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Nomenclature 

ADCS Attitude determination and control subsystem 
COTS Commercial off the shelf 
EKF Extended Kalman filter 
FFs Fading factors 
MSFs Multiple scaling factors 
SSF Single scaling factor 

1 Introduction 

The small satellite industry is developing at a faster pace day by day and is 
conducive to more people and companies to conduct work in the field of space 
technologies. Although they attract a lot of attention due to their low cost and short 
development time, small satellites also bring some engineering challenges with 
them. Cheap and commercial off the shelf (COTS) components used to reduce the 
cost increase the risk of a system malfunction, and attitude determination and control 
subsystem (ADCS) is one of subsystems that suffers most from this risk (Tafazoli, 
2008). Any fault in attitude-related sensors can reduce the accuracy of the attitude 
estimation algorithm and, as a result, may cause incorrect control actions to be taken, 
which can lead to fatal consequences. Therefore, this study specifically addresses the 
problem of inaccurate attitude estimation in case of sensor faults. This problem
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becomes more important especially for nanosatellites, because being strictly 
constrained in size and mass makes conventional solutions, such as hardware 
redundancy impractical.
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Attitude estimation methods for a nanosatellite can be divided into two main 
categories: single-frame and filtering algorithms (Hajiyev & Soken, 2021). Single-
frame algorithms use vectors measured by attitude sensors (sun sensors, magnetom-
eters, etc.) in the body frame and corresponding reference vectors in the reference 
frame (sun direction, magnetic field, etc.). The goal is finding the transformation 
(attitude) matrix between these two frames. Many different single-frame algorithms 
have been developed to date (TRIAD, q-method, QUEST, SVD, etc.), and extensive 
studies explaining and comparing these methods can be found in the literature 
(Cilden & Hajiyev, 2014). On the other hand, filtering methods use satellite’s 
mathematical model in addition to measurements. Thus, even if there is no measure-
ment available, attitude still can be estimated. Filtering algorithms, especially 
Kalman filtering, have been used in satellite attitude estimation for many years and 
it is possible to find many studies in the literature on this subject (Lefferts et al., 
1982). However, since satellite’s mathematical model and some attitude sensor 
measurement models (e.g. magnetometer) are nonlinear, the attitude estimation 
process requires nonlinear filtering which inherently increases the computational 
load. This is particularly undesirable for nanosatellites. In order to cope with this 
problem, filtering algorithms can be integrated with single-frame algorithms 
(Hajiyev & Bahar, 2003). These integrated algorithms make the measurement 
model for the filter linear and, thus, reduce the computational load. Integrated 
algorithms also give better estimations than the estimations given by the individual 
algorithms. 

Kalman filters can give poor estimations in case of uncertainties and 
malfunctions. These possibilities should be considered in the design process and 
the designed filter should be robust against the changing conditions and compensate 
for the faults. In the literature, these type of Kalman filters are known as adaptive 
Kalman filters, and there are different techniques to make a Kalman filter adaptive 
such as multiple model adaptive estimation, join state and covariance estimation, 
autocorrelation, and covariance matching techniques (Hajiyev & Soken, 2021). 
Covariance matching techniques are one of the most widely used techniques 
where the main idea is scaling the Q- or R-noise covariance matrix depending on 
the source of the fault using a single scaling factor (SSF) or multiple scaling factors 
(MSFs). 

In this study, an integrated adaptive TRIAD/R-adaptive extended Kalman filter 
(EKF) attitude estimation algorithm is presented where a single-frame algorithm 
(TRIAD) and a filtering algorithm (EKF) are integrated in order to take advantage of 
the good aspects of both. In the first step of the algorithm, TRIAD produces an initial 
attitude estimation. In the second step, this estimation is given to the EKF as input, 
and after the filtering process, final estimation is obtained. The proposed integrated 
algorithm is made adaptive via two different covariance matching techniques, using 
SSF and MSFs, and they are compared with a simulation.
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2 Adaptive Kalman Filter via Covariance Matching 

The TRIAD (Shuster & Oh, 1981) and conventional EKF algorithms (Lefferts et al., 
1982) are well explained in other studies and will not be repeated here for the sake of 
brevity. However, adaptive EKF algorithms via covariance matching techniques 
differ from the traditional EKF at several points. Following subsections explain the 
R-adaptive EKF routines using SSF and MSFs. 

2.1 R-Adaptive EKF with a Single Scaling Factor 

The R-adaptive EKF with an SSF scales the measurement noise covariance 
matrix, R, in case of faults using a calculated SSF. SSF is calculated by comparing 
the real and theoretical innovation covariance matrices. The trace of these covariance 
matrices is matched such that (Hajiyev, 2007) 

tr e kð ÞeT kð Þ  = tr H kð ÞP kjk- 1ð ÞHT kð Þ þ  SSF k- 1ð ÞR kð Þ ð1Þ 

where e(k) is the EKF innovation sequence, SSF(k- 1) is the introduced SSF, and tr 
[�] is the trace of the related matrix. P, H, and R matrices are the classical Kalman 
filter matrices and known as estimation error covariance matrix, observation matrix, 
and measurement noise covariance matrix, respectively. Solving the Eq. (1) for the 
SSF(k - 1), the following is obtained: 

SSF k- 1ð Þ= 
eT kð Þe kð Þ- tr H kð ÞP kjk- 1ð ÞHT kð Þ½  

tr R kð Þ½ � ð2Þ 

Then, using the calculated SSF, the diagonal R matrix element corresponding to 
the faulty measurement channel is adjusted as 

Radjustedj,j kð Þ= SSF k- 1ð ÞRj,j kð Þ ð3Þ 

2.2 R-Adaptive EKF with Multiple Scaling Factors 

For the case of R-adaptive EKF with MSFs, the real and theoretical innovation 
covariance matrices are matched such that (Hajiyev & Soken, 2021)
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1 
ξ 

m 

k =m- ξþ1 
e kð ÞeT kð Þ=H kð ÞP kjk- 1ð ÞHT kð Þ þ  MSFs k- 1ð ÞR kð Þ  ð4Þ 

where ξ is the window size, namely the number of measurements that will be 
considered, and MSFs(k - 1) is the scaling matrix that contains scaling factors for 
each measurement channel. Solving Eq. (4) for the MSFs(k - 1) gives 

MSFs k- 1ð Þ= 
1 
ξ 

m 

k=m- ξþ1 
e kð ÞeT kð Þ-H kð ÞP kjk- 1ð ÞHT kð Þ  R- 1 kð Þ  ð5Þ 

After calculating the scaling factor matrix, Kalman gain now can be adjusted as 

K kð Þ= 
P kjk- 1ð ÞHT kð Þ  

H kð ÞP kjk- 1ð ÞHT kð Þ þ  MSFs k- 1ð ÞR kð Þ ð6Þ 

In the literature, it is possible to find slightly different algorithms to find the 
scaling factor matrix. In Kim et al. (2015), authors present an R-adaptive EKF for 
various types of global navigation satellite system (GNSS) faults using what they 
call fading factors (FFs). Although the fundamental idea is the same, in their study 
they calculate the scaling matrix in a slightly different way as 

FFs k- 1ð Þ= 

FF 1ð Þ  
FF 2ð Þ  
⋮ 

FF Nð Þ  

= max 1, 
diag Ck 

diag Ckð Þ ð7Þ 

where max(�) function gives the higher value inside of it and diag(�) gives the 
diagonal elements of the related matrix. The term Ck is the real innovation covari-
ance and given as 

Ck = 
1 

ξ- 1 
m 

k =m- ξþ1 
e kð ÞeT kð Þ ð8Þ 

Note that, in this version, the term ξ - 1 is used instead of ξ. The term Ck is the 
theoretical innovation covariance and similar to Eq. (4), it is given as 

Ck =H kð ÞP kjk- 1ð ÞHT kð Þ þ  R kð Þ ð9Þ 

After the scaling matrix FFs is calculated, Kalman gain is now updated as
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K kð Þ= 
P kjk- 1ð ÞHT kð Þ  

FFs k- 1ð Þ  H kð ÞP kjk- 1ð ÞHT kð Þ þ  R kð Þ½ ð10Þ 

Note that, in this version, the whole denominator of the Kalman gain is scaled 
using the scaling matrix rather than scaling only the R matrix. 

3 Simulation Results and Discussion 

In order to compare the performance of the R-adaptive EKF with SSF, MSFs, and 
FFs, a simulation is performed where the measurement noise of the x-axis magne-
tometer is increased 100 times at the 3500th second of the simulation and this effect 
is maintained for 100 s. Figure 1 shows the performance of the conventional EKF, 
R-adaptive EKF with SSF, MSFs, and FFs. As can be seen from Fig. 1, with the 
introduction of the noise increment, the tracking performance of the conventional 
EKF reduces significantly and it starts to give unreliable attitude estimations. On the 
other hand, R-adaptive EKFs continue to follow the ground truth. Since the results of 
the MSFs and FFs are very similar, they overlap with each other and MSFs results 
are not visible. 

Apart from Fig. 1, Table 1 shows the root mean square error (RMSE) values of 
the conventional EKF, R-adaptive EKF with SSF, MSFs, and FFs. The performance

SSF vs MSFs vs FFs attitude estimation (Euler angles) 
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Fig. 1 Attitude estimation results in case of noise increment in the x-axis magnetometer



of each algorithm can be seen more clearly in Table 1. Regardless of the method, 
R-adaptive EKFs improve the results significantly. In addition, the superiority of the 
MSFs and FFs algorithms over the SSF algorithm is obvious. However, although the 
MSFs and FFs algorithms are slightly different, no visible difference is observed 
between these two algorithms.
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Table 1 RMSE values of standard and R-adaptive EKF with SSF, MSFs, and FFs during 
magnetometer noise increment 

Euler angle (rad) Standard EKF SSF MSFs FFs 

ϕ (roll) 0.274645 0.035006 0.002552 0.002567 

θ (pitch) 0.997492 0.006021 0.005015 0.004972 

ψ (yaw) 0.712692 0.026243 0.005962 0.005931 

4 Conclusion 

In this study, three different integrated TRIAD/R-adaptive EKF algorithms are 
presented. TRIAD algorithm is used as the first-phase attitude estimation algorithm 
and obtained estimation is given to the R-adaptive EKF as input. As the adaptive 
method, covariance matching technique is chosen with single scaling and multiple 
scaling factors. Also, two different algorithms are presented for the multiple scaling 
approach. In order to verify the performance of the proposed algorithms, one 
simulation is performed where the x-axis magnetometer noise is increased 
100 times. Simulation result shows that while the tracking performance of the 
conventional EKF algorithm decreases significantly, proposed R-adaptive EKF 
algorithms maintain their tracking performance and continue to give reliable attitude 
estimations. In addition, while it is observed that MSF and FF approaches give better 
results than the SSF approach, no significant difference is observed between the 
MSFs and FFs algorithms. 
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