
Distributed Half-Integral Matching
and Beyond

Sameep Dahal and Jukka Suomela(B)

Aalto University, Espoo, Finland
{sameep.dahal,jukka.suomela}@aalto.fi

Abstract. By prior work, it is known that any distributed graph algo-
rithm that finds a maximal matching requires Ω(log∗ n) communication
rounds, while it is possible to find a maximal fractional matching in
O(1) rounds in bounded-degree graphs. However, all prior O(1)-round
algorithms for maximal fractional matching use arbitrarily fine-grained
fractional values. In particular, none of them is able to find a half-integral
solution, using only values from {0, 1

2
, 1}. We show that the use of fine-

grained fractional values is necessary, and moreover we give a complete
characterization on exactly how small values are needed: if we consider
maximal fractional matching in graphs of maximum degree Δ = 2d, and
any distributed graph algorithm with round complexity T (Δ) that only
depends on Δ and is independent of n, we show that the algorithm has
to use fractional values with a denominator at least 2d. We give a new
algorithm that shows that this is also sufficient.

Keywords: maximal matching · fractional matching · half-integral
matching · distributed graph algorithms

1 Introduction

By prior work, it is known that there is a distributed graph algorithm that
finds a maximal fractional matching (see Sect. 1.2) in O(Δ) rounds in graphs
of maximum degree Δ [3]; in particular, the running time is independent of
n and only depends on Δ. However, the algorithm uses very fine-grained frac-
tional values; when Δ increases, the denominators grow exponentially fast. In
this work we show that this is necessary: any distributed graph algorithm that
finds a maximal fractional matching in T (Δ) rounds, independently of n, has
to use fractional values with a denominator at least 2�Δ/2� (and this is tight).
In particular, there cannot be a T (Δ)-rounds algorithm for finding a maximal
half-integral matching.

1.1 Distributed Maximal Matching Is Hard

Maximal matching is one of the classic problems in the field of distributed graph
algorithms, studied extensively since the very early days of the field in the 1980s
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Rajsbaum et al. (Eds.): SIROCCO 2023, LNCS 13892, pp. 339–356, 2023.
https://doi.org/10.1007/978-3-031-32733-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32733-9_15&domain=pdf
http://orcid.org/0000-0002-7323-2932
http://orcid.org/0000-0001-6117-8089
https://doi.org/10.1007/978-3-031-32733-9_15

340 S. Dahal and J. Suomela

[4,6–8,11,13,17]. In the maximal matching problem, the task is to find a match-
ing (a set of edges without common vertices) that is not a strict subset of another
matching. This is something one can trivially find in a centralized setting (pick
independent edges greedily until you are stuck), but this is a challenging coordi-
nation task in a distributed setting, for two reasons:

1. One has to break symmetry. For example, if the input graph is a cycle, one has
to select some but not all edges—the input is symmetric, but the output is
not. The task is not solvable at all without resorting to, e.g., unique identifiers
or randomness, and even then we cannot solve the task in constant number
of rounds; maximal matching in cycles requires Ω(log∗ n) rounds [14,16].

2. One has to solve a local coordination task. Even if we have a Δ-regular bipar-
tite graph, with the bipartition given, we still need Ω(Δ) rounds to find a
maximal matching, at least in sufficiently large graphs [4].

On the positive side, O(Δ + log∗ n)-round distributed algorithms for finding a
maximal matching in a graph of maximum degree Δ are known [18]; one can
also make different trade-offs between dependency on Δ vs. n [6–8], but it is
impossible to achieve a running time of T (Δ), independent of n [14,16]. All
of these results hold in the usual LOCAL model of distributed computing (see
Sect. 2.2 for the details).

1.2 Distributed Fractional Matching is Easier

A matching M ⊆ E in a graph G = (V,E) can be interpreted as a function x
that assigns value x(e) = 1 to each edge e ∈ M . If we let

x[v] =
∑

e∈E:v∈e

x(e)

denote the sum of labels on edges incident to node v ∈ V , then we can define
that function x : E → {0, 1} is a matching if x[v] ≤ 1 for all v ∈ V . Moreover,
x is a maximal matching if for each edge {u, v} ∈ E at least one endpoint is
saturated, i.e., x[u] = 1 or x[v] = 1. Finally, x is a maximum matching if it
maximizes

∑
e x(e).

Fig. 1. (a) A maximal matching. (b) A maximal fractional matching. (c) A maximal
half-integral matching. The orange nodes are saturated. (Color figure online)

We can now also consider the fractional relaxation of this integer program.
We say that x : E → [0, 1] is a fractional matching if it satisfies x[v] ≤ 1 for each

Distributed Half-Integral Matching and Beyond 341

v ∈ V , it is a maximal fractional matching if x[u] = 1 or x[v] = 1 for each edge
{u, v} ∈ E, and it is a maximum fractional matching if it maximizes

∑
e x(e).

See Fig. 1 for illustrations.
Note that any maximal matching is also a maximal fractional matching, but

the converse is not necessarily true. However, maximal fractional matchings share
many useful properties of maximal matchings. For example, the set of saturated
nodes forms a 2-approximation of a minimum vertex cover [5].

When we consider distributed graph algorithms for maximal fractional match-
ings, one of the obstacles discussed in Sect. 1.1 goes away: we do not need to break
symmetry. For example, if the graph is a cycle, we can simply label all edges with
1/2. More generally, if we have a d-regular graph, we can label all edges with 1/d.
The lower bound of Ω(log∗ n) from [14,16] for symmetry-breaking problems no
longer applies.

While the case of non-regular graphs is much more challenging, it is never-
theless possible to design distributed algorithms that find a maximal fractional
matching in O(Δ) rounds, independently of n [3]. It is also known that the local
coordination challenge does not disappear; o(Δ)-round algorithms do not exist
[10].

1.3 What About Half-Integral Matchings?

The fractional matching polytope is half-integral (see e.g. [20, Sect. 30.3]). That
is, there exists a maximum fractional matching in which x(e) ∈ {0, 1

2 , 1} for
every edge e ∈ E.

There is also a simple distributed strategy that at first seems to lead to
half-integral solutions (see e.g. [2]). First, construct the bipartite double cover
G′ = (V ′, E′) of the graph G = (V,E): for each node v ∈ V we have two nodes
v1 and v2 in V ′, and for each edge {u, v} ∈ E we have two edges {u1, v2} and
{u2, v1} in E′. Now G′ is bipartite, and we know the bipartition, with nodes v1
on one side and nodes v2 on the other side. We can now apply any algorithm
that finds a matching x′ in the bipartite graph G′, and this can be mapped into
a half-integral matching x by setting

x[{u, v}] =
x′[{u1, v2}] + x′[{u2, v1}]

2
. (1)

Hence, we could use any distributed algorithm designed for bipartite graphs—
there is a very simple algorithm that finds a maximal matching in bipartite
graphs in O(Δ) rounds independently of n. Then by applying (1) we could turn
it into a fractional matching.

There is, unfortunately, a catch: while (1) will preserve feasibility (given
a matching x′ it will result in a fractional matching x), it will not preserve
maximality: even if x′ is a maximal matching, it is not necessarily the case that
x is a maximal fractional matching. Could we nevertheless find a half-integral
matching efficiently with a distributed algorithm?

If we consider prior distributed algorithms for maximal fractional matching
[2,3], they are very far from being able to produce half-integral matchings. For

342 S. Dahal and J. Suomela

example, [2] uses fractional values with denominators as large as 2Δ−1 and [3]
is even worse. In this work we show that denominators exponential in Δ are
necessary, but we can still do better than prior work.

1.4 Contributions

Our main result is a full characterization of exactly how fine-grained fractional
values are necessary:

Theorem 1 (Upper bound). There is a T (Δ)-round distributed algorithm
that finds a maximal fractional matching in graphs of maximum degree Δ ≤ 2d+1
using only fractional numbers of the form a/b where a = 0, 1, . . . , 2d and b = 2d.

Theorem 2 (Lower bound). There is no T (Δ)-round distributed algorithm
for any function T that finds a maximal fractional matching in graphs of max-
imum degree Δ ≤ 2d + 2 using only fractional numbers of the form a/b where
a = 0, 1, . . . , 2d and b = 1, 2, . . . , 2d.

We emphasize that the upper bound only uses multiples of 1/2d, while the
lower bound also excludes the possibility of finding a maximal matching using,
e.g., values that are multiples of 1/Δ.

As a corollary of these results, we also have a full characterization of the
complexity of half-integral matchings:

Corollary 1. It is possible to find a maximal half-integral matching in graphs
of maximum degree Δ = 3 in O(1) rounds.

Corollary 2. It is not possible to find a maximal half-integral matching in
graphs of maximum degree Δ = 4 in O(1) rounds.

For larger values of Δ, the range of fractional numbers we use is much smaller
than in prior work. In our algorithm, the denominator is upper bounded by 2Δ/2,
while in prior work [2] it is approximately 2Δ.

1.5 Key New Ideas

While the upper bound of Theorem 1 is a relatively simple adaptation of ideas
from prior work, the lower bound of Theorem 2 requires a development of a new
proof strategy.

Prior lower-bound techniques in this area tend to fall in one of these cate-
gories, each unsuitable for us:

1. The lower-bound construction is a regular graph [4,12]. In Δ-regular graphs
we can trivially find a fractional matching using the value 1/Δ, which is
exponentially far from the lower bound in Theorem 2 that we aim at proving.

2. The lower-bound result aims at establishing that one needs some specific
number of rounds, e.g., Ω(Δ) rounds [4,10,12]. However, in Theorem 2 we
aim at proving that even if the round complexity is, say, exponential in Δ,
one cannot avoid using fine-grained fractional values.

Distributed Half-Integral Matching and Beyond 343

Fig. 2. (a) In prior work [10,12], all the heavy lifting is done in a so-called EC model,
in which edges are undirected but colored. Self-loops represent undirected edges. For
example, a node with 2 self-loops represents a node in the middle of a 2-regular tree,
i.e., a long path. (b) In this work, we work in the PO model. Self-loops represent long
directed paths. For example, a node with 2 self-loops represents a node in the middle
of a 4-regular tree in which all nodes have indegree 2 and outdegree 2.

Our proof strategy superficially resembles the one used in [10,12] in the sense
that we start with one node and k self-loops, which represents the local view of
a node in the middle of a regular graph, and then we start unfolding the loops.
At each point of the process we see what is the output the algorithm commits to,
and then we continue the process until we are left with a concrete lower-bound
graph. However, there are major differences; see Fig. 2:

– In [10,12] they start with a pair of nodes. The nodes have self-loops, and
each self-loop represents an undirected edge; the entire argument relies on the
fact that an algorithm cannot break symmetry between two ends of such an
edge. At each step they unfold a relevant loop, doubling the number of nodes,
and then they mix elements from two instances, resulting in another pair of
instances. In each iteration they lose one self-loop but force the algorithm to
look one step further.

– In this work we start with a single node. The node has self-loops, but this
time each self-loop represents a long directed path; our argument relies on the
fact that an algorithm cannot break local symmetry between two nodes near
the middle of the path. At each step we unfold a relevant loop, but this will
turn one node into a directed path of length Θ(T). We are interested in the
behavior of the algorithm both in the middle of the path and at the endpoints
of the path. In each iteration we lose one self-loop but force the algorithm to
use at least twice as large denominators.

344 S. Dahal and J. Suomela

2 Preliminaries

2.1 Graphs and Self-loops

For a graph G = (V,E), we write Δ(G) to denote the maximum degree of the
graph. We use just Δ when G is clear from the context. For any natural number
d ∈ N, we use Gd to represent the family of graphs such that G ∈ Gd if Δ(G) ≤ d.
Throughout this work, we will assume that the maximum degree of the input
graph G is a globally known constant.

In what follows, we will refer to a self-loop simply as a loop. Each loop counts
as one incoming and one outgoing edge (in particular, in G2d a node can have
at most d self-loops). We call a graph loopy if each vertex of the graph has at
least one loop.

2.2 Model of Computing

Our main results, Theorems 1 and 2, hold in the usual LOCAL model [14,19].
For simplicity, we will focus here on deterministic algorithms (even though the
results are not hard to extend to randomized algorithms).

However, to prove the lower bound result, it will be convenient to first prove
the lower bound in a weaker model (called PO here, following [10]) and then
extend the result from the PO model to the LOCAL model. It will be easiest
to define everything we need by starting with the deterministic port-numbering
model (PN).

Fig. 3. Models of computing used in this work.

PN Model (Port Numbering) [1,21]. Let G = (V,E) be the input graph.
In the PN model, each node v ∈ V is a computer and each edge {u, v} ∈ E is
a communication link between two computers. Initially, each computer is only
aware of its degree; nodes of the same degree start with the same initial state.

The endpoints of the edges are labeled with port numbers; a node of degree
d can refer to its incident edges with the numbers 1, 2, . . . , d; see Fig. 3. The port
numbering comes from an adversary; a distributed algorithm in the PN model
has to work correctly for any given port numbering.

Computation proceeds in synchronous communication rounds. In each round,
each node can

Distributed Half-Integral Matching and Beyond 345

1. send a message to each neighbor,
2. receive a message from each neighbor, and
3. update its local state based on the current state and the messages it received.

After each round, each node can decide whether it stops and announces its own
part of the output—in the case of the maximal fractional problem, the output of
a node indicates the fractional value assigned to each incident edge. The running
time of the algorithm is the number of rounds until all nodes have stopped and
announced their local outputs.

PO Model (Port Numbering and Orientation) [10,15]. Algorithms in the
PO model behave in exactly the same way as in the PN model. However, there is
one additional piece of information available to the algorithm: each edge {u, v} ∈
E is oriented (arbitrarily, by the adversary); see Fig. 3. More precisely, each node
knows for each incident edge whether it is “outgoing” or “incoming”.

While an arbitrary orientation may not seem particularly useful, note that
the PO model is strictly stronger than the PN model. For example, if we have a
graph G with two nodes and one edge, it is trivial to find a proper 2-coloring of
G in the PO model in 0 rounds, while it is impossible to solve in the PN model
in any number of rounds.

LOCAL Model [14,19]. Algorithms in the LOCAL model also behave in exactly
the same way as in the PN model, but there is again one additional piece of
information available to the algorithm: each node is labeled (arbitrarily, by the
adversary) with a unique identifier from a polynomially-sized set; see Fig. 3.

Again, the LOCAL model is strictly stronger than the PO model. For exam-
ple, maximal matching cannot be found in the PO model if the input graph is
a cycle that is consistently oriented, while the task is solvable in the LOCAL
model in O(log∗ n) rounds.

However, it turns out that constant-time algorithms in the LOCAL model
are not much stronger than algorithms in the PO model, see e.g. [9,10]. This
is the idea we will also make use of in this work: our main goal is to prove a
lower bound in the LOCAL model, but it will be convenient to first study the
PO model.

2.3 Applying PO Algorithms to Loopy Graphs

To prove the lower-bound result of Theorem 2, we will study the output of a
PO algorithm A in some loopy graph G. However, when we consider distributed
graph algorithms, we usually assume that the input graph is loop-free.

However, the output of A in loopy graphs is nevertheless well-defined. When
we refer to the output of A on some edge e in G, we refer to the result of the
following thought experiment: Unfold all loops in G, as shown in Fig. 2b, and
hence we arrive at a tree G′. Then apply A in G′ (as the running time of A
is independent of the size of the input graph, this is well-defined). Edge e in G
corresponds to infinitely many edges e′ in G′, but each such edge is symmetric

346 S. Dahal and J. Suomela

and hence the output of A on each such edge e′ is the same; hence we can take
any such edge e′ and interpret its label as the output of A on e.

In particular, if A finds a maximal fractional matching in any loop-free graph
G′, it will also produce a maximal fractional matching in the loopy graph G (the
label of the loop is counted twice).

3 Lower Bound Result

In this section we prove the lower-bound result, Theorem 2. It turns out that
the critical resource is the number of factors of 2 in the denominators. We start
by defining sets of rational numbers that will precisely capture how fine-grained
values are needed.

3.1 Sets of Rational Numbers

Any natural number x ≥ 1 can be written as x = 2n · m where n ≥ 0 and m ≡ 1
mod 2. We refer to e(x) = 2n as the even part of x and o(x) = m as the odd
part of x. For x = 0, we define e(x) = 0 and o(x) = 1.

We extend this notion to rational numbers as follows. If x = p/q in the
reduced form, we define the even part of the denominator ē(x) = e(q) and the
odd part of the denominator ō(x) = o(q). For example, ē(0/1) = ē(1/1) = 1,
ē(1/3) = 1 and ē(1/4) = 4.

For each n ≥ 1, we define

Rn =
{
x ∈ Q : 0 ≤ x ≤ 1 and ē(x) = 2n

}
,

R≤n = R0 ∪ R1 ∪ · · · ∪ Rn,

R≥n = Rn ∪ Rn+1 ∪ · · · ,

R>n = Rn+1 ∪ Rn+2 ∪ · · · .

For example, we have

R0 =
{
0, 1, 1

3 , 2
3 , 1

5 , 2
5 , 3

5 , 4
5 , . . .

}
,

R1 =
{

1
2 , 1

6 , 5
6 , . . .

}
,

R2 =
{

1
4 , 3

4 , 1
12 , 5

12 , 7
12 , 11

12 , . . .
}
.

We can view Rn as the set of fractional numbers whose denominator has exactly
n trailing zeros in its binary representation. Note that for each rational number
x ∈ [0, 1] there exists exactly one n such that x ∈ Rn.

3.2 High-Level Plan

In Sect. 3.3 we prove the following lemma, which essentially shows that we can
without loss of generality focus on the PO model:

Distributed Half-Integral Matching and Beyond 347

Lemma 1. Fix a natural number Δ ∈ N. Then, for any natural number T ∈ N,
the following holds: if there exists a T -round algorithm that solves the maximal
fractional matching problem using values in a set R in the LOCAL model on
any graph with maximum degree Δ, then there exists a T -round algorithm that
solves the maximal fractional matching problem using values in set R in the PO
model for any loopy graph G with maximum degree Δ.

Then in Sect. 3.4 we prove the following lemma, which captures exactly how
fine-grained rational values are needed in the PO model:

Lemma 2. Fix natural number d ∈ N. Then, for any natural number T ∈ N,
there does not exist any algorithm in the PO model that uses T rounds and
computes a valid solution for the maximal fractional matching problem using the
values from R≤d−1 for loopy graphs in graph family G2d.

By putting together Lemma 1 and Lemma 2, we obtain:

Lemma 3. Fix a natural number d ∈ N. Then, for any natural number T ∈ N,
there does not exist any algorithm in the LOCAL model that uses T rounds and
computes a valid solution for the maximal fractional matching problem using the
values from R≤d−1 for the graph family G2d.

Now, Theorem 2 directly follows from Lemma 3.

3.3 Proof of Lemma 1

In [10], a similar result is shown with the exception that the edge labels are
arbitrary. However, the same proof follows when we add the restriction that the
edge labels come from R. This result is a simple extension of [10, Sections 5.3–
5.4], where we can see that the simulation argument does not make changes in
the value used for the PO model.

3.4 Proof of Lemma 2

Preliminary Observations. We first make a few observations regarding our
problem. First recall the way in which we use loops to represent a node in the
middle of a directed path (Fig. 2).

Observation 1. If a node has a loop then it must be saturated.

Proof. If a node with a loop was not saturated, we would have a directed path
of unsaturated nodes and, in particular, edges with unsaturated endpoints. 	

In a saturated node, the labels of incident edges have to sum up to 1. The
following observation captures a key property related to how the even parts of
the denominators behave when rational numbers sum up to 1.

348 S. Dahal and J. Suomela

Observation 2. Let n ≥ 1 and k
m·2n ∈ Rn. Consider the equation

2�1 + . . . + 2�r + x1 + . . . + xr′ +
k

m · 2n
= 1,

where each �i and xi can be any non-negative rational number. Then, either
�i ∈ R>n or xi ∈ R≥n for some i. Put otherwise, either some �i has the even
part of the denominator larger than 2n or some xi has the even part of the
denominator at least 2n.

Proof. First consider the equation

x1 + . . . + xq +
k

m · 2n
= 1

in which each xi can be any non-negative rational number. We show that there
exists an index i for which xi ∈ R≥n. We can rewrite it as solving the equation

x1 + . . . + xq =
m · 2n − k

m · 2n
,

where m·2n−k
m·2n ∈ Rn. If each xi had the even part of the denominator less than

2n, then x1+ . . .+xq would also have the even part of the denominator less than
2n. This is because when we add two rationals a1

b1
and a2

b2
we get

a1

b1
+

a2

b2
=

a1 · (�/b1) + a2 · (�/b2)
�

where � = lcm(b1, b2), the least common multiple of b1 and b2. The even part
of � will be bounded above by the maximum of the even parts of b1 and b2.
However, if x1 + . . .+xq has the even part of the denominator less than 2n, then
it contradicts the fact that the sum equals m·2n−k

m·2n .
Now, in order to prove the original statement of Observation 2, it is sufficient

to replace xr′+i by 2�i. If xr′+i ∈ R≥n then �i ∈ R>n. 	

Assumptions. We now proceed to prove Lemma 2 by contradiction. For the
sake of contradiction, we assume that when we fix a nautral number d ∈ N, there
exists a natural number T ∈ N such that the following holds: there exists a PO
algorithm A that solves the maximal fractional matching problem in T rounds
using values from the set R≤d−1 for graph family G2d.

Properties. Now, our lower bound construction observes the behavior of A on
different kinds of graphs in G2d to reason about the set of values that is used.
We will construct a sequence of loopy graphs G0, G1, . . . , Gd−1 to argue that the
further we go, the more fine-grained value must be used by our algorithm.

For each i = 0, 1, . . . d − 1, we will maintain the following properties:

P1 Gi ∈ G2d.
P2 Graph Gi without loops forms a tree.
P3 Each node of Gi has at least d − i loops.
P4 There is an integer j(i) > i and a node vi in Gi such that A labels at least

one loop of vi with a rational value x ∈ Rj(i).

Distributed Half-Integral Matching and Beyond 349

Fig. 4. Construction for d = 2 and T = 3. Graph G0 consists of d self-loops. When
we apply A to G0, at least one of the loops will get labeled by a value in R≥1; in this
example the value was 0.5 ∈ R1. To construct G1, we remove this loop to arrive at
graph G′

0, take 2T + 3 copies of G′
0, and connect them with a directed path. The key

observation is that given the output of A in G0 we also know the output of A around
the node in the middle of G1—this node is called the root node of G1.

Base Case. Our first graph G0 consists of a single node v0 with d oriented self
loops (see Fig. 4).

Graph G0 satisfies properties P1, P2 and P3 by construction, so we now
need to verify only P4. Consider that A assigns values a1, . . . , ad to the loops
of v0. Since v0 has loops, it must be saturated (recall Observation 1), and hence
it must satisfy that 2a1 + 2a2 + . . . + 2ad = 1. This is equivalent to solving
a1 + a2 + . . . + ad = 1/2 and by Observation 2 we know that there exists an i
with ai ∈ R≥1.

Inductive Step. Given Gi−1, we construct Gi as follows; see Fig. 4:

S1 Construct the graph G′
i−1 from Gi−1 by removing the loop of vi−1 for which

A assigned a value in Rj(i−1).
S2 Create 2T + 3 copies of G′

i−1.
S3 For each k = 1, 2, . . . , 2T + 2, connect node vi−1 in copy number k to node

vi−1 in copy number k + 1; these new edges are called path edges.
S4 Node vi−1 in copy number T + 2 is called the root node of Gi.

This way we form a directed path of length 2T + 3, with the root node
in the middle of the path, as shown in Fig. 4. The key observation is that the
output of algorithm A on the root node of Gi is the same as the output of A
for vi−1 in Gi−1, due to the fact that the radius-T neighborhood of the root
node in Gi is isomorphic to the radius-T neighborhoods of vi−1 in Gi−1 (once
we conceptually unfold all loops). This property is illustrated in Fig. 4: compare

350 S. Dahal and J. Suomela

the radius-T neighborhood of the black node in the unfolding of G0 with the
radius-T neighborhoods of the root node of G1.

Given Gi−1 satisfies all the properties, we need to show that the same is true
for Gi. P1, P2 and P3 are satisfied by construction. To prove P4, consider the
root node of Gi. Since its behavior is completely characterized, we know that it
will label the incident path edges with values from Rj(i−1).

Recall that, by P2, the graph Gi without loops forms a tree. We will navigate
in this tree, starting from the root node, and moving away from it until we satisfy
P4. We maintain the following invariant; see Fig. 5:

Definition 1 (path invariant). If v is the current node, and P is the unique
path from v to the root, we have already concluded that A labels each edge of P
with a value from R≥j(i−1).

To get started, let e be one of the path edges incident to the root node, and let
v be the other end of e. As we discussed earlier, we know that e is labeled with
a value from Rj(i−1).

Fig. 5. Inductive step in the proof of Lemma 2 (Sect. 3.4). We have already concluded
that all edges in the path between v and the root node are labeled with values from
R≥1. We now ask how algorithm A will label the other edges around v. (a) One possible
solution: edge x1 is labeled with a value 0.9 = 9

2·5 ∈ R1. We did not yet establish
property P4, but we can extend the R1-labeled path further away from the root node—
eventually we will encounter a leaf node. (b) Another possible solution: we managed
to label x1 with a less fine-grained value 0.8 ∈ R0. However, this means that loop �1 is
labeled with a more fine-grained value 0.05 = 1

22·5 ∈ R2. We have established P4.

Distributed Half-Integral Matching and Beyond 351

Now assume that we have reached some node v this way. Let P be the path
from v to the root, and let e be the first edge of P , let L be the set of loops
incident to v, and let X be the set of non-loop edges incident to v that are
different from e. That is, we already know the label of edge e, but we do not yet
know how A will label L and X.

Node v is loopy, so it must be saturated. The saturation condition for v is
equivalent to solving the equation

2�1 + . . . + 2�r + x1 + . . . + xr′ +
k

m · 2n
= 1,

where n ≥ j(i − 1), values �i represent the values assigned to the loops in L,
values xi represent the values assigned to the edges in X, and k

m·2n refers to the
value from R≥j(i−1) assigned to edge e. With the help of Observation 2, we know
that one of the two cases must be true:

1. One of the loops in L has the even part of the denominator 2n′
for n′ > n. In

this case, we have established P4.
2. One of the edges {u, v} ∈ X has the even part of the denominator at least 2n.

We have found another edge labeled with a value from R≥j(i−1), and we can
extend the path P by moving from v to u, still satisfying the path invariant.

Note that this process will eventually terminate, as Gi without loops is a (finite)
tree, and hence we will eventually reach a leaf node with X = ∅. We have
established that our construction of graph Gi satisfies properties P1–P4.

Conclusion. When we take i = d − 1, we have a graph Gd−1 ∈ G2d which
needs to use even part of the denominator at least 2d. However, values with
denominator 2d are not present in the set R≤d−1. Thus, we have our desired
contradiction.

This concludes the proof of Lemma 2, and hence also the proofs of Lemma 3
and our main lower bound result Theorem 2.

4 Upper Bound Result

Here, we prove the statement of Theorem 1. We will use the notation

S(d) =
{ i

2d
: i ∈ {0, 1, . . . , 2d}

}
.

We need to show that there is a T (Δ)-round, independent of n, distributed
algorithm that solves maximal fractional matching in graph family G2d+1 using
labels from S(d). We prove the claim by induction, as follows:

– Base case (Lemma 4): S(1) suffices for G2.
– Odd step (Lemma 5): if S(d) suffices for G2d, then S(d) also suffices for G2d+1.
– Even step (Lemma 6): if S(d) suffices for G2d+1, then S(d + 1) suffices for

G2d+2.

352 S. Dahal and J. Suomela

We use T (Δ) to represent the number of rounds taken by our algorithm for
graph family GΔ. We show that in each of the above steps, T (Δ) is just a function
of Δ and is independent of number of nodes n. We will give a PN algorithm,
which implies the existence of a LOCAL algorithm.

Lemma 4. There is a constant-time PN algorithm that finds a maximal frac-
tional matching in G2 using values from S(1).

Proof. In this case, we want to pick x(e) ∈ {0, 1
2 , 1} for each e ∈ E. We can

achieve a simple distributed algorithm with 1 round of communication. Each
vertex v, communicates its degree to its neighbors. Any degree 2 vertex can
safely assign the value 1

2 to both of its incident edges. For a degree 1 vertex, it
will assign the value 1

2 to the incident edge if the other endpoint has degree 2
and will assign the value 1, if the other endpoint is 1 as well.

We can see that for each vertex v, the sum of the values assigned to its
incident edges is at most 1. By the nature of our algorithm, every degree 2
node is saturated. So, every edge which has a degree 2 endpoint satisfies that
one of its endpoints is saturated. The only remaining scenario is when both
of the endpoints are degree 1. In this setting, our algorithm assigns the edge
with value 1 in which case both of its endpoints are saturated as well. Using 1
round of communication, we have obtained a solution for the maximal fractional
matching using values {0, 1

2 , 1} when Δ = 2. This gives us T (2) = 1. 	

Lemma 5. Fix d ∈ N. Assuming that S(d) is sufficient to obtain the solution
for G2d, S(d) is sufficient to obtain the solution for G2d+1 as well.

Proof. Assume that A is a PN algorithm that computes the solution for G2d using
values in S(d). We now describe PN algorithm A′ that computes the solution
for G ∈ G2d+1 using values in S(d). Algorithm A′ takes the following steps (see
Fig. 6 for an illustration):

Step 1: Edge labelling. First, we use the port numbers to define a label for
each edge. For each edge e = {u, v}, there exists numbers i, j ≤ Δ(G) such
that port i of u is connected to port j of v. We label this edge with the set
{i, j}. Then L = {{i, j} : 1 ≤ i, j ≤ Δ(G)} denotes the set of possible edge
labels. We have |L| = O(Δ2) different edge labels. For each � ∈ L, we define
the subgraph G� of G that contains all the edges labelled �. We write degG�

(v)
for the degree of node v in graph G�. A key observation is that for each � and
v, we have degG�

(v) ≤ 2, i.e., each G� is a collection of paths and cycles.
Step 2: Edge Classification. We classify each edge into two types: “Mid” and

“End”. Consider any edge e = {u, v} and say it had label � ∈ L. We say that
e is of type “Mid” if degG�

(u) = 2 and degG�
(v) = 2. Put otherwise, all edges

that are in the middle of the path or part of a cycle in G� are classified with
type “Mid”. All other edges are classified as “End”. Note that each node can
determine the types of its incident edges in two rounds of communication.

Step 3: Solve for “Mid” edges. Consider subgraph G′ of G that contains all
edges of type “Mid”. We argue that Δ(G′) ≤ 2d. To see this, consider any

Distributed Half-Integral Matching and Beyond 353

Fig. 6. (a) A graph G ∈ G3, with a port numbering. (b) The subgraph G� for label
� = {1, 2}, with the edge types “End” and “Mid” indicated.

vertex v ∈ V . If degG(v) = 2d + 1, there exists � ∈ L such that degG�
(v) = 1,

and therefore at least one edge adjacent to v will receive type “End” and will
not be part of G′. Now we have a subgraph G′ of G with Δ(G′) ≤ 2d, and
we can simulate A in G′.

Step 4: Extend for “End” edges. We notice that each edge e ∈ G′ satisfies
the maximality condition, i.e., at least one endpoint is saturated. Thus, we
now need to ensure the same for edges of type “End”. For a label � ∈ L, let
GEnd

� be the set of edges labelled � of type “End”. We know that edges of
type “End” can only be part of paths of length 1 and 2 in GEnd

� . We proceed
to satisfy the maximality condition for edges of type “End” by considering
them sequentially on the labels � ∈ L. Consider an edge e = {u, v} ∈ GEnd

� .
If we assign x(e) = min{1 − x[u], 1 − x[v]} then we can ensure that e satisfies
the maximality condition along with ensuring that both u and v satisfy the
feasibility condition. The only issue that can arise here is that some other
edge adjacent to u or v is trying to update its value in parallel with edge
e. Since we are looking at edge of type “End” and proceeding sequentially
based on label � ∈ L, the above issue can only be caused by paths of length
2. However, the middle vertex of this path can decide the sequential order in
which the two edges are considered, after which this issue is avoided.

Step 1 and 2 take a constant number of rounds. Step 3 takes T (2d) rounds
to run algorithm A on graph G′. Step 4 considers O(Δ2) labels, and for an
individual label �, it takes constant time to assign the values. Overall, the time
taken for graph of maximum degree Δ = 2d+1 is given by the function T (Δ) ≤
c1+c2Δ

2+T (Δ−1) for some constants c1 and c2. Since T (Δ−1) is independent
of n, T (Δ) is independent of n as well. Thus, we have obtained a valid solution
for the maximal fractional matching problem for graphs in G2d+1 using values
from the set S(d). 	

354 S. Dahal and J. Suomela

Lemma 6. Fix d ∈ N. If S(d) is sufficient to obtain the solution for G2d+1, then
S(d + 1) is sufficient to obtain the solution for G2d+2.

Proof. The proof for this theorem uses the same ideas as done in [2]. Consider
any graph G ∈ G2d+2 and let A be the PN algorithm that uses values in S(d)
to compute a valid solution for graphs in G2d+1. We make use of the following
definitions from [2]:

Definition 2 (almost-saturating solutions). A half-integral fractional
matching x : E → {0, 1

2 , 1} is almost-saturating if the following conditions hold
for each node v:

– If x[v] = 0, then x[u] = 1 for all neighbors u of v.
– If x[v] = 1/2, then x[u] = 1 for at least one neighbor of v.

Definition 3 (half-saturated edges). Consider an almost-saturating solution
x : E → {0, 1

2 , 1}. An edge e = {u, v} is:

– half-saturated if x[u] = x[v] = 1/2,
– fully-saturated if x[u] = 1 or x[v] = 1.

In [2] there is an algorithm that finds an almost-saturating solution in O(Δ)
rounds. Let x̄ denote the almost-saturating solution for G, and we let G′ to
be the subgraph induced by the half-saturated edges; note that for each node
v there has to be at least one incident edge that is not half-saturated. Hence
G′ ∈ G2d+1, and we can apply A to produce a solution x′ for G′ using values in
set S(d). We can then extend domain of x′ to E by setting x′(e) = 0 for e �∈ G′.
Setting x(e) = x̄(e) + x′(e)/2 now gives a maximal fractional matching for the
graph G. This is because for any edge e = {u, v} in G′, we have x̄[u] = x̄[v] = 1/2
and x′[u] = 1 or x′[v] = 1. Moreover, x(e) ∈ S(d + 1). The number of rounds
for graphs of degree Δ = 2d + 2 is given by T (Δ) ≤ c1 + c2Δ + T (Δ − 1) for
some constants c1 and c2. Since T (Δ − 1) is independent of n, T (Δ) is also
independent of n. 	

5 Conclusions

Our results give a complete characterization of how fine-grained fractional values
are needed in a distributed algorithm that finds a maximal fractional matching
in any running time T (Δ) that only depends on the maximum degree Δ and
is independent of n. The main open question is if we can achieve this bound in
time T (Δ) = O(Δ)—this would be optimal by [10].

Acknowledgements. This work was supported in part by the Academy of Finland,
Grant 333837. We would like to thank the anonymous reviewers for their helpful feed-
back, and the members of Aalto Distributed Algorithms group for discussions.

Distributed Half-Integral Matching and Beyond 355

References

1. Angluin, D.: Local and global properties in networks of processors. In: Proceedings
of the 12th Annual ACM Symposium on Theory of Computing (STOC 1980), pp.
82–93. ACM Press (1980). https://doi.org/10.1145/800141.804655

2. Åstrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local
2-approximation algorithm for the vertex cover problem. In: Keidar, I. (ed.) DISC
2009. LNCS, vol. 5805, pp. 191–205. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04355-0 21

3. Åstrand, M., Suomela, J.: Fast distributed approximation algorithms for vertex
cover and set cover in anonymous networks. In: Proceedings of the 22nd ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2010), pp. 294–
302. ACM Press (2010). https://doi.org/10.1145/1810479.1810533

4. Balliu, A., Brandt, S., Hirvonen, J., Olivetti, D., Rabie, M., Suomela, J.: Lower
bounds for maximal matchings and maximal independent sets. J. ACM 68(5), 1–30
(2021). https://doi.org/10.1145/3461458

5. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted
vertex cover problem. J. Algorithms 2(2), 198–203 (1981). https://doi.org/10.1016/
0196-6774(81)90020-1

6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed sym-
metry breaking. In: 2012 IEEE 53rd Annual Symposium on Foundations of Com-
puter Science (FOCS 2012), pp. 321–330 (2012). https://doi.org/10.1109/FOCS.
2012.60

7. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed
symmetry breaking. J. ACM 63(3), 1–45 (2016). https://doi.org/10.1145/2903137

8. Fischer, M.: Improved deterministic distributed matching via rounding. Distrib.
Comput. 33, 279–291 (2020). https://doi.org/10.1007/s00446-018-0344-4

9. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. J.
ACM 60(5), 1–23 (2013). https://doi.org/10.1145/2528405

10. Göös, M., Hirvonen, J., Suomela, J.: Linear-in-Δ lower bounds in the LOCAL
model. Distrib. Comput. 30(5), 325–338 (2015). https://doi.org/10.1007/s00446-
015-0245-8

11. Hanckowiak, M., Karonski, M., Panconesi, A.: On the distributed complexity
of computing maximal matchings. SIAM J. Discret. Math. 15(1), 41–57 (2001).
https://doi.org/10.1137/S0895480100373121

12. Hirvonen, J., Suomela, J.: Distributed maximal matching: greedy is optimal. In:
Proceedings of the 31st Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC 2012), pp. 165–174. ACM Press (2012). https://
doi.org/10.1145/2332432.2332464

13. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal
matching. Inf. Process. Lett. 22(2), 77–80 (1986). https://doi.org/10.1016/0020-
0190(86)90144-4

14. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–
201 (1992). https://doi.org/10.1137/0221015

15. Mayer, A., Naor, M., Stockmeyer, L.: Local computations on static and dynamic
graphs. In: Proceedings of the 3rd Israel Symposium on the Theory of Computing
and Systems (ISTCS 1995), pp. 268–278. IEEE (1995). https://doi.org/10.1109/
ISTCS.1995.377023

16. Naor, M.: A lower bound on probabilistic algorithms for distributive ring coloring.
SIAM J. Discret. Math. 4(3), 409–412 (1991). https://doi.org/10.1137/0404036

https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/978-3-642-04355-0_21
https://doi.org/10.1007/978-3-642-04355-0_21
https://doi.org/10.1145/1810479.1810533
https://doi.org/10.1145/3461458
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1016/0196-6774(81)90020-1
https://doi.org/10.1109/FOCS.2012.60
https://doi.org/10.1109/FOCS.2012.60
https://doi.org/10.1145/2903137
https://doi.org/10.1007/s00446-018-0344-4
https://doi.org/10.1145/2528405
https://doi.org/10.1007/s00446-015-0245-8
https://doi.org/10.1007/s00446-015-0245-8
https://doi.org/10.1137/S0895480100373121
https://doi.org/10.1145/2332432.2332464
https://doi.org/10.1145/2332432.2332464
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1016/0020-0190(86)90144-4
https://doi.org/10.1137/0221015
https://doi.org/10.1109/ISTCS.1995.377023
https://doi.org/10.1109/ISTCS.1995.377023
https://doi.org/10.1137/0404036

356 S. Dahal and J. Suomela

17. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distrib. Comput. 14(2), 97–100 (2001). https://doi.org/10.1007/PL00008932

18. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.
Distrib. Comput. 14, 97–100 (2001). https://doi.org/10.1007/PL00008932

19. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society
for Industrial and Applied Mathematics (2000). https://doi.org/10.1137/1.
9780898719772

20. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Heidelberg (2003)

21. Yamashita, M., Kameda, T.: Computing on anonymous networks: part I—
characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7(1), 69–89
(1996). https://doi.org/10.1109/71.481599

https://doi.org/10.1007/PL00008932
https://doi.org/10.1007/PL00008932
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1109/71.481599

	Distributed Half-Integral Matching and Beyond
	1 Introduction
	1.1 Distributed Maximal Matching Is Hard
	1.2 Distributed Fractional Matching is Easier
	1.3 What About Half-Integral Matchings?
	1.4 Contributions
	1.5 Key New Ideas

	2 Preliminaries
	2.1 Graphs and Self-loops
	2.2 Model of Computing
	2.3 Applying PO Algorithms to Loopy Graphs

	3 Lower Bound Result
	3.1 Sets of Rational Numbers
	3.2 High-Level Plan
	3.3 Proof of Lemma 1
	3.4 Proof of Lemma 2

	4 Upper Bound Result
	5 Conclusions
	References

