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Preface

The International Conference on Rigorous State-Based Methods (ABZ 2023) was an
international forum for the cross-fertilization of related state-based and machine-based
formal methods, mainly Abstract StateMachines (ASM), Alloy, B, TLA +, VDM and
Z. Rigorous state-based methods share common conceptual foundations and are widely
used in both academia and industry for the design and analysis of hardware and software
systems. The acronym ABZ was invented at the first conference, held in London in
2008, where the ASM, B and Z conference series merged into a single event. The
second ABZ 2010 conference was held in Orford (Canada), where the Alloy community
joined the event; ABZ 2012 was held in Pisa (Italy), which saw the inclusion of the
VDM community (but not in the title); ABZ 2014 was held in Toulouse (France), which
brought the inclusion of the TLA+ community into the ABZ conference series. Lastly,
the ABZ 2016 conference was held in Linz, Austria and ABZ 2018 in Southampton, UK.
In 2018 the steering committee decided to retain the (well-known) acronym ABZ and
add the subtitle ‘International Conference on Rigorous State-Based Methods’ to make
more explicit the intention to include all state-based formal methods. Two successive
ABZ events have been organized in Ulm (Germany) and these were the two first virtual
ABZ events.

Since 2014 in Toulouse, each ABZ asked for the application of formal specifications
on industrial case studies. This year, we extend the previous areas (aerospace, medical
equipment, rails, automotive) with the HMI domain. The ABZ 2023 case study intro-
duces a safety critical interactive system called AMAN (Arrival MANager), which is a
partly autonomous scheduler of landing sequences of aircraft in airports. This interactive
system interleaves Air Traffic Controller’s activities with automation in AMAN. While
some AMAN systems are currently deployed in airports, we consider here only a subset
of functions which represent a challenge in modelling and verification. The ABZ 2023
case study is provided by José C. Campos and Philippe Palanque, who have interacted
with authors of submissions for the case study and did a great job while managing the
review process of the five submissions in five different modelling languages, namely
B, Event-B, ASM, Alloy and Statecharts. They accepted four of those submissions for
presentation at ABZ 2023 and inclusion in the proceedings. As usual, a special issue
will be organized in a Springer journal for a larger audience and inviting other replies to
the ABZ 2023 case study. José and Phil answered almost a hundred questions and gave
clarifying explanations, for which we would like to thank them. The objective of these
case studies is to provide an opportunity to demonstrate the applicability of the ABZ
methods to real examples and also to allow a better comparison of them. You should
visit the link https://abz-conf.org/case-studies/ which collects the past case studies with
solutions. ABZ 2023 received 47 submissions from 22 countries around the world. The
selection process was rigorous, where each paper received at least four reviews. The
program committee, after careful discussions, decided to accept 8 full research papers, 3
journal-first papers, 5 short research papers and 2 industry papers. The acceptance ratio

https://abz-conf.org/case-studies/
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of those papers was 18 accepted out of 38 which is 46%. Four case study papers were
accepted and selected by a separate sub-committee; the acceptance rate was 80%. One
research paper of one of the four keynote speakers is also included in the proceedings.
All accepted papers cover broad research areas in both theoretical systems and practical
aspects of state-based methods. A doctoral symposium was organized and PhD students
had to submit a short paper presenting their PhD topics; those 4 submissions were evalu-
ated by a separate PC committee including the two chairs of ABZ; the review of the four
submitted PhD contributions was conducted by Silvia Bonfanti and Guillaume Dupont.
Thanks Silvia and Guillaume for your contribution to the programme of ABZ 2023! The
conference was held on May 30 – June 2, 2023 in Nancy, France and the venue was the
LORIA laboratory, a joint structure of CNRS, Inria and the University of Lorraine.

We are honored that all four distinguished guests as keynote speakers have agreed to
give their keynotes this year. Marieke Huisman, University of Twente, The Netherlands,
gave a talk entitled ‘VerCors & Alpinist: verification of optimised GPU programs’;
Véronique Cortier, LORIA CNRS, Inria and Université de Lorraine, France, gave a talk
entitled ‘Formal verification of electronic voting systems’; André Platzer, Karlsruhe
Institute of Technology, Germany and Carnegie Mellon University, USA, gave a talk
entitled ‘Refinements in Hybrid Dynamical Systems Logic’; finally, Burkhart Wolff,
University Paris Saclay and Laboratoire des Méthodes Formelles (LMF), France, gave
a talk entitled ‘Using Deep Ontologies in Formal Software Engineering’.

The EasyChair conferencemanagement systemwas set up for ABZ 2023, supporting
submission, review and volume editing processes. We acknowledge it is an outstanding
tool for the academic community. We would like to thank all the authors who submitted
their work toABZ2023.We are grateful to the program committeemembers and external
reviewers for their high-quality reviews and discussions. Finally, we wish to thank the
Organizing Committee members for their continuous support.Whenwriting the preface,
we have also to mention the continuous support and assistance of Springer and the
publishing teammanagedbyRonanNugent. Finally,wewould like to thankour sponsors:

• the LORIA laboratory for contributing to the budget and for providing a strong
administrative support for the organisation.

• l’Université de Lorraine and la Métropole du Grand Nancy for financial support.
• the GDR CNRS GPL for supporting PhD students participation.
• the ANR projects DISCONT (https://anr.fr/Projet-ANR-17-CE25-0005) and EBRP

Plus (https://anr.fr/Projet-ANR-19-CE25-0010) for financial contribution.

For readers of these proceedings, we hope these papers are interesting and they
inspire ideas for future research.

April 2023 José C. Campos
Uwe Glässer

Dominique Méry
Philippe Palanque

https://anr.fr/Projet-ANR-17-CE25-0005
https://anr.fr/Projet-ANR-19-CE25-0010
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Refinements of Hybrid Dynamical
Systems Logic

André Platzer(B)

Karlsruhe Institute of Technology, Karlsruhe, Germany

platzer@kit.edu

Abstract. Hybrid dynamical systems describe the mixed discrete
dynamics and continuous dynamics of cyber-physical systems such as
aircraft, cars, trains, and robots. To justify correctness of their safety-
critical controls for their physical models, differential dynamic logic (dL)
provides deductive specification and verification techniques implemented
in the theorem prover KeYmaera X. The logic dL is useful for prov-
ing, e.g., that all runs of a hybrid dynamical system are safe ([α]ϕ), or
that there is a run of the hybrid dynamical system ultimately reach-
ing the desired goal (〈α〉ϕ). Combinations of dL’s operators naturally
represent safety, liveness, stability and other properties. Variations of
dL serve additional purposes. Differential refinement logic (dRL) adds an
operator α ≤ β expressing that hybrid system α refines hybrid system
β, which is useful, e.g., for relating concrete system implementations to
their abstract verification models. Just like dL, dRL is a logic closed under
all operators, which opens up systematic ways of simultaneously relating
systems and their properties, of reducing system properties to system
relations or, vice versa, reducing system relations to system properties.
Differential game logic (dGL) adds the ability of referring to winning
strategies of players in hybrid games, which is useful for establishing cor-
rectness properties of systems where the actions of different agents may
interfere. dL and its variations have been used in KeYmaera X for ver-
ifying ground robot obstacle avoidance, the Next-Generation Airborne
Collision Avoidance System ACAS X, and the kinematics of train con-
trol in the Federal Railroad Administration model with track terrain
influence and air pressure brake propagation.

Keywords: Differential dynamic logic · Differential refinement logic ·
Differential game logic · Hybrid systems · Hybrid games · Theorem
proving

1 Introduction

Hybrid dynamical systems, or hybrid systems for short, describe systems with a
mixture of discrete dynamics and continuous dynamics and have many important

This material is supported by the Alexander von Humboldt Foundation.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
U. Glässer et al. (Eds.): ABZ 2023, LNCS 14010, pp. 3–14, 2023.
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applications [3,4,13,20,24,25,29,34,35,53,55]. The most canonical applications
are those where the discrete dynamics of stepwise computation comes from com-
puter controllers while the continuous dynamics following continuous functions
comes from physical motion, as, e.g., in cars, aircraft, trains, and robots. Other
applications of hybrid systems include biological systems [1,19] and chemical
processes [12,14]. Many of these applications are safety-critical, which explains
why a great deal of attention has been paid to the development of techniques
that help either find mistakes in controllers or verify that there are no mistakes
by establishing that the controllers are guaranteed to satisfy the desired correct-
ness properties in the hybrid dynamical systems model [4,20,30,38,47,55]. The
fact that dealing with the real world is always difficult explains why verification
of hybrid dynamical systems is challenging. However, the benefits of a more reli-
able system outweigh the verification cost whenever applications are important
enough because mistakes incur significant financial loss or even risk loss of life.

This paper reports on the use of logic for hybrid dynamical systems. Differen-
tial dynamic logic (dL) [36–38,41,42,45,47] is a logic for specifying and verifying
correctness properties of hybrid dynamical systems that is also implemented in
the hybrid systems theorem prover KeYmaera X [18] that is available on the
web1 and has been used in interesting applications, including aircraft collision
avoidance [21], ground robot obstacle avoidance [31], and railway control [22]. In
fact, dL started its whole family of logics with several useful refinements and vari-
ations. Differential refinement logic (dRL) [28] adds refinement relations between
hybrid systems as a first-class citizen logical operator. Differential game logic
(dGL) [43,46,47]. The main purposes of all three of these logics will be sketched
in this paper. Other extensions of dL are useful but beyond the scope of this
paper, such as hybrid-nominal differential dynamic logic (dHL) whose nominals
support hyper properties such as hybrid information flow [5], quantified differ-
ential dynamic logic (QdL) for distributed hybrid systems [40], and stochastic
differential dynamic logic (SdL) for stochastic hybrid systems [39].

A technical survey of classical differential dynamic logic appeared at LICS’12
[42], a high-level survey of its principles at IJCAR’16 [44]. Information on the
theory of dL can be found in a book [38]. A very readable comprehensive account
of dL and dGL is provided in a textbook [47].

2 Differential Dynamic Logic Ideas

Differential Dynamic Logic. dL [36–38,41,42,45,47] provides a programming
language for hybrid systems called hybrid programs, which functions like an ordi-
nary imperative programming language except that it supports nondeterminism
to reflect the inherent uncertainty of the behavior of the real world and, cru-
cially, supports differential equations to describe continuous dynamics. Besides
the operators of first-order logic of real arithmetic, dL provides modalities for
hybrid programs α, where the dL formula [α]ϕ means that all final states reach-
able by hybrid program α satisfy formula ϕ (safety), while the formula 〈α〉ϕ
1 KeYmaera X is available as open-source at http://keymaeraX.org/.

http://keymaeraX.org/
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means that some final state reachable by hybrid program α satisfies formula ϕ
(liveness). A dL formula is valid iff it is true in all states. Typical patterns for
safety properties are dL formulas of the form:

ψ → [α]φ (1)

which are akin to Hoare triples except generalized to hybrid systems. dL formula
(1) is valid iff in every state where the precondition formula ψ is true it is the case
that after all runs of hybrid program α postcondition formula φ holds. Typical
patterns for liveness properties are dL formulas of the form:

ψ → 〈α〉φ (2)

dL formula (2) is valid iff in every state where the precondition formula ψ is true
it is the case that there is a run of hybrid program α that leads to a state where
the postcondition formula φ holds. Stability properties nest more operators of
dL. For example, stability of the origin for the differential equation x′ = f(x) is
characterized by the dL formula [58]:

∀ε>0∃δ>0∀x (Uδ(x = 0) → [x′ = f(x)]Uε(x = 0)) (3)

The δ-neighborhood Uδ(x = 0) of the set of states where formula x = 0 is true is
definable by the formula x2 < δ2. The dL formula (3) expresses stability by saying
that for every desired ε-neighborhood of the origin there is a δ-neighborhood of
the origin from which all solutions of the differential equation x′ = f(x) always
stay within the ε-neighborhood of the origin. Attractivity of the origin for the
differential equation x′ = f(x) is characterized by the dL formula [58]:

∃δ>0∀x (Uδ(x = 0) → ∀ε>0 〈x′ = f(x)〉[x′ = f(x)]Uε(x = 0)) (4)

The dL formula (4) expresses that there is a δ-neighborhood of the origin from
which the differential equation eventually stays within every ε-neighborhood
of the origin forever. Asymptotic stability of the origin is characterized by the
conjunction of dL formulas (3) and (4) [58]. This illustrates how the fact that
dL is a proper logic closed under all operators can be used to characterize many
different properties of hybrid systems in a single logic. Other properties such as
controllability and reactivity can be stated as well [49].

While it is crucial that dL has a simple and elegant unambiguous mathemati-
cal semantics [36–38,41,42,45,47] such that all dL formulas have a clear meaning,
it is just as important that the logic dL comes with a proof calculus with which
the validity of dL formulas can be verified rigorously [36–38,41,42,45,47]. For
example, the dL calculus includes the axiom of nondeterministic choice:

[∪] [α ∪ β]P ↔ [α]P ∧ [β]P

Axiom [∪] states that all runs of a hybrid program α ∪ β that has a nonde-
terministic choice between hybrid program α and hybrid program β satisfy the
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postcondition P if and only all runs of hybrid program α satisfy P and, inde-
pendently, all runs of hybrid program β satisfy P . This equivalence is true in
every state and can be used in every context. By using axiom [∪] to decompose
its left-hand side [α ∪ β]P to its corresponding right-hand side [α]P ∧ [β]P , all
hybrid programs in the remaining verification question get simpler and smaller.
Of course, dL’s axioms for differential equations are fundamental to its success.

The dL proof calculus is a sound and complete axiomatization of hybrid
systems relative to either discrete dynamics [41] or to continuous dynamics
[36,41]. For differential equation invariants, dL’s axioms give a sound and com-
plete axiomatization [51,52] with which all true arithmetic invariants of poly-
nomial differential equations can be proved in dL while all false ones can be
disproved in dL. Similar soundness and completeness results hold for invariants
of switched systems [59]. Liveness properties and existence properties of differen-
tial equations have corresponding proof principles derived in dL [57] and stability
properties have proof principles derived in dL [56,58] using Lyapunov functions.

Differential Refinement Logic. Specifying and verifying correctness proper-
ties of hybrid systems is important and useful, and dL is a versatile logic with
a powerful proof calculus for the job. But some aspects of hybrid systems cor-
rectness go beyond what dL is naturally meant for. Differential refinement logic
(dRL) [28] adds a refinement operator where the dRL formula α ≤ β means that
hybrid system α refines hybrid system β. That is, dRL formula α ≤ β is true
in a state whenever all states reachable from that state by following the transi-
tions of α can also be reached by following the transitions of β. The refinement
operator is useful, e.g., as γ ≤ α to say that all runs of a concrete controller
implementation γ are also runs of the abstract control model α. This view also
gives rise to the box refinement rule, which proves that if precondition P is true,
then all runs of the concrete system γ satisfy postcondition Q (conclusion below
rule bar) by proving that the same implication for the abstract system α (left
premise) and proving that the concrete system γ refines the abstract system α
from all states satisfying the precondition P .

[≤]
P → [α]Q P → γ ≤ α

P → [γ]Q

The box refinement rule [≤] reduces one box property (conclusion) to another
[·] property (left premise) and a refinement property (right premise), which is
clever if the abstract system α is easier to verify than the concrete system γ.
Even if the abstract system α has more behavior than the concrete γ from initial
states satisfying P according to the second premise, its description and its proof
of safety may still be easier, e.g., when the abstract system α is more nonde-
terministic leaving out implementation detail that is important for performance
of the actual implementation but irrelevant to safety. A similar diamond refine-
ment rule handles refinements of 〈·〉 properties (conclusion and left premise) but
the converse refinement is required (right premise), because only if the hybrid
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system α refining the system γ can reach Q can the system γ reach Q, too:

〈≤〉 P → 〈α〉Q P → α ≤ γ

P → 〈γ〉Q

Just as dRL’s box and diamond refinement rules [≤],〈≤〉 reduce a system
property to a refinement property (second premise), the converse reduction is
possible in dRL as well. The sequential composition refinement rule (;) reduces a
refinement of a sequential composition (conclusion) to a refinement of the first
program (left premise) and a property of the first concrete system (right premise)
which in turn refers to a postcondition that is a refinement:

(;)
P → α1 ≤ α2 P → [α1](β1 ≤ β2)

P → (α1;β1) ≤ (α2;β2)

The (;) rule of dRL is particularly clever, exploiting the fact that dRL is a proper
logic closed under all operators. Unlike the following easier (derived) version

(;)s

P → α1 ≤ α2 β1 ≤ β2

P → (α1;β1) ≤ (α2;β2)

rule (;) maintains more knowledge (such as P and the effects of the actions of
hybrid system α1) than the simple structural refinement rule (;)s which loses all
information (even just assuming P would be unsound in the second premise).
Because the simple rule (;)s has to discard all assumptions, it rarely applies,
because hybrid systems often only refine each other given the contextual informa-
tion of what happened previously and what assumed initially, which is explicitly
available in the second premise of the composition refinement rule (;).

Differential Game Logic. dGL generalizes dL to provide modalities referring
to the existence of winning strategies for hybrid games [43,46,47]. Hybrid games
α of dGL have actions where each decision is resolved by one of the two players
called Angel and Demon, respectively. In dL and dRL, the modality [α] refers
to all runs of hybrid system α. Hybrid games α do not have runs like systems
do, because the outcome of a game play depends on the decisions of the players
during the game α, where Angel decides all of her choices while Demon decides
all of his choices, both of which are resolved interactively during game play.

In dGL, the modality [α] refers to the existence of winning strategies for
Demon in hybrid game α. More precisely, the dGL formula [α]ϕ expresses that
there is a winning strategy for player Demon in the hybrid game α with which he
can resolve Demon’s decisions to reach any state in which formula ϕ is true, no
matter what counterstrategy Angel plays. The dGL formula 〈α〉ϕ expresses that
there is a winning strategy for player Angel in the hybrid game α with which
she resolve Angel’s decisions to reach any state in which formula ϕ is true, no
matter what counterstrategy Demon plays. This conservatively extends dL since
player Demon has no decisions in a hybrid system α where Angel resolves all
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nondeterminism, because the dGL formula [α]ϕ then exactly means that Demon
has a strategy to achieve ϕ in the game α where Demon has no say and only
Angel gets to make any decisions, i.e., ϕ is true after all runs of α. Likewise the
dGL formula 〈α〉ϕ for a hybrid system α exactly means that Angel has a strategy
to achieve ϕ in a game where Angel gets to make all decisions (so she always
helps) and Demon can never interfere, i.e., ϕ is true after at least one run of α.
The most important defining axiom of dGL is for the duality operator αd which
swaps the roles of the two players Angel and Demon:

〈d〉 〈αd〉P ↔ ¬〈α〉¬P

Since the [·] axiom (which is called the determinacy axiom in hybrid games)
still derives [α]P ↔ ¬〈α〉¬P for dGL, the duality

〈αd〉P ↔ [α]P (5)

derives, which implies that duality operators swap diamond modalities with box
modalities and vice versa, giving rise to the dynamic interactivity of hybrid
games. The easiest way to understand the added power of dGL uses the fact
that dualities make modalities flip from box to diamond and back via (5). The
dL modalities [α] and 〈α〉 refer to all or some runs of α. Since dGL dualities
αd cause modalities to flip, every part of a hybrid game may alternate between
universal and existential resolution of the remaining decisions in the subgame
leading to unbounded alternation [43].

Read as a dGL formula with hybrid game α, dGL formula (1) is valid iff from
every state where precondition ψ is true, Demon has a winning strategy in game
α to achieve φ. As a dGL formula, (2) is valid iff from every state satisfying ψ,
Angel has a winning strategy in game α to achieve φ. The interactive nature
of game play in dGL gives both (1) and (2) as dGL formulas with hybrid games
α a significantly refined pattern of interaction between the players than merely
referring to all runs as in dL formula (1), or to some run as in dL formula (2).

In some ways, dGL is a gentle and innocent generalization of dL, because
the addition of the duality operator ·d is the only syntactic change. However,
games call for an entirely new reading of the logical modalities and a different
style of semantics for the interactivity of game play that is absent from systems
that either have a run or don’t. This change causes new proving challenges. dL’s
Gödel generalization rule, G , for instance

G
P

[α]P

concludes that any formula P with a proof also holds after all runs of hybrid
program α. But this would be unsound for dGL, because even for trivial post-
conditions such as x2 ≥ 0, is it not clear whether Demon has a winning strategy
to achieve the obvious x2 ≥ 0 in the hybrid game α in case Angel has a winning
strategy to trick Demon into violating the rules of the hybrid game α, so Demon
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never even successfully reaches a final state in which x2 ≥ 0 would then hold.
dGL still obeys the monotonicity rule saying that if Demon has a strategy in
hybrid game α to achieve P , then if P implies Q (premise), Demon also has a
strategy in the same game α to achieve Q:

M[·] P → Q

[α]P → [α]Q

Besides properties of competitive hybrid games, dGL is particularly useful to
prove correctness properties of hybrid systems in which some but not all actions
are under the system designer’s control. This includes systems with uncertainty
caused by actions of other agents or the environment that may interfere.

3 KeYmaera X Theorem Prover for Hybrid Systems

The dL and dGL proof calculi are implemented in the KeYmaera X theorem
prover2 [18], enabling users to specify and verify their hybrid systems and hybrid
games applications. KeYmaera X provides automatic, interactive, and semiau-
tomatic proofs, as well as proof search tactics and custom proofs [17], interfacing
with real arithmetic decision procedures implemented in Mathematica or Z3.

Unlike its predecessor KeYmaera [48], KeYmaera X [18] is a microkernel
prover with an exceedingly small trusted core, which leads to several design
advantages [33]. The biggest advantage of the microkernel design of KeYmaera X
is that its uniform substitution proof calculus for dL [45] is simple and parsimo-
nious to implement and also verified to be sound in both Isabelle/HOL and Coq
[9]. This design isolates potential soundness mistakes in KeYmaera X to the
specific source code implementation or the decision procedures it is calling for
real arithmetic (which have sound implementations [23,50,54] even if they are
not yet always competitive with unverified implementations).

4 Application Overview

Applications of dL include verified collision freedom in the Federal Aviation
Administration’s (FAA) Next-Generation Airborne Collision Avoidance System
ACAS X [21], verified ground robot obstacle avoidance in the presence of actu-
ator disturbance and sensor uncertainty [31], and verified train separation of
train controllers for the kinematic model of the Federal Railroad Administration
(FRA) with roll and curvature resistance, track slope forces, and air pressure
brake force propagation [22]. Applications of dL beyond conventional mobile
cyber-physical systems include verified controllers for chemical reactions [12].
2 The KeYmaera X prover inherits its name from its predecessor KeYmaera [48] which

was based on the KeY prover [2] and explains the spelling. KeYmaera is a homophone
to Chimaera, the hybrid animal from ancient Greek mythology, which is a hybrid
mixture of multiple animals just like KeYmaera is a prover mixing discrete and
continuous mathematics and multiple theorem proving techniques.
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The logic dRL is useful for proving refinement relations of implementations to
abstract verification models. Applications of dRL include general proofs estab-
lishing relations of easily verified event-triggered models to easily implemented
time-triggered models [27]. Applications of dGL include verified collision freedom
despite intruder actions in the Next-Generation Airborne Collision Avoidance
System [15] as well as structured proof languages for hybrid systems and hybrid
games [8,11]. Constructive versions of dGL [6] also have important applications
in setting the foundation for monitors for cyber-physical system controllers [11],
and constructive crossovers of dGL and dRL provide refinements between hybrid
games and hybrid systems proving that winning strategies reify as programs
winning the games [7].

5 Conclusions and Future Work

Differential dynamic logic and its siblings provide a solid logical foundation for
cyber-physical systems analysis and design. They have also played an important
role in applications, including leading to the discovery of 15 billion counterex-
amples in the Next-Generation Airborne Collision Avoidance System ACAS X.

While differential dynamic logic itself shines particularly at establishing cor-
rectness of hybrid systems algorithms themselves, the correctness of lower-level
implementations is no less important. Of course, low-level implementations are
doomed to be wrong if even the high-level control algorithms are incorrect. But
low-level implementations may still have mistakes once the high-level control
algorithms are correct. The dL line of work has three potential remedies all of
which deserve further refinements to increase practicality. One is the the use of
dRL with explicit proofs of refinement of verified abstract models to concrete
controllers inheriting the safety guarantees [27,28]. Another is the use of the dL-
based ModelPlex technique for provably correct monitor synthesis to carry safety
guarantees about hybrid systems models over to cyber-physical system imple-
mentations [32], which also forms the basis of a verified pipeline from verified
hybrid systems models to verified machine code [10]. Yet another are system-
atic relations in constructive dGL of verified models to monitors and controllers
[7,11].
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Abstract. Isabelle/DOF is an ontology framework on top of Isabelle.
It allows for the formal development of ontologies as well as continu-
ous conformity-checking of integrated documents annotated by ontolog-
ical data. An integrated document may contain text, code, definitions,
proofs, and user-programmed constructs supporting a wide range of for-
mal methods Isabelle/DOF is designed to leverage traceability in inte-
grated documents by supporting navigation in Isabelle’s IDE as well as
the document generation process.

In this paper, we extend Isabelle/DOF with annotations of λ-terms,
a pervasive data-structure underlying Isabelle used to syntactically rep-
resent expressions and formulas. Rather than introducing an own pro-
gramming language for meta-data, we use Higher-order Logic (HOL)
for expressions, data-constraints, ontological invariants, and queries via
code-generation and reflection. This allows both for powerful query lan-
guages and logical reasoning over ontologies in, for example, ontological
mappings. Our application examples cover documents targeting formal
certifications such as CENELEC 50128, or Common Criteria.
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1 Introduction

The linking of formal and informal information is perhaps the most pervasive
challenge in the digitization of modern society. Extracting knowledge from rea-
sonably well-structured informal “raw”-texts is a crucial prerequisite for any form
of advanced search, classification, “semantic” validation and “semantic” merge
technology. This challenge incites numerous research efforts summarized under
the labels “semantic web” or “data mining”. A key role in structuring this link-
ing are played by document ontologies (also called vocabulary in the semantic
networks or semantic web communities), i.e., a machine-readable form of the
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structure of documents as well as the document discourse. Such ontologies can
be used for the scientific discourse underlying scholarly articles, mathematical
libraries, and documentations in various engineering domains. In other words,
ontologies generate the meta-data necessary to annotate raw text allowing their
“deeper analysis”, in particular if mathematical formulas or other forms of formal
content occur.

We are in particular interested in a particular application domain of these
techniques, namely integrated documentations of software developments target-
ing certifications (such as CENELEC 50128 [6] or Common Criteria [7]). We
consider this domain as a particular rewarding instance of the general problem.
Certifications of safety or security critical systems, albeit responding to the fun-
damental need of the modern society of trustworthy numerical infrastructures,
are particularly complex and expensive, since distributed labor as occurring in
the industrial practice involving numerous artifacts such as analysis, design,
and verification documents including models and code must be kept coherent
under permanent changes during the development. Moreover, certification pro-
cesses impose a strong need of traceability within the global document struc-
ture. Last but not least, modifications and updates of a certified product usually
result in a complete restart of the certification activity, since the impact of local
changes can usually not be mechanically checked and has to be done essentially
by manual inspection. Our interest in this domain lead us to the development
of Isabelle/DOF, an environment implementing our concept of deep ontology.

1.1 A Gentle Introduction into Isabelle/DOF

Fig. 1. The Ontology Environment Isabelle/DOF.

Isabelle/HOL [19] is a well-known semi-automated proof environment and docu-
mentation generator. Isabelle/DOF [4] extends the Isabelle/HOL core (see Fig. 1)
by a number of constructs allowing for the specification of formal ontologies (left-
hand side); additionally, it provides documentation constructs (right-hand side)
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for text-, definition-, term-, proof-, code-, and user-defined elements that enforce
document conformance to a given ontology.

Isabelle/DOF1 is a new kind of ontological modelling and document vali-
dation tool. In contrast to conventional languages like OWL and development
environments such as Protégé [17], it brings forward our concept of deep ontolo-
gies, i. e., ontologies represented inside a logical language such as HOL rather
than a conventional programming language like Java. Deep ontologies gener-
ate strongly typed meta-information specified in HOL-theories allowing both for
efficient execution and logical reasoning about meta-data. They generate a par-
ticular form of checked annotations called antiquotation to be used inside code
and texts. Deeply integrated into the Isabelle ecosystem [5], and thus permitting
continuous checking and validation, they also allow ontology-aware navigation
inside large documents with both formal and informal content.

In the following, we will detail this by example of annotated text in a docu-
ment. We will assume a given ontology; an introduction into our ontology def-
inition language ODL is given in Sect. 2.2. The Isabelle’s text‹ . . . ›-element
or ML‹ . . . › code-elements are extended to the corresponding Isabelle/DOF
elements:

text∗[label ::cid , attrib-def 1,. . . ,attrib-def n]‹. . . annotated text . . . ›
ML∗[label ::cid , attrib-def 1,. . . ,attrib-def n]‹. . . annotated code . . . ›

where cid is an identifier of an ontological class introduced in an ontology
together with attributes belonging to this class defined in ODL. For example, if
an ontology provides a concept Definition, we can do the following:

text∗[safe::Definition, name=safety ]‹Our system is safe if the following holds ...›

The Isabelle/DOF command text∗ creates an instance safe of the ontological
class Definition with the attribute name and associates it to the text inside
the ‹...›-brackets. We call the content of these brackets the text-context (or
ML-context, respectively). Of particular interest for this paper is the ability to
generate a kind of semantic macro, called anti-quotation, which is continuously
checked and whose evaluation uses information from the background theory of
this text element.

For example, we might refer to the above definition in another text element:

text∗[...]‹As stated in @{Definition ‹safe›}, . . . ›

Where Isabelle/DOF checks on-the-fly that the reference “safe” is indeed
defined in the document and has the right type (it is not an Example, for exam-
ple), generates navigation information (i.e. hyperlinks to safe as well as the
ontological description of Definition in the Isabelle IDE) as well as specific doc-
umentation markup in the generated PDF document, e.g.:

As stated in Def . 3 .11 (safety), ...

1 The official releases are available at https://zenodo.org/record/6810799, the devel-
oper version at https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF.

https://zenodo.org/record/6810799
https://git.logicalhacking.com/Isabelle_DOF/Isabelle_DOF
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where the underline may be blue because the layout description configured
for this ontology says so. Moreover, this is used to generate an index containing,
for example, all definitions. Similarly, this also works for an ontology providing
concepts such as “objectives”, “claims” and “evidences”, and invariants may be
stated in an ontological class that finally enforces properties such as that “all
claims correspond to evidences in the global document”, and “all evidences must
contain at least one proven theorem”, etc. pp. In contrast to a conventional type-
setting system, Isabelle can additionally type-check formulas, so for example:

text∗[...]The safety distance is defined by @{term distsaf e = sqrt(d−a∗Δt2)}...

where functions like distsaf e, sqrt, ∗, etc., have to be defined in the signa-
ture and logical context or background theory of this formula. Anti-quotations
as such are not a new concept in Isabelle; the system comes with a couple of
hand-programmed anti-quotations like @{term ...}. In contrast, Isabelle/DOF
generates anti-quotations from ontological classes in ODL, together with checks
generated from data-constraints (or: class invariants) specified in HOL.

1.2 The Novelty: Using HOL-Terms for Meta-data and Invariants

Isabelle uses typed λ-terms as syntactic presentation for expressions, formulas,
definition and rules. Rather than using a classical programming language, our
concept of deep ontologies led us to use HOL itself and generate the checking-
code for anti-quotations via reflection and reification techniques. In particular,
this paves the way for a new type context called term contexts. As a conse-
quence, we extend Isabelle/DOF framework to use this possibility and will show
in this paper how to exploit term contexts to express meta-data-constraints via
invariants, to formally prove relations between instances and to generate code
on-the-fly for advanced queries.

2 Background

2.1 The Isabelle/DOF Framework

Isabelle/DOF extends Isabelle/HOL (recall Fig. 1) by ways to annotate an inte-
grated document written in Isabelle/HOL with the specified meta-data and a
language called Ontology Definition Language (ODL) allowing to specify a formal
ontology. Isabelle/DOF generates from an ODL ontology a family of antiquota-
tions allowing to specify machine-checked links between ODL entities.

The perhaps most attractive aspect of Isabelle/DOF is its deep integration
into the IDE of Isabelle (Isabelle/PIDE), which allows a hypertext-like naviga-
tion as well as fast user-feedback during development and evolution of the inte-
grated document source. This includes rich editing support, including on-the-fly
semantics checks, hinting, or auto-completion. Isabelle/DOF supports LATEX-
based document generation as well as ontology-aware “views” on the integrated
document, i. e., specific versions of generated PDF addressing, e.g., different
stake-holders.



Using Deep Ontologies in Formal Software Engineering 19

2.2 A Guided Tour Through ODL

Isabelle/DOF provides a strongly typed ODL that provides the usual concepts
of ontologies such as

– document class (using the doc-class keyword) that describes a concept,
– attributes specific to document classes (attributes might be initialized with

default values), and
– a special link, the reference to a super-class, establishes an is-a relation

between classes.

The types of attributes are HOL-types. Thus, ODL can refer to any prede-
fined type from the HOL library, e.g., string, int as well as parameterized types,
e.g., option, list. As a consequence of the Isabelle document model, ODL defini-
tions may be arbitrarily mixed with standard HOL type definitions. Document
class definitions are HOL-types, allowing for formal links to and between onto-
logical concepts. For example, the basic concept of requirements from CENELEC
50128 [6] is captured in ODL as follows:

Ontology specifications consist of a sequence of class definitions like these;
here, they are intertwined with the standard Isabelle/HOL datatype command
defining the constructors and the rules for role-type. Therefore, it can be ref-
erenced in the requirement doc-class. Note that Isabelle’s session management
allows for pre-compiling them before being imported in another document being
the instance of this ontology.

Fig. 2. Referencing a Requirement.

Figure 2 shows an ontological annotation of a requirement and its referenc-
ing via an antiquotation @{requirement ‹req1 ›}; the latter is generated from
the above class definition. Undefined or ill-typed references were rejected, the
high-lighting displays the hyperlinking which is activated on a click. The class-
definition of requirement and its documentation is also just a click away.
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Isabelle/DOF is based on the idea of “deep ontologies”. In this context, this
means that a logical representation for the instance req1 is generated, i. e. a
λ-term, which is used to represent this meta-data. For this purpose, we use
Isabelle/HOL’s record support [22].

For the above example, this means that req1 is represented by:

– the record term (|long-name = None, is-concerned = {developer , validator}|)
and the corresponding record type requirement = (|long-name::string option,
is-concerned ::role set |),

– while the resulting selectors were written long-name r , is-concerned r .

In general, onto-classes and the logically equivalent doc-classes were repre-
sented by extensible record types and instances thereof by HOL terms (see [5]
for details).

2.3 Term-Evaluations in Isabelle

Besides the powerful, but relatively slow rewriting-based proof method simp,
there are basically two other techniques for the evaluation of terms:

– evaluation via reflection into SML [12] (eval), and
– normalization by evaluation [1] (nbe).

The former is based on a nearly one-to-one compilation of datatype specifica-
tion constructs and recursive function definitions into SML datatypes and func-
tions. The generated code is directly compiled by the underlying SML compiler
of the Isabelle platform. This way, pattern-matching becomes natively compiled
rather than interpreted as in the matching process of simp. Aehlig et al [1] are
reporting on scenarios where eval is five orders of magnitude faster than simp.
However, it is restricted to ground terms. nbe is not restricted to ground terms,
but lies in its efficiency between simp and eval.

Isabelle/DOF uses a combination of these three techniques in order to evalu-
ate invariants and check data-integrity on the fly during editing. For reasonably
designed background theories and ontologies, this form of runtime-testing is suf-
ficiently fast to remain unnoticed by the user.

3 Term-Context Support, Invariants and Queries in DOF

Isabelle/HOL as a system offers a document-centric view to the formal theory
development process. Over the years, this led to strong documentation genera-
tion mechanisms supported by a list of build-in text and code anti-quotations.
As mentioned earlier, Isabelle/DOF generates from ODL families of ontology-
related anti-quotations used in text and code contexts [4,5]. In this section, we
introduce the novel concept of term contexts, i. e. annotations to be made inside
λ-terms (See Fig. 3). Terms comprising term anti-quotations were treated by a
refined process involving the steps:
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Fig. 3. Contexts in Isabelle/DOF.

– Parsing and Typechecking of the term in HOL theory context,
– Ontological validation of the term:

• the arguments of term anti-quotations are parsed and checked,
• checks resulting from ontological invariants were applied,

– Generation of markup information for the navigation in the IDE,
– Elaboration of term anti-quotations: depending on the antiquotation specific

elaboration function, the anti-quotations containing references were replaced
by the object they refer to, and

– Evaluation: HOL expressions were compiled and the result executed.

In order to exemplify this process, we consider the Isabelle/DOF commands
term∗ and value∗ (which replace the traditional commands term and value
restricted to parsing and type-checking).

Here, term∗ parses and type-checks this λ-term as usual; logically, the @{thm
′′HOL.refl ′′} is predefined by Isabelle/DOF as a constant ISA-thm. The valida-
tion will check that the string ′′HOL.refl ′′ is indeed a reference to the theorem
in the HOL-library, notably the reflexivity axiom. The type-checking of term∗
will infer bool for this expression. Now, value∗ will replace it by a constant rep-
resenting a symbolic reference to a theorem; code-evaluation will compute False
for this command. Note that this represents a kind of referential equality, not a
“very deep” ontological look into the proof objects (in our standard configuration
of Isabelle/DOF). Further, there is a variant of value∗, called assert∗, which
additionally checks that the term-evaluation results in True.

In Fig. 4, we present the running example for this section. Note that it is an
extract from the ontology of [5], which could be used for writing certification
documents.
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Fig. 4. Excerpt of an Example Ontology for mathematical Papers.

Some class instances can be defined with the text∗ command, as in Fig. 5.

Fig. 5. Some Instances of the Classes of the Ontology of Fig. 4.

In the instance intro1 , the term antiquotation @{Author ‹church›}, or its
equivalent notation @{Author ′′church ′′}, denotes the instance church of the
class Author, where church is a HOL-string. One can now reference a class
instance in a term∗ command. In the command term∗‹@{Author ‹church›}›
the term @{Author ‹church›} is type-checked, i. e., the command term∗ checks
that church references a term of type Author against the global context (see
Fig. 6).
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Fig. 6. Type-Checking of Antiquotations in a Term-Context.

The command value∗‹email @{Author ‹church›}› validates @{Author
‹church›} and returns the attribute-value of email for the church instance, i.
e. the HOL-string ′′church@lambda.org ′′ (see Fig. 7).

Fig. 7. Evaluation of Antiquotations in a Term-Context.

Since term antiquotations are basically logically uninterpreted constants, it is
possible to compare class instances logically. The assertion in the Fig. 8 fails: the
class instances proof1 and proof2 are not equivalent because their attribute prop-
erty differs. When assert∗ evaluates the term, the term antiquotations @{thm
‹HOL.refl›} and @{thm ‹HOL.sym›} are checked against the global context
such that the strings ‹HOL.refl› and ‹HOL.sym› denote existing theorems.

The mechanism of term annotations is also used for the new concept of
invariant constraints which can be specified in common HOL syntax. They were
introduced by the keyword invariant in a class definition (recall Fig. 4). Follow-
ing the constraints proposed in [4], one can specify that any instance of a class
Result finally has a non-empty property list, if its kind is proof (see the invari-
ant has-property), or that the relation between Claim and Result expressed in
the attribute establish must be defined when an instance of the class Conclusion
is defined (see the invariant establish-defined).

Fig. 8. Evaluation of the Equivalence of two Class Instances.
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In Fig. 4, the invariant author-set of the class Intro enforces that a Intro
instance has at least one author. The σ symbol is reserved and references the
future class instance. By relying on the implementation of extensible records in
Isabelle/HOL [22], one can reference an attribute of an instance using its selector
function. For example, establish σ denotes the value of the attribute establish of
the future instance of the class Conclusion.

The value of each attribute defined for the instances is checked at run-time
against their class invariants. Recall that Classes also inherit the invariants from
their super-classes. As the class Claim is a subclass of the class Intro, it inherits
the Intro invariants. In Fig. 9, we attempt to specify a new instance claimNo-
tion of this class. However, the invariant checking triggers an error because
the invariant force-level forces the value of the argument of the attribute
Text-section.level to be greater than 1, and we initialize it to Some 0 in claim-
Notion.

Fig. 9. Inherited Invariant Violation.

Any class definition generates term antiquotations checking a class instance
reference in a particular logical context; these references were elaborated to
objects they refer to. This paves the way for a new mechanism to query the
“current” instances presented as a HOL list. Using functions defined in HOL,
arbitrarily complex queries can therefore be defined inside the logical language.
Thus, to get the property list of the instances of class Result, it suffices to process
this meta-data via mapping the property selector over the Result class:

Analogously we can define an arbitrary filter function, for example the HOL
filter definition on lists:

to get the list of the instances of the class Result whose evidence is a proof :

With Isabelle/DOF comes the concept of monitor classes [5], which are classes
that may refer to other classes via a regular expression in an accepts clause.
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Semantically, monitors introduce a behavioral element into ODL and to enforce
the structure in a document. Monitors generate traces about a part of a docu-
ment, recorded in the trace attribute of the monitor, and also presented as a list
of string. For this monitor specification:

... one can define an is−in function in HOL to check the trace of a document
fragment against a regular expression:

Here, the term anti-quotation @{trace−attribute ′′monitor1 ′′} denotes the
instance trace of monitor1 . It is checked against the regular expression
example-expression. Actually, example-expression is compiled via an implemen-
tation of the Functional-Automata of the AFP [18] into a deterministic automa-
ton. On the latter, the above acceptance test is still reasonably fast.

4 Proving Morphisms on Ontologies

The Isabelle/DOF framework does not assume that all documents refer to the
same ontology. Each document may even build its local ontology without any
external reference. It may also be based on several reference ontologies (e. g.,
from the Isabelle/DOF library). Making a relationship between a local ontology
and reference ontologies is a way to show that the built document referencing a
local ontology is not far away from a domain reference ontology.

Since ontological instances possess representations inside the logic, the rela-
tionship between a local ontology and a reference ontology can be formalized
using a morphism function specified also inside the logic. More precisely, the
instances of local ontology classes may be mapped to one or several other
instances belonging to another ontology. Thanks to the morphism relationship,
the obtained instances may either be an equivalent representations or abstrac-
tions of the original ones. It may also provide additional properties. This means
that morphisms may be injective, surjective, bijective, and thus describe abstract
relations between ontologies. This raises the question of invariant preservation.
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To illustrate this process, we define a simple ontology to classify monitors.

This ontology defines the Item, Product and Monitor concepts. Each class
contains a set of attributes or properties and some local invariants. In this exam-
ple, we focus on the Monitor class defined as a list of products characterized by
their mass value. This class contains a local invariant c2 to guarantee that its
own mass equals the sum of all masses of its components. For the sake of the
argument, we use the reference ontology described as follows:

This ontology defines the Resource, Electronic, Component, Informatic and
Hardware concepts. In our example, we focus on the Hardware class contain-
ing a mass attribute inherited from the Component class and composed of a
list of components with a mass attribute formalizing the mass value of each
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component. The Hardware class also contains a local invariant c1 to define a
constraint linking the global mass of a Hardware object with the masses of its
own components.

To check the coherence of our local ontology, we define a relationship between
the local ontology and the reference ontology using morphism functions (or map-
ping rules as in ATL framework [9] or EXPRESS-X language [2]). These rules
are applied to define the relationship between one class of the local ontology to
one or several other class(es) described in the reference ontology. In our case, we
have to define two morphisms, Electronic-Component-to-Component-morphism
and Monitor-to-Hardware-morphism, detailed in the following listing:

These definitions specify how Electronic-Component or Monitor objects are
mapped to Component or Hardware objects defined in the reference ontology.
This mapping shows that the structure of a (user) ontology may be arbitrarily
different from the one of a standard ontology it references.

Actually, we implemented a high-level syntax for this:
onto-morphism (Computer-Hardware) to Hardware ..

where the “..” stands for a standard proof attempt consisting of unfolding the
invariant predicates and a standard auto proof. With this syntax, we can actually
cover more general cases such as :

onto-morphism (A1, ..., An) to X i and (D1, ..., Dm) to Y j

were tuples of instances belonging to classes (A1, ..., An) can be mapped to
instances of another ontology.
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After defining the mapping rules, now we have to deal with the question of
invariant preservation. The following example proofs for a simple but typical
example of reformatting meta-data into another format along an ontological
mapping are nearly trivial:

After unfolding the invariant and the morphism definitions, the preserva-
tion proof is automatic. The advantage of using the Isabelle/DOF framework
compared to approaches like ATL or EXPRESS-X is the possibility of formally
verifying the mapping rules, i. e., proving the preservation of invariants, as we
have demonstrated in the previous example.

5 Related Work

In this paper, we already mentioned conventional ontology modeling languages
like OWL; these systems possess development environments such as Protégé
[17] which allow the documentation generation and ontology-based queries in
structured texts. The platform allows also the integration of plug-ins that provide
Prolog-like reasoners over class invariants in a description logics or fragments of
first-order logic. In contrast to OWL, Isabelle/DOF brings forward our concept
of deep ontologies, i. e. ontologies represented inside an extensible and expressive
language such as HOL. Deep ontologies also allow using meta-logical entities such
as types, terms and theorems, and provide via anti-quotations means to reference
inside them. The purpose is to establish strong, machine-checkable links between
formal and informal content.

Isabelle/DOF’s underlying ontology definition language ODL has many sim-
ilarities with F-Logic [13] and its successors Flora-2 and ObjectLogic2. Shared
features include object identity, complex objects, inheritance, polymorphic types,
query methods, and encapsulation principles. Motivated by the desire for set-
theories in modeling, F-Logic possesses syntax for some higher-order constructs
but bases itself on first-order logics as foundation; this choice limits the potential
for user-defined data-type definitions and proofs over classes significantly. Orig-
inally designed for object-oriented databases, F-Logic and its successors became
mostly used in the area of the Semantic Web. In contrast, Isabelle/DOF rep-
resents an intermediate layer between a logic like HOL and its implementing
languages like SML or OCaml (having their roots as meta-language for these
systems). This “in-between” allows for both executability and logical reasoning
over meta-data generated to annotate formal terms and texts.
2 ... with OntoStudio as a commercial ObjectLogic implementation.
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While F-Logic and its successors have similar design objectives, Isabelle/DOF
is tuned towards systems with a document-centric view on code and semi-formal
text as is prevailing in proof-assistants. Not limited to, but currently mostly used
as document-ontology framework, it has similarity with other documentation
generation systems such as Javadoc [8,21], Doxygen or ocamldoc [3](chap. 19).
These systems are usually external tools run in batch-mode over the sources with
a fixed set of structured comments similar to Isabelle/DOF’s antiquotations. In
contrast, our approach foresees freely user-definable anti-quotations, which are
in the case of references automatically generated. Furthermore, we provide a
flexible and highly configurable LATEX backend.

Regarding the use of formal methods to formalize standards, the Event-
B method was proposed by Fotso et al. [11] for specifications of the hybrid
ERTMS/ETCS level 3 standard, in which requirements are specified using
SysML/KAOS goal diagrams. The latter were translated into Event-B, where
domain-specific properties were specified by ontologies. In another case, Mendil
et al. [16] propose an Event-B framework for formalizing standard conformance
through formal modelling of standards as ontologies. The proposed approach
was exemplified on the ARINC 661 standard. These works are essentially inter-
ested in expressing ontological concepts in a formal method but do not explicitly
deal with the formalization of invariants defined in ontologies. The question of
ontology-mappings is not addressed.

Another work along the line of certification standard support is
Isabelle/SACM [10], which is a plug-in into Isabelle/DOF in order to provide
specific support for the OMG Structured Assurance Case Meta-Model. The use
of Isabelle/SACM guarantees well-formedness, consistency, and traceability of
assurance cases, and allows a tight integration of formal and informal evidence
of various provenance.

Obvious future applications for supporting the link between formal and infor-
mal content, i.e. between information and knowledge, consist in advanced search
facilities in mathematical libraries such as the Isabelle Archive of Formal Proofs
[15]. The latter passed the impressive numbers of 730 articles, written by 450
authors at the beginning of 2023. Related approaches to this application are a
search engine like http://shinh.org/wfs which uses clever text-based search meth-
ods in many formulas, which is, however, agnostic of their logical context and of
formal proof. Related is also the OAF project [14] which developed a common
ontological format, called OMDoc/MMT, and six export functions from major
ITP systems into it. Limited to standard search techniques on this structured
format, the approach remains agnostic on logical contexts and an in-depth use
of typing information.

6 Conclusion and Future Work

We presented Isabelle/DOF, an ontology framework deeply integrating
continuous-check/continuous-build functionality into the formal development
process in HOL. The novel feature of term-contexts in Isabelle/DOF, which

http://shinh.org/wfs
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permits term-antiquotations elaborated in the parsing process, paves the way
for the abstract specification of meta-data constraints as well the possibility of
advanced search in the meta-data of document elements. Thus, it profits and
extends Isabelle’s document-centric view on formal development.

Many ontological languages such as F-Logic as well as the meta-modeling
technology available for UML/OCL provide concepts for semantic rules and con-
straints, but leave the validation checking usually to external tools or plug-ins.
Using a combination of advanced code-generation, symbolic execution and reifi-
cation techniques existing in the Isabelle ecosystem, we provide the advantages
of a smooth integration into the Isabelle IDE. Moreover, our approach leverages
the use of invariants as first-class citizens, and turns them into an object of for-
mal study in, for example, ontological mappings. Such a technology exists, to
our knowledge, for the first time.

Our experiments with adaptations of existing ontologies from engineering
and mathematics show that Isabelle/DOF’s ODL has sufficient expressive power
to cover all aspects of languages such as OWL (with perhaps the exception to
multiple inheritance on classes). However, these ontologies have been developed
specifically in OWL and target its specific support, the Protégé editor [17]. We
argue that Isabelle/DOF might ask for a re-engineering of these ontologies: less
deep hierarchies, rather deeper structure in meta-data and stronger invariants.

We plan to complement Isabelle/DOF with incremental LATEX generation and
a previewing facility that will further increase the usability of our framework for
the ontology-conform editing of formal content, be it in the engineering or the
mathematics domain (this paper has been edited in Isabelle/DOF, of course).

Another line of future application is to increase the “depth” of term antiquo-
tations such as @{typ ‹ ′τ›}, @{term ‹a + b›} and @{thm ‹HOL.refl›}, which
are currently implemented just as validations of references into the logical con-
text. In the future, they could optionally be expanded to the types, terms and
theorems (with proof objects attached) in a meta-model of the Isabelle Kernel
such as the one presented in [20] (also available in the AFP). This will allow for
definitions of query-functions in, e.g., proof-objects, and pave the way to anno-
tate them with typed meta-data. Such a technology could be relevant for the
interoperability of proofs across different ITP platforms.
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Abstract. The Event-B method is generally used to build models incre-
mentally by integrating high level requirements. However, developing
correct systems is not a cakewalk and remains a challenging task. In this
paper, we focus on the preliminary steps of the development of safety-
critical systems. We investigate how patterns could be used to generate
refinements automatically in the context of an Event-B development.
Our main concerns are first to simplify the development of such systems
by the use of patterns, and second to produce Event-B machines such
that the user can choose to refine them additionally.

Keywords: High level requirements · Refinements · Event-B ·
Pattern-based development

1 Introduction

Event-B [1] is a formal method for system-level modeling and verification.
Pattern-based development in Event-B refers to the repeated use of patterns
to create complex systems. This approach helps to reduce the complexity of the
models, increase their consistency and structure, and enhance their readabil-
ity for future reuse. In this context, refinement is a process of transforming an
abstract model into a more concrete one with guaranteed conformance through
the verification of proof obligations. This process is repeated until the model is
sufficiently concrete to be implemented. Refinement steps introduce new vari-
ables or events to take into account requirements incrementally. In this paper,
we propose to use patterns to produce these steps through dedicated Domain-
Specific languages (DSL). The proposed patterns are used to generate refinement
of existing machines. It would be a way to document and systematize the con-
struction of these steps.

2 Related Work

With respect to patterns, a pioneering work [6] has been developed for Atelier-B.
It addresses the automatic generation of a B implementation model from data
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structures and statements yet to be refined. Additionally, several design patterns
have been developed for Event-B.

In [3,4], a set of patterns is studied. These patterns focus mostly on modeling
message send/receive and communications. Multiple variants of message commu-
nications are given (single message, multiple messages, bilateral communication,
message acknowledgment or rejection. Moreover, a tool is developed in the form
of a plugin to the Rodin platform [2]. In their approach, a pattern is defined as
a usual Event-B machine coupled with its refinement. A mapping between the
user development and the pattern must be provided to instantiate the generic
refinement. This machine is matched with the user’s machine through variable
and event names linkage. It is thus not possible to capture neither expressions
nor predicates of the user’s model. In our approach, we exploit the possibility
to reference user’s predicates (guards and invariants) and build new ones out of
them. Moreover, we have tried to have an explicit statement of the mappings
through Domain Specific Languages.

Finally, the paper [5] introduces a pattern language for refining Event-B
machines by accessing and modifying model elements (events, guards, invari-
ants...). However, this language does not address concerns related to weakest
preconditions calculus and does not offer dedicated DSLs for pattern applica-
tion. Our patterns rely on predicates and predicate transformers.

3 Pattern-Based Refinement Proposals

In this section, we propose two refinement patterns: counter introduction pat-
tern and observer-based patterns, coupled with constraint declarations that will
restrict the allowed behavior of the system.

To differentiate between the classic event-B syntax and our extensions, we
will style the keywords of our extensions in italics and purple, in contrast, to
bold for the classic Event-B keywords. The semantics of our patterns is defined
by the resulting refinement of the machine on which it is applied. The refinement
can introduce new invariants. Their correctness remain to be proved by the user.

In order to illustrate our patterns, we suppose that we have already defined
the machine M0 which contains the two events ev1 and ev2.

3.1 Introducing Counters

Event counters are a technique used to keep track of the number of occurrences
of a specific event or set of events. In this section, we introduce counter patterns.
Counters may either be general or dedicated. Since we are interested in reasoning
over the occurrence of events, we introduce event counters that may be explicitly
incremented and decremented on the occurrence of given events.

Event Counters. Event counters are incremented and decremented by given
sets of events. They allow the specification of event-based properties such as
precedence properties, e.g. producer/consumer properties, bounded drift . . . .
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Syntax. The following pattern introduces the counter cnt along with its incre-
mentation and decrementation sets. This leads to the creation of a refined
machine M1 of the abstract machine M0.

refinement M1 refines M0
counters cnt

incremented by evt1,. . . decremented by evt2,. . .
end

Semantics. The semantics is given in the following machine. The action of ev1
(ev2) increases (decreases) the event counter.

machine M1 refines M0
variables cnt
invariants @inv cnt ∈ Z

events
event INITIALISATION extends INITIALISATION then cnt := 0 end
event ev1 extends ev1 then cnt := cnt + 1 end
event ev2 extends ev2 then cnt := cnt − 1 end

end

Counter-Based Property Patterns. We showcase the following properties
to give the reader examples of how event counters may be used in Event-B. We
only give three examples here but one can imagine the multiple possibilities of
how event counters can be used. For the sake of simplification, we use here #evt
to denote the number of occurrences of an event evt.

– Precedence or unbounded buffered communication : #evt1−#evt2 ≥ 0. Each
event evt2 must be preceded by its corresponding evt1. This can also be read
as evt2 receiving a message sent by evt1.

– Bounded buffered communication : #evt1 − #evt2 ∈ 0..M . The event evt1
sends a message to some bounded buffer which is read by evt2.

– Bounded divergence : #evt1 −#evt2 ∈ −M..M . This pattern can be used to
model that a clock drift/divergence remains bounded.

Parameterized Counters. We extend the previous specification counters by
allowing them to be parameterized. Counter parameters are typed by predicates.
The incrementation and decrementation of a counter instance become related to
the parameters of the events it is counting. This relation is introduced by a
predicate using a when annotation.

For the sake of exhaustiveness, we fully cover the parameterization concept
by allowing the addition of parameters to existing events and also to declare new
parameterized events.
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Syntax. We now proceed by showing the general syntax. The refinement exten-
sion pattern contains now three sections :

– The parameters section declaring new parameters (ep1,ep2) for exiting events
(evt1,evt2). These parameters are typed as usual through the where clause.

– The events section declares the new parameterized events (evt3).
– As in the earlier defined event counter pattern, the counters section declares

new counters (cnt) along with the set of the events that trigger their
incrementation and decrementation (evt1,evt2,evt3). These incrementa-
tion/decrementation are now conditional and specified by the added predi-
cates (C1,C2,C3).

refinement M1 refines M0
parameters //new parameters for existing events

evt1(ep1. . .) where P1. . .
evt2(ep2. . .) where P2. . .

events //new events

evt3(ep3. . .) where P3. . .
counters

cnt(p1,. . .pn) where P // predicate on counter parameters

incremented by evt1 when C1, evt3 when C3 decremented by evt2 when C2
end

Semantics. The semantics is given in the following machine. The action of ev1
(resp. ev2) increases (resp. decreases) the indexed counter when arguments sat-
isfy both counter introduction and counter update predicates. Note that the
event guards are not strengthened.

machine M1 refines M0
variables cnt
invariants @inv cnt ∈ {p1 �→. . . �→ pn | P} −→ Z

events
event INITIALISATION extends INITIALISATION
then cnt := {p1 �→. . . �→ pn | P} × {0} end

event evt1 extends evt1 any ep1. . . where P1
then cnt := cnt �− {(p1�→. . �→pn) �→ cnt(p1�→. . . �→pn)+1 | P ∩ C1} end

event evt2 extends evt2 any ep2. . . where P2
then cnt := cnt �− {(p1�→. . �→pn) �→ cnt(p1�→. . . �→pn)−1 | P ∩ C2} end

event evt3 any ep3 where P3 then
then cnt := cnt �− {(p1�→. . �→pn) �→ cnt(p1�→. . . �→pn)+1 | P3 ∩ P ∩ C3} end

end

3.2 Imposing Constraints on Machines

In the following, we preview to add a constraints clause in the Event-B
machine. It will implicitly add guards to control event occurrences and thus
ensure the constraint property. The constraints will hence play the role of a
controller of the model.
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Syntax. The clause constraints is added to the Event-B machine. The clause
will be followed by a list of labeled predicates which may contain constants, state
variables, and event counters. These constraints will be used to generate implicit
guards. Unlike invariants where discharging proof obligations has to be done by
the user, these implicit guards guarantee that the constraints -considered as
invariants- are preserved by the events. They should be initially satisfied.

Generation of Implicit Guards. For an event ev having the below form :

event ev when G then A end

we automatically add the guards [A](c1) ... [A](cn) where {c1,...cn} is the
constraints set and [A](C) the weakest precondition of action A and the post-
condition C.

3.3 Observation Pattern

We suggest separating the evaluation of an event guard from the computation
of the event action. It follows that guard evaluation and action computation are
no more necessarily atomic. For this purpose, we introduce a control variable
and an additional detection event. The control variable is updated by certain
events and tested by the targeted event. As for the detection event, it computes
the guards’ values and updates the control variable correspondingly. Since this
separation is introduced as a refinement, its correctness holds by construction.
This refinement pattern is applied to the following machine. The guards G1 &
...& Gn of the targeted event evt will be asynchronously observed using an
auxiliary event that enables the control when the guard is satisfied. This means
that the control variable’s value is not fully synchronized with the observed
guards.

event evt when G1 ∧ . . . ∧ Gn ∧ Gr then A end
event other when G other then A other end

Syntax. The following syntax is suggested where g is the control variable that
is observed by evt and init value and is an initial value given by the user.

refinement mac1 refines mac0
event evt observes guards G1. . .Gn using new event evt detect
and new variable g trigger ∈ TYPE enabled by OK disabled by KO

end

Two variants are introduced: the first variant named Without Protection
allows other events to change the value of the control variable. The second variant
named With Protection disables all events that would change the value of the
control variable.

Without Protection. This variant breaks the atomicity between observation and
action. The events that invalidate the observed guards must also update the
trigger variable. In the targeted event, the selected guards are replaced by a test
of the trigger variable which is also reset. Other events reset the trigger if the
guards are falsified by their actions.
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variables g trigger . . .
invariants
g trigger ∈ TYPE
g trigger =OK ⇒ G1 ∧ . . . ∧ Gn
event evt refines evt when g trigger = OK ∧ Gr
then g trigger := KO A end

event other extends other // for all events �= ev

then //if G1 ∧. . .∧ Gn becomes FALSE, g_trigger is set to FALSE

g trigger := {TRUE �→ g trigger, FALSE �→ KO}([A other](G1 ∧ . . . ∧ Gn))
end

event evt detect when g trigger = KO ∧ G1 ∧ . . . ∧ Gn then g trigger := OK end

With Protection. In the following pattern, the atomicity of guards testing and
actions is preserved. This is done by introducing a critical section between an
event performing the guard’s test and the original event performing the action.
If the guard succeeds the subsequent events cannot disable it until the original
event occurs.

An event tests the guards and enables another event that can only be trig-
gered once. The next detection will only be allowed after the trigger event has
been acknowledged.

The protected keyword precedes the declaration of the targeted event. The
semantic difference between the two variants is that we replace the trigger update
actions with a guard in all events except for the targeted event. This is high-
lighted in the following code snippet using a weakest precondition calculation
ensuring that the execution will preserve the observed guards.

event other extends other // guarantees the invariant preservation

where g trigger = OK ⇒ [A other](G1 ∧. . .∧ Gn) end

Exclusion Constraint. If the observation pattern was used multiple times to
introduce several triggers, an exclusion constraint can be imposed. In this case,
the evt guard detect event associated with a given trigger will reset all other
triggers that are not in exclusion with it. It follows that the exclusion invariant
over each exclusion set is ensured.

4 Development of the Example

In this section, we propose a new development chain for the Island-bridge case
study [1]. This case study designs a system of traffic lights on a one way bridge
that connects an island to a mainland. The traffic lights need to be designed to
manage the traffic flow and ensure the safety of the system.

Starting from a model reduced to entering/exiting events we build the final
model by applying refinement patterns introducing island capacity, car counters
and bridge unidirectional constraint, traffic lights, and lastly car sensors.
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– Initial Model: This model declares two events, one for entering the bridge and
another for exiting the bridge. They will be constrained later.

– Introduction of Isle-Bridge capacity: we use the parameterized counter pat-
tern to count the number of vehicles and fulfill the capacity requirement.

– Introduction of Isle-Bridge Events: we use the parameterized counter pattern
along with new events to count vehicles in each direction of the bridge and
on the island.

– Introduction of Traffic lights: we use the Observation Pattern Without Protec-
tion. The traffic lights play the role of the triggers introduced by the pattern.
They are updated each time a vehicle enter or exits the bridge.

– Introduction of Car Sensors: we use the Observation Pattern, this time with
Protection. Sensors play the role of triggers that observe the traffic lights.
The targeted events are declared protected as they should not be disabled
whenever the green light has been observed by the driver.

In order to illustrate our approach, we only showcase an excerpt of the pattern
application used in the introduction of traffic lights step. This application looks
as the following :

observation refinement m3 TrafficLights
refines m2 BridgeToIsle sees cColor cCategory cCapacity

event ML2BR observes @noOverflow @noExiting
using new variable ml tl ∈ COLOR
enabled by green disabled by red
set by event ml green

. . .
end

In this machine, the event ML2BR is refined by replacing the guards (observes
noOverflow and noExiting) that express that bridge access is safe through
previously introduced counters. The new guard checks that the variable ml tl
modeling the traffic light is green (enabled by). The traffic light may be changed
to red (disabled by) by any event that can modify the counters. A new event
(set by ml green) is added to change the enable back the control variable.

5 Conclusion

In this paper, we have proposed an approach to generate Event-B refinements
through DSLs-based patterns. We have illustrated the use of these patterns to
rebuild the refinement chain of a well-known case study. In future work, we plan
to study more patterns in the context of distributed systems. We also plan to
study how to prove the correctness of our suggested patterns. This may reduce
the number of proofs that remain to be done by the user after a pattern’s applica-
tion. Moreover, we mention that the reverse-engineering of existing development
would be the basis for the discovery of well-suited patterns. Needless to say that
this discovery could be alleviated thanks to emerging AI solutions.
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Abstract. Proving theorems and properties on B models, recursively-
defined functions is a convenient tool which is missing in B proofs. The
main contribution of this paper is the definition of a new theory without
new concrete types and without axioms to enable the use of construc-
tions by induction; This theory has been specified and proved within
the Theory Plugin in Rodin. This induction theory clearly improves the
existing B prover. This is illustrated in this paper by the implementation
of ZFC in the Theory Plugin.

1 Introduction

The background of this work is the use and the improvement of the Theory
Plugin1 in Rodin2. Rodin is a modeling and proof assistant tool based on classical
logic and typed set theory. The mathematical language for Rodin is set theory
and arithmetic. The core theory of Rodin is a sub-theory of typed set theory and
is weaker than the theory defined in the Event-B book [2]. It is defined through
the set of rules embedded in the tool.

A new plugin has been developed to define and validate language and proof
extensions. Hence, new generic theories can be defined thanks to the Theory
Plugin, and then imported in standard Rodin projects in order to enable the
reuse of all the proof rules and results built within the theory. By generic, we
mean that some types can be abstract and specified when the elements in the
theory are used (axioms, theorem, rewrite and inference rules). Convinced by
the interest of this Theory Plugin, we have worked on several case studies for
new theories.

The start for this specific study was the realization of ZFC theory [8,12,17]
in the Theory Plugin. Our main motivation for choosing ZFC was to prove and
define early results and constructions in this theory, notably concerning ordi-
nals and recursive definitions. This would allow us to understand how the usual
mathematical objects are formally defined in ZFC and the use of a automated
proof assistant allows to ensure that everything is done rigorously.
1 https://wiki.event-b.org/index.php/Theory Plug-in.
2 https://www.event-b.org/install.html.
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We needed to deal with transitive closure which is related to iterations of
relations. The latter is defined in the B book [1] by B1 = B and Bn+1 = B;Bn.
By exploring different proof strategy options, we remark that recursively-defined
functions would be a convenient tool which is missing in B provers.

In [3], the proof of the Zermelo theorem has been addressed but the con-
text was different. The historical existing tool was Atelier B3 and models were
specified with the B language mainly. Open source platforms like Rodin were
not commonly available at that time. The main objective of [3] was to show
how complex mathematical theorems could be mechanically proved by means of
proof tools. In this paper, a new feature called “construct” has been introduced
in order to decompose and modularize the proof activity. In some ways, this
concept of mathematical construct corresponds to the current feature of theory
in the Theory Plugin of Rodin, but it was not implemented in the Atelier B
tool and the proof reuse mechanism did not exist. Nowadays, with the Theory
Plugin, all the proof results built within a theory can be mechanically reused in
Rodin projects.

Thus, the main contribution of our paper is the definition of a “pure B” new
theory, that is to say without new concrete elements and without axioms, to
enable the use of constructions by induction. Having neither types nor axioms
ensure that we are not giving more power to Rodin since the proof in the theory
could be “copied” directly at the place where it is used. Though it is obvious
that new axioms add power to Rodin, it is also the case for new elements since
these elements are supposed to exist.

The possibility to have such “pure B” theories allows to enable a modular
system proof rules. This is really convenient since one can decide to make selected
new rules available to automatic provers to do fine tuning of the overhead of
having more rules in the search of proofs by, for instance, PP (predicate prover)
and ML (mono-lemma).

This theory has been specified and proved within the Theory Plugin in Rodin.
This induction theory clearly improves the existing B prover. This is illustrated
in this paper by the implementation of ZFC in the Theory Plugin and the proof
of several classical results.

The paper is organized as follows. Section 2 introduces our new theory for
induction. Then, a case study is presented in Sect. 3 for the implementation of
ZFC. Section 4 concludes with some feedback on this work and some perspectives.

2 Defining a Theory for Induction

Induction is not part of the axioms of set theory since it can be proved by using
the regularity axiom. Hence, induction is not straightforward in tools supporting
the B language like Rodin or Atelier-B. However it is a convenient principle to
have for a lot of arithmetic proofs. For instance, one can prove by induction on
n that:

3 https://www.atelierb.eu/.

https://www.atelierb.eu/
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n∑

i=1

i2 =
n(n + 1)(2n + 1)

6

The following theorem allows B users to make inductive proofs:

∀P, (P ⊆ N ∧ 0 ∈ P ∧ ∀n, n ∈ P ⇒ n + 1 ∈ P ) ⇒ P = N

A convenient way to prove this theorem in Rodin and Atelier-B is simply to use
the minimum of a set. Indeed, by contradiction, if P = N \P is not empty, then
it has a minimum element. We define k = min P (B requires to prove that P is
not empty in the well-definition proof obligations of min). Then, there are two
cases. Either k = 0 and it contradicts 0 ∈ P . Or k = k′ + 1 and by definition of
the minimum, k′ ∈ P ⇒ k ∈ P , which is a contradiction.

Yet, induction is not enough, notably when one needs a recursively-defined
object. The canonical example is the factorial function:

{
0! = 1

(n + 1)! = (n + 1) × n!

Though this function could be defined directly in the B specification, it would
be more robust to formally prove the existence of such a function in order to
reduce the risk of errors. Moreover, in some cases like when proving some exis-
tential statements, the recursively-defined object depends on some parameters
with complex hypotheses (which could themselves depend on other parame-
ters) coming from the proving system. The hypotheses could even change if a
recursively-defined object has to be used several times. Then, choosing to imple-
ment it as a constant defined in the machine definition could be difficult and
error-prone.

2.1 Rodin Theorems for Induction and Inductive Objects

In this work, we prove a theorem which allows us to create recursive objects. More
precisely, for some type T , given an element f0 ∈ T and a function h : N×T → T ,
one wants to define a function f : N → T such that:

{
f(0) = f0

f(n + 1) = h(n, f(n))

The transitive closure operator for a relation, as originally introduced in the
B book [1], R∗, would be helpful to build recursively-defined objects. Indeed, we
simply define the function r : N × T → N × T as:

r(n, t) = (n + 1, h(n, t))

Then, one can define f(n) = fn where (n, fn) is the element of rn(0, f0).
This construction uses induction to prove that rn is a function:

∀n ∈ N, rn ∈ N × T → N × T
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The case n = 0 is trivial because r0 = idT is a function and we know that the
composition of two functions is also a function.

However, though the iteration of relations is available in Atelier-B, it is not
implemented in Rodin. And as we required to define a “pure B” theory, we
cannot simply add an axiomatic definition of iteration.

One could think about using the pattern matching feature of the Theory
Plugin on unary integers defined as a recursive datatype T (with constructors
nil and cons(T )). Yet the definition of the function to convert Rodin integers
into T requires a recursive definition.

Thus we chose to go back to the mathematical definition used by theoretical
mathematicians. The idea is to define f as the least element (for inclusion) of
some set F of relations g which are closed under the application of h and such
that g[{0}] = f0. More precisely, F is defined by:

F = {g | g ∈ N ↔ K ∧ {k0} = g[{0}]
∧ (∀n, n ∈ N ⇒ h[{n} × g[{n}]] ⊆ g[{n + 1}])}

and once F is defined, one has f =
⋂

F .
The global intersection allows us to use the properties

∀x ∈ N × T, (∀g ∈ F, x ∈ g) ⇒ x ∈ f (I1)

and

∀g ∈ F, f ⊆ g (I2)

Then, one uses relations and not functions in the definition of F because in this
case, the premise g ∈ F is weaker.

This consideration allows us to prove the following theorem in the Theory
Plugin in Rodin, for all type T :

∀f0 ∈ T, ∀h ∈ N × T → T, ∃f ∈ N → T,

f(0) = f0 ∧ ∀n ∈ N, f(n + 1) = h(n, f(n))

The existence of f is instantiated as the
⋂

F defined above.
The first step is to prove that f is a function that is:

∀n ∈ N, ∃t ∈ T, (n, t) ∈ f (R1)

and

∀n ∈ N, ∀t, t′ ∈ T, (n, t) ∈ f ∧ (n, t′) ∈ f ⇒ t = t′ (R2)

For (R1), one uses the induction principle proven above. The case n = 0 is
proved from that fact that ∀g ∈ F , (0, f0) ∈ g which implies with (I1) that
(0, f0) ∈ f . Also, if there is some t such that (n, t) ∈ f then ∀g ∈ F , (n +
1, h(n, t)) ∈ g and so, by using (I1), (n + 1, h(n, t)) ∈ f .
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For (R2), we first prove the following lemma, in a separate theory4:

∀F ⊆ N ↔ T, F 
= ∅ ⇒ ∀E ⊆ N, E �
⋂

F =
⋂

{f ∈ F | E � f} (L)

This is proved easily in Rodin by applying auto-tactics and naming explicitly
an element of the non empty set F with an ah(∃g, g ∈ F ): this means in the
prover tool that a new lemma is added (ah stands for add hypothesis, see for
instance [14] for a reference on proofs in Rodin).

Then we use our induction theorem to prove that

∀n ∈ N, 0..n � f ∈ 0..n → T

that is that all prefixes of f are functions. For n = 0, one uses (I2) with {(0, f0)}×
(N1 × T ). For n = n′ + 1, one uses (I2) with

(0..n′ � f) ∪ {(n, h(n′, f(n′)))} ∪ {k ∈ N | k > n} × T

proved in F with lemma (L).
Once this recursion is done, it rather easily implies equation (R2).
It remains to prove that the function f verifies

f(0) = f0 (F1)

and

∀n ∈ N, f(n + 1) = h(n, f(n)) (F2)

For (F1), one uses (I1) with x = (0, f0). For (F2), one uses (I2) with x =
(n + 1, h(n, f(n))) which ends the proof.

2.2 Enhancing Rodin with Theories

Though classical, these proofs require precision and caution to be made. Once
the work is done, it is a good point to be able to reuse it simply. Before the
introduction of the Theory Plugin, people used to prove theorems in B or Event-
B contexts (see for instance [3] for a related work about fixed points).

The Theory Plugin (see [7,10]) was introduced to add new theories to Rodin
and define “new data types and polymorphic operators in a systematic and prac-
tical way”. Examples and motivations in this paper deal with new data struc-
tures (stack or bags) but the Theory Plugin has also been used in the domain
of cyber-physical systems for adding elements about continuous objects (see for
instance [4] with definition for ordinary differential equations).

4 Separation of this lemma does not matter, we initially thought that several useful
lemmas could be grouped in a distinct theory.
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Fig. 1. Theorem instantiation: Select axiom or theorem

Fig. 2. Theorem instantiation: Assign types

In this work, we use the Theory Plugin just to add theorems and proof rules.
Contrary to context, we can specify an abstract type (done by using an abstract
SET in a context) which is specified when the theorem is instantiated. Theorem
instantiation is a feature required by the Theory Plugin in Rodin which in order
to add an axiom or a theorem in the list of hypothesis. The user first chooses
the axiom or the theorem (Fig. 1) and then specify the value of the type (Fig. 2).
Moreover, one can also add proof rules which define terms that can be unified
with sentences in hypothesis or goal, and applied either by automatic provers or
manually with the mouse. We did not add proof rules in the recursion theory
because we find more convenient to directly fill k0 and f using ∀-hyp and adding
the resulting F to the constant pool using ∃-hyp.

The recursion theory is reproduced in Fig. 3. Note that an axiom for the
operator min is added. This axiom can be proved using external SMT provers [5]
but the minimum has no definition in Rodin 3.7. This will be fixed in the future
version 3.8 of Rodin.

All these steps have been done with the Rodin platform and the files can be
found at https://git.lacl.fr/cervelle/abz2023pub.

https://git.lacl.fr/cervelle/abz2023pub
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Fig. 3. Recursion theory definition (edited because of a display bug)

3 Axiom Schema in Theory Plugin

The initial motivation of this study was to define ZFC set theory in the Theory
Plugin and see if it is possible to prove the basic results of set theory in Rodin.
Indeed ZFC is intended to have a minimal number of axioms and its axioms
are chosen to be non redundant. For instance, the axiom of infinity only states
that there is a set closed by successor (the function x → x ∪ {x}) but the set of
integers has to be defined by set comprehension.

We intend to define the set of integers, or prove the equivalence between
several definitions of ordinals:

– An ordinal is a transitive set totally ordered by ∈ (strict relation).
– An ordinal is a transitive set totally ordered by ⊆.
– An ordinal is a transitive set of transitive sets.

We also would like to prove the Zorn lemma from the axiom of choice.
Note that using a proving tool leads sometimes to unexpected considerations.

For instance, the axiom of the empty set is not necessary as it can be defined by
{x ∈ y | x 
= x} for any set y. However, Rodin has no such rule that there exists
at least one set and so we chose to add the axiom of the empty set (a weaker
and sufficient axiom would be just that at least a set exists). Note that another
axiom states that a set exists, the axiom of infinity, but it uses the empty set:

∃i, ∅ ∈ i ∧ ∀x, x ∈ i ⇒ x ∪ {x} ∈ i
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We also found another issue. It is about how axioms are written in ZFC.
Consider for instance the pairing axiom, written as:

∀x, ∀y, ∃p, ∀z, z ∈ p ⇔ (x = z ∨ y = z)

It is however much more convenient to define an operation pair(x, y) which cor-
responds to the set {x, y}. Yet this is not completely satisfactory since, when one
defines an operator in the Theory Plugin, the operator implicitly exists (more
precisely, for any input, the output of the operator exists). As fundamental set
theoretical proofs heavily rely on set existence, one must be particularly cau-
tious when one defines a new operator. For instance, defining set comprehension
without specifying a set from which elements are taken would lead to the Russell
paradox [11] allowing the construction of the set {x|x /∈ x}. Thus, in our wish
list for the Theory Plugin, we would like to be able to add “non-axiomatic”
operators where for all input, the existence of the output corresponding to the
axiomatic definition has to be proved. Note that in this particular case of the
pairing axiom, the function could be extracted by putting the formula in Skolem
normal form.

3.1 Axiom Schemas

Another consideration occurred during the study. Like many mathematical theo-
ries (Peano arithmetic, Kripke-Platek set theory), one needs axiom schema that
is not only one axiom but a countable set of axioms parameterized by a formula
(the set is countable because there is a countable number of formula, constants
from the model are not allowed in formula). For instance, the induction axiom
schema of Peano arithmetic is, for all formula φ(n, p0, . . . , pk):

∀p0, . . . , pk, φ(0, p0, . . . , pk) ∧ (∀n ∈ N, φ(n, p0, . . . , pk)
=⇒ φ(n + 1, p0, . . . , pk)) =⇒ ∀n ∈ N, φ(n, p0, . . . , pk)

The Theory Plugin does not have the possibility to have axiom schema and
we have to use a workaround to bypass this limitation. For induction, as seen
in the previous section, we chose to use B sets to represent formulas: the set of
the tuples of elements which make the formula true when its free variables are
assigned the elements of the tuple. For instance, the formula x|y (x divides y)
is described by the B set {x, y | ∃z ∈ N, x = zy}. More generally the formula φ
is represented by the B set {x1, . . . , xn | x1 ∈ T1 ∧ · · · ∧ xn ∈ Tn ∧ φ} (Ti is the
type of the variable xi in φ, often a type defined in the theory). Then, the axiom
schema becomes an universal quantification of the B set. For instance, for the
induction axiom schema, one writes:

∀φ ∈ P(N), 0 ∈ φ ∧ (∀n ∈ N, n ∈ φ =⇒ n + 1 ∈ φ) =⇒ ∀n ∈ N, n ∈ φ

The parameters are not needed anymore since they are implicitly quantified
with B.
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For the axiom schema of replacement (the image of a set by a class function
is a set, justification of the notation {f(x) | x ∈ a}), that is, for all formula φ
with free variables a1, . . . , ap, x, y and φ′ the same formula with y replaced by y′:

∀a1 . . . ap, (∀x,∀y,∀y′, φ ∧ φ′ ⇒ y = y′)
⇒ ∀s,∃t,∀y, (y ∈ t ⇔ ∃x, x ∈ s ∧ φ)

one can write:

∀φ ∈ SET → SET, ∀a ∈ SET, ∃b ∈ SET, ∀y, y � b ⇔ ∃x, x � a ∧ y = φ(x)

where � is the in relation of SET implementing the “belongs to” notion. Here,
for simplification, one uses a B partial function instead of a B set of tuples
because the premise of the axiom schema of replacement is precisely the fact that
the formula represents a partial function. Note that as before, the parameters
a1, . . . , ap can be omitted, since they are implicitly quantified in ∀φ ∈ SET →
SET .

3.2 Strengths and Weaknesses

Using this way of writing axiom schemas is convenient. Let us for instance con-
sider the axiom of specification (restricted set comprehension) which, given a
set x and a formula φ which has z as a free variable, states that there exists a
subset y of x such that z ∈ y if and only φ holds. We are writing it in Rodin as:

∀x, x ∈ SET ⇒ ∀P, P ∈ P(SET ) ⇒
∃y, y ∈ SET ∧ ∀z, (z � y ⇔ z � x ∧ z ∈ P )

Note the use of ∈ for the fact that z belongs to the B set P and � for the
requirement that z belongs to the set x. In our theory, of course, the elements of
P(SET ) are not sets. What makes this way to write axiom schema convenient
is the following. To use this axiom, we first instantiate it in Rodin (no type
needs to be specified since SET is not a type parameter but a true type defined
under the axiomatic definitions section). Suppose that one wants to express the
set {y ∈ x|¬y � y} for instance to prove by contradiction that there is no set
x containing all sets (this can also be proved by the axiom of regularity). Then
one just clicks the ∀x filling it with x and clicks the ∀P filling it with {y|¬y � y}
which, apart from its upper bound x, is precisely the set we intend to define.
The proof snippet is in Fig. 4 with the two “∀ inst” underlined.
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Fig. 4. Proof that ¬∃x,∀y, y � x

Though it is convenient, one must check that this way to express axiom
schemas does not allow to prove false statements. In manual proofs, one will
always use the axiom schema with a B set P written as {x|φ} to express the
axiom schema instantiated with formula φ. However, the automatic provers could
use it with other kinds of properties P . Thus we must check that our proof system
is the same as the proof system of ZFC.

If one consider theorems proven inside the model, that is to say the theorems
where the only type is SET , then as the B axiomatic is strictly weaker than
ZFC (Rodin has no choice and sets are typed), sets which are proved to exist in
a model of the internal theory of Rodin exist in any model of ZFC. Thus, any
theorem of this kind proven in Rodin is true in ZFC.

Yet, some concern one could have is that, contrary to using a true axiom
schema, we have a non countable number of axioms in our theory. Indeed, in
the ZFC theory, each axiom schema has an axiom for all formula and there is
a countable number of formulas. However, the type P(SET ) is not countable
since, using the axiom of infinity, the type SET is infinite. To illustrate this, we
proved the following “meta-theorem”:

P(N) � SET 
= ∅

which proves that any model of our theory as it is defined in Rodin is not
countable since there is an injection from the non countable set P(N) into SET .
This meta-theorem is clearly false in ZFC since the Löwenheim-Skolem theo-
rem [13,16] states that there exist countable models of ZFC, often called Skolem’s
paradox as it is rather counter-intuitive though non paradoxical. Thus, we have
to pay attention to the fact that theorems proven inside the theory are true
ZFC theorems but that “meta-theorems” which combine the type SET and the
primitive types of B could be false.

We remark that this way of dealing with axiom schemas could cause problems
for weaker set theories like Kripke-Platek used to define admissible ordinals or
RCA0 and other theories taken from reverse mathematics where the formulas
for axiom schemas are constrained. For instance, these theories impose a bound
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on the number of quantifiers (Σn or Πn formula) or a requirement to have only
bounded quantifiers (Δ0) that is to say quantifier ∀x ∈ y for some set y. These
restrictions cannot be easily implemented in our current solution.

3.3 Application to ZFC

Once all these considerations are taken into account, we managed to define the
ZFC theory in the Theory Plugin: axiom schemas are meta-quantified with
either B sets (P(SET )) or B partial functions (SET → SET ). Axioms which
state that some sets exist (empty set, pairing, union, power set, specification,
replacement, infinity) are in fact introduced using an operator defined by axioms.
As discussed before, the existence of the set constructed by the operator is
implicit in the Theory Plugin. For instance, we defined the operator “powe” for
the power set. It takes a parameter of type SET and the result is of type SET .
Its axiomatic definition is:

∀y,∀x, x � powe(y) ⇔ (∀z, z � x ⇒ z � y)

to be compared with the original axiom:

∀y, ∃p,∀x, x � p ⇔ (∀z, z � x ⇒ z � y)

To test the new theory, we have proved several minor propositions:

– The fact that there is no set containing all others.
– The fact that each non empty set contains a set. Once the extensionality

axiom (two sets containing exactly the same set are equal) and the empty set
definition are imported using “instantiate theorem”, PP managed to prove
it (Fig. 5).

– If a set x is transitive (z ∈ y ∈ x ⇒ z ∈ x or a transitive set contains all the
elements contained in its elements) then it contains the empty set. This is a
consequence of the axiom of regularity.

– The lemmas x ∈ x ∪ {x} and x ⊆ x ∪ {x}.
– The fact the a set cannot contain itself, a consequence of the axiom of regu-

larity.
– The lemma that N � SET has an element whose range is included in the

infinite set introduced by the infinity axiom.
– The meta-theorem which states that our model has non countable cardinal.

Fig. 5. Proof tree of x �= ∅ ⇒ ∃y, y � x
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Note that automatic provers cannot use the theorem instantiation feature of
Rodin, only proof rules. But proof rules are not available to them. This is due
to the way theories are built: first the operators defined by axioms, then the
axioms, then the theorems and finally the proof rules. Proof rules are also not
available when proving theorems manually.

The complete definition of the theory, together with the proven theorems
are given in Fig. 6 and Fig. 7. Note that x � y is written as “TRUE = x in y”
because of a bug in Rodin 3.7 (this will be fixed in Rodin 3.8) which prevents us
from introducing predicate in a theory. We consequently used boolean functions
instead.

Fig. 6. ZFC in the Theory Plugin, axioms, choice to be added

To summarize this part, we can say that using the Theory Plugin is conve-
nient in this settings for the following reasons:

– It allows us to define new operators for the theory, infix or prefix, relational
and predicate (with Rodin 3.8) which turn out to produce readable formula
compared to using an Event-B context limited to B syntax. For instance, in
context, we need to have an element IN of SET ↔ SET to implement the
“belongs to” notion and write “(x, y) ∈ IN” instead of “x in y”.
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Fig. 7. ZFC in the Theory Plugin, theorems

– It allows us to define rewriting rules to make the proofs and possibly have
some parts proven automatically.

– If one wants to initiate people to a theory, having a graphical user interface
which lists the possible definitions and properties which can be used at some
point in the reasoning is efficient.

4 Conclusion

In this paper, we have specified in the Theory Plugin of Rodin a new theory to
enable the use of constructions by induction and we have provided an example
by the implementation of the ZFC theory.

4.1 Possible Rodin Improvements

We found that several features would be clear improvements in the Theory Plu-
gin. The first one concerns the fact that the theory file begins with defined oper-
ators, then continues with axiomatically defined operators, then axioms, then
theorems, then proof rules. This rigid structure leads to the following issues:
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– Proof rules cannot be used in the proof of theorems. Though this can be
circumvented by defining a new theory file for theorems, this feels rather
clumsy.

– Some operators are directly defined from axiomatically defined others. For
instance, the operator sing(x) which constructs the singleton {x} is directly
defined as pair(x, x). However, as directly defined operators are defined before
axiomatically defined ones in the theory file, it is not possible to define single-
ton as a direct definition. Here, it can be get around by defining the operator
sing as an axiomatically defined operator but a direct defined one requires
less writing since the proof rules are automatically available for them.

As seen in Sect. 3, when a new operator is defined in the Theory Plugin, the
output of the operator implicitly exists for any input. For instance, the definition
of the pair operator allows us to prove the axiom of the pair as stated in the
ZFC theory:

∀x, y, ∃p, ∀z, z ∈ p ⇔ z = x ∨ z = y

by simply putting pair(x, y) in place of p. However, this only proves that the
axiomatic definition of the operator pair is stronger than the pairing axiom
but not equivalent or weaker. We would like, when defining an operator in the
axiomatic part of the theory file, to have an option “theorem” (mimicking the
theorem/not theorem option for sentences in the invariant part of a classical
Event-B machine) to have Rodin generate a proof obligation that the function
exists. For instance, for the operator pair, the generated proof obligation would
be precisely the pairing axiom in ZFC. Generally, if an operator op(x1, . . . , xk) is
defined by a formula φ, the proof obligation would be ∃op, op ∈ T1 × · · · × Tk →
T ∧ φ where Ti is the type of xi and T the return type of op.

About manual proofs, we remark that sometimes, when doing a proof, we
forgot to define a lemma to be used several times in the proof. This is a classical
mistake and it is possible to:

– Prune the tree at the node we need to have the lemma.
– Insert the lemma with the ah (add hypothesis) command.
– Copy and paste the proof of the lemma from the saved proof tree.
– Either finish manually the proof or use parts from the saved proof tree.

For long and complex proofs, this operation has to be done quite cautiously not
to lose the proof tree. Yet, we think that one could use the fact that our CPUs
are all multicore to have a “crawler thread” which looks for similar subgoals and
if one is proved and not the other, try to run the same proof. This strategy could
succeed in some cases. For instance, we ran into such a case where we had to
prove that some property about integers x and y holds. To apply our hypothesis,
we had to do two cases, one for x ≤ y and one for x > y but for both cases the
proof tree was the same.

4.2 Future Work

Firstly, we plan to finish to prove several results of ZFC and particularly the Zorn
lemma. Dealing with bugs and some ellipsis in the Theory Plugin documentation,
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we did not investigate much how the definition of proof rules in the theories would
lead to more success with automated provers. We plan to see if some theorems or
lemmas could be proved mechanically introducing well chosen proof rules in both
the induction theory and the ZFC theory. The tests completed were promising
and at least improved efficiency in manual proofs.

Next, as seen in Sect. 3, our way to manage axiom schema works well for ZFC
but not for weaker theories. The motivation to define such theories comes from
reverse mathematics [9]. In the classical mathematical setting, a theory is built
upon some axioms, and then theorems are proved based on these axioms. In
reverse mathematics, we look at two theorems and try to see which is stronger.
Of course, if both theorems are true in a theory, there is no sense to speak
about one being stronger than the other. Then, reverse mathematicians try
to prove a theorem using the other as an axiom in a weak base theory. Five
particular subsystems of second-order arithmetic which often occur in reverse
mathematics are described in [15]. We are mainly interested in Recursive Com-
prehension Axiom (RCA0) which roughly corresponds to the constructive math-
ematics model from Bishop [6]. RCA0 is a subsystem of second-order arithmetic
whose axioms are the axioms of Peano arithmetic, induction for Σ0

1 formula and
comprehension for Δ0

1 formula. In that case, the approach using B sets is not
adapted for specifying models similar to RCA0. In particular, we need at least
to be able to express Σ0

n formulas and Π0
n formulas. Our objective is to define a

new theory to define such formulas from a syntactic and from a semantic point
of view and then prove formally the relation between the “big five” systems of
reverse mathematics.

Also future work, we aim at applying our theories to new case studies. We
explore some possibilities in the domains of graph theory and of ontology.
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Abstract. Validating requirements for safety-critical systems with user
interactions often involves techniques like animation, trace replay, and
LTL model checking. However, animation and trace replay can be chal-
lenging since user and system events are not distinguished, and formu-
lating LTL properties requires expertise.

This work introduces interactive simulation, a new technique that
combines domain-specific visualization of formal models with timed prob-
abilistic simulation to create more realistic prototypes. It allows domain
experts and users to interact with formal models and simulate the
system/environment reactions. State diagrams are also generated for
inspecting user interactions and system reactions. Finally, we demon-
strate interactive simulation on the ABZ automotive case study.

Keywords: Validation · Formal Methods · Visualization ·
Simulation · Interactive

1 Introduction and Motivation

Many safety-critical systems require human interaction to trigger a response
from the system or environment. For instance, a lift moves on button clicks, car
lighting is controlled by a driver [1], the airplane landing gear is operated by a
pilot [2], and air traffic controllers schedule airplanes via computers [3].

Safety-critical systems are often modeled using formal methods which make
use of mathematical notation. For example, models in B [4] and Event-B [5]
rely on set theory and first-order logic. This makes it hard for users and domain
experts to understand and interact with the model. These interactions cannot
always be fully formalized or verified; hence validation is important to ensure
that a formal model meets desired user requirements [6].

Approaches for domain-specific views for formal models include VisB [7] for
interactive visualizations, and SimB [8] for simulating real-world behavior with
probabilistic and timing properties. Both visualization and simulation are funda-
mental constructs for validation obligations (VOs) [9], an approach to validate
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requirements in formal models systematically. VOs also take domain experts’
and users’ feedback into account. Before this work, SimB was not responsive to
user interaction in VisB, making it impossible to trigger system reactions with
timing behavior based on user interaction.

This paper introduces a new interactive simulation technique, integrated
into SimB in ProB2-UI. Interactive simulation allows users to execute events
via VisB, triggering automatic system reactions via SimB simulation. State
diagrams focusing on graphical components in VisB are also presented to provide
a domain-specific view of user interactions with the system. The features improve
user experience, specifically in formal models with human-machine interactions,
providing better access to the validation process for users and domain experts.

2 Interactive Simulation

Interactive simulation combines animation, simulation, and visualization. First,
we present the principles of VisB and SimB, and then the implementation of
interactive simulation.

Principles. VisB is a visualization tool in ProB2-UI [10] which uses the ani-
mator, model checker and constraint solver ProB [11]. A VisB visualization
consists of an SVG file, and a glue file that links SVG objects with the formal
model. The glue file includes observers for SVG objects (VisB items) that change
the objects’ attributes (like colour) based on the model’s current state, and click
listeners on SVG objects (VisB events) that execute events in the formal model.

{"id":" peds_red", "attr ":" fill",
"value ":"IF tl_peds = red THEN \"red\" ELSE \"black\" END"},
{"id":" peds_green", "attr ":" fill",
"value ":"IF tl_peds = green THEN \"green\" ELSE \"black\" END"}

Listing 1. Example of VisB Items

{"id": "PitmanUpward",
"event": "ENV_Pitman_DirectionBlinking ", "predicates ": [" newPos=Upward7 "]}

Listing 2. Example of VisB Event

Fig. 1. VisB Visualization for Automo-
tive Case Study [12]

Listing 1 shows VisB items for the
pedestrians’ traffic light’s appearance
based on the variable tl peds (e.g.
fill attribute of peds red is "red"
when tl peds is equal to red, oth-
erwise "black"). Listing 2 shows an
example of a VisB event from an auto-
motive case study (see Sect. 4). The
VisB event states that a click on
the SVG object with PitmanUpward
as id executes the event ENV Pitman
DirectionBlinking with newPos=
Upward7 in the formal model.
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Figure 1 shows a complete visualization of the automotive case study with the
car lighting system, the pitman controller (to turn on the direction indicators),
the key ignition (to turn on the engine), and the warning lights button.

However, VisB has some limitations, e.g., VisB does not enable the activa-
tion of a sequence of events or control the time elapsed between events, nor allow
probabilistic event selection. These features are provided by another component.

blinking_
on

RTIME_
BlinkerOn

t

blinking_
o

RTIME_
BlinkerO

t

activatingactivating

activating

[INIT]

activating

Fig. 2. Example of SimB Diagram

SimB is a tool in ProB2-
UI which uses ProB’s animator
to simulate realistic scenarios. A
modeler can use SimB to encode
simulations with activation dia-
grams (see Fig. 2) annotating
events in formal models with
time and probabilities. Simula-
tions start automatically at the
model’s initialization, triggering
other events. Ideally, simulations run deadlock-free, i.e., events continue trig-
gering each other. The core concept is activations of two kinds [8]: (1) Direct
activations which execute events after a specific time, and optionally trigger
other activations, and (2) probabilistic choices which choose between activations
probabilistically (eventually a direct activation must be reached). SimB man-
ages a scheduling table to represent the simulation’s current state as a multiset
of scheduled direct activations, along with the scheduled time, i.e., the time
until the corresponding event is executed. For illustration, we only show direct
activations (yellow diamonds in Fig. 2) in this paper.

While a simulation is running, the user can still intervene and execute events
in ProB2-UI. However, SimB was not responsive to user interaction as there
was no link between user interaction and SimB’s activation diagram. Thus, it
was not possible to apply a user interaction to trigger a chain of system events.
To address this issue, we developed an interactive simulation technique.

Figure 2 shows parts of a SimB activation diagram for [12] where both acti-
vations (yellow diamonds blinking on and blinking off; JSON representation
in Fig. 3) trigger each other in a cycle. Each activation executes events from the
model (RTIME Blinker On and RTIME Blinker Off after a delay of t). The com-
plete activation diagram controls both user behavior and the vehicle’s reaction
automatically, with no distinction between user and system events or activations.

{"id": "blinking_on",
"execute ": "RTIME_BlinkerOn",
"after":

"curDeadlines(blink_deadline )",
"activating" : "blinking_off", ...}

{"id": "blinking_off",
"execute ": "RTIME_BlinkerOff",
"after":

"curDeadlines(blink_deadline )",
"activating" : "blinking_on", ...}

Fig. 3. Example of SimB Activations in Fig. 2
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Architecture. Figure 4 shows the architecture of ProB2-UI and ProB together
with VisB and SimB. When loading a VisB visualization or a SimB simula-
tion, they are first checked syntactically and semantically wrt. the model. A
user can then interact with the formal model via ProB’s animator, or the VisB
visualization. With interaction simulation, users can execute an event that auto-
matically triggers a sequence of other events with time elapsing in between. This
is realized by (newly introduced) SimB listeners that recognize user interactions
and trigger SimB activations accordingly. A user can then observe the system’s
reaction.

SimB Annotations

ProB Animator

Formal Model
Input

Input

evaluates formulas

executes events

SimB Listeners

activates

listens on 
user interaction

interacts

User

         ProB2-UIVisB

gives feedback, 
e.g., current state

VisB Visualization

Input

SimB
reacts

Fig. 4. Architecture with ProB2-UI, ProB, VisB, SimB, and User Interaction (new
features marked in bold)

Implementation. In the implementation, we distinguish events of two types:
those triggered by SimB, and those triggered via user interaction. Events trig-
gered by SimB are already part of the activation diagram.

SimB listeners are defined on events that are manually triggered, fulfill-
ing a predicate (realized with event and predicate in JSON). Based on
the user interaction, a SimB listener triggers simulations associated with the
activating field which stores activations. Thus, SimB listeners define addi-
tional entry points into the activation diagram which are triggered by user
interaction. Listing 3 shows a SimB listener which detects user interactions on
ENV Pitman DirectionBlinking, and triggers the activations blinking on and
blinking off (see Fig. 3).
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Fig. 5. Activation Diagram with SimB Listener

This results in the
activation diagram in
Fig. 5. Unlike Fig. 2, user
interaction is integrated
into SimB as an entry
point for the simulation.
The blinking lights are
triggered by user inter-
action, and not as part
of a fully automatic sim-
ulation activated at the
model’s initialization.

{"id": "start blinking",
"event": "ENV_Pitman_DirectionBlinking ", "predicate": "1=1",
"activating" : [" blinking_on", "blinking_off "]}

Listing 3. Example for SimB Listener

3 VisB Diagrams

ProB has a feature that projects the state space onto an expression [13]. Such an
expression could be a tuple of variables of interest. These diagrams are useful to
study the model’s behavior for a particular aspect or feature. This work extends
that feature by combining it with VisB. This results in VisB diagrams (e.g.,
Fig. 6) that can be read by domain experts, without having to understand the
textual representation of B values.

"red" 
"black"

# states: 1

"black" 
"green"

# states: 4

peds_gpeds_r

Fig. 6. VisB Diagram from Listing 1

VisB diagrams combined with interac-
tive simulation help to see how user events
and system/environment interact with each
other from the user’s perspective in VisB.
A detailed case study is presented in Sect. 4
(notably Fig. 8). VisB diagrams focus on a
subset of graphical objects and attributes.
We use ProB to compute the state space
projection for relevant expressions used by
VisB to compute the attributes. We also
use VisB to render each projected state
graphically. Figure 6 shows two projected states (out of five in the complete
state space), along with their graphical renderings1.

Let us describe this feature more formally. Let Vitems be the set of VisB
items and let Vprj with Vprj ⊆ Vitems be the subset of VisB of interest. A VisB
item v ∈ Vitems contains attributes for the SVG object’s id, attribute and value,

1 The technique is not yet fully automated: VisB visualisations were added manually
to the right-hand side of Fig. 6. Note that our feature was inspired by transition
diagrams in BMotionWeb [14,15].
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i.e., v = (v.id, v.attr, v.value). A VisB diagram is created with a projection [13]
on:

v1.id �→ v1.attr �→ v1.value �→ . . . �→ vn.id �→ vn.attr �→ vn.value

where Vprj = {v1, . . . , vn} and ∀i, j ∈ 1..n ∧ i �= j =⇒ vi �= vj .
An example is given for Listing 1, resulting in the left-hand side of Fig. 6:

"peds_red" �→"fill" �→ "IF tl_peds = red THEN \"red\" ELSE \" black\" END" �→
"peds_green" �→"fill" �→ "IF tl_peds = green THEN \" green\" ELSE \"black\" END"

4 Case Study

This section demonstrates the features introduced in Sect. 2 and Sect. 3 on an
automotive case study [12]. A VisB visualization is shown in Fig. 1.

Now, we focus on specific requirements that have been modeled and vali-
dated by Leuschel et al. [12] and Vu et al. [8], with a special interest in the
interactive/human (italic) and automatic/autonomous (underlined) parts, and
their connection:

– ELS-1 Direction blinking left : Assuming that the ignition key is inserted:
When moving the pitman arm in position “turn left”, the vehicle flashes all
left direction indicators (...) synchronously [...] and a frequency of 1.0 Hz ±
0.1 Hz (i.e. 60 flashes per minute ± 6 flashes).

– ELS-8: As long as the hazard warning light switch is pressed (active), all
direction indicators flash synchronously. [...]

– ELS-12: When hazard warning is deactivated again, the pitman arm is in
position “direction blinking left” or “direction blinking right” ignition is On,
the direction blinking cycle should be started (see Req. ELS-1).

Validation by Interactive Simulation. Based on requirements and model [12], we
encode SimB listeners and activations. We use VisB to perform user interactions
described in ELS-1, ELS-8, and ELS-12 and check if the car reacts as desired.
Initially, the engine is off, warning lights are not active, and the pitman arm is in
Neutral position (see Fig. 7a). First, the driver turns on the engine (see Fig. 7b)
and moves the pitman arm to Downward7 (see Fig. 7c) corresponding to the user
interaction of ELS-1. The car’s left direction indicators are expected to blink
every 500 ms, which is confirmed in Fig. 7d and Fig. 7e. Secondly, the driver
activates the warning lights, and checks if all direction indicators blink every
500 ms (described in ELS-8). This user interaction is shown in Fig. 7f, and the
car’s reaction is confirmed in Fig. 7f and Fig. 7g. Finally, the driver deactivates
the warning lights (see Fig. 7h), and checks if all left direction indicators blink
every 500 ms (as pitman arm is still in Downward7; requirement ELS-12). The
desired reaction is confirmed by the user in Fig. 7h and Fig. 7i.
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(a) Initialization (b) User Interaction: Turn En-
gine On

(c) User Interaction: Move
Pitman Arm to Downward7

(d) System Reaction: Left
Direction Indicators Turn On

(e) System Reaction: Left
Direction Indicators Turn Off

(f) User Interaction: Activate
Warning Lights
System Reaction: All
Direction Indicators Turn On

(g) System Reaction: All
Direction Indicators Turn Off

(h) User Interaction:
Deactivate Warning Lights
System Reaction: Left Direc-
tion Indicators Turn On

(i) System Reaction: Left
Direction Indicators Turn Off

Fig. 7. Validation of ELS-1, ELS-8, ELS-12 from User’s Perspective in ProB2-UI
(Visualization and User Interaction in VisB, System Reaction via SimB)

Validation by VisB State Diagram. After running user scenarios for ELS-1,
ELS-8, and ELS-12 via interactive simulation (described in Fig. 7), we inspect
the VisB state diagram (see Fig. 8). For clarity, we replaced the state diagram
nodes (textual representation) with the corresponding graphical objects. This is
currently done manually, but we attempt to automate it in the future.

This results in Fig. 8 with six states. The edges represent events executed
in Fig. 7. Thus, Fig. 8 does not show events that are not part of the scenario
in Fig. 7. The diagram shows that turning on the engine does not result in any
reaction from the car, while user events on the pitman arm and warning lights
button trigger the flashing cycles. Deactivating the hazard lights switches to the
left blinking lights cycle as the pitman arm is still in Downward7.
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RTIME_BlinkerOn
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RTIME_BlinkerOn

ENV_Hazard_
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ENV_Pitman_
DirectionBlinking

ENV_Turn_EngineOn

INITIALISATION

Fig. 8. State Diagram from Fig. 7

5 Related Work

Animation, Testing. In animation, the user has to execute all events manually.
Interactive simulation only requires users to execute user events manually after
which system events are executed automatically. This improves usability for users
but requires additional effort in encoding the simulation. Existing animators are,
e.g., the ProB animator [11], and AsmetaA for ASMs [16]. Domain-specific
scenarios are supported for Event-B with Gherkin using ProB [17,18], and for
ASMs with AsmetaV [19] and the AValLa language, and Asmeta2C++ [20].
As we ask: “when the user executes an event, then how does the system react?”,
there is some overlap between such scenarios and SimB activation diagrams.

The scenario checker uses ProB for animation and BMotionStudio [21] for
visualization of formal models [22]. It distinguishes between external (executed
manually) and internal events (fired automatically), similar to our work. SimB
simulates events more precisely as it encodes probabilistic and timing behavior.

Simulators. There are various simulators like SimB: JeB [23], AsmetaS [24],
Uppaal [25], or the co-simulation tool INTO-CPS [26]. In particular, Uppaal
and INTO-CPS can handle continuous time, while our approach works with
discrete time only. A more detailed comparison is given by Vu et al. [8].

Visualizations. VisB has been compared with BMotionWeb [14,15], BMotion-
Studio [21], and ProB’s animation function [27] in [7]. Those tools all make it
possible to interact with a formal model via a visualization. Unlike this work,
they do not support easy simulation of autonomous events as a reaction to a user
event. BMotionWeb also includes a feature to generate a projection diagram on
graphical objects which is an inspiration for VisB state diagrams.

Brama [28] allows animation of formal B models through Flash visualiza-
tions, and contains listeners to simulate system events. Brama was also used in
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an architecture by Méry and Singh where real-time data were collected, trained,
and used to animate formal models [29]. SimB also uses listeners to trigger sim-
ulations with timing and probabilistic behavior. While Brama was a standalone
Flash application, SimB is fully integrated into ProB2-UI, allowing for use with
other features in ProB2-UI. Using real-time data in SimB is still future work.

PVSio-Web [30] is a tool to create prototypes for PVS models. Like SimB,
it also extends simulation features to support human-machine interfaces.

Looking a bit further, there is also a considerable amount of research on
formal methods and human-computer interaction (e.g., [31]); some may benefit
from our new tooling. Other work on combining verification with simulation (e.g.,
[32]) can inspire further linking our simulation techniques with B verification
techniques. We may also investigate using CSP (already supported by ProB)
and its associated refinement notions with support for external and internal
choice, as a means of formally verifying our user interactions.

6 Conclusion and Future Work

This work presented SimB’s interactive simulation which is coordinated with
domain-specific interactive VisB visualizations. The feature is realized by SimB
listeners which recognize user interactions (e.g. in VisB) and trigger SimB sim-
ulations, i.e., autonomous events with probabilistic and timing behavior. Inter-
active simulation helps (1) to improve the user experience of formal models, and
(2) to validate requirements related to user interactions and expected system
reactions. For domain-specific users, interactive simulation is more accessible
than LTL as writing LTL requires expertise. Compared to classic animation,
interactive simulation reduces the user’s effort to interact with formal models as
the user only has to execute user events while automatic events are simulated.
In exchange, interactive simulation requires additional effort to be invested in
modeling the simulations including human/machine interaction. We also pre-
sented state diagrams for domain-specific visualizations in VisB, supporting
domain-specific inspection. In an automotive case study, we demonstrated the
effectiveness of interactive simulation and those state diagrams. Here, we suc-
cessfully validate requirements by executing user events and observing desired
system reactions.

– Case studies are available at: https://github.com/favu100/SimB-examples/
tree/main/Interactive Examples

– ProB2-UI (with presented features) is available at: https://prob.hhu.de/w/
index.php/ProB2-UI

– More information on SimB including interactive simulation are available at:
https://prob.hhu.de/w/index.php?title=SimB

In the future, we plan to formalize SimB’s semantics. This could help verify
SimB’s interactive simulator. Another future work is the refinement of SimB
simulation (as mentioned in [8]) which also affects SimB listeners.

https://github.com/favu100/SimB-examples/tree/main/Interactive_Examples
https://github.com/favu100/SimB-examples/tree/main/Interactive_Examples
https://prob.hhu.de/w/index.php/ProB2-UI
https://prob.hhu.de/w/index.php/ProB2-UI
https://prob.hhu.de/w/index.php?title=SimB
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Heinrich-Heine-Universität Düsseldorf (2016)

https://abz2020.uni-ulm.de/case-study
https://doi.org/10.1007/978-3-319-07512-9_1
https://drive.google.com/file/d/1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/
https://drive.google.com/file/d/1IqftxQIvrWpX1lcRts3WJzrBH7a3dMln/
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-77543-8_6
https://doi.org/10.1007/978-3-030-85248-1_12
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-030-48077-6_27
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-25423-4_10
https://doi.org/10.1007/978-3-319-41591-8_27


Validation of Formal Models by Interactive Simulation 69

16. Bonfanti, S., Gargantini, A., Mashkoor, A.: AsmetaA: animator for abstract state
machines. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018.
LNCS, vol. 10817, pp. 369–373. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91271-4 25

17. Snook, C., Hoang, T.S., Dghaym, D., Fathabadi, A.S., Butler, M.: Domain-specific
scenarios for refinement-based methods. J. Syst. Archit. 112, 101833 (2021)

18. Fischer, T., Dghyam, D.: Formal model validation through acceptance tests. In:
Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS,
vol. 11495, pp. 159–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-18744-6 10

19. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87603-8 7

20. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of a C++ code
generator from Abstract State Machines specifications. J. Softw. Evol. Process 32
(2020)

21. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models with B-
Motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS,
vol. 5825, pp. 202–204. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04570-7 17

22. Snook, C., Hoang, T.S., Fathabadi, A.S., Dghaym, D., Butler, M.: Scenario checker:
an Event-B tool for validating abstract models. In: Proceedings of the 9th Rodin
User and Developer Workshop, pp. 12–14 (2021)

23. Mashkoor, A., Yang, F., Jacquot, J.-P.: Refinement-based validation of Event-B
specifications. Softw. Syst. Model. 16(3), 789–808 (2017)

24. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for abstract state machines. J. Univ. Comput. Sci. 14, 1949–1983
(2008)

25. Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., Yi, W.: UPPAAL—a tool
suite for automatic verification of real-time systems. In: Alur, R., Henzinger, T.A.,
Sontag, E.D. (eds.) HS 1995. LNCS, vol. 1066, pp. 232–243. Springer, Heidelberg
(1996). https://doi.org/10.1007/BFb0020949

26. Thule, C., Lausdahl, K., Gomes, C., Meisl, G., Larsen, P.G.: Maestro: the INTO-
CPS co-simulation framework. Simul. Model. Pract. Theory 92, 45–61 (2019)

27. Leuschel, M., Samia, M., Bendisposto, J., Luo, L.: Easy graphical animation and
formula visualisation for teaching B. The B Method: from Research to Teaching,
pp. 17–32 (2008)

28. Servat, T.: BRAMA: a new graphic animation tool for B models. In: Julliand, J.,
Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 274–276. Springer, Heidel-
berg (2006). https://doi.org/10.1007/11955757 28

29. Méry, D., Singh, N.K.: Real-time animation for formal specification. In: Aiguier,
M., Bretaudeau, F., Krob, D. (eds.) Complex Systems Design & Management, pp.
49–60. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15654-0 3

30. Watson, N., Reeves, S., Masci, P.: Integrating user design and formal models within
PVSio-web. In: Proceedings F-IDE, EPTCS, vol. 284, pp. 95–104 (2018)

31. Dix, A.J.: Formal methods. In: Perspectives on HCI: Diverse Approaches, pp. 9–43.
Academic Press, London (1995)

32. Schwammberger, M., Harper, C., Alves, G.V., Chance, G., Pipe, T., Eder, K.: Inte-
grating Formal Verification and Simulation-Based Assertion Checking in a Corrob-
orative V&V Process. CoRR, abs/2208.05273 (2022)

https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1007/978-3-319-91271-4_25
https://doi.org/10.1007/978-3-030-18744-6_10
https://doi.org/10.1007/978-3-030-18744-6_10
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/11955757_28
https://doi.org/10.1007/978-3-642-15654-0_3


Thread-Local, Step-Local Proof
Obligations for Refinement of State-Based

Concurrent Systems

Gerhard Schellhorn, Stefan Bodenmüller(B), and Wolfgang Reif

Institute for Software and Systems Engineering, University of Augsburg,
Augsburg, Germany

{schellhorn,stefan.bodenmueller,reif}@informatik.uni-augsburg.de

Abstract. This paper presents a proof technique for proving refine-
ments for general state-based models of concurrent systems that reduces
proving forward simulations to thread-local, step-local proof obligations.
Instances of this proof technique should be applicable to systems specified
with ASM rules, B events, or Z operations. To exemplify the proof tech-
nique, we demonstrate it with a simple case study that verifies lineariz-
ability of a lock-free implementation of concurrent hash sets by showing
that it refines an abstract concurrent system with atomic operations.
Our theorem prover KIV translates programs to a set of transition rules
and generates proof obligations according to the technique.

Keywords: Refinement · State-Based Concurrent Systems ·
Thread-Local Proof Obligations · Interactive Verification

1 Introduction

Refinement-based development is a successful approach to the development of
algorithms and software systems. An important subcase is the development of
efficient, thread-safe concurrent implementations, where the abstract specifica-
tion is often given as simple atomic operations.

We have developed two approaches for verifying such refinements. One is
based on a program calculus, and the other on which we focus in this paper relies
on translating programs to a state-based description. This approach requires just
predicate logic for verification.

We have done case studies with algorithms that are hard to verify. In partic-
ular, some require backward simulation or were hard to reduce to thread-local
reasoning [12]. Most cases, however, like the one we consider in this paper, are
simpler. We noted that their verification still results in much overhead when one
tries to verify standard forward simulation conditions. There is much potential
to reduce complex reasoning to simple verification conditions local to threads,
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exploiting symmetry (all threads execute the same operations). Furthermore,
giving assertions reduces proofs to individual conditions for each step, which are
easy to understand.

This paper develops an approach to prove forward simulations with proof
obligations that are local to individual threads and steps of the programs. Gen-
erating these proof obligations has been implemented in our KIV theorem prover.
It makes use of earlier work that developed a translation from programs to tran-
sition systems and defined local proof obligations for verifying invariants. We
extend the approach to refinements by specifying local proof obligations for for-
ward simulations.

We exemplify the approach by proving the correctness of a simple, concur-
rent implementation of hash sets. Proving the case study was presented as a
challenge at last year’s VerifyThis competition [21] for theorem provers. How-
ever, the case study turned out to be far too complex to verify in a 90-min time
frame (none of the participants got further than to verify just termination of
a simplified sequential version). We define the algorithms in Sect. 2 and sketch
their translation to a transition system. Section 3 defines the main invariant and
summarizes the local proof obligations that are needed to establish it.

Section 4 defines the strategy for generating local proof obligations based on
three mappings: one establishes a mapping between the control states of each
thread in the concrete and the abstract system. The second provides a mapping
of steps that has some resemblance to the mapping used in Event-B refinements
[1]. The third defines a relation between the local states of threads.

For our case study, we achieve the desired effect: the reasoning is reduced to
the essential arguments that show that the programs have an atomic effect at
one specific instruction.

Finally, Sect. 5 gives related work and Sect. 6 concludes.

2 Case Study: Concurrent Hash Sets

We use a challenge of the 2022 VerifyThis competition [21] held at ETAPS as
a case study to illustrate our approach. The tasks of the challenge [22] revolved
around verifying the correctness of a simple but thread-safe and lock-free imple-
mentation of hash sets. The implementation produces hash sets with a fixed
capacity and only provides functionality for insertions and membership queries.

Implementation of the Algorithms in KIV

The two main operations of the given algorithms can be executed concurrently
by an arbitrary number of threads, and were translated into KIV programs using
algebraic data types as a basis. For concurrent executions, we assume an inter-
leaving semantics where each program statement (such as assignments or evalua-
tions of conditionals) is executed atomically, but atomic steps of different threads
can interleave. The implementation uses a fixed-sized array ar : Array(Elem)
storing keys of a generic type Elem as a state variable. Each slot of ar is initial-
ized with a designated key ⊥ : Elem, used as a placeholder for empty slots.
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Algorithm 1. Hash Set Insertion Operation in KIV.

idle: Insert(e; ; b)
precondition: e �= ⊥
postcondition: b ↔ ∃ n. n < #ar ∧ ar [n] = e

I01: let sz = #ar in
I02: let n0 = get_hash(e, sz ) in
I03: let n = n0 in {
I04: b := false;
I05: while ¬ b do {
I06 with (ar [n] = e ⊃ doInsert(t , true); τ):

let e0 = ar [n] in { // atomic load
I07 /* e0 �= ⊥ → e0 = ar [n] */:

if e = e0 then {
I08 /* e0 = e ∧ e = ar [n] */:

b := true; // return true if the element is already there
I09: return idle;

} else
I10: if e0 �= ⊥ then
I11: n := (n + 1) mod sz // slot is occupied, try next slot

else {
I12 with (ar [n] = ⊥ ∨ ar [n] = e ⊃ doInsert(t , true); τ):

if* ar [n] = ⊥ // CAS (returns the new value in e0)
then e0 := e, ar [n] := e else e0 := ar [n];

I13: if e0 = e then {
I14: b := true; // return true if the element was inserted
I15: return idle;

} else
I16: n := (n + 1) mod sz // slot is occupied, try next slot

} };
I17: if n = n0 then {
I18 with doInsert(t , false):

b := false; // return false if the array is full
I19: return idle;

} else
I20: skip; // continue with next loop iteration

} };
I21: return idle; // never reached

assertions
I03 → I20 : n0 = get_hash(e,#ar);
I04 → I16 : allslotsfull(ar ,n0,n, e, false);
I17 : allslotsfull(ar ,n0,n, e, true);
. . .

Algorithm 1 lists the KIV implementation (ignore the with clauses and
assertions for the moment) of the Insert operation for adding keys to the
set. The operation takes a key e : Elem as input and signals via the output
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b : Bool whether the requested key was inserted (or was already included in
the set).1 First, the algorithm calculates the hash value n0 for the key e using
the function get_hash (line I02). The function returns a value in the range
[0, sz ), where sz is set to the size of ar (written #ar). Then, the algorithm uses
linear probing to find a free slot in ar , i.e., it searches for the closest following
unoccupied location in ar starting from n0. For this, the while loop (I05 - I20)
incrementally checks the entries of ar (accessing a location n of an array ar is
written ar [n]).

Depending on the value e0 of the slot currently considered, different situations
must be handled. If the slot already contains the requested key e, nothing has
to be inserted and the operation returns true (I07 - I09). When the slot is
occupied, i.e., e0 is neither e nor ⊥, the search must be continued at the next
slot (I10 - I11). For this, the current index n is incremented for the next loop
iteration (note that the search continues at index 0 when the upper bound of
the array is reached). If a free slot was found (e0 = ⊥), the algorithm tries to
insert the element atomically using a CAS (compare-and-swap) operation (I12).
In KIV, this is modeled using the if* construct, which performs the evaluation of
its condition and the first statement of the chosen branch as one atomic step. In
case the CAS was successful, the element was successfully added and operation
returns with true (I13 - I15). Otherwise, another thread interfered and occupied
the slot, so the search must be continued (I16). Finally, insertion is aborted if
the search went one full round and no free slot was found. Then the array is full,
and the operation returns false (I17 - I19).

Analogously, Algorithm 2 shows the implementation of the Member oper-
ation for checking whether a key e has been inserted into the set. The result b
is again determined by traversing ar using linear probing (M05 - M17) until the
searched element was found (M07 - M09). The search is aborted and the operation
returns false when either the complete array was checked (M14 - M16) or a ⊥
was reached (M10 - M12).

Note that the KIV implementations of both operations slightly differ from
the pseudo-code given in the challenge description as it uses do-while loops,
which are currently not supported by the programming language of KIV.

Translation to a State-Based Transition System

KIV provides functionality to automatically translate algorithms like the one
given above to state-based transition systems. More precisely, the framework of
Input/Output Automata (IOA) [15] is used.

1 KIV procedures currently do not have return values. Instead, the parameters of a
procedure are partitioned into input, reference, and output parameters, which are
separated by semicolons.
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Algorithm 2. Hash Set Member Operation in KIV.

idle: Member(e; ; b)
precondition: e �= ⊥
postcondition: b → ∃ n. n < #ar ∧ ar [n] = e

M01: let sz = #ar in
M02: let n0 = get_hash(e, sz ) in
M03: let n = n0 in {
M04: b := false;
M05: while ¬ b do {
M06 with (ar [n] = e ∨ ar [n] = ⊥ ∨ (n + 1) mod sz = n0 ⊃ doMember(t); τ):

let e0 = ar [n] in// atomic load
M07: if e = e0 then {
M08: b := true; // return true if the element was found
M09: return idle;

} else
M10: if e0 = ⊥ then {
M11: b := false; // return false if empty entry was found
M12: return idle;

} else {
M13: n := (n + 1) mod sz ; // slot is occupied, try next slot
M14: if n = n0 then {
M15: b := false; // return false if array is full and element not in
M16: return idle;

} else
M17: skip; // continue with next loop iteration

} } };
M18: return idle; // never reached

Definition 1. An Input/Output Automaton (IOA) is a labeled transition sys-
tem A with
– a type State of states,
– a predicate init(s) that fixes a subset of initial states s,
– a type Action of actions, and
– a step (or transition) predicate step(s, a, s ′) defining steps of the automaton

from states s to states s ′, labeled by actions a.

Actions can be viewed as parameterized ASM rules [3], as the names of Event-B
events [1] parameterized by the values chosen in ANY . . . WHERE clauses, or as
Z operations [5] with inputs/outputs. The carrier set of Action is partitioned
into internal actions a satisfying internal(a), which represent events of the
system that are not visible to the environment, and external actions a sat-
isfying external(a), which represent interactions of A with its environment.
The set of external actions typically comprises invoke and return actions for
each non-atomic operation, representing their invoking and returning steps and
fixing the calling thread as well as the inputs and outputs. For example, the
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actions invInsert(t , e) and retInsert(t , b) represent the respective steps for
the Insert operation (analogously, invMember and retMember for Member).

An execution fragment frag(s0a1s1a2s2a3 . . . ) is a (finite or infinite) sequence
of alternating states and actions such that step(si, ai+1, si+1). An execution
exec(s0a1s1a2s2a3 . . . ) is additionally required to start with an initial state s0
satisfying init(s0). The set of all executions or fragments of an automaton A is
denoted exec(A) and frag(A), respectively. The trace of an execution is the pro-
jection of all its actions to the external ones, formally trace(s0a1s1a2s2a3 . . . ) =
a1a2a3 . . . | {ai | external(ai)}. The set traces(A) of all traces of an automaton
A represents its visible behavior to a client. A trace shows concurrency by having
several operations pending, e.g., the trace.

invInsert(t1, e1) invInsert(t2, e2) retInsert(t1, true) invMember(t1, e2)

shows a situation where thread t1 has inserted element e1 successfully and is
currently running a test for membership of e2, while another thread t2 is con-
currently running an insertion of the same element e2. Concurrent execution
might add both retMember(t1, true) or retMember(t1, false) as the next action,
depending on whether thread t2 manages to insert the element before the check
of thread t1 or not.

In the following, we outline how the translation is performed for the hash set
implementation; a more detailed description is given in [7].

The states of the automaton are constructed from three components: the
global state gs : GS , the local state function lsf : Tid → LS , and the program
counter function pcf : Tid → PC . The combined state is written as the tuple
mkstate(gs, lsf , pcf ) of type State.

In KIV, states are given by (the values of) one or several (typed) state vari-
ables. The global state gs is the tuple of the state variables that can be accessed
by all threads. For the hash set case study, this only includes the array ar , which
can be accessed via the selector gs.ar.

The local state function lsf stores local variables used by threads in the pro-
grams of the system. This includes all locally introduced variables in operations,
e.g., sz or n in Algorithm 1, as well as the parameters of operations, e.g., e and
b in Algorithm 1. The function stores a local state tuple ls : LS for each thread
t : Tid , where selectors for the individual fields are defined again. For example,
the value of sz for a thread t is selected via lsf (t).sz.

The function pcf stores the program counter (control state) for each thread,
which defines the current step of a thread within a program. For this, each atomic
step in a KIV program is augmented with a unique label (I01, I02, . . . , I21 for
Insert, and M01, M02, . . . , M18 for Member). The type PC is defined as an
enumeration type containing a constant for each program label together with
idle for a thread that is in between operation calls (of Insert or Member).
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For the step predicate, a generic axiom definition is generated.

step(mkstate(gs, lsf , pcf ), a, mkstate(gs ′, lsf ′, pcf ′))
↔ ∃ t . pre(gs, lsf (t), pcf (t), a) ∧ gs ′ = gstepf(gs, lsf (t), pcf (t), a)

∧ lsf ′ = lsf (t := lstepf(gs, lsf (t), pcf (t), a))
∧ pcf ′ = pcf (t := pcstepf(gs, lsf (t), pcf (t), a))

The definition breaks down a system step to a step of one thread t by restricting
changes of lsf and pcf to affect the parts of t only (the term f (k := v) yields
the function f where the value of f (k) is updated to v). The three step functions
gstepf, lstepf, and pcstepf calculate the next global and local state and the
next program counter of this thread from the previous ones if the precondition
predicate pre holds. These step functions and the precondition predicate are
defined by axioms for each individual program counter.

The pre predicate fixes the actions a a program counter pc maps to, poten-
tially depending on the current states gs and ls. The Action type contains values
for all invoke and return steps of the automaton. Internal steps of non-atomic
programs are typically mapped to the default action τ . However, internal steps
can also be mapped to user-defined actions using a with-clause. We will assign
actions representing (potential) linearization points, i.e., steps where an opera-
tion “takes effect” (cf. Sect. 4). For example, the steps I06, I12, and I18 of Algo-
rithm 1 are specified with the action doInsert, recording the current thread t
and a boolean value determining whether the operation successfully inserted the
element. The assignment of these actions can be conditional: the action of I06 is
doInsert(t , true) only if ar [n] = e holds at that point, otherwise it is τ . In the
algorithm, the notation ϕ ⊃ a0; a1 is used as an abbreviation for an expression
that computes a0 if ϕ is true and a1 otherwise. Thus, the precondition of I06
is specified by the following axiom, using the respective selectors to access the
global and local state vars.2

pre(gs, ls, I06, a) ↔ a = (gs.ar[ls.n] = ls.e ⊃ doInsert(ls.tid); τ)

State updates are also specified by individual axioms for the functions gstepf
and lstepf for each program counter. For example, the let-statement at I06
introduces a new local variable e0 and thus updates the corresponding field of
the local state. On the other hand, the global state is not modified.

lstepf(gs, ls, I06, a) = (ls.e0 := gs.ar[ls.n])
gstepf(gs, ls, I06, a) = gs

Finally, the program counter step function pcstepf is defined based on the
algorithm’s control flow, e.g., the program counter of a thread is moved to I07
after the statement at I06 was executed. If the control flow can take different

2 To access the identifier of thread t , it is stored as a tid-field in its local state. An
invariant ensures that threads store the correct identifier, i.e., lsf (t).tid = t .
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branches, the result of pcstepf is conditional. For example, after evaluating the
if-condition at I07, the program counter is either set to I08 or I10.

pcstepf(gs, ls, I06, a) = I07

pcstepf(gs, ls, I07, a) = (ls.e = ls.e0 ⊃ I08; I10)

3 Local Proof Obligations for Invariants

For proving the refinement of the hash set implementation (see Sect. 4), an
invariant restricting the reachable states of the automaton is necessary. This
invariant typically contains general consistency properties of the global state
(independent of the local states of any thread, thus called global invariants) as
well as various assertions for different control points of the algorithm (called local
invariants as they also refer to the local states of threads).

The global invariant is given as a predicate GInv(gs). For the case study, it
ensures that the array ar , in which the elements of the set are stored, has a valid
size (it can store at least one element) and that its slots are filled correctly.

GInv(ar) ↔ #ar �= 0 ∧ htok(ar)

The latter property is expressed by the predicate htok, which is defined using
the auxiliary predicates allslotsfull and between.

htok(ar) ↔ ∀ n. n < #ar ∧ ar [n] �= ⊥
→ allslotsfull(ar , get_hash(ar [n],#ar),n, ar [n], false)

allslotsfull(ar ,n0,n, e, b) ↔ ∀ m. between(n0,m,n, b) ∧ m < #ar
→ ar [m] �= e ∧ ar [m] �= ⊥

between(n0,m,n, b) ↔ n0 = n ∧ b
∨ (n < n0 ⊃ m < n ∨ n0 ≤ m; n0 ≤ m ∧ m < n)

The predicates encode that ar was filled by linear probing: it must hold for any
non-⊥ element ar [n] that all slots m between the element’s hash value (calculated
by get_hash) and the slot n it is stored in are “full”, i.e., are occupied by other
non-⊥ elements. Since the search for a free slot continues at the first slot when
the end of the array is reached (cf. Algorithm 1), the definition of between must
consider both the case of n0 ≤ n and the case of n < n0 (expressed using the
ϕ ⊃ t0; t1 notation). Note that the definitions just consider slots m ∈ [n0,n)
when the flag b is false, which is the case for the global invariant htok. The
predicates are used with b ↔ true only in local invariants to express that the
array is filled completely (when all slots are considered, i.e., n0 = n).

Instead of giving a local invariant formula directly, KIV generates a predicate
definition from thread-local assertions for the individual program points. This
approach facilitates tackling larger algorithms as the resulting formula becomes
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vast quite quickly (typically several pages of text, even for small case studies like
the one presented in this paper). Thus, manually defining and maintaining this
formula is very error-prone.

An assertion LInvpcval(gs, ls) can be given for every label pcval ∈ PC . In
KIV, assertions can be encoded as a comment /* ϕ */ at the respective label
(cf. lines I07 and I08 of Algorithm 1). Since typically assertions hold for ranges
in the code, they can also be given separately. For example, the assertions given
at the bottom of Algorithm 1 encode the progress of linear probing: in every
iteration of the loop, all slots between the hash value get_hash(e,#ar) of the
element and the current index n are occupied (I04 → I16 is a shorthand for the
range I04, I05, . . . , I15, I16). The critical step here is from I16 to I17, where
the index n is incremented. At this point, the boolean flag of allslotsfull is
toggled from false to true because n may have been incremented to n0 when
ar has been fully searched.

From the given assertions, KIV generates the definition of a local invari-
ant predicate LInv(gs, ls, pc), which is then lifted to a full invariant definition
Inv(gs , lsf , pcf ) for the automaton.

LInv(gs, ls, pc) ↔
∧

pcval∈PC

(pc = pcval → LInvpcval(gs, ls))

Inv(gs, lsf , pcf ) ↔ GInv(gs) ∧ ∀ t . LInv(gs, lsf (t), pcf (t))

Since the steps of threads can interleave, the given thread-local assertions must
be stable over the steps of other threads for the invariant to hold. In order to
avoid the combinatorial explosion of explicitly reasoning over all possible inter-
leavings, a rely predicate rely(t , gs, gs ′) is used to abstract from the concrete
modifications other threads can make. All steps that are not executed by thread
t should satisfy this predicate when they start in global state gs and end with
gs ′. Thread t relies on other threads to change the global state according to
rely. For the case study, the following rely predicate is sufficient, enforcing that
no thread resizes the array and that no thread overwrites a slot at which an
element has been inserted before.

rely(t , ar0, ar1)
↔ #ar0 = #ar1 ∧ ∀ n. n < #ar0 ∧ ar0[n] �= ⊥ → ar1[n] = ar0[n]

With these definitions, proof obligations (POs) are generated that ensure that
the predicate Inv(gs, lsf , pcf ) is actually an invariant of the automaton. The
obligations are formulated in sequent notion: a sequent Γ  Δ abbreviates the
formula ∀x .

∧
Γ → ∨

Δ where Γ (the antecedent) and Δ (the succedent) are
lists of formulas, and x is the list of all free variables in Δ and Γ .

step-pcval-pcval′: For every step from label pcval to pcval′ with action a

LInvpcval(gs, ls), GInv(gs), pre(gs, ls, pcval, a)
 LInvpcval′(gstepf(gs, ls, LInvpcval, a), lstepf(gs, ls, LInvpcval, a))

∧ GInv(gstepf(gs, ls, pcval, a))
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rely-pcval: For every step from label pcval

LInvpcval(gs, ls), GInv(gs), pre(gs, ls, pcval, a), ls.tid �= t
 rely(t , gs, gstepf(gs, ls, pcval, a))

stable-pcval: For every label pcval

LInvpcval(gs, ls), GInv(gs), rely(t , gs, gs ′)  LInvpcval(gs ′, ls)

The first PO (step-pcval-pcval′) guarantees that each step of a thread estab-
lishes the thread-local assertion at the following statement and preserves the
global invariant. The other two POs ensure that steps of other threads do not
invalidate assertions. This is split into showing that all such steps are rely steps
(rely-pcval) and that all assertions are stable over the rely (stable-pcval).

Note that often a significant amount of the generated obligations can be omit-
ted. Many steps do not update the global state (when gstepf(gs, ls, pcval, a) =
gs), and so the rely-pcval POs can be dropped for these steps as it is enforced
that the rely predicate is reflexive. In fact, only the rely-I12 PO is generated
for the case study since the CAS at I12 is the only step of the algorithm that
modifies ar . Furthermore, if two assertions LInvpcval and LInvpcval′ of differ-
ent labels pcval �= pcval′ are syntactically the same formula, the obligations
stable-pcval and stable-pcval′ are identical, so only one is generated.

In summary, 28 stable and 48 step proof obligations were verified with 65
interactions (incl. lemmas). Together they establish the invariant Inv of the IOA.
A proof of the soundness of this thread-local proof technique is given in [7].

4 Local Proof Obligations for Refinement

While the invariants ensure that the array is always in a consistent state, they
do not ensure that each operation has a desired effect, e.g. that insert adds
at most the element given as input and deletes nothing. In a sequential setting
simply augmenting the proof with suitable postconditions would be sufficient. In
a concurrent setting this is not possible, as the postcondition can be invalidated
by other threads. Instead one must show that the program behaves like an atomic
operation. This is typically verified by giving abstract atomic descriptions of
program behavior. A standard notion is serializability [18], which requires that
programs behave like transactions: either they have an atomic effect or none at
all when failing. Opacity [9] additionally requires that even failing transactions
never read from states that result from partially executed transactions.

For concurrent libraries like the one we consider here, the standard correct-
ness notion is linearizability [12], which in addition to atomicity requires that the
effect of each operation happens between its invocation and its return. In con-
trast to other criteria, linearizability has the advantage that it is compositional:
using several linearizable libraries is correct already if each library is correct.

The effect of a linearizable operation can be expressed directly as the whole
code of each operation executing sequentially without any interleaving. This is
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Fig. 1. Canonical automaton for set operations.

done in model checking approaches, which automatically check that all possible
interleavings of a fixed (usually very small) number of threads and operations
has the same effect than executing them in some suitable sequential order. A
more common approach in interactive proofs is to express the effect using simple
operations of an abstract data type, like we do here.

Many of the atomicity criteria can be expressed as refinement correctness
with respect to an abstract automaton (e.g., TMS2 for opacity, see [8]). A correct
refinement from an automaton A (with states as of type AState, step relation
astep, etc.) to an automaton C in general requires that the externally visible
invoking and returning steps (i.e., the external actions of A and C that show
their inputs/outputs) must be preserved, formally traces(C) ⊆ traces(A).

Refinement can be verified using either a forward or a backward simulation.
Together the approach is complete: if backward simulation is necessary, it is
always possible to give an intermediate automaton, such that the upper refine-
ment (often a simple one) can be verified using backward simulation, while the
lower one (usually the difficult one) is verified with a forward simulation. There-
fore we will focus on forward simulations only, and on deriving thread-local proof
obligations for this case. A forward simulation is defined as follows.

Definition 2. A forward simulation from a concrete IOA C to an abstract IOA
A is a relation abs ⊆ State × AState such that each of the following holds.

Initialisation

init(s)  ∃ as. ainit(as) ∧ abs(s, as) (1)

External step correspondence

abs(s, as), step(s, a, s′), external(a) (2)
 ∃ as ′. abs(s ′, as ′) ∧ astep(as, a, as ′)

Internal step correspondence

abs(s, as), step(s, a, s ′), internal(a) (3)
 ∃ frag(A)(as a1 as1 . . . an asn). abs(s ′, asn) ∧ ∀ i ≤ n. ainternal(ai)
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It requires that the visible behavior represented by the actions of external
steps to be preserved, i.e., one has to verify a commuting 1:1 diagram for each
invoking or returning step, where equality of the action implies that the thread
executing the step as well as its input/output are the same. In contrast, an
internal step can refine an arbitrary number n of abstract internal steps. Often
this number is one or zero, and we will focus on this case. If the number of steps
is zero, the step is said to “refine skip” and as = asn holds.

For linearizability, the abstract specification A that has to be refined by the
automaton C constructed from the algorithms is particularly simple and called
the canonical automaton. The automaton has a state consisting of a data struc-
ture, here a set of elements (all different from ⊥). For each operation available for
the abstract data type (here: checking for membership and adding an element),
it has three atomic steps.

The three steps for each operations are shown in Fig. 1 using KIV’s general
specifications of atomic steps of threads, indicated by the keyword atomic fol-
lowed by the action of the step. These can in general be arbitrary programs
again, although we here need simple assignments only.

The first of the three steps for each operation is an invoking step, that changes
the program counter apc of the thread from idle to an invoked state (given after
the return keyword). This step just copies the input to a local variable (here:
le). The second step is a Do step that executes the operation, modifies the data
structure and computes its result in a local variable (here: lb). The Do step
changes the apc of the thread to a returning state, from which the Return step
returns a result (by making it visible in its action) resetting the pc to idle.
For the insert operation, the Do is nondeterministic, it can either insert the
element, or refuse to do so, abstracting from the two possibilities of the insert
algorithm. The nondeterminism is resolved by an additional boolean input that
is also present in the action executed.

Like for the algorithms of Sect. 2, thread-local atomic steps accessing a global
(here: set) and a thread-local state (here: the variables le and lb) are translated
to predicate logic with preconditions apre and step functions agstepf, alstepf,
apcstepf. The resulting canonical automaton A still allows operations of dif-
ferent threads to run concurrently, but insists that all operations have a simple,
atomic effect described by the Do step that happens while the operation runs.

Finding a forward simulation between A and C requires finding the specific
internal step of C where the effect of the operation happens. In general, finding a
correct linearization point (LP) can be very difficult, e.g., it is possible that the
LP of an operation is not a step of the thread executing it, but a step of another
thread: one case is that thread t makes an offer, and another thread t′ in a step
that accepts the offer executes the LP of both threads (the elimination stack
[11] and queue [17] are two instances). This case requires a forward simulation
where one concrete step matches two Do-steps of the abstract specification.

The local proof obligations we give in this paper are tailored towards the most
common case, which is that a specific step in the code of the thread executing
an algorithm is its LP, which corresponds to the abstract Do step of the running
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operation. All other steps of an operation “refine skip”, i.e., their proof obligation
reduces to a 1:0 diagram.

For this case, we give a mapping that singles out the step, and gives the
matching abstract Do step. This is done efficiently by exploiting that we can
fix actions using the with clauses in the algorithms. For the Insert algorithm,
see Algorithm 1, there are three steps which can be the LPs: the obvious one
is a successful CAS at line I12. However, a failed CAS at this line can also be
a linearization point when the algorithm recognizes that the element is already
present. For the same reason, the step at I06 that loads ar[n] is another LP
when the loaded value is the element e that should be inserted. Finally, I18 is
an LP for the case where no element is inserted, since the array is full.

For the Member algorithm, only loading a value at M06 can be an LP. It is
one in three cases: First, when the element e checked to be in the set is loaded
(Member will return true). Second, when ⊥ is loaded: then Member will
return false. Note that while there is often some freedom to choose an LP
between several program steps, in this case the loading step is the only one that
is correct. Any step executed later will not work, since in between executing
the load and this step, another thread might have inserted e, and the abstract
Do step would already return true rather than false as the algorithm does.
Finally, the step is also an LP when the array slot checked is the last one, i.e.,
when (n + 1) mod sz = n0. In this case Member will return false.

To allow the definition of thread-local and step-local proof obligations, the
abstraction relation is again split into a global part, and a thread-local part.

– The global abstraction relation GAbs(gs, ags) specifies how global states
correspond. For the case study absset(gs.ar, ags.set) is used, defined as
∀ e. e ∈ set ↔ ∃ n. n < #ar ∧ e = ar [n] ∧ e �= ⊥.

– a local abstraction relation LAbs(gs, ls, pc, ags , als, apc) that gives the cor-
respondence between program counters and local input and output values
stored in ls, pc and als, apc, respectively (the relation may depend on the
global states gs and ags). Like for the assertions used in invariants, we give
these as assertions for certain ranges of program counters of the concrete algo-
rithm. An example is I5 : apc = (b ⊃ retIns; invIns) ∧ (b → ¬ lb) which
states that at I5, the abstract pc apc is before/after the Do-step, depending
on the value of b, and that the local variable lb of the abstract specification
is true when variable b used in the algorithm is true. In the proof obliga-
tions below, we refer to the formula that holds at a specific pc value pcval as
LAbspcval(gs, ls, als, apc). The full LAbs-formula is defined as the conjunction
of implications pc = pcval → LAbspcval(gs, ls, als, apc) for all pc values pcval,
similar to the local invariant.
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The full simulation relation includes the both global and local invariants as well
as the global and local abstractions.

abs(gs, lsf , pcf , ags, alsf , apcf ) (4)
↔ GInv(gs) ∧ AGInv(ags) ∧ GAbs(gs, ags)

∧ ∀ t . LAbs(gs, lsf (t), pcf (t), alsf (t), apcf (t))
∧ LInv(gs, lsf (t), pcf (t)) ∧ ALInv(ags, alsf (t), apcf (t))

Assuming we have already proved invariants LInv, GInv and ALInv, AGInv for the
concrete resp. abstract specification, we can now define thread-local, step-local
proof obligations (POs) for a refinement. All POs share a number of common
preconditions.

Prec = GInv(gs), AGInv(ags), GAbs(gs, ags),
pre(gs, lsf (t), pcf (t), a), gs ′ = gstepf(gs, lsf (t), pcval, a),
ls ′ = lstepf(gs, lsf (t), pcval, a), pc′ = pcstepf(gs, lsf (t), pcval, a),
LInvpcval(gs, lsf (t)), ALInv(ags, alsf (t)),
LAbspcval(gs, lsf (t), alsf (t), apcf (t)),
∀ t′. t′ �= t → LInv(gs, lsf (t′)) ∧ ALInv(ags, alsf (t′))

∧ LAbs(gs, lsf (t′), pcf (t′), ags , alsf (t′), apcf (t′))

These refer to a concrete and an abstract state consisting of gs, lsf , pcval and
ags, alsf , apcf related by abs, and to a thread t, that modifies the global state,
the local state and the pc to gs ′, ls ′, and pcval′. The preconditions include a
quantified formula that asserts the local invariants and local abstraction for
other threads. For this case study, this quantified precondition is not required
for the verification of the POs defined below. There are however case studies
where a specific thread (e.g., a thread that has set a lock) influences another,
where instantiating the quantifier is necessary.

Definition 3 (Thread-local, step-local proof obligations). Each step from
pcval to pcval′ of the concrete algorithm that executes action a under condition
ϕ has two proof obligations. These depend on whether the action of the step is
matched to an abstract action or not.

Case 1. The action a is also executed by the abstract system.

PO-pcval-pcval′-same

Prec, ϕ, ags ′ = agstepf(ags, alsf (t), apc, a),
als ′ = alstepf(gs, lsf (t), pcval, a), apc′ = apcstepf(gs, lsf (t), pcval, a)
 apre(ags, alsf (t), apcf (t)) ∧ GAbs(gs ′, ags ′)

∧ LAbspcval′(gs
′, ls ′, pc′, ags ′, als ′, apc′)
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PO-pcval-pcval′-other

Prec, ϕ, t �= t′, LInv(gs, lsf (t′)), ALInv(ags, alsf (t′)),
LAbs(gs, lsf (t′), pcf (t′), ags , alsf (t′), apcf (t′)),
gs ′ = gstepf(gs, lsf (t), pcval, a), ags ′ = agstepf(gs, lsf (t), pcval, a),
 LAbs(gs ′, lsf (t′), pcf(t′), ags ′, lsf (t′), pcf (t′), alsf (t′), apcf (t′))

Case 2. The action a is not an abstract action.
PO-pcval-pcval′-same

Prec, ϕ  GAbs(gs ′, ags) ∧ LAbspcval′(gs
′, ls ′, ags , als, apc)

PO-pcval-pcval′-other

Prec, ϕ, t �= t′, LInv(gs, lsf (t′)), ALInv(ags, alsf (t′))
LAbs(gs , lsf (t′), pcf (t′), ags, alsf (t′), apcf (t′))
 LAbs(gs ′, lsf (t′), pcf (t′), ags ′, lsf (t′), pcf (t′), alsf (t′), apcf (t′))

Note that with clauses in the algorithms fix the condition ϕ under which a step
is a linearization point, and therefore executes a specific abstract action. The
two POs of each case distinguish preserving the global abstraction and the local
abstraction of thread t that executes the step itself (same-POs), and preserving
the local abstraction of some other thread t′ �= t (other-POs).

The other-POs are trivial and dropped by the proof obligation generator
when steps do not change the global state. When the global state changes, then
the two LAbs-formulas must be expanded by their definition (and the proof
obligation generator already does this), which results in quite large conjunctions
over all assertions given. It is easy to prove that

Theorem 1. The local proof obligations together with the initialization condi-
tion of forward simulation imply that abs as defined by (4) is a forward simula-
tion between the concrete and the abstract system.

by just noting that the assumption that abs holds for the initial states in the
forward simulation conditions (2) and (3) implies all the preconditions of the
thread local POs, except for the specific choice of pre, ϕ and a, which fixes one
of the possible steps the concrete system has available. That abs in the postcon-
dition of (2) and (3) is implied follows by looking at each individual predicate it
consists of: that the global and local invariants hold again was already verified
for each of the two automata C and A individually. Predicate GAbs is established
by the same-PO. Finally, LAbs is established by the same-PO for thread t itself,
and by the other-PO for all other threads.

The main reduction in effort is that doing all the case splits over available
steps, the relevant quantifier reasoning for threads, the reduction of LInv and
LAbs to the assertions LInvpcval and LAbspcval that hold at a specific pcval has
already been done, as well as dropping all trivial proof obligations. For our case
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study, the proof obligation generator results in 49 proof obligations of type same,
and 15 of the other type. All but 5 are proven automatically by the simplifier.

The main difficult proof obligation is the one for the step that linearizes the
member operation at M6. It requires showing that, based on the invariant htok
and the assertion allslotsfull that holds at this point, linearization is correct
for all three possible cases: the first is that the value loaded is ⊥. In this case,
we need the lemma

htok(ar), ar[n] = ⊥, e �= ⊥, allslotsfull(ar, get_hash(e,#ar), n, e, false)
 (∀ m. m < #ar → ar [m] �= e)

The second case is that the last slot is loaded ((n + 1) mod sz =
get_hash(e,#ar) holds) and is not e. This needs some quantifier reasoning
for the allslotsfull-predicate to assert that the between range encompasses
all array elements, implying the element e cannot be in the array. The third case,
where e itself is loaded, is simple.

The other step that needs a lemma is the CAS step when inserting an element
at I12. For the successful case a lemma is needed that asserts that updating both
the array and the set preserves absset. Formulated as a rewrite rule

n < #ar ∧ ar[n] = ⊥ ∧ absset(ar, set)
→ (absset(ar [n := e], set ∪ {e}) ↔ e �= ⊥)

the lemma is applied automatically, and just one interaction is needed that does
a case split on whether the CAS succeeds.

Most of the effort in verifying the simulation now lies in fixing linearization
points, and in defining suitable assertions based on this choice. Only 12 interac-
tions were needed to prove the thread-local proof obligations. Verifying these was
significantly simpler than proving the invariant of the concrete system. Devel-
opment of thread local proof obligations was motivated and first tested with an
earlier case study [6] on opacity. There, using thread local POs instead of the
standard forward simulation conditions reduced the proof effort from 245 to 42
interactions. The online presentation [19] for this case study has been enhanced
to include the new refinement proofs.

5 Related Work

Our approach is based on standard interleaving semantics used by many other
formalisms. The more general semantics of concurrent ASMs [2] allows several
threads (called agents) to make steps at the same time at the cost of considering
clashes. Using a weak memory model would make reasoning more realistic but
also more complex.

Our translation from programs to state-based transitions is influenced by
Manna-Pnueli’s work [16] and the translation of plusCAL [14] to TLA+. The
thread-local proof obligations for invariants are influenced by rely-guarantee cal-
culus [4,13]. However, because of symmetry, we need a rely predicate only, while
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the guarantee could be inferred as the conjunction of the rely’s for all other
threads.

Our systems are usually step-deterministic, i.e., for a state s and the action
a there is usually at most one state s ′ with step(s, a, s ′). The mapping between
actions therefore allows to mimic a useful feature of the simulation conditions of
Event-B refinement: these fix the choice of parameters for the ANY-clause of an
abstract event (cf. [1], p. 251) avoiding the need for instantiation in the proof.

Most interactive theorem provers (Event-B is an exception) instantiate veri-
fied refinement theories and prove a simulation based on this, and we also follow
that approach (a theory of IO Automata refinement is part of the web presen-
tation [10]). Our work here resulted from the observation that for concurrent
algorithms, the proof that shows sufficiency of thread-local proof obligations
often constitutes a significant part of the work that can be avoided.

Our approach to thread-local proof obligations has some similarities to [20].
There, the proof obligations are specialized to linearizability and inferred on
paper. An algorithm infers and verifies intermediate assertions automatically.
The definition of a rely condition is avoided, instead the approach weakens asser-
tions minimally (using decidable fragments of Separation Logic) to be stable over
all the transitions of other threads.

6 Conclusion

We have defined an approach to the verification of concurrent threaded systems
that reduces simulation proofs to thread-local, step-local proof obligations for a
forward simulation. We found that this reduces the effort for verification signif-
icantly and allows us to focus on the core predicates and assertions needed for
verification of the hash set implementation. All KIV specifications and proofs
for the hash set case study can be found online [10].

In this paper we could not discuss various extensions that we either have
already done (e.g., global system transitions that model crashes or flushing mem-
ory from volatile to persistent memory) or are future work (e.g., progress condi-
tions). A comparison to the program calculus we alternatively use is also beyond
the scope of this paper. Finally, it would also be interesting to see how incre-
mental development of concurrent algorithms using several refinements could
benefit.
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Abstract. The TLA+ Proof System (TLAPS) allows users to verify
proofs with the support of automated provers, including SMT solvers.
To better ensure the soundness of TLAPS, we revisited the encoding of
TLA+ into SMT-LIB, whose implementation had become too complex.
Our approach is based on a first-order axiomatization with E-matching
patterns. The new encoding is available with TLAPS and achieves per-
formances similar to the previous version, despite its simpler design.

Keywords: Automated Theorem Proving · SMT · TLA+ · TLAPS

1 Introduction

TLA+ is a specification language based on the Temporal Logic of Actions and
Zermelo-Fraenkel set theory [7,8,16]. It is mostly used in the industry for mod-
elling distributed systems [14], but its expressive language is suited for any kind
of mathematics [10]. The TLA+ Proof System (TLAPS) provides a syntax for
proofs [4]. When a user is satisfied with her proofs, she can invoke TLAPS; the
tool will generate a number of proof obligations which are then sent to backend
solvers. At this time the solvers available are Isabelle/TLA+ [15], Zenon [2],
the SMT solvers CVC4 [1], veriT [3] and Z3 [5], and finally the LS4 prover for
temporal logic.

Obligations must be encoded into the respective logics of the selected back-
ends. In this context, a good encoding should meet two requirements: soundness
and efficiency. An efficient encoding makes valid obligations easy for backends to
solve. Otherwise users may be forced to reformulate their proofs, which is tedious
and time-consuming. Soundness is even more important, as an unsound encoding
will let users believe faulty statements are valid. This is especially important for
TLAPS as the tool does not verify the solvers’ results, except for Zenon, whose
proof output can be checked in Isabelle/TLA+.

In this paper, we focus on TLAPS’s encoding for SMT solvers [12]. To
achieve efficiency, the original version of this SMT encoding attempts to simplify
away TLA+ primitives. This process is optionally supported by a type synthesis
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mechanism that assigns sorts to TLA+ subexpressions. Let us illustrate this with
the following example:

assume new n ∈ Nat
prove (1 .. n) ∪ {n + 1} = 1 .. (n + 1)

The expression above is a TLA+ proof obligation. The keyword assume precedes
a list of declarations (introduced by new) and hypotheses. Here the hypothesis
n ∈ Nat is directly introduced with the declaration of n. The keyword prove
precedes the goal. Many primitive constructs of TLA+ are standard mathemat-
ical notations. “i .. j” denotes the set of integers between i and j.

Given this obligation, the original SMT encoding will try to produce an
equivalent formula in multi-sorted first-order logic, like this one:

∀nint. n ≥ 0 ⇒ ∀iint. (1 ≤ i ∧ i ≤ n) ∨ i = (n + 1) ⇔ 1 ≤ i ∧ i ≤ (n + 1)

Several techniques are used to achieve this result. A powerful type synthesis
mechanism attempts to assign sorts to bound variables—here the builtin sort int
of SMT is assigned to n. The obligation is then preprocessed in an attempt
to eliminate the TLA+ primitives with no counterpart in SMT. Since n is an
integer, both members of the equality are identified as sets of integers, which is
why set extensionality is applied. Further rewritings lead to the result displayed.
In more complex situations, preprocessing may involve additional techniques like
Skolemization or the abstraction of subexpressions.

The original SMT encoding is powerful—in many cases it is able to reduce
obligations to trivial problems. But its implementation is very complex and,
as a result, difficult to guarantee sound or maintain. There are also limitations
inherent to the techniques employed, such as the fact that type synthesis is
undecidable, or that simplification may not terminate in some rare cases.

Motivated by the need for a safer encoding, we sought to redesign the SMT
encoding in such a way that its most sophisticated features could be disabled.
Our original plan was to reimplement type synthesis and simplification, but we
found instead that our encoding could be simply optimized with E-matching
patterns, also known as “triggers” [6,11,13]. A trigger is a pattern annotation
for a universally quantified formulas, which SMT uses to find relevant instances.
We insert those patterns after the quantifiers, between curly braces, for example:

∀a, b, x : {x ∈ (a ∪ b)} x ∈ (a ∪ b) ⇔ x ∈ a ∨ x ∈ b

Here the occurrence of a formula e1 ∈ (e2 ∪ e3) during solving will trigger an
instantiation for the match {a �→ e2, b �→ e3, x �→ e1}. TLA+ is naturally formal-
ized as an axiomatic theory, and triggers do not compromise soundness, so this
technique seems ideal for our purposes. Our encoding also features axioms for
linking TLA+’s integer arithmetic with SMT’s, and implements heuristics to
find relevant instances of the axiom of set extensionality.

Starting from a formalization of TLA+’s constant fragment (Sect. 2), we will
detail the two essential steps of the encoding: a transformation for recovering for-
mulas (Sect. 3.2) and then the insertion of axioms (Sect. 3.3). Our encoding has
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been implemented in TLAPS, allowing us to compare its performances with the
original version (Sect. 4). Given the simpler design of our encoding, we expected
it to perform worse, but we found that performances were similar for the two ver-
sions. This suggests that preprocessing TLA+ is not as necessary as we believed
to make the SMT encoding efficient: modern SMT solvers are able to handle the
same work if they are provided suitable triggers.

2 Formalizing TLA+’s Constant Fragment

Key Principles. A proof of correctness is not possible without a formal defini-
tion of TLA+’s semantics. The definition we present is compatible with TLA+’s
reference book [8] and accounts for the addition of lambda-expressions with
the second version of the language.1 We will focus on the constant fragment of
TLA+, which ignores the temporal aspects of the logic. TLAPS reduces obliga-
tions to this fragment during preprocessing. This does not apply to obligations
with temporal modalities but, in the current state of TLAPS, we expect these
obligations to be isolated from the rest and handled by the prover LS4.

The constant fragment, as a logic, is very close to unsorted first-order logic. It
extends the syntax with second-order applications and removes the term-formula
distinction. In our formalism, the primitive operators of TLA+ are excluded from
the core logic; they are instead declared as part of a standard theory and specified
by axioms. This is a convenient way to formalize the underspecified semantics
of TLA+. To take one example, the expression

{∅} ∈ Int ⇒ {∅} + 0 = {∅}

is valid, regardless of the precise interpretation of {∅}+0. We view this statement
as a mere consequence of the axiom

∀x : x ∈ Int ⇒ x + 0 = x

Axioms are also a convenient way to handle overloaded operators. The nota-
tion for functional applications, f [x], is reused for tuples: 〈x, y〉[1] = x. We can
just provide axioms for functions and tuples that share a symbol, as long as the
theory remains consistent.

Logic Without Formulas. We define signatures as mappings of operator sym-
bols to types. Types are defined as usual from sorts and a constructor for func-
tional types: the type τ = τ1 × · · · × τn → s characterizes an operator that
takes n arguments and returns an element of sort s. If n = 0 then τ is constant
and we write τ = s. We define the order ord(τ) as 0 in the constant case, else
max(ord(τi))1≤i≤n + 1. If ord(τ) ≤ 1 then n is called the arity of τ .

1 http://lamport.azurewebsites.net/tla/tla2-guide.pdf.

http://lamport.azurewebsites.net/tla/tla2-guide.pdf
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Definition 1 (Expressions). We note ι the sort of individuals. A TLA+ sig-
nature is a signature Σ such that, for all k, the type Σ(k) has order 2 at most
and only includes the sort ι. Given such a Σ, the syntax of TLA+ expressions
and arguments is defined by the following minimal grammar:

e ::= x | k(f, . . . , f) | e = e | false | e ⇒ e | ∀x : e (Expressions)
f ::= e | k | λx, . . . , x : e (Arguments)

where x is a variable symbol and k an operator symbol in the domain of Σ. We
impose ord(Σ(k)) = 1 if k occurs as an argument. All applications k(f1, . . . , fn)
must be well-formed: the arity of fi must match the arity of the expected type τi.

The logical connectives true, �=, ¬, ∧, ∨, ⇔, ∃ may be defined as notations.
Note that lambda-expressions may only appear as arguments to second-order
operators. Note also that the notion of predicate symbol is absent, much like the
notion of formula.

The definition of interpretations is not standard, but still very close to the
traditional one for first-order logic. We introduce it briefly; the full definition
can be found in Appendix 5. A domain is a collection D that contains at least
two values �D and ⊥D. An interpretation I consists of a domain and a mapping
k �→ kI . The evaluation of expressions e and arguments f is defined recursively
such that �e�I is an element of D and �f�I is a function from Dn to D where f
is n-ary. For example, the implication case states:

�e1 ⇒ e2�
I �

{
�D if �e1�

I �= �D or �e2�
I = �D

⊥D otherwise

The satisfaction relation is defined by I |= e iff �e�I = �D. Remark that this
definition makes e ⇒ e a tautology for all e. The two key ideas of the semantics
are: Boolean connectives and equality always return Boolean values; if e occurs
where a Boolean is expected, �e� is compared with �D to obtain a Boolean.

Primitive Operators. TLA+ defines primitive constructs for many kinds of
data including sets, functions, integers and reals. We view all of these constructs
as special cases of the application k(f1, . . . , fn). For instance, the TLA+ expres-
sion x ∈ y will be represented by mem(x, y). The operator mem is declared with
the type ι × ι → ι. Note that the lack of a Boolean sort makes it impossible to
declare mem as a predicate.

Constructs that bind a variable may be represented with second-order appli-
cations. For instance, the set {x ∈ S : e} is represented by setst(S, λx : e), where
setst : ι × (ι → ι) → ι. Again, it is not possible to specify that setst expects a
predicate argument. The other second-order constructs of TLA+ are the choose
expression choose x : e, the replacement set {e : x ∈ S}, and the explicit func-
tion [x ∈ S �→ e].

The operators of TLA+ are specified by axioms. For instance, the following
schema of comprehension holds for all unary P :

∀a, x : mem(x, setst(a, P )) ⇔ mem(x, a) ∧ P (x)
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We do not present the axioms here. They are easy to infer from the reference
book, and most of them are standard (notably the axioms of ZF). For an explicit
presentation of TLA+’s axioms, we refer the reader to our documentation.2 Since
our encoding inserts axioms directly in the SMT problem, the section about
axiomatization will feature examples (Sect. 3.3).

3 Encoding TLA+ for SMT

3.1 Overview

Let us go back to the example from the introduction. With our formalism, we
might want to rewrite the obligation as follows:

assume new p, mem(p,Nat)
prove cup(range(1, p), enum1(plus(p, 1))) = range(1, plus(p, 1))

Every operator is implicitly assigned a type with the single sort ι. For instance,
enum1 : ι → ι and plus : ι × ι → ι. This applies to the constant operators as
well. Thus we have 1 : ι.

The first step of the encoding is to recover formulas. The sort o is introduced,
and the usual semantics for Boolean connectives is recovered. Equalities are
considered formulas as well. It is sometimes necessary to insert conversions; a
new operator casto : o → ι is introduced in the signature for this. This example
happens to be left unchanged by the transformation, except for the fact that mem
is reassigned the type ι × ι → o.

A simple example of an expression that must be changed is true ∈ boolean.
We consider that true : o in the target logic. But set membership is defined on ι,
so the encoding would insert a cast, resulting in casto(true) ∈ boolean. Here
is a more complex example: in the expression n ∈ Nat ⇒ p[n], the subexpression
p[n] is not clearly Boolean, so it is converted into a formula. The result is the
formula n ∈ Nat ⇒ (p[n] = casto(true)).

The next step, axiomatization, simply inserts explicit declarations and
axioms for the relevant TLA+ primitives. Our method of axiom selection is
straightforward. Each operator is assigned a set of axioms, which are all inserted
after its declaration. If an axiom features an operator not declared yet, the pro-
cess is repeated recursively.

Our target logic includes SMT’s builtin sort int. In order to take advantage
of SMT’s reasoning techniques for integer arithmetic, we treat TLA+’s integer
primitives specially. This involves the addition of an injector cast int : int → ι
into the signature. This will be described in more details later; for now, let us
simply mention that the integer constants of TLA+ can be encoded as their
counterparts in int using casts. In our example, 1 is rewritten to cast int(1).

2 https://github.com/adef-inr/tlaplus-axioms.

https://github.com/adef-inr/tlaplus-axioms
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The final result, with types made explicit, may be written:

assume new casto : o → ι, new cast int : int → o,

new mem : ι × ι → o, new cup : ι × ι → ι, new enum1 : ι → ι

. . . (other declarations + axioms with triggers)
new p : ι, mem(p,Nat)

prove cup(range(cast int(1), p), enum1(plus(p, cast int(1))))
= range(cast int(1), plus(p, cast int(1)))

At this point, the obligation can be directly translated to SMT. This short
overview does not cover two difficult points, which are the reduction of second-
order applications to first-order ones, and our support for set extensionality.
These points will be addressed in the section about axiomatization.

3.2 Recovering Formulas

Intuitively, the usual distinction between terms and formulas can be recovered by
inserting appropriate conversions in TLA+ expressions. We define a transforma-
tion Bo from TLA+’s core logic to a logic that features the sort o, interpreted as
the domain of truth values, and enjoy the traditional semantics for Boolean con-
nectives and equality. Using a new operator casto with type o → ι, we describe
two kinds of conversions:

e −→ casto(e) (Injection)
e −→ e = casto(true) (Projection)

Expressions that appear to be formulas but occur in a non-Boolean context
are injected into ι. Conversely, expressions that do not appear to be formulas
but occur in a Boolean context are projected onto o. This is illustrated by the
example below (which is a valid expression):

∀x : (x = false) ⇒ ¬x
Bo−−−→ ∀xι : (x = casto(false)) ⇒ ¬(x = casto(true))

We annotate bound variables with sorts in the target logic. This is mostly to
emphasize the fact that output formulas belong to a different logic. All bound
variables are annotated with ι.

Formal Definition. The target logic features the two sorts ι and o. The syntax
is now restricted as usual, for instance false has sort o and e1 ⇒ e2 is well-typed
with o only if e1 and e2 have type o. The interpretation of Boolean connectives is
also the standard one. The sort o is interpreted as the collection whose elements
are � and ⊥.

Given a TLA+ signature Σ, we define ΣB by adding casto with type o → ι.
All other operators are preserved with their types. The mappings defined below
take their inputs from the core logic of TLA+ under Σ and return terms, formulas
or arguments in the target logic just described, under the signature ΣB.
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Definition 2. We define by mutual recursion the mappings Bι and Bo on
expressions and Bf on arguments:

Bι(x) � x

Bι(k(f1, . . . , fn)) � k(Bf (f1), . . . , Bf (fn))

Bι(e) � casto(Bo(e))

Bf (e) � Bι(e)

Bf (k) � k

Bf (λx1, . . . , xn : e) � λxι
1, . . . , x

ι
n : Bι(e)

Bo(e1 = e2) � Bι(e1) = Bι(e2)

Bo(false) � false

Bo(e1 ⇒ e2) � Bo(e1) ⇒ Bo(e2)

Bo(∀x : e) � ∀xι : Bo(e)

Bo(e) � Bι(e) = casto(true)

The last equations for Bι and Bo are respectively called injection and projection.
They are applied with lowest priority to ensure termination.

The definition above is not obviously inductive, but we may reason by induc-
tion on the construction of any Bι(e), Bo(e) or Bf (f). This is justified by the
fact that an injection can never immediately follow a projection, or vice versa.
If, for example, Bι(e) is obtained by injecting Bo(e) into ι, then Bo(e) can only
be constructed by applying Bι or Bo to subexpressions of e.

It is easy to verify that the three mappings result in well-typed expressions.
Bι results in terms of the sort ι. Bo results in formulas of the sort o. If f has
arity n, then Bf (f) has the n-ary type ι × · · · × ι → ι.

Correctness. The main result is the Theorem 1 below, which is about how
each mapping preserves evaluation. We only provide a sketch of the proof here;
the full version can be found in Appendix 5.

For all Σ-interpretation I, we define a ΣB-interpretation IB by adding an
interpretation for casto. The function castIB

o maps � to �D and ⊥ to ⊥D. The
domain D is preserved and the interpretations of all operators in Σ as well.

Theorem 1. Let I be a TLA+ interpretation. The following propositions hold
for all expressions e and arguments f :

(i) �Bι(e)�IB
= �e�I

(ii) �Bo(e)�IB
= � iff �e�I = �D

(iii) �Bo(e)�IB
= ⊥ implies �e�I = ⊥D when Bo(e) is not a projection

(iv) �Bf (f)�IB
= �f�I

Proof. The proof is by induction on the construction of the result. For cases
constructing Bι(e), we prove (i). For cases constructing Bf (f), we prove (iv). For
cases constructing Bo(e), we prove (ii) and (iii), except in the case of projection,
where only (ii) needs to be proved. When an induction hypothesis on Bo(e) must
be invoked, we may only use (ii) in general. However, in the case of injections,
we use the fact that the previous rule cannot be a projection, so (iii) can be
used.
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Soundness follows trivially from Theorem 1. Completeness also follows if the
mapping I �→ IB is surjective. This is actually not the case, as we could have a
domain D in the target logic with only one element; D would not be a suitable
domain for TLA+ since we must have �D �= ⊥D. We simply exclude this case
with the following axiom, which essentially specifies casto as injective:

casto(true) �= casto(false) (B)

Theorem 2 (Soundness and Completeness of Bo). Let e be a TLA+

expression. Then e is satisfiable iff Bo(e) is satisfiable by a model of (B).

Proof. If I |= e then IB |= Bo(e) by Theorem 1. Clearly IB satisfies (B). Con-
versely, if J |= Bo(e) with J model of (B), then we define �D � �casto(true)�J

and ⊥D � �casto(false)�J . Let I be the restriction of J that ignores casto. It
is clear that J = IB, so I |= e by Theorem 1. ��

Assigning Predicate Types to TLA+ Primitives. The encoding Bo just
described preserves the types of all operators with the sort ι. In reality, some
reassignments using the sort o are justified. For example, we give set mem-
bership mem the new type ι × ι → o, and set comprehension setst the type
ι × (ι → o) → ι. We also consider that the axiom schema of set comprehension
should be

∀aι, xι : mem(x, setst(a, P )) ⇔ mem(x, a) ∧ P (x)

for all unary predicate P . In contrast, applying Bo to the original axiom schema
would introduce a number of conversions from and to o.

The justifications for these type reassignments stem from the semantics of
the relevant primitives. Briefly, mem may be assigned a predicate type because
TLA+ specifies that set membership always returns a Boolean value. Our encod-
ing actually implements the rules:

Bo(mem(e1, e2)) � mem(Bι(e1),Bι(e2))

Bι(mem(e1, e2)) � casto(Bo(mem(e1, e2)))

where mem : ι × ι → o in the signature ΣB. The encoding may be adapted
in similar ways, and for similar reasons, to assign predicate types to the subset
relation and all the comparison operators of arithmetic.

For set comprehension, the argument is a little more complex. The following
equality is valid in TLA+ for all e1 and e2:

{x ∈ e1 : e2} = {x ∈ e1 : e2 = true}
But note that this is due to set extensionality, because the expressions e2 and
e2 = true are equivalent. This gives the intuition for why we may project the
second argument as a predicate. The rule we implement is:

Bι(setst(e1, λx : e2)) � setst(e1, λxι : Bo(e2))
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where setst : ι × (ι → o) → ι in ΣB. The rule and justification for assigning
choose : (ι → o) → ι is analogous, but the principle of extensionality for choice
is invoked instead.

3.3 Axiomatization

The principle of this step is to make explicit declarations for relevant TLA+

primitives and insert their axioms in the final obligation. The vast majority
of axioms are just reformulations of TLA+’s theory. The only exception is our
axioms for integer arithmetic, which introduce the sort int, but it will be clear
that their inclusion does not compromise soundness.

Our method of axiom selection is straightforward. A declaration is inserted
for every primitive that occurs in the obligation. Each primitive may be assigned
a number of axioms (typically 1–3) which are inserted in the problem after the
declaration. The process is recursively repeated if axioms contain primitives that
are not declared yet.

Here is an example of an axiom with a trigger:

∀aι, bι, xι : {mem(x, cap(a, b))}
mem(x, cap(a, b)) ⇔ mem(x, a) ∧ mem(x, b)

A trigger is a list of terms annotating the body of a universally quantified for-
mula. We write them between curly braces. Triggers do not affect the seman-
tics of axioms, but SMT solvers may use them to select instances based on
the terms that are known at a given moment. For instance, when a formula
mem(t1, cap(t2, t3)) is found, the match {x �→ t1, a �→ t2, b �→ t3} may be used
to generate an instance of the axiom above. Triggers may include several terms,
in which case all terms must match at the same time. Axioms may include several
triggers, in which case any individual trigger can produce an instance.

Some SMT solvers implement heuristics for generating triggers, but we found
that we could solve more problems by selecting our own triggers cautiously. In
the next part of this section, we illustrate some principles behind our methodol-
ogy through an example. We lack the space for a full presentation of the theory,
which includes 80 axioms in total; the complete list can be found in our docu-
mentation.3 After this discussion, we present our solutions for handling integer
arithmetic, second-order operators, and set extensionality.

Selecting Triggers for Set Theory. For this part, we will use the TLA+

obligation displayed on the left below. The same problem is displayed on the right
using our standard notation; the operators mem and subseteq are predicates, the
constant 1 is SMT’s builtin integer constant and cast int : int → ι.

assume new S, assume new S : ι,

(S ∩ Int) ⊆ ∅ subseteq(cap(S, Int), empty)
prove 1 /∈ S prove ¬mem(cast int(1), S)

3 https://github.com/adef-inr/tlaplus-axioms.

https://github.com/adef-inr/tlaplus-axioms
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When the problem is translated to SMT, the goal is negated; the obligation will
be solved if the SMT solver answers “unsatisfiable”. So we may consider 1 ∈ S
to be an assumption. The objective is to derive a contradiction. The intuitive
proof is that 1 ∈ S and 1 ∈ Int entail 1 ∈ (S ∩ Int), but then 1 ∈ ∅ by inclusion,
and a contradiction is derived.

For this example, we will focus on the axioms for subseteq and cap. The
axiom for empty is not particularly insightful. The axioms for Int and cast int are
discussed later. We may assume that mem(cast int(1), Int) is derived immediately
by SMT and that the contradiction is found when mem(cast int(1), empty) is
derived. Here is a first attempt at an axiomatization:

∀aι, bι : {subseteq(a, b)} (Subseteq)
subseteq(a, b) ⇔ (∀xι : mem(x, a) ⇒ mem(x, b))

∀aι, bι, xι : {mem(x, cap(a, b))} (Cap)

mem(x, cap(a, b)) ⇔ mem(x, a) ∧ mem(x, b)

This attempt is natural if one thinks of triggers as a way of implementing
rewriting rules: for both axioms, the left member of the equivalence is given
as sole trigger. In our case, the definition for (S ∩ Int) ⊆ ∅ is generated; this
amounts to inserting the fact

∀xι : mem(x, cap(S, Int)) ⇒ mem(x, empty)

in the problem. The next step is to instantiate this new fact with cast int(1).
But note that the quantifier ∀xι does not have a trigger. As a result, SMT

must find the correct instance by other means. As obligations get larger, it
becomes increasingly harder for SMT to find the right instances without indica-
tions. The solution is to avoid axioms that introduce universal quantifiers in the
problem. The axiom (Subseteq) is easily reformulated by breaking down the
equivalence in two implications, resulting in two new axioms. For one of them,
the universal quantifier can be moved up and a better trigger can be selected:

∀aι, bι : {subseteq(a, b)} (SubseteqIntro)
(∀xι : mem(x, a) ⇒ mem(x, b)) ⇒ subseteq(a, b)

∀aι, bι, xι : {subseteq(a, b),mem(x, a)} (SubseteqElim)
subseteq(a, b) ∧ mem(x, a) ⇒ mem(x, b)

The quantifier ∀xι in (SubseteqIntro) is viewed as existential, as it occurs
in a negative context (on the left of an implication). There is no need to assign
it a trigger.

We now need two formulas to trigger (SubseteqElim). The assumption
(S ∩ Int) ⊆ ∅ is again relevant; the second formula we need is 1 ∈ (S ∩ Int). But
we have no way of generating that formula: our axiom (Cap) has one trigger,
which expects exactly the formula we want to generate.
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The trigger of (Cap) can only generate the definition of a formula x ∈ (a∩b)
that is already known. If we want to use the axiom to generate the formula
x ∈ (a∩b) instead, we need another trigger. Let us already rule out the candidate

{mem(x, a),mem(x, b)}

That trigger would indeed use the known facts 1 ∈ S and 1 ∈ Int and generate
1 ∈ (S ∩ Int). The problem is that, in general, instantiating axiom (Cap) with
that trigger can introduce a term a ∩ b into the problem. A recurring challenge
when selecting triggers is to prevent situations in which axioms may trigger
each others indefinitely; but this would happen here. Given any formula x ∈ y
known at a given moment, it is clear that (Cap) could keep triggering itself
by matching the same formula twice, producing the formulas x ∈ (y ∩ y), then
x ∈ ((y ∩ y) ∩ (y ∩ y)), and so on.

The correct solution is to add two triggers to the axiom, as follows:

∀aι, bι, xι : {mem(x, cap(a, b))}
{mem(x, a), cap(a, b)}
{mem(x, b), cap(a, b)}

(Cap’)

mem(x, cap(a, b)) ⇔ mem(x, a) ∧ mem(x, b)

The second trigger above will match the assumption 1 ∈ S and the known term
S ∩ Int . Equivalently, the third trigger can match the assumption 1 ∈ Int and
the same term, for the same result.

We have now arrived at an axiomatization that allows SMT solvers to prove
the original obligations using only triggers. To summarize the proof: first the
axiom (Cap’) is triggered by mem(cast int(1), S) and cap(S, Int), generating

mem(cast int(1), cap(S, Int)) ⇔ mem(cast int(1), S) ∧ mem(cast int(1), Int)

Then the axiom (SubseteqElim) is triggered by mem(cast int(1), cap(S, Int))
and subseteq(cap(S, Int), empty), resulting in

subseteq(cap(S, Int), empty) ∧ mem(cast int(1), cap(S, Int))
⇒ mem(cast int(1), empty)

From here the contradiction is obtained using propositional logic.

General Principles for Selecting Triggers. We systematically reformulate
the axioms that feature nested quantifier, so that all universal quantifiers can be
moved at the top. This prevents the introduction of quantifiers without triggers
during solving, and usually invites us to select different triggers. In particular,
many axioms feature an equivalence where one member contains a quantifier, in
which case the equivalence is broken down in two implications, resulting in an
introduction and an elimination axiom.
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The next important idea is to observe what kinds of terms can be generated
for a given axiom and trigger. When looking at the axiom for cap, we rejected
the trigger than could lead to the generation of more terms a ∩ b, but we kept
the triggers that could only generate set membership statements. This illustrates
our following pragmatic assumption about TLA+ and its usage: even though the
language is very expressive, and obligations may feature complex set expressions,
we assume that all the sets relevant to the proof are already in the obligation.
However, proofs may rely on many set membership facts that are only implicit.
In our example, 1 ∈ (S ∩ Int) was such a fact. The element 1 and the set S ∩ Int
were explicit in the obligation, but their relationship was not.

We have applied a similar principle for functions, only instead of sets, we
assume that obligations never require constructing explicit functions [x ∈ S �→ e]
or functional sets [a → b] other than the ones already explicit. We do generate
terms like domain f and f [x] for the known functions f and elements x in their
domains. This is illustrated by the axiom below, which is only one component
of the definition of [a → b], also written arrow(a, b). Both triggers need a fact
f ∈ [a → b] and both may generate the fact f [x] ∈ b (where f [x] is written
fcnapp(f, x)). The first trigger may generate a term f [x], while the second may
generate a formula x ∈ a.

∀aι, bι, f ι, xι : {mem(f, arrow(a, b)),mem(x, a)}
{mem(f, arrow(a, b)), fcnapp(f, x)}

mem(f, arrow(a, b)) ∧ mem(x, a) ⇒ mem(fcnapp(f, x), b)

Axioms for Integer Arithmetic. The construction we describe here was
already present in the previous SMT encoding. Its purpose is to link TLA+’s
arithmetic with SMT’s builtin arithmetic, in order to reason more efficiently
on integers. The intuition is that the predicate n ∈ Int can be made to cor-
respond with the sort int through a simple construction involving the injec-
tor cast int : int → ι. We specify its left-inverse proj int : ι → int. This is a
well-known trick to specify a function as injective with a simpler axiom. Finally,
we specify cast int as a homomorphism between the two structures of integer
arithmetic. The example below includes the necessary axioms for handling the
TLA+ primitives Int and +.

cast int : int → ι

proj int : ι → int

∀zint : {cast int(z)} mem(cast int(z), Int) (IntIntro)
∀xι : {mem(x, Int)} mem(x, Int) ⇒ x = cast int(proj int(x)) (IntElim)

∀zint : {cast int(z)} z = proj int(cast int(z)) (IntCast)

∀zint1 , zint2 : {plus(cast int(z1), cast int(z2))}
plus(cast int(z1), cast int(z2)) = cast int(z1 + z2) (IntPlus)
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The axioms for all other operators are analogous to (IntPlus). For constants,
the axiom is a trivial equality; we simply rewrite the TLA+ constants 0, 1,
2 directly as cast int(0), cast int(1), cast int(2).

Those axioms are not derived from TLA+’s theory, but extend it conserva-
tively. The soundness of the construction relies on the fact that TLA+’s arith-
metic and SMT’s are assumed to be equivalent. More precisely: from every propo-
sition with ι and int that is valid according to SMT, one obtains a valid TLA+

formula by relativizing all quantifier on int with the predicate n ∈ Int .

Elimination of Second-Order Applications. Second-order applications are
reduced to first-order ones during this step. The second-order primitives of TLA+

are typically specified by an axiom schema, in which case the higher-order argu-
ments are used to generate the right instance. To take a simple example, consider
the expression {n ∈ Int : n �= i} where i is bound by a quantifier. Internally, we
represent this expression as a second-order application setst(Int , λn : n �= i).
To make it first-order, we rewrite it as setst•(Int , i), where the new operator
setst• : ι × ι → ι is specified by

∀iι, sι, nι : mem(n, setst•(s, i)) ⇔ mem(n, s) ∧ n �= i

Second-order applications where the operator is not a TLA+ primitive are rewrit-
ten in the same way—there is just no axiom schema to instantiate for them.

This method of reduction to first-order logic is simplistic but allows basic rea-
soning about the second-order TLA+ constructs—set comprehension, set refine-
ment, choose-expressions and explicit functions. Its major flaw is that expressions
may come out harder to unify after rewriting. For instance, the simple goal

∃i : {n ∈ Int : n �= i} = {n ∈ Int : n �= 0}

results in a problem only provable using set extensionality, because the second
set is rewritten as setst••(Int) where setst•• is specified by another instance
of the comprehension schema. We attempt to detect when a previously intro-
duced operator can be reused for a rewriting, but our implementation is far from
complete.

Heuristics for Set Extensionality. It is difficult for SMT solvers to find
relevant instances for the axiom of set extensionality, and there is no obvious
trigger for it. While some proofs may depend on the axiom of extensionality,
they tend to do so in predictable ways. Our support for set extensionality is very
limited, but it is implemented easily and suffices for many cases.

The idea is simply to use a special predicate for the sole purpose of triggering
the axiom of set extensionality:

appext : ι × ι → o

∀xι, yι : {appext(x, y)} (∀zι : mem(z, x) ⇔ mem(z, y)) ⇒ x = y
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Note that only one implication is specified by the axiom—the other implication
is trivial and not useful for proofs. It remains to find how relevant instances
of appext(x, y) can be generated.

In most obligations where set extensionality is needed, the relevant equal-
ity occurs explicitly in the obligation. For these, it would suffice to generate a
term appext(x, y) for every x = y in the problem. However, while it is true that
every object is a set in TLA+, attempting to prove a goal like 1 + 1 = 2 by set
extensionality would be clearly misguided. Our heuristic is to consider only the
equalities where at least one member has a set-theoretic top connective. We also
ignore equalities that occur in negative Boolean context, like in x = ∅ ⇒ y ∈ x,
as these equalities can be simplified.

The second problem is that the builtin symbol = cannot be used in a trig-
ger. We circumvent this problem by declaring and defining an equivalent rela-
tion equals.

equals : ι × ι → o

∀xι, yι : {equals(x, y)} equals(x, y) ⇔ x = y

∀xι, yι : {equals(x, y)} appext(x, y)

We rewrite the relevant equalities with equals for the translation. For example,
a goal a = b ⇒ (a∩c) = (c∩b) is encoded as a = b ⇒ equals(cap(a, c), cap(c, b)).
Set extensionality must only be applied for the second equality. The use of equals
triggers a match for the two axioms above; the term appext(cap(a, c), cap(c, b))
is generated, triggering the axiom.

This technique essentially implements set extensionality as a rewriting rule.
In other situations, the relevant instance of extensionality is obvious to the user,
but not explicit in the proof. A common situation involves checking that two
sets S and T are disjoint, which is expressed S ∩ T = ∅. We can automatize
these checks by adding the following axiom to the SMT problem:

∀xι, yι : {cap(x, y)} appext(cap(x, y), empty)

4 Evaluation

Our SMT encoding is implemented in TLAPS and available on GitHub.4 We
now present its evaluation. The main purpose of this evaluation is to compare
our encoding with the original SMT backend.

4.1 Experiment and Results

Our starting data is a collection of TLA+ specifications, taken from three dif-
ferent sources: the library of TLA+ examples,5 the library of examples from
the TLAPS distribution, and a recent specification of Lamport’s Deconstructed
4 https://github.com/tlaplus/tlapm.
5 https://github.com/tlaplus/Examples.

https://github.com/tlaplus/tlapm
https://github.com/tlaplus/Examples
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Bakery algorithm [9]. We did not evaluate TLAPS on the specifications them-
selves, but instead used it to generate SMT benchmarks, and then evaluate SMT
solvers on those benchmarks. For every specification, two SMT benchmarks were
generated, one using the old encoding, the other using our version.6

We used the following SMT solvers for the evaluation: CVC4, cvc5, Z3, veriT.
For veriT, we modify the input file by replacing the SMT logic UFNIA by UFLIA,
as veriT only supports linear arithmetic. All solvers are called with a timeout of
5 s, which is the default timeout in TLAPS. The experiment was carried out on
a Dell Latitude laptop with an Intel Core i7 processor at 1.90 GHz. The results,
presented in Table 1, show how many obligations were solved using each version
of the encoding (top numbers). An obligation is considered solved if it is solved by
at least one solver. We also computed the numbers of uniquely solved obligations
(bottom numbers). An obligation is solved uniquely with one encoding if it is
solved while the alternate encoded version is not solved.

Table 1. Obligations solved using the two SMT encodings

Specification Size Old New

TLA+ Examples 1371 1142 1265

35 158

TLAPS Examples 666 583 589

16 22

Deconstructed Bakery 777 652 754

14 116

Total 2814 2377 2608

65 296

4.2 Discussion

Our encoding performed better than the previous one; we solved 92.6% of all
obligations with our version against 84.8% with the old version. Our encoding
solves 296 obligations that were unsolved before, but 65 obligations are not solved
anymore. Note that, for the TLA+ and TLAPS examples, all obligations were
originally solved, but not necessarily by the SMT backend. Many proof steps
made explicit calls to Zenon or Isabelle. We replaced them by calls to SMT, so
our benchmarks contain SMT problems that were not originally solved, which is
why the old encoding does not solve everything.

We should remark on the distribution of uniquely solved obligations, which is
not shown precisely in the table. For individual specifications in the TLA+ and

6 The TLA+ specifications and SMT benchmarks generated from them can be found
at https://github.com/adef-inr/SafeTLAEncodingBenchmarks.

https://github.com/adef-inr/SafeTLAEncodingBenchmarks
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TLAPS examples, those numbers are very low for both encodings. For very small
files, each encoding solves about 0–4 obligations uniquely; for larger files, that
number is about 5–8. The only exception is the specification Tencent Paxos,
which includes a file on which our encoding solved 132 obligations uniquely.
This anomaly appears to be the result of a bug in the old encoding, as it fails
to produce an output for many obligations. Thus, we may want to account for
this anomaly by ignoring Tencent Paxos, in which case the performances of both
encodings are actually similar on the TLA+ examples.

The original files from Deconstructed Bakery contain 130 explicit calls to
Zenon or Isabelle. The vast majority of the 116 obligations solved uniquely by
our encoding come from this set. It is hard to determine the exact reasons for this
success. The Deconstructed Bakery specification makes an especially advanced
use of TLA+ functions as it involves partial functions and matrices. Sets of
partial functions, for instance, are defined by

PFunc(X,Y ) � union {[XX → Y ] : XX ∈ subset X}

The old encoding would rewrite any formula f ∈ PFunc(X,Y ) into a formula
containing three quantifiers with no triggers. Our solution does not have that
problem, which may be the reason behind its better performances.

Our concern for now is to find explanations for the 65 obligations we do
not solve anymore. We are aware of several areas of improvement. Notably,
our reduction of second-order applications to first-order could be improved to
reuse symbols more often. We are also investigating alternative formulations of
the theory of TLA+ functions; our current axioms do not always infer all the
relevant facts f ∈ [S → T ], which may hinder progress on Deconstructed Bakery
in particular.

5 Conclusion

We presented an encoding of TLA+’s constant fragment into SMT-LIB. Our
approach is based on the view that TLA+ is a standard theory on top of a core
logic without formulas. Proof obligations are encoded into SMT’s logic by first
applying a simple transformation to recover formulas, then inserting declarations
and axioms for all relevant TLA+ primitives. We contrast this approach with the
original SMT encoding, which attempts to simplify away the TLA+ primitives,
but must rely on heavy preprocessing techniques to do so.

Our encoding faithfully translates expressions of TLA+’s untyped set theory.
It is easy to implement, therefore safer to use. We used SMT triggers to optimize
our axiomatization. To our surprise, we were able to achieve performances similar
to the previous version of the encoding with this technique. This runs counter to
the idea that TLA+ obligations must be preprocessed and simplified for SMT.
Solvers can handle the problems of TLA+ despite the absence of types, because
most obligations only require elementary inferences on already explicit sets and
functions, and triggers can model these inferences.
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Appendix

We provide details on the semantics of TLA+’s Boolean connectives (Sect. 2)
and a fuller proof of correctness for our transformation Bo (Sect. 3.2).

Definition 3 (Interpretations). A TLA+ domain is a collection D that con-
tains at least two distinct values noted �D and ⊥D. We associate a collection Dτ

to every type τ in the expected way.
Let Σ be a TLA+ signature. A Σ-interpretation I consists of a TLA+ domain

and a mapping k �→ kI from the symbols of Σ such that every kI is an element
of DΣ(k). A valuation is a function of variable symbols to elements of D. For
all valuations θ, variable x and element v of D, we note θx

v the valuation that
reassigns x to v.

Given an interpretation I and a valuation θ, the interpretation of expressions
and arguments is defined recursively:

�x�I
θ � θ(x)

�k(f1, . . . , fn)�I
θ � kI(�f1�I

θ , . . . , �fn�I
θ )

�e1 = e2�
I
θ � �D if �e1�

I
θ = �e2�

I
θ , otherwise ⊥D

�false�I
θ � ⊥D

�e1 ⇒ e2�
I
θ � �D if �e1�

I
θ �= �D or �e2�

I
θ = �D, otherwise ⊥D

�∀x : e�I
θ � �D if �e�I

θx
v

= �D for all v in D, otherwise ⊥D

For all v1, . . . , vn in Dn,

�k�I
θ (v1, . . . , vn) � kI(v1, . . . , vn)

�λx1, . . . , xn : e�I
θ (v1, . . . , vn) � �e�I

θ
x1,...,xn
v1,...,vn

We admit that the valuation θ does not affect the interpretation of expressions
with no free variables. This justifies the notations �e�I and I |= e. Remark that
the equation for implication above is not the same as

�e1 ⇒ e2�
I
θ � �D if �e1�

I
θ = ⊥D or �e2�

I
θ = �D, otherwise ⊥D

Indeed, for any value v, v �= �D does not entail v = ⊥D. A consequence of our
definition is that e ⇒ e is a tautology for all expressions e.

We now prove our correctness result for Bo:

Theorem 3. Let I be a TLA+ interpretation. The following propositions hold
for all expressions e, arguments f , and valuations θ:
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(i) �Bι(e)�IB
θ = �e�I

θ

(ii) �Bo(e)�IB
θ = � iff �e�I

θ = �D

(iii) �Bo(e)�IB
θ = ⊥ implies �e�I

θ = ⊥D if Bo(e) is not a projection
(iv) �Bf (f)�IB

θ = �f�I
θ

Proof. The proof is by induction on the construction of the result. We treat the
cases of injection and projection, and the case of implication. All other cases are
either straightforward or analogous.

Injection into Bool. Let Bι(e) � casto(Bo(e)). We must prove property (i)
for Bι(e). By definition:

�Bι(e)�IB
θ = castIB

o (�Bo(e)�IB
θ ) =

{
�D if �Bo(e)�IB

θ = �
⊥D otherwise

The induction hypothesis applies to Bo(e). If �Bo(e)�IB
θ = � then �e�I

θ = �D

by property (ii). If �Bo(e)�IB
θ = ⊥, we deduce �e�I

θ = ⊥D from property (iii)
and the fact that Bo(e) cannot be a projection. Indeed, by construction of Bι

and Bo, a projection cannot be followed by an injection. In both cases, we have
�Bι(e)�IB

θ = �e�I
θ .

Projection onto Bool. Let Bo(e) � Bι(e) = casto(true). Since we are treating
the projection case, the only property we really need to prove is property (ii).
We have the following equivalences:

�Bo(e)�IB
θ = � iff �Bι(e)�IB

θ = �D (since �casto(true)�IB
θ = �D)

iff �e�I
θ = �D (by Property (i) on Bι(e))

Implication. Let e � e1 ⇒ e2 and Bo(e) � Bo(e1) ⇒ Bo(e2). We must prove

properties (ii) and (iii). But remark that (ii) ⇒ (iii) is immediate, as �e�I
θ �= �D

implies �e�I
θ = ⊥D when e is an implication. Property (ii) is proven by the

following series of equivalences:

�Bo(e1 ⇒ e2)�IB
θ = �

iff �Bo(e1)�IB
θ = ⊥ or �Bo(e2)�IB

θ = � (by the usual semantics of ⇒)

iff �e1�
I
θ �= �D or �e2�

I
θ = �D (by induction and property (ii))

iff �e1 ⇒ e2�
I
θ = �D (by TLA+’s semantics of ⇒)

��
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References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

2. Bonichon, Richard, Delahaye, David, Doligez, Damien: Zenon: an extensible auto-
mated theorem prover producing checkable proofs. In: Dershowitz, Nachum,
Voronkov, Andrei (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 151–165.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75560-9 13

3. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
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Abstract. With the increasing complexity and scale of software-
intensive systems, model-based system development requires composable
system models and composition operators.

In line with such a vision, this paper describes our experience in
modeling the behavior of the MVM-Adapt, an adaptive version of the
Mechanical Ventilator Milano that has been designed, certified, and
deployed during the COVID-19 pandemic for treating pneumonia. To
keep the complexity of the requirements and models under control, we
exploited a compositional modeling technique for discrete-event systems
based on Abstract State Machines (ASMs). Essentially, separate ASMs
represent the behavior of interacting subsystems of the MVM with their
new adaptive functionalities; they can communicate with each other
through I/O events, and co-operate by a precise orchestration schema.

Keywords: Compositional I/O Abstract State Machines · Discrete
Event Systems modeling · ASMETA

1 Introduction

With the increasing complexity, heterogeneity, and scale of software-intensive
systems, model-based system development requires composable system models
and the composition of their analysis [15]. Consequently, to design and reason
about behavior and quality of a system it is necessary to develop separate and
more manageable models of the system’s subsystems/components, which can
be first analyzed separately and then combined to analyze the overall behav-
ior and quality of the system under development. In line with such a vision,
in [9] we introduced a novel compositional modeling and simulation technique
for discrete-event systems (DESs) based on the Abstract State Machine (ASMs)
formal method [5,10] and on typical workflow patterns such as parallel com-
position and cascading. Model-based simulation of (possibly distributed) DESs
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is an accepted practice for a reliable prototyping of their behavior, and some-
times the only alternative available in practice when systems are complex and
scalable [6,16]. In [9] we introduce the concept of I/O ASM and their assem-
bly (by suitable compositional operators) to model systems partitionable into
distinct subsystems/components that interact for sharing resources in terms of
input/output events. Each component can be modeled by an I/O ASM having
its own input (monitored locations of the ASM), current state (controlled loca-
tions of the ASM), and output (out locations of the ASM). I/O ASMs interact
in a black-box manner by suitably binding their inputs/outputs.

This paper provides a practical application of this compositional modeling
technique [9] to a complex case study in the healthcare domain. Specifically,
we present our experience in modeling MVM-Adapt, an adaptive version of the
mechanical lung ventilator MVM [4] – Mechanical Ventilator Milano – that has
been designed, certified, and deployed during the COVID-19 pandemic.

To keep the complexity of the requirements and models under control, we
show how we managed the specification of the MVM-Adapt system as a composi-
tion of different ASM models, each representing the behavior of an independent
and interacting subsystem with new adaptive functionalities; components can
communicate with each other through I/O events, and co-operate by a pre-
cise orchestration schema. In particular, to model the MVM-Adapt system, we
refined the ASM models [8] of the original MVM system by establishing precise
I/O signal interfaces and adding the behavior of new adaptive ventilation. These
ASM models were first validated, and verified separately, and then co-simulated
(although these analysis results are not shown here for lack of space).

This paper is organized as follows. Section 2 presents the MVM-Adapt.
Section 3 describes the I/O ASM models of the two main MVM-Adapt sub-
systems. Section 4 reports on related works. Section 5 concludes the paper.

2 Motivating Example: MVM-Adapt

The MVM system [4] – Mechanical Ventilator Milano – was developed as part of
an international research project during the COVID-19 pandemic with the goal
of making up for the lack of mechanical ventilators in hospitals by quickly devel-
oping a prototype with low-cost components. Although the first MVM prototype
was realized in less than one month, it required more than three extra months of
full-time work of around 60 people (among them computer scientists and engi-
neers) to go through the system development process to get the certification by
the competent authority (FDA in the USA, CE in Europe). To give an idea of
MVM complexity, its detailed behavior is described in about 1000 requirements
sentences. The software controller has its own document of 31 pages and 157
requirements. Due to time constraints and lack of skills, no formal method was
applied to the MVM project. Later, we assessed the feasibility of developing
(part of) the ventilator by using formal methods [8] and a component-based
formal specification development [9].
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MVM was originally designed to provide two basic ventilation modes, the two
most suitable to treat people with COVID-19 pneumonia: Pressure Support Ven-
tilation (PSV) and Pressure Control Ventilation (PCV). In PSV mode, MVM
provides support to the patient that is partially unable to breathe on his/her
own. In PCV mode, MVM controls the respiration cycle of the patient, who is
completely unable to breathe on his/her own. However, the MVM project has
grown and has changed into the MVM-Adapt project1 with the goal of providing
MVM with the Adaptive Support Ventilation (ASV) mode, as required by the
most advanced mechanical ventilators [11]. In the MVM-Adapt project, we have
implemented ASV as a user-selectable ventilation mode.

3 MVM Adapt: Architecture and Models

Beyond the HW subsystem, MVM-Adapt consists of three further components:
GUI, controller, and supervisor. The GUI allows medical operators to set all the
required parameters for ventilation and the alarm thresholds, and it displays all
the data detected from the patient. The controller sets the hardware according to
the user (medical staff) input, sets the inspiration and expiration valves on the
base of the phase of the respiratory cycle, and notifies warning and alarms. The
supervisor checks all the actions performed by the controller to assure patient
safety (e.g., it checks the state of the valves and all the respiration parameters).
In case of incorrect operation, it brings the system to a fail-safe state operating
directly on the hardware (bypassing the controller). It is also responsible for
controlling the ventilation change to adaptive mode in order to help the patient
to use his/her own lungs as much as possible.

Figure 1a provides a graphical view of the component assembly of the whole
MVM ventilator (made of the components GUI, HW, MVMcontroller e Supervisor)
and the bindings among all the component models as wires labeled with the
name of I/O interfaces representing the binding functions (the exchanged signal
values). The main I/O interfaces are shown in Fig. 1b using the UML notation.

We abstract here from modeling the GUI and the HW components, since
they are not relevant for the adaptive feature of the MVM.

The MVM-Adapt system is the result of composing the two I/O ASMs,
MVMcontrollerAdapt and Supervisor, by the half-duplex bidirectional pipe (<|>) [9]
composition operator. The I/O ASM assembly can be expressed by the formula
(MVMcontrollerAdapt <|> Supervisor).

This compositional modeling and simulation technique is supported by a
specific tool, AsmetaComp, of the ASMETA [5] tool-set for ASMs. At each com-
putational step of the assembly, according to the operational semantics of the
composition operator <|>, AsmetaComp first executes the I/O ASM MVMcon-

trollerAdapt, then it uses the output of the MVMcontrollerAdapt as input to exe-
cute the Supervisor; the output of the Supervisor will be provided as input of the
MVMcontrollerAdapt at the subsequent step The components MVMcontroller and
1 MVM-Adapt (Milano Ventilatore Meccanico Adaptive in the presence of uncertainty,
FISR (Covid-19) project, funded in 2021.
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(a) Component architecture (b) Component interfaces

Fig. 1. MVM-Adapt: I/O ASM assembly and interfaces

Supervisor are modeled as I/O control state ASMs and are described in the fol-
lowing subsections. Artifacts concerning the validation and verification of each
component and their compositional simulation to validate the reliability of the
adaptive behavior of the MVM, are here skipped for the lack of space.

3.1 Adaptive Controller

The model of the controller for the adaptive version of the ventilator is an exten-
sion of that presented in [8,9] for the basic MVM (with no adaptive features).

The I/O ASM MVMcontroller has input functions I = IHC ∪ISC ∪user inputs
and out functions O = ICH ∪ ICS ∪ ventilation parameters (see Fig. 1).

The set I is the union of the binding with:

– the GUI component providing the controller the user inputs – e.g., respiration-
Mode doc given by the doctor for changing the controller mode of operation
(PCV, PSV or ASV), and stopRequested to stop the ventilation;

– the HW component (IHC) – as the respiration parameters provided by sensors
attached to the patient;

– the Supervisor component (ISC) – as the alarm parameters and the sig-
nals watchdoc st used by the Supervisor to communicate to the controller
an alarm/(in)acting condition, and respirationMode out used to communicate
the change in ventilation mode.

The set O represents the bindings of the controller component with:

– the HW (ICH): the out functions iValve and oValve are the input to the HW
component to set the status of the input and output valves during ventilation;

– the Supervisor (ICS): e.g., breath sync, which indicates the current patient’s
inspiratory/expiratory phase; watchdog, which denotes alive communication
between controller and supervisor; respirationMode sup used to notify the cur-
rent ventilation mode to the Supervisor; run command and stop command, which
communicates that the ventilation has started or stopped;

– the GUI, which visualizes the current state of the controller.
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Fig. 2. MVM-Adapt: controller state machine

The controller moves through six states as shown in Fig. 2; Code 1 reports,
by using the AsmetaL textual modeling language, excerpts of the I/O ASM
MVMcontroller2. The main rule shows the transition between states: at each step,
depending on the current state value, a corresponding rule fires through the r Main

execution. The boolean monitored conditions labeling the transitions of the con-
troller state machine in Fig. 2 and enabling the state change, are embedded, as
rule guards, into the corresponding state change rule. E.g., the rule r startup (see
the right column in Code 1), that executes the state change from STARTUP to
SELFTEST, is guarded by the monitored condition startupEnded, which yields true
when the starting phase is completed and the ventilator parameters have been
initialized with default values.

In the initial state STARTUP, the controller sends the signal watchdog to
the supervisor in order to establish communication with it. Moving from state
STARTUP to SELFTEST, a signal (by the out function enter self) (line 13 in Code
1) is sent to the supervisor to notify it that the self-test phase has been started.
In SELFTEST state, the controller performs a sequence of tests ensuring that the
hardware is fully functional. If this phase ends with a positive outcome (selfTest-
Passed is true), the controller notifies the supervisor that the self-tests have been
completed (by the out function exit self) and moves to VENTILATIONOFF. In this
state, the ventilator does not operate, and the valves are put in a safe position
(the input valve is closed and the output valve is opened). When the patient is
ready for ventilation (i.e., startVentilation is true), the physician selects PCV, PSV,
or ASV mode (by respirationMode doc input function), and the controller moves to
the corresponding state (PCV STATE, PSV STATE or ASV STATE) upon notifying
the supervisor that the ventilation has started (by out function run command).
When ventilating, the ventilation mode can be changed, manually or automati-
cally, and the controller changes its state accordingly. The transition from PCV
to PSV is set by the physician ; the transition from PSV to PCV occurs when the
patient is not able to breathe on his/her own and he/she remains in apnea for a
certain period of time. The ventilation continues until the physician requests sto-

pRequested; in this case, the controller returns to VENTILATIONOFF and notifies
the change to the supervisor by the out function stop command.

2 All models and analysis artifacts are available in https://github.com/asmeta/
asmeta based applications/tree/main/MVM/MVM%20Cosimulation%20ABZ2023.

https://github.com/asmeta/asmeta_based_applications/tree/main/MVM/MVM%20Cosimulation%20ABZ2023
https://github.com/asmeta/asmeta_based_applications/tree/main/MVM/MVM%20Cosimulation%20ABZ2023
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1 asm MVMcontroller
2 signature:
3 enum domain States = {STARTUP |
4 SELFTEST | VENTILATIONOFF |
5 PCV STATE | PSV STATE | ASV STATE}
6 enum domain Modes = {PCV | PSV | ASV}
7 ...
8
9 main rule r Main =

10 par
11 if state = STARTUP then r startup[] endif
12 if state = SELFTEST then r selftest[] endif
13 if state = VENTILATIONOFF then
14 r ventilationoff[] endif
15 if state = PCV STATE then r runPCV[] endif
16 if state = PSV STATE then r runPSV[] endif
17 if state = ASV STATE then r runASV[] endif
18 endpar

controlled state: States
monitored respirationMode doc: Modes
monitored respirationMode out: Modes
monitored stopRequested: Boolean
out iValve: ValveStatus
out oValve: ValveStatus
out respirationMode sup: Modes

...
rule r startup =

if startupEnded then
par
state := SELFTEST

enter self := true
endpar
endif

default init s0:
function state = STARTUP

Code 1. MVMController model in the ASMETA textual notation

d
The controller can move to state ASV STATE in two ways (see Fig. 2) when

the physician sets this ventilation mode for the patient by the GUI (signal respi-
rationMode doc), or if the supervisor determines to change the ventilation mode
from PCV to ASV (notified by the input function respirationMode out) on the base
of the ventilation parameters.The rule r runASV is responsible for managing the
ASV ventilation mode. When the ventilator operates in ASV mode, the con-
troller performs the following actions: it sets the in and out valves to allow the
patient’s inspiration (resp. expiration), resets the timers to compute the dura-
tion of the next respiratory (insp/exp) phases, computes the target ventilation
parameters – the target volume of area to be inspired/expired and the target
respiratory rate – by suitable equations3 that guarantee safe ventilation for the
patient according to the Otis curve [13], and communicates the current patient’s
respiration mode to the supervisor (by out function breath sync).

3.2 Adaptive Supervisor

The I/O ASM Supervisor goes through a sequence of six states as shown in Fig. 3.
Some states correspond to those in the controller machine, since they reflect
the configuration of both components during the operation of the MVM-Adapt,
as the stating phase, the self-test, and the off ventilation. State transitions are
driven by the main rule shown in Code 2.

The supervisor starts in state STARTUP, when the ventilator is turned on
and the parameters initialized with default values. When the signal watchdog is
received from the controller, it moves to the INIT state (by the rule r startup,
see line 11 in Code 2), in which the supervisor performs the following checks

3 Note that these complex formulas have been modeled, but they are not shown here
to keep simple the presentation of the case study.
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Fig. 3. MVM-Adapt: supervisor state machine

1 main rule r main =
2 par
3 if state = SELFTEST then r selftest[] endif
4 if (state != SELFTEST and state != FAILSAFE) then
5 par
6 r check adc[]
7 r check pi6[]
8 if (adc reply = RESPONSE) and (pi 6 reply = RESPONSE) then
9 if (fan working) then

10 par
11 if state = STARTUP then r startup[] endif
12 if state = INIT then r init[] endif
13 if state = VENTILATIONOFF then r ventilation off[] endif
14 if state = VENTILATIONON then r ventilation on[] endif
15 endpar
16 else r failsafe endif
17 endif endpar endif endpar

Code 2. Adaptive Supervisor – main rule

by means of the r init rule: the device temperature, the pressure level, the fan
operation, and the communication with the controller (by the watchdog signal).
If there are no errors or inconsistencies with the expected values, and it receives
from the controller information that it has successfully ended the startup phase
and it has started the self-test phase (by the signal enter self), the supervisor
moves to the SELFTEST state and starts a sequence of tests on the HW parts
(by executing the rule r selftest, line 3 in Code 2). When it receives from the
controller information that it has (successfully) ended the self-test phase (by
the signal exit self), the supervisor moves to state VENTILATIONOFF, waiting
for starting ventilation (see line 13). In this state, the supervisor checks if the
temperature and the pressure levels are within the allowed ranges and that the
communication with the controller is active. Once the run command is received
from the controller, the supervisor moves to the state VENTILATIONON. When
the patient is being ventilated, by executing the rule r ventilation on (see line 14),
the supervisor is responsible for managing alarms and for checking if ventilation
parameters are within the set thresholds. Moreover, if a stop command is received
from the controller, the supervisor returns to state VENTILATIONOFF.

If HW problems are revealed when the supervisor is in states INIT or VENTI-

LATIONOFF/ON, or communication problems with the controller occur when it
is in one of the states STARTUP, INIT, SELFTEST, VENTILATIONOFF/ON, by exe-
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cuting the rule r failsafe (here not reported), the supervisor moves to the state
FAILSAFE and the ventilator is put into a safe configuration (in-valve closed,
out-valve open, and alarm rising) in order to avoid patient harm.

The adaptive supervisor is also responsible for communicating (by means of
the out function respirationMode out) the ventilation mode change from PCV to
ASV to the controller, in order to help the patient to use his/her own lungs as
much as possible. This feature is not further described here.

4 Related Work

Existing approaches that inspired us are those related to workflow modeling and
service orchestration (such as tools for the Business Process Model and Notation
(BPMN) [2], and the Jolie language [1]), and to multi-state machine modeling
(like Yakindu statecharts tools [3]). However, our approach is much more oriented
to distributed model-based system simulation, useful, for example, in practical
contexts where models have to be co-executed in tandem with real systems,
such as runtime models that are part of the knowledge base of self-adaptive and
autonomous systems [7] or of a digital twin plant [12].

Related to component- and service- based architectures, ASMs have been
used for service behavior modeling and prototyping, in conjunction with the
OASIS/OSOA standard Service Component Architecture (SCA) for heteroge-
neous service assembly. SCA-ASM compont implementations can be co-executed
in place with other component implementations [14] and their reliability, both
at system-level and component-level, can be calculated [14].

5 Conclusion

In this paper, we have shown how to use the concept of compositional I/O
ASMs to model the MVM-Adapt case study. The technique is supported by
the ASMETA tool AsmetaComp, which is intended for allowing distributed co-
simulation of separate ASM system models.

From our modeling experience we have learned some relevant lessons: (i) the
advantage of managing requirements complexity by dividing a system model into
sub-models; (ii) the flexibility in managing the separation of the modeling tasks
among different groups; (iii) the necessity to clarify the system requirements
concerning component interfaces and communication protocols to establish a
correct architecture and a component coordination schema; (iv) the easiness
of adding, by model refinement, adaptive features to a system model already
decomposed into sub-models.

In the future, we plan to evaluate the usability of the technique, to enrich
the set of composition operators and to move toward the definition and imple-
mentation of choreography constructs to deploy and enact a choreography-based
execution of asynchronous I/O ASMs.
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Abstract. Crucible is a suite of tools supporting the use of Alloy as a functional
specification language for high-integrity software systems. It incorporates a test
generator, animator and range of supporting tools. Test generation is achieved by
producing test conditions from the input Alloy model, and then using the Alloy
Analyzer to produce solutions. The solutions can optionally be converted into
executable tests targeting a range of implementation languages. The animator
allows scenarios to be defined by users and run to help stakeholders validate the
Alloy model. In this paper, we provide an overview of the Crucible tools.

Keywords: Alloy · Test Generation · Animation

1 Introduction

Capgemini Engineering has over 30 years of industrial formal methods experience.
During the last 6 years, we have been carrying out research under the SECT-AIR [1] and
HICLASS [2] research projects to more fully capitalize on use of formal methods.

We continue to use a wide range of formal methods but have identified Alloy [3] as
a formal modelling language of particular interest to us. Under SECT-AIR, we defined a
set of criteria to assess the suitability of formal specification languages for use on high-
integrity software projects and then scored the leading languages against those criteria
[4]. Our evaluation process led to us selecting Alloy for further assessment. We found
the Alloy Analyzer to be a powerful, reliable tool that was a good match against our
evaluation criteria.

Following the SECT-AIR project, Capgemini Engineering has been working on the
HICLASS research project, with a primary goal being to develop Alloy-based tooling.
Under this project, we have been developing a suite of tools for Alloy called Crucible.
Crucible is built on top of existing Alloy tools, mainly the Alloy Analyzer (version 5),
providing facilities that allow us to effectively apply Alloy on our industrial projects.
We have primarily focused on test generation; with an aim to automate as much of the
testing process as possible. We additionally provide animation tools to help offset the
loss of validation that we had previously been getting from the heavier involvement of
engineers in the testing process.

In the remainder of this paper, we discuss the test generation and animation facilities
in more detail, give results so far and end with conclusions and future work.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
U. Glässer et al. (Eds.): ABZ 2023, LNCS 14010, pp. 116–123, 2023.
https://doi.org/10.1007/978-3-031-33163-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33163-3_9&domain=pdf
http://orcid.org/0000-0003-1081-7703
http://orcid.org/0000-0002-6603-3927
https://doi.org/10.1007/978-3-031-33163-3_9


Crucible Tools for Test Generation and Animation of Alloy Models 117

2 Test Generation with Crucible

The primary goal of our Crucible tools is to automate more of the testing process than
we have previously been able to. Our approach involves analyzing Alloy models and
generating conditions that capture the different cases that we want to have a test for,
and using solvers to generate inputs that satisfy those conditions (and the wider Alloy
model).We optionally permit the use of plug-ins to translate the resultingAlloy solutions
(the tests) into executable test scripts that can be run against an implementation.

2.1 Test Condition Generation

The test condition generator produces a set of test conditions capturing the scope to be
tested. Each test condition is formalized as an Alloy predicate, containing the constraints
necessary for that case. There are two types of test condition produced: Verification
Conditions (VCs) and Path Conditions (PCs). The Verification Conditions are produced
by analyzing each predicate in the Alloy model in a modular fashion. We apply a set
of rules to draw out equivalence partitions and boundary values in the VCs. The Path
Conditions are formed by starting from the VCs of an entry point in the Alloy model
(typically a top-level operation predicate) and instantiating VCs of predicates that are
called. They define paths through the specification, covering VCs in a way that their
results matter.

The following examples illustrate this approach. Figure 1 shows the Alloy source of
tisValidateFinger, Fig. 2 shows its Verification Conditions, and Fig. 3 shows a
Path Condition that tests userTokenTorn via tisValidateFinger.

The test input generator takes the PCs and tries to produce solutions to them using the
AlloyAnalyzer. Any such solutionswill have values for the parameters of the entry point,
which will contain inputs (and pre-state) and corresponding outputs (and post-state) that
correspond to valid and interesting tests.

Some PCs may be untestable/unsatisfiable. For example, the PC shown in Fig. 3
is untestable because the userTokenTorn VC being traced to requires a status of
GotUserToken, but the tisValidateFingerVC being traced to requires a status
ofGotFinger; otherwiseuserTokenTorndoes not causetisValidateFinger
to be satisfied.Crucible allows contradicting predicates like these to be identified by users
and justified via specially formatted Alloy assertions, like the one shown in Fig. 4. If
a condition contains all contradicting predicates in one of these assertions then it is
instantly marked as untestable, without the need for solving.

Crucible also supports customization of:

• VCGeneration (enable/disable VCG rules, manually specify additional VCs, or write
additional VCG calculator extensions),

• test selection (choose from predefined policies for how to select PCs to process, or
write your own test selector extension), and

• solving (define a range of scope sizes to try, farm solving out to remote solver servers,
or use our bridges to SMT-lib solvers).
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Fig. 1. Alloy source for tisValidateFinger predicate from Tokeneer Alloy model.

Fig. 2. Example Verification Conditions for the tisValidateFinger predicate. These are
displayed as bulleted lists of conjuncts that must be true for that condition.

Fig. 3. Example Path Condition, starting from tisValidateFinger, which is testing behav-
ior within userTokenTorn in a context within which the truth of userTokenTorn matters.
Conjuncts for VCs are instantiated under corresponding calls.

Fig. 4. Example assertion justifying a PC as untestable by identifying contradicting parts.
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2.2 Test Script Generation

Crucible is not tied to any specific implementation language. The core Crucible tools
are all Alloy-based and plug-ins must be used to generate, and potentially also execute,
tests against implementations in different languages.

We currently provide three means of test execution:

1. Ada test script generation,
2. Java test script generation, and
3. JSON-based, language-agnostic test script generation.

All of these test script generation approaches involve:

1. translation of the Alloy solutions into the target format (Ada/Java/JSON),
2. running the SUT (Software Under Test) with these inputs to get corresponding

outputs,
3. translation of the inputs and outputs from the SUT back into Alloy to check.

Rather than make the tools generate Alloy to be checked directly, we make them
generate the animation DSL described in Sect. 3 to use the animation facilities.

Ada Test Generation. Our approach for Ada-based testing works by translating the
Alloy solutions into Ada, following a set of rules based on how we have previously
mapped Z [5] to Ada. We translate just the parameter values from Alloy to Ada and then
call a procedure in the implementation or a wrapping harness with them. The tests can
be made to call a wrapper harness procedure that will do further processing of the passed
data before executing the SUT with the data values. Code is generated to translate Ada
outputs to animator DSL for checking by Crucible to give a pass/fail result. Figure 6
shows an extract of some of the generated Ada for a solution involving the Alloy type
shown in Fig. 5. Animator DSL as shown in Fig. 8 will be produced.

Java Test Generation. Our support for testing against Java implementations utilizes
Java reflection to dynamically construct Java data values and call the SUT, rather than
generate source files to be compiled. This is made easier because the Crucible tools
themselves are implemented in Java.

JSON Test Generation. A plug-in is provided to send Alloy solutions in a JSON for-
mat over a socket to a separate test harness, which will then execute the test. This
requires that the receiving harness do the mapping between the specification datatypes
and implementation datatypes. We provide a Python framework for producing such test
harnesses but other languages could be used. We generally encourage the use of one of
the specialized test generators for a particular language where possible because those
will involve less project-specific test harness work. Figure 7 shows an extract of a JSON
solution to a PC that would be passed over to a JSON harness. Animator DSL like shown
in Fig. 8 will, again, be produced.
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Fig. 5. Declaration of a TokenTry type in the Tokeneer Alloy model.

Fig. 6. Example Ada test script, showing Ada types generated for the TokenTry Alloy type
(left), and executable test for a particular PC, which uses a TokenTry value in a field of one of
its parameters (right).

Fig. 7. Extract of some JSON data containing a solution to a PC.
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3 Animation with Crucible

When using formal specifications, it is essential that the specification accurately captures
the desired behavior. Reviews can be less effective at ensuring this because not all
stakeholders will typically be comfortable reviewing formal notations. Often our test
teams find specification issues as they manually analyze the specification to write tests,
but if we are automating more of the testing then there is a risk of losing that.

To complement this potential loss of validation through more test automation, we
provide additional validation via animation.Animation involves determiningwhat values
the specification would accept. This allows stakeholders to ask what-if questions of the
specification by providing inputs, and get answers without having to understand the logic
of the specification (they just need to be able to understand the interface data types, not
the described behavior).

For validation, it can be particularly helpful to define scenarios (sequences of system
operations) rather than start from injected pre-states. Scenarios can give more realistic
and understandable inputs, which can help stakeholders connect what is happening to
the higher-level intent.

Using solving to find whole sequences of operations is possible but it can be a
challenge to scale it (see Sect. 4). To try to address this, we have developed an approach
that separately solves each operation in a sequence so that the solving time does not
explode as scenarios become longer.

3.1 Animation DSL

We provide a DSL for animating Alloy specifications via scenarios. We can use the
DSL to describe the existence of Alloy objects and the values of parameters to pred-
icates. When we run the animator tool, it attempts to generate solutions that meet the
specification and incorporate those object values.

Users can perform animation with a range of constraints, from no constraints to
constraints on every field of every value. Unlike animation tools for languages not backed
by a solver, you can specify partial inputs, partial outputs or any set of constraints and
the tools will try to find a full set of inputs and outputs that satisfy those constraints and
the specification.

AnimationDSLfiles consist of a number of steps. In each step, we run some predicate
from the Alloy specification, and can specify values for parameters and define additional
constraints. The additional constraints can be in the form of declarations of objects (to
be used in parameters and other constraints), setting of fields of objects or facts over
objects. Figure 8 shows some simple example Crucible animation DSL.

Steps can be connected together to form sequences by referencing values of previous
parameters or using global objects. In both cases, this results in values from solutions
of earlier steps being copied into the constraints for the current step.

We additionally provide a GUI to help users perform animation. This is effectively
a structured editor for our animation DSL format. For each value, they can select from
a dropdown containing values of a compatible type and are helped to populate fields.
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Fig. 8. Extracts of a simple example Crucible animation DSL file (left) and corresponding Alloy
(right). Note that this does not illustrate the connection of steps into sequences.

4 Results

We have applied Crucible to a range of case studies (shown in Table 1).

Table 1. Main case studies performed with Crucible so far. Remote solving was used to run 10
solvers in parallel across two machines. We give the size of the Alloy models in (logical) lines of
Alloy, the total/testable number of VCs/PCs, and the test generation time in hours.

Case study Size VCs PCs Time

(LoA) Total Testable Total Testable (hours)

Tokeneer 1,578 314 294 4,554 1,884 8:07

Steam boiler 615 253 226 444 272 3:01

Project X component 443 105 101 232 194 0:27

Tokeneer. Our largest case study involved translating the Tokeneer Z functional specifi-
cation [6] intoAlloy.Weperformed a sample of unit test execution, injecting pre-state and
extracting post-state based on a modified build of the original Tokeneer SPARK source
using our Ada and JSON test generation approaches. Furthermore, we used the animator
to produce a scenario that transitions the system through status and enclaveSta-
tus states in 14 steps, which executes in under 3.5 min. We were unable to generate a
14 step scenario like this without solving on a per-step basis. The trade-off is that the
solving only solves the constraints specified for each step and so in some cases we had
to go back and add constraints (17 in total) to force values to be selected that set-up the
transitions we want in later steps.

Steam Boiler. Our second case study was an Alloy model of the steam boiler control
system case study [7]. We explored the generation of test sequences and executed them
against a SPARK implementation via the Ada test generation facility. For this test gen-
eration, three VCs time-out and cannot be solved or deemed unsatisfiable in the default
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20 min allowed per PC. However, we can use the animation tools to outline a scenario to
get the system into the required state, enable testing for the final steps and target those
uncovered VCs. Executing this gives coverage for those three remaining VCs in 2 min.
This shows how engineers can accelerate the process.

Project X Component. The Project X case study involved taking a component of a
previous project, translating its specification to Alloy and then using the Crucible tools
to test the original project SPARK implementation.Wemake use of CVC4 as an external
solver to allow 32-bit integers to be used. We used RVS [8] to provide the test harness
and confirm that the generated tests achieved MC/DC code coverage.

5 Conclusions and Future Work

Crucible has performed well on the various case studies that we have undertaken, and
we expect to be able to apply it to further industrial projects in the near future.

Exciting developments in the Alloy world have been happening in parallel with the
development of Crucible, with the release of Alloy version 6. Our tools currently use
Alloy version 5 and updates to version 6 may offer further benefits.

There are various other features that we have in our backlog, like broadening the
scope of our VCG to include facts, facilitating proof of SPARK against Alloy models,
and more efficient debugging of unsatisfiable constraints using unsat cores.

Acknowledgements. Thisworkwas supportedby theHICLASSproject, fundedby theAerospace
Technology Institute and Innovate UK, as project number 113213. We would also like to thank
our Capgemini team who developed the Crucible tools, and Daniel Jackson’s team who developed
the Alloy tools on which they are based.
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Abstract. At the ABZ2020 Conference, the case study track proposed
to model an Adaptive Exterior Light System and a Speed Control Sys-
tem: the former controls different exterior lights of a vehicle while the
latter controls the speed of a vehicle. This paper introduces a model for
these two case studies using Timed Algebraic State-Transition Diagrams
(TASTD). TASTD is an extension of Algebraic State-Transition Dia-
grams (ASTD) providing timing operators to express timing constraints.
The specification makes extensive use of the TASTD modularity capabil-
ities, thanks to its algebraic approach, to model the behaviour of different
sensors and actuators separately. We validate our specification using the
cASTD compiler, which translates the TASTD specification into a C++
program. This generated program can be executed in simulation mode
to manually update the system clock to check timing constraints. The
model is executed on the test sequences provided with the case study.
The paper provides a comparison between the TASTD model and other
solutions presented at the ABZ2020 Conference. The advantages of hav-
ing modularisation, orthogonality, abstraction, hierarchy, real-time, and
graphical representation in one notation are highlighted with the pro-
posed model.

Keywords: ASTD · real-time model · ABZ2020 case study ·
TASTD · formal method

1 Introduction

The ABZ2020 Conference case study [9] describes an adaptive exterior light
system (ELS) and a speed control system (SCS). The ELS controls several lights,
which are parts of various subsystems, like controlling side lights and comfort
functions. The SCS is a function that tries to maintain or adjust the vehicle’s
speed according to various external influences. Both systems are examples of
software systems present in modern vehicles.
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U. Glässer et al. (Eds.): ABZ 2023, LNCS 14010, pp. 124–141, 2023.
https://doi.org/10.1007/978-3-031-33163-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-33163-3_10&domain=pdf
http://orcid.org/0000-0002-9499-5728
http://orcid.org/0000-0002-4402-2514
https://doi.org/10.1007/978-3-031-33163-3_10


Modelling an Automotive Software System with TASTD 125

In this article, we present our specification of the ABZ2020 case study to
demonstrate the usefulness of TASTD as a modelling language. We use ASTD
tools to generate executable code in C++, which could be deployed in an embed-
ded system. First, we specify our model with the ASTD editor, eASTD. Second,
we produce executable code with the ASTD compiler, cASTD.

To facilitate comparison with existing work, the structure of this paper fol-
lows the one proposed in the call for paper of the ABZ2020 case study track.
The subsequent subsections briefly present TASTD, its supporting tools, and
the distinctive features of our approach.

This paper is structured as follows. Section 2 describes our modelling strat-
egy. In Sect. 3, we take into account all requirements for both systems (ELS
and SCS), except a minor one which deals with the graphical user interface.
Section 4 presents the validation process of the case study model, and the dis-
cussion around the verification of the model. Previous solutions identified flaws
in the case study documentation. We confirm such issues in Sect. 5. Section 6
compares our TASTD model with those presented at the ABZ2020 Conference.
Lastly, Sect. 7 concludes the paper.

1.1 TASTD

Timed Algebraic State-Transition Diagrams (TASTD) [4] is a time extension
for ASTD [18]. ASTD allows the composition of automata using CSP-like pro-
cess algebra operators: sequence, choice, Kleene closure, guard, parameterized
synchronization, flow (the AND states of Statecharts), and quantified versions
of parameterized synchronization and choice. Each ASTD operator defines an
ASTD type that can be applied to sub-ASTDs. Elementary ASTDs are defined
using automata. Automaton states can either be elementary or composite; a
composite state can be of any ASTD type. Within an ASTD, a user can declare
attributes (i.e., state variables). Actions written in C++ can be declared on
automata transitions, states, and at the ASTD level; they are executed when a
transition is triggered. These actions can modify ASTD attributes and execute
arbitrary C++ code. Attributes can be of any C++ type (predefined or user
defined).

TASTD introduces time-triggered transitions, i.e., transitions triggered when
conditions referring to a global clock are satisfied. In ordinary ASTDs, only the
reception of an event from the environment can trigger a transition. The special
event Step labels the timed-triggered transitions. Step is treated as an event; its
only particularity is that it is evaluated on a periodical basis. The specifier deter-
mines the value of the period according to the desired time granularity required
to match system timing constraints. TASTD also introduces new ASTD tim-
ing operators that can perform Step transitions: delay, persistent delay, timeout,
persistent timeout, and timed interrupt. TASTDs rely on the availability of a
global clock called cst, which stands for current system time. If the guard of a
Step transition is satisfied, the transition can be fired. TASTD is fully algebraic,
TASTD operators can be freely mixed with ordinary ASTD operator.
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1.2 TASTD Support Tools

TASTD specifications can be edited with a graphical tool called eASTD and
translated into executable C++ programs using cASTD. The generated C++
programs can be used as an actual implementation of the TASTD specification.
cASTD can generate code for simulation, where a manual clock, which the spec-
ifier controls, replaces the system clock. The specifier can decide to advance the
clock to a specific time; the simulator will generate the Step events necessary to
reach the specified time. Environment events can be submitted at these speci-
fied times. We use a simulation to validate the provided scenarios discussed in
Sect. 4.

A new tool called pASTD is under development; it will permit to specify
TASTD attributes and actions using the Event-B language and generate proof
obligations for invariants declared on automata states and TASTDs. These proof
obligations are represented as theorems of a synthetic Event-B context that can
be proved using the Rodin platform. Such an Event-B-annotated ASTD speci-
fication could then be refined into an implementation by transforming actions
into B0 actions, proving their refinement, and translating them into C using the
Atelier B tools.

1.3 Distinctive Features of Our Modelling Approach

Modularisation, Hierarchy and Orthogonality. ASTD is an algebraic lan-
guage, in the sense that an ASTD is either elementary, given by an automaton,
or compound, given by a process algebra operator applied to its components.
This algebraic approach streamlines modularity. A model can be decomposed
into several parts which are combined with the process algebra operators. As it
will be described in Sect. 2, the case study is decomposed into several parts which
are specified separately and then connected with ASTD types synchronisation
or flow. Each ASTD contains a name, parameters, variables, transitions, actions,
and states (an initial state is required). An ASTD state may be of any ASTD
type, called sub-ASTD, and share its variables, transitions, and states with its
parents. With this modular and hierarchical structure, isolating an ASTD and
modifying its behaviour does not produce side effects in other ASTD. Modular-
ity also makes the specification easier to understand, because each component
can be analysed separately.

Time. In TASTD, time is integrated into its syntax and its semantics. As
portrayed by the case study requirements, time management is implemented with
clock variables or using TASTD operators. That allows us to produce executable
code satisfying the time constraints.

Graphical Representation. With ASTD graphical representation, to under-
stand the behaviour of an ASTD is to reason about its transitions and states.
ASTD visualisation is an advantage over other formal methods that only use
textual representation, which makes their specification harder to understand.
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2 Modelling Strategy

This section describes our modelling strategy and how the model is structured
and provides insights into how we approached the formalization of the require-
ments. The complete model is found in [3].

Model Structure. Our specification mainly uses two ASTD operators to struc-
ture the model. These are flow, denoted by

�

, and parameterized synchronisa-
tion, denoted by |[Δ]|. The flow operator is inspired from AND states of State-
charts, which execute an event on each sub-ASTD whenever possible. The param-
eterized synchronization operator executes two sub-ASTDs in parallel, and they
must synchronize on a set of events Δ. If Δ is empty, then the parameterized
synchronisation is an interleave, denoted by �. We can draw an analogy between
these three operators and Boolean operators. Operator |[]| acts like a conjunc-
tion: E1|[{e}]|E2 can execute an event e iff both E1 and E2 can execute it. It
expresses a conjunction of ordering constraints on e given by E1 and E2. It is a
hard synchronisation. Operator

�

acts like an inclusive OR: E1

�

E2 can execute
an event e iff either E1, or E2, or both E1 and E2 can execute it. It is a soft
synchronisation. Operator � looks like an exclusive OR: E1 � E2 will execute e
on either E1 or E2, but on only one of them; if both E1 and E2 can execute e,
then one of them is chosen nondeterministically.

ELS and SCS systems are loosely coupled [1], which means that each compo-
nent can handle some requirements independently. At start, we divide our model
into the elements that the user or the environment can manipulate, such as but-
tons, switches, and sensors, and the response on the actuators after manipulating
those elements. We call the former group the sensors and the latter group the
actuators. Figure 1 shows the ASTD Control, composed of sensors and actuators.
Each green box is a call to the ASTD of that name. ASTD Sensors combines the
various sensor ASTDs using an interleave operator; no synchronisation is needed
between the sensors, because each sensor has its own distinct set of events. Oper-
ator � being commutative and associative, ASTD Sensors is shown here as an
n-ary ASTD. The ASTD model of a sensor describes the physical ordering con-
straints on the events of that sensor. For instance, the ignition key cannot do
event putIgnitionOn without doing first insertKey. We shall illustrate such an
ASTD in Sect. 3.1.

The actuators are partitioned into two parts: speed actuators and light actu-
ators. The actuators are composed using a flow operator, because a sensor event
may influence several actuators, and a sensor event might influence an actuator,
depending on state. Thus, actuators are not synchronized, but composed with a
flow.

ASTD Control composes sensors and actuators also with a flow. ASTD CAR
in Fig. 2 is the root (main) ASTD. It synchronises ASTDs Control and Sensors.
This means that ASTD Sensors is called twice: once within Control in a flow, and
once again at the root level in ASTD CAR in a synchronisation. This particular
pattern is used to enforce a priority on ordering constraints between sensors and
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Fig. 1. ASTD Control composing sensors and actuators

SensorsControl

CAR, 

Fig. 2. Main ASTD of ELS and SCS

actuators. In order to accept a sensor event, it must first satisfy the physical
ordering constraints of that sensor. An actuator may refuse a sensor event that
is accepted by the corresponding sensor ASTD, because in its current state,
the actuator ASTD is not influenced by the sensor event and can ignore it. On
the other hand, a sensor event should not be accepted by ASTD CAR if the
actuator ASTD can execute it, but the sensor ASTD cannot execute it; that
would violate the physical ordering constraints of the sensor. Thus, using simply
a flow between sensors and actuators is insufficient, because it would allow the
system to accept a sensor event through the actuators, even if it is refused by
the sensor ASTD. This is why ASTD Control alone is insufficient and cannot be
the main ASTD. ASTD CAR synchronises Control with Sensors on sensor events,
so that CAR accepts a sensor event when both Control and Sensors can execute
it. ASTD Control always accepts sensor events that Sensors can accept, because
it combines Actuators and Sensors with a flow, which is not blocking.

Communication with Shared Variables. ASTD allows the use of shared
variables, which are called attributes in the ASTD notation. An attribute
declared in an ASTD may be used in guards and actions of its sub-ASTDs.
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Attributes are used to communicate the state of a sensor to the actuator ASTDs;
this allows for the reduction of the number of states in automata. Sensor ASTDs
update attributes describing the state of a sensor. Actuator ASTDs read these
attributes to determine the acceptance of an event and to compute the actuator
response. For flow and synchronisation ASTDs, shared attributes must be used
with care, because their sub-ASTDs are executing in sequence. The semantics
of the ASTD requires commutativity on the execution of the actions in a flow
E1

�

E2, such that it terminates on the same values of the attributes whether
either E1 or E2 is executed first. Commutativity is easily ensured in our specifi-
cation, because only the sensor ASTDs update the sensor attributes, and sensor
events in actuator ASTDs do not read the value of sensor attribute in their
guards or actions.

Table 1 presents the attributes declared in each ASTD. Attributes declared
in the root ASTD CAR indicate the current state of the sensors. For example,
attribute keyState indicates the state of the ignition key (KeyInserted, NoKeyIn-
serted, KeyInIgnitionOnPosition). ASTD Speed Control shares attribute speed-
Limit, a Boolean to indicate if the speed limit is on, and emergencyBrake, to
indicate if an emergency brake is necessary.

Table 1. Shared variable by components

Component Variables

CAR (root) pitmanArmUD, pitmanArmFB, lightSwitch, keyState,
hazardSwitch, armoredVehicle, darknessMode, reverseGear,
voltageBattery, cameraState, steeringAngle, highBeamOn,
currentSpeed, engineOn, SCSLever, cruiseControlMode,
rangeRadarSensor, gasPedal, brakePedal, sCSLever,
safetyDistance, rangeRadarState, speedMode,
trafficSignDetectionOn, allDoorsClosed, oncommingTraffic,
brightnessSensor, cruiseControlOn

Actuators setVehicleSpeed

Light Control brakeLight, blinkLeft, blinkRight, tailLampLeft,
tailLampRight, lowBeamLeft, lowBeamRight,
corneringLightLeft, corneringLightRight

Speed Control emergencyBrake, speedLimit

The complete model is composed of 66 automata, 1 closure, 26 synchronisa-
tion, 14 flow, 33 call, 1 persistent guard, 7 persistent delay, and 2 delays, for a
total of 150 ASTDs. These numbers are artificially high, because n-ary ASTDs
are currently not supported by the editor eASTD. Thus, an n-ary ASTD is
represented by 2n − 1 ASTDs, instead of simply n + 1 ASTDs. For instance,
an interleave E1 � E2 � E3 is represented by 5 ASTDS (E123, E12, E1, E2, E3),
because E12 represents the interleave ASTD composing E1 and E2, and E123

composing E12 with E3.
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Formalization of the Requirements. Tables 2 and 3 relate ASTDs and
requirements listed in [9]. Some requirements are present in several ASTDs as
they are related to different actuators. Time requirements, such as ELS-1 and
SCS-8, are covered with the use of event Step.

Table 2. Cross-reference between ASTDs and requirements for adaptive exterior light
system of [9]

ASTD Requirements

directionIndication ELS-1, ELS-2, ELS-3, ELS4,
ELS-5, ELS-6, ELS-7, ELS-8,
ELS-9, ELS-10, ELS-11,
ELS-12, ELS-13, ELS-23,
ELS-29, ELS-47

lowBeams ELS-14, ELS-15, ELS-16,
ELS-17, ELS-18, ELS-19,
ELS-21, ELS-22, ELS-28,
ELS-29, ELS-47

corneringLights ELS-24, ELS-25, ELS-26,
ELS-27, ELS-29, ELS-45,
ELS-47

highBeams ELS-30, ELS-31, ELS-32,
ELS-33, ELS-34, ELS-35,
ELS-36, ELS-37, ELS-38,
ELS-42, ELS-43, ELS-44,
ELS-46, ELS-47, ELS-48,
ELS-49

brakeLightAut ELS-29, ELS-39, ELS-40,
ELS-47

reverseLightAut ELS-29, ELS-41, ELS-47

3 Model Details

This section shortly describes the main modelling elements of our specification
following the structure explained in the previous section.

3.1 Sensors ASTDs

Sensor ASTDs describe the physical ordering constraints and the valid states
that the sensors can attain. For example, Fig. 3 shows the ASTD key. This
ASTD is an automaton, and its states are NoKeyInserted, KeyInserted, KeyInIgni-
tionOnPosition, with initial state NoKeyInserted. The transitions represent valid
movements of the key. On each transition, the attribute keyState is updated.
Event putIgnitionOn turns the engine on, and attribute engineOn becomes true.
Event putIgnitionOff sets attribute engineOn to false as the engine turns off.
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Table 3. Cross-reference between ASTDs and requirements for speed control system
of [9]

ASTD Requirements

cruiseControl SCS-1, SCS-2, SCS-3, SCS-4,
SCS-5, SCS-6, SCS-7, SCS-8,
SCS-9, SCS-10, SCS-11,
SCS-12, SCS-13, SCS-14,
SCS-15, SCS-16, SCS-17,
SCS-18, SCS-19

automatedControlVehicleAhead SCS-20, SCS-21, SCS-22,
SCS-23, SCS-24, SCS-25,
SCS-26

emergencyBreakSignals SCS-27, SCS28

speedLimitControl SCS-29, SCS-30, SCS-31,
SCS-32, SCS-33, SCS-34,
SCS-35

trafficSignDetection SCS-36, SCS-37, SCS-38,
SCS-39

cameraAndProximity SCS-40, SCS-41

brakePedal SCS-42

brakeLightAutomatic SCS-43

3.2 Actuators ASTDs

Actuators depend on the sensors to act. Attributes describing the sensors’ state
affect how the actuators can be executed.

Consider ASTD DirectionIndication of Fig. 1, which is a flow between ASTD
BlinkControl that indicates if the blink is tip blinking, hazard switch blinking
or non-tip blinking, and ASTD BlinkBulb, that indicates if the light bulb is on
or off. For the sake of simplicity, we show an excerpt of the transitions between
states off and tip from sub-ASTD BlinkControl in Fig. 4. State off indicates that
blinking shall stop after completing the previous signal, whereas tip indicates
that tip blinking shall be executed. Those two states have five transitions that
depend on the pitman arm, hazard switch, key state, and time. The transition
from off to tip through event movePitmanArmUD is guarded on the position in
which the pitman arm is moving and the key state. The guard is to conform to
requirements ELS-1, ELS-5, and the statement that direction blinking is only
available when the ignition is on. Executing the transition changes the value of
attributes pitmanArmUDP, tip timer, and NbrCycles. pitmanArmUDP, stores
the value of the last pitman arm position and is later used to define which side
shall blink, which is related to ELS-3. Attribute tip timer acknowledges how
long the user holds the pitman arm, which is related to ELS-4. NbrCycles is a
counter to determine how many blinking cycles are necessary to stop, related to
ELS-7 and ELS-3.
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Fig. 3. Automaton ASTD key

Fig. 4. ASTD BlinkControl, extract with states tip and off

Similarly, Fig. 5 is an excerpt from sub-ASTD BlinkBulb. State off indicates that
the light is off due to a dark cycle or no blinking. State on means that the light is
on. These two states alone have six transitions between them. Transition from off
to on through event movePitmanArmUD, is related to ELS-1, ELS-10, ELS-11,
ELS-13. It has a guard on the position to which the pitman arm is moving, the
key state, the hazard switch, and the cycle timer. Attribute cycle timer acknowl-
edges for how long the bulb is bright or dark and is used to accomplish ELS-1,
ELS-10. hazardSwitch indicates if the hazard switch is on. Executing this tran-
sition resets cycle timer and performs function blinkLightsOn, that transition,
satisfying other requirements, turns on the blinking lights.

Moving the pitman arm from Neutral to Upward5, in a state where only the
engine is on, will execute transitions present in ASTDs PitmanArm, BlinkBulb,
and BlinkControl. This results in the activation of the right direction blinking
light.
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Fig. 5. ASTD BlinkBulb, extract with states on and off

3.3 Modelling Time Requirements

Some requirements (e.g., ELS-1 and SCS-7) determine specific behaviour for
distinct components during a specific time interval. In TASTD, with each event
Step, the system acknowledges the passage of time. So, choosing a Step interval
value that allows the specification to successfully achieves all requirements is
mandatory.

For this case study, we choose the value of Step as 0.05 s. With that Step
value, we accomplish every requirement, even ELS-40, and ELS-8, which have
a different flashing rate than ELS-1. ELS-40 asks for a pulse ratio of 360 ± 60
flashes per minute. In other words, 1/12 of a second bright and 1/12 of a second
dark. For ELS-40, the chosen step value accomplishes the requirement because
we can have 60 flashes less per minute. In the worst-case scenario, with a step
of 1/20 s, there are 300 flashes per minute. ELS-8 demands a fixed pulse ratio
of 1:2, which means 1/3 of a second bright and 2/3 of a second dark, without
a safe range. With our chosen Step, we complete each cycle at 1.05 s, which has
approximately 57 cycles and slightly misses the requirement. Additionally, the
ratio of 1/3 means a pulse of 0.3̂333 s, and we would miss the requirement at
any chosen step value. We would accomplish the requirement if ELS-8 had a
tolerance as in ELS-1 or ELS-40.

At each occurrence of a Step event, the flow ASTD Actuators executes every
transition labelled with Step whose guard holds, in each automaton under its
scope. In Fig. 5, we have a transition Step from state on to state off. This tran-
sition is responsible for finishing a bright cycle and turning off the direction
blinking light. In our simulations, every 0.05 s, the system receives a Step event,
to react to the passage of time. The guard cycle timer.expired(5E8) of the Step



134 D. de Azevedo Oliveira and M. Frappier

transition from state on to off ensures that it is executed only after 0.5 s (i.e.,
every ten steps) in the state on. In our specifications, nanoseconds (ns) are used
as time units, so 5E8 denotes 5 ×108 ns = 0.5 s.

Fig. 6. TASTD pushingCCSLever

Figure 6 shows TASTD pushingCCSLever, an excerpt of the cruise control
ASTD. TASTD pushingCCSLever is related to requirements SCS-7 to SCS-10. In
summary, those requirements mean: if the driver pushes the cruise control lever
to an upward or downward position within the first or second resistance level and
holds it there for two seconds, the desired speed of the cruise control is adjusted
every second (every two seconds for positions at 7◦, beyond the pressure point)
following the lever position.

TASTD pushingCCSLever is a delay. It allows for idling at least d time units
before the first event. Once the first event occurs, the TASTD may continue its
execution without delay. It has transition moveSCSLever, related to SCS-1 to
SCS-12. Function changeDesiredSpeed changes the desired speed to match the
input from the cruise control lever, and attribute lastDesiredOver120 is related
to SCS-39. The initial state of pushingCCSLever is state waiting, and it does
nothing but waits one second.

The second state of pushingCCSLever is a Persistent Delay. It allows idling for
at least d time units before executing each event of its sub-ASTD. The persistent
delay of one second means that each Step inside changingDesiredSpeed waits at
least one second to be accepted. If the lever position is at a 7◦, then the step
moves the active state to the sub-TASTD moving10. moving10 is a persistent
delay of two seconds, related to SCS-8 and SCS-10. If the lever position is at a
5◦, then with each Step, the active state remains at state changing, and the delay
continues as one second, which is related to SCS-7 and SCS-9. It is worth noting
that the first constraint of two seconds, from SCS-7 to SCS-10, is satisfied with
the delay that waits one second and the first persistent delay on the first event
that waits for another second.
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4 Validation and Verification

To validate our model, we use interactive animation of the specification with the
executable code generated by the cASTD compiler for simulation. The compila-
tion is automatic, and no human modification is necessary after production. We
execute the compiled code and compare the results with the provided scenarios
[8]. Our model satisfies the scenarios provided in the case study, with minor
differences in current speed due to insufficient information in the case study on
calculating it when accelerating or decelerating. To overcome this difference, we
added to our model an event that changes the current speed to a chosen value.
We use this function when execution arrives at row “target speed reached” for
each scenario, mainly to continue the simulation with the same speed as provided
in the trace. Figure 7 presents the TASTD responsible for calculating the speed
at each Step. At each Step, currentSpeed is calculated, and it can be adjusted
with updateSpeed if deceleration or acceleration is insufficient.

Fig. 7. TASTD speedGauge

Changes to the Model During Validation. Validation is a method to help
ensure that a specification’s behavior reflects its requirements. During the inter-
active animation, we found divergences between our model and the requirements
for the low beams and direction indication. The provided traces and their inter-
pretation were determinant to solving ambiguities and providing the correct
behaviour.

5 Specification Ambiguities and Flaws

In ABZ2020, several authors [1,6,11,13,15,16] found different ambiguities and
flaws in the case study document [9]. We confirm such ambiguities. Although
updated versions were provided after their feedback, the document still has ambi-
guities concerning their statements.
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For example, ELS-42, which [11] mentioned, has yet to be changed. There is
no indication of what happens with the high beams in the case of sub-voltage,
only that it is not available. What we modelled is in case of sub-voltage, the
high beams are still on, because of ELS-43, which states that even in the case
of sub-voltage, if the light rotary switch is in position Auto and the pitman arm
is pulled (which it is with ELS-42), the high beam is activated.

6 Comparison

In this Section, we compare our solution with the approaches and techniques
previously used to model the ABZ2020 case study.

In [16], ELS is specified with Event-B. Their model is verified by proving the
generated proof obligations for invariants using Rodin, validated with animation
and model checking in ProB [12]. During their formalisation, authors identi-
fied and reported several ambiguities in the requirements, which were addressed
in the newer versions of the document. Event-B does not provide native visu-
alisation or modularisation mechanisms. A model is developed by successive
refinements. Each refinement can add new behavior, but in a somewhat restric-
tive manner, because new events cannot modify existing variables. Thus, when
a variable is introduced, all events that must update it must be introduced at
the same time. Independent system components are typically added one at a
time, and separately proved. Thus, an interleave ASTD is typically modeled as
two (or more) successive refinements. A flow or synchronisation ASTD must be
modeled in the same refinement in Event-B, because the state changes must
be modeled at the same time, or either abstracted and later refined. Invariants
are global; to attach them to a specific state, one must use invariants of the
form ifInStateX ⇒ propertyOfStateX . If an event appears in more than one
component, its specification becomes increasingly complex, because its guard
is enriched with new ordering constraints, in a monolithic manner. It makes it
difficult to analyse those components independently. It also makes it hard to
modify a specification, because the refinements are closely coupled, and moving
one aspect from one refinement to another is a complex reengineering task, which
involves reproving several proof obligations. Event-B events have many guards
with many variables for a sizeable system like the ELS and SCS case studies,
which makes it hard to understand the behaviour of an event. For example, in
the final refinement, the event to turn the key to the ignition on position has 16
guards and 17 elementary actions. In TASTD, each component is specified sepa-
rately. Synchronization and flow ensure that constraints imposed on an event in
several components are defined separately and can thus be analysed and (hope-
fully) proved separately. In our specification, the event that ignites the engine
is decomposed over nine transitions in ASTDs low beams, direction indication,
and key. This modularisation streamlines the understanding of the behaviour
of that event. On the other hand, one has to go over all these transitions to
get a complete picture of the behavior of the event. To address time require-
ments, Event-B specifications use an event called step, which they use as a time
granularity.
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The work in [15] presents an Event-B specification of the SCS. As in [16], the
authors found ambiguities in the SCS requirements. Again, the lack of native
visualisation makes their specification harder to understand, and the modulari-
sation of TASTD over event-B shows a significant advantage of our approach.

In [11], authors present a verified low-level implementation using MISRA C.
MISRA C is a language derived from the automotive industry, which is close
to C. To verify their specification, the authors implement ELS and SCS in C
and perform unit tests. Afterwards, they perform formal verification with the
CBMC model checker [5]. Authors use timers to handle continuous time, and
an artificial time sensor for testing the requirements. However, as stated in [16],
even if this approach has the advantage of directly producing the executable
code, its correctness cannot be guaranteed since model checking on a limited
scope does not ensure the absence of bugs. The authors also provide a list of
ambiguities that they found in [9].

In [6], ELS is specified with Electrum [14]. Electrum extends Alloy [10] with
mutable relations and temporal logic. The authors do not address time require-
ments needing arithmetic operations, because of the limitations of Alloy for
model checking integer values. Their model uses signatures to model the struc-
tural aspect and predicates to capture the system’s behavior. Verification and
validation of their specification use animation through run instructions exercis-
ing simple behaviours of the system and a validator for complex requirements.
With the Alloy Analyzer, the authors can provide a visual animation of the
states during the execution of the system. Alloy being a model-based notation
like Event-B, it suffers from the same weaknesses in terms of modularisation.,
whereas ASTD modularisation, thanks to its algebraic nature, allows a specifier
to isolate a component.

In [1], authors use Abstract State Machine (ASM) to model both ELS and
SCS. They use the ASMETA framework to edit, simulate and animate their
machines. Similar to event-B, their approach is refinement based, where they
start with a simple machine and add details through refinements. ASM also
allows for modularity. Their validation is with interactive animation. Require-
ments verification is performed through model checking using AsmetaSMV [2],
which supports CTL and LTL. A downside of their specification is that they
cannot deal with continuous time. Thus they do not address requirements that
demand time management. Additionally, they mention ambiguities in the case
study document but do not state them.

The work in [13] presents a specification with a subset of the case study in
classical B and Event-B, then compare the two. With classical B, they found
advantages with its modularisation capabilities. With Event-B, the advantage is
in the proving environment, which generates more straightforward proof obliga-
tions than classical B. The authors divided their modelling strategy into three
phases: 1) an exploratory phase with editing and animation, in which they
used classical B for its rich substitution language. 2) a synthesis phase with
a refinement-based approach with classical B, in which components were inte-
grated, and the authors added safety invariants verified using model checking.
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3) a verification phase, where they manually translated the classical B specifi-
cation to Event-B and then proved and model checked. They model time as a
discrete integer variable representing elapsed time in milliseconds. The authors
also present a new plugin for ProB, called VisB, which provides visualisation
for all of ProB’s supported state-based formalisms. VisB uses scalable vector
graphics (SVG) files to represent the state of actuators.

7 Conclusions

To summarize, we have presented a TASTD model for the adaptive exterior
light and speed control system case study of ABZ2020. Our model considers
all the requirements. We validate our model through interactive animation and
comparison with the validation scenarios proposed in the case study.

The main advantages of modelling with TASTD in comparison with other
methods presented in ABZ2020 are the following.

– The algebraic approach allows for the decomposition of a specification into
very small components which are easier to analyse and understand. In particu-
lar, the behavior of an event that affects several components can be separately
specified in each component. The synchronisation and flow operators can be
used to indicate how these components interact over these events (i.e., hard
or soft synchronisation).

– Communication by shared attributes permits to simplify automata of a spec-
ification and reduce the number of automaton states.

– The graphical nature of TASTD allows for an easier understanding of a specifi-
cation. Automata and process algebra operators makes it easier to understand
the ordering relationship between events.

– TASTD provides a simple, modular approach to deal with timing require-
ments.

– TASTD, with its compiler cASTD, can generate C++ code that can be
deployed into an embedded system. It is also capable of generating code for
simulation, in order to check scenarios.

The development of models for the cruise control and exterior light sys-
tems, as well as their validation and documentation, required approximately
two months. The initial attempt was made in August 2022 and lasted for a total
of 40 h. The first modelling approach utilized the Event-B implementation as a
baseline, but it was found to be inadequate for ASTD. As a result, the mod-
elling approach was modified and the project was restarted. Subsequently, the
first version of the exterior light system was completed in the next 40 h. The val-
idation process required an additional 40 h, during which the model was updated
to ensure that the low beams and direction indicator lights were appropriate.
Following completion of the exterior light system, the modelling of the cruise
control system was undertaken, which involved 60 h of modelling and validation.
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Documentation was carried out in November, followed by another week in Jan-
uary. It should be noted that the entire modelling and validation process, as well
as the documentation in November, were undertaken by a single individual who
was concurrently working on other projects.

TASTD currently lacks supports for verification. As future work, we intend
to extend TASTD with invariants that can be attached to automaton states
and ASTD themselves, thus allowing to decompose the verification of properties
into small parts. Attributes could be written using the mathematical language
of classical B or Event-B and actions could be written using the rich generalized
substitution language of classical B. Proof obligations will be generated as theo-
rems of Event-B contexts and proved using Rodin, which provides a nice proving
environment. A translation from ASTD to B has been proposed in [7,17], but it
produces monolithic, complex POs. We hope that this new approach will help
to simplify proof obligations.

This case study is, until now, the most extensive specification defined with
TASTD in the number of attributes and ASTDs, with 150 ASTDs, 50 attributes,
and generated executable code of 11MB. It demonstrated that the editor was not
ready for a specification with many ASTDs, and the compiler was unprepared
for a specification with many attributes. Thanks to this model, both the editor
and the compiler were improved to deal with large specifications.

The editor must still be extended to deal with large specifications and n-ary
operators. For instance, Fig. 1 was manually prepared for this paper to remove
superfluous intermediate binary ASTDs that make the specification harder to
read.

Additionally, during model development, we considered creating a new ASTD
type to avoid the double call to ASTD Sensors in our solution. With this type,
we want to describe the idea of a control ASTD A1 (e.g., ASTD Sensors of our
case study) and a controlled ASTD A2 (e.g., ASTD Actuators of our case study),
which, we believe, is a recurring pattern in control specifications. ASTD A1 and
A2 would be “partly” synchronised through a set Δ of events, in the following
sense. An event e of Δ would be executed iff A1 can execute it. Thus, A2 is
executed iff A1 can execute e and if A2 can execute e. if A1 can execute e, then
it does, independently of the capacity of A2 to execute e.

Another modification to ASTD that we plan to introduce is to allow for the
definition an order of execution of the operands of binary operators synchroniza-
tion, flow and choice. For interleaving and choice, it would allow the specifier to
remove nondeterminism and choose which operand will be tested first for exe-
cution. For synchronisation and flow, it would allow to determine the order in
which the operands will be executed; thus, the second ASTD to execute could
reliably use the values of the attributes updated by the first ASTD executed.
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Abstract. In ASTD, real-time models are not natively supported. Real-
time requirements are pervasive in many systems, like control systems
and cybersecurity. Timed Algebraic State Transition Diagrams (TASTD)
is an extension of ASTD capable of specifying real-time models. TASTD
gives ASTD the capability to handle time with new algebraic opera-
tors. This paper describes the syntax and semantics of these new time
operators: delay, persistent delay, timeout, persistent timeout, and timed
interrupt. These new time operators are specified using two new oper-
ators, persistent guard and interrupt. To illustrate our extension, we
present a small case study of a sensor where we want to detect potential
anomalies.

Keywords: ASTD · real-time model · formal methods · TASTD

1 Introduction

ASTD [22] is a graphical notation that combines process algebra operators and
hierarchical state machines. It is particularly well-suited for specifying monitor-
ing systems, like intrusion detection systems and control systems. It has been
successfully applied in case studies for intrusion detection [13,26,27] and control
systems [5]. ASTD allows for combining state transition diagrams, such as stat-
echarts and automata, and process algebra operators, inspired by CSP. Hence,
ASTD takes advantage of the strength of both notations: graphical representa-
tion, hierarchy, orthogonality, compositionality, and abstraction.

Real-world specifications frequently depend on quantitative timing. Time
extensions have been proposed for several well-known languages like statecharts,
with MATLAB Stateflow [19], automata, with timed automata [3], and process
algebra, with Timed CSP [23].
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Each of these methods has its strengths and weaknesses. Timed automata
are efficient for model checking but it remains a challenge to refine them into an
implementation [28]. Statecharts offer an explicit representation of the control
flow and support a rich notation for data modelling. However, it does not offer
the abstraction power of process algebra operators [27]. Process algebras support
refinement and are also effective for model checking, but lack language features
(e.g., shared variables) [24] and graphical representation. tock -CSP [12] is an
extension of CSP with the definition of a special event named tock, which marks
the passage of time, but CSP does not have a graphical representation. Our
notation tries to overcome these weaknesses and combine some of their strengths.

This paper presents Timed ASTD (TASTD), a real-time extension for ASTD.
TASTD includes proposes five new operators to deal with timing constraints:
delay, persistent delay, timeout, persistent timeout, and timed interrupt. These
new time operators are defined using two new operators not specific to time,
interrupt, and persistent guard.

This article is structured as follows: Sect. 2 briefly presents TASTD. Section 3
illustrates TASTD using a case study that shows the usefulness of TASTD and
new operators. Section 4 presents the modifications to the operational semantics
of ASTD to deal with time and the new operators. In Sect. 5, we discuss the tool
support for TASTD. Sections 6 discusses related work. Section 7 concludes the
paper.

2 An Overview of TASTD

In this section, we informally introduce ASTD and its extension, TASTD, and
illustrate it with an example. ASTD draws from the statecharts notation the fol-
lowing concepts: hierarchy, OR-states, AND-states, guards, and history states.
However, it does not support broadcast communication, or null transitions [22].
Automata constitute the basis for ASTD construction: an elementary ASTD
is an automaton. The process algebra operators that may be used to combine
elementary ASTDs are sequence, guard, choice, Kleene closure, parallel compo-
sition, quantified choice, and quantified parallel composition. Automaton states
can be complex ASTDs defined by any of these operators. ASTDs also support
state variables, called attributes, and actions on transitions, states, and ASTD
themselves that can update these attributes and execute arbitrary C++ code.

2.1 Transition System

A TASTD state includes a timestamp that denotes the time at which the state
was reached. TASTDs rely on the availability of a global clock called cst, which
stands for current system time. It is used in various time operators to represent
timing constraints and simulate clocks. In ASTD, a transition can be triggered
only by external events. In TASTD, we introduce transitions that can be trig-
gered by the passage of time; such a transition is labelled by a special event called
Step. Automaton transitions can be labelled with Step, and some time operators
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can also execute a Step transition. The enabledness of a time-triggered transi-
tion is checked on a periodical basis, according to the desired time granularity
required to match system timing constraints.

The semantics of TASTDs consists of a labelled transition system (LTS) S,
which is a subset of

(State × T × W ) × Event × (State × T × W )

where State is the set that contain all states, T is the set of clock values, and W
is the set of all possible attributes and control values. The LTS system represent
a set of transitions of the form (s, t, w) σ−→ (s′, t′, w′). Such a transition means
that a TASTD can execute event σ from state s and move to state s′. Symbols
w,w′ respectively denote the values of the attributes of ASTD a, which can be
modified during execution. Symbols t, t′ respectively denote the time at which
states s, s′ were reached; hence, they denote the timestamp of the latest executed
event. The value of t for the system’s initial state is some timestamp, which
represents the time the system starts. The timestamp t of a state s is needed
when deciding on various timing operators. For instance, a timeout is evaluated
concerning the latest event executed. TASTD timing operators simulate clocks,
relying on the time of the latest event executed for that purpose. Thus, when
using a TASTD operator, there is no need to define a clock to specify timing
constraints. However, clocks can be declared as TASTD attributes and used to
specify arbitrary timing constraints. A state s contains attribute and control
values that represent the behaviour of various ASTD operators.

The semantics of TASTDs is designed for generating executable code. It
differs from the semantics of timed automata (and timed CSP), where there are
transitions on external events e of the form s

e−→ s′ and transitions on the passage
of time with d units s

d−→ s′, which are more suitable for model-checking. A
TASTD transition (s, t, w) e−→ (s′, t′, w′) corresponds to two successive transitions

s
t′−t−−−→ s and s

e−→ s′ in timed automata.

ASTD Operators. ASTD operators are automaton, sequence, choice, guard,
Kleene closure, flow, parameterised synchronisation, call, and quantified ver-
sions of parameterised synchronisation and choice, with the usual process alge-
bra semantics of these operators, adapted to deal with automaton as elementary
ASTD. Each ASTD has a function that determines its initial state and a func-
tion that determines its final states. A sequence of A1 and A2 allows to execute
A1 first; when A1 is in a final state, A2 can start its execution. A choice between
A1 and A2 allows the first event to choose between executing A1 or A2; when the
choice is made, the unchosen ASTD is disabled, and the chosen ASTD continues
the execution. A guard P on an ASTD A checks that the condition P is satisfied
on the execution of the first event of A; the guard is ignored after the first event.
A Kleene closure on an ASTD A allows for looping on A: it executes A and can
restart A from its initial state when A is in a final state. The flow operator

�

is inspired by the AND state of Statecharts, which executes an event on each
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sub-ASTD whenever possible. A flow E1

�

E2 can execute an event e iff either
E1, or E2, or both E1 and E2 can execute it. The parameterised synchronisation
operator |[Δ]|, drawn from CSP, executes two sub-ASTDs in parallel, and they
must synchronize on a set of events Δ. If Δ is empty, then the parameterised
synchronisation is an interleave, denoted by �. We can draw an analogy between
these three operators and Boolean operators. Operator |[]| acts like a conjunc-
tion: E1|[{e}]|E2 can execute an event e iff both E1 and E2 can execute it. It
expresses a conjunction of ordering constraints on e given by E1 and E2. It is a
hard synchronisation. Operator

�

acts like an inclusive OR: E1

�

E2 can execute
an event e iff either E1, or E2, or both E1 and E2 can execute it. It is a soft
synchronisation. Operator � looks like an exclusive OR: E1 � E2 will execute e
on either E1 or E2, but on only one of them; if both E1 and E2 can execute e,
then one of them is chosen nondeterministically.

2.2 TASTD Operators

TASTD introduces five operators to deal with timing constraints: delay, persis-
tent delay, timeout, persistent timeout, and timed interrupt. These time opera-
tors are defined using two operators not specific to time, interrupt, and persistent
guard. These five time operators are defined in terms of Step transitions and two
new ASTD operators, persistent guard and interrupt.

A delay d on ASTD A will wait d units of time before accepting the first
event of A; the subsequent events are not subject to the delay. A persistent
delay will apply the delay d to each event of A. A timeout is a binary operator
with a duration d as parameter; the first ASTD A1 must execute its first event
within d units of time; if no event is executed on A1 within d units, then A1

is disabled, and A2 takes over and executes the subsequent events; if the first
event is executed with d, then A2 is disabled, and A1 continues the execution. A
persistent timeout will apply d to each event of A1; if d is missed, then A2 takes
over, and A1 is disabled. An interrupt is a binary operator; the second ASTD A2

has priority on the first ASTD A1; A1 is executed first, but any event that can
be executed on A2 will interrupt A1 and disable it. A persistent guard P on an
ASTD A checks that the condition P is satisfied on the execution of each event
of A.

3 Illustrative Example

In this section, we illustrate TASTD operators with a small case study. The case
study consists in a sensor that receives data at a regular interval of 5 s. With
this case study, we model two potential anomalies. 1) Missing data: when the
receiver does not receive data in a 5 s interval; it may indicate that an attacker is
deleting data. 2) Data overflow: when the receiver receives data in less than 5 s
from the latest signal; it may indicate that an attacker is injecting data. Figure 1
shows the possible traces for each behaviour. The act of receiving data is labelled
by event e.
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Fig. 1. Sensor traces

Figure 2(a) shows the TASTD that models missing data detection. It is a
closure ASTD A that loops over a persistent timeout ASTD B. The first ASTD
of B is a simple automaton ASTD C that receives sensor events e. A timeout
on ASTD C is executed when an event e is not received within avg + 3 ∗ stddev
(e.g., 5.5 s, the timeout duration), where avg and stddev are the average and
standard deviation time between two signals in the regular operation of the
sensor. Execution is then transferred to ASTD D, which is an automaton that
does nothing; its initial state is also final, which allows the closure A to restart
the persistent timeout B. In this simplified version, nothing else has to be done
in D when missing data is detected. In case of a timeout on C, an alert signal is
emitted by the action that can be specified on a timeout transition of ASTD B
(labelled here by PTO).

Figure 2(b) shows the TASTD that models the detection of data overflow.
TASTD E has a clock variable h that starts when the initial state is reached.
When event e occurs before or at (avg−3∗stddev) (e.g., 4.5 s, before the expected
of 5 s and a safe range), the transition emits an alert and resets the clock h. When
event e occurs after (avg − 3 ∗ stddev), the transition resets the clock h.

Fig. 2. TASTDs A and E
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Each of these ASTD models a potential anomaly behaviour and emits an
alert when detected. However, these models must run simultaneously to detect
both anomalies in a sensor trace. We achieve this parallelism using the flow
ASTD F, which calls ASTDs A and E, represented in Fig. 3(a).

Fig. 3. TASTDs F and M

We can generalise this model by using a learning phase that will compute avg
and std over a certain learning period and then start identifying anomalies using
the learned values of avg and std. These attributes avg and std are declared in
the main ASTD M We model a receiver that receives data and computes avg
and std at the end of each day. This model is shown in 3(b). ASTD M is a
flow between ASTD M1, which calculates avg and std, and M5, which models
the detection. TASTD M2 is a timed interrupt that, at the end of each day,
allows M4 to execute and update the values of avg and std which are used in
F. ASTD M3 stores in a vector vec the interval between two successive events e.
TASTD M5 is a delay that delays the detection for one day and one second to
allow learning the initial value of avg and std. After the first day of this model
execution, the detection is started. At the end of each day, the value of avg and
std is recalculated with M2.

All these models are found in [8]. A more comprehensive TASTD example,
available at [7], models an adaptive exterior light and speed control system of a
vehicle, which Mercedes submitted for the ABZ2020 conference case study track.
The complete model is composed of 66 automata, 1 closure, 26 synchronisations,
14 flows, 33 calls, 1 persistent guard, 7 persistent delays, and 2 delays, for a total
of 150 ASTDs. It can be compiled using the cASTD compiler and translated into
C++ for execution in simulation mode or as an actual implementation of the
ASTD specification. Figures 2 and 3 were produced from the eASTD editor. The
compiler and the editor can be found at [16].

4 TASTD Semantics

In this section, we introduce the modifications made to adapt the operational
semantics of ASTDs to deal with time. This semantics is defined using inference
rules in the Plotkin style. The complete semantics of TASTD can be found in [6].
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Suppose that a2 is a sub-TASTD of a1. a1 may declare variables that a2 can
use and modify. Thus, the behaviour of a2 depends on the variables declared in its
enclosing ASTDs. In the operational semantics, we handle these variables using
environments. An environment is a function of Env Δ= Var �→Term which associates
values with variables. The operational semantics of TASTD is defined using an
auxiliary transition relation Sa that deals with environments. A transition of Sa

has the following form:

s
σ,t,Ee,E′

e−−−−−−→a s′

where σ is the event executed, Ee, E
′
e denote the before and after values of

identifiers in the TASTDs enclosing TASTD a. These identifiers could be TASTD
attributes, quantified variables introduced by quantified operators like choice,
synchronisation, interleave, and attributes. For the main ASTD of a specification,
Ee, E

′
e denote the attributes values used to call the main ASTD. The time of

the latest executed event is denoted by timestamp t.
Recall that a state of the system (given by the main ASTD of the specifica-

tion) is a triple (s, t, w). The initial state of the system is

(init(Main, cst, P := V ), cst, V )

Function init describes the initial state of an ASTD; it is inductively defined on
the ASTD types; it receives the initialisation time of an ASTD and the values
V of the main ASTD parameters P . The initialisation time is used in ASTD
types that encompass a notion of parallelism, that is, flow and parameterised
synchronisation, because each of their sub-ASTDs has its own latest event exe-
cution time to determine timing constraints relative to that component of the
parallel composition, since the execution of the two sub-ASTDs are independent.
A timed interrupt also needs this initialisation time to store it in its initial state.
That will be further explained when these ASTD types are defined in the sequel.
The timestamp of the latest event executed is stored at the top-level state and
initialised with the current system time cst.

The following top transition rule, connects S to Sa:

s
σ,t,P :=V,P :=V ′
−−−−−−−−−−→a s′

env
(s, t, V ) σ−→a (s′, cst, V ′)

It states that a transition is proved starting with environments providing the
initial values V of the top-level ASTD parameters P , and their final values V ′,
since these parameters can be modified during execution. Current system time
cst is stored in the global state as the new latest event execution timestamp.

TASTDs are non-deterministic: If several transitions on σ are possible from
a given state s, then one is non-deterministically chosen. The operational seman-
tics is inductively defined on Sa for each ASTD type. However, in this paper,
we content ourselves with the definition of the modifications to some ASTD
types, for illustrative purposes, and the definition of the new types introduced
for TASTD. The complete definition of TASTD is provided here [6].
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Sequence. The sequence ASTD type has the following structure:

Sequence
Δ= 〈 , fst , snd〉

where fst , snd are ASTDs denoting the first and second sub-ASTDs of the
sequence, respectively. A sequence state is of type 〈 ◦, E, [fst | snd], s〉, where

◦ is a constructor of the sequence state, E the values of attributes declared
in the sequence, [fst | snd] is a choice between two markers that respectively
indicate whether the sequence is executing the first sub-ASTD or the second
sub-ASTD, and s is the state of that sub-ASTD. The initial and final states for
a sequence are defined as follows. Let a be a sequence ASTD.

init(a, ts, G) Δ= ( ◦, a.Einit([G]), fst, init(a.fst, ts, G �− a.Einit))
final(a, ( ◦, E, fst, s)) Δ= final(a.fst, s) ∧ final(a.snd, init(a.snd,⊥, E))
final(a, ( ◦, E, snd, s)) Δ= final(a.snd, s)

We denote by u([G]) the application of the environment G as a substitution that
replaces environment variables occurring in u by their values given in G. When
the first ASTD is being executed, a sequence is in a final state if the current
state of the first ASTD is final and if the initial state of the second ASTD is
final. The timestamp of the initial state of the second ASTD is not determinant
to define if it is final, so it can assume any valid value and is represented with an
underscore. When the second ASTD is being executed, a sequence is in a final
state if the current state of the second ASTD is final.

Three rules are necessary to define the possible transitions of a sequence
ASTD. Rule 1 deals with transitions occurring in the first sub-ASTD. Rule 2

deals with the transitions that start the second ASTD when the first is in a final
state. Rule 3 deals with transitions occurring in the second sub-ASTD.

s
σ,t,Eg,E′′

g

a.fst s′ Θ
1

( ◦, E, fst, s)
σ,t,Ee,E′

e

a ( ◦, E′, fst, s′)

final(a.fst, s) init(a.snd, t, Ee)
σ,t,Eg,E′′

g

a.snd s′ Θ
2

( ◦, E, fst, s)
σ,t,Ee,E′

e

a ( ◦, E′, snd, s′)

s
σ,t,Eg,E′′

g

a.snd s′ Θ
3

( ◦, E, snd, s)
σ,t,Ee,E′

e

a ( ◦, E′, snd, s′)

Predicate Θ used in the premises of these inference rules determines the update
of the various environments used in a rule. It is omitted here for the sake of
concision. It indicates in which order the various actions of an ASTD are executed
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and deals with variable shadowing between embedded ASTDs. To summarise,
actions can be declared at various places in an ASTD specification, to maximise
modularity and avoid repetition of actions. Actions are executed in a bottom-up
manner, starting from the automaton transitions. The exit action of the source
state of an automaton transition is executed first, followed by the transition
action, the entry action of the destination state of the transition, the action
declared on the automaton itself, and then all of its enclosing ASTDs, up to the
root (main) ASTD.

Parameterised Synchronisation. The parameterised synchronisation ASTD
subtype has the following structure:

Synchronisation
Δ= 〈|[]|,Δ, l, r〉

where Δ is the synchronisation set of event labels, and l, r ∈ ASTD are the
synchronised ASTDs. When the label of the event to execute belongs to Δ, the
two sub-ASTDs must both execute it; otherwise either the left or the right sub-
ASTD can execute it; if both sub-ASTDs can execute it, the choice between them
is nondeterministic. When Δ = ∅, the synchronization is called an interleaving
and is abbreviated as �.

A parameterised synchronisation state is of type 〈|[]|◦, E, sl, cl, sr, cr〉, where
sl, sr are the states of the left and right sub-ASTDs and cl, cr ∈ C are the
timestamp of the latest executed event on the left and right sub-ASTDs. These
timestamps are updated when their respective sub-ASTD is executed. Initial
and final states are defined as follows. Let a be a parameterised synchronised
ASTD.

init(a, ts, G) Δ= (|[]|◦, a.Einit([G]), init(a.l, ts, G �− a.Einit), ts,
init(a.r, ts, G �− a.Einit), ts)

final(a, (|[]|◦, E, sl, tl, sr, tr))
Δ= final(a.l, sl) ∧ final(a.r, sr)

The initial state of a parameterised synchronisation initialises both of its sub-
ASTDs with the timestamp received as parameter. A parameterised synchroni-
sation is final when both of its sub-ASTDs are final.

We define the semantics of a parameterised synchronisation with three rules.
Rules |[]|1 and |[]|2 respectively describe execution of events, with no synchroni-
sation required, either on the left or the right sub-ASTDs. Rule |[]|1 below caters
for execution on the left sub-ASTD. The function α(e) returns the label of event
e.

α(σ) /∈ Δ sl

σ,tl,Eg,E′′
g−−−−−−−→a.l s′

l Θ|[]|1
(|[]|◦, E, sl, tl, sr, tr)

σ,t,Ee,E′
e−−−−−−→a (|[]|◦, E′, s′

l, cst, sr, tr)

It is important to notice that only the left clock is updated with |[]|1. Rule |[]|2
is symmetric to |[]|1 and indicates the behaviour when the right side execute
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the action. In the case of a synchronisation, the timestamps of both sub-ASTDs
are updated with cst. The rule for synchronisation is omitted for the sake of
concision.

Persistent Guard. Persistent Guard ASTD is a new operator from the TASTD
extension that guards the execution of each event execution of its sub-ASTD,
whereas a “regular” guard only affects the first event, as in CSP. The persistent
guard ASTD type has the following structure:

PGuard
Δ= 〈⇒p, g, b〉

where ASTD b is the body of the persistent guard, and g is the guard condition.
The type of a persistent guard state is 〈⇒p, E, s〉 where s is the state of b and
E the attribute values of the persistent guard ASTD. Initial and final states are
defined as follows. Let a be a persistent guard ASTD.

init(a, ts, G) Δ= (⇒p, a.Einit([G]), init(a.b, ts, G �− a.Einit))
final(a, (⇒p, E, s)) Δ= final(a, s)

The initial and final states of a persistent guard ASTD are straightforward. A
guard is in a final state if the persistent guard’s body is final.

Persistent guard is defined using a single inference rule ⇒p1 that executes any
transition from b if the guard predicate g holds in the current environment Ee.

g([Ee]) s
σ,t,Eg,E′′

g−−−−−−→a.b s′ Θ⇒p1

(⇒p, E, s)
σ,t,Ee,E′

e−−−−−−→ (⇒p, E
′, s′)

Interruption. Interruption ASTD is a new operator from the TASTD extension
with the following structure

Interrupt
Δ= 〈Intpt, fst , snd,AInt〉

where fst , snd are the sub-ASTDs and AInt is an action executed when the inter-
ruption occurs. The second ASTD snd has priority on the first ASTD fst and can
interrupt it at any point. An interruption state is of type 〈Intpt◦, E, [fst|snd], s〉,
where [fst|snd] is a choice between the two markers that indicate which ASTD is
being executed, and s is the state of that ASTD. Its initial state and final state
are defined as follows

init(a, ts, G) Δ= (Intpt◦, a.Einit([G]), fst, init(a.fst, ts, G �− a.Einit))
final(a, (Intpt◦, E, fst, s)) Δ= final(a.fst, s)
final(a, (Intpt◦, E, snd, s)) Δ= final(a.snd, s)

We define the semantics of interruption execution with three rules. Intpt1 allows
for the execution of the first sub-ASTD. Intpt2 allows for the interruption exe-
cution when the event σ from the second astd happen. Intpt3 allows for the
execution of the second sub-ASTD after the interruption.
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s
σ,t,Eg,E′′

g−−−−−−→a.fst s′ Θ
Intpt1

(Intpt◦, E, fst, s)
σ,t,Ee,E′

e−−−−−−→a (Intpt◦, E′, fst, s′)

ΩInterrupt init(a.snd, t, Ee)
σ,t,E′′′

g ,E′′
g−−−−−−−→a.snd s′ Θ

Intpt2

(Intpt◦, E, fst, s)
σ,t,Ee,E′

e−−−−−−→a (Intpt◦, E′, snd, s′)

ΩInterrupt
Δ= a.AInt(Eg, E

′′′
g )

s
σ,t,Eg,E′′

g−−−−−−→a.snd s′ Θ
Intpt3

(Intpt◦, E, snd, s)
σ,t,Ee,E′

e−−−−−−→a (Intpt◦, E′, snd, s′)

The predicate ΩInterrupt used in the premise of the second inference rule deter-
mines that the update of different environments must take into account the
interrupt action prior to any changes related to the event σ.

Delay. The Delay TASTD type has the following structure:

Delay
Δ= 〈Delay, b, d〉

where ASTD b is the body of the delay, and d is the delay value in time units.
Initial and final states are defined as follows.

init(a, ts, G) Δ= (Delay◦, a.Einit([G]), false,
init(a.b, ts, G �− a.Einit))

final(a, (Delayp, E, started?, s)) Δ= final(a.b, s)

There are two inference rules for Delay: Delay1 allows for the transition on
its body b after idling for at least d time step on the initial state. Delay2 allows
for the execution after the first event.

cst − t > d init(a.b, t, Ee)
σ,t,Eg,E′′

g−−−−−−→a.b s Θ
Delay1

(Delay◦, E, false, init(a.b, t, E))
σ,t,Ee,E′

e−−−−−−→a (Delay◦, E′, true, s)

s
σ,t,Eg,E′′

g−−−−−−→a.b s′ Θ
Delay2

(Delay◦, E, true, s)
σ,t,Ee,E′

e−−−−−−→a (Delay◦, E′, true, s′)

The condition cst − t > d in rule Delay1 states that the first event of the delay
body can be executed iff the difference between the current system time (cst) and
the timestamp of the latest executed event (t) is greater than d. Recall that t is
stored in the top level state and passed on to the proof rules of the ASTDs using
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rule env. If a delay occurs as the second operand of a sequence, then the delay
will start from the timestamp of the latest executed event of the first ASTD of
the sequence, according to rule Rule 2.

A delay TASTD can also be defined using a combination of ordinary ASTDs,
as illustrated in Fig. 4.

Fig. 4. Equivalence between delay TASTD and a guard ASTD

The cASTD compiler uses these equivalences to implement the delay opera-
tor. All the other TASTD operators are also expressed in terms of existing ASTD
operators. In the sequel, we define the TASTD operators using these equivalences
and omit the inference rules.

Persistent Delay. The persistent delay TASTD type has the following struc-
ture:

PDelay
Δ= 〈Delayp, b, d〉

where b is the ASTD body of the delay, and d is the delay value in time units.
The persistent delay is defined using a persistent guard as illustrated in Fig. 5.
The persistent guard ensures that each event is delayed.

Fig. 5. Equivalence between a persistent delay and a persistent guard

Timeout. The timeout TASTD type has the following structure:

Timeout
Δ= 〈Timeout, fst , snd, d,ATO〉

where fst denotes the ASTD that is executed if its first event occurs within
d time units; ASTD snd takes over if not. Action ATO is executed when the
timeout occurs. A timeout ASTD 〈Timeout,A,B, d, Ato〉 is implemented using
the equivalence illustrated in Fig. 6. It uses an interrupt C, which declares a
Boolean b initialised to FALSE. If ASTD A can execute its first event within
d units of time, then b is set to TRUE by the ASTD action of A, which has
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been suffixed with the assignment b := TRUE. ASTD A is interrupted by B if b
is still FALSE and the condition cst − t > d holds (the timeout time has been
reached), and either B is capable of executing an event, or the Step event is
executed. ASTD D is a choice (represented by the CSP operator �) between an
automaton E and ASTD B. ASTD E can execute a Step event and then enter
the complex automaton state defined with B. This choice is needed because two
things can occur to trigger a timeout. Recall that Step is tested for execution at
some regular interval defined by the specifier. The timeout time can be reached
within two successive Step events. In that case, if B can execute an event e that
occurs between these two Step events and after the timeout time, then this will
trigger the timeout transition from A to B. If e does not occur, then the next
Step event following the timeout time is executed, and the ASTD moves to state
B, and it resumes execution from there. ASTD A is disabled in any case.

Fig. 6. A combination of ASTDs implementing a timeout

Persistent Timeout. The persistent timeout TASTD type has the following
structure:

PTimeout
Δ= 〈PTimeout, fst , snd, d,APTO〉

Its distinction with the timeout ASTD is that the execution of each event of
fst is subject to the timeout d. Similarly to timeout, it is implemented with a
guard, but no Boolean b is needed, since each event executed by A is subject to
a timeout; it is illustrated in Fig. 7

Fig. 7. A combination of ASTDs implementing a persistent timeout
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Timed Interrupt. The timed interrupt TASTD subtype has the following
structure:

TInterrupt
Δ= 〈TInterrupt, fst , snd, d,ATI〉

where fst is the ASTD whose execution is interrupted by snd after d units of time.
Action ATI is executed when the interruption is triggered. It is implemented
using a composition similar to persistent timeout, in Fig. 8. The only difference is
that the interrupt C stores the latest event execution time t upon its initialisation
in a local variable ts, and the current system time is compared with ts, in order
to determine how much has elapsed since the start of the ASTD. This is another
reason that requires passing t as a parameter to the initialisation function of the
ASTDs.

Fig. 8. A combination of ASTDs implementing a timed interrupt

5 Tool Support

TASTD uses the same tools as ASTD, which consists of the editor eASTD and
the compiler cASTD.

eASTD is a graphical editor for ASTD and TASTD. It supports editing and
verification of the well-formedness of TASTD specifications.

cASTD is used for automatic code generation. It can be used through the
editor as a plugin, which allows compilation and code production from eASTD
interface. cASTD has options for code optimization, parameters definition, and
execution of the TASTD in simulation mode. The simulation mode allows one
to control the value of cst. As default, cASTD produces executable C++ code
that can be deployed in a system and uses the system clock.

6 Related Work

The ASTD notation was designed to specify control and monitoring systems
in an abstract, compositional manner and to automatically generate an effi-
cient implementation from a specification. It is inspired by process algebras like
CSP to freely compose behaviors using operators. CSP does not allow for state
variables, but stateful timed CSP (STCSP) [9] does. TASTD supports all the
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timing operators of STCSP. TASTD offers a more modular approach to specify
actions and attributes than STCSP. On the other hand, CSP and STCSP are
well supported by model checking tools like FDR [18] and PAT [25]. Given its
rich language, we still have to evaluate how easy it will be to develop model
checking tools for TASTD specifications. Using automata to specify the basic
behavior of systems is an advantage over textual notations like CSP and STCSP.
RoboSim is a graphical tool for modelling and verifying software simulation of
robots. It uses tock -CSP [12] as its semantics. tock -CSP does not provide quan-
tified operators such as quantified synchronisation, quantified choice or flow,
present in ASTDs. Timed automata are graphical notations that offer limited
support for specification composition, like in process algebra. However, they are
more amenable to model checking and well supported by sophisticated tools
like UPPAAL [10]. In several works, including [4,14,20], pattern diagrams for
timed automata have been proposed to aid in the modelling of high-level system
designs. [20] uses patterns based on UML Statecharts, [14] proposes patterns
from time-proven compositional constructs in Timed CSP/TCOZ, and [4] uses
UML activity diagrams. Alternatively, TASTD offers those patterns as TASTD
types, thus making them algebraic and compositional, and the use of statechart-
like boxes makes their application modular and transparent. TASTD supports all
the basic features of Stateflow [19], and it can simulate all Stateflow operators.
It is also efficiently executable like Stateflow models. Stateflow does not support
compositional specifications like TASTD does through its algebraic approach.
In particular, Stateflow does not support quantified operators like interleaving
and choice, which are very useful to model systems where there are an arbi-
trary number of instances of a given state machine that represents a component.
These operators are handy in cybersecurity when modeling attacks that can tar-
get, for instance, all the computers of a network. One can model an attack on a
machine and quantify over the IP address of the machines to recognise attacks on
a whole network all at once [26]. Thanks to shared variables, correlation can be
done between attacks spread on several machines, and better top-level decisions
can be easily specified [22,26].

The graphical and algebraic approach of TASTDs allows for more modularity
than in model-based notations like B [1], Event-B [2] and ASM [11] However,
these notations offer rich refinement and proof theories, well supported by tools,
that TASTD should draw from in the future. Some refinement patterns exist for
ASTD [15,17].

7 Conclusion

This paper proposes a real-time extension for the the ASTD notation and seven
new operators for ASTD notation: Two for ASTD and five for TASTD, which
are defined as a combination of ASTD operators. ASTD was designed to pro-
vide a rich, abstract, compositional modeling notation that can be used to spec-
ify control systems and monitoring systems and generate their implementation
automatically. Several case studies [13,26,27] have shown that it is well-suited
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to model cybersecurity attacks and control systems. TASTD is supported by a
graphical editor and a compiler.

In [5,7], an automotive vehicle’s adaptive light and cruise control system is
modelled with TASTD. It is found that the algebraic approach allowed for the
decomposition of a specification into smaller components that were easy to ana-
lyze and understand. The behavior of an event that affected several components
could be separately specified in each component. The synchronisation and flow
operators could be used to indicate how these components interacted over such
events, either through hard or soft synchronisation. Communication via shared
attributes simplified the automata of a specification and reduced the number of
automaton states. The graphical nature of TASTD facilitated the understanding
of a specification, where automata and process algebra operators made it simple
to understand the ordering relationship between events. Additionally, TASTD
provided a simple, modular approach to deal with timing requirements, and
its compiler cASTD could generate C++ code that could be deployed into an
embedded system. It is also capable of generating code for simulation, which is
helpful in simulation and system validation.

Our future work will address the formal verification of TASTD specifications.
We are currently working on proving invariants in ASTD specifications. A new
tool called pASTD is under development; it will offer the possibility to specify
TASTD attributes and actions using the Event-B language and generate proof
obligations for invariants declared on automata states and TASTDs. This will
hopefully allow for decomposing the proof of invariants into smaller parts that
will be easier to prove, compared to model-based notations like B, Event-B, and
ASM. These proof obligations are represented as theorems of a synthetic Event-
B context that can be proved using the Rodin platform. Such an (Event-)B-
annotated ASTD specification could then be refined into an implementation by
transforming actions into B0 actions, proving their refinement, and translating
them into C using the Atelier B tools. A translation from ASTD to B was initially
proposed in [21]. However, ASTD has evolved with more operators, attributes,
and actions. This translation must be reviewed and updated to handle TASTDs
correctly. Moreover, the proof obligations generated from the B translation were
complex and hard to discharge.

It will also be interesting to address the proof of properties that involves
the clocks of a specification and to prove invariants related to these clocks or
temporal properties.

On a more practical side, we have noticed in our modeling experiments that
it is often desirable to allow the specifier to order the execution of some binary
operators. When dealing with nondeterministic specifications in a choice or an
interleave, it is handy to indicate which side should be tested first for execution.
Parallelism operators, synchronisation and flow, could also be ordered, so this
order can be used to update shared variables in a specific order. Associative and
commutative binary operators could be extended to become n-ary. This would
avoid the creation of superfluous intermediate binary operators. For instance,
an interleave E1 � E2 � E3 is represented by 5 ASTDs (E123, E12, E1, E2, E3),
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because E12 represents the interleave ASTD composing E1 and E2, and E123

composing E12 with E3. n-ary operators would also allow us to generate more
compact C++ code.
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Abstract. While refinement can help structure the modeling and prov-
ing process, it also forces the modeler to introduce features in a particular
order. This means that features deeper in the refinement chain cannot be
validated in isolation, making some reasoning unnecessarily intricate. In
this paper, we present the AVoiR (Abstraction-Validation Obligation-
Refinement) framework to ease validation of such complex refinement
chains. The triptych AVoiR framework operates as follows: 1) We first
simplify a complex model by abstracting away the noise, i.e., removing
the information unrelated to properties under analysis. 2) Using the Val-
idation Obligations (VOs) technique, we formalize the validation tasks
of the desired property. 3) Finally, we trickle down the validation results
by establishing the noiseless model as a parent of the initially investi-
gated model through the standard refinement relationship. Furthermore,
by using the technique of VO refinement, we establish the VOs of the
abstract model on the initial model. We use a case study from the avia-
tion domain to show the proposed framework’s effectiveness.

Keywords: Formal Methods · Validation Obligations · Abstraction ·
Refinement · Validation · Event-B

1 Introduction

Model verification [18] checks whether we are building the model right. It often
takes center stage in state-based formal methods [22], and there is a large set
of robust verification techniques (see, e.g., the survey of tools for verification
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by Punnoose et al. [25]). In contrast, model validation [18], i.e., do we build
the right model, aims to ensure that the model does what stakeholders want.
Validation requires a good understanding of the property under investigation
and how the model represents it. An additional challenge is that a model can
be vast and complex, and not every model property is equally interesting for
every stakeholder. So, suppose a stakeholder wants to validate a single property
of a complex model. In that case, the interactions of the property with other
model elements render this goal challenging as noise is coming from unrelated
properties. Unfortunately, the existing state-of-the-art techniques and tools for
model validation offer little help in this regard.

Consider the AMAN case study [24] about an airplane scheduling system
consisting of several refinement steps12. The behavior of the automatic/mechan-
ical part is modeled early (M0 and M1), while the manual/user behavior part is
modeled later (M2 to M9). If we want to validate the user behavior without the
interference of the mechanical part, we are out of luck and have to deal with
the noise from M0 and M1. It would be beneficial if we could abstract away the
properties producing noise, enabling validation of the user behavior of M2 to M9
without unnecessary details.

This paper proposes the triptych AVoiR (Abstraction Validation- Obligation
Refinement) framework to validate a property of interest in a formal model by
reducing any noise. In the first step of the framework, one abstracts away parts
producing noise, making the model easier to validate. The second step estab-
lishes whether a property of interest is valid on the abstraction using Validation
Obligations (VOs) [23]. In the third step, one establishes the created abstrac-
tion as an additional parent of the initially investigated model and transfers the
VOs established on the abstraction back to the initial model using the refine-
ment relationship. Using the AMAN case study from the aviation domain, we
showcase the efficacy of the AVoiR framework.

The rest of the paper is structured as follows: Sect. 2 introduces the Event-B
method, which we use in the context of abstractions and as a carrier language
to provide an illustrative example and the notion of VOs. In Sect. 3, we give an
overview of the AVoiR framework and introduce abstractions for Event-B and VO
refinement. We then demonstrate the usability of the AVoiR framework in Sect. 4
on the AMAN case study and show a complex property on the abstraction,
formalize it as a VO, and transfer it back to the initial model. Last, we compare
the proposed framework with related work in Sect. 5 and conclude the paper
in Sect. 6.

2 Background

2.1 Event-B

Event-B [1] is a state-based formal method with refinement as a key mechanism.
A modeler can create a so-called machine, which describes a state automaton.
1 Original case study code: https://github.com/hhu-stups/AMAN-case-study/.
2 Code for this paper: https://github.com/hhu-stups/AMAN-abstraction-example.

https://github.com/hhu-stups/AMAN-case-study/
https://github.com/hhu-stups/AMAN-abstraction-example
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The state is represented by variables, defined and checked against invariants.
State transitions are defined through events. Additionally, contexts define new
data types that machines can see.

Refinement is an established technique for model enrichment. Refinement
means step-wise, rigorous, and inductive enhancement until a satisfying level
of detail is reached. However, there is a wide variety of methods implementing
different styles of refinement. In Event-B, a refinement is established by con-
ducting an inductive proof that the refining machine does not violate existing
constraints. The goal of the refinement is to either add a property or bring the
model closer to implementation. In general, for the rest of the paper, we spec-
ify two kinds of refinements: vertical refinement and horizontal refinement (see
Yeganefard et al. [30] for more details). Vertical refinement is about the refine-
ment of variables, i.e., abstract variables are replaced by more concrete ones.
They are usually linked by so-called gluing invariants for proving purposes. In
contrast, horizontal refinement means adding new behavior to the model. The
Rodin platform [2] supports refining and proving models.

Abstraction (in the context of this work) can be seen as the opposite of
refinement. In this technique, we take (abstract) away unnecessary details from
a model in a controlled manner leaving behind only the properties of interest.
The resulting model is crisp and noiseless.

We introduce abstractions as a part of the AVoiR framework tailored to
Event-B. However, there are other state-based formal methods like ASM [9]
or TLA+ [20], where the framework may also be applied.

2.2 Validation Obligations

VOs were introduced by Mashkoor et al. [23] and further defined by Stock et
al. [28]. They aim to provide a systematic embedding for requirements assuring
conflict freeness and completeness. We provide a quick recap of the notion of
VOs to facilitate readers.

A validation obligation (VO) is a validation expression (VE) composed
of (multiple) validation tasks (VTs) associated with a model to check its
compliance with the requirement.

We can express a VO formally by:

Req/Model : VE

The VE consists of one or VTs combined using logical operators ∧, ∨, and a
special sequencing operator ;. A;B means that the end state of task A is used as
the starting state for task B. Figure 1a shows the VO structure schematically.
A requirement is realized in the model and ensured to be present by a VO. The
VO contains the VE with the necessary parameters. A parameter requires the
following three considerations: the VT the parameter is put into (e.g., LTL model
checking needs an LTL formula), the properties the VT attempts to validate (e.g.,
a liveness property is validated with an LTL formula), and the implementation
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chosen in the model (e.g., the names of variables and events). To talk about a
single validation task, we use the following naming pattern: VT(parameters)

VT is a placeholder for a specific task type. parameters are the parameters
of the employed validation technique. An example of a task would be TR which
is the trace replay task that executes an animation from a given point. The
parameter for this task would be a trace. Another task example would be model
checking MC. The parameter for the MC task would be calculating the coverage
(COV), checking for invariant violation (INV), or searching for a goal (GOAL), i.e.,
a predicate to be satisfied. Multiple parameters must be provided depending
on the specialization, i.e., one needs a predicate to be satisfied for the GOAL
specialization. An example of a VE that searches for a state and executes an
animation from the found state on a fictive machine M1 can be written as:

MC(GOAL, some predicate); TR(some trace)

3 AVoiR Framework

An overview of the AVoiR framework is shown in Fig. 1b. The three steps of the
framework are: 1) create an abstraction, 2) use VOs to formalize and validate
properties of interest, and 3) establish the abstraction as an additional parent
to the initial model and refine the VO to fit the initial model. In the following,
we describe each step in detail.

Fig. 1. Schematic view on a VO (left) and the AVoiR framework (right)

3.1 Step 1 - Creating an Abstraction

The first step of the AVoiR framework is to create an abstraction, reducing the
noise and enabling a more accessible investigation of the model’s properties. In
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the context of Event-B, an abstraction is a recomposition of selected features
already present in the refinement chain. For the transferability of findings, an
abstraction acts like an additional parent of an existing machine without altering
the refinement chain.

Consider Fig. 2a. There, we see a classic refinement chain M0 to M2, with M0
being the most abstract machine and M2 being the most concrete one. We can now
create an abstraction from this refinement chain by selecting features (variables
or events) we want to observe and creating a new machine from these features.
In Fig. 2a, the features of M0 and M2 are used for the abstraction, and those
features are recomposed in an abstraction A1. The red arrow between the two
feature extraction arrows indicates that we can have side effects on variables and
events. Indeed, M1 could do a vertical refinement (data refinement) on variables
of M0. M2 relies on these refined variables and is incompatible with variables from
M0. In this case, we need to demote the variables from M2 relying on M1 to instead
rely on the variables of M0.

Example. Let us consider Abrial’s interlocking model [1]. The model aims to
ensure collision freedom in a train yard. For demonstration purposes, we consider
the refinement levels train 0 to train 43 from the abstract to the most concrete
machine. train 0 models routes over the tracks as a set of blocks that can be
reserved. The variable resrt is vital for us, representing all reserved blocks.
train 1 builds a data structure that maps blocks to a tracking number. The
variable frm is important because it represents all formed routes. The other
refinements add more details to model trains and signals.

Let us consider a situation where we ask a railway domain expert to validate
our assumptions made in the model. We especially want to know whether the
reservation, forming, and freeing of routes are in the proper order. However, for
the modeling, we choose an abstract representation of these three statuses for a
route, which is difficult to comprehend for a non-specialist, who would need to
learn the syntax. For modelers, the free routes would be ROUTES\ (resrt∪frm),
reserved routes would now be resrt\frm, and formed routes would now be frm.

As this feature interplays with other features, it could be hard for a non-
modeler to understand and give feedback. Therefore, we reduce the noise from
this formulation by creating an abstraction A1 as shown in Fig. 2b. We demote
the high-level constructs of frm and resrt to a simple representation we call rs
(route status). A1 only contains rs and events that manipulate the route status,
with the events adapted to the demoted variables. With the created abstraction,
we can now do all sorts of validation, e.g., animation, tracing, and state space
projections.

3 The whole example is available under https://figshare.com/articles/code/
Abstraction Examples/19786924/3.

https://figshare.com/articles/code/Abstraction_Examples/19786924/3
https://figshare.com/articles/code/Abstraction_Examples/19786924/3
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Fig. 2. Schematic abstraction (left) and abstraction from the example (right)

3.2 Step 2 - Creating VOs

With the abstraction in place and the domain experts’ feedback, we proceed to
the second step of the AVoiR framework to systematically validate properties
under investigation in the abstract model. For this, we employ the notion of
VOs as introduced in Sect. 2.2. An example requirement to be formulated as a
VO would be REQ0: Reserving, forming, and freeing a route is possible in this
particular order. A VO stating this would have the form:

REQ0/A1 : TR([route reservation, route formation, route freeing])

After its creation, the VO can be successfully validated against the model to
establish the property’s presence.

3.3 Step 3 - Trickling Down Insights

Many techniques that transfer validation-sensitive results between an abstract
and a concrete model rely on a formal refinement relationship established
between both. An example is LTL refinement as presented by Schneider et
al. [26]. For this reason, it is useful to establish the abstraction as an additional
parent of the initial machine. Consider Fig. 2a, where we want to establish a
refinement relationship between A1 and M2 to transfer insights. However, since
M2 is already refining M1, it cannot have another parent as per Event-B laws. We,
therefore, create a helper machine MH1, which contains all the missing features
from M1 and refines A1. It might become necessary to create new gluing invariants
to deal with the demoted variables. In the end, if MH1 is equal (same variables,
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same events, same invariants, ...) to M2 (minus the added gluing invariants), we
know that A1 is a parent of M2.

VO Refinement. VOs refinement now complements the abstraction by enabling
the systematic transfer of validation results along a refinement chain. A VO can
consist of multiple tasks, and to refine them, we need to know how they interfere
with each other.

Together with the definition of a VO given in Sect. 2.2, the VO refinement is
defined as follows:

A validation obligation (VO) which is established on an abstract model,
is refined for the concrete model by applying the means of refinement to
the parameter(s) of the included validation tasks (VTs).

The VTs are included in the VE of the VO, and each of their parameters needs
to be refined. At first glance, it might seem more intuitive to refine the tasks.
However, attempting this is challenging as we need to show the semantic equiv-
alence of the two tasks. So instead, we focus on the parameters to preserve the
encoded meaning, as already existing techniques show. We introduce the concept
of the ’mean of refinement’ to discuss the refinement of parameters. It will help
us discuss what happens to a parameter during refinement.

The mean of refinement is the connection of abstract and concrete models in
horizontal or vertical refinement. In the case of Event-B’s vertical refinement, the
mean of refinement is the gluing invariant, as this is the construct to connect both
machines. We can apply this gluing invariant to transform an abstract variable
into a concrete one. With the horizontal refinement, the mean of refinement
would be the delta of abstract and concrete variables and events, i.e., which
event is renamed or split into which other event(s) and which variables were
added. For example, when splitting an abstract event into multiple concrete
ones, the occurrence of the abstract event in a VT parameter can be replaced
with a disjunction of all its concrete versions.

For each VT type, the refinement process is different as it must cater to
the needs of the parameter and the means of refinement. For example, a trace
is a parameter for the TR VT. Following our rule, we need to refine the trace,
adapting it to the concrete machine or, in case of an abstraction to the initial
machine. However, to achieve this, we must first detect the means of refinement,
i.e., what changed between the abstract and concrete models. This process can be
automated for trace replay, as shown by Stock et al. [27]. The final example is the
LTL model checking VT LTL. For this VT, we need an algorithm to translate LTL
formulas as, for example, laid out by Hoang et al. [16]. The translated formula
would then have to be re-checked against the concrete version of the model.
An alternative consists of proving the preservation of the property described
also laid out by Hoang et al. [16] and later by Zhu et al. [31]. The impacting
factor for VO refinement is the grade of available automation. For traces, the
automation grade is high. For LTL, a semantic translation exists, laid out by
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Hoang et al. An alternative would be to use proof obligations by Zhu et al. [31];
however, these are not automated yet. In the case of a visual state diagram, we
would have to manually re-check as there is no refinement procedure for it yet.

VO refinement can be unsuccessful, i.e., the re-execution of the task fails. If
this is the case in a regular refinement, we eradicated existing behavior with our
refinement. If this is the case in an abstraction relationship, the abstraction over-
approximated the reality of the initial model. When we try to re-validate the
approximated property, it collides with the initial model, and the VO fails. From
a failing VO, we can conclude that we chose the wrong abstract representation or
our requirement might not be valid as the model might not satisfy it in general.

Refinement Syntax. VOs consist of validation expressions which again are com-
posed of multiple tasks. Thus, we have to define how to refine these expressions.
Therefore, we denote the refinement of Model with Model’ and the refinement
of a VO with:

refine(Req/Model : VE) = Req/Model′ : refine(VE)

The refinement of the expression is then achieved by refining the composition of
the tasks making up the expression.

refine(A ∨ B) = refine(A) ∨ refine(B)
refine(A ∧ B) = refine(A) ∧ refine(B)

And on the lowest level, a task is then refined with:

refine(VT(parameters)) = VT(refine(parameters)) (1)

Refining the Sequential Operator. The refinement of the sequential operator is
as follows:

refine(A;B) = refine(A); refine(B)

Refining the sequential operator has multiple side effects as the notion of state
is involved. Figure 3 shows a trace representing the same VO on the abstract
and the concrete model. The graphic has two main parts: the left-hand side
represents the prefix (task A), and the right-hand side represents the sequential
operation suffix (task B).

Consider a VE defined as follows: MC(GOAL, somepredicate); TR(trace) (with
MC(GOAL, somepredicate) = A and TR(trace) = B). Part A intends to reach a
specific state, and part B executes a specific trace in the second step. Assuming
this composed task holds in the abstract top part of Fig. 3, we refine the VE
for the concrete model by applying the rules previously introduced. For the
sequential operator, four cases might arise in Fig. 3:



168 S. Stock et al.

Fig. 3. Possible behaviors of states when refining the sequential operator

Case 1: We refine and execute sub-task A and end up in AR1.2, from which we
can execute task B.

Case 2: We refine and execute sub-task A and end up in AR1.3 and assume it
is the only refinement for A1. From this state, we cannot execute task
B.

Case 3: We refine and execute sub-task A and end up in AR1.3, from which we
cannot execute task B. However, there might be other solutions where
task B is feasible.

Case 4: We refine and execute sub-task A and end up in state AR1.1. We would
have to do an additional step to reach task B.

Case 1 is trivial as we can proceed with refining task B. Case 2 is also straight-
forward; the VO cannot be refined in this scenario. Case 3 requires us to search
for other solutions. This can be challenging as we might not know whether other
solutions exist or how to find them. However, this is a tool and modeling prob-
lem. Case 4 is more complicated. We successfully found a refinement for task A
but need to reach task B. Therefore, we must pass through an additional state
(AR1.2). State AR1.2 may be introduced by horizontal refinement, i.e., a new
concrete behavior was introduced that forced state A1 into (two) different con-
crete sub-states. The challenge here is to recognize that these states are part of
the same abstract parent and belong together. Suppose we can reliably recognize
two concrete states that belong to the same abstract state. In that case, Case 4
poses no threat. We can refine each task individually concerning the sequential
operator, and the task can be re-executed successfully. So, we can assume that
the property from the abstract model is successfully transferred to the concrete
model.

There is also a practical implication for Case 4. For example, we may want
task B to have AR1.1 as a starting point instead of AR1.2. This is a valid demand,
as both states represent the same abstract state but different concrete ones, and
we may prefer the concrete state of AR1.1 over the one of AR1.2. There remains
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the challenge of recognizing when a concrete state belongs to the same abstract
one to select the right one. The best action in such a situation is to sharpen the
VO. Sharpening the VO means creating a new VO on the concrete model. This
VO has the same abstract behavior and explicitly rules out/demands concrete
behavior we want/do not want to see. For instance, in our example, we would
create a new validation expression and modify task A so that the goal rules out
state AR1.2 while keeping task B intact. Of course, it might be the case that
there is no solution.

Implications for Requirements. Until now, we only dealt with changes in the
model. However, requirements might also change. A changing requirement will
result in a changing model, task, and parameter (see Fig. 1a as a reference point).
Tasks may become inappropriate for showing the presence of the requirement
as a result of changing requirements. In this case, we must create a new VO to
ensure the changed requirement’s presence.

Example Continued. Now, we transfer the gained insights back to the initial
model. For this, we refine A1 to MH1. In MH1, the features of train 2, train 3,
and train 4 are introduced. Further, we must refine the previously demoted
variables. For this, we create additional gluing invariants:

rs−1[free] = ROUTES \ (resrt ∪ frm) (2)

rs−1[reserved] = resrt \ frm (3)

rs−1[formed] = frm (4)

Equation (2) describes a free route as a route that is neither formed nor reserved.
Equation (3) describes a reserved route as the reserved blocks minus the formed
ones. Equation (4) describes the formed route as equal to the formed blocks.
MH1 should now have the same content (events, variables, guards, invariants,..) as
train 4, plus the added gluing invariants. We can therefore be sure that A1 is, so
to speak, an additional parent of train 4, which allows us to transfer validation
results like traces from the abstraction to train 4. Now, we also transfer the
trace. refine(REQ0/A1) = REQ0/MH1. Refinement means the changed events and
mapping Eqs. (2) to (4). However, as previously mentioned, tool support lets us
successfully re-establish the trace for M4. The refined VO is of the form:

REQ0/MH1 : TR([route reservation, point positioning, route formation,

FRONT MOVE 1, FRONT MOVE 2, BACK MOVE 2, FRONT MOVE 1, route freeing])

With FRONT MOVE 1 and BACK MOVE 2 being the movement of the train and
point positioning the movement of switches. We could, therefore, transfer the
previously gained insight back to the initial model.
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Regarding proof obligations, the abstraction will create its own set of POs,
many already encountered in the refinement chain M0 to M2. Moreover, additional
POs will prove the relationship by gluing invariance between MH1 and A1.

Correctness. We can assure that the abstraction is an additional parent by
discharging all POs. The correctness of the trickled-down validation results is
completely up to the used techniques and tools. Therefore, correctly using and
respecting their application conditions ensures the correctness of the transfer.

4 Case Study

To demonstrate the efficacy of the AVoiR framework, we apply it to the AMAN
case study [24]. The case study focuses on modeling an Arrival Manager
(AMAN). This semi-automatic, interactive system manages planes arriving at
an airport by assigning them a landing timeslot, i.e., creating a landing order
for the arriving planes. AMAN consists of two parts: a mechanical system that
schedules the planes and a GUI from which a human can intervene, block times-
lots for planes, and move planes around.

To evaluate the AVoiR framework, we use the implementation shown
in Sect. 1. The model consists of nine refinement steps with M0 the abstract
and M9 the concrete machine. The original implementation is described in detail
in [15].

– M0 models an abstract set of planes (scheduledAirplanes) that the AMAN
can manipulate.

– M1 replaces scheduledAirplanes with landing sequence mapping planes to
time slots.

– M2 adds the function for the human operator to set airplanes on ‘hold’.
– M3 adds the human operator’s function to block timeslots so that no plane

can be scheduled there.
– M4 adds the function for the human operator to use a zoom that restricts the

period currently worked on.
– M5 models the behavior when the mechanical part of the AMAN has a prob-

lem, i.e., a timeout.
– M6 models the user’s ability to select an airplane.
– M7 models the user’s ability to drag an airplane.
– M8 models the user’s ability to drag the zoom slider.
– M9 models the behavior of the user’s mouse cursor.

For demonstration, we create a noiseless view of the user behavior via an abstrac-
tion based on M9. Furthermore, we validate user behavior in a way especially tai-
lored toward non-modeler domain experts on this abstraction via VOs. Finally,
we transfer insights we gathered on the abstraction back to M9 via a VO refine-
ment.
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4.1 Abstraction

To create a noiseless version that only focuses on user interaction, we select all
features from M0 and M2 to M9. We exclude the discrete representation of time
and the explicit landing sequence. As many variables introduced in M2 to M9
rely on time, we need to demote these variables to work without time; the events
remain mostly untouched. Consequently, we get an abstraction MAbs.

Since abstraction removes details from the model, the state space is often
reduced. Therefore, we can apply validation techniques relying on explicit-state
model checking more easily. Table 1 shows the model checking times of both M9
and MAbs via ProB [21]. We used an Intel Core i7-10700 2.90GHz × 8 CPU with
16GB RAM running Linux Mint for model-checking. We set a timeout of 10 min
and use the same configurations for model checking. Furthermore, for both ver-
sions, we used the same amount of variable elements of the model, i.e., how many
planes fly around and how far can be zoomed4. The experiment was repeated
ten times, and the mean of the measured time and memory consumption was
taken. For M9, the model checking process stopped unfinished after 10 min. In
the unrestricted version of the experiment, we ran out of memory for M9; due to
the computer crashing, no data was collected.

Table 1. Model Checking Results

Machine Completion States Transitions Time [s] Memory [MB]

M9 Incomplete > 8145 > 10 285 196 > 600 5565a

M Abs Complete 15 361 203 778 6 241.5
a Memory usage at crash

4.2 Validating the Behavior

On the abstraction, we now validate a domain-specific requirement REQ1: When
a click has been made and is ongoing, the only way to click something else is to
release the click first.

Validating this with techniques like LTL model checking on M9 can be chal-
lenging due to finding the appropriate representation, having an acceptable run-
time, and collecting the domain experts’ feedback. However, it becomes simple
with an abstraction focusing on the UI behavior. The solution is to create a
state-space projection [19] that shows the click behavior and validates via pro-
jection inspection. A state space projection can be seen as a lens through which
we look at the state space of a model. A state space projection needs a fully
explored state space to work. We formalize REQ1 as a VO:

REQ1/MAbs : MC(COV); VIS(PRJ(clickStartPosition))

4 For full details, we refer to the files.
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This VO states that we first model check the abstraction for full state space
coverage and then apply a visualization task (VIS) to the uncovered state space
to create the possibility of optical investigation. For this visualization, we use
the state space projection (PRJ) with a formula on the uncovered state space.
Our formula consists of one variable, clickStartPosition, that contains the
GUI element on which the mouse click started. ProB creates a diagram, which
we show in Fig. 4, consisting of five distinguishable entities represented by a
box in the figure. Indeed, there are five different values. clickStartPosition is
empty when the mouse clicks outside any GUI element. clickStartPosition
contains zoom slider pos when the mouse was pressed on the zoom slider,
hold button pos when it was pressed on the hold button, airplane pos when it
was pressed on an airplane, and block time pos when it was pressed on a time
slot. Boxes represent the states, while arrows indicate state transitions in the
form of events. So, for example, we cannot drag an airplane with the mouse and
simultaneously change the zoom. Instead, we see that when something is clicked,
we need to deselect it before we select something new, i.e., from a state where
we choose something we cannot transition into another state before deselecting.

Fig. 4. State Space Projection, projecting on possible values for the mouse
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Figure 4 is suitable for communication with a domain expert as it is relatively
simple to understand. From the state space projection, we derive additional
observations we want to hold on M9. For example, consider REQ2: When clicking
on a time block happens, there are three ways to stop clicking at the block,
as shown in Fig. 4. Namely, (REQ2.1) Release Trigger Block Time (release the
mouse on the block), (REQ2.2) Release Abort Time Button (drag the mouse
away and release elsewhere), (REQ2.3) Release Trigger Deblock Time (a click
on it deblocks a time slot that has been blocked). We create three traces that
cover the desired events to validate this. We make a prefix for all three traces that
execute Click Block Time and then three suffixes, one for each release action.

Let us formalize our intent as a VO. First, we create a VT that represents
the prefix, which is reusable for all three traces, and the suffix that covers case
(REQ2.1) with the other cases analogously. The VTs can then be assembled
to a VE and assigned to the requirement. The following example covers the
requirement’s instance (REQ2.1).

pref := TR([SETUP CONSTANTS,

INITIALISATION, Move Mouse Block, Click Block Time])
suf1 := TR([Click Block Time,

Move Mouse Nothing, Release Abort Time Button])

REQ2.1/MAbs : pref; suf1

The VO can operate successfully at the abstraction, which establishes the
requirement.

4.3 Refining VOs

For further development, it is helpful to re-establish REQ2.1 on M9 to know
whether the properties of MAbs will hold and to bring it in line with exist-
ing VOs to ensure conflict freedom between them. To achieve this, we will
refine the abstraction into a machine MAbs Helper, which re-introduces the
time property that was previously removed in the abstraction. We then apply
refine(REQ2.1/MAbs) = REQ2.1/MAbs Helper. Finally, we compare MAbs Helper
with M9. If both machines are equivalent regarding their events, invariants, and
variables, we consider them equivalent.

During the creation of MAbs Helper, some proof obligations must be man-
ually discharged with the help of the Rodin tool. Once the refinement rela-
tionship between M Abs and MAbs Helper is established, it qualifies for trace
refinement [27]. Now, we refine(REQ2.1/MAbs). Even though the VE consists of
two VTs, based on the tools we employ, we treat it as one trace and run it in
the trace refinement tool, yielding a refined trace valid for MAbs Helper. No new
event was added (as the abstraction had the same events as its refinement). How-
ever, the abstract variables from the M Abs were replaced by the concrete ones
from MAbs Helper. Because MAbs Helper and M9 are semantically the same, as
we previously established, we can also successfully replay the refined trace on M9,
which was our goal. The process would then be analogous to the other suffixes.
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4.4 Evaluation

We successfully applied the AVoiR framework to the AMAN case study. With
the abstraction technique, we could provide an easily understandable domain-
specific view of the possible user interactions to a domain expert. This would
otherwise not be possible because the initial model’s state space was too big
and the model itself was too complicated, as shown in Table 1. Furthermore,
we validated several requirements on our abstraction with the help of VOs and
showed that these requirements are indeed implemented as part of M9 via VO
refinement. However, the workflow could have been more convenient due to the
lack of available tools. We plan to solve this issue in the future.

5 Related Work

In the context of state-based formal methods, (predicate) abstraction as a means
of verification was previously applied to ASMs [8]. In contrast, we target valida-
tion, and our employed approach allows more flexibility for creating abstractions
and reasoning over them. To our knowledge, refining formalized validation obli-
gations is a novel idea. However, there is related work on abstractions, i.e., how
to reduce details of models to better reason about them or different approaches
for refinements.

CEGAR. The counterexample-guided abstraction refinement (CEGAR) method
introduced by Clarke et al. [11] is a model-checking technique. With CEGAR,
one takes an existing model and creates an abstraction with a smaller state
space. Then, potential counterexamples found on the approximation are tested
on the initial model. If they are false positives, the abstract model is corrected
via refinement to no longer allow this counterexample. Our abstractions are not
tailored towards model checking but can be helpful for any validation task, like
animation, simulation [29] or enabledness analysis [13]. Still, CEGAR’s idea of
iteratively refining the abstraction until a property is satisfied could also be
helpful for validation.

Alternative Abstractions. State space projections [7,19] (which we used in Fig. 4)
provide multiple abstract views on the state space of a model. To some extent,
these are the precursor of our idea. However, they work at the level of explicit
state space and not the model. To be fully precise, they need the entire state
space (even though they can still be useful if only part of it is computed). AVoiR
typically reduces the state space before applying projections and can be applied
even if the concrete state space is large or infinite. Another related technique
is GeneSyst [6], which provides an abstract view of the control flow graph of a
classical B model.
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Abstract interpretation [12] is an automatic abstraction technique mainly
used for program analysis. It requires the development of an abstract domain and
proving that the abstract operators are a sound approximation of the concrete
ones. The abstract interpretation could be used to automate our approach if we
identify a class of abstractions useful for a wider range of applications.

Decompositions. Abrial [3] and Butler [10] introduced the concept of decom-
position for Event-B, i.e., decomposing a model into sub-models. These com-
ponents can be further refined independently and, in the end, recomposed. As
such, these approaches also tackle some of the issues our approach solves. The
decomposition approach is motivated by the need to recompose the components,
which imposes some restrictions. Our approach can, however, provide multiple
non-disjoint abstract views on a system. Indeed, we do not need to partition
the system into sub-components; we can focus in the abstractions on different
features or aspects of the system which are relevant for validation. Thus both
approaches are still complementary: our approach is useful for validation, while
decomposition is helpful for code generation and compositional verification.

Retrenchment. Banach [4,5,14] introduced retrenchments, which can be imag-
ined as a liberal version of refinement. As a result, the coupling between com-
ponents is weaker than in a classical refinement relationship, allowing for higher
modeling flexibility which is orthogonal to our concerns. It may be possible to
combine the proposed abstraction approach with retrenchments.

CamilleX. As an extension to Event-B, CamilleX was proposed by Hoang et
al. [17]. CamilleX features extensions that allow a more comprehensive and con-
trolled refinement relationship between Event-B machines, thus helping in val-
idation and verification effort. In contrast, our approach does not extend the
existing language. Therefore it can be used without any new syntax or rules to
learn. Furthermore, while creating an abstraction is cumbersome as it is done
by hand, we look forward to providing tools for it in the future.

6 Conclusion and Future Work

This paper introduces the AVoiR framework for validating properties in com-
plex models. The framework allows the creation of abstractions, a reverse-like
operation to refinements, which works for complex models and helps validate
desired properties using the VOs approach in simplified models. We then refine
the VOs from the abstract model to re-establish the same properties in the ini-
tial complex model. The process helps domain experts quickly validate desired
properties in complex models by tailoring a model for the task at hand, reducing
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noise and the state space in the process. Finally, we demonstrate the efficacy of
the proposed framework in a case study from the aviation domain.

In the future, we would like to test the AVoiR framework on further exten-
sive case studies. Currently, the abstraction and the VO refinement process are
manual. We also intend to develop tool support to automate this process.
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Abstract. Modelling hybrid systems using Event-B is challenging and
users typically are unsure about whether their Event-B models are
over/under-specified. In this short paper, we present a work-in-progress
specification language called Cyclone to tackle this challenge. We demon-
strate how one can use Cyclone to check an Event-B hybrid model using
a car controller example. Our demonstration shows that Cyclone has a
great potential to be used to verify Event-B hybrid models.

1 Introduction

Event-B is a widely used specification language that allows users model a system
design using set theory [1]. Its platform Rodin has many effective features for
stepwise refinement and mathematical proofs [2]. This makes Event-B a quite
popular specification language. Recently, there is a trend of using Event-B to
model hybrid systems [3–7]. However, the resulting Event-B models are typically
very complex and difficult for users to perform analysis or understand. This
imposes three immediate challenges on using Event-B: 1) How can users check
whether a proposed predicate is a correct invariant for their Event-B models. 2)
How can users ensure their design is not under/over specified. 3) How can users
identify non-determinism in their models to ensure correct code generation.

In this paper, we present a work-in-progress specification language called
Cyclone to tackle these challenges. Cyclone provides users a unique way for
describing a complex system using graph-based notations. It allows users to
explicitly construct a graph and specify two kinds of properties: graph and com-
putation. The graph-based properties specify a particular set of graph patterns
that a path (to be found in a graph) must obey. For example, whether a graph
contains non-determinism transitions, Hamiltonian cycle or Euler paths. The
computation properties specify a set of computational instructions (e.g. invari-
ants, assertions, conditional transitions) that must be satisfied. For example,
finding a path (in a graph) that can make two variables x ≥ 0∧y ≤ 0. By comb-
ing both graph-based and computational properties, Cyclone is able to perform
powerful checks and analysis for complex models.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 Current Architecture

Cyclone is mainly written in Java and consists of more than 100k+ lines of code
including building scripts, web interface, IDE plug-ins, test cases and configura-
tions. Currently, Cyclone can be compiled on the command-line and can be run
on Windows, Linux and MacOS. The current architecture of Cyclone is shown
in Fig. 1. The front-end of Cyclone is responsible for parsing, semantic and type
checking. The back-end uses a new bounded verification algorithm to generate
a set of verification conditions. These conditions can be efficiently solved by an
SMT solver1. To prove user-defined properties, Cyclone typically either produces
a trace if properties can be satisfied or a counter-example to show that proper-
ties cannot be satisfied. A trace or counter-example records how system states
change within the specified bound.

One can have access to Cyclone using one of the following ways:

– Download link:
https://classicwuhao.github.io/cyclone tutorial/installation.html

– Online playground: https://cyclone4web.cs.nuim.ie/editor/

Fig. 1. Architecture of Cyclone.

3 An Illustrative Example

In this section, we use a car controller example to illustrate how one can use
Cyclone to check a proposed invariant for an Event-B model [8]. This example
models a car controller that must decide when to decelerate the car so it can
stop at or near (before) a stop sign at position S.

This controller uses two variables p and v to track a car’s position and veloc-
ity, respectively. The car face towards the stop sign and its continuous dynamical
system is captured by the differential equation ṗ = v, v̇ = u. The controller may
change its velocity every δ second by (de)accelerating. To keep this example
simple, this is determined by 3 actuation commands: (1) accelerate the car with
a rate of A (2) maintain the current velocity by setting acceleration to 0 (3) de-
accelerate the car by braking with a rate of −B. The safety property is defined
as ∀t · t ∈ [0, now] ⇒ p(t) ≤ S ∧ v(t) ≥ 0. This means up until now that the car
position should always satisfy p ≤ S ∧ v ≥ 0.
1 We use Z3 as Cyclone’s default solver.

https://classicwuhao.github.io/cyclone_tutorial/installation.html
https://cyclone4web.cs.nuim.ie/editor/
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We model this controller using Event-B and the part of our model is
shown in Listing 1.1. This model implements a closed-loop design and has two
types of events: controller and system. Each controller event decides an actu-
ation command based on different conditions over the system states. The sys-
tem event (Progression in Line 14) specifies how the system behaves (given
the actuation command) and for how long. Our Event-B model has a total
of three controller events and one system event. The three controller events
are: Acceleration,Brake and Maintain. Due to page limitation, we only show
Acceleration in Listing 1.1 (Line 5–12). This event specifies that it is safe to
accelerate the car with a rate of A (Line 102 if the current position plus the
braking distance of the car is less than position S of the stop sign (Line 7).
When the controller events are terminated, the system event Progression (Line
14–22) starts. This event updates the position and velocity of the car at time
t+ δ. When the system event terminates, the controller events start again to act
for the next cycle.

1 Machine car controller
2 Variables p v t s u
3 . . .
4 Events . . .
5 Event Acceleration =̂
6 Where . . .

7 grd1 : pA(t + δ) + vA(t+δ)2

2B
≤ S

8 . . .
9 Then . . .

10 act1 : u := A
11 . . .
12 End
13 . . .
14 Event Progression =̂
15 Where . . .
16 . . .
17 Then
18 act2 : p := p �− ((t, t + δ] � pA)
19 act3 : v := v �− ((t, t + δ] � vA)
20 act4 : t := t + δ
21 . . .
22 End
23 End

Listing 1.1. The part of the Event-B model for the car controller.The complete Event-
B specification is available at: https://classicwuhao.github.io/event b spec.pdf

Here, we are interested in checking whether our Event-B model (is initialized
at a safe state) could reach to an unsafe state (the safety property does not hold).
To do this, we first propose an invariant for our Event-B model. We then use
Rodin to generate proof obligations for the invariant. However, proving gener-
ated proof obligations of an invariant is challenging and time consuming. Hence,
to tackle this challenging task, we take advantage of Cyclone for automated rea-
soning. We translate our Event-B model into a Cyclone specification and ask

2 pu, vu are the analytical solutions of the differential equations ṗ = v, v̇ = u, where
pu(t′) = p(t) + v(t)(t′ − t) + 1

2
u(t′ − t)2, and vu(t′) = v(t) + u(t′ − t).

https://classicwuhao.github.io/event_b_spec.pdf
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Cyclone to certify whether our proposed invariant holds. For our car controller,
the proposed invariant φ is defined as: ∀e ·e ∈ [0, t] ⇒ p(e)+ v(e)2

2B ≤ S∧v(e) ≥ 0.
Currently, the translation from an Event-B model to a Cyclone specification

is done manually. The aim here is to build a transition system using Cyclone’s
graph notations. Listing 1.2 shows the translated Cyclone specification from our
Event-B model in Listing 1.1. We first map each controller event to a computa-
tional node in Cyclone. A computational node (with modifier normal) indicates
that the defined instructions inside the node get executed when this node is
visited. For example, the Acceleration event in Listing 1.1 (Line 30) is mapped
to the computational node Acceleration in Cyclone. This node contains instruc-
tions act1 (Line 10 in Listing 1.1) which indicates the acceleration of the car
is now assigned to A. We also introduce two additional empty nodes: Init and
Decide. We use Init node to specify the initial state of the system and Decide
to indicate the controller makes a decision on which actuation command to be
issued.

24 option−trace=true ; // produce a t race
25 machine c a r c o n t r o l l e r {
26 real p , v , t , u ;
27

28 normal start node I n i t {} // s t a r t o f the t r a n s i t i o n system
29 normal node Decide {}
30 normal node Acce l e r a t i on {act1 ; }
31 /∗ end o f each d e c i s i o n cy c l e . ∗/
32 normal f ina l node Progre s s i on {act2; act3; act4;}
33 normal node Brake {u = −B ; }
34 normal node Maintain {u = 0 ; }
35

36 edge { I n i t → Decide}
37 edge {Decide → Acce l e r a t i on where grd1 ; }
38 edge {Decide → Brake where . . . ; }
39 edge {Decide → Maintain where . . . ; }
40 edge { Acce l e r a t i on → Progre s s i on }
41 edge {Brake → Progre s s i on }
42 edge {Maintain → Progre s s i on }
43 edge { Progre s s i on → Decide}
44

45 invariant SysInv { p + v2

2B
≤ S ∧ v ≥ 0 ; }

46

47 goal{
48 assert (A > 0 ∧ B > 0 ∧ p ≥ 0 ∧ t = 0 ∧
49 p + v2

2B
≤ S ∧ S ≥ 0 ∧ dt > 0) in (Init) ;

50

51 check for 3
52 }
53 }

Listing 1.2. The Cyclone specification for the Event-B model in Listing 1.1. Here
act1 . . . act4 and grd1 are the same as those in Listing1.1.The complete Cyclone speci-
fication is available at: https://classicwuhao.github.io/car abz.cyclone

Next, we build a set of edges (transitions) for our nodes. The guard of an
event from our Event-B model is translated to a conditional edge (transition)
in Cyclone. For example, the grd1 in Listing 1.1 (Line 7) is directly mapped

https://classicwuhao.github.io/car_abz.cyclone
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to the conditional edge in Listing 1.2 (Line 37). This means that the transition
Decision → Acceleration can only happen when the grd1 is satisfied and this
means the controller decides to issue actuation command: acceleration.

We map our proposed invariant φ to the invariant (Line 45) in Cyclone.
The semantics behind this is that the invariant must hold after each transition.
Finally, we need to ensure the controller starts at a safe initial state by setting
appropriate conditions in Line 49. Now, we have established a transition graph
for the car controller modelled in Event-B. Hence, we can check whether there
exits a path to break our proposed invariant (Line 51). We check all transitions
that has exact length of 3. This is because each (decision) cycle has a length
of 33. For example, a cycle Init → Decide → Maintain → Progression has a
length of 3 including node Init4. In this case, one cycle is enough for Cyclone
to discover a counter-example (trace). Figure 2 shows this trace (returned from
Cyclone) and it depicts that the controller enters an unsafe state after issuing
actuation command:brake. In the real world, after a car brakes and its velocity
cannot reach below 0. It is not possible to drive a car backward by braking.
Hence, this counter-example shows that our Event-B model for this car controller
is under-specified.

Fig. 2. A trace (a path length=3) generated by Cyclone shows that our proposed
invariant does not hold for the car controller. To keep it simple, we set Cyclone to
round off to 2 decimal places for each variable.

4 Experience Gained

In this short demo, we have gained two valuable experience. (1) Using Event-B
to model hybrid systems is challenging and tools are needed for discharging gen-
erated proof obligations, in particular an invariant of a system. (2) Simulating a
system with the correct and meaningful values is very useful in helping verifica-
tion of a hybrid system. However, finding such values is not easy. We successfully
applied our new specification language Cyclone on this car controller by demon-
strating finding a counter example that breaks an invariant. However, finding
3 One can check multiple cycles by setting a larger upper bound or multiple bounds.
4 The length of a path is decided by the number of nodes.
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or synthesising correct invariants from an Event-B model remains untackled. It
would be ideal to add a new component to the existing Event-B platform to
automatically infer an invariant.

5 Future Direction

By now, we have used Cyclone on a few hybrid systems that are modelled using
Event-B including a water tank model [3]. Further, we have also collected and
designed about 220 sample/test cases from different areas such as program ver-
ification, graph searching and model checking for evaluating Cyclone. Cyclone
shows a great potential in performance and usability5 in handling these prob-
lems.

For the next milestones, (1) we are now investigating a technique that can
automatically translate an Event-B model to a Cyclone specification based on
a set of well-defined transformation rules. This technique would allow us to use
Cyclone as an oracle to automatically discover an invariant of an Event-B model.
(2) we are developing new modules and algorithms for Cyclone so that they can
also be used for reasoning non-linear systems in an efficient manner.
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Abstract. We show how reflective ASMs can support hardware-
software binding, which can be used for copy protection, and we exploit
the logic of rASMs to express desirable properties for this application.

Keywords: reflective ASMs · hardware-software binding

1 Introduction

The concept of linguistic reflection in programming refers to the ability of a
program to change its own behaviour. It is as old as any higher programming
language; it appeared already in the 1950 s in LISP. While it is difficult to main-
tain control of the desired behaviour of a program when this behaviour is subject
to on-the-fly changes, controlled versions of reflection have shown to be extremely
valuable for persistent programming (see e.g. the work of Stemple et al. [9]).

In a recent article [6] the last two authors developed a behavioural theory
of reflective algorithms, first formulated and proven for the case of sequential
algorithms. The theory shows that all reflective sequential algorithms are cap-
tured by reflective sequential Abstract State Machines (ASMs), so it becomes
possible to specify the behaviour of reflective programs in a rigorous and con-
trollable way. Furthermore, an associated logic for reflective ASMs (rASMs) was
developed in [7] (not restricted to the sequential case) by extending the logic
of non-deterministic ASMs. By means of this logic desirable properties of the
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dynamic behaviour of rASMs can be formalised statically and verified. These
theories provide an important contribution to making adaptive systems reliable.

In this article we further explore the expressive power of rASMs. We demon-
strate how rASMs can be used to specify hardware-software binding, by means of
which security, in particular copy protection, can be supported. For this appli-
cation we exploit the logic of rASMs to precisely define desirable properties.
The short article is complemented by a brief introduction of general rASMs and
concluding remarks.

2 Reflective ASMs

We assume general familiarity with ASMs as defined in [3]. The extension to
reflective ASMs [6] requires to define a background structure that covers trees
and operations on them (the tree algebra was presented in detail in [6]), a ded-
icated variable self that takes as its value a tree representation of an ASM
signature and rule, and the extension of rules by partial updates [8]. In general,
a multiset of partial updates is collapsed into an ordinary update set if possi-
ble, then the updates in the resulting update set are applied. For the dedicated
location storing the self-representation of an ASM it is sufficient to use a single
function symbol self of arity 0. Then in every state S the value valS(self ) is
a tree comprising two subtrees for the representation of the signature and the
rule, respectively. In [7] we explored genetic algorithms [4] as a specific class of
reflective algorithms, and demonstrated how the logic of reflective ASMs could
be used to verify desirable properties of such algorithms.

A very popular genetic algorithm is parallel recombinative simulated anneal-
ing. In this algorithm the genetic operations include mutation, crossover and
Boltzmann trials, the latter ones controlled by a “temperature” value T . The
algorithm can be defined informally as follows: (1) Initialise the temperature
value Temp for Boltzmann trials to a sufficiently high value. (2) Create pop size
new nullary function symbols as well as pop size update rules to evaluate the
newly created functions. (3) Update the newly created functions with randomly
generated program trees, and add each of these trees to the initial population
of programs. (4) Run each of the n programs in the population, get the corre-
sponding fitness value, and check if it meets the termination criterion. If yes,
terminate. (5) Randomly choose n/2 pairs of programs in the population and
generate for each such pair two children using a recombination operator such as
crossover followed by a neighborhood operator such as mutation. Then run the
two children program and obtain their fitness values. Execute Boltzmann trials
between children and parents, and overwrite parents with the winner. (6) Lower
the Boltzmann temperature Temp and iterate the execution of (5).

The algorithm is specified by the rASM in Listing 1. The temperature value
Temp is used in the subrule GenerateOffspring described in Listing 2. In
addition, we employ a function Boltzmax dis to generate new offsprings with
Boltzmann distribution, which is used to decide whether the children or the
parents will survive for the next generation. We use max d and init method
to represent the maximum depth and the method for the creation of an initial
random syntax trees.
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1 ParRecombSimAnnealing(max d , init method , pop size,Temp,Δtemp) =
2 i f mode = init ∧ pop size < card(gen(0)) then
3 import x do
4 AddFunc(x)
5 AddUpdateRule(x)
6 seq
7 GenRndProg(x,max d , init method)
8 i f mode = init ∧ pop size = card(gen(0)) then
9 n := 0

10 mode := run
11 i f mode = run then mode := eval
12 i f mode = eval ∧ ¬∃x(x ∈ gen(n) ∧ meet term crit(result(x))) then
13 mode := reprod
14 i f mode = reprod ∧ pop size < card(gen(n + 1)) then
15 import x, y do
16 AddFunc(x)
17 AddUpdateRule(x)
18 AddFunc(y)
19 AddUpdateRule(y)
20 seq
21 GenerateOffspring(x, y,max d ,Temp)
22 Temp := Temp − Δtemp
23 i f mode = reprod ∧ pop size ≥ card(gen(n + 1)) then
24 n := n + 1
25 mode := run

Listing 1. Parallel Recombinative Simulated Annealing

1 GenerateOffspring(x, y,max d ,Temp) =
2 choose z1 with z1 ∈ gen(n) do
3 choose z2 with z2 ∈ gen(n) ∧ z2 �= z1 do
4 choose w1 with w1 ∈ nodes of (z1) do
5 choose w2 with w2 ∈ nodes of (z2) do
6 let z′

1 = subst tt(z1, w1, subtree(w2)) in
7 let z′

2 = subst tt(z2, w2, subtree(w1)) in
8 choose n1 with n1 ∈ nodes of (z′

1) do
9 choose n2 with n2 ∈ nodes of (z′

2) do
10 choose w′

1 ∈ T with depth(w′
1) + level(z′

1) ≤ max d do
11 choose w′

2 ∈ T with depth(w′
2) + level(z′

2) ≤ max d do
12 let z′′

1 = subst tt(z
′
1, n1, w

′
1) in

13 let z′′
2 = subst tt(z

′
2, n2, w

′
2) in

14 (x, y) := Boltzmax dis(result(z1), result(z2), result(z
′′
1 ), result(z′′

2 ))

Listing 2. Generate a new offspring
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All these parameters are updated in parallel in states with “mode = run”,
where each function symbol will be updated with a different random program
tree and added to the initial generation of the program gen(0). In evaluation
mode, i.e. when “mode=eval” holds, the algorithm checks the termination cri-
terion. If the termination condition is not met, mode will change to “reprod”
causing the algorithm to proceed in reproduction mode and continue the previ-
ous process until termination.

3 Software to Hardware Binding Using Reflection

The idea behind the copy protection described in [5] is to “glue” a program P
to an specific machine M . More concretely, the idea is to subtly change P into a
(reflective) program P ′ which will turn itself into P at run time, only if it is run
in the target machine M . If P ′ is executed in a machine M ′ other than M , it will
then behave incorrectly. For this approach to work the changes that P ′ needs
to make to its code to become P at run time need to be well protected. This
can be achieved by making these changes dependent on physically unclonable
properties of the target machine M , via a physically unclonable function (PUF).

As a simple example consider the ASM specification in [2, Sect. 2.1] of a one-
way traffic light control algorithm. The proper behaviour of this algorithm is
defined by the ASM rule in Listing 3. With a few subtle changes we can modify
this rule so that it defines a different (incorrect) behaviour as shown in Listing 4.

1 1WayStopGoLight =
2 i f phase ∈ {Stop1Stop2 ,Go1Stop2} and Passed(phase) then
3 StopLight(1) := ¬StopLight(1)
4 GoLight(1) := ¬GoLight(1)
5 i f phase = Stop1Stop2 then
6 phase := Go1Stop2
7 else
8 phase := Stop2Stop1
9 i f phase ∈ {Stop2Stop1 ,Go2Stop1} and Passed(phase) then

10 StopLight(2) := ¬StopLight(2)
11 GoLight(2) := ¬GoLight(2)
12 i f phase = Stop2Stop1 then
13 phase := Go2Stop1
14 else
15 phase := Stop1Stop2

Listing 3. 1Way Traffic Light: Correct Specification

1 Incorrect1WayStopGoLight =
2 i f phase ∈ {Stop1Stop2 ,Go1Stop2} and Passed(phase) then
3 StopLight(1) := ¬StopLight(1)
4 GoLight(1) := ¬GoLight(1)
5 i f phase = Stop1Stop2 then
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6 phase := Stop2Stop1
7 else
8 phase := Stop1Stop2
9 i f phase ∈ {Stop2Stop1 ,Go2Stop1} and Passed(phase) then

10 StopLight(2) := ¬StopLight(2)
11 GoLight(2) := ¬GoLight(2)
12 i f phase = Stop2Stop1 then
13 phase := Go1Stop2
14 else
15 phase := Stop2Stop1

Listing 4. Way Traffic Light: Incorrect Specification

We expand the rule in Listing 4 with reflective behaviour, so that it reverses
itself back to the rule in Listing 3 whenever it is executed in the correct hard-
ware. That is, if the program executes in the target machine, it needs to update
appropriately the relevant subtrees representing the update rules in lines 6, 8,
13 and 15 in the location self . It is key in this schema to protect the required
tree replacement operations, so that an attacker cannot easily determine the
correct program with certainty. The answer is to use an encoding that depends
on a PUF. The approach in [5] uses rowhammer, a fault injection bug in DRAM
modules that allows unprivileged malicious actors to flip bits in physical memory
[1]. As the bit flips (from 0 to 1 or vice-versa, depending on the memory cell type)
produced by rowhammer are due to unavoidable variances in the manufacturing
process of the DRAM chips, the set of bit flips and the rows that contain these
bits constitute a unique and unclonable identifier for these chips. Here we do not
dig deeper into how these type of PUF can be implemented, since. Other kinds
of PUFs could be used in practice without fundamentally changing the method.

Thus, we simply assume here that there is a PUF swap which takes as input
a binary string b and returns as output a possibly different binary string b′.
For each binary string b in the domain of swap, we assume that we know the
corresponding b′ = swap(b) in the target machine/hardware M . Since swap is a
PUF, swap(b) will be interpreted at runtime as b′ only if the program is executed
in M . Otherwise, swap is assumed to be interpreted as the identity function. The
swap function is treated at this specification level as a monitored functions [3].
In latter refinement steps this function can be specified by means of an ASM
description of the specific PUF used in the implementation. For instance, b′

could be the result of applying a rowhammer exploit to flip some bits of b as
in [5]. In addition, we assume a function bin which encodes syntax trees of ASM
rules as binary strings. The encoding function bin must satisfy the following
constraint: swap(bin(t)) = bin(t′) whenever the algorithm is run on M and the
“incorrect” rule represented by the tree t needs to be swapped by the “correct”
rule represented by t′.

We can now proceed to complete our example of copy protection for the algo-
rithm in Listing 3. A protected version of this algorithm is shown in Listing 5.
In the programUpdate mode (which we assume for every initial state), the algo-
rithm replaces the update rules in lines 24, 26, 31 and 33 using the PUF swap
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and the encoding bin. If the algorithm is executed in the target machine M , this
will result in these subrules being changed to the updates in lines 6, 8, 13 and 15
from Listing 3. After this first step, the algorithm enters the execution mode
and works as intended. In case the algorithm is execute in a machine other than
M , then the result is that the rules in the execution mode will remain the same
as in Listing 3 and the algorithm will behave incorrectly.

1 Protected1WayStopGoLight =
2 i f mode = programUpdate then
3 let n0 = Io1.∃o0, o2, o3(root(self ) ≺+

c o0 ≺c o1 ≺c o2 ≺c o3 ∧ label(o0) = rule∧
4 label(o1) = update ∧ label(o2) = term ∧ label(o3) = Stop2Stop1∧
5 ∃o4(o4 ≺s o0 ∧ label(o4) = bool))
6 n1 = Io0.∃o1, o2(root(self ) ≺+

c o0 ≺c o1 ≺c o2 ∧ label(o0) = update∧
7 label(o1) = term ∧ label(o2) = Stop1Stop2 )
8 n2 = Io0.∃o1, o2(root(self ) ≺+

c o0 ≺c o1 ≺c o2 ∧ label(o0) = update∧
9 label(o1) = term ∧ label(o2) = Go1Stop2 )

10 n3 = Io1.∃o0, o2, o3(root(self ) ≺+
c o0 ≺c o1 ≺c o2 ≺c o3 ∧ label(o0) = rule∧

11 label(o1) = update ∧ label(o2) = term ∧ label(o3) = Stop2Stop1∧
12 ∃o4(o4 ≺s o0 ∧ label(o4) = rule))
13 in
14 self ⇔substtt n0, bin

−1(swap(bin(subtree(n0)))
15 self ⇔substtt n1, bin

−1(swap(bin(subtree(n1)))
16 self ⇔substtt n2, bin

−1(swap(bin(subtree(n2)))
17 self ⇔substtt n3, bin

−1(swap(bin(subtree(n3)))
18 mode := execution
19 i f mode = execution then
20 i f phase ∈ {Stop1Stop2 ,Go1Stop2} and Passed(phase) then
21 StopLight(1) := ¬StopLight(1)
22 GoLight(1) := ¬GoLight(1)
23 i f phase = Stop1Stop2 then
24 phase := Stop2Stop1
25 else
26 phase := Stop1Stop2
27 i f phase ∈ {Stop2Stop1 ,Go2Stop1} and Passed(phase) then
28 StopLight(2) := ¬StopLight(2)
29 GoLight(2) := ¬GoLight(2)
30 i f phase = Stop2Stop1 then
31 phase := Go1Stop2
32 else
33 phase := Stop2Stop1

Listing 5. Way Traffic Light: Protected Specification

In Protected1WayStopGoLight we specify once (at the beginning of
the run) the reflective behaviour required to make the algorithm run as intended
(provided it is executed in the target machine). We could generalize this to a
schema where each execution step is preceded by a (reflective) program update
step, in which the correction is done (if necessary). That is, the program update
step determined by the PUF can be done on demand. One could use this globally
as in Protected1WayStopGoLight, i.e. do the program update at once, or



Exploration of Reflective ASMs for Security 191

locally, i.e. the program is updated on demand. Each of the update-execution
steps could be followed by restoring the incorrect code, so that an attacker that
can perform a dynamic analysis of the algorithm in the target machine will
still have a hard time determining the necessary changes to make the algorithm
behave correctly in a cloned machine. Regardless, a static analysis as well as
a dynamic analysis in a hardware other than the one associated to the PUF,
will not reveal the correct code. The general strategy for software to hardware
binding using rASMs together with PUFs is formally specified by the ground
model in Listing 6.

1 ProtectedProgramRule =
2 i f mode = init then
3 program := Io0.∃o1, o2, o3(root(self ) ≺+ o2 ∧ label(o2) = bool) ∧ o2 ≺c o3∧
4 label(o3) = “mode = execution” ∧ o2 ≺s o0 ∧ label(o0) = rule)
5 mode := changePoints
6 i f mode = changePoints then
7 nodes := selectNodes(subtree(program))
8 mode := programUpdate
9 i f mode = programUpdate then

10 f o ra l l n ∈ nodes do
11 self ⇔substtt n, bin−1(swap(bin(subtree(n)))
12 initialSubRule(n) := subtree(n)
13 mode := execution
14 i f mode = execution then
15 ProgramRule
16 i f executionDone then
17 mode := reverseChanges
18 i f mode = reverseChanges then
19 f o ra l l n ∈ nodes do
20 self ⇔substtt n, initialSubRule(n)
21 nodes := ∅
22 mode := changePoints

Listing 6. Software to Hardware Binding: Ground Model

We can exploit the logic for rASMs to express desired properties of this
model. For instance, unless the algorithm is in execution or reverseChanges
mode, the content of self must be the same as in the initial state. Thus, an
attacker performing a dynamic analysis of the algorithm can only see changes to
the ProgramRule if s/he observes the content of self in a state where mode
equals execution or reverseChanges, and the program is executing in the target
machine:

ϕ ≡ mode =init → ∀xX(x ∈ N
+ ∧ r-upd(x,X) ∧ [X]mode 	= execution∧

[X]mode 	= reverseChanges → self = [X]self )

Likewise, let us assume that the model has a protected and static location
targetMachine with Boolean value true iff the algorithm is executing in the
target machine/hardware. Then one can for instance express that the algorithm
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behaves as intended with respect to the update in Line 24 , whenever it is in
execution mode in the target machine.

ψ ≡ mode = execution ∧ targetMachine →
∀x0, x1, x2, x3, y0, y1(root(self ) ≺+

c x0 ≺c x1 ≺c x2 ≺c x3 ∧ y0 ≺s x0 ∧ y0 ≺c y1

label(x0) = rule ∧ label(x1) = update ∧ label(x2) = term∧
label(x3) = Go1Stop2 ∧ label(y0) = bool ∧ label(y1) = “phase = Stop1Stop2”)

Similarly, we can check, whether the algorithm behaves in the expected way,
when it is executed in a machine other than the targeted one.

ψ ≡ mode = execution ∧ ¬targetMachine →
∀x0, x1, x2, x3, y0, y1(root(self ) ≺+

c x0 ≺c x1 ≺c x2 ≺c x3 ∧ y0 ≺s x0 ∧ y0 ≺c y1

label(x0) = rule ∧ label(x1) = update ∧ label(x2) = term∧
label(x3) = Stop2Stop1 ∧ label(y0) = bool ∧ label(y1) = “phase = Stop1Stop2”)

4 Concluding Remarks

In this article we explored the expressive power of reflective Abstract State
Machines (rASMs). We demonstrated that security methods for copy protection
can be supported and verified by using rASMs. While the method as described
in [5] uses the binary object code and not a high-level specification, this does not
change the essential idea that only at run time the incorrect fragments of the
code are replaced by the correct ones. Using ASM refinements the modification
could be much more atomic changing only a single machine code instruction.
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Abstract. Event-B is a state-based correct-by-construction system
design formal method relying on proof and refinement where system
models are expressed using set theory and First Order Logic (FOL).
Through the generation and discharging of proof obligations (POs),
Event-B natively supports the establishment of properties such as safety
invariant, convergence and refinement. Other properties, relevant to sys-
tem verification, may be studied as well, but need to be explicitly for-
malised by the designer, or expressed in another formal method. This
process compromises reusability and is error-prone, especially on larger
systems. Recently, the reflexive EB4EB framework has been proposed for
formalising Event-B concepts as first-class objects. It allows manipulat-
ing these concepts using FOL and set theory in Event-B. In this paper,
we propose a rigorous methodology for extending the EB4EB framework,
to support new system analysis mechanisms associated to properties that
are not natively present in core Event-B. Thanks to the reflexive nature
of this framework, new generic and reusable system properties and their
associated POs are expressed once and for all, and for any refinement
level. For specific systems, designers instantiate these properties and the
associated POs are automatically generated and submitted to Event-B’s
provers. This methodology is used to define three analyses: deadlock-
freeness, invariant weakness analysis and reachability, all of which are
demonstrated on a case study.

Keywords: Reflection · Refinement and Proof · Meta-theory ·
Reachability · Deadlock-Freeness · Invariant weakness · EB4EB
framework · Event-B

1 Introduction

Context. The refinement and proof state-based Event-B formal method [1] sup-
ports complex system development using a correct-by-construction approach. It
is based on set theory and First Order Logic (FOL) for describing state transition
systems. It relies on an inductive proof process to discharge a set of proof obliga-
tions (POs) expressing various properties. Basically, core Event-B offers built-in
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modelling constructs to express invariants, event convergence, simulation, guard
strengthening and event feasibility. POs associated to these constructs are auto-
matically generated and are discharged using automatic and interactive provers.

In order to enrich the method’s expressiveness, Event-B has been extended
with the ability to define new algebraic data-types resulting in a richer type
system [2,11], through the introduction of Theories. This extension allows the
formalisation of complex systems at a higher level of abstraction.

Motivation. Event-B theories make it possible to formalise new data types, but
they do not allow the definition of new POs that correspond to properties other
than the usual ones (i.e., invariants preservation, event convergence, etc.).

Indeed, when properties such as deadlock-freeness, event scheduling, liveness,
and so on need to be proved, they are explicitly formalised by the designer, or
expressed in another formal method. This process compromises reusability and
is error-prone, especially on large systems. The designer shall formalise each
desired property for each system under design using the native Event-B POs.
This process may be cumbersome, must be repeated for each model to be anal-
ysed (not reusable) and results in formal developments scattered across multiple
heterogeneous frameworks and semantics.

To incorporate such properties in Event-B once and for all and allow the
automatic generation of property-specific POs, it is necessary to embed, in the
Event-B engine, the POs associated to these new properties. Such embedding
requires the manipulation, in Event-B, of Event-B concepts as first-order objects
(i.e., through a reflexive meta-model). We have recently proposed a reflexive
EB4EB framework [29,30] that formalises Event-B concepts as first-class objects
in Event-B. It allows manipulating these concepts in Event-B using first-order
logic and set theory. It is built on an algebraic meta-theory formalised as an
Event-B theory, where each Event-B feature can be handled at the meta-model
level, as first-class citizen. This framework also formalises Event-B’s trace-based
semantics and offers constructs for machines, states, and events together with
a set of operators for manipulating them. Consequently, the EB4EB framework
makes it possible to formally express, at any abstraction level (i.e. in the refine-
ment chain), new reusable and automatically generated POs and high-level con-
structs, easing the development of complex systems with specific properties or
semantics. Furthermore, it opens the door to formally embed Event-B’s seman-
tics in other formal methods and exploit their respective strengths.

Objective of this Paper. This paper extends and enriches our previously devel-
oped EB4EB framework [29,30] to support new analysis mechanisms (possibly
non-intrusive), formalised as logic properties not available in native Event-B nor
in its base PO generator. It extends the EB4EB Event-B meta-theory with new
operators formalising such new properties. The POs associated to each operator
are automatically generated. Adding the desired property, corresponding to a
specific analysis, to an Event-B model is performed by invoking an operator.
Designers do not need to formalise this property explicitly in the model.
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Table 1. Global structure of Event-B Contexts, Machines and Theories

Context Machine Theory

CONTEXT Ctx MACHINE M THEORY Th
SETS s SEES Ctx IMPORT Th1, ...
CONSTANTS c VARIABLES x TYPE PARAMETERS E, F , ...
AXIOMS A INVARIANTS I(x) DATATYPES
THEOREMS Tctx THEOREMS Tmch(x) Type1(E, ...)
END VARIANT V (x) constructors

EVENTS cstr1(p1: T1, ...)
EVENT evt OPERATORS

ANY α Op1 <nature> (p1: T1, ...)
WHERE Gi(x, α) well−definedness WD(p1, ...)
THEN direct definition D1

x :| BAP(α, x, x′) AXIOMATIC DEFINITIONS
END TYPES A1, ...
... OPERATORS

END AOp2 <nature> (p1: T1, ...): Tr

well−definedness WD(p1, ...)
AXIOMS A1, ...

THEOREMS T1, ...
PROOF RULES R1, ...
END

(a) (b) (c)

Table 2. Relevant POs for Event-B contexts and machines

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmch(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ BAP(x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ I(x′)
(5) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, α)⇒ ∃x′ · BAP(x, α, x′)
(6) Variant progress (Var) A(s, c) ∧ I(x) ∧ G(x, α)∧ BAP(x, α, x′) ⇒ V (x′) < V (x)

Structure of the Paper. The paper is organised as follows. Section 2 describes the
Event-B method and the Theory mathematical extension. Section 3 introduces
the EB4EB framework and its Event-B meta-theory, as well as the case study
used throughout this paper. Three externally defined Event-B analyses and POs
are introduced in Sect. 4 and applied to the case study. The positioning of this
work with respect to the state of the art and its advantages are discussed in
Sect. 5. Finally, Sect. 6 concludes the paper and discusses future work.

2 Event-B

Event-B [1] is based on set theory and FOL. It relies on an expressive state-based
modelling language where a set of events models state changes.

2.1 Contexts and Machines (Tables 1.a and 1.b)

A Context (Table 1.a) describes the static part of a model. It introduces carrier
sets s and constants c, and their properties using axioms A and theorems Tctx .
A Machine (Table 1.b) describes the model behaviour as a transition system. A
set of events evt , possibly guarded by G and/or parameterized by α, is used to
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modify a set of state variables x using Before-After Predicates (BAP) to record
state changes. A machine may define invariants I(x), theorems Tmch(x) and
variants V (x) to capture particular properties (e.g., safety and convergence).
Model consistency is ensured via a set of generated POs, given in Table 2.

Refinements. Refinement decomposes a machine into a less abstract one with
more design decisions (refined states and events) moving from an abstract level to
a less abstract one (simulation relationship). Gluing invariants relating abstract
and concrete variables ensure property preservation.

Core Well-definedness (WD). In addition to machine-related POs, each operator
is associated to a WD, that must be established for expressions to be meaningful.
Once proved, these WD conditions are used as hypotheses to prove further POs.

2.2 Event-B Extensions with Theories

To handle more complex and abstract concepts beyond set theory and FOL,
an Event-B extension for externally defined mathematical objects has been pro-
posed [2,11]. It introduces user data types with new types, operators, theorems
and associated rewrite and inference rules, all bundled in so-called theories. Close
to proof assistants like Coq [5], Isabelle/HOL [25] or PVS [26], this capability is
convenient to model, as data types, concepts unavailable in core Event-B.

Theory description (See Table 1.c). Theories define new data types, operators,
and theorems. Data types (DATATYPES clause) define constructors to build inhab-
itants of the defined type. It may define various operators further used in Event-B
expressions as FOL predicates or expressions producing actual values (<nature>

tag). Operators may be used in theories, contexts and machines.
Operators may be defined explicitly in the DIRECT DEFINITION clause (con-

structive definition), or axiomatically in the AXIOMATIC DEFINITIONS clause (a
set of axioms). Last, a theory defines a set of axioms, completing the definitions,
as well as theorems and proof rules. Theorems and proof rules are proved from
the definitions and axioms used by the proof system. Many theories have been
defined for sequences, lists, groups, reals, differential equations, etc.

Well-Definedness (WD) in Theories. An important feature provided by Event-
B theories is the possibility to define Well-Definedness (WD) conditions (close
to Type-Correctness Condition (TCC) conditions in PVS [26]). TCC must be
discharged before the corresponding theory types correctly. Similarly, in Event-B
theories, each defined operator (thus partially defined) is associated with a user-
defined condition ensuring its well-formedness. Note that, when an operator is
applied, it automatically invokes its WD condition and generates a PO requiring
to establish that this condition holds, i.e., the operator is used correctly and that
its parameters belong to its definition domain.
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Event-B Proof System and its IDE Rodin. Rodin is an open source IDE for mod-
elling in Event-B. It offers resources for model editing, automatic PO generation,
project management, refinement and proof, model checking, model animation
and code generation. The Event-B theories extension is available as a plug-in.
Theories are tightly integrated in the proof process. Depending on their defini-
tion (direct or axiomatic), operator definitions are expanded either using their
direct definition (if available) or by enriching the set of axioms (hypotheses in
proof sequents) using their axiomatic definition. Theorems may be imported as
hypotheses and used in proofs like other theorems. Many provers for first-order
logic as well as SMT solvers are plugged to Rodin for helping the proof process.

3 The EB4EB Framework

The main objective of the EB4EB reflexive framework [29,30] is to provide
explicit manipulation of Event-B components as first-class objects, making it
possible to reason on these objects and define new Event-B analyses. For this
purpose, the concept of Event-B machine is formalised as a data-type in a theory
(a meta-theory), together with a set of operators that guarantee the correctness,
relative to Event-B semantics, of instances of this data-type. The meta-theory
formalises the semantics of Event-B, as described in the Event-B Book [1], i.e. a
set of states and guarded events defined as a relation between states. In addition,
the meta-theory is equipped with relevant proved (once and for all) theorems
useful for discharging the generated POs. These additional theorems are available
to help users reduce proof efforts and aid in system development and analysis.

Event-B machines (models) are defined using the meta-theory mentioned
above, by instantiating the machine data-type and providing appropriate values
for each of its fields: states, events, guards, before-after predicates, invariants,
variant and so on. At instantiation, operators of the meta-theory are used in
theorems; the related POs ensure the defined machine’s consistency, including
invariant preservation, event feasibility, variant progress, etc.

As previously stated, the goal of this paper is to demonstrate that the meta-
theory can be extended with new operators for manipulating machine elements of
the meta-theory, in order to define so-called analyses, expressed with new POs.
Based on the work presented in [3], such analyses allow the system designer
to check new properties, obtain feedback about their behaviour, enrich model
design phases and check new properties that are not available in core Event-B.

This section summarises the main features of the Event-B meta-theory (List-
ings 1, 2 and 3), and presents the case study used to illustrate our approach
throughout this paper.
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3.1 The Event-B Meta-theory

Machine Structure. Listing 1 shows the Machine data-type, defined using type

THEORY EvtBTheo
TYPE PARAMETERS STATE, EV ENT
DATATYPES

Machine(STATE, EV ENT )
CONSTRUCTORS

Cons_machine(
Event : P(EV ENT ),
State : P(STATE),
Init : EV ENT,
Progress : P(EV ENT )
AP : P(STATE),
Grd : P(EV ENT × STATE),
BAP : P(EV ENT × (STATE × STATE)),
Inv : P(STATE)
Thm : P(STATE),
V ariant : P(STATE × Z),
Ordinary : P(EV ENT ),
Convergent : P(EV ENT ))

Listing 1. Machine Data-type

parameters for abstracting event labels
(EVENTS) and states (STATES). It is
built using the Cons_machine sin-
gle constructor with a parameter for
each machine component, and defines
a state-transition system with state
State (constrained by invariants Inv
and theorems Thm) and a set of, pos-
sibly parameterised, events (Event),
with an initialisation event Init and
progress events Progress, split into
ordinary Ordinary and convergent
Convergent events. State changes are
recorded using an after-predicate (AP)
for initialisation and a set of before-
after predicates (BAP) associated to progress events, possibly guarded (Grd).
Finally, integer variants for event convergence are introduced as well (Variant).

Well-Constructed Machines. To ensure machines are structurally well-defined,
the meta-theory introduces several predicate operators (Listing 2): BAP-
_WellCons to check that each progress event is associated to a BAP, Grd-
_WellCons to check that progress events are possibly guarded, and Event-
_WellCons to check that machine events are composed of an initialisation (Init)
and progress (Progress) events. The Machine_WellCons predicate operator,
defined as a conjunction of the previous operators (and others), ensures that a
machine is well-structured (static semantics).

BAP_WellCons <predicate> (m : Machine(STATE, EV ENT ))
direct def init ion dom(BAP (m)) = Progress(m)

Grd_WellCons <predicate> (m : Machine(STATE, EV ENT ))
direct def init ion dom(Grd(m)) = Progress(m)

Event_WellCons <predicate> (m : Machine(STATE, EV ENT ))
direct def init ion partition(Event(m), {Init(m)}, Progress(m))
. . .

Machine_WellCons <predicate> (m : Machine(STATE, EV ENT ))
direct def init ion

BAP_WellCons(m) ∧ Grd_WellCons(m) ∧ Event_WellCons(m) ∧ . . .

Listing 2. Operators to check well-defined data-type (static semantics)

Machine POs (Behavioural Semantics). The Machine data-type offers opera-
tors to access and handle its components. In addition to structural consistency,
machine correctness is also encoded, through its behavioural semantics and cor-
rectness criteria. Formally, this is done by providing an operator for each PO of
Event-B (see Table 2), as shown in Listing 3. Such operators are usually defined
inductively on the structure of a machine (for initialisation and progress events).
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Mch_THM <predicate> . . .
Mch_INV_Init <predicate> (m : Machine(STATE, EV ENT ))

direct def init ion AP (m) ⊆ Inv(m)
Mch_INV_One_Ev <predicate> (m : Machine(STATE, EV ENT ), e : EV ENT )

well−definedness e ∈ Progress(m)
direct def init ion BAP (m)[{e}][Inv(m) ∩ Grd(m)[{e}]] ⊆ Inv(m)

Mch_INV <predicate> (m : Machine(STATE, EV ENT ))
direct def init ion

Mch_INV _Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch_INV _One_Ev(m, e))
Mch_FIS_Init <predicate> (m : Machine(STATE, EV ENT ))

direct def init ion Inv(m) ∩ AP (m) 
= ∅
Mch_FIS_One_Ev <predicate> (m : Machine(STATE, EV ENT ), e : Event)

well−definedness e ∈ Progress(m)
direct def init ion Inv(m) ∩ Grd(m)[{e}] ⊆ dom(BAP (m)[{e}])

Mch_FIS <predicate> (m : Machine(STATE, EV ENT ))
direct def init ion

Mch_FIS_Init(m) ∧ (∀e · e ∈ Progress(m) ⇒ Mch_FIS_One_Ev(m, e))
Mch_VARIANT_One_Ev <predicate> . . .
Mch_VARIANT <predicate> . . .
Mch_NAT_One_Ev <predicate> . . .
Mch_NAT <predicate> . . .

Listing 3. Well defined Data-type operators (behavioural semantics)
The details of the invariant preservation (INV - 3 and 4 in Table 2) and

feasibility (FIS - 5 in Table 2) POs are shown in Listing 3. Three opera-
tors are associated to the definition of these POs: Mch_INV_Init, stating that
an invariant holds at initialisation (i.e., states after the AP are included in
the invariant states, AP (m) ⊆ Inv(m)); Mch_INV_One_Ev, stating that any
event e characterised by its guard and BAP preserves the invariant (e.g.
the image of invariant states through BAP is included in invariant states,
BAP (m)[{e}][Inv(m)∩Grd(m)[{e}]] ⊆ Inv(m)); and Mch_INV, the conjunction
of these two operators, where Mch_INV_One_Ev must hold for all progress events.
Similarly, three operators Mch_FIS_Init, Mch_FIS_One_Ev and Mch_FIS_Init
define the event feasibility PO (existence of a next state after AP or BAP of
progress events). The other POs in Table 2 are defined in the same manner.

The POs of an Event-B machine are gathered in the conjunctive predicate
check_Machine_Consistency, with Machine_WellCons as well-definedness (see
Listing 4). It formalises machine’s behavioural semantics and general correctness.

check_Machine_Consistency <predicate> (m : Machine(STATE, EV ENT ))
well−definedness Machine_WellCons (m)
direct def init ion Mch_THM(m)∧

Mch_INV (m) ∧ Mch_FIS(m)∧
Mch_V ARIANT (m) ∧ Mch_NAT (m)

Listing 4. Operator encoding Event-B machine consistency
When this operator is used in a theorem clause, two POs, corresponding

to its definition and WD condition, are automatically generated. Proving the
theorem ensures the consistency of the machine, defined as an instance of the
meta-theory.

Instantiation of the Meta-theory. Specific Event-B machines are defined by
instantiating the meta-theory. The instantiation process presented in this paper
is so-called deep, as it relies solely on set theory and FOL with a set of axioms
and theorems. It consists in defining an Event-B context with witnesses (sets) for
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type parameters STATE and EVENT defined as sets using Cons_machine. Opera-
tors may be used in theorems, triggering the generation of POs ensuring machine
consistency. Another instantiation process qualified as shallow has also been
defined [29,30]. It relies on the definition of an Event-B machine and its refine-
ment. It is not reviewed here as it is not used in this paper.

3.2 The Clock Example

This section presents a case study adapted from Lamport’s clock case study [19].
It is used to demonstrate the application of the proposed framework, including
meta-theory instantiation and definition of new POs. Note that this simple case
study is chosen to demonstrate the usability of the new extended mechanism.

The functional requirements of the clock state that minutes and hours pro-
gress by 1 and hours are represented in a 24-hour format. The clock must con-
verge to midnight, and never stop. Listing 5 gives a model of the clock as an
Event-B machine. In this model, variables m and h represent minutes and hours,
respectively. A safety property (inv2) ensures that minutes m (resp. hours h) are
always less than 60 (resp. 24). The clock’s behaviour is expressed through three
events: tick_min (progressing minutes by 1), tick_hours (progressing hours
by 1) and tick_midnight (resetting the clock to midnight).

MACHINE Clock
VARIABLES m , h
INVARIANTS

inv1 : m ∈ N ∧ h ∈ N

inv2 : m < 60 ∧ h < 24
EVENTS

INITIALISATION
THEN act1 : m, h :| m′ = 0 ∧ h′ = 0
END
tick_min
WHERE grd1 : m < 59
THEN act1 : m :| m′ = m + 1
END
tick_hour
WHERE grd1 : m = 59 ∧ h < 23
THEN act1 :

m, h :| m′ = 0 ∧ h′ = h + 1
END
tick_midnight
WHERE grd1 : m = 59 ∧ h = 23
THEN act1 : m, h :| m′ = 0 ∧ h′ = 0
END

END

Listing (5) Clock as Event-B
machine

CONTEXT ClockMachineInstance
SETS Ev , Z × Z

CONSTANTS clock , tick_min , tick_hour ,
tick_midnight , init

AXIOMS
axm1 : clock ∈ Machine(Z × Z,Ev)
axm2 :partition(Ev , {init}, {tick_midnight},

{tick_hour}, {tick_min})
axm3 :State(clock) = Z × Z

axm4 :Event(clock) = Ev
axm5 : Init(clock) = init
axm6 : Inv(clock) = {m �→ h | m ∈ N ∧ h ∈ N

∧m < 60 ∧ h < 24}
axm7 :AP(clock) = {m �→ h | m = 0 ∧ h = 0}
axm8 :Grd(clock) = {e �→ (m �→ h) |

(e = tick_min ∧ m < 59)∨
(e = tick_hour ∧ m = 59 ∧ h < 23)∨
(e = tick_midnight ∧ m = 59 ∧ h = 23)}

axm9 :BAP(clock) =
{e �→ ((m �→ h) �→ (m′ �→ h′)) |
(e = tick_min ∧ m′ = m + 1 ∧ h′ = h)∨
(e = tick_hour ∧ m′ = 0 ∧ h′ = h + 1)∨
(e = tick_midnight ∧ m′ = 0 ∧ h′ = 0)}

. . .
THEOREMS

thm1 : check_Machine_Consistency(clock)
END

Listing (6) Clock as meta-theory instance

While the previous example does not show parameterised events, however,
our approach handles such events. The same approach has been successfully
applied to complex case studies in [21] for critical interactive systems.
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3.3 The Clock Machine as an Instance of EvtBTheo Theory

Listing 6 shows the Event-B context ClockMachineInstance instantiating the
meta-theory EvtBTheo. First, axm1 defines the clock machine with the sets Ev
(set of events enumerated in axm2) and Z×Z (for m and h). axm3−axm9 define
associated machine components. Note that invariant is defined (axm6) on the
state as a set of pairs m �→ h, AP is defined on the initialisation event axm7 and
guards and BAPs are associated with an event and a state and defined (axm8
and axm9) on a set of triples e �→ m �→ h. In the case of BAPs, it is necessary
to record before (m �→ h) and after (m′ �→ h′) states (axm9).

Last, theorem thm1 uses check_Machine_Consistency (see Listing 4). It is
associated with a well-definedness (WD) PO, Machine_WellCons(clock), and
a theorem (THM) PO for machine correctness.

4 POs for New Properties: Extending the Meta-theory

The meta-theory EvtBTheo presented in Sect. 3.1 is highly extensible: every
Event-B feature is explicitly formalised, and can be manipulated using operators,
making it possible to define specific development operations or new reasoning
mechanisms as new operators. Doing so is non-intrusive (self-contained), in the
sense that no modification is needed to the classical development of Event-B
models, as machines are handled as instances of the meta-theory.

The main design principle for such Event-B machine analyses, including the-
ories with required operators, definitions, and WD conditions, is given below.

4.1 Analysis Principle: New POs

In the proposed extension to the EB4EB framework, a model analysis is defined
as a PO and must meet two requirements: 1) it must be reusable, and 2) it must
be generated automatically. The first requirement is met by formalising the PO
at the meta-theory level, while the second one is met by leveraging automatically
generated well-definedness (WD) and theorem (THM) POs.

Event-B Machine Analysis Pattern. Listing 7 depicts a generic pattern for defin-
ing new POs for Event-B machine analysis. Theo4PO theory imports the meta-
theory EvtBTheo and introduces a third, optional type parameter TArgs possibly
needed by the analysis, depending on the nature of new POs (e.g. guards, BAP,
etc.). The PO associated to the analysis is formalised as a predicate operator
[PO]_Definition. Then, checking the PO is done using the check_Machine[PO]
predicate, which is well-defined when machine m is consistent.
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THEORY Theo4PO IMPORT EvtBTheo
TYPE PARAMETERS STATE, EV ENT, TArgs

OPERATORS
[PO]_Definition <predicate> (m : Machine(STATE, EV ENT ), args : TArgs)

well−definedness condition . . .
direct def init ion . . .

check_Machine_[PO] <predicate> (m : Machine(STATE, EV ENT ), args : TArgs)
well−definedness condition Machine_WellCons(m)
direct def init ion [PO]_Definition(m, args)

END

Listing 7. Analyses Theory Pattern

CONTEXT MachinePO
EXTENDS MachineInstance
THEOREMS

thmPO : check_Machine_[PO](m, args)
END

Listing 8. Analyses Machine

Checking PO context pattern. Listing 8
shows an Event-B context pattern for
checking the newly defined PO. A consis-
tent instance machine context Machine-
Instance, that defines the Event-B
machine m by instantiation of the meta-
theory EvtBTheo, is extended by context MachinePO instantiating the extended
theory Theo4PO. Theorem thmPO performs the check of the defined PO for
machine m. The associated WD and THM POs are automatically generated.

Following this idea, this section introduces new reasoning mechanisms, not
natively present in Event-B, based on the EB4EB framework and the EvtBTheo
meta-theory, in the form of analyses that handle Event-B components. Three
analyses are detailed: deadlock-freeness, invariant weakness analysis (tracking
model holes) and reachability. The key points of using this framework are that:
1) WD conditions ensure elements are used correctly, 2) meta-properties on these
analyses are established once and for all, and 3) these analyses can be performed
without altering the machine’s behaviour, in a non-intrusive way.

Note that only the definition of the [PO]_Definition operator is given, as
check_Machine_[PO] is derived by replacing [PO] with the proposed PO name.

4.2 Deadlock-Freeness

Requirements. Deadlock-freeness states that a machine m can always progress;
i.e., there is always at least one enabled event in machine m, or more formally
when the invariant holds then the disjunction of the guards holds.

PO Definition. The PO states that, for a machine m, there exists a progress
event e such that any correct state s ∈ Inv(m) verifies the guard of e (s ∈
Grd(m)[{e}]). When expressed using the meta-theory operators, it is formalised
as Inv(m) ⊆ Grd(m)[Progress(m)]. This operator does not require any addi-
tional argument for args.
THEORY Theo4Deadlock IMPORT EvtBTheo
TYPE PARAMETERS STATE, EV ENT
OPERATORS

DeadlockFreeness_Definition <predicate> (m : Machine(STATE, EV ENT ))
direct def init ion Inv(m) ⊆ Grd(m)[Progress(m)]

. . .
END

Listing 9. DeadlockFree Theory
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CONTEXT ClockDeadlockFree
EXTENDS ClockMachineInstance
THEOREMS
thmDeadlock : check_Machine_DeadLock(clock)

END

Listing 10. Clock DeadlockFreeness

Following the defined pat-
tern, Listing 9 introduces a new
theory Theo4Deadlock with two
new operators together with the
required WD condition.

Deadlock-Freeness PO for Clock Model. Listing 10 shows the context with thm-
Deadlock theorem generating WD and THM POs of the clock machine.

4.3 Invariant Weakness as a Non-intrusive Analysis

Requirements. A deployed system may present a number of vulnerabilities, that
tick_M5
WHERE grd1 :m < 55
THEN act1 :m :| m′ = m + 5
END

Listing 11. An Bad-event:
progress by 5 min.

can be exploited by opponents (or make it weak to
the environment) to modify its behaviour. These vul-
nerabilities usually come from under-specification,
i.e., “holes” in the system’s requirements or in its
formal specification. To address this issue, a non-
intrusive analysis of the model’s specification is
implemented, that does not alter its behaviour. It consists in investigating the
robustness of the model’s invariants with regard to bad-events, that model poten-
tial attacks (under-specification) against the system (model holes). If the sys-
tem’s invariant is preserved by the bad-event, it implies that the invariant is
not strong enough to prevent the attack. For instance, the bad event of List-
ing 11 can be added to the clock machine without falsifying its original invariant.
Similarly, other bad-events may be introduced: the event tick_H5 guarded by
h < 19 with action m,h :| m′ = 0 ∧ h′ = h + 5 and the event tick_HM1 guarded
by h < 23 ∧ m < 59 with action m,h :| m′ = m + 1 ∧ h′ = h + 1. Note that a
class of bad events could be added using two parameters hn �= 1 and mn �= 1
and a corresponding action of the form m,h :| m′ = m + mn ∧ h′ = h + hn.

Bad-Events PO Definition. This PO is formalised with the AllowedMachine-
HoleSub_Definition operator (Listing 12), with the bad-events as parameters.

THEORY EvtBTheorySubs IMPORT THEORY EvtBTheory
TYPE PARAMETERS STATE, EV ENT
OPERATORS

AllowedMachineHoleSub_Definition <predicate> (m : Machine(STATE, EV ENT ),
nGrd : P(STATE), nBAP : P(STATE × STATE))

direct def init ion nBAP[ Inv (m)∩nGrd ]⊆Inv (m)
. . .

END

Listing 12. Weak specification analysis theory
Each bad-event is characterised by its guard nGrd and its BAP nBAP . This
operator defined as nBAP [Inv(m)∩ nGrd] ⊆ Inv(m) states that the bad-event
preserves the invariant. So, if the given PO is proved, the bad-event represents
a successful attack, and the defined invariant is not strong enough.

Bad Events PO for Clock Model. The analysis to Check the clock specifica-
tion forbids minutes from progressing by 5 rather than 1, is handled by theo-
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rem thmInspectInvEVTM5 of Listing 13, using the AllowedMachineHoleSub-
_Definition operator, where the bad-event is enabled when minutes are below
55 and thus progresses by 5. This corresponds to adding event tick_M5 of List-
ing 11. Similar theorems are written for the tick_H5 and tick_HM1 bad-events.

CONTEXT ClockInspect Inv EXTENDS ClockMachineInstance
THEOREMS

thmInspectInvEVTM5 : check_Machine_AllowedMachineHoleSub(clock ,
{m �→ h | h ∈ Z ∧ m < 55} ,
{(m �→ h) �→ (m′ �→ h′) | m′ = m + 5 ∧ h′ = h ∧ h ∈ Z})

thmInspectInvEVTH5 : check_Machine_AllowedMachineHoleSub · · ·
thmInspectInvEVTHM1 : check_Machine_AllowedMachineHoleSub · · ·

END

Listing 13. Performing analysis on clock model
Note that the thmInspectInvEVTM5, thmInspectInvEVTH5 and thmInspect-

InvEVTHM1 theorems are proven for the clock model of the ClockMachine-
Instance corresponding to the Event-B machine of Listing 5. As a conclusion, the
original model is insufficiently strong and does not provide sufficient constraints
on the safe evolution of variables.

A Strengthened Machine. The designer strengthens the original machine, through
instantiation, resulting in the new model shown in Listing 14. New state variables
mb and hb are introduced to explicitly record the value of minutes and hours
before a tick event occurs. In addition, the events are required to explicitly link
these variables as m = mb + 1 and h = hb + 1.

CONTEXT ClockInvStrong
SETS Ev ,Z × Z × Z × Z

CONSTANTS c lock , tick_min , tick_hour , tick_midnight , i n i t
AXIOMS

axm1 : clock ∈ Machine(Z × Z × Z × Z,Ev) . . .
axm2 : . . .
axm3 : State(clock) = Z × Z × Z × Z

axm4−5 : . . .
axm6 : Inv(clock) = {m �→ h �→ mb �→ hb | m ∈ N ∧ h ∈ N ∧ m < 60 ∧ h < 24∧

(m = mb + 1 ∧ hb = h) ∨ (m = 0 ∧ (h = hb + 1 ∨ h = 0))}
axm7 : AP(clock) = {m �→ h �→ mb �→ hb | m = 0 ∧ h = 0 ∧ mb ∈ Z ∧ hb ∈ Z}
axm8 : BAP(clock) = {t �→ ((m �→ h �→ mb �→ hb) �→ (m′ �→ h′ �→ mb′ �→ hb′)) |

(t = tick_min ∧ m′ = m + 1 ∧ h′ = h ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)∨
(t = tick_hour ∧ m′ = 0 ∧ h′ = h + 1 ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)∨
(t = tick_midnight ∧ m′ = 0 ∧ h′ = 0 ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z)}

. . .
THEOREMS

thm1 : check_Machine_Consistency(clock)
thmInspectInvEVTM5 : ¬check_Machine_AllowedMachineHoleSub(clock ,

{m �→ h �→ mb �→ hb | mb ∈ Z ∧ hb ∈ Z ∧ h ∈ Z ∧ m < 55} ,
{(m �→ h �→ mb �→ hb) �→ (m′ �→ h′ �→ mb′ �→ hb′) |

m′ = m + 5 ∧ h′ = h ∧ hb′ = h ∧ mb′ = m ∧ mb ∈ Z ∧ hb ∈ Z})
thmInspectInvEVTH5 : ¬check_Machine_AllowedMachineHoleSub . . .
thmInspectInvEVTMH1 : ¬check_Machine_AllowedMachineHoleSub . . .

END

Listing 14. Clock resulting after the strengthening of the invariant
To guarantee that the identified bad-events are no longer triggerable, the

predicates are negated in thmInspectInvEVTM5, thmInspectInvEVTH5 and thm-
InspectInvEVTHM1. These theorems are proven to hold, demonstrating that the
provided specification prohibits the presented inconsistent behaviour.



Standalone Event-B Models Analysis Relying on the EB4EB Meta-theory 205

4.4 Reachability

Requirements. The reachability property is not natively available in Event-B.
Such a property can be expressed using the EB4EB framework. Reachability
property asserts that particular states can be attained under given constraints.
The definition used below asserts that there exists a trace where a given state
is reachable. This definition differs from the eventually operator of LTL. Note
that a formalisation of the eventually operator of LTL is available in [21,31].

THEORY Theo4Reachabi l i ty IMPORT THEORY EvtBTheory
TYPE PARAMETERS STATE, EV ENT
OPERATORS
// At l e a s t one " t rgSe t " event i s t r i g g e r a b l e a f t e r " src " event

At_Least_One_Triggerable_Evt <predicate> (m : Machine(STATE ,EVENT) ,
src : EVENT , trgSet : P(EVENT)) . . .

// Al l "SubSetEvt" events decrease the " var iant "
VariantDecrease <predicate> (m : Machine(STATE ,EVENT) ,variant : P(STATE × Z),

SubSetEvt : P(EVENT)) . . .
// For a l l "SubSetEvt" events , the " var iant " i s a Natural number

NaturalVariant <predicate> (m : Machine(STATE ,EVENT) ,variant : P(STATE × Z) ,
SubSetEvt : P(EVENT)) . . .

// When " var iant " i s not nul l , there e x i s t s a "SubSetEvt" t r i g g e r a b l e
event

One_Next_Evt_Is_Triggerable <predicate> (m : Machine(STATE ,EVENT) ,
variant : P(STATE × Z) ,SubSetEvt : P(EVENT)) . . .

// " t rg " event i s reachab le from "src" event through at l e a s t one "
SubSetEvt" event

Evt_Is_Reachable_From_Definition <predicate> (m : Machine(STATE ,EVENT) ,
src : EVENT , trg : EVENT ,SubSetEvt : P(EVENT) ,variant : P(STATE × Z))

well−definedness Machine_WellCons(m) , trg ∈ Progress(m) ,src ∈ Event(m) ,
Inv(m) � variant ∈ Inv(m) → Z ,Mch_INV (m),SubSetEvt ⊆ Progress(m)

direct def init ion
NaturalVariant(m, variant,SubSetEvt)∧ // Preserve the " var iant " natura l
VariantDecrease(m, variant,SubSetEvt)∧ // "SubSetEvt" decrease the "

var iant "
Next_Conv_Evt_Is_Triggerable(m, variant,SubSetEvt)∧ // the " var iant " are

always po s s i b l e to decrease
At_Least_One_Triggerable_Evt(m, src,SubSetEvt)∧ // " src" can t r i g g e r a "

SubSetEvt"
variant−1[Z \ N] ∩ Inv(m) ⊆ Grd(m)[{trg}] // " var iant"=0 can t r i g g e r " t rg "

. . .
END

Listing 15. Thoery of reachable property in Event-B
A trace σ of a machine m is a sequence of states s0, s1, . . . where s0 is in

the AP of the initialisation event and, for two consecutive state si, si+1 in the
trace, si must satisfy the guards of at least one event and (si, si+1) must satisfy
the before-after predicate of this event. For k ≥ 0, σ(k) denotes the k-th state
sk of the trace. Then, sj is reachable from si (denoted siRsj) if and only if
∃σ, k, n · n ≥ 0 ∧ σ(n) = si ∧ k > 0 ∧ σ(n + k) = sj .

Reachability PO Definition. The reachability property siRsj is encoded using
the Event-B meta-theory (Listing 15). The Theo4Reachability theory begins
by defining the At_Least_One_Triggerable_Evt predicate, which states that,
for any state reached after the source event, the guard of at least one target
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event is enabled. Then, the predicates VariantDecrease and NaturalVariant
are defined. The former is satisfied only if, for machine m, each event of the
SubSetEvt set decreases the given variant; the latter ensures that the guards
of the SubSetEvt events imply that the variant is a natural number. The
One_Next_Evt_Is_Triggerable predicate evaluates to true in machine m if the
given variant is positive and at least one event in SubSetEvt is activated.

These four operators formalise the induction-based definition of reachabil-
ity. They are used to define the main predicate, Evt_Is_Reachable_From_-
Definition, stating that, in machine m, target event trg can be triggered after
a (finite) sequence of SubSetEvt event triggers for the given variant, beginning
with src event. Formally, triggering src activates at least one event in SubSetEvt
and each event of SubSetEvt decreases the variant and enables at least one other
event of SubSetEvt, and then trg is enabled when the variant reaches 0.

CONTEXT ClockReachab i l i ty EXTENDS ClockMachineInstance
THEOREMS

thmReach : check_Machine_Evt_Is_Reachable_From(clock, init, tick_midnight,
{tick_min, tick_hour}, {m �→ h �→ v | v = 24 ∗ 60 − 2 − (m + h ∗ 24)})

END

Listing 16. Clock machine with a reachable property checked

Clock Machine Reachability PO for Clock Model. In the clock model of Listing 6,
it is worth checking that midnight is reachable from the initial event. This anal-
ysis is performed with theorem thmReach (see Listing 16), that checks whether
the event tick_midnight is reachable from the event init, via events tick_min
and tick_hours. The proposed variant is then v = 24 ∗ 60 − 2 − (m + h ∗ 24).
Proving the generated POs for this theorem establishes reachability.

4.5 Proof Assessment

The defined operators of the proposed framework have been designed in the
spirit of Event-B, i.e., 1) complex analyses are decomposed into simple ones
(case of reachability in Sect. 4.4) and 2) expressed in a single semantic setting:
the one of Event-B (reflexive modelling) with set theory. This formalisation is
influenced by two characteristics of the proof process, that 1) the Rodin prover
is efficient when handling set expressions, and 2) theories may define customised
proved rewrite rules, that may be summoned manually or automatically in the
proof. Automatic rewriting rules that substitute operators by definitions are
automatically generated. These rules are written to extract relevant information
from machine objects, add them to the hypotheses, and produce multiple simpler
goals. They are defined to be applied automatically and chained together, greatly
improving proof automation. Indeed, these rewrite rules are included in Rodin’s
user-defined proof tactics, once and for all, increasing automation when proving
the theorems formalising the newly defined POs.
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Table 3. Proof statistic for the Clock model and its analyses

Model PO Max Depth Nodes Interac-
tive
Nodes

Number of Tactic
application

DeadlockFree clock thmDeadlock (THM) 169 221 1 2

Reachability clock thmReach (WD) 112 577 0 1
thmReach (THM) 191 731 4 5

Inspect Inv clock thmInspectInvEVTM5
(THM)

111 167 0 1

thmInspectInvEVTH5
(THM)

112 169 0 1

thmInspectInvEVTMH1
(THM)

113 171 0 1

Strong Inv clock thmInspectInvEVTM5
(THM)

105 158 0 1

thmInspectInvEVTH5
(THM)

118 171 0 1

thmInspectInvEVTHM1
(THM)

128 181 0 1

Table 3 presents the proof statistics for each analysis. The important number
of nodes (representing atomic steps) in the proof trees is due to the extensive
use of theory operators which the prover cannot handle directly, and thus their
definitions must be unfolded. The introduction of the rewrite rules in a proof
tactic perform automatically these unfold and reductions, making almost all
steps fully automatic despite the introduction of the meta level (An entry of
0 in the interactive nodes column of Table 3). The rightmost column provides
the number of tactic applications (iterations) during the proof. Indeed, a single
tactic application may not be sufficient to fully discharge the proof goals.

5 Positioning This Approach

5.1 Related Work

Formalising model analyses has been addressed by several authors: Riccobene
et al. [28] presented the ASM-Metamodel (AsmM) for Abstract State Machine
(ASM) models considering core modelling constructs and semantics, expressed as
an API manipulating ASM-related concepts like abstract machines, signatures,
terms, rules, and so on. It is used to embed ASM in another formal method.
This work resulted in a number of analyses, tools, and extensions for a variety of
purposes [17]. A similar approach exists for VDM with MURAL, an interactive
mathematical reasoning environment extended to support VDM [6] specifications
based on meta-modelling concepts, and designed to offer a theorem prover for
VDM models. Similarly, the Rodin tool offers an API for handling Event-B
models, intended to be used to develop plug-ins. This API is used by ProB [20] as
well as by plug-ins handling model development [18] and code generation [16,22].
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Ebner et al. [14] described the meta-programming framework used in Lean,
which is an interactive theorem prover based on dependent type theory. This
framework provides a means for reflecting object-oriented expressions into a
meta-language by extending Lean’s object language, based on Lean’s modelling
constructs. In [27], the authors present reflection in Agda in the style of Lisp,
MetaML, and Template Haskell, as well as several typed programming applica-
tions. The MetaCoq [32] project proposed a certified meta-programming envi-
ronment in Coq based on meta-modelling Coq concepts, including typing and
operational semantics. This certified meta-modelling environment was also used
in the development of the CertiCoq [4] certified compiler project. Similarly, this
reflection principle [15] is implemented in Isabelle/HOL to build a HOL model
within HOL to analyse and reason about various modelling concepts such as
infinite hierarchy of large cardinals, polymorphism, verifying systems with self-
replacement functionality, etc. In PVS, Miltra et al. [23] proposed strategies for
proving abstraction relations between automata, based on theories and tem-
plates. This mechanism generalises proofs, making them highly reusable. With
regard to Event-B, the formalisation of contexts (and only contexts) in the Event-
B language has been proposed [7]. In related approaches, the B method has been
embedded in PVS [24], to benefit from the modelling power of B, while accessing
the proving power of the PVS theorem prover. However, this embedding is not
formalised, and leads to the use of two separate methods.

Abstract interpretation showed its power to check system properties (absence
of runtime errors, dead code, ...). Frameworks like [9,10,12] apply to programs
through the definition of parameterised abstract domains corresponding to model
analyses. The correctness of these analyses is expressed outside the framework.

The proposed approach is based on reflecting Event-B in itself i.e. its elements
can be used as first-class objects in models. This is similar in Coq and HOL based
approaches using dependent types, except that 1) it relies on set theory and FOL,
easing transfer to other formalisms and 2) it is defined in the same setting as
the state-transitions model of the system to be designed.

5.2 Advantages of the Approach

This paper highlights several advantages of the EB4EB framework.

- Formal Modelling and Verification Integrated in EB4EB. This frame-
work enables the simultaneous use of two approaches for both modelling (oper-
ational with machines or axiomatic with contexts) and proving (meta-theory-
based and model/induction-based) allowing users to use one or the other non-
intrusively on pre-existing models. The proposed theories of the EB4EB frame-
work can be easily extended following the methodology introduced in this paper,
to handle new reusable models analyses by introducing, in Event-B, new auto-
matically generated POs that preserve the semantics of Event-B.

- Easing Proof Process. The EB4EB reflexive framework enables the explicit
manipulation of Event-B components by introducing meta-elements such as
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required datatypes, operators and theorems, extremely useful for expressing com-
plex problems as well as proposing new reasoning mechanisms. However, due to
the lack of advanced level proof engines such as SMTs, this resulted in enormous
manual proof efforts. The introduced proved proof rules reduce interactive proof
efforts while increasing proof automation.

- On-the-Fly Analysis. The EB4EB framework, which includes reasoning
extensions, enables on-the-fly model analysis as well as advanced reasoning
level for each Event-B model in the refinement chain. Note that the major-
ity of Event-B models consist of several refinement layers, where each model of
a given abstraction level can be analysed; i.e., the model is lifted as an instance
of the EB4EB meta-level and is submitted for performing model analyses, at an
advanced reasoning level, ensured by new POs generation.

- Correctness of the Defined Analyses. The EB4EB framework associates
a trace to any Event-B machine (trace-based semantics). Such semantics is used
to prove the correctness of the defined analyses. Indeed, a theorem stating that
the property specifying a given model analysis holds on the traces of a machine
is defined for this purpose. Such a correctness theorem has been proved for each
of the analyses introduced in Sect. 4.

6 Conclusion

This paper presented a technique allowing a designer to define new POs for
Event-B corresponding to model analyses that are not available in core Event-
B. It is based on the extension of the reflexive EB4EB framework and its
meta-theory EvtBTheo. The defined extended reasoning mechanisms and POs
are not available in core Event-B. They have been defined as Event-B meta-
modelling concepts allowing to express deadlock-freeness, bad-events and invari-
ant strengthening, and reachability. It is demonstrated that non-intrusive analy-
sis for Event-B models formalised in Event-B can be performed, at any abstrac-
tion level in the refinement chain, and without resorting to another formal
method, which would require additional proofs to ensure the correct embed-
ding of Event-B in that method. Moreover, the proof process has been enriched
with relevant and proved rewrite rules, included in tactics, leading to a high level
of proof automation. All the developments shown in this paper are completely
formalised and all the proofs are realised1.

Two future directions extending this work have been identified. The first
one consists in defining domain-specific engineering theories in order to define
specific domain-oriented properties as POs to be satisfied by system models.
Such an approach opens towards standard conformance and certification. The
second future direction exploits the fact that EB4EB defines an Event-B machine
as an instance of a meta-theory as a set of axioms and theorems instances in FOL
and set theory. This format can be exported into the higher order framework
Dedukti [8,13], and thus makes way for the design of correct import in, and
export from Event-B of formal models through Dedukti.
1 https://www.irit.fr/~Peter.Riviere/models/.

https://www.irit.fr/~Peter.Riviere/models/
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Abstract. Records are a composite data type available in most pro-
gramming and specification languages, but they are not natively sup-
ported by Alloy. As a consequence, users often find themselves having
to simulate records in ad hoc ways, a strategy that is error prone and
often encumbers the analysis procedures. This paper proposes a con-
servative extension to the Alloy language to support record signatures.
Uniqueness and completeness is imposed on the atoms of such signatures,
while still supporting Alloy’s flexible signature hierarchy. The Analyzer
has been extended to internally expand such record signatures as partial
knowledge for the solving procedure. Evaluation shows that the proposed
approach is more efficient than commonly used idioms.

Keywords: Alloy · Formal specification · Model checking

1 Introduction

Records (or structs) are a composite data type, available in most programming
and specification languages, that represent n-ary Cartesian products together
with named projections (a.k.a. fields). The Alloy language [3], however, does
not support such composite types; only sets and flat n-ary relations can be
modeled. Users often simulate a record type using a signature and associated
fields, and enforcing two constraints: i) completeness1: there is a record atom
for each possible combination of field values, so that every record is always
available; and ii) uniqueness: each record is uniquely represented by a single
atom, so that equality between similar records holds. This manual encoding is
however cumbersome, error-prone and difficult to maintain. This paper proposes
1 A particular case of generator axiom [3].
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Fig. 1. Message-passing protocol with the struct extension

to extend Alloy with a new struct signature modifier to improve the support
for records. Hierarchies of record signatures can also be defined. This extension
is backed by a direct translation from the Alloy Analyzer to the underlying
Pardinus model finder [5,8]. The Alloy visualizer is also adapted accordingly to
ease the interpretation of instances with records.

2 Motivating Example

2.1 Example with the Proposed Extension

Consider, for instance, a model of an abstract message-passing protocol where
each message is comprised of an internal identifier and of an optional payload
made of the identifier of the sender node and some value that can be of different
types. During analysis, we expect the solvers to consider domains with different
sets of identifiers, nodes and values, but be able to refer to all possible messages.

A possible encoding in Alloy using the proposed extension is shown in Fig. 2.
A record signature Msg (l. 4) represents the available messages, composed of a
mandatory Id and an optional Payload with additional information. Payload
(l. 5) is also a record signature with the identifier of the sender node (here
abstracted by referring directly to the Node), but is declared as abstract, so
that it can be extended by messages containing values of different types, here just
denoted by PayloadA (l. 6) and PayloadB (l. 7) pointing to ValueA and ValueB
elements, respectively. Signatures marked with struct, and their fields, can then
be used as any plain signature in the rest of the model, as in the inbox of nodes
(l. 3) or in the fact trace (l. 9) that controls the evolution of the protocol in
a typical Alloy style. During analysis, all plain signatures take arbitrary values
within the specified scope, as in plain Alloy. Record signatures are considered to
be complete, containing all possible combinations of values within the universe
of discourse, and the user is not expected to control their scope. For instance,
the check safety command (l. 10) imposes a maximum scope of 3 for the plain
signatures. In a state that happens to have 3 atoms of each plain signature,
this would result in 9 PayloadA atoms, 9 PayloadB atoms, and 57 Msg atoms.
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Fig. 2. Message-passing protocol in plain Alloy

Note that the set of available identifiers is mutable during the execution of the
protocol (l. 2): the content of record signatures may then change in each state.

Notice in passing that this semantics for record is also well-suited when using
the popular trace exploration features2 of Alloy: record signatures have a single
possible valuation, so when exploring different configurations of the protocol, the
user will not be encumbered by solutions that vary on available messages and
actually represent the same configuration.

Evaluation, in Sect. 4, shows that despite increasing the size of the domain,
our encoding is in fact more efficient than the typical ad hoc solutions employed
at the Alloy level.

2.2 Example in Plain Alloy

When modeling a system that handles record types, such as the example from
Fig. 1, Alloy users would probably employ a similar structure but without the
struct annotations, as depicted in Fig. 2. The first consequence of this is that
records are no longer unique, and thus equality between atoms is not equivalent
to equality of records. This can be forced by an additional constraint, such as
unique (l. 3). The second consequence is that the user has to reason about
scopes for records. To force every record to exist, one can define a constraint
such as complete (l. 7) and set the scope of records to the maximum possible
size, as in the check in l. 11. Notice how exact scopes on records cannot be
enforced because the scope of the other signatures is also non-exact.

Remark that an alternative to a complete encoding is to carefully reason
about the need for records during analysis, and perhaps end up with a tighter
scope. For instance, if a protocol exchanges at most one message at each step, it
will only ever require as many messages as steps, so the analysis could limit the

2 Those allow to explore other static configurations, or initial states, or traces [1].
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scope of Msg to 10 (and remove the complete premise). Note, however, this leads
to cumbersome scenario exploration, since iterating over different configurations
may just change the set of available messages.

Finally, a less flexible encoding than that of Fig. 2 is not to declare signatures
standing for records but to use Alloy n-ary fields to represent them. For exam-
ple, Payload would be replaced by (Node → ValueA) + (Node → ValueB).
However, the modeling of fields is cumbersome in this approach (especially when
lone fields and hierarchies of records are allowed) and, more importantly, Kod-
kod relations corresponding to records are, again, not exact.

3 Introducing Records

3.1 Overview and Syntax

Records are specified using a new struct keyword applied as a signature modi-
fier. The fields of a record type must be partial (resp. total) functions, i.e. they
must be of arity 2 and have multiplicity lone (resp. one); they can be of any
type excluding circular dependencies; and they may be declared mutable. Like
plain signatures, records can be arranged in a tree-shaped record-type hierarchy,
using the extends keyword, and they can be declared as abstract. A plain
signature can also be declared as a subset of a record signature using the in
keyword. Multiplicity constraints and bounds cannot be imposed on record sig-
natures as their scope is automatically computed. Finally, a record signature can
be referenced as any plain signature in the rest of the model.

3.2 Encoding and Semantics

Our extension relies on a specific encoding of records in Pardinus [5] (an extension
of Kodkod [8]). Notice that in Kodkod, relations (incl. sets) are declared as taking
any value between two sets: given a relation, the lower bound represents tuples
that must exist in all valuations while the upper one represents those that may
exist. When these are equal, the relation is said to be exact. The latter are
important for performance because their value is computed before resolution.
However, exactness of arbitrary relations cannot be specified in Alloy itself.

Our first key idea is then, for every concrete record signature, to translate
it into an exact constant set of fresh atoms in bijection with the set of all com-
binations of upper bounds of its fields (i.e. some combinations may not exist in
some states). Uniqueness and completeness are thus ensured by definition. The
function rc computes the said set of records:

at(f: one R) = rc(R) if R is a struct, up(R) otherwise
at(f: lone R) = at(f: one R)∪ {NOTHING}
rc(abstract struct sig R . . . { . . . }) =

⋃
rc(children(R))

rc(struct sig R . . . { . . . }) =
⋃
rc(children(R))∪π1(bij(

∏
at(fields(R))))
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Here, up returns the upper bound of a plain signature as in regular Alloy, and
at returns atoms corresponding to a field; NOTHING is a distinct, dummy atom
representing the empty assignment; fields yields all fields of a struct, includ-
ing inherited ones; children returns the immediate children of a struct; and bij
returns a set of fresh record atoms in bijection with its argument, concatenated
with the argument itself (then π1 returns the set of record atoms itself). Recur-
sion is forbidden in record hierarchies so rc is well defined. Finally, mutability of
fields does not change this computation. We also generate an exact binary rela-
tion, for every field, projecting every computed record atom to the corresponding
field atom (we can retrieve the projections as bij keeps track of record atoms
and their originating field values). Applying the function on Fig. 1, we get the
following Pardinus declarations:

// Plain signatures yield sets given with lower, upper bounds:
Node : {}, {(N0),(N1),(N2)} // low = {}, up = {(N0),(N1),(N2)}
ValueA : {}, {(VA0),(VA1),(VA2)}
var Id : {}, {(I0),(I1),(I2)}
// ... while records yield exact, pre-computed sets:
PayloadA = π1({(PA0,N0,VA0),. . .,(PA8,N2,VA2)})

= {(PA0),. . .,(PA8)} // similarly for PayloadB
Payload = rc(PayloadA)∪ rc(PayloadB)

= {(PA0),. . .,(PA8),(PB0),. . .,(PB8)}
Msg = π1(bij(up(Id)× (rc(Payload)∪ {NOTHING}})))

= {(M0),. . .,(M56)}
// ... and exact, pre-computed projections (for fields):
val = {(PA0,VA0),(PA1,VA1),(PA2,VA2),(PA3,VA0),. . .,(PB8,VA2)}
id = {(M0,I0),(M1,I1),(M2,I2),(M3,I0),. . .,(M56,I2)}
. . .

As explained above, these exact sets represent the upper-bound of the record
signatures but not their actual values, since field types are not necessarily exact
or may change in some states. Our second key idea is therefore that, whenever a
call to a record signature or one of its fields is made in the rest of the model, it
must be filtered to exclude records that do not exist in the universe. Moreover,
NOTHING values must also be filtered out to obtain the empty assignment. For a
record signature R, this is done by identifying which of its fields are defined at
each state, using the inverse image of the corresponding projection, and inter-
secting them with R. Similarly, fields are filtered w.r.t. the existing records on
their domain and codomain. For instance, here, some of the replacements are:

Msg � Msg & id.Id & pl.(PayloadA+PayloadB+NOTHING)
PayloadA � PayloadA & from.Node & val.ValueA
pl � pl & (Msg & id.Id & pl.(PayloadA+PayloadB+NOTHING))

→ ((PayloadA & from.Node & val.ValueA) +
(PayloadB & from.Node & val.ValueB))

from � from & ((PayloadA & from.Node & val.ValueA) +
(PayloadB & from.Node & val.ValueB)) → Node
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Fig. 3. Visualization of instances with records

Notice this also works for mutable fields (like id), since the filter is always
evaluated in the current state. Finally, all these filter expressions are simplified
if the binding expression can be shown to be exact. For instance, if the scope of
Node is set exactly, we know that all possible node atoms are always present.

3.3 Visualization and Iteration

The Alloy visualizer has been adapted to identify record signatures: only filtered
records are shown, they are represented with angle brackets, and plain fields are
automatically shown as labels. Figure 3 shows an instance of the example from
Fig. 1 in the visualizer. Also, all scenario exploration features keep their expected
behavior. Note that since struct relations are exactly bound, scenario explo-
ration is not hindered by alternative scenarios where only the set of available
messages changes (although, of course, they will change if the signatures they
depend on also change).

4 Evaluation

This section evaluates whether the performance of the struct encoding is fea-
sible, particularly when compared with possible alternative approaches.

An extension previously proposed by Montaghami and Rayside [7] tried to
address some of these issues. A signature modifier uniq is used to internally
introduce generator axioms. uniq signatures are however restricted to have field
types that are exactly bound, which is limiting since in Alloy we expect to explore
alternative configurations. A staged approach is then used to first solve uniq sig-
natures, which are passed as partial instances for the remaining problem. Two
strategies are proposed to find the configuration: one cannot be applied when
there are multiple configurations, the other requires solving the model for all
possible configurations. Such a technique has been proposed in [6], where prob-
lems are decomposed between the static and mutable parts, and configurations
analysed in parallel.

Table 1 summarizes the results of our evaluation for two message-passing
protocols—the Paxos [4] consensus protocol and an Echo [2] protocol to form a
spanning tree in a network3—where messages are seen as records. We considered
3 The extended version of the Analyzer and all the models are available https://github.

com/haslab/Electrum2/releases/tag/records-beta.

https://github.com/haslab/Electrum2/releases/tag/records-beta
https://github.com/haslab/Electrum2/releases/tag/records-beta
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Table 1. Evaluation of Paxos and Echo, in seconds, best time in bold

model cmd scp msg stp AU AC DU DC R G

Paxos ChosenValue 3 183 10 124 TO TO TO 357 0.3
ChosenValue 3 183 11 633 TO TO TO 527 1.3
ChosenValue 3 183 12 TO TO TO TO 1054 –
OneVote 3 183 7 34 TO TO TO 266 0.1
OneVote 3 183 8 321 TO TO TO 224 1.4
OneVote 3 183 9 2345 TO TO TO 231 10.1

Echo SpanningTree 5 10 10 1172 322 TO 262 4 13.4
SpanningTree 5 10 11 2523 945 TO 508 11 5.5
SpanningTree 5 10 12 TO 1651 TO 1023 33 2.8
Finish 5 10 9 745 219 TO 1798 29 7.5
Finish 5 10 10 2679 314 TO 2815 38 8.3
Finish 5 10 11 TO 405 TO TO 59 6.8

two different unsatisfiable check commands for each model. Each entry shows
the command executed (cmd), the default scope (scp), the maximum number
of distinct messages (msg), and the steps scope (stp). Commands were run in a
2.3GHz Intel 8th-gen Core i5 with 16 GB RAM with Glucose as the selected SAT
solver, and time-out was set to 1 h. The results struct extension are reported as
R, with G being the relative gain to the best other approach. We also developed
equivalent plain Alloy versions, enforcing uniqueness and completeness of records
(AC), and with as many messages as steps (AU ). To compare with a stage
approach, we also analyzed those same models with the decomposed parallel
strategy from [6] (DU and DC).

Evaluation showed that for R, although the solving stage is faster, there is
an overhead during translation of the Alloy model to SAT (not shown in the
table). Nonetheless, the approach still pays off, outperforming the plain Alloy
analyzes as the number of steps increases. Compared with AC , the approach
with fine-tuned scope AU performs better in Paxos than in Echo, which has a
smaller number of messages. Regarding the decomposed strategy [6] with com-
plete scopes DC , it occasionally outperforms the regular Alloy analyses but is
still worse than our approach; the decomposed strategy with incomplete records
DU always performs worse than the others for these commands.

5 Conclusion

We have implemented an extension of Alloy with records that enables a natural
specification and has better performance than usual approaches in our experi-
ments. In the future, we plan to evaluate bigger case studies and to assess the
performance of an extension to more complex field types (sets or sequences).
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Abstract. In the design of critical systems, it is important to ensure a
degree of formality so that we reason about safety and security at early
stages of analysis and design, rather than detect problems later. Influ-
enced by ideas from STPA we present a hierarchical analysis process that
aims to justify the design and flow-down of derived critical requirements
arising from safety hazards and security vulnerabilities identified at the
system level. At each level, we verify that the design achieves the safe-
ty/security requirements by backing the analysis with formal modelling
and proof using Event-B refinement. The formal model helps to identify
hazards/vulnerabilities arising from the design and how they relate to the
safety accidents/security losses being considered at this level. We then
re-apply the same process to each component of the design in a hierarchi-
cal manner. Thus we use ideas from STPA, backed by Event-B models,
to drive the design, replacing the system level requirements with compo-
nent requirements. In doing so, we decompose critical requirements down
to components, transforming them from abstract system level require-
ments, towards concrete solutions that we can implement correctly so
that the hazards/vulnerabilities are eliminated.

Keywords: Event-B · Hierarchical · STPA · Safety · Security

1 Introduction and Motivation

Safety and security are key considerations in the design of critical systems. Sys-
tems Theoretic Process Analysis (STPA) [11] is a method for analysing safety of
systems that involve control components to identify potential hazards. STPA-Sec
adapts STPA for use in systems to identify potential security losses.

STPA is methodical but not rigorous in that it provides systematic guidance
on what to consider but relies on human judgment to assess the effect of incor-
rect actions. Formal techniques such as Event-B [2], on the other hand, are not
methodical in that they rely on human expertise about modelling choices, but
can then provide a rigorous assessment of the properties of the model through
formal verification. In previous work [4,8,9] we have explored the combination
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of STPA and STPA-Sec with formal modelling methods to exploit the synergy
between informal analysis and rigorous formal verification. While this combina-
tion is both methodical and rigorous, its scalability is limited by the lack of sys-
tematic support for an incremental approach. An incremental approach supports
scalability by allowing developers to factorise the analysis of complex systems
in stages rather than addressing the analysis in a single stage. Event-B already
supports incremental formal development through abstraction and refinement
in formal modelling. However, the STPA part of the combined STPA/Event-B
approach lacks systematic support for incremental informal analysis of safety
and security.

In this paper we address the limitation on scalability of the STPA/Event-
B combination by adopting an abstraction-based incremental and hierarchical
approach to informal analysis of critical requirements. We call the approach Sys-
tematic Hierarchical Analysis of Requirements for Critical Systems (SHARCS).
Previous works present the combination of STPA and STPA-Sec with Event-B
and support requirements analysis at a single abstraction level, while SHARCS
is inspired by STPA and proposed a novel incremental approach. To our knowl-
edge, an abstraction-based incremental and hierarchical approach to STPA con-
trol structure analysis has not previously been considered.

While STPA requires consideration of a complete closed system, it is based on
the concrete design of the system. In contrast, by shifting the boundaries of the
component sub-system being considered, we abstract away from the lower level
internal details and analyse the constraint requirements of control abstractions
before refining these with the next level of sub-component design.

We utilise the Event-B modelling language and the Rodin tool set for formal
modelling to verify and validate the SHARCS analysis. Event-B with its asso-
ciated automatic verification tools, is ideal for the detailed modelling of each
level because it supports abstract modelling of systems with progressive verified
refinements. One of the most difficult tasks in constructing an Event-B model
consisting of several refinements is finding useful abstractions and deciding the
progressive steps of refinement; the so-called refinement strategy. From an Event-
B perspective therefore, SHARCS helps the modeller by providing a method to
guide the refinement strategy. Although the Event-B supports refinement-based
modelling, the modeller needs to make decisions about which system require-
ments to model at different stages of refinement. SHARCS helps the modeller
to derive the requirements for different refinement levels; the requirements are
driven by the incremental introduction of system components into the analysis.

Our aims are twofold. Firstly the hierarchical approach to the analysis intro-
duces component sub-systems that are designed to address and mitigate insecure
control actions that have been revealed by the analysis of the parent component.
As a result we provide an analysis method for deriving component sub-system
level requirements from parent system level requirements. Secondly the analysis
provides a traceable argument that the design satisfies the higher level require-
ments while addressing safety hazards and security vulnerabilities. For example,
consider a high-security enclave consisting of several components including a
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secure door, a card reader and a fingerprint reader. The system-level security
requirement is that only authorised users are allowed to access the enclave; a
derived requirement on the fingerprint component is that it should determine
whether a user fingerprint corresponds to the fingerprint stored on an access
card. Figure 1 illustrates the derivation of the component requirements from the
system-level requirement in a hierarchical manner. The abstraction-based hier-
archical approach is a key contribution of this paper.

We demonstrate our SHARCS approach in an access control system, Toke-
neer. The artifacts from the case studies are available to download from https://
tinyurl.com/SHARCS-dataset.

The paper is structured as follows: Sect. 2 provides background on STPA,
the Event-B formal modelling language, applied tools and introduction to our
case study: the Tokeneer access control system. Section 3 presents an overview
of applying the approach to the case study. Section 4 and Sect. 5 present the
approach in more detail, using our experience of applying it to the Tokeneer case
study. Section 6 discusses related and previous work. Finally Sect. 7 concludes
and describes future work.

2 Background

2.1 Systems Theoretic Process Analysis (STPA)

STPA [11] is a hazard analysis method which can be applied to systems involv-
ing control structures. The hazardous conditions are identified by considering
the absence, presence or the improper timing of control actions. The process is
followed by identifying causal factors for unsafe control actions.

While STPA is used for safety problems, STPA-Sec [17] extends STPA to
include security analysis. Similar to STPA, STPA-Sec identifies losses and system
hazards, or in this case, system vulnerabilities. STPA-Sec also examines the
system control structure and identifies the insecure control actions instead of
the unsafe actions.

2.2 Event-B

Event-B [2] is a refinement-based formal method for system development. The
mathematical language of Event-B is based on set theory and first order logic.
An Event-B model consists of two parts: contexts for static data and machines
for dynamic behaviour. Contexts contain carrier sets s, constants c, and axioms
A(c) that constrain the carrier sets and constants. Machines contain variables v,
invariant predicates I(v) that constrain the variables, and events. In Event-B, a
machine corresponds to a transition system where variables represent the states
and events specify the transitions.

An event comprises a guard denoting its enabling-condition and an action
describing how the variables are modified when the event is executed. In gen-
eral, an event e has the following form, where t are the event parameters,

https://tinyurl.com/SHARCS-dataset
https://tinyurl.com/SHARCS-dataset
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G(t, v) is the guard of the event, and v := E(t, v) is the action of the event:
e== any twhere G(t,v) then v := E(t,v) end

An Event-B model is constructed by making progressive refinements start-
ing from an initial abstract model which may have more general behaviours
and gradually introducing more detail that constrains the behaviour towards
the desired system. This is done by adding or refining the variables of the pre-
vious abstract model and modifying the events so that they use the new vari-
ables. Each refinement step is verified to be a valid refinement of the previous
step. That is, the new behaviour must have been possible in the abstract model
according to the given relationship between the concrete and abstract variables.
Event-B is supported by the Rodin tool set [3], an extensible open source toolkit
which includes facilities for modelling, verifying the consistency of models using
theorem proving and model checking techniques, and validating models with
simulation-based approaches.

In this paper we make extensive use of the animation plug-in tools that extend
the Rodin toolset; ProB [10] is an animator and model checker for the Event-
B. Scenario checker [15] is an animation tool that we developed for validating
systems by recording and replaying scenarios. It extends ProB to support two
new functionalities: a ‘run to completion’ style execution of controller events,
and a record/replay style user interface for running test scenarios.

2.3 Tokeneer Case Study

Our case study in this paper is the Tokeneer system. The Tokeneer system [14]
consists of a secure enclave and a set of system components, some housed inside
the enclave and some outside. The ID Station interfaces to four different phys-
ical devices: fingerprint reader, smartcard reader, door and visual display. The
primary objective is to prevent unauthorised access to the Secure Enclave. The
requirements include (1) authenticating individuals for entry into an enclave and
(2) controlling the entry to and egress from an enclave of authenticated individ-
uals. The door has four possible states: the cross-product of open/closed and
locked/unlocked. A card identifies a particular user using a fingerprint mecha-
nism. If a user holds a card that identifies them via fingerprint matching, they
are permitted in the enclave. Hence cards should only be issued to permitted
users. A successful scenario involves: arrival of a permitted user at the door who
then presents a card on the card reader and a matching finger print at the fin-
gerprint reader. The system will then unlock the door allowing the user to open
it and enter the enclave.

3 Overview of Systematic Hierarchical Analysis
of Requirements for Tokeneer

Our approach is based on the use of a control action analysis (that borrows
some ideas from STPA) in conjunction with formal modelling and refinement
(using Event-B) to analyse the safety and security of cyber-physical systems by
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flowing down system-level requirements to component-level requirements. Since
we propose a generic approach for both safety and security, we simply use the
term failure. SHARCS approach consists of three phase: system level analysis and
abstract modelling (Sect. 4), component level analysis and refinement modelling
(repeated for each identified sub-system, Sect. 5), and consolidation phase. In this
section we presents the outputs from the the final consolidation stage (Figs. 1
and 2) of the SHARCS process. We believe they give a good overview of the
steps used in the analysis and presented in the next two sections.

The hierarchical component design of the Tokeneer system is illustrated in
Fig. 1. Starting from the system level, the analysis of that system leads us to the
outline design of the next level in terms of sub-components and their purpose.
Some of these components require further analysis (those shown with title and
purpose) while others (shown with only a title) are assumed to be given, and are
therefore only analysed in so far as they are used by their sibling components.

Fig. 1. Tokeneer: hierarchical component design, flow down requirements

The purpose of the Tokeneer system is to allow only authorised users to enter
an enclave. Users may also leave the enclave. High level analysis of this system
leads us to the design decision that, to achieve the system purpose, we need some
kind of secure door whose purpose is to only open for authorised users. (Note
that the prefix secure implies that this door has some extra functionality beyond
a normal door that we have yet to design). Analysis of the secure door in turn
leads to the decision to use an ordinary (i.e. unintelligent) door and a secure
lock to achieve the functionality of the secure door. However, the analysis of the
secure door also revealed a risk that the door may be left open by a user, leading
to a decision to introduce an alarm component at the same level. The secure
lock and alarm components are at the same conceptual level but functionally
independent and can be analysed individually in consecutive analysis levels.
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The alarm component analysis does not lead to any further sub-components
and the derived requirements of this component are therefore used as input to
its implementation (or validation in case of a given component). The secure lock
is further decomposed into an ordinary lock and a secure card component which
in turn is decomposed into an ordinary card and a fingerprint component. In
summary, there are five control components in the Tokeneer design structure
(over three levels): secure door, secure lock, alarm, secure card and fingerprint.
There are four passive environment objects that are controlled by the Tokeneer
control system: door, lock, card reader, fingerprint reader.

Fig. 2. Tokeneer: hierarchical failures

Failures at the immediate sub-component level could cause a failure at the
previous level. Hence, in line with the hierarchical component design (Fig. 1),
starting from the top level system failures, we have derived a hierarchy of failures
as illustrated in Fig. 2. The left side of Fig. 2, presents the relations between
failures arising from a breach of the system-level security constraint. For example,
if an unauthorised user holds a card (FC1) this can result in the door unlocking
for the unauthorised user (FL1) followed by the door opening (FD1) where upon
the unauthorised user can enter the enclave (F1). Security attacks may also
target denial of functionality which is sometimes omitted in safety analysis (i.e.
a system that does nothing is often considered safe). Relations between security
failures related to a loss of functionality are illustrated on the right hand side on
Fig. 2. For example, if an authorised user loses their card (FC2) it prevents the
enclave door from unlocking (FL2) and opening (FD2) and hence an authorised
user is prevented from entering the enclave (F2).

In the next two sections we use the Tokeneer case study to illustrate the
process steps for the first two phase of SHARCS: system level (Sect. 4) and
component level (Sect. 5).
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4 System Level

In this section we describe the system-level phase. The system-level phase itself
consists of five steps.

Step 1, Action Analysis: The system level action analysis is presented for
Tokeneer in the table in Fig. 3. The main purpose of the Tokeneer system is to
allow authorised users to enter the enclave and prevent unauthorised users from
entering. At this level, a failure is a violation of the system purpose so we identify
failures by negating the purpose leading to the two failures presented in Fig. 3:
F1 represents a breach of the required security property and F2 represents a
‘denial’ of functionality.

Following the STPA approach, we analyse the control actions with respect
to system level failures that could result from the actions. At this level (Fig. 3),
there are two identified actions to enter and leave the enclave. Action analysis
considers whether lack of execution of the action, or execution under the wrong
conditions, timing or ordering, could result in one or more of the identified
failures.

Fig. 3. System level, action analysis table

Step 2, Formal Modelling: We now construct a formal model to capture the
behaviour of the identified control actions as well as the environment around
the control system and any invariant properties capturing the purpose of the
system. The two identified actions are specified as abstract events in the system-
level Event-B model (Fig. 4). We choose to model the system state using a set
inEnclave of the users that are in the enclave. Another set authorisedUsers specifies
which users are authorised to enter the enclave. Formally, we can express the
security constraint as an invariant property; the set of users in the enclave is a
subset of the authorised users:

@inv1: inEnclave ⊆ authorisedUser
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Fig. 4. (part of) Event-B model for system level

The userEnterEnclave event has one parameter, user, and two guards. The first
guard grd1 represents an assumption that the user is not already in the enclave,
while grd2 ensures that the user is authorised to enter the enclave. If both guards
are satisfied then the event is allowed to fire and the action act1 updates the
variable inEnclave by adding the instance user. The action analysis in Fig. 3
helps us to identify the need for grd2 of userEnterEnclave: this guard addresses
failure F1, since lack of this guard results in failure of a security constraint (an
unauthorised user enters enclave).

Step 3, Formal Validation and Verification: In formal models, we distin-
guish between safety properties (something bad never happens) and liveness
properties (something good is not prevented from happening). Occurrence of
failure F1 would represent a violation of safety since it would result in violation
of invariant inv1. Failure F2 is a denial of service failure and, in the formal model,
this failure represents a violation of liveness. We use the scenario checker tool
in the Rodin tool for manual validation of liveness. Figure 5 shows the scenario
checker tool being used to check the F2 failure scenario; the scenario involves
two authorised users entering the enclave and the scenario checker demonstrates
that both users can enter the enclave sequentially. Animation of the abstract
model is a useful way for a modeller (or domain expert) to use their judgement
to validate that the model accurately captures the security requirements. Model
checking and animation can identify potential violations of the security invariant
and violations of liveness, i.e., denial of entry for authorised users.

Once the model is determined to be a valid representation of the system,
we use automatic theorem provers to verify security constraints (such as F1
expressed as the invariant inv1). The embedded theorem prover of the Rodin tool
discharges the invariant preservation proof obligation for the userEnterEnclave



228 A. Salehi Fathabadi et al.

Fig. 5. Scenario checker tool applied at system level

event, verifying that it preserves the specified invariant. Note that grd2 is nec-
essary to prove that the userEnterEnclave event preserves invariant inv1.

Step 4, Adjust the Analysis and Models: In the case that the scenario
checking or verification identifies problems with the formal model, we make
adjustments in order to remove the problems. These might be problems with
the formalisation or might be due to problems in the informal analysis. The
analysis and formalisation of Tokeneer at this abstract level is straightforward
and does not reveal any problems. In the next section we demonstrate how the
need to formally verify the correctness of the refined model incorporating the
secure door component leads us to revisit and clarify our assumptions about the
potential tailgating by unauthorised users.

Step 5, Mitigation and Outline Design for Next Phases: The system
level requirements specify the desired behaviour but do not say how it will be
achieved. That is, unauthorised users are prevented from entering but we do
not specify how. Next we need to take a design step and introduce some sub-
components that take responsibility for this behaviour. Domain knowledge (and
common practice) provides a suggestion for the next level design (mitigation):
the introduction of a door component. The mitigation represents the identi-
fied next level component(s) and derived requirement(s) for that component(s),
which address the control actions identified in Step 1, that could lead to failures.
Each mitigation can address more than one failure. The door component here
addresses both identified failures: the door opens so that authorised users can
enter the enclave but does not open for users that are not authorised.

The interplay between the (informal) analysis, inspired by STPA, (Steps
1) and the formal modelling (Steps 2–3) is important. The analysis in Step 1
identifies key properties, actions and conditions under which actions may cause
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failures. These guide the construction of the formal modelling in Steps 2, includ-
ing invariants, events (corresponding to actions) and event guards (to prevent
failures). The formal modelling in turn increases the degree of rigour in the
analysis through the automated support for scenario checking, model checking
and proof (Step 3). The formal modelling can identify gaps or ambiguities in
the informal analysis resulting in the need to adjust the informal analysis and
formal modelling to address these (Step 4).

The derived requirement for the door component is shown at the bottom of
Fig. 3. In the next section, we will describe further analysis of the door component
leading in turn to the identification of further components and analysis of those
components.

5 Component Level

In this section we describe the component phase. The component phase is sub-
sequently repeated if we identify further sub-components. For example, Fig. 1
illustrates how failure analysis of the secure door component leads to identifica-
tion of secure lock and alarm components. The steps involved in the component
level phase are similar to those of the system-level phase, which were explained
in the previous section. Here we only highlight the differences:

– Step 1: Consider the component purpose, which has been identified as part
of the previous level analysis and identify component failures (by negating
the component purpose). For certification purposes, it is useful to record how
the potential failures of this component link, via the control actions that this
component addresses, to the previous level failures.

– Step 2: Refine the abstract formal model to capture:
• component properties as invariants.
• refined/new events representing component level actions.

– Step 3: Use automated theorem proving and model checking to verify con-
straints including the refinement proof obligations.

5.1 Component Level: Door

The secure door component, Fig. 6, addresses two of the insecure user actions,
A11 and A12, from the previous level (see Fig. 3), which lead to the failures,
FD2 and FD1, identified in the previous level.

Step 1: Analysis of the door component’s actions is presented in Fig. 6. Two
failures (FD1 and FD2 in Fig. 6) are found by negating the purpose of the door
component which was identified in the previous level (see Fig. 3). The failures
FD1, FD2 are linked to failures F1 and F2, respectively, from the previous level
(for a broader illustration of the connection between failures, see Fig. 2).

Note that the actions of the previous level are still part of the system
behaviour (and hence model) but are not analysed further at this level since their
potential failures have been addressed by introducing the door sub-component
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and delegating their responsibilities to the new actions of the door. The table in
Fig. 6 identifies the scenarios under which the open door and close door actions
may lead to failures.

Not all control action problems can be addressed by the design. Here mitiga-
tion is divided into two types: design mitigation, where there is a proposed design
decision for the problem(s), and user mitigation, where the user can contribute
to mitigating the problem. In the ‘wrong timing or order’ cases, Fig. 6, (AD23:
the user closes the door before entering) and (AD43: the user leaves door when
the door is open), these are user errors which cannot be prevented by the sys-
tem. The provers detect such anomalies in temporal behaviour that violate the
invariants and we fix the system by constraining the behaviour, either by making
assumptions about the environment (including users) or by adding features to
the control system. For these cases, Fig. 6 includes user mitigation to address
AD23 (user opens the door again) and an assumption about user behaviour to
address AD43 (user will not leave the door while the door is open). Thus there
is no need to address these failures in the control system design.

Fig. 6. Door component, action analysis table

Step 2-3-4: Figure 8 presents the first refinement of the Tokeneer Event-B model
to introduce the door component. There are two versions of this refinement, the
initial model (Fig. 8a), where the security constraints are more rigidly enforced,
and the adjusted model (Fig. 8b), where security relies partly on user behaviour.
These two models are not refining each other. The adjusted model is a replace-
ment of the initial model.
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Fig. 7. Scenario checker tool at the door level

In the initial model (Fig. 8a), the userEnterEnclave abstract event (see previ-
ous section) is refined and the check that the user is authorised, specified in grd2,
is replaced by checking the state of the door (a user can enter enclave only when
the door is open). This guard replacement shifts the role of checking authorisa-
tion to the door. A proof obligation is generated by the Rodin tool since guards
must not be weakened by refinement (i.e. the refined guard implies the abstract
guard). To prove that the guard is not weakened we need an invariant property:
when the door is open, then all users by the door must be authorised since any of
them could enter the enclave. This is an example of how proof obligations asso-
ciated with a formal model lead to the discovery of necessary assumptions. To
model this assumption we introduced a variable atDoor to represent the subset
of users by the door and the necessary invariant property (inv2a in the listing).
To preserve this invariant, the userApproachDoor event also checks that the door
is closed before allowing a new user to be added to the atDoor variable, act1.
Specifying that a user will only approach the door when it is closed is a rather
strong assumption and we re-visit this in our second model of the secure door.

The purpose of the door component is specified formally in the model by a
combination of an invariant inv2a and a guard, grd3, of the event userOpenDoor.
The invariant captures our assumption about users in the case that the door
is open and the guard checks that all users by the door are authorised before
allowing the user to open the door. The FD1 failure, door opens for unautho-
rised user, is prevented by grd3 of the userOpenDoor event which represents the
requirement that the door has some, yet to be designed, security feature.

The guard grd2 of userLeaveDoor event is needed to prevent FD2, Door does
not close. Without this condition an authorised user can open the door and then
leave with the door open so that no other user can approach the door (because
of our strong assumption that users approach the door when it is closed) which
results in a deadlock. We demonstrated this (before adding grd2 of userLeaveDoor
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event) by using the scenario checker to execute a scenario where an authorised
user leaves the door without closing it. This scenario leads us to observe that
the door must not be left open, meaning that we need to constrain (i.e. make
assumptions about) user behaviour in our Event-B model in order to show that
the system is secure.

Another scenario (shown in Fig. 7) demonstrates that when an authorised
user is in the enclave, the presence of an unauthorised user by the door prevents
the authorised user from opening the door to leave the enclave (trapped in the
enclave).

The model in Fig. 8a includes the assumption that when the door is open,
then all users by the door must be authorised. By making this assumption we
are departing from the original specification of the Tokeneer system which has
no such prevention/checking mechanism and relies instead on authorised users
preventing tailgating. The experience gained from the scenario checking led us
to change our assumption and relax the condition inv2a specified in the initial
version of the model. Instead we make the assumption that the presence of
authorised users will deter unauthorised ones from entering the enclave. In the
adjusted model, inv2a is replaced by inv2b (Fig. 8b): when the door is open there
is either a user in the enclave or at least one authorised user is by the door.

This illustrates Step 4, where the formal modelling informs the informal
analysis. The assumption about tailgaters is modified: in the initial model, we
assume there is no potential tailgater by an open door; while in the adjusted
model we assume the authorised users will prevent tailgating. The adjusted
version is more realistic but relies on stronger assumptions about user behaviour.

In order to be able to use scenarios to test whether the model prevents
unauthorised users from entering we deliberately model the event that we
hope to prevent. The abstract userEnterEnclave is split into two refining events:
authUserEnterEnclave and unauthUserEnterEnclave. The guard of the latter event
(which includes a conjunct that no authorised users are at the door) must never
hold, thus preventing an unauthorised user from entering the enclave. A con-
tradiction between inv2b and the guard of unauthUserEnterEnclave ensures that
it is never enabled. This is an example of a negative scenario which we do not
want to be possible in the system. These negative scenarios involve a check that
some particular events are disabled at a particular state of the system. Note that
disabledness is preserved by refinement since guards must not be weakened in
refinement.

In this modified version of the model, grd3 of the userApproachDoor event is
removed, so that a user can approach the door even when the door is open. Also
grd3 of userOpenDoor is changed, so that the authorisation is only checked for
the particular user that attempts to open the door (i.e. unauthorised users may
also be in the vicinity of the door). These changes introduce more assumptions
on human behaviour: an authorised user will prevent unauthorised users from
entering the enclave.

In Event-B, ordering is specified implicitly by guards on the state conditions
required for events to occur. For our model this is quite natural, e.g., the door
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Fig. 8. Event-B model for the door component
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needs to be open for the user to enter, and thus the event for opening the door
will have to have occurred before the user can enter. In addition, the scenario
checking allows us to describe ordering explicitly and validate that the model
allows that ordering.

Step 5: We now take further design steps to elaborate how this secure door
works. We finish the door phase by suggesting a mitigation, an outline design
solution, that will address the potential failures discussed in this phase. We will
fit the door with a secure lock component to make sure that it can only be
opened for authorised users (addressing insecure actions AD11 and AD12) and
an alarm component to detect and warn when it is left open (addressing AD21).
These new components are then analysed in the following phases.

In the rest of this section the remaining component levels are briefly described
omitting detailed step descriptions, due to space limitation. However the full
analysis is available here: https://tinyurl.com/SHARCS-dataset.

5.2 Component Level: Lock, Alarm, Card and Fingerprint

In this level, we introduce two components that need to be analysed: Secure
Lock and Alarm.

The lock component, addresses two of the insecure control actions, AD11 and
AD12, from the previous level (see Fig. 6), which resulted in failures, FD2 and
FD1 (resp.) of the previous level. An alarm is activated if the door is left open
longer than the time needed for a user to enter. The alarm component addresses
the insecure action, AD21, from the previous level (see Fig. 6), which resulted in
failure FD1 of the previous level. The card and finger print components addresses
the insecure control actions from the previous levels (see Fig. 1 and Fig. 2).

6 Related Work

STPA has also been combined with other formal methods. In [1], Abdulkhaleq
et al. propose a safety engineering approach that uses STPA to derive the safety
requirements and formal verification to ensure the software satisfies the STPA
safety requirements. The STPA-derived safety requirements can be formalised
and expressed using temporal logic. Hata et al. [7] formally model the crit-
ical constraints derived from STPA as pre and post conditions in VDM++.
Thomas and Leveson [16] have also defined a formal syntax for hazardous control
actions derived from STPA. This formalisation enables the automatic generation
of model-based requirements as well as detecting inconsistencies in requirements.
Unlike our approach, these approaches do not support an incremental, hierar-
chical analysis approach.

Based on the hybrid methodology of STPA and NIST SP800-30 [6] proposed
by Pereira et al. [13], Howard et al. [9] develop a method to demonstrate and
formally analyse security and safety properties. The goal is to augment STPA
with formal modelling and verification via the use of the Event-B formal method
and its Rodin toolset. Identification of security requirements is guided by STPA,

https://tinyurl.com/SHARCS-dataset
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while the formal models are constructed in order to verify that those security
requirements mitigate against the vulnerable system states. Dghaym et al. [5]
also apply a similar approach to [9] for generating safety and security require-
ments. Event-B has previously been combined with STPA by Colley and But-
ler [4] for safety analysis, again using STPA to guide the identification of safety
requirements and Event-B to verify mitigation against hazardous states. Also, in
our previous work [12] we utilised STPA and STPA-Sec for analysing the safety
and security of autonomous systems. [4,5,9,12] only support requirements anal-
ysis at a single abstraction level rather than the hierarchical approach that we
support.

7 Conclusion and Future Works

We have presented an analysis method that starts from the top level system
requirements and identifies potential failures that could lead to unsafe accidents
or security losses. The informal STPA analysis is used in conjunction with formal
modelling to systematically and rigorously uncover vulnerabilities in a proposed
design that could allow external fault scenarios to result in a failure. The formal
modelling gives precision and a better understanding of the behaviours that are
involved and lead to these failures. The model verification and validation provide
strong evidence to back up the analysis. The identified vulnerabilities then drive
the process as we design sub-components that can address the threats. In this
way we flow down the requirements to derived requirements. Our experience with
the Tokeneer case study highlighted that assumptions about user behaviour are
critical and can be incorporated into the analysis. The formal verification and
validation processes are beneficial in making these assumptions and consequent
reliance explicit and clear. We suggest that our analysis method provides rigorous
evidence (i.e., precise with clear hierarchical links and formal arguments) of the
the security or safety requirements and how they are achieved in the design.

We have evaluated the method using a security case study; However we
believe it works equally beneficial for safety requirements too. As a future work,
we are planning to apply the SHARCS to a safety case study. As a further direc-
tion to improve our method, we are working to introduce a new kind of diagram,
control abstraction diagrams, that help visualise the entities involved at a par-
ticular abstraction level along with their information and control relationships
and the constraints that they make on each others actions. A control system
can be thought of as a system that makes constrained actions. Our new con-
trol abstraction diagrams make clear, what the necessary constraints on actions
are and which entities in the system are responsible for making them. As we
incrementally introduce the design of a system we replace abstract constraints
by adding new components that take on that responsibility and implement the
constraint in an equivalent way. This matches very closely with our approach to
system refinement in Event-B.

Acknowledgements. This work is supported by the following projects:



236 A. Salehi Fathabadi et al.

– HiClass project (113213), which is part of the ATI Programme, a joint Govern-
ment and industry investment to maintain and grow the UK’s competitive position in
civil aerospace design and manufacture.

– HD-Sec project, which was funded by the Digital Security by Design (DSbD)
Programme delivered by UKRI to support the DSbD ecosystem.

References

1. Abdulkhaleq, A., Wagner, S., Leveson, N.: A comprehensive safety engineering
approach for software-intensive systems based on STPA. Procedia Eng. 128, 2–
11 (2015). http://www.sciencedirect.com/science/article/pii/S1877705815038588.
Proceedings of the 3rd European STAMPWorkshop 5–6 October 2015, Amsterdam

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin: an
open toolset for modelling and reasoning in event-B. Softw. Tools Technol. Transf.
12(6), 447–466 (2010)

4. Colley, J., Butler, M.: A formal, systematic approach to STPA using event-B refine-
ment and proof (2013). https://eprints.soton.ac.uk/352155/. 21th Safety Critical
System Symposium

5. Dghaym, D., Hoang, T.S., Turnock, S.R., Butler, M., Downes, J., Pritchard, B.: An
STPA-based formal composition framework for trustworthy autonomous maritime
systems. Saf. Sci. 136, 105139 (2021). https://www.sciencedirect.com/science/
article/pii/S0925753520305348

6. Group, J.T.F.T.I.I.W.: SP 800–30 revision 1: Guide for conducting risk assess-
ments. Technical report, National Institute of Standards & Technology (2012)

7. Hata, A., Araki, K., Kusakabe, S., Omori, Y., Lin, H.: Using hazard analysis
STAMP/STPA in developing model-oriented formal specification toward reliable
cloud service. In: 2015 International Conference on Platform Technology and Ser-
vice, pp. 23–24 (2015)

8. Howard, G., Butler, M.J., Colley, J., Sassone, V.: Formal analysis of safety and
security requirements of critical systems supported by an extended STPA method-
ology. In: 2017 IEEE European Symposium on Security and Privacy Workshops,
EuroS&P Workshops 2017, Paris, France, 26–28 April 2017, pp. 174–180. IEEE
(2017). https://doi.org/10.1109/EuroSPW.2017.68

9. Howard, G., Butler, M.J., Colley, J., Sassone, V.: A methodology for assuring the
safety and security of critical infrastructure based on STPA and Event-B. Int. J.
Crit. Comput. Based Syst. 9(1/2), 56–75 (2019). https://doi.org/10.1504/IJCCBS.
2019.098815

10. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Softw. Tools Technol. Transf. (STTT) 10(2), 185–203 (2008)

11. Leveson, N.G., Thomas, J.P.: STPA Handbook. Cambridge, MA, USA (2018)
12. Omitola, T., Rezazadeh, A., Butler, M.: Making (implicit) security requirements

explicit for cyber-physical systems: a maritime use case security analysis. In:
Anderst-Kotsis, G., et al. (eds.) DEXA 2019. CCIS, vol. 1062, pp. 75–84. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-27684-3 11

13. Pereira, D., Hirata, C., Pagliares, R., Nadjm-Tehrani, S.: Towards combined safety
and security constraints analysis. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2017. LNCS, vol. 10489, pp. 70–80. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66284-8 7

http://www.sciencedirect.com/science/article/pii/S1877705815038588
https://eprints.soton.ac.uk/352155/
https://www.sciencedirect.com/science/article/pii/S0925753520305348
https://www.sciencedirect.com/science/article/pii/S0925753520305348
https://doi.org/10.1109/EuroSPW.2017.68
https://doi.org/10.1504/IJCCBS.2019.098815
https://doi.org/10.1504/IJCCBS.2019.098815
https://doi.org/10.1007/978-3-030-27684-3_11
https://doi.org/10.1007/978-3-319-66284-8_7
https://doi.org/10.1007/978-3-319-66284-8_7


Designing Critical Systems Using Hierarchical STPA and Event-B 237

14. Praxis: Tokeneer. https://www.adacore.com/tokeneer. Accessed May 2020
15. Snook, C., Hoang, T.S., Dghaym, D., Fathabadi, A.S., Butler, M.: Domain-specific

scenarios for refinement-based methods. J. Syst. Archit. (2020). https://www.
sciencedirect.com/science/article/pii/S1383762120301259

16. Thomas, J., Leveson, N.: Generating formal model-based safety requirements for
complex, software-and human-intensive systems. In: Proceedings of the Twenty-
first Safety-Critical Systems Symposium, Bristol, UK. Safety-Critical Systems Club
(2013)

17. Young, W., Leveson, N.: Inside risks an integrated approach to safety and security
based on systems theory: applying a more powerful new safety methodology
to security risks. Commun. ACM 57(2), 31–35 (2014). https://www.scopus.
com/inward/record.uri?eid=2-s2.0-84893411630&doi=10.1145%2f2556938&
partnerID=40&md5=07efb2984b5cf13de1fe2cb1583b7d27

https://www.adacore.com/tokeneer
https://www.sciencedirect.com/science/article/pii/S1383762120301259
https://www.sciencedirect.com/science/article/pii/S1383762120301259
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893411630&doi=10.1145%2f2556938&partnerID=40&md5=07efb2984b5cf13de1fe2cb1583b7d27
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893411630&doi=10.1145%2f2556938&partnerID=40&md5=07efb2984b5cf13de1fe2cb1583b7d27
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84893411630&doi=10.1145%2f2556938&partnerID=40&md5=07efb2984b5cf13de1fe2cb1583b7d27


Behavioural Theory of Reflective
Algorithms

Flavio Ferrarotti1(B) and Klaus-Dieter Schewe2

1 Software Competence Centre Hagenberg, Hagenberg, Austria
flavio.ferrarotti@scch.at

2 IRIT-ENSEEIHT, Toulouse, France

kdschewe@acm.org

Abstract. This “journal-first” paper presents a summary of the
behavioural theory of reflective sequential algorithms (RSAs), i.e. sequen-
tial algorithms that can modify their own behaviour. The theory com-
prises a set of language-independent postulates defining the class of
RSAs, an abstract machine model, and the proof that all RSAs are
captured by this machine model. RSAs are sequential-time, bounded
parallel algorithms, where the bound depends on the algorithm only and
not on the input. Every state of an RSA includes a representation of
the algorithm in that state, thus enabling linguistic reflection. Bounded
exploration is preserved using terms as values. The model of reflective
sequential abstract state machines (rsASMs) extends sequential ASMs
using extended states that include an updatable representation of the
main ASM rule to be executed by the machine in that state. Updates to
the representation of ASM signatures and rules are realised by means of
a tree algebra.

Keyword: behavioural theory, adaptivity, abstract state machine, lin-
guistic reflection

1 Introduction

This “journal-first” paper presents a summary of the behavioural theory of reflec-
tive sequential algorithms (RSAs) [6]. Linguistic reflection is an established con-
cept in programming, by means of which a software system can change its own
behaviour. As elaborated in the journal article the concept is commonly used in
functional and natural computing [4], and it has many uses in persistent pro-
gramming [8]. The behavioural theory of reflective sequential algorithms clarifies
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the theoretical foundations of adaptive systems and shows what can be gained
by reflection and which are the limitations.

A behavioural theory in general comprises an axiomatic definition of a class
of algorithms or systems by means of a set of characterising postulates, and
an abstract machine model together with the proof that the abstract machine
model captures the given class of algorithms or systems. The proof comprises two
parts, one showing that every instance of the abstract machine model satisfies
the postulates, and another one showing that all algorithms stipulated by the
postulates can be step-by-step simulated by an abstract machine model instance.

The ur-instance of a behavioural theory is Gurevich’s sequential ASM thesis
[5] comprising three postulates addressing sequential time, abstract state and
bounded exploration, which only require a few notions from logic, but otherwise
are completely language-independent. By means of these postulates we obtain
a definition what a sequential algorithm is. However, there cannot be a proof
that the postulates are the right ones—therefore, the work is called a “thesis”.
Defining a class of algorithms by a set of postulates constitutes again an example
of Turing’s problem to capture in a mathematically precise way the notion of
algorithm, and the scientific community has accepted this definition as accurately
capturing sequential algorithms. Other behavioural theories address synchronous
and asynchronous parallel algorithms [2,3].

In our journal article we provide an axiomatic, language-independent def-
inition of RSAs, and we define an extension of sequential ASMs to reflective
sequential ASMs (rsASMs), by means of which RSAs can be specified. We then
prove that RSAs are captured by rsASMs, i.e. rsASMs satisfy the postulates of
our axiomatisation, and any RSA as stipulated by the axiomatisation can be
defined by a behaviourally equivalent rsASM.

2 Axiomatisation of Reflective Sequential Algorithms

The celebrated sequential ASM thesis needs only three simple, intuitive postu-
lates to define sequential algorithms [5]. The sequential time postulate requires
that each sequential algorithm proceeds in sequential time using states, initial
states and transitions from states to successor states, i.e. there is a set S of
states, a subset I ⊆ S of initial states, and a transition function τ : S → S,
which maps a state S ∈ S to its successor state τ(S). The abstract state postulate
requires that states S ∈ S are universal algebras, i.e. functions resulting from
the interpretation of a signature Σ, i.e. a set of function symbols, over a base
set. The sets S and I of states and initial states, respectively, are closed under
isomorphisms. States S and successor states τ(S) have the same base set, and
if σ is an isomorphism defined on S, then also τ(σ(S)) = σ(τ(S)) holds. The
bounded exploration postulate requires that there exists a finite set W of ground
terms (called bounded exploration witness) such that the difference between a
state and its successor state (called update set) is uniquely determined by the
values of these terms in the state.
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Also reflective sequential algorithms proceed in sequential time. However, the
crucial feature of reflection is that in every step the algorithm may change. This
will be reflected in the notion of abstract state.

Sequential Time Postulate. A reflective sequential algorithm A comprises a
set S of states, a subset I ⊆ S of initial states, and a one-step transition function
τ : S → S. Whenever τ(S) = S′ holds, the state S′ is called the successor state
of the state S. A run of an RSA A is then given by a sequence S0, S1, . . . of
states Si ∈ S with an initial state S0 ∈ I and Si+1 = τ(Si).

In order to capture reflection it will be necessary to modify the abstract
state postulate such that we capture the self-representation of the algorithm by
a subsignature and the signature is allowed to change. Furthermore, we need to
be able to store terms as values, so the base sets need to be extended as well.
For initial states we apply restrictions to ensure that the algorithm represented
in an initial state is always the same.

Abstract States Postulate. States of a reflective sequential algorithm A must
satisfy the following conditions:

(1) Each state S ∈ S of A is a structure over some finite signature ΣS , and
an extended base set Bext. The extended base set Bext contains at least a
standard base set B and all terms defined over ΣS and B.

(2) The sets S and I of states and initial states of A, respectively, are closed
under isomorphisms.

(3) Whenever τ(S) = S′ holds, then ΣS ⊆ Στ(S), the states S and S′ of A have
the same standard base set, and if σ is an isomorphism defined on S, then
also τ(σ(S)) = σ(τ(S)) holds.

(4) For every state S of A there exists a subsignature Σalg,S ⊆ ΣS for all S and
a function that maps the restriction of S to Σalg,S to a sequential algorithm
A(S) with signature ΣS , such that τ(S) = S + ΔA(S)(S) holds for the
successor state τ(S).

(5) For all initial states S0, S
′
0 ∈ I we have A(S0) = A(S′

0).

Same as for sequential algorithms we need to formulate minimum require-
ments for the background [1], but this time the requirements are too elaborate
to leave them implicit. These requirements concern the reserve, truth values,
tuples, as well as functions raise and drop, but they leave open how sequential
algorithms are represented by structures over Σalg,S .

We emphasised that we must be able to store terms as values, so instead of
using an arbitrary base set B we need an extended base set. For a state S we
denote by Bext the union of the universe U defined by the background class K
using B, N, B, and a subset of the reserve, and the set of all terms defined over
ΣS . We further denote by TS the set of all terms defined over ΣS .

In doing so we can treat a term in TS as a term that can be evaluated in
the state S or simply as a value in Bext. We use a function drop : TS → Bext

that turns a term into a value of the extended base set, and a partial function
raise : Bext → TS turning a value (representing a term) into a term that can be
evaluated. In the same way we get a function drop : PS → Bext defined on the



Behavioural Theory of Reflective Algorithms 241

set PS of sequential algorithms that can be executed in state S. This finction
turns a sequential algorithm into a value in the extended base set Bext. Again,
raise : Bext → PS denotes the (partial) inverse. We further use a function
drop : ΣS → Bext that turns a function symbol into some value, for which
raise : Bext → ΣS denotes again the (partial) inverse.

Background Postulate. The background of an RSA is defined by a background
class K over a background signature VK . It must contain an infinite set reserve
of reserve values, the equality predicate, the undefinedness value undef, truth
values and their connectives, tuples and projection operations on them, natural
numbers and operations on them, and constructors and operators that permit
the representation and update of sequential algorithms.

The background must further provide partial functions: drop : TS∪PS∪ΣS →
Bext and raise : Bext → TS ∪ PS ∪ ΣS for each base set B and extended base
set Bext, and an extraction function β : TS → ⋃

n∈N
T

n, which assigns to each
term defined over a signature ΣS and the extended base set Bext a set of terms
in T defined over ΣS − Σalg and B.

As an RSA may increase its signature in every step, so a priori it is impossible
to find a fixed finite bounded exploration witness that determines update sets in
every state. Furthermore, the sequential algorithm A(S) depends on the state,
and there cannot be a fixed finite bounded exploration witness that is the same
for a possibly infinite set of algorithms.

However, in every state S we have a representation of the actual sequential
algorithm A(S) as requested by the abstract state postulate. As a sequential
algorithm A(S) possesses a bounded exploration witness WS , i.e. a finite set
of terms such that ΔA(S)(S1) = ΔA(S)(S2) holds, whenever states S1 and S2

coincide on WS , we can always assume that WS just contains terms that must
be evaluated in a state to determine the update set in that state. Thus, though
WS is not unique we may assume that WS is somehow contained in the finite
representation of A(S). This implies that the terms in WS result by interpre-
tation from terms that appear in this representation, i.e. WS can be obtained
using the extraction function β that exists by the background postulate. Conse-
quently, there must exist a finite set of terms W such that its interpretation in
a state yields both values and terms, and the latter ones represent WS . We will
continue to call W a bounded exploration witness. Then the interpretation of W
and the interpretation of the extracted terms in any state suffice to determine
the update set in that state.

If S and S′ are states of an RSA, and W is a set of ground terms over the
common signature ΣS ∩ ΣS′ , we say that S and S′ strongly coincide over W iff
(1) for every t ∈ W we have valS(t) = valS′(t), and (2) for every t ∈ W with
valS(t) ∈ TS and valS′(t) ∈ TS′ we have valS(β(t)) = valS′(β(t)).

We can extend this definition allowing also partial updates [7]. In doing so,
we first obtain update multisets denoted as Δ̈A(S) and Δ̈A(S)(S), respectively,
which are then collapsed into update sets, if possible.

Bounded Exploration Postulate. For every RSA A there is a finite set
W of ground terms such that Δ̈A(S) = Δ̈A(S′) holds (and consequently also
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ΔA(S) = ΔA(S′)) whenever the states S and S′ strongly coincide over W . Fur-
thermore, Δ̈A(res(S,Σalg)) = Δ̈A(res(S′, Σalg)) holds (and consequently also
ΔA(res(S,Σalg)) = ΔA(res(S′, Σalg))) whenever the states S and S′ coincide
over W . Here, res(S,Σalg) is the structure resulting from S by restriction of the
signature to Σalg.

Any set W of ground terms as in the bounded exploration postulate will
be called a (reflective) bounded exploration witness (R-witness) for A. The four
postulates capturing sequential time, abstract states, background and bounded
exploration together provide an language-independent axiomatisation of the
notion of a reflective sequential algorithm.

3 Reflective Sequential Abstract State Machines

The definition of rsASMs is quite simple. It uses a self representation of an ASM,
i.e. its signature and rule, as a particular tree value that is assigned to a location
pgm. For this we exploit a tree algebra [6] as well as partial updates [7].

For the dedicated location storing the self-representation of a sequential ASM
it is sufficient to use a single function symbol pgm of arity 0. Then in every
state S the value valS(pgm) is a complex tree comprising two subtrees for the
representation of the signature and the rule, respectively. The signature is just
a list of function symbols, each having a name and an arity. The rule can be
represented by a syntax tree.

In detail, in the tree structure we have a root node o labelled by pgm with
exactly two successor nodes, say o0 and o1, labelled by signature and rule,
respectively. So we have o ≺c o0, o0 ≺s o1 and o ≺c o1. The subtree rooted
at o0 has as many children o00, . . . , o0k as there are function symbols in the
signature, each labelled by func. Each of the subtrees rooted at o0i takes the
form func〈name〈f〉 arity〈n〉〉 with a function name f and a natural number n.
The subtree rooted at o1 represents the rule of a sequential ASM as a tree. Trees
representing rules are inductively defined as follows:

– An assignment rule f(t1, . . . , tn) = t0 is represented by a tree of the form
label hedge(update, func〈f〉term〈t1 . . . tn〉term〈t0〉).

– A partial assignment rule f(t1, . . . , tn) ⇔op t′1, . . . , t
′
m is represented by a tree

term label hedge(partial, func〈f〉func〈op〉term〈t1 . . . tn〉term〈t′1 . . . t′m〉).
– A branching rule IF ϕ THEN r1 ELSE r2 ENDIF is represented by a tree of the

form label hedge(if, bool〈ϕ〉rule〈t1〉rule〈t2〉), where ti (for i = 1, 2) is the
tree representing the rule ri.

– A parallel rule PAR r1 . . . rk ENDPAR is represented by a tree of the form
label hedge(par, rule〈t1〉 . . . rule〈tk〉), where ti (for i = 1, . . . , k) is the
tree representing the rule ri.

– A let rule LET x = t IN r is represented by a tree of the form label hedge(let,
term〈x〉term〈t〉rule〈t′〉), where t′ is the tree representing the rule r.

– An import rule IMPORT x DO r (which imports a fresh element from the reserve)
is represented by a tree term label hedge(import, term〈x〉rule〈t〉), where t is
the tree representing the rule r.
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The background of an rsASM must fulfil the requirements of the background
postulate, so it must also contain all tree operations. Therefore, the background
of an rsASM is defined by a background class K over a background signature
VK . It must contain an infinite set reserve of reserve values, the equality predi-
cate, the undefinedness value undef, and a set of labels L. The background class
must further define truth values and their connectives, tuples and projection
operations on them, natural numbers and operations on them, trees in TL and
tree operations, and the function I, where Ix.ϕ denotes the unique x satisfying
condition ϕ.

The background must further provide functions: drop : T̂ext → Bext and
raise : Bext → T̂ext for each base set B and extended base set Bext, as well as a
derived extraction function β : Text → ⋃

n∈N
T

n assigning to each term included
in the extended base set Bext a tuple of terms in T defined over Σ and B.

A reflective sequential ASM (rsASM) M comprises an (initial) signature Σ
containing a 0-ary function symbol pgm, a background as defined above, and a
set I of initial states over Σ closed under isomorphisms such that any two states
I1, I2 ∈ I coincide on pgm. If S is an initial state, then the signature ΣS =
raise(signature(valS(pgm))) must coincide with Σ. Furthermore, M comprises
a state transition function τ(S) on states over (extended) signature ΣS with
τ(S) = S + ΔrS

(S), where the rule rS is defined as raise(rule(valS(pgm))) over
the signature ΣS = raise(signature(valS(pgm))).

4 The Reflective Sequential ASM Thesis

The main result in [6] is the reflective sequential ASM thesis.

Theorem 1. Every reflective ASM M is a RSA, and for every RSA A there is
a behaviourally equivalent rsASM M.

While the proof of the first part is rather staightforward, the proof of the
second part is rather complicated. It requires for a fixed bounded exploration
witness W to exploit first relative W -similarity to obtain ASM rules for each
of the individual algorithms in a run, then obtain tree representations, which
allows to extend the rules by tree updates, and finally exploit W -similarity to
obtain just a single ASM rule.

The behavioural theory for RSAs lays the foundations for rigorous develop-
ment of reflective algorithms and thus adaptive systems. While the theory so
far only covers reflective sequential algorithms, we envision extensions to reflec-
tive parallel algorithms and reflective concurrent algorithms. Furthermore, it is
rather straightforward to see that reflective ASMs can also be used to define
universal machines, which provides an open invitation to take the theory further
to a generalised theory of computation on structures rather than strings.

5 Concluding Remark

In the journal article [6] we investigated a behavioural theory for reflective
sequential algorithms (RSAs), which we summarised in this paper. With this
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behavioural theory we lay the foundations for rigorous development of reflec-
tive algorithms and thus adaptive systems. However, the theory so far covers
only reflective sequential algorithms, so in view of the behavioural theories for
unbounded parallel and concurrent algorithms the next steps of the research are
to extend these theories to capture also reflection.
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healthcare [4] and autonomous robotics [5]. To be capable of being adopted in
the development of increasingly complex systems, formal methods must support
standard software engineering practices such as modularity. Such formal meth-
ods should also be equipped with a detailed semantics so that the results are
interpreted correctly by both software engineers as well as interoperable tools.

Although a mature formal specification language, Event-B has some limi-
tations, particularly its lack of standardised modularisation constructs. While
Event-B has been provided with a semantics in terms of proof obligations [12],
the abstractness of this approach makes it difficult to formally deal with modu-
larisation, or to define a concrete basis for interoperability with other formalisms.

Our paper, [10], provides an algebraic semantics for the Event-B language,
generic modularisation constructs and pathways to interoperability with other
logics. It does this by harnessing the benefits offered in the theory of institutions.
Institutions are mathematical structures that are based in category theory and
they provide a generic framework for formalising logics and formal languages
[11,18]. We define the institution for Event-B, called EVT , which we use to
describe as a target for the semantics of the full Event-B specification language.
In insitutions, specification-building operators are used to construct formal speci-
fications of systems in a modular fashion. Further, institutions support the com-
bination of different formal languages and logics in a way that preserves the
properties of the individual languages while allowing for the expression of the
system’s behavior in a more powerful and expressive way. This is achieved by
defining appropriate mappings between institutions for distinct formalisms.

In summary, the principal contributions of our paper [10] are:

1. We define a formal semantics for the Event-B formal specification language, as
a series of functions from Event-B constructs to specifications over the EVT
institution. This provides clarity on the meaning of the language elements
and their interaction. To achieve this, we consider the constituent elements of
the Event-B language as presented in our three-layer model shown in Fig. 1
(which we briefly describe later).

2. A well-defined set of generic modularisation constructs using the specification-
building operators available through the theory of institutions. These are
built-in to our semantics, they subsume and extend the existing Event-B mod-
ularisation constructs, and they provide a standardised approach to exploring
new modularisation possibilities.

3. An explication of Event-B refinement in the EVT institution. Refinement in
EVT incorporates and extends the Event-B refinement constructs.

Additionally, our eb2evt translator transforms Event-B specifications that
have been developed using Rodin into specifications over the EVT institution.
We use eb2evt to validate our semantic definitions, and to interact with the
existing large corpus of Event-B specifications [9]. This paper summarises the
main results and constructions from [10]. For the finer details including detailed
descriptions, definitions, theorems, proofs and examples, we direct the interested
reader to [10]. This work is beneficial to the Event-B community since it provides
a template for defining extensions and modifications to the Event-B formalism.
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Fig. 1. For each of the Event-B sub-languages, we show their corresponding Event-B
constructs, and their representation in our semantics.

2 The Institution for Event-B

Institutions have been devised for many logics and formalisms, we do not dwell
on the mathematical definitions here since the detail can be found in [10]. An
institution has four basic components: (1) Signatures determine the vocabulary
of the language, (2) Sentences use the vocabularly to form statements, (3) Mod-
els are needed to give meaning to such sentences and, (4) a satisfaction relation
determines satisfaction of sentences by models. These four aspects together form
an institution if they are well-defined and preserve certain mathematical prop-
erties.

The institution for Event-B, called EVT is defined as follows:

Signatures: The vocabulary, 〈S,Ω,Π,E, V 〉, contains sets of sort names (S),
arity-indexed operation names (Ω), arity-indexed predicate names (Π), event-
status pairs (E) and sort-indexed variable names (V ).

Sentences: are of the form 〈e, φ(x, x′)〉. Here, e is an event name and φ(x, x′) is
an open first-order formula over the variables x from the signature and the
primed versions, x′, of the variables. Figure 2 shows the specific translations
corresponding to the Event-B syntax.

Models: map event names to their corresponding set of variable-to-value map-
pings over the carriers corresponding to the sorts of each of the variables (and
their primed versions).

Satisfaction Relation: the satisfaction relation in EVT devolves to mapping the
EVT sentences to first-order logic and checking satisfaction of first-order sen-
tences in the usual way. Full details are in [10].

Note that, since first-order logic is the foundational logic used in Event-B, it
should be unsurprising that the EVT institution is also built on the institution
for first-order predicate logic with equality (we refer to this as FOPEQ). We
relate FOPEQ and EVT using an institution comorphism which is a mapping
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Fig. 2. The elements of an Event-B machine specification as presented in Rodin (left)
and the corresponding sentences in the EVT institution (right).

that allows us to write first-order logic sentences in EVT . This captures the way
that first-order formulae can be written in Event-B, as shown in Fig. 2.

The Three-Layer Model: Taking inspiration from an early version of the spec-
ification of UML [16,17], we split the Event-B language into three constituent
layers. Each layer corresponds to a sub-language of Event-B as shown in Fig. 1.
This three-layer model plays a key role in structuring the definitions of the
semantic functions given in [10]. Specifically, the institutional constructs that
we use to define the semantics of each of the sub-languages are listed on the
right of Fig. 1. We use this model to structure our translation from Event-B to
EVT as follows:

– The Event-B mathematical language (base of Fig. 1) is captured using the
institution of first-order predicate logic with equality, FOPEQ, which is
embedded via an institution comorphism into EVT [8]. Our semantics trans-
lates the constructs of this sub-language into corresponding FOPEQ con-
structs.

– Event-B infrastructure comprises the elements used to define variables, invari-
ants, variants and events. These are translated into EVT sentences.

– Event-B superstructure deals with the definition of Event-B machines, con-
texts and their relationships (refines, sees, extends). These are translated
into EVT structured specifications using the specification-building operators.

Building Specifications: The specification-building operators in the EVT
institution are, used at multiple levels and are, essentially generic modulari-
sation constructs. These are breifly summarised in Table 1 (full descriptions are
shown in Table 1 of [10]). For example, the and specification-building operator
provides a straightforward way of combining specifications. If we consider two
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Table 1. A brief summary of the institution-theoretic specification-building operators
that can be used to modularise specifications. Here SP1 and SP2 denote specifications
written over some institution, and σ is a signature morphism in the same institution.

Operation Format Description

Translation SP1 with σ Renames the signature components of SP1 (e.g. sort, operation and

predicate names in FOPEQ) using the signature morphism σ :

ΣSP1 → Σ′.
Sig[SP1 with σ] = Σ′
Mod[SP1 with σ]

= {M′ ∈ |Mod(Σ′)| | M′|σ∈ Mod[SP1]}.

Sum SP1 and SP2 Combines the specifications SP1 and SP2. It is the most straightfor-

ward way of combining specifications with different signatures.

SP1 and SP2 = (SP1 with ι) ∪ (SP2 with ι′)
where Sig[SP1] = Σ, Sig[SP2] = Σ′, ι : Σ ↪−→ Σ ∪ Σ′, ι′ : Σ′ ↪−→
Σ ∪ Σ′ and ∪ is applied to specifications (SP3 and SP4) over the same

signature (Σ′′) as follows

Sig[SP3 ∪ SP4] = Σ′′
Mod[SP3 ∪ SP4] = Mod[SP3] ∩ Mod[SP4].

Enrichment SP1 then . . . Extends the specification SP1 by adding new sentences after the then

specification-building operator. This operator can be used to represent

superposition refinement of Event-B specifications by adding new vari-

ables and events.

Hiding SP1 hide via σHiding via the signature morphism σ allows viewing a specification,

SP1, as a specification restricted to the signature components of

another specified by the signature morphism σ : Σ → ΣSP1 .

Sig[SP1 hide via σ] = Σ

Mod[SP1 hide via σ] = { M|σ | M ∈ Mod[SP1]}.

specifications, SP1 and SP2, the specification SP1 and SP2 represents their
combination. It has a signature that is the union of the signatures of SP1 and
SP2, valid models of this specification are captured as the intersection of the
valid models of the individual specifications. This can be understood as a gener-
alisation of the SEES construct in Event-B (line 1 of Fig. 2). In this way, and can
be used to incorporate both machines and contexts into a given specification.

We use these specification-building operators throughout our semantics for
Event-B. Figure 3 shows an example of the semantic functions used for the super-
structure language which uses the with (translation via signature morphism)
and then (specification enrichment/extension) operators. We provide the full
semantic functions and a worked example using eb2evt in [10].

3 Refinement, Modularisation and Interoperability

We briefly summarise the enhancements that our semantics offers in terms of
refinement, modularisation and interoperability for Event-B.

Representing Refinement: No semantics of Event-B would be complete with-
out reference to refinement. The institution framework allows us to capture
refinement as model-class inclusion where the class of models of a specifica-
tion comprises the models satisfying that specification. In [10], we consider two
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Fig. 3. The semantics for the Event-B superstructure sub-language is defined by trans-
lating Event-B specifications into structured specifications over EVT using the function
B and the specification-building operators defined in the theory of institutions.

cases of refinement for an abstract specification SPA and concrete specification
SPC :

1. When the signatures are the same, we capture refinement as

SPA � SPC ⇐⇒ Mod(SPC) ⊆ Mod(SPA)

This corresponds to superposition refinement in Event-B.
2. When the signatures are different, we capture refinement as

SPA � SPC ⇐⇒ Mod(σ)(SPC) ⊆ Mod(SPA)

This captures data refinement in Event-B, where the signature morphism σ
corresponds to the relevant gluing invariant. We can also use the hide via
specification-building operator to capture this refinement. Related work on a
CSP semantics for Event-B refinement used a similar notion of hiding [19].

More details are described in [10] including a worked example.

Modularisation via Specification-Building: It has been shown that Event-
B lacks a unified set of modularisation constructs [9]. Current approaches to
modularisation in Event-B consist of a suite of Rodin plugins that each support
a specific approach to modular specification. Decomposition-style modularisa-
tion was first proposed by Abrial where larger systems could be decomposed
into smaller ones and independently refined [2]. Ultimately, these smaller speci-
fications could be recombined to construct a specification that could have been
devised without the use of decomposition techniques from the outset.

In [10], we describe the evolution of modularisation constructs for Event-B
and Rodin, and show how the specification-building operators in EVT can be
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Fig. 4. We represent the shared variable decomposition of machine M into sub-machines
M1 and M2 (on the left) using specification-building operators (on the right).

used to capture current modularisation approaches. We provide a snapshot of
the classical shared variable approach on the left of Fig. 4, the right of Fig. 4
illustrates this kind of modularisation using specification-building operators in
EVT . Specifically, we use hide via to split the signatures and with to rename
the events in the individual machines. In [10], we demonstrate how our semantics
defines a theoretical foundation for the current Rodin modularisation plugins.

Interoperability: The theory of institutions provides a framework for combin-
ing different logical systems in a consistent and meaningful way [11]. Institution
(co)morphisms specify how the elements of one institution relate to the elements
of another. By correctly defining these mappings, we can formally reason across
different formal languages. In fact, EVT already uses an institution comorphism
to capture the mathematical layer (FOPEQ) of Event-B. We are actively explor-
ing how we can write heterogeneous specifications using these mappings.

4 Conclusions and Future Work

Our paper [10] contributes a formal semantics for the Event-B specification lan-
guage. To this end, we distilled a three-layer model for the Event-B language.
The semantics for each of these distinct layers is grounded in our institution for
Event-B, EVT , and the institution for first-order predicate logic with equality,
FOPEQ. We show how this semantics supports the restructuring and modular-
isation of Event-B specifications using the specification-building operators. We
focused on Event-B but our work demonstrates, more generally, how such mod-
ularisation capabilities can be added to a formal specification language using the
theory of institutions. Future work examines how this approach can be applied
to other similar formal languages that are also represented as institutions, for
example UML [13], CASL [15] and CSP [14]. Through the theory of institutions,
we have provided scope for interoperability between Event-B and other formal
languages. Support for heterogeneous specification is desired in the development
of complex safety-critical systems (e.g. robotics [7]) and we will explore this in
future work.
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Abstract. This short paper summarizes an article published in the
Journal of Automated Reasoning [7]. It presents Pardinus, an extension
of the popular Kodkod [12] relational model finder with linear temporal
logic (including past operators) to simplify the analysis of dynamic sys-
tems. Pardinus includes a SAT-based bounded model checking engine and
an SMV-based complete model checking engine, both allowing iteration
through the different instances (or counterexamples) of a specification. It
also supports a decomposed parallel analysis strategy that improves the
efficiency of both analysis engines on commodity multi-core machines.

Keywords: Model Checking · Model Finding · Relational Logic ·
Temporal Logic

1 Introduction

High-level model finders are becoming increasingly useful in software engineer-
ing. The ability to specify properties of a system in some expressive logic and
then automatically find solutions (models) that satisfy such properties is useful
in many applications, ranging from early system design validation to test-case
generation. Kodkod [12] is an example of such model finders, supporting a range
of features that make it quite popular:

– Problems are described using the single concept of relation (of arbitrary
arity), considerably simplifying the syntax and semantics of the language.

– Constraints are expressed in relational logic, first-order logic enriched with
relational algebra and closure operators, enabling a terse, but still readable,
style of specification.
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– It allows the user to iterate over alternative solutions of the problem, also
implementing a symmetry breaking mechanism (to avoid the generation of
equivalent solutions) which makes it useful for scenario exploration.

– Partial instances can be provided a priori, as lower- and upper-bounds for
relations, enabling its application to configuration-solving tasks, where the
goal is to find a full instantiation of a partial description of a system.

Kodkod is implemented as a Java API and is designed to be a plugin that can
easily be incorporated as a backend of another tool. Its best-known application
is the analysis of Alloy 5 specifications. Alloy [6] is a language that shares some of
Kodkod’s features – the everything is a relation motto and the usage of relational
logic – but that also supports higher-level constructs to further simplify the
description of a system, namely a type system with inheritance.

Despite its usefulness and popularity, Kodkod can only be directly applied to
analyse structural designs. Analysis of behavioural designs is possible, but cum-
bersome and error-prone. The state and traces of the system must be explicitly
modelled and temporal properties and (bounded) model checking must be speci-
fied directly using transitive closure over the traces. This approach is often viable
for checking simple safety properties, but properly checking liveness properties is
tricky and mostly avoided. Moreover, given the bounded nature of the analysis,
complete model checking could only be directly supported by setting a bound
that covers all reachable states, which is infeasible for most examples.

This paper presents the Pardinus model finder, an extension of Kodkod that
addresses this limitation. It allows the declaration of mutable relations and the
specification of properties in temporal relational logic, an extension of relational
logic with linear temporal logic with past operators (PLTL). Pardinus prob-
lems can currently be analysed by two model finding backends that implement
satisfiability checking for temporal relational logic: the first translates Pardinus
problems back to plain Kodkod problems, by resolving the temporal domain and
implementing a procedure that essentially amounts to bounded model checking
with SAT [1]; the second resolves the first-order domain, and reduces Pardinus
satisfiability checking to PLTL model checking over a universal model of a system
(one that allows all possible behaviours) [10], using the concrete SMV syntax [4].

The main application of Pardinus is in the analysis of Alloy 61 specifications.
This new version of Alloy adds support for mutable relations and temporal rela-
tional logic, an extension previously known as Electrum [2,8]. The architecture of
Alloy 6 and Pardinus is depicted in Fig. 1, with the scope of this paper captured
by thick lines and arrows. Pardinus is also used as a backend in Forge [11], a
system to prototype formal methods tools.

This article summarises [7], which has four main contributions, when com-
pared to previous publications presenting Pardinus and Electrum:

– A unified and complete presentation of both analysis backends (bounded and
unbounded model checking). The paper that introduced Electrum [8] briefly
mentions how specifications can be model checked, but at the time Pardinus

1 https://github.com/AlloyTools/org.alloytools.alloy/releases/tag/v6.0.0.

https://github.com/AlloyTools/org.alloytools.alloy/releases/tag/v6.0.0
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Fig. 1. Alloy 6 and Pardinus architecture

did not exist and the two backends were not unified. In a more recent tool
paper about the current version of the Electrum Analyzer [2], Pardinus is
already mentioned as the underlying model finder but not described.

– A novel path iteration mechanism, that returns only non-isomorphic solu-
tions, and that is efficiently implemented using incremental SAT solving.
Trace iteration was approached in [3], but only for single state updates and
without an efficient implementation.

– A decomposed analysis technique that relies on symbolic bounds and parallel
execution to speed up verification. This technique was first introduced in [9],
but only for plain Kodkod problems.

– An extended evaluation, with several new examples and case studies, provid-
ing more confidence about the effectiveness of the proposed techniques.

In the rest of this paper, we present how a Pardinus problem is described,
taking a protocol as an illustrating example. We then briefly mention the different
analyses which are performed by Pardinus. Details can be found in [7].

2 A Pardinus Problem

A Kodkod model finding problem consists of a set of relation declarations plus
a single relational logic formula defined over those (free) relations, whose sat-
isfiability is to be checked. To make the problem decidable every free relation
must be given an upper-bound – the set of the tuples that may be present in the
relation. Tuples are sequences of atoms (uninterpreted identifiers) drawn from
a finite universe, that must also be declared upfront. A relation can also have
a lower-bound, which is useful to capture a priori partial knowledge about the
solution. Pardinus problems extend Kodkod ones as follows:

– Mutable relations, whose value changes over time, can be declared with key-
word var.

– Formulas can use (past and future) linear temporal operators to express
behavioural constraints.

– A relational expression in a formula can be primed to denote its value in the
succeeding time instant.
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Fig. 2. A leader election protocol in Pardinus

The value of the immutable relations, that remains constant in a trace after
being fixed at start, constitutes a so-called configuration of the system. As an
illustration, we consider the specification of a leader election protocol shown
in Fig. 2. This protocol, first proposed by Chang and Roberts [5], assumes a ring
network of processes (or nodes) with unique comparable identifiers.

Specifying Configurations (ll. 1–9, 14–19). The immutable portion of the prob-
lem is essentially pure Kodkod and specifies networks following the ring topology,
amounting to the configuration of the protocol. To bound the problem, only rings
with up to four nodes will be considered in the example. Thus, the mandatory
universe declaration (l. 1) introduces four atoms to denote the processes (P0 to
P3) and four atoms for the identifiers (I0 to I3). Next, a set of free relations
can be declared that are the target of the model finding process. For each rela-
tion, besides its name, one must declare its arity (the length of the tuples it can
contain), and its lower- and upper-bounds as tuple sets of the same arity. This
problem declares two immutable sets (sets are simply normal unary relations)
– Id (l. 3) and Process (l. 5) to denote the set of identifiers and processes,
respectively, that will effectively exist in each solution – and three immutable
binary relations – next to capture the total order between identifiers (l. 4), id to
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associate processes with their identifiers (l. 6), and succ to represent the desired
topology, associating each process with its successor in the ring (l. 8).

By setting the lower-bound equal to the upper-bound, relations Id and next
are declared as constants, with next fixing a particular total order between the
four possible identifiers. Then Process is restricted to be any subset of the four
possible process atoms (recall that we intend to specify all rings with up to
four processes), id to contain pairs where the first component is a process and
the second is an identifier, and succ to only contain pairs of processes. The
upper-bounds usually encode (loose) typing restrictions, but are not sufficiently
expressive to restrict valid valuations. For instance, the upper-bound of id alone
does not ensure that its tuples only relate processes that are effectively assigned
to Process, which needs to be enforced in the problem’s constraint. However,
it still considerably speeds up the analysis by restricting upfront possible valua-
tions.

Then, constraints of the problem are specified with a temporal relational
logic formula, whose free variables are the relations previously declared. Due
to space constraints, we do not detail the logic here as it is essentially that of
Alloy 6. The specification of the ring topology consists of a conjunction of six
sub-formulas (ll. 14-19) over the immutable relations.

Specifying Behaviour (ll. 10–12, 21–26). The remaining of the problem specifies
the evolution of the protocol. Pardinus problems do not explicitly specify a state
machine. Instead, behaviour is enforced through arbitrary temporal constraints
that restrict which traces are acceptable in the system being modelled.

The protocol is uniform (every process performs the same operations) and
works correctly if no failures occur (eventually one and at most one leader is
elected). The protocol starts with each process ready to send its own identifier
to its successor in the ring. When a process receives an identifier, it compares it
with its own. If it is higher it propagates; otherwise it discards it. A process that
receives back its own identifier is the elected leader. To model this behaviour, a
mutable outbox binary relation is declared (l. 10) to associate each process with
the identifiers it should propagate along the ring. As in [6], where this protocol
is used to illustrate the Alloy 5 language following an explicit state idiom, we
abstract away the inbox of each process and will merge the event of sending
an identifier with that of the respective successor processing the identifier. A
mutable Elected set is also declared (l. 12) to contain the processes that are
elected leaders (hopefully, at most one).

With mutable relations, the constraints of a problem can rely on temporal
operators. Relational expressions can be “primed” to retrieve their value in the
succeeding state, and formulas are composed using the past and future temporal
operators of LTL.

The dynamics of the protocol is specified with two constraints. The one in
l. 21 specifies the initial value of the outbox relation (formulas without temporal
operators must hold in the first state), stating it should be the same as relation
id, i.e., each process should start by sending its own identifier to the successor.
The formula in ll. 22–23 specifies valid transitions, stating that at each time
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instant some process p should pick and process one of the identifiers in the
outbox of its predecessor succ.p. The final constraint (ll. 25–26) defines the set
of elected processes by comprehension at each instant, using a combination of
future and past linear time operators: a process is considered elected if at some
point in the past its identifier reappeared in its outbox.

Analyzing the Problem. If a problem is satisfiable, as in this example, Pardinus
returns a solution. Additionally, in order to check a particular temporal prop-
erty, one should add its negation to the problem to try to find a solution, also
called counterexample in this case. If none is found, the property is valid for the
specified bounds.

The key safety property of this protocol is that at most one leader is elected,
which can be specified as always lone Elected, or as the stronger formula
always all p : Elected | always Elected in p, which forbids different pro-
cesses to be considered elected at different points in time. To be useful, the
protocol should also ensure that some leader is elected. This liveness property
can be specified as eventually some Elected.

3 Iteration on Solutions

As mentioned earlier, once a solution (or a counterexample) is computed by
Pardinus, a mechanism allows for iteration over the set of solutions (or coun-
terexamples). The Kodkod approach (i.e., return any different path), would often
fail to incorporate the users expectations when exploring alternative paths. In
our experience, scenario exploration is often performed in distinct stages. For
instance, the user may first explore different configurations, each framing the
context over which the path can evolve, and then explore alternative paths for
a selected configuration, trying to find an interesting evolution scenario. Thus,
Pardinus implements different navigation operations that focus on modifying
different aspects of the path. To be efficient, these operations are directly imple-
mented at the solver level, and also incorporate a symmetry breaking mechanism.

As an illustration, let us consider the leader election protocol illustrated in
Sect. 2. Suppose that in the first solution that is computed by Pardinus, the set
Process consists of the single process P0, the relation succ is a self-loop, i.e.,
succ = {(P0, P0)} and P0 repeatedly sends its own identifier to itself. The
user may ask Pardinus for another solution, having a different configuration. This
returns a solution with a different number of processes. Notice that a solution
with a single process different from P0 would also correspond to a different
configuration but is considered as symmetrical to the first solution, and is thus
pruned out by Pardinus. Suppose that Pardinus provides a new solution in which
Process = {P0, P1, P2} and succ = {(P0,P1),(P1,P2),(P2,P0)}. Suppose
that in this solution, there are seven different states before a process is elected
whereas the user wants to exhibit the shortest possible scenario to elect a process
(i.e., with four different states in this case). The user may now ask for another
solution with the same configuration. Pardinus then computes a solution where
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Process and succ are the same, but where the behavior, i.e. the sequence of
operations executed by the processes, differs. As soon as the returned solution
does not correspond to the scenario that the user has in mind, a new solution
having the same configuration can be requested. If such a solution exists, it will
necessarily be returned by Pardinus.

4 Parallel Decomposition

Configurations, determined by the immutable relations, are initially arbitrary,
but remain constant as the system evolves. This enables a decomposed analysis
of Pardinus problems that first solves for configurations and afterwards, for each
configuration, solves for possible behaviours. Evaluation shows that in certain
contexts, this decomposition can yield substantial performance benefits. Such
decomposed analysis is also amenable for parallelisation using commodity hard-
ware, since different configurations can be solved independently in different cores.
Moreover, since commonly the values of mutable relations depend on those of
immutable ones, if these dependencies were explicit, the configurations could be
used as partial instances for the succeeding stage, further speeding up analysis.
For that purpose, Pardinus allows users to declare symbolic bounds for mutable
relations, so that dependencies on the immutable relations can be made explicit.

5 Evaluation

We evaluated the scalability of Pardinus for the complete and bounded backends,
the parallel decomposed strategy, and the iteration operations, with multiple
variants of 6 different Pardinus problems.

Both the SAT and SMV bounded backends scaled to considerable model
sizes and maximum trace lengths. The SAT backend seems to scale better with
increasing model size, particularly for satisfiable problems. The SMV procedures
do not seem to have considerable gains for satisfiable problems. As expected,
the complete SMV backend performed worse, but closes on the performance
of the bounded backends as the considered maximum trace length increases.
This supports the application of complete analysis when enough confidence is
obtained from the bounded backends. The parallel strategy shows considerable
gains for satisfiable problems, particularly for the bounded and complete SMV
backends. The gains for unsatisfiable ones are not as consistent, but the SMV
backends seem to benefit more from it. A hybrid approach tames the negative
outliers while preserving the gains otherwise.

Both iteration operations have shown to be feasible for interactive sessions
with both strategies, although configuration iteration seems to be affected by the
number of valid configurations. Configuration iteration performed better in the
non-parallel approach, while path iteration fared better with the parallel one.
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6 Conclusion

The full article [7] expands in detail on the topics mentioned before and also
adds a substantial evaluation section, answering several research questions and
demonstrating the relevance of the techniques implemented in Pardinus.
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Abstract. This document presents the case study for the ABZ 2023
conference. The case study introduces a safety critical interactive sys-
tem called AMAN (Arrival MANager), which is a partly-autonomous
scheduler of landing sequences of aircraft in airports. This interactive
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1 Introduction

The Air Traffic Control activity in the TMA (Terminal Manoeuvring Area) is
an intense collaborative activity involving at minimum two air traffic controllers
working in a shared workspace (see image below) communicating with a set of
aircraft. The TMA is the area where controlled flights approach and depart in
the airspace close to the airport.

Air Traffic Control (ATC) is a collaborative work performed locally by two
specialised air traffic controllers. The executive (EXEC) Air Traffic Controller
(ATCo) interacts with pilots (usually using voice) while the planner (PLAN)
ATCo organises the work and the flow of aircraft in the area.

The planner controller (left-hand side of Fig. 1) is in charge of organising
and planning the traffic. This could result in changing the aircraft flight plan
such as heading, speed, altitude. Requests for such changes are given by EXEC
ATCo (usually using voice) who uses a radar screen (see right-hand side of
Fig. 1). The EXEC ATCo is the controller deputed to handle the ground/air/-
ground communications, communicating to the pilots and releasing clearances
to aircraft. He/she has the tactical responsibility of the operations and he/she
executes the AMAN advisories to sequence aircraft according to the sequence
list.
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Fig. 1. Executive and planner ATCs

For the case study scenario, we propose that the pilots assume a passive role,
limited to the reception and execution of the clearances. Other more active roles
(such as requesting an emergency landing) can be considered but are likely to
make things significantly more complex.

Thus, the case study will focus on a subpart of the work that consists in
organising the sequencing of landing of the aircraft on the runway(s).

2 Overview of the AMAN Tool

The AMAN (Arrival MANager) tool is a software planning tool suggesting to
the PLAN ATCo an arrival sequence of aircraft targeting at providing support
in establishing the optimal aircraft approach routes. Its main aims are to assist
the controller to optimize the runway capacity (land as many aircraft as possi-
ble and as quickly as possible) and/or to regulate/manage (meter) the flow of
aircraft entering the airspace, such as a TMA [5]. AMAN helps to achieve more
precisely defined flight profiles and to manage traffic flows, in order to minimize
airborne delays, leading to better efficiency in terms of flights management, fuel
consumption, time, and runway capacity utilization.

The AMAN tool uses the flight plan data, the radar data, an aircraft per-
formance model, known airspace/flight constraints and weather information to
provide to the traffic controllers, via electronic display, two kind of information:

– A Sequence List (SEQ LIST) which is an arrival sequence that optimizes the
efficiency of trajectories and runway throughput (see Fig. 2)

– Delay management Advisories which presents the delay (with respect to flight
plan) for each aircraft in the ATCo’s airspace.
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Figure 2 presents an abstract view of AMAN tool showing (by means of
arrows) the workflow of the tool that:

– exploits flight plan information, radar and weather information (left-hand
side of the figure);

– performs predictions about the arrival time of the aircraft on the runway
– exploits safety spacing requirements and the predictions to compute a landing

sequence that will be presented to the PLAN ATCo and may be used by that
person.

In this part of the description of the tool we consider only AMAN as an informa-
tion presentation tool. Later we will present some requirement for an interactive
tool meaning that the proposed landing sequence may be tuned by the PLAN
ATCo. At the bottom right-hand side of Fig. 2, we can see that AMAN (accord-
ing to Eurocontrol specifications in [5], page 3) may also produce and present
a list of advisories which may be sent to aircraft pilots by the EXEC ATCo, in
the form of clearances requesting a modification of speed to meet the computed
schedule. In the rest of this case study description we will not take into account
this part of the functioning of AMAN, and will instead assume that the ATCos
will identify the required clearances from the information displayed.

Each of the next sections will cover one aspect of the tool, from Prediction
to the tasks of the ATC.

Fig. 2. High-level view of the AMAN tool

2.1 Prediction

Each aircraft is following a flight plan containing (among others) the aircraft
type (which is useful for knowing maximum speed), the expected flight time,
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arrival airport, departure flight time, flight time autonomy. The prediction part
of AMAN merges the information available in the registered flight plan with
real-time information provided by radars and predicts an arrival time for each
incoming aircraft.

2.2 Spacing Requirements and Computation of a Landing Sequence

According to international regulations, the work of ATCos is to ensure flight
safety by keeping vertical and horizontal separations between aircraft in a sec-
tor. In the higher airspace such separation is 5 NM (nautical miles horizontally)
and 1000 ft (feet vertically) between each aircraft. When entering the TMA, this
separation is not maintained anymore but (to avoid incidents and accidents due
to turbulence and to provide enough time to react in case of problem) a landing
separation of 3 min between aircraft is requested. Except under exceptional cir-
cumstances this 3 min separation must be ensured by the ATCos and by AMAN.
Depending on the number of aircraft on arrival, this might be a complex con-
straint of which the satisfaction may require speeding up or slowing down some
aircraft, but also having some aircraft on HOLD which means sending them to
a waiting zone for later processing. In such a case, the aircraft will be removed
(after a while) from the landing sequence.

2.3 AMAN User Interface

Figure 3 is an example of a concrete AMAN user interface. It could be relevant
to define and represent interactions from controllers such as using drag and drop
interaction technique to modify the sequencing proposed by AMAN prediction
tool.

As one can see, this user interface is rather complex with display of a lot of
information relevant to the various facets of the work of TMA ATCos. For the
case study we will propose a simplified but realistic user interface (see Fig. 6)
focusing on a subset of critical tasks in relation with the use of the AMAN tool.

2.4 Air-Traffic Controller Tasks

Certification Specification CS 25 [2] paragraph 1302 states that “This para-
graph applies to installed equipment intended for flight-crew members’ use in
the operation of the aeroplane from their normally seated positions on the flight
deck. This installed equipment must be shown, individually and in combination
with other such equipment, to be designed so that qualified flight-crew members
trained in its use can safely perform their tasks associated with its intended
function ...”. Acceptable means for compliance to meet such requirement would
require to explicitly and exhaustively describe operators’ tasks.

HAMSTERS (Human - centered Assessment and Modelling to Support Task
Engineering for Resilient Systems) is a tool-supported task modelling nota-
tion for representing human activities in a hierarchical and temporally ordered
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Fig. 3. MAESTRO AMAN tool UI example from [1]

way [9]. The HAMSTERS notation provides support for representing a task
model, which is a tree of nodes that can be tasks or temporal operators. The
top node represents the main goal of the user, and lower levels represent sub-
goals, tasks and finally actions. Task types are elements of notation that enable
to refine and represent the nature of the task as well as whether it is the user
or the system who performs the task. The main task types are abstract, user,
interactive and system tasks. HAMSTERS tool makes it possible to refine such
tasks to describe more precisely operator’s actions such as representing motor,
perceptive and cognitive tasks involved in the accomplishment of a goal.

Abstract tasks (part numbered 1 in Fig. 4) provide support to describe sub-
goals in the task model. They also provide support to describe tasks for which
the refinement is not yet identified, at the beginning of the analysis process.
User tasks (part numbered 2 in Fig. 4) provide support to describe the detailed
human aspects of the user activities. User task types can be refined into percep-
tive, motor, cognitive analysis, and cognitive decision tasks. For example, the
user may perform a motor task (such as grabbing a card) or cognitive task (such
as remembering a PIN code). Such refinement enables the analysis of several



270 P. Palanque and J. C. Campos

Fig. 4. Tool palette in HAMSTERS

aspects of the tasks performed by the user, such as cognitive load, motor load,
or required perceptive capabilities. Such refinement also enables to identify pos-
sible threats that can be associated to specific types of user actions. Temporal
operators are used to represent temporal relationships between sub-goals and
between activities. Interactive tasks (part numbered 3 in Fig. 4) provide support
to describe tasks that are action performed by the user to input information to
the system (interactive input task) or action perform by the system to provide
information to the user and that are meant to be perceived by the user (inter-
active output task). Interactive input/output tasks provide supports to describe
both cases. System tasks (part numbered 5 in Fig. 4) provide support to describe
the tasks that the system executes. The system may execute an input task, i.e.
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the production and processing of an event produced by an action performed by
the user on an input device. It may also execute and output task, i.e. a rendering
on an output device (such as displaying a new frame on a screen). The system
may execute a processing task (such as checking the user login and password).
In addition to elements of notation for representing user activities and their
temporal ordering, HAMSTERS provides support to represent data (e.g. infor-
mation such as perceived amount of money on an account, knowledge such as a
known password), objects (e.g. physical objects such as a credit card, software
objects such as an entered password using a keyboard) and devices (e.g. input
devices such as keyboard and output device such as a screen) that are required
to accomplish these activities (part numbered 7 in Fig. 4). HAMSTERS and its
eponymous interactive modelling environment is the only environment provid-
ing structuring mechanisms as real-life models are usually large and reuse is
useful [9].

Fig. 5. PLAN ATCo tasks in HAMSTERS (zoom in for details)

Tasks of the EXEC ATCo are described using the HAMSTERS notation [9]
and [4] (see Fig. 5). The notation presented in [7] explicitly supports collaborative
activities among users but this is not exploited here as we focus only on the work
of the PLAN ATCo. This notation can also be used not only to describe nominal
activities of operators but also the errors they may perform and the activities
necessary to recover from them [3].

Figure 5 should be read from top to bottom and from left to right. When
LS appears in the model, it is an acronym for “Landing Sequence”. The top of
the image describes the main goal of the operator which is to manage the TMA
sector. This activity consists in two tasks, manage the landing sequence called
“Manage LS” on the figure and “Stop Manage LS” c |>) the repetitive task
“Manage LS” (see loop symbol on the left-hand side of the icon of the task) and
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terminates the task. The “Manage LS” task is decomposed into two sub-tasks.
The first one called “Manage Landing Sequence (LS)”. this task is interrupted
every 10 s by the autonomous behaviour of AMAN. This is represented by the
abstract system task “AMAN Autonomous activity” which is performed every
10 s. This task is decomposed into three tasks which are performed by the tool
in sequence (operator >> in the model): “Receive radar Information”, “Compute
LS” and “Display LS”. This task is an output system task (icon with a red arrow)
meaning that the task will change the display (to be read by the ATCo). For
these tasks, two software objects are used: the “Aircrat Real Positions” provided
by the radar and used by AMAN by “Compute LS” task which produces the
software object “Landing Sequence”.

3 The Landing Sequence User Interface

As explained above, we propose here a simplified user interface of an AMAN
tool. For instance, we don’t take into account the production of advisories that
would support the ATCos in identifying the clearances to be send to pilots. In
this section we describe in detail this simplified user interface (see Fig. 6). Next
section focuses on the graphical appearance of the user interface. The following
section details the interaction techniques that are used by the ATCos to provide
input to AMAN. Last section refines the task model presented in Fig. 5 taking
into account the user interface and interactions.

3.1 AMAN Simplified User Interface

The user interface presents a graphical representation of the AMAN advisory
horizon on the left. This includes the current time at the bottom (in this case,
18:02) and, above it, a timeline against which flight labels are positioned.

Flights labels point to their Predicted Time of Arrival at the runway (pre-
dicted by AMAN). Each Label identifies the flight number and the arrival time
(minutes). If the flight needs to absorb a delay to keep to the assigned landing
time1, that is indicated by a red bar at the bottom of the strip. Delays of up
to 10 min are represented by the bar’s length (with each tick representing one
minute to absorb). For longer delays (when the bar is full), the number of min-
utes to absorb is indicated in red next to the label (see flight UL21748, which has
a delay of 12 min). Negative values can also be indicated (in green) and represent
situations where the plane needs to speedup to meet the assigned time).

If a flight is on hold, that is indicated by an “H” in the label. This is a
temporary display as the flight will be removed from the landing sequence and
will reappear at a later stage (when called for landing by the EXEC ATCo).

The flight label (line) is colour coded to indicate the flight status: “yellow for
flights that are unstable (the order of the flight in the sequence and its runway
current allocation may change), blue for the flights that are stable (the order of

1 I.e., the flight is early in relation to the assigned landing time.
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Fig. 6. Idealised AMAN landing sequence UI

the flight in the sequence may change while its runway allocation is definitive),
and white for the flights that are “freezed” (the order of the flight in the sequence
and its runway allocation are definitive)” [6]. When on hold, the aircraft label is
coloured in red until it is removed by AMAN from the landing list. The timing
information about the landing sequence is presented in white with the actual
time displayed at the bottom, as already mentioned above.

For different reasons, such as runway cleaning or when ground vehicles are
in operation on it, periods of time can be blocked by the PLAN ATCo, in which
case they are marked in yellow. Such a locked period is visible on Fig. 6 between
19 and 24 min. This means that AMAN will not position any landing in that
slot.

On the right side of the interface in Fig. 6 there is information on the runway,
the status of traffic, and some commands to be used by the ATCO. At the top,
the runway is indicated, as well as the flow information on the two runways (for
simplicity we focus in this case study on one runway only). The flow represents
the number of aircraft currently present in the landing sequence. On this example
we see that there are 9 aircraft but only 5 are displayed on the UI. This is due
to the fact that there is a level of zoom that is currently hiding 4 aircraft. If the
flow is green, additional capacity is available. This information is useful to the
ATCo for instance for removing aricraft on hold. If the flow is red, the runway
is overloaded and it is not recommended to add more aircraft to it. Below this
information, there is a slide-bar to change the zoom level. which determines how
much in the future the horizon extends. The user interface only shows those
flights that fall inside the current zoom level. In this case the zoom level is set
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to show 30 min into the future and thus only displays aircraft labels that are
predicted to landing within the next 30 min.

Finally, the button labelled HOLD allows the PLAN ATCo to inform AMAN
to “remove” aircraft from the list.

3.2 AMAN Interaction

Interaction on the Timeline. Interaction on the timeline is limited to chang-
ing an aircraft label by moving it up and down. If the target position is already
partially used by another aircraft label, the moving aircraft level will be moved
on the other side of the timeline (left or right). In order to keep the three minutes
separation for every aircraft in the landing sequence, the aircraft label must have
three empty spaces with the other labels.

Fig. 7. Direct manipulation of aircraft label

Figure 7 presents the graphical appearance of the direct manipulation of an
aircraft label. First the aircraft label FR1989 is selected by positioning the mouse
cursor over the label and by pressing the left mouse button. Keeping the mouse
button and moving the mouse will dynamically instantiate a new graphical object
(usually called a ghost) with the same information as the aircraft label but with
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graphical attributes with a level of transparency of 50 percent. This graphical
object can be moved up and down but remains snapped to the timeline (it is not
possible to move it left or right). When the mouse button is released, the ghost
aircraft label graphical attributes are set to 0 percent transparency. This aircraft
label is positioned in front of the closest dash on the timeline. The aircraft label
at the original position is deleted. for safety reasons it is important to guarantee
that the aircraft labels (not taking into account the ghosts) do not overlap.

Interaction on the Zoom Slider. The zoom slider is on the right-hand side
of the user interface. The current zoom value is displayed next to the slider
(currently the zoom value is 30). The zoom value can move from 15 min to 45 min.
On the slider, the current position is represented by the lift (black square). The
lift can be directly manipulated with the mouse by moving the mouse cursor on
the black square, pressing the left button, moving to the right (to increase the
value) or to the left to decrease the value manipulating the lift. The value of
the zoom moves by jumps of 5 min meaning that the acceptable values are 15,
20, 25, 30, 35, 40 and 45 only. It is thus necessary to move the mouse cursor for
more than 0.5 cm to move to the next acceptable value. If the mouse cursor is
moved beyond the slider limits (left or right) the movements have no effect on
the selected value. When the mouse button is released, the display is updated
showing all the aircraft labels in the landing sequence, which will be landing in
less than “zoom value” minutes. The other aircraft (if any) are not displayed.

Interaction on the HOLD Button. The HOLD button behaves as a stan-
dard button. For the function associated to the button to be triggered, a flight
must have been previously selected with the mouse, the mouse cursor must be
positioned on the HOLD button, the left mouse button pressed and released (on
the mouse button). If the mouse button is released outside of the HOLD but-
ton, the action is not trigger. When the mouse button is pressed on the HOLD
button, the graphical appearance of the button is changed (as shown in Fig. 8).

Blocking a Time Slot. It is possible for the user to block a time slot on the
timeline (as seen in yellow in Fig. 6 between 19 and 25 s. In order to add a new
blocked time slot, the mouse cursor must be positioned on the left-hand side of
the timeline. Clicking with the mouse at a given position will add a yellow box of
one minute. If a yellow box is already present then it is removed. If a yellow box
is positioned in the time slot already allocated to an aircraft label the behaviour
remains the same. However, at next step of AMAN calculation, this aircraft will
be moved to the next available time slot (requiring a clearance to be sent to the
pilot to speed up or slow down the aircraft to meet the new landing time slot).
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Fig. 8. Appearances of the HOLD button

3.3 Refined ATCo Tasks

With the interactive objects and interactions presented in previous sections,
the task model of PLAN ATCo presented in Fig. 5 has to be refined. Two sub
tasks in the Manage Landing Sequence sub-goal have to be added: Zooming and
moving aircraft labels. For readability of the models we present both each of the
sub tasks associated to these actions and the overall model integrating them.
The sub-tasks are presented in Fig. 9 in which the three sub-tasks have been
added between task “Monitor LS” and task “Change LS” which were already
presented in Fig. 5. The blue symbol next to the last four tasks means that these
tasks are optional (i.e. it is not mandatory to perform them to reach the goal).
The interleaving operator ||| means that the tasks may be performed in any
order possibly starting several (or all) of them concurrently.

The overall task model is presented in Fig. 10 it encompasses the preliminary
task model of Fig. 5 and the interaction task models (Figs. 11, 12 and 13).

Here we list the actions that the ATCO can execute:

– Changing the zoom level
– Changing LS
– Blocking a time period
– Putting a plane on hold
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Fig. 9. Interaction tasks

4 Requirements

4.1 External Events

External events affect the landing sequence produced by AMAN:

Req1. Planes can added to the flight sequence e.g. planes arriving in a close
range of the airport

Req2. Planes can be removed from the flight sequence e.g. planes changing their
landing airport for some reason

Interaction events also affect the landing sequence produced by AMAN:

Req3. Planes moved earlier or later on the timeline by the PLAN ATCo thus
requiring from AMAN the processing of a new prediction;

Req4. Planes put on hold by the PLAN ATCo. Planes removed from HOLD
will appear as normal aircrafts handled by AMAN.

4.2 Safety Requirements

These safety requirements must be considered:

Req5. Aircraft labels should not overlap;
Req6. An aircraft label cannot be moved into a blocked time period;
Req7. Moving an aircraft label might not be accepted by AMAN if it would

require a speed up of the aircraft beyond the capacity of the aircraft;
Req8. If AMAN is not functioning (e.g. no update after 10 s) the ATCo must

be informed about the failure and landing sequence preparation will be done
manually (without AMAN).

4.3 Automation Requirements

We use here the Displays for Automated Systems requirements from the EASA
Certification Specification 25 for large aeroplanes [2] with a focus on cockpits.
We propose here to embed these requirements in the case study. We have mainly
kept them as they are in the CS 25 and only tuned them a bit. Checking them
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Fig. 11. PLAN ATCo task model corresponding to the changing of the zoom value

Fig. 12. PLAN ATCo task model for putting aircraft on HOLD
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Fig. 13. PLAN ATCo task model for blocking a time slot

on a given specification would be required to have a certification granted. Auto-
mated systems can perform various tasks with minimal ATCos interventions, but
under the supervision of the ATCos. To ensure effective supervision and main-
tain ATCos awareness of system state and system “intention” (future states),
displays should provide recognisable feedback on:

Req9. Entries made by the ATCo into the system so that the ATCo can detect
and correct errors.

Req10. Present state of the automated system or mode of operation. (What is
it doing?)

Req11. Actions taken by the system to achieve or maintain a desired state.
(What is it trying to do?)

Req12. Future states scheduled by the automation. (What is it going to do
next?)

Req13. Transitions between system states.

These automation requirements may be implemented in different ways on
the user interface. For instance, a new scheduling of landing sequence could be
presented using an animation so that the PLAN ATCo can see which changes
have been made by AMAN from the previous landing sequence.

4.4 Interaction Requirements

Some interaction requirements to consider are:

Req14. the set of tasks identified must be feasible on the interactive systems;
this may be ensured by checking behavioural equivalence of the task model
with respect to a model of the interactive application (as for instance in [8];
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Req15. the HOLD button must be available only when one aircraft label is
selected;

Req16. the zoom value cannot be bigger than 45 and smaller than 15;
Req17. aircraft labels must always be positioned in front of a small bar of the

timeline;
Req18. Lift of the zoom slider should always be located on the slider bar
Req19. the value displayed next to the zoom slider must belong to the list of

seven acceptable values for the zoom
Req20. each movement of the mouse on the ATCo table must be reflected by a

movement of the cursor on the screen
Req21. there must be one and only one mouse cursor on the screen
Req22. Hold(aircraft) function can only be triggered after a mouse press and a

mouse released have been performed on the HOLD button.
Req23. Hold(aircraft) function must not be triggered if there is not a mouse

press and a mouse released performed on the HOLD button.

5 Clarification Questions

Here are the questions we received so far, updates will be posted on a regular
basis:

Q1. Is it possible to get some scenarios for the case study? They will be very
useful for validating a model of the system.
Answer: We don’t have a list of scenarios at hand. However, scenarios may
concern both the technological part (interaction with AMAN and automatic
scheduling) or the operational part (ATCos work in managing the landing
sequence). In the technological part a scenario might consider overlapping
labels that thus makes them very difficult or impossible to select a given
label of an aircraft. Another interesting scenario to consider is the fact there
is no empty space for dropping a label of an aircraft in the desired space (see
Fig. 7). In the operational part, scenarios would be to reduce to the maximum
the number of aircraft that are put on hold or the number of modification of
sequences proposed by AMAN (operational quality of AMAN scheduling).

Q2. I would like how the screen of Fig. 6 looks like when the labels are related
to different hours. For instance, the current time is 18 h 50 and the next label
is at 19 h 05.
Answer: The timeline shows the current time (at the bottom) and the future
time (from bottom to top). The time at the top is 18.32 as the current time
(bottom of Fig. 6) is 18:02 and the flight are scheduled for 18:05 (FR1989),
18:12, etc.

Q3. I think to make an assumption that the display concerns only a unique day.
Is it too strong ?
Answer: The display concerns some period of time in the future from now
(time at the bottom of the timeline of Fig. 6). This means that the displayed
period of time is much shorter. A reasonable assumption is that there is no
more that 3 h displayed and accounted for by ATCos at a maximum.
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Q4. For how long time, AMAN makes arrival predictions? For the next 2, 3 h?
According to the “Arrival Manager: Implementation Guidelines and Lessons
Learned” document, the AMAN horizon (when the flight is captured) is 150–
200 nm. If they mean minutes then it is between 2 h 30 to 3 h 20. I propose
we say it is 3 h.
Answer: See above (question Q3), 3 h is a reasonable duration.

Q5. When the controller decides to make a blocked time slot, AMAN must move
all the labels predicted in this slot. Is there any quantitative criteria to do
that? I think it cannot ask an aircraft to go faster than a given amount of
time. What is the value of this time?
Answer: There is not such a notions as predicted labels and controller labels.
At a given time all the labels may be moved and processed by AMAN tool
(if they are not marked as HOLD as flight label on the top left corner of
Fig. 6). This means that all the labels may be moved around. As you pointed
out speeding up or slowing down should remain in what is called the aircraft
envelope and in addition remain comfortable for the passengers and the crew.
This information may be computed from the type of aircraft which is available
in the flight information. It is important to note that, usually, only slight
adjustments are made keeping the original schedule and the 3 min separations
between two aircraft.

Q6. In the specification, you are talking about the landing sequence, the arrival
sequence, and the flight sequence. Are these different sequences or just one
sequence?
Answer: These are all the same. Sorry for the confusion. We will revise the
document and only use the wording “landing sequence”.

Q7. As mentioned in the specification, every 10 s an autonomous AMAN event
occurs. What happens if the user is changing the landing sequence at this
moment? It could be the case that aircraft is removed from the landing
sequence by the autonomous action. It is necessary to “clear” the events
that the user is doing at this moment?
Answer: Following the user-driven, human-in-the-loop approach, user trig-
gered events have priority over AMAN processing. User events will “pause”
AMAN computation which will restart when no user event is received (or
when the time of 10 s has elapsed). User events thus prevent AMAN from
displaying computation results and required AMAN to start a new computa-
tion.

Q5. In the slide “Concrete Challenges” (slide 27), one of the challenges is testing:
– Building meaningful test strategies
– Test cases coverage

Will you provide some code to test?

Answer: We will not provide test code. What was meant in the slides was
more abstract in terms of:

– The architecture (each of the components including interaction technique
and the AMAN architecture
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– The operations i.e. the tasks to be performed by the ATCo (and the time
pressure to handle the flow of aircraft).
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In this work, we model the arrival manager (AMAN) case study presented by
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For our model, we use the Event-B [1] modeling language, which has been
deemed effective in earlier works to model interactive safety-critical systems,
including human-machine interfaces, e.g., by Singh et al. [3] and Ait-Ameur et
al. [11].

The model itself was developed with the Rodin [2] platform. We provide rig-
orous evidence for the consistency of our model via model checking with ProB
[7] and proof obligations. However, our primary focus is on systematically val-
idating the requirements and appropriately presenting results to non-modelers
to foster their understanding and contribution to the modeling effort.

To this end, we employ validation obligations (VOs) and use a management
system and validation tools implemented in ProB2-UI [4]. For domain-specific
views that foster stakeholders’ understanding of the model, we use visualization
via VisB [16] and simulation via SimB [15].

The rest of the paper is organized as follows: Sect. 2 presents the AMAN
model in Event-B. Section 3 reports on the verification via model checking and
POs. Section 4 describes the validation of the model via VOs. Section 5 reports
our experiences using domain-specific views to tackle the interactive nature of
AMAN. Section 6 highlights the lessons learned during this modeling and anal-
ysis exercise, showing parts of the specification where VOs helped to formu-
late questions for the stakeholders, make assumptions and uncover ambiguities.
Finally, we conclude in Sect. 7.

2 AMAN Model

Our model1 focuses on the software-related aspects of AMAN and, to some
extent, the GUI itself. The specification [9] also describes autonomous, hardware,
and human aspects, which we did not model in detail. Our model structure was
guided by the HAMSTERS diagrams from the specification, and our refinement
structure up to M5 (cf. Figure 1) has a correspondence with Figs. 5 and 10 in the
specification [9].

At the abstract levels, we model autonomous AMAN updates for the landing
sequence (M0 and M1). In the next steps, we introduce user inputs in an abstract
manner (M2 to M4). In M5, we model timeouts of AMAN updates. In M6 to M9,
we refine the abstract user events into mouse movements, mouse clicks, mouse
drags, and mouse releases. The final refinement, M10, models a concrete pixel
representation of all graphical UI elements.

AMAN Update and Landing Sequence (M0, M1). In M0, we introduce the event
AMAN Update, which manages the set of airplanes scheduled for landing. This
event (and its refinements) encapsulate the autonomous part of the AMAN; all
other events in our model are related to interactive user activities. In M1, the set of
scheduled airplanes is refined to a landing sequence with associated landing times
(relative to the current time; see discussion in Sect. 3). Furthermore, M1 adds the
1 The model and all other mentioned files are available at https://github.com/hhu-

stups/AMAN-case-study/tree/bd044670a02092643230d6001cc2b355a2dc350a.

https://github.com/hhu-stups/AMAN-case-study/tree/bd044670a02092643230d6001cc2b355a2dc350a
https://github.com/hhu-stups/AMAN-case-study/tree/bd044670a02092643230d6001cc2b355a2dc350a
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Fig. 1. Event Refinement Hierarchy until M5 (generated by ProB)

ability for the planning air traffic controller (PLAN ATCo) to move an airplane
to another time slot via the Move Aircraft event with respective parameters
aircraft and time. M1 also introduces an important invariant stating that
airplanes must be separated by at least three minutes. This invariant is preserved
by both events AMAN Update and Move Aircraft.

Holding Airplanes (M2). M2 introduces the hold button. First, we model the set of
held airplanes (held airplanes), a subset of airplanes in the landing sequence.
The new Hold Button event is introduced to add an individual plane to this
set. A future AMAN Update is expected to remove held airplanes from the landing
sequence, which also removes them from held airplanes. However, an airplane
on hold can be rescheduled to another time slot.

Blocking Time Slots (M3). In the third refinement, M3, time slots can be blocked
(stored in the variable blockedTime). The events Block Time/Deblock Time
block/deblock an individual time slot. Regarding the events AMAN Update and
Move Aircraft, we must ensure that neither AMAN nor the PLAN ATCo
can move an airplane into a blocked time slot. However, we cannot posit
ran(landing sequence) ∩ blockedTime = ∅ as an invariant because the
user could block a time slot still holding a scheduled plane (and thus vio-
late the property). To overcome this, we introduced this conditional invariant:
blockedTimesProcessed = TRUE ⇒ ran(landing sequence) ∩ blockedTime =
∅ (see Req6 and Eq. (2)). Here, blockedTimesProcessed is a helper variable that
is set to TRUE by AMAN Update and can be set to FALSE by Block Time.

Zooming (M4). M4 introduces the changeZoom event which updates the variable
zoomLevel. Interactions with time slots and airplanes are restricted to the cur-
rent zoom level. As shown in Fig. 1, this is encoded by adding guards to the
interaction events but leaving the actions unchanged. Note that zoom does not
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affect AMAN’s autonomous activities — AMAN can still schedule airplanes for
a time slot that is not visible to the PLAN ATCo.

Timeout (M5). M5 introduces timeouts for AMAN updates (AMAN Timeout
event) which set a boolean variable timeout. The event is meant to occur when
the AMAN does not respond within the expected deadline of 10 s. In this case,
all user interactions are disabled, and the user interface provides feedback that
the AMAN is no longer working.

Detailed User Interaction (M6, M7, M8, M9). M6 adds two events for the PLAN
ATCo to select/deselect an airplane: selectAirplane and deselectAirplane.
This is necessary to refine mouse events in the next steps. Furthermore, this also
helps to set up a VisB visualization (see Sect. 5). The selected airplane is stored
in the selectedAirplane variable. Holding and moving an airplane are refined
to perform both events on selectedAirplane. When an AMAN update occurs,
the selected airplane is cleared.

M7 implements the dragging of airplanes via a boolean variable dragging
airplane. Whenever an airplane label is selected, the dragging process starts.
Furthermore, we introduce two events resume dragging airplane and stop
dragging airplane for resuming/stopping dragging. As described in the speci-
fication, user interactions have priority over system events. Therefore, we ensure
that AMAN updates do not occur while the user drags an airplane.

M8 refines M7 by adding more details to the dragging behavior. First, we
replace dragging airplane with dragged airplane representing a specific air-
plane instead of a boolean variable. Second, we implement dragging behav-
ior for the zoom slider by two new events: start dragging zoom slider and
drag zoom slider.

M9 implements mouse behavior including mouse movement, mouse clicks,
mouse drags, mouse releases. These refinements were challenging because many
variables were introduced, and some events were split into sub-events, as men-
tioned earlier. In particular, the mouse position and all allowed combinations
with user interactions must be tracked.

Concrete Graphical Interface (M10). M10 models a raster-based UI rendered on
a screen. Concrete pixel coordinates are set for all UI elements. Moreover, a
variable mouse pos tracks the pixel position of the mouse cursor. Events were
added and extended to allow moving the mouse, and many user interaction events
were restricted to execute only if the mouse is positioned appropriately. For
example, a mouse click on the hold button is only registered if the mouse pos is
inside the button’s pixel area. The modeled pixel coordinates for the UI elements
match the design of our VisB visualization (see Sect. 5). Due to its complexity,
we have not yet finished modeling this final refinement step — e.g. dragging of
airplanes is not fully refined yet.
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3 Verification

In this section, we evaluate the applicability of proving and model checking to
verify the AMAN model.

Proving. When modeling within Rodin, proof obligations (POs) are automat-
ically generated from the model. Afterward, provers in Rodin are applied to
discharge them. This includes POs ensuring that the model’s invariants are main-
tained (for more details, see Sect. 4), the absence of well-definedness errors, and
the consistency between the refinement steps.

Table 1. Proof Statistics in Rodin

Machine Total Automatic Manual Undischarged

M0 ctx 0 0 0 0

M0 0 0 0 0

M1 ctx 3 2 1 0

M1 13 12 1 0

M2 4 4 0 0

M3 9 9 0 0

M4 ctx 0 0 0 0

M4 4 4 0 0

M5 0 0 0 0

M6 25 24 1 0

M7 10 10 0 0

M8 74 61 13 0

M9 ctx 0 0 0 0

M9 306 294 12 0

M10 ctx 54 17 37 0

M10 250 163 85 2

Total 752 600 150 2

Table 1 shows the number of POs in all refinement steps of our AMAN model
(including automatic, manual, and unproven POs). Because M10 is still in devel-
opment, the total number of POs is not yet finalized. 600 out of 752 POs are
proven automatically, while 150 POs are proven manually. As all POs from M0
until M9 are discharged, we achieved strong guarantees regarding the aforemen-
tioned properties covered by POs until M9.

Proving provides limited feedback when a PO cannot be discharged. Often,
one must determine whether a PO cannot be discharged because the provers
are too weak or whether the underlying proposition is false. As support, we use
ProB [7], including its animation, disproving, and model-checking capabilities,
to discover errors and inspect counter-examples. In particular, we can inspect
concrete traces where, e.g., an invariant is violated. After discharging all POs,
we proceeded to the validation part (see Sect. 4).
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Table 2. Model Checking Statistics with ProB with Number of States, Transitions,
Runtime (in Seconds), and Memory (in MB)

Machine States Transitions Time [s] Memory [MB]

M0 inst 1 9 66 0.30 158.87

M1 inst 1 1505 2 287 908 208.21 1424.12

M2 inst 1 9884 15 045 795 1468.97 8352.65

M3 inst 1 - M9 inst 1 – – > 3600.00 –

M0 inst 2 5 18 0.28 158.85

M1 inst 2 18 339 0.31 159.24

M2 inst 2 46 913 0.32 159.62

M3 inst 2 1953 49 154 1.80 186.81

M4 inst 2 1953 49 154 1.89 186.91

M5 inst 2 3905 102 210 2.87 211.05

M6 inst 2 9665 256 962 5.87 284.93

M7 inst 2 15 425 297 282 6.90 299.42

M8 inst 2 48 129 611 970 16.44 460.74

M9 inst 2 687 169 10 224 194 280.85 3994.74

Model Checking. As mentioned, we used model checking to complement prov-
ing, and to find definite errors before full proof was achieved. Timing aspects in
AMAN could have been modeled by an increasing variable representing the cur-
rent time. However, this would lead to infinite state space. Therefore, we model
timing aspects as follows: the current time is always 0, and all times are relative
to the current time point. This renders the state space finite concerning timing
(cf. [5,10]), but other aspects still render exhaustive model checking intractable.
We instantiated M0 to M9 with specific values for the constants (e.g., for the
number of aircraft or the amount of zooming possible), to make exhaustive model
checking feasible2.

Table 2 shows the model checking results. The first configuration (* inst 1)
restricts the model to a single zoom level value of 15 (rather than allowing
seven values from 15 to 45) and to only three different planes. In the second
configuration (* inst 2), we reduce the single zoom level to 5 and only two air-
planes. We could not model check M10 in this way — the GUI model cannot
be instantiated with these reduced configurations because it requires specific
values for some constants. ProB was used to check all machines for invariant
violations and deadlock-freedom3. Furthermore, we activated the new operation
reuse feature [6] together with state compression to increase the performance
(-p OPERATION REUSE full -p COMPRESSION TRUE).

All experiments were run five times with ProB version 1.12.0-nightly4, built
with SICStus 4.7.1 (arm64-darwin-20.1.0) on a MacBook Pro (14”, 2021) with
2 Note that even on infinite state spaces, model checking can be useful in detecting

errors. We did apply ProB also to the un-instantiated models.
3 Note that deadlock-freedom is only verified by model checking.
4 Revision f41dfd4b29c7bd95583dffcb0adad44171f4f0c0 from 2023-01-10.
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Fig. 2. Requirement Overview in ProB2-UI’s VO manager

an 8-core Apple M1 Pro processor and 16 GB of RAM. For the experiments, we
set a timeout of one hour.

As shown in Table 2, the state space rapidly grows for the first configuration.
The timeline for the planes and the blocking of time slots might cause this. In
contrast, model checking can be applied efficiently for the second configuration.
Here, we can model-check all AMAN behaviors with the given configuration.
However, as soon as the GUI events are split into multiple ones in M9 (clicking,
dragging, and releasing), the state space also grows rapidly. Thus, model checking
is also feasible to verify the AMAN model, but only for configurations that limit
the state space. This means that model checking does not achieve full coverage
like proving.

4 Validation

In the following, we report on the validation of our model using validation obli-
gations [8,14]. A validation obligation (VO) consists of one or multiple validation
tasks. A VO is associated with a model to check its compliance with a require-
ment. The validation tasks inside a VO can be connected with logical operators
like ∧, ∨, and the sequential operator ;. In such a sequential operation, the result
of the first validation is used for the second validation. An example of a VO is:

Req1/M1 : MC(GOAL, somepredicate); TR

This VO expresses that Req1 is validated on the model M1 by running model
checking to find a state satisfying the given predicate and then executing a trace
from the found state.
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VOs allow systematic tracking of requirements during the whole modeling
process and checking for conflicts between the requirements. Moreover, VOs
support different development styles, which are discussed in detail in Sect. 6.2.
In this section, we report using VOs in an a posteriori manner, i.e., the model
is validated after its development.

To create and manage the VOs for the model, we used the ProB2-UI
VO manager, which is partially shown in Fig. 2. In the VO manager, VOs can be
created and automatically validated against the model. Colored symbols indicate
if the VO is successful (green check mark), not evaluated (blue question mark),
or failed (red x mark, not shown here).

We used the validation tasks related to invariants, temporal properties, sce-
narios, and coverage criteria for the AMAN requirements. Below are a few
detailed examples of VOs we developed for our AMAN model.

Invariant: Req5. The specification states that two airplane landing times must
be at least three minutes apart. Furthermore, Req5 states that the aircraft labels
must never overlap. We combine this into a requirement (called Req5.1 and also
visible in Fig. 2) that there is always a minimum distance between two airplanes.
As described in Sect. 2, this invariant is introduced in M1 along with guards of
events for AMAN Update and Move Aircraft. The invariant to check this behavior
is shown in Eq. (1).

∀a1, a2. a1 ∈ dom(landing sequence)
∧ a2 ∈ dom(landing sequence) ∧ a1 	= a2 ⇒
DIST(landing sequence(a1) 
→ landing sequence(a2)) ≥ 3

(1)

where we have

DIST = (λ(x 
→ y).x ∈ Z ∧ y ∈ Z|max({y − x, x − y})

Rodin’s PO generator generates three POs from this invariant, which we
use as validation tasks annotated as DIST1 through DIST3 in ProB2-UI’s VO
manager. Those POs are then combined into a validation obligation:

Req5.1/M1 : DIST1 ∧ DIST2 ∧ DIST3

This means that for Req5.1 to be fulfilled on M1, the validation tasks DIST1
through DIST3 must be discharged.

The final refinement M10, which introduces concrete pixel placements for all
UI elements, also includes new invariants (not shown here due to size) to ensure
that the UI elements’ pixels indeed do not overlap. Once again, we define valida-
tion tasks from the POs generated by Rodin for these invariants and construct
another VO using these validation tasks to validate Req5:

Req5/M10 : no overlap wd ∧ no overlap 1 ∧ . . . ∧ no overlap 6

∧ no overlap airplanes wd ∧ . . . ∧ no overlap airplanes 6

∧ no overlap block slots wd ∧ . . .
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Invariant: Req6. Req6 (also see Fig. 2) states that an aircraft label cannot be
moved into a blocked time slot. Blocking time slots is introduced in M3. We
formulate an invariant, shown in Eq. (2), to validate requirement Req6 against
the model. The invariant ensures that there are no airplanes scheduled in a
blocked time slot, unless the PLAN ATCo has blocked new time slots and AMAN
has not yet updated the landing sequence accordingly.

blockedTimesProcessed = TRUE ⇒
ran(landing sequence) ∩ blockedTime = ∅ (2)

Based on this invariant, five POs (BLOCK1, . . . , BLOCK5) are generated, which are
composed as validation tasks into a VO, and assigned to the requirement:

Req6/M3 : BLOCK1 ∧ BLOCK2 ∧ BLOCK3 ∧ BLOCK4 ∧ BLOCK5

However, the invariant is not strong enough to ensure Req6 for the PLAN
ATCo. Especially when blockedTimesProcessed is equal to FALSE, the invariant
on its own does not ensure that the PLAN ATCo cannot move an airplane into
a blocked time slot. On the modeling side, we have ensured this with the guard
time /∈ blockedTime in Move Aircraft. Thus, the case study revealed the need
for a new validation task type that checks for the presence of a guard, which we
had not considered previously.

We also validated other requirements using invariants. Regarding the GUI,
we formulate an invariant to check the zoom level (Req16). Furthermore, we
formulate invariants to check that the user can only interact with a maximum
of one GUI element simultaneously.

Temporal Property: Req1. We also validate some requirements by temporal
model checking, e.g., Req1 (also see Fig. 2):

Planes can [be] added to the flight sequence e.g. planes arriving in close
range of the airport.

First, we tried to validate this requirement by an LTL model checking task LTL1
(see Eq. (3)) on M0:

LTL1 := LTL(GF(BA({scheduledAirplanes �= scheduledAirplanes$0})) ⇒
GF(BA({∃x.(x ∈ scheduledAirplanes ∧ x /∈ scheduledAirplanes$0)})))

(3)

BA is a new special LTL operator in ProB which allows the usage of a before-
after predicate. In this example, scheduledAirplanes$0 and scheduledAir-
planes denote the airplanes before and after executing an event, respectively.
Thus, the LTL formula expresses that new airplanes are scheduled to the land-
ing sequence infinitely often, under the fairness condition that the scheduled
airplanes change infinitely often.

However, this does not fully cover the requirement. For example, the fairness
condition excludes traces where the scheduled airplanes never change. It should
be possible to add airplanes to the landing sequence, assuming it is not fully
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occupied. We apply CTL model checking (see Eq. (4)). CTL Addi checks that for
all paths, there is always a next state where an airplane can be added to the
landing sequence if it is not fully occupied.

CTL Addi := CTL(AG({card(scheduledAirplanes) = i} ⇒
EX{card(scheduledAirplanes) > i}))

(4)

∀i ∈ {0, . . . , n − 1} where n is the maximum number of airplanes in the landing
sequence. The resulting VO on M0 is as follows:

Req1/M0 : LTL1 ∧ CTL Add0 ∧ . . . ∧ CTL Addn−1

Analogously, we validated Req2 with a CTL model check. Here, we encoun-
tered the same problem with LTL model checking.

Scenario: Req7. Scenarios are sequences of actions leading to a goal formulated
in natural language. A specification often provides a set of scenarios for valida-
tion. Scenarios are also important to demonstrate behaviors to domain experts.
A scenario can be represented by one or multiple traces written in the form
T1, . . . , Tk . This means those traces are executed as tests to show that a scenario
is feasible and behaves as desired. Due to space concerns, we omit the parame-
ters of the trace replay tasks, which contain the executed events and the event
parameters. For example, we consider Req7 (also see Fig. 2):

Moving an aircraft label might not be accepted by AMAN if it would
require a speed-up of the aircraft beyond the capacity of the aircraft;

Our model does not contain aircraft capabilities. However, we can validate an
abstract version of the requirement in our model. We formulate Req7 as a scenario
and validate it with traces.

1. An airplane is scheduled to land for a specific time slot.
2. PLAN ATCo moves the airplane for landing to an earlier time slot.
3. AMAN detects that the airplane cannot land at the earlier time slot, thus

processes the airplane again.

We can validate the scenario by a VO on M1 with Tm1 being the trace repre-
senting the scenario:

Req7/M1 : Tm1

In M3, we added blocked time slots as a feature. For the VO to have full
coverage, it must be extended to cater to blocked slots. This is achieved by
running two traces with different blocked slots configurations Tm3.1 and Tm3.2:

Req7/M3 : Tm3.1 ∧ Tm3.2
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Table 3. Coverage Results from
Scenarios

Operation Covered

AMAN Update yes

Move Aircraft yes

Hold Button uncovered

Block Time yes

Deblock Time yes

Coverage Criterion. In the following example,
we evaluate the state space coverage of multi-
ple traces representing scenarios. A stakeholder
might want to ensure the employed scenarios
and the associated traces are complete. Let
T1, . . . , Tk be the trace replay tasks used to val-
idate all scenarios and let COV be the coverage
evaluation task. Using the ; operator to pass
the state space coverage information between
the validation tasks, the coverage of all scenar-
ios can be evaluated as follows:

(T1 ∧ . . . ∧ Tk ); COV

Practically, we have many scenarios in M3 which are validated by the traces
Tm3.1, . . . , Tm3.4. A VO to evaluate the coverage can be formulated as:

Coverage/M3 : (Tm3.1 ∧ Tm3.2 ∧ Tm3.3 ∧ Tm3.4); COV

The result of this VO can be seen in Table 3. It becomes apparent that
Hold Button is not covered, which—after a short investigation—leads to the
conclusion that this feature was never tested when introduced in M2. This makes
us introduce a new VO covering this case for M2 and refining it for M3.

5 Domain-Specfic Views

We have also created domain-specific views based on the model to help domain
experts and users validate the model. The core idea is that non-modelers can
participate in the validation process and give feedback without needing to know
the implementation details of the model.

Visualization. As the modeled system is interactive, consisting partially of a
GUI, a VisB visualization can be seen as a virtual AMAN prototype. VisB [16]
is a tool in ProB2-UI to create interactive visualizations for formal models.
VisB visualizations consist of an SVG image and a glue file, which links the
SVG with the formal model. In particular, the glue file defines SVG objects’
dynamic appearances and click actions. Thus, a user can interact with the graph-
ical objects by clicking on them, which triggers events in the model, changing
the state according to the events’ actions.

We created two VisB visualisations: a high-level version at M6 where user
behavior is implicit and a lower-level version for M9 with explicit user behavior,
e.g., with a visualization of the mouse cursor along with events for mouse clicking
and dragging. Figure 3 shows the visualisation for M6.5 On the left-hand side of
5 Our visualization shows the minutes relative to the current time, while the specifica-

tion document shows the current minute in the current hour on the clock. Assuming
that the current time is 9:03, then our visualization displays 9:05 as 2, while Fig. 6
in [9] would display 9:05 as 5.



Modeling and Analysis of a Safety-Critical Interactive System Through VOs 295

Fig. 3. Domain-Specific Visualization of AMAN in M6

Fig. 3, one can see the airplanes of the landing sequence and the blocked time
slots (in yellow). The user can block or deblock time slots by clicking on the
left-hand side. Similarly, an airplane can be selected by clicking on the label. It
is then possible to hold the airplane (by clicking on the now visible HOLD button)
or to change its landing time by clicking on the right-hand side of a time slot.
Held airplanes are marked with a red frame (see AIRPLANE1 in Fig. 3). The scale
shown to the users and domain experts depends on the zoom level, which can be
changed by clicking on the top right-hand side.

Simulation. SimB [15] aims to simulate a formal model in a realistic setting. It
is a simulation tool built on top of the ProB animator, where one can associate
timing and probability information with events.

Here, we combined SimB with VisB to obtain a “realistic” real-time pro-
totype for users and domain experts to experiment with. Interactive events
can be triggered by clicking within VisB, while SimB automatically executes
autonomous background events. In particular, the AMAN Update event is trig-
gered every 10 s after initializing the AMAN model. AMAN updates are blocked
while a user is interacting with AMAN; once the user interaction is completed,
AMAN updates are activated again. An example of user interaction + simulation
is shown in Fig. 4.

Abstractions. Validating some user actions is difficult due to the large state
space size and the complex model we are confronted with. Therefore, we cre-
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(a) System Event: AMAN
Schedules Two Airplanes

(b) User Interaction: Block
Time Slot

(c) System Event: Minute
Passes

Fig. 4. Example: User Interaction + Simulation in SimB

ated a so-called abstraction to decrease the mental and computational load.
This abstraction focuses on the user elements M0 to M9 without M1. Due to the
contribution’s size and content, the contribution [13] is available separately.

6 Lessons Learned

6.1 VOs for Validation

VOs provide a systematic approach to the requirements validation process. With
the help of the VO manager integrated into ProB2-UI, we had a good overview
of which requirements still had to be modeled, which requirements still had
problems and which validations were successful (see Fig. 2). The VO manager
also provided a good way to link the requirements in natural language (the
“what” and possibly “why”) to validate tasks that a machine can execute (the
“how”). As modelers, we could focus on the how while directing questions about
the what to the stakeholders.

Sometimes VOs helped us to identify conflicting requirements quickly. For
example, one LTL formula introduced and validated for one requirement was
later invalidated during the implementation of another requirement.

Unfortunately, much manual work is still required when dealing with VOs.
While creating VOs is easy, maintaining them is hard. We are looking into
improving the tool support in ProB2-UI in the future. Some VOs can already
be automatically adapted for refinement, e.g., for trace refinement [12]. However,
complete integration still needs to be accomplished.

6.2 VOs in Requirement Elicitation

We report our findings of employing VOs for requirements elicitation. We
employed two approaches: the a priori approach, creating VOs before start-
ing the modeling process, and the classical a posteriori approach creating the
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Fig. 5. A Priori Approach

VOs after or during the modeling. The resulting Event-B models were then com-
bined and used as the baseline for the final model presented in Sect. 2. The a
priori approach is new and orients itself towards test-driven and behavior-driven
development schemes. We wanted to know whether such an approach is feasible
for formal development.

A priori VO development. The idea of a priori development is shown in Fig. 5.
The document is skimmed for the requirements and extracted and formulated as
VOs. If it is impossible to write them as VO immediately, they are divided into
more manageable pieces. Splitting the requirements also helps to find an initial
structure in which the requirements should be implemented, as one becomes
aware of the dependencies between them. After creating the VO, the model is
written to satisfy the VOs. From here on, the process follows a feedback loop.
When the model is refined, so are the VOs. This guarantees the presence of the
requirements in the refined model.

We discovered two possible reasons for the difficulty of assigning a VO to a
requirement. First, a requirement can be too complex and may consist of multiple
sub-requirements, which was not obvious from the specification. In such a case,
the requirement was split as shown in Fig. 5. Then, each sub-requirement was
assigned a VO. For example, we wanted to implement the two requirements
below into M0. The requirements are extracted from the explanatory text of the
case study.

– ReqExp1 An AMAN update can happen every time.
– ReqExp1.1 Every 10 seconds, an AMAN update happens.
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When creating a VO capturing this requirement, we discovered there are many
assumptions behind the requirements:

1. There is a given number of updates per minute.
2. When the AMAN updates, the remaining updates are decreased by one.
3. A minute passes when the number of updates equals 0. The number of remain-

ing updates is then reset.

Writing one VO that captures all these assumptions at once is possible but
not advised as the corresponding expression would become too complex, reducing
maintainability and traceability. Therefore, we decided to split the requirements
and assumptions into multiple VOs. Each represents one assumption or explicit
requirement. In this sense, VOs helped to structure and uncover the emerging
requirements and their dependencies.

The second possible reason is when a requirement is too concrete for the
current stage of the model. An example is shown in Sect. 4 when discussing sce-
narios. The requirement concerns concrete features of the model (e.g., the speed
of aircraft), which were not implemented at this point. In such a situation, it
is helpful to rephrase a requirement more abstractly, create a VO capturing
the abstract requirement, and discharge it as shown in Fig. 5. Then, the cor-
responding VO is refined back to match the concrete version. This is useful to
introduce validation for high-level requirements early on and make them part of
the validation process.

A posteriori VO development. Within the a posteriori approach, a modeler
first develops a model from the requirements and then validates it using VOs
(see Fig. 6). Here, the modeler has to decide which requirements to choose and
how they are encoded into the model for a development/refinement step. Once
the development step is finished, the modeler creates VOs to fulfill the desired
requirements. Furthermore, the modeler might discover new requirements, lead-
ing to a feedback loop similar to the a priori approach.

Discussion. The main advantage of the a priori approach is that the modeler has
to reason about requirements and VOs in more detail before encoding them. The
main disadvantage is the upfront cost of initially transforming all requirements
into VOs and the time we invest in structuring them. Furthermore, the VOs
cannot be checked on the model immediately.

In contrast, the main advantage of the a posteriori approach is that the
VOs and the requirements can be checked against the model directly after their
creation. Thus, the modeler receives feedback about errors and possible contra-
dictions between requirements and VOs. As a result of the feedback, the modeler
might also create new requirements.

Both approaches mainly differ in how they treat requirements. For example,
the a priori approach focuses less on the implementation details. The a posteriori
approach utilizes the experience of the modeler to avoid trial and error until a
satisfying representation is found. From our current research, we argue that
for a qualitative investigation of both approaches’ usefulness, there needs to
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Fig. 6. A Posteriori Approach

be unified and broad tool support over multiple validation techniques. In the
current unautomated state, the a priori approach required more effort than the a
posteriori approach. This was due to the nature of the approach itself. Whenever
the assumption about the model changed, i.e., an event was named differently,
all VO that referenced this event had to be adapted, which required a lot of
manual work.

6.3 VOs for Requirements Disambiguation

Requirements specifications often contain aspects that are not obvious to the
modeler. In this regard, VOs uncover the unclear aspects rather quickly. When-
ever we could not formulate a requirement as a VO, this triggered a deeper
investigation, leading us to ask additional questions about the specification,
make assumptions for the modeling process and uncover ambiguities. Below we
summarise a few results of the investigations.

Questions triggered by VOs

1. For us, as non-experts, it needs to be clarified to which part of the system
the term AMAN refers. Specifically: is the user-facing GUI part of AMAN,
or is it a GUI for AMAN implemented as an independent component? This
is relevant for Req8; if there are no AMAN updates for 10 s, does the GUI
stop working entirely, or does it continue operating in a “manual only” mode
without the autonomous part of AMAN? Solution: We assumed that when



300 D. Geleßus et al.

a timeout occurs, the UI still functions but doesn’t accept any input until the
autonomous part of AMAN responds again.

2. Fig. 6 (in the specification [9]) shows an airplane on HOLD at 31 min, but the
zoom level is at 30. However, the GUI should only show airplanes up to
30 min away. Is this an error in the example figure, or does this mean planes
on HOLD are excluded from the zoom constraints? Solution: We assumed that
airplanes outside the zoom are only relevant for the landing sequence but for
nothing else. We later discovered that Fig. 6 in the specification displays the
current minute within the current hour on the clock rather than the minutes
relative to the current time.

3. It needs to be clarified what happens to airplanes after they are put on
HOLD. Are they moved into a separate “HOLD sequence” and still shown to
the ATCo? Alternatively, do they disappear entirely from the AMAN GUI?
Solution: We assumed an airplane should stay indefinitely until it is explic-
itly removed from the landing sequence. Furthermore, a hold airplane might
be rescheduled for a later time slot while not put off hold.

4. Based on Fig. 6 (in the specification), airplanes on HOLD still have an
expected landing time. Does the 3-minute separation between landing times
also apply to HOLD airplanes? Solution: We assumed this is the case.

5. When the user pushes and holds a button and a minute passes, what happens
to the planes in the landing sequence? Could we enter an infinite loop where
the AMAN never updates again (i.e., when we push and hold the left mouse
button in a valid position)? Solution: We assumed that the user interaction
does not take forever.

Assumptions. Furthermore, we made additional assumptions to model the
AMAN in Event-B:

1. If the ATCo selects an airplane and zooms in so the airplane is no longer
visible, is it still possible to press the hold button? We assumed this is not
possible, as it would contradict Req12. Moving the zoom slider should deselect
an airplane that leaves the zoom range, making this situation impossible.

2. Initially, we assumed that Fig. 6 in the case study specification shows the
minutes relative to the current time. As a result, we lacked explanations about
what happens with blocked time slots when time passes. Consequently, we
model the time relative to the current time (also implemented in the VisB
visualization, see Fig. 3). Thus, we assumed that once a minute passes, all
blocked time slots are moved forward one minute.

3. We did not model the landing of airplanes, especially because the specification
does not go into detail about this. Instead, we assume that landed planes are
removed from the landing sequence, just like planes that disappear from the
landing sequence for any other reason.

4. We assume that when the zoom slider is moved, the new zoom level is only
applied once the mouse button is released.

5. We assume that there is no possibility to unhold a plane.
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Ambiguities uncovered by VOs. Finally, we reported back to the case study
providers on discovered ambiguities that were eventually resolved in the updated
requirements specification due to our feedback:

1. We first assumed that the AMAN overrules the user. However, the user can
overrule the AMAN according to the updated requirements specifications of
AMAN. This means that user interaction has a higher priority than AMAN.

2. Inconsistency in requirements, e.g., landing sequence and arrival sequence,
led us in the wrong direction by attempting to model airplanes approaching
the airport separately from the landing sequence. This inconsistency was also
removed in the updated requirements specification of AMAN.

6.4 Role of Verification

During the development of the AMAN model, It was better to verify the model
before validating it (in each development step). The validation techniques quickly
detected problems when changing the model, e.g., an LTL formula or a trace
may no longer be valid. Using Event-B in Rodin, we receive fast feedback about
whether a PO is discharged. In general, however, there might be properties that
are difficult to prove (e.g., they might require finding inductive invariants). In
those cases, it is probably best to interleave verification and validation and only
tackle the proof of complex properties once validation is successful.

7 Conclusion and Future Work

In this work, we presented a formal AMAN model in Event-B, developed using
Rodin. This case study is challenging from the modeling perspective as it com-
bines an interactive part, including a GUI, with an autonomous part. In par-
ticular, the AMAN case study highlighted the importance of stable and flexible
tools that can deal with changes in the model and encourage experimentation.

For verification, we noted that POs are well functioning and valuable. How-
ever, with the introduction of complex GUI behavior, discharging them became
increasingly challenging. Model checking proved unsuitable as a fallback option
for verifying the complete model, as it struggles with the state space explosion
problem. However, it is usable with decent performance when instantiating the
model with restrictions.

During the validation of AMAN, we experienced that VOs are particularly
useful in structuring the validation process and linking validations and require-
ments. Here, we critically analyze two development approaches and the ambigu-
ities we uncovered during the employed modeling process.

Furthermore, we often felt the need to show our model to a domain expert and
ask for feedback, which means that the domain expert’s feedback is a valuable
source of information and should be treated as such. To tackle this, we created
an interactive GUI in ProB via VisB together with a simulation of autonomous
AMAN activities with SimB.

In conclusion, AMAN is an interesting case study for further investigations,
especially since the interactive part was fruitful in giving inspiration for devel-
oping and improving new techniques.
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formelles de systèmes interactifs fondées sur la preuve : application aux systèmes
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Abstract. This paper describes a methodology for task model design
and analysis using the Alloy Analyzer, a formal, declarative modeling
tool. Our methodology leverages (1) a formalization of the HAMSTERS
task modeling notation in Alloy and (2) a method for encoding a concrete
task model and compose it with a model of the interactive system. The
Analyzer then automatically verifies the overall model against desired
properties, revealing counter-examples (if any) in terms of interaction
scenarios between the operator and the system. In addition, we demon-
strate how Alloy can be used to encode various types of operator errors
(e.g., inserting or omitting an action) into the base HAMSTERS model
and generate erroneous interaction scenarios. Our methodology is applied
to a task model describing the interaction of a traffic air controller with
a semi-autonomous Arrival MANager (AMAN) planning tool.
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1 Introduction

Task models are systematic approaches to describing the activities of a human
operator in an interactive computer system. Task models can be used to artic-
ulate the operator’s goals and means to achieve them, evaluate the usability
of an interface, and reason about the impact of operator errors on the system.
In safety-critical domains, such as aviation systems and medical devices, where
safety failures have been attributed to interaction design [21], formal methods
can play an important role in rigorously specifying and verifying task models
against desirable interaction properties.
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This paper proposes a methodology for specifying and analyzing task models
in Alloy, a declarative modeling language based on first-order relational logic [11].
We demonstrate how Alloy can be used to formally specify HAMSTERS [2,15],
a notation for hierarchical task modeling, and analyze various properties about
task models using the Alloy Analyzer. Our modeling approach consists of (1) a
generic model encoding the semantics of HAMSTERS, (2) instantiation of an
application-specific task model on top of this semantic model, and (3) simulation
and verification of interaction properties, which, if violated, yield a counter-
example that is visualized as a sample interaction scenario. In addition, we show
how the basic HAMSTERS model can be extended with a generic error model
that captures various types of operator errors (such as inserting or omitting an
action), to enable analysis of a task model under erroneous interaction scenarios.

We demonstrate our methodology through the application to a case study
on an Arrival MANger (AMAN) tool, an interactive aircraft traffic control soft-
ware [17]. We have specified a part of the task model for AMAN and checked
interaction properties that are important for the traffic controller to successfully
carry out their tasks, such as the presence of appropriate visual feedback and
deadlock-freeness. In the process, we have identified several flaws in the inter-
action design as well as the system requirements that are given in the AMAN
reference documentation, for some of which we suggest a fix.

As far as we are aware, our work is the first to formalize and analyze task
models using Alloy. Although the focus of this paper is on AMAN, our approach
is general and should be applicable to other task models in HAMSTERS.

This paper is organized as follows. We begin by introducing our formalization
of the HAMSTERS notation in Alloy (Sect. 2). We then describe an instantiation
of the semantic model for specifying the task model for the AMAN tool and the
analysis of its interaction properties (Sects. 3 and 4). Section 5 explores previous
work related to our approach. We conclude with a discussion of the limitations
of our approach as well as future work (Sect. 6).

2 Formalizing HAMSTERS with Alloy

This section presents an Alloy formalization of a subset of the HAMSTERS task
model notation, addressing both its structural and behavioral semantics, and a
general technique to compose task models with a formal model of the interactive
system. Lastly, an extension to model erroneous user behavior is presented.

Like most task modeling notations, HAMSTERS allows the hierarchical
decomposition of tasks in a tree-like structure. A key feature of HAMSTERS
is that operators are also nodes that define the temporal relationship between
sub-tasks, while in the popular ConcurTaskTrees (CTT) notation [18,19] such
operators are defined in arcs between the sibling sub-tasks, which can be con-
fusing when different operators are used to decompose a task. Composite tasks
have exactly one such child operator node, which can be further decomposed
in operator nodes. To simplify our formalization, we will assume that task and
operator nodes are always interleaved. This does not limit the expressiveness,
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Fig. 1. HAMSTERS structural semantics

since phantom tasks can always be added when operator nodes have children
operators, as explained in [2]. This allows us to merge composite tasks with the
corresponding temporal operator, and to view a HAMSTERS model as a tree
containing only task nodes, composite in branch nodes and atomic in the leaves.

2.1 Structural Semantics

Figure 1 presents an excerpt of the Alloy formalization of the structural semantics
of HAMSTERS. In Alloy, signatures are used to declare entities of the domain.
Furthermore, its type system supports inheritance: signatures can extend other
signatures or be declared abstract, when they cannot contain elements outside
one of their extensions. It is also possible to declare inclusion signatures, arbi-
trary subsets of the parent signature that, unlike extension signatures, are not
required to be disjoint from their siblings. Here we declare an abstract Task signa-
ture with two extensions, containing the Atomic and Composite tasks. The latter
is further extended by the five HAMSTERS temporal relationships supported
in our formalization: Disable, Suspend, Concurrent, Choice, and Sequence1. All

1 This is known as Enable in HAMSTERS, but to avoid confusion with the concept of
enabled in the proposed behavioral semantics, we opted to rename it as Sequence.
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these task types are declared as abstract and will later be extended with sig-
natures denoting the concrete tasks in a specific task model. Finally, a subset
singleton signature is declared to denote the Root task (in Alloy it is possible
to restrict the cardinality of a signature with a multiplicity constraint, in this
case one), as well as two subset signatures marking the Iterative and Optional

tasks. HAMSTERS further classifies tasks according to their nature (for exam-
ple, distinguishing User, Interactive, and System tasks), which do not affect the
behavioral semantics of the model. In our formalization, we identify the Inter-
active user Input tasks only, because they will be relevant to some requirements
and when considering erroneous execution.

Inside an Alloy signature, it is possible to declare fields, relations that map
its elements to other entities in the domain. Field subtasks of the Composite sig-
nature relates each composite task with its sub-tasks. Since for some operators,
namely Sequence, the order of the sub-tasks is relevant, each composite task can-
not be related to an arbitrary set of sub-tasks. Recent versions of Alloy allow the
declaration of sequences with bounded length with the seq keyword. Sequences
are modeled as mappings from integer indexes to the respective elements, and
come equipped with several pre-defined functions and predicates (e.g., elems

that determines the set of elements in a sequence, or hasDups that checks if a
sequence contains duplicate elements). In Alloy, parametrized functions (key-
word fun) and predicates (keyword pred) can also be declared to define reusable
expressions and formulas, respectively. Functions without parameters can be
used to define derived constant expressions. In Fig. 1 two derived relations are
declared (definitions omitted): parent, that relates a task with its parent task,
and succ, that relates a task with its next sibling task.

Facts can be used to impose assumptions in an Alloy model. These are speci-
fied using Relational Logic, an extension of First-Order Logic with operators that
simplify the definition of derived (relational) expressions. The most used oper-
ator is the dot join composition (.), which allows the navigation through fields
to obtain related elements. For example, given task t, the set of its parent tasks
is represented by t.parent and the set of its children sub-tasks by parent.t. Set
operators can also be used, namely intersection (&), union (+), and difference (-).
Atomic formulas in Alloy are typically inclusion or multiplicity tests. Operator
in checks if an expression is a subset or equal to another one, and the available
multiplicity checks are no (empty), lone (at most one element), some (at least
one element), or one (exactly one element). Atomic formulas can be combined
with the standard Boolean operators and quantifiers.

The WellFormed fact shown in Fig. 1 ensures that the task model forms a
tree. The first constraint forces the root task to have no parents, specified as
no Root.parent. The next constraint quantifies over Task - Root to ensure that
non-root tasks have exactly one parent. The next one uses the transitive closure
operator (^) to ensure that the parent relationship is acyclic. Although the static
semantics of HAMSTERS is not entirely clear about additional restrictions to
the structure of task models, we included several additional ones in WellFormed,
mostly based on similar restrictions that exist in CTT. For example, we require
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composite tasks to have at least two (non-duplicate) sub-tasks, and only allow
optional sub-tasks in concurrent and sequence composite tasks.

2.2 Behavioral Semantics

Since we found no formal description of the HAMSTERS behavioral semantics
in the literature, we mainly based our formalization on our experience with the
available task model simulators. The most recent version 6 of Alloy [5,12] added
explicit support for behavioral specifications, allowing signatures and fields to
be declared as mutable (with keyword var) and adding Linear Temporal Logic
operators such as always or eventually.

Figure 2 presents an excerpt of the Alloy formalization of the behavioral
semantics of HAMSTERS. The complexity of the semantics is mainly due to
the fact that iterative and sub-tasks of suspend tasks (and consequently, their
sub-tasks) can be performed multiple times; and that suspending and disabling
tasks can interrupt other tasks at arbitrary points, the former allowing them to
eventually resume. We rely on five mutable subsets of Task to manage the status
of tasks in each state of the execution. We consider atomic tasks to execute
atomically, and register those already executed, and composite tasks to run
through several states as their sub-tasks are performed, and register the tasks
that are running. Both executed and finished tasks can be reset if repeatable.
Tasks that are enabled are those ready to execute (atomic) or run (composite).
Tasks that already finished executing/running are also registered, as well as
those that are done, those that have finished and are not repeatable.

The evolution of the set of executed atomic tasks is controlled by the first two
constraints in the Behavior fact. It starts empty and afterwards it is always the
case that either it does not change (no task is executed) or it changes according
to one of two possible events (specified in separate predicates): either an enabled
atomic task is executed and added to executed (note that executed’ denotes the
value of executed in the next state), or an enabled and already finished repeat-
able task is reset and it and all its descendant tasks are no longer considered
to have been executed (the descendants are computed by applying the reflexive
transitive closure operator (*) to parent).

The value of the four remaining variable subsets is specified by constraints in
Behavior that define them by set comprehension, with many cases omitted due to
space limitations. Set enabled only contains tasks whose parent is also enabled,
and is further restricted according to the type of the task. For example, an
atomic task is only enabled if not yet done and a sub-task of a choice composite
task is only enabled if none of its siblings is yet running. The running tasks are
those not yet done but that already started, that is, have some descendant task
that is already done. The set of finished tasks is again defined case-by-case. For
example, atomic tasks finish immediately when they execute, and choice tasks
are considered to be finished when one of their sub-tasks is done. Finally done

tasks are those that are non-repeatable and that have already finished.
With this formalization of the behavioral semantics it is already possible

to check some general properties of task models or validate expected scenarios.
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Fig. 2. HAMSTERS behavioral semantics

In Alloy, run commands are used to ask for instances satisfying the specified
assumptions and any additional scenario-specific constraints, and check com-
mands to verify expected assertions. For decidability reasons, commands are
bounded by a user-defined scope that limits the maximum number of elements
inside signatures (3 by default) and the maximum number of transitions in the
returned instance traces (10 steps by default)2. For example, the following com-
mand, dubbed Complete, generates a task model where the root task is eventually
done.

run Complete { eventually Root in done } for 1 but 2 steps

2 In this paper we only use the bounded model checking engine of Alloy 6, but the
Analyzer also supports unbounded model checking if NuSMV or nuXmv are installed,
which is activated with the scope 1.. steps.
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The defined scope limits the search to task models with at most 1 task and runs
with 2 transitions, so the returned instance will be the smallest task model where
the goal can be completed as fast as possible, namely one with a single atomic
task that is immediately executed. We can also check that task models cannot
deadlock, in the sense that while the root goal task is not done, one of the two
events (execute an atomic task or reset a repeatable task) can still occur.

pred Deadlock {
no t : Atomic | t in enabled
no t : Task | t in enabled and t in finished - done }

check NoDeadlock {
always (Root not in done implies not Deadlock) } for 6 but 3 seq

Note that this assertion will be checked for traces with up to 10 transitions,
any possible task model with up to 6 tasks, and where each composite task has
at most 3 sub-tasks (due to the scope 3 on seq, the size of sequences that are
used to model the order of the sub-tasks), an enormous search space that takes
120 s to verify with the SAT-based bounded model checking engine (with the
Glucose SAT solver) in a commodity 2.3GHz Intel Core i5 with 16 GB RAM.
All commands in the paper were run on the same machine.

2.3 Composing Concrete Task Models with System Models

To verify properties of an interactive system where user actions are governed by
a task model it is necessary to formally specify the system model and compose
it with formal specification of the task model just presented. In Alloy, systems
are specified in a style similar to the one used above to control the evolution
of executed atomic tasks: mutable signatures and fields model the state of the
system, and a fact constrains their initial state and which events are possible
at each state. Events are typically specified in separate predicates, each with
three kinds of formulas: guards that specify when is the event enabled, effects
that specify which mutable structures change and how they change, and frame
conditions that specify which mutable structures do not change. Each atomic
task in the task model should have a corresponding event, and it is necessary to
ensure that the former is only enabled when the guard of the latter holds, and
that the execution of both is synchronized.

To support this composition, the Alloy HAMSTERS formalization was
refined, adding a mutable field to atomic tasks that will determine in which
states is the guard of the respective system event valid.

abstract sig Atomic extends Task { var guard : lone True }
one sig True {}

In every state of execution, field guard relates each atomic task with at most one
element of the singleton signature True. Since Alloy has no pre-defined Boolean
type this is a simple way to declare a Boolean mutable attribute: given a task
t, the guard of the respective event is enabled iff t.guard = True. When adding
specific tasks to the task model, the value of guard can be defined with a signature
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fact, an assumption defined alongside a signature declaration, which is implicitly
universally quantified over all states. The specification of the value of the enabled

mutable signature in Fig. 2 must also be refined to consider an atomic task
enabled only when t not in done and t.guard = True.

Finally, to ensure the synchronization of the execution, a call to predicate
execute[t] should be included in the specification of the system event corre-
sponding to atomic task t. Since the guard will already be checked by this pred-
icate, the specification of the event needs only to specify the effects and frame
conditions. If an event can be triggered by multiple tasks, the call to execute

can be replaced by the disjunction of multiple calls.
Suppose, for example, that an interactive system consisted only of two atomic

tasks executed in sequence. Its specification would look as follows.

... // state declaration
one sig Goal extends Sequence {} { subtasks = 0→Task1 + 1→Task2 }
one sig Task1 extends Atomic {} { guard = True iff ... } // guard
one sig Task2 extends Atomic {} { guard = True iff ... } // guard
fact System {

... // initial state
always (event1 or event2) }

pred event1 {
execute[Task1]
... } // effects and frame

pred event2 {
execute[Task2]
... } // effects and frame

Notice in the signature fact of the Goal sequence task that the order of the sub-
tasks is specified by stating which sequence index is mapped to each of them.

2.4 Adding Erroneous Behavior

In safety-critical interactive applications, it is often important to verify if
expected properties still hold even in presence of user errors, i.e., interactions
that do not conform to the defined task model. We will focus on user errors while
executing input tasks in sequence, namely omission or duplication of required
input tasks or performing them in a different order, although the impact of other
kinds of errors could be explored with similar approaches. To account for user
errors, our formalization needs to be further refined. First a subset signature of
Atomic is added containing the Erroneous tasks, which in the WellFormed fact
are further restricted to be Input tasks whose parent is a Sequence task. A muta-
ble field log is also added to the Sequence composite tasks to record the actual
sequence of tasks that was executed (which might differ from the sequence spec-
ified in subtasks due to user errors). This will allow us to later detect which
errors occurred in an execution.

sig Erroneous in Atomic {}
fact WellFormed { ...
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all t : Erroneous | t in Input and some t.parent & Sequence }
abstract sig Sequence extends Composite { var log : seq Task }

The formalization of the behavioral semantics also needs to be adapted to
allow user errors. In particular, the specification of enabled is changed to consider
an atomic erroneous task enabled even if already executed. The conjunct that
concerns atomic tasks is changed to the following:

t in Atomic implies
(t in Erroneous or t not in done) and t.guard = True

Likewise, the restrictions for a sub-task of a sequence to be enabled (omitted in
Fig. 2) is relaxed to allow the execution of erroneous tasks out of order.

Finally, the specification of execute, reset, and nop is also changed to con-
sider their effect on the log mutable field. For example, reset should clear the
log of the reset task and all its descendant tasks and maintain the log of the
remaining sequence tasks.

pred reset [t : Task] {
...
all x : *parent.t | no x.log’
all x : Sequence - *parent.t | x.log’ = x.log }

3 The AMAN Case Study

In this section we will show how the presented HAMSTERS formalization and
system composition technique can be applied to a case study related to air traffic
control3, namely a semi-autonomous Arrival MANager (AMAN) [17].

3.1 Task Model

In [17], the interaction of the air traffic controller (ATCo) with AMAN is
described by a HAMSTERS task model. This task model includes numerous
perceptive user tasks that have no direct impact on the interaction with the sys-
tem, so in this section we will consider a simplified version, presented in Fig. 3,
that includes mainly interactive (both input and/or output) and system tasks.
We will not describe the graphical notation of HAMSTERS (see [15]) but we
believe it will be easy to grasp given the description bellow.

The ATCo task of managing the Landing Sequence (LS) can be suspended
every 10s by the AMAN autonomous activity, which is a sequence of 3 system
tasks where updated information about the planes is received by the radar and a
new LS is computed and displayed. In abstract terms an LS is an assignment of
planes to landing time slots, that respects some safety requirements concerning
the separation of planes. The current LS is displayed in a user interface that

3 The full HAMSTERS and AMAN Alloy models are available at https://github.com/
nmacedo/HAMSTERS-Alloy.

https://github.com/nmacedo/HAMSTERS-Alloy
https://github.com/nmacedo/HAMSTERS-Alloy
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Fig. 3. Simplified AMAN task model (only interactive and system tasks)

shows each plane as a label next to the assigned slot in a timeline. While moni-
toring the LS, the ATCo may concurrently modify the zoom level of this timeline,
meaning that only a prefix of the LS is shown at any time. The ATCo may also
modify the LS manually, select planes to put on hold, or block some time slots
where no plane can be assigned. Finally, this iterative (and interactive) activity
of managing the LS can be terminated at any time by the disabling stop task.

As explained in Sect. 2.3, formalizing a concrete task model in Alloy requires
declaring singleton extensions of the appropriate types, and for composite tasks
specifying the order of the respective sub-tasks. It is also necessary to specify
the Iterative, Optional, and Interactive Input tasks. Figure 4 presents a snippet
of this formalization for the AMAN.

3.2 Interactive System Model

Since we are interested in exploring and analyzing design alternatives, our model
of the AMAN system will be purposely abstract, as desired in such an early
phase of the development so that the conducted analysis applies to many pos-
sible different implementations. The structures that characterize such abstract
view of the AMAN state are presented in Fig. 5. Two immutable signatures are
declared to represent the Planes and the different time Slots. The latter are
totally ordered using the pre-defined module util/ordering. Mutable field slot

represents the current LS, associating each plane to at most one time slot. Muta-
ble field label represents the labels currently displayed on screen. Labels are not
explicitly modeled, so label directly associates slots with the plane shown in the
label. The state also includes six mutable subset signatures of Plane and/or
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Fig. 4. Alloy formalization of the AMAN task model

Fig. 5. An abstract view of the AMAN state

Slot: the planes currently detected by the radar; the slots in the timeline prefix
currently displayed; the blocked slots; the singleton selected zoom level, here
represented by the last slot of the timeline that should be displayed; the planes
that are holding and the slots where the label already displays the plane as
holding (note that there is always a delay between computing or modifying the
LS and updating the displayed information); and, finally, the slots or plane labels
currently selected (either to block or put on hold, respectively).

Given these state declarations we can define the guards that enable the exe-
cution of the atomic tasks. For example, we could enable ‘Stop Manage LS ’ to
occur only when there are no planes detected by the radar.

one sig StopManageLS extends Atomic {} { guard = True iff no radar }

Other atomic tasks that are guarded in our model are:

– ‘Modify Zoom’ requires that there are at least two time slots.
– ‘Select Aircraft Label ’ requires non-holding planes to be currently displayed.
– ‘Click Hold Button’ requires one plane label to be selected.
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– ‘Modify LS ’ requires that there is some displayed plane label (to drag to a
different position in the LS) and at least one free non-blocked slot on display.

– ‘Select Slot ’ requires that some non-blocked slot is currently displayed.
– ‘Display Slot Locked ’ requires one slot to be selected.

To give another example of the formalization of such guards, consider the one
assigned to the ‘Modify LS ’ task.

some Slot.label and some displayed - Plane.slot - blocked

Finally the interactive system behavior should be formalized following the
methodology described in Sect. 2.3. For each atomic task one system event should
be specified, including a call to the execution of the respective task to ensure the
proper synchronization between the task and the system. The same event may
be associated to multiple tasks, which is the case of the two distinct ‘Display
LS ’ tasks in the AMAN task model. To give an example of an event specification
consider the ‘Compute LS ’ system task.

pred computeLS {
execute[ComputeLS]
// effects
slot’.Slot = radar and no Plane.slot’ & blocked
all s : Slot | lone slot’.s
Plane <: holding’ = holding & radar
// frame conditions
radar’ = radar and label’ = label and ... }

Here we completely abstract the way the LS is computed, again leaving room
for many different implementations. The only restrictions imposed on the new
value of slot are that all planes detected by the radar are assigned a non-blocked
slot and that at most one plane is assigned to each slot. Holding planes that are
no longer detected by the radar are also removed from the holding set. All
remaining mutable relations keep their value.

4 Analysis of the AMAN Design

Design analysis should include both validation and verification. Our validation
focused on exploring specific execution scenarios to rule out possible conflicts or
inconsistencies in the interactive system specification. Then, verification checked
some of the requirements listed in the case study documentation [17].

4.1 Scenario Exploration

Alloy’s run commands can be passed arbitrary formulas as constraints that must
hold in the generated instances, which allows the user to loosely specify inter-
esting scenarios. For instance, to inspect a scenario where eventually a time slot
is displayed as holding, one could write the following command
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Table 1. Generated scenarios, time in seconds

Scenario Description Steps Time

Complete Goal is completed 2 3.2

NotComplete Tasks keep running and goal is never completed 6 24.7

AllExecute All atomic tasks are executed at least once 15 82.8

SomeHolding Some plane label is displayed as holding 9 23.2

OmitError An input task is erroneously omitted 11 42.6

RepeatError An input task is erroneously repeated 4 7.1

ReorderError A sequence task is executed in the wrong order 12 47.2

Fig. 6. Alloy theme for the AMAN case study in a state of SomeHolding

run SomeHolding {
no Erroneous and eventually (some Slot & holding)

} for 3 but 5 seq, 20 steps

which would present an AMAN execution trace with at most 20 states and at
most 3 planes and slots. For a more complex scenario, suppose that we wish to
inspect erroneous executions, identified through a finished Sequence task where
sub-tasks are missing in the log (seq/Int denotes the available seq indexes).

run OmitError { eventually (
some st : Sequence | st in finished
some i : seq/Int, x : Task | st.subtasks = insert[st.log,i,x])

} for 3 but 5 seq, 20 steps

Table 1 summarizes the tested scenarios, including the minimal number of
steps needed to generate them and the running time (in seconds). All commands
were run with the default scope of 3 except for 5 seq and 20 steps. The first 3
commands refer only to HAMSTERS concepts (such as completing the goal, as
shown in Sect. 2.2), and could be applied to other concrete task models.

Alloy depicts generated instances graphically, showing one transition of the
trace at a time (two panes, with the pre- and post-state). The user can then nav-
igate along the trace to inspect other states. To ease the visualization custom
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themes can be defined. We developed such a theme for the AMAN model, and
Fig. 6 shows an advanced state of a trace returned by SomeHolding. The position
of the elements was manually positioned for better understanding (unfortunately
the Alloy visualizer does not ensure that arcs do not overlap). Concerning the
task model (left-hand side), tasks are colored according to their status: enabled
atomic tasks in yellow, running composite tasks in green, and done tasks in red.
Iterative and Optional tasks are marked with a label. Concerning the interactive
system (right-hand side), LS time slots are shown with circles, with those dis-
played in the screen colored gray. The selected zoom level is shown as a lozenge,
blocked slots as a double circle, and selected slots with an ‘X’ label. Planes are
shown as hexagons, colored yellow if detected by the radar and red if holding; if
the holding status is being displayed an ‘H’ is added to the plane label.

Similarly to simulators, the visualizer provides different scenario exploration
operations which allow the user to iterate through alternative traces that conform
to the executed command. For instance, the ‘New Config ’ operation searches for
an alternative static configuration (here, the existing planes and slots) and ‘New
Fork ’ for an alternative transition in the selected state (here, executing a different
task). These operations were used extensively during validation.

4.2 Requirement Verification

After thorough validation, we verified some desirable properties. Note that our
approach focused on the analysis of the user interaction rather than an imple-
mentation of an AMAN system, so not all requirements from [17] are verifiable.

In the first phase we consider only interactions with the AMAN system that
conform to the task model (i.e., without user errors). We started by specify-
ing simple check commands that were expected to be false due to the delay
between the tasks, such as whether holding planes are always within the radar
(HoldingInRadar) or whether planes in the LS are always shown in the screen
(LabelsInLS). Alloy indeed showed these to be false, providing counter-examples
that can be visualized and explored likewise the scenarios in Sect. 4.1.

Regarding the documented safety requirements [17], Req5 – stating that
labels cannot overlap in the LS – holds for our system (NoOverlap, speci-
fied as all s : Slot | lone s.label). We faced some difficulties when for-
malizing Req6 – that no planes can be moved to blocked slots. Although
it seems to restrict the action of “moving a label”, we tried to interpret it
as an invariant on the state of the system. The AMAN described in [17]
allows planes to be in blocked slots until the next AMAN iteration exe-
cutes. Thus, a simple interpretation of Req6 (NoLabelsBlockedA, specified as
no p : Plane | some label.p & blocked) is obviously false. In fact, Req6 must
state that the inconsistency is temporary, and that the plane will eventually be
moved from the blocked slot (NoLabelsBlockedB):

always eventually (no p : Plane | some label.p & blocked)

This means that Req6 is a liveness property – eventually a desirable state
will be reached – that will be trivially false without imposing fairness constraints
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– that the model cannot stutter indefinitely if there are tasks left to do. Our
HAMSTERS formalization provides two predicates, WF and SF, that the user can
call to enforce weak and strong fairness on the execution of tasks, respectively,
according to standard semantics. For instance, WF states that atomic tasks cannot
be permanently enabled without being executed, and that Iterative tasks cannot
be permanently waiting to be reset for another iteration. For NoLabelsBlockedB

to hold, it suffices to enforce weak fairness, so that the AMAN autonomous
activity eventually updates the LS and recovers consistency.

Regarding interaction requirements [17], it is clear that not all task sequences
allowed by the task model are feasible in our formalized interactive system, as
seems to be required by Req14. It suffices to consider the pre-conditions on the
events of the composed system. Instead, we explored other properties related
to the availability of tasks. We were able to check that our AMAN task model
never deadlocks – it never reaches a state without enabled tasks and the root
goal still not completed (NoDeadlock). We were also able to check that whenever
a non-holding plane is being displayed, it will eventually be possible to select it,
another liveness property requiring strong fairness (SelectAvailable).

Lastly, for the automation requirements [17] we focused on Req9 – that all
inputs from the ATCo must have some graphical feedback. This can be formal-
ized as a liveness property (Feedback) such as

all t : Input | always (execute[t] implies eventually DisplayChanges)

where DisplayChanges tests whether there were any changes in the variables
related to the AMAN display. Interestingly, even when enforcing fairness, this
property does not hold. After inspecting the returned counter-example it became
clear why: if the ATCo selects a plane to put on hold but modifies the zoom
level before clicking the hold button, he may never get visual feedback about
the plane changing to the holding status. One may try to add an additional
pre-condition to ‘Click Hold Button’ to require the selected plane to be visible.
This would fix Feedback but introduce other problems: the non-visible plane can-
not be unselected, breaking availability properties like SelectAvailable. We also
tried to change the interactive system by having ‘Click Hold Button’ automati-
cally zoom out to show the selected plane; but another counter-example is found
where the autonomous AMAN task starts, before the ATCo presses hold, that
no longer detects the plane in the radar and does not display it to the ATCo.
The most direct way we could envision to fix this issue requires several changes:
enforcing the pre-condition mentioned above on ‘Click Hold Button’; enforcing a
pre-condition on ‘Select Aircraft Label ’ to forbid the selection of planes already
selected; and breaking down ‘Put Aircraft on Hold ’ to not force every ‘Select
Aircraft Label ’ to be followed by a ‘Click Hold Button’. This allows ‘Select Air-
craft Label ’ to be executed again to unselect a previously selected plane, finally
guaranteeing that all our assertions hold.

Table 2 summarizes the checked assertions, with the minimal number of steps
of the counter-examples for the invalid ones and the running time (in seconds).
All commands were run with the default scope of 3, 5 seq and 20 steps.
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Table 2. Verified assertions (without erroneous tasks), time in seconds

Assertion Description Steps Time

HoldingInRadar All holding planes are detected by the radar 8 19.2
LabelsInLS All the displayed labels are part of the LS 7 15.6
NoOverlap Labels should not overlap (Req5) unsat 114.6
NoLabelsBlockedA No labels in blocked slots (Req6) 7 15.6
NoLabelsBlockedB Labels will not stay in blocked slots (Req6) unsat 539.9
NoDeadlock The composed system does not deadlock (Req14) unsat 90.8
SelectAvailable Selecting planes to hold is always possible (Req14) unsat 567.6
Feedback Input tasks always have some feedback (Req9) 12 132.1

The last issue we addressed was the robustness of our system against ATCo
errors. To this purpose, we ran all check commands again but this time allowing
erroneous tasks as described in Sect. 2.4. Interestingly, all commands that held
remain valid even in this scenario. This means that our very simple formalization
of an AMAN system is resistant to user errors, in the sense that an ATCo acting
outside the task model does not break the consistency of the system.

5 Related Work

Despite our best attempts, we were unable to find a publicly available docu-
ment describing the formal semantics of HAMSTERS. We reverse-engineered
the semantics by interacting with the given HAMSTERS simulator and also
referring to the semantics of CTT [18,19], a predecessor to HAMSTERS, when
appropriate. In particular, our recursive definition to determine the enabled set
of tasks seems to be very similar to the recursive algorithm implemented in
CTTE [16], the most popular CTT design and simulation tool. Although we
believe that our formalization is reasonable, it is possible that it differs from
what the designers of the HAMSTERS notation intended; the outcome of our
analysis is thus also contingent on the fidelity of our model.

The composition (or coupling) of task models and system models, to show
the consistency of the prescribed interaction model, has been proposed before. In
particular, techniques have been proposed for the co-execution of HAMSTERS
task models with Petri Net system models [1] or with actual interactive applica-
tions [13]. These techniques allow only to validate the consistency of the coupled
system, while our Alloy-based technique can also be used to also verify require-
ments with model checking.

The consistency of task models and interactive applications can also be
checked by first generating scenarios from task models to be latter run in the
target application. For HAMSTERS, a technique for scenario generation has
been proposed [6] that first generates a state machine from a task model, and
then uses standard graph traversals to generate possible sequence of tasks that
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can complete the goal. To keep the number of generated scenarios under control,
this work was latter extended with a technique to manipulate the task model
prior to generating the state machine, with the goal of guiding the generation
of scenarios to those more relevant for the system under analysis [7]. Our Alloy
specification of HAMSTERS task models could also be used for directly gener-
ating relevant scenarios, since, as shown in Sect. 4.1, run commands can be used
to generate scenarios satisfying given constraints.

Techniques to analyze the impact of user errors on task models have also been
studied before [3,9,10]. In particular, an extension of the HAMSTERS notation
has been proposed to explicitly describe possible user errors [10]. Our formaliza-
tion only handles some of the user errors that can described in this extension,
namely slips and lapses in sequence tasks. Methods have been proposed for ana-
lyzing the impact of user errors on CTT [20] or HAMSTERS task models [14].
Unlike these manual techniques, our Alloy-based technique allows the automatic
analysis of the impact of user errors in HAMSTERS task models.

6 Conclusion

This paper introduced a technique for task model design with Alloy, that enables
the automatic validation and verification of the coupling of a HAMSTERS task
model with a state-based system model. The proposed technique also allows
the automatic analysis of the impact of user errors. The technique was applied
to the AMAN case study, helping us identify and propose fixes to flaws in the
interaction design and in the system requirements.

Although this paper mainly focused on the application of the proposed tech-
nique to the AMAN case study, we believe that it has other potential utilities.
First, our semantic model could be used as a backend for other tools that rely
on the HAMSTERS notation – for example, by augmenting the HAMSTERS
simulator with an ability to automatically generate sample scenarios or verify
properties. By leveraging the capability of the Alloy Analyzer to exhaustively
enumerate a set of instances, our approach could also be used to generate test
cases from a task model and execute them to evaluate the underlying applica-
tion. Finally, we plan to apply our approach to analyze task models in other
safety-critical domains, such as medical devices [8] and automotive systems [4].
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Abstract. The present paper describes an Event-B model of the
Arrival MANager system (called AMAN), the case study provided by
the ABZ’23 conference. The goal of this safety critical interactive sys-
tem is to schedule the arrival times of aircraft at airports. This system
includes two parts: an autonomous part which predicts the arrival time
of an aircraft from external sources (flight plan information, radar and
weather information, etc.) and an interface part that permits to the Air
Traffic Controller (ATCo) to submit requests to AMAN like changes
regarding the arrival times of aircraft. To formally model and verify
this critical system, we use a correct-by-construction approach with the
Event-B formal method and its refinement process. We mainly consider
functional features of the case study; all proof obligations have been dis-
charged using the provers of the Rodin platform under which we carried
out our development. To help users understand how AMAN works and its
main functionalities, a visualisation of the Event-B models was achieved
using the VisB component of ProB. Our models have been validated
using ProB by applying scenarios related to different functional aspects
of the system.

Keywords: System modeling · Event-B method · Refinement ·
Verification

1 Introduction

In this paper, we introduce a formal model of the Arrival MANager system
(called AMAN). This system has been provided as a case study in the context
of the ABZ’23 conference. The main objective of the AMAN system is to help
the Air Traffic Controller (ATCo) manage the arrival of aircraft approaching
the considered airport by providing it with an arrival sequence. To predict the
arrival times of aircraft, AMAN uses external sources like flight plan data, radar
data, weather information, etc. The process of calculation of concrete arrival
times itself is out of the scope of this paper, only its output is considered.
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The AMAN system works in collaboration with the ATCo who can suggest
some modifications on the arrival sequence to the AMAN. The ATCo can also
block periods of time (for as runway cleaning for instance) notifying the AMAN
that these time slots are no longer available; any predicated arrival corresponding
to these slots must be thus moved. The ATCo also has the possibility to put an
already predicted aircraft on hold, informing the AMAN that this latter must be
removed from the arrival sequence. Finally, the interface permits to the ATCo
to focus on specific aircraft that are predicted to land within the next minutes
(between 15 and 45) by selecting a zoom level. In that case, only these related
aircraft are displayed within the interface.

The present paper describes the formal modeling of the AMAN system using
the Event-B formal method with its refinement technique that permits to mas-
ter the complexity of a system by gradually introducing its different elements
and characteristics. Building a formal model of such a system permits to verify
the expected properties including the safety ones.

The rest of this paper is structured as follows. After a brief description of the
Event-B method provided in the next section, Sect. 3 presents our modelling
strategy. Then, Sect. 4 describes our model in more details. The validation and
verification of our model are discussed in Sect. 5 along with a visualisation of the
model using the VisB component of ProB. Section 6 compares our specification
with an other model developed by a team of the Düsseldorf University. Finally,
Sect. 7 concludes the paper.

2 EVENT-B Method

Introduced by J-R.Abrial as a successor of the B method [1], the formal Event-B
method [2] provides mathematical notations and concepts to develop correct-by-
design discrete systems. A system, developed by Event-B, is composed of a set
of components, each of which can either be a context or a machine. Contexts
describe the static part of the system and may contain constants and sets (user-
defined types) together with axioms that specify their properties. A machine
models the dynamic part in terms of variables and a number of events. The
type of these variables and the properties that must be satisfied whatever the
evolution of the system are specified as invariants using first-order logic and
arithmetic.

Event-B allows for an incremental development of a system thanks to the
refinement concept where machines are related by a refinement relation (refines)
whereas the contexts are linked by an extension link (extends). A refined
machine can introduce new variables, new events and/or new properties along
with guard strengthening and nondeterminism reduction. A new event intro-
duced in a model M ′, which refines a model M , is considered to refine a skip
event of M . Therefore, this new event cannot modify a variable of M . As a
result, any event that needs to modify a variable v must be defined in the same
model where v is first introduced.

The Event-B method is supported by the Rodin platform [4] that includes
editors, provers and several other plugins for various tasks like animation and
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model checking with ProB [6]. All these facilities and characteristics of the
Event-B method and its support tool were useful for formal modeling and
verifying the AMAN system. We have especially used ProB for the following
purposes: (i) animating the built models with exhibiting the problematic behav-
iors that violate the invariant prior to the hard/long proof phase, (ii) validating
the specification by simulating some scenarios in order to be sure that we have
built the right system, (iii) building a visualisation of the models using its VisB
component.

3 Modelling Strategy

3.1 Control Abstraction

In this paper, we use the concepts described by Parnas and Madey in [12]. The
AMAN system can be considered as a control system that reads information from
the environment elements using sensors and uses a set of actuators to transmit
the adequate orders to these elements.

A sensor measures the value of an environment element m, called a monitored
variable (e.g., the desired arrival time of an aircraft, radar information), and pro-
vides this measure (e.g., the desired hour/minute) to the software controller as
an input variable i. The objective of the commands, called output variable o
sent to the actuators, is to modify the value of some characteristics of the envi-
ronment, call a controlled variable c. Variables m and c are called environment
variables. Variables i and o are called controller variables. Finally, a controller
has its own internal state variables to perform computations. In this case study,
we use Event-B state variables to represent both environment and controller
variables. We model neither sensor/actuator failures nor their delays.

A well-known architecture of a control system is a control loop that reads
all input variables at once, at a given moment, and then computes all output
variables in the same iteration. But, it can be also viewed as a continuous system
that can be interrupted by any change in the environment represented by a new
value sent by a sensor. In this paper, we adopt an hybrid view: each 10 s, the
AMAN reads various sensor inputs and makes a new prediction to display. More-
over, the AMAN instantaneously reacts to some ATCo’s requests by updating
the display. From the Event-B point of view, we define one event for each input
corresponding to the ATCo’s interaction and an additional event display rep-
resenting the calculation and the display of a new prediction performed by the
AMAN.

3.2 Modeling Structure

The Event-B specification presented in this paper is iteratively built using
refinement. It is composed of 8 levels (8 machines and 2 contexts) and defines
and uses a theory to deal with, among others, sequences, the absolute value, etc.

Context C1 mainly defines the following constants: Labels to represent the
aircraft, Hours, Minutes and Seconds to denote the possible values of these time
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units, zoomLevels representing the possible values for the zoom level. Context C1
is seen by the machine M1 that defines, among others, an event for determining
and displaying the arrival times of aircraft and an event for selecting the zoom
level. This machine is refined by the machine M2 that models the holding of an
aircraft. Machines M3 and M4 respectively introduce the moving of a scheduled
aircraft to change its arrival time and the blocking of time slots by the ATCo.
Machine M5 represents the request of an aircraft for landing. Machine M6 mod-
els the interaction between the ATCo and the AMAN using the mouse. This
machine sees the context C2 that defines some constants to describe a mouse in
terms of its possible states (clicked, released) and also the different elements on
which a mouse can click. Machine M7 models the historical functions that per-
mit to the AMAN to provide the ATCo with the previous predictions. Finally,
the machine M8 specifies the stop of the AMAN for failure for instance.

Roughly speaking, the structure of the developed Event-B specification is
built as follows: the outputs (prediction and display of the arrival times) of the
system are modeled first in the machine M1, then the inputs are modelled in a
second step (Machines M2-M7). The inputs mainly correspond to the ATCo’s
interactions with the AMAN. Finally, the last level M8 model the failure of the
AMAN.

3.3 Modeling Temporal Properties

Some effects of the ATCo’s actions are not instantaneous and need a display
update to be performed by the AMAN while calculating a new prediction. An
example of such requirement is: "an aircraft put on hold must be removed, after
a while, from the landing sequence". This requirement can be specified using an
LTL formula but unfortunately Event-B does not include a native support the
expression of LTL formula as part of the specification even if the ProB model-
checker can be used for that purpose by checking the LTL formulas on the
Event-B specification, but it does not terminate for our model since the size of
the state space to analyse is too large. Another option we considered is the use of
the proof-based approach for temporal formulas proposed in [9]. This approach
would generate a large number of proof obligations for our model: one proof
obligation per event. Therefore, we expressed such properties as invariants by
adding extra variables that store the last moment at which the modifications are
performed and specified that when the time progresses beyond this moment, the
modifications become effective. For instance, to express the above requirement
as an invariant, we have defined a variable holdT ime that is updated to be equal
to the current time each time an aircraft is put on hold. Then, the requirement
is expressed as follows:

inv1: ∀ hl. hl ∈ holdLabels
⇒

(holdTime(hl)=curTimeSec(curTimeS, curTimeM,curTimeH )
⇔

hl ∈ dom(arrivalM ))
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where holdLabels denotes the set of aircraft put on hold, dom(arrivalM ) is
the set of scheduled aircraft and currentTimeSec represents the current time in
terms of seconds which is calculated from the current second (rep. minute, hour)
curTimeS (resp. curTimeM, curTimeH ) . The invariant inv1 specifies that a held
label hl remains in arrival sequence (hl ∈ dom(arrivalM )) iff the time at which
it is held is equal to the current time, that is, the AMAN does not process this
label yet (since time has not elapsed).

3.4 Formalisation of the Requirements

Table 1 shows where and how the requirements listed in [11] are specified in our
Event-B models. As one can remark, depending on the kind of the requirement,
this later is specified as an invariant, a guard, an elementary variable (like the
variable mouseState), an event with specific guards, etc. Requirements Req22
and Req23 for instance cannot be easily expressed as an invariant since it would
require to introduce at least three additional variables: (i) a variable mouseStateP
to store the previous state of the mouse, (ii) a variable mousePositionP to store
the previous position of the mouse and (iii) a variable isEnabled to know whether
the hold button is enabled or not. In that case, the invariant would be expressed
as follows:

mouseStateP=clicked ∧ mousePositionP=hold
mouseState=released ∧ mousePosition=hold
⇒
isEnabled = TRUE

We did not chose this option because these additional variables make the
specification more complex; we have to manage their updates by each event.
Finally, let us note that some requirements (Requirements Req17, Req18 and
Req20) are not covered because they are related to the interface appearance
and not to the system functionalities.

In addition to the requirements listed in Table 1, we have specified some
additional properties that we consider of the good sense. For instance, we have
specified that the requests are dealt with according to the FIFO strategy (First
In First Out) to ensure fairness. More details are given in the next section.

4 Model Details

In this section, we give a brief description of some key levels of the Event-
B modeling of the AMAN. The complete archive of the Event-B project is
available in [8]. Our modeling makes the assumption that the AMAN predictions
are done for a single day, that is, no aircraft is planed for the next day.
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Table 1. Cross-reference between the components of our model and the requirements
of [11]

Requirements Components Event-B element

Req1 Machine M7 Invariant inv23
Req2 Machine M2 Invariant inv4
Req3 Machine M7 Invariant inv30
Req4 Machine M2 Event removeholdLabel
Req5 Machine M3 Invariants inv4 and inv5
Req6 Machine M4 Invariants inv4 and inv5
Req7
Req8 Machine M9 The Boolean Variable isStopped can become true/false at

any moment by the event stopStart. All other events are
guarded by (isStopped=FALSE)

Req9
to Machine M7 Historical variables V _T and V _H_T

Req13
Req14 Not covered
Req15 Machine M6 Event holdLabel is enabled only if a label is selected

(guard grd1)
Req16 Context C1 Axiom axm6
Req17 Not covered
Req18
Req19 Machine M1 Invariant inv10
Req20 Not covered
Req21 Machine M6 Variable mouseState
Req22 Machine M6 Guard grd3 of the event holdLabel
Req23

4.1 Machine M1

Machine M1 models the prediction of the arrival times of aircraft (called labels
in the rest of the paper) and its display on the screen. This machine defines the
following invariants to characterise the possible arrival times of a set of labels
where curTimeMin gives the time in terms of minutes:

inv1: arrivalM ∈ labels �→ Minutes ∧ arrivalH ∈ dom(arrivalM ) → Hours
inv2: ∀ l. l ∈ dom(arrivalM ) ⇒

curTimeMin(arrivalM (l), arrivalH (l)) ≥ curTimeMin(curTimeM,curTimeH )
inv3: ∀ l1, l2. l1 ∈ dom(arrivalH ) ∧ l2 ∈ dom(arrivalH ) ∧ l1 	= l2 ⇒

abs(curTimeMin(arrivalM (l1), arrivalH (l1)),
curT imeMin(arrivalM(l2), arrivalH(l2))) ≥ sep
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inv4: zoomLevel ∈ zoomLevels ∧ diplayedLabels ⊆ dom(arrivalH )
inv5: diplayedLabels =(

⋃
l. l ∈ dom(arrivalM ) ∧

curTimeMin(arrivalM (l), arrivalH (l)) ≤
curTimeMin(curTimeM, curTimeH ) + zoomLevel | {l})

Invariant inv2 states that the arrival time of an aircraft is later than the
current time while inv3 ensures the security of passengers by separating the
labels by at least sep minutes. Finally, the invariants inv4 and inv5 specify the
set of labels displayed on the screen according to their arrival times and the
selected zoom zoomLevel. Variable zoomLevel is an integer (between 15 and 45)
that defines the display window of the labels: a label is displayed if its arrival time
falls into this windows (inv5) . We have chosen to model the zoom functionality
and the calculation of the label arrival times in the same level because both
modify the variable diplayedLabels. As stated in Sect. 2, all events modifying a
variables must be specified in the same machine where the variable is defined.
An other option would be to define the variables diplayedLabels and zoomLevel
in an other refinement level. We did not choose this option because it adds
an additional refinement level while including them in M1 does not add any
complexity. Machine M1 also defines the event display as follows:

Event display =̂
any

landingLabs, labsToDisp, labsSch, arr, ns, nm, nh
where

grd1: landingLabs = (
⋃

l.l ∈ dom(arrivalM)∧
curT imeMin(nm, nh) > curT imeMin(arrivalM(l), arrivalH(l)) | {l})

grd2: labsSch ⊆ labels\landingLabs
grd3: arr ∈ labsSch → curT imemin(nm, nh)..curT imemin(nm, nh)+ 180
grd4: ∀l1, l2.l1 ∈ dom(arr) ∧ l2 ∈ dom(arr) ∧ l1 	= l2 ⇒

abs(arr(l1), arr(l2)) ≥ sep
grd5: toDisp = (

⋃
l.l ∈ dom(arr)

∧
arr(l) ≤ curT imeMin(nm, nh) +

zoomLevel | {l})
grd6: . . .

then
act1: diplayedLabels := toDisp
act2: arrivalM := (λl.l ∈ dom(arr) | arr(l) mod 60)
act3: arrivalH := (λl.l ∈ dom(arr) | arr(l) ÷ 60)
act4: curT imeS := ns
act5: curT imeM := nm
act6: curT imeH := nh

end

where ns (resp. nm, mh) denotes the second (resp. minute, hour) unit of the
current time plus 10 s. Roughly speaking, this event starts by calculating the set
of labels that have already landed (Guard grd1), then it makes a prediction for
a subset labsSch of others existing labels (Guards grd2 and grd3) by ensuring
that the labels are separated by at least sep minutes (Guard grd4). Finally, it
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calculates the set of the labels to display according to their arrival times and the
selected zoom (Guard grd5). Let us remark that the guard grd3 specifies that
the predictions are made for the next 3 hours. We put this hypothesis in order to
improve the ProB performance and make the animation of the models possible.
According to the case study authors, such an assumption is very reasonable and
is not a limitation of the model.

4.2 Machine M2

Machine M2 models labels put on hold. For that purpose, the following invari-
ants are defined. Invariant inv1 types the introduced variables holdLabels and
holdTime. Invariant inv2 states that the moment at which a label is put on
hold must be before the current time. Finally, the invariant inv3 states that the
holded labels remain in the landing sequence (hl ∈ dom(arrivalM))) while the
AMAN does not make a new prediction and remove them.

inv1: holdLabels ⊆ labels ∧ holdTime ∈ holdLabels → N

inv2: ∀ hl. hl ∈ holdLabels ⇒
holdTime(hl) ≤ curTimeSec(curTimeS, curTimeM, curTimeH )

inv3: ∀ hl. hl ∈ holdLabels ⇒
(holdTime(hl)=curTimeSec(curTimeS,curTimeM, curTimeH )

⇔
hl ∈ dom(arrivalM ))

Machine M2 defines an event holdLabel that permits to put on hold a dis-
played label l by adding it to holdLabels and updating holdTime to set the
holding time of l to the current time.

Event holdLabel =̂
any

l
where

grd1: l ∈ dom(arrivalM ) \ holdLabels
then

act1: holdLabels := holdLabels ∪ {l}
act2: holdTime(l) := curTimeSec(curTimeS, curTimeM, curTimeH )

end

Event display is refined by adding the guard (labsSch ∩ holdLabels=∅) in
order to maintain the invariant inv3 by removing the held labels from the arrival
sequence.

4.3 Machine M3

Machine M3 models the request of the ATCo that would like to change the
arrival time of a label by defining the following invariants. Invariant inv1 states
that only scheduled labels, which are not put on hold, can be moved and new
arrival times are suggested by the ATCo (Invariant inv2). Invariants inv3 and
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inv4 model the requirement Req5 to avoid overlapping labels. Finally, the invari-
ant inv5 specifies that a label that would land in the next ten seconds cannot be
moved.

inv1: movedLabels ⊆ dom(arrivalM ) \ holdLabels
inv2: newArrivalM ∈ movedLabels → Minutes ∧ newArrivalH ∈ movedLabels → Hours
inv3: ∀ x, y. x ∈ dom(newArrivalM ) ∧ y ∈ dom(newArrivalM ) ∧ x �= y

⇒
curTimeMin(newArrivalH (x), newArrivalM (x)) �=

curTimeMin(newArrivalH (y), newArrivalM(y))
inv4: ∀ x, y. x ∈ dom(newArrivalM ) ∧ y ∈ dom(arrivalM ) ∧ x �= y

⇒
curTimeMin(newArrivalH (x), newArrivalM (x)) �=

curTimeMin(arrivalH (y), arrivalM (y))
inv5: ∀ l. l ∈ movedLabels

⇒
curTimeSec(0,arrivalM (l),arrivalH (l))>

curTimeSec(curTimeS, curTimeM, curTimeH )+ step

As stated in the requirement document, a moving request might be rejected
by the AMAN if it would require a speed up of the aircraft beyond the capacity
of the aircraft. To model such a requirement, we added the following guards to
the event display that specify that the labels that cannot be moved must keep
their original arrival times (guard grd2), whereas others are moved to the new
ones (guard grd3). Function canBeMoved permits to abstract from the details
and calculations made by the AMAN to decide whether a label can be moved
or not. Such details can be introduced later by refining this function. As the
requirement document does not give enough information about this point, we
kept the function canBeMoved in its abstract form.

grd1: canBeMoved ∈ movedLabels → BOOL
grd2: canBeMoved−1[{TRUE}] � arr= (λ x. x ∈ canBeMoved−1[{TRUE}] |

curTimeMin (newArrivalM (x),newArrivalH (x)))
grd3: canBeMoved−1[{FALSE}] � arr= (λ x. x ∈ canBeMoved−1[{FALSE}] |

curTimeMin (arrivalM (x),arrivalH (x)))

Machine M3 is refined by the machine M4 to model the blocked slots. As its
Event-B modeling is very similar to that of held labels, this paper does not
give more details about the machine M4.

4.4 Machine M5

The machine M5 models the flights approaching an airport as an injective
sequence of requests submitted to the AMAN (Invariants inv1 and inv2). For
that purpose, we have specified a theory to define the sequence data strucutre
along with its associated operations like inserting/deleting elements.
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inv1: requests ∈ seq (labels \ (dom(arrivalM ) ∪ holdLabels))
inv2: ∀ x, y. x ∈ dom (requests) ∧ y ∈ dom (requests) ∧ x 	= y ⇒

requests(x) 	= requests(y)

Machine M5 also defines an event to add/delete requests. Moreover, we have
added the following guards to the event display: the guard grd1 states that the
AMAN should predict arrival times for the labels having made requests and the
already scheduled labels that are not made on hold or landed. The guard grd2
specifies the FIFO strategy for requests processing. Guard grd3 states that the
requests are scheduled after any label scheduled in the past unless it has been
moved by the ATCo.

grd1: labsSch=(ran(requests) ∪ dom(arrivalM )) \ (landingLabs ∪ holdLabels)
grd2: ∀ x, y. x ∈ dom(requests) ∧ y ∈ dom(requests) ∧ x > y ⇒

arr(requests(x))>arr(requests(y))
grd3: ∀ l1, l2. l1 ∈ (dom(arrivalM ) ∩ dom(arr)) \ canBeMoved−1[{TRUE}] ∧

l2 ∈ ran(requests) ⇒ arr(l2)> arr(l1)

It is worth noting that including the guard grd2 in this machine does not yet
permit to verify that requests processing is fair. Indeed, an invariant modeling
this property must be added to the specification. As such a property depends
the two consecutive states of the system, we postpone its specification to the
level M7 where historical variables are defined (see Sect. 4.6).

4.5 Machine M6

This machine models the interactions of the ATCo with the AMAN using the
mouse. Context C1 is extended by the context C2 that defines the sets Elements
as a partition of Labels, the button hold the slide-bar for changing the zoom and
nothing to model the mouse that clicks on any other zone of the interface. A set
representing the possible states of the mouse is also defined:

ax1: partition(mouseStates, {released}, {clicked})
ax2: partition(Elements, Labels, {nothing}, {hold}, {zoom})

In the machine M6, we introduced two additional variables clickedElement
and selectedElement to respectively denote the element the mouse clicks on or
selects. Both variables belong to ((diplayedLabels∪ {nothing, hold, zoom}) \ hold-
Labels). We also describe a set of events to model the behavior of the mouse like
clicking on or selecting an element. Event holdLabel is refined by:

Event holdLabel =̂
refines holdLabel

where
grd1: selectedElement ∈ dom(arrivalM ) \ holdLabels
grd2: selectedElement /∈ movedLabels
grd3: mousePosition=hold ∧ mouseState=clicked

with
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l: l =selectedElement
then

act1: holdLabels := holdLabels ∪ {selectedElement}
act2: holdTime(selectedElement) := . . .
act3: selectedElement := nothing
act4: clickedElement := nothing
act5: mouseState := released

end

The refinement of the event holdLabel states that the label l to hold denotes
the label selected by the mouse (the with clause). To put the selected label on
hold, the guard grd3 specifies that the mouse must be in the state clicked and
positioned on the hold button.

4.6 Machine M7

As stated before, in the machine M5, we have added a guard to the event display
to specify that the requests must be dealt with according to the FIFO strategy.
However, it lacks an invariant that permits to verify that such a requirement
is correctly modelled. As this requirement is dynamic, it is modeling required
adding variables that store the previous states of requests as follows:

inv1: requests_T ∈ (
⋃

k. k ∈ N ∧
step × k ≤ curTimeSec(curTimeS, curTimeM, curTimeH ) |

{step × k}) → seq(Labels)
inv2: requests_T (curTimeSec(curTimeS, curTimeM, curTimeH ))=requests
inv3: requests_H_T ∈ (

⋃
k. k ∈ N ∧

step × k ≤ curTimeSec(curTimeS, curTimeM, curTimeH ) |
{step × k}) → seq(Labels)

inv4: ∀ a, b. a ∈ N ∧ a + step �→ b ∈ requests_H_T ⇒ a �→ b ∈ requests_T

– Variable requests_T stores the requests received by the AMAN during the
current cycle (the last ten seconds). This is expressed by the invariant inv2.

– Variable requests_H_T permits to store the requests received by the AMAN
during the previous cycle. This is expressed by the invariant inv4.

Even if the variable requests_T may seem redundant with the variable
requests, but it is required because the variable requests is made empty, by the
event display, at end of a cycle. The FIFO strategy is specified by the following
invariant:

∀ l1, l2.
l1 ∈ ran(requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH ))) ∧
l2 ∈ ran(requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH ))) ∧
(requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH )))−1(l1)

<
(requests_H_T (curTimeSec(curTimeS, curTimeM, curTimeH )))−1(l1)

⇒
curTimeMin(arrivalM (l1),arrivalH (l1)) < curTimeMin(arrivalM (l2),arrivalH (l2))
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In the same manner, we have added historical variables to store the sets of
labels put on hold or moved during a given cycle. Such variables allows us to
answer requirements Req9-Req13 but also to specify the dynamic properties
that depend on current and previous values of variables. It is in this machine that
we have expressed that an already scheduled label l is not moved unless requested
by the ATCo or its slot becomes blocked or an other label is scheduled too close
to l (less than 3min). This property ensures that a label is not unnecessarily
moved.

5 Validation and Verification

To verify the correctness of our models and ensure that we built the right system,
we have proceeded into three steps detailed hereafter.

5.1 Model Checking of the Specification

As one can remark, some refinement levels contain invariants that depend on
several variables. In that case, it becomes quite difficult to find the right spec-
ification (guards/actions) the first time. The ProB model checker has proven
very useful in finding actions/guards to add to some events in order to estab-
lish these invariants. Basically, before performing the proof that may be tedious,
we used the ProB model checker to exhibit some possible scenarios that vio-
late the invariant. A scenario is a sequence of events that, starting from a valid
initial state of the machine, leads to a state that violates the related invari-
ant. Analysing such scenarios helps us to correct the specification by adding
guards/actions to some events but also sometimes to revise the invariants. For
this particular case study, the use of ProB helps us find the invariants corre-
sponding to the following dynamic properties but also the guard and the actions
to add to the event display: AMAN should remove (resp. reschedule) the labels
made on hold (resp. moved) by the ATCo during the last 10 s. Model check-
ing/animation with ProB also helped us in specifying the historical states of
the system (Machine M7).

5.2 Proof of the Specification

Even if ProB does not find any scenario that violates the invariant, this does
not mean that the models are correct. Indeed, ProB works with a timeout that
may prevent us from finding complex scenarios with more events. Therefore, this
step aims at verifying that each event does preserve the invariant and that the
guard of each refined event is stronger than that of the abstract one. These proof
obligations are automatically generated by Rodin. Figure 1 provides the proof
statistics of the case study: 349 proof obligations have been generated, of which
35% (124) were automatically proved by the various provers. The interactive
proof of the remaining proof obligations took about one week since they are
more complex (in particular those that depend on the historical variables) and
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require several inference steps and need the use of external provers (like the Mono
Lemma prover, Dis-prove with ProB and STM provers). During an interactive
proof, users ask the internal prover to follow specific steps to discharge a proof
obligation. A step proof consists in applying a deductive rule, adding a new
hypothesis that is in turn proved or calling external provers. The external Mono
Lemma prover ha been very useful for arithmetic formulas, even if we had to
add the following theorem on the modular operator:

∀x, y. x ∈ N ∧ y ∈ N ⇒ x = xmod y + x ÷ y × y

Fig. 1. Rodin proof statistics of the case study

It is worth noting that performing interactive proofs does not decrease the
confidence of the models since the proofs are discharged under the Rodin plat-
form by enriching the prover only by theorems that are proved as well.

5.3 Validation with Scenarios

Defining and playing scenarios on a specification permit to verify whether we
have built models that behave as expected. Unfortunately, the requirement docu-
ment does not provide any scenario that would help us in such a task. Therefore,
we have defined our own scenarios based on our understanding of the system.
Basically, we have defined a validation scenario for each AMAN functionality and
ATCo interaction. Using the animation capability of ProB, we have checked,
among others, the following behaviours:
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– moving a label l1 to a slot that does not respect the 3min separation with an
other label l2: in that case, the AMAN also moves l2 and its neighbours to
maintain this security requirement.

– putting a label on hold results in removing it from the landing sequence:
such an effect is not instantaneous; it performed by the AMAN in the next
processing cycle.

– blocking a slot time results in moving all the labels scheduled in this slot into
other available slots.

– the landing requests received by the AMAN are dealt with according to the
FIFO strategy. Moreover, the corresponding labels are scheduled after the
already scheduled ones.

– selecting a zoom level does display only the labels that are scheduled in the
corresponding slot (next (current time + zoom) minutes). Contrary to the
previous scenarios, the effect of this ATCo action is instantaneous.

5.4 Visualisation

A Visualisation of the model was achieved using the VisB [15] component of
ProB. The visualisation uses a SVG graphics file and a JSON glue file. The
latter contains a mapping between the B model and the graphics file. We reused
the SVG file developed for another model Event-B model [14] (cf. below), and
adapted the JSON glue file for the model of this article. VisB files also contain
an optional header of local definitions; we also used these to mimic variables
from the other Event-B model.

For example, the definitions header contains this entry, mimicking a boolean
variable from [14]:

{ "name": "no_airplane_is_selected",
"value": "bool(selectedElement=nothing)"

},

This VisB item uses that definition to set the visibility attribute of the hold
button (visible in Fig. 2).

{
"id": "bt_hold",
"attr": "visibility",
"value":"IF no_airplane_is_selected=TRUE THEN \"hidden\"

ELSE \"visible\" END"
},

The VisB file also associates the event holdLabel with the hold button; i.e.,
it is executed when the button is clicked. The hold button itself is defined in the
SVG file accompanying the VisB file:

<rect id="bt_hold" fill="black" width="120" height="30" x="650" y="500"/>
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Fig. 2. Visualising the state of the model (M8) using ProB and VisB

Observe, that Fig 2 also shows a mouse pointer over the hold button: this is
also part of the visualisation and is based on the mousePosition variable of the
model. Another interesting aspect is that validation traces can be exported to
standalone HTML files using ProB. These traces can be reused to step through
the traces and inspect the visualisation and the variable values, without access
to either ProB, Rodin or the Event-B model. We used those HTML trace files
as a means of (email) exchange between ourselves, e.g., to point out and discuss
tricky aspects of the models. (Some of these traces will be uploaded to [8] for
reference.)

6 Discussion

In a companion paper [14] an Event-B model was developed independently.1 The
models have very different refinement strategies, as can be guessed from looking
at Fig. 3. Our most abstract model (on the top left in Fig. 3) already has four
events and the concepts of labels and zooming, while the most abstract model of
[14] has just one event and zooming is only added in machine M4. The models
also have a quite different set of variables (M8 of our model has 30 variables,
the comparable M9 of [14] has 17 variables). Still, as seen above, we were able
to reuse its VisB visualisation for our model.

1 The model of this paper was developed by the first author; the second author only
intervened in the validation and verification, not in the writing of this model.
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Fig. 3. The event refinement hierarchies of our model (top) and of the companion
model [14] bottom (generated by ProB)
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Our development models the current time (as three variables for hours, min-
utes and seconds), which increases during execution (of the autonomous AMAN
event display). This is better for simulation, but more tricky for model checking
as the full state space is automatically infinite (unless we restrict model checking
to a particular time interval). In the companion model we normalize the current
time to 0; in other words, all times are relative to the current time (cf. [13] or [5]).
In addition, the other model only models time as relative minutes, abstracting
away both hours and seconds. The use of relative time makes state space finite,
but for deeper levels it is too large without other restrictions as well (we have
245 values already just for blocking time slots).

In this article, we have used the theory plugin [3] to deal with sequences and
with differences in time expressed in minutes, hours and seconds. The theory
also contains an absolute value function, which is encoded in a context in [14]
(which is possible, as the function is not polymorphic). The sequence operations
were encoded “by hand” in [14] using relational operators.

In this model, we have also two special elements nothing and hold, while the
other model only has airplane elements and encodes the special values via sets.
E.g., selectedElement=nothing corresponds to selectedAirplane = ∅ in
[14]. The set encoding requires an additional invariant card(selectedAirplane)
≤ 1 in [14]. On the one hand, this makes it easier to adapt the model to allow
selecting multiple airplanes later, but on the other hand induces a few more
well-definedness POs (due to the use of card), which were surprisingly tedious
to discharge. We did not notice any fundamental differences otherwise.

7 Conclusion

In this paper, we presented an Event-B formal model of the Arrival MANager
system (called AMAN), the case study provided in the ABZ2023 conference.
Our specification takes most requirements into account and defines additional
ones that are considered of the common sense like a fair processing of landing
requests. Compared to previous case studies proposed in the ABZ conferences,
this present case study contains less invariants (65 invariants) but most of them
are dynamic and require thus the introduction of several auxiliary variables to
store the previous system state (Machine M7). This implies the definition of
additional invariants to relate the before and current value of each variable.
These additional invariants produce a great number of proof obligations since
we have to establish that each event maintains these invariants.

For this particular case study, the expression of invariants that depend on
the previous state proved to be difficult since variables are interrelated: at the
instant t, the arrival times of aircraft depend on the moved labels, requests and
aircraft put on hold during the last 10 s (at the instant (t-step)). The use of
ProB helped us in defining the correct expression of these invariants by model
checking invariants and simulating some scenarios to validate/fix them. The
user-friendly graphical visualisation makes the validation phase easier.

Compared to the previous ABZ case studies [7,10], the present case study is
time-dependent. Indeed, its main objective is to assign arrival times to aircraft;
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this is why we introduced timed aspect from the first specification level along
with the event display that makes the time evolve.

As future work, we plan to study and model how AMAN can decide whether
a label can be moved or not. For this purpose, we can make the assumption
that an arrival time interval is associated with each label. In that case, AMAN
would allow the moving of a label iff it remains within its associated interval.
Unfortunately, we fell short of time to deeply investigate this solution. Future
improvements also include exploring the use of decomposition plugins available
in Rodin for structuring the built models into smaller and thus more manage-
able units. We can see the system as a set of independent parts (each of them
corresponding to a single ATCo interaction) and the AMAN as a root part that
uses their information to calculate a new prediction.

Acknowledgement. We would like to thank Fabian Vu for developing the VisB
visualisation of the companion model.
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Abstract. Using architectural patterns is of paramount importance for guaran-
teeing the correct functionality, maintainability and modularity, especially for
complex software systems. The model-view-controller (MVC) pattern is typically
used in user interfaces (UIs), since it allows the separation between the internal
representation of the information and the way it is shown to users. The main prob-
lem of using this approach in a formal setting, where formal models are used to
specify the requirements and prove safety properties, is that those models are not
directly used within the MVC pattern and, thus, all the activities performed at
model-level are somehow lost when implementing the UI. For this reason, in this
paper, we present the formal MVC pattern (fMVC), an extension of the classi-
cal MVC where the model is a formal specification, written using Abstract State
Machines. This pattern is supported by the AsmetaFMVCLib, which allows the
user to link the formal model with the view and the controller by using simple
Java annotations. We present the application of fMVC on a simple example of a
calculator for explanatory purposes, then we apply it to the AMAN case study,
which has inspired the definition of fMVC. We discuss the advantages of fMVC
and its shortcomings, trying to identify the scenarios where it should be applied
and possible alternatives.

1 Introduction

When we planned to apply the formal method of our choice, namely the Abstract State
Machines (ASM), to the ABZ2023 case study, we realized that the case study differs
from the past case studies because it contains a relevant part regarding the user inter-
face (UI) and the interaction with humans. Thus, we decided to evaluate the use of
patterns for developing UIs. In that case, one of the most used patterns is the model-
view-controller (MVC). MVC separates the UI from the data that it must show. To be
more precise, the MVC describes the architecture of a system of objects, and it can be
applied not only to UIs but to entire applications. However, it is also less clearly defined
than many other patterns, leaving a lot of latitude for alternate implementations. It is
more a philosophy than a recipe [4], and it can be easily adapted and tuned for different
use case scenarios. In UI development, Model objects store, encapsulate, and abstract
the data of the application, View objects display the information in the model to the user,
while Controller objects implement the application’s actions.
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Even in a more formal setting, if one has developed a formal model for the system to
be implemented, MVC can be used by deriving part of the code from the formal spec-
ification or by using the formal specification as a guideline for developing the MVC
(especially for the part related to the controller and the model). However, a direct inte-
gration of the formal model is not expected by the existing implementations of MVC.

In this work, inspired by the case study, we devise an extension of the classical
MVC, the formal Model-View-Controller (fMVC) pattern, where the model is a formal
specification, an ASM. The way to integrate the model, the view and the controller
is provided by a Java library, called AsmetaFMVCLib, which allows user to annotate
components in the view in order to link them to the input and output locations of the
ASM model. The library is integrated in the Asmeta framework [1] and includes the
Model wrapper (that requires the user only to attach the ASM model) and the Controller
part, which can be used as they are or extended to be adapted to case-specific behaviors.
Moreover, the library provides an interface to be implemented by the View component.

By using the proposed pattern, users can take advantage of the main peculiarities
of formal models, e.g., rigorousness, possibility of properties verification, and iterative
development approach. Moreover, one of the advantage of using Asmeta specifications
and, in general, ASMs is that the models are executable and, thus, they can be tested
even before having the actual UI.

We apply the proposed pattern to the Arrival Manager (AMAN) case study1 by
showing the whole development process, from the Asmeta model specification, its val-
idation and verification, to the linking between the Java View and the Model. With this
case study, we are able to discuss the advantages and the disadvantages of the fMVC,
and we highlight the scenarios in which the proposed pattern better fits and those in
which alternatives are preferable.

The remainder of this work is structured as follows. Section 2 describes the Asmeta
framework with its available tools, and gives an example of a simple specification.
Section 3 introduces the formal Model-View-Controller pattern and explains how to use
the annotations provided with the AsmetaFMVCLib to exploit the proposed approach.
Then, in Sect. 4 we report the activities of modeling and V&V of the Arrival Manager
(AMAN) case study and application of the fMVC pattern. We discuss the main pros and
cons of the proposed approach in Sect. 5, and report the related works on integrating
formal methods in MVC pattern and, in general, how formal methods are integrated
with the UI in Sect. 6. Finally, Sect. 7 concludes the paper.

2 The Asmeta Framework

This work is based on the use of Abstract State Machines (ASMs), an extension of
Finite State Machines (FSMs) in which unstructured control states are replaced by states
with arbitrarily complex data. In particular, we use the functionalities offered by the
Asmeta framework [1] which supports the developer with an analysis process spanning
the whole life cycle of the system. The three main phases are design, development,

1 https://abz2023.loria.fr/case-study/.

https://abz2023.loria.fr/case-study/
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Fig. 1. Phases of The ASM development process powered by the Asmeta framework: design,
development and operation.

and operation, and each phase integrates different tools (see Fig. 1). For this case study,
we only limit to the design phase that includes modeling, validation, and verification
activities.

ASM states are mathematical structures, i.e., domains of objects with functions and
predicates defined on them, and the transition from one state si to another state si+1

is obtained by firing transition rules. Functions are classified as static (never change
during any run of the machine) or dynamic (may change as a consequence of agent
actions or updates). Dynamic functions are distinguished between monitored (only read
by the machine and modified by the environment) and controlled (read in the current
state and updated by the machine in the next state).

An example of an Asmeta specification modeling a simple calculator is shown in
Listing 1. It can multiply or sum, depending on the requested operation, the result of
the previous operation (initially equals to 1) by a desired number. The desired operation
is given by the monitored function operation defined in Line 7 and the number inserted
by the user is the monitored function number defined in Line 8. The result is stored in
calc_result (line 9) and updated by the two rules running in parallel defined in the main
rule (line 13).

With Asmeta, during the modeling phase, the user implements the system mod-
els using the AsmetaL language and the editor AsmetaXt which provides some use-
ful editing support. Furthermore, in this phase, the ASMs visualizer AsmetaVis trans-
forms the textual model into graphs using the ASMs notation. The validation process
is supported by the model simulator AsmetaS, which allows simulating the specifica-
tion in an interactive mode or by assigning random values to the monitored functions,
the model animator AsmetaA, the scenarios executor AsmetaV, and the model reviewer
AsmetaMA, which performs the static analysis of the specification and evaluates its qual-
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1 asm calculator
2 import StandardLibrary
3 signature:
4 // DOMAINS
5 enum domain Operation = {SUM, MULT}
6 // FUNCTIONS
7 monitored operation: Operation
8 monitored number: Integer
9 controlled calc_result: Integer

10
11 definitions:

12 // MAIN RULE
13 main rule r_Main = par
14 if operation = SUM then
15 calc_result := calc_result + number
16 endif
17 if operation = MULT then
18 calc_result := calc_result ∗ number
19 endif endpar
20 // INITIAL STATE
21 default init s0:
22 function calc_result = 1

Listing 1. Example of an Asmeta specification for a calculator
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Fig. 2. Formal Model-View-Controller architecture with Asmeta

ity attributes. Property verification is performed with the AsmetaSMV tool. It verifies if
the properties derived from the requirements are satisfied by the models. When a prop-
erty is verified, it guarantees that the model complies with the intended behavior.

3 Formal Model-View-Controller

In this section we explain the overall approach of our fMVC framework2, that is
shown in Fig. 2. In our approach, the View is a Java graphical container (like a Swing
JFrame3), with many graphical components that can capture user actions (like buttons,
text fields, spinners, etc.) and are able to show information regarding the model, includ-
ing the values of selected controlled locations. The View must implement the interface
AsmetaFMVCView, which is used to generalize all the possible views and requires the
implementation of the method repaintView that is called when the GUI needs to be
repainted. The Model is an Asmeta specification, with its state, including the current
values of monitored and controlled functions. In practice, it is an instance of the class
AsmetaFMVCModel that takes an Asmeta file, reads the specification and starts the sim-
ulator for the specified ASM model. Finally, the Controller, an object that extends the

2 The code of the AsmetaFMVCLib is available online at https://github.com/asmeta/asmeta/tree/
master/code/experimental/asmeta.fmvclib.

3 https://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html.

https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.fmvclib
https://github.com/asmeta/asmeta/tree/master/code/experimental/asmeta.fmvclib
https://docs.oracle.com/javase/7/docs/api/javax/swing/JFrame.html
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class AsmetaFMVCController, controls the flow of information and when it is built, it
is linked to the view and the model as well.

Regarding the static part of the architecture, the designer must establish a binding
between the View and the Model (step 0 in Fig. 2). This is done by using one or more of
the following Java annotations when declaring graphical components in the View:

– @AsmetaMonitoredLocation: it links a graphical element (like buttons, text fields,
etc.) to a monitored function of the Asmeta model. For each field with this annota-
tion, users must specify the name (asmLocationName) of the location in the Asmeta
model. The value to be assigned to the asmLocationName location can be taken
from the graphical element (e.g., if it is a text field) or specified using the annotation
attribute asmLocationValue (e.g., if it is a button).

– @AsmetaControlledLocation: it links a graphical component to specific con-
trolled locations (of the Asmeta model) whose name is specified by the annotation
attribute asmLocationName.

Graphical elements (like buttons) or timers that generate actions causing an update
of the model are annotated as @AsmetaRunStep. Moreover, if a step requires the GUI
to be repainted (e.g., because the number or type of components shown needs to be
changed), the flag repaintView can be set. When it is created, the Controller registers
itself as an actionListener and changeListener (whichever is applicable) to all the fields
annotated with @AsmetaRunStep in the view.

Regarding the dynamics of the pattern, the complete action can be described as
follows. When the user performs an action on elements annotated with @AsmetaRun-
Step, the Controller handles the request (step 1 in Fig. 2). It takes all the values of
the view that are bound to the model (with @AsmetaMonitoredLocation), and sets
all the monitored functions in the current state of the model with those values (step 2
in Fig. 2). It then executes a step of the ASM model by using the simulator embed-
ded in the Model component (step 3 in Fig. 2). When the Model is updated, it noti-
fies the Controller (which is declared as an observer of the Model) (step 4 in Fig. 2).
Then, the Controller updates the View (step 5 in Fig. 2). First it takes all the values
of controlled functions, updates the corresponding graphical elements (those anno-
tated with @AsmetaControlledLocation) by calling the method updateView, and
shows the new values. Then, if it is needed, it repaints the view by calling the method
repaintView.

3.1 A Simple Example: An UI for the Calculator

In this section, we present how the fMVC pattern can be applied to the simple example
of Listing 14. We want to provide a UI that allows the user to insert the number in a
text field, and to execute the MULT operation by pressing a button. The result is shown
in another text field. Moreover, it indicates the sign of the result by using the green
background color for positive numbers and red for negative ones. The binding between
the Model and the View is shown in Fig. 3 and described in the following.

4 The source code and the Asmeta model of the multiplier is available online at https://github.
com/asmeta/asmeta_based_applications/tree/main/fMVC/Calculator.

https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/Calculator
https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/Calculator
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asm calculator
import StandardLibrary

signature:
// DOMAINS
enum domain Operation = {SUM, MULT}
// FUNCTIONS
monitored number: Integer
monitored operation: Operation
controlled calc_result: Integer

definitions:
 // MAIN RULE
main rule r_Main =

par
if operation = SUM then calc_result := calc_result + number endif
if operation = MULT then calc_result := calc_result * number endif
endpar

// INITIAL STATE
default init s0:

function calc_result = 1

Fig. 3. Bindings between view components and Asmeta locations

The Java code defining the View class, implementing the AsmetaFMVCView inter-
face, is reported in Listing 2. First, we annotate with @AsmetaMonitoredLocation
the text field m_userInputTf, used to valorize the integer number monitored func-
tion in the ASM model (see Listing 1). Then, with the @AsmetaControlledLocation
annotation, we specify that the text field m_totalTf shall report the outcome of the
ASM computation, stored in the calc_result integer controlled function in the ASM
model. Finally, using the @AsmetaRunStep annotation we set the m_multiplyBtn but-
ton to be used for requesting the execution of an ASM step. Note that the ASM model
(see Listing 1) supports multiple operations (MULT and ADD). For this reason, while
executing an ASM step, we need to specify also the operation to be computed. This is
done by adding an additional @AsmetaMonitoredLocation annotation to the m_mul-
tiplyBtn button: when the button is clicked, first the operation monitored location
is set to the MULT value (as specified with the asmLocationValue field), then the step
is performed.

Then, the code for the Controller is defined by extending AsmetaFMVCController.
It redefines the method update, which is automatically called when the Model notifies
a change in values. This extension is needed since the controller in the AsmetaFMVC
framework automatically handles the output of the main types of data (e.g., the text to
be shown in a text field, in a label, in a table, etc.), but case-specific outputs (such as
the color of a text field) has to be managed by the user. This is done by overriding the
method update as in Listing 3.

The three components are then connected and launched in a main class as in List-
ing 4.

3.2 Dealing with Wrong Actions

One of the advantages of the proposed approach is related to the direct use of formal
models in the Model component of the fMVC pattern. In fact, when working with
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Listing 2. Java Swing View for the multiplier example

public class CalcView extends JFrame implements AsmetaFMVCView {
// bind number with a text field
@AsmetaMonitoredLocation(asmLocationName=‘‘number’’)
private JTextField m_userInputTf = new JTextField(5);

// bind calc_result a the text field
@AsmetaControlledLocation(asmLocationName=‘‘calc_result’’)
private JTextField m_totalTf = new JTextField(20);

// bind operation with a button
@AsmetaMonitoredLocation(asmLocationName=‘‘operation’’, asmLocationValue = ‘‘MULT’’)
@AsmetaRunStep
private JButton m_multiplyBtn = new JButton(‘‘Multiply’’);

public CalcView() {
// Adds the component to the Java frame

}
@Override
public void refreshView(boolean firstTime) { }

}

Asmeta (see Sect. 2) users may add conditional guards that limit possible input values
or invariants that must be always satisfied in every state.

When using the fMVC pattern, the update of values shown in the View is always
made by the Controller, based on the value of the controlled functions in the ASM
model after the execution of a simulation step. In this way, using the mechanisms
embedded into the Asmeta framework, actions can be ignored when they violate invari-
ants: an InvalidInvariantException is thrown and caught by the AsmetaFMVC-
Model. Similarly, if a conditional guard is not satisfied, the Asmeta simulator embed-
ded into the Model component does not update the corresponding controlled locations
during the simulation step. With Asmeta, it is possible to deal also with inconsistent
updates (i.e., when the same location is updated to two different values at the same
time). As for the cases previously presented, if an inconsistent update is found, no
update is performed at model level and, thus, no action is executed within the simu-
lation step and the View does not change.

The effect of this approach is that only valid actions are executed and valid values
handled. Thus, the consistency between the ASM model and the View is always assured
and they both remain in a safe state.
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Listing 3. Controller class for the multiplier example

public class CalcController extends AsmetaFMVCController{
public CalcController(AsmetaFMVCModel m, CalcView v)
throws IllegalArgumentException, IllegalAccessException {

super(m, v);
}
@Override
public void update(Observable o, Object arg) {

// Handle the main locations as regularly done by fMVC
super.update(o, arg);
// Set the background color of the result based on the sign
CalcView v = ((CalcView)this.m_view);
v.getmTotalTf().setBackground(

Integer.parseInt(v.getmTotalTf().getText()) >= 0 ?
Color.GREEN : Color.RED);

}}

Listing 4. Definition of the three compo-
nents for the multiplier example

// Define the model with the Asmeta spec
AsmetaFMVCModel asmetaModel =

new AsmetaFMVCModel(
‘‘model/calculator.asm’’);

// Define the view
CalcView view = new CalcView();

// The controller has both the references of the model
// and the view
AsmetaFMVCController controller =

new CalcController(asmetaModel, view);

// Show the view
view.setVisible(true);

4 The AMAN Case Study

We here explain how we have applied the fMVC pattern to the Arrival Manager
(AMAN) case study5. In particular, we first analyze the modeling and V&V activities
that we have performed with Asmeta. Then, we describe how we have implemented the
Controller and the View of our AMAN prototype in order to let them interacting with
the Asmeta Model.

4.1 Formal (Asmeta) Model

We here describe the structure of the Asmeta model and the requirements that we have
covered for the AMAN case study. In particular, in the following, we introduce the
modeling strategy that we have adopted, we highlight the details of the models that
we have obtained by applying the Asmeta development process, and we describe the
properties that we have proved on them.

Modeling Strategy. As normally done in the Asmeta-based development process, we
have modeled the AMAN case study using an iterative design process: initially, a sim-
plified model can be developed and, then, the model is refined by adding further details
at a later stage. First, we have specified in the most simple model (in the following iden-
tified as AMAN0) all the functionalities that we considered, sometimes in a limited way,
except from the time, which is not handled at this level. Then, AMAN1 removes all the
limitations introduced in AMAN0 but still does not handle the passing of time. Finally,
AMAN2 includes the time management [3] as well and, thus, it can be used as the for-
mal Model underlying the AMAN implementation based on the fMVC pattern. In the
following, we describe in more details the structure and the requirements captured by
each Asmeta model.

5 The source code and the Asmeta model of the AMAN case study is available online at https://
github.com/asmeta/asmeta_based_applications/tree/main/fMVC/AMAN.

https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/AMAN
https://github.com/asmeta/asmeta_based_applications/tree/main/fMVC/AMAN
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Table 1. Models dimension for the AMAN case study

Functions Rules

Monitored Controlled Derived Static

AMAN0 4 5 0 3 5

AMAN1 6 5 1 4 5

AMAN2 6 9 3 4 7

Listing 5. Asmeta rule handling the moving up of an airplane in AMAN0

[...]
domain TimeSlot subsetof Integer
domain ZoomValue subsetof Integer
controlled landingSequence: TimeSlot −> Airplane
controlled blocked: TimeSlot −> Boolean
controlled zoomValue : ZoomValue
static search: Prod(Airplane,TimeSlot) −> TimeSlot
static canBeMovedUp: Airplane −> Boolean
[...]
domain TimeSlot = {0 : 10}
domain ZoomValue = {15 : 45}
[...]
rule r_moveUp($a in Airplane) =

let ($currentLT = search($a, 0)) in
if $currentLT != −1 and $currentLT < 10 then

let ($blk = blocked($currentLT + 1)) in
if $currentLT < zoomValue and not $blk and canBeMovedUp($a) then par

landingSequence($currentLT + 1):= $a
landingSequence($currentLT):= undef
[...]

endpar endif endlet endif endlet

Model Details. Table 1 shows the models dimension in terms of number of functions
and rules for each refinement level, while further details are given here:

– AMAN0: this model implements the basic functionalities of AMAN. It entirely man-
ages the landing sequence (i.e., labels of the airplanes, color of each airplane, and
status of each time instant - blocked or not blocked), with a maximum dimension
of 10 time instants. It allows moving airplanes up and down, but only for one time
instant at a time, and putting them on hold. For example, we here report in Listing 5
the rule used for moving up an airplane, which checks that, given the current landing
time $currentLT = search($a, 0), the destination time instant ($currentLT
+ 1) is not blocked and still allows keeping the desired distance between airplanes.

– AMAN1: this model implements the same functionalities of the previous refinement
level, but removes all the limitations we set. Indeed, all the 45 possible future time
instants are shown in the landing sequence, and airplanes can be moved up or down
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Listing 6. Asmeta rule handling the moving
up of an airplane in AMAN1

rule r_moveUp($a in Airplane, $nMov in TimeSlot) =
let ($currentLT = landingTime($a)) in

if ($currentLT != undef) then
if $currentLT < zoomValue and not
blocked($currentLT + $nMov) and
canBeMovedUp($a, $nMov) then

par
landingSequence(

$currentLT + $nMov):= $a
landingSequence(

$currentLT):= undef
[...]

endpar
endif

endif
endlet

Listing 7. Asmeta rule handling the time passing in
AMAN2

[...]
domain Minutes subsetof Integer
controlled timeShown: TimeSlot −> Minutes
controlled lastTimeUpdated : Minutes
[...]
domain Minutes = {0 : 59}
[...]
rule r_update_time_shown = par

forall $t in TimeSlot do timeShown($t) :=
mod(currentTimeMins + $t + 1, 60)

// If times have been shifted, shift all the airplanes too
if lastTimeUpdated != currentTimeMins then par

lastTimeUpdated := currentTimeMins
forall $a in Airplane do r_moveDown[$a, false, 1]
forall $t in TimeSlot with $t > 0 do

blocked($t − 1) := blocked($t) endpar endif endpar

of more than a single time instant. At this refinement level, the rule reported in List-
ing 5 is modified as shown in Listing 6. Instead of searching the landing time using
the static function search, we here introduce a derived function landingTime
which associates to each airplane its corresponding current landing time. Moreover,
the rule now uses an additional input parameter $nMov which indicates the number
of moves to be done.

– AMAN2: this last model refinement implements the handling of time, by exploiting
the functionalities offered by the Asmeta TimeLibrary [3]. In this way, the specifica-
tion can be used as the Model within the fMVC pattern to show the current time, and
it is able to automatically shift the time instants every minute to show the passing of
time. The rule handling the time passing is shown in Listing 7.

All the requirements we have captured in the ASM models have been proven using
the LTL properties (as described in the following) reported in Table 2. Note that the
requirements we report are those directly captured by the model, while others (REQ17,
REQ18, REQ20, REQ21, REQ22, and REQ23) that are automatically guaranteed by
how we have implemented the GUI (i.e., with Java Swing) are not reported.

Safety Property Verification. One of the main advantages in using Asmeta (or, in
general, a formal notation) is that the models can be used for proving safety proper-
ties. Moreover, if the formal model is directly used in the implementation, the obtained
software behavior is correct (w.r.t. the proved properties) by construction.

In this case study, we have proved the safety properties on the AMAN0 model, since
the AsmetaSMV module exploits the NuSMV model checker which is not able to deal
with infinite domains (such as the integers used by the Asmeta TimeLibrary [3] to store
the time). However, the particular type of refinement used, namely the stuttering refine-
ment [1], preserves in the refined model the properties proved for the more abstract
one.



350 A. Bombarda et al.

Table 2. LTL properties for the AMAN case study

REQ Description and LTL property

REQ3 Airplanes can be moved earlier or later on the timeline

LTLSPEC (forall $a in Airplane, $t in Time with g(search($a, 0) = $t and
selectedAirplane=$a and action = UP and canBeMovedUp($a) implies x(search($a,
0) = ($t + 1))))
LTLSPEC (forall $a in Airplane, $t in Time with g(search($a, 0) = $t and
selectedAirplane=$a and action = DOWN and canBeMovedDown($a) implies
x(search($a, 0) = ($t - 1))))

REQ4 Airplanes can be put on hold by the PLAN ATCo

LTLSPEC (forall $a in Airplane, $t in Time with g(search($a, 0) = $t and selectedAir-
plane=$a and action = HOLD implies x(isUndef(landingSequence($t)))))

REQ5 Aircraft labels should not overlap

LTLSPEC (forall $t1 in Airplane, $t2 in Airplane with g(($t1 != $t2 and search($t1,
0) != -1 and search($t2, 0) != -1 and not isUndef(search($t1, 0)) and not isUn-
def(search($t2, 0))) implies ((search($t1, 0)-search($t2, 0)>=3) or (search($t1, 0)-
search($t2, 0)<=-3))))

REQ6 An aircraft label cannot be moved into a blocked time period

LTLSPEC (forall $a in Airplane, $t in TimeSlot with g(search($a, 0) = $t implies
not blocked($t)))

REQ15 The HOLD button must be available only when one aircraft label is selected

LTLSPEC (forall $a in Airplane, $t in TimeSlot with g(search($a, 0) = $t and
isUndef(selectedAirplane) and action = HOLD implies x(search($a, 0) = $t)))

REQ16 The zoom value cannot be bigger than 45 and smaller than 15

LTLSPEC g(zoomValue >= 15 and zoomValue<=45)

REQ19 The value displayed next to the zoom slider must belong to the list of seven
acceptable values for the zoom

LTLSPEC g(zoomValue = 15 or zoomValue = 20 or zoomValue = 25 or zoomValue
= 30 or zoomValue = 35 or zoomValue = 40 or zoomValue = 45)

Table 2 reports the properties we have verified, corresponding to a subset of the
AMAN requirements given in the document presenting the case study. In particular
the properties we here report are those that can be verified with the aspects we have
included in our Asmeta model.

4.2 View

For our experiments, we have implemented a simplified version for the GUI of the
AMAN software as in Fig. 4. The mapping between the components and Asmeta loca-
tions is reported in Listing 8 and described in the following.

The zoom level is managed using the zoom slider, whose value is used to set the
zoom monitored variable. When the zoom changes, a simulation step is executed and
the GUI is repainted (repaintView = true) in order to show only the desired number
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Fig. 4. The GUI of AMAN developed using the fMVC pattern

of time instants with the corresponding landing airplanes. Note that, at each simulation
step, the ASM model checks which is the action to be executed. For this reason, when
the zoom changes, the additional action monitored function is set to NONE. Then, a
label (lblZoomValue) shows the zoomValue controlled function containing the current
value set for the zoom. We emphasize that its value is set through the model when the
slider controlling the zoom is moved, and not directly by the view itself.

The current time, stored in two controlled functions (mins and hours) is shown,
respectively, in the lblCurrentTimeMins and lblCurrentTimeHours labels on the
view.

The hold of an airplane is handled through a button btnHold which makes the simu-
lator do a simulation step and sets the action to be performed to HOLD. Similarly, the
airplanes can be moved up or down using the btnMoveUp and btnMoveDown buttons,
that run the simulator for a step and set the action monitored function accordingly. The
number of movements (up or down) for an airplane is stored in the numMoves moni-
tored function through the spnrNumMoves spinner. This is a simplification that we have
decided to apply w.r.t. the nominal behavior of AMAN, in which the user can drag an
airplane label and drop it in the desired location.
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// Zoom management
@AsmetaMonitoredLocation(asmLocationName = ‘‘action’’,

asmLocationValue = ‘‘NONE’’)
@AsmetaMonitoredLocation( asmLocationName = ‘‘zoom’’)
@AsmetaRunStep(repaintView = true)
private JSlider zoom;

// Current value set for the zoom
@AsmetaControlledLocation(

asmLocationName = ‘‘zoomValue’’)
private JLabel lblZoomValue;

// Labels showing the current time
@AsmetaControlledLocation(asmLocationName = ‘‘mins’’)
private JLabel lblCurrentTimeMins;
@AsmetaControlledLocation(asmLocationName = ‘‘hours’’)
private JLabel lblCurrentTimeHours;

// Buttons moving (UP or DOWN) or removing (HOLD)
// airplanes from the landing sequence
@AsmetaMonitoredLocation(asmLocationName = ‘‘action’’,

asmLocationValue = ‘‘HOLD’’)
@AsmetaRunStep
private JButton btnHold;
@AsmetaMonitoredLocation(asmLocationName = ‘‘action’’,

asmLocationValue = ‘‘DOWN’’)
@AsmetaRunStep
private JButton btnMoveUp;
@AsmetaMonitoredLocation(asmLocationName = ‘‘action’’,

asmLocationValue = ‘‘UP’’)
@AsmetaRunStep
private JButton btnMoveDown;

// Number of movements (up or down)
@AsmetaMonitoredLocation(

asmLocationName = ‘‘numMoves’’)
private JSpinner spnrNumMoves;

// Table showing the landing sequence (i.e., which airplane
// lands in which time). It is used also as input, to select
// the airplane to be moved/removed
@AsmetaControlledLocation(

asmLocationName = ‘‘landingSequence’’)
@AsmetaMonitoredLocation(

asmLocationName = ‘‘selectedAirplane’’)
private JTable airplaneLabels;

// Table showing the following time instants
@AsmetaControlledLocation(asmLocationName =

‘‘timeShown’’)
private JTable times;

// Time instants blocking (both visualization and setting)
@AsmetaMonitoredLocation(asmLocationName = ‘‘action’’,

asmLocationValue = ‘‘NONE’’)
@AsmetaMonitoredLocation(asmLocationName =

‘‘timeToLock’’)
@AsmetaRunStep
private ButtonColumn isLockedColumn;

// Timer causing the update of AMAN due to time passing
@AsmetaMonitoredLocation(asmLocationName = ‘‘action’’,

asmLocationValue = ‘‘NONE’’)
@AsmetaRunStep
private Timer guiTimer;

Listing 8. Mapping with the proposed annotation between View components and Asmeta loca-
tions

AMAN shows the airplanes approaching the landing runway using the air-
planeLabels table. This is used both as an output, i.e., it shows the values of the
controlled function landingSequence, and as an input, i.e., it is used to assign to the
selectedAirplane monitored function the value of the selected cell, which has to be
moved or put on hold. Note that the table showing the landing sequence also handles
the background color of each cell, representing the status of an airplane (freezed, stable,
or unstable). However, this is a very case-specific aspect, and we have decided to man-
age it using the controller (see Sect. 4.3). Next to the airplane labels, the following time
instants are stored in the timeShown controlled function and shown in the times table.
Similarly, the blocked time instants are reported in the isLockedColumn button column
(a table with only one column composed of buttons). As for the zoom, isLockedCol-
umn sets two different monitored functions, namely timeToLock (the index of the time
which the user has requested to lock with a click on the button) and action (set to
NONE, since no move or hold of an airplane is requested). Note that when a button in
the isLockedColumn is clicked, a simulation step is performed. In this way, the update
of the text on the buttons is checked by the model (e.g., we assume that a time instant
in which there is an airplane cannot be blocked) and updated by the controller (see
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Sect. 4.3). In particular, the blocked time instants are shown with an X on the buttons,
while the non-blocked ones do not have any label on the associated button.

Finally, the guiTimer is used to refresh the view every minute. For this reason, it
sets to NONE the action and execute a single simulation step.

4.3 Controller

For adopting the fMVC pattern in the AMAN case study, we have extended the
AsmetaFMVCController included into the AsmetaFMVCLib by adding case-specific
behaviors for outputs that are not explicitly mapped to graphical components in the
View. In particular, when the Controller is notified by the Model, it updates the back-
ground color of the airplane names in the table on the View (line 15) and sets the labels
of the buttons signaling the blocked time instants (line 23), as reported in Listing 9.

In both the additional setting procedures, the adopted pattern is the same. First,
using the model.computeValue(...) method we compute the value of a spe-
cific function in the current simulator state. Then, we obtain the list of all the
locations associated to the desired function together with their values using the
model.getValue(...) method. Finally, we iterate over all the results and we set the
properties of graphical components accordingly.

5 Discussion

In this section, we discuss the results obtained with the application of the fMVC pattern
to the AMAN case study and the possible threats to validity. Moreover, we analyze
potential benefits in using fMVC and possible alternatives adoptable when the proposed
solution is not the best fit.

The main threat to the validity of our proposal is external [7], which concerns
whether we can generalize the results outside the scope of our study, i.e., if the approach
we propose in this paper can be applied to other case studies different from AMAN. In
this paper, we have presented a first simple example (see Sect. 3.1) in which we have
shown that the fMVC approach can be applied to a system having different behavior
than AMAN. However, since our intention with this paper is to show a methodology,
rather than propose a solution that fits in all the possible case studies, the AsmetaFMV-
CLib may be extended in future in order to work with additional graphical components
or properties of already supported components. Indeed, the AsmetaFMVCLib library
supports only a limited number of components (i.e., those we have used in the two pro-
posed examples) and to handle only limited interactions among those normally available
in a UI. Nevertheless, we believe that including additional behaviors is easily doable by
extending the proposed annotations or their support to new components.

Note that for user interactions (UI components, properties, and actions) supported
by the AsmetaFMVCLib, using the fMVC approach makes the UI development easier. In
fact, in that case, if the formal model is already available (e.g., because the specifications
have been written for V&V purposes), the user has only to write the view and to link
graphical components to model locations.
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Listing 9. Controller for the AMAN case study

1 public class AMANController extends AsmetaFMVCController {
2
3 public AMANController(AsmetaFMVCModel model, AMANView view)
4 throws IllegalArgumentException, IllegalAccessException { ... }
5
6 @Override
7 public void update(Observable o, Object arg) {
8 // Handle the main parameters as regularly done by the Asmeta FMVCLib
9 super.update(o, arg);

10 // Set the text on buttons based on the value in the TableModel
11 updateBlockedStatus();
12 // Set the color of cells
13 setAirplaneLabelColors();
14 }
15 public void setAirplaneLabelColors() {
16 m_model.computeValue(‘‘landingSequenceColor’’, LocationType.INTEGER);
17 List<Entry<String, String>> values = m_model.getValue(‘‘landingSequenceColor’’);
18 JTable table = ((AMANView) this.m_view).getAirplaneLabels();
19 ArrayList<String> colors = new ArrayList<>();
20 // Iterate over the results and set the background of each cell
21 ...
22 }
23 public void updateBlockedStatus() {
24 m_model.computeValue(‘‘blocked’’, LocationType.INTEGER);
25 List<Entry<String, String>> value = m_model.getValue(‘‘blocked’’);
26 JTable table = ((AMANView) this.m_view).getIsLocked();
27 IsLockedModel model = (IsLockedModel) table.getModel();
28 // Iterate over the results and set the label on each button
29 ...
30 table.repaint();
31 }

While performing our experiments and designing the fMVC pattern, we felt that
the user interface and the formal methods are very different, but it is possible to imple-
ment patterns and strategies to link and let them communicate, as we did for the work
presented in this paper. However, our impression is that the part which automatize the
communication is hardly generalizable, both for the ASM and Java side, since the num-
ber of components and properties to be handled is significantly high and users may
define their graphical components that are unknown a-priori. Thanks to the experience
gained during the work presented in this paper, we can say that having a formal model
underlying the actual software is very useful, but having a general controller is not pos-
sible. This is the reason why, in the AsmetaFMVCLib, we allow users to extend the
controller part and to handle in ad-hoc manner additional values.

A threat to conclusion validity is that we are experts in using formal methods and
in particular the Asmeta framework. Still, we consider the application of fMVC to be
suitable when the safety of the system is a major concern and for a core critical part
of the system. In this case, fMVC can benefit from the main advantages of using a
formal notation with a precise semantics and with a set of tools for the validation and
verification of models.
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There are still valuable alternatives for fMVC. One consists in transforming the
formal specification to source code in a generic programming language and then embed
that program in the UI by using a classical MVC pattern in which the model is the
generated code. Unfortunately, Asmeta does not support the translation to Java (only
C++) for now, but we believe that this path can be viable and we plan to investigate it
in future works.

6 Related Work

The integration of formal methods in MVC pattern as presented in this paper, has never
been proposed, to the best of our knowledge. There exist approaches where the MVC
pattern and formal models are combined [9,13]. In those works, each MVC component
is formally developed by applying stepwise refinement, until the executable code of
each component is generated starting from the formal model previously validated and
verified. The whole approach is formalized using Event-B and relies on the Rodin tools
for V&V activities. This approach, compared to the one proposed in this paper, does
not use the formal model directly as Model, but all components are used to generate the
initial version of the code. Another approach based on the generation of verified code
for the UI is presented in [8]. It focuses more on modeling and verifying the behavioral
aspect of user interfaces (UIs) and it does not exploit the MVC pattern. A tool that
aims at generating MVC prototypes (with the GUI written in Java) from requirements
models automatically presented in [14]. The generated UI is generic and differently
from fMVC it cannot be personalized.

Expanding the analysis to the application of formal methods for design and verifica-
tion of GUI and human-computer interaction, we have found some relevant works. The
contribution of different formal approaches in the field of human-computer interaction
is presented in [12]. That paper gives an historical perspective of the main contribu-
tions in the area of formal methods in the field of human-computer interaction without
emphasis on the UI development.

A black box approach for the verification of GUIs is presented in [2]. A formal
model for the behavior of the GUI application is derived by dynamic analysis (even
without the UI code). V&V activities are then performed on the derived model. In our
work we try to follow the opposite path: validate first the model to have then the correct
UI. Formal methods and tools have been also used for systematically analyzing control
panel interface in [5]: the authors propose a convenient notation for describing the inter-
face, and describe a set of tools allowing the analysis (in terms of credibility, feedback,
consistency of actions, etc.) of the case-specific interface. Similarly, [11] proposed a
user interface description language and a Petri nets-based tool for the engineering and
development of usable and reliable user interfaces. These are used to support prototyp-
ing phases, for instance when the models and the interactive application evolve signif-
icantly to meet late user requirements, as well as the operation phase, after the system
is deployed. In particular, the notation proposed can be used to describe interaction
techniques, interactive components and behavioral parts of interactive applications.

Another tool used to design, prototype, and analyses UIs is PVSio-web [10]. It
provides a library of widgets to support the development of realistic user interfaces.
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Underneath, the toolkit uses the PVS theorem proving system for analysis, and the PVS-
io component for simulation. PVSio-web has been applied successfully to the analysis
of medical devices, to identify latent design anomalies that could lead to use errors. A
comparison with two other tools, CIRCUS and IVY, showed that PVSio-web is more
suitable to rapid prototyping using PVSio for formal verification [6]. This makes our
approach fMVC similar to it, where the formal validation and verification is carried on
in Asmeta.

7 Conclusions

Developing UIs using architectural patterns is universally recognized to be the best
solution allowing the higher modularity and maintainability of software. Among all the
patterns proposed in the literature, the MVC, or one of its variants, is commonly adopted
when the software to be developed includes a graphical interface, since it separates data
from how they are shown to users. However, the MVC pattern does not well support
formal models: even if a Model component is present, it is not a formal version. This
may limit the reuse of specifications that have been previously written by using a formal
notation and does not exploit all the verification and validation activities performed.

For this reason, in this paper, we have proposed the formal Model-View-Controller
pattern, in which the Model is written using Abstract State Machines (ASMs). The
pattern is supported by the AsmetaFMVCLib, embedded into the Asmeta framework,
which allows users to annotate components in the View in order to link them to the
input and output locations of the ASM model. It includes a wrapper for the Model, the
Controller and an interface to be implemented by the View.

In this paper, we have applied the fMVC pattern to the AMAN case study, starting
from the modeling and V&V activities with the tools provided by the Asmeta frame-
work, to the implementation of the View and its binding with ASM locations. Moreover,
we have discussed the pros and the cons of this solution, and highlighted the scenarios
in which the proposed pattern better fits and those in which alternatives are preferable.
In conclusion, we have found that directly using formal models for designing user inter-
faces poses several challenges, since the two aspects are very different, and it may be
difficult to generalize all the possible interactions. However, especially for prototype
implementations, having mechanisms allowing the linking between graphical compo-
nents and formal models is valuable, as we have done in the work presented here.
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Abstract. As the formal verification of safety-critical software systems
often requires the integration of multiple tools and techniques, we pro-
pose a three-phase methodology incorporating two complementary work-
flows to ensure that the system in question fulfills its requirements. We
use the Formal Requirements Elicitation Tool (FRET) to structure the
requirements so that they can be translated to other formalisms. These
translations are then either incorporated directly into an existing model
in Simulink, or used to construct a new formal model of the system. Our
current use case is a model of a controller for a civilian aircraft engine.

1 Introduction

The core assumption behind this project is that the safety and dependability
of software systems can be improved by utilising a combination of verification
and validation (V&V) techniques during their design and implementation. Our
research facilitates the combination of a range of formal and non-formal tech-
niques in a way that ensures traceability so that detected errors can be traced
back to their source, and allows for scalability to systems of greater size and
complexity. Thus, we will bridge the gap between industry practice and recent
research.

The initial stages of this PhD were undertaken as part of the VALU3S
project1, an ECSEL JU project which has brought together 24 industrial part-
ners, 6 research institutes and 10 universities to evaluate the state-of-the-art
V&V methods and explore how they can be applied to various industrial use
cases. The Maynooth VALU3S team has been working in the aerospace domain,
focusing on a set of requirements for a controller of a civilian aircraft engine,
and we have developed a verification methodology driven by the formalisation
of these requirements. Moving forward, the goal of this PhD will be to explore
the phases of this methodology in more depth, examine how the requirements
formalisation process can be improved with the addition of refactoring concepts,
and how these improvements propagate to the rest of the verification workflow.

1 The VALU3S project: https://valu3s.eu/.
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2 Problem Statement

This PhD project currently aims to answer two core research questions:

RQ1: Can we accurately support traceability of formalised requirements in the
implementation of (autonomous) safety-critical systems using a combination
of formal and non-formal methods?

RQ2: How can we reuse diverse V&V artefacts (proofs, models, test cases, etc.)
to modularise and simplify the software verification process?

Through addressing these questions we will address gaps identified via the
VALU3S project, close the gap between V&V tools (identified in the VerifyThis
and SVCOMP series) [1], and extend existing research on interoperability of
formalisms.

The core of this work is the Formal Requirements Elicitation Tool (FRET),
an open-source tool developed by NASA that allows requirements to be encoded
in a structured natural-language called FRETISH. This mitigates the ambigu-
ity present in natural language, while still being easily readable for someone
unfamiliar with formal methods. These requirements can then be automatically
translated into other formalisms, such as LTL or CoCoSpec. The development
team have provided an overview of the tools and the structure of the FRETISH
language in [6], and a deeper look at FRET’s integration of CoCoSpec can be
found in [7]. A report on our experience using FRET on the VALU3S use case
is presented in [2].

3 Proposed Methodology

The focus of this PhD is the three-phase verification methodology that we have
developed as part of the VALU3S project. This methodology is illustrated in full
in [3]. The goal is to verify that a given Simulink model of a system obeys a
given set of natural-language requirements via two verification workflows. Our
approach is split into three distinct phases. In phase 1, we use FRET to formalise
the natural language requirements in FRETISH. We then move to Phase 2, where
we perform the verification of the system by applying two techniques in parallel.
These workflows make use of the formalised requirements in different ways; the
‘FRET-Supported’ toolchain (Phase 2A) uses FRET’s built-in translation func-
tion to produce contracts in the CoCoSpec language that can be incorporated
into the Simulink diagram, while the ‘FRET-Guided’ toolchain (Phase 2B) uses
the formalised requirements to drive the (manual) translation into other formal
methods as chosen by the verifier. The results of both verification methods are
compiled and analysed in a final Verification Report (Phase 3). The following
subsections will detail the insights I have gained from the exploration of Phase
2B with Event-B, and our current plans for expanding on Phase 2A.
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3.1 FRET-Guided Modelling

Up to now, the focus of this PhD has been primarily on Phase 2B, using the
Simulink model and requirements as the basis for a model of the engine con-
troller system in Event-B, a set-theoretic modelling language that supports for-
mal refinement [8]. The construction of this model forms my main personal
contribution up to this point, and the early stages of this work were previously
presented in [4]. I looked to existing work on modelling hybrid systems in Event-
B [9] when constructing the model, particularly the verification of an Inspection
Rover by NASA [10], which was a similar cyber-physical system.

Fig. 1. Flowchart of Phase 2A: Veri-
fication supported by FRET’s link to
CoCoSim.

We found that the structure of Event-
B allows for an intuitive translation of
Simulink models, where individual blocks
from the diagram are given corresponding
events in Event-B. The relation between
the models is generally clear, which main-
tains traceability and creates confidence
in the model’s accuracy; with regard to
Research Question 1, this is very promis-
ing. However, Event-B also has some
noticeable limitations; in particular, if the
model requires non-integer real numbers
or more complex calculations such as inte-
gration, this poses a significant challenge
to Event-B’s standard functionality. The
Event-B Theory plug-in seemed like a
solution to these issues, as it allows the
user to expand the capabilities of Event-
B with user-defined structures [11]; how-
ever, this presented new issues with func-
tionality and compatibility when trying to
incorporate theories into the model.

3.2 FRET-Supported Verification

We are now moving forward with further
exploration of Phase 2A, focusing in on
the functionality of FRET itself (Fig 1).
Once the requirements have been suffi-
ciently formalised, the user can add detail
and bring the requirements closer to the
model by linking components and variables mentioned in the requirements to
blocks, subsystems and signals in Simulink. FRET can then generate contracts
in the CoCoSpec language, an extension of the synchronous dataflow language
Lustre with constructs for the specification of assume-guarantee contracts [7].
The contracts are attached to subsystems in Simulink through the open source
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CoCoSim framework, designed to support the analysis of Simulink models. We
can then verify that the diagram fulfills the contracts using the Kind2 model
checker.

Research Question 1 is particularly relevant in this phase. Since we are trans-
lating the requirements directly into another formalism, maintaining traceability
is vital to ensure that the desired properties are verified. Thus, it is crucial that
the relationships between the requirements in natural-language and the corre-
sponding FRETISH requirements are as clear as possible. In addition, it would
be beneficial to be able to capture various common relationships between dif-
ferent requirements; for example, two requirements might have a ”parent-child”
relationship (where one refers to a more specific situation than the other), or
they might specify different results under the same conditions (e.g. one specifies a
speed limit, while another specifies a maximum operating temperature). FRET’s
current functionality does not allow for such relationships between requirements
to be encoded formally. We propose the implementation of refactoring function-
ality to address this, and are currently developing a fork of FRET that includes
refactoring [5].

4 Future Work

As previously mentioned, we are currently working on incorporating refactor-
ing of requirements into Mu-FRET, a fork of the FRET tool. Refactoring is
a software engineering process where program code is reorganised to improve
its internal structure, without altering its external behaviour. Refactoring has
already been applied to formal requirements [12], and we expect that incor-
porating refactoring techniques into FRET will improve readability and main-
tainability by reducing the duplication of information across requirements. This
will allow the user to re-use structures and definitions across the requirements
set, simplifying the process as described in Research Question 2. A report on
our work on refactoring can be found in [5]. We have already implemented one
refactoring method, and have plans for three further methods to be included.
The implementation of these refactorings is planned to be one of my personal
contributions to Mu-FRET. In extending FRET in this way, we will also explore
how to ensure that the meaning of the requirements is retained by refactoring,
and the impacts on the follow-on toolchain.

Acknowledgements. I would like to acknowledge the work of Marie Farrell and Matt
Luckcuck on the VALU3S project, who contributed immensely to the creation of the
methodology detailed in this paper. I would also like to thank my PhD supervisor,
Rosemary Monahan, for her help and guidance throughout.

References

1. Huisman, M., Gurov, D., Malkis, A.: Formal methods: from academia to industrial
practice: a travel guide. (2020). https://arxiv.org/abs/2002.07279

https://arxiv.org/abs/2002.07279


Exploring a Methodology for Formal Verification of Safety-Critical Systems 365

2. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: FRETting about require-
ments: formalised requirements for an aircraft engine controller. In: Gervasi, V.,
Vogelsang, A. (eds.) REFSQ 2022. LNCS, vol. 13216, pp. 96–111. Springer, Cham
(2022). https://doi.org/10.1007/978-3-030-98464-9 9

3. Luckcuck, M., et al.: A methodology for developing a verifiable aircraft engine
controller from formal requirements. In: IEEE Aerospace Conference (2022)

4. Sheridan, O., Monahan, R., Luckcuck, M.: A requirements-driven methodology:
formal modelling and verification of an aircraft engine controller. In: ter Beek,
M.H., Monahan, R. (eds.) IFM 2022. Lecture Notes in Computer Science, vol.
13274, pp. 352–356. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
07727-2 21

5. Farrell, M., Luckcuck, M., Sheridan, O., Monahan, R.: Towards refactoring
FRETish requirements. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NFM
2022. Lecture Notes in Computer Science, vol. 13260, pp. 272–279. Springer, Cham
(2022). https://doi.org/10.1007/978-3-031-06773-0 14

6. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

7. Mavridou, A., et al.: Bridging the gap between requirements and model analysis:
evaluation on ten cyber-physical challenge problems (2020). https://ntrs.nasa.gov/
citations/20200002241

8. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

9. Su, W., et al.: Formalizing hybrid systems with Event-B and the Rodin Platform.
In: Science of Computer Programming, Part 2, vol. 94, pp. 164–202 (2014). ISSN:
0167–6423, https://doi.org/10.1016/j.scico.2014.04.015

10. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
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Abstract. The modeling language of classical B is used to write speci-
fications of various systems. Tools like ProB are able to use modelcheck-
ing techniques to verify invariants of these specifications such as safety-
properties. However, classical B historically supports only discrete mod-
els and has additionally no notion of floating-point numbers and real
numbers. Currently challenging scenarios and issues which any suitable
solution must address are explored. An approach is proposed such that
ProB may offer such a solution in the future.

Keywords: B-Method · ProB · Floating-Point Numbers ·
Modelchecking · Constraint Solver

1 Motivation and Problems

1.1 Problem Domains

ProB is used for a variety of problem domains. Since only discrete models are
currently supported, there has always been some mismatch modelling dynamic
systems incorporating inherently uncertain, or continuous values and behaviours.
This mismatch must currently be overcome by model designers. Lack of a proper
solution from tooling could lead to the B-Method either producing suboptimal
results or requiring higher effort and expertise for results of sufficient quality.

Systems with timing constraints constitute one such domain. Safety prop-
erties of this kind lend themselves to be modeled in tools having a specific
notion of time such as UPAAL [1]. Exhibited or desired behaviour of time depen-
dent systems can also be modeled through differential equations. This is more
common in verification of cyber-physical-systems, as for example possible with
Ariadne-CPS [3]. Systems with physical components often incorporate contin-
uous behaviours besides time based ones. Verification tools like Ariadne-CPS
address this by overapproximating the reachable sets of states, verifying they
are still contained within a defined safe set of states [4].

At other times, real values such as π or
√
2 are used. While not inherently

continuous, performing calculations with real numbers is sometimes necessary
as for the case of some physical properties but difficult to achieve without infor-
mation loss. Exact real arithmetic chooses a representation that directly allows
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
U. Glässer et al. (Eds.): ABZ 2023, LNCS 14010, pp. 366–370, 2023.
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arithmetic on real numbers as well as conversion to floating point numbers when
needed. Notable approaches are iRRAM [9] and the ongoing work on aern2 [7].

1.2 Existing Workarounds and Their Issues

Interestingly, train control systems are one of the better known applications of
the B-Method while matching the mentioned domains. The common solution is
to manually discretize the problem. However, this is not without drawbacks:

– If discretized too coarsely, verification fails, requiring manual adjustment.
– If discretized too finely, an enormous state-space might cause verification not

to finish in an acceptable timespan.
– Approximation of reals usually results in using ad-hoc fixed-point arithmetic.

• An unnecessarily large quantization error may be introduced.
• Implementing your own arithmetic may introduce errors on its own.

– Uncertainty in the model is hidden in the chosen discretization and quanti-
zation. Not explicitly part of the model, it must be considered carefully by
model designers, presenting another source for errors.

1.3 Specific Problems of Any Solution

A solution must not lead to unsafe models but should also be useful in variety
of situations. This leads to individual problems to consider before choosing one.

Even if IEEE754 compliance is assumed, results can differ between platforms.
This excludes simply using hardware floats instead of ints.

An example on differences between floats and reals is given by Muller et al.
[8, Sect. 1.3.2]. Consider (un)n∈N : u0 = 2;u1 = −4;un = 111− 1130

un−1
+ 3000

un−1un−2

This sequence provably converges to 6 for reals, but 100 for all floats. Conse-
quently, real solutions do not naïvely translate to floats or model floating-point
arithmetic. This also impacts symbolic solvers, often assuming real arithmetic.

Self-validating numerical methods suffer from the wrapping effect, a pro-
gressively worse approximation of a set of values. ∀x : f(x) = x − x = 0.
interval-arithmetic (IA) however yields f([−2, 2]) = [−4, 4]. Ball-arithmetic (BA)
or affine-arithmetic (AA) avoid the effect in some cases, but not all [6]. Another
issue is the inability to represent concave sets.

Modelchecking allows finding concrete counterexamples and animating the
model by hand. Not generating values to inspect potentially looses these advan-
tages. Proof-based or purely analytical approaches run this risk.

2 Explored Solutions and Ongoing Work

As a pragmatic solution, two new types are proposed to be added to ProB.

2.1 Softfloats

Sometimes, target platform and behaviour-determining-parameters are known
in advance. Here, emulating the results of the platform in question might be
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preferable. To this end, the Berkeley SoftFloat library [5] has been integrated
into ProB. If no platform is specified hardware floats are used.

As an advantage, no new behaviour is introduced and common modelcheck-
ing techniques can be repurposed. Additionally it allows to write numerical algo-
rithms using floats and thus extend the functionality manually.

This approach is always exact but might be infeasible to use with larger
state-spaces as it does need to enumerate all floats in a Set.

2.2 Calculations with Sets

This method allows to model and determine behaviour for a wide range of plat-
forms and implementations. IEEE754 compliant platforms should be covered.
To achieve this, some form of set representation is needed.

Self-validating numerical methods on their own were evaluated first starting
with IA. IA offered safe narrowing of interval bounds after the preconditions have
been met. It is always safe to widen the interval, trading overapproximation for
state space size. These two properties allow models to be checked which could
not be checked using native floating point arithmetic, as demonstrated in Fig. 1.
The wrapping effect unfortunately often led to poor interval boundaries. BA can
produce better results in certain scenarios. However, making use of preconditions
is harder, since we have to preserve the ball shape of the set. Affine-arithmetic
accounts for linear and affine dependencies between values, offering previously
unobtainable results. Still, simple multiplication forces the wrapping effect to
occur. Some shortcomings have been improved in INTLLAB’s mixed AA [10].

Fig. 1. Expressing the same model with floats and intervals. Using interval-arithmetic
can lead to state-space reduction

Expanding this approach, all possible combinations of all values were approx-
imated as the solution to a constraint. The solver generates a safe over- and
underapproximation. counterexamples can be generated from the underapprox-
imation and tightness of the solution can be assessed. Adding an invariant as a
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constraint allows us to calculate a new set to check for possible invariant viola-
tions. This method is very general and does not rely on manual intervention. It
also solves multiple problems at once:

– handling sets of any shape
– generating solutions to set comprehensions
– checking for invariant-violations by adding them as a constraint
– making good use of preconditions and conditionals
– resolving to any wanted precision

The problem itself has also been reduced to one much more analytical in
nature and can be decomposed into smaller problems itself. In its simplest form
the solver partitions R

n and applies IA. The partitions are further subdivided
where evaluation yielded unclear results. As a demonstration the set of 2D points
with a distance between 50 and 100 units from the origin was calculated. The
resulting set is visualized live through the work-in-progress solver implementa-
tion in Fig. 2 in a green color. Regions of uncertainty are considered part of
the overapproximation but the underapproximation and are shown as small pur-
ple boxes at the edges of the set. This general approach so far enabled us to
freely explore combinations of the individual approaches. For example AA can
be used to evaluate subdivisions to yield better results in some cases. Another
improvement currently explored is making use of contractors [2], safely contract-
ing indeterminate regions. As an alternative to fixed geometry, taylor models are
planned to bound set approximation. More improvements are yet to be evalu-
ated.

Fig. 2. Visualization of {(x, y)|max(−(
√

x2 + y2 − 50),
√

x2 + y2 − 100) ≤ 0}

There are however also still open questions such as the role of refinement and
how a solver based approach should behave in this regard.

3 Conclusion

Introduction of floating point support in ProB is challenging in multiple ways.
From a modelchecking perspective, floats have unfavourable characteristics.



370 K. Rutenkolk

The Berkeley SoftFloat Library has been adopted for specific uses. Interval-
arithmetic and similar methods present promising initial concepts for a general
solution, although they exhibit too many limitations like convexity or downsides
like the wrapping effect. As a result, a constraint-solving approach is proposed,
which itself uses these methods to generate safe approximations.
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1 Context

Railway systems belong to the domain of critical systems, where safety is a
paramount concern. To ensure safety, testing methods have been implemented
to adhere to certain standards. However, for large projects, it is impossible to
test every possible scenarios, which can lead to gaps in the testing process.
Additionally, when the system evolves, all previous tests become invalid and must
be redone. Such testing-based methodologies are not appropriate for covering
every aspects of system requirements in large projects such as railway systems.

In this context and in order to strengthen its validation processes, following
the recommendation of the CENELEC EN-50128 safety standard [8] advocat-
ing the use of formal methods, the Régie Autonome des Transports Parisiens
(RATP) decided to incorporate formal methods into their core development
processes to increase confidence. The example of SACEM (Système d’Aide à
la Conduite à l’Exploitation et à la Maintenance) served as an illustration and
sparked RATP’s interest in this method, as it can detect cases that would be
unimaginable for humans [9].

2 Motivation

RATP has been structuring its use of formal methods for several years and has
developed the Proof Executed over a Retro-engineered Formal model (PERF)
methodology [4]. It allows for the formal validation of properties for software
already developed. The validation is independent for the development process [5].
If a safety issue is detected, a report is generated providing a counter-example
highlighting it.

However, the PERF methodology does not ensure that the implementa-
tion adheres to environment constraints of the system specification. It does not
extract safety properties of the system, nor consider environment characteristics
during the proof process (e.g. safety requirements may depend on the inclina-
tion of the ground, the weather, etc.). In fact, verification is typically achieved
through a critical review of technical documents. Since these documents are writ-
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ten by domain experts, they can be described differently, resulting in different
interpretations for different stakeholders.

3 Objectives of Our Work

Our objective is to set up a framework where safety verification can be achieved
on a system specification, re-contextualized in the environment where the system
under design evolves. The goal of this thesis is to define a formal framework for
linking system and software specifications, in order to demonstrate that safety
requirements are preserved. In this case, more global proofs need to be achieved.
The system is viewed as a whole rather than as the sum of its isolated compo-
nents. Such objective entails the following main questions:

1. How to properly identify safety properties for railway systems?
2. How to integrate safety requirements in the model with a high level of trace-

ability?
3. How to homogenize models between different projects?
4. How to incorporate the environment into the models, without losing their

genericity?

In order to address these questions, three interleaved actions must be set up.

3.1 Integration of the Domain Knowledge

Many modelling languages may be used during a system development with differ-
ent modelling paradigms, resulting in heterogeneous models. When the system
model is considered within the environment where it evolves, it is important
to model explicitly the shared knowledge related to this environment and the
system model. Proceeding this way provide common knowledge references and
reduces the modelling and validation effort.

3.2 Extracting Safety Properties

There is a need for the definition of requirement analyses for extracting safety
properties of a system from its documentation. These properties are generally
more interesting to formally demonstrate than functional properties because
they can often be demonstrated using an abstraction of the system, where func-
tional properties needs to be demonstrated case by case [10]. Expressing these
properties using an abstract model allows for the identification of the level of
abstraction at which a safety property can be validated, and thus its reliance on
future system developments.
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3.3 Specific Constraints at System Level

A system under design must be conform to its standard of safety (e.g. train
detection must be conform to EN-50128 standard [8]), which needs to consider
the interactions between its subsystems or with the environment. Then, the
system’s environment must be taken into account in the modelling, and may
provide useful justifications for safety properties. Therefore, when scaling up, or
reusing a project in another sector, safety properties may no longer be guaranteed
by changes in the considered environment. The methodology must therefore
ensure safety properties in those projects as well.

4 Our Roadmap

Considering railways systems models as complex heterogeneous models and in
order to achieve the goals described above, we have set up a step-wise approach
consisting of:

– modelling domain knowledge and express environment constraints;
– integrating environment and system constraints in a single unified framework;
– deploying our proposal on complex case studies of railways systems.

We use the Event-B method [1] as a core formal modelling method to sup-
port all the developments related to systems as well as for explicit domain
modelling [2,3]. There is some preliminary work in the direction of property
verification using model checking [7]. However, our goal is to provide generic,
reusable, scalable, compositional, and dependable solutions for meeting certifi-
cation standards through the use of formal reasoning and correct by construction
approaches. We intend to use the Event-B Theory plugin [6] to specify domain-
specific theories that can be used to model and design various components of
railway systems. The developed theories include necessary data types, operators,
and well-definedness conditions, as well as theorems that can be used to specify
system properties. Moreover, the use of the Theory plugin allows to detail the
specification and the environment into reusable components, then demonstrat-
ing its properties, which can then be used in other theories and/or machines to
demonstrate their good integration. Our goal is to use this framework to simplify
proofs at system level, using parameterised theorems in which safety properties
are proved once and for all.
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1 Introduction

TLAPS, the TLA+ proof system [4], is a proof assistant for the development and
mechanical verification of TLA+ proofs. TLAPS provides an interactive proof
environment that relies on users guiding the proof effort, it integrates automatic
proof search backends to discharge proof obligations, such as satisfiability modulo
theories (SMT) and tableau provers. Currently, TLAPS supports three main
backend provers, which are Isabelle/TLA+ (an encoding of TLA+ semantics in
Isabelle), the tableau method prover Zenon, and a backend for SMT solvers.

Nevertheless, to maintain the trustworthiness of proof generated by an SMT-
solver, we want to reconstruct the resulting SMT proofs back into TLAPS. Cur-
rently, TLAPS does not verify the generated proof found by the SMT solver
backend and only considers if the SMT-solver founds proof. Therefore, adding
a reconstruction process of generated proofs in TLAPS will improve our trust
in TLA+ proof. In order to achieve this aim, we present in the next sections an
ongoing proposal for reconstructing proof obligations of TLAPS generated by
the SMT solver veriT [3] within the logical framework Lambdapi [2].

2 Related Work

Hammers are proof assistant tools that dispatch proof obligations to external
automated theorem provers (ATPs) in order to automatically find proofs of user
theorem and then reconstruct the resulting proofs back into the proof assistant’s
logic. For example, CoqHammer [5] uses external ATPs to automate Coq proofs.
Likewise, Isabelle/HOL uses Sledgehammer extended with SMT solvers [6], and
HOL4 uses HolyHammer [7].

There are three main components of such hammer systems: premise selec-
tion, proof translation, and reconstruction. Premise Selection is a component
that given a user goal and a large fact library, predicts a smaller set of facts
likely useful to prove that goal. The second component translates the user given
conjecture together with the selected lemmas to the logic and input formats of
external automated theorem provers. Finally, the last component reconstructs
the proofs in the richer logic of the proof assistants by using the information
obtained by the successful ATP runs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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The solver veriT is a proof-producing SMT solver. It provides an option
to produce detailed proofs for propositional and theory reasoning. VeriT can
produce fine-grained proofs, which has led to an efficient integration with the
Isabelle/HOL proof assistant [6]. Therefore, we intend to transpose this fast and
reliable reconstruction proof techniques to the TLA+ proof assistant TLAPS.

3 Current Proposal

TLA+ is based on a variant of Zermelo-Frankel set theory for specifying the
data structures, and on the Temporal Logic of Actions TLA [8] for describing
the dynamic system behavior. We started to implement the set theory of TLA+

in the logical framework Lambdapi, a proof assistant based on the λΠ-calculus
modulo rewriting (λΠ/≡) [2]. It is a logical framework to define any theory that
can be expressed in predicate logic, such as arithmetic and set theory, as well as
simple type theory and the Calculus of Constructions. Thus, we plan to verify
veriT generated proof obligations of TLAPS with the framework Lambdapi. As
Fig. 1 illustrates, as a first step, TLAPS sends the encoded proof obligations
in SMT-lib format to veriT to try to find a proof. In the second step, TLAPS
enables the option (get-proof) of veriT format [1,9] and collects the proof
trace generated by veriT in the case that veriT finds a proof. In the third step,
TLAPS reconstructs the generated proof in Lambdapi with its equivalent logic.
Lastly, it runs the typechecker of Lambdapi to validate the proof.

TLAPS veriT

Lambdapi

1 proof obligations

3 proof objects4 typecheck? (yes/no)

2 (get-proof) (sat/unsat)

Fig. 1. Validation process for TLAPS proofs generated by veriT

Therefore, the logical framework Lambdapi is a suitable candidate for us
to verify generated proofs due to its universal theory where proof systems:
Isabelle/HOL, Coq and SMT proof format can be expressed. The semantic basis
of λΠ/ ≡ is an extension of the Edinburgh logical framework with a primitive
notion of computation defined with rewriting rules. The system theory of Lamb-
dapi is a pair of (Σ,R) such that Σ is a signature of terms and types, and the
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R is a set of rewriting rules that is a pair of terms l ↪→ r so that a term l can
be rewritten automatically in a term l. Rewriting rules provide the dynamic to
setting implicit automation for reducing the burden of proof for generated veriT
proofs. We plan to use this internal automation mechanism during the proof
reconstruction phase to rewrite terms automatically in proof steps and shorten
the size of reconstructed proofs. More information on Lambdapi theory can be
found in [2].

4 Current Development

At this stage, we are implementing the set theory of TLA+ with ideas from the
existing encoding in the logical framework Isabelle for TLAPS. Simultaneously,
we are investigating how to instrument the back-end proof engines of TLAPS
to reconstruct the proofs in Lambdapi. A similar mechanism has already been
implemented for checking proofs produced by the Zenon back-end in Isabelle, but
it needs to be adapted for Lambdapi and extended to the proof traces provided
by veriT. Moreover, we are working on a proof reconstruction algorithm that
translates veriT proof into Lambdapi proof. To guide us in this development,
we are using proofs generated for Cantor’s theorems by veriT and trying to
automatically reconstruct the proofs in Lambdapi with this algorithm.
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struction of type theories. Logical Meth. Comput. Sci. 19(1), 1–28 (2021)

3. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2 12

4. Cousineau, D., Doligez, D., Lamport, L., Merz, S., Ricketts, D., Vanzetto, H.: TLA+
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