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Abstract. Traffic flow forecasting is a core task of urban governance
and plays a vital role in the development of ITS. Because of the com-
plexity and uncertainty of traffic patterns, it is of great challenge to
capture spatial-temporal correlations. Recent researches mainly focus
on the pre-defined adjacency matrix based on prior knowledge as the
basis of spatial-temporal correlation modeling, but the fixed graph struc-
ture cannot adequately describe the dependency between traffic sensors.
To tackle this issue, a novel deep learning model framework is pro-
posed in this paper: Adaptive Partial Attention Diffusion Graph Con-
volutional Network(APADGCN), which consists of three main parts: 1)
the Multi-Component module that divides the historical traffic flow into
recent, daily-periodic, and weekly-periodic, to capture the traffic pat-
terns of different periodic; 2) the spatial correlation modeling which
can dynamically capture node relationships and model spatial depen-
dency, and enhance the aggregation ability of low-order information; 3)
the temporal correlation modeling which models long-term time depen-
dencies using convolution and gating. The final result is obtained by the
weighted fusion of the results of the multi-components. We compared our
APADGCN with various baseline models in the four real datasets from
the Caltrans Performance Measurement System (PeMS). The experimen-
tal results show that the prediction accuracy of APADGCN is better than
that of the baseline models.
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1 Introduction

Traffic flow forecasting is a classic spatial-temporal task, which aims to simulate
the road conditions of a certain traffic area for a period of time in the future. At
present, the number of cars is growing rapidly. The growth of traffic flow has led
to lots of problems, which makes the urban transportation system unbearable.
Predicting the future traffic flow quickly and accurately for traffic control, road
transportation, and public convenience means a lot. Figure 1 shows the spatial-
temporal correlation of traffic flow. From the time dimension, the flow at different
historical moments will affect the flow at other moments. Different observation
points will also influence each other. A spatial association may occur even if
the two nodes are far apart (this kind of spatial dependency is indicated by a
dashed line). How to correlate and mine the information in traffic data needs
careful consideration thoroughly. However, traffic flow is highly random and
uncertain, also many other factors, such as unexpected events and weather, can
affect traffic conditions, which makes it more challenging to forecast traffic flow.

Fig. 1. The spatial-temporal correlation diagram of traffic flow.

Existing methods mainly utilized mathematical statistics, such as Kalman fil-
ter, fuzzy theory, and k-Nearest Neighbor(KNN) [1]. These algorithms achieved
good results at first, but these models could not model complex traffic data
nonlinearly and could not handle the spatial-temporal correlation, so most of
these models relied on feature engineering. The growth of data volume and data
types has increased the error of prediction results of traditional methods. In
recent years, deep learning has gained attention for its ability to model high-
dimensional nonlinearities for data, and it has good results in traffic flow fore-
casting. Recurrent Neural Network(RNN) [2] is the mainstream model for the
ability to mine temporal features. However, these models are unable to extract
features from the spatial attributes, leading to poor effects in traffic flow fore-
casting. Convolutional neural network(CNN) [3] is introduced for this. Historical
traffic information is represented as a matrix, and the spatial topological links
of the traffic data can be extracted by convolutional kernels. Therefore, to solve
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this problem, temporal correlation and spatial correlation need to be considered
together. Combining CNN and RNN is a classical approach.

However, CNN is suitable for capturing spatial correlation in regular grids,
which means that it is not applicable to realistic non-grid networks such as traffic
networks. To address this problem, recently, spatial-temporal forecasting has
been viewed as a problem of modeling, and data is usually regarded as a graph.
Graph Convolutional Network (GCN) is used to discover spatial correlations
in non-grid traffic networks due to its applicability to non-Euclidean spatial
structures.

GCN can acquire and aggregate representations of neighbors in the vicin-
ity of nodes, giving GCN the advantage of handling graph structures. However,
there are many challenges. First, most models with GCN use the pre-defined
adjacency matrix as the representation of nodes relationship, which can not
truly represent the spatial relationship between nodes to a large extent. This
situation is very common in traffic, where nodes are not only affected by their
neighbors (such as traffic emergencies). The adjacency matrix cannot represent
the dependency of nodes, which means some actual node associations are not
represented in the adjacency matrix. Guo et al. [4] assigned weights to the adja-
cency matrix, which optimized the spatial correlation to a certain extent but
still did not take into account the implicit dependency between nodes. Bai et
al. [5] used points of interest(POI) to compute node similarity to represent the
spatial association. Similarly, Geng et al. [6] encoded spatial associations using
multigraph convolution. However, the pre-defined graph is still unable to repre-
sent node dependencies well. Because these methods rely on prior knowledge and
are not available in other contexts. Wu et al. [7] embed dynamic learning of the
spatial relationship between nodes and achieved good results. But relying only
on the adaptive dependence matrix may ignore the attention of some inevitable
node relationships. Second, when GCN aggregates information many times, the
information of lower-order neighbors of nodes will be overwritten by higher-order
nodes, resulting in inaccurate association. Our proposed APADGCN enhances
the representation of nearby nodes in aggregation and reduces the loss of low-
order neighbor information. Third, in the modeling of time correlation, previous
studies mostly used recurrent neural networks such as GRU and LSTM to deal
with time sequence relations. But there are some algorithm defects in the appli-
cation, such as high model complexity, unstable gradients, difficulty in parallel,
and so on.

To solve the above challenges, we propose Adaptive Partial Attention Spatial-
Temporal Graph Convolutional Network(APADGCN). Different from previous
studies, APADGCN can model the implicit spatial relationship between nodes
dynamically. The problem of multiple convolution information loss is also taken
into account, which enhances the aggregation ability of low-order neighbors.
It also captures long-term time correlations and traffic patterns over different
periods. The main contributions are as follows.
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– We propose a new deep learning framework APADGCN for traffic flow predic-
tion, which captures spatial-temporal correlation by stacking spatial-temporal
layers.

– We design a new adaptive node relation matrix APA, which uses an adaptive
matrix based on node embedding to capture the implicit association of nodes
and propose partial attention mechanisms to enhance the aggregation ability
of low-order information. Diffusion convolution is used to supplement the
implied transition process and aggregate information with GCN.

– An improved gated temporal diffusion convolution is proposed, which uses
diffusion convolution for long-term time dependency modeling, and incorpo-
rates the gated mechanism to control information transmission. The Multi-
Component structure is used to model the traffic patterns of different periods.

– We compare our model with multiple baseline models in four real datasets,
and the results of our proposed models are all better than the baseline models.

2 Related Works

2.1 Traffic Flow Forecasting

In previous studies, mathematical models were often used for traffic flow fore-
casting. For example, ARIMA is a classical model for forecasting [8]. Moreover,
Chien et al. [9] used Kalman filtering algorithm to predict how long trips would
take. Nikovski et al. [10] used Linear Regression (LR) to forecast travel time.
Hou et al. [11] proposed a double-layer k-nearest neighbor (KNN) to predict
the short-term traffic flow, and improved the efficiency of the model. However,
these early prediction methods are mostly based on mathematics and statistics,
which can not capture the intrinsic correlation between data only by relying on
low-dimensional processing. This leads to the unsatisfied effect of these methods.
Recently, deep learning has shown better modeling results in exploring spatial-
temporal correlation [12].

Recently, deep learning has brought new solutions. Traffic flow can be mod-
eled with long-term spatial and time dependencies. Different neural networks can
be constructed to realize the learning of multidimensional representation of data.
In terms of dealing with temporal correlations, early deep learning mainly uses
RNN for temporal modeling. Long Short-Term Memory Neural Network (LSTM)
is proposed to forecast traffic speed [13]. Cui et al. [14] proposed an SBU-LSTM
framework with a data imputation mechanism, which achieved excellent pre-
diction results for traffic data with different patterns of missing values. These
methods based on RNN have some defects, such as complex parameters, low
efficiency, and difficulty in parallelism. Many studies use Convolutional Neural
Network(CNN) to deal with time series. Lea et al. [15] proposed a Temporal
Convolutional Network(TCN) to mine spatial-temporal features in the frame-
work of Encoder-Decoder on the temporal dimension. Liu et al. [16] proposed
SCINet, which conducts sample convolution for recursive downsample to model
time series effectively.
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In terms of dealing with spatial correlations, CNN is often used for spatial
modeling, Study [17,18] applied CNN to predict traffic speed. Wu et al. [19]
construct the traffic flow prediction framework CLTFP with CNN and RNN.
However, CNN is usually used for regular Euclidean graph, and the topological
structure of many traffic networks is non-Euclidean. So, CNN does not apply to
many traffic networks. The appearance of Graph convolutional networks (GCN)
makes the study of non-Euclidean space further. GCN uses adjacency matrix
to aggregate nearby nodes to achieve information dissemination. Li et al. [20]
designed a diffusion graph convolution layer and completed the aggregation of
information after K-hops.

2.2 Graph Neural Networks

Graph Neural Networks (GNN) was first proposed in [21], which is used to obtain
topological information of non-Euclidean data. Subsequently, GCN emerged,
which is one of the mainstream graph neural networks. At present, GCN is widely
used because the traffic network can be represented by graph structure [22–26].
GCN is mainly divided into two categories: spectral graph convolution and spa-
tial graph convolution [27]. In the field of spectral graph convolution, Bruna et
al. [28] extended CNN to more common domains and proposed spectral convolu-
tion based on the graph Laplacian. ChebNet [29] used Chebyshev polynomials to
expand and calculate the graph convolution, which avoided the calculation of the
eigenvalues of the Laplacian matrix to optimize the high computational complex-
ity of the original spectral convolution. In the field of spatial graph convolution,
Micheli et al. [30] add the contextual data of the graph vertices through the
traversal. The method is simple but has achieved good results. Graph Attention
Network(GAT) is proposed in [31], which attached attention weight to the rela-
tionship between nodes and selectively aggregated the information of associated
nodes. Wu et al. [7] proposed a Graph WaveNet that uses the node embedding
algorithm to replace the pre-defined adjacency matrix with adaptive learning
of the matrix, which improves the prediction accuracy of the model and train-
ing efficiency. Recently, A new adaptive matrix is proposed in [22], in which a
Network Generator model is generated using the Gumbel-Softmax technique to
explore the node associations.

2.3 Attention Mechanism

The attention mechanism was initially used in natural language processing to
focus on the context of a word. It has since been used in many areas. At present,
attention mechanism has been widely used in works, such as recommendation
systems, computer vision, spatial-temporal prediction, video processing, and so
on. Xu et al. [32] proposed a dual attention mechanism to classify image nodes.
Liang et al. [33] added a multilevel attention network to the time series predic-
tion, but due to a large number of parameters, the training takes a long time.
In the field of graph data, there are also relevant studies to introduce the atten-
tion mechanism into the graph, through the construction of attention matrix,
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to achieve the function of dynamic correlation nodes. Guo et al. [4] proposed
an ASTGCN, which uses the attention mechanism to dynamically compute the
spatial attention weights between nodes. Zheng et al. [34] proposed a multi-
attention neural network to model time steps of historical and future, based
on an encoder-decoder framework. Xu et al. [35] proposed a STTN based on
transformer, with the addition of spatial-temporal embedding, using attention
mechanisms for time and space respectively. Jiang et al. [36] employed attention
mechanism and convolution components to process long sequences.

3 Methodology

3.1 Preliminaries

In this study, we consider a traffic network as a graph G = (V,E,A), where V ∈
RN is a set of nodes(e.g., traffic sensors) in the road network, and E ∈ RN×N

is a set of edges(e.g., the spatial connectivity between nodes); G is represented
by adjacency matrix A ∈ RN×N , where Ai,j represents the spatial connection of
node i and node j, and Ai,j = 1 if vi, vj ∈ V and (vi, vj) ∈ E.

Traffic flow forecasting can be regarded as a time series prediction task.
Each node in graph G has F features at each time, and each node has the same
sampling frequency. We donate xi

t ∈ R as the features of node i at time t. The
characteristic data of all nodes at time t is expressed as Xt = (x1

t , x
2
t , ..., x

N
t )T .

The historical observation traffic data are expressed as H = (X1,X2, ...,XT ),
which represents the data in T time steps of history. Our purpose is to predict
the traffic flow data of the future Tpre time slices based on historical data H.
Our task can be represented as:

X(T+1):(T+p) = Fθ(H;G) (1)

where F represents the transformation function, and θ represents all the learn-
able parameters in the training of the whole model.

3.2 Overview of Model Architecture

To effectively model the spatial and temporal traffic conditions, we pro-
pose a variant GCN model named APADGCN. Figure 2 depicts our proposed
APADGCN, which consists of three modules: spatial Correlation module, tem-
poral Correlation module, and Multi-Component Fusion module. We use the
same association module for the recent period, daily period, and weekly period,
and output the final prediction results by fusion. The spatial-temporal mod-
ule is composed of APAGCN and GTCN. APAGCN is used to capture spatial
correlation, and GTCN is used to explore temporal correlation.
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Fig. 2. Detailed framework of APADGCN.

3.3 Multi-component

Due to the strong historical periodicity of traffic flow, traffic flow often has similar
patterns to the flow in history. Therefore, in this study, to explore the periodic
patterns among the data, traffic data are divided into three time periods. Inspired
by [4], we use Tresent, Tday, and Tweek to denote the length of time in different
period. Assume that the daily sampling frequency is Tq, the current time is
Tcurrent, and the prediction window size is Tpre. The detailed representation of
the three periods is as follows:

(1) Recent Periodicity: This is the moment in history that is closest to and
closely related in time to the forecast period. The traffic at this time has an
important impact on the next time. This period of time is denoted as: Hrecent =
(XT0−Trecent+1,XT0−Trecent+2, ...,XT0) ∈ RN×F×Trecent .

(2) Daily Periodicity: This period refers to the data at the same time one day
before, and is a segment of the same time interval as the forecast period the day
before. In a fixed road section, people usually have a certain daily life pattern,
which means that traffic may show similar patterns. For example, in the morning
and evening of weekdays, there will be morning and evening peaks, which is an
obvious repeated pattern. But there are still many traffic characteristics and
patterns that we cannot intuitively recognize. So we select the daily periodicity
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to capture the daily hidden features. This period of time is denoted as:Hday =
(XT0−Tq+1,XT0−Tq+2, ...,XT0−Tq+Tpre

) ∈ RN×F×Tday .
(3) Weekly Periodicity: This period is the same as the forecast period in the

last few weeks. In general, traffic patterns are similar every week. For exam-
ple, there are similar traffic conditions every Friday, but there are big differ-
ences in traffic patterns on weekends. Therefore, we expect to model and study
the weekly traffic patterns through the weekly Periodicity module. This period
of time is denoted as: Hweek = (XT0−7∗Tq+1,XT0−7∗Tq+2, ...,XT0−7∗Tq+Tpre

) ∈
RN×F×Tweek .

In this study, these three time period modules are modeled with a learning
network and enter the network for learning respectively. Finally, the three output
results are merged through the fusion module to obtain the final prediction result.

3.4 Spatial Correlation Modeling

Partial Attention Self-adaptive Correlation Matrix. The core idea of
graph convolution is to aggregate the information of nodes in the graph, by
which information can be updated. The basic GCN representation is as follows:

X(h) = Conv(X(h−1)) = σ( ˜D− 1
2 ˜A ˜D− 1

2 X(h−1)W (h)) (2)

where h represents the number of convolution executions, and the more h, the
more information nodes aggregate. X(0) ∈ RN×d is the input feature matrix
(i.e., the traffic signal data at time ti), ˜D is a diagonal matrix, ˜Di,i =

∑

j
˜Ai,j .

˜A = A+IN ∈ RN×N , where A is the adjacency matrix, IN is the identity matrix.
The matrix W ∈ RN×d is a learnable parameter. Function σ(·) is the activation
function (e.g., sigmoid or ReLU). ˜D− 1

2 ˜A ˜D− 1
2 is a normalized adjacency matrix,

which is to aggregate the information of the adjacency nodes of a node. The
significance of GCN for a node is to transform the features. The data of each
node in the input data are F feature signals. The function of GCN is to aggregate
information and increase the features of nodes to high dimensions and discover
hidden spatial features.

Traditional GCN can aggregate node information through an adjacency
matrix, but it is one-sided to judge node association. Aggregation based on
spatial geographical adjacency cannot reflect the real association relationship
between nodes. At present, there are many pre-defined methods for adjacency
matrices, but these methods are intuitive and cannot represent the real spa-
tial association between nodes, which will lead to deviation in the forecasting
results of the model. Relying on the pre-defined adjacency matrix to represent
the spatial correlation makes the pre-defined method only suitable for the specific
environment, which leads to poor prediction results in other models.

To discover the real spatial correlation between nodes, we design an adaptive
adjacency matrix module, which can autonomously and adaptively explore the
dependency relationship of nodes from data without relying on prior knowledge.
We use Emd1, Emd2 ∈ RN×EmdC to represent the node embedding dictionary
and initialize them randomly. The adaptive matrix is formulated as follows [7]:
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̂A = SoftMax(ReLu(Emd1EmdT
2 )) (3)

where the function of SoftMax is to normalize the embeddings. ReLu is the
activation function, which is used to eliminate the embedded weak connection
between Emd1 and Emd2, which will skip the calculation of the Laplace matrix
to speed up the training. In addition, the adaptive adjacency matrix is also
used for the data of unknown graph structures, which can mine the potential
connection relationship.

Partial Attention. The spatial variation of traffic flow has great correlations.
We use an adaptive adjacency matrix to dynamically model the spatial corre-
lation. But in pure using an adaptive adjacency matrix would produce some
problems, in Eq. 2, h represents the number of convolution layers. When the
value of h is large, it means that the central node has been aggregated many
times. Although the data of remote points are aggregated, it will also lead to
the loss of low-order information, that is, the information of neighboring nodes
of the central node is overwritten. To ensure that the nodes can fully obtain
the high-order information without losing the association of nearby nodes, we
propose an adaptive adjacency matrix with a partial attention mechanism.

Inspired by the modeling of road network distance in Gaussian kernel [37].
To strengthen the ability of the model to associate information of nearby nodes
after multiple aggregations, we propose a partial attention mechanism, which
only imposes attention weights on nodes within a certain range of distance from
central nodes. The formula is as follows:

Aatt =
{

Vs · σ((χh−1W1)W2(W3χ
h−1)T + bs), dist(vi, vj) ≤ kmin

0, otherwise
(4)

A
′
atti,j = SoftMax(Aatti,j) =

exp(Aatti,j)
∑

j=0
Tr

exp(Aatti,j)
(5)

where χh−1 = (X1,X2,X3, ...,XTr
) ∈ RN×C×Tr is the input of hth layer. Vs, bs ∈

RN×N , W1 ∈ RTr , W2 ∈ RC×Tr , W3 ∈ RC are the parameters to be learned. The
matrix Aatt ∈ RN×N is the weight matrix of partial attention, Aatti,j represents
the associated value between nodes i and j, and the larger the value of Aatti,j is,
the stronger spatial connection between nodes i and j. We only apply attention
weights to nearby nodes of the central node to strengthen the aggregation of
information of nearby nodes. If attention weight is applied to all nodes, it will
also lead to the loss of information of nearby nodes after multiple convolutions. It
also speeds up the training process of the model by omitting many unnecessary
modeling. Subsequently, we use SoftMax function to normalize the attention
matrix to ensure that the sum of the weights of relational nodes of node i is 1.
The matrix A

′
att is the normalized attention weight matrix.
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After getting the partial attention matrix, we integrate it into the adap-
tive adjacency matrix. To ensure the stationarity of modeling learning, we use
the average value of K training results after K repeated training as the final
adjacency matrix. The formula of the adaptive adjacency matrix with partial
attention mechanism is as follows:

AAP =
λ

K

K
∑

i=0

̂Ai + (1 − λ)A
′
att (6)

where λ is a hyperparameter, which represents the fusion degree of the adjacency
matrix with attention weight. When λ approaches 1, it means that the local
attention matrix is not adopted. When λ approaches 0, it means that the local
attention matrix is completely used as the node correlation matrix. AAP is the
partial attention adaptive adjacency matrix. The graph convolution formula with
partial attention adaptive adjacency matrix is as follows:

X(h) = Conv AP (X(h−1)) = σ( ˜D− 1
2 AAP

˜D− 1
2 X(h−1)W (h)) (7)

Diffusion Convolution. The process of normalized adaptive adjacency matrix
can be regarded as a transition matrix of a hidden diffusion process and can
be used as a supplementary form of diffusion convolution [38]. Therefore, we
introduce diffusion convolution and fuse the convolution layer with the diffusion
convolution layer. The formula is as follows:

X(h) = Conv AD(X(h−1)) = σ( ˜D− 1
2 AAW

˜D− 1
2 X(h−1)W (h) + QD) (8)

QD =
R

∑

k=0

(θ0Mk
0 X(h)W0 + θ1M

k
1 X(h)W1) (9)

where Mk
0 = A/

∑

j Ai,j and Mk
1 = AT /

∑

j Ai,jT are the forward and backward
transition matrices in the diffusion process, θ0, θ1, W0, W1 are the parameters
matrices to learn. M2

0 = M0 ·M0. The function of Mk
0 and Mk

2 is to represent the
transition probability between nodes, and K is the number of diffusion steps.
The diffusion process of convolution is simulated by the multiplication of the
transition matrix. Matrix QD can also further enhance the ability to aggregate
the information of nearby nodes to weaken the disadvantages caused by multi-
layer convolution.

3.5 Temporal Correlation Modeling

GTCN. After the temporal attention layer, we have related traffic information
at different moments. In this subsection, we will further merge the signals on the
time slice. Recurrent neural networks, such as RNN and LSTM, have been widely
used in temporal data, but there are some algorithm defects in the application.
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Therefore, we follow [7] and use a dilated temporal convolutional mechanism to
update the information.

Y (h) =
{

X, l = 0
g(θ1 ∗dl Y (h−1) + b)

⊙

σ(θ2 ∗dl Y (h−1) + c), l = 1, 2, 3, ..., l
(10)

where X is the input of DTCN, Y (h−1) is the input of lth layer. θ1, θ2 are
the convolution kernels. b and c are model parameters to be learned.

⊙

is the
element-wise product. g(·) and σ(·) are the activation function. dl = 2l − 1 is
an exponential dilation rate. We use σ(·) to control how much information can
be retained. We use dilated convolution to expand the receptive field on time
series, which enhances the ability to model long-time series data.

3.6 Multi-component Fusion

In this section, we integrate the results of the three time periods to get the
final forecasting results. For the period to be predicted, the three periods have
different impacts on it. For example, the morning peak traffic patterns on week-
days are similar, so they are greatly influenced by daily and weekly periods, so
we need to pay more attention to these two periods. However, if an emergency
occurs, which leads to abnormal traffic conditions, it is necessary to pay more
attention to the recent period. Therefore, combined with the attention mecha-
nism, we attach different attention weights to the forecasting results of the three
time periods to achieve the purpose of different attention to the period data.
The final result after the fusion of features is:

̂Y = Linear(Concat(̂Yrecent, ̂Yday, ̂Yweek)) (11)

where Linear is linear layer, Concat means concatenation operation. ̂Yrecent,
̂Ydayand ̂Yweek represent the results of the recent period, daily period, and weekly
period, respectively.

4 Experiments

4.1 Datasets

To evaluate the effect of our proposed APADGCN model, we selected real high-
way datasets (PEMSD3, PEMSD4, PEMSD7, and PEMSD8) collected from
California as experimental data. The dataset was produced by Caltrans Perfor-
mance Measurement System(PeMS), which is real data on California highways
and includes more than 39,000 physical sensors that integrate data every five
minutes. The specific descriptions of datasets are shown in Table 1.
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Table 1. Detailed information on datasets.

Dataset PeMSD3 PeMSD4 PeMSD7 PeMSD8

Data type Traffic flow Traffic flow Traffic flow Traffic flow

Nodes(Sensors) 358 307 883 170

Edges 547 340 866 295

Time steps 26,208 16,992 28,224 17,856

Features 3 3 3 3

Data frequency 5 min 5 min 5 min 5 min

4.2 Settings

We use Z-Score normalization for the datasets we use to ensure that the inputs
are of the same order of magnitude, and we divided datasets into the training
set, validation set, and test set with the ratio of 6:2:2. Consecutive time slices
are separated by 5 min, and a day is divided into 288 time slices. We set different
data windows according to the selected period, namely Tr=24, Td=12, Tw=24.
For the three time periods, we predict the traffic flow for the next day, so the
prediction window size is the same, that is, Tp=12. In APADGCN, we set the
hidden dimension of graph convolution as 64, the repetition part K=6, λ=0.5.
The threshold for partial attention Kmin = 0.12, and the number of diffusion
hops R=2. We superimposed three spatial association modules. Each TCN layer
uses 64 convolution kernels. In this study, we use mean square error (MSE) as
the loss function. In the stage of training, the batch size is 64 and the learning
rate is 0.0001. We use the adamoptimizer and set the number of epochs to 100.

4.3 Baseline Methods

We used the following seven baselines to compare with our proposed APADGCN
model.

VAR [39]: Vector Auto-Regression, which is a classical model for time series
modeling.

ARIMA [40]: Autoregressive Integrated Moving Average model, which is one
of the classical time series forecasting analysis methods.

LSTM [41]: Long Short Term Memory network, which is based on RNN to
model timing relationships.
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FC-LSTM [42]: FullConnection-LSTM, which combines the fully connected
layer and LSTM layer to predict traffic flow.

TCN [43]: Temporal Convolution Network, which uses convolution kernel to
aggregate information of time dimension for prediction.

STGCN [44]: Spatio-Temporal Graph Convolution Network, which combines
GCN and convolution to model spatial-temporal dependency.

DCRNN [20]: Diffusion Convolutional Recurrent Neural Network, which intro-
duces dilated convolutional to capture spatial-temporal correlation.

GraphWaveNet [7]: Graph WaveNet, which combines adaptive convolution
and dilated convolution layers using a node embedding algorithm.

4.4 Comparison and Result Analysis

Results on the PEMS Dataset. In Table 2, we compare our proposed model
with the baseline on the four PEMS datasets using MAE, MAPE, and RMSE
metrics. It can be seen that our APADGCN has achieved the best results in the
four indicators. This shows that our model can capture the spatial and temporal
dependence of traffic flow data well. In addition, we can observe that compared
with other models, ARIMA and LSTM show larger prediction errors, because
ARIMA and LSTM only take the temporal correlation of nodes into account and
ignore the spatial correlation. Although VAR considers the spatial correlation, it
is not able to capture the hidden information, so it also has a poor effect. Other
models using deep learning consider the spatial-temporal correlation, thus the
results of forecasting are far better than the previous two.

TCN, STGCN, DCRNN, and GraphWaveNet achieved good results on the
four datasets, but the prediction accuracy was not as good as our proposed
model. These baseline models use GCN to model spatial association, in which
TCN and STGCN only take the network connection relationship on the real map
as the adjacency matrix, and cannot associate the possible spatial relationship
between nodes. Although DCRNN and GraphWaveNet use extended convolution
and adaptive adjacency matrix to expand spatial correlation, their temporal
correlation processing method cannot model long-term temporal dependence.
Our proposed APADGCN can capture the implicit spatial correlation and the
long-term temporal information. Therefore, APADGCN can better model the
spatial-temporal dependency.
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Table 2. Prediction Errors on the PeMSD3, PeMSD4, PeMSD7 and PeMSD8 Datasets.

Dataset Metric VAR ARIMA LSTM FC-LSTM TCN STGCN DCRNN WaveNet Ours

MAE 23.65 33.51 20.62 21.33 19.32 17.49 17.99 19.85 16.85

PEMSD3 MAPE(%) 24.51 33.78 33.54 23.33 19.93 17.15 18.34 19.31 16.57

RMSE 38.56 47.59 28.94 35.11 33.55 30.12 30.31 32.94 29.34

MAE 23.75 33.73 26.81 27.14 23.22 22.70 21.22 25.45 20.43

PEMSD4 MAPE(%) 18.09 24.18 18.74 18.20 15.59 14.59 14.17 17.29 13.46

RMSE 36.66 48.80 43.49 41.59 37.26 35.55 33.44 39.70 32.86

MAE 75.63 38.17 29.71 29.98 32.72 25.38 25.22 26.85 24.57

PEMSD7 MAPE(%) 32.22 19.46 45.32 13.20 14.26 11.08 11.82 12.12 10.79

RMSE 115.24 59.27 14.14 45.94 42.23 38.78 38.61 42.78 37.91

MAE 23.46 31.09 22.19 22.20 22.72 18.02 16.82 19.13 16.26

PEMSD8 MAPE(%) 15.42 22.73 33.59 14.20 14.03 11.40 10.92 12.68 10.48

RMSE 36.33 44.32 18.74 34.06 35.79 27.83 26.36 31.05 25.71

Ablation Experiment. To verify the validity of each component in our pro-
posed model, we proposed the following variants of APADGCN which removed
several modules: (1)RemSA: It removes the Self-adaptive Correlation Matrix
in the APADGCN. (2)RemPA: It removes Partial Attention in the APADGCN.
(3)RemAPD: It removes the Self-adaptive Correlation Matrix and Partial Atten-
tion and replaces them with a normal adjacency matrix. (4)RemDC: It removes
Diffusion Convolution and replaces it with normal GCN. We compare these
four variants with our proposed APDGCN model on PEMS04. We used MAE,
MAPE, and RMSE as metrics. In Fig. 3, the comparison results of the models
are shown in detail.

Fig. 3. Details of Ablation experiment.
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Figure 3 shows the prediction accuracy of each model. It can be seen that
the accuracy of the four variant models is lower than APADGCN. RemAPD has
the worst prediction effect. It can be found that our proposed SEPA module
has the function of dynamically capturing node association, which indicates the
importance of node spatial correlation. By comparing RemPA and RemSA, it
can be found that the performance of PA is inferior to SA, which means that the
adaptive correlation matrix is better than the attention mechanism in capturing
spatial correlation. The performance of RemDC is worse than APADGCN, which
indicates that the transition matrix in diffusion convolution can enhance the
function of capturing the spatial relationship of nodes.

Fig. 4. Network configuration analysis. In these two images, we have different config-
urations for the hyperparameter. Where h is the number of spatial convolution layers,
Kmin is the distance threshold of partial attention.

Effect of Different Network Configurations. To explore the influence of
hyperparameters in the model on the prediction results, we conducted exper-
iments on the networks with different hyperparameters. All parameters are
the same as those in 4.2. Only the parameters for comparison are adjusted.
Figure 4 shows the experimental results for different configurations of the hyper-
parameter. It can be seen that (1) When the convolution layer is expanded from
two layers to three layers, no information loss is caused because we set part
of the attention mechanism, so more node information is aggregated to achieve
the best effect; (2) The expansion of the distance threshold of some attention
increases the number of nodes aggregated, but decreases the effect. When the
threshold is close to 1, it is the global attention mechanism and cannot enhance
the near-point representation.

5 Conclusion

In this paper, we propose a novel traffic flow forecasting model APADGCN
based on deep learning. We use a node embedding algorithm and partial atten-
tion mechanism to build an adaptive node association matrix and combine graph
convolution and diffusion convolution to aggregate node information to capture
spatial association. This approach can represent the node association without
the pre-defined adjacency matrix and enhance the representation of the hidden
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dependency of nodes and the attention to nearby nodes. We introduce Multi-
component to model traffic patterns in the different periods. Therefore, our
model can better capture the spatial-temporal correlation of traffic flow. We con-
duct sufficient comparisons with some baseline models on four public datasets,
and the results show that our proposed APADGCN is superior to the baseline
model and has good performance. In the future, we will consider adding informa-
tion such as weather to assist traffic flow forecasting and enhance the versatility
of the model in different scenarios.
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