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Abstract 

Microscopic examination is the gold standard for malaria diagnosis. However, 
microscopic diagnosis of malaria relies heavily on pathologists or technicians 
with specialized knowledge and expertise, and manual microscopic screening is 
an unreliable method in nonexpert situations. In addition, diagnosing malaria 
requires considerable time and effort, overwhelming experts when too many 
cases need to be tested, and for the same test, different results can occur due to 
different testers. The same test can yield different results for different testers. 
Therefore, automated image analysis systems can break the dependence of 
accurate Plasmodium detection on specialized technicians, improve the accuracy 
and efficiency of detection and reduce the cost of Plasmodium detection. Tradi-
tional methods use image-based algorithms for extracting features (e.g., color, 
shape, texture, and gradient changes) for image detection, image segmentation, 
feature extraction, and classification. However, the accuracy rate of traditional 
methods is 80–90%, which cannot meet clinical requirements. With the 
re-emergence of artificial neural networks, deep learning algorithms based on 
convolutional neural networks and other deep learning algorithms driven by 
massive data have gained tremendous development in the direction of computer 
vision, such as image classification, target localization, target detection, and 
image segmentation, which has led to an increasing interest in the applicability 
of deep learning methods based on convolutional neural networks in medical 
image analysis. After applying the deep learning algorithm, compared with the 
traditional algorithm, the accuracy can be increased by 10–20%, which has
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reached the level of human doctors. It has become a reality that the detection of 
malaria parasites can be replaced by machines in the clinic.
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9.1 The Inevitability of Computer-Aided Diagnosis 

Since the latter part of the last century, various attempts and studies have been made 
on the self-detection and classification of malaria, and remarkable results have been 
achieved. In the twenty-first century, information technology is becoming increas-
ingly developed, and machine vision, machine learning, and image processing 
technologies are increasingly widely used in scientific research. These technologies 
are also widely used in disease detection, and the traditional methods of malaria 
detection have also changed. The use of computer vision for malaria diagnosis is 
considered to be a method to simplify the diagnostic process by increasing diagnos-
tic accuracy, saving diagnostic time, reducing the required manpower, and 
minimizing human error (Tek et al. 2009; Díaz et al. 2009; Mandal et al. 2010; 
Kumarasamy et al. 2011; Jan et al. 2018). 

Microscopic examination is the gold standard for malaria diagnosis, with thin 
blood smears identifying the species; thick blood smears, which are slide samples 
with large amounts of blood, are most useful for characterization. Thick blood films 
are primarily used to detect the presence of malaria parasite infection and to assess 
malaria parasitemia but not to detect which species the infection belongs to. In 
contrast, thin blood smears are 1–2 microliters of blood spread over most of the slide, 
dried and fixed in methanol, and when fixing thin blood smears, care should be taken 
to avoid exposing thick smears to methanol. Thin blood smears help physicians 
detect which Plasmodium species are causing the infection. Table 9.1 discusses the

Table 9.1 Variation in blood smears 

Thick smears Thin smears 

Suitable for detecting the presence of malaria 
parasites 

Beneficial for plasmodium species 

The sample requirement is blood for no less 
than 4–5 microliters 

No more than 1–2 microliters of blood spread 
over a larger area of the slide 

RBCs must be ruptured but WBCs, platelets, 
and malaria parasites must be visible before or 
during the staining 

Observation of plasmodium in RBCs and 
analysis of the differences between infected and 
normal RBCs 

Improving the detection efficiency of malaria 
parasites 

Low detection efficiency and easy to miss at 
low density 

No methanol fixation required Requires methanol fixation prior to staining 

For confirming the diagnosis Able to identify plasmodium species



differences between thick and thin blood smears in the evaluation of malaria parasite 
detection. The advantages of microscopic examination are the ability to differentiate 
between malaria parasite species, quantify parasitemia, observe the different stages 
of parasite characteristics, and have a low material cost. However, microscopic 
diagnosis of malaria relies heavily on pathologists or technicians with specialized 
knowledge and expertise, and manual microscopic screening is an unreliable method 
in nonexpert situations. In addition, diagnosing malaria requires considerable time 
and effort, overwhelming experts when too many cases need to be tested, and for the 
same test, different results can occur due to different testers. The same test can yield 
different results for different testers. Therefore, automated image analysis systems 
can break the dependence of accurate Plasmodium detection on specialized 
technicians, improve the accuracy and efficiency of detection and reduce the cost 
of Plasmodium detection. Computers are playing an increasingly important role in 
the medical field, and without computer technology, medical proficiency and pro-
ductivity would be significantly reduced. Computers already play an important role 
in various medical diagnostic applications, such as digital X-ray, magnetic resonance 
imaging (MRI), computed tomography (CT), and ultrasound. Computer-aided diag-
nosis of malaria is a microscopic diagnostic technique through the use of computer 
vision and machine learning algorithms. It can replace manual microscopic detection 
for semiautomatic or fully automatic detection of Plasmodium. With the develop-
ment of picture technology and vision technology, malaria detection has gradually 
evolved from purely manual to semiautomated or even fully automated. Screening 
for malaria parasites by light microscopy is still considered the main method of 
malaria detection in health testing laboratories and hospitals worldwide, and incor-
rect diagnostic cutoffs will lead to patients infected with malaria not receiving timely 
and effective treatment, resulting in serious consequences. In recent years, malaria 
self-testing systems have been shown to be systematic, and the steps are more 
uniform. The main steps to acquire images are image preprocessing, image segmen-
tation, feature extraction, and detection and classification.
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9.2 Introduction of Traditional Methods to Assist 
in the Intelligent Diagnosis of Malaria 

Traditional methods use image-based algorithms for extracting features (e.g., color, 
shape, texture, and gradient changes) for image detection, image segmentation, 
feature extraction, and classification. Makkapati and Rao (2009) proposed a method 
to segment red blood cells and stained masses from Leishmania-stained blood 
smears by detecting the primary color range and calculating the optimal saturation 
threshold to segment erythrocytes and parasites. The method is performed in HSV 
space, where the background in the image is first determined by detecting the 
primary color range and the remaining pixels are the erythrocytes and chromatin 
dots to be segmented. Then, a method is proposed to determine the optimal satura-
tion threshold to segment the erythrocytes and chromatin dots. This work illustrates 
the potential of color image processing techniques in providing diagnostic solutions



for severe infectious diseases. Ross et al. (2006) proposed an automated image 
processing and classification technique to detect red blood cells infected with 
malaria parasites and to differentiate the species of infected Plasmodium. The 
authors used morphological techniques combined with a new threshold selection 
technique with local and global thresholds to segment potentially infected red blood 
cells from thin blood smears and then designed tree classifiers with two nodes based 
on thin blood smear image features such as texture, color, and geometry of the 
image, using feedback feedforward neural networks to identify whether a red blood 
cell is infected and, if infected, to determine the malaria species, eliminating the 
reliance on technician skills and experience. Panchbhai et al. (2012) proposed a 
model based on RGB color space to achieve segmentation of erythrocytes and 
parasites by first dividing the thin blood smear RGB image into three different 
layers, R, G, and B. Then, the G layer was further processed, and the Otsu algorithm 
was used to determine the optimal threshold value to segment all infected 
erythrocytes, reducing the detection time and the chance of human error in malaria. 
May and Aziz (2013) proposed a method for the automatic quantification and 
classification of P. falciparum-infected erythrocytes. This method uses the Otsu 
method to find local thresholds to segment out infected erythrocytes. Since each 
parasite infects one erythrocyte, the thin blood smear images are classified according 
to the number of infected cells detected. This method finally obtained a good 
classification result, but the limitation of this study is that it only targets Plasmodium 
interrogans in the trophozoite stage, so the results are relatively poor for other 
parasite species. Somasekar and Reddy (2015) proposed an edge-based segmenta-
tion method to segment erythrocytes infected with Plasmodium. First, the brightness 
difference of the image was corrected by reducing the effect of image color through 
color space transformation and γ homogenization, and then the infected erythrocytes 
were extracted using the fuzzy C-mean clustering method, and the infected 
erythrocytes were segmented using the minimum perimeter polygon algorithm. 
This work provides a consistent and robust method for edge segmentation of infected 
erythrocytes in microscopic images. In 2017, Somasekar and Reddy (2017) also 
proposed a two-stage threshold segmentation method for segmenting malaria-
infected cells in microscopy images. The method performs segmentation in two 
stages, where the first stage maximizes the interclass variance of the original image 
and then iterative threshold selection is performed on the thresholded image of the 
first stage to segment malaria parasites according to suitable stopping conditions. 
This work was able to successfully detect Plasmodium without prior knowledge of 
the image content, without parameter adjustment, and to extract malaria-infected 
cells in both thick blood smears and thin blood smears. 
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9.3 Introduction of Deep Learning in the Assisted Intelligent 
Diagnosis of Malaria 

With the re-emergence of artificial neural networks, deep learning algorithms based 
on convolutional neural networks and other deep learning algorithms driven by 
massive data have gained tremendous development in the direction of computer



vision, such as image classification, target localization, target detection, and image 
segmentation (Krizhevsky et al. 2012; He et al. 2016), which has led to an increasing 
interest in the applicability of deep learning methods based on convolutional neural 
networks in medical image analysis. Meanwhile, an increasing number of deep 
learning models have been applied to malaria diagnosis for automatic classification, 
detection, and segmentation tasks of cells in malaria microscopy images. 

9 Artificial Intelligence and Deep Learning in Malaria Diagnosis 229

The essence of deep learning is to build deep networks with multiple hidden 
layers based on large-scale sample data sets and powerful computing power and train 
the networks through multiple iterations to learn the effective features in the data to 
obtain higher prediction or classification accuracy. Compared with traditional 
machine learning, the most important feature of deep learning is its network structure 
with multiple hidden layers, which can automatically learn the features in the data 
without human involvement. 

Deep learning is the latest trend in machine learning, and it has already achieved 
outstanding performance in many nonmedical fields. In addition to using more 
network layers, deep learning is seen as an extension of the well-known multilayer 
neural network classifier trained using backpropagation, using different kinds of 
layers in a typical succession. Deep learning usually requires a large training set, 
which is one of the reasons why the medical field has been slower to introduce deep 
learning methods, as is by the difficulty in harvesting annotated training images in 
terms of expert knowledge requirements and considering privacy issues. 

Hung and Carpenter (2017) applied for the first time a target detection model 
previously used for natural images on blood smear images of Plasmodium infection 
to identify Plasmodium cells and recognize the growth stage they are in based on 
Faster R-CNN for malaria detection, which avoids the segmentation task and does 
not rely on general features for classification. Rajaraman et al. (2018) evaluated the 
use of convolutional neural network-based pretrained models to extract image 
features for the classification of infected and uninfected cells. The paper evaluated 
the performance of pretrained convolutional neural networks, including AlexNet, 
VGG16, ResNet-50, and DenseNet-121, in extracting features of infected and 
uninfected cells and experimentally determined the optimal layer for feature extrac-
tion for each model to help improve the classification. The results showed that the 
pretrained convolutional neural network exhibited good performance for extracting 
image features. Subsequently, Rajaraman et al. (2019) built on the literature to detect 
infected cells in blood smears by constructing an integration of multiple deep 
learning models. The performance of custom and pretrained convolutional neural 
networks was first evaluated, and an optimal integration model was constructed for 
the challenge of classifying infected and normal cells in thin blood smear images. 
The integration by VGG-19 and SqueezeNet outperformed the classification perfor-
mance of a single model.



230 M. Fu and Z. Li

9.3.1 Introduction of Neural Network 

Artificial neural networks (ANNs), abbreviated as neural networks, are mathematical 
models based on the principle of biological neural networks, which use the network 
topology principle to simulate the response mechanism of the human brain nervous 
system to various information by analyzing and studying the structure of the human 
brain and the feedback mechanism of external stimuli. ANNs have successfully 
solved many real-world problems in many fields, such as video detection, smart 
driving, and smart medical care, and have shown good performance. In ANN, a 
neuron is the smallest unit of operation, which receives input parameters from other 
neurons and outputs the final result after computation. Figure 9.1 shows an example 
diagram of the neuron structure. 

x1, x2..., xn are the inputs of this neuron, w1, w2..., wn are the weights and b is the 
bias. The output of this neuron can be expressed by the mathematical formula as: 

y= f 
n 

i= 1 

xiwi þ b ð9:1Þ 

where f(x) denotes the activation function. 
A neural network consists of multiple neurons and neural layers, and Fig. 9.2 

shows a basic neural network structure. 
For each neuron in the nth layer of the ANN, its input is the output of the neuron 

in the nth-first layer, and the output of that neuron will continue to be the input of the 
neuron in the nth + first layer. In an ANN9 containing multiple intermediate hidden 
layers, the output of the nth layer neuron and the input of the nth + first layer neuron 
are interconnected by an activation function. Since many real-world problems are 
very complex nonlinear problems and the activation function can introduce nonlin-
ear properties to form a nonlinear mapping between the input and output of neurons 
as a way to increase the nonlinearity of the network, enhance the expressiveness of
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the network, and make the network more powerful, the selection of the correct and 
suitable activation function is crucial to build the ANN model.
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Fig. 9.2 Structure diagram of the Neural Network 

The following describes the characteristics and mathematical formulas of several 
more commonly used activation functions. 

9.3.1.1 Activation Function 

Sigmoid Function 
Sigmoid is the most common nonlinear activation function, and its main role is to 
map arbitrary real numbers between (0,1), which is usually used for binary classifi-
cation tasks. Its mathematical formula is: 

σ xð Þ= 
1 

1 ex
ð9:2Þ 

Tanh Function 
Tanh is similar to the function curve of a sigmoid. When the input of both functions 
is small or large, their outputs are close to smooth when the gradient is infinitely 
close to 0, which will not be conducive to the update of parameters, resulting in the 
training of the network not proceeding. The output interval of Tanh is (-1,1), and its 
mathematical formula is expressed as: 

tanh xð  Þ= 
ex - e- x 

ex e- x ð9:3Þ
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ReLU Function 
Commonly used in the output of the hidden layer of the network, this function avoids 
the problem of gradient disappearance that occurs in the sigmoid function and the 
tanh function, but as the network continues to be trained iteratively, there may be 
neuron death, which results in parameters that cannot be updated. Its mathematical 
formula is: 

f xð Þ= max 0, xð Þ ð9:4Þ 

LeakyReLU Function 
From Eqs. (9.4), it can be seen that when the input of the ReLU function is negative, 
its function values are all zero, which may lead to neuron death. In the LeakyReLU 
function, when the input is negative, it sets a nonzero slope to the input so that its 
function value is no longer 0 as a way to correct the data distribution and avoid the 
problem of neuron death caused by the ReLU function, whose mathematical 
formula is: 

f xð Þ= 
x, x≥ 0 

ax, x< 0
ð9:5Þ 

where α is a very small constant, taken between 0 and 1. 

9.3.1.2 Backpropagation Algorithm 
Currently, the most commonly used and effective network training method in neural 
networks is the backpropagation algorithm. 10 (Back propagation Algorithm, BP 
algorithm), whose core technique is the chain derivation rule. The BP algorithm 
consists of two processes, namely, forward propagation of data and backpropagation 
of errors. 

1. Forward propagation: Mainly used for the transmission of data feature informa-
tion, the data are first input to the neural network from the input layer and then 
transmitted toward the output layer by layer. In the neural network, forward 
propagation can be expressed by the following equation: 

xl = f ul ð9:6Þ 

ul =wl xl- 1 bl 9:7 

where l is the current layer, xl is the output of layer l, bl and wl denote the bias and 
weight of the lth layer, respectively, and f(x) is the activation function. Then, the 
forward propagation of the jth neuron in the lth layer can be expressed as:



� þ ð Þ
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zl j = 
i 
al- 1 
i � wl 

j k  þ bl j ð9:8Þ 

al j = f
i 
al- 1 
i wl 

j k  bl j 9:9 

where zl j and a
l 
j denote the input and output of the jth neuron in the lth layer, 

respectively, wl 
jk denotes the weight of the kth neuron in the (l-1) layer connected 

to the jth neuron in the lth layer, andbl j denotes the bias of the jth neuron in the lth 
layer. 

2. Backpropagation: Since there is a certain error between the desired result and the 
actual result, backpropagation passes the error back from the output layer of the 
network toward the input layer in the opposite direction while updating the 
values of the parameters in the neural network according to the error value to 
minimize the error, and backpropagation reflects the correction and fine-tuning 
of the model based on the error information. 

Suppose that the neural network loss function is defined in the form of a squared 
error function: 

J w, b, x, yð Þ= 
1 
2 

hW , b xð Þ- yk k2 ð9:10Þ 

where x is the input to the network, y is the corresponding desired output result of 
input x,hW, b(x) is the actual output result of the neural network, and the weights 
W and bias b are the parameters of the neural network. For a training set containing m 
data, the overall loss function is defined as: 

J W , bð Þ= 
1 
m
Σm 
i= 1J w, b, xi , yi = 

1 
m
Σm 
i= 1 

1 
2 

hw, b x
i - yi 

2 ð9:11Þ 

The final training objective of a neural network is to minimize the error between 
the desired and actual output results of the network by continuously updating the 
optimization parameter vector W, b, i.e., minimizing the loss function J(W,b) of the 
network. Usually, the gradient descent algorithm is used to update W and b with the 
following update formula: 

Wl 
i j  =Wl 

i j - α 
∂ 

∂Wl 
i j  

J W , bð Þ ð9:12Þ 

bl i = bl i - α 
∂ 
∂bl i 

J W , bð Þ ð9:13Þ 

where α is the learning rate and ∂ 
∂Wl 

ij 
J  W , bð  Þ and ∂ 

∂bl ij 
J  W , bð  Þ denote the loss function 

to the parameters to W and b bias derivatives, respectively. The steps of the



backpropagation algorithm are as follows: first, the error value of the jth neuron in 
the lth layer is calculated according to Eqs. (9.9), (9.10), and (9.12) as follows: 
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δl j = 
∂J 
∂zl j 

= 
k 

∂J 
∂zlþ1 

k

� ∂z
lþ1 
k 

∂al j
� ∂a

l 
j 

∂zl j 

= 
k 
δzlþ1 

k �
∂ wlþ1 

j k  a
l 
j þ blþ1 

j 

∂al j
� f 0 zl j 

= 
k 
δzlþ1 

k � wlþ1 
j k � f zl j 

ð9:14Þ 

The partial derivatives of the weights are then calculated as follows: 

∂J 
∂wl 

j k  

= 
∂J 
∂zl j

� ∂zl j 
∂wl 

j k  

= δl j �
∂ wl 

j k a
l- 1 
k þ bl j 

∂wl 
j k  

= al- 1 
k δl j ð9:15Þ 

Next, the partial derivatives of the bias are calculated as follows: 

∂J 
∂bl j 

= 
∂J 
∂zl j

� ∂z
l 
j 

∂bl j 
= δl j �

∂ wl 
j k a

l- 1 
k þ bl j 

∂bl j 
= δl j ð9:16Þ 

Finally, the parameter vectors W and b are updated according to Eqs. (9.13) and 
(9.14). 

9.3.1.3 Neural Network Model Optimization Algorithm 
The goal of neural network learning is to find suitable parameter values that make the 
value of the loss function as small as possible, and optimization algorithms are a 
class of algorithms that address this problem. The gradient descent algorithm is the 
most basic and common optimization algorithm. The gradient descent algorithm 
continuously updates the parameters in the neural network according to certain rules 
until the value of the loss function no longer changes significantly, i.e., it converges 
to a minimum value to achieve the training purpose of the neural network. In a 
function, the direction of the fastest decrease in the value of the function is the 
negative gradient direction of the function, so the gradient descent algorithm gradu-
ally iteratively updates the parameters along the negative gradient direction, which 
allows the value of the loss function to converge to the minimum value at the fastest 
speed. Equations (9.13) and (9.14) are the iterative formulas of the gradient descent 
algorithm. The condition of using the gradient descent algorithm to obtain the global 
optimal solution is limited to the loss function being a convex function, but in 
practical applications, the loss function is relatively complex and not always convex, 
so there will be saddle points and local minima. In addition, the computation time of 
the gradient descent method is relatively long; in the actual training data, it is usually 
a lot, and the loss function is the sum of the losses on all the training set data. In



= -

ð Þ

addition, the whole training process is quite time consuming. In view of the above 
problems, the following will introduce several improved optimization algorithms 
based on gradient descent, which can make the network converge more stably and 
faster than the gradient descent method and have better optimization effects in 
applications. 
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1. Stochastic gradient descent algorithm 

Stochastic Gradient Descent (SGD) can speed up the update of parameters in each 
round. The improvement over the gradient descent algorithm is that the algorithm 
randomly selects the loss function on training data for parameter optimization in 
each iteration round instead of directly optimizing the loss function on all 12 training 
data. For large linear models that need to be trained on large-scale data, SGD is a 
necessary optimization algorithm, but SGD also has the shortcoming that a small 
value of the loss function on a certain training data does not mean a small value of 
the loss function on all training data, which means that SGD only considers the 
gradient of a single data, which can easily lead to a locally optimal result for the 
network. To balance the performance of both the above gradient descent algorithm 
and the stochastic gradient descent algorithm, in practice, each iteration usually 
selects a small portion of the loss function on the training data for optimization, and 
this small portion of the training data is treated as a batch, so the method is also 
known as the small batch gradient descent algorithm. 

2. Gradient descent algorithm with Momentum. The principle of the gradient 
descent algorithm with Momentum is to calculate the exponentially weighted 
average of the gradients and then use this value to update the parameter optimi-
zation network, and the parameter update formula is as follows: 

vt βvt- 1 þ 1 βð Þgt ð9:17Þ 
wt =wt- 1 - αvt 9:18 

where α and β are two hyperparameters, α denotes the learning rate, which controls 
the exponentially weighted average, and β denotes the effect of the previous gradient 
on the present, the larger β means the greater the effect of the previous gradient on 
the present.gt denotes the original gradient of a parameter in a certain iteration, vt is 
the gradient calculated by the exponentially weighted average, and the initial value 
of vt is 0. The above formula can be interpreted as speeding up the update rate when 
the gradient direction is constant, which reduces the oscillation and speeds up the 
convergence of the network.
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3. Adaptive learning rate algorithm 

If the learning rate is set too small, the convergence speed will be very slow for 
parameters with large gradients; if the learning rate is set too large, the parameters 
that will be optimized may be unstable. Adagrad is the most classic adaptive learning 
rate algorithm, which automatically adjusts the learning rate of each parameter by 
calculating the sum of squares of historical gradients, and its adjustment law is such 
that parameters that are updated more frequently have a smaller learning rate and 
parameters that are updated rarely have a larger learning rate. The updated formula 
of the Adagrad algorithm is: 

Vt =Vt- 1 þ gt 2 ð9:19Þ 

wt =wt- 1 -
α 
vt E

p gt ð9:20Þ 

where gt is synonymous with Eq. (9.18), Vtis the cumulative squared gradient sum 
with an initial value of 0. α is the global learning rate, and ε is a tiny quantity used to 
prevent the denominator from being zero. 

One drawback of the Adagrad algorithm is that as Vt gradually increases cumula-
tively, the learning rate decreases, eventually leading to the cessation of updates. 
Therefore, an improved RMSprop algorithm is proposed. The RMSprop algorithm 
introduces a decay factor β that makes Vt decay at each iterative update, similar to the 
approach in Momentum. Its updated equation is as follows: 

Vt = βVt- 1 þ 1- βð Þgt 2 ð9:21Þ 

wt =wt- 1 -
α 
vt E

p gt ð9:22Þ 

Adam’s algorithm combines the RMSprop and Momentum algorithms, consider-
ing both the sum of squares of historical gradients to achieve adaptive adjustment of 
the learning rate of each parameter and retaining the average of historical gradients 
as momentum, so that the update of each parameter is more independent during the 
training process of the network, which speeds up the training speed of the network 
and improves the stability of the network training at the same time. Its update 
equation is as follows: 

vt = β1vt- 1 þ 1- β1ð Þgt ð9:23Þ 

Vt = β2Vt- 1 1- β2 gt 
2 9:24 

wt =wt- 1 -
α 

Vt E
p vtwt =wt- 1 -

α 
Vt E

p vt
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wt =wt- 1 -
α 

Vt E
p vt ð9:25Þ 

9.3.1.4 Convolutional Neural Networks 
Convolutional neural networks (CNNs) are one of the most classical and commonly 
used neural networks, and they have made many breakthroughs in image analysis 
and processing. Since convolutional neural networks were proposed, many models 
based on convolutional neural networks have also been successively proposed for 
solving image-related problems, such as image denoising, action recognition, and 
target detection, and all of these models have shown good performance. Compared 
with previous image processing algorithms, the main advantage of CNN is that it 
reduces the complicated preprocessing steps, especially the image preprocessing that 
requires human involvement, and CNN can directly input the image to be processed 
into the network for subsequent work, which has been widely used in various fields 
of image-related applications. In 1959, Hubel and Wiesel, in their study of how the 
cat brain processes visual information, discovered a complex structure of cells that 
responded to localized areas of visual information, thus introducing the “receptive 
field.” Inspired by this research and based on it, Fukushima proposed the 
neurocognitive machine, which is called the predecessor of CNN, which uses an 
alternating structure of local feature extraction and feature exchange layers to 
maintain the ability to recognize targets even when they are deformed or displaced. 
Although the neurocognitive machine model did not use error backpropagation for 
supervised learning, it is still considered the first discovery of convolutional neural 
networks. Later, based on the neurocognitive machine, YannLeCun et al. proposed 
the convolutional neural network model, the famous LeNet-5 network, using the 
error backpropagation method, and numerous CNN models proposed since then 
have been improved on this basis. 14 Compared with the ordinary ANN, the hidden 
layer of CNN usually consists of a convolutional layer, an activation layer, a pooling 
layer, and a fully connected layer. From input to output, the layers of CNN create 
connections between each other through different neuron nodes and transfer the 
input data along the network structure layer by layer; successive convolutional and 
pooling layers are used to extract the features of the input data and compress the 
features, and the final fully connected layer will classify the data based on the 
extracted features. 

1. Convolutional layer 
The convolutional layer is mainly used for extracting image features. Two 
techniques are applied in the convolutional operation, namely, local perceptual 
field and weight sharing, which allow the network to better utilize the local 
features of the image and significantly reduce the number of parameters to be 
optimized in the network. 

2. Local perceptual field: In convolutional neural networks, the neuron nodes in 
each layer are no longer connected to each other in a fully connected manner, but 
the neurons in the nth layer are only connected to some neurons in the n-1th layer,
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Fig. 9.3 Example of the convolution operation process 

i.e., locally connected, thus reducing the number of parameters in the network 
training. Fig. 2.4 shows an example of the local connection of neurons, in which 
each neuron in layer n + 1 is connected to only 3 neurons in layer n instead of all 
neurons in layer n. This connection method reduces the number of parameters for 
network training from 5 × 5 = 15 to 3 × 3 = 9, which is a 40% reduction in the 
number of parameters, and the same connection method is used for neurons in 
layers n + 2 and n + 1. The use of local connections in CNN greatly reduces the 
number of parameters, speeds up the learning rate of the network, and reduces the 
possibility of overfitting to a certain extent. 

3. Weight sharing: During the convolutional operation, each convolutional kernel is 
repeatedly applied to the whole perceptual field, i.e., weight sharing, which can 
also reduce the number of parameters. As shown in Fig. 9.3, there are three 
different sets of weights 1, 2, and 3. If only local connectivity is applied, the 
network needs a total of 9 parameters. 

4. Convolution operation 
The convolution operation is the core operation of the convolution layer. 
Figure 9.3 shows part of the process of a convolution operation. There are 
several important parameters in the convolution operation process. 

5. Pooling layer. 
The pooling layer is usually found between successive convolutional layers and 
is mainly used to compress the feature map to extract important features of the 
image on the one hand and reduce the size of the feature map on the other hand, 
thus simplifying the complexity of computation. The pooling operation can 
ignore the influence of the target due to rotation, tilt, and other relative position 
changes, which can reduce the dimensionality of the feature map while improv-
ing the accuracy of the feature mapping and, to a certain extent, can also avoid 
overfitting. 

The pooling operation is usually calculated in two ways: maximum value 
pooling and mean value pooling. Figure 9.4 shows two examples of the pooling 
operation process. The basic idea of maximum value pooling is to take the 
maximum value in each subregion of the feature map as the mapping result; only 
one of the weights of the convolution kernel is 1, and the rest are 0. The position



with the weight of 1 in the convolution kernel corresponds to the position with 
the largest value in the overlap region between the input image and the convo-
lution kernel. In the above figure, the size of the convolution kernel is 2 × 2, and 
its moving step on the input image Input X is 2. The result of maximum pooling 
is to reduce the input image to 1/4 of the original size and to obtain the maximum 
value feature in each 2 × 2 region. Mean pooling takes the average value of the 
subregions as the mapping result. In Fig. 9.4b, the weights of the convolutional 
kernels are all 0.25, and the moving step of the convolutional kernels on the 
input image Input X is 2. Then, the result of the mean pooling is to shrink the 
input image to 1/4 of the original size, and at the same time, the input image is 
blurred. 
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Fig. 9.4 Example of the pooling operation process. (a) Maximum pooling. (b) Mean pooling 

9.4 Steps of Deep Learning Intelligent-Assisted Malaria 
Detection Algorithms 

Most computer-aided malaria detection techniques include four main image 
processing stages, as follows: 

(a) Image preprocessing, where image processing is performed for brightness, 
sharpness, and size of the image. 

(b) Image detection, where the location of red blood cells or the location of the 
malaria parasite is detected.
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(c) Image segmentation to obtain the size of red blood cells and the size and shape 
of the abnormal region. 

(d) Image classification to determine whether it is a worm and the type of worm. 

9.4.1 Image Preprocessing 

The main purpose of the image preprocessing step is to generate images with low 
noise and high contrast for further processing. Due to the variable stainability of 
blood smears and camera adjustments, the light brightness of the microscope 
capturing the image can also change; this particular problem makes it difficult to 
classify blood cells and find malaria, as it is difficult to accurately segment and 
classify things with very similar colors for processing. Many researchers have 
proposed different preprocessing methods, such as illumination, noise reduction, 
and image enhancement. Different combinations of filters can be used to reduce the 
light brightness problems from microscope and camera movements; nevertheless, 
the production of blood slides due to the nonuniform and nonstandard staining 
concentration and appearance still requires human involvement. 

9.4.2 Image Detection 

Image detection is the second step in malaria identification and generally involves 
the detection of two regions: 

1. Detection of areas of red blood cells and then determining whether there are 
worms inside the red blood cells. 

Detecting the abnormal region and then judging whether it is a worm. 

9.4.2.1 YOLO 
YOLO uses a convolutional network to extract the features and then uses fully 
connected layers to obtain the predicted values. The network structure refers to the 
GooLeNet model, which contains 24 convolutional layers and 2 fully connected 
layers, as shown in Fig. 9.5. For the convolutional layers, 1×1 convolution is mainly 
used to perform channel reduction, and then 3×3 convolution is immediately 
followed. For the convolutional and fully connected layers, the leaky ReLU activa-
tion function is used. However, the last layer uses a linear activation function 
(Fig. 9.5). The network structure shows that the final output of the network is a 
tensor of size. This is consistent with the previous discussion. The specific meaning 
represented by this tensor is shown in Fig. 9.6. For each cell, the first 20 elements are 
the category probability values, then 2 elements are the bounding box confidence, 
which can be multiplied to obtain the category confidence, and the last 8 elements 
are the bounding box. You may wonder why the confidence and the bounding box 
are arranged separately instead of in this way, but it is purely for the convenience of 
calculation, because in fact the 30 elements are corresponding to a cell, and their 
arrangement is arbitrary. However, separating the arrangement makes it easy to



extract each part. Here, to explain, first, the predicted value of the network is a 
two-dimensional tensor whose shape is. Using slicing, the category probability part 
is the confidence part, and the last remaining part is the prediction result of the 
bounding box. In this way, it is very convenient to extract each part, which will 
facilitate the computation during training and prediction later. 
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9.4.3 Image Segmentation 

Segmentation is an important task in image processing and computer vision 
research; the other is defined as the process of segmenting a graph into a set of 
regions that do not overlap. The most important and difficult stage in the automatic 
classification procedure for analyzing malaria parasites is the accurate segmentation 
of blood smear images into various elements, such as red blood cells and white blood 
cells. The purpose of image segmentation is to better segment the different regions 
and allow us to focus more on the determination of worms. The classical image 
segmentation algorithms are as follows: 

9.4.3.1 FCN (Fully Convolutional Networks) 
In general, the last few layers of CNN consist of fully connected layers, and the main 
function is to transform the feature map output from the convolution layer into a 
feature vector of specific length and then complete the classification task by the 
softmax function. In this way, a category prediction can be generated for each pixel 
in the feature map while preserving the details of the input image, i.e., the feature 
map can be classified pixel by pixel to complete the segmentation of the image. In 
short, the fundamental difference between FCN and CNN is that FCN replaces the 
fully connected layer at the end of CNN with a convolutional layer, and the output of 
FCN is an image that finely segments the target object, i.e., an image with a target 
segmentation mask, rather than a probability value. Figure 9.5 shows the comparison

Fig. 9.5 YOLO Network Architecture



of the CNN and FCN network structures. The upper part of the figure is the CNN 
network structure, and the lower part is the FCN network structure.
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The first 5 layers are convolutional layers, and after the convolutional layers, 
3 fully connected layers are connected, which is a typical AlexNet network. The 
output of the 3 fully connected layers is a one-dimensional vector of fixed length, 
where the length of the last output one-dimensional vector corresponds to the 
number of categories contained in the data set. The FCN replaces layers 6, 7, and 
8 of the CNN with convolutional layers with kernel sizes of (4096,1,1), (4096,1,1), 
and 21 (1000,1,1), respectively. Successive convolution and pooling of the images 
generate feature maps with continuously smaller sizes, where the last layer of 
convolution outputs a feature map called a heatmap. To restore the low-resolution 
heatmap to the original image size and thus classify each pixel point, a 
deconvolution operation, or upsampling, is performed on the heatmap. After 
upsampling, 1000 images of the same size as the original image are obtained. 
Finally, to perform class prediction for each pixel point, the approach taken in 
FCN is to find the class with the maximum probability of the location of that pixel 
point on these 1000 images pixel by pixel and use it as the classification result for 
that pixel. 

Since the feature map is too small, if the original size image is segmented by 
upsampling the feature map directly, many image details will be lost, making the 
final segmentation result not fine, so FCN introduces a hopping structure to fuse the 
prediction with more global information in the last layer and the prediction with 
more local details in the shallow layer so that both global information and local 
details can be taken into account when making classification prediction. In this way, 
both global information and local details can be taken into account in classification 
prediction to improve segmentation accuracy. Figure 9.6 shows the hopping struc-
ture of FCN, in which five successive convolution and pooling operations are 
performed on the original image to reduce the image to 1/2, 1/4, 1/8, 1/16, and 
1/32 of the original image, and then the feature maps of 1/8, 1/16, and 1/32 size of 
the original image are retained, and finally the fully connected layers in the original 
CNN are replaced with convolution layers conv6 and conv7. The generated feature 
map is still 1/32 of the original image, and the feature map is the heatmap. At this 
time, the network has a 1/32 size heatmap, 1/16 size, and 1/8 size feature map of the 
original image, and the 1/32 size feature map is directly reduced to the original image 
size by the deconvolution operation, which will lose some image details, so here we 
continue to iterate forward, and the 1/16 size and 1/8 size feature maps are also 
deconvolved in turn to supplement the image details. Finally, the result images of 
these three deconvolution operations are fused to improve the segmentation 
accuracy. 

FCN is a representative work of deep learning technology applied to image 
segmentation, which can realize end-to-end image segmentation, although there 
are some drawbacks of FCN, such as the segmentation results are not fine enough; 
not sensitive enough to the details in the image; when classifying the image pixel by 
pixel, the connection between each pixel is not fully considered and lacks spatial 
22 consistency. However, since its proposal, FCN has become the basic network
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framework for semantic segmentation, and many subsequent segmentation 
algorithms are actually improved on the basis of this framework.
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Fig. 9.7 Network structure of the CNN and FCN 

9.4.3.2 U-Net 
U-Net was proposed in 2015 and belongs to an improvement of FCN, which can 
realize end-to-end segmentation. The structure of U-Net is simple but effective and 
can be regarded as an encoding-decoding structure, where the encoding process 
gradually reduces the structural information of the image through convolutional and 
pooling layers while extracting feature information, while the decoding process 
gradually recovers the structural information of the image through upsampling. 
The U-Net network structure is shown in Fig. 9.7. 

As shown in Fig. 9.7, the network structure of U-Net is symmetrical and shaped 
like the letter “U”, hence the name U-Net. pooling for feature map compression; 
green arrows represent upsampling for image size recovery; cyan arrows represent 
1 × 1 convolution, based on RU-Net’s cell segmentation24 for outputting results; 
gray numbers on the left side of blue and white rectangles indicate image size, and 
gray numbers on the top indicate the number of channels. 

U-Net is a classical fully convolutional network, and the left side of the network 
(the green rectangular box part in Fig. 9.9) is a CNN architecture consisting of 
convolutional and pooling layers, i.e., the encoding process, also known as 
contracting ath. Each block consists of two convolutional layers and one pooling 
layer, where the convolutional layers use a 3 × 3 convolutional kernel with a ReLU 
activation function, and the pooling layer uses a maximum pooling of size 2 × 2 with 
a step size of 2 for downsampling, increasing the number of feature channels to twice 
the original number after each downsampling. The right side of the network (the red 
rectangular box in Fig. 9.7) is the decoding process, also called Expansive ath, which



also consists of 4 blocks, each of which first increases the size of the feature map to 
twice the original size by deconvolution and reduces the number of feature channels 
to half the original size, and then connects the result of deconvolution with the 
symmetric feature map in the encoding process to form a new feature map. The result 
of the deconvolution is then connected with the symmetric feature map in the 
encoding process to form a new feature map. Since the size of the feature map is 
slightly larger in the encoding process, it is first cropped and then connected, and 
then the connected feature map is convolved twice in 3 × 3, and the last layer is 
convolved in 1 × 1. The purpose is to convert the feature map of multiple channels 
into a fixed depth (number of categories, e.g., 2 for binary classification). 
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The two most important features of the U-Net network are the symmetric “U” 
structure and hopping connection. The encoding process of U-Net is downsampled 
4 times, and symmetrically, its decoding process is also upsampled 4 times to restore 
the high-level semantic feature map obtained from the encoding process to the 
resolution of the original image. In addition, U-Net uses jump connections to 
construct more feature channels in the symmetric phase of encoding and decoding 
so that the network can fuse the information of the lower-level feature maps with that 
of the higher-level feature maps through the feature channels to improve the 
accuracy of image segmentation. 

9.4.4 Image Classification 

Image classification refers to the classification of unknown images based on the 
extracted features. In malaria recognition tasks, it is usually the ROI images after 
image detection and image segmentation, and occasionally the images are classified 
directly. The classical image classification algorithms are as follows. 

Since the breakthrough of the convolutional neural network AlexNet in image 
classification competition in 2012, some classical convolutional neural network 
models have been proposed successively and widely used in the field of computer 
vision in the next 17 years, and several classical convolutional neural network 
models are introduced below. 

9.4.4.1 AlexNet 
AlexNet is the first convolutional neural network that has been widely used in the 
field of computer vision, especially AlexNet, which won the ILSVRC (Image Large 
Scale Visual Recognition Challenge) in 2012. 

In particular, AlexNet won first place in image classification of the ILSVRC 
(Image Large Scale Visual Recognition Challenge) competition in 2012 and 
surpassed second place by 10.9%, which has caused a research boom of CNN in 
the field of computer vision since then. 

AlexNet consists of five convolutional layers and three fully connected layers, 
and the model was initially used to classify images on a data set containing 1000 
categories. The AlexNet model architecture is shown in Fig. 9.8. 

The AlexNet network has the following features:
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1. Successful application of the ReLU function as the activation function avoids the 
problem of gradient disappearance when the sigmoid function is deeper in the 
network. 

2. proposed LocalResponseNormalization (LRN): increase the weights of neurons 
that contribute more to the classification, while suppressing other neurons that 
contribute less to the classification, to further improve the generalization ability of 
the model. 

3. Use dropout in the fully connected layer to randomly discard some neurons to 
avoid overfitting to some extent. 

4. Maximum pooling is used to overcome the blurring results caused by mean 
pooling. In addition, the step size of pooling is smaller than the size of the pooling 
kernel, which makes the feature maps that have undergone the pooling operation 
have overlapping parts with each other, thus increasing the feature richness. 

9.4.4.2 VGG-Net 
VGG-Net, proposed by the Visual Geometry Group, a research group at the Univer-
sity of Oxford, is the underlying network in the model of the winner of the target 
localization event and the runner-up of the image classification event in the 2014 
ILSVRC competition. VGG-Net focuses on the relationship between the network 
depth of a convolutional neural network and its performance, and it uses a 
convolutional layer with repeatedly superimposed 3 × 3 small convolutional kernels. 
It uses the method of repeatedly stacking 3 × 3 convolutional layers with small 
convolutional kernels and 2 × 2 maximum pooling layers to construct convolutional 
neural networks with different numbers of layers from 16 to 19. 

The whole VGG-Net can be divided into five parts. Each part is connected with 
multiple 3 × 3 convolutional layers in series, each part is followed by a 2 × 2 
maximum pooling, and finally 3 fully connected layers with a softmax layer. There 
are various structures of VGG-Net; the more common ones are VGG16 and VGG19, 
among which the VGG16 network is simpler and has good performance. The 
VGG16 network is simpler, has good performance and is the most widely used. 
Figure 9.9 shows the network structure of VGG16. 

Network structure features: 

1. More convolutional layers, deeper network, simpler and more regular structure. 
2. The size of the convolutional kernels of VGG-Net is 3 × 3. Its main innovation is 

to use multiple convolutional layers with 3 × 3 small convolutional kernels 
instead of one convolutional layer with larger convolutional kernels, which 
increases the depth of the network and reduces the number of parameters of the 
network. Because each convolutional layer will be followed by an activation 
layer, using multiple convolutional layers with small convolutional kernels is 
equivalent to the network performing more nonlinear mapping, thus improving 
the nonlinear representation of the network. 

3. The LRN layer proposed in AlexNet is discarded. vGG-Net proves that a deeper 
network can extract features better; VGG-Net also becomes the base network for 
many subsequent models.
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Fig. 9.9 U-Net network structure 

9.4.4.3 GoogLeNet 
GoogLeNet is a “deep” and “wide” model with 22 layers. Unlike AlexNet and 
VGG-Net, which only rely on deepening the network to improve its performance, it 
takes a different approach by considering not only the depth but also the width of the 
network, introducing the inception module, which uses convolutional kernels of 
different sizes on the same layer19 to convolve the input image side by side to 
generate different feature maps and combine these different feature maps in the 
depth direction. The structure of the Inception module network is shown in Fig. 9.10. 

There are four parallel branches in the module. The first three branches use 
convolutional layers with kernel sizes of 1 × 1, 3 × 3, and 5 × 5 to extract information 
at different spatial scales, where the middle two branches first perform a 1 × 1 
convolution on the input to reduce the number of channels of the input and thus 
reduce the model complexity. The fourth branch uses a 3 × 3 maximum pooling layer 
and then takes a 1 × 1 convolution to change the number of channels. Appropriate 
padding is used in all four branches to keep the input and output sizes consistent in 
height and width. Finally, the output of each branch is concatenated and fed into the 
next layer. The inception module extracts semantic features at different levels by 
different branches, thus maximizing the expressiveness of the network. 

GoogLeNet is suitable for processing large amounts of data, especially in the case 
of limited computational resources or memory, and it has the advantages of high 
computational efficiency and high classification accuracy (Figs. 9.11, 9.12, and 
9.13).
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Fig. 9.10 Network structure 
of AlexNet 
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Fig. 9.11 Network structure of VGG16 VGG-Net 

9.4.4.4 ResNet 
ResNet, proposed by Kaiming He et al. in 2015, was the winner of the ILSVRC 
competition for the classification task in 2015. The largest contribution of ResNet is 
the introduction of the residual block to prevent the problem of gradient disappear-
ance due to the increase in network depth, thus further deepening the network depth. 

The basic idea of the residual block is to add a constant mapping to the network 
that allows the input information to be transferred directly to the next layer of the 
network, and it changes the learning goal of ResNet. Suppose the input of one 
segment of the network is x and the expected output is H(x). If the output of x is 
directly transferred to the next segment of the network, then the learning objective 
becomes F(x)=H(x)-x, the residual at that point. 

When F(x) = 0, the input and expected output are equal, i.e., a constant mapping, 
so the training objective of ResNet is to make F(x)  infinitely close to 0, making the 
network depth increase without the final accuracy decrease.
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9.5 Conclusion 

Most of the current segmentation and classification of malaria microscope image 
cells are based on traditional machine learning or a combination of machine learning 
and deep learning; both segmentation and classification are carried out in stages, and 
their classification is generally carried out on the basis of segmentation. For classifi-
cation, traditional methods require manual participation, human refinement and 
cleaning of data, and manual construction of features; similarly, for segmentation, 
traditional image segmentation methods are affected by subjective human operations 
such as manual selection of initial seed points and initial contours.
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