
Contact Query Processing Based
on Spatiotemporal Trajectory

Shuchang Zhang and Zhiming Ding(B)

Beijing University of Technology, Beijing 100022, China

zmding@bjut.edu.cn

Abstract. Due to the prevalence of location-based devices, user trajec-
tories are widely available in daily life, and when an infectious disease out-
break occurs, contact tracking can be achieved by examining the trajec-
tories of confirmed patients to identify other trajectories of direct or indi-
rect contact. In this paper, we propose a generalized trajectory contact
search (TCS) query that models the contact tracking problem and other
similar trajectory-based problems. In addition, we propose a new method
for building spatio-temporal indexes and an algorithm for DBSCAN clus-
tering based on spatio-temporal lattices to find all contact trajectories,
which iteratively performs a distance-based contact search to find all con-
tact trajectories. The algorithm, which is able to downscale the location
and time of trajectories into a one-dimensional data and maintain the
spatio-temporal proximity of the data, reduces the dimensionality of the
search and improves the time and space efficiency. Extensive experiments
on large-scale real-world data demonstrate the effectiveness of our pro-
posed solution compared to the baseline algorithm.

Keywords: Spatiotemporal index · Trajectory Contact Query ·
Trajectory data

1 Introduction

Our daily movements are collected in trajectory data by various devices such
as GPS, Bluetooth, cellular towers, etc. Among the different types of trajec-
tory queries, there is a lack of research on the use of trajectory contact fea-
tures, which occur when two objects are in close proximity to each other over
a period of time, allowing information (infectious diseases, chemical/radiation
spills, airborne materials, etc.) to be transmitted from one to the other. A direct
application is the tracking of contacts during the New Coronary Pneumonia pan-
demic. A large body of literature highlights the importance of contact tracking,
and applications for tracking contact events via Bluetooth connections between
devices have been established in some countries. However, this approach is hardly
practical because it requires strict user involvement and it cannot detect con-
tact events with different radii due to hardware limitations. In contrast, contact

Supported by organization x.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
X. Meng et al. (Eds.): SpatialDI 2023, LNCS 13887, pp. 154–164, 2023.
https://doi.org/10.1007/978-3-031-32910-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32910-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-32910-4_11


Contact Query Processing Based on Spatiotemporal Trajectory 155

tracking via traces is more applicable because the trace distance is measurable
and the data is widely available.

Therefore, in this paper, we propose a new type of trajectory query, termed as
Trajectory Contact Search (TCS), which finds all trajectories that directly and
indirectly contact the query trajectory. Specifically, when two trajectories appear
within a distance over a time period, we say they make a contact and one can
influence the other. Then, given a query trajectory Trq, a distance ε, and the time
step threshold k, we aim to find not only all trajectories R′ it contacts, but also
all the trajectories contacted by the influenced results R′ subsequently. In fact,
trajectory contact tracing is non-trivial. As pre-computing all contact events is
not viable due to the flexibility of contact definition (ε and k), the query can only
be answered by searching direct contacts to the influenced trajectory recursively.
Besides, as a contact event requires both spatial and temporal continuity, new
index and scanning algorithm are required to store and retrieve timestamp-level
trajectories efficiently. Overall, our contributions are as follows:

– We propose a trajectory contact search query for the contact tracking prob-
lem.

– We propose a solution based on spatio-temporal grid partitioning to answer
the contact search query without redundancy. In addition, we propose an
algorithm based on DBSCAN clustering of spatio-temporal lattices to find all
contact trajectories to further improve the temporal and spatial efficiency.

– Extensive experiments on large-scale real-world datasets show that our app-
roach can answer TCS queries more efficiently than existing methods

2 Related Works

To the best of our knowledge, the travelling group discovery problem is closely
related to TCS. Itfinds all groups of objects that move together over a period of
time. Depending on how to define proximity (distance-based [1,2,4], or density-
based [3,7,9]) and whether the time period is required to be consecutive [2,3,7]
or not [5,9], various group patterns are identified. To discover the groups, the
trajectories arefirst sliced into temporal snapshots, then a clustering algorithm
or predefined criteria is applied to each snapshot tofind groups. Finally, the
clusters from adjacent snapshots are intersected and concatenated until forming
a long time sequence satisfying travel requirements. Besides, to enable distance
comparison in every timestamp, linear interpolation is introduced to ensure an
object to appear in every snapshot it crosses, which greatly inflates the input
size and the processing cost. To reduce the cost, [3] uses trajectory segments
instead of points, and it further simplifies trajectories using Douglas-Peucker
algorithm. Meanwhile, [7] proposes a travelling buddy structure to capture the
minimal groups of objects and perform intersection on buddies instead.

Geohash effectively defines an implicit, recursive quadtree over the world-
wide longitude-latitude rectangle and divides this geographic rectangle into a
hierarchical structure. The division continues along the longitude and latitude
directions alternately until the desired resolution is achieved. During each divi-
sion, if the target coordinate value is greater than the division point, a ‘1’ bit



156 S. Zhang and Z. Ding

is appended to the overall set of bits; otherwise, a ‘0’ bit will be appended.
So each node of the recursive quadtree can represent a fixed spatial bounding
box. Finally, GeoHash uses a 1D string to represent a 2D rectangle from a given
quadtree node. The GeoHash string is derived by interleaving bits obtained from
latitude and longitude pairs and then converting the bits to a string using a Base
32 character map. For example, the point with coordinates of 45.557, 18.675 falls
within the GeoHash bounding box of “u2j70vx29gfu”. GeoHash has been widely
implemented in many geographic information systems (e.g. PostGIS), and also
used as a spatial indexing method in some NoSQL databases (e.g. MongoDB).

3 Problem Statement

Definition 1 (Trajectory). A trajectory is a series of chronologically ordered
points Tro = 〈p1 → p2 → · · · → pn〉 representing the historical trace of an object
o. Each point pi = 〈x, y, t〉 indicates the location of o at time pi.t.

As for a contact event, two objects are defined as contacted if their trajecto-
ries (1) are close to each other at a certain point in time, and (2) such proximity
is kept for a continuous period of time, formally defined as follows:

Definition 2 (Contact Event). Given a distance threshold ε and a dura-
tion k, objects a and b are directly contacted during [tu, tv] if ∀ti ∈
[tu, tv] , dist (a, b, ti) ≤ ε and tv − tu ≥ k ∗ Δt, denoted as a contact event
Cε,k (a, b, [tu, tv]).

Subsequently, we define the direct contact search problem below:

Definition 3 (Direct Contact Search (DCS)). Given a trajectory set R, a
query trajectory Trq, a starting time t, a distance threshold ε and a duration k, a
direct contact search DCS (Trq, t, ε, k) returns all trajectories To that satisfies:
∃Cε,k (q, o, [tu, tv]) where tu ≥ t (direct contact).

Note that, if not specified, the query starting time t is assumed to set to the
starting time of Trq. Now we are ready to define the trajectory contact search
which further capture the indirect contacts:

Definition 4 (Trajectory Contact Search (TCS)). Given a trajectory set
R, a query trajectory Trq, a distance threshold ε and a duration k, the trajectory
contact search TCS (Trq, ε, k) returns all trajectories Tra which satisfy: there
exists a sequence of trajectories 〈Tr0, T r1, . . . , T rn〉 where (1) Tr0 = Trq, T rn =
Tra, (2) ∀i ∈ [1, n], T ri and Tri−1 are contacted directly as Cε,k (i − 1, i, [ci, ci+
k ∗ Δt]) and (3) ∀i ∈ [2, n], cti ≥ cti−1 + k ∗ Δt.

4 Iteration-Based Trajectory Contact Search

A direct solution to address TCS follows the same routine of the disease trans-
mission process. Starting from the query trajectory, it performs a DCS on a



Contact Query Processing Based on Spatiotemporal Trajectory 157

contacted trajectory in each iteration. Then trajectories retrieved by DCS are
regarded as the newly contacted trajectories. The algorithm terminates when all
contacted trajectories are examined. Intuitively, the iteration process may follow
either Breath-First Search (BFS) or Depth-First Search (DFS) order. However,
both can retrieve the result correctly but they may incur redundant compu-
tation, as one trajectory may contact multiple reported trajectories.We use a
distance-based clustering algorithm to search for nearby trajectories to reduce
the number of searches.

5 3DGeoHash-DB Contact Search Algorithm

5.1 3DGeoHash

GeoHash has been employed as an efficient indexing solution for massive 2D loca-
tion data . But GeoHash only encodes the information of latitude and longitude.
Our proposed 3DGeoHash method extends the idea of 3DGeoHash, and it includes
the temporal dimension besides spatial dimensions. The core of the 3DGeoHash
method is the encoding process that convert the items from the augmented 3D
data structure into a sequence of characters, i.e. 1D string. Since the 3DGeoHash
method defines a recursive octree on the temporally augmented world-wide geo-
graphic space, the maximum bounding box for this octree should be first estab-
lished. The 3DGeoHash uses the following spatial and temporal extents:

Latitude and longitude: Since 3DGeoHash uses the WGS84 as the spatial
references coordinate systems, the scope of longitude is [−180◦, 180◦] while the
scope of latitude is [−90◦ , 90◦]

Time: Time is infinite and endless, while the 2D space has definite limits.
Thus, a single year is divided in the 3DGeoHash encoding. There are two kinds
of a single year, common year and leap year. The leap year contains 527040 min
(366 × 24 × 60) while the common year has 525600 min (365 × 24 × 60). So the
scope of a common year is

[
0, 525600

]
, and the scope of a leap year is [0, 527040].

In Fig. 1, the longitude of one input point is −40◦ and the division is carried
out four times. As the total longitude scope is [−180◦, 180◦], the longitude is
split into two parts ([−180◦, 0◦] and [0◦, 180◦]) in the first division. If the points
belong to the left part [−180◦, 0◦], then the points are marked as ‘0’, or marked
as ‘1’. Hence, −40◦ belongs to [−180◦, 0◦], so the first binary bit is ‘0’. In the
second division, [−180◦, 0◦] is split into [−180◦,−90◦] and [−90◦, 0◦]. Because
−40◦ belongs to [−90◦, 0◦], the second binary bit is ‘1’. The third and the forth
divisions continue in the same way. Thus, the final binary code is “0110”.

Since each child node has an extent equal to half of the interval of the parent
node, a more direct calculation is formulated as the following. Given that the
total scope in one dimension is [Xmin,Xmax] and the total height of the final
binary tree is h, the resolution of the leaf node will be r :

r =
Xmax − Xmin

2h



158 S. Zhang and Z. Ding

Fig. 1. The binary tree built by four divisions.

If the input value is Xi, the decimal code Cd can be derived as:

Cd =
[
Xi − Xmin

r

]

In the above-mentioned example, if the longitude Xi is −40◦, Xmax =
180◦,Xmin = −180◦, and h = 4. According to the Eq. 1, r = 22.5◦ is obtained.
Through the Eq. 2, the decimal code Cd is equal to 6. Finally, Cd can be trans-
formed to the binary code Cb = 0110.

This encoding process is applied to all three dimensions, and yields three bit
sequences, where the number of bits in each corresponds to the number of levels
in the tree. For example, if the input data is (−140◦, 20◦, 2015 − 6 − 1 00:00:00)
and h is 10, then the input value of time ‘2015-6-1 00:00:00’ will be transformed
into a decimal value, 217440. The three derived bit sequences are:

longitude : 0001110001
latitude : 1001110001
time : 0110100111

Finally, the three binary codes of the input trajectory point along the longi-
tude, latitude, time dimensions are interleaved into one long binary code. The
three bit sequences in this example are interleaved, and the complete binary
code of the given trajectory point is listed as the following:

010001001110111110000001001111

B. The Base64 string of a trajectory point
The complete binary code of the given trajectory point is too long and cannot

be directly stored in the target database. So the whole binary code is transformed
to a Base64 string in a binary-to-text encoding schema to make it more conve-
nient for database storage. During this encoding, six bits in the binary code



Contact Query Processing Based on Spatiotemporal Trajectory 159

are grouped into a corresponding character according to the Base64 map table.
Thus the above-mentioned binary code in the Section 3.1 is transformed to a
string “Re+BP”, shown in Fig. 2. The detailed code-to-string transformation is
illustrated as follows.

Fig. 2. The binary-code-to-string transformation process.

If the length of the transformed string is l and the height of binary tree is h,
then the relationship between the l and h will be

h = 2l

The Eq. 3 indicates that each character in the 3DGeoHash string represents
two levels in the octree. The resolution r of the octree leaf node in one dimension
is

r ==
Xmax − Xmin

22l

If the spatiotemporal resolution r is known, the height h of the octree is
obtained through the Eq. 5:

At last, Cd is transformed to a binary code Cb.

h =
[
ln ((Xmax − Xmin) /(r/2))

ln(4)

]

The string does not yet include the year information, so a prefix representing
the year is appended to the string. Since the input data is (−140◦, 20◦, 2015 − 6−
100 : 00 : 00), the prefix is “2015-”. Finally, the complete 3DGeoHash string is
“2015Re+BP”

5.2 DBscanclustering Algorithm Based on Spatio-Temporal Grid

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a
more representative density-based clustering algorithm. Unlike division and hier-
archical clustering methods, it defines clusters as the maximum set of density-
connected points, is able to divide regions with sufficient density into clusters,
and can discover clusters of arbitrary shapes in a spatial database of noise.

We use a set of neighborhoods to describe the closeness of the sample set,
and the parameters (ε,MinPts) are used to describe the closeness of the sample
distribution in the neighborhood. Where,ε describes the neighborhood distance



160 S. Zhang and Z. Ding

threshold of a sample, and MinPts describes the threshold of the number of
samples in the neighborhood of a sample with distance ε.

After generating the corresponding HASH codes for each trajectory point
according to the 3DGEOHASH algorithm, for each HASH code corresponding to
a different trajectory point, according to the distance given by ε, set the threshold
of the number of samples in the neighborhood as 2, and perform DBSCAN
clustering, and then generate different population classifications, the specific
generated effect is shown in Fig.

Within a divided 3DGEOHASH spatio-temporal grid, all trajectory points
satisfy the definition condition of contact, i.e., between trajectories, the distances
are less than a given threshold, and the time interval is within the definition time
of contact. Since the scale of the number of trajectory points in the same spatio-
temporal grid is smaller, the trajectories are more uniformly distributed at each
spatio-temporal scale, so the time required to perform the clustering algorithm
is shorter.

After the DBSCAN method groups the people in the same spatio-temporal
grid, all people in the same group are marked as contact as long as they are
in contact or indirect contact when performing contact query, so that only one
lookup is done for each group in query. Therefore, this method is easy to query,
there will be no missing queries, and the number of queries is only once, so there
is no need for multiple recursive queries, saving time and space.

6 Experiments

6.1 Experiment Settings

The experimental setup lacks public trajectory datasets with sufficient scale
and density, especially for pedestrian trajectories, so we conducted 500 efficient
trajectory contact query processing experiments on a real commercial dataset
of cab trajectories in Beijing, China. We also experimented on an existing user
location check-in dataset, Gowalla, a location-based social networking site where
users can share their location by checking in. This dataset contains 6,442,890
check-ins from these users between February 2009 and October 2010. To ensure
the correctness of the evaluation results, we randomly select 10, 20, 30, 40, 50
trajectories from the dataset as query trajectories, and evaluate the total runtime
as well as evaluate the average query efficiency i.e., the number of contacts
searched for a single trajectory query.

Our algorithms are implemented in Java and all experiments are performed
on a single server. Our chosen solutions include 3DR-Tree [10] and R-Tree
indexes + temporal indexes and HR-Tree [11], and our proposed algorithm for
3DGeoHash-DB.

6.2 Effectiveness Study

Figures 3 and 4 depict the total running time of TCS search using different algo-
rithms and indexes on the two datasets, respectively. From the figure we are



Contact Query Processing Based on Spatiotemporal Trajectory 161

Fig. 3. Running time on T-Drive.

Fig. 4. Running time on Gowalla.



162 S. Zhang and Z. Ding

Fig. 5. Number of single track query results on T-Drive.

Fig. 6. Number of single track query results on Gowalla.



Contact Query Processing Based on Spatiotemporal Trajectory 163

able to see that our proposed 3DGeoHash-DB algorithm consistently outper-
forms other traditional solutions, and the gap is larger as the number of query
trajectories increases, which is in line with our expectation because more tra-
jectories are queried to have more intersections in the contact result set, and
our method only traverses the trajectory search results in the intersection once,
preventing duplicate searches and saving time.

Figure 5 and 6 depicts the number of contacts that can be searched for a
trajectory query using different algorithms and indexes. From the figure, we can
see that our proposed 3DGeoHash-DB algorithm clearly outperforms the other
two solutions, which is in line with our expectation, because the other methods
search in a circle with a certain distance radius when querying, i.e., only direct
contacts can be queried, and trajectories of indirect contacts cannot be queried.
The single trajectory query will suffer from result omission. In contrast, our
method uses distance-based clustering for trajectory grouping, and each query
adds all trajectories within the same group to the results, which makes the
average query efficiency improve.

7 Conclusion

In this paper, we introduce a new trajectory contact search query to model the
trajectory contact problem. We propose a new spatio-temporal indexing method
and a DBSCAN clustering algorithm based on a spatio-temporal grid to find all
contact trajectories, which iteratively performs a distance-based contact search
to find all contact trajectories. The algorithm, which can reduce the location
and time of trajectories into a one-dimensional data and maintain the spatio-
temporal proximity of the data, reduces the dimensionality of the search and is
efficient in performing spatio-temporal proximity search. Experiments show that
our scheme achieves faster query speed and less space consumption.

References

1. Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., Staals, F.: Trajectory
grouping structure. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 219–230. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40104-6 19

2. Gudmundsson, J., van Kreveld, M., Speckmann, B.: Efficient detection of motion
patterns in spatio-temporal data sets. In: Proceedings of the 12th Annual ACM
International Workshop on Geographic Information Systems, pp. 250–257 (2004)

3. Jeung, H., Shen, H.T., Zhou, X.: Convoy queries in spatio-temporal databases. In:
ICDE, pp. 1457–1459. IEEE (2008)

4. van Kreveld, M., Löffler, M., Staals, F., Wiratma, L.: A refined definition for groups
of moving entities and its computation. Int. J. Comput. Geom. Appl. 28(02), 181–
196 (2018)

5. Li, Z., Ding, B., Han, J., Kays, R.: Swarm: mining relaxed temporal moving object
clusters. PVLDB 3(1–2), 723–734 (2010)

https://doi.org/10.1007/978-3-642-40104-6_19
https://doi.org/10.1007/978-3-642-40104-6_19


164 S. Zhang and Z. Ding

6. Schmidt, J.M.: Interval stabbing problems in small integer ranges. In: Dong, Y.,
Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 163–172. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6 18

7. Tang, L.A., et al.: On discovery of traveling companions from streaming trajecto-
ries. In: ICDE, pp. 186–197. IEEE (2012)

8. Xu, J., Lu, H., Bao, Z.: IMO: a toolbox for simulating and querying “infected”
moving objects. PVLDB 13(12), 2825–2828 (2020)

9. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gath-
ering patterns over trajectories. TKDE 26(8), 1974–1988 (2013)

10. Pfoser, D., Jensen, C., Theodoridis, Y.: Novel approaches to the indexing of moving
object trajectories. In: Proceedings of VLDB, pp. 395–406 (2000)

11. van der Spek, S., van Schaick, J., de Bois, P., de Haan, R.: Sensing human activity:
GPS tracking. Sensors 9(4), 3033–3055 (2009)

https://doi.org/10.1007/978-3-642-10631-6_18

	Contact Query Processing Based on Spatiotemporal Trajectory
	1 Introduction
	2 Related Works
	3 Problem Statement
	4 Iteration-Based Trajectory Contact Search
	5 3DGeoHash-DB Contact Search Algorithm
	5.1 3DGeoHash
	5.2 DBscanclustering Algorithm Based on Spatio-Temporal Grid

	6 Experiments
	6.1 Experiment Settings
	6.2 Effectiveness Study

	7 Conclusion
	References




