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Supervisors’ Foreword

It is our honor to introduce the thesis work of Dr. Fernando Vaquerizo-Villar, who
carried out a thorough and outstanding research that lead to major contributions in
the framework of biomedical engineering and, particularly, in the context of decision
support systems for pediatric sleep-related breathing disorders. The path that leads
to the thesis began in 2014, when Dr. Vaquerizo-Villar started his collaboration with
our research group (Biomedical Engineering Group) at University of Valladolid,
Spain. His first contact with biomedical signal processing was the studies that Dr.
Vaquerizo-Villar carried out during his final degree project of the bachelor’s degree
in Specific Telecommunication Technologies Engineering (“Analysis of the blood
oxygen saturation signal to assist in the diagnosis of pediatric sleep apnea-hypopnea
syndrome”, 2014) and hismaster’s thesis in Telecommunications Engineering (“Fea-
ture extraction, selection, and classification of the oximetry signal to assist in the
automated detection of pediatric sleep apnea-hypopnea syndrome”, 2016), reaching
the highest qualifications in both of them. Since then, he was endeavoring to gain
deeper knowledge on biomedical data analysis through signal processing and arti-
ficial intelligence techniques. As a natural consequence, he embarked on his career
as Ph.D. student in the Information and Telecommunications Technologies Doctoral
Programme. In the period 2016–2021, Dr. Vaquerizo-Villar collaborated in several
R&D projects, mainly focused on biomedical signal processing in the field of sleep
medicine. He defended his doctoral thesis at University of Valladolid in December
2021 (“Automated analysis of the oximetry signal to simplify the diagnosis of pedi-
atric sleep apnea: from feature-engineering to deep-learning approaches”), in which
he obtained the highest qualification (Summa Cum Laude).

The thesis of Dr. Vaquerizo-Villar summarizes an original and outstanding
research focused on applying novel signal processing algorithms in order to enhance
the diagnostic ability of the oximetry signal in the framework of pediatric obstruc-
tive sleep apnea (OSA). The original journal papers included in the thesis present
novel feature engineering and deep learning methodologies. On the one hand, three
novel feature extraction algorithms (bispectrum, wavelet, and detrended fluctuation
analysis) were used to provide complimentary features that help to further char-
acterize apneic events linked to pediatric OSA. On the other hand, a deep learning
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methodology based on convolutional neural networkswas employed to automatically
estimate pediatric OSA severity from raw oximetry data. These novel approaches
led to an enhanced characterization of the changes in the oximetry signal caused
by apneic events in pediatric subjects, as well as to an increase in the diagnostic
capability of nocturnal oximetry in the context of childhood OSA. We feel that this
research could contribute to the use of clinical screening tools to diagnose pediatric
OSA based on the automated analysis of the oximetry signal.

Valladolid, Spain
March 2023

Dr. Roberto Hornero Sánchez
Dr. Daniel Álvarez González



Foreword by the Bioengineering Group
of the Automatic Control Spanish Association
(CEA)

Engineering and technological innovations over the past few decades have rapidly
increased the quality and accessibility of health care worldwide. The promotion
and translation of such broad and cutting-edge emergent technologies into health-
care practices are more and more encouraged for the quality of life globally. For
this purpose, leaders in bioengineering research need to work together with clini-
cians and healthcare industry leaders to develop novel diagnostics and treatments for
patient populations. The work presented in this monograph written by Dr. Fernando
Vaquerizo is a contribution in the area of bioengineering, which includes signifi-
cant improvements in signal processing algorithms and deep learning methodolo-
gies to enhance the diagnosis of pediatric obstructive sleep apnea, a high prevalent
respiratory disorder among children. Thus, this work includes the investigation of
novel feature engineering and deep learning approaches that could be applied to
obtain complementary information from oximetry signals for the improvement of its
diagnostic ability.

The contents of this monograph are focused on the use of frequency domain
(bispectrum and wavelet analysis) and nonlinear (detrended fluctuation analysis)
analysis techniques to provide discriminative features from the oximetry signal for
the first time applied in the context of the above-mentioned childhood sleep condition.
Moreover, high-performance pattern recognition models have been tested including
multiclass classification, regression, and novel deep learning models for automated
extraction of features with higher accuracy compared to state-of-the-art classification
methodologies. Special focus is given to the development of a diagnostic protocol that
is derived from the proposed deep learning modeling approach, toward a diagnostic
testing with higher usability and less obstructiveness.

The monograph is based on the first author’s doctoral thesis, awarded for best
Ph.D. thesis in bioengineering during the 2020 edition of the award call orga-
nized by the Bioengineering Group of the Spanish Committee of Automatic Control
(Comité Español de Automática, CEA). This annual award is aimed at recognizing
the outstanding Ph.D. research in the field of bioengineering. Participation requires
at least one of the theses’ supervisors to be a partner of CEA and a member of the
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Bioengineering Group. The jury is composed of three well-known doctors in the
field: Two of them are partners of CEA, and the third one is a foreign professor.

A total number of 4 Ph.D. theses were submitted to this edition in 2020. Notably,
their authors show altogether a scientific production of about 45 publications in
international indexed journals, with more than 20 works published in the top-quartile
journals of their categories.

Fernando Vaquerizos’s Ph.D. thesis was selected by the Bioengineering Group of
CEA as the best among other excellent candidates. Through this publication, we hope
that Fernando’s work reaches a large international audience and becomes a valuable
source of information and inspiration for other researchers and students in this field
which holds tremendous promise for advancing human health and well-being. We
have no doubt that Fernando’s work will continue to inspire and shape the field of
bioengineering, and I am confident that his contributions will have a lasting impact
on the scientific community and society as a whole.

Once again, congratulations to Fernando on this exceptional achievement, and all
the best in your future endeavors.

Dr. Juan C. Moreno
Spanish National Research Council

Cajal Institute
Neural Rehabilitation Group

Madrid, Spain
http://www.neuralrehabilitation.org

http://www.neuralrehabilitation.org
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Chapter 1
Introduction

Obstructive sleep apnea (OSA) is a high prevalent respiratory disorder in the pediatric
population. Untreated pediatric OSA is associated with significant adverse conse-
quences affectingmetabolic, cardiovascular, neurocognitive, and behavioral systems,
thus resulting in a decline of overall health and quality of life. Consequently, it is of
paramount importance to accelerate the diagnosis and treatment in these children.

Overnight polysomnography (PSG) is the gold standard to diagnose OSA in chil-
dren. This test requires an overnight stay of pediatric subjects in a specialized sleep
laboratory, as well as the recording of up to 32 biomedical signals. These record-
ings are used to quantify respiratory events in order to obtain the apnea-hyponea
index (AHI), which is used to establish pediatric OSA severity. Nonetheless, PSG is
technically complex, time-consuming, costly, highly intrusive for the children, and
relatively unavailable, thus delaying the access for both the diagnosis and treatment.
Consequently, simplified diagnostic techniques become necessary.

In an effort to overcome these drawbacks and increase the accessibility of pedi-
atric OSA diagnosis, many simplified alternative procedures have been developed.
Among these, a common approach is the analysis of the blood oxygen saturation
(SpO2) signal from overnight oximetry due to its easy acquisition and interpretation,
aswell as its suitability for children.Many studies have demonstrated the utility of the
automated analysis of SpO2 recordings to help in adult OSA diagnosis. Conversely,
the preceding studies focused on pediatric patients reported lower accuracies than
those reached in the case of adults, suggesting the need to seek novel signal pro-
cessing algorithms that provide additional information from the SpO2 signal for the
particularities of childhood OSA.

In this context, the present doctoral thesis aims to design, develop, and assess
novel feature extraction and deep-learning methodologies to improve the diagnosis
ability of the oximetry signal in the context of pediatric OSA.

In this chapter, the general context of biomedical signal processing and deep learn-
ing is firstly and concisely described in Sect. 1.1. Section1.2 provides a description
of pediatric OSA, including its risks and adverse consequences. Section1.3 focuses

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2 1 Introduction

on the gold standard for pediatric OSA diagnosis, nocturnal PSG, and its limitations.
Finally, Sect. 1.4 is devoted to explain oximetry as an alternative to PSG for the diag-
nosis of pediatric OSA and Sect. 1.5 provides a description of state-of-the-art studies
focused on the analysis of the oximetry signal as a simplified tool in the diagnosis
of pediatric OSA.

1.1 The Biomedical Signal Processing Framework:
Feature-Engineering and Deep Learning

Biomedical signals convey information on the functioning of the human body [1].
The study of these signals allows to analyze the properties of the underlying biolog-
ical systems [1], which makes possible to identify several pathological conditions
[2]. Nonetheless, the physiological information contained in these signals cannot be
typically extracted in a visual way [2]. In this respect, biomedical signal processing
provides methods that help to understand and characterize the hidden information
from these signals that can not be obtained through visual assessment [2]. It also
allows to develop automated systems for the diagnosis, treatment, and/or monitoring
of a wide range of pathologies [2].

In this type of systems (e.g., the screening of pediatric OSA), the automated
analysis of biomedical signals has been traditionally performed following a feature-
engineering methodology [3], which consists of three main stages. In the first stage,
known as feature extraction, the hidden characteristic information (features) about
the biomedical signals is obtained [3, 4]. To extract these features, different algo-
rithms based on mathematical methods are used such as statistical, morphological,
frequency domain, time-frequency, or nonlinear analysis [3–5]. The second stage is
the use of automatic feature selection methods to find the relevant and non-redundant
information among that extracted in the previous step [5]. Finally, in the third stage,
the selected information is used to train pattern recognition algorithms in order to
obtain predicted models aimed at providing a diagnostic decision [3, 5]. The range
of patter-recognition methods include from weak classifiers like logistic regression
(LR) and Fisher linear discriminant analysis (LDA) tomore complex algorithms such
as support vector machines (SVM), Bayesian classifiers, and multi-layer perceptron
(MLP) neural networks [3, 5].

Deep learning has emerged in recent year as a novel methodological approach
aimed at changing the paradigm of data processing [6]. Conventional feature-
engineering approaches have two main disadvantages: (i) a human expert must
determine which relevant features obtain from the input data, and (ii) these methods
provide a low level of abstraction that limits their capability to learn complex features
from the data. These issuesmay result inmissing important information from the data.
In contrast to conventional approaches, a deep-learning model automatically discov-
ers the intricate information in the data [6]. In this regard, deep-learning methods
automatically learn complex patterns and extract features from raw data by the use
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of various processing layers with multiple levels of representation [6]. Starting from
the representation at the lowest level, the raw input data, simple non-linear modules
transform them into representations at a higher abstract level [6]. With an architec-
ture composed of enough transformations, deep-learning algorithms can learn very
complex features from the data. As aforementioned, these algorithms have improved
predictive performances in a broad range of traditionally challenging domains, such
as image, genomics, and signal processing [6]. Specifically, in the biomedical signal
processing field, these algorithms have beaten conventional methods in many rele-
vant domains, including sleep stage scoring [7], congestive heart failure diagnosis
[8], epileptic seizure detection [9], and brain-machine interfaces [9].

This Doctoral Thesis is aimed at enhancing the diagnosis ability of the oximetry
signal in the context of childhood OSA. For this purpose, novel feature-engineering
and deep-learning methodologies have been developed and assessed.

1.2 Pediatric Obstructive Sleep Apnea (OSA)

Although originally described for adults, OSA has been recognized in recent years
as a high prevalent condition among children (1.2–5.7%), with etiological, diagnos-
tical, and therapeutical considerations that are different for the pediatric population
[10, 11]. According to the American Academy of Pediatrics (AAP), childhood OSA
is a respiratory disorder marked by repetitive episodes of complete absence (apnea)
and/or considerable reduction (hypopnea) of airflow during sleep [11]. It is asso-
ciated with the presence of nocturnal symptoms that cause disturbed sleep. Thus,
apneic (apneas and hypopneas) events derive in inadequate gas exchange, leading to
hypercapnia and hypoxia states, which induce oxygen desaturations, arousals, and
sleep fragmentation. Gasping and snoring also occur frequently [12].

As a consequence of these symptoms, OSAhavemany negative effects that reduce
health and quality of life of the children [10, 11]. In this respect, children suffering
from OSA are at an increased risk for developing cardiovascular morbidities, such
as systemic hypertension, changes in blood pressure regulation, and altered left ven-
tricular geometry [10]. OSA during childhood may also lead to neurobehavioral
abnormalities, such as cognitive deficits, reduced academic achievements, hyperac-
tivity, aggressive behavior, and excessive daytime sleepiness [13]. Moreover, it is
also related to the metabolic syndrome, which includes hypertension, insulin resis-
tance, dyslipidemia, and obesity [10]. Finally, somatic growth impairment has been
related to pediatric OSA as well [14].

Despite its high prevalence, pediatric OSA is an underdiagnosed condition [15].
Estimations indicate that approximately 90% of the affected children have not been
diagnosed yet [15]. Treatment interventions for pediatric OSA have led to a reduction
in neurocognitive, cardiometabolic, and growth stunting risks [16]. Nonetheless, the
low percentage of diagnosis, together with the high prevalence, result in a high
number of children being exposed to its adverse consequences.
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1.3 Pediatric OSA Diagnosis: Polysomnography (PSG)

OSA is diagnosed by means of the overnight PSG test, which acts as “gold standard”
[11]. During PSG, multiple neurophysiological and cardiorespiratory signals from
patients are monitored and recorded: electroencephalogram (EEG), electromyogram
(EMG), electrooculogram (EOG), electrocardiogram (ECG), oronasal airflow (AF),
abdominal and chest wall movements, respiratory effort, SpO2, and photoplethys-
mography (PPG), among others [17]. Thus, patients need to stay a complete night in
a sleep laboratory, where skilled staff care for them as well as monitor the course of
the test. After the PSG, the sleep recordings need an offline inspection to annotate
apneas and hypopneas in order to compute the AHI, which is the clinical variable
employed to establish a diagnosis [17].

Despite the well-known effectiveness of PSG, it presents several limitations. PSG
is a complex test due to the necessity to record a high number of signals, which
requires that patients spend at least one night in a sleep laboratory [18]. In addition,
trained personnel is needed to be responsible for the children and a proper develop-
ment of the test, resulting in high hospital expenses [18]. Similarly, apneic events
are manually scored by trained specialists, which is labor intensive and may result
in subjective diagnoses [18]. Finally, the nature of the PSG requires to perform the
test out of the sleep environment of the patients and with the use of multiple sensors
placed on their bodies, which results highly uncomfortable and intrusive for children
[19]. This may derive in obtaining sleep recordings which are not representative of
natural sleep, thus resulting in the need to repeat the diagnostic test [19].

Due to the complexity, cost, and time needed to analyze the sleep signals, avail-
able resources are not enough to cope with the high demand of OSA diagnosis [18].
This results in long waiting lists, thus hindering the diagnosis and treatment of the
affected children [20]. These drawbacks, together with the high prevalence rate of
pediatric OSA, have led the scientific community to explore the use of simplified
screening tests [11, 21]. In this sense, the guidelines of the AAP recommend con-
ducting alternative tests to address PSG unavailability, while still requiring more
conclusive evidences about the efficacy of these tests [11].

1.4 Alternatives to PSG

In order to address the above-mentioned limitations, the use of portable monitoring
equipment has been suggested as the main alternative to PSG in the diagnosis of
pediatric OSA [11, 21]. According to the Portable Monitoring Task Force of the
American Academy of SleepMedicine (AASM), the equipment used in sleep studies
can be classified into four types, depending on the number and type of the recorded
signals [22]:

I. Type I: Standard PSG. This first type consists of the conventional PSG equip-
ment, which requires the supervision of trained personnel in the hospital facilities.
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These devices are considered the gold standard to which the remaining types must
be compared.
II. Type II: Comprehensive portable PSG. These devices record a minimum of
seven channels, including EOG, chin EMG, EEG, airflow, ECG or heart rate (HR),
respiratory effort, and SpO2. These studies do not require the presence of trained
personnel. These devices allow to identify sleep stages and calculate the AHI.
III. Type III: Modified portable sleep apnea testing. These studies, also called
respiratory polygraphy (RP) studies, include the recording of ventilation (a min-
imum of two respiratory movement signals or one respiratory movement signal
and airflow), ECG or HR, and SpO2.
IV. Type IV: Continuous single-bioparameter or dual-bioparameter record-
ing. These devices only record one or two physiological signals, being oximetry
traditionally one of these measurements. In addition, all the equipment that does
not meet Type III criteria is included in this group.

1.4.1 Overnight Oximetry

In recent years, there has been an increased interest in overnight oximetry as themain
alternative to PSG in the context of pediatric OSA diagnosis due to its simplicity,
reliability, and suitability for children [23]. Overnight oximetry records the SpO2

signal in a non-invasive way with a pulse oximeter, usually located on the finger, toe,
or earlobe of the patient [24].

SpO2 expresses the amount of oxygen combinedwith the hemoglobinwith respect
to the total hemoglobin in the blood, the oxyhemoglobin (O2Hb),which is responsible
for transporting the blood oxygen to the tissues. The operating principle of the SpO2

sensors is based on the optical properties of the hemoglobin [25]. O2Hb absorbs
more infrared light, acquiring a red hue. On the contrary, deoxyhemoglobin (HHb)
absorbs a higher amount of red light, thus having a more bluish hue. Pulse oximeters
exploit this difference in the light absorption of O2Hb and HHb to obtain SpO2. To
achieve this, pulse oximeters contain two light-emitting diodes on one side of the
finger that transmit at red (around 660nm) and near infrared wavelengths (around
940nm). On the opposite side of the finger, a photodiode is placed to measure the
amount of red and infrared light absorbed by the tissues, which allows to determine
SpO2 [25].

Due to these easy acquisition of the SpO2 signal, commercial pulse oximetry
devices have been developed, which facilitate to perform the test in an unsupervised
way at children’s home [20, 26]. Apneic events fromOSA induce recurrent decreases
in the SpO2 [27], also called oxygen desaturations, so that this signal contains impor-
tant OSA-related information. Figure1.1 shows the SpO2 signal corresponding to (a)
a no OSA pediatric subject (AHI < 1 events per hour), (b) a doubtful no OSA pedi-
atric subject (AHI < 1 events per hour), (c) a mild OSA pediatric subject (1 ≤ AHI
< 5 events per hour), (d) a doubtful mild OSA pediatric subject (1≤AHI< 5 events
per hour), (e) a moderate OSA pediatric subject (5 ≤ AHI< 10 events per hour), (f)
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Fig. 1.1 Examples of SpO2 corresponding to: a a no OSA subject, b a doubtful no OSA subject, c a
mild OSA subject, d a doubtful mild OSA subject, e a moderate OSA subject, f a doubtful moderate
OSA subject, g a severe OSA subject, h a doubtful severe OSA subject. In doubtful subjects, it is
difficult to visually discriminate the OSA severity group from the overnight SpO2 profile, leading
to the need of non-subjective automated analyses

a doubtful moderate OSA pediatric subject (5 ≤ AHI < 10 events per hour), (g) a
severe OSA pediatric subject (AHI ≥ 10 events per hour), and (h) a doubtful severe
OSA pediatric subject (AHI ≥ 10 events per hour). It can be observed that there are
more oxygen desaturations as the severity of OSA increases. However, it is difficult
to visually discriminate the SpO2 signal from doubtful subjects.
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1.5 State-of-the-art: Automated Analysis of the Oximetry
Signal to Diagnose Pediatric OSA

The usefulness of SpO2 recordings from nocturnal oximetry to help in the screening
of pediatric OSA has been widely assessed, especially in the last years [23]. The
analysis of this signal has been addressed by using conventional oximetric indices,
as well as automated signal processing methodologies.

1.5.1 Conventional Oximetric Indices

Previous studies predominantly used conventional oximetric indices for this task [20,
28–35]. In this respect, researchers mainly assessed the screening ability of oxygen
desaturation index (ODI), which accounts for the number of drops of the SpO2 signal
larger than a defined threshold [30–32]. Kirk et al. [30] assessed, in a population of
58 pediatric subjects, the agreement between the AHI from PSG and the 3% oxygen
desaturation index (ODI3) from the SpO2 signal simultaneously recorded with a
portable monitoring device (SnoreSat, SagaTech Electronics, Calgary, AB, Canada).
Similarly, Tsai et al. [32] evaluated the yield of several cut-offs for the 4%ODI (ODI4)
to establish pediatric OSA severity in a database of 146 pediatric PSGs. Recently,
Ma et al. [31] studied the clinical applicability of a pulse oximetry watch (POW) for
pediatric OSA diagnosis. To this effect, they measured the concordance between the
AHI from PSG and the ODI4 derived from the SpO2 signal simultaneously recorded
with the POW in 32 children.

Likewise, the number and depth of clusters of desaturations in the SpO2 recordings
have been quantified bymeans of a visual inspection in order to develop OSA screen-
ing protocols [20, 28, 33, 34]. A cluster of desaturations was defined by Brouillette
et al. [28] as 5 or more oxygen desaturations of at least 4% occurring in a 10–30
minute window. Based on the number of clusters of desaturations and the number
of drops of the SpO2 signal below 90%, Brouillette et al. [28] defined a positive,
negative, or inconclusive score for pediatric OSA and compared it with the stan-
dard diagnosis from PSG in a dataset of 349 children. Similarly, Nixon et al. [20]
developed a severity score for pediatric OSA, namedMcGill oximetry score (MOS),
which is also based on the number of clusters of desaturations and the number of
drops of the oximetry signal below a defined threshold. Furthermore, Velasco et al.
[34] assessed the diagnostic ability of a positive OSA score defined as 2 or more clus-
ters of desaturations, one of them with an oxygen drop below 90%, in a sample of
167 children with adenotonsillar hypertrophy. Finally, Van Eyck et al. [33] assessed
the diagnostic ability of the methodologies proposed by Brouillette et al. [28] and
Velasco et al. [34], as well as the ODI3, in a population of 130 obese patients.

These oximetric indices have also been combined with common symptoms [29]
and clinical history [35] in order to enhance their diagnostic ability. Chang et al. [29]
used common symptoms (witnessed apneas, mouth breathing, and restless sleep)
and the ODI3 to evaluate both a LR classifier and a discriminative score to diagnose
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pediatric OSA in a sample of 141 children. Conversely, Villa et al. [35] combined the
MOS and a sleep clinical record that includes physical examination and children’s
history to detect pediatric OSA in a database of 236 pediatric subjects.

Differing from these studies, the research conducted in the present doctoral thesis
has included the use of automated signal processing algorithms to further characterize
the oximetry recordings.

1.5.2 Automated Signal Processing Methods

Recent works have focused on enhancing the diagnostic capability of the oximetry
signal bymeans of the application of automated signal processing algorithms [26, 36–
41]. These studies typically follow a three-stage feature-engineering methodology.
First, a feature extraction stagewas performed to characterize the changes in oximetry
dynamics associated to apneic events by means of different analytical approaches.
Then, feature selection methods were applied to obtain optimum subsets of relevant
and non-redundant features. Finally, pattern recognition algorithmswere trainedwith
the optimum subsets of features to detect pediatric OSA and its severity.

Importantly, in the feature extraction stage, the majority of studies employed sig-
nal processing techniques that had already shown its usefulness to extract features
from the SpO2 signal in adult patients both in the time and frequency domains [23]. In
the time domain, SpO2 recordings were characterized using statistical moments, oxi-
metric indices, and several non-linear measures: approximate entropy [42], sample
entropy [43], Lempel-Ziv complexity [44], and central tendency measure [45]. Con-
versely, the power spectral density (PSD) [46] was used to characterize the oximetry
signal in the frequency domain [26, 37, 39–41].

First, Garde et al. [26] developed and validated the Phone Oximeter, a portable
monitoring device consisting of a pulse oximetry sensor connected to amobile phone,
as a diagnostic tool for childhood OSA. To this effect, they assessed a LDA model
fed with statistical parameters, classical indices, nonlinear features, and PSD-derived
features from 146 SpO2 recordings of pediatric patients. Similarly, Álvarez et al. [37]
evaluated at-home unsupervised oximetry in pediatric OSA using a LRmodel trained
with statistical moments, PSD-derived parameters, nonlinear features, and classical
indices from 50 patients that underwent RP. A thorough comparative analysis of
statistical binary classifiers for the diagnosis of childhood OSA was performed by
Crepso et al. [39]. Specifically, they assessed LDA, LR, and quadratic discriminant
analysis (QDA) pattern recognition models trained with statistical moments, PSD
variables, nonlinear features, and the ODI3 extracted from a database of 176 children
[39]. The usefulness of automated processing of oximetric recordings as a screening
tool for pediatric OSA was also examined in a multicenter international study devel-
oped by Hornero et al. [40], which involved 4191 pediatric subjects from 13 sleep
centers. Particularly, Hornero et al. [40] assessed a MLP neural network trained to
estimate the AHI with the ODI3 and the third-order moment of the PSD. This MLP
model was further validated in 432 children along with a remote cloud system [41].
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Nonetheless, these studies used the same methods employed in adult OSA patients,
but reaching a lower performance [26, 37, 39–41]. In this respect, Hornero et al.
[40] showed a significant redundancy between the information extracted by conven-
tional feature extraction methods and the ODI3. This highlights the need for novel
signal processing methods able to provide specific features for the particularities of
pediatric OSA.

In order to address this issue, two recent studies conducted by Crespo et al. [38]
and Álvarez et al. [36] applied two novel nonlinear analysis methods in the context
of pediatric OSA, multiscale entropy [47] and symbolic dynamics [48], respectively.
Crespo et al. [38] investigated the ability of multiscale entropy (MSE) to further
characterize the dynamics of unattended oximetry using the database employed in
Álvarez et al. [37]. For this purpose, a LR model was trained to automatically detect
childhood OSA with conventional oximetric indices and nonlinear MSE-derived
parameters [38]. Additionally, Álvarez et al. [36] evaluated the usefulness of sym-
bolic dynamics to increase the diagnostic capability of portable oximetry recordings
from the Phone Oximeter. Specifically, a LRmodel was designed using conventional
oximetric indices, anthropometric variable, statistical parameters, and nonlinear fea-
tures from symbolic dynamics [36]. In this doctoral thesis, we have assessed the
usefulness of detrended fluctuation analysis (DFA), a time domain nonlinear analy-
sis method [49], and wavelet [50] and bispectral analysis [51], two frequency domain
techniques, to provide complimentary features that help to further characterize apneic
events from pediatric OSA [52–54].

As aforementioned, there has been a breakthrough in the last years in the data
science field thanks to the emergence of deep learning approaches [6]. Due to its
multilayer architecture withmultiple levels of representation, deep-learningmethods
are suitable to learn very complex patterns from the raw data, which has led them
to outperform conventional approaches in many fields [6]. In this respect, previous
studies have applied deep-learning methods to analyze polysomnographical signals
in adult OSA patients [7, 55]. These works have focused on the detection of sleep
stages [7], apneic events [55], and/or direct AHI estimation [55]. To our knowledge,
Vaquerizo-Villat et al. [56], the last article of the present doctoral thesis, is the
first study that applies deep learning techniques in the context of childhood OSA.
In Vaquerizo-Villat et al. [56], a deep-learning architecture based on convolutional
neural networks (CNN) was fed with raw SpO2 data [56], which has outperformed
conventional approaches in the framework of pediatric OSA.

In this chapter, we have introduced the topic of this doctoral thesis. In the next
Chapter (see Sect. 2), the hypotheses, objectives, and thematic consistency of this
research will be stated.
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Chapter 2
Hypotheses and Objectives

Pediatric OSA is a high prevalent disease (1–5%) [1]. It is associated with many neg-
ative effects on the overall health and life quality of the affected children when it is
untreated, including cardiometabolicmalfunctioning and neurobehavioral abnormal-
ities [2]. Overnight PSG is the gold standard for pediatric OSA diagnosis [1]. Despite
its effectiveness, PSG is costly, complex, highly intrusive, and lacks availability [3,
4]. This has prompted the search for simplified screening tests [1, 5]. One of these
alternative tests is overnight oximetry, which measures the SpO2 signal with a pulse-
oximeter, typically placed onto the end of a finger, thus being especially suitable for
children [6]. A wide range of investigations have shown the utility of the automated
analysis of the SpO2 signal as a clinically beneficial tool for the screening of OSA
in adult patients [6]. Nonetheless, state-of-the-art studies focused on the automated
analysis of the oximetry signal in the context of pediatric OSA followed a similar
signal-processing methodology [6], but achieving a inferior diagnostic performance
than in the case of adult patients [6].

Accordingly, the present doctoral thesis focuses on the use of feature-engineering
and deep-learning methodologies, intended to increase the diagnosis ability of the
SpO2 signal from overnight oximetry. Therefore, Sect. 2.1 describes the different
hypothesis that havebeen formulated throughout the present doctoral thesis, aswell as
the global hypothesis that raised from these statements. Similarly, the main objective
of this thesis is stated in Sect. 2.2, as well as the specific objectives that have been
accomplished to achieve it. Finally, thematic consistency of the four scientific articles
that have been accepted or published in journals indexed in the Journal Citation
Reports (JCR) from the Web of Science™ and are included in this doctoral thesis is
explained in Sect. 2.3.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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2.1 Hypotheses

Simplification of OSA diagnosis has become a main research topic in past years [1,
5, 7]. As previously explained, the SpO2 signal allows to detect oxygen desaturations
associated to apneic events [8], which has led to its use in the screening of pediatric
OSA [6]. Thus, at the beginning of this doctoral thesis, the following hypothesis was
formulated: the oximetry signal on its own may contain enough information for the
screening of pediatricOSA. Nonetheless, this statement does not completely describe
the starting point of the different investigations conducted in this study.

As stated in Sect. 1.5.2, a recent study reported a high redundancy in the con-
ventional features extracted from the oximetry signal [9], suggesting the need to
apply novel signal processing algorithms. Thereby, it has been hypothesized that
novel feature extraction methods could further characterize OSA-related changes in
the oximetry signal. Similarly, we wonder whether the features extracted by these
methods provide complimentary information to improve the diagnostic capability of
the oximetry signal in the context of pediatric OSA. Feature selection and pattern
recognition algorithms have been used for this purpose.

In spite of the usefulness of conventional feature-engineering approaches, they
are limited to learn all the relevant information from the data because of: (i) the
domain expert that designs the feature extractor decides which features are relevant
a priori; and (ii) their reduced level of abstraction. Owing to their great capability to
automatically learn very complex features from raw data, it has been hypothesized
that deep-learning algorithms could extract all the OSA-related information from
the SpO2 signal, thus enhancing its diagnostic ability.

These statements are themain hypotheses that form the core of the current doctoral
thesis, which can be joint into the following global hypothesis:

The application of novel feature extraction and deep-learning algorithms allows to capture
hidden patterns of desaturations linked to apneic events, enhancing the diagnostic ability of
the single-channel oximetry in the context of pediatric OSA.

2.2 Objectives

The main goal of the present doctoral thesis is to design, develop, and evaluate
novel clinical decision-support models in the context of pediatric OSA based on the
automated analysis of the oximetry signal. To reach this general goal, the following
specific objectives arise:

I. To further characterize changes in the oximetry signal caused by apneic events
linked to pediatric OSA both in the time and frequency domains.

II. To identify novel features from the oximetry signal able to provide relevant and
complimentary information to conventional oximetry variables.
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III. To design and optimize high-performance pattern recognition models aimed at
the automated detection of pediatric OSA and its severity using optimum subsets
of features from the SpO2 signal.

IV. To explore and develop novel deep-learning based architectures capable to auto-
matically learn all the OSA-related information from raw oximetry data.

2.3 Thesis Organization

The automated analysis of the oximetry signal has become the primary alternative
to PSG in the screening of pediatric OSA. In this context, the present doctoral thesis
focuses on applying novel signal processing algorithms in order to enhance the
diagnostic ability of the oximetry signal in the framework of pediatric OSA. All
the papers included in this thesis share this common thread. Figure2.1 shows the
thematic consistency and the main contributions of the papers included in this thesis.

As mentioned in Sect. 1.5.2, earlier studies focused on the automated diagnosis
of childhood OSA from the oximetry signal followed a similar feature-engineering
methodology to that used in adult patients, but achieving an inferior diagnostic per-
formance [6]. Specifically, a previous study using a very large multicenter database
of 4191 PSG sleep studies reported a high redundancy in the information extracted
from the oximetry recordings [9], which suggests the need to seek novel signal
processing algorithms that provide additional information from the SpO2 signal for
the particularities of childhood OSA (see Sect. 1.5.2). In this respect, the first three
papers in chronological order were focused on the application of novel feature extrac-
tion algorithms to provide additional information from the oximetry signal [10–12].
Given that the information extracted by conventional spectral analysis techniques
is highly redundant, the first two papers were aimed at assessing the usefulness of
two frequency domain techniques, bispectrum [10] and wavelet analysis [11], to
provide discriminative frequency domain features from the oximetry signal. In the
third paper [12], we investigated if DFA, a nonlinear analysis method in the time
domain, can extract complimentary information from the oximetry signal linked to
apneic events. As we will see, these feature extraction methods, novel in the context
of pediatric OSA, have been found to provide complimentary information to improve
the diagnosis ability of the SpO2 signal.

In contrast to the first three papers, which followed a feature-engineering method-
ology, the last paper included in this thesis employed a deep-learning methodology
to analyze the oximetry signal. Deep-learning approaches have emerged in the last
years as a suitable tool to learn complex features from raw data using architectures
with multiple layers of representation [13]. These algorithms have outperformed
traditional feature-engineering approaches in many fields, including image recogni-
tion, natural language processing, and time series analysis [13]. Accordingly, in the
last paper we investigated the ability of CNNs, the most widely-used deep-learning
technique, to automatically extract all the relevant information from the oximetry
signal [14]. The proposed CNN architecture was validated in a multicenter database
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Fig. 2.1 Main contributions of the papers included in the doctoral thesis, arranged along the auto-
mated signal processing methodologies developed. CMPB: Computer Methods and Programs in
Biomedicine, IEEE JBHI: IEEE Journal of Biomedical and Health Informatics, PM: Physiological
Measurement
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of 3196 SpO2 recordings, showing a high diagnostic ability, which outperformed
conventional feature-engineering approaches.

Titles, authors, and abstracts of each of the papers of the present doctoral thesis,
as well as the indexed journals in which they were accepted and published are shown
below:

Utility of bispectrum in the screening of pediatric sleep apnea-hypopnea syn-
drome using oximetry recordings [10].

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo
C. Gutiérrez-Tobal, Verónica Barroso-Garía, Andrea Crespo, Félix del Campo,
David Gozal, and Roberto Hornero. Computer Methods and Programs in
Biomedicine, vol. 156, p. 141–149, 2018. Impact factor in 2018: 3.424, Q1 in
“Computer Science, Theory & Methods” (JCR-WOS).

Wavelet analysis of oximetry recordings to assist in the automated detection
of moderate-to-severe pediatric sleep apnea-hypopnea syndrome [11].

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo
C. Gutiérrez-Tobal, Verónica Barroso-Garía, Andrea Crespo, Félix del Campo,
David Gozal, and Roberto Hornero. PLOS One, vol. 13 (12), p. e0208502, 2018.
Impact factor in 2018: 2.776, Q2 in “Multidisciplinary Sciences” (JCR-WOS).

Detrended fluctuation analysis of the oximetry signal to assist in paediatric
sleep apnoea hypopnoea syndrome diagnosis [12].

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo
C. Gutiérrez-Tobal, Verónica Barroso-Garía, Andrea Crespo, Félix del Campo,
David Gozal, and Roberto Hornero. Physiological Measurement, vol. 39 (11), p.
114006, 2018. Impact factor in 2018: 2.246, Q3 in “Engineering, Biomedical”
(JCR-WOS).

A convolutional neural network architecture to enhance oximetry ability to
diagnose pediatric obstructive sleep apnea [14].

Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo C.
Gutiérrez-Tobal, Verónica Barroso-Garía, Eduardo Santamaría-Vázquez, Félix del
Campo, David Gozal, and Roberto Hornero. IEEE Journal of Biomedical and
Health Informatics, vol. 25 (8), p. 2906–2916, 2021. Impact factor in 2021: 7.021,
D1 in “Mathematical & Computational Biology” (JCR-WOS).
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Chapter 3
Methods

This chapter first shows a brief summary the databases of pediatric subjects used
(Sect. 3.1) and then describes the different stages of the general signal processing
methodology that has been conducted through the thesis (see Fig. 3.1). The method-
ology starts with a signal pre-processing stage (Sect. 3.2), which adapts the oximetry
data to the requirements of the different signal processing algorithms. Following the
feature-engineering branch (Sect. 3.3), Sects. 3.3.1 and 3.3.2 describe the signal pro-
cessing methods applied to extract features from the SpO2 recordings in the time and
frequency domains and to select optimum subsets of optimumOSA-related features,
respectively. Afterward, Sect. 3.3.3 is devoted to describe the pattern recognition
algorithms employed to establish pediatric OSA and its severity. As the last stage
of the feature-engineering methodology, pattern recognition algorithms are fed with
the optimum features obtained in the feature selection stage. In the deep-learning
branch (Sect. 3.4), CNNs are trained using raw oximetry signal to estimate the AHI
and thereby the severity of pediatric OSA. Finally, Sect. 3.5 describes the statistical
analysis techniques employed in this research.

3.1 Subjects and Signals Under Study

During this research, three different databases of pediatric subjects were analyzed:
(i) the Childhood Adenotonsillectomy Trial (CHAT) database, (ii) the University of
Chicago (UofC) database, and (iii) the Burgos University Hospital (BUH) database.
All of them contained SpO2 recordings of children ranging from 0 to 18years of
age. These pediatric subjects were referred to nocturnal PSG showing clinical sus-
picion from OSA due to one or several of the following criteria: snoring, apneas,
arousals, excessive daytime sleepiness, restless sleep, hyperactivity, tonsillar hyper-
trophy, increase in neck circumference, developmental disorder depression and low
self-esteem, enuresis, obesity, attention deficit, behavioral problems, and cephaleas.
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Fig. 3.1 Scheme of the general signal processing methodology conducted in the study

The CHAT dataset, a public multicenter dataset, was integrated by 1638 sleep stud-
ies. The UofC dataset consisted of 980 children and the BUH dataset was composed
of 578 pediatric subjects.

SpO2 recordings were acquired from pediatric subjects during their standard diag-
nostic PSG test using sampling frequencies ranging from 1 to 512Hz. Following the
rules of the AASM [1, 2], all the sleep recordings weremanually inspected by trained
staff to quantify sleep and annotate apneas and hypopneas. These annotations were
used to obtain the AHI, which is used to establish a diagnosis [3]. Common AHI cut-
offs used to establish pediatric OSA severity are 1, 5, and 10 e/h [4–6]. In this respect,
AHI = 5 e/h is commonly employed as a cutoff to recommend surgical treatment [6],
as children with an AHI ≥ 5 e/h are at a higher risk of developing comorbidities [5,
7, 8]. Accordingly, under a binary classification approach, pediatric subjects were
distinguished into negative OSA (AHI < 5 e/h) and positive OSA (AHI ≥ 5 e/h). In
addition, children can also be classified into four pediatric OSA severity degrees: no
OSA (AHI < 1 e/h), mild OSA (1 ≤ AHI < 5 e/h), moderate OSA (5 ≤ AHI < 10
e/h), and severe OSA (AHI ≥ 10 e/h). Details of each database, such as number of
subjects, sex (male percentage), age, bodymass index (BMI), and number of patients
of each OSA severity group are provided in Tables3.1, 3.2, 3.3, and 3.4.
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Table 3.1 Clinical and sociodemographic data of the CHAT database
All No OSA Mild OSA Moderate OSA Severe OSA

SpO2 record-
ings (%)

1638 (100%) 637 (38.9%) 609 (37.2%) 205 (12.5%) 187 (11.4%)

Age (years) 7 [6, 8] 7 [6, 8] 7 [6, 8] 7 [6, 8] 7 [6, 8]

Males (%) 602 (47.4%) 297 (46.6%) 287 (47.1%) 101 (49.3%) 92 (49.2%)

BMI (kg/m2) 17.3 [15.8, 21.7] 17.0 [15.5, 19.6] 17.4 [15.6, 21.7] 18.6 [15.4, 23.3] 18.9 [16.0, 24.3]

AHI (e/h) 1.6 [0.6, 4.7] 0.4 [0.2, 0.7] 2.2 [1.5, 3.2] 7.1 [5.9, 8.4] 17.9 [12.8, 26.9]

Data are presented as median [interquartile range], n, or n (%). OSA Obstructive sleep apnea

3.1.1 Childhood Adenotonsillectomy Trial (CHAT) Database

CHAT database is composed of 1639 sleep studies from children ranging 5–10years
old with clinical suspicion of OSA. Sleep studies were obtained in 6 pediatric
sleep centers of the United States of America (Children’s Hospital of Pennsylvania,
Philadelphia, PA; Cincinnati Children’s Medical Center, Cincinnati, OH; Rainbow
Babies and Children’s Hospital, Cleveland, OH; Boston Children’s Hospital, Boston,
MA; Cardinal Glennon Children’s Hospital, St. Louis, MI; MontefioreMedical Cen-
ter, Bronx, NY) of which 1638 contained SpO2 recording [9, 10]. This database is
divided into three groups:

• Baseline, composed of 453 SpO2 recordings from children that met the criteria
defined in Marcus et al. [9] and Redline et al. [10] to be randomized to early
adenotonsillectomy or a strategy of watchful waiting.

• Follow-up, composed of SpO2 recordings from 406 pediatric subjects of the base-
line group performed after a 7-month observation period.

• Nonrandomized, composed of 779 SpO2 recordings from children who did not
met the criteria defined in Marcus et al. [9] and Redline et al. [10] to be included
in the follow-up study.

Overnight PSG was performed following a strict standardized procedure [10],
which includes the acquisition of SpO2 recordings with aNonin 8000J or comparable
sensor at sampling rates ranging from 1 to 512Hz. The clinical trail identifier of the
CHAT database is available in NCT00560859 and its full protocol is provided in the
supplementary material of Marcus et al. [9]. This database was used in Vaquerizo-
Villar et al. [11]. Table3.1 shows the sociodemographic and clinical data from this
database.

3.1.2 University of Chicago (UofC) Database

UofC database is composed of 981 SpO2 recordings from children aged 0–13years
of age. All children were referred to the pediatric sleep unit at the University of
Chicago Medicine Comer Children’s Hospital (Chicago, IL, USA) due to clinical

https://clinicaltrials.gov/ct2/show/study/NCT00560859
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Table 3.2 Clinical and sociodemographic data of the complete UofC database (981 subjects)
All No OSA Mild OSA Moderate OSA Severe OSA

SpO2 record-
ings (%)

981 (100%) 175 (17.8%) 401 (40.9%) 176 (17.9%) 229 (23.4%)

Age (years) 6 [3, 9] 7 [4, 10] 6 [4, 9] 5 [2, 8] 4 [2, 8]

Males (%) 602 (61.4%) 109 (62.3%) 247 (61.6%) 107 (60.8%) 139 (60.7%)

BMI (kg/m2) 17.9 [15.8, 21.9] 17.7 [15.5, 20.9] 17.7 [15.9, 21.2] 18.6 [16.2, 24.0] 18.3 [16.0, 23.2]

AHI (e/h) 3.8 [1.5, 9.3] 0.5 [0.1, 0.8] 2.5 [1.7, 3.5] 6.8 [5.8, 8.3] 19.1 [13.9, 31.1]

Data are presented as median [interquartile range], n, or n (%). OSA Obstructive sleep apnea

Table 3.3 Clinical and sociodemographic data of the initial version of the UofC database (298
subjects)

All Negative OSA Moderate OSA Severe OSA

SpO2 recordings
(%)

298 (100%) 164 (55.0%) 56 (18.8%) 78 (26.2%)

Age (years) 6 [4, 9] 7 [5, 10] 5 [3, 8] 6 [3, 9]

Males (%) 166 (55.7%) 91 (55.5%) 32 (57.1%) 43 (55.1%)

BMI (kg/m2) 18.4 [16.3, 23.0] 18.2 [16.3, 22.3] 18.1 [16.3, 22.6] 19.1 [16.5, 25.7]

AHI (e/h) 4.2 [1.8, 10.4] 1.9 [1.0, 3.5] 7.0 [5.9, 8.5] 17.7 [11.7, 27.3]

Data are presented as median [interquartile range], n, or n (%). OSA Obstructive sleep apnea

Table 3.4 Clinical and sociodemographic data of the BUH database
All No OSA Mild OSA Moderate OSA Severe OSA

SpO2 recordings
(%)

578 (100%) 205 (35.5%) 220 (38.1%) 65 (11.3%) 88 (15.2%)

Age (years) 5 [4, 7] 6 [4, 8] 5 [3, 6] 5 [3, 6] 4 [3, 5]

Males (%) 356 (61.6%) 127 (62.0%) 129 (58.7%) 38 (58.5%) 62 (70.5%)

BMI (kg/m2) 16.0 [14.6, 18.2] 16.1 [14.5, 18.8] 16.0 [14.7, 17.7] 15.4 [14.6,18.1] 16.1 [14.7,17.3]

AHI (e/h) 1.8 [0.6, 5.3] 0.4 [0.0, 0.6] 2.1 [1.5, 3.4] 6.9 [5.8, 8.1] 24.3 [14.8, 34.9]

Data are presented as median [interquartile range], n, or n (%). OSA Obstructive sleep apnea

suspicion of OSA. The legal guardians of all the children signed the informed con-
sent and the Ethics Committee of the Comer Children’s Hospital approved the pro-
tocols (#11-0268-AM017, #09-115-B-AM031, and #IRB14-1241). Overnight PSGs
were performed using a digital polysomnography system (Polysmith; Nihon Kohden
America Inc., CA, USA), which includes an internal pulse oximetry sensor. In this
way, SpO2 recordings were obtained from PSG at sampling rates 25, 200, 500Hz.

This dataset was used in all the studies of this doctoral thesis [11–14]. In the first
manuscript of this doctoral thesis [12], a subset of thewholeUofCdatabase composed
of 298 SpO2 recordings, those sampled 25Hz, was analyzed. In Vaquerizo-Villar et
al. [13, 14], the complete database, 981 subjects, was employed. Finally, one subject
was removed from the complete dataset for the last manuscript of this thesis, as
the total sleep time was less than 3h after signal preprocessing, thus analyzing 980
SpO2 recordings in Vaquerizo-Villar et al. [11]. Tables3.2 and 3.3 show the clinical
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and sociodemographic data from the complete dataset (981 subjects) and the initial
dataset of 298 SpO2 recordings used in Vaquerizo-Villar et al. [12], respectively.

3.1.3 Burgos University Hospital (BUH) Database

The BUH database included 578 children ranging 0–18years of age who were
referred to the pediatric sleep laboratory at Burgos University Hospital with high
suspicion from OSA. All legal guardians of the pediatric subjects involved gave
their informed consent and the Ethics Committee of the BUH approved the protocol.
Children’s sleep was monitored using the Deltamed Coherence 3NT Polysomno-
graph, version 3.0 system (Diagniscan S.A.U., GroupWerfen, Paris, France), which
includes a Nellcor Puritan Bennett, NPB-290 pulse oximeter. In this way, SpO2

recordings were obtained during nocturnal PSG at a sampling rate 200Hz. This
database was used in Vaquerizo-Villar et al. [11]. Table3.4 shows the sociodemo-
graphic and clinical data from this sample.

3.2 Pre-processing

As seen in Sect. 3.1, SpO2 recordings were acquired during PSG using different pulse
oximetry sensors and recording systems. Heterogeneity in the devices could lead to
slight differences in the overnight oximetric profile able to influence the diagnostic
ability of the signal. Additionally, the SpO2 signal contains artifacts caused by loss of
contact of the pulse oximeter probe due to subjectmovements. Therefore, a signal pre-
processing step was included to standardize the signals obtained from the different
recording devices, as well as to remove motion artifacts. Signal pre-processing was
different for the two main methodological approaches conducted in this research: (i)
feature-engineering and (ii) deep-learning approaches.

Following a feature-engineering methodology, artifacts were first discarded from
SpO2 recordings by removing samples with SpO2 values below 50% as well as
sudden changes with a slope ≥4% per second [15]. As the sampling frequency
among the different recording devices ranged from 1 to 512Hz, oximetry signals
were re-sampled to a common sample rate of: (i) 25Hz in Vaquerizo-Villar et al.
[12, 13], as advocated by the AASM [2]; and (ii) 1Hz for the multiscale analysis
of the oximetry signal proposed in Vaquerizo-Villar et al. [14], which has been
considered more appropriate for multiscale analysis approaches in previous studies
[16, 17]. Finally, the resolution of the SpO2 recordings was set to two decimal points
(resolution of 0.01%) in order to homogenize the resolution of signals from different
recording devices [18].

In the deep-learning branch, the pre-processing stage was simpler, as deep-
learning approaches are able to automatically process raw data [19]. In this respect,
SpO2 signal pre-processing consisted on: (i) down-sampling of the SpO2 record-
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ings 1Hz in order to homogenize the frequency [20]; and (ii) segmentation of the
SpO2 recordings into 20-min segments (1200 samples) prior to train the CNN-based
deep-learning architecture [11].

3.3 Feature Engineering

Feature engineering is the conventional methodology employed to analyze biomed-
ical signals. This methodology consists of the three following stages: (i) feature
extraction; (ii) feature selection; and (iii) pattern recognition.

3.3.1 Feature Extraction

As aforementioned, SpO2 signals were characterized both in time and frequency
domains. In this respect, different signal processing methods were applied to obtain
OSA-related features from the oximetry signal [11–14].

3.3.1.1 Conventional Measures in the Time Domain

In this research, conventional features were obtained from the oximetry signal
using different time-domain analysis methods: oxygen desaturation index, statis-
tical moments, and nonlinear parameters [11–14]. A description of these methods is
found below.

Oxygen desaturation index. As mentioned in Sect. 1.4.1, oxygen desaturations are
related to apneic episodes [2]. In this research, the number of oxygen desaturations
of at least 3% (ODI3) from prior SpO2 baseline was computed [21].

Statistical moments. Common first-to-fourth order statistical moments (M1t–M4t )
were calculated to characterize the SpO2 signal amplitude distribution. Accordingly,
mean (M1t ), variance (M2t ), skewness (M3t ), and kurtosis (M4t ) allow to measure
the central tendency, dispersion, asymmetry, and peakedness of the data, respectively.

Nonlinear parameters. In recent years, nonlinear methods derived from the chaos
theory have shown its usefulness to extract additional information of oximetry
dynamics in both adults and pediatric OSA patients [22–26]. In this respect, the
following common nonlinear features have been obtained from each SpO2 record-
ing:

• Central tendencymeasure (CTM). Using second-order differences plots [27],CTM
allows to quantify the variability of the oximetry signal associated to apneic events.
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• Lempel-Ziv complexity (LZC). LZC measures changes in the complexity of the
oximetry signal related to pediatricOSA severity by transforming the SpO2 record-
ings into a two-symbol sequence andquantifying the number of different substrings
in this transformed sequence [28].

• Sample entropy (SampEn). SampEn allows to quantify the irregularity of the
oximetry signal by the evaluation of both prevailing and secondary patterns in
the the SpO2 recordings [29].

3.3.1.2 Novel Oximetric Indices in the Time Domain: Detrended
Fluctuation Analysis

DFA is an important tool to analyze the correlation properties of a non-stationary time
series (i.e., the oximetry signal) through its multiscale analysis [30]. In this respect,
DFA allows to detect changes in the correlation properties of a signal along temporal
scales caused by random spikes and/or segments with a distinct local behavior [17,
31]. In Vaquerizo-Villar et al. [14], we propose DFA as a novel nonlinear analysis
method to analyze the irregular fluctuations and random spikes of the SpO2 signal
related to apneic events. Given a time series x(t), the DFA procedure comprises the
following four steps [30]:

(1) Integration of the input signal. x(t) is integrated using the following expression:

y(i) =
i∑

j=1

[x( j) − xmean], i = 1, . . . , N , (3.1)

where xmean and N are themean and length of thewhole time series, respectively.
(2) Window-segmentation. y(i) is divided into B non-overlapping time windows

of equal size. The length of each window (i.e., the scale) ranges from k = 3 to
k = 1080, being the maximum scale (1080) one-tenth of the minimum signal
length (10,800 samples = 3h with a sampling 1Hz), which ensures that the
recording contains an adequate number of sleep cycles [32, 33].

(3) Obtaining of the local trend. A straight line least-squares fit is applied to y(i) in
order to obtain the local trend yb for each window (b = 1, . . . , B).

(4) Obtaining of the fluctuation function. The fluctuation function, F(k), is obtained
for each scale using the following expression:

F(k) =
√√√√ 1

B
·

B∑

b=1

F2
b (k), (3.2)

where F2
b (k) is the variance of the fluctuation function in each window, defined

as follows:
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F2
b (k) = 1

k

bk∑

j=(b−1)k+1

[(y( j) − yb( j))2]. (3.3)

Steps 2–4 are iterated until F(k) is obtained for each scale (k) of the DFA profile.
A double logarithmic-scale plot was used to analyze the evolution of the DFA profile
of a subject along time scales: log10 F(k) versus log10(k). In Vaquerizo-Villar et al.
[14], we obtained two different scaling regions according to the linear relationship
between log10 F(k) and log10(k): region 1 was obtained in the range of scales 0.48 ≤
log10(k) ≤ 1.3 (3 ≤ k ≤ 20), whereas region 2 was obtained in the range 1.60 ≤
log10(k) ≤ 3.03 (40 ≤ k ≤ 1080). In order to quantify the differences in the DFA
plot associated to pediatricOSAand its severity, the following featureswere extracted
[14, 17, 34]:

• Scaling exponents (slopes) in the straight line that fits both regions of the DFA
plot (slope1 and slope2), which are intended to characterize the scaling behavior
of the SpO2 signal in each region.

• Ratio between slope1 and slope2 (slope12), which characterizes the distinct scal-
ing behavior observed in both regions.

• Coordinates of the intersection between the straight lines adjusted in regions 1 and
2 of the DFA plot (k12 and F(k12)), which characterize the crossover point of the
DFA profile [14].

• Value of thefluctuation function (F(kx )) in the scale kx = 21,which has the highest
correlation with the AHI. F(kx ) quantifies the fluctuations of the SpO2 recording
associated to apneic events.

3.3.1.3 Conventional Frequency Domain Analysis: Power Spectral
Density

Frequency domain analysis allows to measure the recurrence and duration of apneic
events from OSA in children [35]. In this respect, PSD is the most used frequency
domain technique to analyze the spectral components of the oximetric dynamics in
the framework of pediatric OSA [23–26, 35]. PSD was computed using the Welch’s
approach [36] to look for differences in the oximetric recordings related to apneic
events due to OSA. In order to characterize the effects of OSA in the PSDs of the
SpO2 recordings, Vaquerizo-Villar et al. [12] and Hornero et al. [25] determined
two frequency bands of interest (BI): 0.018–0.050Hz (BI1) and 0.021–0.044Hz
(BI2), respectively. In these bands, the highest statistically significant differences
were obtained in the PSD amplitude among OSA severity groups. Once spectral
bands were established, the following features were computed from the PSDs of
each SpO2 recording [11–14]:

• First-to-fourth order statistical moments, extracted from the full PSD (M1PSD
–M4PSD) and the two bands of interest: BI1 (M1BI1–M4BI1) and BI2 (M1BI2
–M4BI2). These parameters measure the central tendency, dispersion, asymmetry
and peakedness of the PSD in each region, respectively.



3.3 Feature Engineering 27

• Relative power (RPBI1), defined as the power ratio between BI1 and the whole
PSD. RPPSDBI1 is intended to reflect the effects in the band of interest caused by
a higher occurrence of apneic events at these frequencies.

• Maximum amplitude (MAPSD) and minimum amplitude (mAPSD) of the PSD in
the full spectrum (MAPSD and mAPSD), BI1 (MABI1 and MABI1), and BI2
(MABI2 and MABI2). These features allow to quantify the highest and the lowest
values of the PSD in these regions related to the occurrence of apneic events.

• Spectral entropy of the full PSD (SEPSD) and BI1 (SEBI1), which are irregularity
parameters thatmeasure theflatness of thePSDand its bandof interest, respectively
[37].

• Mobility of the PSD in the band BI1 (MbBI1), defined as the squared root of the
ratio between the variance and the power of the PSD in this band.MbBI1 quantifies
the concentration of the signal power [38].

• Median frequency of the full PSD (MFPSD), defined as the spectral component
that separates the PSD into two regions, each of them with 50% of the total power.
MFPSD characterizes the distribution of the PSD content [37].

• Wootter’s distance of the full PSD (WDPSD), which is a disequilibrium parameter
that measures the distance between the probability density function of the PSD
and an uniform distribution [39].

3.3.1.4 Novel Frequency Domain Features from the Oximetry Signal:
Bispectrum

Bispectrum can be described as the spectral representation of the third-order cumu-
lant (skewness) of a time series [40]. In contrast to conventional PSD, bispectrum
preserves both amplitude and phase information of the spectral components of a sig-
nal. This allows bispectrum to detect phase relationships and deviations from linearity
and Gaussianity in a signal [40], such as those produced in physiological signals by
respiratory events [41, 42]. For these reasons, bispectral analysis is employed for
the first time in Vaquerizo-Villar et al. [12] to characterize changes produced in the
oximetry signal by respiratory events.

Given a deterministic and zero-mean time series x(t), bispectrum can be non-
parametrically estimated as follows:

B( f1, f2) = X ( f1) · X ( f2) · X∗( f1 + f2), f1, f2 = 0, . . . , N , (3.4)

where X ( f ) is the discrete Fourier transform of x(t) and f1 and f2 are the frequencies
of the two axes of the bispectrum. According to its symmetry conditions, bispectrum
was computed in the non-redundant region (�), which satisfies f1 ≥ 0, f2 ≥ f1, and
f1 + f2 ≤ fs/2, being fs the sample rate of x(t).
Once the bispectrum was computed in this region, the following parameters were

computed:
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• Mean amplitude of the bispectrum (M1BI SP ) [43], which allows to detect devia-
tions of Gaussianity in a signal [44]:

M1BI SP = 1

L

∑

f 1, f 2∈�

|B( f1, f2)|, (3.5)

where L is the number of points of the bispectrum in �.
• Sum of logarithmic amplitudes of the bispectrum (H1BI SP ), sum of logarithmic
amplitudes of diagonal elements of the bispectrum (H2BI SP ), and spectralmoment
of first order of diagonal elements of the bispectrum (H3BI SP ) [45], which are
related to themoments of the bispectrum. H1BI SP , H2BI SP , and H3BI SP quantify
the non-linearity of a signal and are calculated based on the bispectral amplitudes
contained in � and its main diagonal [40, 45]:

H1BI SP =
∑

f1, f2∈�

log(|B( f1, f2)|), (3.6)

H2BI SP =
∑

fk∈�diagonal

log(|B( fk, fk)|), (3.7)

H3BI SP =
∑

fk∈�diagonal

k · log(|B( fk, fk)|), (3.8)

where �diagonal is the main diagonal of the bispectrum.
• Bispectral amplitude entropies of first (BE1BI SP ) and second order (BE2BI SP ),
which quantify the irregularity of the bispectral amplitude of a signal [43]:

BE1BI SP = −
∑

j∈�

p j · log(p j ), (3.9)

where

p j = |B( f1, f2)|∑
f 1, f 2∈� |B( f1, f2)| . (3.10)

BE2BI SP = −
∑

j∈�

q j · log(q j ), (3.11)

where

q j = |B( f1, f2)|2∑
f 1, f 2∈� |B( f1, f2)|2 . (3.12)

• Phase entropy (PEBI SP ), which measures irregularity in the bispectral phase [43]:
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PEBI SP = −
∑

n

p(�n) · log(p(�n)), n = 0, 1, . . . , N − 1, (3.13)

where N is the number of bins of the histogram and p(�n) is the distribution of
the phase angles [40, 46]:

p(�n) = 1

L

∑

f 1, f 2∈�

I nd(φ(B( f1, f2)) ∈ �n)|, (3.14)

where φ is the phase angle of the bispectrum and I nd(·) is an indicator function,
whose value is 1 if φ is within the range of the bin �n , being �n the range of
histogram bins [40]:

�n =
{
φ| − π + 2πn

N
≤ φ < −π + 2π(n + 1)

N

}
. (3.15)

• Mean (meanPaBI SP ) andvariance (var PaBI SP ) of the bispectral invariant (P(a)),
which detect third-order time correlations or phase coupling between spectral com-
ponents of a chaotic process [43]. P(a) is defined as the phase of the integrated
bispectrum along the straight line passing through the origin with slope a [43]:

P(a) = arctan

(
Ii (a)

Ir (a)

)
, (3.16)

where Ir (a) and Ii (a) are the real and imaginary components of the integrated
bispectrum (I (a)) [43]:

I (a) =
1/1+a∫

f1=0+

B( f1, a f1)d f1 = Ir (a) + j · Ii (a), 0 ≤ a ≤ 1. (3.17)

3.3.1.5 Novel Frequency Domain Features from the Oximetry Signal:
Wavelet Transform

Wavelet transform (WT) is a suitable method to analyze the spectral content of
non-stationary signals [47]. In contrast to the fixed analysis window used by con-
ventional frequency domain analysis techniques, which are based on the Short
Time Fourier Transform (STFT), WT employs long windows at low frequencies
and short windows at high frequencies. These multiscale analysis approach pro-
vide high frequency resolution at low frequencies and high temporal resolution at
high frequencies, whereas the single scale analysis of STFT-based techniques is
limited by its fixed time-frequency resolution [47]. Due to this multiresolution prop-
erty, WT is applied in Vaquerizo-Villar et al. [13] as a novel technique especially
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designed to accurately detect SpO2 desaturations elicited by apneic events, which
have very low frequency components due to the slow variation nature of the oximetry
signal.

WT decomposes a signal x(t) onto a set of basis functions, known as wavelets
[47]. Wavelets are obtained by means of the scaling and time translation of a basic
wavelet prototype, the mother wavelet [47]. According to the scale and translation
values, there are twomain types ofWT [47]: (i) continuouswavelet transform (CWT),
where these time-scale parameters are continue; and (ii) discrete wavelet transform
(DWT), where wavelets are computed only for power of 2 scales. In Vaquerizo-Villar
et al. [13], DWT was chosen to analyze SpO2 recordings, as it is less complex and
computationally less expensive than CWT [47].

Figure3.2 shows the computation process of DWT. Given a SpO2 recording x[n]
with length N , DWT decomposes it using a filter-bank tree with L = log2(N ) steps
[47], as shown in Fig. 3.2a. Each step consists of a half-band high-pass filter g[n], the
mother wavelet, and a half-band low-pass filter h[n], the mirror version of g[n], each
of them followed by a subsampling operation with a factor two (dyadic sampling).
Thereby, in the first step (i = 1), the SpO2 signal x[n] is decomposed into an approx-
imation A1 (low-pass) and a detail D1 (high-pass) signal. Next, the approximation
signal A1 is further decomposed, thus generating another approximation signal A2

and another detail D2 signal. This decomposition iterates on the approximation sig-
nal until the maximum level of decomposition i = L . The frequency resolution of
the approximation Ai and detail signals Di is increased at each iteration by a factor
two, while reducing their time resolution due to the dyadic sampling. At each step
i = 1, 2, . . . , L , Ai and Di are obtained as follows:

Ai [k] =
∑

n

Ai−1[n] · h[2k − n], (3.18)

Di [k] =
∑

n

Ai−1[n] · g[2k − n], (3.19)

where Ai−1 is the approximation signal in the step i − 1, being A0 the time series
x[n].

In Vaquerizo-Villar et al. [13], DWT was applied to N = 213 (5.5min) sample
segments of the SpO2 signal. Haar was chosen as the mother wavelet due to: (i)
its stepped shape, which allows to detect oxygen desaturations elicited by apneic
episodes; (ii) its smoothing property, which does not cause edge effects in the SpO2

signal waveform.
Figure3.2b shows an example of DWT decomposition of a SpO2 segment, x[n],

using theHaarwavelet. It can be seen that detail coefficients fromeach decomposition
level (Di ) provide information about a specific frequency range. Our DWT analysis
mainly focused on D9 (0.0244–0.0488Hz), which is comprised in the frequency
range of interest BI1 (0.018–0.050Hz) related to the changes caused by pediatric
OSA in nocturnal oximetry [13]. As it can be seen in Fig. 3.2b, D9 coefficients show
decreased and increased values associated to oxygen desaturations. The presence of
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Fig. 3.2 DWT computation. a Decomposition process of a signal using DWT. b Original SpO2
signal, detail signals at each decomposition level and approximation signal at the maximum level
of the decomposition. This figure has been taken from Vaquerizo-Villar et al. [13]

both negative and positive values may hinder the information contained in the DWT
coefficients, such as the mean or skewness. Thereby, the following DWT-derived
features were extracted from the Di coefficients in absolute value [13]:

• First-to-fourth order statistical moments of the D9 coefficients (M1D9–M4D9 ),
which are the mean (M1D9 ), variance (M2D9 ), skewness (M3D9 ), and kurtosis
(M4D9 ). They measure the central tendency, dispersion, asymmetry and peaked-
ness of the data, respectively.

• Maximum amplitude of the D9 coefficients (MAD9 ), which allows to quantify the
maximum amplitude reached in this frequency range.

• Energy of the D9 coefficients (EnD9 ), which allows to quantify the averaged
quadratic amplitude of the detail signal D9. It is calculated using the following
expression:

EnD9 =
∑

k

|D9[k]|2. (3.20)

• Wavelet entropy (WE), which quantifies the energy distribution changes elicited
in the detail levels of the oximetry signal by apneic events [48]:
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WE = −
L∑

i=1

pi log(pi ), (3.21)

where pi is the normalized wavelet energy at the detail level i :

pi = EnDi

L

L∑

i=1

EnDi . (3.22)

3.3.2 Feature Selection

Once features are extracted, the information contained in a SpO2 recording is syn-
thesized in a wide set or variables. Nonetheless, there may be some features that pro-
vide irrelevant and/or redundant information that may cause overfitting in the pattern
recognition stage [49]. Therefore, a feature selection stage was included to prevent
from this undesired effect. Specifically, the fast correlation-based filter (FCBF) algo-
rithm [50] was used in Vaquerizo-Villar et al. [12–14] to obtain an optimum subset
of OSA-related features [50].

3.3.2.1 Fast Correlation-Based Filter (FCBF)

FCBF is an automated feature selection algorithm that has been widely used in the
pediatric OSA context [12–14, 25, 51–53]. FCBF follows a two-stage procedure to
evaluate the relevance and redundancy of the variables under study. Given a feature
vector xi and a dependent variable y, FCBF first calculates the symmetrical uncer-
tainty (SU ) between each single feature xi and y in order to evaluate its relevancy
[50]:

SU (xi , y) = 2 ·
(

IG(xi |y)
H(xi ) + H(y)

)
, i = 1, 2, . . . , N , (3.23)

where IG(xi |y) = H(xi ) − H(xi |y), H refers to the well-know Shannon’s entropy,
N is the number of input variables [50], and y is a context-dependent characteristic.
Particularly, in the framework of pediatric OSA, y is a vector composed of the AHI
values for each pediatric subject. SU can take values in the range 0–1. SU = 0
indicates that the two variables are totally independent, whereas SU = 1 indicates
that it is completely possible to forecast one feature from the other. Therefore, features
having a higher value of SU are more relevant, as they share more information with
the dependent variable [50].

Once SU is obtained for all the input variables, features are sorted from the most
relevant (highest SU ) to the least relevant one (lowest SU ). Based on this ranking,
the second step consists on the computation of SU between each pair of features
(SU (xi , x j )), j = 1, 2, . . . , N , j �= i to assess its redundancy, beginning from the
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most relevant ones [50]. If SU (xi , x j ) ≥ SU (xi , y), being xi more relevant than
x j , x j is removed from the selection process due to redundancy with xi . Accord-
ingly, an optimum subset of features is obtained with those not discarded during the
redundancy analysis.

In the present doctoral thesis, the FCBF algorithmwas applied in the three studies
that followed a feature-engineeringmethodology [12–14]. In these papers, FCBFwas
applied to 1000 bootstrap-derived samples from the corresponding training set, as it
contributes to select a more stable subset of features [54]. Then, the features selected
at least 500 times (50% of the iterations) constituted the optimum subset.

3.3.3 Pattern Recognition

Pattern recognition consists on the application of automated algorithms to identify
the underlying behavior in the data [55]. Taking as input data the optimum subset of
features from each subject obtained with FCBF, three pattern recognition algorithms
have been applied in the present doctoral thesis to automatically detect pediatric OSA
and its severity: (i) LR; (ii) SVM; and (iii) MLP.

3.3.3.1 Logistic Regression (LR)

LR is a common method for two-class (binary) classification. It is a supervised
algorithm which assigns an input feature vector xi (with i = 1, 2, S, being S the
number of instances) into one out of two mutually exclusive groups (C j = 1, 2)
[56]. In this thesis, LR was used to estimate the posterior probability of a given
instance xi (subject) belonging to the negative OSA (C1) and positive OSA (C2)
groups [13]. This was carried out through the logistic function [56]:

p(C j |xi ) = exp(β0 + xiβ)

1 + exp(β0 + xiβ)
, (3.24)

where β0 and β = β1, β2, . . . , βN are the coefficients of the LR model, and N is
the number of input features that compose each vector xi . β0 and β coefficients are
optimized using the maximum likelihood estimator [56].

3.3.3.2 Support Vector Machines (SVM)

SVM is a supervised algorithm for binary classification that finds a separating
hyperplane with a decision boundary that maximizes the distance between instances
belonging to different classes. The hyperplane is expressed as follows [55]:

y(x, w) = wT · φ(x) + w0, (3.25)
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where x ∈ RN is the input feature vector, N is the number of features, φ(x) ∈ RD

is the feature vector in the high-dimensional transformed space (D > N ), and w

denotes the weight vector, which is optimized in order to obtain a maximal margin
hyperplane [55]. This optimization can be formulated using Lagrange multipliers:

y(x, w) = −
∑

j∈V
η j t j K (x j , x) + w0, (3.26)

where V is a subset of indices 1, . . . , S corresponding to the Lagrange multipliers η j

related to the supported vectors, S is the number of examples in the training group,
K (·, ·) is the Kernel function, and t j are the output labels. The Lagrange multipliers
(η1, . . . ,ηS) are subjected to the following constraints:

S∑

j=1

η j t j = 0 (3.27)

and
0 ≤ η j ≤ C, (3.28)

where C is the regularization parameter, which controls the balance between max-
imizing the margin of separation between classes and minimizing the classification
error.

In Vaquerizo-Villar et al. [13], SVM was applied using a linear kernel to assign
every input feature vector to the groups negative OSA (t j = −1) and positive OSA
(t j = 1), whereas the optimumvalue for the regularization parameterC was obtained
using a 10-fold cross validation procedure during the training stage.

3.3.3.3 Multilayer Perceptron Neural Network (MLP)

Artificial neural networks (ANN) arised from the need to model information pro-
cessing in biological systems using mathematical representations [55]. MLP is the
ANN-based pattern recognition algorithm most widely used in the pediatric OSA
context [57].MLP is a feed-forward neural networkwith an architecture consisting on
several fully-connected layers (input, hidden, and output layers) composed of basic
mathematical units that imitate biological neurons, called perceptrons [55]. These
units are described by a differentiable activation function g(·) that performs a non-
linear transformation of the data, as well as by adaptive weights w that connect each
unit with every neuron from the subsequent layer. In this thesis, a configuration with
a single hidden layer was used. Given an input feature vector xi , i = 1, . . . , N , being
N the number of features, the values of the output units yk of the MLP architecture
are computed as follows:
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yk = go

⎧
⎨

⎩

NH∑

j=1

w jk gh

{
N∑

i=1

wi j xi + b j

}
+ bk

⎫
⎬

⎭ , k = 1, . . . , K , (3.29)

where go(·) and gh(·) are the activation functions for units in the output and hidden
layer, respectively,w jk is the weight connecting the neuron j of the hidden layer with
the output unit yk , wi j is the weight connecting the input feature i with the hidden
neuron j , bk and b j are the biases of the output and hidden layers, respectively, K is
the number of output units, and NH is the number of neurons in the hidden layer. In
this thesis, MLP was used in Vaquerizo-Villar et al. [12] for multiclass classification
(negative OSA, moderate OSA, and severe OSA), in Vaquerizo-Villar et al. [13] for
binary classification (negative OSA and positive OSA), and in Vaquerizo-Villar et
al. [14] for regression (AHI estimation). Accordingly, the number of output units
K was different in each article: K = 3 for three-class classification [12], K = 2 for
binary classification [13], and K = 1 for AHI estimation [14].

Network weights were adjusted during training using the scale conjugate gradient
algorithm with weigh-decay regularization, which allows to minimize the loss func-
tion and achieve a good generalization ability [55]. During the training process, two
hyperparameters were optimized through 10-fold cross validation: the regularization
parameter (α) and NH .

3.4 Deep Learning

Conventional feature-engineering approaches have two main limitations [58]: (i) a
substantial knowledge in the specific field is required to determine, a priori, a set
of relevant features that must be obtained from the input data; and (ii) these meth-
ods are limited by their low level of abstraction, which limits their capability to
find relevant features in the raw data. These limitations may lead to the omission
of specific features from the oximetry signal linked to the physiological perturba-
tions of pediatric OSA. These shortcomings can be minimized by means of the
application of deep-learning algorithms. As aforementioned, deep-learning methods
have beaten conventional approaches in many fields [59], including the OSA context
[19, 60], primarily due to their capability to automatically discover intricate patterns
from the raw data using ANNs with a high number of hidden layers [60]. In this
research, we have evaluated a new deep-learning model based on CNNs [11], the
most widely-used deep-learning architecture in the OSA context [19, 60]. Despite
the fact that CNNs were originally inspired to process image data, these architec-
tures have proven to be the most appropriate for time series classification in many
domains [61], including biomedical signal analysis [62–65]. CNNs have a multi-
layer architecture whose main properties are: shared weights, sparse connections,
and pooling operations [58]. The first layers of the CNN architecture identify local
motifs, whereas the deeper layers detect long-term patterns occurring in different
parts of the array [62]. Accordingly, a CNN architecture is applied in Vaquerizo-
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Fig. 3.3 Overview of the proposed CNN-based deep-learning methodology. a Signal segmenta-
tion, b CNN architecture, and c AHI estimation. © 2021 IEEE. Reprinted, with permission, from
Vaquerizo-Villar et al. [11]

Villar et al. [11] to identify oxygen desaturations (simple patterns) and clusters of
desaturations (complex patterns) linked to pediatric OSA and its severity occurring
in different time locations of the SpO2 recording.

3.4.1 Proposed Convolutional Neural Network (CNN) Model

Figure3.3 depicts a visual overview of the CNN-based deep-learning model, which
consists of three stages: (i) signal segmentation; (ii) CNN architecture; and (iii) AHI
estimation.

3.4.1.1 Signal Segmentation

SpO2 recordingswere first decimated to a common sample frequency 1Hz. As shown
in Fig. 3.3a, SpO2 signals were divided into 20-min non-overlapping segments (1200
samples). This segment sizewas chosen as it allows to detect clusters of desaturations
linked to apneic events from pediatric OSA, whose duration is of at least 10-min [66].
Then, each 20-min SpO2 segment used to train the CNN architecture was labelled
with the respiratory event annotations scored by the technicians. In this respect, only
the CHAT dataset was used for training purposes, as the UofC and BUH databases
do not contain files with annotations of time location of apnea and hypopnea events.
Accordingly, the output label for each 20-min segment of the CHAT dataset was
obtained as the total number of apneic events (apnea plus hypopnea) associated to
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3% oxygen desaturations occurring in this timewindow, according to the annotations
provided by sleep technicians [9].

3.4.1.2 CNN Architecture

Figure3.3b shows the architecture of the proposed CNN. The input section of the
CNN consists of the 20-min SpO2 segments. Each segment is processed using λC

convolutional blocks, each one (i = 1, . . . , λC ) consisting of:

I. 1-D convolution. This layer extracts feature maps from the input ai [n] using MC

convolutional filters, so-called kernels [58]:

xli [n] =
LC∑

k=1

wl
k ∗ ai [n − k + 1] + blk, (3.30)

where xli is the lth featuremap (l = 1, . . . , MC ) in the i th convolutional block, LC

is the filter (kernel) size,wl
k and b

l
k are the kernelweights and biases, respectively,

and a0[n] is the input 20-min SpO2 segment.
II. Batch normalization (BN). BN is used to normalize the amplitude of each feature

map xli obtained after the 1-D convolution [58].
III. Rectified Linear Unit (ReLU). ReLU is the most common activation function for

CNNs. It performs a thresholding operation in order to decide which normalized
feature maps are relevant [58]:

f (x) = max(0, x). (3.31)

IV. Pooling.After the activation function, amax-pooling operationwith a pool factor
K = 2, the standard choice for CNNs, is applied to reduce dimensionality, while
retaining the most significant features [58].

V. Dropout. As a final step in each convolutional block, dropout operation was
included to minimize overfitting. It randomly remove connections between net-
work elements with a probability pdrop during the training process [58].

Following the last convolutional block (i = λC ), a flattening layer is applied to
convert the 2-D feature maps into 1-D data [58]. Finally, a linear activation unit
estimates the number of apneic episodes associated to desaturations, ymCNN , which is
the output of the network.

3.4.1.3 AHI Estimation

Once the output ymCNN of the CNN is obtained for each segment m = 1, 2, . . . , N ,
the AHI of each pediatric subject can be computed. First, the mean value of all the
outputs of the CNN of each patient is obtained using the following expression:
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yavg
CNN =

∑N
m=1 y

m
CNN

N
, (3.32)

where N is the number of segments in the SpO2 signal, which is different for each
patient. Then, the final AHI of the patient is calculated using a linear regression
model, as depicted in Fig. 3.3c:

AH I = (β · yavg
CNN ) + ε, (3.33)

where ε and β are the disturbance and interception terms of a linear regression
model, which was adjusted during the optimization stage. This procedure allows to
counteract the underestimation of the AHI due to [67]: (i) not all apneic events result
in an oxygen desaturation, so that the CNN can not detect them; (ii) AHI estimation
is performed using the total recording time, as the total sleep time is unknown using
only the oximetry signal.

3.4.2 CNN Training and Optimization Process

The network training was performed using the following configuration: He-normal
method for weights initialization [68]; adaptive moment estimation (Adam) algo-
rithm with an initial learning rate of 0.001 for the optimization of weights and biases
[69]; Huber loss with a tunable hyperparameter δ as the loss function to minimize
during training [70]; batch size of 100 with a data shuffling strategy to accelerate the
convergence of Adam method [58]; and 500 epochs. To speed up training and obtain
a final stable set of network weights, the learning rate was decreased by a factor
of 2 when the loss in the validation set did not improve for 10 consecutive epochs,
and early stopping was applied after 30 epochs of non-improvement, restoring the
weights that minimized the validation loss [58].

The hyperparameter optimization plays an essential role in the design of a suit-
able deep-learning model [58]. In this research, the following hyperparameters of
the deep-learning model were optimized: the number of CNN blocks (λC ), the num-
ber of filters (MC ) and the filter size (LC ) in each 1-D convolution, the dropout
probability (pdrop), and the delta parameter of the Huber loss function (δ). In order
to reach an optimal solution, these hyperparameters were automatically optimized
using Bayesian optimization with tree-structured Parzen estimator (BO-TPE) [71].
BO-TPE is considered a suitable strategy for optimization purposes, since it forms a
probabilistic model that tries to approximate the objective function iteratively, based
on past evaluation results [72].
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3.5 Statistical Analysis

The following techniques have been employed to interpret and evaluate the results
obtained with the signal processing methods developed in this doctoral thesis: (i) sta-
tistical hypothesis tests; (ii) diagnosis performance metrics; (iii) measures of agree-
ment; and (iv) validation strategies.

3.5.1 Statistical Hypothesis Tests

Hypothesis tests are methods of statistical inference that assess whether it is pos-
sible to infer properties of a population from the results observed in a given data
sample [73]. In this research, statistical hypothesis testing was first employed to
evaluate the normality (Lilliefors test) and homoscedasticity (Leneve test) of the
demographic variables and the features extracted from the SpO2 recordings. As not
all the demographic and oximetric variables passed normality and homoscedasticity
tests, non-parametric tests were applied to search for statistical significant differences
among the different groups under study (negative OSA/positive OSA, OSA-severity
degrees, and validation groups) [73]. The Mann-Whitney U test was used to evalu-
ate statistically significant differences between two groups (negative OSA/positive
OSA and two validation groups), whereas the Kruskal-Wallis test was employed
for comparisons in those cases with more than two groups (OSA-severity degrees
and three validation groups). Depending on the number of subjects, two different
p-values were used in this thesis to search for statistically significant differences. In
Vaquerizo-Villar et al. [12], where the sample size was 298 pediatric subjects, a p-
value < 0.05 was employed to evaluate statistical differences. Conversely, a p-value
< 0.01 was employed in the remaining studies [11, 13, 14], where a larger sample
size was used. In the case of multiple comparisons, the Bonferroni correction was
used.

3.5.2 Diagnostic Performance Metrics

The usefulness of a diagnostic test can be expressed by the use of different statis-
tical measures. The definition of these statistics is based on the number of subjects
correctly and wrongly classified. In the problem of statistical classification, these
measures are derived from the confusion matrix, which compares the class predicted
by our test with the actual class obtained with the reference test. When the confusion
matrix is intended to discern between two population groups (i.e., negative OSA and
positive OSA), a binary confusion matrix is obtained, whose main elements are:

• True positives (TP). Number of subjectswith the disease (positive subjects, accord-
ing to the gold standard) that have been rightly classified by the test under study.
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• False negatives (FN). Number of positive subjects (according to the gold standard)
that have been wrongly classified as healthy or negative by the test under study.

• True negatives (TN). Number of negative subjects (according to the gold standard)
that have been correctly classified by the test under study.

• False positives (FP). Number of negative subjects (according to the gold standard)
that have been wrongly classified as positive by the test under study.

Based on the aforementioned elements [74], the following statistics have been
calculated in this doctoral thesis [11–14]:

• Sensitivity (Se). Proportion of positive subjects correctly classified:

Se = T P

T P + FN
· 100 (3.34)

• Specificity (Sp). Proportion of negative subjects correctly classified:

Sp = T N

T N + FP
· 100 (3.35)

• Accuracy (Acc). Proportion of subjects correctly classified. This definition can
also be extended for confusion matrices with more than two groups. In the case of
binary classification, it is obtained as follows:

Acc = T P + T N

T P + T N + FP + FN
· 100 (3.36)

• Positive predictive value (PPV ). Proportion of subjects rightly classified among
all the subjects that the test under study has assigned to the positive class:

PPV = T P

T P + FP
· 100 (3.37)

• Negative predictive value (NPV ). Proportion of subjects rightly classified among
all the subjects that the test under study has assigned to the negative class:

N PV = T N

T N + FN
· 100 (3.38)

• Positive likelihood ratio (LR+). Proportion of positive subjects rightly classified
with respect to the proportion of negative subjects wrongly classified:

LR+ = Se

1 − Sp
(3.39)

LR+ varies between 1 and +∞, being desired values close to +∞.
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• Negative likelihood ratio (LR−). Proportion of positive subjects wrongly classified
with respect to the proportion of negative subjects right classified:

LR− = 1 − Se

Sp
(3.40)

LR− varies between 0 and 1, being desired values close to 0.
• Area under theReceiver-OperatingCharacteristics (ROC) curve. TheROCcurve is
commonly employed to compare the yield of different diagnostic tests. AROCplot
represents the Se versus 1 − Sp curve, where Se and Sp are obtained varying the
decision threshold of the test under study [75]. Once the plot has been constructed,
the area under the ROC curve (AUC) can be explained as a method to assess the
overall performance of a test [75]. The values ofAUCare constrained to the interval
between 0.5 and 1, as values below 0.5 indicate that the positiveness of the test
must be changed. In this respect, a high discriminative performance is obtained
when the AUC value is close to 1.

3.5.3 Measures of Agreement

The agreement between the gold standard and the simplified diagnostic alternatives
under study was assessed by means of the following measures:

• Cohen’s kappa (kappa). kappa measures the agreement between observed and
predicted classes, i.e.,when considering binary ormulticlass classification,without
considering the agreement that may occurs by chance [76]. It is computed as:

kappa = po − pe
1 − pe

(3.41)

where po is the observed agreement between predicted and observed classes and
pe is the probability of agreement by chance. kappa varies from −1 (total dis-
agreement) to 1 (perfect agreement), with kappa = 0 indicating that the agreement
is due completely to chance [76]. kappa was used to assess the overall agreement
of our signal processing algorithms to establish pediatric OSA and its severity in
Vaquerizo-Villar et al. [11, 12, 14].

• Root mean square error (RMSE). RMSE is an estimate of concordance between
predicted and observed continuous variables, thus being useful to assess the perfor-
mance of regression methods. In this thesis, RMSEwas used to measure the agree-
ment between the AHI predicted by our signal processing algorithms (AH Ipred )
and the actual AHI from PSG (AH IPSG) [11]. Given AH Ipred and AH IPSG ,
RMSE is calculated as:
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RMSE =
√∑N

n=1(AH Ipred(n) − AH IPSG(n))2

N
(3.42)

where N is the number of instances (subjects).
• Intra-class correlation coefficient (ICC). ICC is another index commonly used to
evaluate the performance of a regression algorithm. In contrast to conventional cor-
relation coefficients, ICC considers systematic error when assessing agreement.
Depending on its specific purpose and the statistical model assumed, there exist
several definitions of ICC [77]. In this research [11, 14], the purpose is to measure
agreement between AH Ipred and AH IPSG , without making any ANOVA assump-
tions or using replicated measurements. For this case, the following definition is
recommended [77]:

ICC = MSS − MSE
MSS − (NO − 1) · MSE + NO · (MST − MSE )/N

(3.43)

where NO is the number of observers, N is the number of subjects considered,
MSS is the subjects mean square, MSE is the error mean square, and MST is the
observers mean square. The values of ICC ranges from 0 (no agreement) to 1 (total
agreement) [78].

3.5.4 Validation Strategies

Several validation methodologies have been applied with the aim to maximize the
generalization of the results obtained during the compendium of publications. For
the purpose of minimizing potential overfitting, a dataset must be divided in as many
subsets as the number of degrees of freedom (number of optimization steps) needed to
be fitted for a specific problem [54]. In this respect, a hold-out strategy (training-test,
training-validation-test, etc.) was employed in all the articles of this compendium to
properly validate their results [11–14]. When the sample size was not large enough
to handle all the optimizations required, two additional validation techniques were
used: stratified K-fold cross-validation and bootstrapping.

Hold-out validationThenaturalway to correctly validate the results of a givenmodel
is to use a different set to optimize each stage of the proposed methodology [54]. In
the most simple case, a training group is employed to fit the model parameters and an
independent test group, also called hold-out set, is used to estimate its performance
[54, 55]. As previously mentioned, the dataset should be divided into more than
two sets when model fitting requires more than one optimization step [54]. In this
respect, a common strategy consists of using three subsets: training, used to adjust
model parameters; validation, used to adjust model hyperparameters; and test, used
for independent diagnostic performance assessment. When it is not possible to use
a different set to optimize each stage because of the available amount of data, hold-
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out must be combined with additional validation strategies, such as K-fold cross-
validation and bootstrapping. In this research, hold-out was used with two subsets
in Vaquerizo-Villar et al. [13, 14], and with three subsets in Vaquerizo-Villar et al.
[11, 12].

StratifiedK-fold cross-validation StratifiedK-fold cross-validation is another com-
mon validation approach. This technique randomly divides the data into K folds,
keeping the proportion of instances pertaining to the groups under study. Then, K-1
folds are employed for model fitting (training), whereas the remaining fold is used
for model evaluation (test). This procedure is repeated K times, so that each sub-
set was considered once as the test group [79]. Once the model has been tested
using all the instances, diagnostic ability statistics can be averaged across the dif-
ferent folds. This may lead to more generalizable models, at the cost of increasing
the computational cost [54]. This validation approach was used for hyperparame-
ters optimization in Vaquerizo-Villar et al. [12–14], and for diagnostic performance
assessment in Vaquerizo-Villar et al. [13].

BootstrappingA bootstrap procedure can also be used for validation purposes when
the data set is small [54]. As stated in Sect. 3.3.2, FCBF was applied along with a
bootstrap procedure to find a more generalizable optimum set of features [49]. Given
a feature set x of S instances (subjects), x = x1, x2, . . . , xS , xb(b = 1, 2, . . . , B) new
sets (bootstrap replicates) of size S are built by resampling with replacement from
the initial set, following a uniform distribution. In this doctoral thesis [12–14], the
FCBF algorithmwas applied to each of these B = 1000 bootstrap samples, obtaining
optimum subsets composed of those features selected in more than 500 replicates
(see Sect. 3.3.2).
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Chapter 4
Results

This chapter presents the main outcomes obtained in this doctoral thesis. These
results are organized according to the statements that compose the global hypothesis
of Sect. 2.1, thus having almost a directly connection with the papers included in the
doctoral thesis.

4.1 Application of Novel Feature-Extraction Algorithms

As explained in Sect. 2.3, three novel feature-extraction algorithms were applied
in this research to obtain features able to provide additional information from the
oximetry signal linked to apneic events due to pediatric OSA: bispectrum, wavelet
analysis, and DFA.

4.1.1 Bispectral Analysis

The complementarity of bispectrum to conventional approaches in the screening of
childhood OSA using SpO2 recordings was evaluated in Vaquerizo-Villar et al. [1].
For this purpose, up to 22 features were obtained from a database of 298 pediatric
patients (i.e., the initial version of the UofC database): ODI3, 3 anthropometric
variables, 9 features from the PSD, and 9 bispectral parameters. Then, the FCBF
algorithm was applied to select an optimum subset of OSA-related features. Finally,
aMLP neural networkwas trainedwith the selected variables to detect pediatric OSA
severity degrees. According to this feature-engineering methodology, the database
was split into three sets: (i) feature optimization set (74 subjects, 25%), employed to
optimize the feature extraction and selection stages; (ii) training set (149 subjects,
50%), employed to optimize the hyperparameters of the MLP classifier as well as to

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Vaquerizo Villar, Automated Analysis of the Oximetry Signal to Simplify
the Diagnosis of Pediatric Sleep Apnea, Springer Theses,
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Fig. 4.1 Averaged amplitude in absolute value of the bispectrum for the three OSA severity groups.
a negative OSA, b moderate OSA, and c severe OSA. Reprinted from Vaquerizo-Villar et al. [1]
©(2018) with permission from Elsevier

train the MLPmodel; (iii) test set (75 subjects, 25%), used to examine the diagnostic
ability of the proposed methodology in an independent set.

Figure4.1 shows the averaged amplitude in absolute value of the bispectrum in the
feature optimization set for the following OSA severity groups: negative OSA (AHI
<5e/h), moderate OSA (5 ≤ AHI < 10e/h), and severe OSA (AHI ≥ 10e/h). As
shown, a higher bispectral amplitude is appreciated in the frequency range 0–0.03Hz
as the OSA severity increases. Table4.1 shows the median and interquartile range
of the extracted features in the feature optimization set for negative OSA, moderate
OSA, and severe OSA groups, along with their corresponding p-values, obtained by
means of the Kruskal-Wallis test. ODI3, 6 out of 9 PSD-derived parameters (M1BI1,
M2BI1, MABI1, mABI1, SEBI1, and MbBI1), and 4 out of 9 bispectrum-derived
features (M1BI SP , H1BI SP , H2BI SP , and H3BI SP ) showed statistically significant
differences (p-value < 0.05 after Bonferroni correction). Specifically, higher values
were obtained in these variables as pediatric OSA severity increased.

As the goal is to assess the complementarity of bispectrum with respect to con-
ventional approaches, two different feature sets were composed:

• setnobis: composed of all but bispectrum features (ODI3, anthropometric variables,
and PSD-derived features).

• setbis: consisting of all the extracted features.

FCBF was applied to these two feature sets (setnobis and setbis) in the feature
optimization set, obtaining two optimum feature subsets (subsetnobis and subsetbis),
each one composed of those features selected in at least 50% of the 1000 bootstrap
replicates (500 times) :

• subsetnobis was composed of ODI3, the three anthropometric features (Age, Sex,
and BMI), and five features from the PSD (M1BI1, M2BI1, MABI1, RPBI1, and
MbBI1).

• subsetbis was composed of ODI3, two anthropometric features (Age, and Sex),
five PSD-derived features (M1BI1, M2BI1, MABI1, RPBI1, and MbBI1), and two
bispectral features (M1BI SP , and meanPaBI SP ).
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Table 4.1 Feature values for the OSA severity groups (median [interquartile range]) in the feature
optimization set

Features Negative OSA Moderate OSA Severe OSA p-value*

Age 7.0 [4.8,11.0] 4.0 [2.0,8.0] 6.0 [3.0,9.0] 0.24

Sex – – – 0.52

BMI(101) 1.82 [1.68,2.26] 1.9 [1.62,2.30] 1.77 [1.54,2.23] 0.76

ODI3 2.08 [0.77,3.93] 5.82 [3.79,9.28] 8.72 [7.23,19.65] <0.05

M1BI1 2.95 [1.93,4.23] 5.67 [5.10,8.58] 14.73 [7.51,28.45] <0.05

M2BI1 (101) 0.18 [0.05,0.32] 1.11 [0.56,1.54] 4.07 [1.34,14.39] <0.05

M3BI1 0.48 [0.29,0.75] 0.68 [0.33,1.04] 0.54 [0.32,0.83] 0.54

M4BI1 2.10 [1.79,2.73] 2.33 [1.87,3.06] 2.20 [1.60,2.70] 0.65

RPBI1 0.31 [0.25,0.35] 0.24 [0.21,0.34] 0.34 [0.30,0.39] 0.05

MABI1 0.60 [0.33,0.87] 1.27 [1.00,1.54] 2.92 [1.68,4.59] <0.05

mABI1 1.21 [0.84,2.12] 2.30 [1.91,2.88] 3.46 [2.56,8.59] <0.05

SEBI1 4.33 [4.26,4.37] 4.30 [4.24,4.32] 4.20 [4.12,4.30] <0.05

MbBI1 0.17 [0.11,0.20] 0.28 [0.23,0.32] 0.42 [0.25,0.56] <0.05

M1BISP (10−1) 0.05 [0.02,0.21] 0.23 [0.09,0.63] 0.49 [0.17,1.22] <0.05

H1BISP (108) −5.78 [−5.90,−5.57] −5.59 [−5.73,−5.45] −5.40 [−5.58,−5.28] <0.05

H2BISP (105) −1.38 [−1.41,−1.33] −1.32 [−1.36,−1.29] −1.28 [−1.32, −1.25] <0.05

H3BISP (108) −2.96 [−3.02,−2.86] −2.87 [−2.93,−2.79] −2.77 [−2.86,−2.71] <0.05

BE1BISP 8.51 [7.88,9.43] 8.17 [7.71,8.71] 8.60 [8.11,8.79] 0.34

BE2BISP 6.08 [4.88,6.62] 5.26 [4.43,5.58] 6.70 [5.68,7.07] 0.13

PEBISP 2.14 [2.08,2.15] 2.12 [2.05,2.14] 2.11 [2.08,2.13] 0.64

meanPaBISP
(10−2)

−1.60 [−3.19,0.81] 0.89 [−0.47,2.21] 0.92 [−1.96,3.20] 0.29

varPaBISP 0.38 [0.26,0.43] 0.34 [0.22,0.37] 0.33 [0.22,0.44] 0.87

Reprinted from Vaquerizo-Villar et al. [1] ©(2018) with permission from Elsevier
*p-values obtained from the Kruskal-Wallis test after Bonferroni correction, OSA = obstructive
sleep apnea

Taking as input these optimum subsets of features (subsetnobis and subsetbis),
two MLP networks were trained and optimized using the training set (MLPnobis
and MLPbis). Network hyperparameters, the regularization parameter (α) and the
number of hidden units (NH ), were varied from α = 0 up to α = 5 (step of 1) and
from NH = 2 up to NH = 50 (step of 1), respectively. The maximum value of kappa,
obtained using ten-fold cross-validation, determined the optimum values of α and
NH in each case. Thereby, α = 1 and NH = 3 were chosen for MLPnobis and α = 2
and NH = 4 were chosen for MLPbis, as the pairs that reached the highest kappa.
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Fig. 4.2 Confusion matrices of MLPnobis and MLPbis in the test set. 1: negative OSA, 2: moderate
OSA; 3: severe OSA

Table 4.2 Diagnostic ability of theMLPnobis andMLPbis models in the test set for theAHI cutoffs=5
e/h and 10 e/h

AHI
cutoff

Se Sp PPV NPV LR+ LR− Acc kappa

MLPnobis 5 e/h 61.8 90.2 84.0 74.0 6.33 0.42 77.3 0.45

10 e/h 45.0 94.5 75.0 82.5 8.25 0.58 81.3

MLPbis 5 e/h 61.8 97.6 95.5 75.5 25.32 0.39 81.3 0.56

10 e/h 60.0 94.5 80.0 86.7 11.00 0.42 85.3

Reprinted from Vaquerizo-Villar et al. [1] ©(2018) with permission from Elsevier
AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive
value (%), NPV = negative predictive value (%), LR+ = positive likelihood ratio, LR− = negative
likelihood ratio, Acc = accuracy (%), kappa=Cohen’s kappa index

Then, MLPnobis and MLPbis, configured with the optimized hyperparameters, were
fitted using the entire training set.

Figure4.2 displays the confusion matrices of MLPnobis and MLPbis, evaluated in
the test set. These matrices show the OSA severity group predicted by both MLPnobis
and MLPbis versus the actual OSA severity group from PSG. UsingMLPnobis, 69.3%
of the test patients (52/75) were correctly assigned to their actual group of OSA
severity (sum of the main diagonal elements of the confusion matrix). Conversely,
MLPbis correctly assigned 76.0% (57/75) of the children to their OSA severity group.
Table4.2 shows diagnostic ability statistics of these models for the AHI severity
cutoffs of 5 and 10 e/h. Notice that MLPbis outperformed MLPnobis in terms of Se,
Sp, PPV, NPV, LR+, LR−, Acc, and kappa for both cutoffs.
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Table 4.3 DWT-derived feature values for each group (median [interquartile range]) in the opti-
mization set

Features Negative OSA Positive OSA p-value

M1D9 3.04 [2.26, 3.92] 5.36 [3.77, 7.70] <0.01

M2D9 3.78 [3.23, 4.63] 5.73 [4.30, 7.57] <0.01

M3D9 1.31 [1.20, 1.44] 1.19 [1.06, 1.32] <0.01

M4D9 (102) 3.58 [1.03, 7.69] 0.06 [0.04, 2.69] <0.01

MaxD9 (101) 1.23 [1.04, 1.55] 1.96 [1.42, 2.62] <0.01

EnD9 (103) 0.54 [0.37, 0.89] 1.54 [0.78, 2.96] <0.01

WE (10−4) 1.83 [1.18, 2.86] 4.27 [2.52, 9.41] <0.01

This table has been derived from Vaquerizo-Villar et al. [2]
OSA = obstructive sleep apnea

4.1.2 Wavelet Analysis

In Vaquerizo-Villar et al. [2], the utility of wavelet analysis to provide discriminative
features from overnight oximetry associated to pediatric OSA was examined. To
this effect, seven DWT-derived features were extracted for each oximetry signal of
a database of 981 children with suspected OSA (i.e. the complete UofC database).
In order to assess complimentarity with conventional approaches, ODI3, statistical
moments in the time domain, and PSD features were also extracted to obtain a wide
initial feature set. FCBF was then employed to select an optimum feature subset.
Finally, LR, SVM, and MLP binary classifiers were fitted with the optimum feature
subset to detect moderate-to-severe pediatric OSA (AHI ≥ 5 e/h). In order to assure
a proper validation of the proposed methodology, the database was divided into two
sets: optimization set (589 subjects, 60%) and cross-validation set (392 subjects,
40%). The optimization group was used to: (i) perform descriptive analysis of the
DWT-derived parameters; (ii) obtain an optimum subset of features with FCBF;
(iii) optimize the hyperparameters of the SVM and MLP classifiers. Conversely,
the cross-validation group was employed to assess the diagnostic performances of
the extracted features and the LR, SVM, and MLP classifiers using stratified 5-fold
cross-validation.

Figure4.3 shows the histogram of the D9 coefficients for the negative OSA (AHI
< 5 e/h) and positive OSA (AHI ≥ 5 e/h) groups in the optimization set. Accord-
ing to this figure, D9 coefficients are more concentrated near zero in the negative
OSA group, whereas in the positive OSA group the coefficients are more disperse.
Table4.3 shows the median and interquartile range of the DWT-derived features in
the optimization set for negative OSA and positive OSA groups, along with their cor-
responding p-values, computed according to the Mann-Whitney U test. Noteworthy
is the fact that all DWT-derived features showed statistically significant differences
(p-value < 0.01). The values of M1D9 , M2D9 , MaxD9 , EnD9 , and WE were signif-
icantly higher in the positive OSA group, whereas M3D9 and M4D9 showed higher
values in the negative OSA group.
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Fig. 4.3 Histogram of the
D9 coefficients for each
group in the optimization set.
This figure has been derived
from Vaquerizo-Villar
et al. [2]

Taking as input all the extracted features (ODI3, statistical moments, PSD,
and DWT features), FCBF was applied to 1000 bootstrap replicates derived from
the optimization set. In this way, ODI3, one statistical moment (M2t ), three fea-
tures from PSD (M2BI1, M3BI1, and MaxBI1), and three DWT-derived features
(M3D9 , EnD9 , andWE), which were selected more than 500 times, formed the opti-
mum feature subset. LR, SVM, and MLP binary classifiers were configured using
this feature subset. Regarding SVM, we conducted trials varying the regularization
parameter (C) from C = 10−5 to C = 105 (step of 1 in base-10 logarithmic scale),
obtaining C = 103 as the optimum value for which the accuracy was higher in the
optimization set. With respect to MLP, the values of α and NH were from 0 up to 10
(step of 1) and from 2 up to 50 (step of 1), respectively, obtaining α = 1 and NH = 5
as the optimum NH − α pair that maximized the accuracy in the optimization set.

Table4.4 displays the diagnostic ability of all the extracted features in the cross-
validation set. Notice that 5 out of 7 DWT-derived features reached accuracies near
80%, being MaxD9 the DWT-derived feature that achieved the highest performance
(81.7±5.6% Acc, with 75.4±7.1% Se and 85.4±6.8% Sp). In this respect, MaxD9

showed a similar Acc to ODI3 (81.9±7.2%Acc, with 78.1±7.3%Se and 84.2±8.1%
Sp) and outperformed the remaining features. Table4.5 shows the diagnostic perfor-
mance metrics of LR, SVM, and MLP models, evaluated in the cross-validation
set. Notice that these classifiers showed a high diagnostic ability for the diagnosis
of moderate-to-severe OSA (AHI ≥ 5e/h), outperforming all the extracted features
individually. Specifically, the SVM binary classifier reached the highest diagnostic
performance (84.0±5.2% Acc, with 71.9±4.4% Se and 91.1±7.2% Sp).
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Table 4.4 Diagnostic ability of all the extracted features in the cross-validation set

Feature Se Sp PPV NPV LR+ LR− Acc

ODI3 78.1±7.3 84.2±8.1 75.2±10.2 86.5±5.0 6.1±2.9 0.27±0.11 81.9±7.2

M1T 62.3±6.8 65.0±2.6 51.4±2.1 74.6±3.6 1.8±0.2 0.58±0.10 64.0±2.3

M2T 72.6±13.6 67.1±6.6 56.7±2.8 81.2±6.6 2.2±0.3 0.40±0.17 69.2±3.1

M3T 65.0±8.5 61.4±6.8 50.1±2.8 74.9±2.8 1.7±0.2 0.57±0.09 62.7±2.7

M4T 60.9±15.6 49.9±8.4 41.6±5.0 69.0±7.5 1.2±0.3 0.78±0.26 54.0±5.2

M1BI1 75.3±7.9 82.5±7.4 73.0±8.5 85.1±3.5 5.3±3.1 0.30±0.08 79.9±3.8

M2BI1 69.8±7.3 83.4±5.2 71.8±6.2 82.5±3.0 4.5±1.4 0.36±0.08 78.3±3.2

M3BI1 47.2±11.7 58.1±11.9 40.4±4.1 65.0±2.8 1.2±0.2 0.91±0.12 54.1±4.5

M4BI1 63.6±8.3 47.1±6.2 41.7±4.2 68.7±6.1 1.2±0.2 0.79±0.23 53.3±5.0

MaxBI1 78.1±8.8 75.2±9.9 66.2±6.9 85.6±3.6 3.5±1.1 0.29±0.09 76.3±4.3

SEBI1 48.6±14.4 61.8±11.8 43.0±4.8 67.3±3.3 1.3±0.3 0.82±0.12 56.9±4.2

M1D9 73.4±9.1 82.6±7.8 72.2±10.2 84.0±5.1 5.2±2.7 0.32±0.12 79.1±6.2

M2D9 74.7±6.1 81.7±6.5 71.5±6.9 84.6±3.0 4.6±1.7 0.31±0.07 79.1±3.3

M3D9 58.3±9.2 63.4±6.5 48.7±3.1 72.1±3.3 1.6±0.2 0.66±0.10 61.5±3.2

M4D9 71.2±6.7 64.6±5.7 54.6±3.3 79.2±4.0 2.0±0.3 0.45±0.10 67.1±3.5

MaxD9 75.4±7.1 85.4±6.8 76.0±9.0 85.4±4.3 6.2±2.8 0.29±0.10 81.7±5.6

EnD9 78.8±4.4 81.7±5.2 72.2±5.5 86.7±2.4 4.6±1.4 0.26±0.05 80.6±3.4

WE 76.0±8.2 78.4±5.6 68.0±3.8 84.9±3.5 3.6±0.7 0.30±0.09 77.6±2.5

This table has been derived from Vaquerizo-Villar et al. [2]
Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive value (%), NPV = negative
predictive value (%), LR+ = positive likelihood ratio, LR− = negative likelihood ratio, Acc =
accuracy (%)

Table 4.5 Diagnostic ability of the LR, SVM, and MLP classifiers in the cross-validation set

Feature Se Sp PPV NPV LR+ LR− Acc

LR 72.6±4.7 90.2±6.2 82.3±8.8 84.7±2.8 9.8±5.5 0.31±0.06 83.7±4.9

SVM 71.9±4.4 91.1±7.2 83.8±10.8 84.5±2.6 14.6±12.9 0.31±0.06 84.0±5.2

MLP 73.3±6.6 89.0±6.9 80.7±9.2 84.9±3.3 9.0±5.8 0.30±0.08 83.2±5.2

This table has been derived from Vaquerizo-Villar et al. [2]
Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive value (%), NPV = negative
predictive value (%), LR+ = positive likelihood ratio, LR− = negative likelihood ratio, Acc =
accuracy (%)

4.1.3 Detrended Fluctuation Analysis

The usefulness of DFA-derived features to supply further information from the
oximetry signal linked to pediatric OSA was explored in Vaquerizo-Villar et al. [3],
employing a conventional three-stage feature-engineering methodology. ODI3 and
six DFA-derived parameters were first extracted from the SpO2 recording of 981
children (i.e., the complete UofC database). A reduced subset of relevant and non-
redundant features was then obtained using the FCBF algorithm. Finally, a MLP
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Fig. 4.4 Averaged DFA
profile by OSA severity
group in the training dataset.
©2018 Institute of Physics
and Engineering in
Medicine. Reproduced by
permission of IOP
Publishing from
Vaquerizo-Villar et al. [3].
All rights reserved

regression neural network was trained and optimized using this feature subset to
estimate theAHI andhencepediatricOSAseverity degrees.According to this feature-
engineering methodology, the database was split into two sets: (i) training set (589
subjects, 60%), employed for optimization purposes; and (ii) test set (392 subjects,
40%), used to evaluate the diagnostic performance of the developed approach.

Figure4.4 displays the averaged DFA profile in the training set for the four OSA
severity groups: no OSA (AHI <1 e/h), mild OSA (1 ≤ AHI < 5 e/h), moderate
OSA (5 ≤ AHI < 10 e/h), and severe OSA (AHI ≥ 10 e/h). In this figure, higher
fluctuations are observed as the OSA severity increases. In addition, the two scaling
regions (region 1 and region 2) are observed for the four OSA severity groups, as
mentioned in Sect. 3.3.1.2. Table4.6 shows the median and interquartile range values
by OSA severity group of each extracted feature, as well as the p-value, obtained
by means of the Kruskal-Wallis test. ODI3 and 4 out of 6 DFA-derived parameters
(slope1, slope12, F(k12), and F(kx)) showed statistically significant differences (p-
value < 0.01 after Bonferroni correction). Specifically, these features experienced
an increasing trend as OSA severity increases.

FCBF was applied to 1000 bootstrap replicates obtained from all the extracted
features (ODI3 and DFA-derived parameters) in the training group. The optimum
subset was composed of ODI3 and slope1, as these features were selected more than
500 times. Using this feature subset, the MLP network was trained and optimized.
Network hyper-parameters, α and NH , were varied from α = 0 up to α = 10 (step
of 1) and from NH = 2 up to NH = 30 (step of 1), obtaining α = 1 and NH = 5 as
the optimum NH − α pair that maximized kappa in the training set.

Fig. 4.5 displays the Bland-Altman graphs of ODI3 and the AHI estimated by the
MLPnetwork (AHIMLP-DFA) compared toAHIPSG. ICC is also shown. The confidence
interval was slightly lower in ODI3 than in AHIMLP-DFA plot (23.3 versus 24.3).
However, AHIMLP-DFA reached a lower absolute mean error than ODI3 (0.75 vs
−1.65), as well as a higher ICC (0.891 versus 0.866). Figure4.6 shows the confusion
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Table 4.6 Feature values for the OSA severity groups (median [interquartile range]) in the training
set. ©2018 Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP
Publishing from Vaquerizo-Villar et al. [3]. All rights reserved.

Features No OSA Mild OSA Moderate
OSA

Severe OSA p-value*

ODI3 1.04
[0.52,2.47]

2.03
[0.93,3.89]

3.69
[1.94,7.23]

12.35
[6.65,24.49]

<0.01

slope1 1.63
[1.58,1.68]

1.64
[1.58,1.70]

1.67
[1.60,1.71]

1.74
[1.66,1.79]

<0.01

slope2 0.96
[0.90,1.05]

0.95
[0.87,1.03]

0.92
[0.85,1.02]

0.94
[0.88,1.01]

0.18

slope12 1.66
[1.53,1.82]

1.69
[1.55,1.87]

1.77
[1.60,1.94]

1.82
[1.68,1.95]

<0.01

k12 1.33
[1.23,1.42]

1.36
[1.26,1.44]

1.38
[1.29,1.45]

1.34
[1.23,1.42]

0.04

F(k12) 0.01
[-0.18,0.18]

0.12
[-0.12,0.26]

0.22
[0.04,0.38]

0.42
[0.16,0.61]

<0.01

F(kx ) -0.05
[-0.13,0.04]

0.02
[-0.07,0.11]

0.10
[0.00,0.20]

0.31
[0.18,0.52]

<0.01

*p-values obtained from the Kruskal-Wallis test after Bonferroni correction, OSA = obstructive
sleep apnea

matrices of ODI3 and AHIMLP-DFA in the test group. Using ODI3, 55.4% of the
children (217/392) were rightly asigned to their corresponding OSA severity group,
with a kappa of 0.355. By contrast, 60.0%of subjects (235/392)were rightly assigned
by AHIMLP-DFA, with a kappa of 0.422. The diagnostic performance metrics of ODI3
and AHIMLP-DFA for the AHI-based cutoffs of 1, 5, and 10 e/h were derived from
these matrices:

• AHI cutoff = 1 e/h. ODI3 obtained 77.0%Acc (83.5% Se and 50.6% Sp) and 0.811
AUC, whereas AHIMLP-DFA obtained 82.7% Acc (97.1% Se and 23.3% Sp) and
0.813 AUC.

• AHI cutoff = 1 e/h. ODI3 obtained 82.7%Acc (65.1% Se and 93.1% Sp) and 0.883
AUC, whereas AHIMLP-DFA obtained 81.9% Acc (78.8% Se and 83.7% Sp) and
0.888 AUC.

• AHI cutoff = 10 e/h. ODI3 obtained 89.5% Acc (65.1% Se and 96.1% Sp) and
0.921 AUC, whereas AHIMLP-DFA obtained 91.1% Acc (77.1% Se and 94.8% Sp)
and 0.930 AUC.

Notice thatAHIMLP-DFA outperformedODI3 in termsof kappa,Acc for the severity
cutoffs of 1 and 10 e/h, and AUC for the three cutoffs. In order to provide a more
comprehensive comparison betweenODI3 andAHIMLP-DFA, ICC, kappa, overall Acc
(four classes), and AUC values were obtained from 1000 bootstrap replicates and the
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Fig. 4.5 Bland-Altman plots comparing a ODI3 and b AHIMLP-DFA with AHIPSG in the test
set. ©2018 Institute of Physics and Engineering in Medicine. Reproduced by permission of IOP
Publishing from Vaquerizo-Villar et al. [3]. All rights reserved

Fig. 4.6 Confusion matrices of ODI3 and AHIMLP-DFA in the test set. 1: no OSA; 2: mild OSA; 3:
moderate OSA; 4: severe OSA

p-value betweenODI3 andAHIMLP-DFA was calculated for each of these performance
metrics by means of the Mann-Whitney U test. In this way, statistically significant
higher values (p-value < 0.01) were obtained using AHIMLP-DFA in the case of ICC,
kappa, overall Acc, and AUC for the AHI-based cutoffs of 5 e/h and 10 e/h.
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4.2 Application of Deep-Learning Techniques

Thepreviouslymentioned results (seeSects. 4.1.1, 4.1.2, and 4.1.3)were obtained fol-
lowing a feature-engineering methodology. As stated in Sect. 3.4, this approach
may lead to the omission of OSA-related information from the oximetry signal.
In Vaquerizo-Villar et al. [4], we evaluate a novel methodology based on deep learn-
ing to automatically find the relevant information of the oximetry signal linked to
pediatric OSA. This methodology consisted of two steps. First, a CNN architecture
was trained to estimate the number of apneic events in each 20-min non-overlapping
SpO2 segment. Then, the outputs of the CNN for each segment are aggregated to
estimate the AHI for each subject using a database of 3196 SpO2 recordings of chil-
dren from three independent datasets: the CHAT dataset (see Sect. 3.1.1), the UofC
dataset (see Sect. 3.1.2), and the BUH dataset (see Sect. 3.1.3).

In order to assure a proper generalization of the proposed approach, the whole
population under study was divided into three sets: (i) training set, used to train
the CNN architecture; (ii) validation set, used for hyperparameter optimization; (iii)
test set, used to assess the diagnostic performance of the deep-learning model. The
training group was composed of 859 SpO2 recordings from the CHAT dataset, as the
UofC and BUH databases do not contain respiratory events annotations, which are
needed in the CNN architecture to compose the output labels of each 20-min non-
overlapping segment from the training set (see Sect. 3.4.1). The remaining subjects
from the CHAT dataset, as well as the subjects of the UofC and BUH sets, were
randomly divided into a validation set (1402 subjects, 60%) and a test set (40%),
composed of 312 children from the CHAT dataset, 392 children from the UofC
dataset, and 231 children from the BUH dataset.

Figure4.7 shows the results of the BO-TPE algorithm for the hyper-parameters
of the CNN architecture: the number of filters (MC ) and the filter size (LC ) in each
1-D convolution, the number of CNN blocks (λC ), the delta parameter of the Huber
loss function (δ), and the dropout probability (pdrop). For each hyperparameter, the
values of kappa are displayed in a boxplot. It can be observed that there is not a
high confidence (interquartile range) of kappa on the values of the hyperparameter.
Slightly higher overall kappa values are achieved with an increasing tendency of MC

and a decreasing trend of δ, as well as when λC = 6 and LC = 5, whereas the value
of pdrop had little effect on kappa. In this way, MC = 64, LC = 5, λC = 6, δ = 1.5,
and pdrop = 0.1 were obtained as the optimum values that maximized kappa in the
validation set.

Figure4.8 shows the scatter plots of the AHI estimated by the CNN model
(AHICNN) compared to AHIPSG in the CHAT, UofC, and BUH test sets. ICC and
RMSE between AHICNN and AHIPSG are also shown. It can be observed that points
of the scatter plot are more concentrated near the diagonal line in the CHAT test set,
which results in a higher agreement (ICC = 0.960 and RMSE = 2.89) than in the
UofC (ICC = 0.917 and RMSE = 5.45) and BUH test sets (ICC=0.583 and RMSE
= 10.44). Figure4.9 displays the error distribution plots of AHICNN in the three test
sets. A low mean error was obtained in the three test datasets. However, 95% con-
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Fig. 4.7 Results of the hyperparameter optimization in the validation set. ©2021 IEEE. Reprinted,
with permission, from Vaquerizo-Villar et al. [4]

Fig. 4.8 Scatter plot comparingAHICNN withAHIPSG in theCHAT,UofC, andBUH test databases.
©2021 IEEE. Reprinted, with permission, from Vaquerizo-Villar et al. [4]

fidence interval of AHICNN was lower in the CHAT test set (12.80 e/h) than in the
UofC (21.69 e/h) and BUH (28.84 e/h) test sets. In this respect, some outliers were
observed in the UofC and BUH sets, as indicated by the maximum error.

Figure4.10 shows the confusion matrices that face the pediatric OSA severity
degrees established by the AHIPSG and the corresponding assignation using AHICNN
in the three test sets. Notice that a higher four-class overall accuracy was reached by
AHICNN in the CHAT test set (72.8%, 227/312) than in the UofC (60.2%, 236/392)
and BUH test sets (61.0%, 141/231), as anticipated by the scatter and error distri-
bution plots. Table4.7 shows the diagnostic performance statistics of AHICNN for
each AHI threshold that establishes the pediatric OSA severity degrees (1 e/h, 5 e/h,
and 10 e/h), which are derived from the confusion matrix. The value of kappa was
remarkably higher in the CHAT test set (0.515) than in the UofC (0.422) and BUH
test sets (0.423). A higher diagnostic ability is also observed in the CHAT test set for
the AHI-based cutoffs of 5 and 10 e/h.
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Fig. 4.9 Error distribution plot of AHICNN in the CHAT, UofC, and BUH test databases. ©2021
IEEE. Reprinted, with permission, from Vaquerizo-Villar et al. [4]

Fig. 4.10 Confusion matrices of AHICNN in the CHAT, UofC, and BUH test datasets. 1: no OSA;
2: mild OSA; 3: moderate OSA; 4: severe OSA. ©2021 IEEE. Reprinted, with permission, from
Vaquerizo-Villar et al. [4]

In order to provide a thorough comparison between our proposal and conventional
approaches,wehave compared the results ofAHICNN withODI3, a clinical parameter,
as well as the AHI obtained with a classical feature-engineering approach based on
MLP (AHIMLP) [4]. Table4.8 shows the comparison of the performance of AHICNN
withODI3 andAHIMLP in the three test sets. Notice that AHICNN outperformedODI3
and AHIMLP in terms of overall accuracy, kappa, RMSE, and ICC in the three test
sets.

In this chapter, the most relevant results obtained during this doctoral thesis have
been presented. In the next Chapter (see Sect. 5), these results will be discussed, as
well as compared with state-of-the-art studies.
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Table 4.7 Diagnostic ability of AHICNN for the AHI cutoffs = 1 e/h, 5 e/h, and 10 e/h in the CHAT,
UofC, and BUH test databases

Test set AHI
cutoff

Se Sp PPV NPV LR+ LR− Acc Kappa

CHAT 1 e/h 71.2 81.8 72.4 81.0 3.92 0.35 77.6 0.515

5 e/h 83.7 100 100 97.0 N.D. 0.16 97.4

10 e/h 83.9 99.3 92.9 98.2 117.84 0.16 97.8

UofC 1 e/h 90.8 36.4 85.4 49.1 1.43 0.25 80.1 0.422

5 e/h 76.0 88.6 79.8 86.2 6.68 0.27 83.9

10 e/h 79.5 95.8 83.5 94.6 18.90 0.21 92.3

BUH 1 e/h 88.8 53.2 83.8 63.5 1.90 0.21 79.2 0.423

5 e/h 61.1 93.7 81.5 84.2 9.72 0.42 83.5

10 e/h 65.0 96.9 81.3 93.0 20.69 0.36 91.3

AHI = apnea-hypopnea index, Se = sensitivity (%), Sp = specificity (%), PPV = positive predictive
value (%), NPV = negative predictive value (%), LR+ = positive likelihood ratio, LR− = negative
likelihood ratio, Acc = accuracy (%), kappa = Cohen’s kappa index, N.D. = not defined
©2021 IEEE. Reprinted, with permission, from Vaquerizo-Villar et al. [4]

Table 4.8 Diagnostic performance of AHICNN vs. ODI3 and AHIMLP in the CHAT, UofC, and
BUH test databases. ©2021 IEEE. Reprinted, with permission, from Vaquerizo-Villar et al. [4]

Test set Method ICC RMSE 4-class kappa 4-class Acc

CHAT AHICNN 0.960 2.89 0.515 72.8

ODI3 0.871 4.63 0.417 65.1

AHIMLP 0.832 5.51 0.377 63.3

UofC AHICNN 0.917 5.45 0.422 60.2

ODI3 0.861 6.21 0.372 56.6

AHIMLP 0.890 6.02 0.381 56.9

BUH AHICNN 0.583 10.44 0.423 61.0

ODI3 0.520 10.64 0.369 57.6

AHIMLP 0.500 11.05 0.306 52.4

ICC = intra-class correlation coefficient, RMSE = root mean squared error, kappa = Cohen’s kappa
index, Acc = accuracy (%)
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Chapter 5
Discussion

This doctoral thesis addresses the simplification of pediatric OSA diagnosis. For
this purpose, novel signal processing algorithms have been applied to improve the
diagnostic ability of the oximetry signal. In this regard, feature-engineering and
deep-learning methodologies have been approached. On the one hand, we have gone
further in SpO2 characterization in the time and frequency domain using bispectrum,
wavelet, and DFA, obtaining new features that provide additional information from
the oximetry signal related to pediatric OSA and its severity. On the other hand, a
deep-learning model based on CNNs was able to automatically learn discriminative
features from raw SpO2 data linked to apneic events, outperforming conventional
approaches. In this chapter, the main outcomes obtained during this thesis are dis-
cussed.Moreover, a comparisonof the proposedmethodologies in termsof diagnostic
performance is provided, as well as a comparisonwith state-of-the-art works. Finally,
the main limitations of this thesis are stated.

5.1 Novel Features to Provide Relevant
and Complementary Information from Oximetry
Recordings

As aforementioned, bispectrum [1], wavelet analysis [2], and DFA [3] were applied
to identify features able to provide additional information regarding OSA-related
changes in the oximetry dynamics.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Vaquerizo Villar, Automated Analysis of the Oximetry Signal to Simplify
the Diagnosis of Pediatric Sleep Apnea, Springer Theses,
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5.1.1 Bispectral Analysis

Spectral analysis has been widely used to analyze SpO2 in both adult and pediatric
OSA contexts [4–8], as it reflects the changes in the SpO2 spectrum elicited by the
recurrence of respiratory events while sleeping. This analysis has been commonly
accomplished using PSD [5–8]. However, PSD cannot characterize changes of linear-
ity and gaussianity in a signal, as the phase relationship among spectral components
is lost [9]. In contrast, bispectral analysis preserves both amplitude and phase infor-
mation of the Fourier transform, which enables the detection of phase relationships
and deviations from gaussianity and linearity of a signal [9], such as those that may
be elicited in SpO2 recordings by physiological perturbations of OSA.

In the present doctoral thesis bispectrum has been applied as a complementary
tool to conventional spectral analysis [1]. To our knowledge, this is the first time
that bispectral analysis is used in the framework of pediatric OSA. A MLP model
fed with a feature subset composed of bispectrum-derived parameters, together with
anthropometric variables, ODI3, and PSD-derived parameters (MLPbis) reached a
high diagnostic performance, with a 3-class Acc of 76%, a kappa value of 0.56, and
81.3% Acc and 85.3% Acc for the AHI cutoffs of 5 e/h and 10 e/h, respectively.
These results outperformed a MLP neural network trained without information from
bispectrum (MLPnobis). It is worthy to note that MLPbis reached a PPV of 95.5% for
5 e/h and a NPV of 86.7% for 10e/h. As stated in Sect. 3, these cutoffs are commonly
use in the clinical practice to detect moderate (5 ≤ AHI < 10e/h) and severe OSA
(AHI ≥ 10e/h). In this respect, adenotonsillectomy treatment is recommended in
children with an AHI ≥ 5e/h, as they have an increased chance of suffering adverse
health consequences and comorbidities [10–12]. Furthermore, children with an AHI
≥ 10e/h can present persistent risk factors and residual OSA after treatment [13].

It is also important to highlight that two bispectral-derived features, M1BISP and
meanPaBISP,were involved in the optimumsubset.M1BISP contains information about
changes in the amplitude of the bispectrum related to deviations of gaussianity in the
SpO2 signal, whereas meanPaBISP measures changes in the bispectral phase asso-
ciated to a phase coupling between spectral components of the SpO2 signal related
to pediatric OSA severity. Furthermore, bispectral moments (H1BI SP , H2BI SP , and
H3BI SP ), whichmeasure nonlinear relationships between the frequency components
of the oximetry signal, showed significantly higher values as the severity of OSA
increased.

These findings agree with previous works that also examined the usefulness of
bispectrum to characterize OSA-related changes in adults [14, 15] and children [16].
Tagluk and Sezgin [15] reported changes in the quadratic phase coupling of the EEG
signal, whereas Atri and Mohebbi [14] reported changes in the non-Gaussian and
nonlinear dynamical information of heart rate variability and ECG-derived respi-
ratory signals during apneic episodes by means of bispectrum. Finally, in a recent
work developed by Barroso-García et al. [16], it was found that bispectrum provides
information regarding changes in the gaussianity, linearity, and regularity of the AF
signal elicited by apneic events. In the present research, it has been demonstrated that
bispectral analysis can identify phase relationships and deviations from linearity and
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gaussianity of the SpO2 signal that provide additional and complementary informa-
tion to conventional approaches in the automated detection of childhood OSA. This
study was the starting point for the second study of the doctoral thesis in which we
apply the wavelet transform to further characterize the SpO2 signal in the frequency
domain.

5.1.2 Wavelet Analysis

PSD and bispectrum are frequency domain analysis techniques based on the STFT
[9]. STFT uses a fixed length window to analyze each segment of the signal, assum-
ming that it is stationary [17]. Nonetheless, non-stationary changes occur in the
oximetry signal during sleep, mainly due to apneic events [18]. This limitation is
overcome by the WT, which does not make assumptions about the stationarity of the
signal [17]. Wavelet analysis provides an optimal time-frequency resolution (high
frequency resolution at low frequencies and high temporal resolution at high frequen-
cies) [17], which is useful to analyze OSA-related information at the low frequency
components of the SpO2 recordings.

In this research, wavelet analysis has been employed to further characterize the
oximetry dynamics related to the presence of moderate-to-severe pediatric OSA [2].
Previous studies have shown the usefulness of the WT to characterize the changes in
physiological signals related to apneic episodes in adult patients [15, 19–23], though
it had not been previously applied in the screening of childhood OSA. Our results
revealed that all theDWT-derived features,WE and features computed from the coef-
ficients in D9 (M1D9 , M2D9 , M3D9 , M4D9 , MaxD9 , and EnD9 ), showed statistically
significant differences between negative OSA (AHI< 5e/h) and positive OSA (AHI
≥ 5e/h) groups. Furthermore, these features reached a overall higher performance
than statistical moments in the time domain and PSD-derived parameters, thus sug-
gesting that DWT is a suitable tool to identify OSA-related changes occurring in the
oximetry signal. Finally, MLP, LR, and SVM binary classifiers fed with an optimum
subset composed of features from these complementary approaches (DWT, statistical
moments, ODI3, and PSD) reached a high diagnostic performance, improving the
diagnostic ability of all the extracted features. Noteworthy, the SVM model reached
the highest Acc (84.0%), Sp (91.1%), PPV (83.8%), and LR+ (14.6%) among the
individual features and binary classification algorithms. A high LR+ (LR>10) is
considered to present solid evidence to determine the presence of a disease, which
indicates that this model is especially useful as a screening method to confirm the
presence ofmoderate-to-severe pediatricOSA (AHI≥5e/h).Accordingly, ourDWT-
based SVMmodel could be used to automatically detectmoderate-to-severe pediatric
OSA at patient’s home, thus reducing associated healthcare costs and intrusiveness
of overnight PSG.

Importantly, three DWT-derived parameters, M3D9 , EnD9 , and WE , were auto-
matically selected with FCBF. As shown, M3D9 was significantly lower in the
positive-OSA group, which indicates that apneas and hypopneas modify the fre-
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quency distribution of SpO2 signal and increase its frequency components in the
D9 band (0.0244–0.0488Hz), thus resulting in values less proximal to zero. Regard-
ing EnD9 , it was higher in the positive-OSA group, which agrees with a higher
occurrence of respiratory events that increase the amplitude of the D9 coefficients.
These changes of the SpO2 signal in the D9 band are linked to the recurrence and
duration of the oxygen desaturation associated to apneic episodes. In addition, WE
revealed a higher irregularity in the positive-OSA group, which indicates that pedi-
atric OSA disturbs the energy distribution of the DWT decomposition of the SpO2

signal. According to our results, the information about the occurrence of apneic
events provided by DWT through the amplitude (EnD9 ) and the concentration of
the D9 coefficients near zero (M3D9 ), and the irregularity of the energy distribution
(WE) of the SpO2 is complementary (non-redundant) to the information provided
by conventional approaches. Hence, this study confirms that the great resolution
provided by DWT in the low frequency range, as well as its suitability to analyze
non-stationary signals, make DWT an appropriate tool to further characterize the
changes occurring in the oximetry signal associated with pediatric OSA. These find-
ings, together with those obtained in the Sect. 5.1.1, led us to the third study of this
thesis in which we apply the detrended fluctuation analysis method to gain insight
into the nonlinear and non-stationary properties of the oximetry signal in the time
domain.

5.1.3 Detrended Fluctuation Analysis

As aforementioned, biomedical signals typically present non-stationarities and non-
linearities, since biological systems have an stochastic behavior. In this respect,
nonlinear methods derived from the chaos theory have proved high capability to
characterize changes in SpO2 dynamics related to physiological perturbations of
OSA, both in adult and in pediatric patients [24]. Nonetheless, Garde et al. [7] and
Hornero et al. [8] reported that conventional nonlinear metrics (SampEn, CTM,
and LZC) were redundant with regard to common statistical moments, conventional
oximetric indices, and frequency domain features. In order to provide further insights
into its nonlinear properties, we have applied DFA to characterize changes in the
scaling behavior (i.e., irregular fluctuations and random spikes) of the oximetry
signal related to pediatric OSA and its severity [3]. Previous studies have assessed
the capability of DFA to characterize OSA in adults [25–28] and children [29].
Nonetheless, no studies have applied DFA to analyze SpO2 recordings in the context
of childhood OSA.

Our results revealed that the scaling behavior of the SpO2 recordings is affected
by pediatric OSA. This agrees with Penzel et al. [28] and Dehkordi et al. [29], who
also obtained two scaling regions with different correlation properties in adult OSA
patients, one region for short-time scales related to respiratory events and another
region for long-time scales associated to the effects of circadian rhythm and sleep
stages. As shown, slope1 and slope12 showed significantly higher values as the AHI
increased. This can be explained by the higher occurrence of respiratory events that
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changes the oximetry dynamics in the short-time scales. In addition, F(k12) and
F(kx) showed significantly higher values as the OSA severity increased. This fact is
consistent with the higher fluctuations observed in the DFA profile as AHI increased,
which indicates that apneic events cause irregular fluctuations in the oximetry signal,
as also reported by Hua and Yu [25].

The information provided by DFAwas also complimentary to ODI3. Specifically,
FCBF automatically selected slope1, together with ODI3. As shown, a MLP neural
network trained to estimate the AHI using this optimum subset reached an ICC of
0.891, a 4-classAcc of 60%, a kappa value of 0.41, and 82.7%, 81.9%, and 91.1%Acc
for the AHI cutoffs of 1e/h, 5 e/h, and 10e/h, respectively. This MLP model showed
an overall higher diagnostic performance than the conventional ODI3. These results
suggest that the changes in the scaling behavior of the DFA profile quantified by
slope1 provide relevant and additional information that contributes to improve the
diagnostic ability of the SpO2 signal in the framework of pediatric OSA.

5.2 A Deep-Learning Based Methodology to Automatically
Extract the Relevant Information from Raw Oximetry
Recordings

The feature-engineering approach has shown its usefulness to characterize pediatric
OSA and its severity [1–3]. It has been demonstrated that the application of novel
signal processing algorithms from different analytical approaches provide relevant
features that parameterizeOSA-related oximetric changes. Furthermore, this feature-
engineering approach has allowed us to identify which features provide additional
information to classical methods regarding oximetric changes related to childhood
OSA and its severity [1–3]. Nonetheless, the feature-engineering approach is lim-
ited to the existing human knowledge, which may lead to the omission of relevant
information concerning pediatric OSA that is still undiscovered [30].

The aforementioned limitation of the feature-engineering methodology is over-
come by the deep-learning approach, which are based on an automatic identifica-
tion of the important information that is not controlled by human experts [31]. In
Vaquerizo-Villar et al. [32], we have proven that a CNN-based deep-learning method
can automatically learn discriminative information from the raw oximetry data linked
to apneic events. These findings are consistent with recent studies that also demon-
strated the utility of deep-learning approaches to automatically identify OSA-related
changes in physiological signals from adult subjects [33–36]. These studies ana-
lyzed raw signals from PSG using deep-learning models based on recurrent neural
networks (RNN) [33, 36], MLP [35], and CNN [34]. In this regard, CNN has a lower
computational cost than RNN and MLP, which makes it more suitable for screening
purposes using wearable and portable pulse oximetry devices.

Table 5.1 shows a summary of the comparison of the estimated AHI from the
proposed CNN architecture (AHICNN) with ODI3, a clinical approach, as well as the
AHI estimated by a classical feature-engineering approach (AHIMLP). As expected,
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Table 5.1 Summary of the comparison of AHICNN with ODI3 and AHIMLP in the CHAT, UofC,
and BUH test databases

Test set Method kappa

CHAT AHICNN 0.515

ODI3 0.417

AHIMLP 0.377

UofC AHICNN 0.422

ODI3 0.372

AHIMLP 0.381

BUH AHICNN 0.423

ODI3 0.369

AHIMLP 0.306

kappa = Cohen’s kappa index

AHICNN outperformed ODI3 and AHIMLP, showing a high diagnostic ability in a
large sample of 3196 SpO2 signals from three independent datasets. Specifically,
AHICNN reached a high agreement in the CHAT (ICC = 0.960), UofC (ICC = 0.917),
and BUH (ICC = 0.583) test sets. In addition, high 4-class accuracies (72.8%, 60.2%,
and 61.0%), high kappa values (0.515, 0.422, and 0.423), and high accuracies for the
AHI severity cutoffs of 1e/h (77.6%, 80.1%, and 79.2%), 5e/h (97.4%, 83.9%, and
83.5%), and 10e/h (97.8%, 92.3%, and 91.3%) were obtained in the CHAT, UofC,
and BUH test sets, respectively.

Fig. 5.1 displays a possible screening protocol that shows the clinical applicability
of AHICNN. This screening protocol, which is derived from the confusion matrices
of AHICNN (see Fig. 4.10), would act as follows: (i) If AHICNN <1e/h (no OSA),
clinicians could discard OSA as 96.2% (BUH), 98.2% (UofC), and 100% (CHAT)
of these subjects will have an AHICNN < 5 e/h. These patients might be eventually
referred to PSG on the persistence of symptoms [13]; (ii) If 1 ≤ AHICNN < 5e/h,
the clinicians could suggest to conduct overnight PSG as doubts exist about the true
diagnosis of these subjects; (iii) If 5≤AHICNN < 10e/h, the clinicians could consider
treatment as 86.4% (BUH), 96.7% (UofC), and 100% (CHAT) of these children are
at least mild OSA (AHICNN ≥ 1e/h) and they were referred to the sleep laboratory
showing symptoms; (iv) If AHICNN ≥ 10 e/h, the clinicians could suggest treatment,
asmost probably (90.6% inBUH, 96.2% inUofC, and 100% inCHAT) these children
are at least moderate OSA (AHICNN ≥ 5 e/h), and also consider a follow-up of these
children, as they are prone to present persistent risk factors and residual OSA after
being treated. The implementation of this screening protocol in a pediatric sleep unit
could lead to a 45.9% (BUH), 50.0% (UofC), and 73.7% (CHAT) reduction in full
PSGs, thus reducing health costs and waiting lists. In addition, these children would
benefit from a more comfortable diagnostic test that could be easily performed at
home.

Despite the fact that the CNN model outperformed conventional methods in the
three datasets, it is noteworthy that our proposal reached a higher performance in the
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Fig. 5.1 Screening protocol of the proposed CNN-based deep-learning model

CHAT dataset than in theUofC andBUHdatasets. This is consistent with the fact that
the weights of the CNNmodel were obtained using only the CHAT dataset. As there
is a large variability in the annotation of cardiorespiratory events and sleep stages
among different sleep technologists [37], this variance may influence the external
assessment of our proposed CNN model in two external datasets. Nonetheless, we
tried to reduce this variability by using a validation group formed by children from
the CHAT, UofC, and BUH datasets. There are also differences in the following
clinical characteristics that could help to explain the varying diagnostic performance
among datasets:
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• AHI distribution. The median [interquartile range] of the AHI values vary among
datasets: 0.8 [0.4–1.7] in the CHAT test set, 3.3 [1.4–7.8] in the UofC test set, and
2.3 [0.9–6.4] in the BUH test set.

• Age. There are also differences in the age range among datasets: 5–10 in the CHAT
dataset, 0–13 in the UofC dataset, and 0–18 in the BUH dataset.

• Sampling rate. The sampling rate of the SpO2 recordings were: 1, 2, 10, 12, 16,
200, 256, 512Hz in the CHAT dataset, 25, 200, 500Hz in the UofC dataset, 200Hz
in the BUH dataset.

• Population group. CHAT and UofC datasets are composed of pediatric subjects
from the United States of America (USA), whereas BUH dataset is composed of
children from Spain. In this respect, obesity prevalence and race are different in
these countries, as well as the health system, which is mainly public in Spain and
mostly private in the USA. This influences the socioeconomic condition of the
subjects under study, thus having a substantial consequence on the health status.

These findings are consistent with previous works [4, 33, 35], which also reported a
varying performance among sleep databases with different clinical features.

To sum up, it was found that deep-learning allows to automatically identify dis-
criminative information from oximetry dynamics associated to apneic episodes. In
addition, the proposed CNN-based deep-learning model showed a high diagnostic
ability, outperforming a classical clinical parameter, ODI3, as well as a conventional
feature-engineering approach based on MLP (AHIMLP). The applicability of our
results was also highlighted by the validation of our proposal in 3196 SpO2 record-
ings from three different datasets, as well as by the design of a screening protocol.
These findings suggest that the use of automated methodologies based on deep learn-
ing contributes to further improving the diagnostic ability of overnight oximetry in
the screening of childhood OSA.

5.3 Comparison of Performance: Feature-Engineering,
Deep-Learning, and State-of-the-art

In order to further discuss the most relevant findings, we have compared the diagnos-
tic performance obtained with the different feature-engineering and deep-learning
methodologies proposed in the papers included in this thesis (Sect. 5.3.1). In addi-
tion, we have compared these results with those achieved in the state-of-the-art,
considering the methodological differences among studies that limit generalization.
(Section5.3.2).
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5.3.1 Comparison Between Feature-Engineering
and Deep-Learning Approaches

Table5.2 displays the overall diagnostic performance of the automated feature-
engineering and deep-learning models obtained in the publications of the thesis.
Notice that a high performance was achieved in all the publications, with accuracies
ranging between 77.6 and 82.7% Acc for an AHI cutoff of 1e/h, 81.3–97.4% Acc
using an AHI cutoff of 5e/h, and 85.3–97.8% using an AHI cutoff of 10e/h. It can
also be observed that, in Vaquerizo-Villar et al. [1], the performance was lower than
in the remaining studies. Nonetheless, an initial version of the UofC database (298
children)was used in this study, so that a thorough comparison of the results cannot be
performed. Conversely, the test set of the UofC dataset employed in Vaquerizo-Villar
et al. [2], Vaquerizo-Villar et al. [3], and Vaquerizo-Villar et al. [32] was composed
of the same subjects (392 pediatric patients). This enables a direct comparison of
their results.

Regarding this comparison, it is important to note that a high diagnostic perfor-
mance was obtained in Vaquerizo-Villar et al. [32] in the UofC dataset. The proposed
CNN-based deep-learning model outperformed the DFA-based feature-engineering
approach designed in Vaquerizo-Villar et al. [3], achieving a slightly higher 4-class
kappa and ICC, as well as higher accuracies for the AHI cutoffs of 5 and 10 e/h
than Vaquerizo-Villar et al. [3]. This superior performance is even more noteworthy
considering that the optimum CNN model obtained in Vaquerizo-Villar et al. [32]
was trained using only the CHAT dataset, whereas the DFA-based MLP model in
Vaquerizo-Villar et al. [3] was trained and optimized in the UofC dataset. This high-
lights the generalization ability of the proposed deep-learning model. Additionally, a
similar performancewas obtained inVaquerizo-Villar et al. [32] andVaquerizo-Villar
et al. [2] for the AHI cutoff of 5e/h. Apart from the aforementioned differences in the
training set, in Vaquerizo-Villar et al. [2] we only focused on binary classification for
the AHI cutoff of 5e/h, whereas in Vaquerizo-Villar et al. [32] we assessed an AHI
estimation model, thus emphasizing the reliability of the deep-learning solution.

Despite the fact that a comprehensive comparisonwith the remaining studies is not
possible, in Vaquerizo-Villar et al. [32] we also achieved a high performance in the
CHAT andBUHdatasets, specially in the CHATdataset, where outstanding values of
kappa (0.52), ICC (0.960), and accuracies (higher than 95%) for the AHI cutoffs of 5
and 10 e/h were obtained. This reinforces the suitability of deep-learning approaches
to identify OSA-related hidden patterns from the oximetry signal in a pediatric OSA
context. In addition, our CNN-based model is fed with raw data, thus not requiring
human-driven knowledge regarding the SpO2 information needed. Nonetheless, the
interpretation and explanation of the features learned by the CNN is more difficult.

5.3.2 Comparison with State-of-the-art Studies

Tables5.3 and 5.4 show the details of state-of-the-art studies aimed at simplifying
childhood OSA diagnosis by the use of the oximetry signal. Table5.3 summarizes
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the results reported in previous studies based on conventional oximetric indices,
whereas Table5.4 displays results achieved by recent studies using automated signal
processing approaches.

As shown in Table5.3, the diagnostic ability of ODI and clusters of desatura-
tions has been widely assessed [38–46], including in some cases common symptoms
[39] and clinical history [46]. Regarding their diagnostic performance, these studies
achieved accuracies ranging 62–93% using the AHI threshold of 1e/h [38, 42, 43,
45, 46], 64–85% for an AHI threshold of 5e/h [39, 41–43, 46], and 75–87% using
the AHI threshold of 10e/h [42, 43]. In this respect, it is important to highlight that
Ma et al. [42] obtained a substantially lower performance than the reported by Tsai
et al. [43] using the ODI4. In addition, Van Eyck et al. [44] obtained a different diag-
nostic performance than Velasco et al. [45] and Brouillette et al. [38] prospectively
validating the methods proposed in their studies. Apart from the different databases
used in these works, this varying diagnostic performance could be accounted for by
the fact that these works did not employ any validation strategy to further evaluate
their methodological approaches.

In this research, we have compared the diagnostic performance of the developed
signal processing methodologies with a classical oximetric index, ODI3, obtaining
higher diagnostic capability in three independent and large cohorts of pediatric OSA
patients. Furthermore, hold-out, bootstrapping, andK-fold cross validation strategies
were used in themethodology of all the studies carried out in the doctoral thesis [1–3,
32], which, together with the large sample size, contribute to a higher generalization
ability of our results.

In recent years, automated feature-engineering approaches have been used to
enhance the diagnostic ability of the oximetry signal [5–8, 47–49]. These studies
have employed signal processing and pattern recognition algorithms, also applying
validation strategies to ensure the generalization of their results.

For an AHI cutoff of 1e/h, the Acc obtained in these works ranged between
75.2% and 85.5% [5, 6, 8, 49]. In this research, accuracies were included in this
range (77.6–82.7%) [3, 32]. Additionally, the studies showing higher Acc applied
binary classifiers and used small databases (50 subjects in Álvarez et al. [5] and 176
subjects in Crespo et al. [6]), whereas in Vaquerizo et al. [3] and Vaquerizo et al. [32]
we estimated the AHI of each patient using larger cohorts (see Table5.2).

In the case of anAHI= 5e/h, the diagnostic accuracy ranged 78.5–83.3% [5–8, 47,
49]. It is remarkable that our deep-learning model in Vaquerizo et al. [32] reported
higher accuracies in theUofC (83.9%), CHAT (97.4%), andBUH (83.5%) databases.
Similarly, our feature-engineeringmodel inVaquerizo et al. [2] also obtained a higher
Acc (84.0%) in the UofC database, whereas the accuracies reported by our feature-
engineering models in Vaquerizo et al. [1] and Vaquerizo et al. [2] were within this
range (81.3% and 81.9%, respectively).

Finally, in the case of an AHI threshold of 10e/h, Hornero et al. [8] and Xu
et al. [49] reported 90.2% and 88.2% Acc, respectively. Vaquerizo et al. [1] achieved
a lower accuracy for this cutoff (85.3%). However, our CNN-approach in Vaquerizo
et al. [32] reported higher accuracies in the UofC (92.3%), CHAT (97.8%), and BUH
(91.3%) datasets, whereas our feature-engineering proposal in Vaquerizo et al. [3]
obtained 91.1% Acc in the UofC database.
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Importantly, our feature-engineering and deep-learning approaches showed a high
overall diagnostic ability in comparisonwith state-of-the-art studies, specially for the
AHI cutoffs of 5e/h and 10e/h. The high diagnostic performance obtained with the
proposed novel feature-engineering methodologies is consistent with the additional
OSA-related information that these methods allow to quantify. Furthermore, the
overall superior performanceof ourCNN-basedmethodology reinforces the ability of
deep-learning approaches to learn complex features from oximetry dynamics related
to apneic episodes in childhood OSA.

5.4 Limitations of the Study

The present doctoral thesis has shown the utility of novel feature-engineering and
deep-learning approaches applied to the oximetry signal for diagnosing pediatric
OSA and its severity. However, several limitations need to be considered.

One of the main limitations is that our proposals have not been assessed by pop-
ulation subgroups (i.e., age ranges, sex, and/or BMI groups among others), which
hinders to discover in which OSA subgroups our oximetry-based approaches could
be more appropriate, as well as to discern new phenotypes within pediatric OSA able
to explain differences in the pathophysiology and severity of the disease.

Despite using three datasets involving a large number of pediatric patients,
the sample size is not big enough to optimize and validate each methodology
with subgroups of patients according to their clinical and physiological variables,
which has resulted in a varying performance obtained with the CHAT, UofC, and
BUH databases. Despite this sample size limitation, we used appropriate validation
methodologies, so that optimization and validation groups from each database have
similar clinical and sociodemographic characteristics.

Likewise, different recording devices and specific protocols were used for oxime-
try data collection in the three databases, which may influence the performance of
the proposed methodologies. This is also a common problem in real-life clinical
settings, as there exist multiple and pulse oximetry devices and polysomnography
systems, even in the same sleep center. Notwithstanding, our proposals included a
pre-processing stage to standardize the oximetry signals obtained from the different
acquisition devices.

Another limitation relates to the use of the SpO2 signal alone to automatically
detect pediatric OSA. This limits the diagnostic ability of our proposed methodolo-
gies, since some apneic events are not linked to changes in oximetry dynamics [18,
50]. In addition, the total recording time was employed as a substitute for the total
sleep time to estimate the AHI, as it is not possible to determine sleep stages from
the oximetry signal alone. Nevertheless, our investigation has shown that a thorough
analysis of the oximetry signal can reach a remarkable diagnostic performance.

Regarding the deep-learning methodology, we only used CNNs, which were orig-
inally designed for image analysis. Nonetheless, Ismail Fawaz et al. [51] reported
that deep-learning architectures based on CNN are the most suitable for time series
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classification. Additionally, the CNN-based architecture was trained using only the
CHAT dataset, as the UofC and BUH datasets do not contain annotations of the time
location of apneic events, which may have contributed to a reduced performance in
these datasets. However, our results showed that thismethodology outperformed con-
ventionalmethods in the three datasets. In spite of outperforming feature-engineering
approaches, our CNN-based model also suffered from a lack of interpretation, which
hinders to discover new knowledge regarding childhood OSA. Nonetheless, this
’black box’ perception also exists in conventional pattern recognition algorithms.

Another limitation concerns to the use of theAHI as the referencemeasure for pre-
dicting the adverse outcomes of pediatric OSA. In this regard, recent investigations
reported that novel measures of hypoxia obtained from the SpO2 signal are better
correlated with mortality, cardiovascular diseases, or cancer incidence than conven-
tional respiratory indices (i.e., AHI or ODI) in adult OSA patients. Particularly, the
nocturnal hypoxemia [52], the hypoxic load [53], the desaturation severity parameter
[54, 55], and the hypoxic burden [56] have been proposed. As these measures have
been found to further explain OSA consequences in adults, they could be also useful
in the context of pediatric OSA.

The last limitation refers to the place where oximetry signals of the pediatric
databases were obtained: supervised hospital facilities. In this respect, it would be
interesting to further validate themethodologies proposed during the present doctoral
thesis in a database of SpO2 recordings acquired at children’s home.
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Chapter 6
Conclusions

This thesis is focused on the application of novel signal processing algorithms to
improve the diagnostic capability of the oximetry signal in the simplification of pedi-
atric OSA diagnosis. Feature-engineering and deep-learning methodologies were
developed for this purpose. Among the feature-engineering approaches, it has been
proposed three novel feature extraction algorithms (bispectrum, wavelet, and DFA)
to provide additional OSA-related features from the SpO2 signal in both the time
and frequency domains. Additionally, a CNN-based deep-learning model was used
to automatically extract all the relevant information from raw SpO2 data linked to
apneic events. Our results showed that the developed methodologies contribute to
increase the diagnostic ability of overnight oximetry in the screening of childhood
OSA.

In this chapter, the original contributions of this doctoral thesis are stated in
Sect. 6.1. Then, the conclusions drawn from this doctoral thesis are indicated in
Sect. 6.2. Finally, future research lines are listed in Sect. 6.3.

6.1 Contributions

The major contributions provided by this thesis are listed below:

(1) Novel automated feature-engineering and deep-learning models for the analysis
of the SpO2 signal, which have outperformed conventional approaches, thus
enhancing the diagnostic capability of nocturnal oximetry in the framework of
pediatric OSA [1–4].

(2) New oximetric indices through the application of bispectral, wavelet, and DFA,
which have provided relevant and complimentary information on the changes in
the oximetry dynamics associated to pediatric OSA and its severity. Although
these methods had shown its usefulness to analyze physiological signals in adult
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OSA patients, to the extent of our knowledge, this is the first time that these
techniques are been applied in the context of childhood OSA [1–3].

(3) Optimum subsets obtained with the FCBF method, composed of conventional
oximetry variables, as well as the new oximetric features derived from bispectral,
wavelet, and DFA [1–3]. This highlights the relevancy and non-redundancy of
the novel feature extraction methods (bispectral, wavelet, and DFA).

(4) High performance pattern recognition models focused on binary classification
[2], multiclass classification [1], and regression [3]. These models were fed with
the optimum subsets of OSA-related features and outperformed conventional
approaches, as well as state-of-the-art approaches [1–3].

(5) Novel deep-learning model based on CNNs to automatically extract all the rel-
evant information from the SpO2 signal related to apneic events. This model
was validated in a large sample of 3196 SpO2 recordings from three indepen-
dent datasets, showing a high diagnostic ability comparing with conventional
feature-engineering methodologies and state-of-the-art studies. We believe that
this is the first time that deep-learning algorithms are applied in the context of
pediatric OSA diagnosis [4].

(6) Efficient screening protocols combining abbreviated test (oximetry) and artificial
intelligence (pattern recognition and deep learning) able to minimize the number
of PSGs. Itwas shown that these protocolswould contribute to reduce themedical
costs and waiting lists associated with the diagnosis of childhood OSA, as well
as to reduce the children’s discomfort during overnight PSG [2, 4].

6.2 Main Conclusions

The analysis and discussion of the obtained results (see Chaps. 4 and 5) lead to draw
the principal conclusions of the present doctoral thesis, which are listed next:

(1) The proposed feature-engineering and deep-learningmodels outperformconven-
tional features from the oximetry signal, as well as state-of-the-art approaches.
Thus, the application of novel signal processing techniques allows to increase
the diagnostic ability of the SpO2 signal from nocturnal oximetry in the context
of childhood OSA.

(2) Bispectrum can be used as a complementary tool to classical approaches in
the characterization of OSA-related changes in children using SpO2 recordings.
Particularly, the changes in the bispectral amplitude associated to deviations
of Gaussianity in the oximetry signal (M1BI SP ) and the changes in the bis-
pectral phase associated to a phase coupling between spectral components of
the oximetry (meanPaBI SP ) provide additional information to anthropometric
parameters, ODI3, and PSD variables in the framework of childhood OSA.

(3) TheDWT is a suitable tool to analyze the non-stationary properties, aswell as the
low frequency components occurring in the SpO2 signal owing to pediatric OSA.
Specifically, it was found that the concentration of the D9 coefficients (0.0244–
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0.0488Hz) near zero (M3D9 ), the energy of the D9 coefficients (EnD9 ), and the
changes of the energy distribution (WE) in the DWT profile of the oximetry
signal provide complimentary information to conventional approaches.

(4) DFA is an appropriate tool to identify changes in the scaling behavior of the
oximetry recordings related to pediatric OSA severity. Our findings suggest that
the slope of the short-time scales of the DFA profile (slope1) contains further
information that contributes to further characterize OSA-related changes of the
oximetry signal in children.

(5) From all the pattern recognition models, the SVM model fed with ODI3, statis-
tical moments in the time domain, PSD and DWT-derived features has provided
solid evidence to detect moderate-to-severe pediatric OSA (AHI ≥ 5 e/h), with
an Acc of 84.0% and a LR+ of 14.6. This model can be used as a clinically
valuable screening method for moderate-to-severe pediatric OSA patients.

(6) TheCNN-baseddeep-learningmodel achieves a higher overall diagnostic perfor-
mance than feature-engineering approaches in the framework of childhoodOSA.
Particularly, this model reached accuracies above 80% (97.4, 83.9, and 83.5%)
for diagnosing moderate-to-severe-OSA and greater than 90% (97.8, 92.3, and
91.3%) for the detection of severe patients in the CHAT, UofC and BUH test
sets, which also outperformed state-of-the-art studies. This is consistent with the
improved predictive performance shown in recent years by deep-learning algo-
rithms in a wide range of domains. Our findings suggest that deep learning could
change the paradigm of biomedical data processing in the context of pediatric
OSA.

(7) Deep-learning techniques show a high generalization ability, with a varying
diagnostic performance that can be explained by differences in sampling rate,
AHI distribution, age range, and patient characteristics among sleep datasets.
Hence, clinical and sociodemographic parameters should be considered when
validating our proposal in the clinical practice.

(8) The diagnostic protocol derived from our deep-learning model highlights the
clinical applicability of overnight oximetry for the screening of childhood OSA.
Particularly, the proposed screening tool would avoid the need for 45–70% (73.7,
50.0, and45.9%)of completePSGs in theCHAT,UofC, andBUHdatasets. In this
way, children would benefit from a more accessible and less intrusive diagnostic
test based on the automated analysis of single-channel oximetry.

6.3 Future Research Lines

Several questions that arise from this investigation may be addressed in future work
to complement our findings, and investigate other issues beyond the scope of this
doctoral thesis. Next, the most interesting future research lines are listed:

(1) The evaluation of our automated signal processing methodologies in subgroups
of children showing different clinical characteristics would help to character-
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ize the physiological patterns shared by the OSA pediatric population, as well
as to identify those phenotypes within pediatric OSA where oximetry-based
approaches achieve a higher performance.

(2) The field of deep learning is living breakthrough advances thanks to the develop-
ment of novel deep neural architectures, such as attention or inception networks.
In this respect, the application of more advanced deep-learning architectures is
another interesting future line of investigation that may contribute to improve
the diagnostic performance of oximetry-based approaches.

(3) The general performance of the oximetry signal may also be increased by using
pretrained deep-learning networks designed for time series classification, sim-
ilar to the pretrained deep-learning architectures existing in the field of image
processing.

(4) Another interesting future research could be the application of eXplainable Arti-
ficial Intelligence techniques to detect new patterns/attributes inherent to the
oximetry signal linked with the severity of pediatric OSA.

(5) The evaluation of the proposed methodologies in different types of pulse oxime-
ters and recording systems would help to know if the diagnostic performance
is affected by the technical features of the recording equipment, as well as to
improve the pre-processing stage.

(6) The acquisition of the PPG signal with the pulse oximetry sensor would also
be interesting, since the PPG signal contains information of the changes in the
autonomic nervous system and respiratory activity related to sleep stages and
apneic events. In this way, the PPG signal may help to improve the diagnostic
ability of our proposal.

(7) One natural way to continue our research would be to validate the proposed
methodology in oximetry recordings acquiredwith portable devices at children’s
home, as the final goal is to perform at-home screening tests for pediatric OSA
based on nocturnal oximetry.

(8) Another future objective would be to assess the correlation of novel hypoxic
measures with cardiovascular, metabolic, behavioral, and neurocognitive vari-
ables in pediatric OSA patients, as well as to propose new estimates of the level
of hypoxia.
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