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Abstract. In the design of critical systems, it is important to ensure a
degree of formality so that we reason about safety and security at early
stages of analysis and design, rather than detect problems later. Influ-
enced by ideas from STPA we present a hierarchical analysis process that
aims to justify the design and flow-down of derived critical requirements
arising from safety hazards and security vulnerabilities identified at the
system level. At each level, we verify that the design achieves the safe-
ty/security requirements by backing the analysis with formal modelling
and proof using Event-B refinement. The formal model helps to identify
hazards/vulnerabilities arising from the design and how they relate to the
safety accidents/security losses being considered at this level. We then
re-apply the same process to each component of the design in a hierarchi-
cal manner. Thus we use ideas from STPA, backed by Event-B models,
to drive the design, replacing the system level requirements with compo-
nent requirements. In doing so, we decompose critical requirements down
to components, transforming them from abstract system level require-
ments, towards concrete solutions that we can implement correctly so
that the hazards/vulnerabilities are eliminated.
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1 Introduction and Motivation

Safety and security are key considerations in the design of critical systems. Sys-
tems Theoretic Process Analysis (STPA) [11] is a method for analysing safety of
systems that involve control components to identify potential hazards. STPA-Sec
adapts STPA for use in systems to identify potential security losses.

STPA is methodical but not rigorous in that it provides systematic guidance
on what to consider but relies on human judgment to assess the effect of incor-
rect actions. Formal techniques such as Event-B [2], on the other hand, are not
methodical in that they rely on human expertise about modelling choices, but
can then provide a rigorous assessment of the properties of the model through
formal verification. In previous work [4,8,9] we have explored the combination
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of STPA and STPA-Sec with formal modelling methods to exploit the synergy
between informal analysis and rigorous formal verification. While this combina-
tion is both methodical and rigorous, its scalability is limited by the lack of sys-
tematic support for an incremental approach. An incremental approach supports
scalability by allowing developers to factorise the analysis of complex systems
in stages rather than addressing the analysis in a single stage. Event-B already
supports incremental formal development through abstraction and refinement
in formal modelling. However, the STPA part of the combined STPA/Event-B
approach lacks systematic support for incremental informal analysis of safety
and security.

In this paper we address the limitation on scalability of the STPA/Event-
B combination by adopting an abstraction-based incremental and hierarchical
approach to informal analysis of critical requirements. We call the approach Sys-
tematic Hierarchical Analysis of Requirements for Critical Systems (SHARCS).
Previous works present the combination of STPA and STPA-Sec with Event-B
and support requirements analysis at a single abstraction level, while SHARCS
is inspired by STPA and proposed a novel incremental approach. To our knowl-
edge, an abstraction-based incremental and hierarchical approach to STPA con-
trol structure analysis has not previously been considered.

While STPA requires consideration of a complete closed system, it is based on
the concrete design of the system. In contrast, by shifting the boundaries of the
component sub-system being considered, we abstract away from the lower level
internal details and analyse the constraint requirements of control abstractions
before refining these with the next level of sub-component design.

We utilise the Event-B modelling language and the Rodin tool set for formal
modelling to verify and validate the SHARCS analysis. Event-B with its asso-
ciated automatic verification tools, is ideal for the detailed modelling of each
level because it supports abstract modelling of systems with progressive verified
refinements. One of the most difficult tasks in constructing an Event-B model
consisting of several refinements is finding useful abstractions and deciding the
progressive steps of refinement; the so-called refinement strategy. From an Event-
B perspective therefore, SHARCS helps the modeller by providing a method to
guide the refinement strategy. Although the Event-B supports refinement-based
modelling, the modeller needs to make decisions about which system require-
ments to model at different stages of refinement. SHARCS helps the modeller
to derive the requirements for different refinement levels; the requirements are
driven by the incremental introduction of system components into the analysis.

Our aims are twofold. Firstly the hierarchical approach to the analysis intro-
duces component sub-systems that are designed to address and mitigate insecure
control actions that have been revealed by the analysis of the parent component.
As a result we provide an analysis method for deriving component sub-system
level requirements from parent system level requirements. Secondly the analysis
provides a traceable argument that the design satisfies the higher level require-
ments while addressing safety hazards and security vulnerabilities. For example,
consider a high-security enclave consisting of several components including a
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secure door, a card reader and a fingerprint reader. The system-level security
requirement is that only authorised users are allowed to access the enclave; a
derived requirement on the fingerprint component is that it should determine
whether a user fingerprint corresponds to the fingerprint stored on an access
card. Figure 1 illustrates the derivation of the component requirements from the
system-level requirement in a hierarchical manner. The abstraction-based hier-
archical approach is a key contribution of this paper.

We demonstrate our SHARCS approach in an access control system, Toke-
neer. The artifacts from the case studies are available to download from https://
tinyurl.com/SHARCS-dataset.

The paper is structured as follows: Sect. 2 provides background on STPA,
the Event-B formal modelling language, applied tools and introduction to our
case study: the Tokeneer access control system. Section 3 presents an overview
of applying the approach to the case study. Section 4 and Sect. 5 present the
approach in more detail, using our experience of applying it to the Tokeneer case
study. Section 6 discusses related and previous work. Finally Sect. 7 concludes
and describes future work.

2 Background

2.1 Systems Theoretic Process Analysis (STPA)

STPA [11] is a hazard analysis method which can be applied to systems involv-
ing control structures. The hazardous conditions are identified by considering
the absence, presence or the improper timing of control actions. The process is
followed by identifying causal factors for unsafe control actions.

While STPA is used for safety problems, STPA-Sec [17] extends STPA to
include security analysis. Similar to STPA, STPA-Sec identifies losses and system
hazards, or in this case, system vulnerabilities. STPA-Sec also examines the
system control structure and identifies the insecure control actions instead of
the unsafe actions.

2.2 Event-B

Event-B [2] is a refinement-based formal method for system development. The
mathematical language of Event-B is based on set theory and first order logic.
An Event-B model consists of two parts: contexts for static data and machines
for dynamic behaviour. Contexts contain carrier sets s, constants c, and axioms
A(c) that constrain the carrier sets and constants. Machines contain variables v,
invariant predicates I(v) that constrain the variables, and events. In Event-B, a
machine corresponds to a transition system where variables represent the states
and events specify the transitions.

An event comprises a guard denoting its enabling-condition and an action
describing how the variables are modified when the event is executed. In gen-
eral, an event e has the following form, where t are the event parameters,

https://tinyurl.com/SHARCS-dataset
https://tinyurl.com/SHARCS-dataset
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G(t, v) is the guard of the event, and v := E(t, v) is the action of the event:
e== any twhere G(t,v) then v := E(t,v) end

An Event-B model is constructed by making progressive refinements start-
ing from an initial abstract model which may have more general behaviours
and gradually introducing more detail that constrains the behaviour towards
the desired system. This is done by adding or refining the variables of the pre-
vious abstract model and modifying the events so that they use the new vari-
ables. Each refinement step is verified to be a valid refinement of the previous
step. That is, the new behaviour must have been possible in the abstract model
according to the given relationship between the concrete and abstract variables.
Event-B is supported by the Rodin tool set [3], an extensible open source toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches.

In this paper we make extensive use of the animation plug-in tools that extend
the Rodin toolset; ProB [10] is an animator and model checker for the Event-
B. Scenario checker [15] is an animation tool that we developed for validating
systems by recording and replaying scenarios. It extends ProB to support two
new functionalities: a ‘run to completion’ style execution of controller events,
and a record/replay style user interface for running test scenarios.

2.3 Tokeneer Case Study

Our case study in this paper is the Tokeneer system. The Tokeneer system [14]
consists of a secure enclave and a set of system components, some housed inside
the enclave and some outside. The ID Station interfaces to four different phys-
ical devices: fingerprint reader, smartcard reader, door and visual display. The
primary objective is to prevent unauthorised access to the Secure Enclave. The
requirements include (1) authenticating individuals for entry into an enclave and
(2) controlling the entry to and egress from an enclave of authenticated individ-
uals. The door has four possible states: the cross-product of open/closed and
locked/unlocked. A card identifies a particular user using a fingerprint mecha-
nism. If a user holds a card that identifies them via fingerprint matching, they
are permitted in the enclave. Hence cards should only be issued to permitted
users. A successful scenario involves: arrival of a permitted user at the door who
then presents a card on the card reader and a matching finger print at the fin-
gerprint reader. The system will then unlock the door allowing the user to open
it and enter the enclave.

3 Overview of Systematic Hierarchical Analysis
of Requirements for Tokeneer

Our approach is based on the use of a control action analysis (that borrows
some ideas from STPA) in conjunction with formal modelling and refinement
(using Event-B) to analyse the safety and security of cyber-physical systems by
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flowing down system-level requirements to component-level requirements. Since
we propose a generic approach for both safety and security, we simply use the
term failure. SHARCS approach consists of three phase: system level analysis and
abstract modelling (Sect. 4), component level analysis and refinement modelling
(repeated for each identified sub-system, Sect. 5), and consolidation phase. In this
section we presents the outputs from the the final consolidation stage (Figs. 1
and 2) of the SHARCS process. We believe they give a good overview of the
steps used in the analysis and presented in the next two sections.

The hierarchical component design of the Tokeneer system is illustrated in
Fig. 1. Starting from the system level, the analysis of that system leads us to the
outline design of the next level in terms of sub-components and their purpose.
Some of these components require further analysis (those shown with title and
purpose) while others (shown with only a title) are assumed to be given, and are
therefore only analysed in so far as they are used by their sibling components.

Fig. 1. Tokeneer: hierarchical component design, flow down requirements

The purpose of the Tokeneer system is to allow only authorised users to enter
an enclave. Users may also leave the enclave. High level analysis of this system
leads us to the design decision that, to achieve the system purpose, we need some
kind of secure door whose purpose is to only open for authorised users. (Note
that the prefix secure implies that this door has some extra functionality beyond
a normal door that we have yet to design). Analysis of the secure door in turn
leads to the decision to use an ordinary (i.e. unintelligent) door and a secure
lock to achieve the functionality of the secure door. However, the analysis of the
secure door also revealed a risk that the door may be left open by a user, leading
to a decision to introduce an alarm component at the same level. The secure
lock and alarm components are at the same conceptual level but functionally
independent and can be analysed individually in consecutive analysis levels.
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The alarm component analysis does not lead to any further sub-components
and the derived requirements of this component are therefore used as input to
its implementation (or validation in case of a given component). The secure lock
is further decomposed into an ordinary lock and a secure card component which
in turn is decomposed into an ordinary card and a fingerprint component. In
summary, there are five control components in the Tokeneer design structure
(over three levels): secure door, secure lock, alarm, secure card and fingerprint.
There are four passive environment objects that are controlled by the Tokeneer
control system: door, lock, card reader, fingerprint reader.

Fig. 2. Tokeneer: hierarchical failures

Failures at the immediate sub-component level could cause a failure at the
previous level. Hence, in line with the hierarchical component design (Fig. 1),
starting from the top level system failures, we have derived a hierarchy of failures
as illustrated in Fig. 2. The left side of Fig. 2, presents the relations between
failures arising from a breach of the system-level security constraint. For example,
if an unauthorised user holds a card (FC1) this can result in the door unlocking
for the unauthorised user (FL1) followed by the door opening (FD1) where upon
the unauthorised user can enter the enclave (F1). Security attacks may also
target denial of functionality which is sometimes omitted in safety analysis (i.e.
a system that does nothing is often considered safe). Relations between security
failures related to a loss of functionality are illustrated on the right hand side on
Fig. 2. For example, if an authorised user loses their card (FC2) it prevents the
enclave door from unlocking (FL2) and opening (FD2) and hence an authorised
user is prevented from entering the enclave (F2).

In the next two sections we use the Tokeneer case study to illustrate the
process steps for the first two phase of SHARCS: system level (Sect. 4) and
component level (Sect. 5).
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4 System Level

In this section we describe the system-level phase. The system-level phase itself
consists of five steps.

Step 1, Action Analysis: The system level action analysis is presented for
Tokeneer in the table in Fig. 3. The main purpose of the Tokeneer system is to
allow authorised users to enter the enclave and prevent unauthorised users from
entering. At this level, a failure is a violation of the system purpose so we identify
failures by negating the purpose leading to the two failures presented in Fig. 3:
F1 represents a breach of the required security property and F2 represents a
‘denial’ of functionality.

Following the STPA approach, we analyse the control actions with respect
to system level failures that could result from the actions. At this level (Fig. 3),
there are two identified actions to enter and leave the enclave. Action analysis
considers whether lack of execution of the action, or execution under the wrong
conditions, timing or ordering, could result in one or more of the identified
failures.

Fig. 3. System level, action analysis table

Step 2, Formal Modelling: We now construct a formal model to capture the
behaviour of the identified control actions as well as the environment around
the control system and any invariant properties capturing the purpose of the
system. The two identified actions are specified as abstract events in the system-
level Event-B model (Fig. 4). We choose to model the system state using a set
inEnclave of the users that are in the enclave. Another set authorisedUsers specifies
which users are authorised to enter the enclave. Formally, we can express the
security constraint as an invariant property; the set of users in the enclave is a
subset of the authorised users:

@inv1: inEnclave ⊆ authorisedUser
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Fig. 4. (part of) Event-B model for system level

The userEnterEnclave event has one parameter, user, and two guards. The first
guard grd1 represents an assumption that the user is not already in the enclave,
while grd2 ensures that the user is authorised to enter the enclave. If both guards
are satisfied then the event is allowed to fire and the action act1 updates the
variable inEnclave by adding the instance user. The action analysis in Fig. 3
helps us to identify the need for grd2 of userEnterEnclave: this guard addresses
failure F1, since lack of this guard results in failure of a security constraint (an
unauthorised user enters enclave).

Step 3, Formal Validation and Verification: In formal models, we distin-
guish between safety properties (something bad never happens) and liveness
properties (something good is not prevented from happening). Occurrence of
failure F1 would represent a violation of safety since it would result in violation
of invariant inv1. Failure F2 is a denial of service failure and, in the formal model,
this failure represents a violation of liveness. We use the scenario checker tool
in the Rodin tool for manual validation of liveness. Figure 5 shows the scenario
checker tool being used to check the F2 failure scenario; the scenario involves
two authorised users entering the enclave and the scenario checker demonstrates
that both users can enter the enclave sequentially. Animation of the abstract
model is a useful way for a modeller (or domain expert) to use their judgement
to validate that the model accurately captures the security requirements. Model
checking and animation can identify potential violations of the security invariant
and violations of liveness, i.e., denial of entry for authorised users.

Once the model is determined to be a valid representation of the system,
we use automatic theorem provers to verify security constraints (such as F1
expressed as the invariant inv1). The embedded theorem prover of the Rodin tool
discharges the invariant preservation proof obligation for the userEnterEnclave
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Fig. 5. Scenario checker tool applied at system level

event, verifying that it preserves the specified invariant. Note that grd2 is nec-
essary to prove that the userEnterEnclave event preserves invariant inv1.

Step 4, Adjust the Analysis and Models: In the case that the scenario
checking or verification identifies problems with the formal model, we make
adjustments in order to remove the problems. These might be problems with
the formalisation or might be due to problems in the informal analysis. The
analysis and formalisation of Tokeneer at this abstract level is straightforward
and does not reveal any problems. In the next section we demonstrate how the
need to formally verify the correctness of the refined model incorporating the
secure door component leads us to revisit and clarify our assumptions about the
potential tailgating by unauthorised users.

Step 5, Mitigation and Outline Design for Next Phases: The system
level requirements specify the desired behaviour but do not say how it will be
achieved. That is, unauthorised users are prevented from entering but we do
not specify how. Next we need to take a design step and introduce some sub-
components that take responsibility for this behaviour. Domain knowledge (and
common practice) provides a suggestion for the next level design (mitigation):
the introduction of a door component. The mitigation represents the identi-
fied next level component(s) and derived requirement(s) for that component(s),
which address the control actions identified in Step 1, that could lead to failures.
Each mitigation can address more than one failure. The door component here
addresses both identified failures: the door opens so that authorised users can
enter the enclave but does not open for users that are not authorised.

The interplay between the (informal) analysis, inspired by STPA, (Steps
1) and the formal modelling (Steps 2–3) is important. The analysis in Step 1
identifies key properties, actions and conditions under which actions may cause
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failures. These guide the construction of the formal modelling in Steps 2, includ-
ing invariants, events (corresponding to actions) and event guards (to prevent
failures). The formal modelling in turn increases the degree of rigour in the
analysis through the automated support for scenario checking, model checking
and proof (Step 3). The formal modelling can identify gaps or ambiguities in
the informal analysis resulting in the need to adjust the informal analysis and
formal modelling to address these (Step 4).

The derived requirement for the door component is shown at the bottom of
Fig. 3. In the next section, we will describe further analysis of the door component
leading in turn to the identification of further components and analysis of those
components.

5 Component Level

In this section we describe the component phase. The component phase is sub-
sequently repeated if we identify further sub-components. For example, Fig. 1
illustrates how failure analysis of the secure door component leads to identifica-
tion of secure lock and alarm components. The steps involved in the component
level phase are similar to those of the system-level phase, which were explained
in the previous section. Here we only highlight the differences:

– Step 1: Consider the component purpose, which has been identified as part
of the previous level analysis and identify component failures (by negating
the component purpose). For certification purposes, it is useful to record how
the potential failures of this component link, via the control actions that this
component addresses, to the previous level failures.

– Step 2: Refine the abstract formal model to capture:
• component properties as invariants.
• refined/new events representing component level actions.

– Step 3: Use automated theorem proving and model checking to verify con-
straints including the refinement proof obligations.

5.1 Component Level: Door

The secure door component, Fig. 6, addresses two of the insecure user actions,
A11 and A12, from the previous level (see Fig. 3), which lead to the failures,
FD2 and FD1, identified in the previous level.

Step 1: Analysis of the door component’s actions is presented in Fig. 6. Two
failures (FD1 and FD2 in Fig. 6) are found by negating the purpose of the door
component which was identified in the previous level (see Fig. 3). The failures
FD1, FD2 are linked to failures F1 and F2, respectively, from the previous level
(for a broader illustration of the connection between failures, see Fig. 2).

Note that the actions of the previous level are still part of the system
behaviour (and hence model) but are not analysed further at this level since their
potential failures have been addressed by introducing the door sub-component
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and delegating their responsibilities to the new actions of the door. The table in
Fig. 6 identifies the scenarios under which the open door and close door actions
may lead to failures.

Not all control action problems can be addressed by the design. Here mitiga-
tion is divided into two types: design mitigation, where there is a proposed design
decision for the problem(s), and user mitigation, where the user can contribute
to mitigating the problem. In the ‘wrong timing or order’ cases, Fig. 6, (AD23:
the user closes the door before entering) and (AD43: the user leaves door when
the door is open), these are user errors which cannot be prevented by the sys-
tem. The provers detect such anomalies in temporal behaviour that violate the
invariants and we fix the system by constraining the behaviour, either by making
assumptions about the environment (including users) or by adding features to
the control system. For these cases, Fig. 6 includes user mitigation to address
AD23 (user opens the door again) and an assumption about user behaviour to
address AD43 (user will not leave the door while the door is open). Thus there
is no need to address these failures in the control system design.

Fig. 6. Door component, action analysis table

Step 2-3-4: Figure 8 presents the first refinement of the Tokeneer Event-B model
to introduce the door component. There are two versions of this refinement, the
initial model (Fig. 8a), where the security constraints are more rigidly enforced,
and the adjusted model (Fig. 8b), where security relies partly on user behaviour.
These two models are not refining each other. The adjusted model is a replace-
ment of the initial model.
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Fig. 7. Scenario checker tool at the door level

In the initial model (Fig. 8a), the userEnterEnclave abstract event (see previ-
ous section) is refined and the check that the user is authorised, specified in grd2,
is replaced by checking the state of the door (a user can enter enclave only when
the door is open). This guard replacement shifts the role of checking authorisa-
tion to the door. A proof obligation is generated by the Rodin tool since guards
must not be weakened by refinement (i.e. the refined guard implies the abstract
guard). To prove that the guard is not weakened we need an invariant property:
when the door is open, then all users by the door must be authorised since any of
them could enter the enclave. This is an example of how proof obligations asso-
ciated with a formal model lead to the discovery of necessary assumptions. To
model this assumption we introduced a variable atDoor to represent the subset
of users by the door and the necessary invariant property (inv2a in the listing).
To preserve this invariant, the userApproachDoor event also checks that the door
is closed before allowing a new user to be added to the atDoor variable, act1.
Specifying that a user will only approach the door when it is closed is a rather
strong assumption and we re-visit this in our second model of the secure door.

The purpose of the door component is specified formally in the model by a
combination of an invariant inv2a and a guard, grd3, of the event userOpenDoor.
The invariant captures our assumption about users in the case that the door
is open and the guard checks that all users by the door are authorised before
allowing the user to open the door. The FD1 failure, door opens for unautho-
rised user, is prevented by grd3 of the userOpenDoor event which represents the
requirement that the door has some, yet to be designed, security feature.

The guard grd2 of userLeaveDoor event is needed to prevent FD2, Door does
not close. Without this condition an authorised user can open the door and then
leave with the door open so that no other user can approach the door (because
of our strong assumption that users approach the door when it is closed) which
results in a deadlock. We demonstrated this (before adding grd2 of userLeaveDoor
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event) by using the scenario checker to execute a scenario where an authorised
user leaves the door without closing it. This scenario leads us to observe that
the door must not be left open, meaning that we need to constrain (i.e. make
assumptions about) user behaviour in our Event-B model in order to show that
the system is secure.

Another scenario (shown in Fig. 7) demonstrates that when an authorised
user is in the enclave, the presence of an unauthorised user by the door prevents
the authorised user from opening the door to leave the enclave (trapped in the
enclave).

The model in Fig. 8a includes the assumption that when the door is open,
then all users by the door must be authorised. By making this assumption we
are departing from the original specification of the Tokeneer system which has
no such prevention/checking mechanism and relies instead on authorised users
preventing tailgating. The experience gained from the scenario checking led us
to change our assumption and relax the condition inv2a specified in the initial
version of the model. Instead we make the assumption that the presence of
authorised users will deter unauthorised ones from entering the enclave. In the
adjusted model, inv2a is replaced by inv2b (Fig. 8b): when the door is open there
is either a user in the enclave or at least one authorised user is by the door.

This illustrates Step 4, where the formal modelling informs the informal
analysis. The assumption about tailgaters is modified: in the initial model, we
assume there is no potential tailgater by an open door; while in the adjusted
model we assume the authorised users will prevent tailgating. The adjusted
version is more realistic but relies on stronger assumptions about user behaviour.

In order to be able to use scenarios to test whether the model prevents
unauthorised users from entering we deliberately model the event that we
hope to prevent. The abstract userEnterEnclave is split into two refining events:
authUserEnterEnclave and unauthUserEnterEnclave. The guard of the latter event
(which includes a conjunct that no authorised users are at the door) must never
hold, thus preventing an unauthorised user from entering the enclave. A con-
tradiction between inv2b and the guard of unauthUserEnterEnclave ensures that
it is never enabled. This is an example of a negative scenario which we do not
want to be possible in the system. These negative scenarios involve a check that
some particular events are disabled at a particular state of the system. Note that
disabledness is preserved by refinement since guards must not be weakened in
refinement.

In this modified version of the model, grd3 of the userApproachDoor event is
removed, so that a user can approach the door even when the door is open. Also
grd3 of userOpenDoor is changed, so that the authorisation is only checked for
the particular user that attempts to open the door (i.e. unauthorised users may
also be in the vicinity of the door). These changes introduce more assumptions
on human behaviour: an authorised user will prevent unauthorised users from
entering the enclave.

In Event-B, ordering is specified implicitly by guards on the state conditions
required for events to occur. For our model this is quite natural, e.g., the door
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Fig. 8. Event-B model for the door component
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needs to be open for the user to enter, and thus the event for opening the door
will have to have occurred before the user can enter. In addition, the scenario
checking allows us to describe ordering explicitly and validate that the model
allows that ordering.

Step 5: We now take further design steps to elaborate how this secure door
works. We finish the door phase by suggesting a mitigation, an outline design
solution, that will address the potential failures discussed in this phase. We will
fit the door with a secure lock component to make sure that it can only be
opened for authorised users (addressing insecure actions AD11 and AD12) and
an alarm component to detect and warn when it is left open (addressing AD21).
These new components are then analysed in the following phases.

In the rest of this section the remaining component levels are briefly described
omitting detailed step descriptions, due to space limitation. However the full
analysis is available here: https://tinyurl.com/SHARCS-dataset.

5.2 Component Level: Lock, Alarm, Card and Fingerprint

In this level, we introduce two components that need to be analysed: Secure
Lock and Alarm.

The lock component, addresses two of the insecure control actions, AD11 and
AD12, from the previous level (see Fig. 6), which resulted in failures, FD2 and
FD1 (resp.) of the previous level. An alarm is activated if the door is left open
longer than the time needed for a user to enter. The alarm component addresses
the insecure action, AD21, from the previous level (see Fig. 6), which resulted in
failure FD1 of the previous level. The card and finger print components addresses
the insecure control actions from the previous levels (see Fig. 1 and Fig. 2).

6 Related Work

STPA has also been combined with other formal methods. In [1], Abdulkhaleq
et al. propose a safety engineering approach that uses STPA to derive the safety
requirements and formal verification to ensure the software satisfies the STPA
safety requirements. The STPA-derived safety requirements can be formalised
and expressed using temporal logic. Hata et al. [7] formally model the crit-
ical constraints derived from STPA as pre and post conditions in VDM++.
Thomas and Leveson [16] have also defined a formal syntax for hazardous control
actions derived from STPA. This formalisation enables the automatic generation
of model-based requirements as well as detecting inconsistencies in requirements.
Unlike our approach, these approaches do not support an incremental, hierar-
chical analysis approach.

Based on the hybrid methodology of STPA and NIST SP800-30 [6] proposed
by Pereira et al. [13], Howard et al. [9] develop a method to demonstrate and
formally analyse security and safety properties. The goal is to augment STPA
with formal modelling and verification via the use of the Event-B formal method
and its Rodin toolset. Identification of security requirements is guided by STPA,

https://tinyurl.com/SHARCS-dataset
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while the formal models are constructed in order to verify that those security
requirements mitigate against the vulnerable system states. Dghaym et al. [5]
also apply a similar approach to [9] for generating safety and security require-
ments. Event-B has previously been combined with STPA by Colley and But-
ler [4] for safety analysis, again using STPA to guide the identification of safety
requirements and Event-B to verify mitigation against hazardous states. Also, in
our previous work [12] we utilised STPA and STPA-Sec for analysing the safety
and security of autonomous systems. [4,5,9,12] only support requirements anal-
ysis at a single abstraction level rather than the hierarchical approach that we
support.

7 Conclusion and Future Works

We have presented an analysis method that starts from the top level system
requirements and identifies potential failures that could lead to unsafe accidents
or security losses. The informal STPA analysis is used in conjunction with formal
modelling to systematically and rigorously uncover vulnerabilities in a proposed
design that could allow external fault scenarios to result in a failure. The formal
modelling gives precision and a better understanding of the behaviours that are
involved and lead to these failures. The model verification and validation provide
strong evidence to back up the analysis. The identified vulnerabilities then drive
the process as we design sub-components that can address the threats. In this
way we flow down the requirements to derived requirements. Our experience with
the Tokeneer case study highlighted that assumptions about user behaviour are
critical and can be incorporated into the analysis. The formal verification and
validation processes are beneficial in making these assumptions and consequent
reliance explicit and clear. We suggest that our analysis method provides rigorous
evidence (i.e., precise with clear hierarchical links and formal arguments) of the
the security or safety requirements and how they are achieved in the design.

We have evaluated the method using a security case study; However we
believe it works equally beneficial for safety requirements too. As a future work,
we are planning to apply the SHARCS to a safety case study. As a further direc-
tion to improve our method, we are working to introduce a new kind of diagram,
control abstraction diagrams, that help visualise the entities involved at a par-
ticular abstraction level along with their information and control relationships
and the constraints that they make on each others actions. A control system
can be thought of as a system that makes constrained actions. Our new con-
trol abstraction diagrams make clear, what the necessary constraints on actions
are and which entities in the system are responsible for making them. As we
incrementally introduce the design of a system we replace abstract constraints
by adding new components that take on that responsibility and implement the
constraint in an equivalent way. This matches very closely with our approach to
system refinement in Event-B.
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