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Abstract. Urban open spaces provides various benefits to citizens, but the ther-
mal environment under this space is being affected by the accelerated urbanization
and global warming. Based on this, this paper is dedicated to conducting research
on improving the attractiveness of outdoor environmental spaces and improving
outdoor thermal comfort. The main work of this paper is first to propose a street
comfort model by considering both environmental and climatic factors, which is
trained to learn using indirect data. Secondly, the comfort level of each street is
combined with the frequency of non-motorized trips on that street to obtain the
urgency index of rectification for that street and to achieve accurate recommen-
dations for urban planning. Considering the public accessibility of the data in the
paper in cities across China, this study can be easily deployed to other cities to
support urban planning and provide useful recommendations for improvement of
urban open spaces.

Keywords: Indirect learning · Street solar radiation value · Street comfort
model · Street rectification urgency index

1 Introduction

With warming and urbanization, heat is increasing globally, especially in large cities
with high population mobility. One of the biggest difficulties for future urban planning
is to develop and protect cities to make them livable and sustainable. Outdoor comfort is
an important evaluation indicator for urban planning as well as for architectural design.
An increase in outdoor comfort is often accompanied by an increase in the number of
hours residents spend outdoors, which also means an increase in urban vitality. As the
research on urban climate has intensified, scholars have also paid more attention to how
to create more comfortable outdoor spaces in order to improve the service efficiency of
urban outdoor spaces.

Most of the studies on urban outdoor comfort have been conducted on the whole
city or the whole area. However, this paper considers that after excluding parks and
amusement parks, which are open-air entertainment and recreation places, the traffic
axis is the largest piece of urban open spaces, so this paper locks the scope to the street
level to study the comfort of streets. The work in this paper can be divided into the
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following two steps: 1. Integrate both environmental and climatic factors to propose a
street comfort model. 2. Combine the comfort level of each street with the frequency of
non-motorized trips on that street to get the urgency index of rectification for that street
and achieve accurate recommendation for urban planning.

In terms of environmental factors, this paper considers the degree of street greenery.
Greenery is one of the effective means to promote the adoption of non-motorized travel
activities by citizens, and exists in various forms in streets, including trees, environmen-
tal zones, and green walls. Traditional urban greenery measurement methods cannot
encompass all forms of greenery and cannot accurately reflect the degree of pedestrian
visibility of greenery. Therefore, this paper uses the panoramic image and semantic
segmentation method of Baidu Street View (BSV) to calculate the Green View Index
(GVI) with reference to the pedestrian’s visual perspective to improve the comprehen-
siveness of the quantitative representation of street greenery. As for the climatic factors,
in addition to the conventional temperature and humidity, this paper also considers the
street-level solar radiation. It depicts the horizontal solar radiation of each street per
hour, which can well represent the exposure of residents to sunlight. Considering that
the street orientation has a significant effect on the radiation value, this paper first obtains
the street orientation by road network calculation, and then adds it to the existing radia-
tion estimation method based on street images [1] to improve the accuracy of estimating
the street-level solar radiation value. Finally, the comfort value of each street is obtained
by using a street comfort model by considering both environmental and climatic factors.

In urban planning, considering that both street comfort and non-motorized travel data
are spatio-temporally heterogeneous and can reflect the detailed situation of each street at
each time, this paper combines the comfort value of each street and the frequency of non-
motorized travel of that street to obtain a reasonable street rectification urgency index.
Finally, using the ranking of this index and combining detailed research and discussion
analysis, we propose targeted suggestions for the rectification of existing roads in the
city.

2 Related Work

2.1 Estimation of Street Solar Radiation Values

For the calculation of street solar radiation values, the two main traditional methods are
inversion by remotely sensed data and calculation by digital urban models. Different
metrics such as canopy cover and vegetation index can be calculated from remotely
sensed images to indicate the microclimate regulation of urban vegetation [2] and added
to the estimation of solar radiation at ground level. However, it is difficult to simulate
the solar radiation reaching the ground with only the remote sensing data overhead. This
is because the vertical structure of the street canopy and other urban features under the
street canopy affect the solar radiation within the street, which are not reflected in the
high-view remote sensing data [3]. On the other hand, with the advent of high-resolution
digital city models, it is possible to simulate the transmission of solar radiation within
the streets. However, most digital citymodels oversimplify the complex geometry within
the city streets [4]. Recently, street view images provided by online maps such as Google
Maps, Baidu Maps, Tencent Maps, and Mapillary have provided a novel and low-cost
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data source for urban studies. These street view image data enable amore comprehensive
description of high-density street patterns to address the shortcomings of the two tradi-
tional methods mentioned above. This computational approach first originated from the
thermal comfort model proposed by RayMan [5] in 2007, who converted the manually
taken streetscape photos into Sky View Factor (SVF) and then added the calculation of
horizontal street radiation. Since then, with the development of deep learning technology
and the opening of street view images on the Internet, more studies based on this idea
have started to study the distribution of street level radiation throughout the city [1, 6]
and use it to make suggestions for urban planning. In this paper, borrowing from Deng
Mingyu et al.’s method [7], we use deep learning techniques to process Baidu street
view images so as to derive the sky visibility, and then use this parameter to estimate
the solar radiation at street level, while the innovation is to include the preprocessing of
street direction in the calculation process.

2.2 Comfort Model

Currently available comfort models use two main types of objective elements: local
climatic factors and urban environmental parameters. Unfortunately, the existingmodels
model only one of these categories and do not consider both at the same time. For
example, the Physiological Equivalent Temperature (PET) [8], the Predicted Mean Vote
(PMV) [9], the Universal Thermal Climate Index (UTCI) [10] and Standard Effective
Temperature (SET) [11] are the four most commonly used comfort assessment models
[12], all ofwhich use only climatic factors in the objective elements part.While studies by
Mohammad Fahmy [13] and Hongxuan Zhou [14] et al. used only urban environmental
parameters.

For traditional modeling of comfort models, there are mainly empirical modeling
based on theoretical knowledge and traditional supervised learningmethods, which often
require large costs to acquire data. For example, the fully connected neural network
model used by Dyvia [15] and the K-Nearest Neighbor (KNN) used by Lei Xiong [16]
are trained based on known PMV values. However, the comfort model proposed in
this paper is characterized by parameter diversity, and if supervised learning is used, a
large number of questionnaire research results are required to label the data, which is
time-consuming and labor-intensive. In order to solve the above problems, this paper
proposes to construct a complete closed network model based on indirect data first,
and then extract the intrinsic relationship between street environment factors and street
comfort through the overall model, so that the comfort model to be constructed can be
obtained.
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3 Method

The purpose of this paper is to construct a street comfort model that considers both
environment and climate, and to combine it with street pedestrian flow to generate street
rectification urgency indicators to provide reliable suggestions for urban planning and
rectification. Themethodological framework of this study is shown in Fig. 1 and consists
of three main stages. In the first stage, SVF and GVI are first estimated from Baidu
Street View panoramic images, and then SVF is combined with street direction, sun
path and extraterrestrial solar radiation to calculate street-level solar radiation values.
In the second stage, a neural network is constructed based on indirect learning with
environmental factors, climate factors, and non-motorized travel data as inputs, from
which a comfort model is extracted. In the third stage, a set of streets with low comfort
level and high pedestrian traffic is obtained by constructing a street rectification urgency
index and fed back to the city planning department.

Fig. 1. Research framework for urban planning recommendations based on non-motorized travel
data and street comfort.

3.1 Estimation of Street Solar Radiation Values Based on Baidu Street ViewMap

In this section, the method of using BSV images to estimate the street solar radiation
values will be described. It consists of three main parts: (1) generating fisheye images
from BSV panoramic images and calculating SVF, (2) obtaining solar irradiation from
sun path map and fisheye images, and (3) estimating street solar radiation values.



38 L. Xie et al.

Fig. 2. Flow of calculating solar radiation of a street using BSV image with sampling point
(119.2845351, 26.0041302) as an example. (a) panoramic image obtained using Baidu Map API;
(b) panoramic map obtained by DeepLab V3+; (c) fisheye map converted from the panoramic
map; (d) fisheye map obtained by considering the street direction and rotating figure (c) to face
upward in the due north direction; (e) sun path map of 2017-6-15; (f) fisheye map (d) with the
street direction considered and the sun path diagram (e) superimposed on the diagram.

3.1.1 Generate Fisheye Images from BSV Panoramic Images and Calculate Sky
Visibility

In real roads, the solar radiation values reaching the ground are influenced by shading
such as buildings and trees. The traditional way to calculate radiation is to use remote
sensing data or urbanmodeling to estimate it, but both of them use top-down calculation,
which does not describe the shading of trees and buildings in the street well. Based on
this, this paper proposes to use a bottom-up approach to calculate solar radiation values.

The SVFmeasures the proportion of the sky seen at a location in the street; a smaller
SVF means more occlusion at that location point, and vice versa means less occlusion.
Using fisheye images to calculate the SVF is more in line with the real street view [7].
Taking Fig. 2 as an example, the specific approach is as follows: (1) the panoramic
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image of Fig. 2(a) is obtained using BaiduMap API; (2) the extraction of street elements
such as trees, green, sky, and buildings is completed by DeepLab V3+ model [17], as
shown in Fig. 2(b), where orange represents the sky, black represents the background,
and green, red, etc. represent other street elements; (3) according to themethod proposed
by XiaoJiang Li [6], the panoramic image is converted into a fisheye image, as shown
in Fig. 2(c); (4) SVF can be expressed by the percentage of pixels representing the sky
in the fisheye image, and the calculation equation is as follows.

SVF = number of sky pixels

number of total pixels − number of background pixels
(1)

3.1.2 Acquisition of Solar Irradiation from Sun Path and Fisheye Images

Street alignment affects the timing of exposure to direct sunlight. In north-south ori-
ented streets, the street surface will be exposed to direct sunlight near noon, but will be
influenced by shading at other times. However, in east-west oriented streets, it is more
likely to be exposed to direct sunlight all day from morning to afternoon [1]. In order
to reduce the effect of street orientation, the literature [6] proposes to rotate the fisheye
map so that it has the same coordinate system as the sun path map. This method uses the
Google Street View (GSV) panoramic image because Google Maps has an interface to
provide the return street orientation. However, the coverage of GSV panoramic image
for Chinese road network is seriously insufficient, so this paper uses BSV panoramic
image, which has significantly higher coverage than GSV panoramic image, see Fig. 3
for details. Unfortunately, Baidu map does not provide the street direction data, so this
paper proposes a processing method to obtain the street direction.

First, sampling points are generated on the road network at 50 m equal intervals, as
shown in Fig. 4(a). Then the road network is segmented with these sampling points on
the arcgis software, and a road section is generated between every two adjacent sampling
points, followed by the direction line of the road section, as shown in Fig. 4(b), from
which the street orientation θ° can be obtained. The clockwise deflection θ° in the due
north direction is the direction of the street where it is located. Finally, the fisheye image
in Fig. 2(c) is rotated by (450°–θ°)%360° (“%” means taking the remainder) to obtain
Fig. 2(d). The rotated fisheye image will have the same coordinate system as the sun
path map.

The sun path map is generated by Rayman software [5] after inputting the position
and date, as shown in Fig. 2(e), where the points in the map represent the position of the
sun at a given moment. Finally, overlaying the sun path diagram with a fisheye diagram
considering the street direction yields Fig. 2(f), so that the sun exposure at each moment
(i.e., whether the sun is blocked or not) can finally be determined.
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Fig. 3. Coverage of panoramic images in Google Maps and Baidu Maps. (a) Google Maps, the
locations marked with circles represent the presence of panoramic images; (b) Baidu Maps, the
road sections marked with dark blue represent the presence of panoramic images.

Fig. 4. Street directions (a) Sampling points generated along a street; (b) Street directions
generated by a subregion based on a road segment.

3.1.3 Estimated Street Solar Radiation Values

Solar radiation in the transmission process can be divided into direct radiation, reflected
radiation and diffuse radiation. Since the reflected radiation accounts for a very small
proportion of the total radiation, the total radiation (Gstreet) is often equivalent to the sum
of direct radiation (Istreet) and diffuse radiation (Dstreet) [7], as shown in Eq. (2).

Gstreet = Istreet + Dstreet (2)
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The formula for calculating Istreet is as follows.

Istreet = Iopen*f (3)

Iopen is the direct radiation under the free field of view, the calculation method can be
found in the literature [1]; f is a binary variable, as shown in Fig. 2(f), if a point belonging
to a moment in the sun path diagram is in the region where the sky is located (i.e., the
moment point is in the orange region), it represents not blocked by obstacles, at this time
the value is 1, anyway, it is 0.

The formula for calculating Dstreet is as follows.

Dstreet = Diso_ open∗ψ sky + Daniso_open∗f + Dcloud_ open∗ψ sky (4)

Diso_open is the isotropic diffuse radiation on the horizontal surface in the free horizon;
Daniso_open is the anisotropic diffuse radiationon thehorizontal surface in the free horizon,
which tends to concentrate near the Sun and is distinguished according to whether the
Sun is directly visible or not; Dcloud_open is the diffuse radiation on the horizontal surface
in the free horizon due to cloud cover; The calculation of the above three can be found
in the literature [1]. ψsky is the SVF, and the specific calculation procedure is described
in Subsect. 3.1.1; The description of f is detailed in Eq. (3).

3.2 Model for Calculating GVI

Urban greening will provide a variety of benefits to citizens, including physical, environ-
mental and social benefits, thus promoting urban livability and vitality [19] and making
urban open spaces more attractive. Among them, the impact of street greening on com-
fort is mainly reflected in two aspects: 1. Street greening, as an important part of street
spaces planning and design, has been proven by numerous studies to be an important
way to improve the thermal comfort of street spaces [20]. Therefore, it is important
to investigate the mechanism of the effect of street greening on outdoor comfort to
better utilize street planting design to improve pedestrian thermal comfort. 2. Studies
have shown that residents’ exposure to natural and semi-natural environments, whether
long-term or short-term, can have certain benefits on physical and mental health [21]. A
Japanese study analyzed the 5-year survival rate of 3144 elderly people and concluded
that walkable urban green spaces have a positive impact on extending the life expectancy
of urban elderly [22]. In addition to physical health benefits, urban greenery can also
provide a sense of social support to residents. by measuring social contact and health
status of 10,089 residents in the Netherlands, Maas et al. found that a large number of
outdoor green spaces can reduce loneliness [23], as well as enhance the quality of life
and well-being of residents [24, 25].

GVI is the proportion of greenery visible from a given location. In this paper, GVI
will be used to quantify street greenery. Since GVI is mainly for green vegetation within
the visual range of pedestrians on the street, and the top and bottom of the panoramic
image also have more serious distortion, it is necessary to set the range of the visual
fence and keep themiddle part of the image with less distortion. In this paper, the method
of Yin et al. [2] is adopted, and the part of the panoramic image corresponding to the
pedestrian view with less distortion is cropped and utilized, as shown in Fig. 5.
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Fig. 5. A figure caption is always placed below the illustration. Short captions are centered, while
long ones are justified. The macro button chooses the correct format automatically.

The GVI can be calculated by Eq. (5), and the total number of pixels and the number
of green pixels are for the blue area in Fig. 5. The GVI of the sampled points is calculated
and then correlated to the road of the areawhere they are located, and theGVI distribution
of the whole area can be obtained, as shown in Fig. 6.

GVI = number of green pixels

number of total pixels
(5)

Fig. 6. GVI distribution of the whole region.
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3.3 Indirect Learning Based Comfort Model Construction

Traditional outdoor comfort models mainly focus on thermal comfort as well as visual
comfort, but less consider these two together. Based on this, this paper proposes a neural
network model based on indirect learning to construct a new comfort model. First, the
constructed comfort model considers both visual and thermal comfort factors, and con-
centrates on the street level, which is finer in granularity than previous work. Second,
unlike previous supervised learning methods or empirical modeling based on theoretical
knowledge, the comfort model proposed in this paper uses indirect learning to extract
the intrinsic relationship between street environment factors and street comfort. This
approach was mainly used in cases where experimental results require large computa-
tional costs or where experimental results are more difficult to obtain [26]. Given the
very high cost and operational difficulty of obtaining street comfort by means of ques-
tionnaires, this paper adopts an indirect learning-based approach to construct a street
comfort model. This is done by treating the street comfort model as a sub-network of the
overall model, and the overall model is obtained using supervised learning. When the
training of the overall model is completed, it can be approximated that its sub-network
has also completed training.

In this section, the closed-form solution of the comfort model will be illustrated,
discussing the overall model construction process. First of all, it is necessary to explain
that residents receive two main factors for travel, which are subjective travel purpose
and objective external factors. The subjective travel purpose can be reflected in the
individual’s travel intentions or in the trajectory data by the routes connected to the origin
and destination points. For example, trips to work are generally not affected by personal
travel intentions and usually have an inherent travel route from home to work, while
trips for leisure purposes such as walking and exercising are more affected by personal
travel intentions and usually have a route from the leisure place to other locations. Thus,
this paper considers that travel trajectories with the same origin and destination points
have the same travel purpose. The objective external factors are considered as climate
factors and street environment factors.

Since the final travel data will be influenced by both subjective and objective factors,
and the comfort model proposed in this paper is only influenced by objective factors, the
influence of subjective factors needs to be quantified in the process. From the description
in the previous paragraph, it can be seen that the subjective factors can be quantified
by the origin and destination points, i.e., the influence of subjective factors can be
considered fixed under the premise of having the same origin and destination points or
the same travel routes. From this, two data features can be further elicited, the length of
the travel route and yideal, yideal represents the ideal number of people traveling under a
particular travel route. For yideal, it can be understood that the ideal value of the number
of travelers on a certain route, under the condition that the external environment is all in
ideal conditions, should satisfy yideal ≥ yrealty , yrealty is the actual number of travelers on
a certain route at a certain moment. Given that yrealty is unavailable data, the maximum
value of max(yrealty) will be used as an approximation of yideal in the subsequent study
of this paper.
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In summary, this paper proposes a solution that allows the measurement of the
relationship between street environmental factors and street comfort ontology and is
represented as a neural network, as shown in Fig. 7. The overall model of the solution
is constructed by the two modules F1 and F2 together. One of the modules, F1, is the
comfort model to be constructed in this paper, and its output node values are the comfort
values. As mentioned in the previous paragraph, residents’ trips are mainly influenced
by subjective trip purpose yideal and objective external factors, while the F2 module
constructs the relationship between these data features in the form of a neural network.
The yrealty is a quantitative representation of the residents’ travel data; theweeks represent
the weeks of the year, expressing the temporal order of the input data; the path length
represents the length of a travel route.

Although the purpose of this paper is to construct a comfort model, the participation
of the real values of comfort is not required in themodel training process, but the comfort
model is obtained indirectly by learning from the other data features mentioned above.
In this paper, we first perform supervised learning of the overall model, with the six
objective factor features in the F1 model and the three features yideal, weeks and path
length in the F2 module as input features, and yrealty as output features. Wait for the
overall model training to converge before extracting the weights of the F1 module, and
use the network model of the F1 module as the final comfort model.

Fig. 7. Overall model including comfort model.
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3.4 Methodology for Estimating Street Correction Urgency Indicators

The purpose of calculating the street correction urgency indicator is to identify a set of
road sections with high pedestrian flow and low comfort level, and to provide targeted
suggestions for the street component of urban planning. For this indicator, two main
factors are considered, count and comfort, where count is obtained statistically and
refers to the pedestrian flow of a road section over a certain period of time, and comfort
is calculated by the comfort model constructed in Subsect. 3.3. Since the range of values
of the two results for count and comfort may be very different, the two features are first
normalized in this paper. Then each is classified into 5 levels according to the values, as
shown in Eq. (6). The final street improvement urgency index is obtained by multiplying
the ranks of these two features, as shown in Eq. (7). Urgency is larger to indicate that
the street improvement is more urgent.

F(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, MinmaxScaler(x) ∈ [0, 0.2)
2, MinmaxScaler(x) ∈ [0.2, 0.4)
3, MinmaxScaler(x) ∈ [0.4, 0.6)
4, MinmaxScaler(x) ∈ [0.6, 0.8)
5, MinmaxScaler(x) ∈ [0.8, 1]

(6)

where MinmaxScaler(.) is the normalization function.

urgency = F(comfort)*F(count) (7)

4 Experimental Design and Results Analysis

4.1 Experimental Design

4.1.1 Study Area

In this paper, relevant experiments were conducted in Taijiang District, Fuzhou City,
Fujian Province. Fuzhou City is located in the eastern part of Fujian Province and has
a typical subtropical monsoon climate. According to the Statistical Bulletin of National
Economic and Social Development of Fuzhou City in 2021, the resident population of
Fuzhou is 8.42 million. As a typical representative city with hot summers and warm
winters, Fuzhou has an annual average of 32.6 days of high temperature in the past
30 years, and has been crowned as the “top furnace city”. According to the data provided
by Fujian Meteorological Bulletin, Fujian Province experienced 13 high temperature
processes in 2020, with the highest extreme temperature in the province occurring in
Fuzhou City [27]. The large resident population and the hot climate factors make Fuzhou
city a suitable area for this paper to study summer comfort.
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Fig. 8. Location and map of the study area (a) Location of the main urban areas in Fuzhou City,
the area marked in green is the Taijiang District to be studied in this paper. (b) Sampling points
generated along the streets with 50 m interval, total 5361 points.

4.1.2 Data Collection

The datasets used in this paper include (1) Fuzhou city street vector map, as shown
in Fig. 8(a), from OpenStreetMap (https://www.openstreetmap.org). (2) Hourly mete-
orological data from June 2017 to September 2017, including temperature, humidity,
wind speed, and cloudiness, fromWorld Weather (https://rp5.ru/). (3) Hourly total solar
radiation as well as direct radiation in Fuzhou City from June 2017 to September 2017
were obtained from the Xiehe Energy Platform (https://www.xihe-energy.com/). (4)
Solar zenith angle and extraterrestrial radiation data. They can be obtained by entering
the location, time zone, and date in the interface provided by the National Renewable
Energy Laboratory (https://midcdmz.nrel.gov/solpos/solpos.html). (5) Trajectory data
of pedestrians traveling with Mobiles, provided by the Fuzhou Municipal Bureau of
Transportation. (6) Panoramic image of Baidu street view.

The BSV panoramic image is acquired in two steps: (1) Generate sampling points
along the streetwith an average samplingdistanceof about 50m, as shown inFig. 8(b). (2)
The BSV panoramic images of each sampling point are acquired using the API interface
provided by BaiduMaps (https://lbsyun.baidu.com/index.php?title=viewstatic). Finally,
5361 valid street panoramas were obtained.

4.2 Experimental Results

4.2.1 Validation of the Effect of Street Direction Treatment

Buildings and trees along the street can block the sun’s rays. The sun rises in the east
and sets in the west, so this phenomenon is especially obvious for streets running north-
south, while streets running east-west are less affected by this phenomenon, so the street
orientation is a factor that cannot be ignored when calculating solar radiation at the street

https://www.openstreetmap.org
https://rp5.ru/
https://www.xihe-energy.com/
https://midcdmz.nrel.gov/solpos/solpos.html
https://lbsyun.baidu.com/index.php?title=viewstatic
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level. This section will verify the validity of the street orientation treatment proposed in
Subsect. 3.1.2.

Figure 9 shows the data for location point 5 in Fig. 10, which is located on a street
that runs east-west and has a dormitory building on one side of the road. From Fig. 9(c),
it can be seen that the estimated solar radiation before 8 o’clock is significantly lower
when street direction processing is not added. The reason for this is that if the solar
radiation value is estimated directly from the fisheye map obtained from the Baidu Map
street view image (i.e., Fig. 9(a)), the solar radiation before 8:00 is considered to be
blocked by buildings. However, the street actually runs east-west and the sunlight is not
blocked in the morning. Figure 9(b) shows the fisheye diagram generated by adding the
street orientation processing, from which the estimated solar radiation is obtained as
shown in the orange curve in Fig. 9(c). It is clear that the orange curve can better fit the
true value of solar radiation during the 6:00–9:00 h.

Fig. 9. Street direction (a) Fisheyemap obtained by direct processing fromBaiduMapStreetView
image without additional consideration of street direction; (b) Fisheye map obtained by additional
processing with street direction on top of Baidu Map Street View image; (c) Comparison of
street-level solar radiation values. (Color figure online)
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4.2.2 Performance Evaluation of Methods for Estimating Solar Radiation Values
in Streets

In this section, the BSV-based solar radiation estimation method will be evaluated using
data measured in the field. The authors measured the real data of street solar radiation
with solar radiation detection instruments on the campus of Fuzhou University on two
days, 2022.07.26 and 2022.07.30. Due to the problem of rainfall, radiation data were
not collected for the intermediate days. The measurement location points are shown in
Fig. 10(a), there are 6 location points, and each location corresponds to the measurement
reality as shown in Fig. 10(b). The following two factors are taken into consideration
when selecting the location points: the street direction and the blockage of solar radiation
by the buildings beside the road. As shown in Fig. 10(a), location 2, 4, and 6 are located
in the north-south direction, and trees are planted on both sides of location 2 and 4, which
will block the sunlight in the morning or evening. The trees on the right side of location

Fig. 10. Livemapof themeasurement sites located on theFuzhouUniversity campus. (a) Location
of the measurement site on the map; (b) live street view of the corresponding location point; (c)
live street view of location point 1 in 2019; (d) live street view of location point 1 in 2022.
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6 and the dormitory building on the left side also block the sunlight in the morning and
evening. Locations 1, 3, and 5 are located in the east-west direction, but location 1 has a
thicker tree shade, location 3 has almost no shade, and there is a dormitory building on
the side of location 5.

Figures 11 and 12 show the differences between the real and estimated values of
street solar radiation for two days, 2022.07.26 and 2022.07.30, respectively. From the
figures, it can be seen that the estimated street radiation values at locations 3 and 5 can
fit the true values well. The true values of position 4 at 9:00 and position 5 at 10:00 in
Fig. 11 are significantly lower than the estimated values, which may be caused by the
sudden passing of clouds in the sky. The deviation between the estimated and true values
of location 1, 2 and location 6 at 14:00 may be due to the fact that the street view image
in Baidu Maps was updated in 2019, and the trees have grown during these years, thus
blocking more sunlight and reducing direct radiation, which in turn causes the true value
of radiation to be lower than the estimated value at some times. Taking location 1 as an
example, Fig. 10(c) and Fig. 10(d) represent the actual road map of location 1 in 2019
and 2022 respectively, and it can be clearly seen that the trees on both sides of the road
in 2022 have grown very densely compared to the road condition in 2019, leaving only
a small gap for direct sunlight to pass through.

Fig. 11. 2022.07.26 Comparison plot of the real and BSV-based solar radiation estimates of street
solar radiation detected at measurement sites located on the Fuzhou University campus.

Fig. 12. 2022.07.30 Comparison plot of the true and BSV-based solar radiation estimates of street
solar radiation detected at measurement sites located on the Fuzhou University campus.
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4.2.3 Constructing a Comfort Model Based on Indirect Data for Performance
Evaluation

Since the proposed multiparameter comfort model in this paper lacks labels for super-
vised learning and performance evaluation, this section will demonstrate the effective-
ness of the multiparameter comfort model by verifying the feasibility of the method of
constructing a comfort model based on indirect learning. Based on the fact that most
outdoor comfort models refer specifically to thermal comfort models, this paper will first
construct the conventional thermal comfort model (shown in Fig. 13) through indirect
learning and compare its performance with the supervised model proposed by Dyvia.

Fig. 13. Construction of thermal comfort model based on indirect learning.

The evaluation indexes used in this paper include: Mean Absolute Percentage Error
(MAPE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), which
are calculated as follows.
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where N denotes the number of data sets, ỹi denotes the estimated value of the model,
yi denotes the true value, and yi is the mean value of N yi. All the above three indicators
are as small as possible. The PMV value was obtained according to the PMV model
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proposed by Professor P.O. Fanger from Denmark. The PMV value is an evaluation
index characterizing the human thermal response (hot and cold sensation) and represents
the average hot and cold sensation of most people in the same environment. This index
takes into account six factors such as human activity level, clothing thermal resistance, air
temperature, air humidity, average radiation temperature, and air flow rate, etc. Rayman
et al. [5] developed a software for calculating PMV values based on this, which will also
be used in this paper. When processing the input data, this paper fixes the values affected
by individual factors to ensure that the generated PMV values are only affected by four
external environmental factors: temperature, humidity, wind speed, and radiation. The
final 122 data were generated, containing 61 PMV values at 8:00 am for each day from
June to July 2017 and 61 PMV values at 14:00 pm for each day from June to July 2017.

It should be noted that since the comfort value and pedestrian flow are treated in
a graded manner during the subsequent calculation of the street rectification urgency
index, the evaluation requirement of the comfort model in this paper is to ensure that the
comfort value is on the correct grade. Based on this, both ỹi and yi are normalized and
graded in this paper before calculating the three evaluation indexes mentioned above.
The experimental results are shown in Table 1. It is easy to find that although there is
a certain gap between the estimated values of the comfort model constructed based on
indirect learning and the estimated values of the model constructed by the supervised
learning method, the gap is within an acceptable range. The supervised learning-based
network model has real PMV values as labels for network training, while the indirect
learning-based network model does not have PMV values as labels, so it is normal for
the supervised learning-basedmethod to outperform the indirect learning-basedmethod.
Given the small difference in the evaluation metrics calculated by the two models, it
shows the feasibility of the indirect learning-based approach to constructing the comfort
model.

Table 1. Comparison of model estimates with PMV values.

Contrast Model MAPE MAE RMSE

Thermal comfort model constructed based on indirect learning 20.6844 0.4475 0.7114

Thermal comfort model constructed based on supervised learning 12.7951 0.2508 0.5182

4.2.4 Validation of the Effectiveness of Street Correction Urgency Indicators

The road network in Taijiang District, Fuzhou City, is divided at 50 m intervals to obtain
1962 road sections, and then the score of each road section is calculated according to
the calculation of the street improvement urgency index in Sect. 3.4. The top 100 road
sections are first taken, marked in red and visualized in the road network to obtain
Fig. 14(b). Figure 14(a) shows the distribution of pedestrian flow on the street, the
darker the color of the road section means the higher the pedestrian flow, and several
road sections with particularly high pedestrian flow also show obvious red color in
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Fig. 14(b), indicating that the high value of the urgency of improvement index of these
road sections is mainly caused by the abnormally high pedestrian flow.

After excluding the above-mentioned high-traffic streets, five locations were ran-
domly selected, as shown in Fig. 14(b), and it can be seen that these locations are
characterized by less vegetation on both sides and wider roads. From the left side to
the right side of the map, the five locations have office buildings, intersections, Wuyi
Square, schools, and Wanda Square next to each other, and the pedestrian flow in these
locations is obviously larger than that in other unusual streets. This result proves that
the calculation of the street improvement urgency index is reasonable.

Fig. 14. (a) Street traffic distribution map. (b) Visualization of street rectification urgency
indicators.
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5 Summary

This paper develops a computational framework for constructing an outdoor comfort
model and depicting the urgency indicators of street rectification. The framework has
several advantages: (1) The construction of the street comfort model is based on indirect
data for modeling, which can well solve the problems of difficulty in obtaining com-
fort values and high cost of obtaining them. (2) The street comfort model takes into
account both visual and environmental factors and is more comprehensive. (3) In terms
of environmental factors, street-level solar radiation, a weather data, is used to capture
the dynamic changes of urban streets in a more fine-grained manner. (4) The street-level
solar radiation is made more accurate by adding the processing of street direction in the
estimation of street-level solar radiation based on BSV. (5) The proposed street rectifica-
tion urgency index can reveal the road sections with high pedestrian flow and low street
comfort, which facilitates urban planning. The accuracy and validity of the method are
verified by taking Taijiang District, Fuzhou, China, as an example.

The public nature of the data in this paper and the proposed low-cost and efficient
modeling approach make it applicable to other cities. At the same time, the generated
data and maps provide a useful dataset for understanding complex urban systems.
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