l‘)

Check for
updates

Sebastian Stock! ® @, Fabian Vu2®, David GeleBus2®, Michael Leuschel?

Validation by Abstraction and Refinement

Atif Mashkoor'®), and Alexander Egyed’

! Institute for Software Systems Engineering, Johannes Kepler University Linz,

Altenbergerstr. 69, Linz 4040, Austria
{sebastian.stock,atif.mashkoor,alexander.egyed}@jku.at

2 Institut fir Informatik, Universitiit Diisseldorf, Universititsstr. 1, 40225

Diisseldorf, Germany
{fabian.vu,dagel101,leuschel }0uni-duesseldorf.de

Abstract. While refinement can help structure the modeling and prov-
ing process, it also forces the modeler to introduce features in a particular
order. This means that features deeper in the refinement chain cannot be
validated in isolation, making some reasoning unnecessarily intricate. In
this paper, we present the AVoiR (Abstraction-Validation Obligation-
Refinement) framework to ease validation of such complex refinement
chains. The triptych AVoiR framework operates as follows: 1) We first
simplify a complex model by abstracting away the noise, i.e., removing
the information unrelated to properties under analysis. 2) Using the Val-
idation Obligations (VOs) technique, we formalize the validation tasks
of the desired property. 3) Finally, we trickle down the validation results
by establishing the noiseless model as a parent of the initially investi-
gated model through the standard refinement relationship. Furthermore,
by using the technique of VO refinement, we establish the VOs of the
abstract model on the initial model. We use a case study from the avia-
tion domain to show the proposed framework’s effectiveness.

Keywords: Formal Methods - Validation Obligations - Abstraction -
Refinement - Validation - Event-B

1 Introduction

Model verification [18] checks whether we are building the model right. It often
takes center stage in state-based formal methods [22], and there is a large set
of robust verification techniques (see, e.g., the survey of tools for verification

The research presented in this paper has been conducted within the IVOIRE project,
which is funded by “Deutsche Forschungsgemeinschaft” (DFG) and the Austrian Sci-
ence Fund (FWF) grant # I 4744-N. The work of Sebastian Stock and Atif Mashkoor
and Alexander Egyed has been partly funded by the LIT Secure and Correct Systems

Lab sponsored by the province of Upper Austria.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
U. Gléasser et al. (Eds.): ABZ 2023, LNCS 14010, pp. 160-178, 2023.
https://doi.org/10.1007/978-3-031-33163-3_12

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33163-3_12&domain=pdf
http://orcid.org/0000-0002-2231-8656
http://orcid.org/0000-0003-2556-5553
http://orcid.org/0000-0002-6722-6296
http://orcid.org/0000-0002-4595-1518
http://orcid.org/0000-0003-1210-5953
http://orcid.org/0000-0003-3128-5427
https://doi.org/10.1007/978-3-031-33163-3_12

Validation by Abstraction and Refinement 161

by Punnoose et al. [25]). In contrast, model validation [18], i.e., do we build
the right model, aims to ensure that the model does what stakeholders want.
Validation requires a good understanding of the property under investigation
and how the model represents it. An additional challenge is that a model can
be vast and complex, and not every model property is equally interesting for
every stakeholder. So, suppose a stakeholder wants to validate a single property
of a complex model. In that case, the interactions of the property with other
model elements render this goal challenging as noise is coming from unrelated
properties. Unfortunately, the existing state-of-the-art techniques and tools for
model validation offer little help in this regard.

Consider the AMAN case study [24] about an airplane scheduling system
consisting of several refinement steps'2. The behavior of the automatic/mechan-
ical part is modeled early (MO and M1), while the manual/user behavior part is
modeled later (M2 to M9). If we want to validate the user behavior without the
interference of the mechanical part, we are out of luck and have to deal with
the noise from MO and M1. It would be beneficial if we could abstract away the
properties producing noise, enabling validation of the user behavior of M2 to M9
without unnecessary details.

This paper proposes the triptych AVoiR (Abstraction Validation- Obligation
Refinement) framework to validate a property of interest in a formal model by
reducing any noise. In the first step of the framework, one abstracts away parts
producing noise, making the model easier to validate. The second step estab-
lishes whether a property of interest is valid on the abstraction using Validation
Obligations (VOs) [23]. In the third step, one establishes the created abstrac-
tion as an additional parent of the initially investigated model and transfers the
VOs established on the abstraction back to the initial model using the refine-
ment relationship. Using the AMAN case study from the aviation domain, we
showcase the efficacy of the AVoiR framework.

The rest of the paper is structured as follows: Sect. 2 introduces the Event-B
method, which we use in the context of abstractions and as a carrier language
to provide an illustrative example and the notion of VOs. In Sect. 3, we give an
overview of the AVoiR framework and introduce abstractions for Event-B and VO
refinement. We then demonstrate the usability of the AVoiR framework in Sect. 4
on the AMAN case study and show a complex property on the abstraction,
formalize it as a VO, and transfer it back to the initial model. Last, we compare
the proposed framework with related work in Sect.5 and conclude the paper
in Sect. 6.

2 Background

2.1 Event-B

Event-B [1] is a state-based formal method with refinement as a key mechanism.
A modeler can create a so-called machine, which describes a state automaton.

! Original case study code: https://github.com/hhu-stups/AMAN-case-study/.
2 Code for this paper: https://github.com/hhu-stups/AMAN-abstraction-example.

https://github.com/hhu-stups/AMAN-case-study/
https://github.com/hhu-stups/AMAN-abstraction-example

162 S. Stock et al.

The state is represented by variables, defined and checked against invariants.
State transitions are defined through events. Additionally, contexts define new
data types that machines can see.

Refinement is an established technique for model enrichment. Refinement
means step-wise, rigorous, and inductive enhancement until a satisfying level
of detail is reached. However, there is a wide variety of methods implementing
different styles of refinement. In Event-B, a refinement is established by con-
ducting an inductive proof that the refining machine does not violate existing
constraints. The goal of the refinement is to either add a property or bring the
model closer to implementation. In general, for the rest of the paper, we spec-
ify two kinds of refinements: vertical refinement and horizontal refinement (see
Yeganefard et al. [30] for more details). Vertical refinement is about the refine-
ment of variables, i.e., abstract variables are replaced by more concrete ones.
They are usually linked by so-called gluing invariants for proving purposes. In
contrast, horizontal refinement means adding new behavior to the model. The
Rodin platform [2] supports refining and proving models.

Abstraction (in the context of this work) can be seen as the opposite of
refinement. In this technique, we take (abstract) away unnecessary details from
a model in a controlled manner leaving behind only the properties of interest.
The resulting model is crisp and noiseless.

We introduce abstractions as a part of the AVoiR framework tailored to
Event-B. However, there are other state-based formal methods like ASM [9]
or TLA+ [20], where the framework may also be applied.

2.2 Validation Obligations

VOs were introduced by Mashkoor et al. [23] and further defined by Stock et
al. [28]. They aim to provide a systematic embedding for requirements assuring
conflict freeness and completeness. We provide a quick recap of the notion of
VOs to facilitate readers.

A validation obligation (VO) is a validation expression (VE) composed
of (multiple) validation tasks (VTs) associated with a model to check its
compliance with the requirement.

We can express a VO formally by:
Req/Model : VE

The VE consists of one or VTs combined using logical operators A, V, and a
special sequencing operator ;. A;B means that the end state of task A is used as
the starting state for task B. Figure la shows the VO structure schematically.
A requirement is realized in the model and ensured to be present by a VO. The
VO contains the VE with the necessary parameters. A parameter requires the
following three considerations: the VT the parameter is put into (e.g., LTL model
checking needs an LTL formula), the properties the VT attempts to validate (e.g.,
a liveness property is validated with an LTL formula), and the implementation

Validation by Abstraction and Refinement 163

chosen in the model (e.g., the names of variables and events). To talk about a
single validation task, we use the following naming pattern: VT(parameters)
VT is a placeholder for a specific task type. parameters are the parameters
of the employed validation technique. An example of a task would be TR which
is the trace replay task that executes an animation from a given point. The
parameter for this task would be a trace. Another task example would be model
checking MC. The parameter for the MC task would be calculating the coverage
(CaV), checking for invariant violation (INV), or searching for a goal (GOAL), i.e.,
a predicate to be satisfied. Multiple parameters must be provided depending
on the specialization, i.e., one needs a predicate to be satisfied for the GOAL
specialization. An example of a VE that searches for a state and executes an
animation from the found state on a fictive machine M1 can be written as:

MC(GOAL, some_predicate); TR(some_trace)

3 AVoiR Framework

An overview of the AVoiR framework is shown in Fig. 1b. The three steps of the
framework are: 1) create an abstraction, 2) use VOs to formalize and validate
properties of interest, and 3) establish the abstraction as an additional parent
to the initial model and refine the VO to fit the initial model. In the following,
we describe each step in detail.

Classical refinement]
chain
< —_— Req
j 1. Step
vT MO 2. Step
/ Abstraction |- VOa(P)
VE Parameters T

. / 3. Step
\ — Model - Vo)

—_— Refinement
i Validation established
dependent from _ . _ . contributes to -~ — > :
. a parameter via VOs
_ contributes to task . Abstraction

appeareance

(a) Schema of a VO (b) The AVoiR framework

Fig. 1. Schematic view on a VO (left) and the AVoiR framework (right)

3.1 Step 1 - Creating an Abstraction

The first step of the AVoiR framework is to create an abstraction, reducing the
noise and enabling a more accessible investigation of the model’s properties. In

164 S. Stock et al.

the context of Event-B, an abstraction is a recomposition of selected features
already present in the refinement chain. For the transferability of findings, an
abstraction acts like an additional parent of an existing machine without altering
the refinement chain.

Consider Fig.2a. There, we see a classic refinement chain MO to M2, with MO
being the most abstract machine and M2 being the most concrete one. We can now
create an abstraction from this refinement chain by selecting features (variables
or events) we want to observe and creating a new machine from these features.
In Fig.2a, the features of MO and M2 are used for the abstraction, and those
features are recomposed in an abstraction Al. The red arrow between the two
feature extraction arrows indicates that we can have side effects on variables and
events. Indeed, M1 could do a vertical refinement (data refinement) on variables
of MO. M2 relies on these refined variables and is incompatible with variables from
MO. In this case, we need to demote the variables from M2 relying on M1 to instead
rely on the variables of MO.

Ezample. Let us consider Abrial’s interlocking model [1]. The model aims to
ensure collision freedom in a train yard. For demonstration purposes, we consider
the refinement levels train_0 to train_43 from the abstract to the most concrete
machine. train_ 0 models routes over the tracks as a set of blocks that can be
reserved. The variable resrt is vital for us, representing all reserved blocks.
train_1 builds a data structure that maps blocks to a tracking number. The
variable frm is important because it represents all formed routes. The other
refinements add more details to model trains and signals.

Let us consider a situation where we ask a railway domain expert to validate
our assumptions made in the model. We especially want to know whether the
reservation, forming, and freeing of routes are in the proper order. However, for
the modeling, we choose an abstract representation of these three statuses for a
route, which is difficult to comprehend for a non-specialist, who would need to
learn the syntax. For modelers, the free routes would be ROUTES \ (resrt U frm),
reserved routes would now be resrt \ frm, and formed routes would now be frm.

As this feature interplays with other features, it could be hard for a non-
modeler to understand and give feedback. Therefore, we reduce the noise from
this formulation by creating an abstraction A1 as shown in Fig.2b. We demote
the high-level constructs of frm and resrt to a simple representation we call rs
(route status). Al only contains rs and events that manipulate the route status,
with the events adapted to the demoted variables. With the created abstraction,
we can now do all sorts of validation, e.g., animation, tracing, and state space
projections.

3 The whole example is available under https://figshare.com/articles/code/
Abstraction_Examples/19786924/3.

https://figshare.com/articles/code/Abstraction_Examples/19786924/3
https://figshare.com/articles/code/Abstraction_Examples/19786924/3

Validation by Abstraction and Refinement 165

Classical refinement ro, e recomposition Classical refinement] oo e recomposition
chain chain
MO train_0
o r
b RN
g I
H
M1 H AL wain_1 |- f AL ’
H
N 1
N)! 4
| N
N ;
train_2 |- — — —»|
M2 ... »| MHL to MH1
train_4 [=
Feaure o . Refines «—— Feawre o __ Refines ——
transfer transfer
Variable Semantic Variable Semantic
demotion 7% Equaiy - demoton ¥~ Equality o
(a) Abstraction schema (b) Abstraction in practice

Fig. 2. Schematic abstraction (left) and abstraction from the example (right)

3.2 Step 2 - Creating VOs

With the abstraction in place and the domain experts’ feedback, we proceed to
the second step of the AVoiR framework to systematically validate properties
under investigation in the abstract model. For this, we employ the notion of
VOs as introduced in Sect.2.2. An example requirement to be formulated as a
VO would be REQO: Reserving, forming, and freeing a route is possible in this
particular order. A VO stating this would have the form:

REQO/A1 : TR([route_reservation, route formation, route freeing))

After its creation, the VO can be successfully validated against the model to
establish the property’s presence.

3.3 Step 3 - Trickling Down Insights

Many techniques that transfer validation-sensitive results between an abstract
and a concrete model rely on a formal refinement relationship established
between both. An example is LTL refinement as presented by Schneider et
al. [26]. For this reason, it is useful to establish the abstraction as an additional
parent of the initial machine. Consider Fig.2a, where we want to establish a
refinement relationship between Al and M2 to transfer insights. However, since
M2 is already refining M1, it cannot have another parent as per Event-B laws. We,
therefore, create a helper machine MH1, which contains all the missing features
from M1 and refines A1. It might become necessary to create new gluing invariants
to deal with the demoted variables. In the end, if MH1 is equal (same variables,

166 S. Stock et al.

same events, same invariants, ...) to M2 (minus the added gluing invariants), we
know that Al is a parent of M2.

VO Refinement. VOs refinement now complements the abstraction by enabling
the systematic transfer of validation results along a refinement chain. A VO can
consist of multiple tasks, and to refine them, we need to know how they interfere
with each other.

Together with the definition of a VO given in Sect. 2.2, the VO refinement is
defined as follows:

A validation obligation (VO) which is established on an abstract model,
is refined for the concrete model by applying the means of refinement to
the parameter(s) of the included validation tasks (VTs).

The VTs are included in the VE of the VO, and each of their parameters needs
to be refined. At first glance, it might seem more intuitive to refine the tasks.
However, attempting this is challenging as we need to show the semantic equiv-
alence of the two tasks. So instead, we focus on the parameters to preserve the
encoded meaning, as already existing techniques show. We introduce the concept
of the 'mean of refinement’ to discuss the refinement of parameters. It will help
us discuss what happens to a parameter during refinement.

The mean of refinement is the connection of abstract and concrete models in
horizontal or vertical refinement. In the case of Event-B’s vertical refinement, the
mean of refinement is the gluing invariant, as this is the construct to connect both
machines. We can apply this gluing invariant to transform an abstract variable
into a concrete one. With the horizontal refinement, the mean of refinement
would be the delta of abstract and concrete variables and events, i.e., which
event is renamed or split into which other event(s) and which variables were
added. For example, when splitting an abstract event into multiple concrete
ones, the occurrence of the abstract event in a VT parameter can be replaced
with a disjunction of all its concrete versions.

For each VT type, the refinement process is different as it must cater to
the needs of the parameter and the means of refinement. For example, a trace
is a parameter for the TR VT. Following our rule, we need to refine the trace,
adapting it to the concrete machine or, in case of an abstraction to the initial
machine. However, to achieve this, we must first detect the means of refinement,
i.e., what changed between the abstract and concrete models. This process can be
automated for trace replay, as shown by Stock et al. [27]. The final example is the
LTL model checking VT LTL. For this VT, we need an algorithm to translate LTL
formulas as, for example, laid out by Hoang et al. [16]. The translated formula
would then have to be re-checked against the concrete version of the model.
An alternative consists of proving the preservation of the property described
also laid out by Hoang et al. [16] and later by Zhu et al. [31]. The impacting
factor for VO refinement is the grade of available automation. For traces, the
automation grade is high. For LTL, a semantic translation exists, laid out by

Validation by Abstraction and Refinement 167

Hoang et al. An alternative would be to use proof obligations by Zhu et al. [31];
however, these are not automated yet. In the case of a visual state diagram, we
would have to manually re-check as there is no refinement procedure for it yet.

VO refinement can be unsuccessful, i.e., the re-execution of the task fails. If
this is the case in a regular refinement, we eradicated existing behavior with our
refinement. If this is the case in an abstraction relationship, the abstraction over-
approximated the reality of the initial model. When we try to re-validate the
approximated property, it collides with the initial model, and the VO fails. From
a failing VO, we can conclude that we chose the wrong abstract representation or
our requirement might not be valid as the model might not satisfy it in general.

Refinement Syntax. VOs consist of validation expressions which again are com-
posed of multiple tasks. Thus, we have to define how to refine these expressions.
Therefore, we denote the refinement of Model with Model’ and the refinement
of a VO with:

refine(Req/Model : VE) = Req/Model’ : refine(VE)

The refinement of the expression is then achieved by refining the composition of
the tasks making up the expression.

refine(AV B) = refine(A4) V refine(B)
refine(A A B) = refine(A) A refine(B)

And on the lowest level, a task is then refined with:

refine(VT(parameters)) = VT(refine(parameters)) (1)

Refining the Sequential Operator. The refinement of the sequential operator is
as follows:
refine(A;B) = refine(A);refine(B)

Refining the sequential operator has multiple side effects as the notion of state
is involved. Figure3 shows a trace representing the same VO on the abstract
and the concrete model. The graphic has two main parts: the left-hand side
represents the prefix (task A), and the right-hand side represents the sequential
operation suffix (task B).

Consider a VE defined as follows: MC(GOAL, somepredicate); TR(trace) (with
MC(GOAL, somepredicate) = A and TR(trace) = B). Part A intends to reach a
specific state, and part B executes a specific trace in the second step. Assuming
this composed task holds in the abstract top part of Fig.3, we refine the VE
for the concrete model by applying the rules previously introduced. For the
sequential operator, four cases might arise in Fig. 3:

168 S. Stock et al.

‘Abstract
State

\
N\
|

| |
N |
|
| @ -
AN
\ R
State
0N ;1 —— Abstract Transition
N, \.H /

| \ N

TASK A — - - = Concrete Transition

State Refinement
Relation

o) Transition not longer
possible
— . —» Alternative introdcued
by refinement

-—

Fig. 3. Possible behaviors of states when refining the sequential operator

Case 1: We refine and execute sub-task A and end up in AR1.2, from which we
can execute task B.

Case 2: We refine and execute sub-task A and end up in AR1.3 and assume it
is the only refinement for Al. From this state, we cannot execute task
B.

Case 3: We refine and execute sub-task A and end up in AR1.3, from which we
cannot execute task B. However, there might be other solutions where
task B is feasible.

Case 4: We refine and execute sub-task A and end up in state AR1.1. We would
have to do an additional step to reach task B.

Case 1 is trivial as we can proceed with refining task B. Case 2 is also straight-
forward; the VO cannot be refined in this scenario. Case 3 requires us to search
for other solutions. This can be challenging as we might not know whether other
solutions exist or how to find them. However, this is a tool and modeling prob-
lem. Case 4 is more complicated. We successfully found a refinement for task A
but need to reach task B. Therefore, we must pass through an additional state
(AR1.2). State AR1.2 may be introduced by horizontal refinement, i.e., a new
concrete behavior was introduced that forced state Al into (two) different con-
crete sub-states. The challenge here is to recognize that these states are part of
the same abstract parent and belong together. Suppose we can reliably recognize
two concrete states that belong to the same abstract state. In that case, Case 4
poses no threat. We can refine each task individually concerning the sequential
operator, and the task can be re-executed successfully. So, we can assume that
the property from the abstract model is successfully transferred to the concrete
model.

There is also a practical implication for Case 4. For example, we may want
task B to have AR1.1 as a starting point instead of AR1.2. This is a valid demand,
as both states represent the same abstract state but different concrete ones, and
we may prefer the concrete state of AR1.1 over the one of AR1.2. There remains

Validation by Abstraction and Refinement 169

the challenge of recognizing when a concrete state belongs to the same abstract
one to select the right one. The best action in such a situation is to sharpen the
VO. Sharpening the VO means creating a new VO on the concrete model. This
VO has the same abstract behavior and explicitly rules out/demands concrete
behavior we want/do not want to see. For instance, in our example, we would
create a new validation expression and modify task A so that the goal rules out
state AR1.2 while keeping task B intact. Of course, it might be the case that
there is no solution.

Implications for Requirements. Until now, we only dealt with changes in the
model. However, requirements might also change. A changing requirement will
result in a changing model, task, and parameter (see Fig. 1a as a reference point).
Tasks may become inappropriate for showing the presence of the requirement
as a result of changing requirements. In this case, we must create a new VO to
ensure the changed requirement’s presence.

Ezxample Continued. Now, we transfer the gained insights back to the initial
model. For this, we refine Al to MH1. In MH1, the features of train 2, train 3,
and train_4 are introduced. Further, we must refine the previously demoted
variables. For this, we create additional gluing invariants:

rs~![free] = ROUTES \ (resrt U frm) (2)
rs”![reserved] = resrt \ frm (3)
rs~![formed] = frm (4)

Equation (2) describes a free route as a route that is neither formed nor reserved.
Equation (3) describes a reserved route as the reserved blocks minus the formed
ones. Equation (4) describes the formed route as equal to the formed blocks.
MH1 should now have the same content (events, variables, guards, invariants,..) as
train_4, plus the added gluing invariants. We can therefore be sure that A1 is, so
to speak, an additional parent of train_4, which allows us to transfer validation
results like traces from the abstraction to train_ 4. Now, we also transfer the
trace. refine(REQO/A1) = REQO/MH1. Refinement means the changed events and
mapping Egs. (2) to (4). However, as previously mentioned, tool support lets us
successfully re-establish the trace for M4. The refined VO is of the form:

REQO/MH1 : TR([route_reservation, point_positioning, route formation,
FRONT_MOVE_1, FRONT_MOVE_2, BACK_MOVE_2, FRONT_MOVE_1, route_freeing])

With FRONT_MOVE_1 and BACK_MOVE_2 being the movement of the train and
point_positioning the movement of switches. We could, therefore, transfer the
previously gained insight back to the initial model.

170 S. Stock et al.

Regarding proof obligations, the abstraction will create its own set of POs,
many already encountered in the refinement chain MO to M2. Moreover, additional
POs will prove the relationship by gluing invariance between MH1 and A1l.

Correctness. We can assure that the abstraction is an additional parent by
discharging all POs. The correctness of the trickled-down validation results is
completely up to the used techniques and tools. Therefore, correctly using and
respecting their application conditions ensures the correctness of the transfer.

4 Case Study

To demonstrate the efficacy of the AVoiR framework, we apply it to the AMAN
case study [24]. The case study focuses on modeling an Arrival Manager
(AMAN). This semi-automatic, interactive system manages planes arriving at
an airport by assigning them a landing timeslot, i.e., creating a landing order
for the arriving planes. AMAN consists of two parts: a mechanical system that
schedules the planes and a GUI from which a human can intervene, block times-
lots for planes, and move planes around.

To evaluate the AVoiR framework, we use the implementation shown
in Sect.1. The model consists of nine refinement steps with MO the abstract
and M9 the concrete machine. The original implementation is described in detail
in [15].

— MO models an abstract set of planes (scheduledAirplanes) that the AMAN
can manipulate.

— M1 replaces scheduledAirplanes with landing _sequence mapping planes to
time slots.

— M2 adds the function for the human operator to set airplanes on ‘hold’.

— M3 adds the human operator’s function to block timeslots so that no plane
can be scheduled there.

— M4 adds the function for the human operator to use a zoom that restricts the
period currently worked on.

— M5 models the behavior when the mechanical part of the AMAN has a prob-
lem, i.e., a timeout.

— M6 models the user’s ability to select an airplane.

— M7 models the user’s ability to drag an airplane.

— M8 models the user’s ability to drag the zoom slider.

— M9 models the behavior of the user’s mouse cursor.

For demonstration, we create a noiseless view of the user behavior via an abstrac-
tion based on M9. Furthermore, we validate user behavior in a way especially tai-
lored toward non-modeler domain experts on this abstraction via VOs. Finally,
we transfer insights we gathered on the abstraction back to M9 via a VO refine-
ment.

Validation by Abstraction and Refinement 171

4.1 Abstraction

To create a noiseless version that only focuses on user interaction, we select all
features from MO and M2 to M9. We exclude the discrete representation of time
and the explicit landing sequence. As many variables introduced in M2 to M9
rely on time, we need to demote these variables to work without time; the events
remain mostly untouched. Consequently, we get an abstraction MAbs.

Since abstraction removes details from the model, the state space is often
reduced. Therefore, we can apply validation techniques relying on explicit-state
model checking more easily. Table 1 shows the model checking times of both M9
and MAbs via ProB [21]. We used an Intel Core i7-10700 2.90GHz x 8 CPU with
16GB RAM running Linux Mint for model-checking. We set a timeout of 10 min
and use the same configurations for model checking. Furthermore, for both ver-
sions, we used the same amount of variable elements of the model, i.e., how many
planes fly around and how far can be zoomed*. The experiment was repeated
ten times, and the mean of the measured time and memory consumption was
taken. For M9, the model checking process stopped unfinished after 10 min. In
the unrestricted version of the experiment, we ran out of memory for M9; due to
the computer crashing, no data was collected.

Table 1. Model Checking Results

Machine | Completion | States | Transitions | Time [s] | Memory [MB]
M9 Incomplete | > 8145 | > 10285196 | > 600 | 5565

M_Abs | Complete |15361 |203778 6 241.5
¢ Memory usage at crash

4.2 Validating the Behavior

On the abstraction, we now validate a domain-specific requirement REQ1: When
a click has been made and is ongoing, the only way to click something else is to
release the click first.

Validating this with techniques like LTL model checking on M9 can be chal-
lenging due to finding the appropriate representation, having an acceptable run-
time, and collecting the domain experts’ feedback. However, it becomes simple
with an abstraction focusing on the UI behavior. The solution is to create a
state-space projection [19] that shows the click behavior and validates via pro-
jection inspection. A state space projection can be seen as a lens through which
we look at the state space of a model. A state space projection needs a fully
explored state space to work. We formalize REQ1 as a VO:

REQ1/MAbs : MC(COV); VIS(PRJ(clickStartPosition))

4 For full details, we refer to the files.

172 S. Stock et al.

This VO states that we first model check the abstraction for full state space
coverage and then apply a visualization task (VIS) to the uncovered state space
to create the possibility of optical investigation. For this visualization, we use
the state space projection (PRJ) with a formula on the uncovered state space.
Our formula consists of one variable, clickStartPosition, that contains the
GUI element on which the mouse click started. ProB creates a diagram, which
we show in Fig.4, consisting of five distinguishable entities represented by a
box in the figure. Indeed, there are five different values. clickStartPosition is
empty when the mouse clicks outside any GUI element. clickStartPosition
contains zoom_slider_pos when the mouse was pressed on the zoom slider,
hold_button_pos when it was pressed on the hold button, airplane_pos when it
was pressed on an airplane, and block_time_pos when it was pressed on a time
slot. Boxes represent the states, while arrows indicate state transitions in the
form of events. So, for example, we cannot drag an airplane with the mouse and
simultaneously change the zoom. Instead, we see that when something is clicked,
we need to deselect it before we select something new, i.e., from a state where
we choose something we cannot transition into another state before deselecting.

start_dragging_
zoom.slder {zoom_slider_pos}
" 2
e T j # states: 44640
g 3 =" changeZoom
LT
. P
P
Pt Click_Hold_
R Button
g o el R
s -7 S~
7, -) ~.
7 - Release_Trigger_ ~o
e - Hold_Buton _ _ __ ___ o
’ - - TToom=—e
v -~ -7 {hold_button_pos}
i -7 - :
l e -7 Release_Abort_ # states: 14320
i et - Hold_Button_ _ - ==~
[. Pis T
[} At -
vl P
\ . - _
\V 7 ar " Move_Aircraft
@ stop_dragging_

airplane

\‘\\ TTee-llIT {airplane _pos}
L S~ ;eirsp“‘;eefdragg'”gf # states: 960
N airpl
. —
\ S S~
\ RN Click_Block_ ~~~ _
S~ Time S~

-~ ~a
7T {block_time_pos}
Release_Trigger_ = =
Block_Time # states: 28640

AN Release_Abort_ -
~ Time_Button -

Release_Trigger_
Deblock_Time

Fig. 4. State Space Projection, projecting on possible values for the mouse

Validation by Abstraction and Refinement 173

Figure 4 is suitable for communication with a domain expert as it is relatively
simple to understand. From the state space projection, we derive additional
observations we want to hold on M9. For example, consider REQ2: When clicking
on a time block happens, there are three ways to stop clicking at the block,
as shown in Fig. 4. Namely, (REQ2.1) Release_Trigger Block Time (release the
mouse on the block), (REQ2.2) Release_Abort_Time Button (drag the mouse
away and release elsewhere), (REQ2.3) Release Trigger Deblock Time (a click
on it deblocks a time slot that has been blocked). We create three traces that
cover the desired events to validate this. We make a prefix for all three traces that
execute Click_Block_Time and then three suffixes, one for each release action.

Let us formalize our intent as a VO. First, we create a VT that represents
the prefix, which is reusable for all three traces, and the suffix that covers case
(REQ2.1) with the other cases analogously. The VTs can then be assembled
to a VE and assigned to the requirement. The following example covers the
requirement’s instance (REQ2.1).

pref := TR([SETUP_CONSTANTS,

INITIALISATION,Move Mouse Block,Click Block Time])
sufl := TR([Click_Block_Time,

Move Mouse Nothing, Release_Abort_Time Button])

REQ2.1/MAbs : pref; sufl

The VO can operate successfully at the abstraction, which establishes the
requirement.

4.3 Refining VOs

For further development, it is helpful to re-establish REQ2.1 on M9 to know
whether the properties of MAbs will hold and to bring it in line with exist-
ing VOs to ensure conflict freedom between them. To achieve this, we will
refine the abstraction into a machine MAbs_Helper, which re-introduces the
time property that was previously removed in the abstraction. We then apply
refine(REQ2.1/MAbs) = REQ2.1/MAbs_Helper. Finally, we compare MAbs_Helper
with M9. If both machines are equivalent regarding their events, invariants, and
variables, we consider them equivalent.

During the creation of MAbs_Helper, some proof obligations must be man-
ually discharged with the help of the Rodin tool. Once the refinement rela-
tionship between M_Abs and MAbs_Helper is established, it qualifies for trace
refinement [27]. Now, we refine(REQ2.1/MAbs). Even though the VE consists of
two VTs, based on the tools we employ, we treat it as one trace and run it in
the trace refinement tool, yielding a refined trace valid for MAbs_Helper. No new
event was added (as the abstraction had the same events as its refinement). How-
ever, the abstract variables from the M_Abs were replaced by the concrete ones
from MAbs_Helper. Because MAbs_Helper and M9 are semantically the same, as
we previously established, we can also successfully replay the refined trace on M9,
which was our goal. The process would then be analogous to the other suffixes.

174 S. Stock et al.

4.4 Evaluation

We successfully applied the AVoiR framework to the AMAN case study. With
the abstraction technique, we could provide an easily understandable domain-
specific view of the possible user interactions to a domain expert. This would
otherwise not be possible because the initial model’s state space was too big
and the model itself was too complicated, as shown in Table 1. Furthermore,
we validated several requirements on our abstraction with the help of VOs and
showed that these requirements are indeed implemented as part of M9 via VO
refinement. However, the workflow could have been more convenient due to the
lack of available tools. We plan to solve this issue in the future.

5 Related Work

In the context of state-based formal methods, (predicate) abstraction as a means
of verification was previously applied to ASMs [8]. In contrast, we target valida-
tion, and our employed approach allows more flexibility for creating abstractions
and reasoning over them. To our knowledge, refining formalized validation obli-
gations is a novel idea. However, there is related work on abstractions, i.e., how
to reduce details of models to better reason about them or different approaches
for refinements.

CEGAR. The counterexample-guided abstraction refinement (CEGAR) method
introduced by Clarke et al. [11] is a model-checking technique. With CEGAR,
one takes an existing model and creates an abstraction with a smaller state
space. Then, potential counterexamples found on the approximation are tested
on the initial model. If they are false positives, the abstract model is corrected
via refinement to no longer allow this counterexample. Our abstractions are not
tailored towards model checking but can be helpful for any validation task, like
animation, simulation [29] or enabledness analysis [13]. Still, CEGAR’s idea of
iteratively refining the abstraction until a property is satisfied could also be
helpful for validation.

Alternative Abstractions. State space projections [7,19] (which we used in Fig. 4)
provide multiple abstract views on the state space of a model. To some extent,
these are the precursor of our idea. However, they work at the level of explicit
state space and not the model. To be fully precise, they need the entire state
space (even though they can still be useful if only part of it is computed). AVoiR
typically reduces the state space before applying projections and can be applied
even if the concrete state space is large or infinite. Another related technique
is GeneSyst [6], which provides an abstract view of the control flow graph of a
classical B model.

Validation by Abstraction and Refinement 175

Abstract interpretation [12] is an automatic abstraction technique mainly
used for program analysis. It requires the development of an abstract domain and
proving that the abstract operators are a sound approximation of the concrete
ones. The abstract interpretation could be used to automate our approach if we
identify a class of abstractions useful for a wider range of applications.

Decompositions. Abrial [3] and Butler [10] introduced the concept of decom-
position for Event-B, i.e., decomposing a model into sub-models. These com-
ponents can be further refined independently and, in the end, recomposed. As
such, these approaches also tackle some of the issues our approach solves. The
decomposition approach is motivated by the need to recompose the components,
which imposes some restrictions. Our approach can, however, provide multiple
non-disjoint abstract views on a system. Indeed, we do not need to partition
the system into sub-components; we can focus in the abstractions on different
features or aspects of the system which are relevant for validation. Thus both
approaches are still complementary: our approach is useful for validation, while
decomposition is helpful for code generation and compositional verification.

Retrenchment. Banach [4,5,14] introduced retrenchments, which can be imag-
ined as a liberal version of refinement. As a result, the coupling between com-
ponents is weaker than in a classical refinement relationship, allowing for higher
modeling flexibility which is orthogonal to our concerns. It may be possible to
combine the proposed abstraction approach with retrenchments.

CamilleX. As an extension to Event-B, CamilleX was proposed by Hoang et
al. [17]. CamilleX features extensions that allow a more comprehensive and con-
trolled refinement relationship between Event-B machines, thus helping in val-
idation and verification effort. In contrast, our approach does not extend the
existing language. Therefore it can be used without any new syntax or rules to
learn. Furthermore, while creating an abstraction is cumbersome as it is done
by hand, we look forward to providing tools for it in the future.

6 Conclusion and Future Work

This paper introduces the AVoiR framework for validating properties in com-
plex models. The framework allows the creation of abstractions, a reverse-like
operation to refinements, which works for complex models and helps validate
desired properties using the VOs approach in simplified models. We then refine
the VOs from the abstract model to re-establish the same properties in the ini-
tial complex model. The process helps domain experts quickly validate desired
properties in complex models by tailoring a model for the task at hand, reducing

176 S. Stock et al.

noise and the state space in the process. Finally, we demonstrate the efficacy of
the proposed framework in a case study from the aviation domain.

In the future, we would like to test the AVoiR framework on further exten-
sive case studies. Currently, the abstraction and the VO refinement process are
manual. We also intend to develop tool support to automate this process.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools
Technol. Transf. 12(6), 447466 (2010). https://doi.org/10.1007 /s10009-010-0145-
Yy

3. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and instantiation of dis-
crete models: application to Event-B. Fund. Inform. 77(1-2), 1-28 (2007)

4. Banach, R.: Graded refinement, retrenchment and simulation. ACM Trans. Softw.
Eng. Methodol. (2022). https://doi.org/10.1145/3534116

5. Banach, R., Fraser, S.: Retrenchment and the B-Toolkit. In: Treharne, H., King, S.,
Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 203-221. Springer,
Heidelberg (2005). https://doi.org/10.1007/11415787_13

6. Bert, D., Potet, M.-L., Stouls, N.: GeneSyst: a tool to reason about behavioral
aspects of B event specifications. application to security properties. In: Treharne,
H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 299—
318. Springer, Heidelberg (2005). https://doi.org/10.1007/11415787_18

7. Bertolino, A., Inverardi, P., Muccini, H.: Formal methods in testing software archi-
tectures. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp.
122-147. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39800-
4.7

8. Bianchi, A., Pizzutilo, S., Vessio, G.: Applying predicate abstraction to abstract
state machines. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) CAISE 2015. LNBIP, vol. 214, pp. 283-292. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19237-6_18

9. Borger, E.: The abstract state machines method for high-level system design and
analysis. In: Boca, P., Bowen, J., Siddiqi, J. (eds.) Formal Methods: State of the
Art and New Directions, pp. 79-116. Springer, London (2010). https://doi.org/10.
1007/978-1-84882-736-3_3

10. Butler, M.: Decomposition structures for Event-B. In: Leuschel, M., Wehrheim, H.
(eds.) IFM 2009. LNCS, vol. 5423, pp. 20—-38. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00255-7_2

11. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM (JACM) 50(5), 752—
794 (2003)

12. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction of approximation of fixed points. In: Proceed-
ings POPL, pp. 238-252. ACM (1977)

13. Dobrikov, I., Leuschel, M.: Enabling analysis for Event-B. In: Science of Computer
Programming, vol. 158, pp. 81-99. Elsevier (2018)

https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1145/3534116
https://doi.org/10.1007/11415787_13
https://doi.org/10.1007/11415787_18
https://doi.org/10.1007/978-3-540-39800-4_7
https://doi.org/10.1007/978-3-540-39800-4_7
https://doi.org/10.1007/978-3-319-19237-6_18
https://doi.org/10.1007/978-3-319-19237-6_18
https://doi.org/10.1007/978-1-84882-736-3_3
https://doi.org/10.1007/978-1-84882-736-3_3
https://doi.org/10.1007/978-3-642-00255-7_2
https://doi.org/10.1007/978-3-642-00255-7_2

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Validation by Abstraction and Refinement 177

Fraser, S., Banach, R.: Configurable proof obligations in the frog toolkit. In: Pro-
ceedings SEFM, pp. 361-370. IEEE Computer Society (2007). https://doi.org/10.
1109/SEFM.2007.12

Gelelus, D., Stock, S., Vu, F., Leuschel, M., Mashkoor, A.: Modeling and analysis of
a safety-critical interactive system through validation obligations. In: Proceedings
ABZ (2023)

Hoang, T.S., Schneider, S., Treharne, H., Williams, D.M.: Foundations for using
linear temporal logic in Event-B refinement. Formal Aspects Comput. 28(6), 909—
935 (2016). https://doi.org/10.1007/500165-016-0376-0

Hoang, T.S., Snook, C., Dghaym, D., Fathabadi, A.S., Butler, M.: Building an
extensible textual framework for the Rodin platform. In: Masci, P., Bernardeschi,
C., Graziani, P., Koddenbrock, M., Palmieri, M. (eds.) Software Engineering and
Formal Methods. SEFM 2022 Collocated Workshops. LNCS, vol. 13765, pp. 132—
147. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-26236-4-11
Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dic-
tionary: A Compilation of IEEE Standard Computer Glossaries. IEEE (1991).
https://doi.org/10.1109/IEEESTD.1991.106963

Ladenberger, L., Leuschel, M.: Mastering the visualization of larger state spaces
with projection diagrams. In: Butler, M., Conchon, S., Zaidi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 153-169. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4_10

Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855-874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2_46

Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based
formal methods for industrial deployment. Softw. Pract. Exp. 48(12), 2350-2379
(2018). https://doi.org/10.1002/spe.2634

Mashkoor, A., Leuschel, M., Egyed, A.: Validation obligations: a novel approach
to check compliance between requirements and their formal specification. In:
ICSE2021 NIER, pp. 1-5 (2021)

Palanque, P., Campos, J.C.: Aman case study (2022). https://drive.google.com/
file/d/11qftxQIviWpX1lcRts3WJzrBH7a3dMIn /view

Punnoose, R.J., Armstrong, R.C., Wong, M.H., Jackson, M.: Survey of existing
tools for formal verification. Technical report, Sandia National Lab. (SNL-CA),
Livermore, CA (United States) (2014). https://doi.org/10.2172/1166644
Schneider, S., Treharne, H., Wehrheim, H., Williams, D.M.: Managing LTL prop-
erties in Event-B refinement. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 221-237. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10181-1_14

Stock, S., Mashkoor, A., Leuschel, M., Egyed, A.: Trace refinement in B and
Event-B. In: Riesco, A., Zhang, M. (eds.) Formal Methods and Software Engineer-
ing. ICFEM 2022. Lecture Notes in Computer Science, vol. 13478, pp. 316—-333.
Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17244-1_19

Stock, S., Vu, F., Mashkoor, A., Leuschel, M., Egyed, A.: IVOIRE Deliverable 1.1:
Classification of existing VOs & tools and Formalization of VOs semantics. arXiv
preprint: arXiv:2205.06138 (2022)

Vu, F., Leuschel, M., Mashkoor, A.: Validation of formal models by timed proba-
bilistic simulation. In: Raschke, A., Méry, D. (eds.) ABZ 2021. LNCS, vol. 12709,
pp. 81-96. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77543-8_6

https://doi.org/10.1109/SEFM.2007.12
https://doi.org/10.1109/SEFM.2007.12
https://doi.org/10.1007/s00165-016-0376-0
https://doi.org/10.1007/978-3-031-26236-4_11
https://doi.org/10.1109/IEEESTD.1991.106963
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1002/spe.2634
https://drive.google.com/file/d/1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/view
https://drive.google.com/file/d/1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/view
https://doi.org/10.2172/1166644
https://doi.org/10.1007/978-3-319-10181-1_14
https://doi.org/10.1007/978-3-319-10181-1_14
https://doi.org/10.1007/978-3-031-17244-1_19
http://arxiv.org/abs/2205.06138
https://doi.org/10.1007/978-3-030-77543-8_6

178

30.

31.

S. Stock et al.

Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a guideline by formal
modelling of cruise control system in Event-B. In: Proceedings NFM, pp. 182-191
(2010)

Zhu, C., Butler, M., Cirstea, C., Hoang, T.S.: A fairness-based refinement strat-
egy to transform liveness properties in Event-B models. Sci. Comput. Program.
225, 102907 (2023). https://doi.org/10.1016/j.scico.2022.102907, https://www.
sciencedirect.com /science/article/pii/S016764232200140X

https://doi.org/10.1016/j.scico.2022.102907
https://www.sciencedirect.com/science/article/pii/S016764232200140X
https://www.sciencedirect.com/science/article/pii/S016764232200140X

	Validation by Abstraction and Refinement
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 Validation Obligations

	3 AVoiR Framework
	3.1 Step 1 - Creating an Abstraction
	3.2 Step 2 - Creating VOs
	3.3 Step 3 - Trickling Down Insights

	4 Case Study
	4.1 Abstraction
	4.2 Validating the Behavior
	4.3 Refining VOs
	4.4 Evaluation

	5 Related Work
	6 Conclusion and Future Work
	References

