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Abstract. This paper investigates the energy complexity of distributed
graph problems in multi-hop radio networks, where the energy cost of
an algorithm is measured by the maximum number of awake rounds
of a vertex. Recent works revealed that some problems, such as broad-
cast, breadth-first search, and maximal matching, can be solved with
energy-efficient algorithms that consume only poly log n energy. How-
ever, there exist some problems, such as computing the diameter of the
graph, that require Ω(n) energy to solve. To improve energy efficiency
for these problems, we focus on a special graph class: bounded-genus
graphs. We present algorithms for computing the exact diameter, the
exact global minimum cut size, and a (1 ± ε)-approximate s-t minimum
cut size with Õ(

√
n) energy for bounded-genus graphs. Our approach is

based on a generic framework that divides the vertex set into high-degree
and low-degree parts and leverages the structural properties of bounded-
genus graphs to control the number of certain connected components in
the subgraph induced by the low-degree part.

Keywords: Energy-aware computation · Radio networks · Diameter

1 Introduction

We consider the multi-hop radio network model [16] of distributed computing,
where a communication network is modeled as a graph G = (V,E): Each vertex
v ∈ V is a computing device and each edge {u, v} ∈ E indicates that u and v are
within the transmission range of each other. The graph topology of the under-
lying network G is initially unknown to all devices, except that two parameters
n = |V | and Δ = maxv∈V deg(v) are global knowledge.

Communication proceeds in synchronized rounds. All devices agree on the
same start time. In each round, each device can choose to do one of the following
three operations: (i) listen to the channel, (ii) transmit a message, or (iii) stay
idle. We do not allow a device to simultaneously transmit and listen, and we
assume that there is no message size constraint.

Each transmitting or idle device does not receive any feedback from the
communication channel, so a transmitting device u does not know whether its
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message is successfully received by any of its neighbors N(u). A listening device
v successfully receives a message from a transmitting device u ∈ N(v) if u is
the only transmitting device in N(v). If the number of transmitting devices in
N(v) is zero, then a listening device v hears silence. For the case the number
of transmitting devices in N(v) is greater than one, then the feedback that a
listening device v receives depends on the underlying model. In the No-CD model
(without collision detection), v still hears silence. In the CD model (with collision
detection), v hears collision. All our algorithms presented in this paper work in
the No-CD model.

We assume that each device has access to an unlimited local random source.
We say that an event occurs with high probability (w.h.p.) if the event occurs with
probability 1−1/poly(n). In this paper, we only consider Monte Carlo algorithms
that succeed w.h.p. If we let each vertex v ∈ V locally assign themselves O(log n)-
bit identifiers ID(v), then they are distinct with high probability, so we assume
that each device has a distinct identifier of length O(log n).

Complexity Measures. Time and energy are the two main complexity measures of
a distributed algorithm in radio networks. The time complexity of an algorithm is
the number of rounds of the algorithm. The energy complexity of an algorithm
is the maximum energy cost of a device, where the energy cost of a device v
is the number of rounds that v is non-idle. We only consider worst-case time
and energy complexities. The motivation for studying energy complexity is that
energy is a scarce resource in small battery-powered wireless devices, and such
devices can save energy by entering a low-power sleep mode.

1.1 Prior Work

Most of the early work on the energy complexity focused on single-hop radio
networks, which is the special case that G = (V,E) is a complete graph. Over the
last two decades, there is a long line of research to optimize the energy complexity
of leader election and its related problems in single-hop radio networks [6,8,9,
11,13,14,29–32,34,35,39].

This line of research was recently extended to multi-hop radio networks [10,
12,19,20]. Chang et al. [10] considers the problem of broadcasting a mes-
sage from one device to all other devices in a multi-hop radio network. They
showed that broadcasting can be done in poly log n energy. Specifically, they
presented randomized broadcasting algorithms for CD and No-CD using energy
O

(
log n log log Δ
log log log Δ

)
and O(log Δ log2 n) w.h.p., respectively. They also proved that

any algorithm transmitting a message from one endpoint to the other endpoint of
an n-vertex path costs Ω(log n) energy in expectation. The lower bound applies
even to the LOCAL model of distributed computing.

Chang et al. [12] showed that breadth-first search can be done w.h.p. using
2O(√

log n log log n) energy in No-CD. Their algorithm is based on a hierarchical
clustering using the low-diameter decomposition algorithm of Miller, Peng, and
Xu [38]. The energy complexity of breadth-first search was recently improved



264 Y.-J. Chang

to poly log n by Dani and Thomas [20]. Combining the polylogarithmic-energy
breadth-first search algorithm with the diameter approximation algorithm of
Roditty and Williams [41], an approximation D̃ of the diameter D such that
D̃ ∈ [�2D/3�,D] can be computed with Õ(

√
n) energy w.h.p. [12]. The notation

Õ(·) suppresses any poly log n factor.
Dani et al. [19] showed that a maximal matching can be computed in

O(Δ log n) time and O(log Δ log n) energy w.h.p. in No-CD. There exists a fam-
ily of graphs such that these time and energy bounds are simultaneously optimal
up to polylogarithmic factors.

1.2 Our Contribution

Not all problems admit energy-efficient algorithms in multi-hop radio networks.
It was shown in [12] that any algorithm that computes a (1.5−ε)-approximation
of the diameter requires Ω̃(n) energy w.h.p. The lower bound holds even on
graphs with arboricity O(log n) and treewidth O(log n).

To improve energy efficiency for diameter computation, we focus on the class
of bounded-genus graphs. We show that the diameter of the graph can be com-
puted using Õ(

√
n) energy w.h.p. in bounded-genus graphs.

Theorem 1. There is an algorithm that computes the diameter in Õ(n1.5) time
and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Our approach is based on a generic framework that divides the vertex set into
high-degree and low-degree parts. We then classify the connected components of
the subgraph induced by the low-degree part into several types. We will leverage
the structural properties of bounded-genus graphs to upper-bound the number of
connected components of one type. For the remaining connected components, we
will design energy-efficient algorithms that extract all the necessary information
from these connected components for the purpose of diameter computation.

Our approach is sufficiently general so that it is applicable to other problems
as well. Using the same approach, we show that the exact global minimum cut
size and a (1± ε)-approximate s-t minimum cut size can also be computed using
Õ(

√
n) energy w.h.p. in bounded-genus graphs.

Theorem 2. There is an algorithm that computes the minimum cut size in
Õ(n1.5) time and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Theorem 3. There is an algorithm that computes an (1 ± ε)-approximate s–t
minimum cut size in Õ(n1.5) · ε−O(1) time and Õ(

√
n) · ε−O(1) energy w.h.p. for

bounded-genus graphs in No-CD.

To complement these algorithmic results, we show that any algorithm that
computes the exact size of an s–t minimum cut or a global minimum cut requires
Ω(n) energy. The lower bound for the s–t minimum cut holds even for planar
bipartite graphs, so it is necessary that we consider approximation algorithms
for this problem. These lower bounds apply to both No-CD and CD.
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Theorem 4. For any randomized algorithm that computes the s–t minimum
cut size of a planar bipartite graph w.h.p. in CD, the energy complexity of the
algorithm is Ω(n).

Theorem 5. For any randomized algorithm that computes the minimum cut
size of a unit-disc graph w.h.p. in CD, the energy complexity of the algorithm is
Ω(n).

1.3 Additional Related Work

There are numerous works studying energy-aware distributed computing in
multi-hop networks from different perspectives. In radio networks, the power
of a signal received is proportional to O(1/dα), where d is the distance to the
sender, and α is a constant related to environmental factors. Kirousis et al. [33]
studied the optimization problem of assigning transmission ranges of devices
subject to some connectivity and diameter constraints so as to minimize the
total power consumption. See [2,17,43] for related work.

There are several works [7,22,42] on the subject of reducing the number of
rounds or transmissions required to complete a specific communication task. In
the setting of known network topology, Gasieniec et al. [23] designed a random-
ized protocol for broadcasting in O(D + kn1/(k−2) log2 n) rounds such that each
device transmits at most k times.

The energy complexity has recently been studied in the well-known LOCAL
and CONGEST models of distributed computing [3,5,15,21,27].

There is a large body of research on distributed graph algorithms in pla-
nar networks, bounded-genus networks, or more broadly H-minor-free networks:
distributed approximation [1,18,36,44], low-congestion shortcuts and its appli-
cations [24–26,28], and other planar graph algorithms [37,40].

1.4 Organization

In Sect. 2, we present the basic tools. In Sect. 3, we present our lower bounds. In
Sect. 4, we present our decomposition of bounded-genus networks. In Sect. 5 and
Appendix A, we present our algorithm for diameter computation. In Appendix
B, we present our algorithm for minimum cut computation. In Appendix C, we
present the proof details for our basic tools.

2 Tools

2.1 Communication Between Two Sets of Vertices

Let S and R be two vertex sets that are not necessarily disjoint. The task
SR-comm [10] is defined as follows. Each vertex u ∈ S holds a message mu that
it wishes to send, and each vertex v ∈ R wants to receive a message from vertices
in N+(v) ∩ S, where N+(v) = N(v) ∪ {v} is the inclusive neighborhood of v.
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Table 1. The time and energy complexities of SR-comm and its variants.

Task Time Energy

SR-comm O(log Δ log n) O(log Δ log n)

SR-commall O(Δ′ log n) O(Δ′ log n)

SR-commmin O(K log Δ log n) O(log K log Δ log n)

SR-commmax

SR-commapx O(ε−6 log W log Δ log n) O(ε−6 log W log Δ log n)

SR-commmulti O(M log Δ log2 n) O(M log Δ log2 n)

Specifically, the task SR-comm requires that for each vertex v ∈ R with
N+(v) ∩ S �= ∅, vertex v receives a message mu from at least one vertex u ∈
N+(v) ∩ S w.h.p. Several variants of SR-comm are defined as follows.

All messages: SR-commall. The task SR-commall requires that each vertex v ∈
R receives the message mu for each u ∈ N+(v) ∩ S w.h.p.

Approximate sum: SR-commapx. Suppose the message mu sent from each
vertex u ∈ S is an integer within the range [W ]. The task SR-commapx requires
each vertex v ∈ R computes an (1±ε)-factor approximation of the summation∑

u∈N+(v)∩S mu w.h.p.
Minimum and maximum: SR-commmin and SR-commmax. The message mu

sent from each vertex u ∈ S contains a key ku from the key space [K] =
{1, 2, . . . ,K}. For SR-commmin, it is required that w.h.p., each vertex v ∈ R
with N+(v)∩S �= ∅ receives a message mu from a vertex u ∈ N+(v)∩S such
that ku = minu′∈N+(v)∩S ku′ . The task SR-commmax is defined analogously
by replacing minimum with maximum.

Multiple messages: SR-commmulti. Consider the setting where each vertex
u ∈ S holds a set of messages Mu. For each message m, all vertices hold-
ing the same message m have access to some shared random bits associated
with m. We assume that for each v ∈ R, the number of distinct messages
in

⋃
u∈N+(v)∩S Mu is upper bounded by a number M that is known to all

vertices. The task SR-commmulti requires that each vertex v ∈ R receives all
distinct messages in

⋃
u∈N+(v)∩S Mu w.h.p.

Table 1 summarizes the time and energy complexities of our algorithms for
these tasks. For SR-commall, the parameter Δ′ can be any known upper bound
on |S ∩ N(v)|, for each v ∈ R. For example, we may set Δ′ = Δ if no better
upper bound is known. The proofs for these results are left to Appendix C.

2.2 Communication via a Good Labeling

A good labeling is a vertex labeling L : V (G) 
→ {0, . . . , n − 1} such that each
vertex v with L(v) > 0 has a neighbor u with L(u) = L(v) − 1 [10]. A vertex
v is called a layer-i vertex if L(v) = i. Observe that if there is a unique layer-0
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vertex r, then L represents a tree T rooted at r, so we call r the root of the good
labeling L. Since a vertex might have multiple choices of the parent, the tree T
is not unique in general. The following lemma was proved in [10].

Lemma 1 ([10]). A good labeling L with a unique layer-0 vertex can be con-
structed in O(n log Δ log2 n) time and O(log Δ log2 n) energy w.h.p.

The following lemma shows that a good labeling allows the vertices in the
graph to broadcast messages in an energy-efficient manner.

Lemma 2. Suppose that we are given a good labeling L with a unique layer-0
vertex. Then we can achieve the following.

1. It takes O(nΔ log n) time and O(Δ log n) energy for each vertex to broadcast
a message to the entire network w.h.p.

2. It takes O(nx log Δ log2 n) time and O(x log Δ log2 n) energy for x vertices to
broadcast messages to the entire network w.h.p.

Proof. Let r be the root of L. For the first task, consider the following algorithm.
We relay the message of each vertex to the root r using the following convergecast
algorithm. For i = n − 1 down to 1, do SR-commall with S being the set of all
layer-i vertices and R being the set of all layer-(i−1) vertices. For each execution
of SR-commall, each vertex in S transmits not only its message but also all other
messages that it has received so far. Although we perform SR-commall n − 1
times, each vertex only participates at most twice. By Lemma 22, the cost of
the convergecast algorithm is O(nΔ log n) time and O(Δ log n) energy.

At the end of the convergecast algorithm, the root r has gathered all messages
sent during the algorithm. After that, the root r then broadcasts this information
to all vertices via the following divergecast algorithm. For i = 0 to n − 2, do
SR-comm with S being the set of all layer-i vertices and R being the set of
all layer-(i + 1) vertices. Similarly, although we perform SR-comm for n − 1
times, each vertex only participates at most twice. By Lemma 21, the cost of
the divergecast algorithm is O(n log Δ log n) time and O(log Δ log n) energy. At
the end of the divergecast algorithm, all vertices have received all messages.

For the rest of the proof, we consider the second task. Let X be the set of
x vertices that attempt to broadcast a message. We solve this task similarly in
two steps:

– We first do a convergecast, using SR-commmulti with M = x, to gather all
x messages to the root. By Lemma 23, SR-commmulti costs O(x log Δ log2 n)
time, so the convergecast costs O(nx log Δ log2 n) time and O(x log Δ log2 n)
energy.

– After that, we do a divergecast based on SR-comm to broadcast these mes-
sages from root to everyone. The divergecast costs O(n log Δ log n) time and
O(log Δ log n) energy.

In order to use SR-commmulti, the initial holder of each message m needs to first
generate a sufficient number of random bits and attach them to the message.
These random bits serve as the shared randomness associated with the message
m, which is needed in the definition of SR-commmulti. �
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Lemma 3. There is an algorithm that lets all vertices learn the entire graph
topology in O(nΔ log n) time and O(Δ log n) energy w.h.p.

Proof. We first let each vertex v learn the list of identifiers in N(v) by doing
SR-commall with S = R = V , where the message of each vertex v is ID(v). By
Lemma 22, this step takes O(Δ log n) time and energy. After that, we apply
Lemma 1 to construct a good labeling with a unique layer-0 vertex, and then
we apply Lemma 2(1) to let all vertices learn the entire network topology by
having each v broadcasting ID(v) and the list of identifiers in N(v). This step
takes O(nΔ log n) time and O(Δ log n) energy. �


3 Lower Bounds

In this section, we prove the two lower bounds: Theorems 4 and 5.

Theorem 4. For any randomized algorithm that computes the s–t minimum
cut size of a planar bipartite graph w.h.p. in CD, the energy complexity of the
algorithm is Ω(n).

Proof. Suppose that there is a randomized algorithm A that computes the exact
s–t minimum cut size of any planar bipartite graph with high probability and
using o(n) energy. Let G be a complete bipartite graph K2,Δ with the bipartition
{s, t} and {v1, . . . , vΔ}. Set X = Δ/5. We select Δ to be sufficiently large so that
it is guaranteed that both s and t use at most X unit of energy in an execution
of A on G.

Let G′ be the result of removing vΔ from G. The size of a s–t minimum cut
of G is Δ, and the size of a s–t minimum cut of G′ is Δ − 1. Therefore, A lets s
correctly distinguish between G and G′ with high probability.

Consider an execution of A on G. Let S be the subset of {v1, . . . , vΔ} such
that vi ∈ S if there is a time slot τ where (i) vi transmits, (ii) the number of
vertices in {v1, . . . , vΔ} that transmit is at most 2, and (iii) at least one of s and
t listens.

We claim that |S| ≤ 4X = 4Δ/5. Let T be the set of all time slots τ such that
the above conditions (i), (ii), and (iii) hold for at least one vi ∈ {v1, . . . , vΔ}.
In view of condition (ii), we must have |T | ≥ |S|/2. In view of condition (iii), if
τ ∈ T , then at least one of s and t must listen at time τ , so the energy cost of
one of s and t must be at least |T |/2 ≥ |S|/4, which implies X ≥ |S|/4.

Let E be the event that vΔ /∈ S in an execution of A on G. Whether or
not E occurs depends only on the local randomness stored in the vertices {s, t}
and {v1, . . . , vΔ}. Since |S| ≤ 4Δ/5, at least 1/5 fraction of the vertices in
{v1, . . . , vΔ} are not in S. Since the probability that vi /∈ S is identical for all
vi ∈ {v1, . . . , vΔ}, we have Pr[E ] ≥ 1/5.

Consider the following scenario. All vertices in {s, t} and {v1, . . . , vΔ} have
decided their random bits in advance. With probability 1/2, we run A on G.
With probability 1/2, we run A on G′. If E occurs, then the execution of A on
both G and G′ is completely identical from the point of view of each vertex,
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except for vΔ. Therefore, conditioning on event E , the probability that vertex s
correctly decides whether the underlying graph is G or G′ is at most 1/2, as s
can only guess randomly.

Since Pr[E ] ≥ 1/5, the probability that vertex s fails to correctly decide
whether the underlying graph is G or G′ is at least (1/2) · (1/5) = 1/10, so s
fails to correctly calculate the s–t minimum cut with probability at least 1/10 in
the above scenario. This contradicts the assumption that A is able to compute
the s–t minimum cut with high probability. �

Theorem 5. For any randomized algorithm that computes the minimum cut
size of a unit-disc graph w.h.p. in CD, the energy complexity of the algorithm is
Ω(n).

Proof. Consider the case where the underlying graph is Kn with probability
1/2, and is Kn − e with probability 1/2, where the edge e is chosen uniformly
at random from the set of all edges in Kn. Let A be any randomized algorithm
that computes the size of a minimum cut exactly with high probability. Observe
that the size of a minimum cut of Kn is n − 1 and the size of a minimum cut of
Kn − e is n − 2, so A is able to distinguish between Kn and Kn − e with high
probability. It was shown in [12] that any algorithm that distinguishes between
Kn and Kn − e with success probability at least 3/4 necessarily has energy cost
Ω(n) in both CD and No-CD, so the energy complexity of A is Ω(n). �


4 Graph Partitioning

The genus of a graph G is the minimum number g such that G can be drawn on
an oriented surface of g handles without crossing. For example, planar graphs
are the graphs with genus zero, and the graphs that can be drawn on a torus
without crossing are the graphs with genus at most one. A class of graphs is
called bounded-genus if the genus of all graphs in the class can be upper bounded
by some constant g = O(1). In this section, we consider a classification of the
connected components of the subgraph induced by the low-degree vertices in a
bounded-genus graph. Our algorithms, which will be presented in subsequent
sections, make use of the classification.

Let G = (V,E) be any bounded-genus graph. Let VH be the set of vertices
that have degree at least

√
n. Let VL = V \ VH . Since bounded-genus graphs

have arboricity O(1), we have |E| = O(n), which implies |VH | = O(
√

n).
From now on, we assume |VH | ≥ 1, since otherwise G has maximum degree

Δ ≤ √
n, so we can already solve all problems using O(nΔ log Δ log n)) = Õ(n1.5)

time and O(Δ log Δ log n)) = Õ(
√

n) energy by learning the entire graph topol-
ogy using the algorithm of Lemma 3.

Given a set of vertices S, we write G[S] to denote the subgraph of G induced
by S and write G+[S] to denote the subgraph of G induced by all edges that
have at least one endpoint in S. We divide the connected components of G[VL]
into three types.
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Type 1. A connected component S of G[VL] is of type-1 if |S| <
√

n and
|⋃w∈S N(w)∩VH | = 1. For each vertex u ∈ VH , we write C(u) to denote the
set of type-1 components S such that

⋃
w∈S N(w) ∩ VH = {u}.

Type 2. A connected component S of G[VL] is of type-2 if |S| <
√

n and
|⋃w∈S N(w) ∩ VH | = 2. For each pair of two distinct vertices {u, v} ⊆
VH , we write C(u, v) to denote the set of type-2 components S such that⋃

w∈S N(w) ∩ VH = {u, v}.
Type 3. A connected component S of G[VL] is of type-3 if it is neither of type-1

nor of type-2.

A connected component S of G[VL] is of type-3 if |S| ≥ √
n or |⋃w∈S N(w) ∩

VH | ≥ 3. The number of type-3 components S with |S| ≥ √
n is clearly at

most |V |/√n =
√

n. We will show that the number of type-3 components with
|⋃w∈S N(w) ∩ VH | ≥ 3 is also O(

√
n).

Lemma 4. Let G = (V,E) be a bipartite graph of genus at most g. Let V = X ∪
Y be the bipartition of G. If deg(v) ≥ 3 for each v ∈ X, then |X| ≤ 2|Y |+4(g−1).

Proof. Consider any embedding of G into a surface of genus g, and let F be set
of faces. In a bipartite graph, each face has at least four edges, and each edge
appears in at most two faces, so |E| ≥ 2|F |. Combining this inequality with
Euler’s polyhedral formula |V | − |E| + |F | ≥ 2 − 2g, we obtain that

2V | − |E| ≥ 4(1 − g).

Since deg(v) ≥ 3 for each v ∈ X, we have |E| ≥ 3|X|, so

2V | − |E| = 2(|X| + |Y |) − |E| ≤ 2(|X| + |Y |) − 3|X| = 2|Y | − |X|.
Combining these upper and lower bounds of 2|V | − |E|, we obtain that 2|Y | −
|X| ≥ 4(1 − g), so |X| ≤ 2|Y | + 4(g − 1), as required. �


Note that Lemma 4 is precisely the reason that our algorithms only apply
to bounded-genus graphs and do not work on an arbitrary H-minor-free graph.
Consider a complete bipartite graph with the bipartition X and Y such that
|Y | = 3. Such a graph does not contain K5 as a minor, regardless of the size of
X. Therefore, K5-minor-freeness does not allow us to upper bound |X| by any
function of |Y |. Therefore, the bounded-genus requirement in Lemma 4 cannot
be relaxed to H-minor-freeness for an arbitrary H.

Lemma 5. If G is a bounded-genus graph, then the number of type-3 compo-
nents is O(

√
n).

Proof. A connected component S of G[VL] is of type-3 if |S| ≥ √
n or

|⋃w∈S N(w) ∩ VH | ≥ 3. As discussed earlier, the number of type-3 components
S with |S| ≥ √

n is at most
√

n, so we just need to prove that the number of
type-3 components S with |⋃w∈S N(w) ∩ VH | ≥ 3 is also O(

√
n). Consider a

bipartite graph G∗ = (V ∗, E∗) with the bipartition V ∗ = X∗ ∪ Y ∗ defined as
follows.
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– X∗ is the set of all type-3 components S such that |⋃w∈S N(w) ∩ VH | ≥ 3.
– Y ∗ = VH .
– For each component S ∈ X∗ and each vertex v ∈ Y ∗, {S, v} ∈ E∗ if v ∈⋃

w∈S N(w).

Alternatively, G∗ can be constructed from G by the following steps.

– Remove all type-1, type-2, and type-3 components S with |⋃w∈S N(w) ∩
VH | ≤ 2.

– For each type-3 component S with |⋃w∈S N(w) ∩ VH | ≥ 3, contract S into a
vertex.

As G∗ can be obtained from G via a sequence of edge contractions and
vertex removals, G∗ is a bounded-genus graph. Observe that deg(S) ≥ 3 for
each S ∈ X∗ in G∗, so we may apply Lemma 4, which shows that the number
|X∗| of type-3 components S such that |⋃w∈S N(w) ∩ VH | ≥ 3 satisfies |X∗| ≤
2|Y ∗| + O(1) = 2|VH | + O(1) = O(

√
n). �


We write GH to denote the graph defined by the vertex set VH and the edge
set {{u, v} : |C(u, v)| > 0}. The following observation is useful.

Lemma 6. If G is a bounded-genus graph, then GH is also a bounded-genus
graph, so the number of edges in GH is O(

√
n) and there exists an edge orien-

tation of GH such that each vertex has outdegree O(1).

Proof. The graph GH can be obtained from G via a sequence of edge contractions
and vertex removals, so GH is a bounded-genus graph. As bounded-genus graphs
have arboricity O(1), and so the number of edges in GH is at most linear in the
number of vertices in GH , which is O(

√
n), and we can orient the edges of GH

in such a way that each vertex has outdegree O(1). �


5 Diameter

In this section, we show that for bounded-genus graphs, the diameter can be com-
puted using Õ(

√
n) energy. We begin with discussing the high-level proof idea.

First of all, using Lemma 2, learning the entire graph topology of the subgraph
induced by VH and all type-3 components is doable using Õ(

√
n) energy. Intu-

itively, this is due to the following facts: (i) |VH | = O(
√

n), (ii) deg(v) = O(
√

n)
for each v ∈ VL, and (iii) the number of type-3 components is O(

√
n).

The main difficulty in the diameter computation is dealing with type-1 and
type-2 components. For example, a vertex u ∈ VH can be connected to Θ(n)
type-1 components in that |C(u)| = Θ(n). Since we aim for an algorithm with
energy complexity Õ(

√
n), throughout the entire algorithm, u can only receive

messages from at most Õ(
√

n) components in C(u). The challenge here is to show
that the diameter can still be calculated with a limited amount of information
about type-1 and type-2 components and show that such information can be
extracted in an energy-efficient manner in the radio network model.
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We will define a set of parameters of type-1 and type-2 components and show
that with these parameters, the exact value of the diameter can be calculated.
Based on this result, we will define a subgraph G� of G such that the diameter
of G equals the diameter of G�, and then in Appendix A we will design an
energy-efficient algorithm to learn the graph topology of G�.

In the subsequent discussion, we write eccentricity(u, S) to denote
maxv∈S dist(u, v). By default, all distances are measured in the underlying net-
work G. We use subscripts to describe distances that are measured in a vertex
set, an edge set, or a subgraph.

Parameters for Type-1 Components. We first consider the type-1 components in
C(u), for any vertex u ∈ VH .

(Ai[u], ai[u]). Let A1[u] be a component S ∈ C(u) that maximizes
eccentricity(u, S), and let A2[u] be a component S ∈ C(u)\{A1[u]} that maxi-
mizes eccentricity(u, S). For i ∈ {1, 2}, we write ai[u] = eccentricity(u,Ai[u]).

(B[u], b[u]). Let B[u] be a component S ∈ C(u) that maximizes
maxs,t∈S∪{u} dist(s, t), and we write b[u] = maxs,t∈B[u]∪{u} dist(s, t).

In the above definitions, ties can be broken arbitrarily if there are multiple
choices. Some of the above definitions become undefined when |C(u)| is too
small. For example, if |C(u)| = 1, then A2[u] and a2[u] are undefined. In such a
case, we set these parameters to their default values: zero or an empty set. For
example, if |C(u)| = 1, then we set A2[u] = ∅ and a2[u] = 0.

Any path connecting a vertex in
⋃

S∈C(u) S to the rest of the graph must pass
the vertex u ∈ VH , so the amount of information we can afford to extract from⋃

S∈C(u) S is limited. Intuitively, for the purpose of calculating the diameter, we
only need the following information from

⋃
S∈C(u) S:

– The longest distance between two vertices in
⋃

S∈C(u) S ∪ {u}, which is
max{b[u], a1[u] + a2[u]}.

– The longest distance between u and a vertex in
⋃

S∈C(u) S, which is a1[u].

Regardless of the size of C(u), we only need to learn a1[u], a2[u], and b[u] from
the components of C(u). Later we will show that these parameters can be learned
efficiently via SR-commmax.

Parameters for Type-2 Components. Next, we consider the type-2 components
in C(u, v), for any two distinct vertices u, v ∈ VH .

(R[u, v], r[u, v]). Let R[u, v] be a component S ∈ C(u, v) that minimizes
distG+[S](u, v), and we write r[u, v] = distG+[R[u,v]](u, v). In other words,
R[u, v] is a component that contains a shortest path between u and v, among
all u–v paths via the vertices in

⋃
S∈C(u,v) S.

(Ak
i [u, v], ak

i [u, v]). For each component S ∈ C(u, v), we write Su,k to denote
the set of vertices {w ∈ S : distG+[S](w, v) − distG+[S](w, u) ≥ k}. In other
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words, Su,k is the set of all vertices in S whose distance to u in G+[S] is
shorter than that to v by at least k.
Let Ak

1 [u, v] be a component S ∈ C(u, v) that maximizes eccentricityG+[S]

(u, Su,k), and let Ak
2 [u, v] be a component S ∈ C(u, v)\{Ak

1 [u, v]} that max-
imizes eccentricityG+[S](u, Su,k). We write ak

i [u, v] = eccentricityG+[Ak
i [u,v]]

(u,Ak
i [u, v]). We only consider k ∈ {−√

n, . . . ,
√

n}.
(Bl[u, v], bl[u, v]). For a component S ∈ C(u, v), we write Gl[S] to denote the

graph resulting from adding to G+[S] a path of length l connecting u and
v, and we write φl(S) to denote the maximum value of distGl[S](s, t) among
all pairs of vertices s, t ∈ S ∪ {u, v}. A useful observation here is that if
distV \S(u, v) = l, then φl(S) equals the maximum value of distG(s, t) among
all pairs of vertices s, t ∈ S ∪ {u, v}.
Let Bl[u, v] be a component S ∈ C(u, v) \ {R[u, v]} that maximizes φl(S),
and we write bl(u, v) = φl(Bl[u, v]). We only consider l ∈ {1, . . . ,

√
n}.

Similar to the parameters of type-1 components, all the above parameters
are set to their default values if they are undefined. Note that the definitions of
ak

i [u, v] and Ak
i [u, v] are asymmetric in the sense that we might have ak

i [u, v] �=
ak

i [v, u] and Ak
i [u, v] �= Ak

i [v, u]. All remaining parameters for type-2 components
are symmetric.

We briefly explain how the above parameters can be used in the diameter
calculation. Let P = (s, . . . , t) be an s–t shortest path in G whose length equals
the diameter. There are three possible ways that P intersects the vertex set⋃

S∈C(u,v) S.

– Suppose s and t are within G+[S], for a component S ∈ C(u, v). In this case,
if distV \S(u, v) = l, then the length of P equals φl(S) = bl[u, v].

– Suppose there is a subpath P ′ = (u, . . . , v) of P whose intermediate vertices
are all in

⋃
S∈C(u,v) S. In this case, the length of P ′ equals r[u, v].

– Suppose there is a component S ∈ C(u, v) such that s ∈ S and t /∈ S ∪{u, v}.
Suppose u is the first vertex of P that is not in S. Consider the subpath
P ′ = (s, . . . , u) of P . If dist(t, v)−dist(t, u) = k, then we must have s ∈ Su,k,
since otherwise dist(s, v)+dist(v, t) is smaller than the length of P , violating
the assumption that P is an s–t shortest path. If t /∈ Ak

1 [u, v], then the length
of P ′ equals ak

1 [u, v]. If t ∈ Ak
1 [u, v], then the length of P ′ equals ak

2 [u, v].

Intuitively, the above discussion shows that the parameters described above
capture all the necessary information needed to be extracted from the type-2
components for the purpose of diameter computation. We have O(

√
n) parame-

ters for each C(u, v). We will later show that all these parameters can be learned
using O(

√
n) energy.

The graph G�. We define G� as the subgraph induced by the union of (i) VH ,
(ii) all type-3 components, (iii) A1[u], A2[u], and B[u], for each u ∈ VH , and
(iv) Ak

i [u, v], Ak
i [v, u], Bl[u, v], and R[u, v], for each pair of distinct vertices

{u, v} ⊆ VH , i ∈ {1, 2}, k ∈ {−√
n, . . . ,

√
n}, and l ∈ {1, . . . ,

√
n}. In the

subsequent discussion, we prove that the diameter of G equals the diameter



274 Y.-J. Chang

of G�, so the task of computing the diameter of G is reduced to learning the
topology of G�. We will show that the following two statements are correct.

(S1) For each pair of vertices {s, t} in graph G�, we have distG(s, t) =
distG�(s, t).

(S2) For each pair of vertices {s, t} in graph G, there exists a pair of vertices
{s′, t′} in graph G� satisfying distG(s, t) ≤ distG(s′, t′).

These statements imply that G and G� have the same diameter. We first prove
that (S1) is true.

Lemma 7. For any two vertices s and t in G�, we have distG(s, t) =
distG�(s, t).

Proof. We choose P to be an s–t path in G whose length is distG(s, t) that uses
the minimum number of vertices not in G�. If P is entirely in G�, then we are
done. For the rest of the proof, we assume that P is not entirely in G�. Then
P contains a subpath P ′ = (u, . . . , v) whose intermediate vertices are all within
a type-2 component S ∈ C(u, v) that is not included to G�. By the definition
of R[u, v], the length of P ′ is at least r[u, v], which is the shortest path length
between u and v via R[u, v]. Therefore, replacing P ′ with a shortest u–v path
in Rj [u, v], which is entirely in G�, does not increase the path length. This
contradicts our choice of P . Hence P is entirely in G�. �

Lemma 8. Let S be a type-1 or type-2 component that is not included in G�.
Let s ∈ S. Let t be any vertex in G that does not belong to G+[S]. Then there
exists a vertex s′ in G� such that distG(s′, t) ≥ distG(s, t).

Proof. Let P be an s–t shortest path in G. Suppose that S ∈ C(u) is of type-1.
Because S is not included in G�, we must have |C(u)| ≥ 3, so both A1[u] �= S
and A2[u] �= S are not ∅. Let i ∈ {1, 2} be an index such that t is not in Ai[u].
Consider the subpath P̃ = (s, . . . , u) of P . By the definition of ai[u] and Ai[u],
the length of P̃ is at most ai[u], and there exists a vertex s′ ∈ Ai[u] such that
the length of the shortest path between s′ and u equals ai[u]. Thus, we have

distG(s′, t) = distG(s′, u) + distG(u, t) ≥ distG(s, u) + distG(u, t) = distG(s, t).

Next, consider the case that S ∈ C(u, v) is of type-2. The path P must
contain at least one of u and v. Without loss of generality, assume that u is
the first vertex of P that is not in S, so there is a subpath P̃ = (s, . . . , u) of
P such that all vertices in P̃ other than u are in S. The length of P equals
distG+[S](s, u) + distG(u, t).

Let k = distG+[S](s, v) − distG+[S](s, u), so Su,k ⊇ {s} �= ∅. Since S is not of
type-3, |S| <

√
n, so k ∈ {−√

n, . . . ,
√

n}. Because S is not included in G�, both
Ak

1 [u, v] �= S and Ak
1 [u, v] �= S are not ∅. At least one of Ak

1 [u, v] and Ak
2 [u, v]

does not contain t. We choose S′ = Ak
i [u, v] as any one of them that does not

contain t. We choose s′ ∈ S′ as a vertex such that distG+[S′](s′, u) = ak
i [u, v]
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and distG+[S′](s′, v) − distG+[S′](s′, u) ≥ k. The existence of such a vertex s′ is
guaranteed by the definition of Ak

i [u, v].
Our plan is to show that (i) ak

i [u, v] + distG(u, t) ≥ distG(s, t) and (ii)
distG(s′, t) = ak

i [u, v] + distG(u, t). Combining these two inequalities give us
the desired result: distG(s′, t) ≥ distG(s, t).

Proof of (i). By the definition of Ak
i [u, v], we must have

distG+[S′](s′, u) = ak
i [u, v] ≥ distG+[S](s, u),

so we have

ak
i [u, v] + distG(u, t) ≥ distG+[S](s, u) + distG(u, t) = distG(s, t).

Proof of (ii). Suppose that (ii) is not true. Then any shortest path between s′

and t must contain a subpath P ′ = (s′, . . . , v) such that u is not in P ′, and so
we have:

distG(s′, t) = distG+[S′](s′, v) + distG(v, t) < distG+[S′](s′, u) + distG(u, t).

Combining this inequality with the known fact distG+[S′](s′, v) − distG+[S′]
(s′, u) ≥ k, we have:

distG(u, t) − distG(v, t) > distG+[S′](s′, v) − distG+[S′](s′, u) ≥ k,

which implies that distG(v, t) < distG(u, t)−k (�). We calculate an upper bound
of distG(s, t):

distG(s, t) ≤ distG+[S](s, v) + distG(v, t)

= (k + distG+[S](s, u)) + distG(v, t) by definition of k.

< (k + distG+[S](s, u)) + (distG(u, t) − k) by (�).

= distG+[S](s, u) + distG(u, t).

This contradicts the assumption that P is a shortest path between s and t in G,
as the length of P equals distG+[S](s, u) + distG(u, t). �


The following lemma shows that (S2) is true.

Lemma 9. For any two vertices s and t in graph G, there exist two vertices s′

and t′ in graph G� such that distG(s, t) ≤ distG(s′, t′).

Proof. If both s and t are already in G�, then we are done by setting s′ = s and
t′ = t. In the subsequent discussion, we focus on the case that at least one of s
and t is not in G�. By symmetry, we will assume that s is not in G�, so there is
a type-1 or a type-2 component S that is not included in G� such that s ∈ S.

Case 1: t belongs to G+[S]. If S ∈ C(u) for some u ∈ VH , then there exist two
vertices s′ and t′ in the component B[u] ∈ C(u) such that distG(s′, t′) = b[u] ≥
distG(s, t) by the definition of B[u].
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The remaining case is that S ∈ C(u, v) for some u, v ∈ VH . Let l =
distV \S(u, v). We observe that l ≤ r[u, v]. The reason is that the existence
of a component S �= R[u, v] guarantees that R[u, v] �= ∅, which implies that
l = distV \S(u, v) ≤ distG+[R[u,v]](u, v) = r[u, v], as G+[R[u, v]] is a subgraph of
G[V \ S].

Since R[u, v] is of type-2, we have r[u, v] ≤ |R[u, v]| + 1 ≤ √
n, so

l ∈ {1, . . . ,
√

n} Consider the component Bl[u, v] ∈ C(u, v). We observe that
l = distV \Bl[u,v](u, v), since the shortest u–v path length via R[u, v] is at most
the length of any u–v path via S or Bl[u, v], by our choice of R[u, v]. More
precisely, we have l = distV \S(u, v) = distV (u, v) = distV \Bl[u,v](u, v), as the
above discussion implies that including S and excluding Bl[u, v] in the sub-
script does not change the shortest u–v path length. Here we use the fact that
Bl[u, v] �= R[u, v], which is due to the definition of Bl[u, v].

Since l = distV \Bl[u,v](u, v), by the definition of Bl[u, v], there exist two ver-
tices s′ and t′ in G+[Bl[u, v]] such that distG(s′, t′) ≥ distG(s, t), since otherwise
we would have selected Bl[u, v] = S.

Case 2: t does not belong to G+[S]. We apply Lemma 8 to find a vertex s′ in
G� such that distG(s, t) ≤ distG(s′, t). If t is already in G�, then we are done.
Otherwise, there is a type-1 or a type-2 component S′ that is not included in
G� such that t ∈ S′. There are two sub-cases.
– Suppose s′ belongs to G+[S′]. Then we may apply the same argument for

Case 1 above to find two vertices s′′ and t′′ in G� such that distG(s, t) ≤
distG(s′, t) ≤ distG(s′′, t′′).

– Suppose s′ does not belong to G+[S′]. Then we may apply Lemma 8 again
to find a vertex t′ in G� such that distG(s, t) ≤ distG(s′, t) ≤ distG(s′, t′).

In both sub-cases, we can find two vertices in G� whose distance in G is at least
distG(s, t). �

Lemma 10. The diameter of G equals the diameter of G�.

Proof. Lemma 7 shows that (S1) is true. Lemma 9 shows that (S2) is true. These
two results together imply that G and G� have the same diameter. Statement
(S1) implies that the diameter of G� is at most the diameter of G. For the other
direction, let s and t be two vertices in G such that dist(s, t) equals the diameter
of G. By (S2), there exist two vertices s′ and t′ in G� such that distG(s, t) ≤
distG(s′, t′). By (S1), distG(s′, t′) = distG�(s′, t′), so the diameter of G� is at
least the diameter of G. �


In Appendix A, we will design an energy-efficient algorithm to learn the graph
topology of G�. This algorithm, combined with Lemma 10, allows us to prove
Theorem 1.

A Learning the Topology of G�

By Lemma 10, the task of computing the diameter of a bounded-genus graph
G is reduced to computing the diameter of G�. In this section, we show that all
vertices can learn the graph topology of G� using Õ(

√
n) energy.
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Recall that GH is the graph defined by the vertex set VH and the edge set
{{u, v} : |C(u, v)| > 0}. By Lemma 6, we know that E(GH) = O(

√
n) and there

exists an assignment F : E(GH) 
→ VH mapping each pair {u, v} ∈ E(GH) to
one vertex in {u, v} such that each w ∈ VH is mapped to at most O(1) times.
Let A′ be any deterministic centralized algorithm that finds such an assignment
F , and we fix F � to be the outcome of A′ on the input GH . If each vertex v ∈ V
already knows the graph GH , then v can locally calculate F � by simulating A′.

To learn G�, we will let each vertex u ∈ V learn the following information:

Basic information I0(u). For each vertex u ∈ V , I0(u) contains the following
information: (i) whether u ∈ VH or u ∈ VL, (ii) the list of vertices in N(u)∩VH ,
and (iii) the set of all pairs {u′, v′} ∈ E(GH).
If u is in a connected component S of G[VL], then I0(u) contains the following
additional information: (i) the list of vertices in S, and (ii) the topology of
the subgraph G+[S].

Information about type-1 components I1(u). For each u ∈ VH , I1(u) con-
tains the graph topology of G+[S′], for each S′ = A1[u], A2[u], and B[u].

Information about type-2 components I2(u). For each u ∈ VH , I2(u) con-
tains the following information. For each pair {u, v} ∈ E(GH) such that
F �({u, v}) = u, I2(u) includes the graph topology of G+[S′], for each
S′ = Ak

i [u, v], Ak
i [v, u], Bl[u, v], and R[u, v], for each i ∈ {1, 2}, k ∈

{−√
n, . . . ,

√
n}, and l ∈ {1, . . . ,

√
n}.

The information I0(u) contains the graph topology of GH , allowing each
vertex u to calculate F � locally. Note that I1(u) and I2(u) contain nothing if
u ∈ VL. The following lemma shows that the graph topology of G� can be learned
efficiently given that each vertex u ∈ V already knows I0(u), I1(u), and I2(u).

Lemma 11. Given that each u ∈ V already knows I0(u), I1(u), and I2(u),
using Õ(n1.5) time and Õ(

√
n) energy, we can let all vertices in G learn the

graph topology of G� w.h.p.

Proof. To learn G�, it suffices to know the following information: (i) I1(u) and
I2(u) for each u ∈ VH , (ii) the graph topology of G+[S] for each type-3 compo-
nent S, and (iii) the graph topology of the subgraph induced by VH . For each
type-3 component S, let rS be the smallest ID vertex in S. In view of the above,
to let each vertex learn the topology of G�, it suffices to let the following O(

√
n)

vertices broadcast the following information:

– For each u ∈ VH , u broadcasts I1(u), I2(u), and the list of vertices N(u)∩VH ,
which is contained in I0(u).

– For each u ∈ VL such that u = rS for a type-3 component S, u broadcasts
the graph topology of G+[S]. Note that each vertex u ∈ VL can decide locally
using the information in I0(u) whether or not u itself is rS for a type-3
component S.
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Since |VH | = O(
√

n) and the number of type-3 components is also O(
√

n) by
Lemma 5, the number of vertices that need to broadcast is O(

√
n). We run

the algorithm of Lemma 1 to find a good labeling L of G, and then we use
Lemma 2(2) with x = O(

√
n) to let the above O(

√
n) vertices broadcast their

information. This can be done in time Õ(n1.5), and energy Õ(
√

n). After that,
all vertices know the graph topology of G�. �


Next, we consider the task of learning the basic information I0(u).

Lemma 12. Using Õ(
√

n) time and energy, we can let all vertices v ∈ V learn
the following information w.h.p.

– Each v ∈ V learns whether v ∈ VH or v ∈ VL.
– If v ∈ VH , then v also learns the list of vertices in N(v) ∩ VH .
– If v ∈ VL, then v also learns the two lists of vertices N(v)∩VL and N(v)∩VH .

Proof. First, we run SR-commapx with W = 1, ε = 1, S = R = V , and mu = 1,
for each u ∈ S. This step lets each v ∈ V estimate deg(v) up to a factor of 2.
This step costs poly log n time, by Lemma 27.

After that, we run SR-commall with S = V and R being the set of all vertices
v whose estimate of deg(v) is at most 2

√
n. The message mv for each vertex v

is ID(v), and we use the bound Δ′ = 4
√

n for SR-commall. Recall that VL is the
set of vertices of degree at most

√
n, so we must have VL ⊆ R. The algorithm

of SR-commall allows each vertex v ∈ R to calculate deg(v) precisely. Therefore,
after this step, each vertex v ∈ V has enough information to decide whether
v ∈ VH or v ∈ VL. Furthermore, if v ∈ VL, then v knows the list of all vertices
N(v). This step takes Õ(

√
n) time, by Lemma 22.

In order for each vertex to learn all the required vertex lists, we run
SR-commall again with the following parameters: S = VH , R = V , and the
message mv for each vertex v ∈ S is its ID(v). This time we may use the bound
Δ′ =

√
n ≥ |VH |. After the algorithm of SR-commall, each vertex v ∈ V knows

the list of vertices in N(v) ∩ VH . For each v ∈ VL, since v already knows the list
of all vertices N(v), it can locally calculate the list N(v) ∩ VL. This step also
takes Õ(

√
n) time. �


Lemma 13. Using Õ(n1.5) time and Õ(
√

n) energy, we can let all vertices v in
all connected components S of G[VL] learn (i) the vertex set S and (ii) the graph
topology of G+[S] w.h.p.

Proof. First, we apply Lemma 12 to let all vertices v ∈ VL learn the two lists
N(v) ∩ VL and N(v) ∩ VH . To let all vertices learn the required information in
the lemma statement, it suffices to let each vertex v ∈ S broadcast the two lists
N(v)∩VL and N(v)∩VH to all other vertices in S, for all connected components
S of G[VL].

We do the above broadcasting task in parallel, for all connected components
S of G[VL]. We use Lemma 1 to let each component S compute a good labeling,
and then we use Lemma 2(1) to let each vertex v ∈ S broadcast the two lists
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N(v) ∩ VL and N(v) ∩ VH to all other vertices in S. Recall that the degree of
any vertex in VL is less than

√
n, so the algorithm of Lemma 2(1) costs Õ(n1.5)

time and Õ(
√

n) energy. �

For each connected component S of G[VL], at the end of the algorithm of

Lemma 13, each vertex w ∈ S is able to determine the type of S. If S is of type-1,
w knows the vertex u ∈ VH such that S ∈ C(u). If S is of type-2, w knows the
two vertices u, v ∈ VH such that S ∈ C(u, v). Given such information, in the
following lemma, we design an algorithm for learning the topology of GH .

Lemma 14. Suppose that each vertex in each type-2 component S already knows
(i) the vertex set S and (ii) the graph topology of G+[S]. Using Õ(n1.5) time and
Õ(

√
n) energy, all vertices in the graph can learn the set of all pairs {u, v} ∈

E(GH) w.h.p.

Proof. First of all, we let all vertices in VH agree on a fixed ordering VH =
{v1, . . . , v|H|} as follows. We use Lemma 1 to compute a good labeling of G,
and then we use Lemma 2(2) with x =

√
n to let each vertex v ∈ VH broadcast

ID(v). After that, we may order VH = {v1, . . . , v|H|} by increasing ordering of
ID. This step takes Õ(n1.5) time and Õ(

√
n) energy.

Next, we consider the task of letting each u ∈ VH learn the list of all v ∈ VH

such that C(u, v) �= ∅. We solve this task by |VH | invocations of SR-comm. Given
a type-2 component S ∈ C(u, v), we define zu,S as the smallest-ID vertex in
N(v)∩S. The vertex zu,S will be responsible for letting v know that C(u, v) �= ∅.
For i = 1 to |VH |, we do an SR-comm with R = VH and S being the set
of all vertices zvi,S such that S is a type-2 component S with vi ∈ G+[S].
Observe that a vertex u ∈ VH receives a message during the ith iteration if
and only if C(u, vi) �= ∅, i.e., {u, vi} ∈ E(GH). By Lemma 21, this step takes
|VH | · poly log n = Õ(

√
n) time.

At the end of the above algorithm, each u ∈ VH knows the list of all v ∈ VH

such that C(u, v) �= ∅. In order to let all vertices in G learn the topology of GH ,
it suffices to let all u ∈ VH broadcast this information. This can be done using
Lemma 2(2) with x =

√
n, which costs Õ(n1.5) time and Õ(

√
n) energy. �


Lemma 15. In Õ(n1.5) time and Õ(
√

n) energy, we can let all u ∈ V learn
I0(u) w.h.p.

Proof. This follows from Lemma 13 and Lemma 14. �

Next, we consider the task of learning I1(u) and I2(u).

Lemma 16. Suppose that each v ∈ V knows I0(v). Using Õ(n1.5) time and
Õ(

√
n) energy, we can let all vertices u ∈ VH learn I1(u) and I2(u) w.h.p.

Proof. Consider any vertex u ∈ VH . For each component S ∈ C(u), we let
rS,u be the smallest-ID vertex in the set S ∩ N(u). For each v ∈ VH such that
F �({u, v}) = u, and for each component S ∈ C(u, v), we similarly let rS,u be
the smallest-ID vertex in the set S ∩ N(u). As we will later see, rS,u will be the
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vertex in S responsible for sending the graph topology G+[S] to u in case G+[S]
belongs to I1(u) or I2(u).

Recall that I1(u) and I2(u) consist of the graph topology G+[S′] of some
selected type-1 and type-2 component S′ such that u belongs to G+[S′]. We
will present a generic approach that lets u ∈ VH learn one graph topology in
I1(u) and I2(u). As we will later see, the cost of learning one graph topology is
poly log n time and energy. If the graph topology to be learned is in C(u), then
only u and the vertices rS,u for all S ∈ C(u) need to participate in the algorithm
for learning the graph topology. If the graph topology to be learned is in C(u, v),
then only u and the vertices rS,u for all S ∈ C(u, v) need to participate in the
algorithm for learning the graph topology. We only describe the algorithms that
let u ∈ VH learn A1[u] and A2[u]. The algorithms for learning the remaining
graph topologies are analogous.

Learning A1[u]. Recall that A1[u] is a component S′ ∈ C(u) that maximizes
eccentricity(u, S′). To learn A1[u], we use SR-commmax with S = {rS,u :
S ∈ C(u)} and R = {u}. The message mv of v = rS,u is the graph topology
of G+[S], and the key of v = rS,u is kv = eccentricity(u, S). Since each type-
1 and type-2 component satisfies |S| ≤ √

n, the maximum possible value
of eccentricity(u, S) is

√
n, so the size of the key space for SR-commmax is

K =
√

n.
If |C(u)| > 0, then the message that u receives from SR-commmax is the
topology of G+[S′], for a component S′ ∈ C(u) that attains the maximum
value of eccentricity(u, S′) among all components in C(u), so u may set
A1[u] = S′. If |C(u)| = 0, the vertex u receives nothing from SR-commmax,
so u may set A1[u] = ∅. By Lemma 24, the cost of SR-commmax is
O(log K log Δ log n) = poly log n.

Learning A2[u]. The procedure for learning A2[u] is almost exactly the same as
that for A1[u], with only one difference. Recall that A2[u] is a component S′ ∈
C(u) \ {A1[u]} that maximizes eccentricity(u, S′), so we need to exclude the
component A1[u] from participating. To do so, before we apply SR-commmax,
we use one round to let u send ID(rA1[u],u) to all vertices {rS,u : S ∈ C(u)}.
This allows each rS,u to learn whether or not S = A1[u].

For each u ∈ VH , the number of pairs {u, v} such that F �({u, v}) = u is O(1),
so the number of graph topologies needed to be learned in I1(u) and I2(u) by
u is O(

√
n). The total number of graph topologies needed to be learned, for all

u ∈ VH , is at most |VH | · O(
√

n) = O(n). We fix any ordering of these learning
tasks and solve them sequentially. For each of these tasks, we use the above
generic approach to solve the task, so the time and energy cost for learning
one graph topology is poly log n. Since there are O(n) tasks, the overall time
complexity is O(n) ·poly log n = Õ(n). Each vertex participates in O(

√
n) tasks,

so the overall energy complexity is O(
√

n) · poly log n = Õ(
√

n). �

Lemma 17. Using Õ(n1.5) time and Õ(

√
n) energy, we can let all vertices in

G learn the graph topology of G� w.h.p.
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Proof. The lemma follows from combining Lemmas 11, 15 and 16. �

Now we are ready to prove Theorem 1.

Theorem 1. There is an algorithm that computes the diameter in Õ(n1.5) time
and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Proof. The theorem follows from combining Lemmas 10 and 17. �


B Minimum Cut

In this section, we apply the approach introduced in Sect. 5 to show that (i) the
exact global minimum cut size and (ii) an approximate s–t minimum cut size
of any bounded-genus graph can be computed in Õ(

√
n) energy. We follow the

same approach introduced in Sect. 5. That is, we still decompose the vertex set
into VH and VL, and we categorize the connected components of G[VL] into three
types. The only difference here is the information that we extract from type-1
and type-2 components.

Given a cut C = (X,V \ X) of G = (V,E), the two vertex sets X �= ∅ and
V \ X �= ∅ are called the two parts of C, and the cut edges of C are defined as
{{u, v} : u ∈ X, v ∈ V \ X}. The size of a cut C, which we denote as |C|, is
defined as the number of cut edges of C. A minimum cut of a graph is a cut C
that minimizes |C| among all possible cuts. An s–t minimum cut of a graph is a
cut C the minimizes |C| among all possible cuts subject to the constraint that s
and t belong to different parts. We consider the following definitions:

c(S). For any type-1 component S, let c(S) be the minimum cut size of G+[S].
c′(S). For any type-2 component S ∈ C(u, v), let c′(S) be the u–v minimum cut

size of G+[S].
c′′(S). For any type-2 component S ∈ C(u, v), let c′′(S) be the minimum cut

size of G+[S] among all cuts such that both u and v are within the same part
of the cut.

We make the following observations.

Lemma 18. Let C = (X,V \ X) be any minimum cut of G. For any vertex
u ∈ VH , one of the following statements is true:

– One part of the cut contains all vertices in
⋃

S∈C(u) S ∪ {u}.
– the size of the cut is minS∈C(u) c(S).

Proof. Suppose that the first statement is false. Then there exists a component
S′ ∈ C(u) such that S′ ∪ {u} intersects both parts of the cut, so C′ = (X ∩
(S′ ∪ {u}), (V \ X) ∩ (S′ ∪ {u})) is a cut of G+[S′]. Therefore, minS∈C(u) c(S) ≤
c(S′) ≤ |C′| ≤ |C|. To prove that the second statement is true, we just need to
show that |C| ≤ minS∈C(u) c(S). This inequality follows from the observation
that for any component S ∈ C(u), any cut of G+[S] can be extended to a cut of
G of the same size by adding all vertices in V \ (S ∪ {u}) to the part of the cut
that contains u. �
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Lemma 19. Let C = (X,V \ X) be any minimum cut of G. For two distinct
vertices u, v ∈ VH , one of the following statements is true:

– One part of the cut contains all vertices in
⋃

S∈C(u,v) S ∪ {u, v}.
– The size of the cut is minS∈C(u,v) c′′(S).
– u and v belong to different parts of the cut, and the number of cut edges that

have at least one endpoint in
⋃

S∈C(u,v) S′ is
∑

S∈C(u,v) c′(S).

Proof. Suppose that the first statement is false. We first focus on the case where u
and v belong to the same part of the cut C. In this case, there exists a component
S′ ∈ C(u, v) such that S′ ∪ {u, v} intersects both parts of the cut, so C′ =
(X∩(S′∪{u, v}), (V \X)∩(S′∪{u, v})) is a cut of G+[S] such that u and v belong
to the same part of the cut. Therefore, minS∈C(u,v) c′′(S) ≤ c′′(S′) ≤ |C′| ≤ |C|.
Similar to the proof of Lemma 18, we also have |C| ≤ minS∈C(u,v) c′′(S), as any
cut of G+[S] such that u and v belong to the same part of the cut can be extended
to a cut of G of the same size. Therefore, we must have |C| = minS∈C(u,v) c′′(S),
that is, the second statement is true.

For the rest of the proof, we consider the case where u and v belong to
different parts of the cut C. For each component S ∈ C(u, v), we write ZS to
denote the number of cut edges of C that have at least one endpoint in S. Then
we must have ZS = c′(S), since otherwise C is not a minimum cut. Therefore,
the number of cut edges that have at least one endpoint in

⋃
S∈C(u,v) S′ is∑

S∈C(u,v) c′(S), that is, the third statement is true. �

Using the above two observations, we prove Theorem 2.

Theorem 2. There is an algorithm that computes the minimum cut size in
Õ(n1.5) time and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Proof. Bounded-genus graphs have bounded arboricity. The minimum degree of
any graph of arboricity α is at most 2α − 1. The minimum cut size of any graph
is at most the minimum degree of the graph. Therefore, there is a constant λ0

such that the minimum cut size of G is at most λ0.
Define the graph G	 as the result of applying the following operations to G:

– Remove all type-1 components.
– For each pair {u, v} of distinct vertices in VH with |C(u, v)| > 0, replace

C(u, v) with min{λ0,
∑

S∈C(u,v) c′(S)} multi-edges between u and v.

By Lemmas 18 and 19, the minimum cut size of G is the minimum of the following
numbers:

– The minimum value of minS∈C(u) c(S) among all u ∈ VH such that |C(u)| > 0.
– The minimum value of minS∈C(u,v) c′′(S) among all u, v ∈ VH such that

|C(u, v)| > 0.
– The minimum cut size of G	.

For each vertex u ∈ V , we define I	
0 (u), I	

1 (u), and I	
2 (u) as follows.
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– I	
0 (u) is the same as the basic information I0(u) defined in Sect. 5.

– I	
1 (u) contains the number minS∈C(u) c(S).

– I	
2 (u) contains minS∈C(u,v) c′′(S) and min{λ0,

∑
S∈C(u,v) c′(S)}, for all pairs

{u, v} ∈ E(GH) such that F �({u, v}) = u.

Similar to the proof of Theorem 1, I1(u) and I2(u) contain nothing if u ∈ VL.
As I	

0 (u) = I0(u), we may use the algorithm of Lemma 15 to let all vertices
u ∈ V learn the information I	

0 (u) using Õ(n1.5) time and Õ(
√

n) energy.
The algorithm of Lemma 16 can be modified to allow all vertices u ∈ VH

learn the information I	
1 (u) and I	

2 (u). Specifically, the number minS∈C(u) c(S)
can be learned by the same algorithm for learning A1[u] described in the proof
of Lemma 15 by replacing SR-commmax with SR-commmin letting v = rSu

use
the key kv = c(S). The algorithm for learning minS∈C(u,v) c′′(S) is similar.

For each pair {u, v} ∈ E(GH) such that F �({u, v}) = u, to let u learn
min{λ0,

∑
S∈C(u,v) c′(S)}, we use SR-commapx with the following parameters:

– S = {rS,u : S ∈ C(u, v)}.
– R = {u}.
– ε = 1/(2λ0 + 1).
– W = λ0.
– For each S ∈ C(u, v), the message mv of the representative v = rS,u of S is

min{λ0, c
′(S)}.

After the algorithm of SR-commapx, u learns an (1 ± ε)-approximation of
∑

v∈N+(u)∩S
mv =

∑
S∈C(u,v)

min{λ0, c
′(S)}.

We claim that this allows u to calculate min{λ0,
∑

S∈C(u,v) c′(S)} precisely. To
prove this claim, we break the analysis into two cases. Let x be the approximation
of

∑
S∈C(u,v) min{λ0, c

′(S)} computed by SR-commapx.
If min{λ0,

∑
S∈C(u,v) c′(S)} = λ0, then

∑
v∈N+(u)∩S

mv =
∑

S∈C(u,v)

min{λ0, c
′(S)} ≥ λ0,

which implies
x ≥ (1 − ε)λ0 > λ0 − 1/2.

If min{λ0,
∑

S∈C(u,v) c′(S)} =
∑

S∈C(u,v) c′(S), then

∑
v∈N+(u)∩S

mv =
∑

S∈C(u,v)

min{λ0, c
′(S)} =

∑
S∈C(u,v)

c′(S),
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which implies

x ∈
⎡
⎣(1 − ε)

∑
S∈C(u,v)

c′(S), (1 + ε)
∑

S∈C(u,v)

c′(S)

⎤
⎦

⊆
⎡
⎣

⎛
⎝ ∑

S∈C(u,v)

c′(S)

⎞
⎠ − 1

2
,

⎛
⎝ ∑

S∈C(u,v)

c′(S)

⎞
⎠ +

1
2

⎤
⎦ .

Therefore, u can calculate min{λ0,
∑

S∈C(u,v) c′(S)} precisely from x. By
Lemma 27, the cost for u to calculate min{λ0,

∑
S∈C(u,v) c′(S)} via SR-commapx

is poly log n time.
For each u ∈ VH , the number of pairs {u, v} such that F �({u, v}) = u is

O(1), so the number of parameters needed to be learned in I	
1 (u) and I	

2 (u) by
u is O(1). The total number of parameters needed to be learned, for all u ∈ VH ,
is at most |VH | · O(1) = O(

√
n). We fix any ordering of these learning tasks and

solve them sequentially. The time and energy cost for learning one parameter is
poly log n. Since there are O(

√
n) tasks, the overall time complexity for learning

I	
1 (u) and I	

2 (u) for all u ∈ VH is O(
√

n) · poly log n = Õ(
√

n).
In view of the above discussion, the minimum cut size of G can be calculated

from the following information: (i) I	
1 (u) and I	

2 (u) for all u ∈ VH , (ii) the
topology of G+[S] for each type-3 component S, and (iii) the topology of the
subgraph induced by VH . By replacing I1(u) and I2(u) with I	

1 (u) and I	
2 (u) in

the description of the algorithm of Lemma 11, we obtain an algorithm that lets
all vertices learn this information using Õ(n1.5) time and Õ(

√
n) energy. �


The proof of Theorem 3 is similar to that of Theorem 2. The main difference
for the setting of s–t minimum cut is that if s or t happens to be within a type-1
or a type-2 component S, then we additionally need to learn the topology of
G+[S]. Any type-1 component that does not contain s or t is irrelevant to the
s–t minimum cut size.

In the subsequent discussion, we fix s and t to be any two distinct vertices
of G. for each x ∈ {s, t}, let Sx be the type-1 or type-2 component containing
x. In case x is not contained in any type-1 or type-2 component, we let Sx = ∅.
We define G• as the result of applying the following operations to G.

– Remove all type-1 components, except for Ss and St.
– For each pair {u, v} of distinct vertices in VH with |C(u, v) \ {Ss, St}| > 0,

replace all components in C(u, v)\{Ss, St} with
∑

S∈C(u,v)\{Ss,St} c′(S) multi-
edges between u and v.

Similar to Lemmas 18 and 19, we have the following observation.

Lemma 20. Both G and G• have the same minimum s–t cut size.

Proof. Fix C = (X,V \ X) to be any minimum s–t cut of G, where s ∈ X and
t ∈ V \ X. To show that both G and G• have the same minimum s–t cut size,
it suffices to show the following two statements:
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– For each type-1 component S that is not Ss and St, we must have either
S ⊆ X or S ⊆ V \ X.

– For each pair {u, v} of distinct vertices in VH with |C(u, v)\{Ss, St}| > 0, if u
and v belong to different parts of cut C, then the number of cut edges of C with
at least one endpoint in

⋃
S∈C(u,v)\{Ss,St} S equals

∑
S∈C(u,v)\{Ss,St} c′(S).

The first statement follows from the observation that for each u ∈ VH , all ver-
tices in

⋃
S∈C(u)\{Ss,St} S must belong to the part of cut C that u belongs to, since

otherwise C is not a minimum s–t cut, as moving all vertices in
⋃

S∈C(u)\{Ss,St} S
to the part of cut that u belongs to reduces the number of cut edges.

To show the second statement, consider a pair {u, v} of distinct vertices in VH

with |C(u, v) \ {Ss, St}| > 0 such that u and v belong to different parts of cut C.
Similar to the proof of Lemma 19, for each component S ∈ C(u, v)\{Ss, St}, we
write ZS to denote the number of cut edges of C that have at least one endpoint
in S. Then we must have ZS = c′(S), since otherwise C is not a minimum cut.
Therefore, the number of cut edges of C that have at least one endpoint in⋃

S∈C(u,v)\{Ss,St} S′ is
∑

S∈C(u,v)\{Ss,St} c′(S). �

We are ready to prove Theorem 3.

Theorem 3. There is an algorithm that computes an (1 ± ε)-approximate s–t
minimum cut size in Õ(n1.5) · ε−O(1) time and Õ(

√
n) · ε−O(1) energy w.h.p. for

bounded-genus graphs in No-CD.

Proof. Let G̃• be any graph such that for each pair of vertices {u, v}, the number
of mult-edges in G̃• is within a (1± ε) factor of the number of mult-edges in G•.
By Lemma 20, the minimum s–t cut size in G̃• is a (1± ε)-approximation of the
minimum s–t cut size of G. Therefore, the task of computing the minimum s–t
cut size of G is reduced to computing such a graph G̃•.

For each u ∈ VH , we let I•
2 (u) contain the number

∑
S∈C(u,v)\{Ss,St} c′(S)

for all pairs {u, v} ∈ E(GH) with F �({u, v}) = u. The same algorithm for
learning I	

2 (u) presented in the proof of Theorem 2 can be applied here to let
all u ∈ VH approximately learn each number in I•

2 (u) within a (1 ± ε) factor, by
using SR-commapx with parameter ε. We can tolerate this approximation factor
because here our goal is to learn G̃•.

In view of the above, a (1± ε)-approximation of the minimum s–t cut size of
G can be calculated from the following information: (i) I•

2 (u) for all u ∈ VH , (ii)
the topology of G+[S] for S = Ss, S = St, and each type-3 component S, and
(iii) the topology of the subgraph induced by VH . Same as the proof of Theorem
2, we can obtain an algorithm that lets all vertices learn this information using
Õ(n1.5) · ε−O(1) time and Õ(

√
n) · ε−O(1). Here the extra ε−O(1) is due to the use

of SR-commapx, which requires ε−O(1) · poly log n time and energy. �


C Algorithms for Communication Between Two Sets
of Vertices

In this section, we present our algorithms for SR-comm and its variants. Recall
that SR-comm requires that each vertex v ∈ R with N+(v) ∩ S �= ∅ receives a
message mu from at least one vertex u ∈ N+(v) ∩ S w.h.p.
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Lemma 21. ( [4]) SR-comm can be solved in time O(log Δ log n) and energy
O(log Δ log n).

Proof. By the definition of SR-comm, each vertex v ∈ S ∩ R is not required to
receive any message from other vertices, as we already have v ∈ N+(v) ∩ S.
Therefore, in the subsequent discussion, we assume that S ∩ R = ∅.

The task SR-comm with S ∩R = ∅ can be solved using the well-known decay
algorithm of [4], which repeats the following routine for C log n times: For i = 1
to log Δ, let each vertex u ∈ S transmit with probability 2−i. Each v ∈ R is
always listening throughout the procedure. Here C > 0 is some large enough
constant to be determined.

Consider a vertex v ∈ R such that N(v) ∩ S �= ∅. Let i� be the largest
integer i such that 2i ≤ 2|N(v) ∩ S|. Consider a time slot t where each vertex
u ∈ S transmits with probability 2−i�

. For notational simplicity, we write n′ =
|N(v)∩S| and p′ = 2−i�

. Our choice of i� implies that 1/n′ ≥ p′ ≥ 1/(2n′). The
probability of the event that exactly one vertex in the set N(v) ∩ S transmits
equals n′p′(1 − p′)n′−1 ≥ 1/(2e). The calculation follows from the inequalities
n′p′ ≥ 1/2 and (1 − p′)n′−1 ≥ (1 − 1/n′)n′−1 ≥ 1/e.

If the above event occurs, then v successfully receives a message mu from
a vertex u ∈ N(v) ∩ S. The probability that v does not receive any mes-
sage from vertices in N(v) ∩ S throughout the entire algorithm is at most
(1 − 1/(2e))C log n = n−Ω(C). By setting C to be a large enough constant, the
algorithm successfully solves SR-comm w.h.p., and the time and energy complex-
ities of the algorithm are O(log Δ log n). �


Recall that the goal of SR-commall is to let each vertex u ∈ S ∩N+(v) deliver
a message mu to v ∈ R, for each v ∈ R.

Lemma 22. SR-commall can be solved in time O(Δ′ log n) and energy
O(Δ′ log n), where Δ′ is an upper bound on |S ∩ N(v)|, for each v ∈ R.

Proof. Consider the algorithm which repeats the following routine for C ·Δ′ log n
rounds, for some sufficiently large constant C > 0. In each round, each vertex
u ∈ S sends mu with probability 1/Δ′. For each u ∈ R, if u does not send in
this round, then u listens.

Let e = {u, v} be any edge with u ∈ S and v ∈ R. In one round of the
above algorithm, u successfully sends a message to v if (i) all vertices in {v} ∪
(S ∩ N(v)) \ {u} do not send, and (ii) u sends. Therefore, the probability that u
successfully sends a message to v is

(1 − 1/Δ′)|S∩N(v)|−1 · (1/Δ′) ≥ (1 − 1/Δ′)Δ′−1 · (1/Δ′) ≥ 1/(eΔ′)

The probability that u does not successfully send a message to v throughout
all C · Δ′ log n rounds is at most (1 − 1/(eΔ′))C·Δ′ log n = n−Ω(C). Selecting a
large enough constant C, by a union bound for all u ∈ S ∩ N(v) and all v ∈ R,
we conclude that the algorithm solves SR-commall w.h.p. The time and energy
complexities are O(Δ′ log n). �
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Recall that the task SR-commmulti requires that each vertex v ∈ R receive
all distinct messages in

⋃
u∈N+(v)∩S Mu, where is the Mu is the set of messages

hold by u.

Lemma 23. SR-commmulti can be solved in time O(M log Δ log2 n) and energy
O(M log Δ log2 n), where M is an upper bound on the number of distinct mes-
sages in

⋃
u∈N+(v)∩S , for each v ∈ R.

Proof. Consider the algorithm which repeatedly runs SR-comm for C · M log n
times, where in each iteration, the sets (S ′,R′) for SR-comm are chosen randomly
as follows. We select R′ as a random subset of R such that each v ∈ R joins R′

with probability 1/2. We select S ′ as a random subset of S \ R′ such that for
each message m, all vertices in S \R′ that hold m join S ′ with probability 1/M ,
using the shared randomness associated with the message m.

Due to the shared randomness, if u ∈ S \R′ joins S ′ due to message m, then
all vertices in S\R′ holding the same message m also joins S ′. Note that a vertex
u ∈ S \R′ might hold more than one message in that |Mu| > 1. The probability
that u ∈ S \ R′ joins S ′ equals Pr[Binomial(|Mu|, 1/M) ≥ 1], because each
message m ∈ Mu lets u join S ′ with probability 1/M independently.

To analyze the algorithm, we focus on one vertex v ∈ R in one iteration of
the above algorithm. Consider any message m ∈ ⋃

u∈N(v)∩S Mu \ Mv. Observe
that v receives m if the following three events E1, E2, and E3 occur:

– E1 is the event that v joins R′.
– E2 is the event that at least one vertex u ∈ N(v) ∩ S with m ∈ Mu does not

join R′.
– E3 is the event that the subset of vertices of N(v)∩S \R′ joining S ′ is exactly

the set of all vertices u ∈ N(v) ∩ S \ R′ with m ∈ Mu.

If E1, E2, and E3 occur, then v ∈ R′, N(v)∩S ′ �= ∅, and all vertices u ∈ N(v)∩S ′

satisfy m ∈ Mu. Therefore, conditioning on E1, E2, and E3, SR-comm in this
iteration allows v to receive message m.

The way R′ is selected implies that Pr[E1] = 1/2 and Pr[E2] ≥ 1/2. Observe
that E1 and E2 are independent events. The way S ′ is selected implies that
Pr[E3|E1 ∩E2] ≥ Pr[Binomial(M, 1/M) = 1] = (1/M) · (1−1/M)M−1 ≥ 1/(eM).
Therefore, the probability that v receives m in this iteration is at least 1/(4eM).

The probability that v does not receive m in all iterations is at most
(1 − 1/(4eM))C·M log n = n−Ω(C). Selecting a large enough constant C, by a
union bound for all v ∈ R and all m ∈ ⋃

u∈N(v)∩S Mu \ Mv, we conclude
that the algorithm solves SR-commall w.h.p. The time and energy complexities
are O(M log Δ log2 n), as the number of iterations is O(M log n) and the time
complexity of each iteration is O(log Δ log n) by Lemma 21. �


Consider the setting where the message mu sent from each vertex u ∈ S con-
tains a key ku from the key space [K] = {1, 2, . . . ,K}. Recall that SR-commmin

requires that each vertex v ∈ R with N+(v)∩S �= ∅ receives a message mu from
a vertex u ∈ N+(v) ∩ S such that ku = minu′∈N+(v)∩S ku′ .
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Lemma 24. Both SR-commmin and SR-commmax can be solved in time
O(K log Δ log n) and energy O(log K log Δ log n). For the special case of S∩R =
∅ and |R ∩ N(u)| ≤ 1 for each u ∈ S, the time complexity can be improved to
O(log K log Δ log n).

Proof. We only prove the lemma for SR-commmin, as the proof for SR-commmax is
the same. The proof presented here is analogous to the analysis of a deterministic
version of SR-comm in [10]. Observe that we can do SR-comm once to let each
v ∈ R test whether or not N+(v) ∩ S �= ∅. If a vertex v ∈ R knows that
N+(v) ∩ S = ∅, then v may remove itself from R. Thus, in the subsequent
discussion, we assume N+(v) ∩ S �= ∅ for each v ∈ R.

Let v ∈ R, and we define fv = minu∈N+(v)∩S ku. The high-level idea of the
algorithm is to conduct a binary search to determine all log K bits of the binary
representation of fv.

General Case. Suppose at some moment each vertex v ∈ R already knows the
first x bits of fv. The following procedure allows each v ∈ R to learn the (x+1)th
bit of fv. For each (x+1)-bit binary string s, we do SR-comm with the following
choices of (S ′,R′):

– S ′ is the set of vertices u ∈ S such that the first x + 1 bits of ku equal s.
– R′ is the set of vertices v ∈ R such that the first x bits of fv equal the first

x bits of s.

In this procedure, we perform 2x+1 times of SR-comm in total, but each vertex
only participates in at most three of them, as each vertex joins S ′ at most once
and joins R′ at most twice. Thus, the procedure costs O(2x log Δ log n) time and
O(log Δ log n) energy, by Lemma 21. For each v ∈ R, the messages that v receive
during the procedure allows v to determine the (x + 1)th bit of fv.

We will run the above procedure for log K iterations from x = 0 to x =
log K − 1. Observe that in the last iteration, each vertex v ∈ R is guaranteed
to receive a message mu from a vertex u ∈ N+(v) ∩ S such that ku = fv =
minw∈N+(v)∩S kw, so this algorithm allows us to solve SR-commmin. The overall
time complexity of the algorithm is

log K−1∑
x=0

O(2x log Δ log n) = O(K log Δ log n),

and the overall energy complexity of the algorithm is

log K−1∑
x=0

O(log Δ log n) = O(log K log Δ log n).

Special Case. For the rest of the proof, we focus on the special case of S ∩R = ∅
and |R ∩ N(u)| ≤ 1 for each u ∈ S. These assumptions imply that the family
of sets (S ∩ N(v)) ∪ {v} for all v ∈ R are disjoint. The high-level idea is that
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for each v ∈ R, we may let the set of vertices (S ∩ N(v)) ∪ {v} jointly conduct
a binary search to determine all bits of fv = minu∈N(v)∩S ku, in parallel for all
v ∈ R.

Suppose that for each vertex v ∈ R, all vertices in the set (S ∩ N(v)) ∪ {v}
already know the first x bits of fv. We present a more efficient algorithm that
let all vertices in the set (S ∩ N(v)) ∪ {v} learn the (x + 1)th bit of fv.

Step 1. Perform SR-comm with the following choices of (S ′,R′):
– R′ = R.
– S ′ is the subset of S that contains all vertices u ∈ S satisfying the follow-

ing conditions:
• The first x bits of ku equal the first x bits of fv, where v is the unique

vertex in R ∩ N(u).
• The (x + 1)th bit of ku is 0.

This step allows each v ∈ R to learn the (x + 1)th bit of fv. If v ∈ R
receives a message in SR-comm, then v knows that the (x + 1)th bit of fv is
0. Otherwise, v knows that the (x + 1)th bit of fv is 1.

Step 2. Perform SR-comm with the following choices of (S ′,R′):
– R′ = S.
– S ′ = R.
This step lets each v ∈ R send the (x + 1)th bit of fv to all vertices in
S ∩ N(v).

The time and energy complexities of this algorithm are asymptotically the same
as that of SR-comm, which are O(log Δ log n). As discussed earlier, to solve
SR-commmin, all we need to do is to run the above algorithm from x = 0 to
x = log K − 1. The overall time and energy complexities of the algorithm for
SR-commmin are O(log K log Δ log n), as there are log K iterations. �


For the rest of the section, we consider the task SR-commapx, which requires
each vertex v ∈ R to compute an (1± ε)-factor approximation of the summation∑

u∈N+(v)∩S mu. We need the following fact, whose correctness can be verified
by means of a simple calculation.

Lemma 25. There exist three universal constants 0 < ε0 < 1, N0 ≥ 1, and
c0 ≥ 1 such that the following statement holds: For any pair of numbers (N, ε)
such that N ≥ N0 and ε0 ≥ |ε| ≥ c0/

√
N ,

e−1(1 − 0.51ε2) ≤ (1 + ε)(1 − (1 + ε)/N)N−1 ≤ e−1(1 − 0.49ε2).

Note that the parameter ε in Lemma 25 can be either positive or negative.
For the rest of the section, we assume that the message mu sent from each
vertex u ∈ S is an integer within the range [W ]. We first consider the special
case of SR-commapx with W = 1. In this case, SR-commapx is the same as
the approximate counting problem whose goal is to let each v ∈ R compute
|N+(v) ∩ S|, up to a (1 ± ε)-factor error.

Lemma 26. For W = 1, SR-commapx can be solved in O((1/ε5) log Δ log n)
time and energy.
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Proof. In this proof, we will focus on a slightly different task of estimating |N(v)∩
S| within a (1±ε)-factor approximation, for each v ∈ R. If each v ∈ R knows such
an estimate of |N(v)∩S|, then v can locally calculate an estimate of |N+(v)∩S|
within a (1 ± ε)-factor approximation, thereby solving SR-commapx for the case
of W = 1.

Basic Setup. Let C > 0 be a sufficiently large constant. Let ε0, N0, and c0 be
the constants in Lemma 25. We assume that ε ≤ ε0. If this is not the case, then
we may reset ε = ε0.

The algorithm consists of two phases. The first phase of the algorithm aims
to achieve the following goals: For each v ∈ R, either (i) v learns the number
|N(v) ∩ S| exactly or (ii) v detects that ε ≥ 10c0/

√|N(v) ∩ S|. For each vertex
v ∈ R that calculates the number |N(v)∩S| exactly in the first phase, we remove
v from R. The second phase of the algorithm then solves SR-commapx for the
remaining vertices in R. These vertices v ∈ R satisfy ε ≥ 10c0/

√|N(v) ∩ S|.

The First Phase. We define Z = (10c0/ε)2. The algorithm consists of C ·Z log n
rounds, where we do the following in each round:

– Each vertex u ∈ S ∪R flips a biased coin that produces head with probability
1/Z.

– Each u ∈ S sends ID(u) if the outcome of its coin flip is head.
– Each vertex v ∈ R listens if the outcome of its coin flip is tail.

For each vertex v ∈ R, there are two cases:

– Suppose that there is a vertex u ∈ N(v)∩S such that the number of messages
that v receives from is smaller than 0.5 · (C log n)/e. Then v decides that
ε ≥ 10c0/

√|N(v) ∩ S| and proceeds to the second phase.
– Suppose that for all vertices u ∈ N(v) ∩ S, the number of messages that v

receives from is at least 0.5 · (C log n)/e. Then v calculate |N(v) ∩ S| by the
number of distinct IDs that v receives.

The time complexity of the first phase of the algorithm is C · Z log n =
O((1/ε2) log n).

Analysis. To analyze the algorithm, let e = {u, v} be any edge such that u ∈ S
and v ∈ R. In one round of the above algorithm, u successfully sends a message
to v if and only if (i) the outcome of u’s coin flip is head, and (ii) the outcome
of the coin flips of all vertices in (N(v) ∩ S) ∪ {v} \ {u} are all tails. This event
occurs with probability p� = (1 − 1/Z)|N(v)∩S| · (1/Z). Let X be the number of
times v receives a message from u. To prove the correctness of the algorithm, we
show the following three concentration bounds:

– If v ∈ R satisfies ε ≤ 10c0/
√|N(v) ∩ S|, then Pr[X ≥ 0.8 · (C log n)/e] =

1 − n−Ω(C).
– If v ∈ R satisfies ε ≥ 20c0/

√|N(v) ∩ S|, then Pr[X ≤ 0.2 · (C log n)/e] =
1 − n−Ω(C).

– If v ∈ R satisfies ε ≤ 20c0/
√|N(v) ∩ S|, then Pr[X ≥ 1] = 1 − n−Ω(C).
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We show the correctness of the algorithm given these concentration bounds.
For the case ε ≥ 20c0/

√|N(v) ∩ S|, the second bound implies that the number
of messages that v receives from u is greater than 0.5 · (C log n)/e w.h.p., so v
correctly decides that ε ≥ 10c0/

√|N(v) ∩ S| and proceeds to the second phase.
For the case ε ≤ 20c0/

√|N(v) ∩ S|, the third bound implies that v receives
at least one message from each vertex in N(v) ∩ S w.h.p., so v can calculate
|N(v)∩S| precisely. The only remaining thing to show is that when ε is at most
10c0/

√|N(v) ∩ S|, w.h.p. v does not decide that ε ≥ 10c0/
√|N(v) ∩ S|. This

follows from the first bound, which implies that the number of messages that v
receives from u is greater than 0.5 · (C log n)/e w.h.p.

We prove the three concentration bounds as follows:

– Suppose that vertex v ∈ R satisfies ε ≤ 10c0/
√|N(v) ∩ S|. We show that

in this case the number of messages that v receives from u ∈ N(v) ∩ S is
at least 0.8 · (C log n)/e, with probability 1 − n−Ω(C). In this case, we have
Z = (10c0/ε)2 ≥ |N(v) ∩ S|, so p� = (1 − 1/Z)|N(v)∩S| · (1/Z) ≥ (1 −
1/Z)Z · (1/Z) ≥ 0.9/(eZ). The expected value μ of X satisfies μ = C ·
Z log n ·p� ≥ 0.9(C log n)/e. By a Chernoff bound, Pr[X ≤ 0.8 ·(C log n)/e] ≤
exp(−Ω(C log n)) = n−Ω(C).

– Suppose that vertex v ∈ R satisfies ε ≥ 20c0/
√|N(v) ∩ S|. We show that

in this case the number of messages that v receives from u ∈ N(v) ∩ S
is at most 0.2 · (C log n)/e, with probability 1 − n−Ω(C). In this case, we
have Z = (10c0/ε)2 ≤ |N(v) ∩ S|/4, so p� = (1 − 1/Z)|N(v)∩S| · (1/Z) ≤
(1 − 1/Z)4Z · (1/Z) ≤ 1/(e4Z). The expected value μ of X satisfies μ =
C ·Z log n · p� ≤ (C log n)/e4 < 0.1(C log n)/e. By a Chernoff bound, Pr[X ≥
0.2 · (C log n)/e] ≤ exp(−Ω(C log n)) = n−Ω(C).

– Suppose that vertex v ∈ R satisfies ε ≤ 20c0/
√|N(v) ∩ S|. We show that in

this case the number of messages that v receives from u ∈ N(v)∩S is at least
1, with probability 1−n−Ω(C). In this case, we have Z = (10c0/ε)2 ≥ |N(v)∩
S|/4, so p� = (1 − 1/Z)|N(v)∩S| · (1/Z) ≥ (1 − 1/Z)4Z · (1/Z) ≥ 0.9/(e4Z).
We have Pr[X < 1] = (1 − p�)CZ log n ≤ (1 − 0.9/(e4Z))CZ log n = n−Ω(C).

The Second Phase. For each vertex v ∈ R that have already calculated the
number |N(v) ∩ S| exactly in the first phase, v removes itself from R. We know
that all the remaining vertices in R satisfy ε ≥ 10c0/

√|N(v) ∩ S|.
We consider the sequence of sending probabilities: p1 = 2/Δ, and pi =

min{1, pi−1 · (1 + ε)} for i > 1. We let i� = O((1/ε) log Δ) be the smallest
index i such that pi = 1.

The second phase of the algorithm consists of i� iterations, where the ith
iteration repeats the following procedure for C · (1/ε4) log n times for all vertices
v ∈ S ∪ R:

– v flips a fair coin.
– If the outcome of the coin flip is head and v ∈ S, then v sends with probability

pi.
– If the outcome of the coin flip is tail and v ∈ R, then v listens to the channel.
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After finishing the algorithm, each vertex v ∈ R finds an index i′ such that
the number of messages that v successfully receives during the i′th iteration is
the highest. Then v decides that 2/pi′ is an estimate of |N(v) ∩ S| within a
factor of (1 ± ε). The time complexity of the second phase of the algorithm is
i� · C · (1/ε4) log n = O((1/ε5) log Δ log n).

Analysis. To show the correctness of the above algorithm, in the subsequent
discussion, we focus on a vertex v ∈ R in the ith iteration. We say that i is good
for v if pi/2 is within a (1 ± 0.6ε)-factor of 1/|N(v) ∩ S|, and we say that i is
bad for v if pi/2 is not within a (1 ± ε)-factor of 1/|N(v) ∩ S|. Our choice of the
sequence (p1, p2, . . .) implies that there must be at least one good index i for v.

We write psuci to denote the probability that v successfully receives a message
in one round of the ith iteration. From the description of the algorithm, we have

psuci = (1/2) · |N(v) ∩ S| · (pi/2) · (1 − (pi/2))|N(v)∩S|−1.

We define

pgood = (1/2) · e−1(1 − 0.51(0.6ε)2) and pbad = (1/2) · e−1(1 − 0.49ε2).

We claim that (i) psuci ≥ pgood if i is good for v and (ii) psuci ≤ pbad if i is bad
for v.

We first prove this claim for the case that i is good for v. For simplicity,
we write N = |N(v) ∩ S|. Since i is good, pi/2 = (1 + ε′)/|N(v) ∩ S| for some
ε′ ∈ [−0.6ε, 0.6ε]. Using the new notations, we may rewrite psuci as

psuci = (1/2) · |N(v) ∩ S| · (pi/2) · (1 − (pi/2))|N(v)∩S|−1

= (1/2) · (1 + ε′) · (1 − (1 + ε′))N−1.

By Lemma 25, we infer that psuci ≥ (1/2) · e−1(1 − 0.51(ε′)2) ≥ e−1(1 −
0.51(0.6ε)2) = pgood.

Now consider the case i is bad for v. Again, we write N = |N(v) ∩ S|.
Since i is bad, pi/2 = (1 + ε′)/|N(v) ∩ S| for some ε′ /∈ (−ε, ε). The above
formula for psuci still applies to this case, and Lemma 25 implies that psuci ≤
(1/2) · e−1(1 − 0.49(ε′)2) ≤ e−1(1 − 0.49ε2) = pbad.

Let X be the number of messages that v receives in the ith iteration of the
algorithm. The expected value of X is μ = psuci ·C · (1/ε4) log n. For the case i is
good for v, we have μ ≥ pgood ·C · (1/ε4) log n, so by a Chernoff bound, we have:

Pr[X ≤ (1 − 0.01ε2)pgood · C · (1/ε4) log n] = e−Ω(ε4·C·(1/ε4) log n) = n−Ω(C).

For the case i is bad for v, we have μ ≤ pbad · C · (1/ε4) log n, so by a Chernoff
bound, we have:

Pr[X ≥ (1 + 0.01ε2)pbad · C · (1/ε4) log n] = e−Ω(ε4·C·(1/ε4) log n) = n−Ω(C).

Since (1− 0.01ε2)pgood > (1+0.01ε2)pbad, we conclude that w.h.p. the index
i′ selected by v must be good, which implies that the estimate 2/pi′ calculated
by v is within a (1 ± ε)-factor of |N(v) ∩ S|, as we know that pi′/2 is within a
(1 ± 0.6ε)-factor of 1/|N(v) ∩ S|, as i′ is good. �
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In the following lemma, we extend Lemma 26 to any value of W .

Lemma 27. SR-commapx can be solved in O((1/ε6) log W log Δ log n) time and
energy.

Proof. We let ε′ = Θ(ε) be chosen such that (1+ε′)2 < 1+ε and (1−ε′)2 > 1−ε.
We consider the following sequence: w1 = 1 and wi = min{W, (1 + ε′)wi−1} for
i > 1. Let i� be the smallest index i such that wi = W .

From i = 1 to i�, we run the algorithm of Lemma 26 with the following
setting:

– S ′ is the vertices u ∈ S with mu ∈ (wi−1, wi].
– R′ = R.
– The error parameter is ε′.

The algorithm of Lemma 26 lets each v ∈ R′ compute an (1 ± ε′)-factor approx-
imation of |N+(v) ∩ S ′| using O((1/ε5) log Δ log n) time and energy.

For each v ∈ R, we write Ni to denote the number of vertices u ∈ N+(v)∩S
such that mu ∈ (wi−1, wi], and we write Ñi to denote the estimate of |N+(v)∩S ′|
computed by v in the ith iteration. We have the following observations:

– Ñi is an (1 ± ε′)-factor approximation of Ni.
–

∑i�

i=1 wiNi is an (1 ± ε′)-factor approximation of
∑

u∈N+(v)∩S mu.

Thus,
∑i�

i=1 wiÑi, which can be calculated locally at v at the end of the algo-
rithm, is an (1 ± ε)-factor approximation of

∑
u∈N+(v)∩S mu, by our choice of

ε′.
By Lemma 26, the time and energy complexities for each iteration are

O((1/ε5) log Δ log n). The total number of iterations is i� = O((1/ε) log W ).
Thus, the overall time and energy complexities are O((1/ε6) log W log Δ log n).

�
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31. Jurdziński, T., Kuty�lowski, M., Zatopiański, J.: Efficient algorithms for leader elec-
tion in radio networks. In: Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing (PODC), pp. 51–57 (2002). https://doi.org/
10.1145/571825.571833

32. Kardas, M., Klonowski, M., Pajak, D.: Energy-efficient leader election protocols
for single-hop radio networks. In: Proceedings of the 42nd International Conference
on Parallel Processing (ICPP), pp. 399–408 (2013)

33. Kirousis, L.M., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet
radio networks. Theor. Comput. Sci. 243(1), 289–305 (2000). https://doi.org/10.
1016/S0304-3975(98)00223-0

34. Kuty�lowski, M., Rutkowski, W.: Adversary immune leader election in ad hoc radio
networks. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp.
397–408. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-
1 37

35. Lavault, C., Marckert, J.F., Ravelomanana, V.: Quasi-optimal energy-efficient
leader election algorithms in radio networks. Inf. Comput. 205(5), 679–693 (2007)

http://arxiv.org/abs/2205.12830
http://arxiv.org/abs/2204.08359
https://doi.org/10.1109/26.52656
https://doi.org/10.1007/978-3-540-75142-7_21
https://doi.org/10.1007/978-3-540-75142-7_21
https://doi.org/10.1145/571825.571833
https://doi.org/10.1145/571825.571833
https://doi.org/10.1016/S0304-3975(98)00223-0
https://doi.org/10.1016/S0304-3975(98)00223-0
https://doi.org/10.1007/978-3-540-39658-1_37
https://doi.org/10.1007/978-3-540-39658-1_37


296 Y.-J. Chang

36. Lenzen, C., Pignolet, Y.A., Wattenhofer, R.: Distributed minimum dominating set
approximations in restricted families of graphs. Distrib. Comput. 26(2), 119–137
(2013)

37. Li, J., Parter, M.: Planar diameter via metric compression. In: Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp.
152–163 (2019)

38. Miller, G.L., Peng, R., Xu, S.C.: Parallel graph decompositions using random shifts.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 196–203. ACM (2013)

39. Nakano, K., Olariu, S.: Randomized leader election protocols in radio networks
with no collision detection. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee,
D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 362–373. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3 31

40. Parter, M.: Distributed planar reachability in nearly optimal time. In: 34th Inter-
national Symposium on Distributed Computing (DISC 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik (2020)

41. Roditty, L., Williams, V.V.: Fast approximation algorithms for the diameter and
radius of sparse graphs. In: Proceedings 45th ACM Symposium on Theory of Com-
puting (STOC), pp. 515–524 (2013)

42. Sen, A., Huson, M.L.: A new model for scheduling packet radio networks. Wirel.
Netw. 3(1), 71–82 (1997). https://doi.org/10.1023/A:1019128411323

43. Takagi, H., Kleinrock, L.: Optimal transmission ranges for randomly distributed
packet radio terminals. IEEE Trans. Commun. 32(3), 246–257 (1984). https://doi.
org/10.1109/TCOM.1984.1096061

44. Wawrzyniak, W.: A strengthened analysis of a local algorithm for the minimum
dominating set problem in planar graphs. Inf. Process. Lett. 114(3), 94–98 (2014)

https://doi.org/10.1007/3-540-40996-3_31
https://doi.org/10.1023/A:1019128411323
https://doi.org/10.1109/TCOM.1984.1096061
https://doi.org/10.1109/TCOM.1984.1096061

	The Energy Complexity of Diameter and Minimum Cut Computation in Bounded-Genus Networks
	1 Introduction
	1.1 Prior Work
	1.2 Our Contribution
	1.3 Additional Related Work
	1.4 Organization

	2 Tools
	2.1 Communication Between Two Sets of Vertices
	2.2 Communication via a Good Labeling

	3 Lower Bounds
	4 Graph Partitioning
	5 Diameter
	A  Learning the Topology of G
	B  Minimum Cut 
	C Algorithms for Communication Between Two Sets of Vertices
	References




