
Modeling and Analysis
of a Safety-Critical Interactive System

Through Validation Obligations

David Geleßus1(B) , Sebastian Stock2 , Fabian Vu1 , Michael Leuschel1 ,
and Atif Mashkoor2

1 Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

{dagel101,fabian.vu,leuschel}@uni-duesseldorf.de
2 Institute for Software Systems Engineering, Johannes Kepler University Linz,

Altenbergerstr. 69, 4040 Linz, Austria
{sebastian.stock,atif.mashkoor}@jku.at

Abstract. This paper presents insights gained during modeling and
analyzing the arrival manager (AMAN) case study in Event-B with val-
idation obligations (VOs). AMAN is a safety-critical interactive system
for air traffic controllers to organize the landing of airplanes at air-
ports. The presented model consists of a human-machine interface com-
prising interactive and autonomous parts. We employ VOs to formal-
ize requirements, uncover contradictions and ambiguities, and validate
the model’s compliance with the requirements. To capture the AMAN’s
human-machine interaction, we implement an interactive domain-specific
visualization and an automatic simulation using the VisB and SimB com-
ponents of ProB.

Keywords: Event-B · Refinement · Validation Obligations ·
Simulation · Visualization

1 Introduction

In this work, we model the arrival manager (AMAN) case study presented by
Palanque and Campos [9]. AMAN is a semi-interactive tool consisting of inter-
active/human and autonomous parts. While AMAN automatically computes a
landing sequence for the arriving airplanes, a human can manually intervene
and change this sequence. An important aspect is that the user’s inputs are
prioritized over the system events.

The research presented in this paper has been conducted within the IVOIRE project,
which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Sci-
ence Fund (FWF) grant # I 4744-N. The work of Sebastian Stock and Atif Mashkoor
has been partly funded by the LIT Secure and Correct Systems Lab sponsored by the
province of Upper Austria.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
U. Glässer et al. (Eds.): ABZ 2023, LNCS 14010, pp. 284–302, 2023.
https://doi.org/10.1007/978-3-031-33163-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33163-3_22&domain=pdf
http://orcid.org/0000-0002-6722-6296
http://orcid.org/0000-0002-2231-8656
http://orcid.org/0000-0003-2556-5553
http://orcid.org/0000-0002-4595-1518
http://orcid.org/0000-0003-1210-5953
https://doi.org/10.1007/978-3-031-33163-3_22

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 285

For our model, we use the Event-B [1] modeling language, which has been
deemed effective in earlier works to model interactive safety-critical systems,
including human-machine interfaces, e.g., by Singh et al. [3] and Ait-Ameur et
al. [11].

The model itself was developed with the Rodin [2] platform. We provide rig-
orous evidence for the consistency of our model via model checking with ProB
[7] and proof obligations. However, our primary focus is on systematically val-
idating the requirements and appropriately presenting results to non-modelers
to foster their understanding and contribution to the modeling effort.

To this end, we employ validation obligations (VOs) and use a management
system and validation tools implemented in ProB2-UI [4]. For domain-specific
views that foster stakeholders’ understanding of the model, we use visualization
via VisB [16] and simulation via SimB [15].

The rest of the paper is organized as follows: Sect. 2 presents the AMAN
model in Event-B. Section 3 reports on the verification via model checking and
POs. Section 4 describes the validation of the model via VOs. Section 5 reports
our experiences using domain-specific views to tackle the interactive nature of
AMAN. Section 6 highlights the lessons learned during this modeling and anal-
ysis exercise, showing parts of the specification where VOs helped to formu-
late questions for the stakeholders, make assumptions and uncover ambiguities.
Finally, we conclude in Sect. 7.

2 AMAN Model

Our model1 focuses on the software-related aspects of AMAN and, to some
extent, the GUI itself. The specification [9] also describes autonomous, hardware,
and human aspects, which we did not model in detail. Our model structure was
guided by the HAMSTERS diagrams from the specification, and our refinement
structure up to M5 (cf. Figure 1) has a correspondence with Figs. 5 and 10 in the
specification [9].

At the abstract levels, we model autonomous AMAN updates for the landing
sequence (M0 and M1). In the next steps, we introduce user inputs in an abstract
manner (M2 to M4). In M5, we model timeouts of AMAN updates. In M6 to M9,
we refine the abstract user events into mouse movements, mouse clicks, mouse
drags, and mouse releases. The final refinement, M10, models a concrete pixel
representation of all graphical UI elements.

AMAN Update and Landing Sequence (M0, M1). In M0, we introduce the event
AMAN Update, which manages the set of airplanes scheduled for landing. This
event (and its refinements) encapsulate the autonomous part of the AMAN; all
other events in our model are related to interactive user activities. In M1, the set of
scheduled airplanes is refined to a landing sequence with associated landing times
(relative to the current time; see discussion in Sect. 3). Furthermore, M1 adds the
1 The model and all other mentioned files are available at https://github.com/hhu-

stups/AMAN-case-study/tree/bd044670a02092643230d6001cc2b355a2dc350a.

https://github.com/hhu-stups/AMAN-case-study/tree/bd044670a02092643230d6001cc2b355a2dc350a
https://github.com/hhu-stups/AMAN-case-study/tree/bd044670a02092643230d6001cc2b355a2dc350a

286 D. Geleßus et al.

M5_AMAN_Timeout

M4_Zoom

M2_Hold_Button

M0_AMAN_Update

M3_Block_Timeslots

M1_Landing_Sequence

AMAN_Timeout

AMAN_Update
(same grd)

Block_Time
(unchanged)

Deblock_Time
(unchanged)

Hold_Button
(unchanged)

Move_Aircraft
(unchanged)

changeZoom
(unchanged)

AMAN_Update
(unchanged)

Block_Time
(same act)

Deblock_Time
(same act)

Hold_Button
(same act)

Move_Aircraft
(same act)

changeZoom

AMAN_Update

Block_Time

Deblock_Time

Hold_Button
(unchanged)

Move_Aircraft
(same act)

AMAN_Update
(same grd)

Hold_Button

Move_Aircraft
(unchanged)

AMAN_Update

Move_Aircraft

AMAN_Update

Fig. 1. Event Refinement Hierarchy until M5 (generated by ProB)

ability for the planning air traffic controller (PLAN ATCo) to move an airplane
to another time slot via the Move Aircraft event with respective parameters
aircraft and time. M1 also introduces an important invariant stating that
airplanes must be separated by at least three minutes. This invariant is preserved
by both events AMAN Update and Move Aircraft.

Holding Airplanes (M2). M2 introduces the hold button. First, we model the set of
held airplanes (held airplanes), a subset of airplanes in the landing sequence.
The new Hold Button event is introduced to add an individual plane to this
set. A future AMAN Update is expected to remove held airplanes from the landing
sequence, which also removes them from held airplanes. However, an airplane
on hold can be rescheduled to another time slot.

Blocking Time Slots (M3). In the third refinement, M3, time slots can be blocked
(stored in the variable blockedTime). The events Block Time/Deblock Time
block/deblock an individual time slot. Regarding the events AMAN Update and
Move Aircraft, we must ensure that neither AMAN nor the PLAN ATCo
can move an airplane into a blocked time slot. However, we cannot posit
ran(landing sequence) ∩ blockedTime = ∅ as an invariant because the
user could block a time slot still holding a scheduled plane (and thus vio-
late the property). To overcome this, we introduced this conditional invariant:
blockedTimesProcessed = TRUE ⇒ ran(landing sequence) ∩ blockedTime =
∅ (see Req6 and Eq. (2)). Here, blockedTimesProcessed is a helper variable that
is set to TRUE by AMAN Update and can be set to FALSE by Block Time.

Zooming (M4). M4 introduces the changeZoom event which updates the variable
zoomLevel. Interactions with time slots and airplanes are restricted to the cur-
rent zoom level. As shown in Fig. 1, this is encoded by adding guards to the
interaction events but leaving the actions unchanged. Note that zoom does not

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 287

affect AMAN’s autonomous activities — AMAN can still schedule airplanes for
a time slot that is not visible to the PLAN ATCo.

Timeout (M5). M5 introduces timeouts for AMAN updates (AMAN Timeout
event) which set a boolean variable timeout. The event is meant to occur when
the AMAN does not respond within the expected deadline of 10 s. In this case,
all user interactions are disabled, and the user interface provides feedback that
the AMAN is no longer working.

Detailed User Interaction (M6, M7, M8, M9). M6 adds two events for the PLAN
ATCo to select/deselect an airplane: selectAirplane and deselectAirplane.
This is necessary to refine mouse events in the next steps. Furthermore, this also
helps to set up a VisB visualization (see Sect. 5). The selected airplane is stored
in the selectedAirplane variable. Holding and moving an airplane are refined
to perform both events on selectedAirplane. When an AMAN update occurs,
the selected airplane is cleared.

M7 implements the dragging of airplanes via a boolean variable dragging
airplane. Whenever an airplane label is selected, the dragging process starts.
Furthermore, we introduce two events resume dragging airplane and stop
dragging airplane for resuming/stopping dragging. As described in the speci-
fication, user interactions have priority over system events. Therefore, we ensure
that AMAN updates do not occur while the user drags an airplane.

M8 refines M7 by adding more details to the dragging behavior. First, we
replace dragging airplane with dragged airplane representing a specific air-
plane instead of a boolean variable. Second, we implement dragging behav-
ior for the zoom slider by two new events: start dragging zoom slider and
drag zoom slider.

M9 implements mouse behavior including mouse movement, mouse clicks,
mouse drags, mouse releases. These refinements were challenging because many
variables were introduced, and some events were split into sub-events, as men-
tioned earlier. In particular, the mouse position and all allowed combinations
with user interactions must be tracked.

Concrete Graphical Interface (M10). M10 models a raster-based UI rendered on
a screen. Concrete pixel coordinates are set for all UI elements. Moreover, a
variable mouse pos tracks the pixel position of the mouse cursor. Events were
added and extended to allow moving the mouse, and many user interaction events
were restricted to execute only if the mouse is positioned appropriately. For
example, a mouse click on the hold button is only registered if the mouse pos is
inside the button’s pixel area. The modeled pixel coordinates for the UI elements
match the design of our VisB visualization (see Sect. 5). Due to its complexity,
we have not yet finished modeling this final refinement step — e.g. dragging of
airplanes is not fully refined yet.

288 D. Geleßus et al.

3 Verification

In this section, we evaluate the applicability of proving and model checking to
verify the AMAN model.

Proving. When modeling within Rodin, proof obligations (POs) are automat-
ically generated from the model. Afterward, provers in Rodin are applied to
discharge them. This includes POs ensuring that the model’s invariants are main-
tained (for more details, see Sect. 4), the absence of well-definedness errors, and
the consistency between the refinement steps.

Table 1. Proof Statistics in Rodin

Machine Total Automatic Manual Undischarged

M0 ctx 0 0 0 0

M0 0 0 0 0

M1 ctx 3 2 1 0

M1 13 12 1 0

M2 4 4 0 0

M3 9 9 0 0

M4 ctx 0 0 0 0

M4 4 4 0 0

M5 0 0 0 0

M6 25 24 1 0

M7 10 10 0 0

M8 74 61 13 0

M9 ctx 0 0 0 0

M9 306 294 12 0

M10 ctx 54 17 37 0

M10 250 163 85 2

Total 752 600 150 2

Table 1 shows the number of POs in all refinement steps of our AMAN model
(including automatic, manual, and unproven POs). Because M10 is still in devel-
opment, the total number of POs is not yet finalized. 600 out of 752 POs are
proven automatically, while 150 POs are proven manually. As all POs from M0
until M9 are discharged, we achieved strong guarantees regarding the aforemen-
tioned properties covered by POs until M9.

Proving provides limited feedback when a PO cannot be discharged. Often,
one must determine whether a PO cannot be discharged because the provers
are too weak or whether the underlying proposition is false. As support, we use
ProB [7], including its animation, disproving, and model-checking capabilities,
to discover errors and inspect counter-examples. In particular, we can inspect
concrete traces where, e.g., an invariant is violated. After discharging all POs,
we proceeded to the validation part (see Sect. 4).

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 289

Table 2. Model Checking Statistics with ProB with Number of States, Transitions,
Runtime (in Seconds), and Memory (in MB)

Machine States Transitions Time [s] Memory [MB]

M0 inst 1 9 66 0.30 158.87

M1 inst 1 1505 2 287 908 208.21 1424.12

M2 inst 1 9884 15 045 795 1468.97 8352.65

M3 inst 1 - M9 inst 1 – – > 3600.00 –

M0 inst 2 5 18 0.28 158.85

M1 inst 2 18 339 0.31 159.24

M2 inst 2 46 913 0.32 159.62

M3 inst 2 1953 49 154 1.80 186.81

M4 inst 2 1953 49 154 1.89 186.91

M5 inst 2 3905 102 210 2.87 211.05

M6 inst 2 9665 256 962 5.87 284.93

M7 inst 2 15 425 297 282 6.90 299.42

M8 inst 2 48 129 611 970 16.44 460.74

M9 inst 2 687 169 10 224 194 280.85 3994.74

Model Checking. As mentioned, we used model checking to complement prov-
ing, and to find definite errors before full proof was achieved. Timing aspects in
AMAN could have been modeled by an increasing variable representing the cur-
rent time. However, this would lead to infinite state space. Therefore, we model
timing aspects as follows: the current time is always 0, and all times are relative
to the current time point. This renders the state space finite concerning timing
(cf. [5,10]), but other aspects still render exhaustive model checking intractable.
We instantiated M0 to M9 with specific values for the constants (e.g., for the
number of aircraft or the amount of zooming possible), to make exhaustive model
checking feasible2.

Table 2 shows the model checking results. The first configuration (* inst 1)
restricts the model to a single zoom level value of 15 (rather than allowing
seven values from 15 to 45) and to only three different planes. In the second
configuration (* inst 2), we reduce the single zoom level to 5 and only two air-
planes. We could not model check M10 in this way — the GUI model cannot
be instantiated with these reduced configurations because it requires specific
values for some constants. ProB was used to check all machines for invariant
violations and deadlock-freedom3. Furthermore, we activated the new operation
reuse feature [6] together with state compression to increase the performance
(-p OPERATION REUSE full -p COMPRESSION TRUE).

All experiments were run five times with ProB version 1.12.0-nightly4, built
with SICStus 4.7.1 (arm64-darwin-20.1.0) on a MacBook Pro (14”, 2021) with
2 Note that even on infinite state spaces, model checking can be useful in detecting

errors. We did apply ProB also to the un-instantiated models.
3 Note that deadlock-freedom is only verified by model checking.
4 Revision f41dfd4b29c7bd95583dffcb0adad44171f4f0c0 from 2023-01-10.

290 D. Geleßus et al.

Fig. 2. Requirement Overview in ProB2-UI’s VO manager

an 8-core Apple M1 Pro processor and 16 GB of RAM. For the experiments, we
set a timeout of one hour.

As shown in Table 2, the state space rapidly grows for the first configuration.
The timeline for the planes and the blocking of time slots might cause this. In
contrast, model checking can be applied efficiently for the second configuration.
Here, we can model-check all AMAN behaviors with the given configuration.
However, as soon as the GUI events are split into multiple ones in M9 (clicking,
dragging, and releasing), the state space also grows rapidly. Thus, model checking
is also feasible to verify the AMAN model, but only for configurations that limit
the state space. This means that model checking does not achieve full coverage
like proving.

4 Validation

In the following, we report on the validation of our model using validation obli-
gations [8,14]. A validation obligation (VO) consists of one or multiple validation
tasks. A VO is associated with a model to check its compliance with a require-
ment. The validation tasks inside a VO can be connected with logical operators
like ∧, ∨, and the sequential operator ;. In such a sequential operation, the result
of the first validation is used for the second validation. An example of a VO is:

Req1/M1 : MC(GOAL, somepredicate); TR

This VO expresses that Req1 is validated on the model M1 by running model
checking to find a state satisfying the given predicate and then executing a trace
from the found state.

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 291

VOs allow systematic tracking of requirements during the whole modeling
process and checking for conflicts between the requirements. Moreover, VOs
support different development styles, which are discussed in detail in Sect. 6.2.
In this section, we report using VOs in an a posteriori manner, i.e., the model
is validated after its development.

To create and manage the VOs for the model, we used the ProB2-UI
VO manager, which is partially shown in Fig. 2. In the VO manager, VOs can be
created and automatically validated against the model. Colored symbols indicate
if the VO is successful (green check mark), not evaluated (blue question mark),
or failed (red x mark, not shown here).

We used the validation tasks related to invariants, temporal properties, sce-
narios, and coverage criteria for the AMAN requirements. Below are a few
detailed examples of VOs we developed for our AMAN model.

Invariant: Req5. The specification states that two airplane landing times must
be at least three minutes apart. Furthermore, Req5 states that the aircraft labels
must never overlap. We combine this into a requirement (called Req5.1 and also
visible in Fig. 2) that there is always a minimum distance between two airplanes.
As described in Sect. 2, this invariant is introduced in M1 along with guards of
events for AMAN Update and Move Aircraft. The invariant to check this behavior
is shown in Eq. (1).

∀a1, a2. a1 ∈ dom(landing sequence)
∧ a2 ∈ dom(landing sequence) ∧ a1 	= a2 ⇒
DIST(landing sequence(a1)
→ landing sequence(a2)) ≥ 3

(1)

where we have

DIST = (λ(x
→ y).x ∈ Z ∧ y ∈ Z|max({y − x, x − y})

Rodin’s PO generator generates three POs from this invariant, which we
use as validation tasks annotated as DIST1 through DIST3 in ProB2-UI’s VO
manager. Those POs are then combined into a validation obligation:

Req5.1/M1 : DIST1 ∧ DIST2 ∧ DIST3

This means that for Req5.1 to be fulfilled on M1, the validation tasks DIST1
through DIST3 must be discharged.

The final refinement M10, which introduces concrete pixel placements for all
UI elements, also includes new invariants (not shown here due to size) to ensure
that the UI elements’ pixels indeed do not overlap. Once again, we define valida-
tion tasks from the POs generated by Rodin for these invariants and construct
another VO using these validation tasks to validate Req5:

Req5/M10 : no overlap wd ∧ no overlap 1 ∧ . . . ∧ no overlap 6

∧ no overlap airplanes wd ∧ . . . ∧ no overlap airplanes 6

∧ no overlap block slots wd ∧ . . .

292 D. Geleßus et al.

Invariant: Req6. Req6 (also see Fig. 2) states that an aircraft label cannot be
moved into a blocked time slot. Blocking time slots is introduced in M3. We
formulate an invariant, shown in Eq. (2), to validate requirement Req6 against
the model. The invariant ensures that there are no airplanes scheduled in a
blocked time slot, unless the PLAN ATCo has blocked new time slots and AMAN
has not yet updated the landing sequence accordingly.

blockedTimesProcessed = TRUE ⇒
ran(landing sequence) ∩ blockedTime = ∅ (2)

Based on this invariant, five POs (BLOCK1, . . . , BLOCK5) are generated, which are
composed as validation tasks into a VO, and assigned to the requirement:

Req6/M3 : BLOCK1 ∧ BLOCK2 ∧ BLOCK3 ∧ BLOCK4 ∧ BLOCK5

However, the invariant is not strong enough to ensure Req6 for the PLAN
ATCo. Especially when blockedTimesProcessed is equal to FALSE, the invariant
on its own does not ensure that the PLAN ATCo cannot move an airplane into
a blocked time slot. On the modeling side, we have ensured this with the guard
time /∈ blockedTime in Move Aircraft. Thus, the case study revealed the need
for a new validation task type that checks for the presence of a guard, which we
had not considered previously.

We also validated other requirements using invariants. Regarding the GUI,
we formulate an invariant to check the zoom level (Req16). Furthermore, we
formulate invariants to check that the user can only interact with a maximum
of one GUI element simultaneously.

Temporal Property: Req1. We also validate some requirements by temporal
model checking, e.g., Req1 (also see Fig. 2):

Planes can [be] added to the flight sequence e.g. planes arriving in close
range of the airport.

First, we tried to validate this requirement by an LTL model checking task LTL1
(see Eq. (3)) on M0:

LTL1 := LTL(GF(BA({scheduledAirplanes �= scheduledAirplanes$0})) ⇒
GF(BA({∃x.(x ∈ scheduledAirplanes ∧ x /∈ scheduledAirplanes$0)})))

(3)

BA is a new special LTL operator in ProB which allows the usage of a before-
after predicate. In this example, scheduledAirplanes$0 and scheduledAir-
planes denote the airplanes before and after executing an event, respectively.
Thus, the LTL formula expresses that new airplanes are scheduled to the land-
ing sequence infinitely often, under the fairness condition that the scheduled
airplanes change infinitely often.

However, this does not fully cover the requirement. For example, the fairness
condition excludes traces where the scheduled airplanes never change. It should
be possible to add airplanes to the landing sequence, assuming it is not fully

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 293

occupied. We apply CTL model checking (see Eq. (4)). CTL Addi checks that for
all paths, there is always a next state where an airplane can be added to the
landing sequence if it is not fully occupied.

CTL Addi := CTL(AG({card(scheduledAirplanes) = i} ⇒
EX{card(scheduledAirplanes) > i}))

(4)

∀i ∈ {0, . . . , n − 1} where n is the maximum number of airplanes in the landing
sequence. The resulting VO on M0 is as follows:

Req1/M0 : LTL1 ∧ CTL Add0 ∧ . . . ∧ CTL Addn−1

Analogously, we validated Req2 with a CTL model check. Here, we encoun-
tered the same problem with LTL model checking.

Scenario: Req7. Scenarios are sequences of actions leading to a goal formulated
in natural language. A specification often provides a set of scenarios for valida-
tion. Scenarios are also important to demonstrate behaviors to domain experts.
A scenario can be represented by one or multiple traces written in the form
T1, . . . , Tk . This means those traces are executed as tests to show that a scenario
is feasible and behaves as desired. Due to space concerns, we omit the parame-
ters of the trace replay tasks, which contain the executed events and the event
parameters. For example, we consider Req7 (also see Fig. 2):

Moving an aircraft label might not be accepted by AMAN if it would
require a speed-up of the aircraft beyond the capacity of the aircraft;

Our model does not contain aircraft capabilities. However, we can validate an
abstract version of the requirement in our model. We formulate Req7 as a scenario
and validate it with traces.

1. An airplane is scheduled to land for a specific time slot.
2. PLAN ATCo moves the airplane for landing to an earlier time slot.
3. AMAN detects that the airplane cannot land at the earlier time slot, thus

processes the airplane again.

We can validate the scenario by a VO on M1 with Tm1 being the trace repre-
senting the scenario:

Req7/M1 : Tm1

In M3, we added blocked time slots as a feature. For the VO to have full
coverage, it must be extended to cater to blocked slots. This is achieved by
running two traces with different blocked slots configurations Tm3.1 and Tm3.2:

Req7/M3 : Tm3.1 ∧ Tm3.2

294 D. Geleßus et al.

Table 3. Coverage Results from
Scenarios

Operation Covered

AMAN Update yes

Move Aircraft yes

Hold Button uncovered

Block Time yes

Deblock Time yes

Coverage Criterion. In the following example,
we evaluate the state space coverage of multi-
ple traces representing scenarios. A stakeholder
might want to ensure the employed scenarios
and the associated traces are complete. Let
T1, . . . , Tk be the trace replay tasks used to val-
idate all scenarios and let COV be the coverage
evaluation task. Using the ; operator to pass
the state space coverage information between
the validation tasks, the coverage of all scenar-
ios can be evaluated as follows:

(T1 ∧ . . . ∧ Tk); COV

Practically, we have many scenarios in M3 which are validated by the traces
Tm3.1, . . . , Tm3.4. A VO to evaluate the coverage can be formulated as:

Coverage/M3 : (Tm3.1 ∧ Tm3.2 ∧ Tm3.3 ∧ Tm3.4); COV

The result of this VO can be seen in Table 3. It becomes apparent that
Hold Button is not covered, which—after a short investigation—leads to the
conclusion that this feature was never tested when introduced in M2. This makes
us introduce a new VO covering this case for M2 and refining it for M3.

5 Domain-Specfic Views

We have also created domain-specific views based on the model to help domain
experts and users validate the model. The core idea is that non-modelers can
participate in the validation process and give feedback without needing to know
the implementation details of the model.

Visualization. As the modeled system is interactive, consisting partially of a
GUI, a VisB visualization can be seen as a virtual AMAN prototype. VisB [16]
is a tool in ProB2-UI to create interactive visualizations for formal models.
VisB visualizations consist of an SVG image and a glue file, which links the
SVG with the formal model. In particular, the glue file defines SVG objects’
dynamic appearances and click actions. Thus, a user can interact with the graph-
ical objects by clicking on them, which triggers events in the model, changing
the state according to the events’ actions.

We created two VisB visualisations: a high-level version at M6 where user
behavior is implicit and a lower-level version for M9 with explicit user behavior,
e.g., with a visualization of the mouse cursor along with events for mouse clicking
and dragging. Figure 3 shows the visualisation for M6.5 On the left-hand side of
5 Our visualization shows the minutes relative to the current time, while the specifica-

tion document shows the current minute in the current hour on the clock. Assuming
that the current time is 9:03, then our visualization displays 9:05 as 2, while Fig. 6
in [9] would display 9:05 as 5.

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 295

Fig. 3. Domain-Specific Visualization of AMAN in M6

Fig. 3, one can see the airplanes of the landing sequence and the blocked time
slots (in yellow). The user can block or deblock time slots by clicking on the
left-hand side. Similarly, an airplane can be selected by clicking on the label. It
is then possible to hold the airplane (by clicking on the now visible HOLD button)
or to change its landing time by clicking on the right-hand side of a time slot.
Held airplanes are marked with a red frame (see AIRPLANE1 in Fig. 3). The scale
shown to the users and domain experts depends on the zoom level, which can be
changed by clicking on the top right-hand side.

Simulation. SimB [15] aims to simulate a formal model in a realistic setting. It
is a simulation tool built on top of the ProB animator, where one can associate
timing and probability information with events.

Here, we combined SimB with VisB to obtain a “realistic” real-time pro-
totype for users and domain experts to experiment with. Interactive events
can be triggered by clicking within VisB, while SimB automatically executes
autonomous background events. In particular, the AMAN Update event is trig-
gered every 10 s after initializing the AMAN model. AMAN updates are blocked
while a user is interacting with AMAN; once the user interaction is completed,
AMAN updates are activated again. An example of user interaction + simulation
is shown in Fig. 4.

Abstractions. Validating some user actions is difficult due to the large state
space size and the complex model we are confronted with. Therefore, we cre-

296 D. Geleßus et al.

(a) System Event: AMAN
Schedules Two Airplanes

(b) User Interaction: Block
Time Slot

(c) System Event: Minute
Passes

Fig. 4. Example: User Interaction + Simulation in SimB

ated a so-called abstraction to decrease the mental and computational load.
This abstraction focuses on the user elements M0 to M9 without M1. Due to the
contribution’s size and content, the contribution [13] is available separately.

6 Lessons Learned

6.1 VOs for Validation

VOs provide a systematic approach to the requirements validation process. With
the help of the VO manager integrated into ProB2-UI, we had a good overview
of which requirements still had to be modeled, which requirements still had
problems and which validations were successful (see Fig. 2). The VO manager
also provided a good way to link the requirements in natural language (the
“what” and possibly “why”) to validate tasks that a machine can execute (the
“how”). As modelers, we could focus on the how while directing questions about
the what to the stakeholders.

Sometimes VOs helped us to identify conflicting requirements quickly. For
example, one LTL formula introduced and validated for one requirement was
later invalidated during the implementation of another requirement.

Unfortunately, much manual work is still required when dealing with VOs.
While creating VOs is easy, maintaining them is hard. We are looking into
improving the tool support in ProB2-UI in the future. Some VOs can already
be automatically adapted for refinement, e.g., for trace refinement [12]. However,
complete integration still needs to be accomplished.

6.2 VOs in Requirement Elicitation

We report our findings of employing VOs for requirements elicitation. We
employed two approaches: the a priori approach, creating VOs before start-
ing the modeling process, and the classical a posteriori approach creating the

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 297

Fig. 5. A Priori Approach

VOs after or during the modeling. The resulting Event-B models were then com-
bined and used as the baseline for the final model presented in Sect. 2. The a
priori approach is new and orients itself towards test-driven and behavior-driven
development schemes. We wanted to know whether such an approach is feasible
for formal development.

A priori VO development. The idea of a priori development is shown in Fig. 5.
The document is skimmed for the requirements and extracted and formulated as
VOs. If it is impossible to write them as VO immediately, they are divided into
more manageable pieces. Splitting the requirements also helps to find an initial
structure in which the requirements should be implemented, as one becomes
aware of the dependencies between them. After creating the VO, the model is
written to satisfy the VOs. From here on, the process follows a feedback loop.
When the model is refined, so are the VOs. This guarantees the presence of the
requirements in the refined model.

We discovered two possible reasons for the difficulty of assigning a VO to a
requirement. First, a requirement can be too complex and may consist of multiple
sub-requirements, which was not obvious from the specification. In such a case,
the requirement was split as shown in Fig. 5. Then, each sub-requirement was
assigned a VO. For example, we wanted to implement the two requirements
below into M0. The requirements are extracted from the explanatory text of the
case study.

– ReqExp1 An AMAN update can happen every time.
– ReqExp1.1 Every 10 seconds, an AMAN update happens.

298 D. Geleßus et al.

When creating a VO capturing this requirement, we discovered there are many
assumptions behind the requirements:

1. There is a given number of updates per minute.
2. When the AMAN updates, the remaining updates are decreased by one.
3. A minute passes when the number of updates equals 0. The number of remain-

ing updates is then reset.

Writing one VO that captures all these assumptions at once is possible but
not advised as the corresponding expression would become too complex, reducing
maintainability and traceability. Therefore, we decided to split the requirements
and assumptions into multiple VOs. Each represents one assumption or explicit
requirement. In this sense, VOs helped to structure and uncover the emerging
requirements and their dependencies.

The second possible reason is when a requirement is too concrete for the
current stage of the model. An example is shown in Sect. 4 when discussing sce-
narios. The requirement concerns concrete features of the model (e.g., the speed
of aircraft), which were not implemented at this point. In such a situation, it
is helpful to rephrase a requirement more abstractly, create a VO capturing
the abstract requirement, and discharge it as shown in Fig. 5. Then, the cor-
responding VO is refined back to match the concrete version. This is useful to
introduce validation for high-level requirements early on and make them part of
the validation process.

A posteriori VO development. Within the a posteriori approach, a modeler
first develops a model from the requirements and then validates it using VOs
(see Fig. 6). Here, the modeler has to decide which requirements to choose and
how they are encoded into the model for a development/refinement step. Once
the development step is finished, the modeler creates VOs to fulfill the desired
requirements. Furthermore, the modeler might discover new requirements, lead-
ing to a feedback loop similar to the a priori approach.

Discussion. The main advantage of the a priori approach is that the modeler has
to reason about requirements and VOs in more detail before encoding them. The
main disadvantage is the upfront cost of initially transforming all requirements
into VOs and the time we invest in structuring them. Furthermore, the VOs
cannot be checked on the model immediately.

In contrast, the main advantage of the a posteriori approach is that the
VOs and the requirements can be checked against the model directly after their
creation. Thus, the modeler receives feedback about errors and possible contra-
dictions between requirements and VOs. As a result of the feedback, the modeler
might also create new requirements.

Both approaches mainly differ in how they treat requirements. For example,
the a priori approach focuses less on the implementation details. The a posteriori
approach utilizes the experience of the modeler to avoid trial and error until a
satisfying representation is found. From our current research, we argue that
for a qualitative investigation of both approaches’ usefulness, there needs to

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 299

Fig. 6. A Posteriori Approach

be unified and broad tool support over multiple validation techniques. In the
current unautomated state, the a priori approach required more effort than the a
posteriori approach. This was due to the nature of the approach itself. Whenever
the assumption about the model changed, i.e., an event was named differently,
all VO that referenced this event had to be adapted, which required a lot of
manual work.

6.3 VOs for Requirements Disambiguation

Requirements specifications often contain aspects that are not obvious to the
modeler. In this regard, VOs uncover the unclear aspects rather quickly. When-
ever we could not formulate a requirement as a VO, this triggered a deeper
investigation, leading us to ask additional questions about the specification,
make assumptions for the modeling process and uncover ambiguities. Below we
summarise a few results of the investigations.

Questions triggered by VOs

1. For us, as non-experts, it needs to be clarified to which part of the system
the term AMAN refers. Specifically: is the user-facing GUI part of AMAN,
or is it a GUI for AMAN implemented as an independent component? This
is relevant for Req8; if there are no AMAN updates for 10 s, does the GUI
stop working entirely, or does it continue operating in a “manual only” mode
without the autonomous part of AMAN? Solution: We assumed that when

300 D. Geleßus et al.

a timeout occurs, the UI still functions but doesn’t accept any input until the
autonomous part of AMAN responds again.

2. Fig. 6 (in the specification [9]) shows an airplane on HOLD at 31 min, but the
zoom level is at 30. However, the GUI should only show airplanes up to
30 min away. Is this an error in the example figure, or does this mean planes
on HOLD are excluded from the zoom constraints? Solution: We assumed that
airplanes outside the zoom are only relevant for the landing sequence but for
nothing else. We later discovered that Fig. 6 in the specification displays the
current minute within the current hour on the clock rather than the minutes
relative to the current time.

3. It needs to be clarified what happens to airplanes after they are put on
HOLD. Are they moved into a separate “HOLD sequence” and still shown to
the ATCo? Alternatively, do they disappear entirely from the AMAN GUI?
Solution: We assumed an airplane should stay indefinitely until it is explic-
itly removed from the landing sequence. Furthermore, a hold airplane might
be rescheduled for a later time slot while not put off hold.

4. Based on Fig. 6 (in the specification), airplanes on HOLD still have an
expected landing time. Does the 3-minute separation between landing times
also apply to HOLD airplanes? Solution: We assumed this is the case.

5. When the user pushes and holds a button and a minute passes, what happens
to the planes in the landing sequence? Could we enter an infinite loop where
the AMAN never updates again (i.e., when we push and hold the left mouse
button in a valid position)? Solution: We assumed that the user interaction
does not take forever.

Assumptions. Furthermore, we made additional assumptions to model the
AMAN in Event-B:

1. If the ATCo selects an airplane and zooms in so the airplane is no longer
visible, is it still possible to press the hold button? We assumed this is not
possible, as it would contradict Req12. Moving the zoom slider should deselect
an airplane that leaves the zoom range, making this situation impossible.

2. Initially, we assumed that Fig. 6 in the case study specification shows the
minutes relative to the current time. As a result, we lacked explanations about
what happens with blocked time slots when time passes. Consequently, we
model the time relative to the current time (also implemented in the VisB
visualization, see Fig. 3). Thus, we assumed that once a minute passes, all
blocked time slots are moved forward one minute.

3. We did not model the landing of airplanes, especially because the specification
does not go into detail about this. Instead, we assume that landed planes are
removed from the landing sequence, just like planes that disappear from the
landing sequence for any other reason.

4. We assume that when the zoom slider is moved, the new zoom level is only
applied once the mouse button is released.

5. We assume that there is no possibility to unhold a plane.

Modeling and Analysis of a Safety-Critical Interactive System Through VOs 301

Ambiguities uncovered by VOs. Finally, we reported back to the case study
providers on discovered ambiguities that were eventually resolved in the updated
requirements specification due to our feedback:

1. We first assumed that the AMAN overrules the user. However, the user can
overrule the AMAN according to the updated requirements specifications of
AMAN. This means that user interaction has a higher priority than AMAN.

2. Inconsistency in requirements, e.g., landing sequence and arrival sequence,
led us in the wrong direction by attempting to model airplanes approaching
the airport separately from the landing sequence. This inconsistency was also
removed in the updated requirements specification of AMAN.

6.4 Role of Verification

During the development of the AMAN model, It was better to verify the model
before validating it (in each development step). The validation techniques quickly
detected problems when changing the model, e.g., an LTL formula or a trace
may no longer be valid. Using Event-B in Rodin, we receive fast feedback about
whether a PO is discharged. In general, however, there might be properties that
are difficult to prove (e.g., they might require finding inductive invariants). In
those cases, it is probably best to interleave verification and validation and only
tackle the proof of complex properties once validation is successful.

7 Conclusion and Future Work

In this work, we presented a formal AMAN model in Event-B, developed using
Rodin. This case study is challenging from the modeling perspective as it com-
bines an interactive part, including a GUI, with an autonomous part. In par-
ticular, the AMAN case study highlighted the importance of stable and flexible
tools that can deal with changes in the model and encourage experimentation.

For verification, we noted that POs are well functioning and valuable. How-
ever, with the introduction of complex GUI behavior, discharging them became
increasingly challenging. Model checking proved unsuitable as a fallback option
for verifying the complete model, as it struggles with the state space explosion
problem. However, it is usable with decent performance when instantiating the
model with restrictions.

During the validation of AMAN, we experienced that VOs are particularly
useful in structuring the validation process and linking validations and require-
ments. Here, we critically analyze two development approaches and the ambigu-
ities we uncovered during the employed modeling process.

Furthermore, we often felt the need to show our model to a domain expert and
ask for feedback, which means that the domain expert’s feedback is a valuable
source of information and should be treated as such. To tackle this, we created
an interactive GUI in ProB via VisB together with a simulation of autonomous
AMAN activities with SimB.

In conclusion, AMAN is an interesting case study for further investigations,
especially since the interactive part was fruitful in giving inspiration for devel-
oping and improving new techniques.

302 D. Geleßus et al.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transfer 12(6), 447–466 (2010)

3. Aı̈t-Ameur, Y., Aı̈t-Sadoune, I., Baron, M., Mota, J.M.: Vérification et validation
formelles de systèmes interactifs fondées sur la preuve : application aux systèmes
Multi-Modaux. Journal d’Interaction Personne-Système 1 (2014). https://doi.org/
10.46298/jips.59, https://jips.episciences.org/59

4. Bendisposto, J., et al.: ProB2-UI: a java-based user interface for ProB. In: Lluch
Lafuente, A., Mavridou, A. (eds.) FMICS 2021. LNCS, vol. 12863, pp. 193–201.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85248-1 12

5. Borrione, D., Paul, W. (eds.): LNCS, vol. 3725. Springer, Heidelberg (2005).
https://doi.org/10.1007/11560548

6. Leuschel, M.: Operation caching and state compression for model checking of high-
level models - how to have your cake and eat it. In: ter Beek, M.H., Monahan, R.
(eds.) Integrated Formal Methods, Proceedings IFM 2022, LNCS, vol. 13274, pp.
129–145 (2022). https://doi.org/10.1007/978-3-031-07727-2 8

7. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

8. Mashkoor, A., Leuschel, M., Egyed, A.: Validation obligations: a novel approach to
check compliance between requirements and their formal specification. In: ICSE’21
NIER, pp. 1–5 (2021)

9. Palanque, P., Campos, J.C.: AMAN case study. https://drive.google.com/file/d/
1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/view

10. Rehm, J., Cansell, D.: Proved development of the real-time properties of the IEEE
1394 root contention protocol with the Event B method. In: Proceedings ISoLA,
pp. 179–190 (2007)

11. Singh, N.K., Aı̈t-Ameur, Y., Geniet, R., Méry, D., Palanque, P.: On the benefits of
using MVC pattern for structuring Event-B models of WIMP interactive applica-
tions. Interact. Comput. 33(1), 92–114 (2021). https://doi.org/10.1093/iwcomp/
iwab016

12. Stock, S., Mashkoor, A., Leuschel, M., Egyed, A.: Trace refinement in B and Event-
B. In: Riesco, A., Zhang, M. (eds.) Formal Methods and Software Engineering, Pro-
ceedings ICFEM, LNCS, vol. 13478, pp. 316–333. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-17244-1 19

13. Stock, S., Vu, F., Geleßus, D., Leuschel, M., Mashkoor, A., Egyed, A.: Validation
by abstraction and refinement. In: Proceedings ABZ (2023)

14. Stock, S., Vu, F., Mashkoor, A., Leuschel, M., Egyed, A.: IVOIRE Deliverable 1.1:
Classification of existing VOs & tools and Formalization of VOs semantics. CoRR
abs/2205.06138 (2022). https://doi.org/10.48550/arXiv.2205.06138

15. Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed proba-
bilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709,
pp. 81–96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8 6

16. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol.
12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48077-6 21

https://doi.org/10.46298/jips.59
https://doi.org/10.46298/jips.59
https://jips.episciences.org/59
https://doi.org/10.1007/978-3-030-85248-1_12
https://doi.org/10.1007/11560548
https://doi.org/10.1007/978-3-031-07727-2_8
https://drive.google.com/file/d/1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/view
https://drive.google.com/file/d/1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/view
https://doi.org/10.1093/iwcomp/iwab016
https://doi.org/10.1093/iwcomp/iwab016
https://doi.org/10.1007/978-3-031-17244-1_19
https://doi.org/10.1007/978-3-031-17244-1_19
https://doi.org/10.48550/arXiv.2205.06138
https://doi.org/10.1007/978-3-030-77543-8_6
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21

	Modeling and Analysis of a Safety-Critical Interactive System Through Validation Obligations
	1 Introduction
	2 AMAN Model
	3 Verification
	4 Validation
	5 Domain-Specfic Views
	6 Lessons Learned
	6.1 VOs for Validation
	6.2 VOs in Requirement Elicitation
	6.3 VOs for Requirements Disambiguation
	6.4 Role of Verification

	7 Conclusion and Future Work
	References

