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Abstract. Spatial co-location pattern represents a subset of spatial fea-
tures whose instances are frequently located together in space. Sub-
prevalent co-location pattern mining discovers patterns with richer spa-
tial relationships based on star instance model instead of clique instance
model. Further, discovering spatiotemporal sub-prevalent co-location
pattern is important to reveal the spatiotemporal interaction between
spatial features and promote the application of patterns. However, the
methods for mining spatiotemporal sub-prevalent co-location pattern
measure the interestingness of patterns by the frequency of patterns in
time slice set, and ignore the duration of patterns which is an important
spatiotemproal information in patterns. Thus, this paper presents min-
ing spatiotemporal sub-prevalent co-location pattern by considering the
duration and the frequency of patterns. Specifically, a novel pattern, is
proposed by defining the continuous sub-prevalent index. Then, an effi-
cient algorithm is designed to mine the proposed patterns by utilizing the
anti-monotonicity of continuous sub-prevalent index to prune unpromis-
ing patterns. Extensive experiments on synthetic and real datasets verify
the practicability of the proposed patterns and the effectiveness of the
proposed algorithm.

Keywords: Spatiotemporal data mining · Spatial sub-prevalent
co-location pattern · Spatiotemporal sub-prevalent co-location pattern

1 Introduction

With the rapid development of spatial information technology such as the global
positioning system, spatial data has shown an explosive growth. Spatial co-
location pattern mining is an important branch of spatial data mining, which has
draw the attention of researchers due to practicality of co-location patterns in
environmental protection [1], public security [2] and public health [3]. A prevalent
co-location pattern is a subset of spatial features whose instances are frequently
collocated within a neighbourhood. For example, that Egyptian Plover occur
frequently in near Nile Crocodile can be expressed as a prevalent co-location
pattern {Egyptian Plover, Nile Crocodile}.
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Prevalent co-location pattern mining determines the neighbor relationship
of spatial instances through the distance threshold, generates all row instances
of patterns based on clique instance model(i.e., a row instance forms a clique),
calculates the participation indices of patterns on the basis of row instances, and
finally discovers all prevalent patterns through the participation index threshold
[4]. In order to capture richer spatial relationships, sub-prevalent co-location
pattern and star participation index based on star instance model are proposed,
which loosen the clique constraint of spatial instances in a row instance.

Both prevalent co-location pattern and sub-prevalent co-location pattern
ignore the time factor of patterns, i.e., patterns vary with time. For example,
seagulls migrate to lakes in Yunnan to spend the cold winter, and leave from
lakes when spring comes. This shows the pattern {Seagull, Lake} change with
the season.

Fig. 1. The distribution of co-location patterns in time slice set

To mine time-varying patterns, spatiotemporal co-location pattern mining
was introduced. Celik et al. [5] mine co-location patterns on each time slice
and finds patterns which appear on many time slices. Li et al. [6,7] mine sub-
prevalent co-location patterns existing on many time slices. These spatiotempo-
ral co-location patterns consider the frequency of patterns on time slices. How-
ever, besides the frequency of patterns, we argue that the duration of patterns
is also important. Let us see Fig. 1. The frequencies of pattern in Fig. 1(a) and
Fig. 1(b) are the same (i.e., 50%), but the duration of pattern in Fig. 1(a) is longer
than that in Fig. 1(b). This implies the pattern lasts for a period of time besides
repeatedly appearing. This kind of patterns is also meaningful. For instance,
instead of passing by, seagulls spending the cold winter on lakes may be more
meaningful for environmental protection.

Motivated by the above, we propose continuous sub-prevalent co-location
pattern by taking into account the duration and the frequency of sub-prevalent
co-location pattern. The main contributions of the paper are as follows:

• We define the continuous sub-prevalent index to measure pattern, and propose
the novel continuous sub-prevalent co-location pattern.

• We prove the anti-monotonicity of the proposed measure, and design an
efficient algorithm to mine the proposed patterns by utilizing the anti-
monotonicity.

• We conduct extensive experiments on real and synthetic data sets. The exper-
imental results show that the proposed pattern is practical and the proposed
algorithm is efficient.
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The rest of the paper is organized as follows. We review the related work in
Sect. 2. Section 3 introduces preliminaries and defines the proposed continuous
sub-prevalent co-location pattern. Section 4 describes the algorithm to mine the
proposed patterns. Section 5 presents the experimental evaluation and Sect. 6
concludes the paper.

2 Related Work

2.1 Prevalent Co-location Pattern

Huang et al. [4] defined the prevalent co-location pattern based on clique instance
model and proposed the Join-based mining algorithm, studies have proposed
optimization algorithms [8–12] to solve the low efficiency issues of the Join-based
algorithm.

Due to the impact of time factor on the co-location pattern, Celik et al.
[5] analyzes the time-varying co-location pattern, and proposed a mixed spa-
tiotemporal MDCOPs algorithm. Andrzejewski and Boinski [13] proposed the
MAXMDCOP-Miner algorithm to solve the low efficiency issue of the MDCOPs
algorithm. Qian et al. [14] proposed a sliding window model, which introduces
the impact of event time intervals into the index to measure the spatiotempo-
ral co-location pattern. Ma et al. [15] proposed a two-step framework to mine
evolving pattern over time. Yang and Wang [16] proposed a spatiotemporal co-
location congestion pattern mining method to discover the orderly set of roads
with congestion propagation in urban traffic.

2.2 Sub-prevalent Co-location Pattern

To mine co-location pattern with richer spatial relationship, Wang et al. [17,18]
proposed the sub-prevalent co-location pattern based on star instance model
which loosens the clique constraint of spatial instances in a row instance, and
designed the PTBA and PBA algorithms to mine sub-prevalent co-location pat-
terns. Ma et al. [19] proposed the sub-prevalent co-location pattern with domi-
nant feature. Xiong et al. [20] presented mining fuzzy sub-prevalent co-location
pattern with dominant feature.

Taking into account the importance of time factor, Li et al. [6,7] proposed the
spatiotemporal sub-prevalent co-location pattern by considering the frequency
of pattern.

Distinct from the spatiotemporal sub-prevalent co-location pattern in [6,7],
our proposed continuous sub-prevalent co-location pattern not only considers
the frequency of pattern but also the duration of pattern.

3 Preliminaries and Problem Definition

3.1 Spatial Sub-prevalent Co-location Pattern

Let F = {f1, f2, ..., fn} be the set of spatial features in a spatial dataset, S =
S1 ∪S2 ∪ ...∪Sn be the set of spatial instances where Si is the instance set of fi,
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and d be a user-specified distance threshold. For two instances ii, ij ∈ S, if the
Euclidean distance between them satisfies distance(ii, ij) ≤ d, they satisfy the
neighbor relationship R(ii, ij). Figure 2(a) shows a spatial dataset, where F =
{A,B,C,D}, S = {A.1, A.2, A.3, B.1, B.2, B.3, C.1, C.2, C.3,D.1,D.2}, and the
neighbor relationships between instances are expressed by lines. A sub-prevalent
co-location pattern c is a subset of the feature set, i.e., c ⊆ F , and the number
of features in c is called the size k of c, i.e., k = |c|. The related definitions of
sub-prevalent co-location pattern [17,18] is as follows.

Definition 1. (Star Neighbodhoods Instance, SNsI). The set of star neigh-
borhoods instances of an instance ij ∈ S is defined as SNsI(ij) =
{ik|distance(ij , ik) ≤ d,ik ∈ S }.
Definition 2. (Star Participation Instance, SPIns). The star participation
instance of a feature fi ∈ c is defined as SPIns(fi, c) = {ij |ij ∈ fi and the
feature set of SNsI(ij) contains all features in c}.

In Fig. 2(a), SNsI(A.1) = {A.1, B.2, C.3}, SPIns(A, {A,B,C}) =
{A.1, A.2}
Definition 3. (Star Participation Ratio, SPR). The star participation ratio of a
feature fi ∈ c is defined as the ratio of the number of star participation instances
of fi to the number of instances of fi:

SPR(fi, c) = |SPIns(fi, c)|/|Si| (1)

Definition 4. (Star Participation Index, SPI). The star participation index of a
pattern c is defined as the minimum of the star participation rates of all features
in c:

SPI(c) = min
fi∈c

{SPR(fi, c)} (2)

Definition 5. (Sub-prevalent Co-location Pattern, SCP). Given a user-specified
star participation index threshold θ, if SPI(c) ≥ θ, the pattern c is called a sub-
prevalent co-location pattern.

In Fig. 2(a), for a pattern {A,B,C}, SPR(A, {A,B,C}) = 0.67,
SPR(B, {A,B,C}) = 0.67, SPR(C, {A,B,C}) = 0.67 and SPI({A,B,C}) =
min{0.67, 0.67, 0.67} = 0.67, if θ = 0.5, the pattern {A,B,C} is a SCP.

Fig. 2. A spatiotemporal dataset with three time slices
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3.2 Continuous Sub-prevalent Co-location Pattern

Distinct from mining sub-prevalent co-location patterns from a spatial dataset,
we propose mining continuous sub-prevalent co-location patterns from a spa-
tiotemporal dataset by taking into account the duration and the frequency of
patterns.

Let T = {t1, t2, ..., tm} be the set of time slices in a spatiotemporal dataset,
F = F 1

⋃
F 2

⋃
...

⋃
Fm be the set of spatial features where F i = {f i

1, f
i
2, ..., f

i
n}

is the feature set on time slice ti, S = S1
⋃

S2
⋃

...
⋃

Sm be the set of spatial
instances where Si = Si

1

⋃
Si
2

⋃
...

⋃
Si
n be the instance set on ti and Si

j is the
instance set of fj on ti. Figure 2 shows a spatiotemporal dataset with 3 time
slices each of which is Fig. 2(a), Fig. 2(b) and Fig. 2(c) respectively.

We define the related concepts of continuous sub-prevalent co-location pat-
tern as follows.

Definition 6. (Duration time slices, DTS). Given a sub-prevalent co-location
pattern c, if it appears on time slice ta, disappears on time slice td, and keeps
on time slices ti(ta ≤ ti < td), then a set of duration time slices DTS(c) of c is
defined as:

DTS(c) = {ta, ta+1, ..., td−1} (3)

Intuitively, a pattern may have multiple sets of duration time slices which
can be noted by DTSs(c) = {DTS1(c),DTS2(c), ...,DTSl(c)}.

Definition 7. (Continuous sub-prevalent index, CSI). Given a sub-prevalent co-
location pattern c, the continuous sub-prevalent index CSI(c) of c is defined as:

CSI(c) =

∑|DTSs(c)|
i=1 |DTSi(c)| ∗ |DTSi(c)|

|T |
Non(c) ∗ 1

|T | +
∑|DTSs(c)|

i=1 |DTSi(c)| ∗ |DTSi(c)|
|T |

(4)

Where |DTSi(c)|
|T | is the weight of duration time slice set DTSi(c) of c, Non(c)

is the number of time slices without c, i.e., Non(c) = |T − ⋃|DTSs(c)|
i=1 DTSi(c)|,

and 1
|T | is the weight of time slices without c.

Definition 8. (Continuous sub-prevalent co-location pattern, CSCP). Given a
sub-prevalent co-location pattern c and a user-specified continuous sub-prevalent
index threshold ρ, if CSI(c) ≥ ρ, c is called a continuous sub-prevalent co-
location pattern.

In Fig. 2, T = {t1, t2, t3}, if {A,B,C} is a sub-prevalent co-location pattern
on time slice t1 and t2, then DTSs({A,B,C}) = {{t1, t2}}, CSI({A,B,C}) =

2∗ 2
3

1∗ 1
3+2∗ 2

3
= 0.8. if ρ = 0.5, then {A,B,C} is a CSCP.

Problem Statement. Given a spatiotemporal dataset with the time slice set
T , the spatial feature set F , the spatial instance set S, a distance threshold
d, a star participation index threshold θ, and a continuous sub-prevalent index
threshold ρ, continuous sub-prevalent co-location pattern mining is to find all
CSCPs that satisfy all thresholds.
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4 Mining Algorithm

Starting from size-2 patterns, all CSCPs can be mined level-by-level. To improve
the efficiency of the algorithm, the anti-monotonicity of continuous sub-prevalent
index will be proven, and be used for pruning unpromising patterns.

Lemma 1. (Anti-monotonicity of continuous sub-prevalent index). Let c, c
′
be

two co-location patterns such that c ⊂ c
′
, then CSI(c) ≥ CSI(c

′
).

Proof. (1) According the anti-monotonicity of star participation index [17,18],
For ∀t ∈ T , SPIt(c) ≥ SPIt(c

′
) holds. If c

′
is a SCP (SPIt(c

′
) ≥ θ), c is also a

SCP (SPIt(c) ≥ θ).
(2) Suppose DTSs(c) ={DTS1(c), ...,DTSl(c)}, DTSs(c

′
)={DTS1

′
(c

′
), ...,

DTSl
′
(c

′
)}. According to (1), for ∀DTSi

′
(c

′
) ∈ DTSs(c

′
), ∃DTSi(c) ∈

DTSs(c), DTSi
′
(c

′
) ⊆ DTSi(c) holds.

Suppose DTSi1
′
(c

′
), ...,DTSil

′
(c

′
) ⊆ DTSi(c). For ∀i1

′ ≤ i
′
, j

′ ≤ il
′
, i

′ �= j
′
,

DTSi
′
(c

′
) ∩ DTSj

′
(c

′
) = ∅ and

⋃il
′

i′=i1′ DTSi
′
(c

′
) ⊆ DTSi(c) hold.

Then, we have
∑il

′

i′=i1′ |DTSi
′
(c

′
)|2 ≤ |DTSi(c)|2. Further, we have

∑|DTSs(c
′
)|

i=1 |DTSi(c
′
)|2 ≤ ∑|DTSs(c)|

i=1 |DTSi(c)|2. On the other hand, we have
Non(c

′
) ≥ Non(c).

So, we have Non(c)
∑|DTSs(c)|

i=1 |DTSi(c)|2 + 1 ≤ Non(c
′
)

∑|DTSs(c′ )|
i=1 |DTSi(c′ )|2

+ 1, i.e.,

∑|DTSs(c)|
i=1 |DTSi(c)|2

Non(c)+
∑|DTSs(c)|

i=1 |DTSi(c)|2 ≥
∑|DTSs(c

′
)|

i=1 |DTSi(c
′
)|2

Non(c′ )+
∑|DTSs(c′ )|

i=1 |DTSi(c′ )|2
. Further, we have

∑|DTSs(c)|
i=1 |DTSi(c)|∗ |DTSi(c)|

|T |
Non(c)∗ 1

|T | +
∑|DTSs(c)|

i=1 |DTSi(c)|∗ |DTSi(c)|
|T |

≥
∑|DTSs(c

′
)|

i=1 |DTSi(c
′
)|∗ |DTSi(c

′
)|

|T |

Non(c
′
)∗ 1

|T | +
∑|DTSs(c′ )|

i=1 |DTSi(c
′
)|∗ |DTSi(c′ )|

|T |
,

i.e., CSI(c) ≥ CSI(c
′
). 
�

Pruning Strategy 1. If c ⊂ c
′

and CSI(c) < ρ, then CSI(c
′
) < ρ, i.e., c and

its all supersets are not CSCPs, and can be pruned.
Based on lemma 1 and pruning strategy 1, we propose an efficient Continuous

Sub-prevalent Co-location Pattern Mining Algorithm (CSCPMA) for mining all
CSCPs. Generally, the CSCPMA adopts the level-by-level and generation-and-
test method. Starting from size-2 patterns, it generates size-k candidate patterns
based on size-(k − 1) patterns, and tests size-k candidate patterns to get size-k
patterns.

Initialization (Step 1–4): The star neighbors instance set of each spatial
instance in each time slice t ∈ T is generated by Gen SNsI(). All size-1 patterns,
i.e., a subset of F , are the beginning the of the iterations(Step 5–13).

Generating Candidate Patterns and Sub-prevalent Patterns (Step
6–9): Size-k candidate patterns are generated by calling Gen CCSCP(). In
Gen CCSCP(), size-k candidate patterns are generated based on the set
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Algorithm 1. CSCPMA
Input :

T : a set of time slices
F : a set of spatial features
S: a set of spatial instances
d: a distance threshold
θ: a star participation index threshold
ρ: a continuous sub-prevalent index threshold

Output :
CSCP : a set of CSCPs

Variables :
k: a co-location size
SCPk: a set of size-k SCPs
CCSCPk: a set of size-k candidate patterns
CSCPk: a set of size-k CSCPs

Algorithm :
1: for each t ∈ T do
2: SNsIt = Gen SNsI(F , S, d)
3: end for
4: k = 2; SCP1 = F ; CSCP1 =Gen CSCP(ρ, SCP1)
5: while CSCPk−1 �= ∅ do
6: CCSCPk = Gen CCSCP(CSCPk−1)
7: for each t ∈ T do
8: SCPk=SCPk∪Gen SCP(CCSCPk, SNsIt, θ)
9: end for

10: CSCPk=Gen CSCP(ρ,SCPk)
11: CSCP = CSCP ∪ CSCPk

12: k = k + 1
13: end while
14: return CSCP

CSCPk−1 of size-(k − 1) CSCPs according to Lemma 1 and Pruning Strat-
egy 1. Then, In Gen SCP(), these candidate patterns are tested for generating
size-k SCPs.

Generating Continuous Sub-prevalent Co-location Patterns (Step 10):
For each size-k SCP, Gen CSCP() is called to calculate the continuous sub-
prevalent index of the pattern according Definition 7. If the pattern satisfies the
threshold ρ, it is a size-k CSCP.

The time cost of the CSCPMA mainly are Step 2, Step 8 and Step
10. The time complexity of Step 2 for generating star neighbor instance
sets is O(|T ||Si|2), the time complexity of Step 8 for generating SCPs is
O(|T | ∑

k=1

|Ck||Si
j |k), the time complexity of Step 10 for generating CSCP is

O(|T | ∑

k=1

|SCPk|), where Ck is the set of size-k candidate patterns and SCPk is

the set of size-k SCPs.
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5 Experimental Results and Analysis

In this section, we conduct experiments to evaluate the efficiency of the pro-
posed CSCPMA on synthetic datasets and compare the mining results with the
STSCPMA [6,7] on real datasets.

Datasets. We analyze the patterns by two algorithms on two real datasets
and evaluate the efficiency of two algorithms by 11 synthetic datasets. The syn-
thetic datasets are randomly generated according to Poisson distribution with
different number of features, the number of instances, the number of time slices
or the range. The real datasets include the Tokyo-Checkin containing 14 POI
types (features) and 115202 checkin (instances), and the ChicagoCrime dataset
containing 19 crime types (features) and 373933 crime events (instances). The
datasets are described in Table 1. The default parameters of both algorithms are
shown in Table 2.

Environment Setting. Both the CSCPMA and the STSCPMA are coded in
Python and run on a PC with Intel Core i7 CPU, 32 GB RAM and Windows 10.

Table 1. Experimental datasets

Data Sets Number of Features Number of Instances Number of Time slices Range

Tokyo-Checkin 14 115202 11 40000x40000

ChicagoCrime 19 373933 24 40000x40000

Synthetic 1/2/3/4 10/15/20/25 8x104 10 10000x10000

Synthetic 5/6/7 20 (7/9/10)x104 10 10000x10000

Synthetic 8/9/10 20 10x104 10/15/20/25 10000x10000

Synthetic 11 25 8x104 10 12000x12000

Table 2. The default parameters of CSCPMA and STSCPMA

Name d θ ρ TSF [6,7]

Tokyo-Checkin 1300 0.4 0.6 0.6

ChicagoCrime 800 0.4 0.6 0.6

Synthetic 1-11 350 0.4 0.6 0.6

5.1 Efficiency Analysis

Effect of Number of Features. We compare the running time of two algo-
rithms on Synthetic 1–4 under different number of features. From Fig. 3 we can
see that the running time of both algorithms increases as the number of features
varies from 10 to 15, then the running time decreases when varying from 15 to 25.
The reason may be that candidate patterns are generated and tested in plenty
as the number of features varies from 10 to 15, then unpromising patterns are
pruned effectively when varying from 15 to 25. The running time of CSCPMA
is slightly higher than that of STSCPMA because CSCPMA spends more time
discovering patterns that STSCPMA cannot find.
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Fig. 3. Effect of number of
features

Fig. 4. Effect of number of
instances

Fig. 5. Effect of number of
time slices

Effect of Number of Instances. We compare the running time of two algo-
rithms on Synthetic 3 and 5–7 under different number of instances. In Fig. 4,
as the number of instances gradually increases, the running time of both algo-
rithms also increases. This is because more and denser instances lead to more
star neighbors and patterns generated.

Effect of Number of Time Slices. We compare the running time of two
algorithms on Synthetic 7–10 under different number of time slices. In Fig. 5, the
running time of both algorithms decreases as the number of time slice increases,
The reason is that sparser instances result in less patterns generated and tested.

(a) Synthetic 2 (b) Synthetic 4 (c) Synthetic 11

Fig. 6. Effect of distance threshold

Effect of Distance Threshold. We compare the running time of two algo-
rithms on Synthetic 2,4,11 under different distance thresholds. In Fig. 6, as dis-
tance thresholds gradually increases, the running time of both algorithms also
increases. The reason is that more instances satisfy the neighbor relationship
when increasing distance threshold, which leads to more star neighbors and
more patterns.

Effect of Star Participation Index Threshold. We compare the running
time of two algorithms on Synthetic 2,4,11 under different star participation index
thresholds. In Fig. 7, both algorithms show a gradual decrease in running time as
the star participation index threshold increases. This is because the larger star par-
ticipation index threshold will lead to the fewer patterns satisfying the threshold.
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(a) Synthetic 2 (b) Synthetic 4 (c) Synthetic 11

Fig. 7. Effect of star participation index threshold

Fig. 8. Effect of continuous sub-prevalent index threshold

Effect of Continuous Sub-prevalent Index Threshold. We analyze the
running time of the CSCPMA on datasets Synthetic 2,4,11 under different con-
tinuous sub-prevalent index thresholds as only the CSCPMA has this threshold.
In Fig. 8, the running time of the CSCPMA on Synthetic 2 gradually decreases as
the continuous sub-prevalent index threshold increases since the pruning strat-
egy of CSCPs work effectively. The running time of the CSCPMA on Synthetic
4 and 11 is relatively flat, the reason is that generating candidate patterns costs
a lot of time, but further generating CSCPs is relatively low-cost.

5.2 Case Analysis on Real Datasets

This section will analyze the cases on two real datasets to illustrate that the
CSCPMA can mine more reasonable patterns by considering the duration and
the frequency of patterns in time slice set.

On the Tokyo-Checkin Dataset. Table 3 list some size-2 and size-3 pat-
terns mined by the CSCPMA and that mined by the STSCPMA on the Tokyo-
Checkin dataset. We can see that the CSCPMA mines the size-2 pattern {Movie
Theater,Parking} that cannot be mined by the STSCPMA, and the pattern is
reasonable in real world. Usually, there are parkings near the movie theaters for
convenience of audiences. The size-3 pattern {Bar,Parking,Hotel} indicates that
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Table 3. Results comparison of CSCPMA and STSCPMA on Tokyo-Checkin

Size CSCPMA STSCPMA

2 {Hotel,Coffee Shop}
{Convenience Store,Bar}
{Movie Theater,Parking}

{Hotel,Coffee Shop}
{Convenience Store,Bar}

3 {Restaurant,Mall,Coffee Shop}
{Convenience
Store,Restaurant,Hospital}
{Bar,Parking,Hotel}
{Mall,Coffee Shop,Barbershop}

{Restaurant,Mall,Coffee Shop}
{Convenience
Store,Restaurant,Hospital}

(Notes: the bold pattern is mined by the CSCPMA rather than STSCPMA)

consumers who have drunk alcohol should not drive, and should find hotels to
rest. The size-3 pattern {Mall,Coffee Shop,Barbershop} shows that coffee shops
and barbershops close to malls can have the benefit from malls. Therefore, the
CSCPMA can mine more reasonable patterns than the STSCPMA on Tokyo-
Checkin dataset.

On the ChicagoCrime Dataset. Let us take the pattern {Robbery,
Sex Offense, Battery} as an example which is mined by the CSCPMA on
ChicagoCrime dataset. The pattern indicates that robbery, sexual offense, and
battery occur continuously and frequently in areas with poor public security.

6 Conclusion

This paper study the spatiotemporal sub-prevalent co-location pattern to bet-
ter reveal the spatiotemporal relationship of patterns. First, we consider the
duration and the frequency of patterns in time slice set, and propose the con-
tinuous sub-prevalent co-location pattern. Then, we propose an efficient mining
algorithm to mine the proposed pattern. Extensive experiments on synthetic
datasets and real datasets verify that the proposed algorithm can efficiently
mine more reasonable patterns with richer spatiotemporal relationship.
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