Logic (TSL) [35] extends Linear Temporal Logic (LTL) [50]
by replacing Boolean atomic propositions with predicates over memory cells and
inputs, and with update terms that specify how the value of a cell should change.

We present the formal definition of TSL modulo theories – TSL(T), based on
the definition of [33], which extends the definition [35]. The definition we present
is due to [46] and it slightly differs from the definition of [33]; The satisfaction
of an update term is not defined by syntactic comparison, but relative to the
current and previous values of cells and inputs. This definition suites the setting
of model checking, where a concrete model is given.

TSL(T) is defined based on a set of values V with true, false ∈ V, a set of
inputs I and a set of memory cells C. Update terms and predicates are interpreted
with respect to a given theory. A theory is a tuple (F, ε), where F is a set of
function symbols; Fn is the set of functions of arity n; and ε ∶ (⋃n∈N Fn × V

n
) →

V is the interpretation function, evaluating a function with arity n. For our
purposes, we assume that every theory (TF, ε) contains at least {=,∨,¬} with
their usual interpretations.

A function term τF is defined by the grammar

τF ∶∶= c ∣ i ∣ f(τF , τF , . . . τF )
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where c ∈ C, i ∈ I, f ∈ F, and the number of elements in f matches its arity. An
assignment a ∶ (I ∪ C) → V is a function assigning values to inputs and cells.
We denote the set of all assignments by A. Given a concrete assignment, we can
compute the value of a function term.

The evaluation function η ∶ TF × A → V is defined as

η(c, a) = a(c) for c ∈ C

η(i, a) = a(i) for i ∈ I

η(f (τF1, τF2, . . . , τFn), a) = ε(f, (η(τF1), η(τF2), . . . , η(τFn))) for f ∈ F

A predicate term τP is a function term only evaluating to true or false. We
denote the set of all predicate terms by TP .

For c ∈ C and τF ∈ TF, �c ↢ τF � is called an update term. Intuitively, the
update term �c ↢ τF � states that c should be updated to the value of τF . If in the
previous time step τF evaluated to v ∈ V, then in the current time step c should
have value v. The set of all update terms is TU . TSL formulas are constructed
as follows, for c ∈ C, τP ∈ TP , τF ∈ TF.

ϕ ∶∶= τP ∣ �c ↢ τF � ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ϕ ∣ ϕUϕ

The usual operators ∨, (“eventually”), and (“globally”) can be derived
using the equations ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ϕ = true Uϕ and ϕ = ¬ ¬ϕ.

Assume a fixed initial variable assignment ζ−1 (e.g., setting all values to zero).
The satisfaction of a TSL(T) formula with respect to a computation ζ ∈ A

ω and
a time point t is defined as follows, where we define ζ ⊧ ϕ as 0, ζ ⊧ ϕ.

t, ζ ⊧ τP ⇔ η(τP , ζt) = true
t, ζ ⊧ �c ↢ τF � ⇔ η(τF , ζt−1) = ζt(c)

t, ζ ⊧ ¬ϕ ⇔ ¬(t, ζ ⊧ ϕ)

t, ζ ⊧ ϕ ∧ ψ ⇔ t, ζ ⊧ ϕ and t, ζ ⊧ ψ

t, ζ ⊧ ϕ ⇔ t + 1, ζ ⊧ ϕ

t, ζ ⊧ ϕUψ ⇔ ∃t
′ ≥ t. t

′
, ζ ⊧ ψ and ∀t ≤ t

′′ < t
′
. t

′′
, ζ ⊧ ϕ

3 HyperTSL Modulo Theories

In this section, we introduce HyperTSL(T), HyperTSL with theories, which
enables us to interpret predicates and functions depending on the program
at hand. In [22], two versions of HyperTSL are introduced: HyperTSL and
HyperTSLrel. The former is a conservative extension of TSL to hyperproper-
ties, meaning that predicates only reason about a single trace. In HyperTSLrel,
predicates may relate multiple traces, which opens the door to expressing prop-
erties like noninterference in infinite domains. Here, we build on HyperTSLrel,
allowing, in addition, update terms ranging over multiple traces. Furthermore,
we extend the originally uninterpreted functions and predicates with an inter-
pretation over theories. We denote this logic by HyperTSL(T).
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Fig. 1. Left: A program automaton. Right: two traces π and π
′
of the program automa-

ton. We interpret each trace as a computation. When executing both traces simulta-
neously, every time point has a corresponding hyper-assignment that assigns values to
cπ and cπ′ . Those for the first four time steps are shown on the right. Together, they
define the hyper-computation ζ̂ ∶= â1(â2 â3 â4)

ω
, matching π and π

′
.

The syntax of HyperTSL(T) is that of TSL(T), with the addition that cells
and inputs are now each assigned to a trace variable that represents a com-
putation. For example, cπ now refers to the memory cell c in the computation
represented by the trace π. Formally, let Π be a set of trace variables. We define
a hyper-function term τ̂F ∈ T̂F as a function term using (I × Π) as the set of
inputs and (C × Π) as the set of cells.

Definition 1. A hyper-function term τ̂F is defined by the grammar

τ̂F∶∶= cπ ∣ iπ ∣ f(τ̂F , τ̂F , . . . τ̂F )

where cπ ∈ C×Π, iπ ∈ I×Π, f ∈ F, and the number of the elements in the tuple
matches the function arity. We denote by T̂F the set of all hyper-function terms.

Analogously, we define hyper-predicate terms τ̂P ∈ T̂P as hyper-function
terms evaluating to true or false; hyper-assignments Â = (I ∪ C) × Π → V as
functions mapping cells and inputs of each trace to their current values; hyper-
computations ζ̂ ∈ Â

ω as hyper-assignment sequences. See Fig. 1 for an example.

Definition 2. Let cπ ∈ C × Π, τ̂P ∈ T̂P , τ̂F ∈ T̂F . A HyperTSL(T) formula is
defined by the following grammar:

ϕ ∶∶=ψ ∣ ∀π. ϕ ∣ ∃π. ϕ

ψ ∶∶= τ̂P ∣ �cπ ↢ τ̂F � ∣ ¬ψ ∣ ψ ∧ ψ ∣ ψ ∣ ψ Uψ

To define the semantics of HyperTSL(T), we need the ability to extend a hyper-
computation to new trace variables, one for each path quantifier. Let ζ̂ ∈ Â

ω be
a hyper-computation, and let π, π

′ ∈ Π, ζ ∈ A
ω and x ∈ (I ∪ C). We define the

extension of ζ̂ by π using the computation ζ as ζ̂[π, ζ] (xπ′) = ζ̂(xπ′) for π
′ ≠ π,

and ζ̂[π, ζ] (xπ) = ζ(xπ) for π.

Definition 3. The satisfaction of a HyperTSL(T)-Formula w.r.t. a hyper- com-
putation ζ̂ ∈ Â

ω, a set of computations Z and a time point t is defined by

t, Z, ζ̂ ⊧ ∀π. ϕ ⇔ ∀ζ ∈ Z. t, Z, ζ̂[π, ζ] ⊧ ϕ

t, Z, ζ̂ ⊧ ∃π. ϕ ⇔ ∃ζ ∈ Z. t, Z, ζ̂[π, ζ] ⊧ ϕ
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The cases that do not involve path quantification are analogous to those of
TSL(T) as defined in Sect. 2.1. We define Z ⊧ ϕ as 0, Z,∅ω ⊧ ϕ.

4 Büchi Product Programs and TSL Model Checking

We now describe how we model the system and specification as Büchi automata,
adapting the automata of [27] to the setting of TSL. Then, we introduce our
model checking algorithm for TSL(T). In Sect. 5.2 we build on this algorithm to
propose an algorithm for HyperTSL(T) model checking.

We use a symbolic representation of the system (see, for example, [41]), where
transitions are labeled with program statements, and all states are accepting.

Definition 4. Let c ∈ C, τP ∈ TP and τF ∈ TF. We define the set of (basic)
program statements as

s0 ∶∶= assert(τP ) ∣ c ∶= τF ∣ c ∶= ∗

s ∶∶= s0 ∣ s; s

We call statements of the type s0 basic program statements, denoted by Stmt0;
statements of type s are denoted by Stmt. The assignment c ∶= ∗ means that
any value could be assigned to c.

A program automaton P is a Büchi automaton with Σ = Stmt , that is,
P = (Stmt , Q, q0, δ, F ) and δ ⊆ Q × Stmt × Q. When modeling the system we
only need basic statements, thus we have Stmt = Stmt0; and F = Q as all states
are accepting. See Fig. 3 for an illustration.

Using a program automaton, one can model if statements, while loops, and
non-deterministic choices. However, not every trace of the program automa-
ton corresponds to a program execution. For example, the trace (n ∶=
input1); assert(n > 0); assert(n < 0); assert(true)

ω does not – the second asser-
tion will always fail. Such a trace is called infeasible. We call a trace feasible if
it corresponds to a program execution where all the assertions may succeed. We
now define this formally.

Definition 5. A computation ζ matches a trace σ ∈ Stmtω
0 at time point t,

denoted by ζ ◃t σ, if the following holds:

if σt = assert(τP ) ∶ η(τP , ζt−1) = true and ∀c ∈ C. ζt(c) = ζt−1(c)

if σt = c ∶= τF ∶ η(τF , ζt−1) = ζt(c) and ∀c
′ ∈ C\{c}. ζt(c

′
) = ζt−1(c

′
)

if σt = c ∶= ∗ ∶ ∀c ∈ C\{c}. ζt(c) = ζt−1(c)

where ζ−1 is the initial assignment. A computation ζ matches a trace σ ∈ Stmtω
0 ,

denoted by ζ ◃ σ, if ∀t ∈ N. ζ ◃t σ.
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Definition 6. A program automaton P over Stmt0 satisfies a TSL(T)-formula
ϕ, if for all traces σ of P we have ∀ζ ∈ A

ω
. ζ ◃ σ ⇒ ζ ⊧ ϕ.

We now present an algorithm to check whether a program automaton P sat-
isfies a TSL(T) formula. It is an adaption of the automaton-based LTL software
model checking approach by [27], where the basic idea is to first translate the
negated specification ϕ into an automaton A¬ϕ, and then combine A¬ϕ and P
to a new automaton, namely the Büchi program product. The program satisfies
the specification iff the Büchi program product accepts no feasible trace.

In [27], the Büchi program product is constructed similarly to the standard
product automata construction. To ensure that the result is again a program
automaton, the transitions are not labeled with pairs (s, l) ∈ Stmt0 × 2AP ,
but with the program statement (s; assert(l)). A feasible accepted trace of the
Büchi program product then corresponds to a counterexample proving that the
program violates the specification. In the following, we discuss how we adapt the
construction of the Büchi program product for TSL(T) such that this property
– a feasible trace corresponds to a counterexample – remains true for TSL(T).

Let ϕ be a TSL(T) specification. For the construction of A¬ϕ, we treat all
update and predicate terms as atomic propositions, resulting in an LTL formula
¬ϕLTL, which is translated to a Büchi automaton.2 For our version of the Büchi
program product, we need to merge a transition label s from P with a transition
label l from A¬ϕLTL

into a single program statement such that the assertion of
the combined statement succeeds iff l holds for the statement s. Note that l is
a set of update and predicate terms. For the update terms �c ↢ τF � we cannot
just use an assertion to check if they are true, as we need to ‘save’ the value of
τF before the statement s is executed.

Our setting differs from [27] also in the fact that their program statements do
not reason over input streams. We model the behavior of input streams by using
fresh memory cells that are assigned a new value at every time step. In the
following, we define a function combine that combines a program statement s
and a transition label l to a new program statement as described above.

Definition 7. Let υ = {�c1 ↢ τF1�, . . . , �cn ↢ τFn�} be the set of update terms
appearing in ϕ, let ρ be the set of predicate terms appearing in ϕ. Let l ⊆ (υ∪ρ)
be a transition label of A¬ϕ. Let (tmpj)j∈N be a family of fresh cells. Let I =
{i1, . . . im}. We define the function combine ∶ Stmt × P(TP ∪ TU) → Stmt as
follows. The result of combine(s, l) is composed of the program statements in
save values l, s,new inputs, check preds l and check updates l. Then we have:

save values ∶= tmp1 ∶= τF1; . . . ; tmpn ∶= τFn

new inputs ∶= i1 ∶= ∗; . . . ; im ∶= ∗

check preds l ∶= assert
⎛
⎜
⎝
⋀

τP∈l

τP ∧ ⋀
τP∈ρ\l

¬τP

⎞
⎟
⎠

2
For the translation of LTL formulas to Büchi automata, see, for example, [4,48,51].
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check updates l ∶= assert
⎛
⎜
⎝

⋀
�cj↢τFj�∈υ

{
cj = tmpj if �cj ↢ τFj� ∈ l

cj ≠ tmpj else

⎞
⎟
⎠

combine(s, l) ∶= save values; s; new inputs; check preds l; check updates l

We can extend this definition to combining traces instead of single transition
labels. This leads to a function combine ∶ Stmtω ×P(TP ∪ TU)

ω → Stmtω. Note
that the result of combine is again a program statement in Stmt (or a trace
Stmtω) over the new set of cells C ∪ I ∪ (tmpj)j∈N, which we call C∗.

Example 1. Let I = {i}. Then the result of combine(n ∶= 42, {�n ↢ n + 7�, n >
0}) is tmp0 ∶= n + 7; n ∶= 42; i ∶= ∗; assert(n > 0); assert(n = tmp0).

As combine leads to composed program statements, we now need to extend
the definition of feasibility to all traces. To do so, we define a function flatten ∶
Stmtω → Stmt0

ω that takes a sequence of program statements and transforms it
into a sequence of basic program statements by converting a composed program
statement into multiple basic program statements.

Definition 8. A trace σ ∈ Stmtω matches a computation ζ, denoted by ζ ◃ σ if
ζ ◃ flatten(σ). A trace σ is feasible if there is a computation ζ such that ζ ◃ σ.

Definition 9 (Combined Product). Let P = (Stmt,Q, q0, δ,Q) be a program
automaton and A = (P(TP ∪TU), Q

′
, q

′
0, δ

′
, F

′
) be a Büchi automaton (for exam-

ple, the automaton A¬ϕLTL
). The combined product P ⊗ A is an automaton

B = (Stmt,Q × Q
′
, (q0, q

′
0), δB , FB), where

FB = {(q, q
′
) ∣ q ∈ Q ∧ q

′ ∈ F
′
}

δB = {((p, q), combine(s, l), (p′, q′)) ∣ (p, s, p
′
) ∈ δ ∧ (q, l, q

′
) ∈ δ

′
}

Theorem 1. Let P be a program automaton over Stmt0. Let ϕ be a TSL(T)
formula. Then P satisfies ϕ if and only if P⊗A¬ϕLTL

has no feasible trace.

Proof (sketch). If ζ ◃ σ is a counterexample, we can construct a computation ζ̃
that matches the corresponding combined trace in P⊗A¬ϕLTL

, and vice versa.
See the full version [32] for the formal construction.

We can now apply Theorem1 to solve the model checking problem by testing
whether P⊗A¬ϕLTL

does not accept any feasible trace, using the feasibility check
in [27] as a black box. The algorithm of [27] is based on counterexample-guided
abstraction refinement (CEGAR [18]). Accepted traces are checked for feasibility.
First, finite prefixes of the trace are checked using an SMT-solver. If they are
feasible, a ranking function synthesizer is used to check whether the whole trace
eventually terminates. If the trace is feasible, it serves as a counterexample.
If not, the automaton is refined such that it now does not include the spurious
counterexample trace anymore, and the process is repeated. For more details, we
refer to [27]. The limitations of SMT-solvers and ranking function synthesizers
also limit the functions and predicates that can be used in both the program
and in the TSL(T) formula.
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5 HyperTSL(T) Model Checking

We now turn to the model checking problem of HyperTSL(T). We start with
alternation-free formulas and continue with ∀∗∃∗ formulas.

5.1 Alternation-Free HyperTSL(T)

In this section, we apply the technique of self-composition to extend the algo-
rithm of Sect. 4 to alternation-free HyperTSL(T). First, we define what it means
for a program automaton to satisfy a HyperTSL(T) formula.

Definition 10. Let P be a program automaton over Stmt0, let ϕ be a Hyper-
TSL(T) formula and let Z = {ζ ∈ A

ω
∣ ∃σ. ζ ◃σ and σ is a trace of P}. We say

that P satisfies ϕ if Z ⊧ ϕ.

Definition 11. Let P = (Stmt , Q, q0, δ,Q) be a program automaton. The n-fold
self-composition of P is Pn = (Stmt ′, Qn

, q
n
0 , δ

n
, Q

n
), where Stmt ′ are program

statements over the set of inputs I × Π and the set of cells C × Π and where
Q

n = Q × ⋅ ⋅ ⋅ × Q, q
n
0 = (q0, . . . , q0) and

δ
n ={((q1, . . . , qn), ((s1)π1

; . . . ; (sn)πn
), (q

′
1, . . . , q

′
n))

∣ ∀1 ≤ i ≤ n. (qi, si, q
′
i) ∈ δ}

where (s)π renames every cell c used in s to cπ and every input i to iπ.

Theorem 2. A program automaton P over Stmt0 satisfies a universal Hyper-
TSL(T) formula ϕ = ∀π1. . . .∀πn. ψ iff Pn ⊗A¬ψLTL

has no feasible trace.

Theorem 3. A program automaton P over Stmt0 satisfies an existential Hyper-
TSL(T) formula ϕ = ∃π1. . . .∃πn. ψ iff Pn ⊗AψLTL

has some feasible trace.

The proofs of are analogous to the proof of Theorem 1, see the full version of
this paper [32] for details.

5.2 ∀∗∃∗ HyperTSL(T)

In this section, we present a sound but necessarily incomplete algorithm for
finding counterexamples for ∀∗∃∗ HyperTSL(T) formulas.3 Such an algorithm
can also provide witnesses ∃∗∀∗ formulas. As HyperTSL(T) is built on top of
HyperLTL, we combine ideas from finite-state HyperLTL model checking [37]
with the algorithms of Sect. 4 and Sect. 5.1.

Let ϕ = ∀m∃n
.ψ. For HyperLTL model checking, [37] first constructs an

automaton containing the system traces satisfying ψ∃ ∶= ∃n
.ψ, and then applies

3
Note that the algorithms of Sect. 4 and Sect. 5.1 are also incomplete, due to the
feasibility test. However, the incompleteness of the algorithm we provide in this
section is inherent to the quantifier alternation of the formula.
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complementation to extract counterexamples for the ∀∃ specification. Consider
the automaton Pn⊗AψLTL

from Sect. 4, whose feasible traces correspond to the
system traces satisfying ψ∃. If we would be able to remove all infeasible traces,
we could apply the finite-state HyperLTL model checking construction. Unfor-
tunately, removing all infeasibilities is impossible in general, as the result would
be a finite-state system describing exactly an infinite-state system. Therefore,
the main idea of this section is to remove parts of the infeasible traces from
Pn ⊗AψLTL

, constructing an over-approximation of the system traces satisfying
ψ∃. A counterexample disproving ϕ is then a combination of system traces that
is not contained in the over-approximation.

We propose two techniques for removing infeasibility. The first technique
removes k-infeasibility from the automaton, that is, a local inconsistency in a
trace, occurring within k consecutive time steps. When choosing k, there is a
trade-off: if k is larger, more counterexamples can be identified, but the automa-
ton construction gets exponentially larger.

The second technique removes infeasible accepting cycles from the automa-
ton. It might not be possible to remove all of them, thus we bound the number
of iterations. We present an example and then elaborate on these two methods.

Example 2. The trace t1 below is 3-infeasible, because regardless of the value of
n prior to the second time step, the assertion in the fourth time step will fail.

t1 = (n − −; assert(n >= 0)) (n ∶= 1; assert(n >= 0)) (n − −; assert(n >= 0))
ω

In contrast, the trace t2 = (n ∶= ∗) (n−−; assert(n >= 0))ω is not k-infeasible
for any k, because the value of n can always be large enough to pass the
first k assertions. Still, the trace is infeasible because n cannot decrease for-
ever without dropping below zero. If such a trace is accepted by an automaton,
n − −; assert(n >= 0) corresponds to an infeasible accepting cycle.

Removing k-Infeasibility. To remove k-infeasibility from an automaton, we
construct a new program automaton that ‘remembers’ the k − 1 previous state-
ments. The states of the new automaton correspond to paths of length k in the
original automaton. We add a transition labeled with l between two states p and
q if we can extend the trace represented by p with l such that the resulting trace
is k-feasible. Formally, we get:

Definition 12. Let k ∈ N, σ ∈ Stmtω. We say that σ is k-infeasible if there
exists j ∈ N such that σjσj+1 . . . σj+k−1; assert(true)

ω is infeasible for all possi-
ble initial assignments ζ−1. We then also call the subsequence σjσj+1 . . . σj+k−1

infeasible. If a trace is not k-infeasible, we call it k-feasible.4

Definition 13. Let P = (Stmt , Q, q0, δ, F ) be a program automaton. Let k ∈ N.
We define P without k-infeasibility, as Pk = (Stmt , Q′

, q0, δ
′
, F

′
) where

Q
′ ∶= {(q1, s1, q2 . . . , sk−1, qk) ∣ (q1, s1, q2) ∈ δ ∧ ⋅ ⋅ ⋅ ∧ (qk−1, sk−1, qk) ∈ δ} ∪

4
Whether a subsequence σjσj+1 . . . σj+k−1 is a witness of k-infeasibility can be checked
using an SMT-solver, e.g., [14,15,17,26].
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{(q0, s0, q1 . . . , sk′−1, qk′) ∣ k
′ < k − 1 ∧ (q0, s0, q1) ∈ δ ∧ . . .

∧ (qk′−1, sk′−1, qk′) ∈ δ}

δ
′ ∶= {((q1, s1, q2 . . . , sk−1, qk), sk, (q2, s2, . . . , qk, sk, qk+1)) ∈ Q

′ × Stmt × Q
′

∣ s1 . . . sk feasible} ∪

{((q0, s0, q1 . . . , sk′−1, qk′), sk′ , (q0, s0, . . . , qk′ , sk′ , qk′+1)) ∈ Q
′ × Stmt × Q

′

∣ k
′ < k − 1 ∧ s0 . . . sk′ feasible}

F
′ ∶= {(q1, s1, q2 . . . , sk−1, qk) ∈ Q

′
∣ qk ∈ F} ∪

{(q0, s0, q1 . . . , sk′−1, qk′) ∈ Q
′
∣ k

′ < k − 1 ∧ qk′ ∈ F}

Theorem 4. Pk accepts exactly the k-feasible traces of P.

The proof follows directly from the construction above. For more details, see full
version [32].

Removing Infeasible Accepting Cycles. For removing infeasible accepting
cycles, we first enumerate all simple cycles of the automaton (using, e.g., [44]),
adding also cycles induced by self-loops. For each cycle � that contains at least
one accepting state, we test its feasibility: first, using an SMT-solver to test if �
is locally infeasible; then, using a ranking function synthesizer (e.g., [8,24,40]) to
test if �

ω is infeasible. If we successfully prove infeasibility, we refine the model,
using the methods from [41,42]. This refinement is formalized in the following.

Definition 14. Let P = (Stmt , Q, q0, δ, F ) be a program automaton. Let � =
(q1, s1, q2)(q2, s2, q3) . . . (qn, sn, q1) be a sequence of transitions of P. We say
that � is an infeasible accepting cycle if there is a 1 ≤ j ≤ n with qj ∈ F and
(s1s2 . . . sn−1)

ω is infeasible for all possible initial assignments ζ−1.

Definition 15. Let P be a program automaton and C ⊆ (Q × Stmt × Q)
ω be a

set of infeasible accepting cycles of P. Furthermore, let

� = (q1, s1, q2)(q2, s2, q3) . . . (qn−1, sn−1, qn) ∈ C.

The automaton A	 for � is A	 = (Stmt , Q = {q0, q1, . . . qn}, q0, δ,Q\{q0}) where

δ = {(q0, s, q0) ∣ s ∈ Stmt}
∪ {(qj , sj , qj+1) ∣ 1 ≤ j < n} ∪ {(q0, s1, q2), (qn, sn, q1)}.

Then, A	 accepts exactly the traces that end with �
ω, without any restriction

on the prefix. See Fig. 2 for an example. To exclude the traces of A	 from P,
we define PC ∶= P\ (⋃	∈C A	).

5 This construction can be repeated to exclude
infeasible accepted cycles that are newly created in PC . We denote the result of
iterating this process k

′ times by PC(k′).

Finding Counterexamples for ∀∗∃∗ HyperTSL(T)-Formulas. Consider
now a HyperTSL(T) formula ϕ = ∀1⋯m∃m+1⋯n

.ψ and a program automaton P.
5

For two automata A1,A2 we use A1\A2 to denote the intersection of A1 with the
complement of A2, resulting in the language L(A1) \ L(A2).
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Fig. 2. Automaton A� for the infeasible
cycle � = (q1, n − −, q2)(q2, assert(n >
0), q1). Label ∗ denotes an edge for every
(relevant) statement.

For finding a counterexample, we first
construct the combined product Pn ⊗
Aψ. Each feasible accepted trace of
Pn ⊗ Aψ corresponds to a combi-
nation of n feasible program traces
that satisfy ψ. Next, we eliminate
k-infeasibility and remove k

′-times
infeasible accepting cycles from the
combined product, resulting in the
automaton (Pn ⊗Aψ)k,C(k′). Using this modified combined product, we obtain
an over-approximation of the program execution combinations satisfying the
existential part of the specification. Each trace of the combined product is a
combination of n program executions and a predicate/update term sequence.
We then project the m universally quantified program executions from a feasible
trace, obtaining a tuple of m program executions that satisfy the existential part
of the formula. Applying this projection to all traces of (Pn⊗Aψ)k,C(k′) leads to
an over-approximation of the program executions satisfying the existential part
of the specification. Formally:

Definition 16. Let P be a program automaton, let m ≤ n ∈ N, and let Aψ

be the automaton for the formula ψ. Let (Pn ⊗ A)k,C(k′) = (Stmt , Q, q0, δ, F ).
We define the projected automaton (Pm⊗A)

∀
k,C(k′) = (Stmt , Q, q0, δ

∀
, F ) where

δ
∀ = {(q, (s1; . . . ; sm), q

′
) ∣ ∃sm+1, . . . sn, l. (q, combine(s1; . . . ; sn, l), q

′
) ∈ δ}.

The notation s1; s2 refers to a sequence of statements, as given in Definition 4.
For more details on the universal projection we refer the reader to [36].

Now, it only remains to check whether the over-approximation contains all
tuples of m feasible program executions. If not, a counterexample is found. This
boils down to testing if Pm

\(Pn⊗Aψ)
∀
k,C(k′) has some feasible trace. Theorem 5

states the soundness of our algorithm. For the proof, see full version [32].

Theorem 5. Let ϕ = ∀1⋯m∃m+1⋯n
.ψ be a HyperTSL(T) formula. If the

automaton Pm
\(Pn ⊗Aψ)

∀
k,C(k′) has a feasible trace, then P does not satisfy ϕ.

6 Demonstration of the Algorithm

In this section, we apply the algorithm of Sect. 5.2 to two simple examples,
demonstrating that removing some infeasibilities can already be sufficient for
identifying counterexamples.

Generalized Noninterference Recall the formula ϕgni = ∀π. ∃π
′
. (iπ′ =

λ ∧ cπ = cπ′) introduced in Sect. 1, specifying generalized noninterference. We
model-check ϕgni on the program automaton P of Fig. 3 (left), setting λ = 0.
The program P violates ϕgni since for the trace (assert(i < 0) c ∶= 0)ω there
is no other trace where on which c is equal, but i = 0. The automaton for
ψ = (iπ′ = 0 ∧ cπ = cπ′) consists of a single accepting state with the self-loop
labeled with τP = (iπ′ = 0∧cπ = cπ′). For this example, it suffices to choose k = 1.
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Fig. 3. Left: The program automaton P used in the first example. Right: The program
automaton P2

. For brevity, we use A for assert and join consecutive assertions.

To detect 1-inconsistencies we construct P2 (Fig 3, right). Then, (P2 ⊗Aψ)k is
the combined product with all 1-inconsistent transitions removed (see Fig. 5 for
the combined product).

Fig. 4. program automaton (P2 ⊗Aψ)
∀
k

The automaton (P2 ⊗ Aψ)
∀
k is

shown in Fig. 4. It does not contain
the trace σ = assert(i < 0) (c ∶= 0)ω

which is a feasible trace of P. There-
fore, σ is a feasible trace accepted by
P\(P2 ⊗Aψ)

∀
k and is a counterexam-

ple proving that P does not satisfy
generalized noninterference – there is
no feasible trace that agrees on the value of the cell c but has always i = 0.

The Need of Removing Cycles. We now present an example in which remov-
ing k-infeasibility is not sufficient, but removing infeasible accepting cycles leads
to a counterexample. Consider the specification ϕ = ∀π∃π

′
. (pπ ≠ pπ′ ∧ nπ <

nπ′) and the program automaton Pcy of Fig. 6. The formula ϕ states that for
every trace π, there is another trace π

′ which differs from π on p, but in which
n is always greater. The trace π = (n ∶= ∗); (p ∶= ∗); assert(p = 0); (n − −)ω is
a counterexample for ϕ in Pcy as any trace π

′ which differs on p will decrease
its n by 2 in every time step, and thus nπ′ will eventually drop below nπ.

Fig. 5. The combined product (P2 ⊗Aψ)
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Fig. 6. Left: The program automaton Pcy, Right: The program automaton P2
cy.

The automaton P2
cy is shown in Fig. 6. In the combined product, the structure

of the automaton stays the same, and assert(pπ ≠ pπ′ ∧ nπ < n
′
π) is added to

every state. Removing local k-infeasibilities is not sufficient here; assume k = 1.
The only 1-infeasible transition is the transition from q2q2 to q3q3, and this does
not eliminate the counterexample π. Greater k’s do not work as well, as the
remaining traces of the combined product are not k infeasible for any k.

However, the self-loop at q3q4 is an infeasible accepting cycle – the sequence
(nπ−−; nπ′ ∶= nπ′ −2; assert(nπ < nπ′))

ω must eventually terminate. We choose
k
′ = 1 removing all traces ending with this cycle. Next, we project the automaton

to the universal part. The trace π is not accepted by the automaton (P2 ⊗
Aψ)

∀
1,C(1). But since π is in P and feasible, it is identified as a counterexample.

7 Conclusions

We have extended HyperTSL with theories, resulting in HyperTSL(T), and pro-
vided the first infinite-state model checking algorithms for both TSL(T) and
HyperTSL(T). As this is the first work to study (Hyper)TSL model checking,
these are also the first algorithms for finite-state model checking for (Hyper)TSL.
For TSL(T), we have adapted known software model checking algorithm for LTL
to the setting of TSL(T). We then used the technique of self-composition to gen-
eralize this algorithm to the alternation-free fragment of HyperTSL(T).

We have furthermore described a sound but necessarily incomplete algorithm
for finding counterexamples for ∀∗∃∗-HyperTSL(T) formulas (and witnesses
proving ∃∗∀∗ formulas). Our algorithm makes it possible to find program execu-
tions violating properties like generalized noninterference, which is only express-
ible by using a combination of universal and existential quantifiers.
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Finding model checking algorithms for other fragments of HyperTSL(T), and
implementing our approach, remains as future work.
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29. Dobe, O., Ábrahám, E., Bartocci, E., Bonakdarpour, B.: HyperProb: a model
checker for probabilistic hyperproperties. In: Huisman, M., Păsăreanu, C., Zhan,
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Abstract. Condition synthesis takes a program in which some of the conditions
in conditional branches are missing, and a specification, and automatically infers
conditions to fill-in the holes such that the program meets the specification.

In this paper, we propose COSYN, an algorithm for determining the realizabil-
ity of a condition synthesis problem, with an emphasis on proving unrealizability
efficiently. We use the novel concept of a doomed initial state, which is an initial
state that can reach an error state along every run of the program. For a doomed
initial state σ, there is no way to make the program safe by forcing σ (via condi-
tions) to follow one computation or another. COSYN checks for the existence of
a doomed initial state via a reduction to Constrained Horn Clauses (CHC).

We implemented COSYN in SEAHORN using SPACER as the CHC solver and
evaluated it on multiple examples. Our evaluation shows that COSYN outper-
forms the state-of-the-art syntax-guided tool CVC5 in proving both realizability
and unrealizability. We also show that joining forces of COSYN and CVC5 out-
performs CVC5 alone, allowing to solve more instances, faster.

1 Introduction

The automated synthesis of imperative programs from specifications is a very fruitful
research area [1,9,16,18,22,25–28]. Our paper focuses on the important sub-problem
of condition synthesis. Condition synthesis receives as input a partial program, where
conditions are missing in conditional branches (e.g., if statements), and a specification.
A solution to this problem is a set of conditions to fill-in the holes such that the resulting
program meets the specification. If such a solution exists, the problem is realizable,
otherwise it is unrealizable.

The main motivation for condition synthesis is automated program repair. The prob-
lem naturally arises whenever the source of a bug is believed to be in a conditional
branch, and the condition has to be replaced for the program to be correct. Studies on
repair have shown that many real-life bugs indeed occur due to faulty conditions [29].
Several program repair methods focus on condition synthesis [6,19,29]. These algo-
rithms, however, do not guarantee formal verification of the resultant program, but only
that it passes a certain set of tests used as a specification.

In this work, we propose COSYN, a novel algorithm for determining the realiz-
ability of a condition synthesis problem, with an emphasis on proving unrealizability
efficiently. We use a formal safety specification and conduct a search guided by seman-
tics rather than syntax. Importantly, COSYN’s (un)realizability results are accompanied
by an evidence to explain them.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 380–396, 2023.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33170-1_23&domain=pdf
https://doi.org/10.1007/978-3-031-33170-1_23


Condition Synthesis Realizability via Constrained Horn Clauses 381

Our semantics-guided search is based on the novel concept of doomed initial states.
An initial state is called doomed if it eventually reaches an error state along every run of
the program. For a doomed initial state σ, there is no way to make the program safe by
forcing σ (via conditions) to follow one computation or another. It will lead to a failure
anyway. Thus, the existence of such a state constitutes a proof that conditions cannot be
synthesized at all, regardless of syntax.

To check for the existence of a doomed initial state, COSYN uses a reduction to
Constrained Horn Clauses (CHC). CHC is a fragment of First-Order Logic, associated
with effective solvers [4]. Our reduction constructs a set of CHCs that are satisfiable iff
the condition synthesis problem is realizable, and utilizes a CHC solver to solve them.

When COSYN finds a problem unrealizable, its answer is accompanied by a wit-
ness: an initial doomed state. When it finds a problem realizable, it returns a realizabil-
ity proof. A realizability proof consists of two parts: a constraint defining a range of
conditions for each hole in the program, and a correctness certificate. The range of con-
ditions for a hole in location l is defined using two logical predicates, Ψf (l) and Ψ t(l).
Every predicate Ψ(l) for which the implication Ψf (l) =⇒ Ψ(l) =⇒ Ψ t(l) holds (in
particular Ψf (l) and Ψ t(l)), is a valid solution for the hole in location l. Moreover, the
certificate is a proof for the safety of the program when using Ψ(l) as a solution.

An important feature of COSYN is that it can complement existing synthesis algo-
rithms such as syntax-guided-synthesis (SYGUS) [1]. SYGUS limits the search-space
to a user-defined grammar, hence ensuring that if a solution is found, it is of a user-
desired shape. However, if a SYGUS algorithm determines the problem is unrealizable,
it is with respect to the given grammar. Instead, one can use COSYN to determine if the
problem is realizable or not. In the case that the problem is realizable, the implication
Ψf (l) =⇒ Ψ(l) =⇒ Ψ t(l), and a grammar can be given to a SYGUS algorithm,
which then synthesizes a solution that conforms with the given grammar. Note that the
input problem to the SYGUS algorithm is now much simpler (as evident in our exper-
imental evaluation). This strategy can assist users as it can indicate if a solution exists
at all, or if debugging of the specification is required (when unrealizable). Moreover, it
can reduce the burden from an iterative synthesis process that searches for a solution in
the presence of increasingly many examples or increasingly complex grammars. This
is achieved by detecting unrealizability up-front.

We implemented COSYN in an open-source tool on top of SEAHORN, a program
verification tool for C programs. We created a collection of 125 condition synthesis
problems by removing conditions from verification tasks in the TCAS and SVCOMP
collections and by implementing several introductory programming assignments with
missing conditions. We conducted an empirical evaluation of COSYN against the state-
of-the-art SYGUS engine implemented in CVC5 on our benchmark collection. Two
different variants were compared. In the first, we compare COSYN and CVC5 without a
grammar. In the second, a grammar was supplied, and we compare the performance of
COSYN in conjunction with CVC51 against CVC5 alone. The experiments show that in
both variations, with and without grammar, COSYN solves more instances, both realiz-
able and unrealizable. The advantage of COSYN is most noticeable on the unrealizable

1 Where COSYN is executed, and CVC5 is then invoked on the given grammar and implication
Ψf (l) =⇒ Ψ(l) =⇒ Ψ t(l).
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(a)Gex1

� → pinit

pinit ∧ (x > 8) ∧ (X′ = X) → p′
0

pinit ∧ (x ≤ 8) ∧ (X′ = X) → p′
1

p0 ∧ (z′ = x) ∧ (x′ = x) ∧ (y′ = y) → p′
4

p1 ∧ (x <= −8) ∧ (X′ = X) → p′
2

p1 ∧ (x > −8) ∧ (X′ = X) → p′
3

p2 ∧ (z′ = −x) ∧ (x′ = x) ∧ (y′ = y) → p′
4

p3 ∧ (z′ = 9) ∧ (x′ = x) ∧ (y′ = y) → p′
4

p4 ∧ (y ≥ 3) ∧ (X′ = X) → p′
5

p4 ∧ (y < 3) ∧ (X′ = X) → p′
7

p5 ∧ (z′ = z + 1) ∧ (x′ = x) ∧ (y′ = y) → p′
6

p6 ∧ (y′ = y − 3) ∧ (z′ = z) ∧ (x′ = x) → p′
4

p7 ∧ (¬(z ≥ 9 ∧ z ≥ x ∧ z ≥ −x)) ∧ (X′ = X) → p′
err

perr → ⊥

(b)ΠGex1

Fig. 1. The CFG Gex1 (left) and the set of CHCs ΠGex1 (right).

problems. Further, COSYN, in both variants, performs better w.r.t. runtime. This leads
us to conclude that COSYN can be an important addition to existing SYGUS tools.

To summarize, the main contributions of our work are:

– A novel algorithm, called COSYN, for solving the (un)realizability problem of con-
dition synthesis via a non-standard reduction to Constrained Horn Clauses (CHC).
To the best of our knowledge, COSYN is the first algorithm to determine that a con-
dition synthesis problem is unrealizable w.r.t. any grammar.

– COSYN’s results are supported by an evidence: either a doomed initial state (for an
unrealizable problem), or a realizability proof (for a realizable problem) that can be
used by a synthesis tool to generate a solution w.r.t. a given grammar.

2 Preliminaries

2.1 Program Safety

To represent programs, we use control-flow-graphs with transitions encoded as logical
formulas. We consider First Order Logic modulo a theory T and denote it by FOL(T ).
T is defined over signatureΣT . We denote byX a set of variables representing program
variables. A valuation σ of X is called a program state. We use the set Xi = {xi | x ∈
X} to represent variable values after i computation steps, where i ≥ 1. For the special
case of i = 1 (one computation step) we also use the set X ′ = {x′ | x ∈ X}. A state
formula is a (quantifier-free) formula in FOL(T ) defined over the signature ΣT ∪X . A
transition formula is a (quantifier-free) formula in FOL(T ) defined over the signature
ΣT ∪ X ∪ X ′.
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A control-flow-graph (CFG) is a tuple G = (Λ,Δ, linit, lerr, Λcond), where Λ is a
finite set of program locations, Δ is a set of transitions, linit ∈ Λ is the initial location
and lerr ∈ Λ is the error location. A transition τ is a triple 〈l, ϕ,m〉, where l,m ∈ Λ are
respectively the entry and exit locations of the transition, and ϕ is a transition formula.
The set Λcond ⊂ Λ is a set of locations, called condition locations, each of which
having exactly two outgoing transitions in Δ, representing a condition and its negation.
Formally, for every condition location lc ∈ Λcond, there exist two distinct locations
lfc , ltc ∈ Λ and a state formula θc such that the only two outgoing transitions from lc in
Δ are 〈lc, θc∧(X ′ = X), ltc〉 and 〈lc,¬θc∧(X ′ = X), lfc 〉 (where the notation X ′ = X
is short for the conjunction of equalities between each variable and its primed version).
A path π in the CFG is a sequence of transitions from Δ of the form

π = 〈l0, ϕ0, l1〉〈l1, ϕ1, l2〉〈l2, ϕ2, l3〉 · · ·

The path is an error path if it is finite and, in addition, l0 = linit and ln = lerr for some
n ≥ 0. Let απ be a sequence of formulas representing π. That is,

απ = ϕ0(X0,X1), ϕ1(X1,X2), ϕ2(X2,X3) · · ·

A run along path π from state σ is a sequence of states r = σ0, σ1, σ2 . . ., where
σ = σ0 and for every i ≥ 0, σi is a valuation of variables Xi, such that (σi, σi+1) |=
ϕi(Xi,Xi+1). In that case, we say that r starts at l0. Path π is feasible if there is a run
along it. If a run r = σ0, σ1, σ2 . . . along π starts at linit (i.e., l0 = linit) then for every
i ≥ 0 we say that state σi is reachable at li.

A safety verification problem is to decide whether a CFG G is SAFE or UNSAFE.
G is UNSAFE if there exists a feasible error path in G. Otherwise, it is SAFE.

Example 1. The CFG Gex1 is presented in Fig. 1(a), where Λcond = {�init, �1 �4}. The
Assertion at l7 is (z ≥ 9 ∧ z ≥ x ∧ z ≥ −x). The path π = 〈linit, x ≤ 8, l1〉〈l1, x ≤
−8, l2〉〈l2, z′ = −x, l4〉〈l4, y < 3, l7〉〈l7,¬assert, lerr〉 is a feasible error path in Gex1:
there is a run along π from state σ, where σ(x) = −8 and σ(y) = σ(z) = 0. Conse-
quently, the CFG Gex1 is UNSAFE.

2.2 Constrained Horn Clauses

Given the sets F of function symbols, P of uninterpreted predicate symbols, and V of
variables, a Constrained Horn Clause (CHC) is a First Order Logic (FOL) formula of
the form:

∀V · (φ ∧ p1(X1) ∧ · · · ∧ pk(Xk) → h(X)), for k ≥ 1

where: φ is a constraint over F and V with respect to some background theory
T ; Xi,X ⊆ V are (possibly empty) vectors of variables; pi(Xi) is an application
p(t1, . . . , tn) of an n-ary predicate symbol p ∈ P for first-order terms ti constructed
from F and Xi; and h(X) is either defined analogously to pi or is P-free (i.e., no P
symbols occur in h). Here, h is called the head of the clause and φ ∧ p1(X1) ∧ . . . ∧
pk(Xk) is called the body. A clause is called a query if its head is P-free, and other-
wise, it is called a rule. A rule with body true is called a fact. We say a clause is linear



384 B.-C. Rothenberg et al.

if its body contains at most one predicate symbol, otherwise, it is called non-linear. For
convenience, given a CHC C of the form φ∧p1(X1)∧· · ·∧pk(Xk) → h(X)), we will
use head(C) to denote its head h(X). We refrain from explicitly adding the universal
quantifier when the set of variables is clear from the context.

A setΠ of CHCs is satisfiable iff there exists an interpretation I such that all clauses
in Π are valid under I. For p ∈ P we denote by I[p] the interpretation of p in I.

2.3 Program Safety as CHC Satisfiability

Given a CFG G = (Λ,Δ, linit, lerr, Λcond), checking its safety can be reduced to
checking the satisfiability of a set ΠG of CHCs [4], as described below. For each pro-
gram location l ∈ Λ, define an uninterpreted predicate symbol pl. ΠG is then defined as
the set of the following CHCs:

1. � → pinit(X)
2. pl(X) ∧ ϕ → pm(X ′) for every 〈l, ϕ,m〉 ∈ Δ
3. perr(X) → ⊥

Note that this formulation assumes there are no function calls in the CFG, and that
all function calls in the original program are inlined. This also implies that the resulting
CHCs are linear. When clear from the context, we omit X and X ′ from pl(X), pl(X ′)
and ϕ(X,X ′). Instead, we write pl, p′

l and ϕ, respectively.

Example 2. Consider again the CFG Gex1, presented in Fig. 1(a), and its corresponding
set of CHCs, ΠGex1 , given in Fig. 1(b). For brevity, we write pi as short for pi(x, y) and
p′

i as short for pi(x′, y′). As shown in Example 1, Gex1 is UNSAFE and therefore there
is no satisfying interpretation for its predicate symbols.

Lemma 1. Let pi be the predicate symbol associated with location li in a CFG G.
Assume that ΠG is satisfiable by the interpretation I. Then, the interpreted predicate
I[pi] has the property that for every state σ, if σ is reachable at li (from linit), then
σ |= I[pi].

3 From Realizability to CHC Satisfaibility

In this section we describe the synthesis problem we solve, named condition synthesis.
We also show how realizability of this problem can be reduced to satisfiability of a set
of CHCs. From this point on, we assume that all function calls in the original program
are inlined. This implies that the set of CHCs representing the program’s CFG contains
only linear clauses.

3.1 Defining the Condition Synthesis Problem

Given a set of condition locations specified by the user, the goal of condition synthesis
is to automatically find conditions to be placed in these locations so that the program
becomes correct. We start by formally defining a program in which the conditions at
some of the condition locations are missing. Intuitively, such a location imposes no
constraint on the continuation of the program execution at that location. Hence, the
resulting program behaves non-deterministically.
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pinit → ⊥
p′
0 ∧ p′

1 ∧ (X′ = X) → pinit

p′
2 ∧ p′

3 ∧ (X′ = X) → p1

p′
4 ∧ (z′ = x) ∧ (x′ = x) ∧ (y′ = y) → p0

p′
4 ∧ (z′ = −x) ∧ (x′ = x) ∧ (y′ = y) → p2

p′
4 ∧ (z′ = 9) ∧ (x′ = x) ∧ (y′ = y) → p3

p′
5 ∧ (y ≥ 3) ∧ (X′ = X) → p4

p′
7 ∧ (y < 3) ∧ (X′ = X) → p4

p′
6 ∧ (z′ = z + 1) ∧ (x′ = x) ∧ (y′ = y) → p5

p′
4 ∧ (y′ = y − 3) ∧ (z′ = z) ∧ (x′ = x) → p6

p′
err ∧ (¬(z >= 9 ∧ z >= x ∧ z >= −x)) ∧ (X′ = X) → p7

� → perr

(b)ΠS

Fig. 2. The non-deterministic CFG Gnd with two non-deterministic nodes {linit, l1} (left) and
the set of CHCs ΠS (right).

Definition 1. Let G be a CFG. A condition location lc ∈ Λcond is called non-
deterministic if the two outgoing transitions from lc have the following form: 〈lc,X ′ =
X, ltc〉 and 〈lc,X ′ = X, lfc 〉. If G has a non-deterministic condition location, we say
that G is non-deterministic.

Example 3. The left-hand-side of Fig. 2 presents the non-deterministic CFG Gnd, which
is identical to the CFG Gex1 of Fig. 1, except that locations {linit, l1} are non-
deterministic. The transitions leaving those locations are labeled with expressions of
the form ? or ¬?, to indicate that no condition is associated with these locations.

A non-deterministic CFG G can be transformed into a deterministic CFG by replac-
ing every non-deterministic control location with a deterministic condition2. More for-
mally,

Definition 2. Let G = (Λ,Δ, linit, lerr, Λcond) be a non-deterministic CFG and
Λ?

cond ⊆ Λcond be the set of non-deterministic control locations. Let Ψ : Λ?
cond → Γ

be a function where for every ls ∈ Λ?
cond, Ψ(ls) ∈ Γ is a predicate over the set

of program variables. Ψ is called a resolving function. The resolved CFG GΨ =
(Λ,ΔΨ , linit, lerr, Λcond), is defined as follows.

– For l ∈ (Λ \ Λ?
cond) and for a formula ϕ and m ∈ Λ. If 〈l, ϕ,m〉 ∈ Δ, then

〈l, ϕ,m〉 ∈ ΔΨ

– For ls ∈ Λ?
cond, the only two transitions out of ls in ΔΨ are

〈ls, Ψ(ls) ∧ (X = X ′), lts〉 and 〈ls,¬Ψ(ls) ∧ (X = X ′), lfs 〉
2 We emphasize that a deterministic CFG can still contain non-deterministic assignments. In the
context of CFG, non-determinisim only refers to the form/structure of the CFG.
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We define the synthesis problem as S = (G, Λ?
cond), where G is a non-deterministic

CFG and Λ?
cond is the set of non-deterministic condition locations. A solution to S is a

resolving function Ψ : Λ?
cond → Γ such that GΨ is deterministic and SAFE.

3.2 Reducing Condition Synthesis Realizability to CHC Satisfiability

A realizability problem is to determine whether a given synthesis problem S has a solu-
tion or not. In this section we show how the problem of condition synthesis is reducible
to the CHC satisfiability problem. In what follows we refer to realizability w.r.t. the
condition synthesis problem given by S = (G, Λ?

cond), where G is non-deterministic
and Λ?

cond is the set of non-deterministic control locations.

Doomed States. To explain the reduction of realizability to CHC, we first introduce
the notion of doomed states.

Definition 3. A state σ is doomed at location li if every run from σ, starting at li,
reaches the error location lerr.

Note that, in particular, all runs from a state that is doomed at li are finite.
Intuitively, given a synthesis problem S, if there exists a doomed state at location

linit, then S is unrealizable. Recall that S = (G, Λ?
cond), and G is non-deterministic.

Hence, if an initial state σ is doomed, then no matter which conditions are chosen for
the non-deterministic control locations in G, σ can reach the error location along every
run. We exploit this observation to reduce the (un)realizability problem to identifying
initial doomed states in a non-deterministic CFG, or proving their absence.

Example 4. Consider again the non-deterministic CFG Gnd, presented in Fig. 2. The
realizability problem in this case is to determine whether the synthesis problem S =
(Gnd, {linit, l1}) has a solution or not.

Note that a state σ in which σ(x) = 10 and σ(y) = 0 is doomed at location l1: All
runs from this state starting at l1 end up in lerr. In contrast, no state is doomed at the
initial location linit. That is, from any such state it is possible to find a run that does
not proceed to lerr. As we will see later, this implies that the synthesis problem has a
solution – we can assign conditions to linit and l1 s.t. the resulting program is SAFE.

Realizability to CHC. Finding the set of states that can reach lerr along some run
from a given location l ∈ G can be achieved by iteratively computing the pre-image of
bad states, starting from lerr up to the location l. Note that if there exists a condition
location on paths from l to lerr, then the union of the pre-image along the “then” and
“else” branches is computed.

In order to find doomed states, however, a non-deterministic condition location
should be handled differently. Whenever the pre-image computation reaches a non-
deterministic condition location ls, the pre-image computed along the “then” and “else”
branches need to be intersected. The result of this intersection is a set of states that reach
lerr along every run that starts in ls.
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In what follows we describe how to construct a set of CHCs that captures doomed
states. The construction is based on a transformation from the original set of CHCs ΠG ,
and has two phases, described below. Due to lack of space, all proofs in the following
sections are deferred to the full version.

Reversed CHC. Assume that for S = (G, Λ?
cond), ΠG is a set of CHCs originat-

ing from G using the procedure presented in Sect. 2.3. As described above, computing
doomed states requires computing the pre-image of states that can reach lerr. Hence,
the first step of our reduction is to construct a new set of CHCs ΠR

G , referred to as
the reverse of ΠG . As the name implies, ΠR

G is obtained by reversing the polarity
of uninterpreted predicates in every clause. More precisely, a predicate that appears
positively appears negatively in the reversed clause, and vice-versa. For example, if
p(X) ∧ ϕ(X,X ′) → q(X ′) is a clause in ΠG , then q(X ′) ∧ ϕ(X,X ′) → p(X), is
a clause in ΠR

G . Reversing a set of CHCs is performed using simple syntactic rules.
We emphasize that this transformation is only applicable for linear CHCs. Reversing a
non-linear CHC results in a clause that is not in Horn form.

Note that for a transition 〈l, ϕ,m〉, the clause pl(X) ∧ ϕ(X,X ′) → pm(X ′)
captures the image operation. Namely, a given set of states in location l and their
set of successors in location m satisfy the clause. Similarly, the reversed clause
pm(X ′) ∧ ϕ(X,X ′) → pl(X) captures the pre-image operation. Meaning, a given set
of states in location m and their predecessors at location l satisfy the reversed clause.

Theorem 1. For every CFG G, ΠG is satisfiable iff ΠR
G is satisfiable.

Proof (sketch). Let I be an interpretation that satisfies ΠG . Then, IR[pl] = ¬I[pl] for
every location l ∈ Λ is a satisfying interpretation for ΠR

G . In the other direction, define
I[pl] = ¬IR[pl], which satisfies ΠG .

Lemma 2. Let pi be the predicate symbol associated with label li in the CFG G.
Assume that the reverse of ΠG , ΠR

G , is satisfiable by the interpretation IR. Then, for
every state σ, if σ is a start of a run along a path from li to lerr, then σ |= IR[pi].

Doomed States in Reversed CHCs. Reversing the set of CHCs allows us to capture the
pre-image of lerr. This, as noted, is only the first step. Recall that in order to identify
doomed states, whenever a non-deterministic condition location is reached, the pre-
image of the “then” branch must be intersected with the pre-image of the “else” branch.

For a given non-deterministic condition location ls ∈ Λ?
cond, the reversed set of

CHCs, ΠR
G , contains the following two clauses:

pt
s(X

′) ∧ (X = X ′) → ps(X) and pf
s (X ′) ∧ (X = X ′) → ps(X),

where pt
s and pf

s represent the pre-image of the “then” branch and “else” branch, respec-
tively. As described above, the intersection of the pre-image along the “then” and “else”
branches represents the doomed states. In order to represent this intersection, the second
phase of the transformation replaces every two such clauses with the clause:

pt
s(X

′) ∧ pf
s (X ′) ∧ (X = X ′) → ps(X).

We denote the resulting set of CHCs as ΠS .
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Example 5. Consider again the non-deterministic CFG Gnd, presented in Fig. 2. The
right-hand-side of the figure presents the set ΠS of CHCs, which capture the doomed
states in the control locations of Gnd. Assume IS is a satisfying interpretation for ΠS .
Since IS satisfies the clause pinit → ⊥ in ΠS , then necessarily IS [pinit] = ⊥, which
means that no initial state of Gnd is doomed. As proved later, this guarantees that the
synthesis problem S = (Gnd, {linit, l1}) is realizable.

Lemma 3. Let pi be the predicate symbol associated with location li in the CFG G.
Let IS be an interpretation satisfying ΠS of G. Then, for every state σ, if it is doomed
at location li, then σ |= IS [pi].

The following theorem states that the satisfiability of ΠS determines the realizabil-
ity of S = (G, Λ?

cond). In fact, given a satisfying interpretation for ΠS , it is possible
to construct solutions to the synthesis problem S = (G, Λ?

cond). Further, if ΠS is not
satisfiable, then the synthesis problem is unrealizable.

Theorem 2. S = (G, Λ?
cond) is realizable iff ΠS is satisfiable.

We partition the proof of the theorem into two. Below we present the first direction. In
Sect. 4 we prove the second direction of the theorem.

Lemma 4. If S = (G, Λ?
cond) is realizable then ΠS is satisfiable.

4 Realizability and the Satisfying Interpretation of ΠS

In this section we first show that if ΠS is satisfiable, then there exists a solution to the
realizability problem. Later in Sect. 4.2, we show how such a solution, i.e. a resolving
function, can be constructed. By that, we also prove the other direction of Theorem 2.

Lemma 5. If ΠS is satisfiable, then there exists a resolving function Ψ that solves
S = (G, Λ?

cond). That is, GΨ is SAFE.

The above lemma implies that in the case where ΠS is satisfiable, then S is realiz-
able. Before describing how the resolving function is constructed, we develop both the
intuition and the needed technical material in the following section.

4.1 The Role of the Resolving Function

Let S = (G, Λ?
cond) be a synthesis problem such that ΠS is satisfiable, and IS is its

satisfying interpretation. We wish to find a solution Ψ of S.
Recall that for a location li ∈ Λ and its associated predicate pi ∈ ΠS , IS [pi] is an

over-approximation of states that are doomed at li (Lemma 3). Clearly, if a synthesized
program has a reachable state that is also doomed, then the program is not SAFE. Hence,
the goal is to synthesize a program where for every location li ∈ Λ, the set of states
IS [pi] is not reachable at location li.
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The synthesis procedure can only affect non-deterministic locations, we therefore
consider l ∈ Λ?

cond with its “else” and “then” branches, represented by lf and lt, respec-
tively, and their associated predicates p, pf and pt3.

Let Ψ be a resolving function for S = (G, Λ?
cond) (by Lemma 5, Ψ exists). We can

view Ψ(l) as a router, directing program states that reach l to either the “then” branch
(i.e., lt) or the “else” branch (i.e., lf ). Intuitively, this router must ensure doomed states
are unreachable at the “then” and “else” branches. As an example, if a state is doomed
at lf , Ψ(l) “routes” it to the “then” branch (namely, to lt) and hence it never reaches lf .

To generalize this example, let us denote byD,Df andDt, the exact sets of doomed
states (non-approximated) at locations l, lf and lt, respectively. Since Ψ is a resolving
function, D, Df and Dt must be unreachable at locations l, lf and lt, respectively.

First, let us consider the set D. Note that, D = Df ∧ Dt, since a state is doomed
at l iff it is doomed at both lf and lt. Since Ψ is a resolving function, we conclude
that states in D must be unreachable at location l (otherwise, the synthesized program
cannot be SAFE). This implies that Ψ(l) can direct states that are in D to either the
“then” or “else” branch.

Next, consider the set Df . To ensure that this set is unreachable at lf , all states in
Df that are reachable at l must be directed to the “then” branch (i.e. to lt) by Ψ(l).
We emphasize that given the fact that D is unreachable, only states in Df\D can be
reachable in l. Symmetrically, all states in the set Dt that are reachable at l (namely,
states in Dt\D) must be directed to the “else” branch by Ψ(l).

To summarize the above intuition, Fig. 3 presents guidelines for defining the func-
tion Ψ(l). It illustrates the sets Df and Dt inside the universe of all program states
(i.e., all possible valuations of X) using a Venn diagram. There are four regions in the
diagram, defining how Ψ(l) behaves: states in Df\D are directed to the “then” branch;
states in Dt\D are directed to the “else” branch; and states in the Φ regions (states in
D and in (Dt ∪ Df )c) can be directed to either branch.

4.2 Defining a Resolving Function

As described in Sect. 3, for a location l ∈ Λ with an associated predicate p, IS [p] is an
over-approximation of states that are doomed at location l. We thus need to construct Ψ
such that it directs states to the proper branch using the given over-approximations of
doomed states, such that states in IS [p] are unreachable in GΨ at location l.

Based on the above we can use the satisfying interpretation IS in order to define
the resolving function Ψ . We define two possible resolving functions: Ψf and Ψ t. We
prove that these two solutions are two extremes of a spectrum, hence defining a space

3 For readability, in this section we omit s from ls, l
f
s , lts and their corresponding predicates.



390 B.-C. Rothenberg et al.

Df Dt

Df\D
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directed to
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Dt\D
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directed to

”else”

Df ∧ Dt

Φ
(shouldbe
unreachable)

¬Df ∧ ¬Dt Φ (good either way)

Fig. 3. Venn diagrams of the precise sets of doomed states, Df and Dt

of possible solutions. Recall that a resolving function Ψ always defines the predicate
for sending states to the “then” branch (i.e., a state is directed to the “then” branch iff it
satisfies Ψ ). Therefore, the resolving functions Ψf and Ψ t are defined as follows:

∀ls ∈ Λ?
cond : Ψf (ls) � IS [pf ](X) ∧ ¬IS [p](X)

∀ls ∈ Λ?
cond : Ψ t(ls) � ¬(IS [pt](X) ∧ ¬IS [p](X)) ≡ ¬IS [pt](X) ∨ IS [p](X)

The following two lemmas prove that solution Ψf behaves as desired. That is, if it
directs a state σ to the “then” branch, then σ is not doomed at lt. Moreover, if it directs it
to the “else” branch, then σ is either not doomed at lf or unreachable at l, and therefore
also unreachable at lf . Similar lemmas can be proved for solution Ψ t.

Lemma 6. Let σ be a state such that σ |= Ψf . Then σ �|= Dt.

Lemma 7. Assume that IS [p] is unreachable at l. If σ is a state such that σ �|= Ψf ,
then either σ �|= Df or σ is unreachable.

The Space of Possible Solutions. The functions Ψf and Ψ t defined above are two
extremes of a spectrum defining a space of solutions. More precisely, every function Ψ
that satisfies Ψf → Ψ → Ψ t is a resolving function.

Next, we prove that a function Ψ , such that Ψf → Ψ → Ψ t, is a solution for S =
(G, Λ?

cond). Recall that the goal of our approach is to synthesize a program where for
every location li ∈ Λ, the set of states IS [pi] is not reachable at li. Moreover, the proof
of the following lemma guarantees that GΨ is SAFE by showing that IS is a satisfying
interpretation ofΠR

GΨ
(Theorem 1). Hence, we conclude that in the synthesized program

GΨ , for every location li ∈ Λ, the set of states IS [pi] (which is an over-approximation
of states that reach lerr from li) is not reachable at li.

Lemma 8. Let Ψ be a function s.t. for every l ∈ Λ?
cond the formula

Ψf (l)(X) → Ψ(l)(X) → Ψ t(l)(X)

is valid. Then, Ψ is a solution of S.
Lemma 9. There exists a function Ψ s.t. for every l ∈ Λ?

cond the following formula is
valid: Ψf (l)(X) → Ψ(l)(X) → Ψ t(l)(X).
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Summary. Lemma 8 and Lemma 9 prove it is possible to synthesize a resolving func-
tion (in fact, a set of resolving functions) for S using the satisfying interpretation IS of
ΠS . This proves the correctness of the following Lemma:

Lemma 10. If ΠS is satisfiable then S = (G, Λ?
cond) is realizable.

The correctness of Lemma 10 finalizes the proof of Theorem 2.

4.3 Synthesizing a Solution with a Grammar

While COSYN does not require a grammar, in some cases where the problem is real-
izable, it may be desirable to synthesize a solution of a specific plausible shape. To
achieve this, one can use COSYN in conjunction with a synthesis framework such as
the well-known Syntax Guided Synthesis (SYGUS) framework [1]. SYGUS is a promi-
nent framework for program synthesis with respect to a formal specification. It limits
the search-space to a user-defined grammar G. SYGUS algorithms have the advantage
of ensuring that the solution found, if found, will be of a user-desired shape. However,
they can only determine unrealizability w.r.t. to the given grammar.

In this setting, assume a grammar G is given, COSYN is used in the following way:

(i) Execute COSYN on the given condition synthesis problem. If the problem is unre-
alizable, stop and return “unrealizable”.

(ii) If the problem is realizable, use the realizability proof to define a specification: for
every l ∈ Λ?

cond the implication Ψf (l)(X) → Ψ(l)(X) → Ψ t(l)(X) must hold.
(iii) Execute a SYGUS tool on the above specification with the given grammar G (on a

conjunction of all implications, or one by one4).
(iv) Return the synthesized result.

The above shows how COSYN can be used to complement existing synthesis algo-
rithms. In fact, the generated specification for the synthesis tool is much simpler as it
does not need to capture the behavior of the program, only the constraints for each of
the locations. This is evident in our experimental evaluation presented in Sect. 5.

5 Experimental Results

We implemented a prototype of COSYN on top of the software verification tool SEA-
HORN [10], which uses SPACER [17] as the CHC solver. To evaluate COSYN and
demonstrate its applicability, we compared it against the SYGUS framework.

In order to compare against SYGUS, we implemented a procedure that translates a
condition synthesis problem to SYGUS. We emphasize that since the (partial) program
is given and the specification is program correctness, the translation results in a SYGUS
problem that requires the solver to only synthesize the missing conditions and loop

4 We emphasize that the implications in the different locations are independent, thus allowing
synthesis of the conditions separately, one by one. Separate synthesis of conditions cannot be
done trivially in regular SYGUS, due to the dependency between conditions in the synthesized
program.
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invariants. To solve SYGUS problems, we use CVC5 as it is known to be efficient, as
demonstrated in the SYGUS competition5.

The experiments were executed on an AMD EPYC 7742 64-Core Processor with
504GB of RAM, with a timeout of 60 min.

Benchmarks. The benchmark suite consists of three collections of C language pro-
grams: TCAS [7], SV-COMP [2], and Introductory.

The TCAS collection is part of the Siemens suite [7], and consists of 41 faulty
versions of a program implementing a traffic collision avoidance system for aircraft.
To make the benchmarks suitable for condition synthesis we removed one or more
conditions from each of the faulty versions and required equivalence to the correct
version as a specification.

The SV-COMP benchmarks are taken from the REACHSAFETY-CONTROLFLOW

category of the SV-COMP competition6, where they are described as “programs for
which the correctness depends mostly on the control-flow structure and integer vari-
ables”. This collection includes three sub-categories: nt-drivers-simplified,
openssl-simplified, and locks. For all SV-COMP benchmarks we selected a
condition to remove at random.

For the Introductory collection we implemented a variety of common introductory
programming tasks including sort algorithms, string and int manipulations, etc. Then,
we removed one or more conditions in different critical points of each algorithm.

Results. Two different variants were tested and compared. In the first, no grammar is
given to SYGUS, allowing it to synthesize any Boolean term as the solution7. This
unrestricted mode is similar to how COSYN is unrestricted by a grammar. The sec-
ond variant executes SYGUS with a grammar G1. In this variant COSYN executes as
described in Sect. 4.3 using the same G1 grammar8.

The table in Fig. 4 summarizes the results. For each tool, we count the number of
benchmarks it was able to solve in each category, separated based on the realizability
result. As can be seen from the table, in both variants, with and without a grammar,
COSYN solves the most problems, both realizable and unrealizable. The advantage of
COSYN is most noticeable on unrealizable instances.

Note that, in the second variant COSYN and CVC5 join forces, with the goal of
achieving more syntactically appealing conditions. Note, however, that this effort some-
times leads to a timeout, as demonstrated in the table in Fig. 4, on lines 1 and 5, on the
R (realizable) column. The “left” and “right” operands of the + sign that appears in
the T column differentiate timeout results which are due to COSYN and CVC5, respec-
tively. As expected, combining COSYN and CVC5 does not influence the unrealizability
results (U column) when compared to COSYN alone. That is, column U in COSYN and
COSYN +CVC5 are identical.
5 Its predecessor, CVC4, won the competition in most categories: https://sygus.org/comp/2019/
results-slides.pdf.

6 https://sv-comp.sosy-lab.org/2022/benchmarks.php.
7 We used CVC5’s default configuration, except for the addition of sygus-add-
const-grammar flag, following the advice of CVC5’s developers.

8 G1 is a standard grammar allowing comparisons (e.g. =, ≤, etc.), using arrays, Integer and
Boolean variables.

https://sygus.org/comp/2019/results-slides.pdf
https://sygus.org/comp/2019/results-slides.pdf
https://sv-comp.sosy-lab.org/2022/benchmarks.php
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Variant 1 Variant 2
No Grammar Grammar G1

Cosyn CVC5 Cosyn+CVC5 CVC5
category p c l LOC R U T R U T R U T R U T
introductory 35 59 54 1089 24 8 3 21 5 9 23 8 3+1 20 5 10
sv-comp/locks 13 15 13 909 11 2 0 11 2 0 11 2 0 11 2 0
sv-comp/ntdrivers-simplified 7 8 4 7831 5 2 0 4 2 1 5 2 0 4 1 2
sv-comp/openssl-simplified 23 51 23 12893 5 18 0 4 1 18 5 18 0 4 1 18
tcas 34 64 0 8059 21 13 0 5 0 29 2 13 0+19 2 0 32
total 112 197 94 30781 66 43 3 45 10 57 46 43 23 41 9 62

Fig. 4. Results summary. For each category, the columns p, c, l and LOC represent the total
number of synthesis problems, conditions (after inlining), loops and lines-of-code, respectively.
For each tool, columns R and U represent the number of realizable and unrealizable problems
solved by the tool. T represents Timeout.

The graphs in Fig. 5 summarize runtime results on all examples. As evident by
these graphs, it is not only that COSYN solves more instances, it also performs better
w.r.t. runtime. Moreover, using COSYN in conjunction with CVC5 (Fig. 5b), improves
CVC5’s performance significantly, allowing it to solve more instances in less time. This
shows that a SYGUS engine can greatly benefit from the addition of COSYN.
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CVC5

(a) No grammar

−10 0 10 20 30 40 50 60 70 80 90 100 110 120

10−2
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102

104
CoSyn+CVC5

CVC5

(b) Grammar G1

Fig. 5. Runtime (seconds) comparison. X/Y-axis represent the synthesis problems and runtime,
respectively.

6 Related Work

As mentioned above, Syntax-guided synthesis (SyGuS) [1] is widely applicable and
many state-of-the-art program synthesis algorithms use the SyGuS framework [3,13,
14,21,23,24]. Another significant framework is semantics-guided synthesis (SemGuS)
[16], which in addition to the specification and grammar, supplies a set of inference
rules to define the semantics of constructs in the grammar. This is implemented in the
tool MESSY.

Similar to our work, the realizability of a SemGuS problem is reduced in MESSY

to a CHC satisfiability problem and a solution is extracted from a satisfying interpre-
tation, if one exists. However, the CHC satisfiability problem solved by MESSY and
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by COSYN are completely different. The query in MESSY intuitively asks whether the
initial symbol of the grammar can produce a term whose semantics coincide with the
specification for a particular, finite, set of inputs. In contrast, our CHC satisfiability
problem encodes the computation of doomed states for a given non-deterministic pro-
gram. It does not encode any syntactic constraints, thus its unrealizability result is def-
inite. Further, COSYN ensures correctness for all inputs. However, COSYN is specific
to the problem of condition synthesis and cannot handle arbitrary synthesis problems.

Another synthesis approach is sketch-based synthesis [26], which allows to leave
holes in place of code fragments, to be derived by a synthesizer. However, the code
fragment that can be used to replace a hole in SKETCH is always limited in both struc-
ture and size. Therefore, if SKETCH finds the problem unrealizable, we can only con-
clude that there is no solution using the particular syntax. In contrast, our approach
does not restrict the generated conditions syntactically at all. Further, [26] only per-
forms bounded loop unwinding, while COSYN guarantees correctness for unbounded
computations. Another difference is that SKETCH interprets integer variables as fixed-
width bit-vectors while COSYN relies on SEAHORN, which treats integer variables
using integer semantics.

Finally, many synthesis and repair tools, including some mentioned above, use the
counterexample guided inductive synthesis (CEGIS) framework [5,16,20,26]. They
initially find a solution for only a finite set of inputs I . If verification fails for input
i �∈ I , then i is added to I and the process is repeated. However, the CEGIS process
may diverge and may become very costly. COSYN does not require the CEGIS frame-
work since it directly solves the synthesis problem for all inputs.

Recently, several works focus mainly on unrealizability [8,11,12], while applying
SYGUS or CEGIS. In [15] a logic for proving unrealizability has been proposed. How-
ever, these works do not solve condition synthesis problems or take advantage of the
power of CHC solvers.

7 Conclusion

This work presents a novel approach to (un)realizability of condition synthesis, based
on a reduction to Constrained Horn Clauses (CHC). Our algorithm, COSYN, relies on
a central notion called doomed states. We encode into CHC the question of whether
the program includes an initial doomed state and exploit the encoding to determine
(un)realizability of the synthesis problem. A doomed initial state is returned as evi-
dence, if the problem is unrealizable. Otherwise, conditions are provided as evidence –
based on these conditions the program can be proved SAFE.

Our approach can handle any number of missing conditions in the program. Our
experiments show that COSYN can solve both realizable and unrealizable examples
efficiently, and can complement SyGuS tools.
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Abstract. Dafny is a verification-ready programming language that is
executed via compilation to C# and other mainstream languages. We
introduce a toolkit for automated testing of Dafny programs, consisting
of DUnit (unit testing framework), DMock (mocking framework), and
DTest (automated test generation). The main component of the toolkit,
DTest, repurposes the Dafny verifier to automatically generate DUnit
test cases that achieve desired coverage. It supports verification-specific
language features, such as pre- and postconditions, and leverages them
for mocking with DMock. We evaluate the new toolkit in two ways.
First, we use two open-source Dafny projects to demonstrate that DTest
can generate unit tests with branch coverage that is comparable to the
expectations developers set for manually written tests. Second, we show
that a greedy approach to test generation often produces a number of
tests close to the theoretical minimum for the given coverage criterion.

1 Introduction

Verification-ready languages and tools, such as Dafny [12,21,22] and Boogie [3],
extend a core programming language with support for formal specifications such
as preconditions, postconditions, and loop invariants. Developers verify programs
against such specifications using built-in verifiers, thereby reducing the risk of
hidden bugs. Verification-ready languages have been successfully used in scenar-
ios ranging from low-level hypervisors [20] to entire program stacks [16].

It is common for a program written in a verification-ready language, such
as Dafny, to first be compiled into a traditional programming language, such as
C#, before being deployed to production. This way one can leverage the exten-
sive compiler optimizations and libraries that have already been developed for
popular programming languages. At the same time, one also needs to guarantee
the correctness of the final deployed program. First, it is necessary to ensure
that the Dafny compilers, such as the Dafny to C# compiler, do not introduce
unexpected behavior [18]. One approach to ensure the correctness of a compiler
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
K. Y. Rozier and S. Chaudhuri (Eds.): NFM 2023, LNCS 13903, pp. 397–413, 2023.
https://doi.org/10.1007/978-3-031-33170-1_24
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would be to verify it end-to-end. There have been such efforts in the past for
other languages [23]. While successful, these efforts took years of manual human
effort, and Dafny supports compilation to several different languages making
verification of the entire toolchain very difficult. Second, many Dafny programs
use external libraries, which are another potential source of bugs since they are
not written in Dafny and hence are not verified to match their specifications.
Incorrect specification of an external library may introduce bugs even if the
library itself and the entire compilation pipeline are verified to be correct.

In this paper, we propose to increase assurance of the correctness of the
compiled Dafny program by leveraging automated testing. More specifically, we
introduce a toolkit for automated testing of Dafny programs, consisting of DUnit
(unit testing framework), DMock (mocking framework), and DTest (automated
test generation). The main purpose of the combined toolkit is to ensure that the
guarantees provided by verified Dafny programs are preserved when those pro-
grams are executed via compilation to a different programming language, such as
C#. The main component of the toolkit is DTest, a tool for automated genera-
tion of tests that achieve high coverage of Dafny programs. The tests themselves
are written in Dafny and compiled to use testing frameworks in selected target
languages, including C#. The tests assert that method postconditions verified
in Dafny hold at runtime. Thus, we can use DTest to (i) generate tests to ensure
a compiled program preserves the behavior verified in Dafny; (ii) increase con-
fidence in specifications of external libraries that cannot be verified; and (iii)
increase assurance that a Dafny program is functionally equivalent to an exist-
ing implementation that may be written in another language.

To compile tests to the target programming language, we introduce DUnit
and DMock, unit testing and mocking frameworks for Dafny. DUnit extends
Dafny with a method attribute :test, which signals the compiler to mark the
corresponding method as a unit test in the testing framework of the target lan-
guage. To support DUnit, DMock facilitates generation of complex heap struc-
tures as test inputs by adding mocking capabilities to Dafny. We introduce a new
Dafny attribute (:synthesize) for tagging of mock methods, which have no body
in Dafny but instead describe their return values with postconditions. Tests pro-
duced by DTest rely on mock methods to bypass the need to infer how to use
existing constructors to create objects with specific field values. Instead, DMock
automatically compiles mock methods to code (using the popular Moq mocking
framework for C#) that returns objects that comply with the corresponding
postconditions. Currently, DMock can produce mock implementations for a spe-
cific but broadly useful set of postconditions: one can supply concrete values for
constant instance fields or redefine the behavior of instance functions.

Figure 1 shows the typical toolflow of the Dafny testing toolkit. DTest is
implemented as an extension to Dafny and uses the existing Dafny verifier, which
works by translating the Dafny program to the Boogie intermediate verification
language [3,7]. Boogie, in turn, proves each assertion with Z3 [29,33]. DTest
starts test generation by translating Dafny to Boogie (step 1 in the figure),
including several changes to the existing translation pipeline (see Sect. 4.1).
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Fig. 1. Toolflow of the Dafny testing toolkit.

Next, DTest enters a loop where it systematically injects trivially failing trap
assertions (meaning assert false) into the Boogie code and uses the Boogie ver-
ifier and counterexample extractor [8] to generate counterexamples that reach
the assertions (steps 2–4). Then, DTest translates counterexamples into Dafny
tests (step 5) using unit testing and mocking attributes understood by DUnit and
DMock, and converts method postconditions into runtime oracles (see Sect. 4.3).
We then compile the Dafny program and the generated tests to C# using the
Dafny compiler augmented with the functionality that DUnit and DMock pro-
vide.

We evaluated our toolkit across two dimensions. First, we used DTest to
generate unit tests for the Dafny utilities library (DUTIL) [24] and the portion
of the AWS Encryption SDK (ESDK) that is implemented in Dafny [13]. We
then compiled each library and its tests to C# and measured the coverage of the
tests on the C# code: the tests produced by DTest achieved 79% (resp. 62%)
statement and 84% (resp. 58%) branch coverage on DUTIL (resp. ESDK). This
is promising since the ESDK developers target 80% statement and 35% branch
coverage for their manually written unit tests as part of their wider testing
strategy. Second, we compared the number of tests DTest generates to achieve
full coverage to the number of tests generated by a brute-force algorithm that can
optimally minimize the number of tests. We found that DTest often generates
close-to-the-minimal number of tests, with the worst observed case (for some of
the methods with the most complex control flow) being three times the optimal.

In summary, the main contributions of this work are as follows:

– We introduce DTest, a tool that uses the Dafny verifier to automatically
generate unit tests for preexisting Dafny programs.

– We develop DUnit and DMock, unit testing and mocking frameworks for
Dafny that support automated compilation of tests and construction of
objects based on a formal description of their behavior.

– We evaluate the toolkit on a set of real-world Dafny programs and show that
the generated tests achieve coverage expected by the developers.

– We released our toolkit with Dafny [12] and made the persistent artifact for
the paper available at https://doi.org/10.5281/zenodo.7310719.

Overall, our results show that DUnit, DMock, and DTest are a promising toolkit
for automatically generating high coverage tests for Dafny. More broadly, our

https://doi.org/10.5281/zenodo.7310719
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work should be useful to researchers and practitioners working in verification-
ready ecosystems other than Dafny, as we provide solutions for critical pain
points in test generation, including dealing with pre- and postconditions, mock-
ing in their presence, and leveraging the verifier for automatic test generation.

2 Toolkit Overview

Figure 2a gives the example Dafny method LexLeq (LexicographicByteSeqBelowAux
originally) we extracted from the ESDK to illustrate how DUnit and DTest work.
It takes byte sequences x and yand an index n as input, and returns a Boolean
indicating whether x is equal to or precedes y in lexicographic order starting at
position n. The core logic of the method (lines 5–7) is a disjunction of conditions
that would make this true: either we have reached the end of x, or the byte
at position n in x comes before y, or the two bytes are equal and x is before y
lexicographically at position n+1. Otherwise, x is greater than y at n. Because
the method is recursive, it is accompanied by a decreases clause (line 4), which
allows Dafny to prove termination by stating that at each recursive call the value
of |x| − n decreases. The method also has a precondition (line 2) requiring that
n is within a valid range for x and y, and a postcondition (line 3) ensuring that if
the result is true then either we have reached the end of x or we have not reached
the end of y. Note that the postcondition was not present in the original code,
but we added it to more fully illustrate the features of DTest.

Dafny verifies programs by translating them to the Boogie intermediate ver-
ification language [3,7] and then verifying the Boogie code. For our example,
DTest translates the Dafny code in Fig. 2a to the Boogie implementation in
Fig. 2b. Note that this translation differs from one the regular Dafny to Boogie
translator would produce—we discuss the differences in Sect. 4.1. The code in
Fig. 2b takes three input parameters that directly map to the parameters in the
Dafny code. The parameters x and y have type Seq Box, which is the type that the
Dafny translator uses to encode sequences in Boogie. For clarity, we use Dafny
notation in place of Boogie function calls for element access, a[i], and sequence
length, |x|. On entry to the implementation, the Boogie program proceeds to
either block A or B, each corresponding to one of the two possible values of the
Boolean expression on line 5. Note that in Boogie, control flow is captured by
non-deterministic branches to blocks guarded by assume statements. For exam-
ple, here, block A is guarded by an assumption n �= |x| falsifying the condition on
line 5 in Fig. 2a. Thus, the Boogie code has a block for each term of the Boolean
expression in the original Dafny. Therefore, block coverage of the Boogie code
essentially corresponds to branch coverage of the original Dafny code.

Recall that DTest finds inputs that reach target branches by iteratively insert-
ing assert false in each block and then extracting a counterexample from the veri-
fier. We call such assertions trap assertions because we do not expect the prover
to successfully verify them. Here, DTest has added a trap assertion on line 19 in
the Boogie code, with the goal of covering block L.

When we ask Boogie to verify the code in Fig. 2b, the verifier produces a coun-
terexample. The counterexample itself is not human readable, but recent work [8]
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Fig. 2. Unit test generation example.
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allows us to infer counterexample arguments x = [0, 133, 188], y = [0, 133, 187],
and n=1. DTest then uses these arguments to produce the unit test in Fig. 2c.
Here the :test annotation signals to the compiler that this method should be
compiled as a unit test in the target language of choice. The body of the test
begins by constructing sequences d1 and d2 which, along with the literal 1, are
the counterexample arguments. Next, the test case calls LexLeq with these argu-
ments. The expect statement on line 29 is a runtime assertion. Here we check that
the result satisfies the postcondition. Thus, the test not only covers block L, but
also adds a level of assurance to the emitted code by introducing runtime checks.

Finally, Fig. 2d shows the C# unit test DUnit generates for the example
Dafny unit test. Lines 32–35 correspond to lines 26–27 in Dafny and construct
the counterexample arguments later used in the method call on line 36. The
conditional on lines 37–40 throws an exception in case of a postcondition viola-
tion. Note that DUnit converts the :test annotation in Dafny to XUnit.Fact, which
allows us to run the resulting test using .NET’s XUnit framework [32].

3 Unit Testing and Mocking Frameworks

To support DTest, over the span of several years we developed DUnit and
DMock, unit testing and mocking frameworks for Dafny. In this section, we
describe the new unit testing and mocking constructs we introduced to the Dafny
language as well as how we compile them into C#, the target compilation lan-
guage used by most open-source Dafny projects.

As we discuss in Sect. 2 (see Fig. 2c), DUnit introduces the :test attribute
for annotating unit tests. Within a unit test, we introduce expect statements to
specify runtime assertion checks. In contrast to standard Dafny assert statements,
the Dafny verifier does not prove expect statements but instead assumes they
hold. Dafny compiles expect statements into runtime assertions in the target
language, whereas assert statements are removed from compilation.

In addition to this basic unit testing support, we also introduce support for
runtime mocking, which allows seamless creation of objects based on a descrip-
tion of their behavior. When compiling to C#, we translate Dafny mocks into
code that uses the popular Moq library [28]. (Note that DMock also supports
compilation to Java using the Mockito library [27], but we focus on C#.)

The key reason we developed DMock is to support the creation of heap-based
structures (i.e., objects), which DTest heavily relies on. In particular, mocking
solves the problem of having to synthesize a sequence of calls to constructors and
other API methods to put a given object into the required state. In DMock, we
introduce the :synthesize attribute for annotating mock methods, which is accom-
panied by postconditions describing the method’s return value. We can use such
postconditions to specify mocking behavior of constant instance fields and func-
tions. DTest can infer from counterexamples the arguments with which to call
mock methods, and we do not allow mocking of side-affecting properties, which
ensures that the objects are consistent with preconditions and type invariants.

Figure 3a gives an example mock method that generates a new AwsKmsKeyring
object and sets its instance fields to values given to the method call as arguments.
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Fig. 3. An example use of the :synthesize attribute for mocking (simplified).

DTest automatically produced this method (simplified) and relevant arguments
to call it with while generating tests for the ESDK. First, line 4 uses Dafny’s
fresh keyword to ensure the returned object is new and not aliased by an existing
variable. The subsequent postconditions specify the values of each of the object’s
constant fields. DMock compiles this method into the code in Fig. 3b. On line 8,
we use Moq to create a new class that extends AwsKmsKeyring. On the next line,
we ensure that by default the mocked class behaves exactly as the original class it
extends. Then, we override the field getter methods to return the values provided
as arguments. Finally, we return a new instance of the mocked class that, by
construction, behaves exactly as specified by the postconditions in Fig. 3a.

DMock also supports mocking of instance functions by redefining their behav-
ior with arbitrary expressions. For example, we can add the following postcon-
dition to the mock method in Fig. 3a to ensure that a call to the Identity instance
function simply returns its argument: ensures forall arg:int :: o.Identity(arg) ≡ arg .
DMock compiles this postcondition into the C# statement below (which would
be added to Fig. 3b) to override the behavior of the Identity function:1
mock.Setup(x ⇒ x.Identity(It.IsAny〈BigInteger〉())).Returns((BigInteger arg) ⇒ arg);
This functionality is particularly useful for instantiating traits, which are Dafny
types similar to interfaces in Java that also cannot be instantiated directly. A
method annotated with :synthesize can both return an object extending a given
trait and ensure the instance functions of that object behave as the postcon-
ditions dictate. Note that we can only mock instance functions, not methods,
since method calls cannot appear inside postconditions, which are expressions.

1 Dafny’s int is compiled to C#’s BigInteger because in Dafny integers are unbounded.
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However, Dafny programs are typically written in a functional style, and hence
DTest can still handle most real-world uses of traits.

4 Automated Test Generation

In this section, we describe DTest’s test generation approach (steps 1–5 in Fig. 1).

4.1 Custom Dafny to Boogie Translation

DTest customizes (step 1 in Fig. 1) Dafny’s standard translation to Boogie with
two key modifications to support automated test case generation.

Preprocessing to Support Inserting Trap Assertions. The Dafny code we have
analyzed makes extensive use of functions. Function bodies are syntactically
expressions and are translated as such into Boogie. However, an assertion is a
statement, and cannot be inserted into the body of a Boogie function. To address
this issue, DTest preprocesses the Dafny code to turn functions into function-by-
methods, which are functions with an equivalent imperative definition provided
as a method. In our case, we wrap the original expression in a return statement,
which then prompts the translator to create an imperative Boogie implementa-
tion. Hence, for each input function-by-method, Dafny emits both a standard
Boogie function—used for verification—and an imperative implementation, as
in Fig. 2b. DTest can then insert trap assertions into implementations’ bodies.

Inlining. If we are using DTest to generate unit tests of individual methods,
no further translation steps are needed. However, an issue arises if we wish to
generate system-level tests via calls to a main method entry point or similar.
The challenge is that Boogie verifies methods one at a time, and any callee
methods are represented by their specifications. Any trap assertions aside from
those in a main method will essentially be “hidden” behind the specifications of
the methods they are inside of.

Our solution to this problem is inlining: DTest can optionally inline the pro-
gram into a user-specified main method before proceeding with test generation.
Recursive methods can also be inlined (unrolled) up to a manually chosen bound.
This way, DTest can provide coverage of the entire Dafny program. Boogie sup-
ports inlining, but to take advantage of this support, we have made several
changes to the Boogie code emitted by Dafny. These changes allow translating
functional-style code, such as conditional expressions, to their imperative equiv-
alents, such as conditional statements, which makes the code more amenable to
trap-assertion injection and inlining.

4.2 Trap Assertion Injection

DTest generates tests while iterating over the basic blocks of the Boogie rep-
resentation. Iteration happens in reverse topological order of the control-flow
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graph in order to greedily reduce the number of tests by generating tests that
are likely to cover multiple blocks at a time. For each block that has not yet been
covered, DTest inserts a trap assertion (step 2 in Fig. 1) and queries the Boogie
verifier for a counterexample (step 3). Alongside the counterexample, the veri-
fier also reports the error trace, i.e., blocks leading up to the trap assertion that
the counterexample also covers. We use the error trace to prune away already
covered blocks. DTest then uses previous work [8] to extract the counterexample
to a Dafny-like format and then concretizes the result (step 4 in Fig. 1).

One can construct more complex trap assertions that fail when a program
takes a specific path through the control flow graph. We can, therefore, use DTest
to generate test suites with path-coverage guarantees, although we do not fully
explore this use case here and only apply this version of DTest to study the sizes
of potential test suites (see Sect. 5.2.)

Note that a successfully verified trap assertion serves as proof that no input
can cause a given block to be visited, i.e. it signifies the presence of dead code.
This also allows us to uncover dead code using DTest, which is an option we
implemented but have not experimented with extensively.

4.3 Unit Test Generation

The key challenge DTest faces when generating unit tests (step 5 in Fig. 1)
involves selecting concrete values that are not constrained by the counterexample
because they are irrelevant to a particular assertion failure. For example, consider
the method in Fig. 2a. A counterexample returned by the solver may suggest that
calling the method with n = 1 and x being a one-element sequence covers block
B. To generate a unit test, DTest also has to emit a value for x’s single element.
DTest is free to choose any value assuming it satisfies the corresponding type
constraint if any such constraint is present.

To generate such values, DTest relies on witnesses—user-supplied (using the
witness keyword in Dafny) or sometimes automatically inferred values that Dafny
uses to prove a given type is nonempty. We define such values for all primitive
types and collections (e.g., 0 for integers), and user-defined witnesses are typi-
cally available for subset types, i.e., types that are constrained with arbitrary
predicates. In the rare case that a user does not suggest a witness for a given sub-
set type, DTest will emit a default value for the corresponding supertype, which
may lead to a test that violates a type constraint. We call any such test that
violates the specification of the target method or a type constraint unreliable
and discuss all cases in which DTest might generate such tests in Sect. 4.4.

One way to exclude unreliable tests would be to verify them in Dafny. How-
ever, DTest might generate a correct test while at the same time failing to find the
right value for a ghost variable—irrelevant at execution—to make the test ver-
ify. Moreover, some tests may be unreliable yet still explore the targeted branch
when compiled to C#. Therefore, to allow more flexibility, we aim to filter unreli-
able tests at runtime with checks that preemptively terminate execution if a test
violates a method precondition over non-ghost fields, violates a type constraint,
or calls a trait instance method that is not explicitly mocked by DTest. For
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example, in Fig. 2c we add such a check after the last local variable initialization
on line 27 as the runtime assertion expect 1 ≤ |d0| ∧ 1 ≤ |d1|,”Unmet precondition”.
In our evaluation, such runtime checks terminate 94% of all unreliable tests that
would otherwise have led to difficult-to-interpret failures.

To strengthen the assurance provided by the tests, DTest converts postcondi-
tions of methods under test into runtime assertions such as the one on line 29 in
Fig. 2c. We support all specification constructs allowed by Dafny, provided they
are not ghost. We leave compilation of ghost constructs such as unbounded quan-
tifiers as future work. Whenever DTest encounters ghost specifications, which are
infrequent in our evaluation, it does not create a corresponding runtime check;
this, of course, does not affect coverage.

4.4 Limitations

DTest has several limitations that can either prevent it from being able to gen-
erate a test for every block in the Boogie representation of a given procedure or
might cause DTest to occasionally produce unreliable tests (Sect. 4.3).

– Solver Timeouts. As is the case with any tool that relies on an SMT solver,
timeouts may occur, in which case DTest might not cover some blocks. We
currently set the timeout to 5 s, and our empirical evaluation shows that
increasing the timeout does not make a significant difference.

– Spurious Counterexamples. Dafny might generate a spurious counterex-
ample (i.e., one that does not in fact lead to a trap assertion violation) due to
several reasons. First, specifications, such as post-conditions or loop invari-
ants, might be over-approximations that under-constrain the program state.
Second, the Dafny translation into Boogie might not provide a complete
axiomatization of some features, such as set cardinality. Third, the back-
end SMT solver itself is incomplete in the presence of quantified formulas,
which Dafny always generates. This can lead to a counterexample that does
not expose a trap assertion or may even violate method preconditions.

– Information Elided in the Counterexample. If the user does not provide
a witness for a certain subset type (Sect. 4.3), DTest may not be able to
generate a value that satisfies the corresponding type constraint.

– Ghost Specifications. DTest cannot compile ghost specifications into run-
time checks, so there could be unreliable tests we fail to identify.

– Unsupported Language Features. DTest does not support tuples, arrays,
infinite maps, infinite sets, or multisets. These Dafny types and collections
are rarely used in practice (sequences are used instead of arrays; finite maps
and sets are preferred to their infinite counterparts) and only appear in a
handful of methods in our benchmarks. Moreover, DTest does not fully sup-
port traits and function types. For any argument of a function type, DTest
synthesizes a lambda expression with a matching type signature. For exam-
ple, for a function that maps an integer to an integer, DTest synthesizes a
lambda expression that always returns 0. Given that function types are rarely
constrained, this approach works in the majority of cases. For a discussion of
traits, see Sect. 3.
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5 Empirical Evaluation

We perform two experiments to evaluate the testing toolkit. First, we evaluate
DTest’s running time and coverage achieved on two preexisting Dafny projects.
Second, we compare the number of tests DTest generates to the minimal number
of tests required for full coverage.

The subject programs for our evaluation are two real-world projects: the
Dafny utilities library (DUTIL) [24] and the AWS Encryption SDK (ESDK) [13].
DUTIL spans 1382 lines of code and presents a collection of useful methods
for non-linear arithmetic; manipulating Dafny maps, sequences, and sets; and
performing miscellaneous operations. The ESDK comprises 4596 lines of code
and implements a Dafny-verified encryption library, which provides an interface
between encryption backends and consumer applications. The two projects are,
to the best of our knowledge, the largest open-source Dafny programs, with the
exception of Ironclad [16] which, despite manually updating it to the latest Dafny
syntax, we were unable to get to verify (and hence use in our experiments). While
our benchmarks are small by industry standards, they are representative of how
Dafny is used in practice and showcase most of Dafny’s features.

5.1 Unit Testing and Coverage

In our first experiment, we measure the statement and branch coverage
on the binary obtained by compiling DUTIL and the ESDK to C#. To
maximize DTest’s performance, we augmented the ESDK with about two
dozen witnesses (Sect. 4.3). Doing so took us less than an hour of man-
ual work. We find that DTest can quickly generate tests that provide
sufficient coverage to identify unexpected behavior in an external library.

Fig. 4. Runtime of DTest on methods from ESDK
and DUTIL.

Performance. DTest took
158 min to generate 918 tests
for the 436 methods in the
two benchmarks. This does
not include methods that
exist only to aid verifica-
tion and are not compiled,
methods that have no body
in Dafny (external meth-
ods), and methods introduced
by the Dafny compiler (e.g.,
ToString). Figure 4 shows that
the runtime it takes DTest to
process one method is close
to linear in the number of
blocks in the Boogie represen-
tation of that method (Pear-
son’s coefficient ≈0.86, p < 0.0005). The outliers are methods for which DTest
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can cover multiple blocks with one test, such as the methods we analyze in
Sect. 5.2. Methods that cause solver timeouts are also a source of outliers.

Coverage. Table 1 shows the coverage that the tests achieve on the compiled C#
code, as measured with the Coverlet framework [11]. We give the results for each
source folder in DUTIL and ESDK, including the lines of code (LOC) count, tar-
get method count, and the number of generated tests for each entry. Each folder
consolidates files with similar functionality. The table includes a Block column
showing the fraction of Boogie basic blocks for which DTest reports that it suc-
cessfully generated tests. We report the actual statement and branch coverage
in the last two columns, with unreliable tests (Sect. 4.4) not contributing to the
result. We took all methods compiled from Dafny to C#, even those for which
DTest fails to generate tests, into account when measuring coverage. We achieve
62% statement and 58% branch coverage on the ESDK. The lower coverage of
the SDK folder is due to extensive use of traits, which DTest only partially sup-
ports (Sect. 4.4). These results are comparable to the thresholds that the ESDK
developers set as a minimum bar for manual tests as part of their overall testing
and verification strategy, with DTest scoring above the 35% threshold for branch
coverage but below the 80% threshold for statement coverage.

We observe in the table that the Boogie basic block coverage does not match
the C# statement coverage, but is either an over- or under-approximation. The
difference is due to two key factors. First, a C# test generated for one method
might cover code in a method invoked by it, which at the Boogie level we cannot
observe since we are doing intraprocedural test generation in the experiments (no
inlining). This leads to the Boogie coverage being an under-approximation of the
C# coverage. Second, some tests may be identified as unreliable at runtime, and
so they contribute to the Boogie coverage but not to the C# coverage, leading
to the former being an over-approximation of the latter.

Table 1. Overview of achieved coverage.

Source Folder LOC Methods # Tests Boogie Block C#

Statement Branch

DUTIL Maps 55 7 13 100% 98% 88%

Sequences 1114 131 169 67% 76% 84%

Sets 42 4 8 100% 83% 69%

Nonlinear Arithmetic 78 7 11 72% 91% 88%

Misc 93 16 22 90% 98% 88%

Total 1382 165 223 72% 79% 84%

ESDK Crypto Material Providers 1871 67 270 87% 62% 50%

Crypto 153 13 25 90% 82% 70%

Generated 61 4 8 83% 100% 100%

SDK 1878 116 205 58% 51% 45%

Standard Library 414 45 121 90% 93% 93%

Util 219 26 66 74% 75% 91%

Total 4596 271 695 77% 62% 58%
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Overview of Tests. Of the 918 tests DTest generated for DUTIL and ESDK,
85 are unreliable. Of these, our runtime checks preemptively terminated 80 (see
Sects. 4.3 and 4.4): 11 violate preconditions, 40 violate type constraints, and
29 call methods on traits that are not mocked. Five more tests fail because
DTest does not fully support function types. As we describe above (Sect. 4.4),
arguments of function types are generated from type signatures rather than
counterexamples. Overall, half of the generated tests have no return value check
due to absence of postconditions. However, even such tests check for runtime
errors, which is valuable as shown by the success of black-box fuzzers (that
do not check return values either) [26]. In our experiments, the outcomes of two
tests are worth noting: one test causes an external method to throw an exception,
which, however, is allowed by that method’s signature. Another test causes the
execution to continue for an indefinite amount of time (we killed the process after
two hours). The developers identified this case to be from a particular internal
test method (not part of code exposed to the user) for an external .NET RSA
library. Thus, our test uncovered an external library behaving differently from
the developers’ expectations, and they fixed the test method accordingly.

5.2 Test Suite Size

In our second experiment, we evaluate the size of the test suite DTest generates
by comparing it to a minimal number of tests required to achieve full coverage.
Test suite size is an important factor for software development and has prompted
significant research effort in recent years [15,17].

For the purpose of this comparison, we designed an algorithm to enumerate
sets of control flow paths of a Boogie procedure in order of increasing set car-
dinality, terminating when we find a set of paths that guarantee full coverage,
are all feasible, and that we can generate tests for. We determine the feasibility
of a path via a query to the SMT solver, in which a trap assertion is added
that fails only if all the blocks along the path are visited. We then generate a
test for each path in the same way that DTest would generate a test for a given
block. This approach is exponential in the number of SMT queries (running on
all benchmarks as in Table 1 would take weeks), but we do allow the users of
DTest to optionally use this costly method since reducing the number of tests is
sometimes of utmost importance (e.g., if tests are being executed over and over
again as a part of continuous integration).

To compare the default (greedy) and optimal approaches, we selected nine
methods from DUTIL and ESDK with the most complex control flow as deter-
mined by the number of basic blocks in their Boogie representation. Such meth-
ods present high potential for test minimization, since one carefully chosen test
could cover many blocks; we expect differences between the two approaches to
be less pronounced when viewed in a broader context. We omit any methods
for which DTest could not reach all blocks, or for which it generated unreliable
tests.

Table 2 summarizes the results of this comparison. We give the number of
basic blocks in the Boogie representation of each method in a separate column.
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Table 2. Comparison of minimization strategies.

Method # blocks Running time (s) # Tests

Default Optimal Default Optimal

UTF8.Uses3Bytes 53 18 1860 13 12

UTF8.Uses4Bytes 53 19 422 13 12

UTF8.ValidUTF8Range 21 12 36 9 6

Base64.IsBase64Char 19 16 112 8 3

AwsKmsArnParsing.AwsArn.Valid 16 17 30 6 2

Base64.IndexToChar 16 14 19 5 5

Base64.Is1Padding 16 13 24 6 2

Base64.Is2Padding 16 14 25 6 2

Sorting.LexicographicByteSeqBelowAux 14 8 8 5 3

For each Dafny method and minimization technique, we report the time that
the test generation process takes (mean of three runs), and the number of tests
in the resulting suite. The default (greedy) algorithm appears to generate more
tests whenever there are independent branching points in the control flow of the
method, i.e., when the choice of the path at one branching point does not dictate
the choice at the next one. Even so, the greedy algorithm is within two tests of
minimal for four of the methods, and it never generates more than three times
the minimal number of tests. It is also several times faster than the alternative.

6 Related Work

Testing of Verification-Ready Languages. Test generation has been explored in
the context of Dafny by Delfy [9,31], a concolic test generation tool. Delfy has
not been updated for nearly ten years and only supports a limited subset of
Dafny, and hence a direct comparison was not possible. In contrast to Delfy,
DTest fully supports the features commonly used by Dafny programmers, such
as algebraic datatypes, sequences, sets, and maps. Unlike Delfy, which relies
heavily on compilation to C# for both concrete and symbolic execution, DTest
is independent of the target language since it generates tests (in Dafny) from
counterexamples provided by the Dafny verifier itself.

Another tool for automated testing of Dafny is XDSmith [18], which ran-
domly generates Dafny programs with known verification outcomes and uses
these programs to test the Dafny verifier and compilers. XDSmith is comple-
mentary to DTest—the former focuses on testing the Dafny toolchain itself in
isolation, while the latter helps to increase assurance that the compiled target
programs are correct, particularly in their interaction with external libraries.

Concrete execution of verifier-produced counterexamples has been explored
in the Why3 verification environment [4,14]. The goal of this work is to ascertain
the validity of a counterexample by observing the runtime behavior it triggers
under various assumptions. DTest, by contrast, relies on the correctness of coun-
terexamples to generate tests. This technique and, more broadly, the use of a
verifier to generate tests has been explored in the context of other languages,
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such as C [5] and B [1], but Dafny presents a particular challenge due to its
verification-related features (e.g., rich type system, specifications).

To the best of our knowledge, neither Boogaloo [30], a nondeterministic inter-
preter for Boogie, nor Symbooglix [25], a symbolic execution engine, have been
used to generate test suites for Boogie or Dafny programs although both tools
can be used to explain a failing assertion. Symbolic-execution-based program
exploration algorithms and the verifier have different trade-offs, especially in the
presence of loops. We plan to develop, as future work, a portfolio-based approach,
similar to CoVeriTest [6], with several backend reachability analyses.

Automated Software Testing. There is a large body of work on automated soft-
ware testing, involving techniques such as fuzzing (see [26] for a survey), symbolic
execution [2], and others. We might augment DTest with some of these tech-
niques in the future since, for example, the approach used by QuickCheck [10]
and the related family of fuzzers for generating values of function types offers
more flexibility than DTest’s current implementation. One of the challenges often
accompanying automated testing is object initialization. Our approach to this
problem is close to lazy symbolic initialization [19], a process whereby an object
is initialized on an “as-needed” basis—we similarly override the value of an
object’s field only if it is constrained by the counterexample or a precondition.

Mocking. A number of mocking frameworks exist for various languages, of which
Mockito [27] and Moq [28] are some of the most popular options for Java and
C#, respectively. For our purposes, it is crucial that a mocked object behaves
exactly like an instance of the corresponding type unless an instance field or
function is specifically redefined by the user. DMock relies on both Mockito and
Moq to support this functionality, which is sometimes also referred to as spying.

7 Conclusions

In this paper, we presented a toolkit for automated testing of Dafny programs:
DUnit (unit testing framework), DMock (mocking framework), and DTest (auto-
mated test generation). The main component of the toolkit, DTest, works with
the Boogie representation of a Dafny program to generate tests that (i) tar-
get branch coverage of the compiled code and (ii) contain runtime assertions
extracted from method specifications in the Dafny code. We evaluated the cov-
erage DTest achieves on several preexisting Dafny programs, showed that it can
help identify unexpected behavior in external libraries, and compared it to an
alternative more costly solution that optimally minimizes the number of tests.
Overall, our results show that DUnit, DMock, and DTest are a promising toolkit
for automatically generating high coverage tests for Dafny.
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Abstract. Formally verified parsers are powerful tools for preventing
the kinds of errors that result from ad hoc parsing and validation of pro-
gram input. However, verified parsers are often based on formalisms that
are not expressive enough to capture the full definition of valid input for a
given application. Specifications of many real-world data formats include
both a syntactic component and one or more non-context-free semantic
properties that a well-formed instance of the format must exhibit. A
parser for context-free grammars (CFGs) cannot determine on its own
whether an input is valid according to such a specification; it must be
supplemented with additional validation checks.

In this work, we present CoStar++, a verified parser interpreter with
semantic features that make it highly expressive in terms of both the lan-
guage specifications it accepts and its output type. CoStar++ provides
support for semantic predicates, enabling the user to write semantically
rich grammars that include non-context-free properties. The interpreter
also supports semantic actions that convert sequential inputs to struc-
tured outputs in a principled way. CoStar++ is implemented and veri-
fied with the Coq Proof Assistant, and it is based on the ALL(*) parsing
algorithm. For all CFGs without left recursion, the interpreter is provably
sound, complete, and terminating with respect to a semantic specifica-
tion that takes predicates and actions into account. CoStar++ runs
in linear time on benchmarks for four real-world data formats, three of
which have non-context-free specifications.

Keywords: parsing · semantic actions · interactive theorem proving

1 Introduction

The term “shotgun parsing” refers to a programming anti-pattern in which code
for parsing and validating input is interspersed with application code for pro-
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cessing that input. Proponents of high-assurance software argue for the use of
dedicated parsing tools as an antidote to this fundamentally insecure practice
[12]. Such parsers enable the user to write a declarative specification (e.g., a
grammar) that describes the structure of valid input, and they reject inputs
that do not match the specification, ensuring that only valid inputs reach the
downstream application code. Formally verified parsers offer even greater secu-
rity to the applications that rely on them. Verification techniques can provide
strong guarantees that a parser accepts all and only the inputs that are valid
according to the user’s specification.

However, dedicated parsing tools are not always expressive enough to capture
the full definition of valid input. For many real applications, the input specifi-
cation includes both a context-free syntactic component and non-context-free
semantic properties; in such a case, a parser for context-free grammars (CFGs)
provides limited value. For example, a CFG can represent the syntax of valid
XML, but it cannot capture the requirement that names in corresponding start
and end tags must match (assuming that the set of names is infinite). Simi-
larly, the syntactic specification for JSON is context-free, but some applications
impose the additional requirement that JSON objects (collections of key-value
pairs) contain no duplicate keys. Data dependencies are another common type of
non-context-free property; many packet formats have a “tag-length-value” struc-
ture in which a length field indicates the size of the packet’s data field. In each of
these cases, a CFG-based parser is an incomplete substitute for shotgun parsing
because it cannot enforce the semantic component of the input specification.

In this work, we present CoStar++, a verified parser interpreter1 with two
features—semantic predicates and semantic actions—that enable it to capture
semantically rich specifications like those described above. Predicates enable the
user to write input specifications that include non-context-free semantic proper-
ties. The interpreter checks these properties at runtime, ensuring that its output
is well-formed. Actions give the user fine-grained control over the interpreter’s
output type. Actions also play an important role in supporting predicates; the
interpreter must produce values with an expressive type in order to check inter-
esting properties of those values. CoStar++ builds on the CoStar parser inter-
preter [11]. Like its predecessor, CoStar++ is based on the ALL(*) parsing
algorithm, and it is implemented and verified with the Coq Proof Assistant.

Extending CoStar with predicates and actions gives rise to several chal-
lenges. CoStar is guaranteed to detect syntactically ambiguous inputs (inputs
with more than one parse tree). In a semantic setting, the definition of ambigu-
ity is more complex; it can be syntactic (multiple parse trees for an input) or
semantic (multiple semantic values). In addition, it is not always possible to infer
one kind of ambiguity from the other, because two parse trees can correspond to
(a) two semantic values, (b) a single semantic value when the semantic actions
for the two derivations produce the same value, or (c) no semantic value at all

1 We use the term “parser interpreter” instead of “parser generator” because
CoStar++ does not generate source code from a grammar; it converts a grammar
to an in-memory data structure that a generic driver interprets at parse time.
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when predicates fail during the semantic derivations! Finally, detecting semantic
ambiguity is undecidable in the general case where semantic values do not have
decidable equality, and we choose not to require this property so that the inter-
preter can produce incomparable values such as functions. However, it is still
possible to detect the absence of semantic ambiguity. In the current work, we
modify the CoStar ambiguity detection mechanism so that CoStar++ detects
uniquely correct semantic values, and it detects syntactic ambiguity in the cases
where semantic ambiguity is undecidable.

A second challenge is that ALL(*) as originally described [14] and as imple-
mented by CoStar is incomplete with respect to the CoStar++ semantic spec-
ification. ALL(*) is a predictive parsing algorithm; at decision points, it nonde-
terministically explores possible paths until it identifies a uniquely viable path.
This prediction strategy does not speculatively execute semantic actions or eval-
uate semantic predicates over those actions, for both efficiency and correctness
reasons (the actions could alter mutable state in ways that cannot be undone).
While this choice is reasonable in the imperative setting for which ALL(*) was
developed, it renders the algorithm incomplete relative to a predicate-aware spec-
ification, because a prediction can send the parser down a path that leads to a
predicate failure when a different path would have produced a successful parse.
CoStar++ solves this problem by using a modified version of the ALL(*) pre-
diction algorithm that evaluates predicates and actions only when doing so is
necessary to guarantee completeness. CoStar++ semantic actions are pure func-
tions, so speculatively executing them during prediction is safe.

This paper makes the following contributions:

– We present CoStar++, an extension of the CoStar verified ALL(*) parser
interpreter that adds support for semantic predicates and actions. These new
semantic features increase the expressivity of both the language definitions
that the interpreter can accept and its output type.

– We present a modified version of ALL(*) prediction that CoStar++ uses to
ensure completeness in the presence of semantic predicates.

– We prove that for all CFGs without left recursion, CoStar++ is sound, com-
plete, and terminating with respect to a semantics-aware specification that
takes predicates and actions into account.

– We prove that CoStar++ identifies uniquely correct semantic values, and
that it detects syntactic ambiguity when semantic ambiguity is undecidable.

– We use CoStar++ to write grammars for four real-world data formats, three
of which have non-context-free semantic specifications, and we show that
CoStar++ achieves linear-time performance on benchmarks for these for-
mats. As part of the evaluation, we integrate the tool with the Verbatim
verified lexer interpreter [6,7] to create a fully verified front end for lexing
and parsing data formats.

CoStar++ consists of roughly 6,500 lines of specification and 7,000 lines of
proof. The grammars used in the performance evaluation comprise another 700
lines of specification and 100 lines of proof. CoStar++ and its accompanying
performance evaluation framework are open source and available online [9].
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Fig. 1. Algebraic data type representation of JSON values, shown in the concrete
syntax of Gallina, the functional programming language embedded in Coq.

Fig. 2. JSON grammar fragment annotated with semantic predicates and actions.

The paper is organized as follows. In Sect.2, we introduce CoStar++ by
example. We present the tool’s correctness properties in Sect.3. We then discuss
the challenges of specifying the tool’s behavior on ambiguous input (Sect.4) and
ensuring completeness after adding predicates to the tool’s correctness specifi-
cation (Sect.5). In Sect.6, we evaluate the tool’s performance and describe the
semantic features of the grammars used in the evaluation. Finally, we survey
related work in Sect.7.

2 COSTAR++ by Example

In this section, we give an example of a simple grammar that includes a non-
context-free semantic property, and we sketch the execution of the CoStar++

parser that this grammar specifies, with a focus on the parser’s semantic features.

2.1 A Grammar for Parsing Duplicate-Free JSON

Suppose we want to use CoStar++ to define a JSON parser, and we only
want the parser to accept JSON input in which objects contain no duplicate
keys. The parser’s output type might look like the algebraic data type (ADT) in
Fig. 1. To obtain a parser that produces values of this type, and that enforces the
“unique keys” invariant, we can provide CoStar++ with the grammar excerpted
in Fig. 2. A CoStar++ grammar production has the form X ::= γ �p�? �f�!,
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where X is a nonterminal, γ is a sequence of terminals and nonterminals,2 p is
an optional semantic predicate, and f is a semantic action.

Semantic actions build the semantic values that the parser produces. An
action is a function with a dependent type that is determined by the grammar
symbols in the accompanying production. An action for production X ::= γ has
type �γ� → �X�, where the semantic tuple type �γ� is computed as follows:

�•� = 1

�sβ� = �s� × �β�

and �s� is a user-defined mapping from grammar symbols to semantic types.
For the example grammar, �Value� = json_value (i.e., the parser produces a
json_value each time it processes a Value nonterminal), and �Object� = list
(string * json_value).

In addition, productions are optionally annotated with semantic predicates.
A predicate for production X ::= γ has type �γ� → B. At parse time, CoStar++

applies predicates to the semantic values that the actions produce and rejects
the input when a predicate fails.

A production like this one:

Value ::= Object �λ(prs,_).nodupKeys prs�? �λ(prs,_).JObj prs�!

can be read as follows: “To produce a result of type �Value�, first produce
a tuple of type �Object� and apply predicate �λ(prs,_).nodupKeys prs�? to it
(where the nodupKeys function checks whether the string keys in an association
list are unique). If the check succeeds, apply action �λ(prs,_).JObj prs�! to the
tuple.”

2.2 Parsing Valid and Invalid Input

In Fig. 3, we illustrate how CoStar++ realizes the example JSON grammar’s
semantics by applying CoStar++ to the grammar and tracing the resulting
parser’s execution on valid JSON input.

CoStar++ is implemented as a stack machine with a small-step semantics.
At each point in its execution, the machine performs a single atomic update to
its state based on its current configuration. Figure 3 shows the machine’s stack at
each point in the trace (other machine state components are omitted for ease of
exposition). Each stack frame [α & v̄, β] holds a sequence of processed grammar
symbols α, a semantic tuple v̄ : �α� for the processed symbols, and a sequence
of unprocessed symbols β. In the initial state σ0, the stack consists of a single
frame [• & tt, Value] that holds an empty sequence of processed symbols •, a
semantic value of type �•� (tt, the sole value of type unit), and a sequence of
unprocessed symbols that contains only the start symbol Value.
2 Throughout this paper, nonterminals begin with capital letters and terminals appear

in single quotes. When it is necessary to distinguish between terminals and the literal
values that they match, we write terminal names in angle brackets (e.g., <int> for
a terminal that matches an integer).
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Fig. 3. Execution trace of a CoStar++ JSON parser applied to the valid string {"k1":
"foo", "k2": 42}. A stack frame contains processed grammar symbols α (upper left
portion of the frame), unprocessed grammar symbols β (upper right portion), and
semantic tuple v̄ : �α� (lower portion).

Each machine state also stores the sequence of remaining tokens. A token
(a & v) is the dependent pair of a terminal symbol a and a literal value v : �a�.
(In our performance evaluation, we use a verified lexing tool that produces tokens
of this type; see Sect. 6 for details.) In the Fig. 3 example, the input string before
tokenization is:

{"k1": "foo", "k2": 42}

Thus, in initial state σ0, the machine holds tokens for the full input string:

('{' & tt), (<str> & "k1"), (':' & tt), (<str> & "foo") . . .

In the transition from σ0 to σ1, the machine performs a push operation. A
push occurs when the top stack symbol (the next unprocessed symbol in the top
stack frame) is a nonterminal—Value, in this case. During a push, the machine
examines the remaining tokens to determine which grammar right-hand side to
push onto the stack. The prediction subroutine that performs this task is what
distinguishes ALL(*) from other parsing algorithms. Parr et al. [14] describe the
prediction mechanism in detail; in brief, the parser launches a subparser for each
candidate right-hand side and advances the subparsers only as far as necessary
to identify a uniquely viable choice. In the example, the prediction mechanism
identifies the right-hand side Object as the uniquely viable choice and pushes it
onto the stack in a new frame.

The transition from σ1 to σ2 is another push operation, in which the predic-
tion mechanism identifies '{' Pair Pairs '}' as the unique right-hand side for
nonterminal Object that may produce a successful parse. To transition from σ2

to σ3, the machine performs a consume operation. A consume occurs when the
top stack symbol is a terminal a. The machine matches a against terminal a′
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from the head remaining token. In this case, the top stack terminal '{' matches
the terminal in token ('{' & tt), so the machine pops the token and stores its
semantic value tt in the current frame.

After several more operations, the machine reaches state σ4. At this point,
the machine has fully processed nonterminal Object, producing a semantic value
of type �Object� = list (string * json_value), there are no more symbols left
to process in the top frame, and nonterminal Value in the frame below has
not yet been fully processed (we call such a nonterminal “open”, and the frame
containing it the “caller” frame). In such a configuration, the machine performs
a return operation, which involves the following steps:

1. The machine retrieves the predicate and action for the production being
reduced. In the Fig. 3 example, the production is Value ::= Object, the predi-
cate is �λ(ps,_).nodup ps�? (where the nodup function checks whether string
keys in an association list are unique), and the action is �λ(ps,_).JObj ps�!.

2. The machine applies the predicate to the semantic tuple v̄ in the top frame.
In the example, the predicate evaluates to true because the list of key/value
pairs contains no duplicate keys.

3. If the predicate succeeds (as it does in the example), the machine applies
the action to v̄, producing a new semantic value v′. It then pops the top
frame, moves the open nonterminal in the caller frame to the list of processed
symbols, and stores v′ in the caller frame. In this case, the machine makes
Value a processed symbol (the nonterminal has now been fully reduced), and it
stores v′ = JObj [("k1", JStr "foo"), ("k2", JNum 42)] in the caller frame.

In state σ5, the machine is in a final configuration; there are no unprocessed
symbols in the top frame, and no caller frame to return to. In such a con-
figuration, the machine halts and returns the semantic value it has accumu-
lated for the start symbol. It tags the value as Unique or Ambig based on the
value of another machine state component: a boolean flag indicating whether
the machine detected ambiguity during the parse. In our example, the input is
unambiguous, so the result of the parse is Unique (JObj [("k1", JStr "foo"),
("k2", JNum 42)]) .

We now describe how the example JSON parser’s behavior differs on the
string {"k1": "foo", "k1": 42} , which is syntactically well-formed but violates
the “no duplicate keys” property. During the first several steps involved in pro-
cessing this string, the machine stacks match those in Fig. 3. When the machine
reaches a state that corresponds to state σ4 in Fig. 3, it attempts to perform a
return operation by applying the predicate for production Value ::= Object to
the list of key/value pairs [("k1", JStr "foo"), ("k1", JNum 42)] . This time,
the predicate fails because of the duplicate keys, so the machine halts and returns
a Reject value along with a message describing the failure.

3 Interpreter Correctness

In this section, we describe the CoStar++ interpreter’s correctness specification
and then present the interpreter’s high-level correctness properties.
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Fig. 4. Grammatical derivation relations for semantic values and parse trees.

3.1 Correctness Specification

CoStar++ is sound and complete relative to a grammatical derivation relation
called SemValueDer with the judgment form s

v−→ w, meaning that symbol s
derives word w, producing semantic value v. Figure 4 shows this relation as well
as a mutually inductive one, SemValuesDer, over sentential forms (grammar
right-hand sides). This latter relation has the judgment form γ

v̄−→ w (symbols γ
derive word w, producing semantic tuple v̄). In terms of predicates and actions,
the key rule is NonterminalSemDer, which says that if (a) X ::= γ �p�? �f�!
is a grammar production; (b) the right-hand side γ derives word w, producing
the semantic tuple v̄; and (c) v̄ satisfies predicate p, then applying action f to v̄
produces a correct value for left-hand nonterminal X.

Portions of the correctness theorems refer to the existence of correct parse
trees for the input. Parse tree correctness is defined in terms of a pair of mutually
inductive relations, TreeDer and ForestDer (also in Fig. 4). These relations
are isomorphic to SemValueDer and SemValuesDer, but they produce parse
trees and parse tree lists (respectively), where a parse tree is an n-ary tree with
terminal-labeled leaves and nonterminal-labeled internal nodes.

3.2 Parser Correctness Theorems

The main CoStar++ correctness theorems describe the behavior of the inter-
preter’s top-level parse function, which has the type signature shown in Fig. 5a.
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Fig. 5. The type signature of the interpreter’s top-level entry point (a), and the inter-
preter’s return type (b).

The parse function takes a grammar g, a proof that g is well-formed,3 a start
nonterminal s, and a token sequence ts. The function produces a parse_result
s, a dependent type indexed by s. As shown in Fig. 5b, a parse_result x is either
a semantic value of type �x� tagged as Unique or Ambig (indicating whether the
input is ambiguous), a Reject value with a message explaining why the input
was rejected, or an Error value indicating that the stack machine reached an
inconsistent state.

We list the CoStar++ high-level correctness theorems below, and we high-
light several interesting aspects of their proofs in Sects. 4 and 5. Each theorem
assumes a non-left-recursive grammar G.

Theorem 1 (Soundness, unique derivations). If parse applied to G, non-
terminal S, and word w returns a semantic value Unique(v), then v is the sole
correct semantic value for S and w.

Theorem 2 (Soundness, ambiguous derivations). If parse applied to G,
nonterminal S, and word w returns a semantic value Ambig(v), then v is a correct
semantic value for S and w, and there exist two correct parse trees t and t′ for
S and w, where t �= t′.

Theorem 3 (Error-free termination). The interpreter never returns an
Error value.

Theorem 4 (Completeness). If v is a correct semantic value for nonterminal
S and word w, then either (a) v is the sole correct semantic value for S and w
and the interpreter returns Unique(v), or (b) multiple correct parse trees exist
for S and w, and the interpreter returns a correct semantic value Ambig(v′).

The theorems above have been mechanized in Coq. Each theorem has a
proof based on (a) an invariant I over the machine state that implies the high-
level theorem when it holds for the machine’s final configuration; and (b) a
preservation lemma showing that each machine operation (push, consume, and
return) preserves I. Section 5.2 contains an example of such an invariant.
3 Internally, a CoStar++ grammar is a finite map in which each base production

X ::= γ maps to an annotated production X ′ ::= γ′ �p�? �f�!. The well-formedness
property says that X = X ′ and γ = γ′ for each key/value pair in the map. This
property enables the interpreter to retrieve the predicate and action for key X := γ.
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Fig. 6. Grammar that recognizes an <int><string><bool> sequence. For some inputs,
two different syntactic derivations produce the same semantic value.

4 Semantic Actions and Ambiguity

There is an apparent type mismatch between the “unique” and “ambiguous”
soundness theorems in Sect. 3. According to Theorem 1, a Unique(v) parse result
indicates that v is a uniquely correct semantic value for the input, while Theorem
2 says that an Ambig(v) result implies the existence of multiple correct parse trees
for the input. The reason for this asymmetry is that syntactically ambiguous
inputs may not be ambiguous at the semantic level; actions can map two distinct
parse trees for an input to the same semantic value, and predicates can eliminate
semantic ambiguity by rejecting semantic values as malformed. For these reasons,
the problem of identifying semantic ambiguity is undecidable when semantic
values lack decidable equality. When CoStar++ flags an ambiguous input, it is
only able to guarantee that ambiguity exists at the syntactic level.

We illustrate this point with an example involving the somewhat contrived
grammar in Fig. 6. Start symbol X matches an <int><string><bool> sequence in
two possible ways—one involving the first right-hand side for X, and one involving
the second right-hand side. These two right-hand sides can be used to derive two
distinct parse trees for such a token sequence (we represent leaves as terminal
symbols for readability):

(1a) Node X [<int>, Node Y [<string>, <bool>]]
(1b) Node X [Node Z [<int>, <string>], <bool>]

However, while any <int><string><bool> sequence is ambiguous at the syntactic
level, only some inputs are semantically ambiguous. For example, on input

(<int> & 10) (<string> & "apple") (<bool> & false)

the actions attached to the two right-hand sides for X produce two distinct values:

(2a) 10 - String.length "apple" = 5
(2b) if false then String.length "apple" else 0 = 0

However, replacing the literal value in the <bool> token with true makes the
two derivations produce the same semantic value:

(3a) 10 - String.length "apple" = 5
(3b) if true then String.length "apple" else 0 = 5
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In theory, when CoStar++ identifies multiple semantic values for these exam-
ples, it could determine whether the input is semantically ambiguous by compar-
ing the values, because integer equality is decidable. However, semantic types are
user-defined, and we do not require them to have decidable equality; the user
may want the interpreter to produce functions or other incomparable values.
Therefore, in the general case, the interpreter can only certify that the input has
two distinct parse trees—this guarantee is the one that Theorem 2 provides.

5 Semantic Predicates and Completeness

One of the main challenges of implementing and verifying CoStar++ was ensur-
ing completeness in the presence of semantic predicates. ALL(*) is a predictive
parsing algorithm; at decision points, it launches subparsers that speculatively
explore alternative paths. ALL(*) as originally described [14] does not apply
semantic actions or check CoStar++-style predicates at prediction time. How-
ever, a predicate-oblivious prediction algorithm results in an interpreter that is
incomplete relative to the SemValueDer specification (Fig. 4). In other words,
it can make a choice that eventually causes the interpreter to reject input as
invalid due to a failed predicate, when a different choice would have led to a suc-
cessful parse. In this section, we present a modification to the ALL(*) prediction
mechanism and prove that it makes the interpreter complete with respect to its
semantic specification.

5.1 A Semantics-Aware Prediction Mechanism

The semantics-aware version of CoStar++ uses a modified version of ALL(*)
prediction that is guaranteed not to send the interpreter down a “bad path.” In
designing this modification, we faced a tradeoff between speed and expressive-
ness; checking predicates and building semantic values along all prediction paths
is expensive, but it is sometimes necessary to ensure completeness.

Our solution leverages the fact that the original ALL(*) prediction mecha-
nism addresses a similar problem; it is actually a combination of two prediction
strategies that make different tradeoffs with respect to speed and expressiveness:

– SLL prediction is an optimized algorithm that ignores the initial parser
stack at the start of prediction. As a result, subparser states are compact and
recur frequently, which makes them amenable to caching. The tradeoff is that
because of the missing context, SLL prediction must sometimes overapproxi-
mate the parser’s behavior by simulating a return to all possible contexts.

– LL prediction is a slower but sound algorithm in which subparsers have
access to the initial parser stack; the algorithm is thus a precise nondetermin-
istic simulation of the parser’s behavior. When the SLL algorithm detects an
ambiguity, the prediction mechanism fails over to the LL strategy to deter-
mine whether the ambiguity is genuine or involves a spurious path introduced
by the overapproximation; using the result of SLL prediction directly in such
a case would render the parser incomplete.
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Semantics-aware prediction works as follows:

– SLL prediction is unchanged; subparsers do not build semantic values or check
semantic properties. SLL is thus still an overapproximation of the parser; not
evaluating the predicates is equivalent to assuming that they succeed.

– LL prediction builds semantic values and checks semantic properties along all
paths. It thus remains a precise nondeterministic simulation of the parser.

This approach assumes that most predictions are unambiguous without con-
sidering predicates, and the more expensive LL strategy is thus rarely required.

5.2 A Backward-Looking Completeness Invariant

Adding semantic features to LL prediction makes CoStar++ complete with
respect to the SemValueDer specification. Theorem 4 (the interpreter com-
pleteness theorem) relies on the following lemma:

Lemma 1 (Completeness modulo ambiguity detection). If v is a correct
semantic value for nonterminal S and word w, then there exists a semantic value
v′ such that the interpreter returns either Unique(v′) or Ambig(v′) for S and w.

In essence, this lemma says that the interpreter does not reject valid input.
Its proof is based on an invariant over the machine state guaranteeing that no
machine operation can result in a rejection.

In the absence of semantic predicates, a natural definition of this invariant
says that the concatenated unprocessed stack symbols recognize the remaining
token sequence. Such an invariant is purely forward-looking; it refers only to
symbols and tokens that the interpreter has not processed yet. However, this
invariant is too weak to prove that CoStar++ never rejects valid input, because
a predicate can fail on semantic values that were produced by earlier machine
steps. To rule out such cases, we need an invariant that is both backward- and
forward-looking; i.e., one that refers to both the “past” and “future” of the parse.

The CoStar++ completeness invariant, StackAcceptsSuffix_I, appears
in Fig. 7. It holds when the remaining tokens can be split into a prefix w1 and
suffix w2 such that the unprocessed symbols β in the top stack frame produce
a semantic tuple for w1, and the auxiliary invariant FramesAcceptSuffix_I
holds for the lower frames and w2.

The FramesAcceptSuffix_I definition (also in Fig. 7) is parametric over
symbols γ and semantic tuple v̄ : �γ�. The v̄ parameter represents the “incom-
ing” tuple during the eventual return operation from the frame above the ones
in scope. The base case of FramesAcceptSuffix_I says that if the list of
remaining frames is empty, then the remaining token sequence must be empty
as well. In the case of a non-empty list of frames, the following properties hold:

– The remaining tokens can be split into a prefix w1 and suffix w2 such that
the unprocessed symbols in the head frame produce a semantic tuple for w1.
This property (which appears in StackAcceptsSuffix_I as well) is the
forward-looking portion of the invariant.
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Fig. 7. The StackAcceptsSuffix_I machine state invariant over stack φ and token
sequence w. The invariant guarantees that the interpreter does not reject valid input.
The �++� function concatenates two semantic tuples, and the revTup function reverses
a semantic tuple.

– There exists a grammar production X :: = γ �p�? �f�!, where X is the open
nonterminal in the head frame and γ is the right-hand side from the frame
above, such that semantic tuple v̄γ from the frame above satisfies p. This
condition is the backward-looking portion of the invariant.

– FramesAcceptSuffix_I holds for the remaining frames and w2.

Lemma 2 (Completeness invariant prevents rejection). If StackAc-
ceptsSuffix_I holds at machine state σ, then a machine transition out of
σ never produces a Reject result.

Lemma 3 (Preservation of completeness invariant). If StackAc-
ceptsSuffix_I holds at machine state σ and σ � σ′ , then StackAc-
ceptsSuffix_I holds at state σ′.

6 Performance Evaluation

We evaluate CoStar++’s parsing speed and asymptotic behavior by extracting
the tool to OCaml source code and recording its execution time on benchmarks
for four real-world data formats. In each experiment, we provide CoStar++ with
a grammar for a data format to obtain a parser for that format, and we record
the parser’s execution time on valid inputs of varying size. The benchmarks are
as follows:
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– JSON is a popular format for storing and exchanging structured data. The
actions in our JSON grammar build an ADT representation of a JSON value
with a type similar to the one in Figure 1. The predicates ensure that JSON
objects contain no duplicate keys. The JSON data set contains biographical
information for US Members of Congress [1].

– PPM is a text-based image file format in which each pixel is represented by a
triple of (red, green, blue) values. A PPM file includes a header with numeric
values that specify the image’s width and height, and the maximum value
of any pixel component. The actions in our PPM grammar build a record
that contains the header values and a list of pixels. The predicates validate
the non-context-free dependencies between the image’s header and pixels.
We generated a PPM data set by using the ImageMagick command-line tool
convert to convert a single PPM image to a range of different sizes.

– Newick trees are an ad hoc format for representing arbitrarily branching
trees with labeled edges. They are used in the evolutionary biology commu-
nity to represent phylogenetic relationships. The Newick grammar’s actions
convert an input to an ADT representation of an arbitrarily branching tree.
Our Newick data set comes from the 10kTrees Website, Version 3 [2], a public
database of phylogenetic trees for various mammalian orders.

– XML is a widely used format for storing and transmitting structured data.
An XML document is a tree of elements; each element begins and ends with
a string-labeled tag, and the labels in corresponding start and end tags must
match—a non-context-free property in the general case where the set of valid
labels is infinite. The actions in our XML grammar build an ADT represen-
tation of an XML document, and the predicates check that corresponding
tags contain matching labels. Our XML data set is a portion of the Open
American National Corpus [13], a collection of English texts with linguistic
annotations.

CoStar++ requires tokenized input. We use the Verbatim verified lexer inter-
preter [6,7] to obtain lexers for all four formats. In the benchmarks, we use these
lexers to pre-tokenize each input before parsing it.

We ran the CoStar++ benchmarks on a laptop with 4 2.5GHz cores, 7 GB
of RAM, and the Ubuntu 16.04 OS. We compiled the extracted CoStar++ code
with OCaml compiler version 4.11.1+flambda at optimization level -O3.

The CoStar++ benchmark results appear in Fig. 8. Each scatter plot point
represents the parse time for one input file, averaged over ten trials. While the
worst-case time complexity of ALL(*) is O(n4) [14], and CoStar++ lacks an
optimization based on the graph-structured stack data structure [16] that factors
into this bound, the tool appears to perform linearly on the benchmarks. For each
set of results, we compute a least-squares regression line and a Locally Weighted
Scatterplot Smoothing (LOWESS) curve [3]. LOWESS is a non-parametric tech-
nique for fitting a smooth curve to a set of data points; i.e., it does not assume
that the data fit a particular distribution, linear or otherwise. The LOWESS
curve and regression line correspond closely for each set of results, suggesting
that the relationship between input size and execution time is linear.
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Fig. 8. Input size vs. CoStar++ average execution time on four benchmarks.

7 Related Work

CoStar++ builds on CoStar [11], another tool based on the ALL(*) algorithm
and verified in Coq. CoStar produces parse trees that are generic across gram-
mars modulo grammar symbol names. It is correct in terms of a specification in
which a parse tree is the witness to a successful derivation. CoStar++ improves
upon this work by supporting semantic actions and predicates.

ALL(*) was developed for the ANTLR parser generator [14]. While ALL(*) as
originally described and as implemented in ANTLR supports a notion of seman-
tic predicates, its prediction mechanism does not execute semantic actions, and
thus cannot evaluate predicates over the results of those actions. The original
algorithm is therefore incomplete with respect to our predicate-aware specifica-
tion. These design choices are reasonable in terms of efficiency, and in terms of
correctness in an imperative setting. It is potentially expensive to execute pred-
icates and actions along a prediction path that the parser does not ultimately
take. More importantly, doing so can produce counterintuitive behavior when the
actions alter mutable state in ways that cannot be easily undone. These concerns
do not apply to our setting, in which semantic actions are pure functions.

Several existing verified parsers for CFGs support some form of semantic
actions. Jourdan et al. [8] and Lasser et al. [10] present verified parsing tools
based on the LR(1) and LL(1) parsing algorithms, respectively. Both tools rep-
resent a semantic action as a function with a dependent type computed from
the grammar symbols in its associated production. CoStar++ uses a similar
representation of predicates and actions. Edelmann et al. [5] describe a parser
combinator library and an accompanying type system that ensures that any
well-typed parser built from the combinators is LL(1); such a parser therefore
runs in linear time. Danielsson [4] and Ridge [15] present similar parser combi-
nator libraries that can represent arbitrary CFGs but do not provide the linear
runtime guarantees of LL(1) parsing.
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Abstract. A wide range of problems from aerospace engineering and
other application areas can be encoded logically and solved using satis-
fiability modulo theories (SMT) tools, which themselves use dedicated
decision procedures for the underlying theories.

Subtropical satisfiability is such a decision procedure for the theory of
real arithmetic. Though incomplete, it is a very efficient algorithm and
has a high potential for SMT solving. However, yet it has been seldomly
used in this context. In this paper we elaborate on possibilities for the
efficient usage of subtropical satisfiability in SMT solving.

Keywords: Satisfiability checking · real arithmetic · subtropical
satisfiability

1 Introduction

Quantifier-free non-linear real arithmetic (QFNRA) is an expressive but still
decidable first-order theory, whose formulas are Boolean combinations of con-
straints that compare polynomials to zero. Though the complexity of the satis-
fiability problem for QFNRA is known to be singly exponential, the only com-
plete decision procedure—named the cylindrical algebraic decomposition (CAD)
method [9]—that is applied in practice has a doubly exponential complexity.

The complexity can be reduced if we are ready to pay the price of giving
up completeness. An incomplete but highly efficient method is the subtropical
real root finding algorithm of Sturm [22] for checking the satisfiability of one
multivariate equation. This method was later extended by Fontaine et al. [14] for
the incomplete check of conjunctions of multivariate inequations for satisfiability.

Both [22] and [14] encode a sufficient condition for satisfying the origi-
nal problem in linear real arithmetic, which can be solved in practice much
more efficiently e.g. via a satisfiability modulo theories (SMT) solver. SMT solv-
ing [5,16] is a technology for checking the satisfiability of quantifier-free first-
order logic formulas over different theories. Most SMT solvers are based on the
CDCL(T) framework and combine a SAT solver [11,12,18] with one or more the-
ory solver(s). The SAT solver checks whether the Boolean structure of a formula
can be satisfied if a set of theory constraints can be assumed to be true, and
consults the theory solver(s) to check the feasibility of these sets (conjunctions)
of theory constraints.
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This paper is devoted to the usage of the above mentioned subtropical meth-
ods [14,22] in SMT solving. The subtropical methods either detect satisfiability
or return unknown. However, the computations are typically very fast, such that
solutions bring a huge benefit by avoiding the heavy CAD machinery, and oth-
erwise we can still fall back to the CAD method with only little effort wasted.
Surprisingly, we are aware of just two SMT solvers—veriT [7] and SMT-RAT
[10]—that use the subtropical methods for theory solving.

Our contributions are the following:

1. It is known that any QFNRA formula can be transformed to a satisfiability-
equivalent equation (see e.g. [17]), whose satisfiability can be (incompletely)
checked by subtropical real-root finding [22]. For SMT solving, this approach
could serve as preprocessing, which tries to solve an input QFNRA formula
and supersede the actual SMT call. However, we are not aware of any imple-
mentation, thus the practical relevance is unclear. We provide an implemen-
tation, attach it as a preprocessor to different SMT solvers and evaluate their
efficiency.

2. Our second contribution is another preprocessing technique that is based on
the subtropical method [14] for sets of inequations. We suggest a simple but
elegant extension to QFNRA formulas with an arbitrary Boolean structure.
This method can also be employed as a preprocessing algorithm independently
of the internals of the SMT solver which uses it, thus the embedding requires
low effort. We provide an implementation and evaluate it again in combination
with different SMT solvers.

3. To put the above results in context, we also employ subtropical satisfiability
as a theory solver in our CDCL(T)-based SMT solver named SMT-RAT. This
allows us to compare the usefulness of subtropical satisfiability as a theory
module in CDCL(T) versus using it as a preprocessor.

Outline. After introducing some preliminaries in Sect. 2, we present our novel
subtropical extension in Sect. 3. We report on experimental results in Sect. 4 and
conclude the paper in Sect. 5.

2 Preliminaries

Let N, Z, R and R>0 denote the sets of natural (including 0), integer, real resp.
positive real numbers. Assume d ∈ N \ {0} and let x = (x1, . . . , xd) be variables.
The transpose of a vector v is denoted by vT .

Polynomials. A monomial m over x is a product
∏d

i=1 xei
i with e1, . . . , ed ∈ N;

we call
∑d

i=1 ei the degree of m. Note that the monomial of degree 0 is the
constant 1. A term over x with coefficient domain Z is a product c · m with
c ∈ Z and m a monomial over x. A polynomial over x with coefficient domain
Z is a sum

∑k
i=1 ci · mi where k ∈ N \ {0} and ci · mi are terms over x with

coefficient domain Z, such that their monomials are pairwise different. We write
Z[x] for the set of all polynomials over x with coefficient domain Z. A polynomial
is linear if its monomials are all of degree at most 1.
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Constraints. A (polynomial) constraint over x with coefficient domain Z has the
form p ∼ 0 with defining polynomial p ∈ Z[x] and relation ∼∈ {=, �=, <,>,≤
,≥}. Equations are constraints of the form p = 0; disequations are constraints
shaped p �= 0; weak inequations are constraints formed as p ≤ 0 or p ≥ 0, strict
inequations are constraints built as p < 0 or p > 0; finally, inequations are
either weak or strict inequations. We use p(x) to explicitly refer to the variables
in p, and for v = (v1, . . . , vd) ∈ R

d we write p(v) for the value to which p
evaluates when we substitute vi for xi for i = 1, . . . , d. A solution for p ∼ 0 is
any v ∈ R

d such that p(v) ∼ 0 evaluates to true. The solution set of a linear
equation (weak inequation) is called a hyperplane (half-space), whose normal
vector n = (n1, . . . , nd) is the vector of the coefficients of x = (x1, . . . , xd) in the
defining polynomial.

Formulas. Quantifier-free non-linear real arithmetic (QFNRA) formulas are
Boolean combinations of constraints. A quantifier-free linear real arithmetic
(QFLRA) formula is a QFNRA formula whose defining polynomials are all lin-
ear. Let ϕ and ψ be QFNRA formulas and a be a constraint in ϕ, then ϕ[ψ/a]
denotes the formula ϕ where each occurrence of a is substituted by ψ.

Polytopes. A set P ⊂ R
d is convex if v1 + λ(v2 − v1) ∈ P for all v1, v2 ∈ P

and all λ ∈ [0, 1] ⊆ R. The convex hull of a set V ⊂ R
d is the smallest convex

set P ⊆ R
d with V ⊆ P . Polytopes are convex hulls of finite subsets of Rd. A

point v ∈ R
d is a vertex of a polytope P ⊆ R

d if there exists a linear polynomial
p = c0+

∑d
i=1 ci ·xi ∈ Z[x1, . . . , xd] with p(v) ≥ 0 and p(u) < 0 for all u ∈ P \{v};

we call v the vertex of P with respect to the normal vector (c1, . . . , cd) and refer
to −c0 as the bias.

Frame and Newton Polytope. Let p =
∑k

i=1 ci ·
∏d

j=1 x
ei,j

j ∈ Z[x]. We define

– the frame of p as frame(p) = {(ei,1, . . . , ei,d) | i ∈ {1, . . . , k} ∧ ci �= 0};
– the positive frame of p as frame+(p) = {(ei,1, . . . , ei,d) ∈ frame(p) | ci > 0};
– the negative frame of p as frame−(p) = {(ei,1, . . . , ei,d) ∈ frame(p) | ci < 0};
– the Newton polytope of p as the convex hull of frame(p).

2.1 SMT Solving

Satisfiability modulo theories (SMT) is a technique for checking the satisfiability
of quantifier-free first-order logic formulas over different theories. Most SMT
solvers implement the CDCL(T)-based framework [5], where a SAT solver [11,
12,18] tries to satisfy the Boolean structure of the problem and consults theory
solver(s) regarding the consistency of certain theory constraint sets.

For QFLRA, an adaptation of the simplex method named general simplex
[13] can be employed as a theory solver. For QFNRA, the only complete decision
procedure used in practice is the cylindrical algebraic decomposition method
[9] and algorithms derived from it, such as the cylindrical algebraic coverings
method [3] and NLSAT [15] in combination with the single-cell construction
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algorithm [8] (the latter is not based on CDCL(T)). Due to its doubly exponential
complexity, it might be advantageous to supplement the CAD by methods that
are incomplete but oftentimes faster, e.g. by interval constraint propagation [6]
or the virtual substitution method [23].

2.2 Subtropical Satisfiability for a Single Inequation

The subtropical satisfiability method as introduced in [14,22] provides an incom-
plete but efficient method for finding solutions for a constraint p > 0 with
p ∈ Z[x]. Note that any solution to p > 0 is also a solution to p ≥ 0, and that
p < 0 and p ≤ 0 are equivalent to −p > 0 respectively −p ≥ 0, such that the
method can be applied to all forms of inequations.

We first recall the sufficient condition from [14,22] for positive solutions.

Theorem 1. [14, Lemma 2] Assume k ∈ N \ {0}, p =
∑k

i=1 ci ·
∏d

j=1 x
ei,j

j ∈
Z[x] \ {0}, and i′ ∈ {1, . . . , k} such that (ei′,1, . . . , ei′,d) ∈ frame(p) is a vertex
of the Newton polytope of p with respect to some n = (n1, . . . , nd) ∈ R

d. Then
there exists a0 ∈ R>0 such that for all a ≥ a0 it holds:

1. |ci′ ·
∏d

j=1(a
nj )ei′,j | > |

∑
i∈{1,...,k}\{i′} ci ·

∏d
j=1(a

nj )ei,j |,
2. sgn(p(an1 , . . . , and)) = sgn(ci′).
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Fig. 1. Solving p > 0.

Assume a non-empty polytope P ⊆ R
d and a

hyperplane with normal vector (n1, . . . , nd) ∈ R
d

that separates a vertex e of P from the rest of P (see
the solid line hyperplane in Fig. 1). Now, assume
any polynomial p =

∑k
i=1 cimi ∈ Z[x] with Newton

polytope P . Then p has a term, say ci′mi′ , with the
exponent vector e. If the coefficient ci′ is positive
(negative) then we can make ci′mi′ larger (smaller)
than the sum of all the other terms of p by the point
(an1 , . . . , and) for a large enough value a ∈ R.

More concretely, a positive solution for p > 0,
p =

∑k
i=1 ci ·

∏d
j=1 x

ei,j

j ∈ Z[x] can be obtained by:

1. Check whether there exists e ∈ frame+(p) that is a vertex of the Newton
polytope of p with respect to some n = (n1, . . . , nd) ∈ R

d.
2. If no then return unknown.
3. Otherwise let a ∈ R>0 and c ∈ R with c > 1.
4. If p[an1/x1] . . . [and/xd] > 0 then return (an1 , . . . , and) as solution.
5. Otherwise update a to c · a and go to 4.

Note that Theorem 1 assures termination. Step 1 is executed by encoding
the existence of the desired normal vector n as a QFLRA formula ST p>0(n),
which can then be solved by any QFLRA-solver. Most QFLRA solvers use adap-
tions of the simplex method, for which weak inequations are more advantageous.
Therefore, the encoding uses another characterization for e being a vertex of a
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polytope P : Its definition requiring the existence of a half-space that contains
the whole polytope P but e is the only point from P that lies exactly on its hyper-
plane is equivalent to requiring the existence of a half-space that excludes e but
contains all other vertices of a polytope P (see the hyperplane with the dotted
line in Fig. 1).

ST p>0(n) := ∃b.
∨

e∈frame+(p)

⎛

⎝nT · e > b ∧
∧

u∈frame(p)\{e}
nT · u ≤ b

⎞

⎠ .

This property can be encoded even more efficiently as suggested in [14]:

ST p>0(n) := ∃b.

⎛

⎝
∨

e∈frame+(p)

nT · e > b

⎞

⎠ ∧

⎛

⎝
∧

u∈frame−(p)

nT · u ≤ b

⎞

⎠ .

With the above encoding we can only find positive solutions from R
d
>0. How-

ever, the encoding can be extended to the general case based on the observation
that we could substitute in p any subset of the variables xi by −xi: If we find
a positive solution for this modified problem, then we get a solution for the
original problem by exchanging the positive values vi for −xi by the negative
values −vi for xi. To encode all possible such sign changes, we introduce for
every variable xi, i = 1, . . . , d a Boolean variable negi which encodes whether
we search for a negative (negi = 1) or a positive (negi = 0) value for xi. The
exponent vector of a term c · xe1

1 . . . xed

d of p with c �= 0 is in the positive frame
iff (c > 0 ↔ |{xi | ∃k ∈ N. ei = 2k + 1 ∧ negi = 1}| is even). For details on the
encoding, we refer to [14].

The encodings above for a constraint of the form p > 0 can be generalized to
constraints of all types but equations. To do so, for any polynomial p we define

ST p≥0(n,neg) := ST p>0(n,neg)
ST p≤0(n,neg) := ST p<0(n,neg) := ST −p>0(n,neg)
ST p�=0(n,neg) := (ST p>0(n,neg) ⊕ ST p<0(n,neg))

where ⊕ denotes the exclusive-or operator. Given the fact that from each solution
of ST p>0(n,neg) we can derive positive values for p, it is easy to see that the
satisfiability of ST c(n,neg) implies the satisfiability of c.

Example 1. The encodings of x1 + x1 · x3
2 < 0 and x2 + x3

1 > 0 are

ST x1+x1·x3
2<0(n,neg) =∃b1. ((¬neg1 ∧ n1 > b1) ∨ (¬(neg1 ⊕ neg2) ∧ n1 + 3n2 > b1))

∧ (neg1 → n1 ≤ b1) ∧ ((neg1 ⊕ neg2) → n1 + 3n2 ≤ b1)

ST x2+x3
1>0(n,neg) =∃b2. ((¬neg2 ∧ n2 > b2) ∨ (¬neg1 ∧ 3n1 > b2))

∧ (neg2 → n2 ≤ b2) ∧ (neg1 → 3n1 ≤ b2) .

The above approach strictly separates a positive frame point from all negative
ones. However, there are cases where a weak separation suffices (i.e. the separated
positive frame point may lie on the hyperplane). The work presented in [20]
defines an encoding considering these cases, but this encoding seems to be larger
and without much computational advantage.
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2.3 Subtropical Satisfiability for a Single Equation

To find a solution for a single equation p = 0, p ∈ Z[x], the method from [14,22]
tries to identify two points v−, v+ ∈ R

d such that p(v−) < 0 and p(v+) > 0 and
use the intermediate value theorem to construct a v0 ∈ R

d with p(v0) = 0:

1. Choose v− = (1, . . . , 1).
2. If p(v−) = 0 then return v− as a solution to p = 0.
3. If p(v−) > 0 then we set p to −p. (Note that now p(v−) < 0.)
4. Apply the method from Sect. 2.2 to find a v+ ∈ R

d with p(v+) > 0.
5. If unsuccessful then return unknown.
6. Let p∗ : [0, 1] → R, t �→ p(v− + t · (v+ −v−)). Since p∗ is continuous, p∗(0) < 0

and p∗(1) > 0, we know that p∗(t0) = 0 at some t0 ∈ (0, 1) ⊆ R. We can
use real root isolation techniques based on Descartes’ rule of signs or Sturm
sequences to find such a t0, which yields p(v0) = 0 for v0 = v− + t0(v+ − v−).

2.4 Subtropical Satisfiability for Conjunctions of Inequations

For finding solutions for a conjunction of inequations ϕ = p1 ∼1 0∧ . . .∧ p� ∼� 0
with ∼i∈ {<,>,≤,≥, �=} for i = 1, . . . , �, Fontaine et al. [14] propose to apply
the method from Sect. 2.2 to simultaneously separate a suitable frame point for
each involved polynomial through hyperplanes but with the same normal vector
and assure to agree on a common sign change, resulting in the encoding

ST ϕ(n,neg) := ST p1∼10(n,neg) ∧ . . . ∧ ST p�∼�0(n,neg) .

We solve ST ϕ(n,neg) with a linear arithmetic solver. If ST ϕ(n,neg) is satisfiable
then from each solution μ of ST ϕ(n,neg) we can derive a solution for ϕ by
multiplying the value of some a ∈ R>0 with a factor c ∈ R, c > 1 until all
inequations are satisfied by the values (−1)μ(negi) · aμ(ni) for xi, i = 1, . . . , d.

2.5 Transformation of a QFNRA Formula into a Single Equation

Fig. 2. Predicate nega-
tion

Assume a QFNRA formula ϕ in negation normal form
(i.e. only constraints are allowed to be negated). The
transformation proposed in [21] introduces for every con-
straint c in ϕ a fresh (real-valued) variable yc to gener-
ate an equisatisfiable formula Tr(ϕ) as follows, using a
transformer sub-function tr and the negation operator
from Fig. 2 for ∼∈ {<,>,≤,≥,=, �=}:

Tr(p = 0) := p = 0 Tr(
∧n

i=1 ϕi) := tr(
∧n

i=1 Tr(ϕi))

Tr(p ≥ 0) := p − (yp≥0)2 = 0 Tr(
∨n

i=1 ϕi) := tr(
∨n

i=1 Tr(ϕi))

Tr(p > 0) := (yp>0)2 · p − 1 = 0 Tr(¬(p ∼ 0)) := Tr(p �∼ 0)

Tr(p ≤ 0) := p + (yp≤0)2 = 0 tr(
∨n

i=1 pi = 0) :=
∏n

i=1 pi = 0

Tr(p < 0) := (yp<0)2 · p + 1 = 0 tr(
∧n

i=1 pi = 0) :=
∑n

i=1(pi)2 = 0

Tr(p �= 0) := yp�=0 · p + 1 = 0
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In this paper, we build on the work done in the thesis [17] which considered this
transformation for solving Boolean combinations of constraints using subtropical
real root finding.

3 Subtropical Satisfiability for QFNRA Formulas

Subtropical satisfiability is restricted to finding solutions for either a single equa-
tion or a conjunction of inequations. This is already sufficient for its embedding
within a CDCL(T)-based SMT solver as a fast but incomplete theory solver
backend, applicable only to a single equation or a set of inequations, and possi-
bly returning unknown even in those cases. Using it in an MCSAT-based SMT
solver would be possible to derive consistent extensions of partial assignments,
even though we are not aware of any solver exploiting this possibility. However,
in both cases, a relatively difficult individual adaption of the SMT solver is
required to implement and embed the subtropical method.

In the following, we aim to increase the scope of the subtropical method
by making it applicable to general QFNRA formulas. In Sect. 3.1 we first re-
visit and slightly adapt the method from Sect. 2.5 to transform any QFNRA
formula into a single equation, which can be solved with the subtropical root
finding from [14,22]. Then in Sect. 3.2 we propose two slightly different novel
subtropical encodings for general QFNRA formulas. Similarly to the original
method, we define a transformation to QFLRA, whose formulas can be checked
by a linear SMT solver. Our method aims to serve as an incomplete but efficient
preprocessing check for satisfiability before the main solver is called; as such, our
C++ implementation could be relatively easily adapted as a preprocessor for
other solvers, as it has no interaction with the main SMT algorithm.

3.1 Transforming a QFNRA Formula into a Single Equation

With the method from Sect. 2.5, we can transform any QFNRA formula ϕ to a
single equisatisfiable equation Tr(ϕ) and then use the subtropical root finding
algorithm as described in Sect. 2.3 for finding a solution for the equation Tr(ϕ),
which will also be a solution for ϕ. However, this transformation has one weak-
ness: the transformation of a conjunction

∧n
i=1 pi = 0 results in a sum-of-square

polynomial
∑n

i=1(pi)2 = 0; a disjunction of conjunctions
∨n

i=1

∧ni

j=1 pi,j = 0
results in a product of sum-of-squares polynomials

∏n
i=1

∑ni

i=1(pi,j)2 = 0, which
is itself a sum-of-squares. In both cases, the resulting sum-of-squares polynomi-
als are non-negative at all points, thus the subtropical real root finding (which
needs a positive as well as a negative value for a polynomial for finding a real
root for it) will fail. We are not aware of any alternative for the transforma-
tion of conjunctions that makes the subtropical method applicable. To avoid
computational effort in these cases, we alter the transformation by setting

Tr(
n∧

i=1

ϕi) := false.
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3.2 Generalizing the Subtropical Encoding to QFNRA Formulas

In this work we propose an alternative approach, which generalizes the idea of
Sect. 2.4 from conjunctions of in- and disequations to arbitrary Boolean com-
binations of constraints. The generalization is straight-forward and simple to
implement, and still surprisingly efficient.

Remember that the method in Sect. 2.4 takes a conjunction of constraints
ϕ = p1 ∼1 0 ∧ . . . ∧ p� ∼� 0 with ∼i∈ {<,>,≤,≥, �=} as input and encodes by

ST ϕ(n,neg) := ST p1∼10(n,neg) ∧ . . . ∧ ST p�∼�0(n,neg)

the existence of a separating hyperplane for each in-/disequation but requiring a
shared normal vector n for all separating hyperplanes and a shared sign change
vector neg. If the formula ST ϕ(n,neg) is satisfiable, then we get values for ni

and negi from which we can construct a solution for ϕ by setting xi to the value
of negi · ani for i = 1, . . . , d with a large enough value for a.

We generalize this idea to arbitrary QFNRA formulas ϕ. First we eliminate
all negations in ϕ by bringing the formula to negation normal form and applying
negation to the predicates as in Fig. 2. We assume in the following that ϕ contains
no negation.

We use the same encoding ST c(n,neg) as before for in- and disequations c,
but apply the formula’s Boolean structure to these encodings. As the formula
might also contain equations, which we cannot handle in combination with other
constraints, we extend the previous encoding ST to

ŜT p∼0(n,neg) :=
{

ST p∼0(n,neg) if ∼∈ {<,>,≤,≥, �=}
false otherwise

Note that even though we neglect the possibility of satisfying the formula by ful-
filling equations, the following encodings might still lead to a subtropical solution
when a solution can be found by satisfying in- or disequations. Let in the fol-
lowing c1, . . . , c� be all the different constraints that occur in ϕ. We follow two
approaches for the encoding.

1. Direct substitution of constraints. Our first approach generates an encod-
ing ST direct

ϕ (n,neg) by replacing each constraint ci in the formula ϕ directly
by ŜT ci

(n,neg). This way, we preserve the Boolean structure of the formula
and assure that each satisfying solution of ST direct

ϕ (n,neg) encodes separating
hyperplanes with a common normal vector and a common sign change vector for
a set of constraints, whose satisfaction implies the satisfaction of the Boolean
structure of ϕ:

ST direct
ϕ (n,neg) := ϕ[ŜT c1(n,neg)/c1] . . . [ŜT c�

(n,neg)/c�].

2. Encoding via auxiliary variables. In our second approach we separately encode
the Boolean structure by building ϕ’s Boolean skeleton and combine this with
the encodings of the sufficient conditions for the satisfaction of constraints. The
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motivation behind this variant is to enable the encoding of more knowledge
about the relations between the formula’s constraints.

In this encoding, we first fix some monomial ordering and normalize all con-
straints in ϕ such that the leading coefficients of their defining polynomials
become 1 (through divisions by suitable constants), and replace each disequa-
tion p �= 0 by (p < 0∨ p > 0). Note that these transformations might change the
number of different constraints. Next we replace all occurrences of all constraints
c1, . . . , ck in the formula, ci having the form pi ∼i 0 with ∼i∈ {<,≤,=,≥, >},
by fresh Boolean variables a = (a1, . . . , ak). Remember that we assumed the
input formula to contain no negation, such that after this transformation no
proposition is negated. The encoding is defined as

ST aux
ϕ (n, b, a) := ϕ[a1/c1] . . . [ak/ck] ∧

∧

i∈{1,...,k}
(ai → ŜT ci

(n,neg))

∧
∧

i,j∈{1,...,k}
i�=j, pi=pj ,

∼i∈{<,≤}, ∼j∈{>,≥}

(¬ai ∨ ¬aj)

While this encoding shares the subtropical encoding idea with the previous one,
there are two main differences: 1) The first encoding would correspond to an
iff “↔” for defining the meaning of the propositions ai, which is weakened here
to an implication. 2) The second row encodes additional knowledge about con-
straints with identical defining polynomials: each pair of constraints putting zero
as a lower respectively upper bound on the same polynomial are considered to
be conflicting. Note that, even though such a pair of weak bounds might be
simultaneously satisfied if the polynomial evaluates to 0, since the subtropical
method is unable to handle equations, we neglect this possibility in our sufficient
condition.

Number of Auxiliary Variables. For the first encoding, we need d real variables
n = (n1, . . . , nd) to encode the shared normal vector of the separating hyper-
planes, d Boolean variables neg = (neg1, . . . ,negd) to encode the sign changes,
and � real variables d = (d1, . . . , d�) to encode the offsets of the hyperplanes for
the constraints. Thus in total we introduce 2d+� variables for the whole formula.

For the second encoding, in addition we introduce at most 2� Boolean vari-
ables for the abstraction of constraints and at most double the number of off-
set variables (note that the elimination of �= might double the number of con-
straints). This gives us in total 2d + 4� variables for the whole formula.

Example 2. The second encoding for x1 + x1 · x3
2 < 0 ∨ x2 + x3

1 > 0 yields:
∃a1. ∃a2.

(
a1 ∨ a2

)
∧

(
a1 → ST x1+x1·x3

2<0(n,neg)
)

∧
(
a2 → ST x2+x3

1>0(n,neg)
)

where a1 and a2 are the abstraction literals of the two constraints, and the
encodings of neg1, neg2, n1, n2, b1, and b2 are given in Example 1.
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4 Experimental Results

In order to evaluate their practical usefulness, we implemented the previously
presented algorithms in our SMT-RAT framework [10].

For the experiments, we employ the complete QFNRA [1] benchmark set from
SMT-LIB [2]. This covers 12134 benchmarks (5209 known to be satisfiable, 5029
known to be unsatisfiable, remaining with unknown status). When comparing
different approaches, we also consider a virtual best (VB) solver, which is com-
puted by taking the best solver for each benchmark (i.e. for each benchmark
we take the best solver for it: we prefer solved instances over unknowns over
timeouts over memouts, and take the shortest running time). Furthermore, we
apply standard preprocessing on all benchmarks.

For the execution we used an Intel R© Xeon R© Platinum 8160 2.1GHz pro-
cessor with a memory limit of 4 GB per run and a timeout of two minutes.
For QFNRA, this timeout suffices to cover almost all benchmarks that can be
solved (as indicated also in the results below); further, the relatively short time-
out is justified as we aim to apply the subtropical methods for fast incomplete
satisfiability checks to supplement a complete solver.

The implementation which generated the following results is available at
https://doi.org/10.5281/zenodo.7509171.

4.1 Pure Subtropical Solvers

Solvers. We first use the presented ideas for solving a QFNRA formula ϕ four
different ways:

Equation We transform ϕ into a single equation as in Sect. 3.1 and solve the
equation with subtropical root finding from Sect. 2.2. We use SMT-RAT for
the involved QFLRA checks.

Formula We generate the first encoding ST direct
ϕ as in Sect. 3.2 and invoke SMT-

RAT for solving the result.
FormulaAlt We generate the second encoding ST aux

ϕ as in Sect. 3.2 and invoke
SMT-RAT for solving the result.

Incremental We apply to ϕ SMT-RAT with CDCL(T) and the subtropical
satisfiability method for conjunctions from Sect. 2.4 as the only theory solver.
If the input contains an equation or a disequation then the theory solver
returns unknown.

Benchmarks. We observed that both Formula and FormulaAlt could conclude
unsatisfiability on 2614 benchmarks, either during the transformation of the for-
mula to negation normal form or due to detecting unsatisfiability of the Boolean
structure during preprocessing. Therefore, in this subsection we decided to omit
trivial benchmarks from the benchmark set to make the differences between
the approaches better visible. The omitted benchmarks are those which - after
standard preprocessing is performed - can be solved either by calling a SAT
solver on the Boolean abstraction, or with a CDCL(T)-based SMT solver with

https://doi.org/10.5281/zenodo.7509171
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Table 1. Results for the pure subtropical solvers on 3580 benchmarks with a timeout
of 120 s. Each cell contains the number of benchmarks in the given category; where
meaningful, mean running times in seconds are given in parentheses.

Equation Formula FormulaAlt Incremental VB

solved/sat 16 (0.01) 1399(0.17) 1398(0.12) 1399(0.13) 1399(0.11)

unknown 2232 (1.84) 782(5.58) 793(5.83) 272(1.05) 852(4.89)

timeout 990 1057 1046 1566 995

memout 342 342 343 343 334

basic conflict detection (i.e. normalizing the input constraints and checking for
contradictory relation symbols).

This reduces the benchmark set from 12134 to 3580 benchmarks (1735 of
them are known to be satisfiable, 499 of them are known to be unsatisfiable, and
for the remaining benchmarks the status is unknown).

Results. The results are listed in Table 1. The Equation transformation finds a
solution only in a few cases. This was expected as it fails on conjunctions; in the
benchmark set, conjunctions on the top-level are common.

Formula solves 1399 of the satisfiable benchmarks while FormulaAlt solves
one large benchmark less. Furthermore, Formula returns unknown on 782 bench-
marks, while FormulaAlt returns unknown on 11 benchmarks more (one of which
is unsatisfiable and the others have unknown status and are thus rather big).
However, FormulaAlt has fewer timeouts. Thus this encoding might pay off in
the sense that if it does not find a solution then it terminates earlier.

Formula and FormulaAlt do timeout on unsolved benchmarks less often
than Incremental but return unknown instead. As also indicated in Fig. 3,
Incremental is slightly faster than Formula on about 15 benchmarks, but slower
on one benchmark. However, due to the relatively low number of benchmarks,
it is hard to draw a clear conclusion.

The mean running times in seconds, given in parentheses in Table 1, clearly
show that finding solutions is very fast. Determining unknown, i.e. that the
encoding is unsatisfiable, takes a bit more time, but at this point we note that
SMT-RAT is tuned for QFNRA and is not very competitive on QFLRA. Table 3
on page 14 contains running times as for Formula but using Z3 (column ForZ3)
resp. cvc5 (column ForCvc5) instead of SMT-RAT; there, both sat and unknown
results are computed in 0.03–0.04 s (seconds) in average, with just a few timeouts
and without any memouts.

4.2 Combining Subtropical Methods with a Complete Procedure

Solvers.Next we combine Formula, FormulaAlt and Incremental with the com-
plete cylindrical algebraic covering (CAlC) algorithm as a theory solver to decide
the satisfiability of sets of polynomial constraints. We consider CAlC, which is
a CDCL(T)-based solver with the CAlC algorithm as a complete theory solver
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Fig. 3. Performance profile for the plain variants. A point on a line can be understood
as follows: the horizontal axis denotes the number of benchmarks which can be solved
(i.e. satisfiability can be concluded) if the timeout is set to the value on the vertical
axis.

backend (implemented in SMT-RAT). The solvers F+CAlC and FA+CAlC run
Formula respectively FormulaAlt and if the result is inconclusive then they
invoke CAlC. I+CAlC is like Incremental but for each theory call, if the subtrop-
ical theory solver fails then the complete CAlC theory solver backend in invoked.
Furthermore, we consider the combinations F+I+CAlC and FA+I+CAlC, running
run Formula respectively FormulaAlt first and if they cannot solve the problem
then invoking I+CAlC. In addition, we again list the virtual best (VB) results. All
variants employ standard preprocessing.

Results for Satisfiable Benchmarks. Results for all 12134 SMT-LIB benchmarks
are shown in Table 2. The subtropical methods do gain some slight improvements:
the I+CAlC variant solves 16 satisfiable benchmarks more than CAlC, F+CAlC and
FA+CAlC solve 19 respectively 18 satisfiable benchmarks more than CAlC. The
combinations F+I+CAlC and FA+I+CAlC solve 21 and 20 satisfiable benchmarks
more. Note that I+CAlC and F+CAlC do not solve the same set of benchmarks
because VB solves the most satisfiable benchmarks.

Results for Unsatisfiable Benchmarks. The number of solved unsatisfiable bench-
marks (and thus the total number of solved benchmarks) needs to be interpreted
carefully: Some benchmarks are detected to be unsatisfiable by the transforma-
tion to negation normal form (as done in the implementations of Formula and
FormulaAlt) and relatively simple conflict checks based on normalizing of the
constraints and comparing for contradictory relation symbols (as implemented
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Table 2. Results for the combination with the CAlC backend. Each cell contains the
number of benchmarks in the given category; where meaningful, mean running times
in seconds are given in parentheses.

CAlC I+CAlC F+CAlC FA+CAlC F+I+CAlC FA+I+CAlC VB

sat 5055 5071 5074 5073 5076 5075 5076

(0.27) (0.27) (0.31) (0.29) (0.28) (0.26) (0.26)

unsat 4825 4837 4829 4830 4837 4841 4845

(1.40) (1.45) (1.51) (1.48) (1.44) (1.46) (1.48)

solved 9880 9908 9903 9903 9913 9916 9921

(0.82) (0.84) (0.90) (0.87) (0.85) (0.85) (0.85)

timeout 1854 1843 1843 1839 1837 1839 1840

memout 400 383 388 392 384 379 373

in Incremental); these implementation details lead to more solved unsatisfiable
benchmarks in our experiments.

Subtropical as Preprocessing vs Subtropical as Incremental Theory Solver. In
general, the differences in solved benchmarks between the different variants are
not big enough to draw any reliable conclusion. Still, we find that the F+CAlC
and FA+CAlC variants are comparable to the incremental I+CAlC variant - which
supports our idea to use subtropical as an efficient preprocessing method to
complement other solvers.

4.3 Z3 and Cvc5

As Formula and FormulaAlt can be employed as a preprocessing unit without
any modification to an SMT solver, we can easily combine them with Z3 [19]
and cvc5 [4]. In the following we focus on the Formula transformation. Out of
the 12134 SMT-LIB benchmarks, Formula is applicable (i.e. the transformation
does not directly simplify to false) to 4717 benchmarks (3170 satisfiable, 1439
unsatisfiable, and the others have unknown status) and not applicable to the
remaining 7417.

We have run the solvers Z3 and cvc5 on the QFLRA transformation results of
Formula (ForZ3 resp. ForCvc5) as well as on the original QFNRA benchmarks
(Z3 resp. Cvc5), and combined the results into virtual solvers ForZ3+Z3 resp.
ForCvc5+cvc5 by first applying ForZ3 resp. ForCvc5, and only if the result is
inconclusive then calling Z3 resp. Cvc5 on the original formula. In Table 3 we set
the timeout for the subtropical solver Formula to 10 seconds, leaving at least
110 seconds solving time for the SMT solver if a call is needed. In total, the
combination of both solvers has a timeout of 120 s. We ignore the time required
for the subtropical transformation here, claiming that this time is negligible.

Effectiveness of the Subtropical Method. The subtropical method solves a good
portion of the satisfiable benchmarks: ForZ3 and ForCvc5 solve 1357 resp. 1352
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Table 3. Results for Z3 and cvc5 without subtropical preprocessing (Z3, cvc5), only
the subtropical preprocessing employing Z3 and cvc5 for solving the encodings (ForZ3,
ForCvc5) and their sequential combination (ForZ3+Z3, ForCvc5+cvc5). The last row in
the header specifies the respective timeouts. Each cell contains the number of bench-
marks in the given category; where meaningful, mean running times in seconds are
given in parentheses. Not applicable means that the transformation directly simplifies
to false.

ForZ3 to
= 120

Z3 to
= 10

ForZ3

+Z3 to =
120

cvc5 to
= 120

ForCvc5

to = 10
ForCvc5

+cvc5 to
= 120

sat 5515(0.64) 1357(0.04) 5524(0.62) 5370(1.51) 1352(0.04) 5395(1.49)

unsat 5336(1.20) - 5336(1.21) 5728(2.13) - 5728(2.14)

solved 10851(0.92) 1357(0.04) 10860(0.91) 11098(1.82) 1352(0.04) 11123(1.82)

unknown 3(15.36) 3333(0.03)+
7417 not appl.

3(15.36) 0 3324(0.04)+
7417 not appl.

0

timeout 1280 27 1271 1036 41 1011
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Fig. 4. Scatter plots for Z3 and cvc5, without versus with subtropical preprocessor.

satisfiable benchmarks within 10 s timeout, with a mean running time of just 0.04
seconds. Both have relatively few timeouts. The unknown results are presented
as a sum of (i) the applicable but not solvable and (ii) the not applicable cases.

Effectiveness of Subtropical as Preprocessing to Complete Solvers. The results
shown in Table 3 are similar to the previous findings that some additional bench-
marks can be solved. The supplementation with the subtropical method solves
9 benchmarks which cannot be solved by Z3; in the case of cvc5 25 new bench-
marks are solved. Although these gains are small in number, the gained instances
are hard for the considered SMT solvers. Furthermore, we remind that we cannot
generalize these statements beyond the given benchmark set as the applicability
of the subtropical method heavily depends on the structure of its input. If the
method is applicable, it can be very efficient: Fig. 4 shows that the subtropical
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(b) Instances known to be unsatisfiable.

Fig. 5. Scatter plots for cvc5, without versus with subtropical preprocessor.

method solves some benchmarks on which the pure solvers fail even in the rel-
atively short time of 10 s. Furthermore, Fig. 4 also illustrates nicely that even if
it fails, the subtropical method has no remarkable negative effect on the run-
ning time. Figure 5 shows that subtropical fails relatively quickly on unsatisfiable
instances, while it may fail later on satisfiable ones.

5 Conclusion

In this paper we introduced and evaluated different variants of the subtropical
satisfiability method for checking the satisfiability of QFNRA formulas. While
some of the approaches need to be integrated into an SMT solver, other methods
are suitable as preprocessing algorithms that can be implemented outside of an
existing solver and are thus more generally applicable. The results demonstrate
that our new approach for such a preprocessing enabled the solvers to solve some
more instances which could not be solved before.

Though the number of additionally solved instances is relatively small, these
problems are hard for mature SMT solvers like Z3 or cvc5. Furthermore, we
need to keep in mind that the variety of real-algebraic benchmarks in SMT-
LIB is still limited; the evaluation in [14] discusses that the benchmarks do not
contain inequations with high degrees on which the subtropical method should
be efficient.

Acknowledgements. We thank Ömer Sali and Gereon Kremer for the implementa-
tion of the subtropical method as a CDCL(T) theory solver in SMT-RAT, and Giang
Lai for discussions.
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Abstract. The Divide and Distribute Fixed Weights algorithm (ddfw)
is a dynamic local search SAT-solving algorithm that transfers weight
from satisfied to falsified clauses in local minima. ddfw is remarkably
effective on several hard combinatorial instances. Yet, despite its success,
it has received little study since its debut in 2005. In this paper, we pro-
pose three modifications to the base algorithm: a linear weight transfer
method that moves a dynamic amount of weight between clauses in local
minima, an adjustment to how satisfied clauses are chosen in local min-
ima to give weight, and a weighted-random method of selecting variables
to flip. We implemented our modifications to ddfw on top of the solver
yalsat. Our experiments show that our modifications boost the perfor-
mance compared to the original ddfw algorithm on multiple benchmarks,
including those from the past three years of SAT competitions. Moreover,
our improved solver exclusively solves hard combinatorial instances that
refute a conjecture on the lower bound of two Van der Waerden num-
bers set forth by Ahmed et al. (2014), and it performs well on a hard
graph-coloring instance that has been open for over three decades.

1 Introduction

Satisfiability (SAT) solvers are powerful tools, able to efficiently solve problems
from a broad range of applications such as verification [12], encryption [26], and
planning [10,18]. The most successful solving paradigm is conflict-driven clause
learning (CDCL) [20,25]. However, stochastic local search (SLS) outperforms
CDCL on many classes of satisfiable formulas [7,19,23,24,28], and it can be
used to guide CDCL search [8].

SLS algorithms solve SAT instances by incrementally changing a truth ass-
ignment until a solution is found or until timeout. At each step, the algorithm
flips the truth value of a single boolean variable according to some heuristic. A
common heuristic is flipping variables that reduce the number of falsified clauses
in the formula. The algorithm reaches a local minimum when no variable can be
flipped to improve its heuristic. At that point, the algorithm either adjusts its
truth assignment or internal state to escape the local minimum, or it starts over.
Refer to chapter 6 from the Handbook of Satisfiability [4] for a more detailed
discussion of SLS algorithms.
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Dynamic local search (DLS) algorithms are SLS algorithms that assign a
weight to each clause. They then flip variables to reduce the amount of weight
held by the falsified clauses. DLS algorithms escape local minima by adjusting
clause weights until they can once again flip variables to reduce the amount of
falsified weight.

Several DLS algorithms have been studied. For example, the Pure Addi-
tive Weighting Scheme algorithm (paws) [27] and the Scaling and Probabilistic
Smoothing algorithm (saps) [15] both increase the weight of falsified clauses in
local minima. A drawback of this method of escaping local minima is that the
clause weights must periodically be re-scaled to prevent overflow.

The Divide and Distribute Fixed Weights algorithm (ddfw) [16] introduces
an alternative way of escaping local minima: increase the weight of falsified
clauses by taking weight from satisfied clauses. In local minima, ddfw moves a
fixed, constant amount of weight to each falsified clause from a satisfied clause
it shares at least one literal with. The transfer method keeps the total amount
of clause weight constant, eliminating the need for a re-scaling phase. Another
consequence of this transfer method is that as more local minima are encoun-
tered, difficult-to-satisfy clauses gather more weight. Thus, ddfw dynamically
identifies and prioritizes satisfying hard clauses.

Recent work using ddfw as a black box showed the effectiveness of the al-
gorithm. For example, ddfw (as implemented in ubcsat [29]1) is remarkably
effective on matrix multiplication and graph-coloring problems [13,14]. Yet de-
spite its success, ddfw has received little research attention. In this paper, we
revisit the ddfw algorithm to study why it works well and to improve its per-
formance.

Our contributions are as follows. We propose three modifications to the ddfw
algorithm. We first introduce a linear weight transfer rule to allow for a more
dynamic transfer of weight in local minima. We then adjust a performance-
critical parameter that randomizes which satisfied clause gives up weight in
local minima. Our adjustment is supported by an empirical analysis. Finally,
we propose a new randomized method for selecting which variable to flip. We
implement each of our modifications on top of the state-of-the-art SLS solver
yalsat to create a new implementation of ddfw that supports parallelization
and restarts. We then evaluate our solver against a set of challenging benchmarks
collected from combinatorial problem instances and the past three years of SAT
competitions. Our results show that our modifications boost the performance
of ddfw: Our best-performing version of ddfw solves 118 SAT Competition
instances, a vast improvement over a baseline of 83 solves from the original
algorithm. Our solver also exhibits a 16% improvement over the baseline on
a set of combinatorial instances. Moreover, in parallel mode, our solver solves
instances that refute a conjecture on the lower bound of two van der Waerden
numbers [2], and it matches performance with the winning SLS solver from the

1 To the best of our knowledge, there is no official implementation or binary of original
ddfw [16] available.
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2021 SAT competition on a graph-coloring instance that has been open for the
past three decades.

2 Preliminaries

SAT solvers operate on propositional logic formulas in conjunctive normal form
(CNF). A CNF formula F =

∧
i Ci is a conjunction of clauses, and each clause Ci =∨

j �j is a disjunction of boolean literals. We write v and v as the positive and
negative literals for the boolean variable v, respectively.

A truth assignment α maps boolean variables to either true or false. A literal v
(resp. v) is satisfied by α if α(v) is true (α(v) is false, respectively). A clause C
is satisfied by α if α satisfies at least one of its literals. A formula F is satisfied
by α exactly when all of its clauses are satisfied by α. Two clauses C and D are
neighbors if there is a literal � with � ∈ C and � ∈ D. Let Neighbors(C) be the
set of neighbors of C in F , excluding itself.

Many SLS algorithms assign a weight to each clause. Let W : C → R≥0 be
the mapping that assigns weights to the clauses in C. One can think of W (C)
as the cost to leave C falsified. We call the total amount of weight held by the
falsified clauses, the falsified weight. A variable that, when flipped, reduces the
falsified weight is called a weight-reducing variable (wrv). A variable that doesn’t
affect the falsified weight when flipped is a sideways variable (sv).

3 The DDFW Algorithm

Algorithm 1 shows the pseudocode for the ddfw algorithm. ddfw attempts to
find a satisfying assignment for a given CNF formula F over MAXTRIES trials.
The weight of each clause is set to w0 at the start of the algorithm. Each trial
starts with a random assignment. By following a greedy heuristic method, ddfw
selects and then flips weight-reducing variables until none are left. At this point,
it either flips a sideways variable, if one exists and if a weighted coin flip succeeds,
or it enters the weight transfer phase, where each falsified clause receives a
fixed amount of weight from a maximum-weight satisfied neighbor. Occasionally,
ddfw transfers weight from a random satisfied clause instead, allowing weight
to move more fluidly between neighborhoods. The amount of weight transferred
depends on whether the selected clause has more than w0 weight.

There are five parameters in the original ddfw algorithm: the initial weight w0

given to each clause, the two weighted-coin thresholds spt and cspt for sideways
flips and transfers from random satisfied clauses, and the amount of weight to
transfer in local minima c> and c= . In the original ddfw paper, these five
values are fixed constants, with w0 = 8, spt = 0.15, cspt = 0.01, c> = 2, and
c= = 1.

ddfw is unique in how it transfers weight in local minima. Similar SLS
algorithms increase the weight of falsified clauses (or decrease the weight of
satisfied clauses) globally; weight is added and removed based solely on whether
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Algorithm 1: The ddfw algorithm
Input: CNF Formula F , w0, spt, cspt, c> , c=
Output: Satisfiability of F

1 W (C) ← w0 for all C ∈ F
2 for t = 1 to MAXTRIES do
3 α ← random truth assignment on the variables in F
4 for f = 1 to MAXFLIPS do
5 if α satisfies F then return “SAT”
6 else
7 if there is a wrv then
8 Flip a wrv that most reduces the falsified weight
9 else if there is a sv and rand ≤ spt then

10 Flip a sideways variable
11 else
12 foreach falsified clause C do
13 Cs ← maximum-weighted satisfied clause in Neighbors(C)
14 if W (Cs) < w0 or rand ≤ cspt then
15 Cs ← random satisfied clause with W ≥ w0

16 if W (Cs) > w0 then
17 Transfer c> weight from Cs to C
18 else
19 Transfer c= weight from Cs to C

20 return “No SAT”

the clause is satisfied. ddfw instead moves weight among clause neighborhoods,
with falsified clauses receiving weight from satisfied neighbors.

One reason why this weight transfer method may be effective is that satisfying
a falsified clause C by flipping literal � to � (∈ C) increases the number of true
literals in satisfied clauses that neighbor C on �. Thus, C borrows weight from
satisfied clauses that tend to remain satisfied when C itself becomes satisfied.
As a result, ddfw satisfies falsified clauses while keeping satisfied neighbors
satisfied.

The existence of two weight transfer parameters c> and c= deserves dis-
cussion. Let heavy clauses be those clauses C with W (C) > w0. Lines 16-19
in Algorithm 1 allow for a different amount of weight to be taken from heavy
clauses than from clauses with the initial weight. Because lines 14-15 ensure that
the selected clause Cs will have at least w0 weight, c= is used when W (Cs) = w0

and c> is used when W (Cs) > w0 (hence the notation). The original algorithm
sets c> = 2 and c= = 1, which has the effect of taking more weight from heavy
clauses.

4 Solvers, Benchmarks, and Hardware

The authors of the original ddfw algorithm never released their source code or
any binaries. The closest thing we have to a reference implementation is the one
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in the SLS SAT-solving framework ubcsat [28,29]. We call this implementation
ubc-ddfw, and we use it as a baseline in our experiments.

Unfortunately, ubc-ddfw cannot be extended to implement our proposed
modifications due to its particular architecture. Instead, we implemented ddfw
on top of yalsat [5], which is currently one of the strongest local search SAT
solvers. For example, it is the only local search solver in Mallob-mono [22], the
clear winner of the cloud track in the SAT Competitions of 2020, 2021, and
2022. yalsat uses probsat [3] as its underlying algorithm, which flips variables
in falsified clauses drawn from an exponential probability distribution.

One benefit of implementing ddfw on top of yalsat is that is yalsat sup-
ports parallelization, which can be helpful when solving challenging formulas.
In our experiments, we compare our implementation of ddfw to ubc-ddfw to
verify that the two implementations behave similarly.

Our implementation of ddfw on top of yalsat was not straightforward.
First, we switched the underlying SLS algorithm from probsat to ddfw. Then
we added additional data structures and optimizations to make our implemen-
tation efficient. For example, one potential performance bottleneck for ddfw is
calculating the set of weight-reducing variables for each flip. Every flip and adjust-
ment of clause weight can change the set, so the set must be re-computed often.
A naive implementation that loops through all literals in all falsified clauses is
too slow, since any literal may appear in several falsified clauses, leading to re-
dundant computation. Instead, we maintain a list of variables uvars that appear
in any falsified clause. After each flip, this list is updated. To compute the set
of weight-reducing variables, we iterate over the variables in uvars, hitting each
literal once. In this way, we reduce redundant computation.

Adding our proposed modifications to our implementation was simpler. We
represent clause weights with floating-point numbers, and the linear weight trans-
fer rule replaced the original one. We also made the variable selection and weight
transfer methods modular, so our modifications slot in easily.2

We evaluated our implementations of ddfw against two benchmarks. The
Combinatorial (COMB) set consists of 65 hard instances from the following
eight benchmarks families collected by Heule:3 (i) 26x26 (4 grid positioning
instances), (ii) asias (2 almost square packing problems), (iii) MM (20 matrix
multiplication instances), (iv) mphf (12 cryptographic hash instances), (v) ptn (2
Pythagorean triple instances), (vi) Steiner (3 Steiner triples cover instances [21]),
(vii) wap (9 graph-coloring instances [17]), and (viii) vdw (13 van der Waerden
number instances). These benchmarks are challenging for modern SAT solvers,
including SLS solvers. The wap benchmark contains three instances that have
been open for three decades, and vdw contains two instances that, if solved, refute
conjectures on lower-bounds for two van der Waerden numbers [2].

The SAT Competition (SATComp) set consists of all 1,174 non-duplicate
main-track benchmark instances from the 2019 SAT Race and the 2020 and

2 Source code of our system are available at https://github.com/solimul/yal-lin
3 https://github.com/marijnheule/benchmarks

https://github.com/solimul/yal-lin
https://github.com/marijnheule/benchmarks
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2021 SAT Competitions. The competition suites contain medium-hard to very
challenging benchmarks, most of which are contributed by the competitors.

Unless otherwise specified, we used a timeout of 18,000 and 5,000 seconds for
the COMB and SATComp instances, respectively, in our experiments.

We used the StarExec cluster [1], where each node has an Intel CPU E5 CPU
with a 2.40 GHz clock speed and a 10240 KB cache. For experiments in this clus-
ter, we used at most 64 GB of RAM. To perform experiments on the 3 open wap
and 2 vdw instances, we used a different cluster with the following specifications:
we use the Bridges2 [6] cluster from the Pittsburgh Supercomputing Center with
the following specifications: two AMD EPYC 7742 CPUs, each with 64 cores,
256MB of L3 cache, and 512GB total RAM memory.

5 Modifications to the DDFW Algorithm

We propose three modifications to ddfw. The first is a linear rule for transferring
a dynamic amount of weight in local minima. The second is an adjustment of
the cspt parameter. The third is the introduction of a weighted-random method
for selecting which variable to flip.

5.1 The Linear Weight Transfer Rule

The reference implementation of ddfw, ubc-ddfw, represents its clause weights
as integers and transfers fixed integer weights in local minima. While this de-
sign decision allows ubc-ddfw to have a fast implementation, it unnecessarily
restricts the amount of weight transferred in local minima to be integer-valued.
In addition, the choice to transfer a fixed, constant amount of weight prevents
ddfw from adapting to situations where more weight must be transferred to
escape a local minimum, thus requiring multiple weight transfer rounds. To ad-
dress these concerns, we propose a dynamic linear weight transfer rule to operate
on floating-point-valued clause weights.

Let CS be the selected satisfied clause from which to take weight in a local
minimum, as in line 13 in Algorithm 1. Our new rule transfers

a ∗ W (CS) + c

weight, where 0 ≤ a ≤ 1 is a multiplicative parameter and c ≥ 0 is an additive
parameter.

It is not clear that the addition of a multiplicative parameter is helpful, nor
what a good pair of (a, c) values would be. So, we performed a parameter search
with our solver for a ∈ [0, 0.2] in steps of 0.05 and c ∈ [0, 2] in steps of 0.25
for both of our instance sets with a 900 second timeout per run. (A parameter
search using all 1,174 instances in the SATComp set was not feasible. We instead
did the search on the 168 instances from SATComp set that were solved by some
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setting in earlier experimentation. In Section 6, all instances are used.) The PAR-
2 scores4 for the SATComp and COMB benchmark sets for each pair of (a, c)
values are shown in Figure 1.
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Fig. 1. Parameter searches for a ∈ [0, 0.2] in steps of 0.05 and c ∈ [0, 2] in steps of 0.25
on the SATComp (left plot) and COMB (right plot) instances. A lower PAR-2 score is
better. There is not a datum for (a, c) = (0, 0) since no weight would be transferred.

The plots in Figure 1 show that values of a and c close to 0 degrade perfor-
mance, likely due to the need for many weight-transfer rounds to escape local
minima. The beneficial effect of higher values of a and c is more pronounced in
the parameter search on the SATComp instances (the left plot). Since the best-
performing settings have nonzero a and c values, we infer that both parameters
are needed for improved performance.

5.2 How Much Weight Should be Given Away Initially?

On lines 16-19 of Algorithm 1, ddfw takes c> weight away from the selected
clause Cs if Cs is heavy and c= weight otherwise. The linear rule introduced
above can similarly be extended to four parameters: a>, a=, c>, and c=.

In the original ddfw paper, c> (= 2) is greater than c= (= 1), meaning that
heavy clauses give away more weight than clauses with the initial weight in local
minima. The intuition behind this is simple: clauses with more weight should
give away more weight. For the extended linear rule, one could adopt a similar
strategy by setting a> greater than a= and c> greater than c=.

However, one effect of our proposed linear rule is that once clauses give or
receive weight, they almost never again have exactly w0 weight. As a result, the
parameters a= and c= control how much weight a clause gives away initially.
Since the maximum-weight neighbors of falsified clauses tend to be heavy as
the search proceeds, the effect of a= and c= diminishes over time, but they
remain important at the start of the search and for determining how much
4 The PAR-2 score is defined as the average solving time, while taking 2 * timeout as

the time for unsolved instances. A lower score is better.
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Fig. 2. The impact of cspt values on the performance of ddfw on the wap instances.

weight the algorithm has available to assign to harder-to-satisfy clauses. The
findings in a workshop paper [9] by two co-authors of this paper indicate that
ddfw achieves a better performance when clauses initially give more weight.
These findings suggest setting c= greater than c> and a= greater than a>. In
Section 6, we evaluate ddfw on the extended linear rule and investigate whether
clauses should initially give away more or less weight.

5.3 The cspt Parameter

On lines 14-15 of Algorithm 1, ddfw sometimes discards the maximum-weight
satisfied neighboring clause Cs and instead selects a random satisfied clause.
The cspt parameter controls how often the weighted coin flip on line 14 suc-
ceeds. Though these two lines may appear to be minor, a small-scale experiment
revealed that the cspt parameter is performance-critical. We ran our implemen-
tation of the original ddfw algorithm on the COMB set with an 18,000 second
timeout. When we set cspt to 0, meaning that falsified clauses received weight
solely from satisfied neighbors, it solved a single instance; when we set cspt to
0.01 (the value in the original ddfw algorithm), it solved 21 instances.

Among the eight families in COMB, the wap family was the most sensitive to
the change of cspt value from 0 (solved 0) to 0.01 (solved 6 out of 9). We isolated
these nine instances and ran a parameter search on them for cspt ∈ [0.01, 1] in
steps of 0.01, for a total of 900 runs. We used an 18,000 second timeout per run.
The PAR-2 scores are reported in Figure 2.

In Figure 2, we observe that cspt values near 0 and above 0.2 cause an
increase in the PAR-2 score. These results indicate that ddfw is sensitive to
the cspt value and that the cspt value should be set higher than its original
value of 0.01, but not too high, which could potentially degrade the performance
of the solver. We use these observations to readjust the cspt parameter in our
empirical evaluation presented in Section 6.
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5.4 A Weighted-random Variable Selection Method

On line 8 of Algorithm 1, ddfw flips a weight-reducing variable that most re-
duces the amount of falsified weight. Such a greedy approach may prevent ddfw
from exploring other, potentially better areas of the search space. Inspired by
probsat, which makes greedy moves only some of the time, we introduce a
new randomized method that flips a weight-reducing variable according to the
following probability distribution:

P(Flipping wrv v) =
ΔW (v)

∑
v∈wrv ΔW (v)

,

where ΔW (v) is the reduction in falsified weight if v is flipped.

6 Empirical Evaluation

In this section, we present our empirical findings. Since we evaluated several
different solvers, we refer to the solvers by the following names: the ubcsat
version of ddfw is ubc-ddfw, the version of yalsat that implements probsat
is yal-prob, and our implementation of ddfw on top of yalsat is yal-lin. In
all of our experiments, we use the default random seed5 present in each solver,
and we set the initial clause weight w0 = 8, as in the original ddfw paper.

In our experiments with yal-lin, we varied the configuration of the solver
according to our proposed modifications. We use the identifying string W-cC-P
to refer to a configuration for yal-lin, where W ∈ {fw, lw} is the weight transfer
method (fw stands for “fixed weight,” lw for “linear weight”), C ∈ {0.01, 0.1} is
the cspt value, and P ∈ {grdy, wrnd} is the variable selection method (grdy
stands for the original “greedy” method, and wrnd stands for our proposed
“weighted random” method). For example, the string fw-c.01-grdy describes
the original ddfw algorithm, with c> = 2 and c= = 1.

6.1 Evaluation Without Restarts

We evaluate how yal-lin performs without restarts, meaning that ddfw runs
until timeout without starting from a fresh random assignment. To disable
restarts, we set MAXTRIES to 1 and MAXFLIPS to an unlimited number of
flips. For the COMB and SATComp benchmark sets, we set a timeout of 18,000
and 5,000 seconds, respectively.

We first checked that our solver yal-lin (with configuration fw-c.01-grdy)
behaves similarly to the baseline implementation, ubc-ddfw. The solvers per-
formed almost identically on the two benchmark sets: ubc-ddfw solved 22 of the
COMB instances and 80 of the SATComp instances; yal-lin solved 21 and 83,

5 Results for additional experiments with a different seed is available at:
https://github.com/solimul/additional-experiments-nfm23/blob/master/
additional results nfm2023.pdf

https://github.com/solimul/additional-experiments-nfm23/blob/master/additional_results_nfm2023.pdf
https://github.com/solimul/additional-experiments-nfm23/blob/master/additional_results_nfm2023.pdf
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Table 1. Solve counts and PAR-2 scores for different configurations of yal-lin. The
configurations vary the cspt value and the variable selection method, with the weight
transfer method being fw. The best configuration for each benchmark is bolded.

COMB SATComp

cspt grdy wrnd grdy wrnd

value #solved PAR-2 #solved PAR-2 #solved PAR-2 #solved PAR-2

0.01 21 25393 24 23871 83 9339 87 9312

0.1 24 23137 25 22538 98 9223 103 9188

respectively. We attribute the slight difference in solve counts to random noise.
These results indicate that we implemented yal-lin correctly.

We next evaluate how yal-lin performs under changes in the cspt value
and variable selection method. We run yal-lin with the fixed weight transfer
method on both benchmarks with all four combinations of C ∈ {0.01, 0.1} and
P ∈ {grdy, wrnd}. The solve counts and PAR-2 scores are shown in Table 1.

Isolating just the change in variable selection method (scanning across rows
in Table 1), we see that the weighted-random method outperforms the greedy
method for each benchmark and cspt value. There is improvement both in the
solve count (ranging from an additional 1 to 5 solves) and in the PAR-2 score.
While the improvements may be random noise, the results indicate that injecting
some randomness into how variables are flipped may lead to better performance.

Isolating the change in cspt value (scanning down columns in Table 1), we
see that the higher cspt value of 0.1 outperforms the cspt value of 0.01. Im-
provements range from 1 additional solve to 16 additional solves. We note that
the improvements when increasing the cspt value are more pronounced than
when changing the variable selection method, which gives further evidence that
the cspt value is performance-critical. In Section 7, we present a possible expla-
nation for why the cspt parameter is so important.

The linear weight transfer rule. As we noted in Section 5.2, the linear weight
transfer rule can be extended to include four parameters: two multiplicative
and two additive. We tested yal-lin on three particular settings of these four
parameters, which we call lw-itl (linear weight initial transfer low), lw-ith
(linear weight initial transfer high), and lw-ite (linear weight initial transfer
equal).

– lw-itl takes a low initial transfer from clauses in local minima by setting
a= < a> and c= < c> .

– lw-ith takes a high initial transfer from clauses in local minima by setting
a= > a> and c= > c> .

– lw-ite does not distinguish clauses by weight, and sets the two pairs of
parameters equal.

In the left plot of Figure 1, a values for the top 10% of the settings (by PAR-2
scores) are in the range [0.05, 0.1]. Hence, we use 0.05 and 0.1 as the values for
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a> and a= in lw-itl and lw-ith. We keep the values for c> and c= at 2 and 1,
following the original ddfw algorithm. For lw-ite, we take values in between
the pair of values, with a> = a= = 0.075 and c> = c= = 1.75. Table 2 shows
the parameter values for the three configurations that we tested.

Table 2. Parameter values for three versions of linearwt

linearwt versions a> a= c> c=

lw-itl 0.1 0.05 2 1

lw-ite 0.075 0.075 1.75 1.75

lw-ith 0.05 0.1 1 2

We compare our three new configurations against the original one across the
two variable selection methods. We set cspt = 0.1, as our prior experiment
showed it to be better than 0.01. Table 3 summarizes the results.

Table 3. Solve counts and PAR-2 scores for different configurations of yal-lin. The
configurations vary the linear weight transfer method while keeping the cspt value
fixed at 0.1. The best configuration for each benchmark is bolded.

Weight

Transfer

Method

COMB SATComp

grdy wrnd grdy wrnd

#solved PAR-2 #solved PAR-2 #solved PAR-2 #solved PAR-2

fixedwt 24 23871 25 22538 98 9223 103 9188

lw-itl 26 22256 27 21769 98 9237 104 9189

lw-ite 28 21233 27 22228 111 9129 113 9114

lw-ith 26 22142 28 21338 115 9082 118 9055

Scanning down the columns of Table 3, we see that all three linear weight
configurations perform at least as well as the fixed weight version, regardless
of variable selection method. The improvements on the COMB benchmark are
modest, with at most 4 additional solved instances. The improvements on the
SATComp benchmark are more substantial, with a maximum of 17 additional
solved instances.

Overall, the best-performing linear weight configuration was lw-ith, which
transfers the more weight from clauses with the initial weight. These results
support prior findings that more weight should be freed up to the falsified clauses
in local minima. The best-performing variable selection method continues to be
the weighted random method wrnd.

Analysis of solve count over runtime. In addition to solve counts and PAR-
2 scores for the three linear weight configurations, we report solve counts as a
function of solving time. The data for ten experimental settings of yal-lin on
the two benchmarks are shown in Figure 3. Note that the original ddfw setting
is represented by the setting fw-c.01-grdy, and is our baseline.
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Fig. 3. Performance profiles of yal-lin (fw-c.01-grdy) and nine modifications for
COMB (left) and SATComp (right).

For the COMB benchmark (Figure 3, left plot), all nine other settings (our
modifications) outperform the baseline in terms of solving speed and number of
solved instances. The best settings are lw-ith-c.1-wrnd and lw-ite-c.1-grdy,
which perform on par with each other and solve 28 instances by timeout. For
the SATComp benchmark (Figure 3, right plot), the success of the setting
lw-ith-c.1-wrnd is more pronounced. For about the first 1,000 seconds, this
setting performs similar to lw-ith-c.1-grdy. After that, however, it begins to
perform the best of all the settings, and it ends up solving the most instances by
timeout, at 118. The baseline setting fw-c.01-grdy ends up solving 83 instances
at timeout, which is 35 less than lw-ith-c.1-wrnd.

These two plots clearly show that our modifications substantially improve
the original ddfw algorithm.

6.2 Evaluation With Restarts

Many SLS algorithms restart their search with a random assignment after a
fixed number of flips. By default, yalsat also performs restarts. However, at
each restart, yalsat dynamically sets a new restart interval as r = 100, 000x for
some integer x ≥ 1, which is initialized to 1, and updated after each restart as
follows: if x is power of 2, then x is set to 1, otherwise to 2 ∗ x. The way yalsat
initializes its assignment at restart also differs from many SLS algorithms. On
some restarts, yalsat uses the best cached assignment. For all others, it restarts
with a fresh random assignment. In this way, it attempts to balance exploitation
and exploration.



A Linear Weight Transfer Rule for Local Search 459

0 0.5 1 1.
.

5
104

0

10

20

30

40

solving time (s)

so
lv
ed

C
O
M
P

in
st
an

ce
s

0 2,000 4,000
0

20

40

60

80

100

120

solving time (s)
so
lv
ed

SA
T
C
om

p
in
st
an

ce
s

Fig. 4. Solve time comparisons between base yal-prob, and 10 yal-lin settings for
COMB and SATComp, where restarts are enabled

Our experiments with yal-lin included runs with yalsat-style restarts. On
a restart, the adjusted clause weights are kept. The hope is that the adjusted
weights help the solver descend the search landscape faster.

We compare yal-prob against ten experimental settings of yal-lin with
restarts enabled. The best solver in this evaluation is yal-lin with the setting
lw-ith-c.1-grdy on the COMB benchmark and the setting lw-ith-c.1-wrnd
on theSATCompbenchmark,which solve 11and49more instances thanyal-prob,
respectively. Figure 4 shows solve counts against solving time, and it confirms
that all the yal-lin settings solve instances substantially faster than yal-prob.

6.3 Solving Hard Instances

Closing wap-07a-40. The wap family from the COMB benchmark contains
three open instances: wap-07a-40, wap-03a-40 and wap-4a-40. We attempted to
solve these three instances using the parallel version of yal-lin with the ten
yal-lin settings (without restarts) used in Section 6.1 in the cluster node with
128 cores and 18,000 seconds of timeout. All of our settings except fw-c.01-grdy
(the baseline) solve the wap-07a-40 instance. The best setting for this experi-
ment was lw-itl-c.1-wrnd, which solves wap-07a-40 in just 1168.64 seconds.
However, we note that lstech maple (LMpl) [31], the winner of the SAT track of
the SAT Competition 2021, also solves wap-07a-40, in 2,103.12 seconds, almost
twice the time required by our best configuration lw-itl-c.1-wrnd for solving
this instance. Thus, for solving this open instance, our best setting compares
well with the state-of-the-art solver for solving satisfiable instances.

With restarts, the setting lw-itl-c.1-wrnd, the best setting for this exper-
iment, were not able to solve any of these three instances.
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New lower bounds for van der Waerden/Green numbers. The van der
Waerden theorem [30] is a theorem about the existence of monochromatic arith-
metic progressions among a set of numbers. It states the following: there exists
a smallest number n = W (k; t1, . . . , ti, . . . , tk) such that any coloring of the inte-
gers {1, 2, . . . , n} with k colors contains a progression of length ti of color i for
some i. In recent work, Ben Green showed that these numbers grow much faster
than conjectured and that their growth can be observed in experiments [11]. We
therefore call the CNF formulas to determine these numbers Green instances.

Ahmed et al. studied 20 van der Waerden numbers W (2; 3, t) for two colors,
with the first color having arithmetic progression of length 3 and the second of
length 19 ≤ t ≤ 39, and conjectured that their values for t ≤ 30 were optimal,
including W (2; 3, 29) = 868 and W (2, 3, 30) = 903 [2]. By using yal-lin, we
were able to refute these two conjectures by solving the formulas Green-29-868-
SAT and Green-30-903-SAT in the COMB set. Solving these instances yields
two new bounds: W (2; 3, 29) ≥ 869 and W (2; 3, 30) ≥ 904.

To solve these two instances, we ran our various yal-lin configurations
(without restarts) using yalsat’s parallel mode, along with a number of other
local search algorithms from ubcsat, in the same cluster we used to solve
wap-07a-40. Among these solvers, only our solver could solve the two instances.
lw-itl-c.1-wrnd solved both Green-29-868-SAT and Green-30-903-SAT, in
942.60 and 6534.56 seconds, respectively. The settings lw-ith-c.1-wrnd
and lw-ite-c.1-wrnd also solved Green-29-868-SAT in 1374.74 and 1260.16
seconds, respectively, but neither could solve Green-30-903-SAT within a time-
out of 18,000 seconds. The CDCL solver LMpl, which solves wap-07a-40, could
not solve any instances from the Green family within a timeout of 18,000 seconds.

With restarts lw-itl-c.1-wrnd, the best setting for this experiment only
solves Green-29-868-SAT in 2782.81 seconds within a timeout of 18,000 seconds.

7 Discussion and Future Work

In this paper, we proposed three modifications to the DLS SAT-solving algorithm
ddfw. We then implemented ddfw on top of the SLS solver yalsat to create
the solver yal-lin, and we tested this solver on a pair of challenging benchmark
sets. Our experimental results showed that our modifications led to substantial
improvement over the baseline ddfw algorithm. The results show that future
users of yal-lin should, by default, use the configuration lw-ith-c.1-wrnd.

While each modification led to improved performance, the improvements due
to each modification were not equal. The performance boost due to switching to
the weighted-random variable selection method was the weakest, as it resulted in
the fewest additional solves. However, our results indicate that making occasional
non-optimal flips may help ddfw explore its search space better.

The performance boost due to adjusting the cspt value was more substantial,
supporting our initial findings in Section 5.3. One metric that could explain
the importance of a higher cspt value is a clause’s degree of satisfaction (DS),
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Fig. 5. Comparison of sideways move count per 10,000 flips with search progression
for our baseline (fw-c.01-grdy) and best setting (lw-ith-c.1-wrnd) from yal-lin for
an COMB instance sted2 0x0 n219-342.

which is the fraction of its literals that are satisfied by the current assignment.
We noticed in experiments on the COMB benchmark with cspt = 0.01 that
clauses neighboring a falsified clause had an average DS value of 0.33, while
clauses without a neighboring falsified clause had an average DS value of 0.54.
If this trend holds for general yal-lin runs, then it may be advantageous to
take weight from the latter clauses more often, since flipping any literal in a
falsified clause will not falsify any of the latter clauses. A higher cspt value
accomplishes this. However, we did not investigate the relationship between DS
and cspt further, and we leave this to future work. Performance also improved
with the switch to a linear weight transfer method. The best method, lw-ith,
supports the findings from the workshop paper that ddfw should transfer more
weight from clauses with the initial weight. Future work can examine whether the
heavy-clause distinction is valuable; a weight transfer rule that doesn’t explicitly
check if a clause is heavy would simplify the ddfw algorithm.

When restarts are enabled, all ten settings in yal-lin perform better for
COMB than when restarts are disabled. This better performance with restarts
comes from solving several MM instances, for which these settings without restarts
solve none of them. However, for SATComp, yal-lin performs better when
restarts are disabled. Since SATComp comprises larger number of heterogeneous
benchmarks than COMB, these results suggest that the new system performs
better when restarts are disabled.

Future work on weight transfer methods can take several other directions.
Different transfer functions can be tested, such as those that are a function of
the falsified clause’s weight or those based on rational or exponential functions.
Alternate definitions for neighboring clauses are also possible. For example, in
formulas with large neighborhoods, it may be advantageous to consider clauses
neighbors if they share k > 1 literals, rather than just 1.

Throughout this paper, we kept the spt parameter set to 0.15. Yet, when
clause weights are floating point numbers, it is rare for our solver to make side-
ways moves. This evident in Figure 5, which compares count of sideways moves
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per 10,000 flips between our baseline setting (fw-0.01-grdy), and best setting
(lw-ith-c.1-wrand) for a randomly chosen SATComp instance sted2 0x0 n219-
342 up to 5 millions flips. With fw-0.01-grdy, yal-lin makes some sideways
moves, albeit rarely. However, with floating weight transfer in lw-ith-c.1-wrand,
the solver makes almost no sideways moves as search progresses. We further inves-
tigated the effect of sideways moves on solver performance. We tested the setting
lw-ith-c.1-wrnd against a version that did not perform sideways moves on the
SATComp benchmark. The version with sideways moves solved 118 instances,
while the version without them solved 113. This suggests that sideways moves
may add a slight-but-beneficial amount of random noise to the algorithm. Fu-
ture work can more fully investigate the effect of sideways moves on ddfw. One
goal is to eliminate the parameter entirely in order to simplify the algorithm.
Alternatively, the algorithm could be modified to occasionally flip variables that
increase the falsified weight to help ddfw explore the search space.

Overall, we find that the ddfw algorithm continues to show promise and
deserves more research interest. Our solver closed several hard instances that
eluded other state-of-the-art solvers, and the space of potential algorithmic im-
provements remains rich.
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Abstract. We outline how support for Zero-suppressed Decision Dia-
grams (ZDDs) has been achieved for the external memory BDD package
Adiar. This allows one to use ZDDs to solve various problems despite
their size exceed the machine’s limit of internal memory.

Keywords: Zero-suppressed Decision Diagrams · External Memory
Algorithms

1 Introduction

Minato introduced Zero-suppressed Decision Diagrams (ZDDs) [15] as a varia-
tion on Bryant’s Binary Decision Diagrams (BDDs) [5]. ZDDs provide a canon-
ical description of a Boolean n-ary function f that is more compact than the
corresponding BDD when f is a characteristic function for a family F ⊆ {0, 1}n
of sparse vectors over some universe of n variables. This makes ZDDs not only
useful for solving combinatorial problems [15] but they can also surpass BDDs
in the context of symbolic model checking [21] and they are the backbone of the
PolyBoRi library [4] used in algebraic cryptoanalysis.

The Adiar BDD package [19] provides an implementation of BDDs in C++17
that is I/O-efficient [1]. This allows Adiar to manipulate BDDs that outgrow the
size of the machine’s internal memory, i.e., RAM, by efficiently exploiting how
they are stored in external memory, i.e., on the disk. The source code for Adiar
is publicly available at

github.com/ssoelvsten/adiar

All 1.x versions of Adiar have only been tested on Linux with GCC. But, with
version 2.0, it is ensured that Adiar supports the GCC, Clang, and MSVC com-
pilers on Linux, Mac, and Windows.

We have added in Adiar 1.1 support for the basic ZDD operations while
also aiming for the following two criteria: the addition of ZDDs should (1) avoid
any code duplication to keep the codebase maintainable and (2) not negatively
impact the performance of existing functionality. Section 2 describes how this
was achieved and Sect. 3 provides an evaluation.

Other mature BDD packages also support ZDDs, e.g., CUDD [20], BiDDy [13],
Sylvan [8] and PJBDD [2], but unlike Adiar none of these support manipulation
of ZDDs beyond main memory. The only other BDD package designed for out-of-
memory BDD manipulation, CAL [16], does not support ZDDs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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=⇒xi xi xi

(a) Node Merging

=⇒xi

(b) BDD Rule

=⇒xi

0

(c) ZDD Rule

Fig. 1. Reduction Rules for BDDs and ZDDs.

2 Supporting both BDDs and ZDDs

The Boolean function f : {0, 1}n → {0, 1} is the characteristic function for the
set of bitvectors F = {x ∈ {0, 1}n | f(x) = 1}. Each bitvector x is equivalent to
a conjunction of the indices set to 1 and hence F can quite naturally be described
as a DNF formula, i.e., a set of set of variables.

A decision diagram is a rooted directed acyclic graph (DAG) with two sinks:
a 0-leaf and a 1-leaf. Each internal node has two children and contains the label
i ∈ N to encode the if-then-else of a variable xi. The decision diagram is ordered
by ensuring each label only occurs once and in sorted order on all paths from
the root. The diagram is also reduced if duplicate nodes are merged as shown in
Fig. 1a. Furthermore as shown respectively in Fig. 1b and 1c, BDDs and ZDDs
also suppress a certain type of nodes as part of their reduction to further decrease
the diagram’s size. The suppression rule for ZDDs in Fig. 1c ensures each path
in the diagram corresponds one-to-one to a term of the DNF it represents.

Both BDDs and ZDDs provide a succinct way to manipulate Boolean for-
mulae by computing on their graph-representation instead. The difference in the
type of node being suppressed in each type of decision diagram has an impact on
the logic within these graph algorithms. For example, applying a binary opera-
tor, e.g., and for BDDs and intersection for ZDDs, is a product construction for
both types of decision diagrams. But since the and operator is shortcutted by
the 0-leaf, the computation depends on the shape of the suppressed nodes.

Hence, as shown in Fig. 2, we have generalized the relevant algorithms in
Adiar with a policy-based design, i.e., a compile-time known strategy pattern,
so the desired parts of the code can be varied internally. For example, most
of the logic within the BDD product construction has been moved to the tem-
plated product construction function. The code-snippets that distinguish the
bdd apply from the corresponding ZDD operation zdd binop are encapsulated
within the two policy classes: apply prod policy and zdd prod policy. This
ensures that no code duplication is introduced. This added layer of abstrac-
tion has no negative impact on performance, since the function calls are known
and inlined at compile-time. No part of this use of templates is exposed to the
end-user, by ensuring that each templated algorithm is compiled into its final
algorithms within Adiar’s .cpp files.
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Fig. 2. Architecture of Adiar v1.1. Solid lines are direct inclusions of one file in another
while dashed lines represent the implementation of a declared function.

Table 1. Supported ZDD operations in Adiar v1.1. The semantics views a ZDD as a
set of sets of variables in dom.

Adiar ZDD function Operation Semantics Generalised BDD function

ZDD Manipulation

zdd binop(A,B,⊗) {x | x ∈ A ⊗ x ∈ B} bdd apply

zdd change(A, vars) {(a \ vars) ∪ (vars \ a) | a ∈ A}
zdd complement(A, dom) P(dom) \ A

zdd expand(A, vars)
⋃

a∈A{a ∪ v | v ∈ P(vars)}
zdd offset(A, vars) {a ∈ A | vars ∩ a = ∅} bdd restrict

zdd onset(A, vars) {a ∈ A | vars ⊆ a} bdd restrict

zdd project(A, vars) proj vars (A) bdd exists

Counting

zdd size(A) |A| bdd pathcount

zdd nodecount(A) NA bdd nodecount

zdd varcount(A) LA bdd varcount

Predicates

zdd equal(A, B) A = B bdd equal

zdd unequal(A, B) A �= B bdd equal

zdd subseteq(A, B) A ⊆ B bdd equal

zdd disjoint(A, B) A ∩ B = ∅ bdd equal

Set elements

zdd contains(A, vars) vars ∈ A bdd eval

zdd minelem(A) min(A) bdd satmin

zdd maxelem(A) max(A) bdd satmax

Conversion

zdd from(f, dom) {x ∈ P(dom) | f(x) = 	}
bdd from(A, dom) x : P(dom) 
→ x ∈ A
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For each type of decision diagram there is a class, e.g., bdd, and a separate
policy, e.g., bdd policy, that encapsulates the common logic for that type of
decision diagram, e.g., the reduction rule in Fig. 1b and the bdd type. This policy
is used within the bdd and zdd class to instantiate the specific variant of the
Reduce algorithm that is applied after each operation. The algorithm policies,
e.g., the two product construction policies above, also inherit information from
this diagram-specific policy. This ensures the policies can provide the information
needed by the algorithm templates.

Table 1 provides an overview of all ZDD operations provided in Adiar 1.1,
including what BDD operations they are generalized from. All but five of these
ZDD operations could be implemented by templating the current codebase. The
remaining five operations required the addition of only a single new algorithm of
similar shape to those in [19]; the differences among these five could be encap-
sulated within a policy for each operation.

3 Evaluation

3.1 Cost of Modularity

Table 2a shows the size of the code base, measured in lines of code (LOC), and
Table 2b the number of unique operations in the public API with and without
aliases. Due to the added modularity and features the entire code base grew by
a factor 6305

3961 = 1.59. Yet, the size of the public API excluding aliases increased
by a factor of 23+24

22 = 2.14; including aliases the public API grew by a factor of
1.98.

3.2 Experimental Evaluation

Impact on BDD Performance. Table 3 shows the performance of Adiar
before and after implementing the architecture in Sect. 2. These two benchmarks,
N -Queens and Tic-Tac-Toe, were used in [19] to evaluate the performance of
its BDDs – specifically to evaluate its bdd apply and reduce algorithms. The
choice of N is based on limitations in Adiar v1.0 and v1.1 (which are resolved
in Adiar v1.2). We ran these benchmarks on a consumer grade laptop with a 2.6
GHz Intel i7-4720HQ processor, 8 GiB of RAM (4 of which was given to Adiar)
and 230 GiB SSD disk.

Table 2. Lines of Code compared to number of functions in Adiar’s API.
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Table 3. Minimum running time (s) before and after the changes in Sect. 2.

The 1% slowdown for the 13-Queens problem is well within the experimental
error introduced by the machine’s hardware and OS. Furthermore, the three
other benchmarks show a performance increase of 9% or more. Hence, it is safe to
conclude that the changes to Adiar have not negatively affected its performance.

ZDD Performance. We have compared Adiar 1.1’s and CUDD 3.0’s [20] per-
formance manipulating ZDDs. Our benchmarks are, similar to Sect. 2, templated
with adapters for each BDD package. Sylvan 1.7 [8] and BiDDy 2.2 [13] are not
part of this evaluation since they have no C++ interface; to include them, we
essentially would have to implement a free/protect mechanism for ZDDs for
proper garbage collection.

Figure 3 shows the normalized minimal running time of solving three combi-
natorial problems: the N -Queens and the Tic-Tac-Toe benchmarks from earlier
and the (open) Knight’s Tour problem based on [6]. We focus on combinatorial
problems due to what functionality is properly supported by Adiar at time of
writing. These experiments were run on the server nodes of the Centre for Sci-
entific Computing, Aarhus. Each node has two 3.0 GHz Intel Xeon Gold 6248R
processors, 384 GiB of RAM (300 of which was given to the BDD package), 3.5
TiB of available SSD disk, runs CentOS Linux, and uses GCC 10.1.0.

Adiar is significantly slower than CUDD for small instances due to the over-
head of initialising and using external memory data structures. Hence, Fig. 3 only
shows the instances where the largest ZDD involved is 10 MiB or larger since
these meaningfully compare the algorithms in Adiar with the ones in CUDD.

Fig. 3. Normalised minimal running time of Adiar (blue) and CUDD (red). (Color
figure online)
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Similar to the results in [19], also for ZDDs the gap in running time between
Adiar and CUDD shrinks as the instances grow. When solving the 15-Queens
problem, Adiar is 3.22 times slower than CUDD whereas for the 17-Queens
problem it is only 1.91 times slower. The largest Tic-Tac-Toe instance solved by
CUDD was N = 24 where Adiar was only 1.22 times slower. In both benchmarks,
Adiar handles more instances than CUDD: 18-Queens, resp. Tic-Tac-Toe for
N = 29, results in a single ZDD of 512.8 GiB, resp. 838.9 GiB, in size.

The Knight’s Tour benchmark stays quite benign up until a chess board of
6 × 6. From that point, the computation time and size of the ZDDs quickly
explode. Adiar solved up to the 6 × 7 board in 2.5 days, where the largest ZDD
was only 2 GiB in size. We could not solve this instance with CUDD within 15
days. For instances also solved by CUDD, Adiar was up to 4.43 times slower.

4 Conclusion and Future Work

While the lines of code for Adiar’s BDDs has slightly increased, that does not
necessarily imply an increase in the code’s complexity. Notice that the archi-
tecture in Sect. 2 separates the recursive logic of BDD and ZDD manipulation
from the logic used to make these operations I/O-efficient. In fact, this separa-
tion significantly improved the readability and maintainability of both halves.
Furthermore, the C++ templates allow the compiler to output each variant of
an algorithm as if it was written by hand. Hence, as Sect. 3 shows, the addition
of ZDDs has not decreased Adiar’s ability to handle BDDs efficiently.

Adiar can be further modularized by templating diagram nodes to vary their
data and outdegree at compile-time. This opens the possibility to support Multi-
terminal [9], List [8], Functional [11], and Quantum Multiple-valued [14] Decision
Diagrams. If nodes support variadic out-degrees at run-time, then support for
Multi-valued [10] and Clock Difference [12] Decision Diagrams is possible and it
provides the basis for an I/O-efficient implementation of Annotated Terms [3].

This still leaves a vital open problem posed in [19] as future work: the cur-
rent technique used to achieve I/O-efficiency does not provide a translation for
operations that need to recurse multiple times for a single diagram node. Hence,
I/O-efficient dynamic variable reordering is currently not supported. Similarly,
zdd project in Adiar v1.1 may be significantly slower than its counterparts in
other BDD packages. This also hinders the implementation of other complex
operations, such as the multiplication operations in [4,14,15], the generalisation
of composition in [5] to multiple variables, and the Restrict operator in [7].

Acknowledgements. Thanks to Marijn Heule and Randal E. Bryant for requesting
ZDDs are added to= Adiar. Thanks to the Centre for Scientific Computing, Aarhus,
(phys.au.dk/forskning/cscaa/) for running our benchmarks.

Data Availibility Statement. The data presented in Sect. 3 is available at [18] while
the code to obtain this data is provided at [17].
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Abstract. For typical first-order logical theories, satisfying assignments
have a straightforward finite representation that can directly serve as a
certificate that a given assignment satisfies the given formula. For non-
linear real arithmetic with transcendental functions, however, no general
finite representation of satisfying assignments is available. Hence, in this
paper, we introduce a different form of satisfiability certificate for this
theory, formulate the satisfiability verification problem as the problem
of searching for such a certificate, and show how to perform this search
in a systematic fashion. This does not only ease the independent verifi-
cation of results, but also allows the systematic design of new, efficient
search techniques. Computational experiments document that the result-
ing method is able to prove satisfiability of a substantially higher number
of benchmark problems than existing methods.

1 Introduction

SAT modulo theories (SMT) is the problem of checking whether a given
quantifier-free first-order formula with both propositional and theory variables
is satisfiable in a specific first-order theory. In this paper, we consider the case of
SMT(NTA), non-linear real arithmetic augmented with trigonometric and expo-
nential transcendental functions. This problem is particularly important in the
verification of hybrid systems and in theorem proving. Unfortunately, NTA is a
very challenging theory. Indeed, it is undecidable [26], and, moreover, there is no
known finite representation of satisfying assignments that could act as a direct
certificate of satisfiability. This does not only make it difficult for an SMT-solver
to prove satisfiability, but also raises the question of how to verify the result
given by an SMT-solver.

In this paper, we introduce the notion of a satisfiability certificate for NTA.
Such a certificate allows independent entities to verify the satisfiability of a
given input formula without having to re-do a full check of its satisfiability. More
specifically, based on such a certificate, the check of satisfiability is both easier in
terms of computational effort and effort needed to implement the checker and to
ensure its correctness. The certificate will be based on the notion of topological
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degree [1,11,12], generalizing the idea that a sign change of a continuous function
f implies satisfiability of f = 0. The basic tool for checking correctness of the
certificate is interval arithmetic [24,25,28].

The idea to verify satisfiability of SMT(NTA) in such a way, is not new [21].
However, the formulation as the problem of searching for a certificate is. In
addition to the possibility of independent verification, such a formulation makes
the corresponding search problem explicit. This allows us to introduce new,
efficient search heuristics that guide the algorithm toward finding a certificate
and prevent the procedure from getting stuck in computation that later turns
out to not to lead to success.

We have implemented our method in the tool ugotNL [21] and present
computational experiments with different heuristics configurations over a wide
variety of NTA benchmarks. The experimental results show that this new version
of ugotNL outperforms the previous version, making it—to the best of our
knowledge—the most effective solver for proving satisfiability of NTA problems.

It is possible to integrate the resulting method into a conflict-driven clause
learning (CDCL) type SMT solver [21]. However, in order to keep the focus of
the paper on the concern of certificate search, we ignore this possibility, here.

Content. The paper is organized as follows: In Sect. 2 we provide the necessary
background. In Sect. 3 we give the formal definitions of certifying SMT solver
and of satisfiability certificate in SMT(NTA). In Sect. 4 we outline our method
for searching for a certificate, and in Sect. 5 we illustrate the heuristics that we
introduce in detail. In Sect. 6 we experimentally evaluate our method. In Sect. 7
we discuss related work. Finally, in Sect. 8, we draw some conclusions.

2 Preliminaries

We work in the context of Satisfiability Modulo Theories (SMT). Our theory
of interest is the quantifier-free theory of non-linear real arithmetic augmented
with trigonometric and exponential transcendental functions, SMT(NTA). We
assume that the reader is familiar with standard SMT terminology [5].

Notation. We denote SMT(NTA)-formulas by φ, ψ, clauses by C1, C2, literals
by l1, l2, real-valued variables by x1, x2, . . . , constants by a, b, intervals of real
values by I = [a, b], boxes by B = I1 × · · · × In, logical terms with addition,
multiplication and transcendental function symbols by f, g, and multivariate real
functions with F,G,H. For any formula φ, we denote by varsR(φ) the set of its
real-valued variables. When there is no risk of ambiguity we write f, g to also
denote the real-valued functions corresponding to the standard interpretation
of the respective terms. We assume that formulas are in Conjunctive Normal
Form (CNF) and that their atoms are in the form f �� 0, with �� ∈ {=,≤, <}.
We remove the negation symbol by rewriting every occurrence of ¬(f = 0) as
(f < 0 ∨ 0 < f) and distributing ¬ over inequalities.

Points and Boxes. Since we have an order on the real-valued variables
x1, x2, . . . , for any set of variables V ⊆ {x1, x2, . . . } we can view an assignment
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p : V → R equivalently as the |V |-dimensional point p ∈ R
|V |, and an interval

assignment B : V → {[a, b] : a, b ∈ R} equivalently as the |V |-dimensional box
B ⊆ R

|V |. By abuse of notation, we will use both representations interchange-
ably, using the type RV both for assignments in V → R and points in R

|V |,
and the type BV both for interval assignments in V → {[a, b] : a, b ∈ R} and
corresponding boxes. This will allow us to apply mathematical notions usually
defined on points or boxes to such assignments, as well. Given a point p ∈ RV ,
and a subset V ′ ⊆ V , we denote by proj V ′(p) ∈ RV ′

the projection of p to the
variables in V ′, that is, for all v ∈ V ′, proj V ′(p)(v) := p(v).

Systems of Equations and Inequalities. We say that a formula φ that
contains only conjunctions of atoms in the form f = 0 and g ≤ 0 is a sys-
tem of equations and inequalities. If φ contains only equations (inequalities)
then we say it is a system of equations (inequalities). A system of equations
f1 = 0 ∧ · · · ∧ fn = 0, where the f1, · · · , fn are terms in the variables x1, · · · , xm,
can be seen in an equivalent way as the equation F = 0, where F is the real-
valued function F := f1 × · · · × fn : Rm → R

n and 0 is a compact way to denote
the point (0, · · · , 0) ∈ R

n. Analogously, we can see a system of inequalities
g1 ≤ 0 ∧ · · · ∧ gk ≤ 0 as the inequality G ≤ 0, where G is the real-valued func-
tion G := g1 × · · · × gk : Rm → R

k and ≤ is defined element-wise. We will write
eq(φ) for the function F defined by the equations in the formula φ and ineq(φ)
for the function G defined by the inequalities in φ. The handling of strict inequal-
ities would be an easy, but technical extension of our method, which we avoid
to stream-line the presentation.

Dulmage-Mendelsohn Decomposition. Given a system of equations φ, it is
possible to construct an associated bipartite graph Gφ that represent important
structural properties of the system of equations. This graph has one vertex per
equation, one vertex per variable, and an edge between a variable xi and an
equation fj = 0 iff xi appears in f . The Dulmage-Mendelsohn decomposition [2,
10] is a canonical decomposition from the field of matching theory that partitions
the system into three parts: an over-constrained subsystem (more equalities than
variables), an under-constrained subsystem (less equalities than variables), and
a well-constrained subsystem (as many equalities as variables, and contains no
over-constrained subsystem, i.e. it satisfies the Hall property [17]).

Example 1. Let φ := x− tan(y) = 0∧ z2 = 0∧w = 0∧ sin(w) = 0. Through the
DM-decomposition we obtain an under-constrained sub-system x − tan(y) = 0
(two variables, one equation), a well-constrained sub-system z2 = 0 (one variable,
one equation), and an over-constrained sub-system w = 0 ∧ sin(w) = 0 (one
variable, two equations).

Topological Degree. The notion of the degree of a continuous function (also
called the topological degree) comes from differential topology [11]. For a con-
tinuous function F : B ⊆ R

n → R
n, such that 0 �∈ F (∂B) (where ∂B is the

topological boundary of B), the degree deg(F,B, 0) is a computable [1,12] inte-
ger. This integer provides information about the roots of F in B, and can be
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seen as a generalization of the intermediate value theorem to higher-dimensional
functions. In analogy to the fact that opposite signs of a continuous function on
the endpoints of an interval imply the existence of a zero within the interval,
deg(F,B, 0) �= 0 implies that F has a root in B. The converse is not true, and
the existence of a root does not imply nonzero degree in general. Still, if a box
contains one isolated zero with non-singular Jacobian matrix, then the topologi-
cal degree is non-zero [11]. For alternatives to the topological degree test see our
discussion of related work.

Interval Arithmetic. The basic algorithmic tool that underlies our approach
is floating point interval arithmetic (IA) [24,25,28] which, given a box B and
an NTA-term representing a function H, is able to compute an interval IAH(B)
that over-approximates the range {H(x) | x ∈ B} of H over B. Since this is
based on floating point arithmetic, the time needed for computing IAH(B) does
not grow with the size of the involved numbers. Moreover conservative rounding
guarantees correctness under the presence of round-off errors. In the paper, we
will use interval arithmetic within topological degree computation [12], and as a
tool to prove the validity of inequalities on boxes.

Robustness. We say that a formula φ is robust if there exists some ε > 0 such
that φ is satisfiable iff every ε-perturbation of φ is satisfiable (for the precise
definition of ε-perturbation see [13]). If φ is both robust and (un)satisfiable, we
say that it is robustly (un)sat.

Relation Between Robustness and System of Equations : An over-constrained sys-
tem of equations is never robustly sat [13, Lemma 5]. It easily follows that a
system of equations that contains an over-constrained sub-system (in the sense
of the Dulmage-Mendelsohn decomposition) is never robustly sat as well.

Relation Between Robustness and Topological Degree: Even in the case of an
isolated zero, the test for non-zero topological degree can fail if the system is
non-robust. For example, the function F (x) ≡ x2 has topological degree 0 in
the interval [−1, 1] , although the equality x2 = 0 has an isolated zero in this
interval. However, the zero of x2 = 0 is not robust: it can vanish under arbitrarily
small changes of the function denoted by the left-hand side x2. It can be shown
that the topological degree test is able to prove satisfiability in all robust cases
for a natural formalization of the notion of robustness [13]. We will not provide
such a formalization, here, but use robustness as an intuitive measure for the
potential success when searching for a certificate.

Logic-To-Optimization. While symbolic methods usually struggle dealing
with NTA, numerical methods, albeit inexact, can handle transcendental func-
tions efficiently. For this reason, an SMT solver can benefit from leverag-
ing numerical techniques. In the Logic-To-Optimization approach [15,21], an
SMT(NTA)-formula φ in m variables is translated into a real-valued non-
negative function L2O(φ) ≡ H : Rm 
→ R

≥0 such that—up to a simple trans-
lation between Boolean and real values for Boolean variables—each model of φ
is a zero of H (but not vice-versa). When solving a satisfiability problem, one
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can try to first numerically minimize this function, and then use the obtained
numerical (approximate) solution to prove, through exact symbolic methods,
that the logical formula has indeed a model. For the precise definition of the
operator L2O see [21, Section 3].

3 Goal

Consider an SMT solver that takes as input some formula φ and as output an
element of {sat, unknown, unsat}. How can we gain trust in the correctness of
the result of such an SMT solver? One approach would be to ensure that the
algorithm itself is correct. Another option is to provide a second algorithm whose
output we compare with the original one. Both approaches are, however, very
costly, and moreover, the latter approach still may be quite unreliable.

Instead, roughly following McConnell et. al. [23] (see also Fig. 1), we require
our solver to return—in addition to its result—some information that makes an
independent check of this result easy:

Definition 1. An SMT solver is certifying iff for an input formula φ, in addi-
tion to an element r ∈ {sat, unknown, unsat}, it returns an object w (a certifi-
cate) such that

– (φ, r, w) satisfies a property W where W (φ, r, w) implies that r is a correct
result for φ, and

– there is an algorithm (a certificate checker) that
• takes as input a triple (φ, r, w) and returns � iff W (φ, r, w), and that
• is simpler than the SMT solver itself.

solver
checker

yes/no

result

certificate
input

Fig. 1. Certifying SMT Solver

So, for a given formula φ, one can ensure correctness of the result (r, w)
of a certifying SMT solver by using a certificate checker to check the property
W (φ, r, w). Since the certificate checker is simpler than the SMT solver itself,
the correctness check is simpler than the computation of the result itself.

The definition leaves it open, what precisely is meant by “simpler”. In gen-
eral, it could either refer to the run-time of the checker, or to the effort needed
for implementing the certificate checker and ensuring its correctness. The for-
mer approach is taken in computational complexity theory, the latter in con-
texts where correctness is the main concern [23]. Indeed, we will later see that
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our approach succeeds in satisfying both requirements, although we will not use
complexity-theoretic measures of run-time, but will measure run-time experi-
mentally.

The use of such certificates is ongoing research in the unsatisfiable case [4]. In
the satisfiable case, for most theories, one can simply use satisfying assignments
(i.e., witnesses) as certificates. Here the property W simply is the property that
the given assignment satisfies the formula, which can be checked easily.

For SMT(NTA), however, the situation is different: Here, no general finite
representation of satisfying assignments is available. Hence one needs to use
certificates of a different form. We introduce the following definition:

Definition 2. Let φ be a formula in NTA. A (satisfiability) certificate for φ is
a triple (σ, ν, β) such that W (φ, sat, (σ, ν, β)) iff

– σ is a function selecting a literal from every clause of φ
– ν is a variable assignment in RV assigning floating point numbers to a subset

V ⊆ varsR(σ(φ)) (where σ(φ) is a compact way of writing
∧

C∈φ σ(C)), s.t.
σ(φ) contains as many equations as real-valued variables not in V .

– β is a finite set of interval assignments in BvarsR(φ)\V such that their set-
theoretic union as boxes is again a box Bβ and, for the system of equations
F := eq(ν(σ(φ))) and the system of inequalities G := ineq(ν(σ(φ))), it holds
that:

• 0 �∈ F (∂Bβ),
• deg(F,Bβ , 0) �= 0, and
• for every B ∈ β, IAG(B) ≤ 0.

Example 2. Consider the formula

φ := C1 ∧ C2 ∧ C3 ∧ C4

C1 ≡ cos(y) = 0 ∨ sin(y) = ex C3 ≡ x − y ≤ cos(z)

C2 ≡ sin(y) = 0 ∨ cos(y) = sin(8x2 − z) C4 ≡ x + y ≥ sin(z)

The following (σ, ν, β) is a certificate:

– σ := {C1 
→ sin(y) = ex ; C2 
→ cos(y) = sin(8x2 − z) ;
C3 
→ C3 ; C4 
→ C4}

– ν := {z 
→ 0.2}
– β := {B}, where B := {x 
→ [−0.1, 0.05] ; y 
→ [1.4, 1.9]}

As can be seen in Fig. 2, the solution sets of C1 and C2 cross at a unique
point in B, which reflects the fact that the degree of the function (x, y) →
(sin(y) − ex, cos(y) − sin(8x2 − 0.2)) is non-zero. Moreover, the inequalities C3

and C4 hold on all elements of the box.
Due to the properties of the topological degree and of interval arithmetic

discussed in the preliminaries, we have:

Property 1. W (φ, sat, (σ, ν, β)) implies that φ is satisfiable.
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Fig. 2. Solution Sets of Equalities of Example Certificate

Moreover, the topological degree can be computed algorithmically [1,12], and
one can easily write a certificate checker based on such an algorithm. Hence such
a triple can be used as a certificate for satisfiability.

In this paper, we will show that in addition to the discussed benefits for
correctness, formulating satisfiability checking as the problem of search for such
certificates also is beneficial for efficiency of the SMT solver itself. Since we will
concentrate on satisfiability, we will simply ignore the case when an SMT solver
returns unsat, so the reader can simply assume that an SMT solver such as the
one from Fig. 1 only returns an element from the set {sat, unknown}.

4 Method

Our goal is to find a triple (σ, ν, β) that is a certificate of satisfiability for a given
formula φ. So we have a search problem. In order to make this search as efficient
as possible, we want to guide the search toward a triple that indeed turns out to
be a certificate, and for which the corresponding conditions are computationally
easy to check.

Intuitively, we view the search for a certificate as a hierarchy of nested search
problems, where the levels of this hierarchy correspond to the individual compo-
nents of certificates. We formalize this using a search tree whose nodes on the i-th
level are labeled with i-tuples containing the first i elements of the tuple searched
for, starting with the root note that is labeled with the empty tuple (). The tree
will be spanned by a function ch that assigns to each node (c1, . . . , ci) of the tree
a sequence 〈x1, . . . , xn〉 of possible choices for the next tuple component. Hence
the children of (c1, . . . , ci) in the tree are (c1, . . . , ci, x1), . . . , (c1, . . . , ci, xn). We
will do depth-first search in the resulting tree, searching for a leaf labeled by a
certificate of satisfiability for the input formula φ.

Based on the observation that on each level of the tree one has the first i
components of the tuple available for determining a good sequence of choices,
we will add additional information as the first tuple component in the form of
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a variable assignment p that satisfies the formula φ approximately. Hence we
search for a 4-tuple (p, σ, ν, β).

It is easy to see that it would be possible to generalize such a search tree to
a more fine-grained one, where the individual levels are formed by parts of the
choices described above, and where the order of those levels can be arbitrary.
For example, it would be possible to first choose an interval for a variable (i.e.,
part of the box β), then select a literal from a certain clause (i.e., part of the
selection function σ), and so on. However, in this paper, we keep these levels
separated, as discussed above, in order to achieve a clear separation of concerns
when exploring design choices at the individual levels.

5 Certificate Search

In this section, we will discuss possibilities for search strategies by defining for
every search tree node labeled with tuple τ , the ordered sequence ch(τ) of choices
for the next tuple element. Our framework allows for many more possibilities
from which we choose strategies that both demonstrate the flexibility of the
framework, and allow for efficient search, as will be demonstrated by the com-
putational experiments in Sect. 6.

In order to be able to refer to different variants of the search strategy in the
description of computational experiments, we will introduce keywords for those
variants that we will write in teletype font.

5.1 Points

The points ch() = 〈p1, . . . , pk〉 determining the first level of the search tree
are generated by an optimization problem defined on the formula φ following
the Logic-To-Optimization approach [21]. Here we translate the satisfiability
problem into a numerical minimization problem, mapping the logic formula φ
into the non-negative real-valued function L2O(φ) ≡ H : R

n → R≥0 (called
the objective function) such that for every satisfying assignment, this objective
function is zero, and for assignments that do not satisfy the formula, the objective
function is typically (but not always) non-zero. Then we find local minima of H
through an unconstrained optimization algorithm such as basin hopping [30]. In
our implementation, we compute k = 100 local minima, and process them in the
order of their value.

5.2 Literals

Given a point p, we choose literal selector functions ch(p) = 〈σ1, . . . , σk〉 by
restricting ourselves, for each clause C, to the literals l for which the objective
function restricted to l and evaluated in the point p is below a certain threshold.
That is, we determine the set of approximately satisfiable literals

LC := {l ∈ C | L2O(l)(p) ≤ ε}.
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Our literal selector functions will then correspond to the set of all approximately
satisfiable combinations,

{σ | for all C ∈ φ, σ(C) ∈ LC},

that is, each σ selects exactly one approximately satisfiable literal from each
clause. In order to maximize the chances of choosing a better literal combination,
we can sort each LC according to the value of the respective objective functions
and then choose literal combinations using the corresponding lexicographic order
(we will refer to this heuristic as (sort-literals)).

While the point p is usually a good candidate in terms of distance from a
zero, it can sometimes lead to an inconsistent problem:

Example 3. Let φ := C1 ∧ C2, where C1 ≡ (x + y = 0) ∨ (x = e10
6∗y), and

C2 ≡ (x+y ≥ ε1)∨(x = tan(y+ε1)). The numerical optimizer will be tempted to
first return a point p1 such as {x 
→ 1; y 
→ −1} that almost satisfies (x+y = 0)∧
(x + y ≥ ε1), instead of a harder approximate solution involving transcendental
functions and heavy approximations, such as (x = e10

6∗y) ∧ (x = tan(y + ε1)),
that is exactly satisfiable in a point p2 near (0,−π).

Such inconsistencies may occur in many combinations of literals. We use a
strategy that detects them in situations where for certain clauses C, the set LC

contains only one literal l. We will call such a literal l a forced literal, since, for
every literal selector function σ, σ(φ) will include l. Before starting to tackle
every approximately satisfiable literal combination, we first analyze the set of
forced literals. We do symbolic simplifications (such as rewriting and Gaussian
elimination) to check whether the set has inconsistencies that can be found at a
symbolic level (as in the previous example). If the symbolic simplifications detect
that the forced literals are inconsistent then we set ch(p) to the empty sequence
〈〉 which causes backtracking in depth-first search. We refer to the variant of the
algorithm using this check as (check-forced-literals).

Filtering Out Over-Constrained Systems. Given a literal selector function σ,
we analyze the structure of the system of equations formed by the equations
selected by σ through the Dulmage-Mendelsohn decomposition, that uniquely
decomposes the system into a well-constrained subsystem, an over-constrained
subsystem and an under-constrained subsystem. We filter out every literal com-
bination having a non-empty over-constrained subsystem, since this leads to a
non-robust sub-problem, referring to this heuristic as (filter-overconstr).

5.3 Instantiations

We define the instantiations ch(p, σ) = 〈ν1, . . . , νk〉 based on a sequence of sets of
variables V1, . . . , Vk to instantiate, and define νi := proj Vi

(p). The uninstantiated
part of p after projection to a set of variables Vi is then proj varsR(φ)\Vi

(p), which
we will denote by p¬Vi

.
For searching for the variables to instantiate, we use the Dulmage-

Mendelsohn decomposition constructed in the previous level of the hierarchy.



Satisfiability of Non-linear Transcendental Arithmetic 481

We do not want to instantiate variables appearing in the well-constrained sub-
system, since doing so would make the resulting system after the instantiation
over-constrained. Hence the variables to be instantiated should be chosen only
from the variables occurring in the under-constrained subsystem. This substan-
tially reduces the number of variable combinations that we can try. Denoting
the variables satisfying this criterion by Vunder, this restricts Vi ⊆ Vunder, for all
i ∈ {1, . . . , k}. This does not yet guarantee that every chosen variable combina-
tion leads to a well-constrained system after the instantiation. For example, the
under-determined system of equations x + y = 0 ∧ z + w = 0 has four variables
and two equations, but becomes over-constrained after instantiating either the
two variables x and y, or the variables z and w. So, for each Vi, we further check
whether the system obtained after the instantiation is well-constrained (we refer
to this heuristic as (filter-overconstr-V)).

The method described in the previous paragraph only uses information about
which equations in the system contain which variables (i.e., it deals only with
the structure of the system, not with its content). Indeed, it ignores the point p.

To extract more information, we use the fact that a non-singular Jacobian
matrix of a function at one of its zeros implies a non-zero topological degree
wrt. every box containing this single zero [11]. So we compute a floating point
approximation of the Jacobian matrix at point p (note that, in general, this
matrix is non-square). Our goal is to find a set of variables V to instantiate such
that the Jacobian matrix corresponding to the resulting square system at the
point p¬V has full rank. This matrix is the square sub-matrix of the original
Jacobian matrix that is the result of removing the instantiated columns.

A straight-forward way of applying the Jacobian criterion is, given random
variable instantiations, to filter out instantiations whose corresponding Jacobian
matrix is rank-deficient (filter-rank-deficient), similarly to what is done
in the previous paragraph with the overconstrained filter. Note that, as the
Jacobian matrix of non-well-constrained system of equations is always rank-
deficient, this filter is stronger than the previous one. However, it may filter out
variable instantations that result in a non-zero degree (e.g., the function x3 has
non-zero degree in [−1, 1], but its Jacobian matrix at the origin is rank deficient
since f ′(0) = 0).

We can further use the information given by the Jacobian matrix not only
to filter out bad variable instantiations, but also to maximize the chance of
choosing good variable instantiations from the beginning. Indeed, not all vari-
able instantiations will be equally promising, and it makes sense to head for
an instantiation such that the resulting square matrix not only has full rank,
but—in addition—is far from being rank-deficient (i.e., it is as robust as possi-
ble). We can do so by modifying Kearfott’s method [19, Method 2] which fixes
the coordinates most tangential to the orthogonal hyper-plane of F in p by first
computing an approximate basis of the null space of the Jacobian matrix in the
point, and then choosing the variables with maximal sum of absolute size. We
use a modification of the method that uses a variable ordering w.r.t. this sum,
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and then extracts the sets of variables V1, V2, . . . in decreasing order w.r.t. the
cumulative sum of the value of the variables in each set. We refer to this heuristic
as (Kearfott-ordering).

5.4 Box

We construct boxes around p¬V , where V is the set of variables ν instantiates,
that is, ν ∈ RV . So we define ch(p, σ, ν) := 〈β1, . . . , βk〉 s.t. for all i ∈ {1, . . . , k},
for all B ∈ βi, B ∈ BvarsR(φ)−V and p¬V ∈

⋃
B∈βi

B.
We use two different methods, (eps-inflation) and (box-gridding):

– Epsilon-inflation [22] is a method to construct incrementally larger boxes
around a point. In this case, the β1, . . . , βk will each just contain one single
box Bi defined as the box centered at p¬V having side length 2iε, where, in
our setting, ε = 10−20. We terminate the iteration if either IAG(Bi) ≤ 0
and deg(F,Bi, 0) �= 0, in which case we found a certificate, or we reach an
iteration limit (in our setting when 2iε > 1).

– Box-gridding is a well-known technique from the field of interval arithmetic
based on iteratively refining a starting box into smaller sub-boxes. Here we
use a specific version, first proposed in [13] and then implemented with some
changes in [21]. In the following we roughly outline the idea behind the algo-
rithm, and refer to the other two papers for details. We start with a grid that
initially contains a starting box. We then iteratively refine the grid by split-
ting the starting box into smaller sub-boxes. At each step, for each sub-box B
we first check whether interval arithmetic can prove that the inequalities or
the equations are unsatisfiable, and, if so, we remove B from the grid. We
check also whether deg(F,B, 0) �= 0 and interval arithmetic can prove the sat-
isfiability of the inequalities, and, if so, then we terminate our search, finding
a certificate with the singleton βi = {B}. In some cases, in order to verify
the satisfiability of the inequalities, we will have to further split the box B
into sub-boxes, using the set of resulting sub-boxes instead of the singleton
{B}. After each step, if there are sub-boxes left in the grid, we continue the
refinement process. Otherwise, if the grid is empty, we conclude that there
cannot be solutions in the starting box. If a certain limit to the grid size is
exceeded, we also stop the box gridding procedure without success.

For both methods, if the method stops without success, we have arrived at the
last element of the sequence of choices 〈β1, . . . , βk〉 without finding a certificate,
which results in backtracking of the depth-first search for a certificate.

Both mentioned methods have their advantages, and can be seen as com-
plementary. Epsilon-inflation is quite fast, and performs particularly well if the
solution is isolated and is near the center. However, if there are multiple solutions
in a box, the topological degree test can potentially fail to detect them1, and if
the solution is far from the center then we need a bigger box to encompass it,
1 For example, for f(x) = x2−1, deg(f, [−10, 10], 0) = 0, while deg(f, [−10, 0], 0) = −1,

and deg(f, [0, 10], 0) = 1.
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which is less likely to be successful than a smaller box, as we require the inequal-
ities to hold everywhere in the box, and, moreover, the chance of encompassing
other solutions (thus incurring in the previous problem) grows.

The box-gridding procedure, on the other side, can be quite slow, as in the
worst case the number of sub-boxes explodes exponentially. However, grid refine-
ment leads to a very accurate box search, which allows us to avoid the issues
faced with epsilon inflation (i.e. multiple solutions, or a solution far from the
center). Moreover, if the problem is robust, we have the theoretical guarantee
that the procedure will eventually converge to a solution [13], although this does
not hold in practice due to the introduced stopping criterion.

Indeed, a third approach is to combine the two methods: first use epsilon
inflation, that is often able to quickly find a successful box, and, if it fails, then
use the more accurate box-gridding procedure.

6 Computational Experiments

Implementation. We implemented the different heuristics presented in the paper
in a prototype tool called ugotNL (firstly presented in [21]). In order to
make the results comparable with the ones obtained earlier, in addition to the
search method discussed in Sect. 5, we preserve the following heuristics used by
ugotNL: If the local minimizer cannot find any minimum of L2O(φ) for which
for every clause C ∈ φ, the set of approximately satisfiable literals LC is non-
empty, we restart the procedure on every conjunction resulting from the DNF
of φ. The tool handles strict inequalities of the form f < 0 directly until the
box construction phase, where they are replaced by f ≤ −ε (with ε = 10−20).
For computing the topological degree, we use TopDeg2. For the symbolic sim-
plifications used in (check-forced-literals), we use the simplify and the
solve-eqs tactics provided by z3 [9]3. For the computation of the rank used in
(filter-rank-deficient), we observe that the rank of a matrix is equal to the
number of non-zero singular values, hence we consider a matrix far from rank-
deficiency iff all its singular values are bigger than some threshold (to account
for approximation errors). We use a threshold widely used by algorithms for
determining the matrix rank, which is σmaxdim(A)ε, where σmax is the largest
singular value of A, and ε is the machine epsilon.

Setup. We run the experiments4 on a cluster of identical machines equipped
with 2.6 GHz AMD Opteron 6238 processors. We set a time limit of 1000 s, and
a memory limit of 2 Gb. We considered all SMT(NTA) benchmarks from the
dReal distribution [16] and other SMT(NTA) benchmarks coming from the dis-
cretization of Bounded Model Checking of hybrid automata [3,27], totaling 1931

2 Available at https://www.cs.cas.cz/∼ratschan/topdeg/topdeg.html.
3 For a description of the two tactics: https://microsoft.github.io/z3guide/docs/

strategies/summary. The version of z3 used is 4.5.1.0.
4 The results of the experiments are available at https://doi.org/10.5281/zenodo.

7774117.

https://www.cs.cas.cz/~ratschan/topdeg/topdeg.html
https://microsoft.github.io/z3guide/docs/strategies/summary
https://microsoft.github.io/z3guide/docs/strategies/summary
https://doi.org/10.5281/zenodo.7774117
https://doi.org/10.5281/zenodo.7774117
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Fig. 3. Summary of the results for different heuristics configurations. Each row corre-
spond to a configuration. The first column from the left contains the number of bench-
marks solved; the central columns indicate the heuristics used, separated by search
level; the last column contains an identifier of the configuration. The last row is for the
virtual best of the different configurations.

benchmarks. All of these benchmarks come with “unknown” status. According
to experiments performed on other solvers (cvc5, MathSAT, dReal), among
these benchmarks 736 (respectively, 136) are claimed to be unsatisfiable (sat-
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isfiable) by at least one solver5. We tested our tool with different heuristics
configurations (Fig. 3), and, for each configuration, we checked that our tool
never contradict the other tools. We have arranged the heuristics into 3 columns
(Literals, Instantiations, and Boxes) according to the search level they are used
in. As the number of possible configurations is quite high, we proceed as follows:
We start with the simpler configurations (just one method for finding a box that
contains a solution), and then we add heuristics.

Results. In the first configurations we tested the 3 possible ways to search for a
box. We note that (box-gridding) (1.a.) performs considerably worse than the
other two, (eps-inflation) (1.b.) and (eps-inflation) +(box-gridding)
(1.c.), which produce comparable results. Because of that, and for readabil-
ity’s sake, we did not use (box-gridding) alone with other heuristics in the
next configurations, but only considered the other two options. We then added
heuristics based on the following criteria: first heuristics for the “Literals” choice,
then heuristics for the “Instantiations” choice, and first ordering heuristics (i.e.
(sort-literals) and (Kearfott-ordering)), then filtering heuristics (all the
others). At every new heuristic added, we see that the number of benchmarks
solved grows regardless of the “Boxes” choice, with the best configuration reach-
ing 427 benchmarks using 7 heuristics. If we consider the virtual best (i.e. run in
parallel all the configurations and stop as soon as a certificate is found) we are
able to solve 441 benchmarks. This is because in cases such as (eps-inflation)
vs. (eps-inflation) +(box-gridding), or such as (filter-overconstr-V)
vs. (filter-rank-deficient), there is no dominant choice, with each configu-
ration solving benchmarks that the other does not solve and vice-versa.

Discussion. The first configuration (1.a.) essentially uses a method proposed ear-
lier [21] and implemented in a tool called ugotNLeager (of which the tool pre-
sented in this paper is an upgrade). Already in the previous paper, ugotNLeager

outperformed the other solvers able to prove satisfiability in SMT(NTA), solv-
ing more than three times the benchmarks than MathSAT [8], cvc5 [20], and
iSAT3 [14], and almost as twice as the benchmarks solved by the lazy ver-
sion MathSAT+ugotNL (where ugotNL had been integrated lazily inside
MathSAT). Here we show that the new heuristics introduced further improve
the performances of our tool, that is now able to solve around 100 benchmarks
more.

Run-Time of the Certificate Checker. In Sect. 3 we claimed that, with our app-
roach, checking a certificate requires less run-time than the certificate search
itself. Here we experimentally quantify this amount: for each benchmark solved
by the best configuration (7.b.), we observe the run-time required to check the
certificate (which amounts, essentially, to the computation of topological degree
and interval arithmetic for the successful box). In terms of median (respectively,
mean), checking the certificate requires 0.10% (1.07%) of the run-time used by
the solver.

5 For the results of such experiments, see [21].
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7 Related Work

One strategy for proving satisfiability in SMT(NTA) is to prove a stricter
requirement that implies satisfiability, but is easier to check. For example, one
can prove that all elements of a set of variable assignments satisfy the given for-
mula [14], or that a given variable assignment satisfies the formula for all possible
interpretations of the involved transcendental functions within some bounds [7].
Such methods may be quite efficient in proving satisfiability of formulas with
inequalities only, since those often have full-dimensional solution sets. However,
such methods usually fail to prove satisfiability of equalities, except for special
cases with straightforward rational solutions.

Computation of formally verified solutions of square systems of equations is
a classical topic in the area of interval analysis [24,25,28]. Such methods usually
reduce the problem either to fixpoint theorems such as Brouwer’s fixpoint theo-
rem or special cases of the topological degree, for example, Miranda’s theorem.
Such tests are easier to implement, but less powerful than the topological degree
(the former fails to verify equalities with double roots, such as x3 = 0, and the
latter requires the solution sets of the individual equalities to roughly lie normal
to the axes of the coordinate system).

In the area of rigorous global optimization, such techniques are applied [18,19]
to conjunctions of equalities and inequalities in a similar way as in this paper,
but with a slightly different goal: to compute rigorous upper bounds on the
global minimum of an optimization problem. This minimum is often attained at
the boundary of the solution set of the given inequalities, whereas satisfiability
is typically easier to prove far away from this boundary.

We are only aware of two approaches that extend verification techniques for
square systems of equations to proving satisfiability of quantifier-free non-linear
arithmetic [21,29], one [29] being restricted to the polynomial case, and the
other one also being able to handle transcendental function symbols. Neither
approach is formulated in the form of certificate search. However, both could
be interpreted as such, and both could be extended to return a certificate. The
present paper actually does this for the second approach [21], and demonstrates
that this does not only ease the independent verification of results, but also allows
the systematic design of search techniques that result in significant efficiency
improvements.

An alternative approach is to relax the notation of satisfiability, for example
using the notion of δ-satisfiability [6,16], that does not guarantee that the given
formula is satisfiable, but only that the formula is not too far away from a satisfi-
able one, for a suitable formalization of the notion of “not too far away”. Another
strategy is to return candidate solutions in the form of bounds that guarantee
that certain efforts to prove unsatisfiability within those bounds fail [14].

8 Conclusions

We introduced a form of satisfiability certificate for SMT(NTA) and formulated
the satisfiability verification problem as the problem of searching for such a cer-
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tificate. We showed how to perform this search in a systematic fashion introduc-
ing new and efficient search techniques. Computational experiments document
that the resulting method is able to prove satisfiability of a substantially higher
number of benchmark problems than existing methods.
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