
Sergio Rajsbaum
Alkida Balliu
Joshua J. Daymude
Dennis Olivetti (Eds.)

LN
CS

 1
38

92 Structural Information 
and Communication 
Complexity
30th International Colloquium, SIROCCO 2023
Alcalá de Henares, Spain, June 6–9, 2023
Proceedings



Lecture Notes in Computer Science 13892
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873


The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.



Sergio Rajsbaum · Alkida Balliu ·
Joshua J. Daymude · Dennis Olivetti
Editors

Structural Information
and Communication
Complexity
30th International Colloquium, SIROCCO 2023
Alcalá de Henares, Spain, June 6–9, 2023
Proceedings



Editors
Sergio Rajsbaum
National Autonomous University of Mexico
Mexico, Mexico

Institut de Recherche en Informatique
Fondamentale
Paris, France

Joshua J. Daymude
Arizona State University
Tempe, AZ, USA

Alkida Balliu
Gran Sasso Science Institute
L’Aquila, Italy

Dennis Olivetti
Gran Sasso Science Institute
L’Aquila, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-32732-2 ISBN 978-3-031-32733-9 (eBook)
https://doi.org/10.1007/978-3-031-32733-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0009-5287
https://doi.org/10.1007/978-3-031-32733-9


Preface

This volume contains the papers presented at SIROCCO 2023: 30th International Col-
loquium on Structural Information and Communication Complexity, held on June 6–9,
2023 in Alcalá de Henares, Spain.

SIROCCO is devoted to the study of the interplay between structural knowledge,
communication and computing in decentralized systemsofmultiple communicating enti-
ties. Special emphasis is given to innovative approaches leading to better understanding
of the relationship between computing and communication.

There were 44 submissions. Each submission was reviewed by 3 program commit-
tee members, and a few were reviewed by additional external reviewers. The committee
decided to accept 22 papers. The program also included two special events, a session
dedicated toSpecialModels ofComputation, and a session dedicated to the 30thAnniver-
sary of SIROCCO. The proceedings include one paper of the former session, and three
papers of the latter session, which were reviewed by at least one reviewer.

The program committee selected the following two papers to share the Best Paper
Award

– Lila Fontes, Mathieu Laurière, Sophie Laplante and Alexandre Nolin. The commu-
nication complexity of functions with large outputs.

– Stefan Schmid, Jakub Svoboda and Michelle Yeo. Weighted Packet Selection for
Rechargeable Links in Cryptocurrency Networks: Complexity and Approximation.

and the following two papers to share the Best Student Paper Award

– Abir Islam, graduate student at the University of New Mexico, for the paper: Abir
Islam, Jared Saia andVarshaDani. Boundary SketchingWithAsymptoticallyOptimal
Distance and Rotation.

– Sameep Dahal, graduate student at Aalto University, Finland, for the paper: Sameep
Dahal and Jukka Suomela. Distributed Half-Integral Matching and Beyond.

The session dedicated to Special Models of Computation was organized by Joshua
J. Daymude (Arizona State University, USA), Andréa Richa (Arizona State University,
USA) and Christian Scheideler (University of Paderborn, Germany). In this session,
researchers discussed the histories and open problems for distributed computing models
that connect computer science theory to other interdisciplinary aims. RogerWattenhofer
spoke about neural networks and blockchains, Yuval Emek presented the Stone Age
model and other bio-inspired models, Frederik Mallmann-Trenn spoke on models based
in neurology, and Joshua J. Daymude discussed the amoebot model of programmable
matter.

This year we celebrated the 30th Anniversary of SIROCCO, with a full day of
special talks, including personal anecdotes and memories related to SIROCCO and
its community, organized by Alkida Balliu and Dennis Olivetti (both of Gran Sasso
Science Institute, Italy). The speakers were Pierluigi Crescenzi (Gran Sasso Science
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Institute, Italy), Pierre Fraigniaud (Université Paris Cité and CNRS, France), David
Peleg (Weizmann Institute of Science, Israel), Michel Raynal (IRISA, University of
Rennes, France), Nicola Santoro (Carleton University, Canada), Jukka Suomela (Aalto
University, Finland), Sara Tucci (Paris-Saclay University, France) and Rotem Oshman
(Tel-Aviv University, Israel).

We would also like to thank the keynote speakers Stefan Schmid (Technical Univer-
sity of Berlin, Germany), Bernadette Charron-Bost (École Normale Supérieure, France),
Seth Gilbert (National University of Singapore, Singapore), and Michael Schapira
(Hebrew University of Jerusalem, Israel), for their insightful talks, as well as Boaz
Patt-Shamir (Tel Aviv University, Israel) for his featured talk as the recipient of the 2023
SIROCCO Innovation in Distributed Computing Prize.

We would like to thank the authors who submitted their work to SIROCCO this
year and the PC members and subreviewers for their valuable and insightful reviews
and comments. The SIROCCO Steering Committee, chaired by Magnús M. Halldórs-
son, provided help and guidance throughout the process. The EasyChair system was
effectively used to handle the submission of papers and to manage the review process.
Without all of these people it would not have been possible to produce these proceedings
and the great conference program. We are very greatful also to the organization team,
led by Antonio Fernandez Anta and Ernesto Jimenez Merino, who made the conference
possible together with their local organization team.

June 2023 Sergio Rajsbaum
Alkida Balliu

Dennis Olivetti
Joshua J. Daymude
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Degree Realization by Bipartite
Multigraphs

Amotz Bar-Noy1, Toni Böhnlein3, David Peleg3(B), and Dror Rawitz2
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Abstract. The problem of realizing a given degree sequence by a multi-
graph can be thought of as a relaxation of the classical degree realization
problem (where the realizing graph is simple). This paper concerns the
case where the realizing multigraph is required to be bipartite.

The problem of characterizing degree sequences that can be realized
by a bipartite (simple) graph has two variants. In the simpler one, termed
BDRP , the partition of the degree sequence into two sides is given as part
of the input. A complete characterization for realizability in this variant
was given by Gale and Ryser over sixty years ago. However, the variant
where the partition is not given, termed BDR, is still open.

For bipartite multigraph realizations, there are again two variants.
For BDRP , where the partition is given as part of the input, a complete
characterization was known for determining whether the bi-sequence is r-
max-bigraphic, namely, if there is a multigraph realization whose under-
lying graph is bipartite, such that the maximum number of copies of an
edge is at most r. We present a complete characterization for determining
if there is a bipartite multigraph realization such that the total number of
excess edges is at most t. As for the variant BDR, where the partition is
not given, we show that determining whether a given (single) sequence
admits a bipartite multigraph realization is NP-hard. On the positive
side, we provide an algorithm that computes optimal realizations for the
case where the number of balanced partitions is polynomial, and present
sufficient conditions for the existence of bipartite multigraph realizations
that depend only on the largest degree of the sequence.

1 Introduction

1.1 Background and Motivation

Degree Realization: This paper concerns a classical network design prob-
lem known as the graphic degree realization (GDR) problem. The number of

This work was supported by US-Israel BSF grant 2018043.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Rajsbaum et al. (Eds.): SIROCCO 2023, LNCS 13892, pp. 3–17, 2023.
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4 A. Bar-Noy et al.

neighbors or connections of a vertex in a graph is called its degree, and it pro-
vides information on its centrality and importance. For the entire graph, the
sequence of vertex-degrees is a significant characteristic which has been stud-
ied for over sixty years. The graphic degree realization problem asks if a given
sequence of positive integers d = (d1, ..., dn) is graphic, i.e., if it is the sequence
of vertex-degrees of some graph. Erdös and Gallai [6] gave a characterization for
graphic sequences, though not a method for finding a realizing graph. Havel and
Hakimi [9,10] proposed an algorithm that either generates a realizing graph or
proves that the sequence is not graphic.

Relaxed Degree Realization by Multigraphs: An interesting direction in
the study of realization problems involves relaxed (or approximate) realizations
(cf. [1]). Such realizations are well-motivated by applications in two wider con-
texts. In scientific contexts, a given sequence may represent (noisy) data resulting
from an experiment, and the goal is to find a model that fits the data. In such
situations, it may happen that no graph fits the input degree sequence exactly,
and consequently it may be necessary to search for the graph “closest” to the
given sequence. In an engineering context, a given degree sequence constitutes
constraints for the design of a network. It might happen that satisfying all of
the desired constraints simultaneously is not feasible, or causes other issues, e.g.,
unreasonably increasing the costs. In such cases, relaxed solutions bypassing the
problem may be relevant.

In the current paper we focus on a specific type of relaxed realizations where
the graph is allowed to have parallel edges, namely, the realization may be a
multigraph. It is easy to verify that if (multiple) self-loops are allowed, then
every sequence d = (d1, . . . , dn) whose sum

∑
i di is even has a realization by a

multigraph. Hence, we focus on the case where self-loops are not allowed.
The problem of degree realization by multigraphs has been studied in the past

as well. Owens and Trent [13] gave a condition for the existence of a multigraph
realization. Will and Hulett [17] studied the problem of finding a multigraph
realization of a given sequence such that the underlying graph of the realization
contains as few edges as possible. They proved that such a realization is composed
of components, each of which is either a tree or a tree with a single odd cycle.
Hulett, Will, and Woeginger [11] showed that this problem is strongly NP-hard.

Degree Realization by Bipartite Graphs: The bigraphic degree realization
(BDR) problem is a natural variant of the graphic degree realization problem,
where the realizing graph is required to be bipartite. The problem has a sub-
variant, denoted BDRP , in which two sequences are given as input, representing
the vertex-degree sequences of the two sides of a bipartite realizing graph. (In
contrast, in the general problem, a single sequence is given as input, and the
goal is to find a realizing bipartite graph based on some partition of the given
sequence.) The BDRP problem was solved by Gale and Ryser [7,15] even before
Erdos and Gallai’s characterization of graphic sequences. However, the general
problem – mentioned as an open problem over forty years ago [14] – remains
unsolved today.
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A sequence of integers d = (d1, ..., dn) can only be bigraphic, i.e., the vertex-
degree sequence of a bipartite graph, if it can be partitioned into two sub-
sequences or blocks of equal total sum. The later problem is known as the parti-
tion problem and it is solvable in polynomial time assuming that d1 < n (which
is a necessary condition for d to be bigraphic). Yet, BDP bears two obstacles.
First, a sequence may have several partitions of which some are bigraphic and
others are not. Second, the number of partitions may be exponentially large in
n. Recent attempts on the BDR problem (see [2,3]) try to identify a small set
of partitions, which are suitable to decide BDR for the whole sequence. Each
partition in the small set is tested using the Gale-Ryser characterization. In case
all of them fail the test, it is conjectured that no partition of the sequence is
bigraphic. The conjecture was shown to be true in case there exists a special
partition that (perfectly) splits the degrees into small and large ones.

Paralleling the above discussion concerning relaxed degree realizations by
general multigraphs, one may look for relaxed degree realizations by bipartite
multigraphs. This question is our main interest in the current paper.

1.2 Our Contribution

In this paper, we consider the problem of finding relaxed bipartite multigraph
realizations for a given degree sequence or a given partition. That is, the relaxed
realizations must fulfill the degree constraints exactly but are allowed to have
parallel edges. (Self-loops are disallowed.)

To evaluate the quality of a realization by a multigraph, we use two measures.
(i) The total multiplicity of the multigraph, i.e., the number of parallel edges.
(ii) The maximum multiplicity of the multigraph, i.e., the maximum number of
edges between any two of its vertices.
As shown later, these measures are non-equivalent, in the sense that there
are examples for sequences where realizations optimizing one measure are sub-
optimal in the other, and vice-versa.

For relaxed realizations by general multigraphs, it follows from the charac-
terizations given, respectively, by Owens and Trent [13] and Chungphaisan [5],
how to optimize the two measurements and find the respective multigraph real-
izations.

For relaxed realization by bipartite multigraphs, finding a realization for
BDRP (the given partition variant) that minimizes the maximum multiplic-
ity follows from the characterization presented by Berge [12], and the BDR case
(single sequence variant) was considered by us in [2]. In the current paper, we
review the known literature on the problem of degree realization by general and
bipartite multigraphs, strengthen the results of [2] on maximum multiplicity real-
izations for BDR, and also present additional results on multigraph realizations
with bounded total multiplicity for BDRP .

In more detail, Sect. 2 introduces formally the basic notions and measures
under study. Section 3 presents known results on multigraph realizations with low
total multiplicity of parallel edges. The problem was solved for general graphs by
Owens and Trent [13]. We provide a characterization for bipartite multigraphs
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based on a given partition (BDRP ). Both characterizations are translated to
Erdös-Gallai and Gale-Ryser conditions, respectively.

One necessary condition for a sequence d = (d1, . . . , dn) to be bigraphic is
that it can be partitioned. If d1 < n, this problem can be decided in polynomial
time. However, for a multigraph realization to exists, the inequality d1 < n is
not a necessary condition, and it follows that BDPP is NP-hard. We review this
matter in greater detail in Sect. 4 and discuss an output sensitive algorithm to
generate all partitions of a given sequence which was presented in [2]. In case
the number of partitions of a sequence is small, the algorithm allows us to find
optimal realizations with respect to both criteria.

In Sect. 5, we discuss sufficient conditions for the existence of approximate
bipartite realizations that depend only on the largest degree of the sequence of
a given sequence.

2 Preliminaries

Let d = (d1, d2, . . . , dn) be a sequence of positive integers in non-increasing
order1. The volume of d is

∑
d =

∑n
i=1 di. For a graph G, denote the sequence

of its vertex-degrees by deg(G). Sequence d is graphic if there is a graph G such
that deg(G) = d. We say that G is a realization of d. Note that every realization
of d has m =

∑
d/2 edges. Consequently, a graphic sequence must have even

volume. In turn, we call a sequence of positive integers with even volume a degree
sequence. We use the operator ◦ to define d◦d′ as the concatenation of two degree
sequences d and d′ (in non-increasing order).

2.1 Multigraphs as Approximate Realizations

Let H = (V,E) be a multigraph without loops. In this case, E is a multiset.
Denote by EH(v, u) the multiset of edges connecting v, u ∈ V . If |EH(v, u)| > 1,
we say that the edge (v, u) has |EH(v, u)| − 1 excess copies. Let E′ be the set
that is obtained by removing excess edges from E. The graph G = (V,E′) is
called the underlying graph of H.

We view multigraphs as approximate realizations of sequences that are not
graphic. Owens and Trent [13] gave a condition for the existence of a multigraph
realization.

Theorem 1 (Owens and Trent [13]). A degree sequence d can be realized by
a multigraph if and only if d1 ≤ ∑n

i=2 di.

To measure the quality of an approximate realization we introduce two metrics.
First, the maximum multiplicity of a multigraph H is the maximum number of
copies of an edge, namely

MaxMult(H) � max
(v,w)∈E

(|EH(v, w)|) ,

1 All sequence that we consider are assumed to be of positive integers and in a non-
increasing order.
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and for a sequence d define

MaxMult(d) � min{MaxMult(H) : H realizes d} .

We say that a sequence d is r-max-graphic if MaxMult(d) ≤ r, for a positive
integer r.

Second, the total multiplicity of a multigraph H is the total number of excess
copies, namely

TotMult(H) �
∑

(v,w)∈E

(|EH(v, w)| − 1) = |E| − |E′| ,

where E′ is the edge set of the underlying graph of H. For a sequence d define

TotMult(d) � min{TotMult(H) : H realizes d} .

We say a sequence d is t-tot-graphic if TotMult(d) ≤ t, for a positive integer t.

2.2 General Multigraphs

Given a degree sequence d, our goal is to compute MaxMult(d) and TotMult(d).
First, observe that the best realization in terms of maximum multiplicity

is not necessarily the same as the best one in terms of total multiplicity. See
example in Fig. 1.

Fig. 1. Optimal multigraph realizations for the sequence d = (82, 43). On the left we
have TotMult(G1) = 4 and MaxMult(G1) = 5, while on the right we have TotMult(G2) =
7 and MaxMult(G2) = 2.

Next, we iterate the characterization of Erdös and Gallai [6] for graphic
sequence.

Theorem 2 (Erdös-Gallai [6]). A degree sequence d is graphic if and only if,
for � = 1, . . . , n,

�∑

i=1

di ≤ �(� − 1) +
n∑

i=�+1

min{�, di} . (1)
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Theorem 2 implies an O(n) algorithm to verify whether a sequence is graphic.
Chungphaisan [5] extended the above characterization to multigraphs with
bounded maximum multiplicity as follows.

Theorem 3 (Chungphaisan [5]). Let r be a positive integer. A degree
sequence d is r-max-graphic if and only if, for � = 1, . . . , n,

�∑

i=1

di ≤ r�(� − 1) +
n∑

i=�+1

min{r�, di} . (2)

Notice the similarity to the Erdös-Gallai equations. Moreover, verify that
r ≤ d1, for any r-max-graphic sequence d. It follows that MaxMult(d) can be
computed in O(n · log(d1)).

The problem of finding a multigraph realization with low total multiplicity
was solved by Owens and Trent [13]. They showed that the minimum total
multiplicity is equal to the minimum number of degree 2 vertices that should be
added to make the sequence graphic. We provide a simpler proof of their result.

Theorem 4 (Owens and Trent [13]). Let d be a degree sequence such that
d1 ≤ ∑n

i=2 di. Then, d is t-tot-graphic if and only if d ◦ 2t is graphic.

Proof. Let d be a degree sequence such that d1 ≤ ∑n
i=2 di. First, assume that

d can be realized by a multigraph H with TotMult(H) ≤ t. Let F be the set
of excess edges in H. Construct a simple graph G by replacing each edge f =
(x, y) ∈ F with two edges (x, vf ) and (y, vf ), where vf is a new vertex. Clearly,
this does not change the degrees of x and y and adds a vertex vf of degree 2.
Hence the degree sequence of G is d ◦ 2|F |. Also, G is simple. If |F | < t, then
one may replace any edge in G with a path containing t − |F | edges, yielding a
graph with degree sequence d ◦ 2t.

Conversely, suppose the sequence d ◦ 2t is graphic. Let G be a simple graph
that realizes the sequence. Pick a degree 2 vertex v with neighbors x and y,
replace the edges (v, x) and (v, y) with the edge (x, y), and remove v from G.
This transformation eliminates one degree 2 vertex from G without changing
the remaining degrees. But it may increase the number of excess edges by one
(if the edge (x, y) already exists in G). Performing this operation for t times, we
obtain a multigraph H with TotMult(H) ≤ t and degree sequence d. ��

The next corollary follows readily with Theorems 2 and 4.

Corollary 1. Let t be a positive integer, and let d′ = d ◦ 2t. Sequence d is
t-tot-graphic if and only if, for � = 1, . . . , n + t,

�∑

i=1

d′
i ≤ �(� − 1) +

n+t∑

i=�+1

min{�, d′
i} . (3)

Owens and Trent [13] implicitly suggest to compute TotMult(d) by computing
the minimum t such that d ◦ 2t is graphic. Using binary search would lead to a
running time of O(n · log(TotMult(d))).
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Several authors [16,18] noticed that the equations of Theorem 2 are not
minimal. For a degree sequence d where2 d1 > 1, let box(d) = max{i | di > i}.
If Equation (1) holds for the index � = box(d), then it holds for index � + 1. To
see this, consider the equations for the two indices and compare the change in the
LHS and RHS. Observe that the RHS increases at least by (�+1)·�−�·(�−1) = 2�
while the LHS only increases by d�+1 ≤ �. It follows that Equation (1) does not
have to be checked for indices � > box(d).

Observation 1 ([16,18]). A degree sequence d is graphic if and only if, for
� = 1, . . . , box(d),

�∑

i=1

di ≤ �(� − 1) +
n∑

i=�+1

min{�, di} . (4)

On a side note, it is also known that only up to k many equations have to be
checked where k is the number of different degrees of a sequence (cf. [12,16,18]).

Observation 1 helps to simplify Corollary 1.

Corollary 2. Let t be a positive integer. Degree sequence d is t-tot-graphic if
and only if, for � = 1, . . . , box(d),

�∑

i=1

di ≤ �(� − 1) +
n∑

i=�+1

min{�, di} + t · min {�, 2} . (5)

Proof. Let d and t be as in the corollary. In case d1 = 1, the sequence d is
graphic, i.e., it is t-tot-graphic for any positive integer t.

Hence, assume that d1 > 1. Also, let d′ = d ◦ 2t. One can verify that Equa-
tions (5) are the (reduced) Erdös-Gallai inequalities of Observation 1 for d′.
Moreover, box(d) = box(d′), and the claim follows. ��

Corollary 2 implies a simple algorithm to compute TotMult(d). Let

Δ�(d) =
�∑

i=1

di − (�(� − 1) +
n∑

i=�+1

min{�, di}),

for � = 1, . . . , n, be the Erdös-Gallai differences of a degree sequence d. Also, let
Δmax(d) = max2≤�≤box(d) Δ�(d). It follows that t = max{Δ1,Δmax/2} implying
a O(n) algorithm to calculate TotMult(d).

2.3 Bipartite Multigraphs

In this section, we start investigating whether a degree sequence has a bipar-
tite realization, i.e., if it is bigraphic or not. Particularly, we are interested in
multigraph realizations where the underlying graph is bipartite.
2 If d1 = 1, we define box(d) = 0. Note that in this case d is realized by a matching

graph.
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Let d be a degree sequence such that
∑

d = 2m for some integer m. A block
of d is a subsequence a such that

∑
a = m. Define the set of blocks as B(d). For

each a ∈ B(d) there is a disjoint b ∈ B(d) such that d = a ◦ b. We call such a
pair a, b ∈ B(d) a balanced partition of d since

∑
a =

∑
b. Denote the set of all

partitions of d by BP(d) = {{a, b} | a, b ∈ B(d), a ◦ b = d}. We say a partition
(a, b) ∈ BP(d) is bigraphic if there is a bipartite realization G = (A,B,E) of d
such that deg(A) = a and deg(B) = b are the vertex-degree sequences of A and
B, respectively.

Observe that, as in the case of general graphs, the best realization in terms
of maximum multiplicity is not necessarily the same as the best one in terms of
total multiplicity. See example in Fig. 2.

Fig. 2. Optimal multigraph bipartite realizations for the sequence d = (42, 22). On the
left we have TotMultbi(G1) = 2 and MaxMultbi(G1) = 3, while on the right we have
TotMultbi(G2) = 3 and MaxMultbi(G2) = 2.

Note that not every graphic sequence has a balanced partition. Yet, if d is
bigraphic, then BP(d) is not empty. The Gale-Ryser theorem characterizes when
a partition is bigraphic.

Theorem 5 (Gale-Ryser [7,15]). Let d be a degree sequence and partition
(a, b) ∈ BP(d) where a = (a1, a2, . . . , ap) and b = (b1, b2, . . . , bq). The partition
(a, b) is bigraphic if and only if, for � = 1, . . . , p,

�∑

i=1

ai ≤
q∑

i=1

min{�, bi} . (6)

We point out that Theorem 5 does not characterize bigraphic degree sequences.
Indeed, if the partition is not specified, it is not known how to determine whether
a graphic sequence is bigraphic or not. There are sequences where some partitions
are bigraphic while others are not. Moreover, |BP(d)| might be exponentially large
in the input size n.

We turn back to approximate realizations by bipartite multigraphs. A multi-
graph is bipartite if its underlying graph is bipartite. Analogue to above, we
use the maximum and total multiplicity to measure the quality of a realization.
Naturally, let

MaxMultbi(d) � min{MaxMult(H) : H is bipartite and realizes d} .
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For a partition (a, b) ∈ BP(d), we define

MaxMultbi(a, b) � min{MaxMult(H) : H = (A,B,E)
s.t. deg(A) = a and deg(B) = b} .

Let r be a positive integer. If there is a bipartite multigraph H = (A,B,E)
where MaxMult(H) ≤ r, we say that d is r-max-bigraphic. Moreover, we say
that the partition (a, b) ∈ BP(d), where a = deg(A) and b = deg(B), is r-max-
bigraphic. Miller [12] cites the following result of Berge characterizing r-max-
bigraphic partitions.

Theorem 6 (Berge [12]). Let r be a positive integer. Consider a degree
sequence d and a partition (a, b) ∈ BP(d), where a = (a1, . . . , ap) and b =
(b1, . . . , bq). Then (a, b) is r-max-bigraphic if and only if, for � = 1, . . . , p,

�∑

i=1

ai ≤
q∑

i=1

min{�r, bi} . (7)

Note the similarity to the Gale-Ryser theorem. Theorem 6 implies that
MaxMultbi(a, b) can be computed in O(n · log(d1)) using binary search.

For the second approximation criteria, we bound the total multiplicity of a
bipartite multigraph realization. Define

TotMultbi(d) � min{TotMult(H) : H is bipartite and realizes d} .

Additionally, for a partition (a, b) ∈ BP(d), we define

TotMultbi(a, b) � min{TotMult(H) : H = (A,B,E)
s.t. deg(A) = a and deg(B) = b} .

We present our results on determining TotMultbi(a, b) in the next section. In
Sects. 4 and 5, we consider MaxMultbi(d) and TotMultbi(d).

3 Multigraph Realizations of Bi-sequences

In this section, we are interested in bipartite multigraph realizations with low
total multiplicity, assuming that we are given a sequence and a specific balanced
partition. First, we provide a characterization similar to Theorem 4 for bipartite
multigraph realizations for a given partition.

Theorem 7. Let d be a degree sequence and t be a positive integer. Then, d
is t-tot-bigraphic if and only if there exists a partition (a, b) ∈ BP(d) such that
(a ◦ 1t, b ◦ 1t) is bigraphic.
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Proof. Let d, t be as in the theorem. Assume that there is a bipartite multigraph
H = (L,R,E) with TotMult(H) ≤ t. Hence, there is a partition (a, b) ∈ BP(d)
where deg(L) = a and deg(R) = b. Let F be the set of excess edges in H.
Construct a bipartite graph G by applying the following transformation. For
every excess edge (x, y) ∈ F , add a new vertex xe to A and a new vertex ye to
B, and replace (x, y) by the two edges (x, ye) and (xe, y). Note that xe and ye

are placed on opposite partitions of G. Since there are t excess edges, G realizes
(a ◦ 1t, b ◦ 1t) without excess edges.

For the other direction, assume that there exists a partition (a, b) ∈ BP(d)
such that (a ◦ 1t, b ◦ 1t) is realized by a bipartite graph G = (L,R,E). Let
x1, . . . , xt and y1, . . . , yt be some vertices of degree one in L and R, respectively.
Also, for every i, let y′

i (respectively, x′
i) be the only neighbor of xi (resp., yi).

Construct a bipartite multigraph H by replacing the edges (xi, y
′
i) and (x′

i, yi)
with the edge (x′

i, y
′
i) and discarding the vertices xi and yi, for every i. Since

this transformation may add up to t excess edges, we have that TotMult(H) ≤ t.
��

The above characterization leads to extended Gale-Ryser conditions for total
multiplicity.

Theorem 8. Let d be a degree sequence with partition (a, b) ∈ BP(d) where
a = (a1, . . . , ap) and b = (b1, . . . , bq), and let t be a positive integer. The partition
(a, b) is t-tot-bigraphic if and only if, for all � ∈ 1, . . . , p,

�∑

i=1

ai ≤
q∑

i=1

min{�, bi} + t . (8)

Proof. Consider (a, b) and t as in the theorem. One can verify that the following
equations are the Gale-Ryser conditions of Theorem 5 for the partition (a, b):
For all � ∈ 1, . . . , p,

�∑

i=1

ai ≤
q∑

i=1

min{�, bi} + t , (9)

and for all h ∈ 1, . . . , t,

p∑

i=1

ai + h ≤
q∑

i=1

min{p + h, bi} + t . (10)

To finish the proof, we argue that Equation (10) holds for any h ∈ {0, . . . , t}
if Equation (9) holds for � = p. Recall that

∑q
i=1 min{p + h, bi} =

∑q
i=1 bi if

p + h ≥ b1. It follows that Equation (10) holds for indices h ≥ b1 − p.
Observe that

∑q
i=1 min{p+h+1, bi}−∑q

i=1 min{p+h, bi} ≥ 1 for p+h < b1,
i.e., the RHS of Equation (10) grows by at least 1 when moving from index p+h
to index p + h + 1. By assumption, Equation (9) holds for � = p, implying that
Equation (10) holds for h = 0. Since the LHS of Equation (10) grows by 1
exactly, Equation (10) holds for indices h < b1 − p. ��
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Given a degree sequence d with partition (a, b) ∈ BP(d), Theorem 8 implies
that

TotMultbi(a, b) = max
1≤�≤p

(
�∑

i=1

ai −
q∑

i=1

min{�, bi}) .

It follows that TotMultbi(a, b) can be computed in time O(n).

4 Bipartite Realization of a Single Sequence

In this section, we study the following question: given a degree sequence d, can
it be realized as a multigraph whose underlying graph is bipartite? Also, if there
exists such a realization, we would like to find one which minimizes the maximum
or the total multiplicity.

4.1 Hardness Result

Given a sequence and a balanced partition one may construct a bipartite multi-
graph realization by assigning edges in an arbitrary manner.

Observation 2. Let d be a sequence and let (�, r) ∈ BP(d) be a partition of d.
Then, there exists a bipartite multigraph realization of (�, r).

It follows that deciding whether a degree sequence d can it be realized as a
multigraph whose underlying graph is bipartite is NP-hard.

Theorem 9. Deciding if a degree sequence d admits a bipartite multigraph real-
ization is NP-hard.

Proof. We prove the theorem using a reduction from the Partition problem.
Recall that Partition contains all sequences (a1, . . . , an) such that there exists
an index set S ⊆ [1, n] for which

∑
i∈S ai =

∑
i�∈S ai (see. e.g., [8]). Observa-

tion 2 implies that d is a Partition instance if and only if d admits a bipartite
mulitgraph realization. ��

Since Partition admits a pseudo-polynomial time algorithm, we have the
following.

Theorem 10. Deciding if a sequence d admits a bipartite multigraph realization
can be done in pseudo-polynomial time.

4.2 Degree Sequences with a Small Number of Balanced Partitions

Bar-Noy et al. [2] describe an output sensitive algorithm that given a degree
sequence d, computes all balanced partitions of d. The running time of the algo-
rithm is bounded by the number of balanced partitions of d. For instances where
this number is small, it allows us to solve BDR in polynomial time. In this
section, we extend this approach to finding bipartite multigraphs.

The algorithm relies on the self-reducibility of the Partition problem. Let
TPart(n) be the time complexity of the best pseudo-polynomial time algorithm
for deciding Partition.
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Lemma 1 ([2]). The BDR problem admits a polynomial time output sensitive
algorithm. More specifically, given an integer sequence d = (d1, d2, . . . , dn), such
that di < n for every i, it is possible to find all partitions of d in time O(TPart(n)·
n · |BP(d)|).

The above running time becomes polynomial, if |BP(d)| = O(nc) for some
constant c. The next result is readily implied with Theorem 6.

Corollary 3 ([2]). Let d be a degree sequence of length n such that |BP(d)| =
O(nc) for some constant c. Then, MaxMultbi(d) can be computed in polynomial
time.

Similarly, Theorem 8 implies the following.

Corollary 4. Let d be a degree sequence of length n such that |BP(d)| = O(nc),
for some constant c. Then, TotMultbi(d) can be computed in polynomial time.

5 Small Maximum Degree Sequences

Towards attacking the realizability problem of general bigraphic sequences, we
look at the question of bounding the total deviation of a nonincreasing sequence
d = (d1, . . . , dn) as a function of its maximum degree, denoted Δ = d1.

Burstein and Rubin [4] consider the realization problem for directed graphs
with loops, which is equivalent to BDRP . (Directed edges go from the first
partition to the second.) They give the following sufficient condition for a pair
of sequences to be the in- and out-degrees of a directed graph with loops.

Theorem 11 (Burstein and Rubin [4]). Consider a degree sequence d with
a partition (a, b) ∈ BP(d) assuming that a and b have the same length p. Let∑

a =
∑

b = pc where c is the average degree. If a1b1 ≤ pc + 1, then d is
realizable by a directed graph with loops.

In what follows we make use of the following straightforward technical claim
which slightly strengthens a similar claim from [2].

Observation 3. Consider a nonincreasing integer sequence d = (d1, . . . , dk) of
total sum

∑
d = D. Then,

∑
(d[�]) ≥ 	�D/k
, for every 1 ≤ � ≤ k.

Proof. Since d is nonincreasing, 1
�

∑�
i=1 di ≥ 1

k−�

∑k
i=�+1 di . Consequently,

D =
k∑

i=1

di =
�∑

i=1

di +
k∑

i=�+1

di ≥
�∑

i=1

di +

⌈
k − �

�

�∑

i=1

di

⌉

=

⌈
k

�

�∑

i=1

di

⌉

,

implying the claim. ��
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5.1 Bounding the Maximum Multiplicity

Theorem 11 is extended to bipartite multigraphs with bounded maximum mul-
tiplicity, i.e., to r-max-bigraphic sequences. The following is a slightly stronger
version of Lemma 14 from [2].

Lemma 2. Let r be a positive integer. Consider a degree sequence d of length
n with a partition (a, b) ∈ BP(d). If a1 · b1 ≤ r · ∑

d/2 + r, then (a, b) is r-max-
bigraphic.

Proof. Let r, d and (a, b) as in the lemma where a = (a1, a2, . . . , ap) and b =
(b1, b2, . . . , bq). Moreover, let X =

∑
a =

∑
b =

∑
d/2. To prove the claim, we

assume that a1 · b1 ≤ r · X + r, and show that Equation (7) holds for a fixed
index � ∈ [p]. The lemma then follows due to Theorem 6.

First, we consider the case where b1 ≤ �r. Then,
∑q

i=1 min{�r, bi} = X ≥
∑�

i=1 ai, and Equation (7) holds.
In the following, we assume that �r < b1. Note that the conjugate sequence

b̃ of b is nonincreasing, and that
∑�r

j=1 b̃j =
∑q

i=1 min{�r, bi}. By Observation 3,

q∑

i=1

min{�r, bi} ≥ 	�rX/b1
 ≥ 	�(a1b1 − r)/b1
 = 	�a1 − �r/b1
 = �a1 .

As a is nonincreasing, we have that
∑�

i=1 ai ≤ �a1 ≤ ∑q
i=1 min{�r, bi}. The

lemma follows. ��
Lemma 3. There exists a degree sequence d with a partition (a, b) ∈ BP(d), such
that a1·b1 = r·∑ d/2+r, which is r-max-bigraphic, but not (r−1)-max-bigraphic.

Proof. Consider the sequence d = (q2k−1, (q − 1)2) for positive integers q, k
such that q = r · k. This sequence has a unique partition (a, b) ∈ BP(d), where
a = b = (qk−1, (q − 1)). One can verify that a1b1 = q2, while

r · ∑
d/2 + r = r(qk − 1) + r = rqk = q2 .

The partition (a, b) is r-max-bigraphic, but no better. ��
Lemma 2 is stated for a given partition (BDRP ). For BDR, we immediately

have the following which is a slight improvement over Corollary 16 form [2].

Corollary 5. Let r be a positive integer and d be a partitionable degree sequence.
If d21 ≤ r · ∑

d/2 + r, then any partition (a, b) ∈ BP(d) is r-max-bigraphic.

5.2 Bounding the Total Multiplicity

In this section, we establish results for total multiplicity analogous to those
obtained in the previous section for the maximum multiplicity.



16 A. Bar-Noy et al.

Lemma 4. Let t be a positive integer. Consider a degree sequence d of length
n with a partition (a, b) ∈ BP(d). If a1 · b1 ≤ ∑

d/2 + t + 1, then (a, b) is t-tot-
bigraphic.

Proof. Let t, d and (a, b) as in the lemma where a = (a1, a2, . . . , ap) and b =
(b1, b2, . . . , bq), and let X =

∑
a =

∑
b =

∑
d/2. To prove the claim, we assume

that a1 ·b1 ≤ X + t+1, and show that Equation (8) holds for every index � ∈ [p].
The lemma then follows due to Theorem 8.

First, consider the case where � ≥ b1. In this case,
q∑

i=1

min{�, bi} =
∑

b = X ≥
�∑

i=1

ai ,

and Equation (8) holds.
Next, assume that � < b1. Note that the conjugate sequence b̃ of b is nonin-

creasing, and that
∑�

j=1 b̃j =
∑q

i=1 min{�, bi}. By Observation 3,

q∑

i=1

min{�, bi} + t ≥
⌈

�X

b1

⌉
+ t ≥

⌈
�(a1b1 − t − 1)

b1

⌉
+ t =

⌈
�a1 − �(t + 1)

b1

⌉
+ t ≥ �a1 .

As a is nonincreasing, we have that
∑�

i=1 ai ≤ �a1 ≤ ∑q
i=1 min{�, bi} + t. The

lemma follows. ��
The following lemma shows that the above bound it tight.

Lemma 5. There exists a degree sequence d with a partition (a, b) ∈ BP(d), such
that a1 · b1 =

∑
d/2 + t + 2, and (a, b) is not t-tot-bigraphic.

Proof. Consider the sequence d = (k2(k−1), 12), for a positive integer k > 1. This
sequence has only one partition (a, b) ∈ BP(d), where a = b = (kk−1, 1). Observe
that a1b1 = k2, while

∑
d/2 = k(k − 1) + 1.

Assume that t = k − 2. Hence, a1b1 =
∑

d/2 + t + 1. For every � < k, we
have that

k∑

i=1

min{�, bi} + t = k + (� − 1)(k − 1) + k − 2 = �k − � − 1 + k ≥ �k =
�∑

i=1

ai .

For � = k, we have
∑k

i=1 min{�, bi} + t ≥ ∑
d/2 =

∑k
i=1 ai .

Now assume that t = k − 3. Hence, a1b1 =
∑

d/2 + t + 2. For every � < k,
we have that

k∑

i=1

min{�, bi} + t = k + (� − 1)(k − 1) + k − 3 = �k − � − 2 + k .

If � = k − 1, we get that

k∑

i=1

min{�, bi} + t = (k − 1)k − (k − 1) − 2 + k = (k − 1)k − 1 <

�∑

i=1

ai ,

which means that (a, b) is not t-tot-bigraphic. ��
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Similar to above, Lemma 5 (stated for BDRP ) implies the following for BDR.

Corollary 6. Let t be a positive integer and d be a partitionable degree sequence.
If d21 ≤ ∑

d/2 + t + 1, then any partition (a, b) ∈ BP(d) is t-tot-bigraphic.
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3. Bar-Noy, A., Böhnlein, T., Peleg, D., Rawitz, D.: On the role of the high-low
partition in realizing a degree sequence by a bipartite graph. In: 47th MFCS, vol.
241 of LIPIcs, pp. 14:1–14:15 (2022)

4. Burstein, D., Rubin, J.: Sufficient conditions for graphicality of bidegree sequences.
SIAM J. Discret. Math. 31(1), 50–62 (2017)

5. Chungphaisan, V.: Conditions for sequences to be r-graphic. Discr. Math. 7(1–2),
31–39 (1974)

6. Erdös, P., Gallai, T.: Graphs with prescribed degrees of vertices [Hungarian]. Mat.
Lapok (N.S.) 11, 264–274 (1960)

7. Gale, D.: A theorem on flows in networks. Pacific J. Math 7(2), 1073–1082 (1957)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. Freeman, San Francisco, CA (1979)
9. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a

linear graph -I. SIAM J. Appl. Math. 10(3), 496–506 (1962)
10. Havel, V.: A remark on the existence of finite graphs [in Czech]. Casopis Pest. Mat.

80, 477–480 (1955)
11. Hulett, H., Will, T.G., Woeginger, G.J.: Multigraph realizations of degree

sequences: maximization is easy, minimization is hard. Oper. Res. Lett. 36(5),
594–596 (2008)

12. Miller, J.W.: Reduced criteria for degree sequences. Discr. Math. 313(4), 550–562
(2013)

13. Owens, A.B., Trent, H.M.: On determining minimal singularities for the realiza-
tions of an incidence sequence. SIAM J. Appl. Math. 15(2), 406–418 (1967)

14. Rao, S.B.: A survey of the theory of potentially P-graphic and forcibly P-
graphic degree sequences. In: Rao, S.B. (ed.) Combinatorics and Graph Theory.
LNM, vol. 885, pp. 417–440. Springer, Heidelberg (1981). https://doi.org/10.1007/
BFb0092288

15. Ryser, H.J.: Combinatorial properties of matrices of zeros and ones. Can. J. Math.
9, 371–377 (1957)

16. Tripathi, A., Vijay, S.: A note on a theorem of Erdös & Gallai. Discr. Math. 265(1–
3), 417–420 (2003)

17. Will, T.G., Hulett, H.: Parsimonious multigraphs. SIAM J. Discr. Math. 18(2),
241–245 (2004)

18. Zverovich, I.E., Zverovich, V.E.: Contributions to the theory of graphic sequences.
Discr. Math. 105(1–3), 293–303 (1992)

https://doi.org/10.1007/978-3-030-79987-8_1
https://doi.org/10.1007/978-3-030-79987-8_1
https://doi.org/10.1007/BFb0092288
https://doi.org/10.1007/BFb0092288


Thirty Years of SIROCCO A Data
and Graph Mining Comparative Analysis

of Its Temporal Evolution

Pierluigi Crescenzi(B)

Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L’Aquila, Italy
pierluigi.crescenzi@gssi.it

https://pilucrescenzi.it

Abstract. In this paper, we study the temporal evolution of SIROCCO
and of other sixteen theoretical computer science conferences. Our goal is
to try to understand the evolution of these conferences and to answer sev-
eral different research questions, related to the number of authors, num-
ber of papers, size of collaborations, sex inclusion, research topics, net-
work characteristics, and author centrality. The tentative answer to these
questions is given by performing a comparative analysis between the
entire set of conferences. Even though the paper focuses on SIROCCO
and on a specific set of theoretical computer science conferences, the soft-
ware used to perform our analysis can be easily used to perform similar
analysis in the case of conferences in different computer science research
areas.

Keywords: Computer science conference · Data mining · DBLP
dataset · Graph mining · Research topic · Temporal network mining

1 Introduction

Computer science is a young discipline with a long history. According to the cor-
responding page of Wikipedia [22], the term ‘computer science’ appears for the
first time in 1959 [9] but “algorithms for performing computations have existed
since antiquity.” Thousands of computer science conferences are now active:
indeed, the DBLP computer science bibliography [21] provides information on
6199 computer science conference proceedings (at March 28, 2023). Many of
these conferences are celebrating or have celebrated special anniversaries, such
as the IEEE Annual Symposium on Foundations of Computer Science (60 years
in 2019), the International Colloquium on Automata, Languages and Program-
ming (50 years in 2022), the Symposium on the Theory of Computing (50 years
in 2018), and the Colloquium on Structural Information and Communication
Complexity (in short SIROCCO, 30 years in 2023). This implies that sufficient
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data are now available for performing a data and graph mining analysis not only
on the entire DBLP dataset (as has often happened in the last two decades),
but also on one specific conference or a small set of specific conferences (if we
are interested in a comparative analysis).

This paper presents an open-source software resource for doing such an anal-
ysis in order to try to provide answers to questions like the following. How do the
conferences compare in terms of the evolution of the number of authors, number
of papers, and number of collaboration sizes? How much were the conferences
more or less open to new entries? Has the percentage of female authors evolved
differently over time? Did the conferences present similar densification, diameter
shrinking, and small-world phenomenon? What are the most influential authors
of the conferences?

As a case study, in this paper we analyse and compare the evolution of
SIROCCO and of other sixteen among the most popular Theoretical Computer
Science (in short, TCS) conferences throughout their temporal evolution. The
paper is accompanied by a web page containing all the figures in their full and
“interactive” version: we hope that members of the SIROCCO community will
enjoy playing with them. It goes without saying that “the data analysis we
present has to be taken with a huge pinch of salt and is only meant to provide
an overview of” the evolution of some among the most popular TCS conferences
and “to be food for thought for” the computer science theory community [1].

Even though in this paper we focus on a relatively small set of TCS confer-
ences, our software allows us to perform similar analysis on any (set of) confer-
ences whose data are included in the DBLP dataset and whose domain might
range from artificial intelligence to database systems, from computer networks
to bio-informatics, from computer vision to data mining.

1.1 Our Dataset

The DBLP dataset “provides open bibliographic information on major com-
puter science journals and proceedings” [13,21]. The entire dataset is released
under the CC0 1.0 Public Domain Dedication license [5]. Each month, a persis-
tent snapshot dump of the DBLP XML dataset is published on the web site:
in this paper, we refer to the dump of March 2023. In addition to SIROCCO,
of all conferences archived in the DBLP bibliography, in this paper we will use
data corresponding to the following sixteen TCS conferences: International Con-
ference on Computer Aided Verification (in short, CAV), Annual International
Cryptology Conference (in short, CRYPTO), Annual Conference for Computer
Science Logic (in short, CSL), International Symposium on Distributed Com-
puting (in short, DISC), European Symposium on Algorithms (in short, ESA),
European Symposium on Programming (in short, ESOP), International Con-
ference on the Theory and Application of Cryptographic Techniques (in short,
ECRYPT), IEEE Annual Symposium on Foundations of Computer Science (in
short, FOCS), International Colloquium on Automata, Languages and Program-
ming (in short, ICALP), ACM/IEEE Symposium on Logic in Computer Sci-
ence (in short, LICS), ACM SIGACT-SIGOPS Symposium on Principles of
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Table 1. Basic statistics concerning the editions, the number of authors, and the
number of papers of SIROCCO and the other sixteen TCS conferences. Note that the
following conferences in some specific years had no edition: CSL in 2019, DISC in 1988,
ESOP in 1987, 1989, 1991, 1993, 1995, and 1997, EUROCRYPT in 1983, ICALP in
1973 and 1975. Moreover POPL became a journal issue since 2018.

Number of authors Number of papers

Conference First Last Minimum Maximum First Last Minimum Maximum

SIROCCO (1994–2022) 24 48 24 (1994) 92 (2018) 11 16 11 (1994) 32 (2015)

CAV (1990–2022) 77 205 63 (1995) 319 (2021) 38 53 32 (1992) 84 (2021)

CRYPTO (1981–2022) 52 260 46 (1983) 291 (2021) 40 99 29 (1983) 104 (2021)

CSL (1987–2022) 38 85 34 (1990) 165 (2014) 24 37 22 (1993) 80 (2014)

DISC (1987–2022) 58 146 45 (1996) 173 (2021) 30 52 22 (1993) 63 (2021)

ESA (1993–2022) 85 276 73 (1997) 276 (2022) 38 92 38 (1993) 92 (2022)

ESOP (1986–2022) 47 83 37 (1998) 109 (2018) 27 21 18 (1998) 36 (2017)

EUROCRYPT (1982–2022) 34 263 34 (1982) 263 (2022) 26 85 26 (1982) 85 (2022)

FOCS (1960–2022) 10 297 10 (1960) 343 (2020) 9 110 9 (1960) 127 (2020)

ICALP (1972–2022) 65 369 41 (1976) 442 (2018) 49 133 31 (1976) 165 (2018)

LICS (1986–2022) 71 157 64 (1987) 241 (2021) 42 64 37 (1987) 95 (2018)

PODC (1982–2022) 55 163 42 (1989) 229 (2010) 30 64 22 (1988) 92 (2008)

POPL (1973–2017) 36 192 34 (1975) 206 (2016) 22 66 20 (1976) 66 (2017)

SODA (1990–2022) 121 405 98 (1992) 466 (2020) 54 148 53 (1991) 183 (2019)

STACS (1984–2022) 38 178 38 (1984) 178 (2022) 30 60 26 (1990) 71 (1993)

STOC (1969–2022) 40 365 26 (1971) 375 (2021) 31 134 23 (1971) 151 (2021)

TACAS (1995–2022) 37 244 37 (1995) 276 (2019) 13 67 13 (1995) 73 (2019)

Distributed Computing (in short, PODC), ACM-SIGACT Symposium on Prin-
ciples of Programming Languages (in short, POPL), ACM-SIAM Symposium
on Discrete Algorithms (in short, SODA), Symposium on Theoretical Aspects of
Computer Science (in short, STACS), Symposium on the Theory of Computing
(in short, STOC), and International Conference on Tools and Algorithms for
Construction and Analysis of Systems (in short, TACAS). The year of the first
edition of each of the sixteen conferences and the basic statistics concerning the
number of authors and the number of papers are summarised in Table 1.

2 A Data Mining Comparative Analysis

In this section we perform some data mining analysis in order to compare the
evolution of SIROCCO and of the other sixteen TCS conferences. To provide a
framework for the study, we define several research questions.

How do the Conferences Compare in Terms of (The Evolution of) their Author
Sets? FOCS, ICALP, STACS, and STOC are general TCS conferences, ESA
and SODA are mostly devoted to algorithms, CAV and TACAS to automated
verification, CRYPTO and EUROCRYPT to cryptography, DISC and PODC
to distributed computation, CSL and LICS to logic, and ESOP and POPL to
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Fig. 1. The similarity between the sixteen TCS conferences, measured by using the
Sorensen-Dice index of the corresponding author sets (left), and the evolution of the
Sorensen-Dice index between SIROCCO and the other sixteen TCS conferences (right).

programming languages. This rough classification is confirmed by the heat map
shown in the left part of Fig. 1, where the similarity between two conferences
is computed by using the Sorensen-Dice index [8,20] with respect to the sets
of all authors who published at least one paper in a conference (recall that,
given two sets X and Y , the Sorensen-Dice index of X and Y is defined as
sd(X,Y ) = 2jac(X,Y )

1+jac(X,Y ) , where jac(X,Y ) = |X∩Y |
|X∪Y | is the Jaccard index of X and

Y [10]).1

In order to compare the similarity between SIROCCO and the other sixteen
TCS conferences, we show in the right part of Fig. 1 the evolution over time of
the Sorensen-Dice index between SIROCCO and the other sixteen TCS confer-
ences (always with respect to the sets of all authors who published at least one
paper in the corresponding conference). Not surprisingly, DISC and PODC are
the conferences more similar to SIROCCO, followed by ESA and STACS. It is
worth noting that while DISC and PODC are almost every year more similar to
SIROCCO than the previous year, the general TCS and algorithms conferences
seem to converge to a stable degree of similarity. Finally, SIROCCO seems to be
very different from cryptography, logic, and programming languages conferences.
We will further develop this observation while trying to assign to SIROCCO a
measure of membership to different ICALP communities.

How do the Conferences Compare in Terms of the Evolution of the Number
of Papers? For what concerns the number of papers, three different kinds of
evolution can be noted (Fig. 2). There are conferences such as ICALP in which
the number of papers increases in a quite regular way, conferences such as STACS

1 Other similarity indices could have been used, such as, for example, the one proposed
in [11]. Even if we did not check it, we believe that the results would be very similar.
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Fig. 2. The evolution of the number of papers for SIROCCO and for a sample of the
sixteen TCS conferences.

in which the number of papers remains almost constant, and conferences such as
SODA which are a combination of the previous two behaviours (that is, a sudden
increase followed by a period of constant value). SIROCCO seems to belong to
the second group of conferences: this might be due to the relative small size of
SIROCCO but also to a more “rigid” policy concerning the number of accepted
papers.

How do the Conferences Compare in Terms of (The Evolution of) the Number
Of Collaboration Sizes? Even in the case of the average size of a paper author
set, we can note different behaviours. In particular, there are conferences, such
as CSL, in which the percentage of single-author papers is significantly higher
than the other percentages, while for the majority of the other conferences the
percentage curve has a bell shape (see the left part of Fig. 3). In this latter
case, there is still a difference for what concerns sizes up to four: indeed, there
are conferences, such as ICALP, in which the peak is reached at the value 2
and the percentage of single-author papers is the second one, and there are
conferences, such as TACAS, in which the peak is reached at the value 3 and
even the percentage of papers with five authors is larger than the percentage
of single-author papers (note that the maximum size of an author set for these
three conferences is 7, 15, and 24, respectively). SIROCCO seems to be between
ICALP and TACAS, since the peak of its curve is at 2, but single-author papers
are more frequent than papers with five authors (the maximum size is 13). It is
also worth noting that these percentages have evolved over time. For example, in
the case of SIROCCO, during the first eight years the number of papers with two
authors is significantly higher than the other percentages. While time passing,
however, papers with three authors become more and more popular: indeed,
during the last seven years these kind of papers are more than one third of all
the papers. Moreover, in the period between 2010 and 2017, large coauthor set
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Fig. 3. The average size of a paper author set for SIROCCO and for a sample of the
sixteen conferences (left) and its evolution in the case of SIROCCO (right).

have been quite popular: indeed, even the number of papers with five authors is
larger than the number of single-author papers (during this period the maximum
author set size is also reached). It is worth observing that a similar behaviour
can be observed in the case of the other sixteen TCS conferences, thus implying
that, in general, theoretical computer scientists tend to collaborate more as time
goes by (it would be interesting to compare this observation with other computer
science research areas or even with other scientific disciplines).

How much Have the Conferences been more or Less Open to New Entries? All
conferences have a similar evolution in terms of the percentage of new authors.
Clearly, this percentage starts from 100% and, then, rapidly decreases towards a
stable value. This latter value, however, changes from conference to conference
(see the left part of Fig. 4), and can range from less than 40% (such as in the case
of SODA), between 40% and 50% (such as in the case of ICALP), and above
50% (such as in the case of CAV). In the case of SIROCCO, this percentage
significantly oscillates in the last five years, being greater than 55% in 2018, less
than 28% in 2019, and around 50% in the last three editions. The difference
between the openness to new entries of the analysed conferences can be noted
by looking at the average percentage of new authors in the last ten years (see
the right part of Fig. 4). The most “conservative” conference is STOC (with
an average value approximately equal to 37%), while the most open to new
entries is ESOP (with an average value approximately equal to 60%). SIROCCO
places itself in the middle with an average percentage approximately equal to
46%. It is worth noting that the situation slightly changes if we consider as
new authors only the one whose first paper published in the conference has
not been co-authored with an author who already published a paper in the
conference: in other words, we can consider as fully new authors only the ones
which have not been ‘introduced’ by an author already known in the conference
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Fig. 4. The evolution of the percentage of new authors for a sample of the sixteen
conferences (left) and the average percentage of new authors in the last ten editions of
all conferences (right).

community (such as it happens, for instance, in the case of a paper co-authored
by a researcher and a student of theirs). By looking at the average percentage
of such fully new authors in the last ten years (see Fig. 5), we note that clearly
all percentages decrease and that the overall ranking of the conferences changes
in several positions. For example, the most “conservative” conference is now
CRYPTO (with an average value approximately equal to 5%), while the most
open to fully new entries is now CSL (with an average value approximately
equal to 22%). SIROCCO is now in fifth position (very close to TACAS) with
an average value approximately equal to 15%.

Has the Percentage of Female Authors Evolved Differently Over Time? In order
to answer to this question, we first need to “label” each author as male or female.
To this aim, we used the web service available at https://genderize.io, which
allowed us to assign the labels on the ground of the first name of the authors.
Of the 22261 authors who published at least one paper in at least one confer-
ence analysed, 1113 could not be assigned a label by using this service (either
because the first name was not recognized or because the correctness probability
was below 0.5). We then performed a manual search on the web in order to assign
the label to these 1113 authors. We were able to do it for 532 authors, which
means that 581 authors (approximately, 2.6% of the total) remained unlabeled.
Note that almost one third of these authors (precisely, 191) have an academic age
equal to 1, that is, they published one paper or more in only one year, and then
they did not publish any other paper. We expected these authors to be quite
difficult to find on the web, and, indeed, they could not be labeled (especially
because only 55 of these authors were “active” after 2010). Of the remaining 390
authors, one third published their last paper before 2010 and, hence, they were
also difficult to find on the web and could not be labeled. In the left part of Fig. 6
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Fig. 5. The average percentage of new and fully new authors in the last ten editions
of all conferences.

we show, for each conference, the percentage of unlabeled authors. As we can
see, the highest percentages are the ones corresponding to CRYPTO, EURO-
CRYPT, and FOCS, which are the only conferences whose percentage is higher
than the global percentage. In the right part of Fig. 6 we show the evolution of
the percentage of the female authors for the four conferences CRYPTO, DISC,
SIROCCO, and SODA. While the first two conferences show a slightly increasing
trend (which is more or less shared by the majority of all the other conferences),
the second two conferences seems to behave in a different way, showing a quite
constant percentage. Moreover, while CRYPTO and DISC manage to repeatedly
break the “wall” of 20%, the percentage of female authors for SIROCCO and
SODA is still far below this threshold (apart from the 1996 edition of SIROCCO).
This latter behavior is, unfortunately, the most frequent one among all the anal-
ysed conferences and, indeed, only three other conferences (that is, PODC and
TACAS) reached, at least once, a percentage greater than 20%. Finally, it is
also worth observing how these percentages are overall “better” than the ones
derived in [7] while analyzing the entire computer science research community.
In that case, indeed, the percentage of female authors started from 7.3% in the
time frame 1991–1995 and ended to 12.9% in the time frame 2016–2020. This
seems to suggest that the theoretical computer science community promotes sex
inclusion more than the entire computer science community.
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Fig. 6. The percentage of authors without a (sex) label assigned for SIROCCO and
for each of the sixteen TCS conferences (left), and the evolution of the percentage of
female authors for SIROCCO and for a sample of the sixteen TCS conferences (right).

3 A Graph Mining Comparative Analysis

In this section we perform some graph mining analysis in order to compare the
evolution of SIROCCO and of the other sixteen TCS conferences. In particular,
for each conference, we consider both the “static” collaboration graph Gs, in
which the nodes are the authors who presented at least one paper at the con-
ference and there is an edge (a1, a2) if a1 and a2 co-authored at least one paper
(not necessarily presented at the conference), and the “temporal” collaboration
graph Gt, with the same set of nodes and in which there is a “temporal” edge
(a1, a2, y) if a1 and a2 co-authored at least one paper (not necessarily presented
at the conference) in year y (for more details about temporal graphs, see [17]).
For each conference, the basic statistics of these two collaboration graphs are
shown in Table 2, where the density is defined as 2ms

n(n−1) , n is the number of
nodes, ms is the number of edges, and the LCC size denotes the fraction of
nodes belonging to the largest connected component of the static collaboration
graph. As expected, all static graphs contain a huge connected component and
are quite sparse.

Did the Conferences Differently Densify Over Time? In [12] the authors observed
that many real-world graphs “densify” over time. That is, the number of edges
in the graph increases more than linearly with respect to the number of nodes.
Formally, suppose that ms ∝ nα for some constants α with 1 ≤ α ≤ 2: the
hypothesis is that α is significantly greater than 1. In order to verify this state-
ment, we can execute a linear regression of the log-log relationship between the
number of nodes and the number of edges in the static graph (by assuming that
when there are no nodes, then there are no edges). The resulting values of α are
shown in the last column of Table 2. For these values we can, indeed, conclude
that there exists a densification phenomenon, which is more evident in the case
of FOCS and STOC (SIROCCO seems to be among the conferences with the
lowest level of densification).
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Table 2. Basic statistics concerning the static and temporal collaboration graphs of
SIROCCO and of the other sixteen TCS conferences.

Conference # nodes # edges # temporal edges Density LCC size α

CAV 2733 17077 48209 0.0046 0.98 1.31

CRYPTO 1988 14323 36460 0.0073 0.95 1.40

CSL 1455 5560 23863 0.0053 0.95 1.27

DISC 1602 8165 28989 0.0064 0.97 1.29

ESA 2868 22761 73502 0.0055 0.99 1.28

ESOP 1367 6368 21689 0.0068 0.97 1.35

EUROCRYPT 1821 12552 31328 0.0076 0.94 1.44

FOCS 3346 27021 82493 0.0048 0.96 1.63

ICALP 4837 37511 123999 0.0032 0.98 1.47

LICS 1953 9886 37650 0.0052 0.98 1.28

PODC 2393 13000 44763 0.0045 0.96 1.30

POPL 1979 9691 32636 0.005 0.96 1.34

SIROCCO 923 4858 19303 0.0114 0.98 1.28

SODA 4173 36097 106273 0.0041 0.99 1.28

STACS 2740 16469 62082 0.0044 0.97 1.32

STOC 3192 27199 81887 0.0053 0.98 1.53

TACAS 2239 13901 41452 0.0055 0.98 1.26

Did the Diameter and the Degrees of Separation Differently Evolve Over Time?
In [12] the authors also observed that, in many real-world graphs, the diameter
“shrinks” over time, contrary to the “folklore” hypothesis that it should increase
in a logarithmic way with respect to the number of nodes. In the left part of Fig. 7
we show the evolution of the diameter for SIROCCO and for a sample of three
others TCS conferences. It can be indeed verified that, after an initial increase,
the diameter shrinks, even though, after a while, it tends to converge to a quite
small value (between 8 and 11). In the case of SIROCCO, for example, this latter
value is among the smallest ones (only ESA converges to a smaller value) and
the maximum diameter value is reached in 1994 (that is, the year of its first
edition). It is also worth noting that a similar behavior is observed in the case of
the so-called “effective” diameter, that is, the value such that, for at least 90% of
the pairs of nodes, their distance is at most equal to it. Clearly, in this latter case,
the value to which the effective diameter converges is significantly lower than the
one corresponding to the diameter (more precisely, either 4 or 5). Another well-
studied parameter of large graphs is the average distance between all nodes in
the largest connected component, also called “degrees of separation” (inspired
by the well-known “small-world” experiment of [18]). As shown in the right
part of Fig. 7, all the analysed conference present the small-world phenomenon,
that is, their average distance is quite low (between 3.5 and 4.1), which is also



28 P. Crescenzi

Fig. 7. The evolution of the diameter (left) and of the degrees of separation (right) for
SIROCCO and for a sample of the sixteen TCS conferences.

consistent with the more recent experimental results obtained while analysing
the degrees of separation of the huge graph of Facebook friendships [2]. It is worth
observing that while some conferences became small worlds almost immediately
(like PODC) or never reached high degrees of separation (like SIROCCO), there
are conferences which had, at the beginning, more than six degrees of separation
(actually, more than seven), and then became more and more small worlds.

How the Conferences Compare with Respect to their Most Temporally Central
Nodes? Several definitions of temporal centrality in temporal graphs have been
proposed in the last few years (see, for example, [4,19]). Here, we are going to
use the analogue of the closeness centrality in static graphs, introduced in [6].
According to this definition, the centrality of a node is, intuitively, related to
the evolution of its average distance to the other nodes, where in the case of
temporal graphs the path has to respect natural temporal constraints (that is,
each edge in the path has to appeared after the edge preceding it in the path)
and the length of a path is given by the number of its temporal edges. By using
this centrality measure, we identified the top-50 authors of SIROCCO and of the
other sixteen TCS conferences, and we computed the intersection of these sets
of authors (see Table 3) As expected, there is (almost) no intersection between
the set of SIROCCO authors and the set of conferences in formal methods and
programming languages. Moreover, the biggest intersections are with DISC and
PODC (28 and 19 authors, respectively), followed by STACS (13 authors). The
biggest intersection in the entire set of conferences is between FOCS and STOC
(46 authors). This analysis can be viewed as a refinement of the heat map shown
in Fig. 1, since we are now comparing only the most “central” nodes of each
conference, and not the entire set of authors who published at least one paper
in the conference.
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Table 3. The intersection between the sets of the top-50 nodes with respect to the
temporal closeness defined in [6]

Conference C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17

C1. CAV 0 12 0 0 6 0 0 1 19 0 16 0 0 0 0 36

C2. CRYPTO 0 3 0 0 43 12 6 0 8 0 1 1 0 12 0

C3. CSL 0 0 5 0 0 1 28 0 8 0 0 0 0 13

C4. DISC 7 0 3 6 14 0 34 2 28 5 10 8 0

C5. ESA 0 0 11 23 0 8 0 6 30 25 10 0

C6. ESOP 0 0 0 9 0 23 0 0 0 0 5

C7. EUROCRYPT 7 4 0 8 0 1 0 0 7 0

C8. FOCS 29 2 17 0 3 22 7 46 0

C9. ICALP 3 21 1 9 29 19 30 1

C10. LICS 1 16 0 1 1 2 18

C11. PODC 2 19 11 10 20 0

C12. POPL 1 0 0 0 12

C13. SIROCCO 4 13 5 0

C14. SODA 19 21 0

C15. STACS 7 0

C16. STOC 0

C17. TACAS

4 The SIROCCO Membership to ICALP Communities

As a part of the presentation for the fifty years celebration of ICALP, we devel-
oped an HTML tool assigning to each ICALP author a “probability” of being
a member of four distinct communities, that is, the algorithm, the cryptogra-
phy, the distributed computing, and the formal methods communities. This tool
produces, for every researcher who presented at least one paper at ICALP, the
pie chart representing the similarity of the researcher with one of the four com-
munities (see Fig. 8). The tool makes use of ideas similar to the ones described
in [16], by associating to each author a document formed by the titles of all
the papers published by the author and to each conference a document formed
by the titles of all the papers published in the conference. After selecting, for
each community, two or more “anchor” conferences (similarly to what has been
done in [14] and is suggested in [15]), the tool simply computes the similarity
of the document corresponding to an author with the documents corresponding
to the anchor conferences of a community. By using this classification of ICALP
authors, we can analyse the degree of membership of the entire SIROCCO confer-
ence (represented by all the authors who have published a paper both in ICALP
and in SIROCCO) to each of the four communities. This analysis is summarised
in Fig. 9. As it can be seen, SIROCCO as a conference mostly belongs to the
algorithm community, even though its membership to the distributed computing
community is also very high. As Andrea Marino, an old friend of ours, said, it
seems that SIROCCO is the place where algorithm researchers like to play the
role of distributed computing researchers.
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Fig. 8. The similarity of an author with each of the four communities of ICALP, for a
sample of four authors.

Fig. 9. The global similarity of SIROCCO with each of the four communities of ICALP.
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5 Concluding Remarks

In this paper we have analysed the temporal evolution of SIROCCO and of
other sixteen theoretical computer science conferences, trying to answer several
different research questions, related to the number of authors, number of papers,
size of collaborations, sex inclusion, research topics, network characteristics, and
author centrality. The tentative answer to these questions has been given by per-
forming a comparative analysis between the entire set of conferences. Apart from
performing similar analysis with different sets of computer science conferences,
we believe that one promising research line would be to integrate our tool with
more sophisticated data and graph mining approaches (even based on machine
learning techniques). Just to give an example, we believe it would be interesting
to explore the application of time series mining techniques (see, for example, [3])
to the context of computer science conferences, in order to mathematically dis-
cover similarities about their quantitative evolution. Finally, even if the tool has
been developed in order to analyse conferences included in the DBLP dataset,
it should not be difficult to extend its application to journals included in the
DBLP dataset or even to different datasets (such as the Scopus dataset). In this
latter case, indeed, it should be sufficient to “export” the dataset into the format
used by our tool, which could be extended in order to also integrate information
concerning the citations between papers and authors.

Code Availability. The code used to perform the comparative analysis is
available at

https://github.com/piluc/ConferenceMining

Starting from this website, it is also possible to reach the web page containing
the interactive version of all the figures included in this paper, the presentation
made for celebrating the fifty years of ICALP in 2022, and an example of a web
page that can be produced, by using our tool, in order to analyse one specific
conference.
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Abstract. This article (written for the celebration of the 30th Anniversary of the
SIROCCO conference series) is a non-technical article that presents a personal
view of what are Informatics, Distributed Computing, and our Job. While it does
not pretend to objectivity, its aim is not to launch a controversy on the addressed
topics. More modestly it intends to encourage readers to form their own view on
these important topics.
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1 A Short Historical Perspective: What Is Informatics

Preliminary Remark As in a lot of European and Latin countries this article uses the
term informatics instead of computer science. This is due to the fact that, to prevent
ambiguity, a scientific domain must be defined by one and only one word as done
for physics, biology, chemistry, mathematics, astrophysics, geology (and also in non-
scientific domains such as law, history, philosophy, arts, literature, etc.)1.

Using two words (or more!) is nearly always ambiguous as, in any sentence, words
are not equal. As said by Hal Abelson [1] “Computer science is no more about comput-
ers, than astronomy is about telescopes or biology is about microscopes...”2. Informat-
ics is (informally) defined here as the science of computations that can be mechanically
done (let us remind that computations are not restricted to numbers).

1.1 A Short History

At the Very Beginning. Let us look at the picture in Fig. 1, known as Plimpton tablet
322 (1800 BC). On this very famous tablet are engraved, in the sexagesimal base, the
first fifteen Pythagorean triplets, i.e. the triplets (a, b, c) such that a2 + b2 = c2.

So it seems that computing was born before or at the same time as writing. It was
mainly used to compute field areas, inheritance transmission, and interest rates. This
“proves” that Sumer people were able to run non-trivial computations. So they were
able to design “algorithms”. Unfortunately, no tablet describing these algorithms has
yet been discovered, and we do not know if they were able to prove their “algorithms”.

1 See also the first chapter in [27].
2 This citation is sometimes falsely attributed to Dijkstra.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Rajsbaum et al. (Eds.): SIROCCO 2023, LNCS 13892, pp. 33–45, 2023.
https://doi.org/10.1007/978-3-031-32733-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32733-9_3&domain=pdf
https://doi.org/10.1007/978-3-031-32733-9_3
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Fig. 1. Plimpton tablet (1800 BC) from Wikipedia

From Recipes to Algorithms. The big step is due to Ancient Greeks, mainly Euclid (300
BC), who proposed axioms, mechanical constructions (algorithms) built from a set of
well-defined basic geometric operations, accompanied with their proofs [19,27–29,38].

As a simple example let us consider the bisection of an angle with two basic opera-
tions, namely, a ruler to draw lines and a compass to draw arcs and measure the length
of segments. The construction (algorithm) is easy, see Fig. 2.

– First, with the compass, draw an arc of a circle centered at the angle vertex denoted
A. Observe that the two segments AB and AC are equal.

– From the points B and C draw two circles with the same radius such that these circles
intersect. Let D be a point where these circles intersect.

– Draw the line AD.
– Claim: the angles ∠BAD and ∠CAD are equal.

The proof of the claim follows from the following trivial observations. By construc-
tion we have |AB| = |AC| = r1, and |BD| = |CD| = r2. Hence, the triangles ABD
and ACD are equal, from which we get that the corresponding angles are equal, and we
get ∠BAD = ∠CAD. QED.

A natural question is then: how to trisect an angle with a ruler and a compass. This
problem (also known as “squaring of a circle”) remained open until 1837, when it was
proved to be impossible by P.L. Wantzell [57]. This shows that, as far as geometric
constructions are concerned, the operations provided by a ruler and ta compass are not
universal. (This simple example –on what is possible/impossible in a given computation
model– can be understood by anyone.)

And Finally. As far as sequential computing is concerned, the currently accepted con-
jecture, named Church-Turing’s thesis, is that anything that can be mechanically com-
puted can be computed with a Turing machine [56]. So, the fundamental results of
sequential computing are:
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Fig. 2. Bisecting an angle

– Church-Turing’s thesis,
– The hierarchy: Finite state automata ⊂ Pushdown automata ⊂ Turing machine,
– Computation is symbol manipulation,
– Universality of data representation (at the most basic level, text, video, audio, etc.,
are sequences of bits).

1.2 Algorithms are (at) the Heart of Informatics

As we have seen, given a computing model (set of primitive operations), a sequential
algorithm is a sequence of the operations (provided by the model), solving a problem
that has been precisely defined (as seen previously with the bisection with a ruler and a
compass).

On the Origin of the Word Algorithm. The word algorithm comes from the name of the
mathematician M. Ibn Musa Al Khwârizmı̂ (700 Khiva – 850 Bagdad), who was work-
ing in the House of Wisdom created by the Caliph Hârun ar-Rachı̂d ben Muhammad
ben al-Mansûr (Abbasid dynasty 750–1258)3. Al Khwârizmı̂ worked on many scien-
tific topics, mainly astronomy and algebra. His today celebrity is related to the compu-
tation of the roots of what is today called quadratic equations and written ax2 + bx+ c
[23,50,51].

His name started to be known in Europe since the 12th century, and was then dis-
seminated mainly by Leonardo da Pisa (1175–1250, also known as “figlio di Bonacci”
shortened to Fibonacci) and Luca Paccioli (1445–1517). Al Khwârizmı̂ was using
“algorithms” to describe its methods of calculation and proved their correction using

3 It is worth noticing that the book The thousand and one nights was written during this
caliphate.
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geometry constructions. At the 12th century “computing people” were named abacist
or algorithmist according to the way they were doing their computations; the first ones
were using an abacus, the other ones were using Indian numbers (named today Arabic
numbers).

On Data and Algorithms. At the center of informatics reside algorithms [24]. This
is a direct consequence of the fact that, if we suppress algorithms there is no more
computation and so there is no more informatics. A schematic view is presented in
Fig. 3. Informatics is a science of abstractions (as stated in [21]), And –at its center–
algorithmics consists then in building higher and higher level computing abstractions
(with appropriate data representation).4

Fig. 3. From algorithms to applications

From Equations to Algorithms. When looking at the past evolution, the main resource
until World War II was the pair matter/energy. Now, the main resource is data, which,
once processed, provides us with information. As matter/energy, data/information can
be collected (extracted), consumed, transformed, stored, carried, etc. But there a funda-
mental difference between matter/energy and data/information. Differently from mat-
ter/energy, data/information is abstract, it does not burn and can be copied at “zero
cost”.

Moreover, while the aim of science was to “put the world into equations”, we know
today that everything cannot be captured by a formula. So, the aim of today science is to
put the world into equations and algorithms. Said in another way, Galileo Galilei said

4 Some people consider algorithmics as a part of mathematics. This is questionable. In the Mid-
dle Ages, logic was a part of philosophy, which was part of Rhetoric. Algorithms were born a
long time ago (see the abacus-based computations [49,50]), and thanks to the father of modern
informatics, A. Turing, Informatics has got its autonomy as a new science. The same appeared
for physics with I. Newton, for chemistry with A.-L. Lavoisier., etc.
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“the great book of nature is written in mathematical language”. This is true for physics,
not for other sciences such as life sciences. Today, the pair made up of mathematics +
informatics seems to be the language of all sciences [8].

A Few Differences Between Informatics and Mathematics. In addition to being the
domain of algorithms, informatics and mathematics present an important difference,
namely mathematics does not have the touch “run” which transforms a text describing
an algorithm (written in some programming language) into an execution! This has a
fundamental consequence, namely informatics evolves in the field of “finite”. As an
example, while mathematics consider the real number π as a number with an infinite
number of digits [6], any algorithm that uses π in in is restricted to consider it as defined
by a finite number of digits. More generally, any algorithm uses a finite memory and a
finite time.

To illustrate the previous claim let us consider the following two objects: the object
denoted “1+2” and the object denoted”3” with their usual meaning, and let us ask
the question: “are these two objects the same object or are they different objects?”.
Nearly all mathematicians answer “it is the same object”, while nearly all informati-
cians answer “they are different objects”. This is due to the simple observation that
informaticians see “1+2” as an algorithm which need to be executed to obtain a result,
namely the value 3.

2 What is Distributed Computing (or Beyond Turing Machine)

2.1 Parallel Computing Vs Distributed Computing

The Turing world is the world of sequential computing. While parallel computing is an
extension of it, distributed computing is not.

Parallel Computing. Parallel computing is a natural extension of sequential computing
in the sense that the aim of parallel computing is to detect and exploit data independence
to obtain efficient programs: once identified, independent sets of data can be processed
independently from each other on a multiprocessor. It is nevertheless important to notice
that, while independent data can be processed in parallel, any parallel program could
be executed on a single processor with an appropriate scheduler (the corresponding
sequential execution could be of course highly inefficient!).

Distributed Computing. The nature of distributed computing is totally different from
the one of parallel computing. Namely, distributed computing is characterized by the
fact that there is a set of predefined (and physically distributed) computing entities
(processes) that are imposed to the programmers and these entities need to cooper-
ate to a common goal. Moreover the behavior of the underlying infrastructure (also
called environment) on which the distributed application is executed is not under the
control of the programmers who have to consider it as an hidden input. Asynchrony
and failures are the most frequent phenomenons produced by the environment that cre-
ate a “context uncertainty” distributed computing has to cope with. In short, distributed
computing is characterized by the fact that, in any distributed run, the run itself is one
of its entries [44,46].
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In a Few Words. To summarize, parallel computing is the exploitation of the inde-
pendence of input data to obtain efficient algorithms (programs), while the aim of dis-
tributed computing is to allow predefined computing entities to cooperate to a common
goal in a consistent way in the presence of adversaries (mainly, asynchrony, failures).
In this sense, distributed computing is the science of cooperation. It aims at providing
users with high level communication abstractions and cooperation abstractions.

A Famous Quote on the Nature of Distributed Computing.

A distributed system is one in which the failure of a computer you didn’t even
know existed can render your own computer unusable. L. Lamport [3]

This quote is nothing else that an humorous statement of the many impossibility
results encountered in distributed computing such as the most famous one on consensus
in asynchronous crash-prone systems formalized in [20] and known under the acronym
FLP. The interested reader will find in [5] a book entirely devoted to unsolvability and
lower bound results encountered in distributed computing.

2.2 Sequential Vs Distributed Computing

On the Distributed Computing Problems Side. An important issue in sequential and
distributed computing is to understand what is a computing problem. Roughly speak-
ing, sequential computing focuses on functions from input strings to output strings [4].
The situation is different in distributed computing: both the input and the output are dis-
tributed, and consequently, in the well-studied context of distributed decision problems,
the input (resp., output) is a vector with one entry per process. A distributed computing
problem is then a mapping from the set of allowed input vectors to the set of allowed
output vectors. This gave birth to the notion of task [9,36,40]. An in depth study of the
solvability of distributed decision problems through the lens of combinatorial topology
is presented in [25].

While tasks are appropriate for vector-based input/output specifications (decision
problems), the case of distributed objects defined by a non-sequential specification has
been investigated in [11,12].

On the Computing Side. When looking at their impossibility results, the difference
between sequential computing and distributed computing is captured by this sentence:

In sequential systems, computability is understood through the Church-Turing
Thesis: anything that can be computed, can be computed by a Turing Machine.
In distributed systems, where computations require coordination among mul-
tiple participants, computability questions have a different flavor. Here, too,
there are many problems which are not computable, but these limits to com-
putability reflect the difficulty of making decisions in the face of ambiguity,
and have little to do with the inherent computational power of individual
participants. M. Herlihy, S. Rajsbaum, and M. Raynal [26]

This means that, even if the computability power of each computing entity was
stronger than the one of the Turing machine, some problems would remain impossible
to solve.
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2.3 The Two “Most Famous” Distributed Computing Problems

Mutual Exclusion. From a historical point of view, the “very first” distributed comput-
ing problem seems to be mutual exclusion. This well-known problem was introduced
by E.W. Dijkstra in 1965 [17]. Considering a set of asynchronous processes (imposed
to the programmer) that share some resource (physical or logical), the mutual exclusion
problem consists in ensuring that at most one process at a time accesses the resource.
Since Dijkstra’s algorithm, plenty of mutual exclusion algorithms have been proposed
(see the textbooks and surveys in [41,44,47,54,55]). In the context where the processes
communicate through read/write registers, one of the most famous algorithms is Lam-
port’s Bakery algorithm [30]. Differently from nearly all the other mutual exclusion
algorithms that consider that the underlying read/write registers are atomic, the Bakery
algorithm does not. It is based on safe read/write registers5.

Consensus. The second “most famous” distributed computing problem is consensus,
which, despite asynchrony and process crashes and assuming each process propose a
value, allows the processes that do not crash to decide on the same output value, that
must be one of the input values. As shown in [20] for asynchronous message-passing
systems, and in [35] for read/write systems, this problem cannot be solved. So, solv-
ing consensus in the presence of asynchrony and even a single process crash, requires
to enrich the system with additional computability power (e.g. failure detectors [13],
random numbers [7,37], weak synchrony assumptions [10,18]).

Mutual Exclusion vs Consensus. Actually, it seems that these two distributed computing
problems are the two sides of the same coin, namely the construction of a total order
on the operations applied to an object. Mutual exclusion is for physical objects (e.g. an
external device), while consensus is for logical objects (the ones that can be represented
as sequences of bits). The table below depicts the main features of this claim, which is
developed in [45].6

Nature of Poss. underlying Total order Underlying

the object replication obtained from Coordination

Physical No Mutex strong

Logical Yes Consensus weak

When looking at the “Underlying coordination” column, it is worth noticing that
the weakest information on failures that allows mutex to be solved includes a perpetual

5 A safe register is a register that can be written by a single process and read by any number
of processes. A write defines the new value of the register. A read whose execution is not
concurrent with a write returns the last value written in the register. A read concurrent with
a write returns any value that the register can contain (so it can return a value that has never
been written in the register!).

6 Let us also notice that Lamport presented recently in [33] a derivation from his Bakery algo-
rithm described in [30] to his state machine replication algorithm described in [31].
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property [15,16], while that the weakest information on failures needed to solve con-
sensus needs to satisfy an eventual property only [13]. This is related to the underlying
nature of the object (physical vs logical).

2.4 The Interplay Between Computing Entities and Communication

When considering message-passing communication, an important point of distributed
computing lies in the interplay between computing entities and communication (which
are key words of the SIROCCO conference series).7 This interplay and its impact on
what can be computed and on efficiency has been mainly considered in the context of
synchronous systems in which the processes are connected by a communication graph
that is not a clique. The interested reader may consult [22,34,48,53].

3 A Few Personal Points of View

3.1 An Anecdote on the Notion of “First Paper that ...”

As an invited speaker for the SIROCCO Award in 2015 [42], I chose to give a talk
on the”patterns” encountered in distributed algorithms. Before moving to distributed
computing, I have chosen as an introductory example the well known sequential com-
puting pattern proposed by William George Horner (1786–1837) to efficiently compute
the value of a polynomial. Browsing on the web (thanks to Wikipedia) I discovered
that this method had been previously proposed by the Italian philosopher and mathe-
matician Paolo Ruffini (1765–1822). A more incisive bibliographic search led me to
discover that Horner’s method was used by Zhu Shijie (1270–1330), who named it fan
fa in his book titled Jade Mirror of the Four Unknowns (1203), a book in which Pascal’s
triangle is also described! Books on history of science give many other examples. As a
scientist humorously put it: the value of a result could be measured by the number of
times it has been rediscovered!

In the same vein, if we ask a researcher which is her most important paper, in a lot
of cases, she will answer by presenting the paper she is currently working on.

3.2 On Scientific Competition

There is a big difference between industry competition and scientific competition.
Roughly speaking, industry competition means “win or die”. In a university context
the situation is radically different. Nearly always the competition is a friendly helping.
Nothing remains hidden, and (non-virtual) conferences are the playground where we
exchange ideas and opinions. Coffee breaks are as important as talks (in some cases
even more), and lead to joint work and articles, and, in the long run benefit to the soci-
ety.

7 A similar interplay was investigated a long time ago in parallel computing, namely the notion
of sorting network [2].
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3.3 On the Notion of “Best Paper”

As all of you, I have been asked the following question many times (mainly from PhD
students): What is a good paper?

At the very beginning (when I was younger, i.e. in the previous millennium!) my
answer was mainly based on an objective numerical criterion, namely, a good paper is
“a paper with numerous citations”. Later, I was saying “a paper that won the best paper
award in a top conference”. Still later I was saying “a paper that won a prize devoted to
more than ten years old papers”, etc.

But over time, none of these integer-based definitions fully satisfied me, and I started
thinking about the papers that I myself consider as very important papers ... and I dis-
covered that those were papers I was a little bit kindly jealous ... not to be a co-author!
This was because, those are papers I like to read (and reread) because they are nicely
written, their content goes beyond their technical content, they introduce new ideas in
a simple and efficient way, and have a very strong impact on the community. This is
the effect of good papers: everyone makes them”theirs”, assimilating them and passing
their essence to students.

3.4 On the Evolution of Informatics

In 1936A A. Turing laid the foundations of (modern) sequential computing [56], and
there is a conjecture on what can be mechanically computed and what cannot not. At
this time theory was preceding applications. Today, the schema is reversed. There are
more and more applications, but very few fertilize theory and the world of applications
seems to become a map-missing megalopolis of applications.

4 By Way of Conclusion: What is Our Job?

Research is THE raison d’être of universities, and this is independent of the time and
the geographical location8. Research is the fuel of university education. It is both a
personal and collective adventure of an intellectual nature. By ”adventure” I mean that
research is not defined by a roadmap. Its goal is to understand the world that surrounds
us and the artifacts that we create in it.

Research pretends to a certain universality (let us not forget that the words Universe,
Universality, and University derive from the same root). Research relies on curiosity and
obstinacy, sagacity and the personal knowledge of its actors, as well as on serendipity
(in the sense of an unexpected encounter between personal knowledge, state of mind,
context, and... chance... linked to the context in which it is realized).

Tenure positions are crucial regardless of local cultures, social behaviors, and eco-
nomical structures. This is not accidental, and goes back to the very first Chinese man-
darins9. The permanence of faculty positions is a necessary condition to establish a
long-term approach, without being constrained by hiccups and vagaries of the short

8 The text that follows is a digest of an article that appeared (in French) in [43].
9 The permanence of their position guaranteed them time for thinking and preventing impulsive
and precipitated judgments.
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term “time to market” must not be the definitive diktat, nor the criterion for defining
research topics, nor the analysis grid presiding over their evaluation.

The sentence “No one enters here if he is not a geometer” engraved on the pediment
of the Platonic Academy, summarizes a state of mind of scientific research. While there
is a continuum from a part of research to its directly visible impact in society, for an
academic researcher applications are more important for the new questions they raise
than for their direct impact on the economy. As said by H. Poincaré in [39]:

A science made only with a view to applications is impossible; truths are only
fruitful if they are linked to each other. If one attaches oneself only to those from
which one expects an immediate result, the intermediate rings will disappear and
there will be no chain.

Like yin and yang, at the graduate level, research and teaching are inseparable.
On the one hand, research is the domain of uncertainty. One tackles a problem with-
out knowing what will come out of it and, once published, a result is part of the past,
piously preserved in DBLP and CVs10. When we consider the teaching/research dual-
ity, teaching is mainly on the side of certainties and questioning aimed at developing
students’ critical thinking skills. We teach things, which we partially modify from one
year to the next, depending on the topic and what one has assimilated from the research
results related to concerned curriculum.

Teaching requires to awake the intellectual curiosity of students and give them the
desire to learn (which may seem obvious but is far from easy). The student’s desire to
learn is far more important than the pedagogical form used to teach. (Too many times
we are as a doctor for whom illness is more important than the patient...)

Defining the content of a curriculum requires thinking in terms of several compo-
nents. The first one is the one that allows students to be operational when they start
working. This is important for two reasons: they must have confidence in themselves
and their employers must have confidence in their abilities. This requires basic courses
both on concepts and knowledge of tools and technology. The second component is to
give students the knowledge that will give them the confidence and hindsight that, in
thirty years from now, they will still have a job and will not be thrown in the garbage can
where is already present the technology they used in their first steps. Finally, the third
component consists in transmitting a scientific culture which, without being directly
useful, will allow them to better understand current science, innovations and the world
around them.

Although immediacy, speed and competition are experienced in today’s society as
(market) values, it is important to note that we do not think any faster today than twenty-
five centuries ago, when emerged, in the Pericles’century, the founding ideas of History,
Democracy (in a particular form), Geography, Mathematics, Algorithmics (with their
proofs), Tragedy, Medicine, etc.

There were (some kind of ) universities a thousand years ago, there will be univer-
sities a thousand years from now (in one form or another). We are aware that we belong

10 Unfortunately results known as “negative” are too often considered as second-class citizens,
whereas they often shed light on an obscure face of some positive results [14].
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to a big family. We feel at home in almost any university in the world, and feel solidar-
ity with our present colleagues and those who have gone before us, regardless of their
specific beliefs and cultures. We are with them in a logic of exchanges and knowledge
and not a logic of economic competitiveness.

To conclude, two teaching-related citations:

– Teaching is not an accumulation of facts, from Lamport [32],
– Teaching is thinking aloud in front of students, from H. Lebesgue.
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Abstract. We continue our study from Lynch and Mallmann-Trenn
(Neural Networks, 2021), of how concepts that have hierarchical struc-
ture might be represented in brain-like neural networks, how these rep-
resentations might be used to recognize the concepts, and how these
representations might be learned. In Lynch and Mallmann-Trenn (Neu-
ral Networks, 2021), we considered simple tree-structured concepts and
feed-forward layered networks. Here we extend the model in two ways:
we allow limited overlap between children of different concepts, and we
allow networks to include feedback edges. For these more general cases,
we describe and analyze algorithms for recognition and algorithms for
learning.
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1 Introduction

We continue our study, begun in [4], of how concepts that have hierarchical struc-
ture might be represented in brain-like neural networks, how these representa-
tions might be used to recognize the concepts, and how these representations
might be learned. In [4], we considered only simple tree-structured concepts and
simple feed-forward layered networks. Here we consider two important exten-
sions: we allow our data model to include limited overlap between the sets of
children of different concepts, and we extend the network model to allow some
feedback edges. We consider these extensions both separately and together. In
all cases, we consider both algorithms for recognition and algorithms for learn-
ing. Where we can, we quantify the effects of these extensions on the costs of
recognition and learning algorithms.

In this paper, as in [4], we consider robust recognition, which means that
recognition of a concept is guaranteed even in the absence of some of the lowest-
level parts of the concept. In [4], we considered both noise-free learning and
learning in the presence of random noise. Here we emphasize noise-free learning,
but include some ideas for extending the results to the case of noisy learning.
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Motivation: This work is inspired by the behavior of the visual cortex, and
by algorithms used for computer vision. As described in [4], we are interested
in the general problem of how concepts that have structure are represented in
the brain. What do these representations look like? How are they learned, and
how do the concepts get recognized after they are learned? We draw inspiration
from experimental research on computer vision in convolutional neural networks
(CNNs) by Zeiler and Fergus [9] and Zhou, et al. [10]. This research shows that
CNNs learn to represent structure in visual concepts: lower layers of the network
represent basic concepts and higher layers represent successively higher-level con-
cepts. This observation is consistent with neuroscience research, which indicates
that visual processing in mammalian brains is performed in a hierarchical way,
starting from primitive notions such as position, light level, etc., and building
toward complex objects; see, e.g., [1–3].

In [4], we considered only tree-structured concepts and feed-forward layered
networks. Here we allow overlap between sets of children of different concepts,
and feedback edges in the network. Overlap may be important, for example, in
a complicated visual scene in which one object is part of more than one higher-
level object, like a corner board being part of two sides of a house. Feedback
is critical in visual recognition, since once we recognize a particular higher-level
object, we can often fill in lower-level details that were not easily recognized
without the help of the context provided by the object. For example, once we
recognize that we are looking at a dog, based on seeing some of its parts, we can
recognize other parts that are less visible, such as a partially-occluded leg.

Paper Contents: We begin in Sect. 2 by extending our formal concept hierarchy
model of [4]. We continue in Sect. 3 with definitions of our networks, both feed-
forward and with feedback. Next, in Sect. 4, we define the robust recognition
and noise-free learning problems. Section 5 contains algorithms for robust recog-
nition in feed-forward networks, for both tree hierarchies and general hierarchies.
Section 6 contains algorithms for robust recognition in networks with feedback,
for both tree hierarchies and general hierarchies. In Sect. F, we describe noise-free
learning algorithms in feed-forward networks, which produce edge weights for the
upward edges that suffice to support robust recognition. In Sect.G, we extend
the learning algorithms for feed-forward networks to accommodate feedback.

2 Data Models

We use two types of data models in this paper. One is the same type of tree
hierarchy as in [4]. The other allows limited overlap in the sets of children of
different concepts. As before, a concept hierarchy is supposed to represent all
the concepts that are learned in the “lifetime” of an organism, together with
parent/child relationships between them.

We also include two definitions for the notion of “supported”, which are used
to describe the set of concepts whose recognition should be triggered by a given
set of basic concepts. One definition is for the case where information flows only
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upwards, from children to parents, while the other also allows downward flow,
from parents to children. These definitions capture the idea that recognition is
robust, in the sense that a certain fraction of neighboring (child and parent)
concepts should be enough to support recognition of a given concept.

2.1 Preliminaries

We start by defining some parameters: Let �max, be a positive integer, repre-
senting the maximum level number for the concepts we consider. Let n be a
positive integer, representing the total number of lowest-level concepts. Let k
be a positive integer, representing the number of top-level concepts in a concept
hierarchy, and the number of sub-concepts for each concept that is not at the
lowest level in the hierarchy. Let r1, r2 be reals in [0, 1] with r1 ≤ r2; these rep-
resent thresholds for robust recognition. Let o be a real in [0, 1], representing an
upper bound on overlap. Let f be a nonnegative real, representing strength of
feedback. We assume a universal set D of concepts, partitioned into disjoint sets
D�, 0 ≤ � ≤ �max. We refer to any particular concept c ∈ D� as a level � concept,
and write level(c) = �. Here, D0 represents the most basic concepts and D�max

the highest-level concepts. We assume that |D0| = n.

2.2 Concept Hierarchies

We define a general notion of a concept hierarchy, which allows overlap. We will
refer to our previous notion from [4] as a “tree concept hierarchy”; it can be
defined by a simple restriction on the general definition.

A (general) concept hierarchy C consists of a subset C ⊆ D, together with a
children function, satisfying the constraints below. For each �, 0 ≤ � ≤ �max, we
define C� to be C ∩D�, that is, the set of level � concepts in C. For each concept
c ∈ C0, we assume that children(c) = ∅. For each concept c ∈ C�, 1 ≤ � ≤ �max,
we assume that children(c) is a nonempty subset of C�−1. We call each element
of children(c) a child of c. We extend the children notation recursively, namely,
we define concept c′ to be a descendant of a concept c if either c′ = c, or c′ is a
child of a descendant of c. We write descendants(c) for the set of descendants of
c. Let leaves(c) = descendants(c)∩C0, that is, the set of all level 0 descendants
of c. Also, we call every concept c′ for which c ∈ children(c′) a parent of c,
and write parents(c) for the set of parents of c. Since we allow overlap, the set
parents(c) might contain more than one element. If a concept c has only one
parent, we write parent(c). We assume the following properties:

1. |C�max | = k. That is, the number of top-level concepts in the hierarchy is
exactly k.1

2. For any c ∈ C�, where 1 ≤ � ≤ �max, we have that |children(c)| = k. That is,
the number of children of any non-leaf concept is exactly k.

1 This assumption and the next are just for uniformity, to reduce the number of
parameters and simplify the math.
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3. Limited overlap: Let c ∈ C�, where 1 ≤ � ≤ �max. Let C ′ =⋃
c′∈C�−{c} children(c′); that is, C ′ is the union of the sets of children of

all the other concepts in C�, other than c. Then |children(c) ∩ C ′| ≤ o · k.
To define a tree hierarchy, we replace the limited overlap property with the
stronger property:

4. No overlap: For any two distinct concepts c and c′ in C�, where 1 ≤ � ≤ �max,
we have that children(c) ∩ children(c′) = ∅. That is, the sets of children of
different concepts at the same level are disjoint. This property is equivalent
to Property 3 with o = 0. Since children of level � concepts are at level � − 1,
by assumption, there cannot be overlap across different levels.

Properties 1, 2, and 4 are the same as in [4]. Property 3 is new here: we
replace the no-overlap condition assumed in [4] with a condition that limits the
overlap between the set of children of a concept c and the sets of children of
all other concepts at the same level. We require this overlap to be less than a
designated fraction o · k of the children of c. See Fig. 1 for an example.

2.3 Support

In this subsection, we fix a particular concept hierarchy C, with its concept set C,
partitioned into C0, C1, . . . , C�max . We assume that C satisfies the limited-overlap
property. We give two definitions, one that expresses only upward information
flow and one that also expresses downward information flow.

Support with only Upward Information Flow. For any given subset B of
the general set D0 of level 0 concepts, and any real number r ∈ [0, 1], we define
a set suppr(B) of concepts in C. This represents the set of concepts c ∈ C, at
any level, such that B contains enough leaves of c to support recognition of c.
The notion of “enough” here is defined recursively, in terms of a level parameter
�. This definition is equivalent to the corresponding one in [4].

Definition 1 (suppr(B)). Given B ⊆ D0, define the sets of concepts S(�), for
0 ≤ � ≤ �max: S(0) = B ∩ C0 and for 1 ≤ � ≤ �max, S(�) is the set of all
concepts c ∈ C� such that |children(c) ∩ S(� − 1)| ≥ rk. Define suppr(B) to be⋃

0≤�≤�max
S(�). We also write suppr(B, �) for S(�), when we want to make the

parameters r and B explicit.

Support with both Upward and Downward Information Flow. Our
second definition, which captures information flow both upward and downward
in the concept hierarchy, is a bit more complicated. It is expressed in terms of
a generic “time parameter” t, in addition to the level parameter �. Here, f is a
nonnegative real, as specified at the start of Sect. 2.1.

Definition 2 (suppr,f (B)). Given B ⊆ D0, define the sets of concepts S(�, t),
for 0 ≤ � ≤ �max and t ≥ 0: 1) � = 0 and t ≥ 0: Define S(0, t) = B. B is initially
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Fig. 1. The figure above illustrates overlapping concepts. In this example, salt is used
in all dishes. Moreover, each concept’s children intersects with at most five children of
other same-level concepts’ children taken together. The authors apologize to all Italians
for reducing their cuisine to pasta and pizza, and the artistic liberties w.r.t. the recipes.

supported and continues to be supported, and no level 0 concept other than those
in B ever gets supported. 2) 1 ≤ � ≤ �max and t = 0: Define S(�, 0) = ∅. No
concepts at levels higher than 0 are initially supported. 3) 1 ≤ � ≤ �max and
t ≥ 1: Define S(�, t) = S(�, t − 1) ∪ {c ∈ C� : |children(c) ∩ S(� − 1, t − 1)| +
f |parents(c) ∩ S(� + 1, t − 1)| ≥ rk}. Thus, concepts that are supported at
time t − 1 continue to be supported at time t. In addition, new level � concepts
can get supported at time t based on a combination of children and parents being
supported at time t − 1, with a weighting factor f used for parents.

Define suppr,f (B) to be
⋃

�,t S(�, t). We sometimes also write suppr,f (B, �, t)
for S(�, t), when we want to make the parameters r, f , and B explicit.

We also use the abbreviations suppr,f (B, ∗, t) for
⋃

� S(�, t), suppr,f (B, �, ∗)
for

⋃
t S(�, t), and suppr,f (B, ∗, ∗) for

⋃
�,t S(�, t), Notice that each of these three

unions must converge to a finite set since all the sets S(�, t) are subsets of the
single finite set C� of concepts. Now we have two monotonicity results, for r and
f :

Lemma 1. Let C be any concept hierarchy satisfying the limited-overlap prop-
erty, and let B ⊆ D0. Consider r, r′, where 0 ≤ r ≤ r′ ≤ 1, and arbitrary f .
Then suppr′,f (B) ⊆ suppr,f (B).

Lemma 2. Let C be any concept hierarchy satisfying the limited-overlap prop-
erty, and let B ⊆ D0. Consider f, f ′, where 0 ≤ f ≤ f ′, and arbitrary r ∈ [0, 1].
Then suppr,f (B) ⊆ suppr,f ′(B).
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Also note that the second supp definition with f = 0 corresponds to the first
definition:

Lemma 3. Let C be any concept hierarchy satisfying the limited-overlap prop-
erty, and B ⊆ D0. Then suppr,0(B) = suppr(B). Moreover, for every �,
0 ≤ � ≤ �max, suppr,f (B, �, ∗) = suppr(B, �).

Time Bounds. We would like upper bounds on the time by which the sets
S(�, t) in the second supp definition stabilize to their final values. Specifically,
for each value of �, we would like to find a value t∗ such that S(�, t∗) =
suppr,f (B, �, ∗). It follows that, for every t ≥ t∗, S(�, t) = suppr,f (B, �, ∗).

In general, we have only a large (exponential in �max) upper bound, based on
the fact that C contains only a bounded number of concepts. However, we have
better results in two special cases. The first result is for the case where f = 0,
that is, where there is no feedback from parents. In this case, for every �, the
sets S(�, t) stabilize within time �, as the support simply propagates upwards.
This can be proven by induction on �.

Proposition 1. Let C be any concept hierarchy satisfying the limited-overlap
property, and let B ⊆ D0. Then for any �, 0 ≤ � ≤ �max, we have
suppr,0(B, �, ∗) = suppr,0(B, �, �).

It follows that suppr,0(B) =
⋃

� suppr,0(B, �, �). Since �max is the maximum
value of �, we get that suppr,0(B) =

⋃
� suppr,0(B, �, �max) = suppr,0(B, ∗, �max).

This means that all the sets S(�, t) stabilize to their final values by time t = �max.
The second result is for the special case of a tree hierarchy, with any value of

f . In this case, the support may propagate both upwards and downwards. This
propagation may follow a complicated schedule, but the total time is bounded
by 2 �max. To prove this, we use a lemma saying that, if a concept c gets put into
an S(�, t) set before its parent does, then c is supported by just its descendants.
To state the lemma, we here abbreviate suppr,f (B, ∗, t) by simply S(t). Thus,
S(t) is the set of concepts at all levels that are supported by input set B, by
step t of the recursive definition of the S(�, t) sets. The lemma says that, if a
concept c is in S(t) and its parent is not, then it must be that c is supported by
just its descendants:

Lemma 4. Let C be any tree concept hierarchy, and let B ⊆ D0. Let t be any
nonnegative integer. If c ∈ S(t) and parent(c) /∈ S(t) then c ∈ suppr,0(B).

Now we can state our time bound result. It says that, for the case of tree
hierarchies, the sets S(�, t) stabilize within time 2 �max −�.

Theorem 1. Let C be any tree concept hierarchy, and let B ⊆ D0. Then for
any �, 0 ≤ � ≤ �max, we have suppr,f (B, �, ∗) = suppr,f (B, �, 2 �max −�).
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3 Network Models

We consider two types of network models, for feed-forward networks and for
networks with feedback. The model for feed-forward networks is the same as the
network model in [4], with upward edges between consecutive layers. The model
for networks with feedback includes edges in both directions between consecutive
layers.

We define the following parameters: Let �′
max, a positive integer, representing

the maximum number of a layer in the network. Let n, a positive integer, rep-
resenting the number of distinct inputs the network can handle; this is intended
to match up with the parameter n in the data model. Let f , a nonnegative
real, representing strength of feedback; this is intended to match up with the
parameter f in the data model.

Let τ , a positive real number, representing the firing threshold for neurons.
Let η, a positive real, representing the learning rate for Oja’s rule.

3.1 Network Structure

A network N consists of a set N of neurons, partitioned into disjoint sets N�,
0 ≤ � ≤ �′

max, which we call layers. We assume that each layer contains exactly
n neurons, that is, |N�| = n for every �. We refer to the n neurons in layer 0 as
input neurons. For feed-forward networks, we assume that each neuron in N�,
0 ≤ � ≤ �′

max − 1, has an outgoing “upward” edge to each neuron in N�+1, and
that these are the only edges in the network. For networks with feedback, we
assume that, in addition to these upward edges, each neuron in N�, 1 ≤ � ≤ �′

max,
has an outgoing “downward” edge to each neuron in N�−1.

We assume a one-to-one mapping rep : D0 → N0, where rep(c) is the input
neuron corresponding to level 0 concept c. That is, rep is a mapping from the full
set of level 0 concepts to the full set of layer 0 neurons. This allows the network
to receive an input corresponding to any level 0 concept, using a simple unary
encoding.

3.2 Feed-Forward Networks

Here we describe the contents of neuron states and the rules for network opera-
tion, for feed-forward networks.

Neuron States. Each input neuron u ∈ N0 has just one state component:
firing, with values in {0, 1}; firing = 1 indicates that the neuron is firing, and
firing = 0 indicates that it is not firing. We denote the firing component of
neuron u at time t by firingu(t). We assume that the value of firingu(t), for
every time t, is set by some external input signal and not by the network.

Each non-input neuron u ∈ N�, 1 ≤ � ≤ �′
max, has three state components:

firing, with values in {0, 1}, weight, a length n vector with entries that are reals
in the interval [0, 1], and engaged, with values in {0, 1}.
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The weight component keeps track of the weights of incoming edges to u from
all neurons at the previous layer. The engaged component is used to indicate
whether neuron u is currently prepared to learn new weights. We denote the
three components of non-input neuron u at time t by firingu(t), weightu(t), and
engagedu(t), respectively. The initial values of these components are specified
as part of an algorithm description. The later values are determined by the
operation of the network, as described below.

Potential and Firing. Now we describe how to determine the values of the
state components of any non-input neuron u at time t ≥ 1, based on u’s state
and on firing patterns for its incoming neighbors at the previous time t − 1.

In general, let xu(t) denote the column vector of firing values of u’s incoming
neighbor neurons at time t. Then the value of firingu(t) is determined by neuron
u’s potential for time t and its activation function. Neuron u’s potential for time
t, potu(t), is given by the dot product of its weight vector, weightu(t−1), and its
input vector, xu(t−1), at time t−1: potu(t) =

∑n
j=1 weightuj (t−1) xu

j (t−1). The
activation function, which determines whether or not neuron u fires at time t,
depends on, τ is firing threshold: firingu(t) = 1 if potu(t) ≥ τ, and 0 otherwise.

Edge Weight Modifications. We assume that the value of the engaged flag
of u is controlled externally; that is, for every t, the value of engagedu(t) is set
by an external input signal.2 We assume that each neuron that is engaged at
time t determines its weights at time t according to Oja’s learning rule [7] with
learning rate η. That is, if engagedu(t) = 1, then (using vector notation for
weightu and xu): Oja’s rule: weightu(t) = weightu(t − 1) + η potu(t) (xu(t −
1) − potu(t) weightu(t − 1)).

Network Operation. During operation, the network proceeds through a series
of configurations, each of which specifies a state for every neuron in the network.
As described above, the firing values for the input neurons and the engaged
values for the non-input neurons are determined by external sources. The other
state components, which are the firing and weight values for the non-input
neurons, are determined by the initial network specification at time t = 0, and
by the activation and learning functions described above for all times t > 0.

3.3 Networks with Feedback

Now we describe the neuron states and rules for network operation for networks
with feedback.
2 This is a departure from our usual models [4–6], in which the network deter-

mines all the values of the state components for non-input neurons. We expect
that the network could be modeled as a composition of sub-networks. One of the
sub-networks—a Winner-Take-All (WTA) sub-network— would be responsible for
setting the engaged state components. We will discuss the behavior of the WTA sub-
network in Sect. F, but a complete compositional model remains to be developed.
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Neuron States. Each neuron in the network has a state component firing,
with values in {0, 1}. In addition, each non-input neuron u ∈ N�, 1 ≤ � < �′

max,
has state components: uweight, a length n vector with entries that are reals in
the interval [0, 1]; these represent weights on “upward” edges, i.e., those from
incoming neighbors at level �−1, and ugaged, with values in {0, 1}, representing
whether u is engaged for learning of uweights.

In addition each neuron u ∈ N�, 0 ≤ � ≤ �′
max − 1, has state components:

dweight, a length n vector with entries that are reals in the interval [0, f ]; these
represent weights on “downward” edges, i.e., those from incoming neighbors at
level � + 1, and dgaged, with values in {0, 1}, representing whether u is engaged
for learning of dweights. We denote the components of neuron u at time t by
firingu(t), uweightu(t), ugagedu(t), dweightu(t), and dgagedu(t). As before,
the initial values of these components are specified as part of an algorithm
description, and the later values are determined by the operation of the net-
work.

Potential and Firing. For a neuron u at level �, 1 ≤ � ≤ �′
max − 1, the values

of the state components of u at time t ≥ 1 are determined as follows.
In general, let uxu(t) denote the vector of firing values of u’s incoming

layer � − 1 neighbor neurons at time t, and let dxu(t) denote the vector of
firing values of u’s incoming layer � + 1 neighbor neurons at time t. Then,
as before, the value of firingu(t) is determined by neuron u’s potential for
time t and its activation function. The potential at time t is now a sum of two
potentials, upotu(t) coming from layer � − 1 neurons and dpotu(t) coming from
layer � + 1 neurons. We define upotu(t) =

∑n
j=1 uweightuj (t − 1) uxu

j (t − 1),
dpotu(t) =

∑n
j=1 dweightuj (t− 1) dxu

j (t− 1) and potu(t) = upotu(t)+ dpotu(t).
The activation function is then defined by: firingu(t) = 1 ifpotu(t) ≥ τ and 0
otherwise. For a neuron u at level �′

max, the values of the state components of u
at time t ≥ 1 are determined similarly, but using only uweights and ux.

Edge Weight Modifications. We assume that the values of the ugaged and
dgaged flags of u are controlled externally; that is, for every t, the values of
ugagedu(t) and dgagedu(t) are set by an external input signal.

For updating the weights, we will use two different rules, one for the uweights
and one for the dweights. The uweights are modified as before, using Oja’s rule
based on the previous uweights, the upot, and the firing pattern of the layer
� − 1 neurons. Specifically, if ugagedu(t) = 1, then uweightu(t) = uweightu(t −
1)+η (upotu(t)) (uxu(t−1)−upotu(t) uweightu(t−1)), where η is the learning
rate. For the dweights, we will use a different Hebbian-style learning rule, which
we describe in Sect. G.

Network Operation. During operation, the network proceeds through a series
of configurations, each of which specifies a state for every neuron in the network.
As before, the configurations are determined by the initial network specification
for time t = 0, and the activation and learning functions.
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4 Problem Statements

In this section, we define the problems we will consider in the rest of this paper—
problems of concept recognition and concept learning. Throughout this section,
we use the notation for a concept hierarchy and a network that we defined in
Sects. 2 and 3. We assume that the concept hierarchy satisfies the limited-overlap
property. We consider both feed-forward networks and networks with feedback,
but the notation we specify here is common to both.

Thus, we consider a concept hierarchy C, with concept set C and maximum
level �max, partitioned into C0, C1, . . . , C�max . We use parameters n, k, r1, r2,
o, and f , according to the definitions for a concept hierarchy in Sect. 2.2. We
also consider a network N , with maximum layer �′

max, and parameters n, f , τ ,
and η as in the definitions for a network in Sect. 3. The maximum layer number
�′
max for N may be different from the maximum level number �max for C, but

the number n of input neurons is the same as the number of level 0 items in C,
and the feedback strength f is the same for both C and N .

We begin with a definition describing how a particular set of level 0 concepts
is “presented” to the network. This involves firing exactly the input neurons that
represent these level 0 concepts.

Definition 3 (Presented). If B ⊆ D0 and t is a non-negative integer, then
we say that B is presented at time t (in some particular network execution)
exactly if the following holds. For every layer 0 neuron u: 1) If u is of the form
rep(b) for some b ∈ B, then u fires at time t. 2) If u is not of this form, for any
b, then u does not fire at time t.

4.1 Recognition Problems

Here we define what it means for network N to recognize concept hierarchy C.
After learning the concept hierarchy, each concept c ∈ C, at every level, has
a unique representing neuron rep(c). We have two definitions, for feed-forward
networks and networks with feedback.

Recognition in Feed-forward Networks. The first definition assumes that
N is a feed-forward network. In this definition, we specify not only which neurons
fire, but also the precise time when they fire, which is just the time for firing to
propagate to the neurons, step by step, through the network layers.

Definition 4 (Recognition problem for feed-forward networks). Net-
work N (r1, r2)-recognizes C provided that, for each concept c ∈ C, there is a
unique neuron rep(c) such that the following holds. Assume that B ⊆ C0 is pre-
sented at time t. Then: 1)When rep(c) must fire: If c ∈ suppr2(B), then rep(c)
fires at time t+layer(rep(c)) and 2) When rep(c) must not fire: If c /∈ suppr1(B),
then rep(c) does not fire at time t + layer(rep(c)).

The special case where r1 = r2 = 1 has a simple characterization:
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Lemma 5. If network N (1, 1)-recognizes C, then for each concept c ∈ C, there
is a unique neuron rep(c) such that the following holds. If B ⊆ C0 is presented
at time t, then rep(c) fires at time t+ layer(rep(c)) if and only if leaves(c) ⊆ B.

Recognition in Networks with Feedback. The second definition assumes
that N is a network with feedback. For this, the timing is harder to pin down,
so we formulate the definition a bit differently. We assume here that the input is
presented continually from some time t onward, and we allow flexibility in when
the rep(c) neurons are required to fire.

Definition 5 (Recognition problem for networks with feedback). Net-
work N (r1, r2, f)-recognizes C provided that, for each concept c ∈ C, there is a
unique neuron rep(c) such that the following holds. Assume that B ⊆ C0 is pre-
sented at all times ≥ t. Then: 1) When rep(c) must fire: If c ∈ suppr2,f (B),
then rep(c) fires at some time after t. 2) When rep(c) must not fire: If
c /∈ suppr1,f (B), then rep(c) does not fire at any time after t.

4.2 Learning Problems

In our learning problems, the same network N must be capable of learning any
concept hierarchy C. The definitions are similar to those in [4], but now we extend
them to concept hierarchies with limited overlap. As before, we assume that the
concepts are shown in a bottom-up manner, though interleaving is allowed for
incomparable concepts.3

Definition 6. Showing a concept: Concept c is shown at time t if the set
leaves(c) is presented at time t, that is, if for every input neuron u, u fires at
time t if and only if u ∈ {rep(c′) | c′ ∈ leaves(c)}.
Definition 7 (Training schedule). A training schedule for C is any finite
sequence c0, c1, . . . , cm of concepts in C, possibly with repeats. A training sched-
ule is σ-bottom-up, where σ is a positive integer, provided that the following
conditions hold: 1) Each concept in C appears in the list at least σ times. 2) No
concept in C appears before each of its children has appeared at least σ times.

A training schedule c0, c1, . . . , cm generates a corresponding sequence
B0, B1, . . . , Bm of sets of level 0 concepts to be presented to the network in
a learning algorithm. Namely, Bi is defined to be {rep(c′) | c′ ∈ leaves(ci)}.

We have two definitions for learning, for networks with and without feedback.
The difference is just the type of recognition that is required to be achieved. Each
definition makes sense with or without overlap.

3 We might also consider interleaved learning of higher-level concepts and their descen-
dants. The idea is that partial learning of a concept c can be enough to make rep(c)
fire, which can help in learning parents of c. We mention this as future work, in
Sect. H.
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Definition 8 (Learning problem for feed-forward networks). Network
N (r1, r2)-learns concept hierarchy C with σ repeats provided that the following
holds. After a training phase in which all the concepts in C are shown to the
network according to a σ-bottom-up training schedule, N (r1, r2)-recognizes C.

Definition 9 (Learning problem for networks with feedback). Network
N (r1, r2, f)-learns concept hierarchy C with σ repeats provided that the following
holds. After a training phase in which all the concepts in C are shown to the
network according to a σ-bottom-up training schedule, N (r1, r2, f)-recognizes C.

5 Recognition Algorithms for Feed-Forward Networks

In this and the following section, we describe and analyze our algorithms for
recognition of concept hierarchies (possibly with limited overlap); we consider
feed-forward networks in this section and introduce feedback edges in Sect. 6.
Throughout both sections, we consider an arbitrary concept hierarchy C with
concept set C, partitioned into C0, C1, . . . , C�max . We use the notation n, k, r1,
r2, o, and f as before. We assume that r2 > 0.

We begin in Sect. 5.1 by defining a basic network, with weights in {0, 1}, and
proving that it (r1, r2)-recognizes C. To prove this result, we use a new lemma
that relates the firing behavior of the network precisely to the support definition,
then obtain the main recognition theorem as a simple corollary. In Sect. 5.3, we
extend the main result by allowing weights to be approximate, within an interval
of uncertainty. In Sect. 5.4, we extend the results further by allowing scaling of
weights and thresholds. In Appendix A, we discuss what happens in a different
version of the model, where we replace thresholds by stochastic firing decisions.

5.1 Basic Recognition Results

We define a feed-forward network N that is specially tailored to recognize con-
cept hierarchy C. We assume that N has �′

max = �max layers. Since N is a
feed-forward network, the edges all go upward, from neurons at any layer �
to neurons at level � + 1. We assume the same value of n as in the con-
cept hierarchy C. The edge weights and the threshold τ are defined below.
The construction is similar to the corresponding construction in [4]. The ear-
lier paper considered only tree hierarchies; here, we generalize to allow limited
overlap. The strategy is simply to embed the digraph induced by C in the net-
work N . For every level � concept c of C, we assume a unique representative
rep(c) in layer � of the network. Let R be the set of all representatives, that is,
R = {rep(c) | c ∈ C}. Let rep−1 denote the corresponding inverse function that
gives, for every u ∈ R, the corresponding concept c ∈ C with rep(c) = u. Define
Eu,v = u, v ∈ R and rep−1(u) ∈ children(rep−1(v)). We define the weights of
the edges as follows. If u is any layer � neuron, 0 ≤ � ≤ �max −1, and v is any layer
�+1 neuron, then we define the edge weight weight(u, v) to be: weight(u, v) = 1
if Eu,v and 0 otherwise.
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We would like the threshold τ for every non-input neuron to be a real value in
the closed interval [r1k, r2k]; to be specific, we use τ = (r1+r2)k

2 . Since r2 > 0, we
know that τ > 0. Finally, we assume that the initial firing status for all non-input
neurons is 0. This completely defines network N , and determines its behavior.
The network has been designed in such a way that its behavior directly mirrors
the suppr definition, where r = τ

k . We capture this precisely in the following
two lemmas. The first says that, when a subset of C0 is presented, only reps of
concepts in C fire at their designated times.

Lemma 6. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the feed-forward network defined above, based on C. Assume
that B ⊆ C0 is presented at time t. If u is a neuron that fires at time t+layer(u),
then u ∈ R, that is, u = rep(c) for some concept c ∈ C.

The proof can be found in the appendix. The second lemma says that the rep
of a concept c fires at time t + level(c) if and only if c is supported by B.

Lemma 7. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the feed-forward network defined above, based on C. Let r = τ

k ,
where τ is the firing threshold for the non-input neurons of N .

Assume that B ⊆ C0 is presented at time t. If c is any concept in C, then
rep(c) fires at time t + level(c)(= t + layer(rep(c)) if and only if c ∈ suppr(B).

The proof can be found in the appendix. Using Lemma 7, the basic recognition
theorem follows easily:

Theorem 2. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the feed-forward network defined above, based on C. Then N
(r1, r2)-recognizes C.

Recall that the definition of recognition, Definition 4, gives a firing requirement
for each individual concept c in the hierarchy. For a concept c, the definition
specifies that neuron rep(c) fires at time t + layer(rep(c)) = t + level(c), where
t is the time at which the input is presented.

5.2 An Issue Involving Overlap

A new issue arises as a result of allowing overlap: Consider two concepts c and
c′, with level(c) = level(c′). Is it possible that showing concept c′ can cause
rep(c) to fire? Specifically, suppose that concept c′ is shown at some time t,
according to Definition 6. That is, the set leaves(c′) is presented at time t. Can
this cause firing of rep(c) at the designated time t + level(c)? We obtain the
following negative result whose proof is in the appendix. For this, we assume
that the amount of overlap is smaller than the lower bound for recognition.

Theorem 3. Assume C is any hierarchy satisfying the limited-overlap property,
and N is the feed-forward network defined above, based on C. Suppose that o < r1.

Let c, c′ be two distinct concepts with level(c′) = level(c). Suppose that c′ is
shown at time t. Then rep(c) does not fire at time t + level(c).
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5.3 Approximate Weights

So far in this section, we have been considering a simple set of weights, for
a network representing a particular concept hierarchy C: weight(u, v) = 1 if
Eu,v and 0 otherwise. Now we generalize by allowing the weights to be specified
only approximately, within some interval. This is useful, for example, when the
weights result from a noisy learning process. Here, we assume 0 ≤ w1 ≤ w2,
and allow b to be any positive integer. weight(u, v) ∈ [w1, w2] if Eu,v and
weight(u, v) ∈ [0, 1

k�max +b ] otherwise.
Again, we set threshold τ = (r1+r2)k

2 . And we add the (extremely trivial)
assumption that τ > 1/kb−1. For this case, we prove the following recognition
result. It relies on two inequalities involving the recognition bounds and the
weight bounds.

Theorem 4. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the feed-forward network defined above, based on C. Assume
that (r1+r2)k

2 > 1
kb−1 . Suppose that r1 and r2 satisfy the following inequalities:

r2(2w1 − 1) ≥ r1 and r2 ≥ r1(2w2 − 1) + 2
kb . Then, N (r1, r2)-recognizes C.

To prove Theorem 4, we follow the general pattern of the proof of Theorem 2.
We use versions of Lemma 6 and 7: namely Lemma 10 and Lemma 11. The proof
can be found in the appendix.

5.4 Scaled Weights and Thresholds

Our recognition results in Sect. 5.3 assume a firing threshold of (r1+r2)k
2 and

bounds w1 and w2 on weights on edges from children to parents. The form of
the two inequalities in Theorem 4 suggests that w1 and w2 should be close to
1, because in that case the two parenthetical expressions are close to 1 and the
constraints on the values of r1 and r2 are weak. On the other hand, the noise-free
learning results in [4] assume a threshold of (r1+r2)

√
k

2 , that is, our threshold in
Sect. 5.3 is multiplied by 1√

k
. Also, in [4], the weights on edges from children to

parents approach 1√
k

in the limit rather than 1, because of the behavior induced
by Oja’s rule.

We would like to view the results of noise-free learning in terms of achieving a
collection of weights that suffice for recognition. That is, we would like a version
of Theorem 4 for the case where the threshold is (r1+r2)

√
k

2 and the weights
are: weight(u, v) ∈ [ w1√

k
, w2√

k
] if Eu,v and weight(u, v) ∈ [0, 1

k�max +b ] otherwise.
Here, we assume that w1 ≤ w2 and both are close to 1 and recall that Eu,v =
u, v ∈ R and rep−1(u) ∈ children(rep−1(v)). More generally, we can scale by
multiplying the threshold and weights by a constant scaling factor s, 0 < s < 1,
in place of 1√

k
, giving a threshold of (r1+r2)ks

2 and weights of: weight(u, v) ∈
[w1s, w2s] if Eu,v and weight(u, v) ∈ [0, 1

k�max +b ] otherwise. For this general case,
we get a new version of Theorem 4:
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Theorem 5. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the feed-forward network defined above (with weights scaled
by an arbitrary s). Assume that (r1+r2)ks

2 > 1
kb−1 . Suppose that r1 and r2 satisfy

the following inequalities: r2(2w1 − 1) ≥ r1 and r2 ≥ r1(2w2 − 1) + 2
kbs

. Then,
N (r1, r2)-recognizes C.

Theorem 5 can be proved by slightly adjusting the proofs of Lemma 11 and
Theorem 4. Using Theorem 5, we can decompose the proof of correctness for
noise-free learning in [4], first showing that the learning algorithm achieves the
weight bounds specified above, and then invoking the theorem to show that
correct recognition is achieved. For this, we use weights w1 = 1

1+ε and w2 = 1
and scaling factor s = 1√

k
. The value of ε is an arbitrary element of (0, 1]; the

running time of the algorithm depends on ε.

6 Recognition Algorithms for Networks with Feedback

In this section, we assume that our network N includes downward edges, from
every neuron in any layer to every neuron in the layer below. We begin in Sect. 6.1
with recognition results for a basic network, with upward weights in {0, 1} and
downward weights in {0, f}. Again, we prove these using a new lemma that
relates the firing behavior of the network precisely to the support definition.

Recall that for networks with feedback, unlike feed-forward networks, the
recognition definition does not specify precise firing times for the rep neu-
rons. Therefore, in Sects. E.1 and E.2, we prove time bounds for recognition;
these bounds are different for tree hierarchies vs. general hierarchies. Finally,
in Sect. 6.2, we extend the main recognition result by allowing weights to be
approximate, within an interval of uncertainty. Extension to scaled weights and
thresholds should also work in this case.

6.1 Basic Recognition Results

As before, we define a network N that is specially tailored to recognize concept
hierarchy C. We assume that N has �′

max = �max. We assume the same values of
n and f as in C. As before, concept hierarchy C is embedded, one level per layer,
in the network N . Now we define edge weights for both upward and downward
edges. Let u be any layer � neuron and v any layer � + 1 neuron. We define
the weight for the upward edge (u, v) as before: weight(u, v) = 1 if Eu,v and 0
otherwise. For the downward edge (v, u), we define: weight(v, u) = f if Eu,v and
0 otherwise. Thus, the weight of f on the downward edges corresponds to the
weighting factor of f in the suppr,f definition. As before, we set the threshold
τ for every non-input neuron to be a real value in the closed interval [r1k, r2k],
specifically, τ = (r1+r2)k

2 . Again, we assume that the initial firing status of all
non-input neurons is 0.
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Theorem 6. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the network with feedback defined above, based on C. Then N
(r1, r2, f)− recognizes C.

In Sect. E, in the appendix, we present time bounds for general and tree
hierarchies.

6.2 Approximate Weights

Now, as in Sect. 5.3, we allow the weights to be specified only approximately.
We assume that 0 ≤ w1 ≤ w2, as before. Here we also assume that b ≥ 2 and
k ≥ 2. Let u be any layer � neuron and v any layer � + 1 neuron. We define
the weight for the upward edge (u, v) by: weight(u, v) ∈ [w1, w2] if Eu,v and
otherwise, weight(u, v) ∈ [0, k�max +b]. For the downward edge (v, u), we define:
weight(v, u) ∈ [fw1, fw2] if Eu,v and otherwise, weight(v, u) ∈ [0, k�max +b]. As
before, we set the threshold τ = (r1+r2)k

2 . We also use the trivial assumption
that τ > 1

kb−2 . For this case, we prove:

Theorem 7. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the feed-forward network defined above, based on C. Assume
that (r1+r2)k

2 ≥ 1
kb−2 . Suppose that r1 and r2 satisfy the following inequalities:

r2(2w1 − 1) ≥ r1 and r2 ≥ r1(2w2 − 1) + 2
kb−1 . Then, N (r1, r2, f)-recognizes C.

This theorem follows directly from Lemma 16 and Lemma 17 in the appendix.
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A Recognition in Networks with Stochastic Firing

Another type of uncertainty, besides approximate weights, arises when neuron
firing is determined stochastically, for example, using a standard sigmoid func-
tion. See [5] for an example of a model that uses this strategy. In this case, we
cannot make absolute claims about recognition, but we would like to assert that
correct recognition occurs with high probability. Here we consider this type of
uncertainty in the situation where weights are exactly 1 or 0, as in Sect. 5.1.
Extension to allow approximate weights, as well as to networks with feedback,
is left for future work.

Following [5], we assume that the potential incoming to a neuron u, potu,
is adjusted by subtracting a real-valued bias value, and the resulting adjusted
potential, x, is fed into a standard sigmoid function with temperature parameter
λ, in order to determine the firing probability p. Specifically, we have:

p(x) =
1

1 + e−x/λ
,

where x = potu − bias.



62 N. Lynch and F. Mallmann-Trenn

Let δ be a small target failure probability. In terms of our usual parameters
n, f , k, and �max, and the new parameters λ and δ, our goal is to determine
values of r1 and r2 so that the following holds: Let C be any concept hierarchy
satisfying the limited-overlap property. Assume that B ⊆ C0 is presented at time
t. Then:

1. If c ∈ suppr2(B), then with probability at least 1 − δ, rep(c) fires at time
t + level(c).

2. If c /∈ suppr1(B) then with probability at least 1 − δ, rep(c) does not fire at
time t + level(c).

In order to determine appropriate values for r1 and r2, we start by considering
the given sigmoid function. We determine real values b1 and b2, −∞ < b1 < b2 <
∞, that guarantee the following:

1. If the adjusted potential x is ≥ b2, then the probability p(x) of firing is
≥ 1 − δ′, and

2. If the adjusted potential x is < b1, then the probability p(x) of firing is ≤ δ′.

Here, we take δ′ to be a small fraction of the target failure probability δ, namely,
δ′ = δ

k�max +1 . We choose b1 such that p(b1 + bias) = 1
1+e−(b1+bias)/λ = δ′ and b2

such that p(b2+bias) = 1
1+e−(b2+bias)/λ = 1−δ′. In other words, b1 = λ log(1−δ′

δ′ )−
bias, and b2 = λ log( δ′

1−δ′ ) − bias.
Next, we compute values for r1 and r2 based on the values of b1 and b2. The

values of b1 and b2 are adjusted potentials, whereas r1 and r2 are fractions of the
population of children. To translate, we use r1 = b1+bias

k and r2 = b2+bias
k . This

makes sense because having r2k children firing yields a potential of r2k and an
adjusted potential of r2k − bias = b2, and not having r1k children firing means
that the potential is strictly less than r1k and the adjusted potential is strictly
less than r1k − bias = b1.

Note that the requirements on r1 and r2 impose some constraints on the
value of bias. Namely, since we require r1 ≥ 0, we must have b1 + bias ≥ 0. And
since we require r2 ≤ 1, we must have b2 + bias ≤ k. Within these constraints,
different values of bias will yield different values of r1 and r2.

With these definitions, we can prove:

Theorem 8. Let C be any concept hierarchy satisfying the limited-overlap prop-
erty. Let δ be a small target failure probability. Let r1 and r2 be determined as
described above.

Assume that B ⊆ C0 is presented at time t. Then:

1. If c ∈ suppr2(B), then with probability at least 1 − δ, rep(c) fires at time
t + level(c).

2. If c /∈ suppr1(B) then with probability at least 1 − δ, rep(c) does not fire at
time t + level(c).

Proof. (Sketch:) Fix any concept c in C, the set of concepts in C. Note that c
has at most k�max +1 descendants in C.
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For Property 1, suppose that c ∈ suppr2(B). Then for every descendant c′

of c with level(c) ≥ 1 and c′ ∈ suppr2(B), rep(c′) fires at time t + level(c′)
with probability at least 1 − δ′, assuming that for each of its children c′′ ∈
suppr2(B), rep(c′′) fires at time t + level(c′′). Using a union bound for all such
c′, we obtain that, with probability at least 1 − k�max +1 δ′ = 1 − δ, rep(c) fires
at time t + level(c).

In a bit more detail, for each descendant c′ of c with level(c′) ≥ 1 and
c′ ∈ suppr2(B), let Sc′ denote the set of executions in which rep(c′) does not fire
at time t + level(c′), but for each of its children c′′ ∈ suppr2(B), rep(c′′) fires
at time t + level(c′′). Then

⋃
c′ Sc′ includes all of the executions in which rep(c)

does not fire at time level(c).
Moreover, we claim that the probability of each Sc′ is at most δ′: The fact

that c′ ∈ suppr2(B) imply that at least r2k children c′′ are in suppr2(B). Since
we assume that all of these rep(c′) fire at time t+ level(c′′), this implies that the
potential incoming to c′ for time t + level(c′) is at least r2k, and the adjusted
potential is at least r2k−bias = b2. Then the first property of b2 yields probability
≤ δ′ of c′ not firing at time t + level(c′).

For Property 2, suppose that c /∈ suppr1(B). Then for every descendant
c′ /∈ suppr1(B), rep(c′) does not fire at time t + level(c′), with probability at
least 1 − δ′, assuming that for each of its children c′′ /∈ suppr1(B), rep(c′′) does
not fire at time t + level(c′′). Using a union bound for all c′ /∈ suppr1(B), we
obtain that, with probability at least 1 − k�max +1 δ′ = 1 − δ, does not fire at
time t + level(c).

In a bit more detail, for each descendant c′ of c with level(c′) ≥ 1 and
c′ /∈ suppr1(B), let Sc′ denote the set of executions in which rep(c′) fires at time
t + level(c′), but for each of its children c′′ /∈ suppr1(B), rep(c′′) does not fire
at time t + level(c′′). Then

⋃
c′ Sc′ includes all of the executions in which rep(c)

fires at time level(c), and the probability for each Sc′ is at most δ′; the argument
is similar to that for Property 1.

This has been only a sketch of how to analyze stochastic firing, in the simple
case of feed-forward networks and exact weights. We leave the complete details
of this case, as well as extensions to include approximate weights and networks
with feedback, for future work.

B Missing Statements and Proofs of Section 2

The following monotonicity lemma says that increasing the value of the param-
eter r can only decrease the supported set.4

Lemma 8. Let C be any concept hierarchy satisfying the limited-overlap prop-
erty, and let B ⊆ D0. Consider r, r′, where 0 ≤ r ≤ r′ ≤ 1. Then suppr′(B) ⊆
suppr(B).

4 The mention of the limited-overlap property is just for emphasis, since all of the
concept hierarchies of this paper satisty this property.
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The following lemma says that any concept c is supported by its entire set
of leaves. It can be proven by induction on level(c).

Lemma 9. Let C be any concept hierarchy satisfying the limited-overlap prop-
erty. If c is any concept in C, then c ∈ supp1(leaves(c)).

Proof (of Lemma 4). We proceed by induction on t. The base case is t = 0. In
this case c ∈ S(0), which implies that c ∈ suppr,0(B), as needed.

For the inductive step, assume that c ∈ S(t + 1) and parent(c) /∈ S(t + 1).
If c ∈ S(t), then since parent(c) /∈ S(t), the inductive hypothesis tells us that
c ∈ suppr,0(B). So assume that c /∈ S(t). Then since parent(c) /∈ S(t), c is
included in S(t + 1) based only on its children who are in S(t). Since c /∈ S(t),
the parent of each of these children is not in S(t). Then by inductive hypothesis,
all of c’s children that are in S(t) are in suppr,0(B). Since they are enough to
support c’s inclusion in suppr,0(B), we have that c ∈ suppr,0(B).

Proof (Proof of Theorem 1). This theorem works because, for each �, the S(�, t)
sets stabilize after support has had a chance to propagate upwards from level 0
to level �max, and then propagate downwards from level �max to level �. Because
the concept hierarchy has a simple tree structure, there is no other way for a
concept to get added to the S(�, t) sets.

Formally, we use a backwards induction on �, from � = �max to � = 0, to prove
the claim: If c ∈ suppr,f (B) and level(c) = �, then c ∈ S(2 �max −�). For the base
case, consider � = �max. Since c has no parents, we must have c ∈ suppr,0(B), so
Proposition 1 implies that c ∈ S(�max) ⊆ S(2 �max), as needed.

For the inductive step, suppose that c ∈ suppr,f (B) and level(c) = � − 1. If
c ∈ suppr,0(B) then again Proposition 1 implies that c ∈ S(�max), which suf-
fices. So suppose that c ∈ suppr,f (B) − suppr,0(B). Then c’s inclusion in the
set suppr,f (B) relies on its (unique) parent first being included, that is, there is
some t for which c /∈ S(t) and parent(c) ∈ S(t). Since parent(c) ∈ suppr,f (B)
and level(parent(c)) = �, the inductive hypothesis yields that parent(c) ∈
S(2 �max −�).

Moreover, all the children that c relies on for its inclusion in suppr,f (B) are
in suppr,0(B), by Lemma 4. Therefore, by Proposition 1, they are in S(� − 2) ⊆
S(2 �max −�). Thus, we have enough support for c in S(2 �max −�) to ensure that
c ∈ S(2 �max −� + 1), as needed.

C Missing Proofs of Section 5

Proof (Proof of Theorem 2). Let r = τ
k , where τ is the firing threshold for the

non-input neurons of N . Assume that B ⊆ C0 is presented at time t. We prove
the two parts of Definition 4 separately.

1. If c ∈ suppr2(B) then rep(c) fires at time t + level(c).
Suppose that c ∈ suppr2(B). By assumption, τ ≤ r2k, so that r = τ

k ≤ r2.
Then Lemma 8 implies that c ∈ suppr(B). Then by Lemma 7, rep(c) fires at
time t + level(c).
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2. If c /∈ suppr1(B) then rep(c) does not fire at time t + level(c).
Suppose that c /∈ suppr1(B). By assumption, τ ≥ r1k, so that r = τ

k ≥ r1.
Then Lemma 8 implies that c /∈ suppr(B). Then by Lemma 7, rep(c) does
not fire at time t + level(c).

Proof (of Lemma 6). If layer(u) = 0, then u fires at time t exactly if u = rep(c)
for some c ∈ B, by assumption. So consider u with layer(u) ≥ 1. We show
the contrapositive. Assume that u /∈ R. Then u has no positive weight incoming
edges, by definition of the weights. So u cannot receive enough incoming potential
for time t + layer(u) to meet the positive firing threshold τ .

Proof (of Lemma 7). We prove the two directions separately.

1. If c ∈ suppr(B) then rep(c) fires at time t + level(c).
We prove this using induction on level(c). For the base case, level(c) = 0, the
assumption that c ∈ suppr(B) means that c ∈ B, which means that rep(c)
fires at time t, by the assumption that B is presented at time t.
For the inductive step, assume that level(c) = � + 1. Assume that c ∈
suppr(B). Then by definition of suppr, c must have at least rk children that
are in suppr(B). By inductive hypothesis, the reps of all of these children fire
at time t+ �. That means that the total incoming potential to rep(c) for time
t + � + 1, potrep(c)(t + � + 1), reaches the firing threshold τ = rk, so rep(c)
fires at time t + � + 1.

2. If c /∈ suppr(B) then rep(c) does not fire at time t + level(c).
Again, we use induction on level(c). For the base case, level(c) = 0, the
assumption that c /∈ suppr(B) means that c /∈ B, which means that rep(c)
does not fire at time t by the assumption that B is presented at time t.
For the inductive step, assume that level(c) = � + 1. Assume that c /∈
suppr(B). Then c has strictly fewer than rk children that are in suppr(B),
and therefore, strictly more than k − rk children that are not in suppr(B).
By inductive hypothesis, none of the reps of the children in this latter set fire
at time t + �, which means that the reps of strictly fewer than rk children
of c fire at time t + �. So the total incoming potential to rep(c) from reps
of c’s children is strictly less than rk. Since only reps of children of c have
positive-weight edges to rep(c), that means that the total incoming potential
to rep(c) for time t+�+1, potrep(c)(t+�+1), is strictly less than the threshold
τ = rk for rep(c) to fire at time t + � + 1. So rep(c) does not fire at time
t + � + 1.

Proof (of Theorem 3) Fix c, c′ as above, and assume that c′ is shown at time t.
Claim: For any descendant d of c that is not also a descendant of c′, rep(d) does
not fire at time t + level(d).
Proof of Claim: By induction on level(d). For the base case, level(d) = 0. We
know that rep(d) does not fire at time t because only reps of descendants of c′

fire at time t.
For the inductive step, assume that d is a descendant of c that is not also a

descendant of c′. By the limited-overlap assumption, d has at most o · k < r1k
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children that are also descendants of c′. By inductive hypothesis, the reps of all
the other children of d do not fire at time t + level(d) − 1. So the number of
children of d whose reps fire at time t + level(d) − 1 is strictly less than r1k.
That is not enough to meet the firing threshold τ ≥ r1k for rep(d) to fire at time
t + level(d).
End of proof of Claim.

Applying the Claim with d = c yields that rep(c) does not fire at time
t + level(c).

Lemma 10. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the feed-forward network defined above, based on C. Assume
that (r1+r2)k

2 > 1
kb−1 .

Assume that B ⊆ C0 is presented at time t. If u is a neuron that fires at time
t + layer(u), then u = rep(c) for some concept c ∈ C.

Proof. The proof is slightly more involved than the one for Lemma 6. This time
we proceed by induction on layer(u). For the base case, If layer(u) = 0, then u
fires at time t exactly if u = rep(c) for some c ∈ B, by assumption.

For the inductive step, consider u with layer(u) = � + 1. Assume for contra-
diction that u is not of the form rep(c) for any c ∈ C. Then the weight of each
edge incoming to u is at most 1

k�max +b . By inductive hypothesis, the only layer �
incoming neighbors that fire at time t+� are reps of concepts in C. There are at
most k�max +1 such concepts, hence at most k�max +1 level � incoming neighbors
fire at time t+ �, yielding a total incoming potential for u for time t+ �+1 of at
most k�max +1

k�max +b = 1
kb−1 . Since the firing threshold τ = (r1+r2)k

2 is strictly greater
than 1

kb−1 , u cannot receive enough incoming potential to meet the threshold for
time t + � + 1.

Lemma 11. Assume C is any concept hierarchy satisfying the limited-overlap
property and N is the feed-forward network defined above, based on C. Assume
that (r1+r2)k

2 > 1
kb−1 . Suppose that r1 and r2 satisfy the following inequalities:

r2(2w1 − 1) ≥ r1 and r2 ≥ r1(2w2 − 1) + 2
kb . Assume that B ⊆ C0 is presented

at time t. If c is any concept in C, then

1. If c ∈ suppr2(B) then rep(c) fires at time t + level(c).
2. If c /∈ suppr1(B) then rep(c) does not fire at time t + level(c).

Proof. 1. If c ∈ suppr2(B) then rep(c) fires at time t + level(c).
We prove this using induction on level(c). For the base case, level(c) = 0, the
assumption that c ∈ suppr2(B) means that c ∈ B, which means that rep(c)
fires at time t, by the assumption that B is presented at time t.
For the inductive step, assume that level(c) = � + 1. Assume that c ∈
suppr2(B). Then c must have at least r2k children that are in suppr2(B).
By inductive hypothesis, the reps of all of these children fire at time t + �.
We claim that the total incoming potential to rep(c) for time t + � + 1,
potrep(c)(t+ �+1), reaches the firing threshold τ = (r1+r2)k

2 , so rep(c) fires at
time t + � + 1. To see this, note that the total potential induced by the firing
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reps of children of c is at least r2kw1, because the weight of the edge from
each firing child to rep(c) is at least w1. This quantity is ≥ (r1+r2)k

2 because
of the assumption that r2(2w1 − 1) ≥ r1.

2. If c /∈ suppr1(B) then rep(c) does not fire at time t + level(c).
Again we use induction on level(c). For the base case, level(c) = 0, the
assumption that c /∈ suppr1(B) means that c /∈ B, which means that rep(c)
does not fire at time t, by the assumption that B is presented at time t.
For the inductive step, assume that level(c) = � + 1. Assume that c /∈
suppr1(B). Then c has strictly fewer than r1k children that are in suppr1(B),
and therefore, strictly more than k − r1k children that are not in suppr1(B).
By inductive hypothesis, none of the reps of the children in this latter set fire
at time t + �, which means that the reps of strictly fewer than r1k children
of c fire at time t + �. Therefore, the total incoming potential to rep(c) from
reps of c’s children is strictly less than r1kw2, since the weight of the edge
from each firing child to rep(c) is at most w2.
In addition, some potential may be contributed by other neurons at level �
that are not children of c but fire at time t + � − 1. By Lemma 10, these
must all be reps of concepts in C. There are at most k�max +1 of these, each
contributing potential of at most 1

klmax+b , for a total potential of at most 1
kb−1

from these neurons.
Therefore, the total incoming potential to rep(c) for time t+�+1, potrep(c)(t+
� + 1), is strictly less than r1kw2 + 1

kb−1 . This quantity is ≤ (r1+r2)k
2 , because

of the assumption that r2 ≥ r1(2w2 − 1) + 2
kb . This means that the total

incoming potential to rep(c) for time t+�+1 is strictly less than the threshold
τ = (r1+r2)k

2 for rep(c) to fire at time t+ �+1. So rep(c) does not fire at time
t + � + 1.

Proof (of Theorem 4). (Of Theorem 4:) The proof is similar to that of Theorem
5.3, but now using Lemma 11 in place of Lemma 7. Let r = τ

k , where τ is
the firing threshold for the non-input neurons of N . Assume that B ⊆ C0 is
presented at time t. We prove the two parts of Definition 4 separately.

1. If c ∈ suppr2(B) then rep(c) fires at time t + level(c).
Suppose that c ∈ suppr2(B). By assumption, τ ≤ r2k, so that r = τ

k ≤ r2.
Then Lemma 8 implies that c ∈ suppr(B). Then Lemma 11 implies that
rep(c) fires at time t + level(c).

2. If c /∈ suppr1(B) then rep(c) does not fire at time t + level(c).
Suppose that c /∈ suppr1(B). By assumption, τ ≥ r1k, so that r = τ

k ≥ r1.
Then Lemma 8 implies that c /∈ suppr(B). Then Lemma 11 implies that
rep(c) does not fire at time t + level(c).
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D Missing Statements and Proofs of Section 6

As before, we have:

Lemma 12. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the network defined above, based on C. Assume that B ⊆ C0

is presented at time t. If u is a neuron that fires at some time after t, then u ∈ R,
that is, u = rep(c) for some concept c ∈ C.

The following preliminary lemma says that the firing of rep neurons is per-
sistent, assuming persistent inputs (as we do in the definition of recognition for
networks with feedback).

Lemma 13. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the network with feedback defined above, based on C. Let
r = τ

k , where τ is the firing threshold for the non-input neurons of N .
Assume that B ⊆ C0 is presented at all times ≥ t. Let c be any concept in

C. Then for every t′ ≥ t, if rep(c) fires at time t′, then it fires at all times ≥ t′.

Proof. We prove this by induction on t′. The base case is t′ = t. The neurons
that fire at time t are exactly the input neurons that are reps for concepts in B.
By assumption, these same inputs continue for all times ≥ t.

For the inductive step, consider a neuron rep(c) that fires at time t′, where
t′ ≥ t+1. If level(c) = 0 then c ∈ B and rep(c) continues firing forever. So assume
that level(c) ≥ 1. Then rep(c) fires at time t′ because the incoming potential it
receives from its children and parents who fire at time t′ −1 is sufficient to reach
the firing threshold τ . By inductive hypothesis, all of the neighbors of rep(c)
that fire at time t′ − 1 also fire at all times ≥ t′ − 1. So that means that they
provide enough incoming potential to rep(c) to make rep(c) fire at all times ≥ t′.

Next we have a lemma that is analogous to Lemma 7, but now in terms
of eventual firing rather than firing at a specific time. Similarly to before, this
works because the network’s behavior directly mirrors the suppr,f definition,
where r = τ

k .

Lemma 14. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the network with feedback defined above, based on C. Let
r = τ

k , where τ is the firing threshold for the non-input neurons of N .
Assume that B ⊆ C0 is presented at all times ≥ t. If c is any concept in C,

then rep(c) fires at some time ≥ t if and only if c ∈ suppr,f (B).

To prove Lemma 14, it is convenient to prove a more precise version that
takes time into account. As before, in Sect. 2.3, we use the abbreviation S(t) =
suppr,f (B, ∗, t). Thus, S(t) is the set of concepts at all levels that are supported
by input B by step t of the recursive definition of the S(�, t) sets.

Lemma 15. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the network with feedback defined above, based on C. Let
r = τ

k , where τ is the firing threshold for the non-input neurons of N .
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Assume that B ⊆ C0 is presented at all times ≥ t. Let t′ be any time ≥ t. If
c is any concept in C, then rep(c) fires at time t′ if and only if c ∈ S(t′ − t).

Proof. As for Lemma 7, we prove the two directions separately. But now we use
induction on time rather than on level(c).

1. If c ∈ S(t′ − t), then rep(c) fires at time t′.
We prove this using induction on t′, t′ ≥ t. For the base case, t′ = t, the
assumption that c ∈ S(0) means that c is in the input set B, which means
that rep(c) fires at time t.
For the inductive step, assume that t′ ≥ t and c ∈ S((t′+1)−t). If level(c) = 0
then again c ∈ B, so c fires at time t, and therefore at time t′ by Lemma 13.
So assume that level(c) ≥ 1. If c ∈ S(t′ − t) then rep(c) fires at time t′ by
the inductive hypothesis, and therefore also at time t′ + 1 by Lemma 13.
Otherwise, enough of c’s children and parents must be in S(t′ − t) to include
c in S((t′ − t) + 1) = S((t′ + 1) − t); that is, |children(c) ∩ S(t′ − t)| +
f |parents(c) ∩ S(t′ − t)| ≥ rk.
Then by inductive hypothesis, all of the reps of the children and parent
concepts mentioned in this expression fire at time t′. Therefore, the upward
potential incoming to rep(c) for time t′ + 1, upotrep(c)(t′ + 1), is at least
|children(c) ∩ S(t′ − t)|, and the downward potential incoming to rep(c)
for time t′ + 1, dpotrep(c)(t′ + 1), is at least f |parents(c) ∩ S(t′ − t)| (since
the weight of each downward edge is f). So potrep(c)(t′ + 1), which is equal
to upotrep(c)(t′ + 1) + dpotrep(c)(t′ + 1), is ≥ |children(c) ∩ S(t′ − t)| +
f |parents(c) ∩ S(t′ − t)| ≥ rk. That reaches the firing threshold τ = rk for
rep(c) to fire at time t′ + 1.

2. If rep(c) fires at time t′, then c ∈ S(t′ − t).
We again use induction on t′, t′ ≥ t. For the base case, t′ = t, the assumption
that rep(c) fires at time t means that c is in the input set B, hence c ∈ S(0).
For the inductive step, suppose that t′ ≥ t and rep(c) fires at time t′ + 1.
Then it must be that enough of the reps of c’s children and parents fire at
time t′ to reach the firing threshold τ = rk for rep(c) to fire at time t′ + 1.
That is, upotrep(c)(t′ +1)+dpotrep(c)(t′ +1) ≥ rk. In other words, the number
of reps of children of c that fire at time t′ plus f times the number of reps of
parents of c that fire at time t′ is ≥ rk (since the weight of each downward
edge is f).
By inductive hypothesis, all of these children and parents of c are in S(t′ − t).
Therefore, |children(c) ∩ S(t′ − t)| + f |parents(c) ∩ S(t′ − t)| ≥ rk. Then
by definition of suppr,f (B), we have that c ∈ S((t′ − t) + 1) = S((t′ + 1) − t),
as needed.

Lemma 14 follows immediately from Lemma 15. Then, as in Sect. 6.1, the
main recognition theorem follows easily.

Proof (of Theorem 6). Let r = τ
k , where τ is the firing threshold for the non-

input neurons of N . Assume that B ⊆ C0 is presented at all times ≥ t. We prove
the two parts of Definition 5 separately.
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1. If c ∈ suppr2,f (B) then rep(c) fires at some time ≥ t.
Suppose that c ∈ suppr2,f (B). By assumption, τ ≤ r2k, so that r = τ

k ≤ r2.
Then Lemma 1 implies that c ∈ suppr,f (B). Then by Lemma 14, rep(c) fires
at some time ≥ t.

2. If c /∈ suppr1,f (B) then rep(c) does not fire at any time ≥ t.
Suppose that c /∈ suppr1,f (B). By assumption, τ ≥ r1k, so that r = τ

k ≥ r1.
Then Lemma 1 implies that c /∈ suppr,f (B). Then by Lemma 14, rep(c) does
not fire at any time ≥ t.

Lemma 16. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the network defined above, based on C. Assume that (r1+r2)k

2 >
1

kb−2 . Assume that B ⊆ C0 is presented at all times ≥ t. If u is a neuron that
fires at any time t′ ≥ t, then u = rep(c) for some concept c ∈ C.

Proof. By induction on the time t′ ≥ t, we show: If u is a neuron that fires at
time t′, then u = rep(c) for some concept c ∈ C. For the base case, t′ = t, if u
fires at time t then u = rep(c) for some c ∈ B, by assumption.

For the inductive step, consider any neuron u that fires at time t′ + 1, where
t′ ≥ t. Assume for contradiction that u is not of the form rep(c) for any c ∈ C.
Then the weight of each edge incoming to u is at most k�max +b. By inductive
hypothesis, the only incoming neighbors that fire at time t′ are reps of concepts
in C. There are at most k�max +1 + k�max −1 concepts at the two layers above
and below layer(u), hence at most k�max +1 + k�max −1 neighbors of u that fire
at time t′, yielding a total incoming potential for u for time t′ + 1 of at most
k�max +1+k�max −1

k�max +b = 1
kb−1 + 1

kb+1 . Since k ≥ 2, this bound on potential is at most
1

kb−2 . Since the threshold τ = (r1+r2)k
2 is assumed to be strictly greater than

1
kb−2 , u does not receive enough incoming potential to meet the firing threshold
for time t′ + 1.

Lemma 17. Assume C is any concept hierarchy satisfying the limited-overlap
property, and N is the network with feedback as defined above, based on C.
Assume that (r1+r2)k

2 > 1
kb−2 . Also suppose that r1 and r2 satisfy the follow-

ing inequalities: r2(2w1 − 1) ≥ r1 and r2 ≥ r1(2w2 − 1) + 2
kb−1 . Assume that

B ⊆ C0 is presented at all times ≥ t. If c is any concept in C, then:

1. If c ∈ suppr2,f (B) then rep(c) fires at some time ≥ t.
2. If rep(c) fires at some time ≥ t then c ∈ suppr1,f (B).

Proof. The proof follows the general outline of the proof of Lemma 14, based on
Lemma 15. As in those results, the proof takes into account both the upward
potential upot and the downward potential dpot. As before, we split the cases
up and use two inductions based on time. However, now the two inductions
incorporate the treatment of variable weights used in the proof of Lemma 11.

1. If c ∈ S(t′ − t) then rep(c) fires at time t′. Here the set S(t′ − t) is defined in
terms of suppr2,f (B).
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We prove this using induction on t′, t′ ≥ t. For the base case, t′ = t, the
assumption that c ∈ S(0) means that c is in the input set B, which means
that rep(c) fires at time t′.
For the inductive step, assume that t′ ≥ t and c ∈ S((t′+1)−t). If level(c) = 0
then again c ∈ B, so c fires at time t′. So assume that level(c) ≥ 1. Since
c ∈ S((t′ + 1) − t), we get that |children(c) ∩ S(t′ − t)| + f |parents(c) ∩
S(t′ − t)| ≥ r2k.
By the inductive hypothesis, the reps of all of these children and parents
fire at time t′. Therefore, the upward potential incoming to rep(c) for time
t′ + 1, upotrep(c)(t′ + 1), is at least |children(c) ∩ S(t′ − t)| w1, and the
downward potential incoming to rep(c) for time t′ + 1, dpotrep(c)(t′ + 1), is
at least f |parents(c) ∩ S(t′ − t)| w1. Adding these two potentials, we get
that the total incoming potential to rep(c) for time t′ + 1, potrep(c)(t′ + 1), is
at least (|children(c) ∩ S(t′ − t)| + f |parents(c) ∩ S(t′ − t)|) w1 ≥ r2kw1.
This is at least (r1+r2)k

2 , because of the assumption that r2 (2w1 −1) ≥ r1. So
the incoming potential to rep(c) for time t′ + 1 is enough to reach the firing
threshold τ = (r1+r2)k

2 , so rep(c) fires at time t′ + 1.
2. If rep(c) fires at time t′, then c ∈ S(t′ − t). Here the set S(t′ − t) is defined in

terms of suppr1,f (B).
We again use induction on t′, t′ ≥ t. For the base case, t′ = t, the assumption
that rep(c) fires at time t means that c is in the input set B, hence c ∈ S(0).
For the inductive step, assume that rep(c) fires at time t′ + 1. Then it must
be that potrep(c)(t′ + 1) = upotrep(c)(t′ + 1) + dpotrep(c)(t′ + 1) reaches the
firing threshold τ = (r1+r2)k

2 for c to fire at time t′ + 1. Arguing as in the
proof of Lemma 16, the total incoming potential to rep(c) from neurons at
levels level(c) − 1 and level(c) + 1 that are not reps of children or parents of
c is at most 1

kb−2 . So the total incoming potential to rep(c) from firing reps

of its children and parents must be at least (r1+r2)k
2 − 1

kb−2 .
By inductive hypothesis, all of these children and parents of c are in S(t′ − t).
Therefore, (|children(c) ∩ S(t′ − t)| + f |parents(c) ∩ S(t′ − t)|) w2 ≥
(r1+r2)k

2 − 1
kb−2 . By the assumption that r2 ≥ r1(2w2 − 1) + 2

kb−1 , we get
that |children(c) ∩ S(t′ − t)| + f |parents(c) ∩ S(t′ − t)| ≥ r1k. (In more
detail, let E = |children(c)∩S(t′ − t)|+f |parents(c)∩S(t′ − t)|. So we know
that Ew2 ≥ (r1+r2)k

2 − 1
kb−2 . Assume for contradiction that E < r1k. Then

Ew2 < r1kw2. But r1kw2 ≤ (r1+r2)k/2−1/kb−2, because of the assumption
that r2 ≥ r1(2w2−1)+ 2

kb−1 . So that means that Ew2 < (r1+r2)k/2−1/kb−2,
which is a contradiction.) Then by definition of suppr1,f (B), we have that
c ∈ S((t′ − t) + 1) = S((t′ + 1) − t), as needed.

The results of this section are also extendable to the case of scaled weights
and thresholds, as in Sect. 5.4.

E Time Bounds for Networks with Feedback

We first give the time bounds for tree hierarchies then for general ones.
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E.1 Time Bounds for Tree Hierarchies in Networks with Feedback

It remains to prove time bounds for recognition for hierarchical concepts in
networks with feedback. Now the situation turns out to be quite different for
tree hierarchies and hierarchies that allow limited overlap. In this section, we
consider the simpler case of tree hierarchies.

For a tree network, one pass upward and one pass downward is enough to
recognize all concepts, though that is a simplification of what actually happens,
since much of the recognition activity is concurrent. Still, for tree hierarchies,
we can prove an upper bound of twice the number of levels:

Theorem 9. Assume C is a tree hierarchy and N is the network with feedback
defined above, based on C. Let r = τ

k , where τ is the firing threshold for the
non-input neurons of N .

Assume that B ⊆ C0 is presented at all times ≥ t. If c ∈ suppr,f (B), then
rep(c) fires at some time ≤ t + 2 �max.

Proof. Assume that c ∈ suppr,f (B). By Lemma 1, we have that c ∈ S(2 �max).
Then Lemma 15 implies that rep(c) fires at time t + 2 �max.

And this result extends to larger thresholds:

Corollary 1. Assume C is a tree hierarchy and N is the network with feedback
as defined above, based on C. Assume that B ⊆ C0 is presented at all times ≥ t.
If c ∈ suppr2,f (B), then rep(c) fires at some time ≤ t + 2 �max.

Proof. By Theorem 9 and Lemma 1.

E.2 Time Bounds for General Hierarchies in Networks
with Feedback

The situation gets more interesting when the hierarchy allows overlap. We use the
same network as before. Each neuron gets inputs from its children and parents
at each round, and fires whenever its threshold is met. As noted in Lemma 15,
this network behavior follows the definition of suppr2,f (B).

In the case of a tree hierarchy, one pass upward followed by one pass down-
ward suffice to recognize all concepts, though the actual execution involves more
concurrency, rather than separate passes. But with overlap, more complicated
behavior can occur. For example, an initial pass upward can activate some rep
neurons, which can then provide feedback on a downward pass to activate some
other rep neurons that were not activated in the upward pass. So far, this is
as for tree hierarchies. But now because of overlap, these newly-recognized con-
cepts can in turn trigger more recognition on another upward pass, then still
more on another downward pass, etc. How long does it take before the network
is guaranteed to stabilize?

Here we give a simple upper bound and an example that yields a lower bound.
Work is needed to pin the bound down more precisely.
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Upper Bound. We give a crude upper bound on the time to recognize all the
concepts in a hierarchy.

Theorem 10. Assume C is any hierarchy satisfying the limited-overlap prop-
erty, and N is the network with feedback defined above, based on C. Assume that
B ⊆ C0 is presented at all times ≥ t. If c ∈ suppr,f (B), then rep(c) fires at some
time ≤ t + k�max +1.

Proof. All the level 0 concepts in B start firing at time 0. We consider how long
it might take, in the worst case, for the reps of all the concepts in suppr,f (B)
with levels ≥ 1 to start firing.

The total number of concepts in C with levels ≥ 1 is at most k�max +1; there-
fore, the number of concepts in suppr,f (B) with levels ≥ 1 is at most k�max +1.

By Lemma 12, the rep neurons are the only ones that ever fire. Therefore,
the firing set stabilizes at the first time t′ such that the sets of rep neurons that
fire at times t′ and time t′ + 1 are the same. Since there are at most k�max +1

rep neurons with levels ≥ 1, the worst case is if one new rep starts firing at each
time. But in this case the firing set stabilizes by t + k�max +1, as claimed.

The bound in Theorem 10 may seem very pessimistic. However, the example
in the next subsection shows that it is not too far off, in particular, it shows that
the time until all the reps fire can be exponential in �max.

Lower Bound. Here we present an example of a concept hierarchy C and an
input set B for which the time for the rep neurons for all the supported concepts
to fire is exponential in �max. This yields a lower bound, in Theorem 11.

The concept hierarchy C has levels 0, . . . , �max as usual. We assume here that
r1 = r2 = r. We assume that the overlap bound o satisfies o · k ≥ 2, that is, the
allowed overlap is at least 2. We take f = 1.

The network N embeds C, as described earlier in this section. As before,
we assume that �′

max = �max, and the threshold τ for the non-input nodes in
the network is rk. Now we assume that the weights are 1 for both upward and
downward edges between reps of concepts in C, which is consistent with our
choice of f = 1 in the concept hierarchy.

We assume that hierarchy C has overlap only at one level—in the sets of
children of level 2 concepts. The upper portion of C, consisting of levels 2, . . . �max,
is a tree, with no overlap among the sets children(c), 3 ≤ level(c) ≤ �max. There
is also no overlap among the sets of children of level 1 concepts.

We order the children of each concept with level ≥ 3 in some arbitrary
order, left-to-right. This orients the upper portion of the concept hierarchy, down
to the level 2 concepts. Let C ′ be the set of all the level 2 concepts that are
leftmost children of their parents. Since there are k�max −2 level 3 concepts, it
follows that |C ′| = k�max −2. Number the elements of C ′ in order left-to-right as
c1, . . . , ck�max −2 . Also, for every concept ci in C ′, order its k children in some
arbitrary order, left-to-right, and number them 1 through k.

Now we describe the overlap between the sets of children of the level 2 con-
cepts ci, 1 ≤ i ≤ k�max −2. The first k −1 children of c1 are unique to c1, whereas
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its kth child is shared with c2. For i = k�max −2, the last k − 1 children of ci are
unique to ci, whereas its first child is shared with ci−1. For each other index i,
the middle k − 2 children of ci are unique to ci, whereas its first child is shared
with ci−1, and its kth child is shared with ci+1. There is no other sharing in C.

Next, we define the set B of level 0 concepts to be presented to the network.
B consists of the following grandchildren of the level 2 concepts in C ′:

1. Grandchildren of c1:
(a) All the (level 0) children of the children of c1 numbered 1, . . . , �rk, and
(b) �rk − 1 of the (level 0) children of the kth child of c1, which is also the

first child of c2.
2. Grandchildren of each ci, 2 ≤ i ≤ k�max −2 − 1:

(a) �rk − 1 of the (level 0) children of the first child of ci, which is also the
kth child of ci−1 (this has already been specified, just above),

(b) All the (level 0) children of the children of ci numbered 2, . . . , �rk, and
(c) �rk − 1 of the (level 0) children of the kth child of ci, which is also the

first child of ci+1.
3. Grandchildren of ci, i = k�max −2:

(a) �rk − 1 of the (level 0) children of the first child of ci, which is also the
kth child of ci−1 (this has already been specified, just above), and

(b) All the (level 0) children of the children of ci numbered 2, . . . , �rk.

Figure 2 illustrates a sample overlap pattern, for level 2 neurons
c1, c2, c3, ...cm, where m = k�max −2. Here we use k = 4, r = 3/4, and o = 1/2.

Fig. 2. Concept hierarchy with overlap, and input set.

Theorem 11. Assume C is the concept hierarchy defined above, and N is the
network with feedback defined above, based on C. Let B be the input set just
defined, and assume that B is presented at all times ≥ t. Then the time required
for the rep neurons for all concepts in suppr,f (B) to fire is at least 2(k�max − 2).

Proof. The network behaves as follows:

– Time 0: Exactly the reps of concepts in B fire.
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– Time 1: The reps of the (level 1) children of c1 numbered 1, . . . , �rk begin
firing. Also, for every ci, 2 ≤ i ≤ k�max −2, the reps of the (level 1) children
numbered 2, . . . , �rk begin firing. This is because all of these neurons receive
enough potential from the reps of their (level 0) children that fired at time
0, to trigger firing at time 1. No other neuron receives enough potential to
begin firing at time 1.

– Time 2: Neuron rep(c1) begins firing, since it receives enough potential from
the reps of its first �rk children. No other neuron receives enough potential
to begin firing at time 2.

– Time 3: Now that rep(c1) has begun firing, it begins contributing potential
to the reps of its children, via feedback edges. This potential is enough to
trigger firing of the rep of the (level 1) kth child of c1, when it is added to
the potential from the reps of that child’s own level 0 children. So, at time 3,
the rep of the kth child of c1 begins firing. No other neuron receives enough
potential to begin firing at time 3.

– Time 4: The kth child of c1 is also the first child of c2. So its rep contributes
potential to rep(c2). This is enough to trigger firing of rep(c2), when added
to the potential from the reps of c2’s already-firing children. So, at time 4,
rep(c2) begins firing. No other neuron receives enough potential to begin firing
at time 4.

– Time 5: Now that rep(c2) has begun firing, it contributes potential to the
reps of its children, via feedback edges. This is enough to trigger firing of the
rep of the (level 1) kth child of c2, when added to the potential from the reps
of that child’s own level 0 children. So, at time 5, the rep of the kth child of
c2 begins firing. No other neuron begins firing at time 3.

– Time 6: In analogy with that happens at time 4, neuron rep(c3) begins firing
at time 6, and no other neuron begins firing.

– . . .
– Time 2(k�max − 2): Continuing in the same pattern, neuron rep(ck�max −2)

begins firing at time 2(k�max − 2).

Thus, the time to recognize concept ck�max −2 is exactly 2(k�max − 2), as claimed.

F Learning Algorithms for Feed-Forward Networks

Now we address the question of how concept hierarchies (with and without
overlap) can be learned in layered networks. In this section, we consider learning
in feed-forward networks, and in Sect.G we consider networks with feedback.

For feed-forward networks, we describe noise-free learning algorithms, which
produce edge weights for the upward edges that suffice to support robust recog-
nition. These learning algorithms are adapted from the noise-free learning algo-
rithm in [4], and work for both tree hierarchies and general concept hierarchies.
We show that our new learning algorithms can be viewed as producing approxi-
mate, scaled weights as described in Sect. 5, which serves to decompose the cor-
rectness proof for the learning algorithms. We also discuss extensions to noisy
learning.
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F.1 Tree Hierarchies

We begin with the case studied in [4], tree hierarchies in feed-forward networks.

Overview of Previous Noise-free Learning Results. In [4], we set the
threshold τ for every neuron in layers ≥ 1 to be τ = (r1+r2)

√
k

2 . We assumed
that the network starts in a state in which no neuron in layer ≥ 1 is firing,
and the weights on the incoming edges of all such neurons is 1

k�max +1 . We also
assume a Winner-Take-All sub-network satisfying Assumption 13 below, which
is responsible for engaging neurons at layers ≥ 1 for learning. These assumptions,
together with the general model conventions for activation and learning using
Oja’s rule, determine how the network behaves when it is presented with a
training schedule as in Definition 7. Our main result, for noise-free learning, is
(paraphrased slightly)5:

Theorem 12 ((r1, r2)-Learning Tree concepts). Let N be the network
described above, with maximum layer �′

max, and with learning rate η = 1
4k . Let

r1, r2 be reals in [0, 1] with r1 < r2. Let ε = r2−r1
r1+r2

. Let C be any concept hierarchy,
with maximum level �max ≤ �′

max. Assume that the concepts in C are presented
according to a σ-bottom-up training schedule as defined in Sect. 4.2, where σ is
O

(
�max log(k) + 1

ε )
)
. Then N (r1, r2)-learns C.

Specifically, we show that the weights for the edges from children to parents
approach 1√

k
in the limit, and the weights for the other edges approach 0.

The Winner-Take-All Assumption. Theorem 12 depends on Assumption 13
below, which hypothesizes a Winner-Take-All (WTA) module with certain
abstract properties. This module is responsible for selecting a neuron to rep-
resent each new concept. It puts the selected neuron in a state that prepares it
to learn the concept, by setting the engaged flag in that neuron to 1. It is also
responsible for engaging the same neuron when the concept is presented in subse-
quent learning steps. In more detail, while the network is being trained, example
concepts are “shown” to the network, according to a σ-bottom-up schedule as
described in Sect. 4.2. We assume that, for every example concept c that is shown,
exactly one neuron in the appropriate layer gets engaged; this layer is the one
with the same number as the level of c in the concept hierarchy. Furthermore,
the neuron in that layer that is engaged is one that has the largest incoming
potential potu:

Assumption 13 (Winner-Take-All Assumption) If a level � concept c is
shown at time t, then at time t + �, exactly one neuron u in layer � has its
engaged state component equal to 1, that is, engagedu(t + �) = 1. Moreover, u
is chosen so that potu(t + �) is the highest potential at time t + � among all the
layer � neurons.
5 We use O notation here instead of giving actual constants. We omit a technical

assumption involving roundoffs.
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Thus, the WTA module selects the neuron to “engage” for learning. For a
concept c that is being shown for the first time, we showed that a new neuron
is selected to represent c—one that has not previously been selected. This is
because, if a neuron has never been engaged in learning, its incoming weights
are all equal to the initial weight w = 1

k�max +1 , yielding a total incoming potential
of kw. On the other hand, those neurons in the same layer that have previously
been engaged in learning have incoming weights for all of c’s children that are
strictly less than the initial weight w, which yields a strictly smaller incoming
potential. Also, for a concept c that is being shown for a second or later time,
we showed that the already-chosen representing neuron for c is selected again.
This is because the total incoming potential for the previously-selected neuron is
strictly greater than kw (as a result of previous learning), whereas the potential
for other neurons in the same layer is at most kw.

In a complete network for solving the learning problem, the WTA module
would be implemented by a sub-network, but we treated it abstractly in [4], and
we continue that approach in this paper.

Connections with Our New Results. Here we consider how we might use
our scaled result in Sect. 5.4 to decompose the proof of Theorem 12 in [4]. A large
part of the proof in [4] consists of proving that the edge weights established as
a result of a σ-bottom-up training schedule, for sufficiently large σ, are within
certain bounds. If these bounds match up with those in Sect. 5.4, we can use the
results of that section to conclude that they are adequate for recognition.

The general definitions in Sect. 5.4 use a threshold of (r1+r2)ks
2 and weights

given by: weight(u, v) ∈ [w1s, w2s] if Eu,v and weight(u, v) ∈ [0, 1
k�max +b ] oth-

erwise. To make the results of [4] fit the constraints of Sect. 5.4, we can simply
take w1 = 1

1+ε , w2 = 1, and the scaling factor s = 1√
k
. The two constraints

r2(2w1 −1) ≥ r1 and r2 ≥ r1(2w2 −1)+ 2
kbs

now translate into r2( 1−ε
1+ε ) ≥ r1 and

r2 ≥ r1 + 2

kb− 1
2
. The first of these, r2( 1−ε

1+ε ) ≥ r1, follows from the assumption

in [4] that ε = r2−r1
r2+r1

. The second inequality is similar to a roundoff assumption
in [4] that we have omitted here.6

Noisy Learning. In [4], we extended our noise-free learning algorithm to the
case of “noisy learning”. There, instead of presenting all leaves of a concept c at
every learning step, we presented only a subset of the leaves at each step. This
subset is defined recursively with respect to the hierarchical concept structure
of c and its descendants. The subset varies, and is chosen randomly at each
learning step. Similar results hold as for the noise-free case, but with an increase
in learning time.7 The result about noisy learning in [4] assumes a parameter
6 In any case, we can made the decomposition work by adding our new, not-very-

severe, inequality as an assumption.
7 The extension to noisy learning is the main reason that we used the incremental

Oja’s rule. If the concepts were presented in a noise-free way, we could have allowed
learning to occur all-at-once.
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p giving the fraction of each set of children that are shown; a larger value of
p yields a correspondingly shorter training time. The target weight for learned
edges is w̄ = 1√

pk+1−p
. The threshold is r2k(w̄ − δ), where δ = (r2−r1)w̄

25 .
The main result says that, after a certain time σ (larger than the σ used

for noise-free learning) spent training for a tree concept hierarchy C, with high
probability, the resulting network achieves (r1, r2)-recognition for C. Here, a key
lemma asserts that, with high probability, after time σ, the weights are as follows:
weight(u, v) ∈ [w̄ − δ, w̄ + δ] if E , and otherwise weight(u, v) ∈ [0, 1

k2 �max ]. To
make these results fit the constraints of Sect. 5.4, it seems that we should modify
the threshold slightly, by using the similar but simpler threshold ( (r1+r2)k

2 )w̄ in
place of r2k(w̄ − δ). The weights can remain the same as above, but in case of
Eu,v we have weight(u, v) ∈ [(1 − r2−r1

25 )w̄, (1 + r2−r1
25 )w̄]. Thus, we have scaled

the basic threshold (r1+r2)k
2 by multiplying it by w̄ = 1√

pk+1−p
. To make the

results fit the constraints of Sect. 5.4, we can take s = w̄, w1 = 1 − r2−r1
25 ,

w2 = 1+ r2−r1
25 , and b = �max. One can easily verify that the new thresholds still

fulfill the requirements for recognition. We do this in the full version.

F.2 General Concept Hierarchies

The situation for general hierarchies, with limited overlap, in feed-forward net-
works is similar to that for tree hierarchies. The same learning algorithm, based
on Oja’s rule, still works in the presence of overlap, with little modification to the
proofs. The only significant new issue to consider is how to choose an acceptable
neuron to engage in learning, at each learning step. We continue to encapsulate
this choice within a separate WTA service. As before, the WTA should always
select an unused neuron (in the right layer) for a concept that is being shown
for the first time. And for subsequent times when the same concept is shown,
the WTA should choose the same neuron as it did the first time.

An Issue with the Previous Approach. Assumption 13, which we used for
tree hierarchies, no longer suffices. For example, consider two concepts c and
c′ with level(c′) = level(c), and suppose that there is exactly one concept d in
the intersection children(c)∩children(c′). Suppose that concept c has been fully
learned, so a rep(c) neuron has been defined, and then concept c′ is shown for the
first time. Then when c′ is first shown, rep(c) will receive approximately 1√

k
of

total incoming potential, resulting from the firing of rep(d). On the other hand,
any neuron that has not previously been engaged in learning will receive potential

k
k�max +1 = 1

k�max , based on k neurons each with initial weight 1
k�max +1 , which

is smaller than 1√
k
. Thus, Assumption 13 would select rep(c) in preference to

any unused neuron. One might consider replacing Oja’s learning rule with some
other rule, to try to retain Assumption 13, which works based just on comparing
potentials. Another approach, which we present here, is to use a “smarter” WTA,
that is, to modify Assumption 13 so that it takes more information into account
when engaging a neuron.
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Approach Using a Modified WTA Assumption. In the assumption below,
w denotes the initial weight, 1

k�max +1 . N� denotes the set of layer � neurons. We
make the trivial assumption that o < 1 for the noise-free case; for the noisy case,
we strengthen that to o < p, where p is the parameter indicating how many child
concepts are chosen.

Assumption 14 (Revised Winner-Take-All Assumption). If a level �
concept c is shown at time t, then at time t + �, exactly one neuron u ∈ N� has
its engaged state component equal to 1, that is, engagedu(t+�) = 1. Moreover, u
is chosen so that potu(t+ �) is the highest potential at time t+ � among the layer
� neurons that have strictly more than o · k incoming neighbors that contribute
potential that is ≥ w.

Thus, we are assuming that the WTA module is “smart enough” to select the
neuron to engaged based on a combination of two criteria: First, it rules out any
neuron that has just a few incoming neighbors that contribute potential ≥ w.
This is intended to rule out neurons that have already started learning, but for a
different concept. Second, it uses the same criterion as in Assumption 13, choos-
ing the neuron with the highest potential from among the remaining candidate
neurons.

We claim that using Assumption 14 in the learning protocol yields appropri-
ate choices for neurons to engage, as expressed by Lemma 19 below. Showing
these properties depends on a characterization of the incoming weights for a neu-
ron u ∈ N� at any point during the learning protocol, as expressed by Lemma 18.

Lemma 18. During execution of the learning protocol, at a point after any finite
number of concept showings, the following properties hold:

1. If u has not previously been engaged for learning, then all of u’s incoming
weights are equal to the initial weight w.

2. If u has been engaged for learning a concept c, and has never been engaged
for learning any other concept, then all of u’s incoming weights for reps
of concepts in children(c) are strictly greater than w, and all of its other
incoming weights are strictly less than w.

Proof. Property 1 is obvious—if a neuron is never engaged for learning, its
incoming weights don’t change. Property 2 follows from Oja’s rule.

Lemma 19. During execution of the learning protocol, the following properties
hold for any concept showing:

1. If a concept c is being shown for the first time, the neuron that gets engaged
for learning c is one that was not previously engaged.

2. If a concept c is being shown for the second or later time, the neuron that gets
engaged for learning c is the same one that was engaged when c was shown
for the first time.
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Proof. We prove Properties 1 and 2 together, by strong induction on the number
m of the concept showing. For the inductive step, suppose that concept c is being
shown at the mth concept showing. By (strong) induction, we can see that, for
each concept that was previously shown, the same neuron was engaged in all of
its showings. Therefore, the weights described in Lemma 18, Property 2, hold
for all neurons that have been engaged in showings 1, . . . , m − 1.
Claim: Consider any neuron u with layer(u) = level(c) that was previously
engaged for learning a different concept c′ �= c. Then u has at most o ·k incoming
neighbors that contribute potential to u that is ≥ w, and so, is not eligible for
selection by the WTA.
Proof of Claim: Lemma 18, Property 2, implies that all the incoming weights
to neuron u for reps of concepts in children(c′) are strictly greater than w, and
all of its other incoming weights are strictly less than w. Since |children(c) ∩
children(c′)| ≤ o · k, u has at most o · k incoming neighbors that contribute
potential that is ≥ w, as claimed.
End of proof of Claim

Now we prove Properties 1 and 2:

1. If concept c is being shown for the first time, the neuron u that gets engaged
for learning c is one that was not previously engaged.
Assume for contradiction that the chosen neuron u was previously engaged.
Then it must have been for a different concept c′ �= c, since this is the first
time c is being shown. Then by the Claim, u is not eligible for selection by
the WTA. This is a contradiction.

2. If concept c is being shown for the second or later time, the neuron u that
gets engaged for learning c is the same one that was engaged when c was
shown for the first time.
Arguing as for Property 1, again using the Claim, we can see that u cannot
have been previously engaged for a concept c′ �= c. So the only candidates
for u are neurons that were not previously engaged, as well as the (single)
neuron that was previously engaged for c. The given WTA rule chooses u
from among these candidate based on highest incoming potential.
For neurons that were not previously engaged, Lemma 18, Property 1, implies
that the incoming potential is exactly kw. For the single neuron that was
previously engaged for c, Lemma 18, Property 2 implies that the incoming
potential is strictly greater than kw. So the WTA rule selects the previously-
engaged neuron.

With the new WTA assumption, the learning analysis for general hierarchies
follows the same pattern as the analysis for tree hierarchies in [4], and yields the
same time bound.

Theorem 15 ((r1, r2)-Learning General Hierarchies). Let N be the net-
work described above, with maximum layer �′

max, and with learning rate η = 1
4k .

Let r1, r2 be reals in [0, 1] with r1 < r2. Let ε = r2−r1
r1+r2

. Let C be any
general concept hierarchy, with maximum level �max ≤ �′

max. Assume the
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revised WTA (Assumption 14) and that the concepts in C are presented accord-
ing to a σ-bottom-up training schedule as defined in Sect. 4.2, where σ is
O

(
�max log(k) + 1

ε )
)
. Then N (r1, r2)-learns C.

Implementing Assumption 14 will require some additional mechanism, in
addition to the mechanisms that are used to implement the basic WTA satisfying
Assumption 13. Such a mechanism could serve as a pre-processing step, before
the basic WTA. The new mechanism could allow a layer � neuron u to fire (and
somehow reflect its incoming potential) exactly if u has strictly more than o · k
incoming neighbors that contribute potential ≥ w to u.8

G Learning Algorithms for Networks with Feedback

Now we consider how concept hierarchies, with and without overlap, can be
learned in layered networks with feedback. The learning algorithms described in
Sect. F set the weights on the directed edges from each layer � to the next higher
layer � + 1, that is, the “upward” edges. Now the learning algorithm must also
set the weights on the directed edges from each layer � to the next lower layer
� − 1, i.e., the “downward” edges.

One reasonable approach is to separate matters, first learning the weights on
the upward edges and then the weights on the downward edges. Fortunately, we
can rely on Lemma 9, which says that, if c is any concept in a concept hierarchy
C, then c ∈ supp1(leaves(c)). That is, any concept is supported based only on
its descendants, without any help from its parents. This lemma implies that
learning of upward edges can proceed bottom-up, as in Sect. F. We give some
details below.

G.1 Noise-Free Learning

As in Sect. F, we assume that the threshold is (r1+r2)
√

k
2 , the initial weight for

each upward edge is w = 1
k�max +1 , and ε = r2−r1

r1+r2
. Here we also assume that the

initial weight for each downward edge is w.9 We assume that the network starts
in a state in which no neuron in layer ≥ 1 is firing.

Our main result, for noise-free learning, is:

8 For instance, each layer � − 1 neuron v might have an outgoing edge to a special
threshold element that fires exactly if the potential produced by v on the edge (v, u)
is at least w, i.e., if v fires and weight(v, u) ≥ w. Then another neuron associated
with u might collect all this firing information from all layer � − 1 neurons v and see
if the number of firing neurons reaches the threshold �o · k� + 1, which is equivalent
to saying that the number of firing neurons is strictly greater than o ·k. If this special
neuron fires, it excites u to act as an input to the basic WTA, but if it does not, u
should drop out of contention.

9 We are omitting mention here of some trivial technical assumptions, like small lower
bounds on τ .
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Theorem 16. Let N be the network defined in this section, with maximum layer
�′
max, and with learning rate η = 1

4k . Let r1, r2 be reals in [0, 1] with r1 ≤ r2. Let
ε = r2−r1

r1+r2
.

Let C be any concept hierarchy, with maximum level �max ≤ �′
max. Assume

that the algorithm described in this section is executed: On the first pass, the
concepts in C are presented according to a σ-bottom-up presentation schedule,
where σ is O

(
�max log(k) + 1

ε )
)
. The second pass is as described in Sect. G.1.

Then N (r1, r2, f)-learns C.

First Learning Pass. As a first pass, we carry out the learning protocol from
Sect. F for all the concepts in the concept hierarchy C, working bottom-up. Learn-
ing each concept involves applying Oja’s rule for that concept, for enough steps to
ensure that the weights of the upward edges end up within the bounds described
in Sect. 5.4.

Consider the network after the first pass, when the weights of all the upward
edges have reached their final values. At that point, we have that the network
(r1, r2)-recognizes the given concept hierarchy C, as described in Sect. F. More-
over, we obtain:

Lemma 20. The weights of the edges after the completion of the first learning
pass are as follows:

1. The weights of the upward edges from reps of children to reps of their parents
are in the range [ 1

(1+ε)
√

k
, 1√

k
)], and the weights of the other upward edges are

in the range [0, 1
2lmax+b ].

2. The weights of all downward edges are w = 1
k�max +1 .

As a consequence of these weight settings, we can prove the following about
the network resulting from the first pass:

Lemma 21. The following properties hold of the network that results from the
completion of the first learning pass:

1. Suppose c is any concept in C. Suppose that c is shown (that is, the set
leaves(c) is presented) at time t, and no inputs fire at any other times. Then
rep(c) fires at time t + level(c) = t + layer(rep(c)), and does not fire at any
earlier time.

2. Suppose c is any concept in C. Suppose that c is shown at time t, and no
inputs fire at any other times. Suppose c′ is any other concept in C with
level(c′) = level(c). Then rep(c′) does not fire at time t + level(c).

3. Suppose that u is a neuron in the network that is not a rep of any concept in
C. Suppose that precisely the set of level 0 concepts in C is presented at time
t, and no inputs fire at any other times. Then neuron u never fires.

Proof. Property 1 follows from the analysis in [4], plus the fact that level(c) is
the time it takes to propagate a wave of firing from the inputs to layer(rep(c).
Property 2 can be proved by induction on level(c), using the limited-overlap
property. Property 3 can be proved by induction on the time t′ ≥ t, analogously
to Lemma 16.
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Second Learning Pass. The second pass sets all the weights for the downward
edges. Here, to be simple, we set the weight of each edge to its final value in one
learning step, rather than proceeding incrementally.10 We aim to set the weights
of all the “important” downward edges, that is, those that connect the rep of
a concept to the rep of any of its children, to f√

k
, and the weights of all other

downward edges to 0.
We first set the weights on the “important” downward edges. For this, we

proceed level by level, from 1 to �max. The purpose of the processing for level
� is to set the weights on all the “important” downward edges from layer � to
layer � − 1 to f√

k
, while leaving the weights of the other downward edges equal

to the initial weight w.
For each particular level �, we proceed sequentially through the level � con-

cepts in C, one at a time, in any order. For each such level � concept c, we carry
out the following three steps:

1. Show concept c, that is, present the set leaves(c), at some time t. By Theo-
rem 20, the reps of all children of c fire at time t + � − 1, and rep(c) fires at
time t + �.

2. Engage all the layer � − 1 neurons to learn their incoming dweights at time
t + � + 1, by setting their dgaged flags.

3. Learning rule: At time t + � + 1, each dgaged layer � − 1 neuron u that fired
at time t + � − 1 sets the weights of any incoming edges from layer � neurons
that fired at time t + � (and hence contributed potential to u) to f√

k
. Neuron

u does not modify the weights of other incoming edges.

Note that, in Step 3, each neuron u that fired at time t + � − 1 will set the
weight of at most one incoming downward edge to f√

k
; this is the edge from

rep(c), in case u is the rep of a child of c.
Also note that u does not reduce the weights of other incoming downward

edges during this learning step. This is to allow u to receive potential from other
layer � neurons when those concepts are processed. This is important because
u may represent a concept with multiple parents, and must be able to receive
potential from all parents when they are processed.

Finally, note that, to implement this learning rule, we need some mecha-
nism to engage the right neurons at the right times. For now, we just treat this
abstractly, as we did for learning in feed-forward networks in Sect. F.

At the end of the second pass, each neuron u resets the weights of all of its
incoming downward edges that still have the initial weight w, to 0. The neurons
can all do this in parallel.

Lemma 22. The weights of the edges after the completion of the second learning
pass are as follows:

10 This seems reasonable since we are not considering noise during this second pass. Of
course, that might be interesting to consider at some point.
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1. The weights of the upward edges from reps of children to reps of their parents
are in the range [ 1

(1+ε)
√

k
, 1√

k
)], and the weights of the other upward edges are

in the range [0, 1
2lmax+b ].

2. The weights of the downward edges from reps of parents to reps of their
children are f√

k
, and the weights of the other downward edges are 0.

Proof. Property 1 follows from Lemma 20 and the fact that the weights of the
upward edges are unchanged during the second pass.

For Property 2, the second pass is designed to set precisely the claimed
weights. This depends on the neurons firing at the expected times. This follows
from Lemma 21, once we note that the three claims in that lemma remain true
throughout the second pass. (The first two properties depend on upward weights
only, which do not change during the second pass. Property 3 follows because
only rep neurons have their incoming weights changing during the second pass.)

With these weights, we can now prove the main theorem:

Proof. (Of Theorem 16:) We use a scaled version of Theorem 7. Here we use
w1 = 1

1+ε , w2 = 1, and a scaling factor s = 1√
k
.11

G.2 Noisy Learning

We can extend the results of the previous section to allow noisy learning in the
first pass. For this, we use a threshold of ( (r1+r2)k

2 )w̄ and retain the initial edge
weights of w = 1

k�max +1 . We define w1 = 1 − r2−r1
25 , w2 = 1 − r2−r1

25 , and the
scaling factor s to be w̄ = 1√

pk+1−p
.

The ideas are analogous to the noise-free case. The differences are:

1. The first phase continues long enough to complete training for the weights of
the upward edges using Oja’s rule.

2. The weights of the upward edges from reps of children to reps of their parents
are in the range [(1 − r2−r1

25 )w̄, (1 + r2−r1
25 )w̄], and the weights of the other

upward edges are in the range [0, 1
k2 �max ].

3. The weights of the downward edges are set to fw̄.

With these changes, we can obtain a theorem similar to Theorem 16 but with
a larger training time, yielding (r1, r2, f)-learning of C.

H Future Work

There are many possible directions for extending the work. For example:

11 The scaled case isn’t actually worked out in Sect. 6 but should follow as a natural
extension of the un-scaled results.
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Concept Recognition: It would be interesting to study recognition behavior after
partial learning. The aim of the learning process is to increase weights suffi-
ciently to guarantee recognition of a concept when partial information about its
leaves is presented. Initially, even showing all the leaves of a concept c should
not be enough to induce rep(c) to fire, since the initial weights are very low. At
some point during the learning process, after the weights increase sufficiently,
presenting all the leaves of c will guarantee that rep(c) fires. As learning contin-
ues, fewer and fewer of the leaves will be needed to guarantee firing. It would
be interesting to quantify the relationship between amount of learning and the
number of leaves needed for recognition.

Also, the definition of robustness that we have used in this paper involves
just omitting some inputs. In would be interesting to also consider other types of
noise, such as adding extraneous inputs. How well do our recognition algorithms
handle this type of noise?

Another type of noise arises if we replace the deterministic threshold elements
with neurons that fire stochastically, based on some type of sigmoid function of
the incoming potential. How well do our recognition algorithms handle this type
of noise? Some initial ideas in this direction appear in Appendix A, but more
work is needed.

Learning of Concept Hierarchies: Our learning algorithms depend heavily on
Winner-Take-All subnetworks. We have treated these abstractly in this paper,
by giving formal assumptions about their required behavior. It remains to develop
and analyze networks implementing the Winner-Take-All assumptions.

Another interesting issue involves possible flexibility in the order of learn-
ing concepts. In our algorithms, incomparable concepts can be learned in any
order, but children must be completely learned before we start to learn their
parents. We might also consider some interleaving in learning children and par-
ents. Specifically, in order to determine rep(c) for a concept c, according to our
learning algorithms, we would need for the reps of all of c’s children to be already
determined, and for the children to be learned sufficiently so that their reps can
be made to fire by presenting “enough” of their leaves.

But this does not mean that the child concepts must be completely learned,
just that they have been learned sufficiently that it is possible to make them fire
(say, when all, or almost all, of their leaves are presented). This suggests that
it is possible to allow some interleaving of the learning steps for children and
parents. This remains to be worked out.

Another issue involves noise in the learning process. In Sects. F and G, we
have outlined results for noisy learning of weights of upward edges, in the various
cases studied in this paper, but full details remain to be worked out. The app-
roach should be analogous to that in [4], based on presenting randomly-chosen
subsets of the leaves of a concept being learned. The key here should be to artic-
ulate simple lemmas about achieving approximate weights with high probability.
It also remains to consider noise in the learning process for weights of downward
edges.
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Finally, our work on learning of weights of upward edges has so far relied on
Oja’s learning rule. It would be interesting to consider different learning rules as
well, comparing the guarantees that are provided by different rules, with respect
to speed of learning and robustness to noise during the learning process.

Different Data Models, Different Network Assumptions, Different Representa-
tions: One can consider many variations on our assumptions. For example, what
is the impact of loosening the very rigid assumptions about the shape of con-
cept hierarchies? What happens to the results if we have limited connections
between layers, rather than all-to-all connections? Such connections might be
randomly chosen, as in [8]. Also, we have been considering a simplified represen-
tation model, in which each concept is represented by precisely one neuron; can
the results be extended the to accommodate more elaborate representations?

Experimental Work in Computer Vision: Finally, it would be interesting to try to
devise experiments in computer vision that would reflect some of our theoretical
results. For example, can the high-latency recognition behavior that we identified
in Sect. E.2, involving extensive information flow up and down the hierarchy, be
exhibited during recognition of visual scenes?
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Abstract. For any integer r ≥ 2, a linear r-uniform hypergraph is a
generalization of ordinary graphs, where edges contain r vertices and two
edges intersect in at most one node. We consider the problem of coloring
such hypergraphs in several constrained models of computing, i.e., com-
puting a partition such that no edge is fully contained in the same class. In
particular, we give a poly(log log n)-round randomized Local algorithm
that computes a O(Δ1/(r−1))-coloring w.h.p. This is tight up to polyno-
mial factors of the time complexity as Ω(logΔ logn) distributed rounds
are necessary for even obtaining a Δ-coloring, where Δ is the maximum
degree, and tight up to logarithmic factors of the number of colors, as
Θ((Δ/ logΔ)1/(r−1)) colors are necessary for existence. We also give sim-
ple algorithms that run in O(1)-rounds of the Congested Clique model
and in a single-pass of the semi-streaming model.

Keywords: Hypergraph coloring · Distributed computing · LOCAL
model · Congested Clique

1 Introduction

In a seminal work [33], Linial opened the field of distributed computing with
upper and lower bounds on the problem of finding a coloring of a distributed
network. Since then, a large body of work has been committed to finding col-
orings faster and with fewer colors [5,12,25,26]. The goal is usually to find a
Δ+1-coloring where Δ is the maximum degree of the network, a number which
ensures that the graph can be colored without any monochromatic edge.

One direction that has been left largely unexplored is that of finding colorings
of hypergraphs. Hypergraphs generalize traditional graphs, replacing edges with
hyperedges. Each hyperedge corresponds to a set of nodes without a fixed upper
bound on the size of the set. A hypergraph is said to be r-uniform or of (uniform)
rank r if its hyperedges all have cardinality r. A hypergraph is called linear (or
simple) if no pair of hyperedges shares more than a single node1. As in graphs,
1 Note that linear hypergraphs generalize (ordinary) graphs: a graph is a 2-uniform

linear hypergraph.
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a valid coloring is one without monochromatic edges. Erdős and Lovász showed
that every r-uniform hypergraph of maximum degree Δ has a chromatic number
of no more than O(Δ1/(r−1)), and further that this bound is tight [17]. Frieze and
Mubayi [21] obtained an improved (and also tight) bound of O((Δ/ logΔ)1/(r−1))
colors for linear hypergraphs of rank r ≥ 3. This research leaves a large gap
between the Δ+1-coloring that can be computed in the traditional graph model,
and what is theoretically possible.

In this paper, we focus on the following question; given an r-uniform linear
hypergraph in the Local model, what is the fewest number of rounds needed to
compute a Θ̃(Δ1/(r−1))-coloring2? More generally, what is the round complexity
of k-coloring, for each value of k at least Θ(Δ1/(r−1)) and at most Δ?

Main result (informal):
The randomized round complexity of k-coloring r-uniform linear
hypergraphs is logΘ(1) log n, for every k ∈ {Θ(Δ1/(r−1)), . . . , Δ}.

One well-known approach to solving this problem would be an application of
the Lovász Local Lemma (LLL). Indeed, LLL was first introduced in a paper
of Erdős and Lovász as a tool for coloring hypergraphs [17]. Starting with the
work of Moser and Tardos [35], a series of successive works provide constructive,
distributed techniques giving an logO(1) n-round algorithm in both the random-
ized [14,35] and deterministic [11,14,38] setting. Our result provides a rare case
where a poly(log logn)-round algorithm is known for a problem with a strict
LLL formulation, even on high-degree graphs.

1.1 Our Results

Our main result is a randomized logO(1) log n-round distributed algorithm in
the Local model for finding a O(Δ1/(r−1))-coloring, w.h.p. This provides a
significant improvement over the O(log n) round algorithm given using the LLL
based approach. It comes close to the recent lower bound of Ω(logrΔ log n) for
coloring with Δ colors, due to Balliu et al. [4].

It is worth noting the large gap between the Θ̃(Δ1/(r−1))-coloring that is
achieved by our algorithm, and the lower bound of Ω(logΔ log n) on finding a
Δ-coloring. This suggests that the complexity of hypergraph coloring “plateaus”
between Δ and Θ̃(Δ1/(r−1)), which contrasts with the significant gap in complex-
ity between Δ-coloring and Δ2-coloring in traditional graphs. The lower bound
for Δ-coloring is particularly surprising as, unlike in the graph case, r-uniform
hypergraphs are O(

√
Δ)-colorable when r ≥ 3, leading to a significant gap.

We also give simple algorithms for o(Δ1/(r−1))-coloring in two models: an
O(1)-round algorithm in the Congested Clique model, and a single-pass
streaming algorithm using Õ(n) space. For completeness, we supplement the dis-
tributed results with two additional results: An O(log∗ n) round deterministic
2 Here and throughout the paper, Õ(x) = x logO(1)(x), Ω̃(x) = x/ logO(1)(x), and

Θ̃(x) = Õ(x) ∩ Ω̃(x).
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algorithm for computing an Õ
(
r · Δr/(r−1)

)
-coloring, and the tightness of that

time bound. These results build on the O(log∗ n)-round algorithm for O(Δ2)-
coloring graphs and matching lower bound due to Linial [33].

1.2 Related Work

The related problem of Δ+1-coloring graphs has been studied extensively. The
current best randomized Local algorithm is due to Chang et al. [12], and uses
O(log3 log n) rounds when using the recent poly(log n)-round deterministic algo-
rithm of [25] as a subroutine. The best known complexity in terms of Δ is
O(

√
Δ logΔ + log∗ n) [5,34].

As for distributed symmetry-breaking in hypergraphs, poly(log n) algorithms
are known for Maximal Independent Set (MIS) [28,30,31]. Hypergraph max-
imal matching (HMM) has received more attention, in part due to existing
reductions from some graph problems to HMM, notably edge-coloring [20].
Õ(poly(logn, r))-round deterministic and Õ(poly(log logn, logΔ, r))-round ran-
domized algorithms are known for HMM [20,24,29].

Brandt et al. recently showed that finding w.h.p. a Δ-coloring in graphs
requires Ω(logΔ log n) rounds [8]. This uses the round elimination framework,
which was automatized by Brandt [7] and applied in numerous works. Much of
the work has been on graph problems, but the basic formulation also applies
to hypergraph problems. In fact, Balliu et al. recently proved lower bounds for
hypergraph coloring, strong coloring, MIS and maximal matching [4]. Most rele-
vant to this paper, they showed that randomized hypergraph Δ-coloring requires
Ω(logrΔ log n) rounds in Local. Their proof involves finding a fixed point for the
round elimination technique, a method previously applied by the same authors
to the graph Δ-coloring problem [3].

In the streaming setting, there are recent single-pass randomized algorithms
for Δ + 1-coloring [1] and Δ-coloring graphs [2] using O(npoly(logn)) bits of
memory. The only related work on hypergraphs is on the 2-coloring problem [37]
(a.k.a., Property B), where the randomized algorithm matches the sequential
results but deterministic algorithms are shown to be too weak. In the Con-

gested Clique model, O(1)-round algorithms are known for Δ + 1-coloring
graphs, both randomized [9] and deterministic [15], but we are not aware of any
similar hypergraph results.

The Lovász local lemma technique was first introduced in [17] and applied
there specifically to the hypergraph coloring problem studied here. It has had an
outsize importance to numerous combinatorial problems. A general and efficient
algorithm was given by Moser and Tardos [35]. It is highly parallel in nature,
which allows for efficient implementations in distributed computing.

The LLL is particularly important in distributed computing due to the dis-
covery of a time hierarchy for a large class of problems known as LCLs (Locally
Checkable Labeling problems). An LCL task consists of assigning labels to node
and edges satisfying some locally checkable property (e.g., in coloring, adjacent
nodes must receive distinct labels). On bounded degree graphs, every LCL that
runs in o(log n) distributed (randomized) rounds can be sped up to O(TLLL)
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rounds, where TLLL is the round complexity of LLL [13]. The Moser-Tardos algo-
rithm runs in O(log2 n)-rounds of Local, later improved to O(log n · logΔ)
[14,22] in general and to O(log n) [14] for weaker forms of LLL. In particular,
it gives an O(log2 n)-round algorithm for O(Δ1/(r−1))-coloring (general) hyper-
graphs. It is known that TLLL = Ω(logΔ log n) [8], but there is currently a huge
gap for large Δ. There have been many attempts at obtaining improved algo-
rithms. Fischer and Ghaffari [19] gave an O(Δ2 + poly(log logn))-round algo-
rithm, which largely answers the question for low-degree graphs. Their algorithm
(and the ones that follow) only work for LLLs with polynomially-weakened crite-
rion, a weaker form insufficient for hypergraph coloring with an optimal number
of colors. There are recent results on still weaker forms of LLL [16], certain split-
ting problems [27], or restricted classes of graphs [10], but we are not aware of
other distributed results that yield poly(log log n)-round solutions to strict forms
of LLL.

Outline. The next section provides definitions and some key results from the
literature. Section 3 provides a simple partitioning approach, enabling algorithms
for streaming, Congested Clique, and Local. An improved Local algorithm
is given in Sect. 4. Additional results follow in Sect. 5.

2 Preliminaries

Let G = (V,E) be a hypergraph. For any node v ∈ V , let dv be the degree of
v, defined as the number of edges in E containing v. Let Δ be the maximum
degree of G and let n be the number of nodes in G. We assume that every node
in G knows the values of both Δ and n.

Definition 1 (Underlying Graph). The underlying graph of a hypergraph
G = (V,E) is the graph G′ = (V,E′) formed by replacing each hyperedge of rank
r with the r-clique, i.e., E′ = {(u, v) ∈ (

V
2

) | ∃e ∈ E, {u, v} ⊆ e} (Fig. 1, left).

Note that the underlying graph has maximum degree rΔ.

Definition 2 (Induced Subhypergraph). Let V ′ ⊆ V , the subhypergraph
G[V ′] induced by V ′ is the hypergraph G′ = (V ′, E′) formed by only keeping
edges whose endpoints are all in V ′, i.e., E′ = {e ∈ E | e ⊆ V ′} (Fig. 1, right).

Fig. 1. (Left) a hypergraph and its underlying graph. (Right) a colored hypergraph
and the subhypergraph induced by the blue vertices. (Color figure online)
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Importantly, the induced subhypergraph is defined s.t. an edge disappears if at
least one of its vertices is not part of V ′, rather than becoming an edge of rank
r′ < r. Thus, an induced subhypergraph of a rank r hypergraph is also rank r.

Definition 3 (Hypergraph coloring). A coloring of a rank r hypergraph
G = (V,E) is a assignment ψ of colors to the nodes such that every edge e ∈ E,
contains a pair of vertices vi, vj ∈ e, ψ(vi) �= ψ(vj) (Fig. 2).

Fig. 2. (Left) an invalid coloring, containing a monochromatic hyperedge. (Center) a
valid coloring which is not a strong coloring. (Right) a strong coloring.

We say an edge is monochromatic if ψ(vi) = ψ(vj) for all vi, vj ∈ e. A valid
coloring is a coloring without any monochromatic edge. It may be equivalently
defined as a coloring such that the subhypergraph induced by each color class is
empty, i.e., containing no hyperedges. Note that coloring a hypergraph with edges
of minimum cardinality r is no harder than coloring a r-uniform hypergraph – it
trivially reduces to it. A strong3 coloring of a hypergraph G = (V,E) is a coloring
of the vertices such that no two adjacent vertices share a color. A strong coloring
may be defined as a proper coloring of the underlying graph.

Problem 1. The distributed c-coloring problem for rank r hypergraphs

Input. A hypergraph G = {V,E} with minimum rank r and an integer c.
Output. A coloring of G using at most c colors.

2.1 Communication Model

In this paper we consider two models of communication, Local and Con-

gested Clique. In both, communication is done over synchronous rounds,
and each node has some globally unique Θ(log n)-bit ID. In Local, in each
round, each node can only send messages to its neighbors in the graph, but
the messages can be arbitrarily large. CongestedClique removes the locality
constraint and adds congestion. In this model, nodes may only send messages of
size O(log n) bits, but their recipients can be all other nodes in the graph. I.e.,
while in Local the graph of communication is also the input graph, in Con-

gested Clique nodes are restricted in bandwidth but not who they can talk
to.
3 Prior work sometimes refer to hypergraph coloring as hypergraph weak coloring, by

opposition to strong coloring. We do not use this terminology here, to avoid confusion
with the graph weak coloring problem, which only asks that each node has at least
one non-monochromatic edge.
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2.2 An LLL for Hypergraph Coloring

In this section we provide an overview of the key results underpinning the appli-
cation of the Lovász Local Lemma to the problem of hypergraph coloring.

Lemma 1 (Lovász Local Lemma, [17]). Consider a set E of events such that
for each A ∈ E:

1. Pr[A] ≤ p < 1, and
2. A ∈ E is mutually independent of a set of all but at most d of the other events.

If 4pd ≤ 1 then with positive probability, none of the events in E occur.

Informally, Lemma 1 states that given a set of events that are sufficiently inde-
pendent, with a low enough probability of failure, then there is a positive proba-
bility of global success. As LLL instances are locally checkable, they are a natural
tool for use in distributed algorithms. Hypergraph coloring was the first problem
to be solved using Lemma 1 [17].

Lemma 2 ([17]). Any hypergraph G with maximum degree Δ and rank r can
be colored with (4r · Δ)1/(r−1) colors.

Proof. Let k = 	(4r · Δ)1/(r−1)
. Consider the uniform probability distribution
over the set of k colors. Further, as an edge has at least r vertices, the prob-
ability p of an edge being monochromatic is at most p ≤ k

kr ≤ 1
4r·Δ . As each

hyperedge is adjacent to at most d ≤ r ·Δ other edges, the event of an edge being
monochromatic is dependent on at most r · Δ other events. Hence, by Lemma 1
as 4pd ≤ 4 1

4rΔrΔ ≤ 1, there exists a k-coloring of G.

Lemma 2 provides an immediate method of computing a (4r ·Δ)1/(r−1)-coloring
by brute force. The breakthrough work by Moser and Tardos [35] provided a
O(log2 n) randomized Local algorithm for LLL, later improved to O(log n·log d)
rounds [14,22].

Theorem 1. There is a poly(logn)-round deterministic Local algorithm that
computes a (4r · Δ)1/(r−1)-coloring of a hypergraph with n vertices, rank r and
maximum degree Δ. This holds even if the nodes’ IDs are of order exp(poly(n)).

Proof. There is an LLL formulation of hypergraph k-coloring, for k = (4r ·
Δ)1/(r−1), by Lemma 2. Thus the distributed LLL algorithm of [35] (and [14])
gives a randomized poly(log n)-round algorithm to find such a coloring. This is a
locally checkable labeling problem, which implies by the network decomposition
result of [38] that there exists a poly(log n)-round deterministic algorithm for the
problem. To handle large IDs, one can either use the improved network decom-
position algorithm of [23] or run Linial’s algorithm to reduce IDs to poly(n)
[33].
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2.3 Shattering and Concentration Bounds

In the shattering technique, a randomized algorithm is first used to solve a
large subset of the graph so that the unsolved parts of the graph induce small
connected components.

Lemma 3 (Lemma 4.1 of [12]). Consider a randomized procedure that gen-
erates a subset Bad ⊆ V of vertices. Suppose that for each v ∈ V , we have
Pr[v ∈ Bad] ≤ Δ−3c, and each event v ∈ Bad is determined by the random
choices within distance c of v. W.p. 1 − n−Ω(c′), each connected component in
G[Bad] has size at most (c′/c)Δ2c logΔ n.

Lemma 4 (Chernoff bounds). Let {Xi}i be a family of independent random
variables taking values in [0, 1], and let X =

∑
i Xi.

Pr[X ≥ (1 + δ)E[X]] ≤ exp(−min(δ, δ2)E[X]/3), ∀δ > 0, (1)

Pr[X ≤ (1 − δ)E[X]] ≤ exp(−δ2 E[X]/2), ∀δ ∈ (0, 1). (2)

As corollary of Eq. (1) when E[X] > 0, ∀t ≥ 2E[X], Pr[X ≥ t] ≤ exp(−t/6).

3 Simple Splitting Primitive and Its Applications

We first consider a simple zero-round randomized primitive (see Algorithm 1)
for splitting the vertex set and apply it in three different models. The splitting
forms a defective coloring, defined as follows.

Given a coloring of the vertices, the defect def(v) of a node v ∈ V is the
number of monochromatic edges incident to v, i.e., the number of incident edges
whose nodes all have the same color as v. A coloring is d-defective if def(v) ≤ d
for all nodes v. A 0-defective coloring is a normal valid coloring.

Algorithm 1. Split(Vertex set V , maximum degree Δ, integer x)
Input: A hypergraph on V of degree Δ, and a parameter x ≥ 1.
Output: Partition of V into V1, V2, . . . , Vx and VBad.
Assign each v ∈ V a value rv in [x], u.a.r., partitioning V into V1, V2, . . . , Vx.
Move into VBad the nodes with defect at least η = 2Δ/xr−1.

Lemma 5. Consider the partition computed by Split(V,Δ, x). The probability
that a given node is in VBad is at most exp(−η/6) = exp(−Δ/(3xr−1)).

Proof. Observe first that for any edge e incident to v to be monochromatic,
every vertex other than v in e must pick the same color as v. As there are x
colors, the probability of any set of r − 1 nodes choosing the same specified
color is 1/xr−1. The expected defect of v is therefore E[def(v)] = dv/xr−1. Since
the hypergraph is linear, edges incident on v share no other vertex. Therefore,
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once conditioned on v’s choice of random color, whether each edge incident on
v is monochromatic is independent from whether other edges incident on v are
monochromatic. Using that η ≥ 2dv/xr−1 = 2E[def(v)], and applying Lemma 4
(Chernoff), we get that Pr[def(v) ≥ η] ≤ exp(−η/6).

Lemma 6. Suppose we run Split(V,Δ, x) with x ≤ (Δ/(24 log(rΔ)))1/(r−1).
Then, G[VBad] consists of connected components of size O(Δ2 log n) (i.e., the
graph is shattered), w.h.p. If x ≤ (Δ/(6 log n))1/(r−1), then VBad is empty, w.h.p.

Proof. The claim that VBad = ∅ when x ≤ (Δ/ log n)1/(r−1) follows from Lemma
5. Otherwise, the set VBad consists of the nodes of defect at least η = 2Δ/xr−1 ≥
48 log(rΔ). By Lemma 5, the probability that def(v) ≥ 48 log(rΔ) is less than
(rΔ)−8. Each event v ∈ VBad is fully determined by the random choices of v and
its at most rΔ neighbors. The lemma now follows from Lemma 3.

Lemma 5 immediately implies a single-round randomized algorithm to pro-
duce an O

(
(Δ/ log n)1/(r−1)

)
coloring with a defect of O(log n), w.h.p., when

Δ = Ω(log n). It suffices then to solve the coloring problem on hypergraphs of
degree Δ = O(log n). Further, we observe the following.

Lemma 7. Suppose we run Split(V,Δ, x) and that we further color each sub-
graph H = G[X] where X ∈ {Vi}i ∪ VBad with O(Δ(H)1/(r−1)) colors. The
coloring of G obtained by concatenating these colorings uses O(Δ1/(r−1)) colors.

Proof. Split produces x subgraphs of degree Δ(H) ≤ η = 2Δ/xr−1 and one
subgraph of small size. By assumption, the total number of colors is on the order
of

x∑

i=1

Δ(H)1/(r−1) + Δ1/(r−1) ≤ x · η1/(r−1) + Δ1/(r−1) ≤ 3Δ1/(r−1).

3.1 Streaming Algorithm

We first give a simple application of the Split algorithm to the semi-streaming
model. Introduced in [18,36], the semi-streaming model is a model of computa-
tion for solving problems on massive graphs with an O(npoly logn) amount of
storage space. The goal of the semi-streaming model is to provide an algorithm
that can compute a solution to graph problems without needing to store the
complete graph explicitly.

In the semi-streaming model, the input graph G = (V,E) is given as a stream
of edge changes (insertions and deletions). For hypergraphs, the stream is instead
an ordered list of hyperedge changes. After each edge change, a semi-streaming
algorithm is given some amount of time to process the change, with the restric-
tion that no more than O(npoly log n) space is used at any given time. The order
that the edge changes are assigned is assumed to be determined by an oblivi-
ous adversary. Such an adversary has access to the algorithm being used and is
capable of simulating it, but does not have access to any source of randomness
being used.
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Theorem 2. There exists a single-pass semi-streaming randomized algorithm
for O((Δ/σ)1/(r−1))-coloring linear hypergraphs against an oblivious adversary,
where σ = min{logΔ, log log n}.
Proof. When Δ = O(log n), the full graph is represented using O(rn log2 n) bits:
we store it fully and color it with O((Δ/ logΔ)1/(r−1)) colors using the method
of [21]. Otherwise, we apply Split(V,Δ, x) with x = O

(
(Δ/ log n)1/(r−1)

)
.

By Lemma 5, VBad = ∅ and each Vi is O(log n)-defective. Thus, O(rn log2 n)
bits suffice to represent all the subgraphs in the partition. Applying the algo-
rithm of [21] on each of them, we use a total of x · O((log n/ log log n)1/(r−1)) =
O(Δ1/(r−1)/ log log n) colors.

3.2 Congested Clique Algorithm

In the Congested Clique, O(log n)-bit messages can be sent between any
pair of vertices, not just the adjacent ones. It does not matter for our argument
whether the hyperedges are represented by a separate node (as in the client-server
model), or if we are given the underlying graph representation. We propose an
algorithm that partitions the hypergraph into a collection of hypergraphs that
can be represented in small space. Each of these can then be gathered at a single
node and colored separately. Recall that the bound obtained is best possible for
linear hypergraphs [21].

Theorem 3. There is a O(1)-round randomized algorithm in the Con-

gested Clique model for O((Δ/ logΔ)1/(r−1))-coloring r-uniform linear hyper-
graphs.

Proof. Apply Split(V,Δ, x) with x = Δ1/r to obtain a partition of V into
V1, V2, . . . , Vx and VBad, where each Vi is at most η-defective, η = 2Δ/xr−1 =
2Δ1/r. For each i ∈ [x], send all monochromatic edges within Vi to node i,
which then computes an O((η/ log η)1/(r−1))-coloring of Vi. Similarly, send the
edges within VBad to a single node and let it O((Δ/ logΔ)1/(r−1))-color VBad [21].
Concatenate these colorings to obtain a coloring of G using

x · O((η/ log η)1/(r−1)) + O((Δ/ logΔ)1/(r−1)) = O((Δ/ logΔ)1/(r−1))

colors. It remains to explain how to achieve this communication in O(1) rounds.
By Lemma 4 (Chernoff), each Vi contains at most 2n/x vertices, w.h.p., and

by definition each node has degree at most η (within Vi). Thus, the number of
monochromatic edges in each part is at most 2n/x · η = 2Δn/xr = 2n/r, w.h.p.
They are represented in r · 2n/r = 2n space (of O(log n)-bit words), and can be
forwarded to a single node using Lenzen routing in O(1) rounds [32].
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3.3 Simple LOCAL Algorithm

Suppose Δ = O(log n) for now, leaving the Δ ∈ Ω(log n) case for later. We
apply Split(V,Δ, x), where x = (Δ/(24 log(rΔ)))1/(r−1) to partition V into
V1, V2, . . . , Vx and VBad. We color VBad with (4rΔ)1/(r−1) colors using the deter-
ministic LLL algorithm of Theorem 1. We then color each Vi by replacing each
r-edge e of G[Vi] by an arbitrary 2-edge e′ ⊆ e and applying the Δ + 1-coloring
algorithm of [12] on each obtained (standard) graph, in parallel. Each of these
steps runs in poly(log log n) rounds. We use η + 1 = O(log(rΔ)) colors on each
Vi, for a total of x(η + 1) = O((Δ logr−2(rΔ))1/(r−1)).

When Δ ∈ Ω(log n), we reduce the problem to coloring O(log n)-degree
instance by applying Split(V,Δ, x) with x = (Δ/(6 log n))1/(r−1).

4 Improved LOCAL Algorithm

We give an improved algorithm that uses O(r2Δ1/(r−1)) colors, using different
techniques. The main component of our method is an algorithm for triangle-free
(girth 4) hypergraphs, i.e., when there are no vertices x, y, z where each pair
belongs to a distinct edge.

Theorem 4. There is an O(poly(log logn))-round randomized Local algo-
rithm to color a triangle-free hypergraph of rank r with O(Δ1/(r−1)) colors, w.h.p.
When Δ ≥ 4r−1(18 log n)(r−1)2 , the algorithm takes O(log logΔ+log∗ n) rounds.

The algorithm and the proof of the theorem are given in the next subsection.
We then give in Sect. 4.2 a reduction of the general coloring problem (of linear
hypergraphs) to the triangle-free case.

4.1 Triangle-Free Hypergraphs

We consider the following simple method GeometricTrials (Algorithm 2),
in which the nodes try random colors from geometrically decreasing palettes.
In this algorithm, all nodes initially participate in trying colors, and across
(ilast + 1) ∈ O(log logΔ) successive iterations, they progressively either get col-
ored or quit the process (joining a shattered subinstance), thereby reducing
competition for other nodes. The nodes still active in iteration i induce an hyper-
graph of maximum degree Δi, where the sequence Δ0 . . . Δilast decreases doubly
exponentially in i and Δilast+1 < Δilast is set to Δgoal = Δ1/(r−1). The quitters in
iteration i are those that both fail to color themselves and whose degree remains
above Δi+1.

By using geometrically shrinking palettes of initial size K = 4Δ1/(r−1) and
shrinking factor α = 1/2, clearly, at most O(K/(1 − α)) = O(Δ1/(r−1)) distinct
colors are used by GeometricTrials. We show that nodes left uncolored by
GeometricTrials can also be colored using O(Δ1/(r−1)) colors.

By definition, the nodes still active after the last iteration of the algorithm
induce a graph of maximum degree Δgoal = Δ1/(r−1), which can be efficiently
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O(Δgoal)-colored by an algorithm from the distributed graph coloring litera-
ture. What remains to be proved is that quitters can also be efficiently colored
with O(Δ1/(r−1)) colors, even though they might induce a hypergraph of degree
ω(Δ1/(r−1)). We resolve this by a shattering argument: quitting the process early
occurs with sufficiently low probability, and with sufficient independence between
the nodes, that early quitters form connected components of size poly(log n)
which can be handled by the deterministic LLL algorithm of Theorem 1. The
triangle-free property is crucial to the analysis of this probability: it allows us to
argue that what happens in each edge incident on a node is somewhat indepen-
dent from what happens in other incident edges, and so the degree decreases as
needed with a high (enough) probability.

Algorithm 2. GeometricTrials(Integer C, α ∈ [0, 1)) (on hypergraph G of
maximum degree Δ)

For all i ≥ 0, let Ci = C2i , Ki = αi · C · Δ1/(r−1), and ai =
∑

j<i Kj .
Let Δgoal = Δ1/(r−1). For all i ≥ 0, let Δi = max{Δgoal, (Ki/Ci)

r−1}.
for i ← 0 to ilast = max{i | Δi > Δgoal} do

Each live uncolored node (v ∈ V (i)) picks a color u.a.r. in [ai, ai+1).
Each node part of a monochromatic edge drops its temporary color.
Nodes who kept their temporary color make it permanent (join V

(i)
Good).

Remove every partially colored edge from the graph, update degrees.
Every v ∈ V (i) \ V

(i)
Good of current degree dv > Δi+1 quits the process (joins V

(i)
Quit).

Remove all edges containing a node in V
(i)
Quit.

end for

Notation. The algorithm executes a loop for ilast + 1 iterations, where ilast ∈
O(log logΔ). For any i ∈ [0, ilast], we denote by V (i) the set of uncolored nodes
trying a color in iteration i in Algorithm 2. We denote by V

(i)
Good the nodes

of V (i) that successfully color themselves in iteration i, and V
(i)
Quit the nodes

that abandon the process in iteration i. The remaining nodes form V (i+1), i.e.,
V (i+1) = V (i) \ (V (i)

Good � V
(i)
Quit).

We also consider the sets VGood =
⊔ilast

i=0 V
(i)
Good, VQuit =

⊔ilast
i=0 V

(i)
Quit, and VLow =

V \(VGood∪VQuit). VGood are all the nodes that got colored by the process, VQuit are
all the quitters, and VLow are the nodes that remained active through the whole
process and thus have had their degree reduced. We have as initial condition
V (0) = V .

Degree Reduction. First, we analyze how the degree of a node behaves when
all nodes in a hypergraph of maximum degree Δ try a color u.a.r. from a set of
size K � Δ1/(r−1), as in GeometricTrials. There are two ways for an edge e
incident on v to survive: either e itself was monochromatic, or each node of e was
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part of a monochromatic edge other than e. Note that these are not mutually
exclusive. The first type of event is analyzed when considering splitting (Sect. 3).
The following lemma analyzes the second type of event.

Lemma 8. Let C ≥ 21/(r−2) be a constant, and G = (V,E) be a triangle-free
graph of rank r and maximum degree Δ. Let each node v try a random color in
[K] = [C · Δ1/(r−1)] and uncolor itself if it is part of a monochromatic edge. Let
s ∈ [2Δ1/(r−1)/Cr−2,K] and t ≥ 2(s/C)r−1. Then w.p. at least 1−2 exp(−t/6)−
(r−1)Δ exp(−s/6), v’s degree (number of fully uncolored incident edges) becomes
at most 2t.

Proof (Proof sketch). We consider an edge e incident on v and bound the prob-
ability that each node in e other than v is part of a monochromatic edge. The
survivals of edges incident on v are not necessarily independent due to 4-cycles:
for two edges e, e′ incident on v, there might be a vertex u at distance 2 from v
that is connected to both a vertex in w ∈ e and a vertex w′ ∈ e′. We handle this
non-independence by arguing independence once the colors at distance 2 from
v have been fixed. When fixing those colors, some edges incident on a neighbor
of v might be monochromatic on the already selected (r − 1) colors. We bound
the probability that this occurs on too many edges, so as to argue that nodes in
an edge incident on v are unlikely to all pick a color that makes an edge they’re
part of monochromatic. We defer the full proof to Appendix A.1

Lemma 9. Let Δi be the maximum degree of active nodes in the i-th round of
GeometricTrials, Ki the number of colors to choose from in that round, and
Ci = Δ

1/(r−1)
i /Ki. Then, for each live node v in the i-th round of Geomet-

ricTrials:

– v gets colored w.p. at least 1 − Δi/Kr−1
i .

– Let d′
v be the degree of v after this round. For any t ≥ 4Δi/C

(r−1)2

i ,

Pr[d′
v ≤ t] ≥ 1 − 3(r − 1)Δi exp(−(t/4)1/(r−1)Ci/6).

Proof. For the first item, we use that each edge incident on v is monochromatic
w.p. 1/Kr−1

i . By union bound, v is part of no monochromatic edge w.p. at least
1−Δi/Kr−1

i , in which case it gets colored. For the second item, we apply Lemma
8 with K = Ki, C = Ci, Δ = Δi, and s = C · (t/4)1/(r−1). Note that though the
lemma may not be applied with this s when t ≥ 4Δ, the result still holds since
v’s degree is always less than Δ.

We now analyze the probability that a node quits during GeometricTri-

als.

Lemma 10. For each node v, the probability that v is in VQuit is at most

3(r − 1)Δ(log logΔ) · exp(−(Δgoal/4)1/(r−1)/6).

Proof (Proof sketch). Armed with previous technical lemmas, this proof only
consists of a union bound over all iterations, summing the probabilities that v’s
degree does not decrease sufficiently when it fails to get colored. The full proof
is deferred to Appendix A.2.
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The Full Algorithm. Our algorithm and its analysis follow naturally once
GeometricTrials has been introduced and analyzed. We first run Geomet-

ricTrials. Uncolored nodes now fall into two categories: quitters and non-
quitters. The non-quitters induce a graph of maximum degree Δgoal = Δ1/(r−1).
When Δ is a large enough poly(log n), w.h.p., there are no quitters. For smaller
Δ, w.h.p., the graph induced by quitters is shattered; more precisely, it consists
of connected components of size logO(log log log n) n. All that remains is to apply
results from the literature to color those connected components, and to color the
remaining other uncolored nodes of degree O(Δ1/(r−1)).

Algorithm 3. Color(Triangle-free hypergraph G, maximum degree Δ, rank r)
GeometricTrials(4, 1/2).
Color VQuit by the deterministic LLL algorithm of Theorem 1 (if VQuit �= ∅).
Color VLow by an algorithm for graph coloring using O(Δgoal) colors.

Theorem 4. There is an O(poly(log logn))-round randomized Local algorithm
to color a triangle-free hypergraph of rank r with O(Δ1/(r−1)) colors, w.h.p.
When Δ ≥ 4r−1(18 log n)(r−1)2 , the algorithm takes O(log logΔ+log∗ n) rounds.

Proof. Recall that Δgoal = Δ1/(r−1). After GeometricTrials, each uncolored
node is either in VQuit or VLow, and only O(Δ1/(r−1)) colors were used. We color
VQuit and VLow each with their own set of O(Δ1/(r−1)) colors, for a total number
of colors of the same order of magnitude. Note that we can color them in parallel
since they use distinct colors. We split the analysis depending on the value of
Δ, starting with Δ large (at least some poly(log n)).

When Δ ≥ 4r−1(18 log n)(r−1)2 , by Lemma 10, w.h.p., there are no nodes
in VQuit. This means that the only nodes that remain to be colored are in
VLow, so we can skip the costly application of Theorem 1 that we otherwise
use to color VQuit. The hypergraph induced by VLow has maximum degree
O(Δ1/(r−1)). We project each hyperedge e of G[VLow] to an arbitrary 2-edge
uv, {u, v} ⊆ e. The resulting graph also has maximum degree O(Δ1/(r−1)), and
we color it in O(log∗ n) rounds with Θ(Δ1/(r−1)) = Ω(logr−1 n) colors by the
algorithm for O(Δ+log1+1/ log∗ n n)-coloring from [39]. This gives the complexity
of O(log logΔ + log∗ n) rounds for large Δ.

For smaller Δ, we color VLow with the poly(log log n) algorithm of [6] for (Δ+
1)-coloring. To color the nodes of VQuit efficiently, we argue that the hypergraph
they induce is shattered, w.h.p. More precisely, we show that G[VQuit] consists
of connected components of size O(log1+2 log log Δ n) = logO(log log log n) n, w.h.p.

Let c = log logΔ > ilast. Whether a node quits GeometricTrials is deter-
mined by the random choices within distance c from v during the process, and it
occurs with probability at most 3(r−1)Δ(log logΔ) exp(−(Δgoal/4)1/(r−1)/6) =
exp(−Θ(Δ1/(r−1)2)) ≤ (rΔ)−3c by Lemma 10, for Δ larger than some sufficiently
big constant (constant degree hypergraphs can be colored with O(Δ2) = O(1) =
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O(Δ1/(r−1)) colors in O(log∗ n) by [33]). By Lemma 3, the graph induced by
VQuit has connected components of size O((rΔ)2c log n) = log(r

O(1) log log log n) n.
Theorem 1 therefore colors VQuit in poly(log log n) rounds, for a total complexity
of poly(log logn) Local rounds, and using at most O(Δ1/(r−1)) colors in total.

4.2 Reduction to the Triangle-Free Case

We now reduce the problem of coloring general linear hypergraphs to that of
coloring triangle-free ones. We partition the hypergraph into hypergraphs that
are either triangle-free or of polylogarithmic size. The former are solved by the
algorithm of the preceding section, while the latter are solved by Theorem 1.
This reduction is adapted from the work of Frieze and Mubayi [21], and modified
only slightly for a distributed context, in particular avoiding a degeneracy-based
coloring (that is known to require Ω(

√
log n)-rounds [33]).

The following two lemmas are stated existentially in [21], but the statements
below follow immediately from the proofs of their lemmas in [21]. When splitting
nodes into subsets V1, . . . , Vm, inducing subhypergraphs H1, . . . , Hm, where v
ends in Hiv , a pair of nodes x, y ∈ NH(v) is said to be covered if

– the edges S, S′ ∈ E s.t. {v, x} ⊆ S and {v, y} ⊆ S′ are both in Hiv ;
– there exists an edge S′′ ∈ E that contains both x and y but not v ({x, y} ⊆ S

and v �∈ S′′), and S′′ ∈ Hiv .

Intuitively, x, y is a covered pair of v if v, x, and y form a triangle that survived
splitting.

Lemma 11 (Lemma 5 [21]). Let H be a linear rank r hypergraph of maximum
degree Δ. Let m = 	Δ2/(3r−4) − ε
. Suppose we partition the nodes u.a.r. into
subsets V1, V2, . . . , Vm, inducing subhypergraphs H1,H2, . . . , Hm. Then, for each
i = 1, . . . , m and each v ∈ Vi,

1. v has degree more than 2Δ/mr−1 in Vi w.p. at most Δ−5.
2. The Hi neighborhood of v NHi

(v) contains more than r2Δ2/m3r−4 covered
pairs w.p. at most Δ−5.

Lemma 12 (Lemma 6 [21]). Let δ be a sufficiently small positive constant
depending on r. Let L be a linear rank r hypergraph of maximum degree at
most d. Suppose that each vertex neighborhood NL(v) contains at most dδ cov-
ered pairs. Let � = d1/(r−1)−δ. Suppose we partition the nodes u.a.r. into sub-
sets W1,W2, . . . , W�, inducing subhypergraphs L1, L2, . . . , L�. Then, for each
j = 1, . . . , � and each v ∈ Wj,

1. v has more than 2d/�r−1 neighbors in Wj is w.p. at most d−5.
2. v belongs to more than 400r2 triangles within Lj is w.p. at most d−5.

Theorem 5. There is a randomized algorithm for O(r2Δ1/(r−1))-coloring r-
uniform linear hypergraphs in poly(log logn) Local rounds, w.h.p.



Distributed Coloring of Hypergraphs 103

Proof. We reduce the problem to the case where the maximum degree is O(log n).
When Δ > log n, we apply Split(V,Δ, x) with x = (Δ/(6 log n))1/(r−1). By
Lemma 6, each of the obtained vertex sets induces a subhypergraph of max-
imum degree Δ′ ∈ O(log n), w.h.p. Applying a coloring algorithm that uses
only O(r2(Δ′)1/(r−1)) on each of them results in an overall coloring that uses
O(r2Δ1/(r−1)) colors in total, by Lemma 7. The Δ ∈ Ω(log n) degree case thus
reduces to the O(log n) degree case.

By combining Lemma 11 and Lemma 12, we reduce the problem to the
coloring of a collection of triangle-free hypergraphs. Nodes that fail the first
(second) condition of Lemma 11 are moved to the set V 1

Bad (V 2
Bad), and those

that fail the first (second) condition of Lemma 12 are moved to V 3
Bad (V 4

Bad),
respectively. By Lemma 3, each V i

Bad is shattered, inducing components of size
at most N = poly(log n). Thus, we can color each V i

Bad with (4rΔ)1/(r−1) colors
in poly(logN) = poly(log logn) rounds, by the LLL algorithm of [14], for a total
of O(Δ1/(r−1)) colors.

The rest of the nodes are partitioned into sets V1, . . . , Vm, each of which is
d = 2Δ′/mr−1-defective. Each such Vi is partitioned into W i

1, . . . , W
i
� , which are

q = 2d/�r−1-defective, where � = d1/(r−1)−δ. Crucially, each node in the subhy-
pergraph Li

j induced by each W i
j is part of at most 400r2 triangles. Consider the

underlying graph of Li
j , and focus on the subgraph M i

j consisting of the edges
(v, x), (v, y) involved in a covered pair x, y (with some node v). This M i

j has
maximum degree O(r2), by the bound on triangle participation in Li

j . We color
this graph with O(r2) colors using a poly(log log n)-round randomized algorithm
for Δ+1-coloring graphs [6,38]. Let W i,1

j , . . . , W i,c
j be the vertices of each of the

c color classes, where c ∈ O(r2). Each node that is not in any class joins one at
random. For each k ∈ [c] let Li,k

j be subhypergraph induced by W i,k
j .

Note that each Li,k
j is triangle-free (girth 4), and like Li

j has maximum degree
at most q = 2d/�r−1. We apply the algorithm of Theorem 4 to each Li,k

j in
parallel, which uses O(q1/(r−1)) = O(d1/(r−1)/�) colors. So, the total number of
colors used on each Vi is � ·c ·O(d1/(r−1)/�) = O(r2d1/(r−1)). By the same token,
the total number of colors used on all the classes V1, . . . , Vm is m·O(r2d1/(r−1)) =
m · O(r2Δ1/(r−1)/m) = O(r2Δ1/(r−1)), as desired.

5 Additional Results

We also provide two results lifting the classic O(Δ2)-coloring algorithm and
Ω(log∗ n) lower bound due to Linial to the hypergraph setting. Contrary to
our main results, these apply to general hypergraphs. We defer their proofs to
Appendix B.

Theorem 6. There is a deterministic O(log∗ n)-round Congest algorithm to
O(r · Δr/(r−1) log(rΔ))-color hypergraphs of maximum degree Δ and rank r.

Theorem 7. For any pair of constants r and c, no Local algorithm can find
a O(Δc/r) coloring of a rank r hypergraph in fewer than Ω((log∗ n)/r) rounds.
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A Missing Proofs of Main Algorithm

A.1 Proof of Lemma 8 (Degrees Decrease in GeometricTrials)

Lemma 8. Let C ≥ 21/(r−2) be a constant, and G = (V,E) be a triangle-free
graph of rank r and maximum degree Δ. Let each node v try a random color in
[K] = [C · Δ1/(r−1)] and uncolor itself if it is part of a monochromatic edge. Let
s ∈ [2Δ1/(r−1)/Cr−2,K] and t ≥ 2(s/C)r−1. Then w.p. at least 1−2 exp(−t/6)−
(r−1)Δ exp(−s/6), v’s degree (number of fully uncolored incident edges) becomes
at most 2t.

Proof. As explained in the main text, an edge e incident on a node v has two
ways of surviving this process: by being monochromatic itself, or by having each
of its nodes be part of a monochromatic edge distinct from e.

The number of monochromatic edges incident on v corresponds to its defect
in the tentative coloring, which we previously analyzed. As in the proof of Lemma
5, at most t edges survive that way, w.p. 1 − exp(−t/6).

We turn to the second type of surviving edges. Let us say an edge e incident
on v is forbidding to v if the nodes in e other than v all have the same color.
We say that a color c is forbidden to a node v if v has an incident forbidding
edge whose nodes other than v are all colored c. Let F (v) be the set of edges
forbidding to v. The second type of surviving edge occurs when each of its nodes
selects a forbidden colors. We show that |F (v)| is concentrated.

Claim. For a node v and integers x > 0, t ≥ 2dv/xr−2, Pr[|F (v)| ≥ t] ≤
exp(−t/6).

Proof (Proof of Appendix A.1). An edge e is forbidding to v ∈ e with probability
1/xr−2. Therefore, E[|F (v)|] = dv/xr−2, and t ≥ 2E[|F (v)|]. Because v’s neigh-
borhood is triangle-free, edges incident on v share no other vertex. Therefore,
whether each edge is forbidding to v is independent of whether other edges are,
and by Lemma 4 (Chernoff bound), the probability ensues.

We now bound the probability that many edges survive due to all of its nodes
picking a forbidden color.

Recall s ≥ 2Δ1/(r−1)/Cr−2. By Appendix A.1, a node u has less than s
forbidden colors w.p. 1 − exp(−s/6). Therefore, all the neighbors of v have less
than s forbidden colors w.p. 1− (r−1)Δ exp(−s/6). In the rest of the argument,
we condition on the event that nodes at distance 2 from v forbade at most
s colors to each direct neighbor of v, and fix the random choices of nodes at
distance 2 from v to a specific assignment satisfying this conditioning.

Consider an edge e incident on v with vertices v, u1, . . . , ur−1. The probability
that ui picks a color forbidden by the distance 2 neighbors of v it is adjacent to
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is at most s/K. The probability that the r − 1 ui’s do so is at most (s/K)r−1

by the independence of their choices. Therefore, the expected number of edges
that remain uncolored due to this second argument is at most Δ(s/K)r−1.

Finally, for each e incident on v let Xe be the indicator random variable of
the event that all its nodes other than v picked a color forbidden by the nodes
at distance 2 from v. Let X be the sum

∑
e�v Xe. The Xe’s are all independent

once the random choices of nodes at distance 2 are fixed. Therefore, by Lemma 4
(Chernoff bound), for t ≥ 2Δ(s/K)r−1 = 2(s/C)r−1, Pr[X ≥ t] ≤ 1−exp(−t/6).

Putting everything together, w.p. at least 1 − 2 exp(−t/6) − (r −
1)Δ exp(−s/6), each of the two sources of surviving edges contributes at most t
edges, for a total of at most 2t.

A.2 Proof of Lemma 10

Lemma 10. For each node v, the probability that v is in VQuit is at most

3(r − 1)Δ(log logΔ) · exp(−(Δgoal/4)1/(r−1)/6).

Proof. Recall the values of variables which dictate how nodes behave in Geo-

metricTrials,

– C = 4, α = 1/2,Δgoal = Δ1/(r−1),
– Ci = C2i = 42

i

,Ki = αiΔ1/(r−1),
– Δi = max{(Ki/Ci)r−1,Δgoal}, ilast = max{i | Δi > Δgoal}.

Let us analyze the probability that a live node v in the i-th iteration of
GeometricTrials decreases its degree to less than Δi+1 (or gets colored). By
Lemma 9, if Δi+1 ≥ 4Δi/C

(r−1)2

i , then v’s degree decreases to less than Δi+1

with probability

1 − 3(r − 1)Δi exp(−(Δi+1/4)1/(r−1)Ci/6).

We verify that Δi+1 ≥ 4Δi/C
(r−1)2

i indeed holds. Note that, by definition,

Δi+1 ≥ (Ki+1/Ci+1)r−1 = α(i+1)(r−1)KC−(r−1)2i+1
= Δi · (αr−1C−(r−1)2i)

= Δi · 4−(r−1)/2−(r−1)2i ≥ 4Δi/C
(r−1)2

i .

For each node active in iteration i ≤ ilast (which has therefore degree at most
Δi), by Lemma 9, the probability that its degree fails to decrease to Δi+1 or less
after each live node tries a color is at most

3(r − 1)Δie
−(Δi+1/4)1/(r−1)/6.

Summing over all the rounds, the probability that a node joins VQuit during
the ilast + 1 ≤ log logΔ loop iterations of GeometricTrials is at most

3(r − 1)
ilast∑

i=0

Δie
−(Δi+1/4)1/(r−1)/6 ≤ 3(r − 1)Δ(log logΔ)e−(Δgoal/4)

1/(r−1)/6.



106 D. Adamson et al.

B Missing Proofs for the Θ(log∗ n) Algorithm and Lower
Bound

We give two results on deterministic algorithms. Firstly, we give an O(log∗ n)
rounds algorithm for Õ

(
Δr/(r−1)

)
-coloring any r-uniform hypergraph. Secondly,

we complement this algorithm with a lower bound of Ω
(

log∗ n
r

)
on finding such

a coloring.

B.1 Finding a Õ
(
Δr/(r−1)

)
-Coloring

In this section, we give a one round algorithm for transforming a strong Õ(r2Δ2)-
coloring into a weak Õ

(
r · Δr/(r−1)

)
-coloring for an r-regular hypergraph. This

result can be viewed as an addendum to Linial’s algorithm for finding a O(Δ2)-
coloring in O(log∗ n) rounds. This reduction is performed via a combinatorial
argument extending the notion of a Δ-cover free family to an r-weak Δ-cover free
family. Note that a Õ(r2Δ2) strong coloring can be found in O(log∗ n) rounds
by using Linial’s algorithm on the underlying graph. In order to obtain such
a coloring, it is useful to introduce r-weak Δ-cover free families of sets. This
generalization of Δ-cover free families serves to relax coloring constraint to the
problem of finding a weak coloring.

Definition 4 (r-weak Δ-cover free families). Let F be a family of sets.
The family F is a r-weak Δ-cover free family if, for every set S0 ∈ F , and Δ
subfamilies Sj = {Sj,1, . . . , Sj,r−1} ⊆ F \ {S0}, each of size r − 1, the following
holds:

S0 �⊆
Δ⋃

j=1

r−1⋂

k=1

Sj,k

Note that a 2-weak Δ-cover free family is equivalent to the classical definition
of an Δ-cover free family.

Lemma 13 (Lower bound on the size of r-weak Δ-cover free families).
For three integers n,Δ, r ∈ N such that n ≥ r ≥ 2 and Δ ≥ 1, there exists an

r-weak Δ-cover free family F of size n, where each S ∈ F is a subset of a ground
set [m], m = 5	rΔr/(r−1) ln(n)
.
Proof. In the proof that follows, we use that e−s ≥ (

1 − s
r

)r for all 1 ≤ s ≤ r.
For some m, consider a random collection F = {S1, . . . , Sn} of subsets of [m]
constructed the following way: for every element x ∈ [m] and index i ∈ [n], x
belongs to Si with some fixed probability p, independently of every other pair
(x′, i′) �= (x, i). For any given element x, index i0 ∈ [n], and Δ sets of r − 1
indices {ij,1, . . . , ij,r−1} ⊆ [n]\{i0}, the probability of x being in the set Si0 but
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out of
⋃Δ

j=1

(⋂r−1
k=1 Sij,k

)
is:

Pr

⎡

⎣x ∈ Si0 \
Δ⋃

j=1

(
r−1⋂

k=1

Sij,k

)⎤

⎦ ≥ Pr[x ∈ Si0 ]

⎛

⎝1 −
Δ∑

j=1

Pr

[

x ∈
r−1⋂

k=1

Sij,k

]⎞

⎠

= p(1 − Δpr−1)

Setting p = (2Δ)−1/(r−1), this probability is at least 1
4Δ1/(r−1) . Therefore the

probability that for every x ∈ [m], x /∈ Si0 \ ⋃Δ
j=1

(⋂r−1
k=1 Sij,k

)
is no more

than
(
1 − 1

4Δ1/(r−1)

)m ≤ e−m/(4Δ1/(r−1)) ≤ n−5rΔ/4. The probability that valid

multiset of indices i0, i1,1, . . . , iΔ,(r−1) exists such that Si0 ⊆ ⋃Δ
j=1

(⋂r−1
k=1 Sij,k

)

is no more than n(r−1)Δ+1n−5rΔ/4 < 1. Therefore, an r-weak Δ-cover free family
of n sets with no such indices exists.

Theorem 6. There is a deterministic O(log∗ n)-round Congest algorithm to
O(r · Δr/(r−1) log(rΔ))-color hypergraphs of maximum degree Δ and rank r.

Proof. Let φ be a strong O(r2Δ2)-coloring of the graph, computed using Linial’s
algorithm on the underlying graph. We show that φ can be converted in to a
weak Õ

(
r · Δr/(r−1)

)
-coloring in a single round. From Lemma 13, there must

be an r-weak Δ-cover free family F of O(r2Δ2) sets from a universe of O(r ·
Δr/(r−1) log(rΔ)) elements. By indexing these sets in some universal order, each
vertex v can choose the set Sv at index φ(v). As the set is a member of F ,
following Definition 4 there must exist at least one element cv ∈ Sv, such that
for every edge e incident to v, cv /∈ ⋂

u∈e\{v}
Su. Therefore, coloring v with cv,

v can not be incident to any monochromatic edge. As computing the value of
cv only requires the color of each neighbor in the O(r2Δ2)-coloring, this can be
done in a single round from the O(r2Δ2)-strong coloring. Hence the total round
complexity of this process is O(log∗ n), dominated by the process of finding
the initial strong coloring. Further, as cv is selected from a universe of size
O(r · Δr/(r−1) log(rΔ)), the coloring of G from this process corresponds to a
weak O(r · Δr/(r−1) log(rΔ)) = Õ(r · Δr/(r−1))-coloring of G.

B.2 Lower Bounds on Finding Polynomial Colorings

We show that there exists a lower bound of Ω
(

log∗ n
r

)
for finding on finding

a poly(Δ)-coloring, by generalizing the classic lower bound due to Linial [33].
Rather than using a simple n-cycle, we construct a strongly connected n-hyper-
cycle. A strongly connected n-hyper-cycle with minimum rank r can be derived
from an n-cycle C by constructing an edge for each connected component of
size r in C. Note that the degree of a vertex in such a graph is 2(r − 1). We
provide a lower bound using this construction be reduction from the problem of
O(Δc)-coloring an n-cycle.
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Theorem 7. For any pair of constants r and c, no Local algorithm can find a
O(Δc/r) coloring of a rank r hypergraph in fewer than Ω((log∗ n)/r) rounds.

Proof. For the sake of contradiction, let A be an algorithm that can weakly color
a strongly connected n-hyper-cycle with O(Δc) colors for some pair of constants
r and c. Let TA be its complexity. Let G = (V,E) be a cycle graph with n
vertices. It is known that no algorithm can find a O(Δ2)-coloring on G in fewer
than Ω(log∗ n) rounds. We show that an algorithm for coloring G in O(TA)
rounds exists, implying the lower bound on TA.

Let G′ = (V,H) be an r-uniform hypergraph constructed from G, with edge
set H = {(v1, . . . , vr) ∈ V r | (vi, vi+1) ∈ E,∀i ∈ 1, 2, . . . , r − 1}. Note that G′

corresponds to a strongly connected n-cycle. Observe that any algorithm on G′

can be simulated on G in at most a factor of r additional rounds. Let φ be the
coloring on V after running A. Given any vertex v ∈ V , let h1, h2 ∈ H be the
pair of hyperedges incident to v such that N(v) = h1 ∪ h2. In other words, h1

and h2 are the hyperedges that include v and the two vertices at a distance of
r − 1 from v in G. As φ is a weak coloring of G′, there must exists two vertices
u1, u2 ∈ h1 × h2 such that φ(v) �∈ {φ(u1), φ(u2)}.

Let C = (V ′, E′) be a connected component in G such that ∀v, u ∈ V ′, φ(v) =
φ(u). Following the above observation, the maximum length of such a component
is 2r − 3. As the number of colors assigned by φ is at most O(rc) for some pair
of constants r and c, φ can be turned into a proper coloring of G by going
through each color class and coloring the nodes in each component in order of
decreasing ID. Therefore φ can be transformed into a proper coloring of G in at
most O(rc+1) rounds, and hence r · (TA+O(rc+1)) ∈ Ω(log∗ n), i.e. A must take
at least Ω(log∗ n) rounds, since r and c are constants.

Note that the hypergraph used for the lower bound is not linear, i.e., the theorem
does not rule out the existence of an o(log∗ n) round algorithm whose scope is
limited to linear hypergraphs.
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Abstract. Sharding is used to address the performance and scalabil-
ity issues of the blockchain protocols, which divides the overall transac-
tion processing costs among multiple clusters of nodes. Shards require
less storage capacity and communication and computation cost per node
than the existing whole blockchain networks, and they operate in par-
allel to maximize performance. However, existing sharding solutions use
locks for transaction isolation which lowers the system throughput and
may introduce deadlocks. In this paper, we propose a lockless trans-
action method for ensuring transaction isolation without using locks,
which improves the concurrency and throughput of the transactions. In
our method, transactions are split into subtransactions to enable par-
allel processing in multiple shards. We use versions for the transaction
accounts to implement consistency among the shards. We provide for-
mal proof for liveness and correctness. We also evaluate experimentally
our proposed protocol and compare the execution time and throughput
with lock-based approaches. The experiments show that the transaction
execution time is considerably shorter than the lock-based time and near
to the ideal (no-lock) execution time.

Keywords: Blockchains · Blockchain Sharding · Lockless
Transactions · Transaction Conflicts · Parallel Commits

1 Introduction

The popularity of blockchains has grown due to their numerous benefits in decen-
tralized applications. They have several special features such as fault tolerance,
transparency, non-repudiation, and immutability [25]. To maximize bandwidth
usage, every transaction is hashed with a cryptographic function and multiple
transactions are divided into blocks [9]. After that, a ledger is created by chaining
all the blocks together using a consensus mechanism to append blocks. Assuming
that nobody else can be trusted, every node is in charge of keeping its own copy
of the distributed ledger. As a result, if someone or some system attempts to
alter or restore a portion of these transactions it will be detected, which provides
assurances of data integrity and finality.

The distributed cryptocurrency blockchain system known as Bitcoin [22] is
one of the first and most well-known instances of how blockchain was originally
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designed for the reliable exchange of digital goods. A permissionless blockchain
allows anyone to join or leave the network without having to reveal their true
identity. No participant can be truly trusted in such situations. Due to the lack
of identity, a computationally intensive consensus process called proof-of-work
that is based on cryptography is required. On the other hand, in permissioned
systems the environment is more controlled and allows for more power-efficient
consensus protocols based on Byzantine agreement [1]; nevertheless, even these
blockchain protocols do not scale well due to large communication overhead.

Unfortunately, conventional blockchain applications have a fully replicated
architecture where each node stores a copy of the whole blockchain and pro-
cesses every transaction which causes scalability issues in contemporary very big
data-based applications [23]. When the number of transactions and storage nodes
increases, the blockchain system not only takes a longer time to achieve a consen-
sus among nodes but also takes more time to process the transaction; therefore, it
reduces the overall performance of the system. To mitigate the scalability issue
of the blockchain, several blockchain protocols like Elastico [20], OmniLedger
[18], RapidChain [27], and ByShard [14] has proposed to introduce sharding to
provide scalability which divides the whole replicated single blockchain system
to multiple shards and each shard processes its own transactions independently.

The blockchain nodes are divided into clusters of nodes called shards. Subsets
in each shard may contain Byzantine nodes. We presume that each shard employs
a BFT (Byzantine Fault Tolerant) consensus algorithm with authentication, such
as PBFT [7]. Existing sharding solutions such as, Elastico [20], OmniLedger
[18], and RapidChain [27] are tailored for supporting open (or permissionless)
cryptocurrency applications and are not easily generalizable to other systems.
To address system-specific specialized approaches towards sharding, Hellings et
al. [14], introduced ByShard, and combine two conventional sharded database
concepts, two-phase commit and two-phase locking for atomicity and isolation
of transactions in a Byzantine environment. However, their sharding solutions
are not optimal as the locks are expensive, and when a process locks a data set
for reading or writing, all other processes attempting to access the same data
set are blocked until the lock is released, which lowers system throughput.

In this paper, we propose a different method for ensuring transaction isolation
without using locks, which improves the transaction processing time. We propose
a novel algorithm for ensuring atomicity and isolation of the transactions in the
distributed environment.

1.1 Contributions

To our knowledge, we give the first lockless approach to blockchain sharding. We
provide the following contributions:

– We provide a lockless protocol for sharded blockchains. Our protocol is based
on multi-version concurrency control of the various shared objects (accounts)
that the transactions access. A transaction is first split into subtransactions
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that execute in parallel in multiple shards. Using object versioning, the sub-
transactions can detect whether there is a conflict with other subtransactions
that attempt to access the same shared objects concurrently. In case of a
conflict, a transaction may need to restart and attempt to commit again.

– We provide correctness proofs for the safety and liveness of our proposed
protocol. We also evaluate our protocol experimentally through simulations
and we observe that the transaction execution time is considerably faster
than the lock-based approaches and also the throughput of the transactions
is improved with an increasing number of shards.

Paper Organization: The rest of this paper is structured as follows: Sect. 2
provides previous related works. Section 3 describes the preliminaries for this
study and the sharding model. Section 4 discusses our proposed lockless shard-
ing protocol. In Sect. 5 we provide the correctness analysis. Section 6 discusses
the performance evaluation of our work, experimental setup, and experimental
results. Finally, we give our conclusions in Sect. 7.

2 Related Work

Several proposals have come forward to address the blockchain scalability issue
in the consensus layer [10,12,15–17]. Although these protocols have addressed
the scalability issues to some extent, the system still cannot maintain good per-
formance as the network size grows too large (thousand or more node partici-
pants). The sharding technique has been used to further improve the scalability
of a blockchain network. Sharding is a fundamental concept in databases which
has been recently used to improve the efficiency of blockchains [14,27].

The way that conventional big database systems achieve scalability is by
separating the whole database into shards (or partitions) [2], which increases the
efficiency of the system by dividing the workload among the shards. To ensure
ACID characteristics [11] of the database transactions, coordination is needed
among the multiple shards if the transaction access multiple shards objects.
In the distributed database system two-phase commit (2PC), and two-phase
locking (2PL) [8], are used for atomicity, concurrency control, and isolation for
the transactions. And we achieved these characteristics in our model in a different
way without using locks.

Similarly, the blockchain network can be split up into smaller committees
using the well-researched and tested technique of sharding, which also serves
to scale up databases and lower the overhead of consensus algorithms. Elas-
tico [20], OmniLedger [18], and RapidChain [27] are a few examples of sharded
blockchains. These methods are not generalizable to other applications since
they concentrate on a simple data model, that is the unspent transaction output
(UTXO) model [13]. In addition, these methods use locks for the isolation of
transactions. As in databases, a blockchain transaction must be isolated since it
interacts with the global state. In reality, it is necessary to avoid dirty, phantom,
or unrepeatable reads [3]. Additionally, transactions must comply with all of



Lockless Blockchain Sharding with Multiversion Control 115

the ACID properties [11]. Typically, two-phase locking [8] is used to accomplish
optimistic concurrency control [19], serializable snapshot isolation [6,24].

To mitigate the system-specific specialized approaches towards sharding,
Hellings et al. [14], propose ByShard. It uses a two-phase commit to ensure
the atomicity of the transaction and two-phase locking for isolation of the trans-
action in a Byzantine environment of the blockchain system. However, locking
is expensive because when a process locks a data set for reading or writing, all
other processes attempting to access the same data-set are blocked until the lock
is released, which lowers system throughput. An innovative lock-free method for
ensuring transaction isolation is presented by Hagar Meir et al. [21], In order to
construct version-based snapshot isolation, it takes advantage of the key-value
pair versioning that already exists in the database and is mostly utilized at the
validation phase of the transaction to detect the read-write [21]. However, they
are not addressing their solution in a sharding-based blockchain model.

In our solution, we are using a lockless approach to achieve transaction isola-
tion with sharding. We use multiversion concurrency control [5], as we describe
in our proposed model in Sect. 4.

3 Preliminaries and Sharding Model

Shards: We assume that the system consists of a set of N (replica) nodes, where
n = |N |. We design a sharded system as a partitioning of the N nodes into w
shards S1, S2, . . . , Sw, where N = ∪iSi and each Si ⊆ N is a subset of the nodes
such that Si ∩ Sj = ∅, for i �= j. Let ni = |Si| represent the number of replica
nodes in shard Si, and fi represent the number of Byzantine nodes in shard Si.
Similar to related work [27], to achieve Byzantine fault tolerance in each shard
we assume that ni > 3fi within each shard. Hence, we focus on the consistency
aspects, assuming there is an underlying consensus protocol in each shard.

Let O be a set of shared objects that are accessed by the transactions. Sim-
ilar to related work [14] we assume that every shard is responsible for a subset
of the shared objects (accounts) that are accessed by the transactions. Namely,
O is partitioned into subsets O1, . . . ,Ow, where Oi is the set of objects han-
dled by shard Sz. Every shard Si maintains its own local ledger (local chain)
Li and runs a local consensus algorithm to achieve this (e.g. PBFT [7]). The
shard Si processes subtransactions related to the object set Oi (see below for
the description of subtransactions). The local chains define implicitly the global
blockchain, that is, the global order of all transactions is implied by the order of
their respective subtransactions in the local chains.

Timing Assumptions: We consider a semi-synchronous setting where com-
munication delay is upper bounded by some time Δ1, which means that every
message is guaranteed to be delivered within Δ1 time. Our sharding protocol
does not require knowledge of Δ1. We assume that every transaction has a
unique ID based on its generation timestamp, hence IDs grow over time. Due to
the semi-synchronous model, since local clocks are not perfectly synchronized,
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we assume a new timestamp (generated at any node in N) will be strictly larger
than any timestamp generated c ·Δ1 time earlier (where the constant c depends
on the system). Hence, we assume that for a transaction Ti that arrives at time
t, any other transaction Tj that arrives after t+ c · Δ1 will have always a higher
ID than Ti.

For guaranteeing liveness in our protocol, we assume that each Δ2 time each
shard sends the lowest transaction ID from its transaction pool to other shards.
Here Δ2 is known to each shard (in order to periodically perform the lowest ID
transmission) but is not related to Δ1. In this way, each shard maintains the
set of lowest transaction IDs which are periodically updated with new lowest ID
information from each shard. The transaction which has the global lowest ID gets
within a bounded time high priority and is eventually added to the blockchain.
The process of propagating the lowest IDs is running in the background while
the normal execution phases take place.

Similar to previous works [14], we assume that each shard runs locally a
PBFT-style [7] consensus algorithm in every phase of our algorithm which takes
bounded time Δ3 for decisions (e.g. in [14] it is assumed that Δ3 = 30ms). Our
protocol does not need to know Δ3.

Subtransactions: We model each transaction Ti which consist of subtransac-
tions Ti,k1 , . . . , Ti,kj

, such that:

– Subtransaction Ti,kl
uses only objects in Okl

in shard Skl
. We also say that

the subtransaction Ti,kl
belongs to shard Skl

.
– The subtransactions of a transaction Ti do not depend on each other and can

be executed in parallel in any relative order.
– A subtransaction consists of two parts: (i) condition checking, where various

explicit conditions on the objects are checked, and (ii) updates on the objects.

Example 1. Consider a transaction (T1) consisting of read-write operations on
the accounts with several conditions.

T1 = “Transfer 2000 from Rock account to Asma account, if Rock has 3000
and Asma has 500 and Mark has 200”. We split this transaction into three
subtransactions, where shards r, a, and m are responsible for the respective
accounts of Rock, Asma, and Mark:

T1,r : “Check Rock has 3000”
: “Remove 2000 from Rock
account”

T1,m : “Check Mark has 200”

T1,a : “Check Asma has 500”
: “Add 2000 to Asma account”

After splitting the transaction T1 into its subtransactions we send each sub-
transaction to its respective shard associated with that account. If the conditions
are satisfied (for example in T1,r check if Rock has 3000) and the transaction is
valid (for example in T1,r Rock has indeed 2000 in the account to be removed)
then the destination shards are ready to commit the subtransactions which imply
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that T1 will commit as well. Otherwise, if any of the conditions in the subtrans-
actions is not satisfied or the subtransactions are invalid, then the corresponding
subtransactions abort, which results in T1 aborting as well. In this case, all sub-
transactions of T1 will also be forced to abort.

4 Sharding Algorithm

Our sharding protocol consists of two parts, the leader shard algorithm (Algo-
rithm 1), and the destination shard algorithm (Algorithm 2).

Every transaction has a designated leader shard, which will handle its pro-
cessing. Each leader shard has a transaction pool for all the transactions that
have it as their leader. The job of the leader shard is to pick a transaction from
the transaction pool and split it into subtransactions and send them to desti-
nation shards. The leader shard interacts with the destination shards through
a protocol with seven phases which decide whether the subtransactions they
receive are able to commit locally or not. The leader shard picks the transaction
from its transaction pool on the basis of the priority of the transactions so that
the earliest transaction (i.e. with lower ID) proceeds first. Whereas the destina-
tion shard checks each received subtransaction and if it is valid then it commits
it and appends it to its local ledger, otherwise, it aborts the subtransaction and
sends the corresponding message to its leader shard.

To achieve transaction isolation, we use multi-version concurrency control [5]
in each destination shard, which saves multiple versions of each object (account)
so that data can be safely read and modified simultaneously. When a destination
shard processes a subtransaction, it takes a snapshot of the current version of
each object that the subtransaction will access. When the subtransaction is about
to commit, it compares the latest version with the recorded snapshot version. If
these are the same then the subtransaction is eligible to commit; otherwise, the
subtransaction cannot commit. The leader shard is informed accordingly from
the destination shards. If all subtransactions are eligible to commit then the
whole transaction will commit and is removed from the leader shard pool. If
however, a subtransaction is not eligible to commit, the whole transaction will
restart and is reinserted back into its pool.

In our algorithm, each transaction whose conditional statements are satisfied
will eventually commit (as we show in the correctness proofs). Our algorithm
may attempt to commit the transaction multiple times by restarting it in case
of conflicts with other transactions. However, if the condition of a transaction
is not satisfied then the transaction is aborted and will not restart (is removed
completely from the pool). Using the object versions the algorithm guarantees
safety, as it does not allow conflicting transactions to commit concurrently. To
ensure liveness, the algorithm prioritizes earlier generated transactions.

4.1 Detailed Algorithm

We now describe the details of our protocol in Algorithms 1 and 2. Our combined
protocol consists of seven phases. As mentioned in Sect. 3, to ensure liveness,
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periodically every Δ2 time, each leader shard sends the lowest ID from its trans-
action pool to every other shard. So that in case of conflict, priority is given to
the transaction with the smallest known ID. In this way, each destination shard
maintains in T ′′

l (Algorithm 2) the lowest known ID that it received from all
leader shards. If a subtransaction realizes that it belongs to a transaction with
the smallest ID in the system then it gets the highest priority and enforces itself
to commit. This is further achieved with the help of a rollback mechanism that
we discuss below.

Now we describe each phase of our algorithm. For simplicity of presentation,
we assume that each subtransaction accesses a single object in each destina-
tion shard. However, our algorithms can be generalized for the case where each
subtransaction accesses multiple objects.

Phase 1: (Algorithm 1) the leader shard (Sk) picks a transaction with the lowest
transaction ID from its transaction pool (Pk) and splits that transaction Ti into
its subtransaction Ti,j and sends each Ti,j to corresponding destination shards
(Sj) in parallel.

Phase 2: (Algorithm 2) after receiving the subtransaction Ti,j in destination
shard (Sj) accessing an object, say Od, it takes the latest version (say Vd) of the
object Od. After that, it checks the conditions (constraints) of the subtransaction
Ti,j . If the constraints match (means subtransaction is eligible to commit) then,
it adds the Ti,j to the read set R(Od) and if Ti,j will also write to Od then it
also adds Ti,j to write set W (Od) and sends a “commit vote” to the leader shard
Sk. Otherwise, it sends a “abort vote” to the leader shard.

Phase 3: (Algorithm 1) the leader shard Sk collects the votes from all the
destination shards, and if it gets all “commit vote”, (that means constraints are
matched in all respective destination shards) then it sends the “commit” message
to the corresponding destination shards. Similarly, if it gets any “abort vote” then
it sends an “abort” message to all respective destination shards.

Phase 4: (Algorithm 2) if the destination shard receives a “commit” message
from a leader shard then, it checks the read set (R(Od)) and write set (W (Od))
of the accessing object and also checks the version of the object. If the subtrans-
action Ti,j is only reading the object Od and the latest version of the object Od

is still the same (i.e. Vd) then the shard appends this subtransaction to its local
ledger Lj and sends “committed” message to the leader. Similarly, if Ti,j is try-
ing to update object Od and the read set only contains Ti,j (i.e. (Ti,j ∈ W (Od)
and R(Od)\{Ti,j} = ∅)) and the latest version of the object Od is still same
as the previously taken version (i.e. Vd) (that means the object is not modified
by other transactions) then it does the necessary update operation and adds
the subtransaction Ti,j to its local chain and sends the “committed” message to
the leader shard. Moreover, if the transaction ID of subtransaction Ti,j is equal
to the lowest known transaction ID (T ′′

l ), that means the current subtransac-
tion Ti,j is the earliest subtransaction among all and it has a higher priority
to execute. So it appends the subtransaction Ti,j to its local chain and sends a
“committed” message to its leader shard, and also sends “force rollback” to the
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Algorithm 1: Leader Shard Sk

1 Let Pk be the pool of pending transactions in shard Sk;
// Periodically, every Δ2 time the transaction with lowest ID in Pk

is sent to every other shard
2 Let Ck be the committed transaction pool;

// Phase 1
3 Pick transaction Ti with lowest ID from Pk and remove it from Pk;
4 Split Ti into subtransactions;
5 Let S(Ti) be the set of destination shards for the subtransactions of Ti;
6 Send each subtransaction Ti,j to the corresponding destination shard Sj (in

parallel for all subtransactions of Ti);

// Phase 3
7 if “commit vote” message is received from all shards in S(Ti) then
8 Send “commit” message to all shards in S(Ti);
9 else if “abort vote” message is received from any shard in S(Ti) then

10 Send “abort” message to all shards in S(Ti);

// Phase 5
11 if “committed” message is received from all shards in S(Ti) then
12 Send “release” to all shards in S(Ti);
13 else if “restart vote” message is received from any shard in S(Ti) then
14 Send “restart” message to all shards in S(Ti);
15 else if “aborted” message is received from all shards in S(Ti) then
16 Transaction Ti is discarded;

// Phase 7
17 if “released” message is received from all shards in S(Ti) then
18 Transaction Ti has completed;
19 Add Ti to Ck;
20 else if “restarted” message is received from all shards in S(Ti) then
21 Transaction Ti is reinserted into the pool Pk to be processed again;

// Handling Force Rollback Messages
22 if “force rollback T ′

x,j” message is received and Sk is the leader shard of the
respective transaction T ′ then

23 if T ′ ∈ Ck then
24 Get subtransaction information from Ck;
25 Send respective “force rollback T ′

x,z” to all destination shards of T ′;
26 if “rollbacked T ′

x,z” message is received from all destination shards of T ′ and Sk

is the leader shard of the transaction T ′ then
27 Insert T ′ back in the pool Pk;
28 if T ′ ∈ Ck then
29 Remove T ′ from Ck;

leader of the subtransaction which is in the write set (W (Od)). Otherwise, it
sends a “restart vote”, which means there is another higher-priority transaction
accessing the object Od and not released yet. Similarly, if it receives the “abort”
message then it sends an “aborted” message to its leader shard.
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Algorithm 2: Destination Shard Sj

1 T ′′
l ← the lowest transaction ID from the IDs propagation process;

// Phase 2
2 Subtransaction Ti,j from leader shard Sk is received;
3 Suppose Ti,j accesses object Od;
4 Let R(Od) and W (Od) be a set of transactions that will respectively read or

write Od;
5 Let Vd be the latest version of object Od;
6 if constraint match then
7 Add Ti,j to R(Od);
8 if Ti,j will write to Od then
9 Add Ti,j to W (Od);

10 Send “commit vote” message to Sk;
11 else
12 Send “abort vote” message to Sk;

// Phase 4
13 if “commit” message is received from Sk then
14 if (((W (Od)\{Ti,j} = ∅) or (Ti,j ∈ W (Od) and R(Od)\{Ti,j} = ∅)) and

(the latest version of object Od is still Vd)) or (Ti,j = T ′′
l ) then

15 Append transaction Ti,j to local chain Lj ;
16 Send “committed” message to Sk;
17 if Ti,j = T ′′

l // Ti,j has the lowest ID in the system
18 then
19 For each T ′

x,j ∈ W (Od) send “force rollback” message to its
respective leader shard;

20 else
21 send “restart vote” message to Sk;
22 else if “abort” message is received from Sk then
23 Send “aborted” message to Sk;

// Phase 6
24 if “restart” message is received from Sk then
25 Remove Ti,j from R(Od) and W (Od) and from local chain Lj ;
26 Send “restarted” message to the leader Sk;
27 else if “release” message is received from Sk then
28 if Ti,j in W (Od) then
29 Create new version Vd + 1 for the object Od;
30 Remove Ti,j from R(Od) and W (Od);
31 Send “released” message to Sk;

// Handling Force Rollback Messages
32 if “force rollback T ′

x,j” message is received then
33 Remove T ′

x,j from R(Od) and W (Od);
34 Let Z be the suffix in local chain Lj starting from T ′

x,j ;
35 Remove from Lj the suffix Z and send “rollbacked T ′

x,j” message to its
leader shard;

36 For each subtransaction T ′
x,j in Z, send “force rollback T ′

x,j” message to the
leader shard of T ′

x,j ;
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Phase 5: (Algorithm 1) if it receives a “committed” message from all destination
shards (means that eligible to commit subtransactions are added to their local
chain) then it sends a “release” message to the respective destination shards to
release the subtransactions from their read set, write set and also to update the
version of the object if required. Similarly, if the leader receives any “restart vote”
message from any shards then it sends the “restart” message to the respective
destination shards because some of the shards may have appended the subtrans-
action to their local chain so that should be removed, and restart should be
consistent in all shards. Moreover, if it receives an “aborted” message from all
destination shards, then transaction Ti is discarded.

Phase 6: (Algorithm 2) if the destination shard receives a “restart” message from
the leader shard, then it removes the transaction Ti,j from R(Od) and W (Od)
and also removes Ti,j from its local chain Lk if it already added and sends
“restarted” message to the leader. Similarly, if it receives a “release” message and
Ti,j is already in W (Od) that means it updated the object Od so it creates the
new version of the object as Vd + 1. After that, it removes Ti,j from R(Od) and
W (Od) and sends a “released” message to its leader shard.

Phase 7: (Algorithm 1) if the leader shard receives a “released” message from all
destination shards that means the transaction Ti is completed, so it adds Ti to
the pool of committed transactions (Ck) so that it can get all the subtransaction
information of Ti in case of rollback. Similarly, if it receives a “restarted” message
from all destination shards, then this transaction needs to be processed again,
and is reinserted into the transaction pool Pk.

Handling Rollbacks: This part of our protocol executes only in the special
case (i.e. when the current transaction has the highest priority to execute than
the already running transaction accessing the same object). After receiving the
“force rollback” message from destination shards, the leader shard checks whether
that subtransaction belongs to the committed transaction pool (Ck) or not. If
the transaction of that subtransaction is in Ck then it gets the other subtrans-
action information from Ck otherwise it has the information about the currently
running transaction, then it sends a “force rollback” message to all respective
destination shards because it should be rollbacked in all the shards to be consis-
tent. So if the destination shard receives the “force rollback T ′

x,j” message from
the leader then it rollbacks T ′

x,j from its shards and sends “rollbacked T ′
x,j” mes-

sage to its leader. Furthermore, if there exists some depending subtransaction
T ′ on T ′

x,j accessed the version of the object added by T ′
x,j then all depending

transactions should be rollbacked and it sends “rollback T ′” to its leader shard
so this function executes recursively to rollback all the transactions which read
the version of object added by T ′. The leader shard collects the “rollbacked”
messages from all the destination shards, and after receiving all the “rollbacked”
messages from all the respective shards for the transaction T ′, it adds T ′ to its
transaction pool to be processed again and removes T ′ from the committed pool
(Ck) if T ′ is already in Ck.
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Example 2. Consider two conflicting transactions T1 and T2 consisting of read-
write operations on the accounts. We explain how our protocol handles these
transactions.

T1 = “Transfer 2000 from Rock account to Asma account, if Rock has 3000
and Asma has 500 and Mark has 200”.

T2 = “Transfer 500 from Asma account to Bob account, if Asma has 5000”.

Suppose leader shard (Sk1) handles transaction T1 and splits it into three sub-
transactions, where shards Sr, Sa, and Sm are responsible for the respective
accounts of Rock, Asma, and Mark. Similarly, the leader shard (Sk2) handles
transaction T2 and splits it into two subtransactions where shard Sa is respon-
sible for the Asma account and shard Sb is responsible for the Bob account.

T1,r : “Check Rock has 3000”
: “Remove 2000 from Rock
account”

T1,a : “Check Asma has 500”
: “Add 2000 to Asma account”

T1,m : “Check Mark has 200”

T2,a : “Check Asma has 5000”
: “Remove 500 from Asma
account”

T2,b : “Add 500 to Bob account”

Let us consider both leader shards (Sk1 and Sk2) are trying to execute their
transaction in parallel. At this condition, there are two subtransactions accessing
the same account of Asma (i.e. T1,a, T2,a) so there will be a conflict on the
respective subtransactions. So, in our algorithm, each destination shard takes
the version of every account and checks that version at the time of commit. In
case of conflicts, the transaction that updated earlier the read and write sets (R
and W ) at the destination shard will have a chance to commit.

5 Correctness Analysis

Consider a set of transactions T = {T1, T2, . . . , Tζ}. The objective is to arrange
all transactions in T in a sequence B = Ti1 , Ti2 , . . . , Tiζ

, which is agreed upon
by all non-faulty nodes in N . We also write Til

≺B Til′ for l < l′ to denote the
relative order between two transactions in the sequence B. The sharding system
does not maintain the actual B as a single blockchain (or ledger) explicitly, but
rather, the blockchain consists of a collection of local chains which if combined
they jointly give the whole blockchain B.

Each shard Sα maintains a local chain Lα of the sub-transactions Ti,α that
it receives. The subtransactions are appended in Lα according to the order that
they commit in Sα. If Ti,α ≺Lα

Tj,α, and Ti,α conflicts with Tj,α (the two
subtransactions conflict if they access the same object in Sα and one of the
two is updating the object), then we say that Ti,α causes Tj,α and we write
Ti,α →Lα

Tj,α.
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We define the local chain system as the tuple L = (L1, . . . , Lw) consisting of
local chains in shards. If Ti,α →Lα

Tj,α, we can also simply write Ti,α →L Tj,α.
The casual relation → can be extended across two local chains Lα and Lβ , α �= β,
in the following way.

– If Ti,α →Lα
Tj,α and Tj has a subtransaction Tj,β .

– If Ti has subtransactions Ti,α and Ti,β such that Ti,β →Lβ
Tj,β .

In both cases, we say that Ti,α causes Tj,β , and we write Ti,α →L Tj,β . Consider
from now on the transitive closure of the causal relation →L.

We say that the local chain system L is valid if there is no subtransaction
Ti,α such that Ti,α →L Ti,α. That is, L is a valid local chain system if there is
no cyclic (transitive) causal relationship of a subtransaction to itself.

We say that a sequence B is a valid serialization of the local chain system L
if B is a sequence of all the subtransactions which preserves the causal relation-
ship of L. Namely, if Ti,α →L Tj,β then Ti,α ≺B Tj,β . We say that a sequence
B is a blockchain serialization of L if B is a valid serialization of L, and for
each transaction Ti its subtransactions Ti,j1 , . . . , Ti,jk

appear consecutively in B
(without being interleaved by subtransactions of other transactions).

The goal is to show that our sharding protocol generates a local chain sys-
tem L that has a blockchain serialization B. We introduce the shard-coherence
property which we will use to prove the existence of B.

Definition 1 (Shard-coherence). We say that transactions Ti and Tj are
shard-coherent with respect to local chain system L if whenever two of their
subtransactions are casually related as Ti,α →L Tj,β, then for any two of their
conflicting subtransactions Ti,γ and Tj,γ it holds that Ti,γ ≺Lγ

Tj,γ . The local
chain system L is shard-coherent if every pair of transactions are shard-coherent.

The following result shows that in order to build a blockchain serialization B
from a chain system L, it suffices to prove that L is shard-coherent. (The proof
of Proposition 1 is in Appendix A.1.)

Proposition 1. If a local chain system L is shard-coherent, then L has a
blockchain serialization B.

Next, we continue to show that in our sharding protocol two transactions that
conflict in the same shard, they cannot have some of their phases interleave. (The
proof of Lemma 1 is in Appendix A.2.)

Lemma 1. If two transactions Ti and Tj conflict in a destination shard Sγ , and
their respective subtransactions are processed concurrently by Sγ so that they both
go past phase 2 in Sγ concurrently, then at least one of the two transactions will
restart or rollback.

Theorem 1 (Safety). The local chain system L produced by our protocol has
a blockchain serialization B.
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Proof. From Proposition 1, we only need to prove that L is shard-coherent.
Consider any two transactions Ti and Tj such that Ti,α →L Tj,β . Suppose

that Ti,γ and Tj,γ conflict in shard Sγ because they access at least one common
object Od and one of the two subtransactions updates Od. It suffices to show
that Ti,γ ≺Lγ

Tj,γ .
Since Ti,α →L Tj,β , from the definition of the →L relation, we have that

there is a sequence of transactions Tk1 , Tk2 , . . . , Tkz
with Tk1 = Ti, Tkz

= Tj and
Tki

→ Tki+1 , for 1 ≤ i < z, such that any pair of consecutive transactions Tkl

and Tkl+1 have respective conflicting subtransactions Tkl,δ and Tkl+1,δ on some
common shard Sδ such that Tkl,δ ≺Lδ

Tkl+1,δ.
Since Tkl,δ and Tkl+1,δ are appended in the local chain Lδ, while they both

conflict, we have from Lemma 1 that they cannot go past phase 2 concurrently
without one of them restarting or rolling back. Therefore, Tkl,δ finishes phase 6,
before Tkl+1,δ enters phase 4.

This implies that phase 5 of Tkl
(at its leader shard) finishes before phase

5 of Tkl+1 starts (at its leader shard). Therefore, by induction, we can easily
show that the end of phase 5 of Ti (at its leader shard) occurs earlier than the
beginning of phase 5 of Tj (at its leader shard).

Suppose now that Tj,γ ≺Lγ
Ti,γ . Since Ti and Tj commit in Sγ and also

conflict in Sγ by sharing the same object, then from Lemma 1, phase 6 of Tj

ends before phase 4 of Ti starts in Sγ . Therefore, phase 5 of Tj ends before
phase 5 of Ti starts (at their respective home shards). This is a contradiction.
Therefore, Ti,γ ≺Lγ

Tj,γ , as needed.

Theorem 2 (Liveness). Our protocol guarantees that every issued transaction
will eventually commit.

Proof. Consider the timing assumptions for Δ1, Δ2, and Δ3 as described in
Sect. 3. Consider a transaction Ti with ID ID(Ti) generated at time t. In the
worst case, Ti will execute when its ID is the lowest in the system, through force
rollback messages.

After c ·Δ1 time steps, every new transaction generated will have a larger ID
than ID(Ti), and hence lower precedence than Ti. It takes additional time Δ2

to propagate ID(Ti).
Let ID′

min be the smallest ID of all transactions considering all the pools of all
shards at time t. Let q be the number of transactions which at time t+Δ2+c·Δ1

have ID at least ID′
min and less than ID(Ti). In the worst case, all of these q

transactions may commit before Ti. As we have 7 phases in our protocol, for
each committed transaction, the combined upper bound for communication and
consensus delay time is 7(Δ1 +Δ3). Hence, it takes at most q · 7(Δ1 +Δ3) time
to commit the q transactions. Therefore, by time t+ q · 7(Δ1+Δ3)+Δ2+ c ·Δ1

transaction Ti will be committed in the blockchain.
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6 Performance Evaluation

We set up our experiments in a virtual machine in M1 MAC PC with a 10-core
CPU and 32-core GPU, including 32 GB RAM. We used Python programming
language for the experiments which supports multiprocessing and multithread-
ing. We virtually created multiple shards within a machine and conducted the
experiment with different numbers of shards. For the communication between
the shards, we use socket programming in Python, which enables the communi-
cation between shards by message passing. Same as previous work [14], we also
assume that each shard runs the consensus algorithm and takes 30ms (say Δ3)
for decisions.

We generate 1000 accounts randomly by using the combination of the English
alphabet letters and assigned an initial balance of 3000 to each account. More-
over, we generate 1500 transactions by randomly selecting the account from 1000
accounts. Each transaction includes the read and writes operations with some
constraints. The generated 1500 transactions are divided with respect to the
number of shards and randomly assigned to the transaction pool of each leader
shard.

We show the experimental results in three categories. Firstly, optimal (no
lock), means there is no transaction isolation; concurrent transactions can access
the accounts and update those accounts without any consideration of the data
consistency. Secondly, We used the concept of exclusive lock protocol to ensure
transaction isolation and concurrency control. This approach acquires a lock on
an object (account), at the time of accessing it and releases the lock after the
transaction completes [4]. This prevents other transactions from accessing the
same object until the lock is released, ensuring that transactions do not interfere
with each other. When a transaction acquires an exclusive lock on a data item,
no other transaction can read or modify that data item until the lock is released,
providing exclusive access to the data. In our implementation, when an object
is locked, other transactions attempting to access the same object wait until
the lock is released. This guarantees that the transaction holding the lock has
exclusive access to the data and can modify it without interference from other
transactions. Finally, we used our protocol to achieve transaction isolation and
concurrency control without using a lock, which takes a snapshot of each object
(account) and if there is conflict occurs then priority to access the object is
given to the earliest transaction and other transaction are restart and rollback
to re-execute again.

Experimental Results: In the first experiment, we evaluate the average
throughput of the transactions using 1500 generated transactions, in which each
transaction checks whether the account has sufficient balance or not before trans-
ferring from its own account to another account, and the other three constraints.
If the transaction is valid and satisfies all the conditions then the transaction is
executed by removing the balance from one account and adding that balance to
another account (i.e. two write operations). To measure the average throughput
of transactions, we initialize the start time at the beginning of the transaction
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processing and capture the final time after processing all the 1500 transactions.
The average throughput of the transaction with respect to the number of shards
is shown in Fig. 1, where we measure the average throughput of the transactions
by varying the number of shards. From the experiment, we observe that the
throughput increases with the number of shards. From Fig. 1 we can see that
the transaction throughput of our protocol is better than the lock-based protocol
and quite close to the no-lock protocol.

Fig. 1. Average transaction through-
put with the number of shards

Fig. 2. Average execution time of
a transaction with numbers of con-
straints

In the second experiment, we set up the environment with four shards and
calculate the average execution time of a transaction with respect to the number
of conditions in each transaction. We increases the constraints of the transactions
and recorded the execution of the transactions. In each experiment, we found that
the average execution time of our protocol is less than the lock-based protocol
also shown in Fig. 2. From the experimental result, we see that as the number
of conditions to execute the transaction increased, the commit process takes a
long time. As a result, in the lock-based protocol, the lock is kept for a long
period, which adds a lot of overhead and takes more time for the execution of
transactions than in our proposed protocol.

7 Conclusion

In this research work, we presented a lockless transaction scheduling protocol
for blockchain sharding. Our protocol is based on taking a snapshot version of
the various shared objects (accounts) that the transactions access in each shard.
We provide a correctness proof with the safety and liveness properties of our
protocol. We also evaluate our protocol experimentally through simulations and
we observe that the transaction execution time is considerably faster than the
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lock-based approaches and also the throughput of the transactions is improved
with an increasing number of shards.

This study still has some room for improvement. One possible extension could
be a study on efficient communication between leader shards and destination
shards. Introducing a formal performance analysis for blockchain sharding is
another interesting topic for future work, which will quantify the performance
based on parameters of the blockchain, such as the number of shards and the
sizes of the shards.

In recent literature, Schwarzmann [26] reviewed several requirements that
need to be satisfied by electronic poll book systems, such as ensuring correct-
ness, security, integrity, fault-tolerance, consistent distributed storage, etc. Our
proposed protocol can be used to address some of these issues because it not only
provides blockchain features but also offers scalability and better performance for
recording transactions. Overall, our protocol may offer many unique features for
electronic check-in poll book systems, including decentralization, immutability,
and consensus.

Acknowledgements. This paper is supported by NSF grant CNS-2131538.

A Appendix

A.1 Proof of Proposition 1

The proof of Proposition 1 follows directly from Corollary 1 and Lemma 4 given
below. In the results below consider a local chain system L = (L1, . . . , Lw) for
transactions T = {T1, T2, . . . , Tζ}.

Lemma 2. If L is a valid local chain system, then L has a valid serialization.

Proof. Consider the sequence A of subtransactions which is the concatenation
of sequences L1, L2, . . . , Lw. Suppose that A = a1, a2, . . . , aδ, where aσ = Tiσ,jσ

where Tiσ,jσ
is a subtransaction of transaction Tiσ

∈ T .
From A we incrementally build a sequence A′ which is a valid serialization of

L. Let A′
σ denote the sequence that we obtain after we appropriately insert (as

explained below) the σth element of A into A′. We prove by induction that A′
σ

is a valid serialization of the involved subtransactions of the respective induced
subsystem Lσ of L that consists of the σ subtransactions of L under consideration
(the subsystem Lσ keeps from each Li the involved subtransactions; note that
the subsystem is valid). The main claim follows when we consider σ = ζ which
gives A′ = A′

σ.
For the basis case σ = 1, and A′

1 = a1 which is trivially a valid serialization of
the single subtransaction. Suppose that we built A′

σ which is a valid serialization
of the first σ subtransactions in A, where σ < ζ.

In order to build A′
σ+1 we take aσ+1 and insert it into A′

σ, as follows. Suppose
that A′

σ = a′
1, . . . , a

′
σ. If there is no a′

i ∈ A′
σ such that aσ+1 →L a′

i, then append
aσ+1 at the end of A′

σ, to obtain A′
σ+1, which is clearly a valid serialization.
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Otherwise, let a′
i be the earliest subtransaction in A′

σ (i is the smallest index
within A′

σ) such that aσ+1 →L a′
i, and let a′

j be the latest subtransaction in A′
σ

(j is the largest index within A′
σ) such that a′

j →L aσ+1. We examine two cases:

– j < i: in this case we append aσ+1 just before a′
i (and clearly after a′

j) in A′
σ

to obtain A′
σ+1, which gives a valid serialization.

– i < j: we examine three sub-cases as follows.
• a′

i →L a′
j : this case is impossible since this would create a cycle aσ+1 →L

aσ+1 in the causal relation →L, and hence, L would not be valid, contra-
dicting the assumptions.

• a′
j →L a′

i: since a′
i ≺A′

σ
a′

j this would imply that in A′
σ is not a valid

serialization of the involved subtransactions of A, which contradicts the
induction hypothesis.

• a′
j and a′

i are not related by →L to one another: consider the subsequence
s of A′

σ from a′
i to a′

j (including a′
i and a′

j). Let s1 be the subsequence of
s that includes all a′

q such that a′
i →L a′

q; let s2 be the subsequence of s
that includes all a′

q such that a′
q →L a′

j ; let s3 be the remaining elements
of s. Note that s1 and s2 are disjoint, since otherwise a′

i →L a′
j . Next,

we move all the elements in the sequence s2 (keeping their relative order)
to be before the first element in s1. Moreover, add aσ+1 between the last
element of s2 and the first element of s1. The resulting sequence A′

σ+1 is
clearly a valid serialization of the involved subtransactions.

Lemma 3. If the local chain system L has a valid serialization, then L is
blockchain serializable.

Proof. Let A be a valid serialization of L. Suppose that A = a1, a2, . . . , aδ, where
aσ = Tiσ,jσ

and Tiσ,jσ
is a subtransaction of Tiσ

∈ T .
We will rearrange the subtransactions in A to a new sequence A′ such that

each transaction Ti has its subtransactions consecutively in A′. We will show
how to do the transformation for a single transaction, and this can repeat for
the remaining transactions.

For a transaction Ti let Ti,j1 , . . . , Ti,jq
denote its subtransactions, with respec-

tive positions as1 , . . . , asq
in A.

From the validity of A and transitivity of →L, we have that if for some
l ∈ [q], aj →L asl

, then aj ≺A asl′ , for every l′ ∈ [q]. Hence, if asl
is the earliest

subtransaction of Ti in A (i.e. sl has the smallest index among those with l ∈ [q]),
any aj that causes (through →L) any of the subtransactions of Ti must appear
in A before asl

. Therefore, we can move the subtransactions of Ti and arrange
them to appear consecutively starting at the position of asl

, so that as1 will take
the place of asl

, as2 will appear immediately after as1 , and so on, until asq
.

Let A′ be the resulting sequence after we rearrange the subtransactions of
Ti. Clearly, this transformation of A has preserved its validity and also the
subtransactions of Ti appear consecutively in A′. By repeating this process for
each remaining transaction we obtain the final A′. By induction (on the number
of transactions), it is clear that the final A′ is a blockchain serialization of L.
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From Lemmas 2 and 3 we obtain the following corollary.

Corollary 1. A valid local chain system L is blockchain serializable.

Lemma 4. If a local chain system L is shard-coherent, then L is valid.

Proof. Suppose that L is shard-coherent. Suppose for the sake of contradiction
that there is subtransaction Ti,j such that Ti,jk

→L Ti,jk
(that is, there is a cycle

in L with respect to causal relation →L).
Let p = a1, a2, . . . , a� be a transitive “relation path”, where each node in ai is

a subtransaction of some transaction in T and a1 = a� = Ti,jk
, and ai →L ai+1,

for each 1 ≤ i < �. Among all possible relation paths starting and ending to
Ti,jk

, let p be the longest (and if there are multiple paths of the same longest
length then pick one of them arbitrarily). Note that it has to be � > 2 since a
subtransaction alone by itself cannot create cyclic dependencies.

First, consider the case where each subtransaction in p is in the same shard
Sα = Sjk

as that of Ti,jk
. We consider two sub-cases:

– a1 ≺Lα
a2: let ar, 1 < r < �, have the largest index r such that a1 ≺Lα

ar.
Then clearly, ar+1 ≺Lα

ar (note that ar+1 exists since we took r < � and also
it holds � > 2). However, since ar →L ar+1, the shard-coherence property of
L is violated between ar and ar+1, a contradiction.

– a2 ≺Lα
a1: since a1 →L a2, the shard-coherence of L is violated between a1

and a2, a contradiction.

Next, consider the case where some subtransaction in p is in a different shard
than Sα. Let ar, where 1 ≤ r < � be the first subtransaction (with the smallest
index r) in p which is in a different shard, say Sβ , where α �= β.

We now show that ar+1 must also be in Sβ conflicting with ar. Suppose to
the contrary that ar+1 is not in Sβ . Since ar →L ar+1, there must be a subtrans-
action T ′ in Sβ which conflicts with ar, such that ar →Lβ

T ′ and T ′ →L ar+1.
However, this implies that p can be augmented with T ′, which is a contradiction
since p is the longest relation path. Thus, ar+1 is in Sβ . Moreover, ar+1 must
be conflicting with ar, since otherwise we would find as above some other trans-
action T ′ that conflicts with ar which could be inserted into p to increase its
length. We examine two cases:

– ar ≺Lβ
ar+1: from the cyclicity of path p we have that ar+1 →L ar (going

through a1). Hence, the shard-coherency is violated between ar and ar+1, a
contradiction.

– ar+1 ≺Lβ
ar: from p we have that ar →L ar+1. Hence, the shard-coherency

is violated between ar and ar+1, a contradiction.

A.2 Proof of Lemma 1

Proof. Suppose transactions Ti and Tj have respective subtransactions Ti,γ and
Tj,γ in Sγ . Moreover, suppose that these subtransactions conflict in Sγ by access-
ing the same object Od and at least one of two of them is updating Od.
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Without loss of generality assume that Ti,γ is updating Od. Suppose that Ti,γ

has finished executing phase 2. Hence, Ti,γ has been added to write set W (Od).
Then when Tj,γ reaches phase 4, it will observe that Ti,γ is already in W (Od)
which will force Tj,γ to restart.

On the other hand, if Tj,γ has the lowest ID then when Tj,γ will reach phase
4 it will force Ti,j to rollback. In either case, one of the two transactions will
either restart or rollback.
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Abstract. Self-adjusting networks (SANs) have the ability to adapt
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demand) embedding, i.e., the mapping of communication requests into
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is particularly beneficial when the demand has structure, which the net-
work can adapt to. Demand can be represented in the form of a demand
graph, which is defined by the set of network nodes (vertices) and the
set of pairwise communication requests (edges). Thus, adapting to the
demand can be interpreted by embedding the demand graph to the net-
work topology. This can be challenging both when the demand graph is
known in advance (offline) and when it revealed edge-by-edge (online).
The difficulty also depends on whether we aim at constructing a static
topology or a dynamic (self-adjusting) one that improves the embedding
as more parts of the demand graph are revealed. Yet very little is known
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demand graph to a ladder graph, i.e., a 2 ˆ n grid, including all possible
subgraphs of the ladder. We present an online self-adjusting network that
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1 Introduction

Traditional networks are static and demand-oblivious, i.e., designed without con-
sidering the communication demand. While this might be beneficial for all-to-
all traffic, it doesn’t take into account temporal or spatial locality features in
demand. That is, sets of nodes that temporarily cover the majority of commu-
nication requests may be placed diameter-away from each other in the network
topology. This is a relevant concern as studies on datacenter network traces have
shown that communication demand is indeed bursty and skewed [3].

Self-adjusting networks (SANs) are optimized towards the traffic they serve.
SANs can be static or dynamic, depending on whether it is possible to reconfigure
the embedding (mapping of communication requests to the network topology)
in between requests, and offline or online, depending on whether the sequence of
communication requests is known in advance or revealed piece-wise. In the online
case, we assume that the embedding can be adjusted in between requests at a
cost linear to the added and deleted edges, thus, bringing closer frequently com-
municating nodes. Online algorithms for SANs aim to reduce the sum of routing
and reconfiguration (re-embedding) costs for any communication sequence.

We can express traffic in the form of a demand graph that is defined by the
set of nodes in the network and the set of pairwise communication requests (edge
set) among them. Knowing the structure of the demand graph could allow us to
further optimize online SANs, even though the demand is still revealed online.
That is, by re-embedding the demand graph to the network we optimize the use
of network resources according to recent patterns in demand.

To the best of our knowledge, the only work on demand graph re-embeddings
to date is [2], where the network topology is a line and the demand graph is also a
line. The authors presented an algorithm that serves m “ Ω(n2) requests at cost
O(n2 log n`m) and showed that this complexity is the lower bound. The problem
is inspired by the Itinerant List Update Problem [12] (ILU). To be more precise,
the problem in [2] appears to be the restricted version of the online Dynamic
Minimum Linear Arrangement problem, which is another reformulation of ILU.

Contributions. In this work, we take the next step towards optimizing online
SANs for more general demand graphs. We restrict the network topology to
a line, but assume that the demand graph is a ladder, i.e., a 2 ˆ n grid. We
assume that before performing a request, we can re-adjust the line topology by
performing several swaps of two neighbouring nodes, paying one for each swap.
We present a 12-competitive online algorithm that embeds a ladder demand
graph to the line topology, thus, asymptotically matching the lower bound in
[2]. This algorithm can be applied to any demand graph that is a subgraph of
the ladder graph and that when all edges of the demand graph are revealed the
topology is optimal and no more adjustments are needed. We also optimally
solve the case of cycle demand graphs, which is a simple generalization of the
line demand graph, but is not a subcase of the ladder due to odd cycles. Finally,
we provide a generic algorithm for arbitrary demand graphs, given an oracle that
computes an embedding with the cost of requests bounded by the bandwidth.
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A solution for the ladder is the first step towards the k ˆ n grid demand
graph where k is an arbitrary constant. Moreover, a ladder (and a cycle) has a
constant bandwidth, i.e., a minimum value over all embeddings in a target line
topology of a maximal path between the ends of an edge (request). It can be
shown that given a demand graph G the best possible complexity per request is
the bandwidth.

Related Work. Avin et al. [2], consider a fixed line (host) network and a line
demand graph. Their online algorithm re-embeds the demand graph to the host
line topology with minimum number of swaps on the embedding. Both [1,6]
present constant-competitive online algorithms for a fixed and complete binary
tree, where nodes can swap and the demand is originating only from the source.
However, these two works do not consider a specific demand graph. Moreover,
[5] studied optimal but static and bounded-degree network topologies, when the
demand is known. Self-adjusting networks have been formally organized and
surveyed in [7]. Other existing online SAN algorithms consider different models.
The most distinct difference is our focus on online re-embedding while keeping a
fixed host graph (i.e., a line) compared to other works that focus on changing the
network topology. The latter is what, for example, SplayNet [14] is proposing,
where tree rotations change the form of the binary search tree network, without
optimizing for a specific family of demand patterns.

Online demand graph re-embedding also relates to dynamically re-allocating
network resources to follow traffic patterns. In [4], the authors consider a fixed
set of clusters of bounded size, which contain all nodes and migrate nodes online
according to the communication demand. But more broadly, [8] assumes a fixed
grid network and migrates tasks according to their communication patterns.

Online embedding of metric spaces is studied in [11]. Authors consider the
problem in which elements of some metric space are exposed one after another
and the goal is to map them into another metric space while preserving the small-
est expansion possible. There are several differences with our problem: 1) they
care about all pairs of elements, while we consider a special demand graph;
2) nodes can not be re-embedded after being placed.

Also, relevant problems, from a migration point of view, are the classic list
update problem (LU) [15], the related Itinerant List Update (ILU) problem [12],
and the Minimum Linear Arrangement (MLA) problem [10]. In contrast to those
problems, we study an online problem where requests occur between nodes.

Roadmap. Section 2 describes the model and background. Section 3 contains
the summary of our three contributions (ladder, cycle, general demand graph)
and their high-level proofs. Section 4 presents the algorithm and the analysis
for ladder demand graphs. Some technical details can be found in the technical
report [13].

2 Model and Background

Let us introduce the notation that we are going to use throughout the paper.
Let V (H) and E(H) be the sets of vertices and edges in graph H, respectively.
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Sometimes, we just use V and E if the graph H is obvious from the context. Let
dH(u, v) be the distance between u and v in graph H.

Let N be the network topology and σ be a sequence of pairwise com-
munication requests between nodes in N . Let the demand graph G be the
graph built over the nodes in N and the pairs of nodes that appear in σ, i.e.
G “ (V (N), {σi “ (si, di) |σi P σ}). We assume that the demand graph is of a
certain type and our overall goal will be to embed the demand graph G in the
actual network topology N at a minimum cost. This is non-trivial as requests are
selected from G by an online adversary and G is not known in advance. In the
following, we formalize demand graph embedding and topology reconfiguration.

A configuration (or an embedding) of G (the demand graph) in a graph N
(the host network) is a bijection of V (G) to V (N); CGÑN denotes the set of all
such configurations. A configuration c P CGÑN is said to serve a communication
request (u, v) P E(G) at the cost dN (c(u), c(v)). A finite communication sequence
σ “ (σ1, . . . , σm) is served by a sequence of configurations c0, c1, . . . , cm P CGÑN .
The cost of serving σ is the sum of serving each σi in ci plus the reconfiguration
cost between subsequent configurations ci and ci`1. The reconfiguration cost
between ci and ci`1 is the number of migrations necessary to change from ci to
ci`1; a migration swaps the images of two neighbouring nodes u and v under c
in N . Moreover, Ei “ {σ1, . . . , σi} denotes the first i requests of σ interpreted
as a set of edges on V . We present algorithms for an online self-adjusting linear
network: a network whose topology forms a 1-dimensional grid, i.e., a line.

Definition 1 (Working Model). Let G be the demand graph, n be the number
of vertices in G, N “ ({1, . . . , n}, {(1, 2), (2, 3), . . . , (n ´ 1, n)} be a line (or list)
graph Ln (host network), c be a configuration from CGÑN , and σ be a sequence
of communication requests. The cost of serving σi “ (u, v) P σ is given by
|c(u) ´ c(v)|, i.e., the distance between u and v in N . Migrations can occur
before serving a request and can only occur between nodes configured on adjacent
vertices in N .

In the following we introduce notions relevant to our new results.

Definition 2 (Bandwidth). Given a graph G, the Bandwidth of an embedding
c P CGÑLn

is equal to the maximum over all edges (u, v) P E of |c(u)´c(v)|, i.e.,
the distance between u and v on Ln. Bandwidth(G) is the minimum bandwidth
over all embeddings from CGÑLn

.

Remark 1. The Bandwidth computation of an arbitrary graph is an NP-hard
problem [9].

To save the space, we typically omit the proofs of lemmas and theorems in
this paper and put them in [13, Appendix C]. Here we define the 2 ˆ n grid or
ladder graph for which we get the main results of our paper.

Definition 3. A graph Laddern “ (V,E) is represented as follows.
The vertices V are the nodes of the grid 2 ˆ n—{(1, 1), (1, 2), . . . , (1, n),
(2, 1), (2, 2), . . . , (2, n)}. There is an edge between vertices (x1, y1) and (x2, y2)
iff |x1 ´ x2| ` |y1 ´ y2| “ 1.
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Lemma 1. Bandwidth(Laddern) “ 2.

Proof. The bandwidth is greater than 1, because
there are nodes of degree three. The bandwidth
of 2 can be achieved via the “level-by-level” enu-
meration as shown on the figure. Fig. 1. Optimal ladder

numeration.

Lemma 2. For each subgraph S of a graph G, Bandwidth(S) ď Bandwidth(G).

2.1 Background

Let us overview the previous results from [2]. In that work, both the demand
and the host graph (network topology) were the line Ln on n vertices. It was
shown that there exists an algorithm that performs O(n2 log n) migrations in
total, while serving the requests themselves in O(1). By that, if the number of
requests is Ω(n2 log n) then each request has O(1) amortized cost.

Theorem 1 (Avin et al. [2]). Consider a linear network Ln and a linear
demand graph. There is an algorithm such that the total time spent on migrations
is O(n2 log n), while each request is performed in O(1) omitting the migrations.

We give an overview of this algorithm. At each moment in time, we know
some subgraph of the line demand graph. For each new communication request,
there are two cases: 1) the edge from the demand graph is already known—
then, we do nothing; 2) the new edge is revealed. In the second case, this edge
connects two connected components. We just move the smaller component on
the line network closer to the larger component. The move of each node in one
reconfiguration does not exceed n. Since, the total number of reconfigurations
in which the node participates does not exceed log n, we have O(n2 log n) upper
bound on the algorithm. From [2], Ω(n2 log n) is also the lower bound on the total
cost. Thus, the algorithm is asymptotically optimal in the terms of complexity.

Corollary 1. If |σ| “ Ω(n2 log n) the amortized service cost per request is O(1).

The algorithms are not obliged to perform migrations at all, but the sum of
costs for Θ(n2) requests can be lower-bounded with Ω(n2 log n).

Theorem 2 (Lower bound, Avin et al. [2]). For every online algorithm ON
there is a sequence of requests σON of length Θ(n2) with the demand graph being
a line, such that cost(ON(σON )) “ Ω(n2 log n).

That implies Ω(log n) optimality (or competitive) factor since any offline
algorithm knowing the whole request sequence σ in advance can simply recon-
figure the network to match the (line) demand graph by paying Θ(n2) in the
worst case.
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3 Summary of Contributions

In this work we present self-adjusting networks with a line topology for a demand
graph that is either a cycle, or a 2 ˆ n grid (ladder), or an arbitrary graph. We
study offline and online algorithms on how to best embed the demand graph on
the line, such that the total cost is minimized. The online case is more challeng-
ing, as the demand graph is revealed edge-by-edge and the embedding changes,
with a cost. The result for the cycle follows from [2] almost directly. However, the
result for the ladder is non-trivial and requires new techniques; it is not simple
to reconfigure a subgraph on a 2 ˆ n grid after revealing a new edge in order to
get O(n2 log n) cost of modifications in total. We give an overview of each case
below.

3.1 Cycle Demand Graph

We start with the following observation. Let Cn be a cycle graph on n vertices,
i.e., E(Cn) “ {(1, 2), . . . , (n´1, n), (n, 1)}. Then, Bandwidth(Cn) “ 2. We give a
brief description of how the algorithm works. We start with the same algorithm
as for the line (Sect. 2.1): while the number of revealed edges is not more than
n ´ 1, we can emulate the algorithm for the line. When the last edge appears
we restructure the whole embedding in order to get bandwidth 2, which is the
cycle bandwidth. For the last-step restructuring using swaps, we pay no more
than O(n2). This cost is less than the total time spent on the reconstruction
Ω(n2 log n).

Theorem 3. Suppose the demand graph is Cn. There is an algorithm such that
the total cost spent on the migrations is O(n2 log n) and each request is performed
in O(1). In particular, if the number of requests is Ω(n2 log n) each request has
O(1) amortized cost.

The full proof appears in [13, Appendix A]

Remark 2. The lower bound with Ω(n2 log n) that was presented for a line
demand graph still holds in the case of a cycle, since the cycle contains the line
as the subgraph. Thus, our algorithm is optimal.

3.2 Ladder Demand Graph

Now, we state the main result of the paper—the algorithm for the case when
the demand graph is a ladder.

Theorem 4. Suppose a demand graph is a ladder. There is an algorithm such
that the total cost spent on the migrations is O(n2 log n) and each request is
performed in O(1). In particular, if the number of requests is Ω(n2 log n) each
request has O(1) amortized cost.
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We provide a brief description of the algorithm. We say that a ladder has n
levels from left to right: i.e., the nodes (1, y) and (2, y) are on the same level y (see
Fig. 1). On a high-level, we use the same algorithmic approach as in Theorem 1
for the line demand graph. The main difference is that instead of embedding
the demand graph right away in the line network, at first, we “quasi-embed”
the graph in the 2n-ladder graph, which then we embed in the line. By “quasi-
embedding” we mean a relaxation of the embedding defined earlier: at most
three vertices of the demand graph are mapped to each level of the ladder.

Suppose for a moment that we have a dynamic algorithm that quasi-embeds
the graph in the 2n-ladder. Given this quasi-embedding we can then embed the
2n-ladder in the line Ln. We sequentially go through from level 1 to level 2n of
our ladder and map (at most three) vertices from the level to the line in some
order (see Theorem 1). Such a transformation from the ladder to the line costs
only a constant factor in bandwidth.

We explain briefly how to design a dynamic quasi-embedding algorithm with
the desired complexity. At first, we present a static quasi-embedding algorithm,
i.e., we are given a subgraph of the ladder and we need to quasi-embed it. This
algorithm consists of three parts: embed a tree, embed a cycle, embed everything
together. To embed a tree we find a special path in it, named trunk. We embed
this trunk from left to right: one vertex per level. All the subgraphs connected to
trunk are pretty simple and can be easily quasi-embedded in parallel to the trunk
(see Fig. 2). To embed a cycle we just have to decide which orientation it should
have. To simplify the algorithm we embed only the cycles of length at least 6,
omitting the cycles of length 4. This decision introduces just the multiplicative
constant of the cost. Finally, we embed the whole graph: we construct its cycle-
tree decomposition and embed cycles and trees one by one from left to right.

Now, we give a high-level description of our dynamic algorithm. We maintain
the invariant that all the components are quasi-embedded. When an already
served request (edge) appears, we do nothing. The complication comes from a
newly revealed edge-request. There are two cases. The first one is when the edge
connects nodes in the same component—thus, there is a cycle. We redo only the
part of the quasi-embedding of the component around the new cycle; the rest of
the component remains. In the second case, the edge connects two components.
We move the smaller component to the bigger one as in Theorem 1. The bigger
component does not move and we redo the quasi-embedding of the smaller one.

Fig. 2. Quasi-correct embedding of a tree

Now, we briefly calcu-
late the complexity of the
dynamic algorithm. For the
requests of the first case, if the
nodes are on the cycle for the
first time (this event happens
only once for each node), we pay O(n) for it. Otherwise, there are already nodes
in the cycle. In this case we make sure to re-embed the existing cycle in a way that
all the nodes are moved for a O(1) distance. As for the neighboring nodes, it can
be shown that each node is moved only once as a part of the cycle neighborhood,
so we also bound this movement with O(n) cost. This gives us O(n2) complexity
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in total—each node is moved by at most O(n). For the requests of the second
case, we always move the smaller component and, thus, we pay O(n2 log n) in
total: each node can be moved by O(n) at most O(log n) times, i.e., any node
can be at most log n times in the “smaller” component. Our algorithm matches
the lower bound, since the ladder contains Ln as a subgraph.

3.3 General Graph

We finish the list of contributions with a general result; the case where the
demand graph is an arbitrary graph G. The full proofs are available in [13,
Appendix D].

Theorem 5. Suppose we are given a (demand) graph G and an algorithm B,
that for any subgraph S of G outputs an embedding c P CSÑL|V (G)| with bandwidth
less than or equal to λ · Bandwidth(G) for some λ. Then, for any sequence of
requests σ with a demand graph G there is an algorithm that serves σ with a
total cost of O(|E(G)| · |V (G)|2 ` λ · Bandwidth(G) · |σ|). In particular, if the
number of requests is Ω(|E(G)| · |V (G)|2) each request has O(λ ·Bandwidth(G))
amortized cost.

Here we give a brief description of the algorithm. Suppose that the current
configuration ci is the embedding of the current demand graph Gi in L|V (G)|
after i requests. Now, we need to serve a new request in λ · Bandwidth(Gi) ď
λ · Bandwidth(G). If the corresponding edge already exists in the demand
graph, we simply serve the request without the reconfiguration. Now, sup-
pose the request reveals a new edge and we get the demand graph Gi`1.
Using the algorithm B we get the configuration (embedding) ci`1 that has
λ · Bandwidth(Gi`1) ď λ · Bandwidth(G). Please note that we do not put any
constraints on the algorithm B: typically this problem is NP-complete. To serve
the request fast, we should rebuild the configuration ci into the configuration
ci`1. By using the swap operations on the line we can get from ci to ci`1 in
O(|V (G)|2) operations: each vertex moves by at most V (G). After the reconfig-
uration we can serve the request with the desired cost.

A new edge appears at most |E(G)| times while the reconfiguration costs
|V (G)|2. Each request is served in λ · Bandwidth(G). Thus, the total cost of
requests σ is O(|E(G)| · |V (G)|2 ` λ · Bandwidth(G) · |σ|).
Lemma 3. Given a demand graph G. For each online algorithm ON there is a
request sequence σON such that ON serves each request from σON for a cost of
at least Bandwidth(G).

4 Embedding a Ladder Demand Graph

We present our algorithms for embedding a demand graph that is a subgraph of
the ladder graph (2 ˆ n-grid) on the line. We first present the offline case, where
the demand graph is known in advance (Sect. 4.1). Then we present the dynamic
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case, where requests are revealed online, revealing also the demand graph and
thus possibly changing the current embedding (Sect. 4.2). Finally, we discuss the
cost of the dynamic case in Sect. 4.3.

Though our final goal is to embed a demand graph into the line, we will first
focus on how to embed a partially-known demand graph into LadderN , where
N is large enough to make the embedding possible, i.e., no more than 2n. When
we have such an embedding one might construct an embedding from LadderN

into Linen, simply composing it with a level by level (see the proof of Lemma
1) embedding of LadderN to Line2N and then by omitting empty images we get
Linen. Such a mapping of LadderN to Line2N enlarges the bandwidth for at
most a factor of 2, but significantly simplifies the construction of our embedding.

Definition 4. A ladder graph l consists of two line-graphs on n vertices l1 and
l2 with additional edges between the lines: {(l1[i], l2[i]) | i P [n]}, where lj [i] is
the i-th node of the line-graph lj. We call the set of two vertices, {l1[i], l2[i]},
the i-th level of the ladder and denote it as levelLaddern(i) or just level(i) if it
is clear from the context. We refer to l1[i] and l2[i] as level(i)[1] and level(i)[2],
respectively. We say that levelxvy “ i for v P V (Laddern) if v P levelLaddern(i).
We refer to l1 and l2 as the sides of the ladder.

Definition 5. A correct embedding of a graph A into a graph B is an injective
mapping ϕ : V (A) Ñ V (B) that preserves edges, i.e.{

∀u, v P V (A) with u ‰ v ñ ϕ(u) ‰ ϕ(v)
(u, v) P E(A) ñ (ϕ(u), ϕ(v)) P E(B)

4.1 Static Quasi-embedding

We start with one of the basic algorithms—how to quasi-embed any graph that
can be embedded in Laddern onto LadderN with large N . We present a tree
and cycle embedding and then we show how to combine them in an embedding
of a general component (by first doing a cycle-tree decomposition). The whole
algorithm is presented in [13, Appendix B.1].

Tree Embedding. In this case, our task is to embed a tree on a ladder graph.
We start with some definitions and basic lemmas.

Definition 6. Consider some correct embedding ϕ of a tree T into Laddern.
Let r “ arg max

vPV (T )
levelxϕ(v)y and l “ arg min

vPV (T )
levelxϕ(v)y be the “rightmost”

and “leftmost” nodes of the embedding, respectively. The trunk of T is a path in
T connecting l and r. The trunk of a tree T for the embedding ϕ is denoted with
trunkϕ(T ).

Definition 7. Let T be a tree and ϕ be its correct embedding into Laddern. The
level i of Laddern is called occupied if there is a vertex v P V (T ) on that level,
i.e., ϕ(v) P levelLaddern(i).
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Statement 1. For every occupied level i there is v P trunkϕ(T ) such that v P
level(i).

Proof. By the definition of the trunk, an image goes from the minimal occupied
level to the maximal. It cannot skip a level since the trunk is connected and the
correct embedding preserves connectivity.

The trunk of a tree in an embedding is a useful concept to define since the
following holds for it. The proofs for the lemmas in this section appear in [13,
Appendix C].

Lemma 4. Let T be a tree correctly embedded into Laddern by some embedding
ϕ. Then, all the connected components in T z trunkϕ(T ) are line-graphs.

Lemma 5. For the tree T and for each node v of degree three (except for maxi-
mum two of them) we can verify in polynomial time if for any correct embedding
ϕ, trunkϕ(T ) passes through v or not.

Support nodes are the nodes of two types: either a node of degree three with-
out neighbours of degree three or a node that is located on some path between
two nodes with degree three. The path through passing through all support nodes
is called trunk core. We denote this path for a tree T as trunkCore(T ). Intu-
itively, the trunk core consists of vertices that lie on a trunk of any embedding.
It can be proven that the support nodes appear in the trunk of every correct
embedding (proof appears in [13]).

Definition 8. Let T be a tree. All the connected components in
T z trunkCore(T ) are called simple-graphs of tree T .

Lemma 6. The simple-graphs of a tree T are line-graphs.

Definition 9. The edge between a simple-graph and
the trunk core is called a leg. The end of a leg in the
simple-graph is called a head of the simple-graph.
The end of a leg in the trunk core is called a foot
of the simple-graph. If you remove the head of a
simple-graph and it falls apart into two connected
components, such simple-graph is called two-handed
and those parts are called its hands. Otherwise, the
graph is called one-handed, and the sole remaining
component is called a hand. If there are no nodes
in the simple-graph but just a head it is called zero-
handed. We refer to Fig. 3.

Fig. 3. Hands, Legs, and
Trunk core.

Definition 10. A simple-graph connected to some end node of the trunk core is
called exit-graph. A simple-graph connected to an inner node of the trunk core
is called inner-graph.

Please note that the next definition is about a much larger ladder graph,
LadderN , rather than Laddern. Here, N is equal to 2n to make sure that we
have enough space to embed.
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Definition 11. An embedding ϕ : V (G) Ñ V (LadderN ) of a graph G into
LadderN is called quasi-correct if:

– (u, v) P E(G) ñ (ϕ(u), ϕ(v)) P E(LadderN ), i.e., images of adjacent vertices
in G are adjacent in the ladder.

– There are no more than three nodes mapped into each level of LadderN , i.e.,
the two ladder nodes on each level are the images of no more than three nodes.

We can think of a quasi-correct embedding as an embedding into levels of
the ladder with no more than three nodes embedded to the same level. Then, we
can compose this embedding with an embedding of a ladder into the line which
is the enumeration level by level. More formally if a node u is embedded to level
i and a node v is embedded to level j and i ă j then the resulting number of u
on the line is smaller than the number of v, but if two nodes are embedded to
the same level, we give no guarantee.

Lemma 7. Any graph mapped into the ladder graph by the quasi-correct embed-
ding described above can be mapped to the line level by level with the property
that any pair of adjacent nodes are embedded at the distance of at most five.

Assume, we are given a tree T that can be embedded into Laddern. Further-
more, there are two special nodes in the tree: one is marked as R (right) and
another one is marked as L (left). It is known that there exists a correct embed-
ding of T into Laddern with R being the rightmost node, meaning no node is
embedded more to the right or to the same level, and L being the leftmost node.

We now describe how to obtain a quasi-correct embedding of T in LadderN

with R being the rightmost node and L being the leftmost one while L is mapped
to ImageL—some node of the LadderN . Moreover, our embedding obeys the
following invariant.

Invariant 1 (Septum invariant). For each inner simple-graph, its foot and
its head are embedded to the same level and no other node is embedded to that
level.

Fig. 4. Example of a quasi-correct embed-
ding

We embed a path between L and
R simply horizontally and then we
orient line-graphs connected to it in
a way that they do not violate our
desired invariant. It can be shown
that it is always possible if T can
be embedded in Laddern. The pseu-
docode is in [13, Appendix, Algorithm
1].

Suppose now that not all infor-
mation, such as R, L, and ImageL,
is provided. We explain how we can
embed a tree T . We first get the trunk
core of the given tree. This can be
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done by following the definition. Now the idea would be to first embed the
trunk core and its inner line-graphs using a tree embedding presented earlier
with R and L to be the ends of the trunk core. Then, we embed exit-graphs
strictly horizontally “away” from the trunk core. That means, that the hands of
exit-graphs that are connected to the right of the trunk core are embedded to
the right, and the hands of those exit-graphs that are connected to the left of the
trunk core are embedded to the left. An example of the quasi-correct embedding
is shown in Fig. 4.

If a tree does not have a trunk core, then its structure is quite simple (in
particular it has no more than two nodes of degree three). Such a tree can be
embedded without conflicts. The pseudocode appears in [13, Appendix, Algo-
rithm 2].

Cycle Embedding. Now, we show how to embed a cycle into LadderN . First,
we give some important definitions and lemmas.

Definition 12. A maximal cycle C of a graph G is a cycle in G that cannot be
enlarged, i.e., there is no other cycle C ′ in G such that V (C) Ĺ V (C ′).

Definition 13. Consider a graph G and a maximal
cycle C of G. A whisker W of C is a line inside G
such that: 1) V (W ) ‰ H and V (W ) X V (C) “ H.
2) There exists only one edge between the cycle and
the whisker (w, c) for w P V (W ) and c P V (C).
Such c is called a foot of W . The nodes of W are
enumerated starting from w. 3) W is maximal, i.e.,
there is no W ′ in G such that W ′ satisfies previous
properties and V (W ) Ĺ V (W ′). We refer to Fig. 5.

Fig. 5. Cycle and its
Whiskers.

Definition 14. Suppose we have a graph G that can be correctly embedded into
Laddern by ϕ and a cycle C in G. Whiskers W1 and W2 of C are called adjacent
(or neighboring) for the embedding ϕ if ∀i ď min(|V (W1)|, |V (W2)|) (ϕ(W1[i]),
ϕ(W2[i])) P E(Laddern).

Lemma 8. Suppose we have a graph G that can be correctly embedded into
Laddern and there exists a maximal cycle C in G with at least 6 vertices with
two neighbouring whiskers W1 and W2 of C, i.e., (foot(W1), foot(W2)) P E(G).
Then, W1 and W2 are adjacent in any correct embedding of G into LadderN .

Definition 15. Assume, we have a graph G and a
maximal cycle C of length at least 6. The frame for
C is a subgraph of G induced by vertices of C and
{W1[i],W2[i] | i ď min(|V (W1)|, |V (W2)|)} for each
pair of adjacent whiskers W1 and W2. Adding all the
edges {(W1[i],W2[i]) | i ď min(|V (W1)|, |V (W2)|)}
for each pair of adjacent whiskers W1 and W2

makes a frame completed. We refer to Fig. 6.

Fig. 6. Cycle, its frame,
and edges (dashed) to
make the frame completed
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Given a cycle C of length at least six and its special nodes L,R P V (C), we
construct a correct embedding of C into LadderN with levelxLy ď levelxuy ď
levelxRy for all u in V (C), while L is mapped into the node ImageL.

We first check if it is possible to satisfy the given constraints of placing the
L node to the left and a R node to the right. If it is indeed possible, we place
L to the desired place ImageL and then we choose an orientation (clockwise or
counterclockwise) following which we could embed the rest of the nodes, keeping
in mind that R must stay on the rightmost level. The pseudocode appears in
[13, Appendix, Algorithm 3].

Now, suppose that not all the information, such as R, L, and ImageL,
is provided. We reduce this problem to the case when the missing variables
are known. This subtlety might occur since there are inner edges in the
cycle. In this case, we choose missing L/R more precisely in order to embed
an inner edge vertically. For more intuition, please see Figs. 7a and 7b. A
dashed line denotes an inner edge. The pseudocode appears in [13, Appendix,
Algorithm 4].

Fig. 7. Cycle embeddings.

Embedding a Connected Component of the Demand Graph. Combining
the previous results, we can now explain how to embed in LadderN a connected
component S that can be embedded in Laddern.

Definition 16. By the cycle-tree decomposition of a graph G we mean a set of
maximal cycles {C1, . . . Cn} of G and a set of trees {T1, . . . , Tm} of G such that

–
⋃

iP[n]
V (Ci) ∪ ⋃

iP[m]

V (Ti) “ V (G)

– V (Ci) X V (Cj) “ H ∀i ‰ j
– V (Ti) X V (Tj) “ H ∀i ‰ j
– V (Ti) X V (Cj) “ H ∀i P [m], j P [n]
– ∀i ‰ j ∀u P V (Ti) ∀v P V (Tj) (u, v) R E(G)

We start with an algorithm on how to make a cycle-tree decomposition of S
assuming no incomplete frames. To obtain a cycle-tree decomposition of a graph:
1) we find a maximal cycle; 2) we split the graph into two parts by logically
removing the cycle; 3) we proceed recursively on those parts, and, finally, 4) we
combine the results together maintaining the correct order between cycle and
two parts (first, the result for one part, then the cycle, and then the result for
the second part). Since we care about the order of the parts, we say that it is
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a cycle-tree decomposition chain. The decomposition pseudocode appears in [13,
Appendix, Algorithm 5].

We describe how to obtain a quasi-correct embedding of S. We preprocess S:
1) we remove one edge from cycles of size four; 2) we complete incomplete frames
with vertical edges. Then, we embed parts of S from the cycle-tree decomposi-
tion chain one by one in the relevant order using the corresponding algorithm
(either for a cycle or for a tree embedding) making sure parts are glued together
correctly. The pseudocode appears in [13, Appendix, Algorithm 6].

4.2 Online Quasi-embedding

In the previous subsection, we presented an algorithm on how to quasi-embed
a static graph. Now, we will explain how to operate when the requests are
revealed in an online manner. The full version of the algorithm is presented
in [13, Appendix B.2].

There are two cases: a known edge is requested or a new edge is revealed. In
the first case the algorithm does nothing since we already know how to quasi-
correctly embed the current graph and, thus, we already can embed into the line
network with constant bandwidth. Thus, further, we consider only the second
case.

We describe how one should change the embedding of the graph after the
processing of a request in an online scenario. At each moment some edges of the
demand graph Laddern are already revealed, forming connected components.
After an edge reveal we should reconfigure the target line topology. For that,
instead of line reconfiguration we reconfigure our embedding onto LadderN that
is then embedded to the line level by level and introduces a constant factor. So,
we can consider the reconfiguration only of LadderN and forget about the target
line topology at all. When doing the reconfiguration of an embedding we want
to maintain the following invariants:

1. The embedding of any connected component is quasi-correct.
2. For each tree in the cycle-tree decomposition its embedding respects Septum

Invariant 1.
3. There are no maximal cycles of length 4.
4. Each cycle frame is completed with all “vertical” edges even if they are not

yet revealed.
5. There are no conflicts with cycle nodes, i.e., each cycle node is the only node

mapped to its image in the embedding to LadderN .

For each newly revealed edge there are two cases: either it connects two nodes
from one connected component or not. We are going to discuss both of them.

Edge in One Component. The pseudocode appears in [13, Appendix, Algo-
rithm 8]. If the new edge is already known or it forms a maximal cycle of length
four, we simply ignore it. Otherwise, it forms a cycle of length at least six,
since two connected nodes are already in one component. We then perform the
following steps:
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1. Get the completed frame of a (possibly) new cycle.
2. Logically “extract” it from the component and embed maintaining the orien-

tation (not twisting the core that was already embedded in some way).
3. Attach two components appeared after an extraction back into the graph,

maintaining their relative order.

Edge Between Two Components. The pseudocode appears in [13,
Appendix, Algorithm 9]. In order to obtain an amortization in the cost, we always
“move” the smaller component to the bigger one. Thus, the main question here
is how to glue a component to the existing embedding of another component.
The idea is to consider several cases of where the smaller component will be
connected to the bigger one. There are three possibilities:

1. It connects to a cycle node. In this case, there are again two possibilities.
Either it “points away” from the bigger component meaning that the cycle to
which we connect is the one of the ends in the cycle-tree decomposition of the
bigger component. Here, we just simply embed it to the end of the cycle-tree
decomposition while possibly rotating a cycle at the end.

Or, the smaller component should be placed somewhere between two cycles
in the cycle-tree decomposition. Here, it can be shown that this small graph
should be a line-graph, and we can simply add it as a whisker, forming a
larger frame.

2. It connects to a trunk core node of a tree in the cycle-tree decomposition.
It can be shown that in this case the smaller component again must be a
line-graph. Thus, our only goal is to orient it and possibly two of its inner
simple-graphs neighbours to maintain the Septum Invariant 1 for the corre-
sponding tree from the decomposition.

3. It connects to an exit graph node of an end tree of the cycle-tree decomposition.
In this case, we straightforwardly apply a static embedding algorithm of this
tree and the smaller component from scratch. Please, note that only the exit
graphs of the end tree will be moved since the trunk core and its inner graphs
will remain.
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4.3 Complexity of the Online Embedding

Now, we calculate the cost of our online algorithm (a more detailed discussion
on the cost of the algorithm appears in [13, Appendix C.5]): how many swaps
we should do and how much we should pay for the routing requests. Recall that
we first apply the reconfiguration and, then, the routing request.

We start with considering the routing requests. Their cost is O(1) since they
lie pretty close on the target line network, i.e., by no more than 12 nodes apart.
This bound holds because the nodes are quasi-correctly embedded on LadderN ,
two adjacent nodes at G are located not more than four levels apart (in the worst
case, when we remove an edge of a cycle with length four) where each level of
the quasi-correct embedding has at most three images of nodes of G. Thus, on
the target line, if we enumerate level by level, the difference between any two
adjacent nodes of G is at most 12.

Then, we consider the reconfiguration. We count the total cost of each case
of the online algorithm before all the edges are revealed.

In the first case, we add an edge in one component. By that, either a new
frame is created or some frame was enlarged. In both cases, only the nodes, that
appear on some frame for the first time, are moved. Since, a node can be moved
only once to be mapped to a frame and it is swapped at most N “ O(n) times
to move to any position, the total cost of this type of reconfiguration is at most
O(n2). Also, there are several adjustments that could be done: 1) the “old” frame
can rotate by one node, and 2) possibly, we should flip the first inner-graphs of
two components connected to the frame. In the first modification, each node at
the frame can only be “rotated” once, thus, paying O(n) cost in total. In the
second modification, inner-graph can change orientation at most once in order to
satisfy the Septum invariant (Invariant 1), thus, paying O(n2) cost in total—each
node can move by at most N “ O(n).

In the second case, we add an edge in between two components. At first,
we calculate the time spent on the move of the small component to the bigger
one: each node is moved at most O(log n) times since the size of the component
always grows at least two times, the number of swaps of a vertex is at most
N “ O(n) to move to any place, thus, the total cost is O(n2 log n). Secondly,
there are two more modification types: 1) a rotation of a cycle, and 2) some
simple-graphs can be reoriented. The cycle can be rotated only once, thus, we
should pay at most O(n) there. At the same time, each simple-graph can be
reoriented at most once to satisfy the Septum invariant (Invariant 1), thus, the
total cost is O(n2) for that type of a reconfiguration.

To summarize, the total cost of requests σ is O(n2 log n) for the whole recon-
figuration plus O(|σ|) per requests. This matches the lower bound that was
obtained for the line demand graph. The same result holds for any demand
graph that is the subgraph of the ladder of size n.

Theorem 6. The online algorithm for embedding the ladder demand graph of
size n on the line has total cost O(n2 log n`|σ|) for a sequence of communication
requests σ.
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5 Conclusion

We presented methods for statically or dynamically re-embedding a ladder
demand graph (or a subgraph of it) on a line, both in the offline and online
case. As side results, we also presented how to embed a cycle demand graph
and a meta-algorithm for a general demand graph. Our algorithms for the cycle
and the ladder cases match the lower bounds. Our work is a first step towards
a tight bound on dynamically re-embedding more generic demand graphs, such
as arbitrary k ˆ n grids.
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Abstract. We investigate autonomous mobile robots in the Euclidean
plane. A robot has a function called target function to decide the desti-
nation from the robots’ positions, and operates in Look-Compute-Move
cycles, i.e., identifies the robots’ positions, computes the destination by
the target function, and then moves there. Robots can have different
target functions. Let Φ and Π be a set of target functions and a prob-
lem, respectively. If the robots whose target functions are chosen from Φ
always solve Π, we say that Φ is compatible with respect to Π. Suppose
that Φ is compatible with respect to Π. Then two swarms controlled
by (possibly different) target functions in Φ can merge to form a larger
swarm, and a broken robot can be replaced with another robot with any
target function in Φ, keeping the correctness of solving Π. We investi-
gate the convergence, the gathering, and some fault tolerant convergence
problems, assuming crash failures, from the view point of compatibility.

Keywords: Autonomous mobile robot · Compatibility ·
Convergence · Crash fault · Gathering

1 Introduction

Over the last three decades, swarms of autonomous mobile robots have obtained
much attention in a variety of contexts. Among them is understanding solvable
problems by a swarm consisting of many simple and identical robots in a dis-
tributed manner, which has been constantly attracting researchers in distributed
computing society [1–3,5,6,8–20].

Many of the works mentioned above adopt the following robot model. The
robots look identical and indistinguishable. Each robot is represented by a point
that moves in the Euclidean plane. It lacks identifier and communication devices,

Due to the space limitation, we omit most of the proofs and some contributions. The
full version of the paper [4] contains them.
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and operates in Look-Compute-Move cycles. When a robot starts a cycle, it iden-
tifies the multiset of the robots’ positions in its local x-y coordinate system such
that it is right-handed, and its origin is always the position of the robot, com-
putes the destination point using a target function1 based only on the multiset
identified, and then moves towards the target position. If each cycle starts at a
time t and finishes, reaching the target position, before (not including) t + 1,
for some integer t, the scheduler is said to be semi-synchronous (SSYNC). If
cycles can start and end any time (even on the way to the target point), it is
asynchronous (ASYNC).

This paper investigates several convergence problems, e.g., [2,8–10,13,14,16,
18]. The simplest convergence problem requires the robots to converge to a single
point. For the SSYNC model, the problem is solvable for robots with unlimited
visibility [18], and is also solvable for robots with limited visibility [2].

Under the ASYNC model, it is solvable by a target function called CoG,
which always outputs the center of gravity of the robots’ positions [8]. In [8],
the authors also showed that CoG correctly works under the sudden-stop model,
under which the movement of a robot towards the center of gravity might stop on
the way after traversing at least some fixed distance. This implies that the robots
can correctly converge to a point, even when they are controlled by different
target functions as long as they always move robots towards the current center
of gravity over distance at least some fixed constant. This idea is extended in [10]:
The authors proposed the δ-inner property2 of target functions, and showed that
the robot system converges to a point if all robots take δ-inner target functions,
provided δ ∈ (0, 1/2]. Finally [16] gives a convergence algorithm for robots with
limited visibility under the ASYNC model.

Consider a problem Π and a set of target functions Φ. If the robots whose
target functions are chosen from Φ always solve Π, we say that Φ is compatible
with respect to Π. For example, every (non-empty) set of (1/3)-inner functions
is compatible with respect to the convergence problem [10].

If a singleton {φ} is compatible with respect to Π, we abuse to say that target
function φ is an algorithm3 for Π. If a set Φ of target functions is compatible with
respect to Π, every target function φ ∈ Φ is an algorithm for Π. (The converse
is not always true.) Thus there is an algorithm for Π, if and only if there is a
compatible set Φ with respect to Π. We say that a problem Π is solvable, if there
is a compatible set Φ with respect to Π, meaning that there is an algorithm for
Π.

1 Roughly, a target function is a function from (R2)n to R2, where R is the set of real
numbers and n is the number of robots, i.e., given a snapshot in (R2)n, it returns a
destination point in R2. Later, we define a target function a bit more carefully.

2 Let P , D, and o be the multiset of robots’ positions, the axes aligned minimum box
containing P , and its center, respectively. Define δ ∗ D = {(1 − 2δ)x + 2δo : x ∈ D}.
A function φ is δ-inner, if φ(P ) is included in δ ∗ D for any P .

3 Here, we abuse term “algorithm,” since an algorithm must have a finite description.
A target function may not. To compensate the abuse, we insist on giving a finite
procedure when we show the existence of a target function.
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We would like to find a large compatible set Φ with respect to Π. That Π has
a large compatible set with respect to Π implies that Π has many algorithms.
The difficulty of problems might be compared by the sizes of their compatible
sets. A problem Π with a large compatible set Φ seems to have some practical
merits. Two swarms both of which are controlled by target functions in Φ (which
may be produced by different makers) can merge to form a larger swarm, keeping
the correctness of solving Π. When a robot breaks down, we can safely replace
it with another robot, as long as it is controlled by a target function in Φ.

Fault Tolerant Convergence Problems. This paper investigates three fault-
tolerant convergence problems, besides the convergence and the gathering prob-
lems. We consider only crash faults: A faulty robot can stop functioning at any
time, becoming permanently inactive. A faulty robot may not cause a malfunc-
tion, forever. We cannot distinguish such a robot from non-faulty ones. Let n
and f(≤ n − 1) be the number of robots and the number of faulty robots.

The fault-tolerant (n, f)-convergence problem (FC(f)) is the problem to find
an algorithm which ensures that, as long as at most f robots are faulty, all non-
faulty robots converge to a single point. The fault-tolerant (n, f)-convergence
problem to f points (FC(f)-PO) is the problem to find an algorithm which
ensures that, as long as at most f robots are faulty, all robots (including faulty
ones) converge to at most f points. All non-faulty robots need not converge to
the same point. If f faulty robots have crashed at different positions, each non-
faulty robot must converge to one of the faulty robots. The fault-tolerant (n,
f)-convergence problem to a convex f-gon (FC(f)-CP) is the problem to find an
algorithm which ensures that, as long as at most f robots are faulty, the convex
hull of the positions of all robots (including faulty ones) converges to a convex
h-gon CH for some h ≤ f , in such a way that, for each vertex of CH, there is a
robot that converges to the vertex.

Since an algorithm for FC(1)-PO solves FC(1), the former is not easier than
the latter. (Note that for f ≥ 2, an algorithm for FC(f)-PO may not solve
FC(f).) Since an algorithm for FC(f)-PO solves FC(f)-CP, again the former is
not easier than the latter. In [8], the authors showed that, for all f ≤ n − 2,
CoG is an algorithm for FC(f) under the ASYNC model. As far as we know,
FC(f)-PO and FC(f)-CP have not been investigated so far.

Gathering Problem. The gathering problem requires the robots to gather in
the exactly the same location. For SSYNC, the gathering problem is not solvable
if n = 2. If n > 2, it is solvable, provided that all robots initially occupy distinct
positions [18]. For ASYNC, the same results hold [7]. The gathering problem
has been investigated under a variety of assumptions [1,5,7,11–14].

Contributions. Let R be the set of real numbers. Formally, a target function
φ is a function from (R2)n to R2 ∪ {⊥} for all n ≥ 1 such that φ(P ) = ⊥ if and
only if (0, 0) �∈ P . Here, ⊥ is a special symbol to denote that (0, 0) �∈ P . Suppose
that a robot r identifies a multiset P of n points, which are the positions of the
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robots in its local x-y coordinate system Z, in Look phase. Then (0, 0) ∈ P .4

Using its target function φ, r computes the target point x = φ(P ) in Compute
phase. Then it moves to x (�= ⊥) in Z in Move phase.

Let the convex hull and the center of gravity of P be CH(P ) and g(P ),
respectively. For any 0 ≤ d, let d ∗ CH(P ) = {dx + (1 − d)g(P ) : x ∈ CH(P )}.
The scale α(φ) of a target function φ is defined by

α(φ) = sup
P∈(R2)n

α(φ, P ),

where α(φ, P ) is the smallest d satisfying φ(P ) ∈ d ∗ (CH(P )).5 Then the scale
of a set Φ of target functions is defined by

α(Φ) = sup
φ∈Φ

α(φ).

The only target function φ satisfying α(φ) = 0 is CoG. Thus the set Φ of
target functions satisfying α(Φ) = 0 is a singleton {CoG}. The idea of scale is
similar to that of the δ-inner property in [10], and more directly embodies the
idea behind the δ-inner target function.

Our contributions are summarized in Table 1. For example, the entry of Con-
vergence and α(φ) = 0 is A. Thus {CoG} is compatible with respect to the
convergence problem, or CoG is an algorithm for the convergence problem, as
[8] shows. Not only the case α(φ) = 0, but also the case 0 < α(Φ) < 1, every Φ
is compatible with respect to the convergence problem.

Organization. After introducing the robot model in Sect. 2, we investigate the
convergence problem in Sect. 3. In Sect. 4, we discuss the compatibilities of two
convergence problems FC(1) and FC(1)-PO. Sections 5 and 6 respectively inves-
tigate the compatibilities of FC(f) and FC(f)-CP for f ≥ 2. Section 7 first
shows that a target function φ is an algorithm for FC(f)-PO for f ≥ 2, only if
α(φ) ≥ 1. We then present an algorithm ψ(n,2) for FC(2)-PO. Section 8 investi-
gates the gathering problem to show the difference between this and the conver-
gence problems. We conclude the paper in Sect. 9.

2 The Model

Consider a robot system R consisting of n robots r1, r2, . . . , rn. Each robot ri

has its own unit of length, and a local compass defining an local x-y coordinate
system Zi, which is assumed to be right-handed and self-centric, i.e., its origin
(0, 0) is always the position of ri. We also assume that ri has the strong mul-
tiplicity detection capability, i.e., it can count the number of robots resides at
a point. Given a target function φi, each robot ri ∈ R repeatedly executes a
Look-Compute-Move cycle:
4 That (0, 0) �∈ P means an error of eye sensor, which we assume will not occur, in

this paper.
5 For the sake of completeness, we assume that α(φ, P ) = 0 when φ(P ) = ⊥.
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Table 1. The compatibility of a set Φ of target functions with respect to a problem Π,
taking its scale α(Φ) as a parameter. Each entry contains the status A, E, N, or ? of the
compatibility of Φ with respect to Π (and the theorem/corollary/observation/citation
number establishing the result in parentheses). Letter ‘A’ means that every Φ such
that α(Φ) is in the range is compatible with respect to Π. Letter ‘N’ means that any
Φ such that α(Φ) is in the range is not compatible with respect to Π, which indicates
the absence of an algorithm. Letter ‘E’ means that some Φ is compatible, while some
other is not, which indicates the existence of an algorithm. Letter ‘?’ means that the
answer is unknown.

problem Π scale α(Φ)

α(Φ) = 0 0 < α(Φ) < 1 α(Φ) = 1

Convergence A (Theorem 1 [8]) A (Theorem 2) E (Theorem 3)

FC(1) A ( [8]) A (Cor. 1) E (Theorem 5)

FC(1)-PO A (Theorem 4) A (Theorem 4) E (Theorem 5)

FC(f) (f ≥ 2) A (Theorem 6 [8]) E (Theorem 7) E (Corollary 2)

FC(f)-CP (f ≥ 2) A (Theorem 8) A (Theorem 8) E (Trivial)

FC(2)-PO N (Theorem 9) N (Theorem 9) E (Theorem 10)

FC(f)-PO (f ≥ 3) N (Theorem 9) N (Theorem 9) ?

Gathering N (Theorem 12) N (Theorem 12) E (Theorem 11 [18])

Look: Robot ri identifies the multiset P of the robots’ positions (including the
one of ri) in Zi. Since ri has the strong multiplicity detection capability, it
can identify P not only distinct positions of P .

Compute: Robot ri computes xi = φi(P ). (We do not mind even if φi is not
computable. We simply assume that φi(P ) is given by an oracle.)

Move: Robot ri moves to xi. We assume that ri always reaches xi before this
Move phase ends.

We assume a discrete time 0, 1, . . .. At each time t ≥ 0, the scheduler activates
some unpredictable subset (that may be none or all) of robots. Then activated
robots execute a cycle which starts at t and ends before (not including) t + 1
(unless it has crashed), i.e., the scheduler is semi-synchronous (SSYNC). Let Z0

be the global x-y coordinate system, which is right-handed and is not accessible
by any robot ri. The coordinate transformation from Zi to Z0 is denoted by γi.
We use Z0 and γi just for the purpose of explanation.

The position of robot ri at time t in Z0 is denoted by xt(ri). Then Pt =
{xt(ri) : 1 ≤ i ≤ n} is a multiset representing the positions of all robots at time
t, and is called the configuration at t.

Given an initial configuration P0, an assignment A of a target function φi

to each robot ri, and an SSYNC activation schedule, the execution of R is a
sequence E : P0, P1, . . . , Pt, . . . of configurations starting from P0. Here, for all
ri and t ≥ 0, if ri is not activated at t, xt+1(ri) = xt(ri). Otherwise, if it is
activated, ri identifies Q

(i)
t = γ−1

i (Pt) in Zi, computes y = φi(Q
(i)
t ), and moves
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to y in Zi.6 Then xt+1(ri) = γi(y). We assume that the scheduler is fair: It
activates every robot infinitely many times. Throughout the paper, we regard
the scheduler as an adversary.

We introduce several notations. Let P ∈ (R2)n. The distinct points of P is
denoted by P . Then |P | (resp. |P |) denotes the number of points (resp. the
number of distinct points) in P . Let CH(P ) be the convex hull of P . We
sometimes denote CH(P ) by a sequence of vertices of CH(P ) appearing on
the boundary counter-clockwise. The center of gravity g(P ) of P is defined
by g(P ) =

∑
x∈P x/n. For two points x and y in R2, dist(x,y) denotes the

Euclidean distance between x and y. For a set B(⊆ R2) of points and a point
a ∈ R2, dist(a, B) = minx∈B dist(a,x). Finally, let P = {P ∈ (R2)n : (0, 0) ∈
P, n ≥ 1}. We regard P as the domain of target functions.

3 Convergence Problem

We investigate the convergence problem, provided that all robots are non-faulty.
For any 0 ≤ α ≤ 1, consider a target function CoGα defined by CoGα(P ) = (1−
α)g(P ), for any P ∈ P. The scale of CoGα is α, and CoG0 = CoG. The following
theorem holds, since CoG works correctly under the sudden-stop model.

Theorem 1 ([8]). For any 0 ≤ α < 1, let Φα = {CoGα}. Then Φα is compatible
with respect to the convergence problem, or equivalently, CoGα is an algorithm
for the convergence problem.

We extend Theorem 1 to have the following theorem.

Theorem 2. Let Φ be a set of target functions such that 0 ≤ α(Φ) < 1. Then Φ
is compatible with respect to the convergence problem.

Proof (Sketch). Let φi ∈ Φ be the target function taken by robot ri for i =
1, 2, . . . , n. Let α(φi) = αi and α = max1≤i≤n αi. Then α ≤ α(Φ) < 1. Consider
any execution E : P0, P1, . . . starting from any initial configuration P0. We show
that Pt converges to a point.

Suppose that Pt = {x,x, . . . ,x} at some time t, i.e., |Pt| = 1. Since gt =
g(Pt) = x, Pt+1 = Pt. Thus convergence has already been achieved. We assume
without loss of generality that |Pt| ≥ 2 for all t ≥ 0.

Let At ⊆ R be the set of robots activated at time t. If xt(r) = gt for all
r ∈ At, Pt+1 = Pt holds. However, there is a robot r such that xt(r) �= gt since
|Pt| ≥ 2, and r is eventually activated by the fairness of scheduler. Thus, without
loss of generality, we assume that there is a robot r ∈ At such that xt(r) �= gt,
and that Pt+1 �= Pt holds for all t ≥ 0.

We denote CH(Pt) by CHt. Since α < 1, CHt+1 ⊆ CHt, which implies that
CHt converges to a convex k-gon CH (including a point and a line segment) for
some positive integer k. We show that CH is a point, i.e., k = 1.

6 Since (0, 0) ∈ Q
(i)
t by definition, y �= ⊥.



Compatibility of Convergence Algorithms for Autonomous Mobile Robots 155

Let p0,p1, . . . ,pk−1 be the vertices of CH aligned counter-clockwise on the
boundary. To derive a contradiction, we assume that k ≥ 2. For any pair
(i, j) (0 ≤ i < j ≤ k − 1), let L(i,j) = dist(pi,pj), and L = min0≤i<j≤k−1 L(i,j).
Since CHt converges to CH, for any 0 < ε 
 (1−α)L/n, there is a time instant
t0 such that, for all t ≥ t0, CH ⊆ CHt ⊆ Nε(CH). For any vertex p of CH,
dist(p, α ∗ CHt) > (1 − α)(L/n − ε) − ε � ε, since dist(p, gt) > L/n − ε.

Suppose that a robot r is activated at some time t ≥ t0. Then xt+1(r) ∈
α ∗ CHt, which implies that xt+1(r) �∈ Nε(p), for any vertex p of CH. If r is
reactivated at some time t′ > t for the first time after t, since CHt′ ⊆ CHt and
xt′+1(r) ∈ α ∗ CHt′ , xt′+1(r) �∈ Nε(p), for any vertex p of CH. Therefore, for
any t′ > t and any vertex p of CH, xt′(r) �∈ Nε(p).

On the other hand, all robots will be activated infinitely many times after
time t, by the fairness of scheduler. It is a contradiction to the assumption that
CHt converges to CH, since there is a time instant t′ > t such that for any robot
r and any vertex p of CH, xt′(r) �∈ Nε(p) holds. �

Let Φ and Φ′ be two sets of target functions. If α(Φ) < 1 and α(Φ′) < 1,
Φ,Φ′, and Φ ∪ Φ′ are all compatible with respect to the convergence problem by
Theorem 2. However, the following claim does not hold:

If both of Φ and Φ′ are compatible with respect to the convergence problem,
so is Φ ∪ Φ′.

To observe this fact, examine two target functions φT and φS . For a config-
uration P , define a condition Ψ as follows:

Ψ : |P | = 7, (0, 0) ∈ P , P = T ∪ S, T is an equilateral triangle, S is a square, T
and S have the same side length, and T and S do not overlap.

[Target function φT ]

1. If P satisfies Ψ :
(a) If (0, 0) ∈ T , φT (P ) is the middle point on the line segment connecting

(0, 0) and g(T ).
(b) If (0, 0) ∈ S, φT (P ) = g(P ).

2. If P does not satisfy Ψ : φT (P ) = g(P ).

[Target function φS]

1. If P satisfies Ψ :
(a) If (0, 0) ∈ S, φS(P ) is the middle point on the line segment connecting

(0, 0) and g(S).
(b) If (0, 0) ∈ T , φS(P ) = g(P ).

2. If P does not satisfy Ψ : φS(P ) = g(P ).

Recall that g(P ), g(T ), and g(S) are the centers of gravity of P , T , and S,
respectively, and that when a robot identifies P in Look phase, (0, 0) always in
P , which corresponds to its current position.

Let us observe that α(φT ) = 1. Since φT (P ) ∈ CH(P ) for all P , α(φT ) ≤ 1.
To see that α(φT ) ≥ 1, consider any number 0 < a < 1. It is easy to construct a
P satisfying Ψ such that dist((0,0),g(T ))

dist((0,0)),g(P )) < a, which implies that α(φT ) > 1 − a.
Thus α(φT ) = 1 by the definition of α. By the same argument, α(φS) = 1.
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Theorem 3. Both ΦT = {φT } and ΦS = {φS} are compatible with respect to
the convergence problem, but Φ = ΦT ∪ ΦS is not.

4 Convergence When at Most One Robot Crashes

We investigate the fault-tolerant (n, 1)-convergence problem (FC(1)) and the
fault-tolerant (n, 1)-convergence problem to a point (FC(1)-PO). There is an
algorithm for FC(1) [8], but FC(1)-PO is not easier than FC(1). We have the
following theorem, which implies the existence of an algorithm for FC(1)-PO.

Theorem 4. Let Φ be a set of target functions such that 0 ≤ α(Φ) < 1. Then Φ
is compatible with respect to FC(1)-PO.

Corollary 1. Let Φ be a set of target functions such that 0 ≤ α(Φ) < 1. Then
Φ is compatible with respect to FC(1).

Next we reconsider the target functions φT and φS .

Theorem 5. Both ΦT = {φT } and ΦS = {φS} are compatible with respect to
FC(1)-PO. However, Φ = ΦT ∪ ΦS is not. Recall that α(ΦT ) = α(ΦS) = α(Φ) =
1.

5 FC(f) for f ≥ 2

We go on the fault tolerant (n, f)-convergence problem (FC(f)) for f ≥ 2. Since
CoG is an algorithm for FC(f) [8], the next theorem holds.

Theorem 6 ([8]). Suppose that f ≤ n − 1. The set Φ0 = {CoG} is compatible
with respect to FC(f), or equivalently, a set Φ of target functions is compatible
with respect to FC(f), if α(Φ) = 0.

Corollary 1 states that every set Φ of target functions such that 0 ≤ α(Φ) < 1
is compatible with respect to FC(1). In contrast, for any 2 ≤ f ≤ n − 1 and
0 < α < 1, there is a set Φ of two target functions such that (1) α(Φ) = α, (2)
each target function in Φ is compatible with respect to FC(f), but (3) Φ is not
compatible with respect to FC(f). We use target functions ξ(α,n) and ξ′

(α,n). Let
� = �n−2

2 � and �′ = �n−2
2 �. Thus � + �′ = n − 2. For a configuration P , define a

condition Ψ+ by a conjunction of two conditions (i) and (ii).

Ψ+:
(i) P = {p1,p2, . . . ,pn} ⊆ p1pn, where p1,p�+1,p�+2,p�+3 are distinct and

aligned on p1pn in this order, p1 = p2 = · · · = p�, i.e., the multiplicity of
p1 is �, p�+3 = p�+4 = · · · = pn, i.e., the multiplicity of p�+3 is �′.

(ii) Let L = dist(p1,pn). Then dist(p1,p�+1) = 1
2L. If n is even,

dist(p�+1,p�+2) = αn
2(α+n−1)L; otherwise, if it is odd, dist(p�+1,p�+2) =

(2α−1)n+(1−α)
2(α(n+1)−1) L.
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[Target function ξ(α,n)]

1. If P satisfies Ψ+, ξ(α,n)(P ) is
(a) p�+2, if p�+1 = (0, 0),
(b) (0, 0), if p�+2 = (0, 0), and
(c) g(P ), otherwise.

2. If P does not satisfy Ψ+, ξ(α,n)(P ) = g(P ).

[Target function ξ′
(α,n)]

1. If P satisfies Ψ+, ξ′
(α,n)(P ) is

(a) (0, 0), if p�+1 = (0, 0),
(b) αp1 + (1 − α)g(P ), if p�+2 = (0, 0), and
(c) g(P ), otherwise.

2. If P does not satisfy Ψ+, ξ′
(α,n)(P ) = g(P ).

Theorem 7. For any 2 ≤ f ≤ n−1 and 0 < α < 1, (1) α(ξ(α,n)) = α(ξ′
(α,n)) =

α, (2) both of Φ = {ξ(α,n)} and Φ′ = {ξ′
(α,n)} are compatible with respect to

FC(f), but (3) Φ ∪ Φ′ is not.

Before closing this section, we examine the case α = 1.

Corollary 2. For any 2 ≤ f ≤ n − 1, there are two target functions ξ(1,n)

and ξ′
(1,n) such that (1) α(ξ(1,n)) = α(ξ′

(1,n)) = 1, (2) both of Φ = {ξ(1,n)} and
Φ′ = {ξ′

(1,n)} are compatible with respect to FC(f), but (3) Φ ∪ Φ′ is not.

6 FC(f)-CP for f ≥ 2

We next investigate the fault tolerant (n, f)-convergence problem to a convex
f -gon (FC(f)-CP). FC(1)-CP is FC(1)-PO. FC(f)-CP seems to be substantially
easier than FC(f) (and FC(f)-PO), since the convergence of CHt to a convex f -
gon does not always mean the convergence of Pt. We have the following theorem.

Theorem 8. Let Φ be any set of target functions such that 0 ≤ α(Φ) < 1. Then
Φ is compatible with respect to FC(f)-CP for any 2 ≤ f ≤ n − 1.

Let Φ and Φ′ be any sets of target functions such that α(Φ) < 1 and α(Φ′) < 1
hold. Then all of Φ,Φ′, and Φ ∪ Φ′ are compatible with respect to FC(f)-CP for
all 2 ≤ f ≤ n − 1, since α(Φ ∪ Φ′) < 1, by Theorem 8. However, we cannot
extend this observation to include the case α = 1. Consider the following two
target functions τ and τ ′ for three robots.

[Target function τ ]

1. If P = {p1,p2,p3} is a triangle such that ∠p1 < ∠p2 < ∠p3, where ∠pi is
the angle of vertex pi of the triangle, τ(P ) is
(a) g(P ) if p1 = (0, 0), and
(b) p1, otherwise.
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2. Otherwise, τ(P ) = g(P ).

[Target function τ ′]

1. If P = {p1,p2,p3} is a triangle such that ∠p1 < ∠p2 < ∠p3, where ∠pi is
the angle of vertex pi of the triangle, then τ ′(P ) = p1.

2. Otherwise, τ ′(P ) = g(P ).

Let Φ = {τ} and Φ′ = {τ ′}. Then α(Φ) = α(Φ′) = 1. Sets Φ is compatible
with respect to the fault tolerant (3, 2)-convergence problem to a line segment,
but Φ is not.

7 FC(f)-PO for f ≥ 2

This section investigates the fault tolerant (n, f)-convergence problem to f
points (FC(f)-PO) for f ≥ 2. At a glance, FC(f)-PO looks to have properties
similar to FC(f), and readers might consider that the former would be easier
than the latter, since in the former, the non-faulty robots are not requested to
converge to a point. On the contrary, we shall see that FC(f)-PO is a formidable
problem even if f = 2.

7.1 Compatibility

We show a difference between FC(f) and FC(f)-PO for f ≥ 2.

Theorem 9. Let f ≥ 2. Any target function φ is not an algorithm for FC(f)-
PO, if 0 ≤ α(φ) < 1, or equivalently, Φ is not compatible with respect to FC(f)-
PO, if 0 ≤ α(Φ) < 1.

Recall that Φ = {ξ(α,n)} (or Φ′ = {ξ′
(α,n)}) is compatible with respect to

FC(f) for all 2 ≤ f ≤ n − 1 and 0 ≤ α < 1 by Theorem 7. Since α(Φ) = α, by
Theorem 9, we have:

Corollary 3. Neither Φ nor Φ′ is compatible with respect to FC(f)-PO, for all
f ≥ 2 and 0 ≤ α < 1.

7.2 Algorithm for FC(2)-PO

In Sect. 7.1, we showed that, for any f ≥ 2, there is no FC(f)-PO algorithm
whose scale is less than 1. It is a clear difference between FC(f)-PO and FC(f),
which is solved, e.g., by CoGα for any 0 ≤ α < 1. This section proposes an
algorithm ψ(n,2) with α(ψ(n,2)) = 1 for FC(2)-PO. Unfortunately, proposing an
algorithm for FC(f)-PO for f ≥ 3 is left as a future work.

Algorithm ψ(n,2). We propose an algorithm ψ(n,2) to solve FC(2)-PO. Since
the case n = 3 is easy, we assume n ≥ 4. Algorithm ψ(n,2) calls another algorithm
LN(n,2), which solves FC(2)-PO when an initial configuration P0 is linear, i.e.,
when CH(P0) is a line segment.
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To compare positions p and q, we frequently use a lexicographic order >. It
has however a drawback for our purpose: Suppose that p (resp. q) in Z0 is p(i)

(resp. q(i)) in Zi. Then p(i) < q(i) and p(j) > q(j) can happen for some i �= j.
In ψ(n,2), we introduce an order � that all robots can consistently compute.

Let P = {p1,p2, . . . ,pn} be a multiset of n points, and P = {q1, q2, . . . , qm}
be the set of distinct points in P . The multiplicity of a point q ∈ P is denoted
by μP (q). In the definition of �P , it is convenient to treat μP (q) points q in P
as a point q with a label μP (q). We thus identify P with a pair (P , μP ), where
μP is a labeling function to associate label μP (q) with each point q ∈ P . Let oP

be the center of the smallest enclosing circle CP of P .
Let GP be the rotation group GP of P about oP preserving μP . The order

|GP | of GP is denoted by kP . Note that kP does not depend on μP (oP ). It is
similar to the symmetricity σ(P ) of P defined in [18], but kP �= σ(P ) in general.
Let ΓP (q) ⊆ P be the orbit of GP through q ∈ P . Then |ΓP (q)| = kP for all
q ∈ P\{oP }, and μP (q′) = μP (q) for all q′ ∈ ΓP (q). If oP ∈ P , ΓP (oP ) = {oP }.
Let ΓP = {ΓP (q) : q ∈ P} be the set of all orbits. Then ΓP is a partition of P .

To define �P , we need the concept of view. Define an x-y coordinate system
Ξq for any point q ∈ P\{oP }. The origin of Ξq is q, the unit distance is the
radius of CP , and the x-axis is taken so that it goes through oP in its positive
side. Finally, it is right-handed. Let γq be the coordinate transformation from Ξq

to Z0. Then the view VP (q) of q is defined to be γ−1
q (P ). That is, γq (VP (q)) =

P , i.e., P in Z0 is VP (q) in Ξq . By definition, VP (q) = VP (q′) if and only if
q′ ∈ ΓP (q). Let V iewP = {VP (q) : q ∈ P\{oP }}.

To compare two views in V iewP , we arbitrarily choose and fix a total order �
on the set of multisets of n points. We define a total order �P on ΓP as follows.
For any two distinct orbits ΓP (q) and ΓP (q′) in ΓP , ΓP (q) �P ΓP (q′), if one
of the following conditions hold: (1) μP (q) > μP (q′), (2) μP (q) = μP (q′) and
dist(q,oP ) < dist(q′,oP ), or (3) μP (q) = μP (q′), dist(q,oP ) = dist(q′,oP ),
and VP (q) � VP (q′). When oP ∈ P , we assume that ΓP (q) �P ΓP (oP ) for all
q �= oP . Now �P is a total order on ΓP . If kP = 1, since ΓP (q) = {q} for all
q ∈ P , we regard �P as a total order on P (by identifying ΓP (q) with q).

We partition the set of all multisets P = {p1,p2, . . . ,pn} for all n ≥ 4 into
six types G, L, T, I, S, and Z. Let mP = |P |.

G(oal): mP ≤ 2.
L(ine): CH(P ) is a line segment.
T(riangle): mP = 3 and CH(P ) is a triangle.
I(nside): mP = 4, CH(P ) is a triangle, and oP ∈ P .
S(ide): mP = 4, CH(P ) is a triangle, and MP ∈ P , where MP is the middle

point of a longest side of CH(P ).
Z: P does not belong to the above five types.

We define a target function ψ(n,2).

[Target function ψ(n,2)]

1. When P is type Z:
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(a) If kP ≥ 2, ψ(n,2)(P ) = oP .
(b) If kP = 1, ψ(n,2)(P ) = aP , where aP ∈ P is the largest point with

respect to �P , which is well-defined since kP = 1.
2. If P is type L, invoke LN(n, 2).
3. When P is type T, let P = {a, b, c}.

(a) If triangle abc is equilateral, ψ(n,2)(P ) = oP .
(b) If triangle abc is not equilateral, ψ(n,2)(P ) = MP , where MP is the

middle point of the longest side. If there are two longest sides, MP is the
middle point of the side next to the shortest side counter-clockwise.

4. If P is type I, ψ(n,2)(P ) = oP .
5. If P is type S, ψ(n,2)(P ) = MP (which is defined in the definition of type S).

Algorithm LN(n,2). We present target function LN(n,2). Let P = {p1,p2, . . . ,
pn} ∈ P be a configuration of type L, which may be a configuration that a
robot identifies in Look phase. We identify a point pi in R2 with a point in R:
Since (0, 0) ∈ P , we rotate P about (0, 0) counter-clockwise so that the resultant
P becomes the multiset of points in the x-axis. Then we denote (p, 0) by p. In
what follows in this section, a configuration P is thus regarded as a multiset of
n real numbers, including at least one 0. We assume p1 ≤ p2 ≤ · · · ≤ pn. By
P = {b1, b2, . . . , bmP

}, we denote the set of distinct real numbers in P , where mP

is the size |P | of P , and b1 < b2 < · · · < bmP
. The length of CH(P ) is denoted

by LP = bmP
− b1 = pn − p1. Let λP = maxp∈P min{p − p1, pmP

− p} ≤ LP /2.
Define j∗ by bj∗ = 0. (Thus the current position of a robot ri who identifies P
in Look phase is bj∗ in Zi.) Since P is type L, kP ≤ 2. We denote the middle
point of x and y by Mxy, i.e., Mxy = (x + y)/2.

Like ψ(n,2), we consider 10 types, which we define as follows:

G: mP ≤ 2.
B3: mP = 3 and kP = 2.
B4: mP = 4 and kP = 2.
B5: mP = 5 and kP = 2.
B6: mP = 6 and kP = 2.
B: mP ≥ 7 and kP = 2.
U3: mP = 3 and kP = 1.
W: mP = 4, kP = 1, and P = {b1, b2, b3, b4}(b1 < b2 < b3 < b4) satisfies either

(a) 2(b2 − b1) = b3 − b2 and b3 ≤ Mb1b4 , or (b) 2(b4 − b3) = b3 − b2 and
b2 ≥ Mb1b4 .

U4: mP = 4, kP = 1, and P is not type W.
U: mP ≥ 5 and kP = 1.

We now give the target function LN(n,2).

[Target function LN(n,2)]

1. If P is type G, LN(n,2)(P ) = 0.
2. When P is type B: If j∗ ≤ �mP /2�, LN(n,2)(P ) = b1. Otherwise if j∗ >

�mP /2�, LN(n,2)(P ) = bmP
.
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3. When P is type B3: mP = 3. If j∗ ≤ 2, LN(n,2)(P ) = Mb1b2 . Otherwise if
j∗ = 3, LN(n,2)(P ) = Mb2b3 .

4. When P is type B4: mP = 4. If j∗ ≤ 2, LN(n,2)(P ) = Mb1b2 . Otherwise if
j∗ ≥ 3, LN(n,2)(P ) = Mb3b4 .

5. When P is type B5: mP = 5. If j∗ ≤ 3, LN(n,2)(P ) = b2. Otherwise if j∗ ≥ 4,
LN(n,2)(P ) = b4.

6. When P is type B6: mP = 6. If j∗ ≤ 3, LN(n,2)(P ) = b2. Otherwise if j∗ ≥ 4,
LN(n,2)(P ) = b5.

7. When P is type U: Since kP = 1, either b1 �P bmP
or bmP

�P b1 holds.
If b1 �P bmP

, then LN(n,2)(P ) = b1. Otherwise if bmP
�P b1, LN(n,2)(P ) =

bmP
.

8. When P is type U3: Since kP = 1 and mP = 3, if b2 = Mb1b3 , then μP (b1) �=
μP (b3). If b2 < Mb1b3 or (b2 = Mb1b3)∧(μP (b1) > μP (b3)), then LN(n,2)(P ) =
(2b1 + b2)/3. Otherwise, if b2 > Mb1b3 or (b2 = Mb1b3) ∧ (μP (b1) < μP (b3)),
then LN(n,2)(P ) = (b2 + 2b3)/3.

9. When P is type W: kP = 1, mP = 4, and P satisfies either condition (a) or
(b) (of the definition of type W).
(a) If 2(b2 − b1) = b3 − b2 and b3 ≤ Mb1b4 , then LN(n,2)(P ) = b2.
(b) If 2(b4 − b3) = b3 − b2 and b2 ≥ Mb1b4 , then LN(n,2)(P ) = b3.

10. When P is type U4: kP = 1, mP = 4, and P is not type W. Suppose that
μP (b1) ≥ μP (b4) holds. (The case P satisfies μP (b1) < μP (b4) is symmetric,
and we omit it.)
(a) If μP (b1) ≥ μP (b3), then LN(n,2)(P ) = b1.
(b) If (μP (b1) < μP (b3)) ∧ (μP (b3) ≥ 3), LN(n,2)(P ) = b1, if b3 = 0, and

LN(n,2)(P ) = 0, otherwise if b3 �= 0.
(c) Otherwise if (μP (b1) < μP (b3))∧ (μP (b3) < 3), μP (b1) = μP (b4) = 1 and

μP (b3) = 2. LN(n,2)(P ) = b1, if (b2 = 0) ∨ (b3 = 0), and LN(n,2)(P ) = 0,
otherwise if (b1 = 0) ∨ (b4 = 0).

We have the following theorem:

Theorem 10. Target function ψ(n,2), which satisfies α(ψ(n,2)) = 1, is an algo-
rithm for FC(2)-PO.

8 Gathering Problem

We finally investigate the gathering problem, provided that there are no faulty
robots, to emphasize that the gathering and the convergence problems have
completely different properties from the viewpoint of compatibility. Since the
gathering problem is not solvable if n = 2 [18], we assume n ≥ 3 in this section.
Moreover, we assume that the robots initially occupy distinct points. There are
many gathering algorithms. The following algorithm GAT [18] is one of them.

[Target function GAT]

1. If there is a unique p ∈ P such that μP (p) > 1, GAT(P ) = p.
2. Otherwise, if μP (p) = 1 for all p ∈ P :



162 Y. Asahiro and M. Yamashita

(a) If kP = 1, GAT(P ) = p, where p is the largest point in P with respect
to �P .

(b) If kP > 1, GAT(P ) = oP .

Observe that α(GAT) = 1. We can modify Step 2(a) of GAT to obtain
another algorithm GAT′. For example, GAT′(P ) can be the smallest point p′

in P with respect to �P , instead of p. Then indeed GAT′ is also a gathering
algorithm with α(GAT′) = 1, but obviously Φ = {GAT,GAT′} is not compatible
with respect to the gathering problem. Let us summarize.

Theorem 11 [18]. Let Φ = {GAT} and Φ′ = {GAT′}. Then Φ and Φ′ are
compatible with respect to the gathering problem, but Φ ∪ Φ′ is not. Here α(Φ) =
α(Φ′) = α(Φ ∪ Φ′) = 1.

Theorem 12. Any target function φ is not a gathering algorithm if α(φ) < 1,
or equivalently, any set Φ of target functions such that α(Φ) < 1 is not compatible
with respect to the gathering problem.

9 Conclusions

We introduced the concept of compatibility and investigated the compatibilities
of several convergence problems. A compatible set Φ of target functions with
respect to a problem Π is an extension of an algorithm φ for Π, in the sense
that every target function φ ∈ Φ is an algorithm for Φ.

The problems we investigated are the convergence problem, the fault tolerant
(n, f)-convergence problem (FC(f)), the fault tolerant (n, f)-convergence prob-
lem to a convex f -gon (FC(f)-CP), and the fault tolerant (n, f)-convergence
problem to f points (FC(f)-PO), for crash faults. The gathering problem was
also investigated. The results are summarized in Table 1. Main observations we
would like to emphasize are:

1. The convergence, FC(1), FC(1)-PO, and FC(f)-CP share the same property:
Every set Φ of target functions is compatible, if 0 ≤ α(Φ) < 1.

2. The gathering problem and FC(f)-PO for f ≥ 2 share the same property:
Any set Φ of target functions is not compatible, if 0 ≤ α(Φ) < 1.

3. FC(f) (f ≥ 2) is in between FC(f)-CP and FC(f)-PO.

Before closing the paper, we list some open problems:

1. Extend Table 1 to contain the results for α(Φ) > 1.
2. Suppose that φ and φ′ are algorithms for the convergence problem. Find a

necessary and/or a sufficient condition for Φ = {φ, φ′} to be compatible with
respect to the convergence problem.

3. Investigate the compatibility of FC(f)-PO for f ≥ 2 under the FSYNC
model.

4. Investigate the compatibility of convergence problems under the ASYNC
model.
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5. Investigate the compatibility of convergence problems in the presence of
Byzantine failures.

6. Investigate the compatibility of fault tolerant gathering problems.
7. Find interesting problems with a large compatible set.
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Abstract. We introduce FnF-BFT, the first partially synchronous BFT
protocol with performance guarantees under truly byzantine attacks dur-
ing stable networking conditions. At its core, FnF-BFT parallelizes the
execution of requests by allowing all replicas to act as leaders indepen-
dently. Leader parallelization distributes the load over all replicas. Conse-
quently, FnF-BFT fully utilizes all correct replicas’ processing power and
increases throughput by overcoming the single-leader bottleneck.

We prove lower bounds on FnF-BFT’s efficiency and performance in
synchrony: the amortized communication complexity is linear in the num-
ber of replicas and thus competitive with state-of-the-art protocols; FnF-
BFT’s amortized throughput with less than 1

3
byzantine replicas is at

least 16
27

th of its best-case throughput. We also provide a proof-of-concept
implementation and preliminary evaluation of FnF-BFT.

Keywords: BFT · SMR · parallel leaders · byzantine-resilient
performance

1 Introduction

Byzantine fault tolerance has been the gold standard for making distributed sys-
tems more robust. Instead of modeling every single failure scenario, the byzan-
tine failure model considers arbitrarily malicious actors that may infiltrate the
system, thus covering many unforeseeable failure scenarios. This failure model
has been broadly applied to state machine replication (SMR). In SMR, a set
of distributed replicas aims to agree on a unique ordering of client requests,
even though a subset of the replicas, the byzantine failures, tries to disrupt the
protocol. Therefore, the primary objectives of a protocol are the system’s cor-
rectness (safety) and continuous progress (liveness). SMR protocols that offer
these guarantees, i.e., are resilient against byzantine failures while continuing
system operation, are known as byzantine fault-tolerant (BFT) protocols.

The first practical BFT system, PBFT [9], was introduced more than two
decades ago and has inspired numerous other BFT systems, e.g., [18,22,38].
However, even today, BFT protocols do not scale well with an increasing num-
ber of replicas, making large-scale deployment of BFT systems a challenge.
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Often, the origin of this issue stems from the single-leader bottleneck : most
BFT protocols rest the responsibility of uniquely ordering client requests on
a single leader instead of distributing this task amongst the replicas [35]. More
recently, protocols tackling the single-leader bottleneck through parallelization
emerged, demonstrating a staggering performance increase over state-of-the-art
sequential-leader protocols [11,19,20,26,34–36]. Similar to most of their single-
leader counterparts, these works only consider non-malicious faults for their
performance analysis. However, malicious attacks may lead to significant per-
formance losses that are not evaluated. While these systems exhibit promising
performance with simple faults, they fail to provide lower bounds on their per-
formance under attack.

Our Contribution. In this work, we introduce the first parallel-leader BFT
protocol with a provable performance guarantee under truly byzantine attack in
stable network conditions, which we term Fast’n’Fair-BFT (FnF-BFT). To
formally capture this performance guarantee, we define the byzantine-resilient
performance of a BFT protocol as the ratio between its worst-case and its best-
case throughput, i.e., the effective utilization. For FnF-BFT, we bound this ratio
to be constant, meaning that the throughput of our protocol under byzantine
faults is lower-bounded by a constant fraction of its best-case throughput where
no faults are present. Concretely, we show that FnF-BFT achieves byzantine-
resilient performance with a ratio of 16/27 while maintaining safety and liveness.

In short, FnF-BFT is the first BFT protocol that provably achieves all
the following properties in the partially synchronous communication model, i.e.,
where after some unknown global stabilization time (GST), messages are deliv-
ered within a known bound Δ.

– Optimistic Performance: After GST, the best-case throughput is Ω(n)
times higher than the throughput of sequential-leader protocols.

– Byzantine-Resilient Performance: After GST, the worst-case throughput
of the system is at least a constant fraction of its best-case throughput.

– Efficiency: After GST, the amortized authenticator complexity of reaching
consensus is Θ(n).

FnF-BFT achieves these properties by combining two key insights: First,
by enabling all replicas to continuously act as leaders in parallel – sharing the
load of clients’ requests. Second, FnF-BFT does not replace leaders upon failure
but configures each leader’s load based on the leader’s past performance. With
this combination, we guarantee a fair distribution of requests according to each
replica’s capacity, which in turn results in fast processing of requests.

The rest of this paper is structured as follows: First, we present our formal
model, an overview of the protocol, and define the protocol goals (Sect. 2). We
then explain the design of FnF-BFT (Sect. 3), and analyze its security and
performance formally (Sect. 4). We conclude with a related work section (Sect. 5).
Proofs omitted in Sect. 4 can be found in Appendix A, where we present the
complete analysis of FnF-BFT. A description and preliminary evaluation of
our proof-of-concept implementation of FnF-BFT based on HotStuff [38] can
be found in Appendix B.
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2 FNF-BFT Overview

Model. The system consists of n = 3f + 1 authenticated replicas and a set of
clients. We index replicas by i ∈ [n] = {1, 2, . . . , n}. Throughout an execution,
at most f unique replicas in the system are byzantine, i.e., they are controlled by
an adversary with full information on their internal state. All other replicas are
correct, i.e., following the protocol. The adversary cannot intercept the commu-
nication between two correct replicas. Any number of clients may be byzantine.

Communication Model: We assume a partially synchronous communication
model, i.e., a known bound Δ on message transmission will hold between any two
correct replicas after some unknown global stabilization time (GST). We show
that FnF-BFT is safe in asynchrony, that is, when messages between correct
replicas may arrive in arbitrary order after any finite delay. We evaluate all other
properties of the system after GST, thus assuming a synchronous network.

Cryptographic Primitives: We make the usual cryptographic assumptions: the
adversary is computationally bounded, and cryptographically-secure communi-
cation channels, computationally secure hash functions, (threshold) signatures,
and encryption schemes exist. Similar to other BFT algorithms [5,18,38], FnF-
BFT makes use of threshold signatures. In an (l, n) threshold signature scheme,
there is a single public key held by all replicas and clients. Additionally, each
replica u holds a distinct private key allowing the generation of a partial signa-
ture σu(m) of any message m. Any set of l distinct partial signatures for the
same message, {σu(m) | u ∈ U, |U | = k} can be combined (by any replica) into a
unique signature σ(m). The combined signature can be verified using the public
key. We assume that the scheme is robust, i.e., any verifier can easily filter out
invalid signatures from malicious replicas. In this work, we set l = 2f + 1.

Authenticator Complexity: Message complexity has long been considered the
main throughput-limiting factor in BFT protocols [18,38]. In practice, however,
the throughput of a BFT protocol is limited by both its computational footprint
(mainly caused by cryptographic operations), as well as its message complex-
ity. Hence, to assess the performance and efficiency of FnF-BFT, we adopt a
complexity measure called authenticator complexity [38]. An authenticator is
any (partial) signature. We define the authenticator complexity of a protocol as
the average number of all computations or verifications of any authenticator by
replicas during the protocol execution per request. Note that the authenticator
complexity also captures the message complexity of a protocol if, like in FnF-
BFT, each message can be assumed to contain at least one signature. Unlike
[38], where only the number of received signatures is considered, our definition
allows to capture the load handled by each individual replica more accurately.
Note that authenticator complexities according to the two definitions only differ
by a constant factor. We only analyze the authenticator complexity after GST,
as it is impossible for a BFT protocol to ensure deterministic progress and safety
at the same time in an asynchronous network [15].
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Protocol Overview. The FnF-BFT protocol implements a state machine (cf.
Sect. 2) that is replicated across all replicas in the system. Clients broadcast
requests to the system. Given client requests, replicas decide on the order of
request executions and deliver commit-certificates to the clients.

Our protocol moves forward in epochs. In an epoch, each replica u is respon-
sible for ordering a set of up to Cu client requests that are independent of all
requests ordered by other replicas in the epoch. Every replica in the system
simultaneously acts as both a leader and a backup to the other leaders. The
number of assigned client requests Cu is based on u’s past performance as a
leader. The client space is rotated between replicas between epochs to guarantee
liveness. More precisely, during the epoch-change, a designated replica acting as
primary: (a) ensures that all replicas have a consistent view of the past leader
and primary performance, (b) deduces non-overlapping sequence numbers for
each leader, and (c) assigns parts of the client space to leaders.

An epoch-change occurs when requested by more than two-thirds of replicas.
Replicas requesting an epoch-change immediately stop participating in the pre-
vious epoch. The primary in charge of the epoch-change is selected through peri-
odic rotation based on performance history. Replicas request an epoch-change
if: (a) all replicas have exhausted their requests, (b) their local epoch timeout
is exceeded, (c) not enough progress by other leaders is observed, or (d) enough
other replicas request an epoch-change. Hence, epochs have bounded-length.

Protocol Goals. FnF-BFT achieves scalable and byzantine fault-tolerant state
machine replication (SMR). In SMR, a group of replicas decide on a growing log
of client requests. Clients are provided with cryptographically secure certificates
which prove the commitment of their request. The protocol ensures:

1. Safety: If any two correct replicas commit a request with the same sequence
number, they both commit the same request.

2. Liveness: If a correct client broadcasts a request, then every correct replica
eventually commits the request.

Thus, FnF-BFT will eventually make progress, and valid client requests can-
not be censored. Additionally, FnF-BFT guarantees low overhead in reaching
consensus. Unlike other protocols limiting the worst-case efficiency for a single
request, we analyze the amortized authenticator complexity per request after
GST. We find this to be the relevant throughput-limiting factor:

3. Efficiency: After GST, the amortized authenticator complexity of reaching
consensus is Θ(n).

Furthermore, FnF-BFT achieves competitive performance under both opti-
mistic and pessimistic adversarial scenarios:

4. Optimistic Performance: After GST, the best-case throughput is Ω(n)
times higher than the throughput of sequential-leader protocols.

5. Byzantine-Resilient Performance: After GST, the worst-case throughput
of the system is at least a constant fraction of its best-case throughput.
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Hence, unlike many other BFT systems, FnF-BFT guarantees that byzantine
replicas cannot arbitrarily slow down the system when the network is stable.

3 FNF-BFT Architecture

FnF-BFT executes client requests on a state machine replicated across n repli-
cas. We advance FnF-BFT in epochs – identified by monotonically increasing
epoch numbers. Replicas in the system act as leaders and backups concurrently.
As a leader, a replica is responsible for ordering client requests within its juris-
diction. Each leader v is assigned a predetermined number of requests Cv to
execute during an epoch. To deliver a client request, v starts by picking the next
available sequence number and shares the request with the backups. Leader v
must collect 2f + 1 signatures from replicas in the leader prepare and commit
phase (Algorithm 1) to commit the request. We employ threshold signatures for
the signature collection – allowing us to achieve linear authenticator complexity
for reaching consensus on a request. Additionally, we use low and high water-
marks for each leader to represent a range of request sequence numbers that
each leader can propose concurrently to boost individual leaders’ throughput.

Each epoch has a unique primary responsible for the preceding epoch-change,
i.e., moving the system into the epoch. The primary changes every epoch and its
selection is based on the system’s history. A replica calls for an epoch-change in
any of the following cases: (a) the replica has locally committed requests for all
sequence numbers available in the epoch, (b) the maximum epoch time expired,
(c) the replica has not seen sufficient progress, or (d) the replica has observed
at least f + 1 epoch-change messages from other replicas.

FnF-BFT generalizes PBFT [9] and Mir-BFT [35] to the n leader setting.
Additionally, we avoid PBFT’s expensive all-to-all communication during epoch
operation similar to Linear-PBFT [18]. Throughout this section, we discuss the
various components of the protocol in further detail.

3.1 Client

Each client has a unique identifier. A client c requests the execution of an opera-
tion r by sending a 〈request, r, t, c〉 to all leaders. Here, timestamp t is a monoton-
ically increasing sequence number used to order the requests from one client. By
using watermarks, we allow clients to have more than one request in flight. Client
watermarks, low and high, represent the range of timestamp sequence numbers
which the client can propose concurrently. Thus, we require t to be within the low
and high watermarks of client c. The client watermarks are advanced similarly
to the leader watermarks (cf. Sect. 3.6). Upon executing operation r, replica u
responds to the client with 〈reply, e, d, u〉, where e is the epoch number and d is
the request digest (cf. Sect. 3.5)1. The client waits for f + 1 such responses from
the replicas.
1 Instead of committing client request independently, the protocol could be adapted to

process client requests in batches – a standard BFT protocol improvement [22,35,38].
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Algorithm 1. Committing a request proposed by leader v

1: Leader prepare phase
2: as replica u:
3: upon receiving a valid 〈request, r, t, c〉 from client c:

4: map client request to hash bucket
5: as leader v:
6: accept 〈request, r, t, c〉 assigned to one of v’s buckets
7: pick next assigned sequence number sn
8: broadcast 〈pre-prepare, sn, e, h(r), v〉
9: Backup prepare phase

10: as backup w:
11: accept 〈pre-prepare, sn, e, h(r), v〉
12: if the pre-prepare message is valid:
13: compute partial signature σw(d), where d = h(sn‖e‖r)
14: send 〈prepare, sn, e, σw(d)〉 to leader v

15: as leader v:
16: compute partial signature σv(d)
17: upon receiving 2f prepare messages:
18: compute (2f + 1, n) threshold signature σ(d)
19: broadcast 〈prepared-certificate, sn, e, σ(d)〉
20: Commit phase
21: as backup w:
22: accept 〈prepared-certificate, sn, e, σ(d)〉
23: compute partial signature σ(σw(d))
24: 〈commit, sn, e, σw(σ(d))〉 to leader v
25: as leader v:
26: compute partial signature σ(σv(d))
27: upon receiving 2f commit messages:
28: compute (2f + 1, n) threshold signature σ(σ(d))

29: broadcast 〈commit-certificate, sn, e, σ(σ(d))〉

3.2 Sequence Number Distribution

We distribute sequence numbers to leaders for the succeeding epoch during the
epoch-change. While we commit requests from each leader in order, the requests
from different leaders are committed independently of each other in our pro-
tocol. Doing so allows leaders to continue making progress in an epoch, even
though other leaders might have stopped working. Otherwise, a natural attack
for byzantine leaders is to stop working and force the system to an epoch-change.
Such attacks are possible in other parallel-leader protocols such as Mir-BFT [35].

To allow leaders to commit requests independently of each other, we need
to allocate sequence numbers to all leaders during the epoch-change. Thus, we
must also determine the number of requests each leader is responsible for before
the epoch. The number of requests for leader v in epoch e is denoted by Cv(e).
It can be computed deterministically by all replicas in the network, based on the
known history of the system (cf. Sect. 3.7).
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When assigning sequence numbers, we first automatically yield to each leader
v ∈ [n] the sequence numbers of the Ov(e) existing hanging requests from pre-
vious epochs in the assigned bucket(s). The remaining Cv(e) − Ov(e) sequence
numbers for each leader are distributed to them one after the other according to
their ordering from the set of available sequence numbers. Note that Ov(e) can-
not exceed Cv(e). For each leader v the assigned sequence numbers are mapped
to local sequence numbers 1v,e, 2v,e, . . . , Cv(e)v,e in epoch e. These sequence
numbers are later used to simplify checkpoint creation (cf. Sect. 3.6).

3.3 Hash Space Division

The client hash space is partitioned into buckets to avoid duplication. Each
bucket is assigned to a single leader every epoch. We consider the client identifier
to be the request input and hash the client identifier (hc = h(c)) to map requests
into buckets. The hash space partition ensures that no two conflicting requests
will be assigned to different leaders2.

Thus, the requests served by different leaders are independent of each other.
Additionally, the bucket assignment is rotated round-robin across epochs, pre-
venting request censoring. The hash space is portioned into m·n non-intersecting
buckets of equal size, where m ∈ Z

+ is a configuration parameter. Each leader v
is then assigned mv(e) buckets in epoch e according to their load Cv(e) (cf.
Sect. 3.7). Leaders can only include requests from their active buckets.

When assigning buckets to leaders, the protocol ensures that every leader
is assigned at least one bucket, as well as distributing the buckets according to
the load handled by the leaders. Precisely, the number of buckets leader v is
assigned in epoch e is given by mv(e) =

⌊
Cv(e)∑

u∈[n] Cu(e)
(m − 1) · n

⌋
+ 1 + m̃v(e),

where m̃v(e) ∈ {0, 1} distributes the remaining buckets to the leaders – ensuring∑
u∈[n] mu(e) = m ·n. The remaining buckets are allocated to leaders v with the

biggest value:
⌊

Cv(e)∑
u∈[n] Cu(e)

(m − 1) · n
⌋

+ 1 − Cv(e)∑
u∈[n] Cu(e)

· m · n.

Note that the system will require a sufficiently long stability period for all
correct leaders to be working at their capacity limit, i.e., Cv(e) matching the
performance of leader v in epoch e. Once correct leaders operate at capacity, the
number of buckets they serve matches that. The hash buckets are distributed to
leaders through a deterministic rotation such that each leader repeatedly serves
each bucket under f + 1 unique primaries, i.e., preventing byzantine replicas
from censoring specific hash buckets. For the remaining paper, we assume that
there are always client requests pending in each bucket. Since we aim to optimize
throughput, this assumption is in-sync with our protocol goals.

2 Note that in case the requests are transactions with multiple inputs, the hash space
division is more challenging to circumvent double-spending attacks. In such cases,
we can employ well-known techniques [21,39] with no performance overhead as long
as the average number of transactions’ inputs remains constant [7].
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Fig. 1. FnF-BFT primary rotation in a system with n = 10 replicas. In blue, we show
epochs led by primaries elected based on their performance. Epochs shown in yellow
are led by replicas re-evaluated once their last turn as primary falls out of the sliding
window. (Color figure online)

3.4 Primary Rotation

While all replicas are tasked with being a leader at all times, only a single
replica, the primary, initiates an epoch. FnF-BFT assigns primaries periodically,
exploiting the performance of good primaries and being reactive to network
changes. The primary rotation consists of two core building blocks. First, FnF-
BFT repeatedly rotates through the 2f + 1 best primaries – exploiting their
performance. Second, FnF-BFT explores every primary at least once within
a sliding window. The sliding window consists of g ∈ Z epochs, and we set
g ≥ 3f +1 to allow the exploration of all primaries throughout a sliding window.
We depict a sample rotation in Fig. 1.

Throughout the protocol, all replicas record the performance of each primary.
We measure performance as the number of requests successfully committed under
a primary in an epoch. Performance can thus be determined during the succeed-
ing epoch-change by each replica (cf. Sect. 3.7). To deliver a reactive system, we
update a replica’s primary performance after each turn.

We rotate through the best 2f + 1 primaries repeatedly. After every 2f + 1
primaries, the best 2f + 1 primaries are redetermined and subsequently elected
as primary in order of the time passed since their last turn as primary. The pri-
mary that has not been seen for the longest time is elected first. Cycling through
the best primaries maximizes system performance. Simultaneously, basing per-
formance solely on a replica’s preceding primary performance strips byzantine
primaries from the ability to misuse a good reputation. Every so often, we inter-
rupt the continuous exploitation of the best 2f + 1 primaries to revisit replicas
that fall out of the sliding window. If replica u’s last turn as primary occurred in
epoch e − g by the time epoch e rolls around, replica u would be re-explored as
primary in epoch e. The exploration allows us to re-evaluate all replicas as pri-
maries periodically and ensures that FnF-BFT is reactive to network changes.

The protocol starts by exploring all primaries ordered by their identifiers.
Note that only one primary can fall out of the sliding window at any time after
the first exploration. Thus, we always know which primary will be re-evaluated.



FnF-BFT 173

Fig. 2. Schematic message flow for one request.

3.5 Epoch Operation

To execute requests, we use a leader-based adaption of PBFT, similar to Linear-
PBFT [18]. Threshold signatures are commonly used to reduce the complexity of
the backup prepare and commit phases of PBFT. The leader of a request is used
as a collector of partial signatures to create a (2f + 1, n) threshold signature in
the intermediate stages of the backup prepare and commit phases. We visualize
the schematic of the message flow for one request led by replica 0 in Fig. 2 and
summarize the protocol executed locally by replicas in Algorithm 1.

Leader Prepare Phase. Upon receiving 〈request, r, t, c〉 from a client, each
replica computes the hash of the client identifier c. If the request falls into one
of leader v’s active buckets, v verifies 〈request, r, t, c〉. The request is discarded
if either it has already been prepared or it is already pending. Once verified,
leader v broadcasts 〈pre-prepare, sn, e, h(r), v〉, where sn is the sequence number,
e the current epoch, h(r) is the hash digest of request r and v represents the
leader’s signature. The cryptographic hash function h maps an arbitrary-length
input to a fixed-length output. We can use the digest h(r) as a unique identifier
for a request r, as we assume the hash function to be collision-resistant.

Backup Prepare Phase. Backup w accepts 〈pre-prepare, sn, e, h(r), v〉 from
leader v, if (a) the epoch number matches its local epoch number, (b) w has
not prepared another request with the same sequence number sn in epoch e,
(c) leader v leads sequence number sn, (d) sn lies between the low and high
watermarks of leader v, (e) r is in the active bucket of v, and (f) r was submitted
by an authorized client. Upon accepting 〈pre-prepare, sn, e, h(r), v〉, w computes
d = h(sn‖e‖r) where h is a hash function. Additionally, w signs d by comput-
ing a verifiable partial signature σw(d). Then w sends 〈prepare, sn, e, σw(d)〉 to
leader v. Upon receiving 2f prepare messages for sn in epoch e, leader v forms
a combined signature σ(d) from the 2f prepare messages and its own signature.
Leader v then broadcasts 〈prepared-certificate, sn, e, σ(d)〉 to all backups.

Commit Phase. Backup w accepts the prepared-certificate and replies with
〈commit, sn, e, σw(σ(d))〉 to leader v. After collecting 2f commit messages, v cre-
ates a combined signature σ(σ(d)) using the signatures from the collected com-
mit messages and its own signature. Once the combined signature is prepared,
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v continues by broadcasting 〈commit-certificate, sn, e, σ(σ(d))〉. Upon receiving
the commit-certificate, replicas execute r after delivering all preceding requests
led by v, and send replies to the client.

3.6 Checkpointing

Similar to PBFT [9], we periodically create checkpoints to prove the correctness
of the current state. Instead of requiring a costly round of all-to-all communica-
tion to create a checkpoint, we add an intermediate phase and let the respective
leader collect partial signatures to generate a certificate optimistically. Addition-
ally, we expand the PBFT checkpoint protocol to run for n parallel leaders.

For each leader v, we repeatedly create checkpoints to clear the logs and
advance the watermarks of leader v whenever the local sequence number snv,e,k

is divisible by a constant k ∈ Z
+. Recall that when a replica u delivers a request

for leader v with local sequence number snv,e,k, this implies that all requests led
by v with local sequence number lower than snv,e,k have been locally commit-
ted at replica u. Hence, after delivering the request with local sequence num-
ber snv,e,k, replica u sends 〈checkpoint, snv,e,k, h(sn′

v,e,k), u〉 to leader v. Here,
sn′

v,e,k is the last checkpoint and h(sn′
v,e,k) is the hash digest of the requests

with sequence number snv in the range sn′
v,e,k ≤ snv ≤ snv,e,k. Leader v pro-

ceeds by collecting 2f + 1 checkpoint messages (including its own) and gener-
ates a checkpoint-certificate by creating a combined threshold signature. Then,
leader v sends the checkpoint-certificate to all other replicas. If a replica sees
the checkpoint-certificate, the checkpoint is stable and the replica can discard
the corresponding messages from its logs, i.e., for sequence numbers belonging
to leader v lower than snv,e,k.

We use checkpointing to advance low and high watermarks. In doing so, we
allow several requests from a leader to be in flight. The low watermark Lv for
leader v is equal to the sequence number of the last stable checkpoint, and the
high watermark is Hv = Lv +2k. We set k to be large enough such that replicas
do not stall. Given its watermarks, leader v can only propose requests with a
local sequence number between low and high watermarks.

Calling Epoch-Change. Replicas call an epoch-change by broadcasting an
epoch-change message in four cases:

1. Replica u triggers an epoch-change in epoch e, once it has committed every-
one’s assigned requests locally.

2. Replica u calls for an epoch-change when its epoch timer expires. The value
of the epoch timer T is set to ensure that after GST, correct replicas can
finish at least Cmin requests during an epoch. Cmin ∈ Ω(n2) is the minimum
number of requests assigned to leaders.

3. Replicas call epoch-changes upon observing inadequate progress. Each replica
u has individual no-progress timers for all leaders. The no-progress timer is
initialized with the same value Tp for all leaders. Initially, replicas set all no-
progress timers for the first time after 5Δ in the epoch – accounting for the
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message transmission time of the initial requests. A replica resets the timer
for leader v every time it receives a commit-certificate from v. In case the
replica has already committed Cv requests for leader v, the timer is no longer
reset. Upon observing no progress timeouts for b ∈ [f + 1, 2f + 1] different
leaders, a replica calls an epoch-change. Requiring at least f + 1 leaders to
make progress ensures that a constant fraction of leaders makes progress,
and at least one correct leader is involved. On the other hand, we demand
no more than 2f + 1 leaders to make progress such that byzantine leaders
failing to execute requests cannot stop the epoch early. We let b = 2f +1 and
set the no-progress timer such that it does not expire for correct leaders and
simultaneously ensures sufficient progress, i.e., Tp ∈ Θ(T/Cmin).

4. Finally, replica u calls an epoch-change if it sees that f + 1 other replicas
have called an epoch-change for an epoch higher than e. Replica u picks the
smallest epoch in the set such that byzantine replicas cannot advance the
protocol an arbitrary number of epochs.

After sending an epoch-change message, the replica will only start its epoch-
change timer, upon seeing at least 2f +1 epoch-change messages. We will discuss
the epoch-change timer in more detail later.

3.7 Epoch-Change

At high level, in FnF-BFT’s epoch-change protocol, we modify the PBFT view-
change protocol as follows: we use threshold signatures to reduce the message
complexity and extend the view-change message to include information about
all leaders. Similar to Mir-BFT [35], we introduce a round of reliable broadcast
to share information needed to determine the configuration of the next epoch(s).
We determine the load assigned to each leader in the next epoch, based on their
past performance, and also record the performance of the preceding primary.

Starting Epoch-Change (Algorithm 2, Steps 1–5). To move the system
to epoch e + 1, replica u sends 〈epoch-change, e + 1,S, C,P,Q, u〉 to all replicas
in the system. Here, S is a vector of sequence numbers snv of the last stable
checkpoints Sv ∀v ∈ [n] known to u for each leader v. C is a set of checkpoint-
certificates proving the correctness of Sv ∀v ∈ [n], while P contains sets Pv

∀v ∈ [n]. For each leader v, Pv contains a prepared-certificate for each request r
that was prepared at u with sequence number higher than snv, if replica v does
not possess a commit-certificate for r. Similarly, Q contains sets Qv ∀v ∈ [n]. Qv

consists of a commit-certificate for each request r that was prepared at u with
sequence number higher than snv.

Reliable Broadcast (Algorithm 2, Steps 6–11). The primary of epoch e+1
(pe+1) waits for 2f epoch-change messages for epoch e. Upon receiving a suf-
ficient number of messages, the primary performs a classical 3-phase reliable
broadcast. During the broadcast, the primary informs leaders on the number of
requests assigned to each leader in the next epoch and the identifiers of the repli-
cas which send epoch-change messages. The number of requests assigned to a
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Algorithm 2. Epoch-change protocol for epoch e + 1
1: Starting epoch-change
2: as replica u:
3: broadcast 〈epoch-change, e + 1, S, C, P, Q, u〉
4: upon receiving 2f epoch-change messages for e + 1:

5: start epoch-change timer Te

6: Reliable broadcast
7: as primary pe+1:
8: compute Cv(e + 1) (Algorithm 3) for all leaders v ∈ [n]

9: perform 3-phase reliable broadcast sharing configuration details of epoch e+1
and the performance of primary pe

10: as replica u:
11: participate in reliable broadcast initiates by pe+1

12: Starting epoch
13: as primary pe+1:
14: broadcast 〈new-epoch, e + 1, V, O, pe+1〉
15: enter epoch e + 1
16: as replica u:
17: accept 〈new-epoch, e + 1, V, O, pe+1〉
18: enter epoch e + 1

leader is computed deterministically (Algorithm 3). Through the reliable broad-
cast, we ensure that the primary cannot share conflicting information regarding
the sequence number assignment and, in turn, the next epoch’s sequence number
distribution. In addition to sharing information about the epoch configuration,
the primary also broadcasts the total number of requests committed during the
previous epoch. This information is used by the network to evaluate primary
performance and determine epoch primaries.

Starting Epoch (Algorithm 2, Steps 12–18). The primary pe+1 multicasts
〈new-epoch, e + 1,V,O, pe+1〉. Here, the set V contains sets Vu, which carry the
valid epoch-change messages of each replica u of epoch e received by the primary
of epoch e+1, plus the epoch-change message the primary of epoch e+1 would
have sent. O consists of sets Ov ∀v ∈ [n] containing pre-prepare messages and
commit-certificates.

Ov is computed as follows. First, the primary determines the sequence num-
ber Smin(v) of the latest stable checkpoint in V and the highest sequence num-
ber Smax(v) in a prepare message in V. For each sequence number snv between
Smin(v) and Smax(v) of all leaders v ∈ [n] there are three cases: (a) there is
at least one set in Qv of some epoch-change message in V with sequence num-
ber snv, (b) there is at least one set in Pv of some epoch-change message in V
with sequence number snv and none in Qv, or (c) there is no such set. In the first
case, the primary simply prepares a commit-certificate it received for snv. In the
second case, the primary creates a new message 〈pre-prepare, snv, e + 1, d, pe+1〉,
where d is the request digest in the pre-prepare message for sequence number snv

with the highest epoch number in V. In the third case, the primary creates a
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Fig. 3. Schematic of message flow for hanging requests. In this example, the primary
is replica 0, and the request falls into the bucket of replica 1.

new pre-prepare message 〈pre-prepare, snv, e + 1, dnull, pe+1〉, where dnull is the
digest of a special null request; a null request goes through the protocol like
other requests, but its execution is a no-op. If there is a gap between Smax(v)
and the last sequence number assigned to leader v in epoch e, these sequence
numbers will be newly assigned in the next epoch.

Next, the primary appends the messages in O to its log. If Smin(v) is greater
than the sequence number of its latest stable checkpoint, the primary also inserts
the proof of stability (the checkpoint with sequence number Smin(v)) in its log.
Then it enters epoch e + 1; at this point, it can accept messages for epoch e + 1.

A replica accepts a new-epoch message for epoch e + 1 if: (a) it is signed
properly, (b) the epoch-change messages it contains are valid for epoch e + 1,
(c) the information in V matches the new request assignment, and (d) the set O
is correct. The replica verifies the correctness of O by performing a computation
similar to the one previously used by the primary. Then, the replica adds the
new information contained in O to its log and decides all requests for which
a commit-certificate was sent. Replicas rerun the protocol for messages with
sequence numbers between Smin(v) and Smax(v) without a commit-certificate.
They do not execute client requests again (they use their stored information
about the last reply sent to each client instead). As request messages and stable
checkpoints are not included in new-epoch messages, a replica might not have
some of them available. In this case, the replica can easily obtain the missing
information from other replicas in the system.

Hanging Requests. While the primary sends out the pre-prepare message for
all hanging requests, replicas in whose buckets the requests fall, are responsible
for computing prepared- and commit-certificates of the individual requests. In
the example shown in Fig. 3, the primary of epoch e + 1, replica 0, sends a
pre-prepare message for a request in a bucket of replica 1, contained in the
new-epoch message, to everyone. Replica 1 is then responsible for prepared- and
commit-certificates, as well as collecting the corresponding partial signatures.

The number of request Cv(e + 1) assigned to leader v in epoch e + 1 is
determined deterministically based on its past performance (Algorithm 3). By
cv(e) we denote the number of requests committed under leader v in epoch e.
Each leader is re-evaluated during the epoch-change. If a leader successfully
committed all assigned requests in the preceding epoch, we double the number
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of requests this leader is given in the following epoch. Else, it is assigned the
maximum number of requests it committed within the last f + 1 epochs.

Algorithm 3. Configuration adjustment
1: initially Cv(1) = Cmin for all replicas v
2: if cv(e) < Cv(e):

3: Cv(e + 1) = max

(
Cmin, max

i∈{0,...,f}
cv(e − i)

)

4: else:
5: Cv(e + 1) = 2 · cv(e)

Epoch-Change Timer. A replica sets an epoch-change timer Te upon entering
the epoch-change for epoch e + 1. By default, we configure the timer Te such
that a correct primary can successfully finish the epoch-change after GST. If the
timer expires without seeing a valid new-epoch message, the replica requests an
epoch-change for epoch e + 2. If a replica has experienced at least f unsuccess-
ful consecutive epoch-changes previously, the replica doubles the timer’s value.
It continues to do so until it sees a valid new-epoch message. We only start
doubling the timer after f unsuccessful consecutive epoch-changes to avoid hav-
ing f byzantine primaries in a row, i.e., the maximum number of subsequent
byzantine primaries possible, purposely increasing the timer value exponentially
and, in turn, decreasing the system throughput significantly. As soon as replicas
witness a successful epoch-change, they reduce Te to its default again.

Assignment of Requests. Finally, the number of requests assigned to each
leader is updated during the epoch-change. We limit the number of requests
that can be processed by each leader per epoch to assign the sequence numbers
ahead of time and allow leaders to work independently of each other.

We assign sequence numbers to leaders according to their abilities. As soon as
we see a leader outperforming their workload, we double the number of requests
they are assigned in the following epoch. Additionally, leaders operating below
their expected capabilities are allocated requests according to the highest poten-
tial demonstrated in the past f + 1 rounds. By looking at the previous f + 1
epochs, we ensure that there is at least one epoch with a correct primary in the
leader set. In this epoch, the leader had the chance to display its capabilities.
Thus, basing a leader’s performance on the last f + 1 rounds allows us to see its
ability independent of the possible influence of byzantine primaries.

4 Analysis

We show that FnF-BFT satisfies the properties specified in Sect. 2. A detailed
analysis can be found in Appendix A.
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Safety. We prove FnF-BFT is safe under asynchrony. FnF-BFT generalizes
Linear-PBFT [18], an adaptation of PBFT [9] that reduces its authenticator
complexity during epoch operation. We thus rely on similar arguments to prove
FnF-BFT’s safety in Theorem 1.

Liveness. We show FnF-BFT makes progress after GST (Theorem 2). FnF-
BFT’s epoch-change uses the following techniques to ensure that correct replicas
become synchronized (Definition 1) after GST: (1) A replica in epoch e observ-
ing epoch-change messages from f + 1 other replicas calling for any epoch(s)
greater than e issues an epoch-change message for the smallest such epoch e′.
(2) A replica only starts its epoch-change timer for epoch e′ after receiving 2f
other epoch-change messages for epoch e′, thus ensuring that at least f + 1 cor-
rect replicas have broadcasted an epoch-change message for epoch e′. Hence, all
correct replicas start their epoch-change timer for an epoch e′ within at most 2
message delay. After GST, this amounts to at most 2Δ. (3) Byzantine replicas
are unable to impede progress by calling frequent epoch-changes, as an epoch-
change will only happen if at least f + 1 replicas call it. A byzantine primary
can hinder the epoch-change from being successful. However, there can only be
f byzantine primaries in a row.

Efficiency. To demonstrate FnF-BFT’s efficiency, we analyze the authenticator
complexity for reaching consensus during an epoch. Like Linear-PBFT [18], using
each leader as a collector for partial signatures in the backup prepare and commit
phase, allows FnF-BFT to achieve linear complexity during epoch operation.
We continue by calculating the authenticator complexity of an epoch-change.
Intuitively speaking, we reduce PBFT’s view-change complexity from Θ(n3) to
Θ(n2) by employing threshold signatures. However, as FnF-BFT allows for
n simultaneous leaders, we obtain an authenticator complexity of Θ(n3) as a
consequence of sharing the same information for n leaders during the epoch-
change. Finally, we argue that after GST, there is sufficient progress by correct
replicas to compensate for the high epoch-change cost (Theorem 3).

Optimistic Performance. We assess FnF-BFT’s optimistic performance,
i.e., we theoretically evaluate its best-case throughput, assuming all replicas
are correct and the network is synchronous. We further assume that the best-
case throughput is limited by the available computing power of each replica –
mainly required for the computation and verification of cryptographic signa-
tures – and that the available computing power of each correct replica is the
same. In this model, we demonstrate that FnF-BFT achieves higher through-
put than sequential-leader protocols by the means of leader parallelization. To
show the speed-up gained through parallelization, we first analyze the optimistic
epoch throughput of FnF-BFT, i.e., the throughput of the system during sta-
ble networking conditions in the best-case scenario with 3f + 1 correct repli-
cas (Lemma 6). Later, we consider the repeated epoch changes and show that
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FnF-BFT’s throughput is dominated by its authenticator complexity during the
epochs. To that end, observe that for Cmin ∈ Ω(n2), every epoch will incur an
authenticator complexity of Ω(n3) per replica and thus require Ω(n3) time units.
We show that after GST, an epoch-change under a correct primary requires
Θ(n2) time units (Lemma 7). We conclude our analysis by quantifying FnF-
BFT’s overall best-case throughput. Specifically, we prove that the speed-up
gained by moving from a sequential-leader protocol to a parallel-leader protocol
is proportional to the number of leaders (Theorem 4).

Byzantine-Resilient Performance. While many BFT protocols present prac-
tical evaluations of their performance that ignore byzantine adversarial behav-
ior [9,18,35,38], we provide a novel, theoretical byzantine-resilience guarantee.
We first analyze the impact of byzantine replicas in an epoch under a correct
primary. We consider the replicas’ roles as backups and leaders separately. On
the one hand, for a byzantine leader, the optimal strategy is to leave as many
requests hanging, while not making any progress (Lemma 9). On the other hand,
as a backup, the optimal byzantine strategy is not helping other leaders to make
progress (Lemma 10). In conclusion, we observe that byzantine replicas have
little opportunity to reduce the throughput in epochs under a correct primary.
Specifically, we show that after GST, the effective utilization under a correct
primary is at least 8

9 for n → ∞ (Theorem 5).
Next, we discuss the potential strategies of a byzantine primary trying to

stall the system. We first show that under a byzantine primary, an epoch is
either aborted quickly or Ω(n3) new requests become committed (Lemma 11).
Then, we prove that rotating primaries across epochs based on primary perfor-
mance history reduces the control of the byzantine adversary on the system. In
particular, byzantine primaries only have one turn as primary throughout any
sliding window in a stable network. Combining all the above, we conclude that
FnF-BFT’s byzantine-resilient utilization is asymptotically 8

9 · g−f
g > 16

27 for
n → ∞ (Theorem 7), where g is the fraction of byzantine primaries in the sys-
tem’s stable state, while simultaneously dictates how long it takes to get there
after GST.

5 Related Work

Lamport et al. [23] first discussed the problem of reaching consensus in the pres-
ence of byzantine failures. Following its introduction, byzantine fault tolerance
was initially studied in the synchronous network setting [12,13,30]. Dwork et
al. [14] proposed the concept of partial synchrony and demonstrated the fea-
sibility of reaching consensus in partially synchronous networks. Subsequently,
Reiter [32,33] introduced Rampart, an early protocol tackling byzantine fault
tolerance for state machine replication in asynchrony. Then, with PBFT, Castro
and Liskov [9] devised the first efficient protocol for state machine replication
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that tolerates byzantine failures. The leader-based protocol requires O(n2) com-
munication to reach consensus, as well as O(n3) for leader replacement. While
widely deployed, PBFT does not scale well when the number of replicas increases.

Kotla et al. [22] were the first to achieve O(n) complexity with Zyzzyva.
The complexity of leader replacement in Zyzzyva remains O(n3), and safety
violations were later exposed [2]. Later, SBFT [18], improved the complexity
of exchanging leaders to O(n2). While reducing the overall complexity, both
Zyzzyva and SBFT suffer from the single-leader bottleneck.

Developed by Yin et al. [38], leader-based HotStuff matches the O(n) com-
plexity of Zyzzyva and SBFT. HotStuff rotates the leader with every request and
is the first to achieve O(n) for leader replacement. However, HotStuff offers little
parallelization due to its sequential proposal of requests, and experiments have
revealed high complexity in practice [35]. Recently, Gelashvili et al. [16] improved
on HotStuff’s latency while adding an asynchronous fallback to enhance its per-
formance during epoch synchronization. Although this work improves the overall
performance of HotStuff, requests are still processed sequentially. In contrast,
FnF-BFT enables n parallel leaders to propose requests simultaneously.

Parallel Leaders. Leveraging parallel leaders to overcome the single-leader
bottleneck was initially introduced by Mao et al. [26,28] with Mencius and BFT-
Mencius. Mencius maps client requests to the closest leader, and in turn, requests
can become censored. However, no de-duplication measures are in place to handle
the re-submission of censored client requests. FnF-BFT addresses this problem
by periodically rotating leaders over the client space.

Later, Stathakopoulou et al. [35] proposed Mir-BFT that significantly
improved throughput compared to sequential-leader approaches. Mir runs
instances of PBFT on a set of leaders, updating the leader set as soon as a single
leader in the set stops making progress. Hence, we expect Mir’s performance
to drop significantly in the presence of byzantine replicas, as it allows byzan-
tine leaders to repeatedly end epochs early. This is despite its high throughput
demonstrated in the presence of faults. In a follow-up work, Stathakopoulou et
al. [36] addressed Mir’s temporary loss of throughput during epoch changes,
but their protocol still offers no guarantees under attack, unlike FnF-BFT
that maintains a constant fraction of its best-case throughput under byzantine
attacks.

In parallel, Gupta et al. [19] proposed RCC protocol-agnostic approach to
parallelize existing BFT protocols. While allowing multiple instances to each run
an individual request, the protocol requires instances to unify after each request,
creating a significant overhead. Further, RCC relies on failure detection, which is
only possible in synchronous networks [24]. With FnF-BFT, we allow leaders to
make progress independently of each other without relying on failure detection.

Another paradigm that has recently gained traction and enables replicas to
operate in parallel to increase throughput is DAG-based consensus. The core idea
is that the client requests are spread reliably as fast as the network permits and
replicas accumulate them in a DAG. Subsequently, the replicas extract the total
ordering of the accumulated requests from their local DAG without exchanging
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additional messages. DAG-based protocols, initially introduced as consensus sys-
tems for data-center replication, precede blockchains [3,8,27,29,31]. These initial
DAG protocols are, however, very complex and have high latency. Lately, sev-
eral DAG-based consensus protocols have been proposed this time in the context
of blockchains. Some are purely DAG-based [1] while others employ the DAG
structure as transportation means for unconfirmed requests, e.g., [11], and on
top execute a randomized BFT protocol [11,17,20,25,34]. The state-of-the-art
Bullshark [34] achieves (minimum) constant latency with linear communication
complexity in the partially synchronous model, similarly to FnF-BFT. While all
these works achieve staggering throughput, none of them provide any provable
guarantees on their throughput under Byzantine attacks.

Byzantine Resilience. Byzantine resilience was initially explored by Clement
et al. [10] with Aardvark. Aardvark is an adaptation of PBFT with frequent
view-changes: a leader only stays in its position when displaying an increasing
throughput level. This approach comes with significant performance cuts in net-
works without failures. Parallel leaders allow FnF-BFT to be byzantine-resilient
without accepting significant performance losses in an ideal setting.

Prime, proposed by Amir et al. [4], aims to maximize performance in mali-
cious environments. Besides adding delay constraints that further confine the
partially synchronous network model, Prime restricts its evaluation to delay
attacks, i.e., a byzantine leader adds as much delay to the protocol as possible.
Similarly, Veronese et al. [37] only evaluated their proposed protocol, Spinning,
in the presence of delay attacks – not fully capturing possible byzantine attacks.
Consequently, the maximum performance degradation Spinning and Prime can
incur under byzantine faults is at least 78% [6]. We analyze FnF-BFT theoret-
ically to capture the entire spectrum of possible byzantine attacks.

Aublin et al. [6] further explored the performance of BFT protocols under
byzantine attacks with RBFT. RBFT runs f backup instances on the same
set of client requests as the master instance to discover whether the master
instance is byzantine. Thus, RBFT incurs quadratic communication complex-
ity for every request. To the contrary, FnF-BFT achieves a communication
complexity of O(n) and further increases performance through parallelization –
allowing byzantine-resilience without the added burden of detecting byzantine
leaders.

Acknowledgments. The work was partially supported by the Austrian Science Fund
(FWF) through the project CoRaF (grant agreement 2020388) and by the European
Research Council (ERC) under the ERC Starting Grant (SyNET) 851809.

A Analysis

We show that FnF-BFT satisfies the properties specified in Sect. 2. In particular,
we prove the safety and liveness of FnF-BFT, argue that it is efficient, and
evaluate its resilience to byzantine attacks in stable network conditions.
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A.1 Safety

FnF-BFT generalizes Linear-PBFT [18], which is an adaptation of PBFT [9]
that reduces its authenticator complexity during epoch operation. We thus rely
on similar arguments to prove FnF-BFT’s safety in Theorem 1.

Theorem 1. If any two correct replicas commit a request with the same sequence
number, they both commit the same request.

Proof. We start by showing that if 〈prepared-certificate, sn, e, σ(d)〉 exists, then
〈prepared-certificate, sn, e, σ(d′)〉 cannot exist for d′ �= d. Here, d = h(sn‖e‖r)
and d′ = h(sn‖e‖r′). Further, we assume the probability of r �= r′ and d = d′

to be negligible. The existence of 〈prepared-certificate, sn, e, σ(d)〉 implies that
at least f + 1 correct replicas sent a pre-prepare message or a prepare mes-
sage for the request r with digest d in epoch e with sequence number sn. For
〈prepared-certificate, sn, e, σ(d′)〉 to exist, at least one of these correct replicas
needs to have sent two conflicting prepare messages (pre-prepare messages in
case it leads sn). This is a contradiction.

Through the epoch-change protocol we further ensure that correct replicas
agree on the sequence of requests that are committed locally in different epochs.
The existence of 〈prepared-certificate, sn, e, σ(d)〉 implies that there cannot exist
〈prepared-certificate, sn, e′, σ(d′)〉 for d′ �= d and e′ > e. Any correct replica only
commits a request with sequence number sn in epoch e if it saw the corre-
sponding commit-certificate. For a commit-certificate for request r with digest d
and sequence number sn to exist a set R1 of at least f + 1 correct replicas
needs to have seen 〈prepared-certificate, sn, e, σ(d)〉. A correct replica will only
accept a pre-prepare message for epoch e′ > e after having received a new-epoch
message for epoch e′. Any correct new-epoch message for epoch e′ > e must
contain epoch-change messages from a set R2 of at least f + 1 correct repli-
cas. As there are 2f + 1 correct replicas, R1 and R2 intersect in at least one
correct replica u. Replica u’s epoch-change message ensures that information
about request r being prepared in epoch e is propagated to subsequent epochs,
unless sn is already included in the stable checkpoint of its leader. In case the
prepared-certificate is propagated to the subsequent epoch, a commit-certificate
will potentially be propagated as well. If the new-epoch message only includes
the prepared-certificate for sn, the protocol is redone for request r with the same
sequence number sn. In the two other cases, the replicas commit sn locally upon
seeing the new-epoch message and a correct replica will never accept a request
with sequence number sn again. �

A.2 Liveness

One cannot guarantee safety and liveness for deterministic BFT protocols in
asynchrony [15]. We will, therefore, show that FnF-BFT eventually makes
progress after GST. In other words, we consider a stable network when dis-
cussing liveness. Furthermore, we assume that after an extended period without
progress, the time required for local computation in an epoch-change is negligi-
ble. Thus, we focus on analyzing the network delays for liveness.
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Definition 1. Two replicas are called synchronized, if they start their epoch-
change timer for an epoch e within at most 2Δ.

Similar to PBFT [9], FnF-BFT’s epoch-change employs three techniques to
ensure that correct replicas become synchronized (Definition 1) after GST:

1. A replica in epoch e observing epoch-change messages from f+1 other replicas
calling for any epoch(s) greater than e issues an epoch-change message for
the smallest such epoch e′.

2. A replica only starts its epoch-change timer after receiving 2f other epoch-
change messages, thus ensuring that at least f +1 correct replicas have broad-
casted an epoch-change message for the epoch (or higher). Hence, all correct
replicas start their epoch-change timer for an epoch e′ within at most 2 mes-
sage delay. After GST, this amounts to at most 2Δ.

3. Byzantine replicas are unable to impede progress by calling frequent epoch-
changes, as an epoch-change will only happen if at least f + 1 replicas call
it. A byzantine primary can hinder the epoch-change from being successful.
However, there can only be f byzantine primaries in a row.

Lemma 1. After GST, correct replicas eventually become synchronized.

Proof. Let u be the first correct replica to start its epoch-change timer for
epoch e at time t0. Following (2), this implies that u received at least 2f other
epoch-change messages for epoch e (or higher). Of these 2f messages, at least f
originate from other correct replicas. Thus, together with its own epoch-change
message, at least f + 1 correct replicas broadcasted epoch-change messages by
time t0. These f +1 epoch-change messages are seen by all correct replicas at the
latest by time t0 + Δ. Thus, according to (1), at time t0 + Δ all correct replicas
broadcast an epoch-change message for epoch e. Consequently, at time t0 + 2Δ
all correct replicas have received at least 2f other epoch-change messages and
will start the timer for epoch e. �
Lemma 2. After GST, all correct replicas will be in the same epoch long enough
for a correct leader to make progress.

Proof. From Lemma 1, we conclude that after GST, all correct replicas will
eventually enter the same epoch if the epoch-change timer is sufficiently large.
Once the correct replicas are synchronized in their epoch, the duration needed
for a correct leader to commit a request is bounded. Note that all correct replicas
will be in the same epoch for a sufficiently long time as the timers are configured
accordingly. Additionally, byzantine replicas are unable to impede progress by
calling frequent epoch-changes, according to (3). �
Theorem 2. If a correct client c broadcasts request r, then every correct replica
eventually commits r.

Proof. Following Lemmas 1 and 2, we know that all correct replicas will eventu-
ally be in the same epoch after GST. Hence, in any epoch with a correct primary,
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the system will make progress. Note that a correct client will not issue invalid
requests. It remains to show that an epoch with a correct primary and a correct
leader assigned to hash bucket h(c) will occur. We note that this is given by
the bucket rotation, which ensures that a correct leader repeatedly serves each
bucket in a correct primary epoch. �

A.3 Efficiency

To demonstrate that FnF-BFT is efficient, we first analyze the authenticator
complexity for reaching consensus during an epoch. Like Linear-PBFT [18], using
each leader as a collector for partial signatures in the backup prepare and commit
phase allows FnF-BFT to achieve linear complexity during epoch operation.

Lemma 3. The authenticator complexity for committing a request during an
epoch is Θ(n).

Proof. During the leader prepare phase, the authenticator complexity is at most
n. The primary computes its signature to attach it to the pre-prepare message.
This signature is verified by no more than n − 1 replicas.

Furthermore, the backup prepare and commit phase’s authenticator complex-
ity is less than 3n each. Initially, at most n − 1 backups, compute their partial
signature and send it to the leader, who, in turn, verifies 2f of these signatures.
The leader then computes its partial signature, as well as computing the com-
bined signature. Upon receiving the combined signature, the n−1 backups need
to verify the signature.

Overall, the authenticator complexity committing a request during an epoch
is thus at most 7n + o(n) ∈ Θ(n). �

Next, we analyze the authenticator complexity of an epoch-change. Intu-
itively speaking, we reduce PBFT’s view-change complexity from Θ(n3) to Θ(n2)
by employing threshold signatures. However, as FnF-BFT allows for n simulta-
neous leaders, we obtain an authenticator complexity of Θ(n3) as a consequence
of sharing the same information for n leaders during the epoch-change.

Lemma 4. The authenticator complexity of an epoch-change is Θ(n3).

Proof. The epoch-change for epoch e + 1 is initiated by replicas sending epoch-
change messages to the primary of epoch e + 1. Each epoch-change message
holds n authenticators for each leader’s last checkpoint-certificates. As there
are at most 2k hanging requests per leader, further O(n) authenticators for
prepared- and commit-certificates of the open requests per leader are included
in the message. Additionally, the sending replica also includes its signature.
Each replica newly computes its signature to sign the epoch-change message,
the remaining authenticators are already available and do not need to be created
by the replicas. Thus, a total of no more than n authenticators are computed
for the epoch-change messages. Note that epoch-change messages contain Θ(n)
authenticators. Thus, the number of authenticators received by each replica is
Θ(n2).
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After the collection of 2f + 1 epoch-change messages, the primary performs
a classical 3-phase reliable broadcast. The primary broadcasts the same signed
message to start the classical 3-phase reliable broadcast. While the primary
computes 1 signature, at most n − 1 replicas verify this signature. In the two
subsequent rounds of all-to-all communication, each participating replica com-
putes 1 and verifies 2f signatures. Thereby, the authenticator complexity of each
round of all-to-all communication is at most (2f +1) ·n. Thus, the authenticator
complexity of the 3-phase reliable broadcast is bounded by (4f + 3) · n ∈ Θ(n2).

After successfully performing the reliable broadcast, the primary sends out
a new-epoch message to every replica in the network. The new-epoch message
contains the epoch-change messages held by the primary and the required pre-
prepare messages for open requests. There are O(n) such pre-prepare messages,
all signed by the primary. Finally, each new-epoch message is signed by the pri-
mary. Thus, the authenticator complexity of the new-epoch message is Θ(n2).
However, suppose a replica has previously received and verified an epoch-change
from replica u whose epoch-change message is included in the new-epoch mes-
sage. In that case, the replica no longer has to check the authenticators in u’s
epoch-change message again. For the complexity analysis, it does not matter
when the replicas verify the signature. We assume that all replicas verify the sig-
natures contained in the epoch-change messages before receiving the new-epoch
messages. Thus, the replicas only need to verify the O(n) new authenticators
contained in the new-epoch message.

Overall, the authenticator complexity of an epoch-change is Θ(n3). �
Finally, we argue that after GST, there is sufficient progress by correct repli-

cas to compensate for the high epoch-change cost.

Theorem 3. After GST, the amortized authenticator complexity of committing
a request is Θ(n).

Proof. To find the amortized authenticator complexity of committing a request,
we consider an epoch and the following epoch-change. After GST, the authentica-
tor complexity of committing a request for a correct leader is Θ(n). The timeout
value is set such that a correct worst-case leader creates at least Cmin requests in
each epoch initiated by a correct primary. Thus, there are Θ(n) correct replicas,
each committing Cmin requests. By setting Cmin ∈ Ω(n2), we guarantee that at
least Ω(n3) requests are created during an epoch given a correct primary.

Byzantine primaries can ensure that no progress is made in epochs they
initiate, simply by withholding the new-epoch messages. However, at most a
constant fraction of epochs lies in the responsibility of byzantine primaries. We
conclude that, on average, Ω(n3) requests are created during an epoch.

Following Lemma 4, the authenticator complexity of an epoch-change is
Θ(n3). Note that the epoch-change timeout Te is set so that correct primaries
can successfully finish the epoch-change after GST. Not every epoch-change
will be successful immediately, as byzantine primaries might cause unsuccessful
epoch-changes. Specifically, byzantine primaries can purposefully summon an
unsuccessful epoch-change to decrease efficiency.
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In case of an unsuccessful epoch-change, replicas initiate another epoch-
change – and continue doing so – until a successful epoch-change occurs. How-
ever, we only need to start O(1) epoch-changes on average to be successful
after GST, as the primary rotation ensures that at least a constant fraction
of primaries is correct. Hence, the average cost required to reach a successful
epoch-change is Θ(n3).

We find the amortized request creation cost by adding the request creation
cost to the ratio between the cost of a successful epoch-change and the number
of requests created in an epoch, that is, Θ(n) + Θ(n3)

Ω(n3) = Θ(n). �

A.4 Optimistic Performance

Throughout this section, we make the following optimistic assumptions: all repli-
cas are considered correct, and the network is stable and synchronous. We employ
this model to assess the optimistic performance of FnF-BFT, i.e., theoretically
evaluating its best-case throughput. Note that this scenario is motivated by prac-
tical applications, as one would hope to have functioning hardware at hand, at
least initially. Additionally, we assume that the best-case throughput is limited
by the available computing power of each replica – predominantly required for
the computation and verification of cryptographic signatures. We further assume
that the available computing power of each correct replica is the same, which
we believe is realistic as the same hardware will often be employed for each
replica in practice. Without loss of generality, each leader can compute/verify
one authenticator per time unit. As throughput, we define the number of requests
committed by the system per time unit. Finally, we assume that replicas only
verify the authenticators of relevant messages. For example, a leader receiving
3f prepare messages for a request will only verify 2f authenticators. Similarly,
pre-prepare messages outside the leaders’ watermarks will not be processed by
backups. Note that we will carry all assumptions into the next section. There
they will, however, only apply to correct replicas.

Sequential-Leader Protocols. We claim that FnF-BFT achieves higher
throughput than sequential-leader protocols due to its leader parallelization.
To support this claim, we compare FnF-BFT’s throughput to that of a generic
sequential-leader protocol. The generic sequential-leader protocol serves as an
asymptotic characterization of several sequential-leader protocols, e.g., [9,18,38].

A sequential-leader protocol characteristically relies on a unique leader at any
point in time (Fig. 4). During its reign, the leader is responsible for serving all
client requests. The leader can be rotated repeatedly or only upon failure.

Lemma 5. A sequential-leader protocol requires at least Ω(n) time units to pro-
cess a client request.

Proof. In sequential-leader protocols, a unique replica is responsible for serving
all client requests at any point in time. This replica must verify Ω(n) signatures



188 Z. Avarikioti et al.

to commit a request while no other replica leads requests simultaneously. Thus,
a sequential-leader protocol requires Ω(n) time units to process a request. �

Fig. 4. Sequential leader example with four leaders taking turns in serving client
requests. Leader changes are indicated by vertical lines.

FNF-BFT Epoch. With FnF-BFT, we propose a parallel-leader protocol that
divides client requests into m · n independent hash buckets. Each hash bucket is
assigned to a unique leader at any time (Fig. 5). The hash buckets are rotated
between leaders across epochs to ensure liveness (cf. Sect. 3.3). Within an epoch,
a leader is only responsible for committing client requests from its assigned hash
bucket(s). Overall, this parallelization leads to a significant speed-up.

Fig. 5. Parallel leader example with four leaders and four hash buckets. In each epoch,
leaders are only responsible for serving client requests in their hash bucket. Epoch-
changes are indicated by vertical lines.

To show the speed-up gained through parallelization, we first analyze the
optimistic epoch throughput of FnF-BFT, i.e., the throughput of the system
during stable networking conditions in a best-case scenario with 3f + 1 correct
replicas. Furthermore, we assume the number of requests included in a checkpoint
to be sufficiently large, such that no leader must ever stall when waiting for a
checkpoint to be created. Finally, we analyze the effects of epoch-changes and
compute the overall best-case throughput of FnF-BFT in the aforementioned
optimistic setting.

Lemma 6. After GST, the best-case epoch throughput with 3f +1 correct repli-

cas is
k · (3f + 1)

k · (19f + 3) + (8f + 2)
.



FnF-BFT 189

Proof. In the optimistic setting, all epochs are initiated by correct primaries,
and thus all replicas will be synchronized after GST.

In FnF-BFT, n leaders work on client requests simultaneously. Similar to
sequential-leader protocols, each leader needs to verify at least O(n) signatures
to commit a request. A leader needs to compute 3 and verify 4f authenticators
precisely to commit a request it proposes during epoch operation. Thus, leaders
need to process a total of 4f +3 ∈ Θ(n) signatures to commit a request. With the
help of threshold signatures, backups involved in committing a request only need
to compute 2 and verify 3 authenticators. We follow that a total of 4f+3+5·3f =
19f + 3 authenticators are computed/verified by a replica for one of its own
requests and 3f requests of other leaders.

After GST, each correct leader v will quickly converge to a Cv such that it
will make progress for the entire epoch-time, hence, working at its full potential.
We achieve this by rapidly increasing the number of requests assigned to each
leader outperforming its assignment and never decreasing the assignment below
what the replica recently managed.

Checkpoints are created every k requests and add to the computational load.
A leader verifies and computes a total of 2f + 2 messages to create a check-
point, and the backups are required to compute 1 partial signature and verify 1
threshold signature. The authenticator cost of creating 3f + 1 checkpoints, one
for each leader, is, therefore, 8f + 2 per replica.

Thus, the best-case throughput of the system is

k · (3f + 1)
k · (19f + 3) + (8f + 2)

.

�
Note that it would have been sufficient to show that the epoch throughput is
Ω(1) per time unit, but this more precise formula will be required in the next
section. Additionally, we would like to point out that the choice of k does not
influence the best-case throughput asymptotically.

FNF-BFT Epoch-Change. As FnF-BFT employs bounded-length epochs,
repeated epoch-changes have to be considered. In the following, we will show
that FnF-BFT’s throughput is dominated by its authenticator complexity dur-
ing the epochs. To that end, observe that for Cmin ∈ Ω(n2), every epoch will
incur an authenticator complexity of Ω(n3) per replica and thus require Ω(n3)
time units.

Lemma 7. After GST, an epoch-change under a correct primary requires Θ(n2)
time units.

Proof. Following Lemma 4, the number of authenticators computed and veri-
fied by each replica for all epoch-change messages is Θ(n2). Each replica also
processes Θ(n) signatures during the reliable broadcast, and O(n) signatures
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for the new-epoch messages. Overall, each replica thus processes Θ(n2) authen-
ticators during the epoch-change. Subsequently, this implies that the epoch-
change requires Θ(n2) time units, as we require only a constant number of mes-
sage delays to initiate and complete the epoch-change protocol. Recall that we
assume the throughput to be limited by the available computing power of each
replica. �

Theoretically, one could set Cmin even higher such that the time the system
spends with epoch-changes becomes negligible. However, there is a trade-off for
practical reasons: increasing Cmin increases the minimal epoch-length, allowing
a byzantine primary to slow down the system for a longer time. Note that the
guarantee for byzantine-resilient performance (cf. Sect.A.5) would still hold.

FNF-BFT Optimistic Performance. Ultimately, it remains to quantify FnF-
BFT’s overall best-case throughput.

Lemma 8. After GST, and assuming all replicas are correct, FnF-BFT
requires O(n) time units to process n client requests on average.

Proof. Under a correct primary, each correct leader will commit at least Cmin ∈
Ω(n2) requests after GST. Hence, FnF-BFT will spend at least Ω(n3) time
units in an epoch, while only requiring Θ(n2) time units for an epoch-change
(Lemma 7). Thus, following Lemma 6, FnF-BFT requires an average of O(n)
time units to process n client requests. �

Following Lemmas 5 and 8, the speed-up of a parallel-leader protocol over a
sequential-leader protocol is proportional to the number of leaders.

Theorem 4. If the throughput is limited by the (equally) available computing
power at each replica, the speed-up for equally splitting requests between n parallel
leaders over a sequential-leader protocol is at least Ω(n).

A.5 Byzantine-Resilient Performance

While many BFT protocols present practical evaluations of their performance
that neglect truly byzantine adversarial behavior [9,18,35,38], we provide a
novel, theory-based byzantine-resilience guarantee. We first analyze the impact
of byzantine replicas in an epoch under a correct primary. Next, we discuss the
potential strategies of a byzantine primary trying to stall the system. And finally,
we conflate our observations into a concise statement.

Correct Primary Throughput. To gain insight into the byzantine-resilient
performance, we analyze the optimal byzantine strategy. In epochs led by correct
primaries, we will consider their roles as backups and leaders separately. On the
one hand, for a byzantine leader, the optimal strategy is to leave as many requests
hanging, while not making any progress (Lemma 9).



FnF-BFT 191

Lemma 9. After GST and under a correct primary, the optimal strategy for a
byzantine leader is to leave 2k client requests hanging and commit no request.

Proof. Correct replicas will be synchronized as a correct primary initiates the
epoch. Thus, byzantine replicas’ participation is not required to make progress.

Byzantine leaders can follow the protocol accurately (at any chosen speed),
send messages that do not comply with the protocol, or remain unresponsive.

Hanging requests reduce the throughput as they increase the number of
authenticators shared during the epoch and the epoch-change. Hence, byzan-
tine leaders leave the maximum number of requests hanging, i.e., 2k requests as
all further prepare messages would be discarded by correct replicas.

While byzantine replicas cannot hinder correct leaders from committing
requests, committing any request can only benefit the throughput of FnF-BFT.
To that end, note that after GST, each correct leader v will converge to a Cv

such that it will make progress during the entire epoch-time; hence, prolonging
the epoch-time is impossible. The optimal strategy for byzantine leaders is thus
to stall progress on their assigned hash buckets.

Finally, note that we assume the threshold signature scheme to be robust
and can, therefore, discard any irrelevant message efficiently. �

On the other hand, as a backup, the optimal byzantine strategy is not helping
other leaders to make progress (Lemma 10).

Lemma 10. Under a correct primary, the optimal strategy for a byzantine
backup is to remain unresponsive.

Proof. Byzantine participation in the protocol can only benefit the correct
leaders’ throughput. Invalid messages can simply be ignored, while additional
authenticators are not verified and thus do not reduce the system throughput. �

In conclusion, we observe that byzantine replicas have little opportunity to
reduce the throughput in epochs under a correct primary.

Theorem 5. After GST, the effective utilization under a correct primary is at
least 8

9 for n → ∞.

Proof. Moving from the best-case scenario with 3f + 1 correct leaders to only
2f + 1 correct leaders, each correct leader still processes 4f + 3 authenticators
per request, and 5 authenticators for each request of other leaders. We know
from Lemma 9 that only the 2f +1 correct replicas are committing requests and
creating checkpoints throughout the epoch. The authenticator cost of creating
2f + 1 checkpoints, one for each correct leader, becomes 6f + 2 per replica.

Byzantine leaders can open at most 2k new requests in an epoch. Each hang-
ing request is seen at most twice by correct replicas without becoming com-
mitted. Thus, each correct replica processes no more than 8k authenticators for
requests purposefully left hanging by a byzantine replica in an epoch. Thus, the
utilization is reduced at most by a factor

(
1 − 8kf

T

)
, where T is the maximal
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epoch length. While epochs can finish earlier, this will not happen after GST as
soon as each correct leader v works at its capacity Cv.

Hence, the byzantine-resilient epoch throughput becomes

k · (2f + 1)
k · (14f + 3) + (6f + 2)

·
(

1 − 8kf

T

)
.

By comparing this to the best-case epoch throughput from Lemma 6, we
obtain a maximal throughput reduction of

(2f + 1)(k · (19f + 3) + (8f + 2))
(3f + 1)(k · (14f + 3) + (6f + 2))

·
(

1 − 8kf

T

)
.

Observe that the first term decreases and approaches 8
9 for n → ∞:

(2f + 1)(k · (19f + 3) + (8f + 2))
(3f + 1)(k · (14f + 3) + (6f + 2))

n→∞=
16 + 38k

18 + 42k
≥ 8

9
.

We follow that the epoch time is T ∈ Ω(n3), as we set Cmin ∈ Ω(n2) and
each leader requires Ω(n) time units to commit one of its requests. Additionally,

we know that 8kf ∈ O(n), and thus:
(

1 − 8kf

T

)
n→∞= 1.

For n → ∞, the throughput reduction byzantine replicas can impose on the

system during a synchronized epoch is therefore bounded by a factor
8
9
. �

Byzantine Primary Throughput. A byzantine primary, evidently, aims to
perform the epoch-change as slow as possible. Furthermore, a byzantine primary
can impede progress in its assigned epoch entirely, e.g., by remaining unrespon-
sive. We observe that there are two main byzantine strategies to be considered.

Lemma 11. Under a byzantine primary, an epoch is either aborted quickly or
Ω(n3) new requests become committed.

Proof. A byzantine adversary controlling the primary of an epoch has three
options. Following the protocol and initiating the epoch for all 2f + 1 correct
replicas will ensure high throughput and is thus not optimal. Alternatively, ini-
tiating the epoch for s ∈ [f + 1, 2f ] correct replicas will allow the byzantine
adversary to control the progress made in the epoch, as no correct leader can
make progress without a response from at least one byzantine replica. However,
slow progress can only be maintained as long as at least 2f + 1 leaders con-
tinuously make progress. By setting the no-progress timeout Tp ∈ Θ(T/Cmin),
Ω(n3) new requests per epoch can be guaranteed. In all other scenarios, the
epoch will be aborted after at most one epoch-change timeout Te, the initial
message transmission time 5Δ, and one no-progress timeout Tp.

Note that we do not increase the epoch-change timer Te for f unsuccessful
epoch-changes in a row. In doing so, we prevent f consecutive byzantine pri-
maries from increasing the epoch-change timer exponentially; thus potentially
reducing the system throughput significantly. �
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FNF-BFT Primaries. Primaries rotate across epochs based on their perfor-
mance history to reduce the control of the byzantine adversary on the system.

Lemma 12. After a sufficiently long stable time period, the performance of a
byzantine primary can only drop below the performance of the worst correct pri-
mary once throughout the sliding window.

Proof. The network is considered stable for a sufficiently long time when all lead-
ers work at their capacity limit, i.e., the number of requests they are assigned in
an epoch matches their capacity, and primaries have subsequently been explored
once. As soon as all leaders are working at their capacity limit, we observe the
representative performance of all correct primaries, at least.

FnF-BFT repeatedly cycles through the 2f + 1 best primaries. A primary’s
performance is based on its last turn as primary. Consequently, a primary is
removed from the rotation as soon as its performance drops below one of the f
remaining primaries. We conclude that a byzantine primary will only be nomi-
nated beyond its single exploration throughout the sliding window if its perfor-
mance matches at least the performance of the worst correct primary. �

As its successor determines a primary’s performance, the successor can influ-
ence the performance slightly. However, this is bounded by the number of open
requests – O(n) many – which we consider being well within natural perfor-
mance variations, as Ω(n3) requests are created in an epoch under a correct
primary. Thus, we will disregard possible performance degradation originating
at the succeeding primary.

From Lemma 12, we easily see that the optimal strategy for a byzantine
primary is to act according to Lemma 11 – performing better would only help
the system. In a stable network, byzantine primaries will thus only have one
turn as primary throughout any sliding window. In the following, we consider a
primary to be behaving byzantine if it performs worse than all correct primaries.

Theorem 6. After the system has been in stability for a sufficiently long time
period, the fraction of byzantine behaving primaries is f

g .

Proof. Following from Lemma 12, we know that a primary can only behave
byzantine once in the sliding window. There are a total of g epochs in a sliding
window, and the f byzantine replicas in the network can only act byzantine in
one epoch included in the sliding window. We see that the fraction of byzantine
behaving primaries is f

g . �
The configuration parameter g determines the fraction of byzantine primaries

in the system’s stable state, while simultaneously dictating how long it takes to
get there after GST. Setting g to a small value ensures that the system quickly
recovers from asynchrony. On the other hand, setting g to larger values provides
near-optimal behavior once the system is operating at its optimum.
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FNF-BFT Byzantine-Resilient Performance. Combining the byzantine
strategies from Theorem 5, Lemma 11 and Theorem 6, we obtain the follow-
ing.

Theorem 7. After GST, the effective utilization is asymptotically 8
9 · g−f

g for
n → ∞.

Proof. To estimate the effective utilization, we only consider the throughput
within epochs. That is because the time spent in correct epochs dominates the
time for epoch-changes, as well as the time for failed epoch-changes under byzan-
tine primaries, as the number of replicas increases (Lemma 7). Without loss of
generality, we consider no progress to be made in byzantine primary epochs.
We make this assumption, as we cannot guarantee asymptotically significant
throughput. From Theorem 5, we know that in an epoch initiated by a correct
primary, the byzantine-resilient effective utilization is at least 8

9 for n → ∞. Fur-
ther, at least g−f

g of the epochs are led by correct primaries after a sufficiently
long time period in stability and thus obey this bound (Theorem 6). In the limit
for n → ∞ the effective utilization is 8

9 · g−f
g . �

B Implementation and Preliminary Evaluation

Features. FnF-BFT’s proof-of-concept implementation is directly based on
the code of HotStuff’s open-source prototype implementation libhotstuff.3

We implement the basic functionality of FnF-BFT including the epoch-change
and watermarks, while only changing ≈ 2000 lines of code and maintaining the
general framework and experiment setup. In addition, we extend both imple-
mentations to support BLS threshold signatures.4

Threshold Signatures. Note that while HotStuff is designed with threshold
signatures in mind and relies on them for its theoretic performance analysis [38],
libhotstuff uses sets of 2f + 1 signatures instead of real threshold signatures.
While this workaround maintains a complexity of O(n) for creation of such
a “threshold signature”, it comes at the expense of a verification complexity
of O(n) as well. In HotStuff, this additional overhead affects mainly the non-
primary replicas, which would otherwise be idle in the HotStuff protocol. How-
ever, the design of FnF-BFT ensures that all replicas’ computational resources
are utilized at all times. Since the originally used secp256k1 cryptographic sig-
natures appear to be more optimized than the BLS threshold signatures, and to
ensure a fair comparison, we thus compare FnF-BFT’s throughput and latency
to HotStuff using the identical BLS threshold signature implementation.

Limitations. As in the theoretical analysis (see Sect. 3.1), we did not implement
a batching process for client requests. Hence, each block contains only a single

3 https://github.com/hot-stuff/libhotstuff.
4 https://github.com/herumi/bls.

https://github.com/hot-stuff/libhotstuff
https://github.com/herumi/bls
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client request. For this reason, the expected throughput (and typically reported
number for BFT protocols) in practical deployments is much higher.

While FnF-BFT’s design inherently allows to utilize concurrent threads
during epoch operation, e.g., to interact with all parallel leaders, our proof-
of-concept implementation currently only supports single-threaded operation.

Setup and Methodology. We compare FnF-BFT’s single-threaded imple-
mentation to both single- and multi-threaded HotStuff (with 12 threads per
replica) with respect to best-case performance, i.e., throughput and latency
when all n replicas operate correctly. Experiments are repeated for n ∈
{4, 7, 10, 16, 31, 61} replicas. We deploy both protocols on Amazon EC2 using
c5.4xlarge AWS cloud instances. Each replica is assigned to a dedicated VM
instance with 16 CPU cores powered by Intel Xeon Platinum 8000 processors
clocked at up to 3.6 GHz, 32 GB of RAM, and a maximum network bandwidth
of 10 Gigabits per second.

We measure the average throughput and latency over multiple epochs to
include the expected drop in performance for FnF-BFT during the epoch-
change. For each experiment, we run both protocols for at least three minutes
and measure their average performance accordingly. We divide the hash space
into n buckets, resulting in one bucket per replica. For generating requests, we
run the libhotstuff client with its default settings, meaning that the payload
of each request is empty. Clients generate and broadcast four requests in paral-
lel, and issue a new request whenever one of their requests is answered. For the
throughput measurements, we launch sufficiently many clients until we observe
that no buckets are idle. For the latency measurement, we run a single client
instance such that the system does not operate at its throughput limit. In gen-
eral, we use the same settings for both protocols wherever applicable (Table 1).

Table 1. Experiment parameters used for FnF-BFT and HotStuff, if applicable.

Parameter Value

Requests per block 1

Threads per replica 1

Threads per client 4

Epoch timeout 30s

Parameter Value

No progress timeout 2s

Blocks per checkpoint (K) 50

Watermark window size (2 ∗ K) 100

Initial epoch watermark bounds 10000

Performance. Figure 6 depicts a best-case operation of FnF-BFT over five
epochs and demonstrates its consistently high throughput.5 As expected, the
throughput of our protocol stalls during an epoch-change. However, in compar-
ison to HotStuff (Fig. 7), FnF-BFT’s average throughput remains on top over

5 Note that a rate of 200 batches per second with a typical batch size of 500 commands
per batch translates to a throughput of 100,000 requests per second.
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multiple epochs (i.e., including the epoch-change gap). As HotStuff’s through-
put decreases for increasing number of replicas, FnF-BFT showcases its superior
scalability. Specifically, FnF-BFT handles large amounts of requests up to 4.7×
faster than multi-threaded and 16× faster than single-threaded HotStuff.

Figure 8 depicts the average latency of both FnF-BFT and HotStuff, showing
that they scale similarly with the number of replicas. As latency expresses the
time between a request being issued and committed, both protocols exhibit very
fast finality for requests on average, even with many replicas. In combination,
Fig. 7 and Fig. 8 demonstrate the high performance and competitiveness of FnF-
BFT with HotStuff, especially when scaling to many replicas.

Fig. 6. Throughput of FnF-BFT with n = 4 replicas over 5 epochs.

Fig. 7. Average Throughput Compari-
son

Fig. 8. Average Latency Comparison
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Abstract. Sharding distributed ledgers is a promising on-chain solution
for scaling blockchains but lacks formal grounds, nurturing skepticism
on whether such complex systems can scale blockchains securely. We fill
this gap by introducing the first formal framework as well as a roadmap
to robust sharding. In particular, we first define the properties sharded
distributed ledgers should fulfill. We build upon and extend the Bitcoin
backbone protocol by defining consistency and scalability. Consistency
encompasses the need for atomic execution of cross-shard transactions to
preserve safety, whereas scalability encapsulates the speedup a sharded
system can gain in comparison to a non-sharded system.

Using our model, we explore the limitations of sharding. We show that
a sharded ledger with n participants cannot scale under a fully adaptive
adversary, but it can scale up to m shards where n = c′m log m, under
an epoch-adaptive adversary; the constant c′ encompasses the trade-off
between security and scalability. This is possible only if the sharded
ledgers create succinct proofs of the valid state updates at every epoch.
We leverage our results to identify the sufficient components for robust
sharding, which we incorporate in a protocol abstraction termed Divide
& Scale. To demonstrate the power of our framework, we analyze the
most prominent sharded blockchains (Elastico, Monoxide, OmniLedger,
RapidChain) and pinpoint where they fail to meet the desired properties.

Keywords: Blockchains · Sharding · Scalability · Formalization

1 Introduction

A promising solution to scaling blockchain protocols is sharding, e.g. [33,36,53,
55]. Its high-level idea is to employ multiple blockchains in parallel, the shards,
that operate using the same consensus protocol. Different sets of participants
run consensus and validate transactions, so that the system “scales out”.

However, there is no formal definition of a robust sharded ledger (similar to
the definition of what a robust transaction ledger is [24]), which leads to mul-
tiple problems. First, each protocol defines its own set of goals, which tend to
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favor the protocol design presented. These goals are then confirmed achievable
by experimental evaluations that demonstrate their improvements. Additionally,
due to the lack of robust comparisons (which cannot cover all possible Byzan-
tine behaviors), sharding is often criticized as some believe that the overhead of
transactions between shards cancels out the potential benefits. In order to fun-
damentally understand sharding, one must formally define what sharding really
is, and then see whether different sharding techniques live up to their promise.

Related Work. Recently, a few systemizations of knowledge on sharding [52],
consensus [8], and cross-shard communication [56] which have also discussed part
of sharding, have emerged. These works, however, do not define sharding in a
formal fashion to enable an “apples-to-apples” comparison of existing works nor
do they explore its limitations.

There are very few works that lay formal foundations for blockchain proto-
cols. In particular, the Bitcoin backbone protocol [24] was the first to formally
define and prove a blockchain protocol, specifically Bitcoin, in a PoW setting.
Later, Pass et al. [41] showed that there is no PoW protocol that can be robust
under asynchrony. With Ouroboros [30] Kiayias et al. extended the ideas of back-
bone to the Proof-of-Stake (PoS) setting, where they showed that it is possible to
have a robust transaction ledger in a semi-synchronous environment as well [21].
However, all of these works consider only non-sharded ledgers but can be used
as stepping stones to the formalization of sharded ledgers.

Our Contribution. In this work, we take up the challenge of providing for-
mal “common grounds” under which we can capture the sharding limitations,
determine the necessary components of a sharding system, and fairly compare
different sharding solutions. We achieve this by defining a formal sharding frame-
work as well as formal bounds of what a sharded transaction ledger can achieve.

To maintain compatibility with the existing models of a robust transaction
ledger, we build upon the work of Garay et al. [24]. We generalize the trans-
action ledger properties, originally introduced in [24], namely Persistence and
Liveness, to also apply to sharded ledgers. Persistence expresses the agreement
between honest parties on the transaction order, while liveness encompasses that
a transaction will eventually be processed and included in the transaction ledger.
Further, we extend the model to capture what sharding offers to blockchain sys-
tems by defining Consistency and Scalability. Consistency is a security property
that conveys the atomic property of cross-shard transactions (transactions that
span multiple shards and should either abort or commit in all shards). Scalabil-
ity, on the other hand, is a performance property that encapsulates the resource
gains per party (in bandwidth, storage, and computation) in a sharded system
compared to a non-sharded system.

Once we define the properties, we explore the limitations of sharding pro-
tocols that satisfy them. We identify a trade-off between the bandwidth require-
ments and how adaptive the adversary is, i. e., how “quickly” the adversary can
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change the corrupted parties. Specifically, with a fully adaptive adversary, scal-
able and secure sharding is impossible in our model. With a slowly-adaptive
adversary, however, sharding can scale securely with up to m shards, where
n = c′m log m. The constant c′ encompasses the trade-off between scalability
and security: if the overall and per-shard adversarial thresholds are close to each
other, then c′ must be large to ensure security within each hard. Furthermore,
scaling against a somewhat adaptive adversary is only possible under two con-
ditions: first, the parties of a shard cannot be light clients to other shards to
scale storage. Second, shards must periodically compact the state updates in a
verifiable and succinct manner (e.g., via checkpoints [33], cryptographic accu-
mulators [10], zero-knowledge proofs [9,39] or other techniques [15,26–28]); else
eventually the bandwidth resources per party will exceed those of a non-sharded
blockchain.

Once we provide solid bounds on the design of sharding protocols, we identify
seven components that are critical to designing a robust permissionless sharded
ledger: (a) a core consensus protocol for each shard, (b) a protocol to partition
transactions in shards, (c) an atomic cross-shard communication protocol that
enables transferring of value across shards, (d) a Sybil-resistance mechanism that
forces the adversary to commit resources in order to participate, (e) a process
that guarantees honest and adversarial nodes are appropriately dispersed to
the shards to defend security against adversarial adaptivity, (f) a distributed
randomness generation protocol, (g) a process to occasionally compact the state
in a verifiable manner. We then employ these components to introduce a protocol
abstraction, termed Divide & Scale, that achieves robust sharding in our model.
We explain the design rationale, provide security proofs, and identify which
components affect the scalability and throughput of our protocol abstraction.

To demonstrate the power of our framework, we further describe, abstract,
and analyze the most well-established permisionless sharding protocols: Elas-
tico [36] (inspiration of Zilliqa), OmniLedger [33] (inspiration of Harmony),
Monoxide [53], and RapidChain [55]. We demonstrate that all sharding sys-
tems fail to meet the desired properties in our model. Elastico and Monoxide do
not actually (asymptotically) improve on storage over non-sharded blockchains
according to our model. OmniLedger is susceptible to a liveness attack where the
adaptive adversary can simply delete a shard’s state effectively preventing the
system’s progress. Albeit, with a simple fix, OmniLedger satisfies all the desired
properties in our model. Last, we prove RapidChain meets the desired properties
but only in a weaker adversarial model. For all protocols, we provide elaborate
proofs while for OmniLedger and RapidChain we further estimate how much
they improve over their blockchain substrate. To that end, we define and use a
theoretical performance metric, termed throughput factor, which expresses the
average number of transactions that can be processed per round under the worst
possible Byzantine behavior. We show that both OmniLedger and RapidChain
scale optimally with m shards where n = O(m log m).

In summary, the contribution of this work is the following:

– We introduce a framework where sharded transaction ledgers are formalized
and the necessary properties of sharding protocols are defined. Further, we

https://zilliqa.com/
https://harmony.one/
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define a throughput factor to estimate the transaction throughput improve-
ment of sharding blockchains over non-sharded blockchains (Sect. 2).

– We explore the limitations of secure and efficient sharding protocols under
our model (Sect. 3, Appendix A).

– We identify the critical and sufficient ingredients for designing a robust
sharded ledger, which we incorporate into a protocol abstraction for robust
sharding, termed Divide & Scale (Sect. 4, Appendix B).

– We evaluate Elastico, Monoxide, OmniLedger, and RapidChain. We pinpoint
where the former three fail to satisfy our properties, whereas the latter satis-
fies them all only under a weaker adversarial model (Sect. 5, Appendix C).

2 The Sharding Framework

In this section, we define the desired security and performance properties of
a secure and efficient distributed sharded ledger, extending the work of Garay
et al. [24]. We further define a theoretical performance metric, the transaction
throughput. To assist the reader, we provide a glossary of the most frequently
used parameters in Table 2 (Section Figures).

2.1 The Model

Network Model. We analyze blockchain protocols assuming a synchronous com-
munication network. In particular, a protocol proceeds in rounds, and at the
end of each round the participants of the protocol are able to synchronize, and
all messages are delivered. A set of R consecutive rounds E = {r1, r2, . . . , rR}
defines an epoch. We consider a fixed number of participants in the system
denoted by n. However, this number might not be known to the parties.

Threat Model. The adversary is slowly-adaptive, meaning that the adversary can
corrupt parties on the fly at the beginning of each epoch but cannot change the
corrupted set during the epoch, i. e., the adversary is static during each epoch.
In addition, in any round, the adversary decides its strategy after receiving
all honest parties’ messages. The adversary can change the order of the honest
parties’ messages but cannot modify or drop them. Furthermore, the adversary is
computationally bounded and can corrupt at most f parties during each epoch.
This bound f holds strictly at every round of the protocol execution. Note
that depending on the specifications of each protocol, i. e., which Sybil-attack-
resistant mechanism is employed, the value f represents a different manifestation
of the adversary’s power (e.g., computational power, stake in the system).

Transaction Model. We assume transactions consist of inputs and outputs that
can only be spent as a whole. Each transaction input is an unspent transaction
output (UTXO). Thus, a transaction takes UTXOs as inputs, destroys them
and creates new UTXOs, the outputs. A transaction ledger that handles such
transactions is UTXO-based, similarly to Bitcoin [40]. Most protocols consid-
ered in this work are UTXO-based. Transactions can have multiple inputs and
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outputs. We define the average size of a transaction, i.e., the average number of
inputs and outputs of a transaction in a transaction set, as a parameter v. This
way v correlates to the number of shards a transaction is expected to affect; the
actual size in bytes is proportional to v but unimportant for measuring scalabil-
ity. Further, we assume a transaction set T follows a distribution DT (e.g. DT is
the uniform distribution if the sender(s) and receiver(s) of each transaction are
chosen uniformly at random from all possible users).

2.2 Sharded Transaction Ledgers

In this section, we introduce the necessary properties a sharding blockchain
protocol must satisfy in order to maintain a robust sharded transaction ledger.
We build upon the definition of a robust transaction ledger introduced in [24].

A sharded transaction ledger is defined with respect to a set of valid1

transactions T and a collection of transaction ledgers for each shard S =
{S1, S2, . . . , Sm}. In each shard i ∈ [m] = {1, 2, . . . ,m}, a transaction ledger is
defined with respect to a set of valid ledgers2 Si and a set of valid transactions.
Each set possesses an efficient membership test. A ledger L ∈ Si is a vector of
sequences of transactions L = 〈x1, x2, . . . , xl〉, where tx ∈ xj ⇒ tx ∈ T,∀j ∈ [l].

In a sharding blockchain protocol, a sequence of transactions xi = tx1 . . . txe

is inserted in a block which is appended to a party’s local chain C in a shard. A
chain C of length l contains the ledger LC = 〈x1, x2, . . . , xl〉 if the input of the
j-th block in C is xj . The position of transaction txj in the ledger of a shard
LC is the pair (i, j) where xi = tx1 . . . txj . . . txe (i. e., the block that contains
the transaction). Essentially, a party reports a transaction txj in position i only
if one of their shards’ local ledger includes transaction txj in the i-th block. We
assume that a block has constant size, i. e., there is a maximum constant number
of transactions included in each block3.

Furthermore, we define a symmetric relation on T , denoted by M(·, ·), that
indicates if two transactions are conflicting, i. e., M(tx, tx′) = 1 ⇔ tx, tx′ are
conflicting. Note that valid ledgers can never contain conflicting transactions.
Similarly, a valid sharded ledger cannot contain two conflicting transactions even
across shards. In our model, we assume there exists a verification oracle denoted
by V (T, S), which instantly verifies the validity of a transaction with respect
to a ledger. In essence, the oracle V takes as input a transaction tx ∈ T and
a valid ledger L = 〈x1, x2, . . . , xl〉 ∈ S and checks whether the transaction is
valid and not conflicting in this ledger; formally, V (tx, L) = 1 ⇔ ∃tx′ ∈ L s.t.
M(tx, tx′) = 1 or L′ = 〈x1, x2, . . . , xl, tx〉 is an invalid ledger.

Next, we introduce the security and performance properties a blockchain
protocol must uphold to maintain a robust and efficient sharded transac-
tion ledger: persistence, consistency, liveness, and scalability. Intuitively, persis-
tence expresses the agreement between honest parties on the transaction order,
1 Validity depends on the application using the ledger.
2 Only one of the ledgers is actually committed as part of the shard’s ledger, but

before commitment there are multiple potential ledgers.
3 To scale in bandwidth, the block size cannot depend on the parties or transactions.
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whereas consistency conveys that cross-shard transactions are either committed
or aborted atomically (in all shards). Liveness indicates that transactions will
eventually be included in a shard, i. e., the system makes progress. Last, scal-
ability encapsulates the speedup of a sharded system in comparison to a non-
sharded system: The blockchain’s throughput limitation stems from the need
for data propagation, maintenance, and verification by every party. Thus, to
scale via sharding, each party must broadcast, maintain and verify mainly local
information.

Definition 1 (Persistence). Parameterized by k ∈ N (“depth” parameter), if
in a certain round an honest party reports a shard that contains a transaction
tx in a block at least k blocks away from the end of the shard’s ledger (such
transaction will be called “stable”), then whenever tx is reported by any honest
party it will be in the same position in the shard’s ledger.

Definition 2 (Consistency). Parametrized by k ∈ N (“depth” parameter),
there is no round r in which there are two honest parties P1, P2 reporting trans-
actions tx1, tx2 respectively as stable (at least in depth k in the respective shards),
such that M(tx1, tx2) = 1.

Both persistence and consistency are necessary properties because one may fail
while the other holds. For instance, if a party double-spends across two shards
without reverting a stable transaction (e.g., due to a badly designed mechanism
to process cross-shard transactions), consistency fails while persistence holds.

We further note consistency depends on the average size of transactions v ∈ N

as well as the distribution of the input set of transactions DT . For example, if all
transactions are intra-shard, consistency is trivially satisfied due to persistence.

To evaluate the system’s progress, we assume that the block size is sufficiently
large, thus a transaction will never be excluded due to space limitations.

Definition 3 (Liveness). Parameterized by u (“wait time”) and k (“depth”
parameter), provided that a valid transaction is given as input to all honest
parties of a shard continuously for the creation of u consecutive rounds, then all
honest parties will report this transaction at least k blocks from the end of the
shard, i. e., all report it as stable.

Scaling distributed ledgers depends on three vectors: communication, space,
and computation. In particular, to allow high transaction throughput, the band-
width and computation required per party should ideally be constant and inde-
pendent of the number of parties while the storage requirements per party should
decrease with the number of parties. Such a system can scale optimally because
an increased transaction load, e.g. double, can be processed with the same stor-
age resources if the parties increase proportionally, e.g. double, as well as the
same communication and computation resources per node. To measure scala-
bility, i.e., the resource requirements per node, we define three scaling factors,
namely the communication, space, and computation factor.

We define the communication factor ωm as the communication complex-
ity of the system (per transaction) scaled over the number of participants. In
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essence, ωm represents the average amount of sent or received data (bandwidth)
required per party to include a transaction in the ledger. ωm expresses the worst
communication complexity of all the subroutines of the system, incorporating
the bandwidth requirements of the protocols both within an epoch (i. e., within
and across shards communication), as well as during epoch transitions (amor-
tized over the epoch’s length). The latter becomes the bottleneck for scalability
in the long run as rotating parties must bootstrap to new shards and download
the ever-growing shard ledgers.

We next introduce the space factor ωs that estimates how much data each
party stores in the system. To do so, we count the amount of data stored in total
by all the parties scaled over the number of parties and the transaction load.
When ωs is constant, Θ(1), each node stores all transactions equivalently to a
central database, e.g., Bitcoin. On the contrary, a perfectly scalable system allows
parties to share the transaction load equally, ωs = c/n, c constant; as a result,
if parties increase proportionally to the transaction load the space resources per
party remain the same.

To define the space factor we introduce the notion of average-case analysis.
Typically, sharding protocols scale well when the analysis is optimistic, that is,
for transaction inputs that contain neither cross-shard nor multi-input (multi-
output) transactions. However, in practice transactions are both cross-shard and
multi-input/output. For this reason, we define the space factor as a random
variable dependent on an input set of transactions T drawn uniformly at random
from a distribution DT .

We assume T is given well in advance as input to all parties. To be specific,
we assume every transaction tx ∈ T is given at least for u consecutive rounds
to all parties of the system. Hence, from the liveness property, all transaction
ledgers held by honest parties will report all transactions in T as stable. Further,
we denote by L�k the vector L where the last k positions are “pruned”, while
|L�k| denotes the number of transactions contained in this “pruned” ledger. We
note that a similar notation holds for a chain C where the last k positions map
to the last k blocks. Each party Pj maintains a collection of ledgers SLj =
{L1, L2, . . . , Ls}, 1 ≤ s ≤ m. We may now define the space factor for a sharding
protocol with input T as the number of stable transactions included in every
party’s collection of transaction ledgers over the number of parties n and the
number of input transactions T 4, ωs(T ) =

∑
∀j∈[n]

∑
∀L∈SLj

|L�k|/(n|T |).
Lastly, we consider the verification process which can be computationally

expensive. In our model, we focus on the average verification cost per transac-
tion. We assume a constant computational cost per verification, i. e., a party’s
running time of verifying if a transaction is invalid or conflicting with a ledger
is considered constant because this process can always speed up using efficient
data structures (e.g. trees allow for logarithmic lookup time). Thus, the compu-
tational cost of a party is defined by the number of times the party executes the
verification process. For this purpose, we employ a verification oracle V . Each

4 Without loss of generality, we assume all transactions are valid and thus are even-
tually included in all honest parties’ ledgers.
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party calls the oracle to verify transactions, pending or included in a block. We
denote by qi the number of times party Pi calls oracle V in a protocol execution.
The computational factor ωc reflects the total number of times all parties
call the verification oracle in a protocol execution scaled over the number of
transactions T , ωc(T ) =

∑
∀i∈[n] qi/|T |.

An ideal sharding system only involves a constant number of parties to verify
each transaction, ωc = Θ(1), while both a typical BFT-based protocol and Bit-
coin demand all nodes to verify all transactions, ωc = Θ(n). Furthermore, the
computational factor is a random variable, hence the objective is to calculate
the expected value of ωc, i. e., the probability-weighted average of all possible
values, where the probability is taken over the input transactions T .

Intuitively, scaling means processing more transactions with similar (i. e., not
proportionally increasing) resources per party. If parties share the transaction
load, e.g., space scales ωs = c/n, increased transactions can be processed by
increasing the number of parties. Subsequently, the communication and com-
putational costs must not increase proportionally to the number of parties, i. e.,
ωc = o(n) and ωm = o(n), else the system cannot truly scale the transaction load.
We observe, however, that in practice protocols may scale well in one dimension
but fail in another. A notable example is the Bitcoin protocol which has mini-
mal communication overhead but does not scale in space and computation. To
ensure overall scaling capabilities, we define the scalability property of sharded
ledgers below; we say that a sharded ledger satisfies scalability if and only if the
system scales in all the aforementioned dimensions.

Definition 4 (Scalability). Parameterized by n (number of participants),
v ∈ N (average size of transactions), DT (distribution of the input set of trans-
actions), the communication, space and computational factors of a sharding
blockchain protocol are ωm = o(n), ωs = o(1), and ωc = o(n), respectively.

In order to adhere to standard security proofs from now on we say that the
protocol Π satisfies property Q in our model if Q holds with overwhelming
probability (in a security parameter). Note that a probability p is overwhelming
if 1 − p is negligible. A function negl(k) is negligible if for every c > 0, there
exists an N > 0 such that negl(k) < 1/kc for all k >≥ N . Furthermore, we
denote by E(·) the expected value of a random variable.

Definition 5 (Robust Sharded Transaction Ledger). A protocol that satis-
fies the properties of persistence, consistency, liveness, and scalability maintains
a robust sharded transaction ledger.

2.3 (Sharding) Blockchain Protocols

In this section, we adopt the definitions and properties of [24] for blockchain
protocols, while we slightly change the notation to fit our model. In particular,
we assume the parties of a shard of any sharding protocol maintain a chain
(ledger) to achieve consensus. This means that every shard internally executes a
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blockchain (consensus) protocol that has three properties as defined by [24]: chain
growth, chain quality, and common prefix. Each consensus protocol satisfies these
properties with different parameters.

In this work, we will use the properties of the shards’ consensus protocol to
prove that a sharding protocol maintains a robust sharded transaction ledger. In
addition, we will specifically use the shard growth and shard quality parameters
to estimate the transaction throughput of a sharding protocol. The following
definitions follow closely Definitions 3, 4 and 5 of [24].

Definition 6 (Shard Growth Property). Parametrized by τ ∈ R and s ∈ N,
for any honest party P with chain C, it holds that for any s rounds there are at
least τ · s blocks added to chain C of P .

Definition 7 (Shard Quality Property). Parametrized by μ ∈ R and l ∈ N,
for any honest party P with chain C, it holds that for any l consecutive blocks
of C the ratio of honest blocks in C is at least μ.

Definition 8 (Common Prefix Property). Parametrized by k ∈ N, for any
pair of honest parties P1, P2 adopting chains C1, C2 (in the same shard) at rounds
r1 ≤ r2 respectively, it holds that C

�k
1 � C2, where � denotes the prefix relation.

Next, we define the degree of parallelism (DoP) of a sharding protocol,
denoted m′. To evaluate the DoP of a protocol with input T , we need to deter-
mine how many shards are affected by each transaction on average; essentially,
estimate how many times we run consensus for each valid transaction until it is
stable. This is determined by the mechanism that handles the cross-shard trans-
actions. To that end, we define mi,j = 1 if the j-th transaction of set T has either
an input or an output that is assigned to the i-th shard; otherwise mi,j = 0.
Then, the DoP of a protocol execution over a set of transactions T is defined as
follows: m′ = T ·m∑T

j=1
∑m

i=1 mi,j
. The DoP of a protocol execution depends on the

distribution of transactions DT , the average size of transactions v, and the num-
ber of shards m. For instance, assuming a uniform distribution DT , the expected
DoP is E(m′) = m/v.

We can now define an efficiency metric, the transaction throughput of a shard-
ing protocol. Considering constant block size, we have:

Definition 9 (Throughput). The expected transaction throughput in s rounds
of a sharding protocol with m shards is μ · τ · s · m′. We define the throughput
factor of a sharding protocol σ = μ · τ · m′.

Intuitively, the throughput factor expresses the average number of blocks that
can be processed per round by a sharding protocol. Thus, the transaction
throughput (per round) can be determined by the block size multiplied by the
throughput factor. The block size is considered constant; however, it cannot be
arbitrarily large. The limit on the block size is determined by the bandwidth of
the “slowest” party within each shard. At the same time, the constant block size
guarantees low latency. If the block size is very large or depends on the number
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of shards or the number of participants, bandwidth or latency becomes the per-
formance bottleneck. As our goal is to estimate the efficiency of the transactions’
parallelism in a protocol, other factors like cross-shard communication latency
are omitted.

3 Limitations of Sharding Protocols

In this section, we present a summary of our analysis on the limitations of
sharding protocols in our framework (cf. Appendix A).

First, we focus on the limitations that stem from the nature of the transaction
workload. In particular, sharding protocols are affected by two characteristics of
the input transaction set: the transaction size v (number of inputs and outputs of
each transaction), and more importantly the number of cross-shard transactions.

The average size of transactions is fairly small in practice, e.g., an average
Bitcoin transaction has 2 inputs and 3 outputs with a small deviation [1]. We thus
assume a fixed number of UTXOs participating in each transaction, meaning
the transaction size v is a small constant. Furthermore, as v increases, more
shards are affected by each transaction on expectation, hence the number of
cross-shard transactions increases. To meaningfully lower bound the ratio of
cross-shard transactions, we thus consider the minimum transaction size v = 2.
If a transaction has more UTXOs, its chance of being cross-shard only increases.

The number of cross-shard transactions depends on the distribution of the
input transactions DT , as well as the process that partitions transactions into
shards. First, we assume each ledger interacts (i. e., shares a cross-shard trans-
action) with γ other ledgers on average, γ being a function dependent on the
number of shards m. We examine protocols where parties maintain information
on shards other than their own and derive an upper bound for the expected
value of γ such that scalability holds. Leveraging that, we prove the following:

Theorem 10. There is no protocol maintaining a robust sharded transaction
ledger against an adaptive adversary in our model controlling f ≥ n/m, where
m is the number of shards, and n is the number of parties.

Next, we extend our results assuming, similarly to most sharding systems,
that the UTXO space is partitioned uniformly at random into shards. In par-
ticular, we first show that a constant fraction of transactions is expected to be
cross-shard. Using that we demonstrate there is no sharded ledger that satisfies
scalability if parties store any information on ledgers (other than their own)
involved in cross-shard transactions, i. e., are light clients on other shards [18].
We stress that our results hold for any distribution where the expected number
of cross-shard transactions is proportional to the number of shards.

Theorem 11. There is no protocol that maintains a robust sharded transaction
ledger in our model under uniform space partition when parties are light nodes
on the shards involved in cross-shard transactions.
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We further identify a concrete trade-off between security and scalability, that
stems from the way parties are partitioned into shards. In particular, when par-
ties are randomly permuted among shards, which is a common practice in shard-
ing, e.g., [33,36], sharding scales almost linearly. The trade-off is now captured
by the constant c′: if the overall and per-shard adversarial thresholds are close
to each other, then c′ must be large to ensure security within each shard.

Theorem 12. Any protocol that maintains a robust sharded transaction ledger
in our model under uniformly random partition of the state and parties, can scale
at most by a factor of m, where n = c′m log m and the constant c′ encompasses
the trade-off between security and scalability.

Finally, we demonstrate the importance of periodical compaction of the valid
state-updates in sharding protocols: we prove that any sharding protocol that
satisfies scalability in our model, when the state is uniformly partitioned and the
parties are periodically shuffled among shards, requires a state-compaction pro-
cess such as checkpoints [33], cryptographic accumulators [10], zero-knowledge
proofs [9], non-interactive proofs of proofs-of-work [15,28], proof of necessary
work [27], erasure codes [26], etc. Intuitively, parties must be periodically shuffled
among shards to maintain security against adaptivity. Subsequently, the parties
must occasionally bootstrap to the new ever-increasing blockchains, leading to
bandwidth or storage overheads that exceed those of a non-sharded blockchain
in the long run. We stress that this result holds even if the parties are not
randomly shuffled among the shards, as long as a significant fraction of parties
changes shards from epoch to epoch.

Theorem 13. Any protocol that maintains a robust sharded transaction ledger
in our model, under uniformly random partition of the state and parties, employs
verifiable compaction of the state.

4 Divide & Scale

In this section, we discuss our design rationale for robust sharding; using the
bounds of Sect. 3, we deduce some sufficient components for robust sharding in
our model. We leverage these components to introduce a protocol abstraction for
robust sharding, termed Divide & Scale, in Algorithm 1. We prove Divide & Scale
is secure in our model (assuming the components are secure) and evaluate its
efficiency depending on the choices of the individual components in Appendix B.

Sharding Components. We explain our design rationale and introduce the
ingredients of a protocol that maintains a robust sharded ledger.

(a) Consensus protocol of shards or Consensus: A sharding protocol either
runs consensus in every shard separately (multi-consensus) or provides
a single total ordering for all the blocks generated in each shard (uni-
consensus [2,43]). Since uni-consensus takes polynomial cost per block, such
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a protocol can only scale if the block size is also polynomial (e.g., includes
Ω(n) transactions [43]). However, in such a case, the resources of each node
generating an Ω(n)-sized block must also grow with n, and therefore scala-
bility cannot be satisfied5. For this reason, in our protocol abstraction, we
chose the multi-consensus approach.
The consensus protocol run per shard must satisfy the properties of Garay
et al. [24]: common prefix, chain quality, and chain growth. These proper-
ties are necessary (but not sufficient) to ensure persistence, liveness, and
consistency.

(b) Cross-shard mechanism or CrossShard: The cross-shard mechanism is
the protocol that handles the transactions that span across multiple shards.
It is critical for the security of the sharding system, as it guarantees consis-
tency, as well as scalability; a naively designed cross-shard mechanism may
induce high storage or communication overhead on the nodes when handling
several cross-shard transactions. To that end, the limitations of Sect. 3 apply.
The cross-shard mechanism should provide the ACID properties (as in
database transactions). Durability and Isolation are provided directly by the
blockchains of the shards, hence, the cross-shard mechanism should provide
Consistency, i. e., every transaction that commits produces a semantically
valid state, and Atomicity, i. e., transactions are committed and aborted
atomically (all or nothing). Typically the cross-shard mechanism runs hand
in hand with the consensus protocol to guarantee consistency across shards.

(c) Sybil-resistance mechanism or Sybil: The Sybil-resistance mechanism
enables the participants of a permissionless setting to reach a global consen-
sus on a set of fairly-selected valid identities. Its fair selection, i. e., assigning
valid identities to each party proportionally to its spent resources, guaran-
tees the security bounds of the consensus protocol (e.g., f < 1/3 for BFT).
To ensure fairness against slowly-adaptive adversaries, the Sybil-resistance
mechanism must have access to unknown unbiasable randomness (see below
DRG). The exact protocol (e.g. PoW, PoS) is irrelevant to our analysis
as long as it guarantees (i) correctness: all parties can verify a valid iden-
tity, (ii) fairness: each party is selected with probability proportional to
its resources, and (iii) unpredictability : no party can predict beforehand the
valid set of identities (for the new epoch).

(d) StatePartition: This protocol determines how the state (e.g. transactions)
is partitioned into shards. A naive design may violate consistency but there
are several secure solutions to employ, e.g. [33,55]. We perform our analysis
assuming all transactions are cross-shard, because any secure protocol that
performs well in the pessimistic case, also performs well when transactions
are intra-shard. Moreover, in the latter case, scaling is not challenging as the
transaction throughput can be processed securely in blockchains that work
in parallel.

5 Due to their inherent inability to asymptotically scale, we believe uni-consensus
systems are categorized as performance optimizations of consensus, e.g., [5,7,19,49,
50].
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(e) Division of nodes to shards or Divide2Shards: This is the protocol
that determines how parties are assigned to shards. It is crucial for security
against slowly adaptive adversaries as a fully corrupted shard may result in
the loss of all three security properties. It is also the reason that sharding
cannot tolerate fully-adaptive adversaries in our model (Theorem 10). Note
that static adversaries are an easier subcase of the slowly adaptive one.
In particular, to ensure transaction finality (i. e., liveness and persistence),
either the consensus security bounds must hold for each shard, or the pro-
tocol must guarantee that if the adversary compromises a shard then the
security violation will be restored within a specific (small) number of rounds.
Specifically, if an adversary completely or partially compromises a shard,
effectively violating the consensus bounds, then the adversary can dou-
ble spend within the shard (violates persistence), as well as across shards
(because nodes cannot verify cross-shard transactions from Lemma 15).
Therefore, the transactions included in these blocks can only be executed
when honest parties have verified them. Partial solutions towards this direc-
tion have been proposed such as proofs of fraud that allow an honest party
to later prove misbehavior. Another challenge of this approach is to guaran-
tee data availability.
Due to the complexity of such solutions and their implications on the trans-
actions’ finality, we design Divide & Scale assuming the security bounds of
consensus are maintained when parties are divided into shards. Specifically,
the parties are shuffled at the beginning of each epoch so that the threat
model holds. A secure shuffling process requires an ubiasable source of ran-
domness (see below DRG). When assigned to a shard, the nodes update their
local state with the state of the new shard they are asked to secure, which
in turn affects scalability. The frequency of shuffling is thereby incorporating
the trade-off between scalability and adaptive security.

(f) Randomness generation protocol or DRG: The DRG protocol provides
unpredictable unbiasable randomness [11,14,16,20,22,34,45,51] such that
both Sybil and Divide2Shards result in shards that maintain the secu-
rity bounds for the consensus protocol. Given a slowly-adaptive adversary,
the DRG protocol must be executed (at least) once per epoch; its high com-
munication complexity can be amortized over the rounds of an epoch such
that the system scales.

(g) Verifiable compaction of state or CompactState: CompactState guar-
antees that periodically state updates can be verifiably compacted. This
protocol is necessary for scaling sharding systems in the long run, as it
ensures that new parties can bootstrap with minimal effort (Theorem 13).
The compacted state must be broadcasted to all parties, e.g. via reliable
broadcast [13], to ensure data integrity and data availability; else a slowly-
adaptive adversary can corrupt an entire shard after an epoch transition,
violating liveness. Any protocol that ensures data binding and data avail-
ability can be used. In summary, this protocol must guarantee (i) verifiable
asymptotic compression (more than constant), and (ii) data integrity and
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availability, i. e., the ledgers’ history is available and can be retrieved. To
satisfy scalability, the protocol must also ensure (iii) efficient communica-
tion complexity with respect to the epoch size (in rounds).

5 Evaluation of Sharding Protocols

To showcase the wide applicability and value of our framework, we evaluate in our
model the well-established sharding protocols Elastico, Monoxide, OmniLedger,
and RapidChain, and discuss Chainspace. We refer the reader to Appendix C
for the complete analysis where we identify each protocol’s sharding components
as defined in Sect. 4 which we use to prove or disprove the desired properties of
Sect. 2, often leveraging the bounds of Sect. 3. Due to space limitations, we only
discuss here the final results of our analysis, also illustrated in Table 1, with
key insights on how each protocol fails to meet some of the properties. We
include in the evaluation the “permissionless” and “slowly-adaptive” properties
to fairly compare the protocols. In our analysis, we evaluate the cross-shard
communication protocols considering the fixes of [48] against replay attacks.

We first show that Elastico does not satisfy consistency in our model because
the adversary may double-spend across shards when multi-input transactions
are allowed (Theorem 25). Additionally, Elastico does not satisfy scalability by
design regardless of the transaction distribution – even with a few cross-shard
transactions (Theorem 27). Specifically, all epoch-transition protocols are exe-
cuted for every block while parties maintain a global hash chain. Thus, transac-
tions are only compressed by a constant factor, the block size, resulting in space
and communication growing proportionally to the number of parties.

We then show that Monoxide does not satisfy scalability because miners
must mine in parallel in all shards, verifying and storing all transactions to ensure
security (Theorem 30). Due to its design rationale, Monoxide cannot scale even
with optimistic transaction distributions with no cross-shard transactions.

Third, we prove that OmniLedger satisfies all properties but liveness (The-
orems 35, 37, 36, 41). Specifically, OmniLedger checkpoints the UTXO pool at
each epoch transition, but the state is not broadcasted to the network. Hence,
a slowly adaptive adversary can corrupt a shard from the previous epoch before
the new nodes of the shard bootstrap to the state in epoch transition. This attack
violates liveness but simply adding a reliable broadcast step after checkpointing
restores the liveness since all other components satisfy it already. The overhead
of reliable broadcast can be amortized over the rounds of the epoch hence the
overall scalability is not affected.

Fourth, we prove RapidChain maintains a robust sharded ledger but only
under a weaker model than the one defined in Sect. 2 (Theorems 47, 49, 48, 53).
Specifically, the protocol only allows a constant number of parties to join or
leave and the adversary can at most corrupt a constant number of additional
parties with each epoch transition. Another shortcoming of RapidChain is the
synchronous consensus mechanism it employs. In case of temporary loss of syn-
chrony in the network, the consensus of cross-shard transactions is vulnerable,
hence consistency might break [55]. However, most of these drawbacks can be
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Protocol Abstraction 1: Divide & Scale
Data: N0 nodes are participating in the system at round 0 (genesis block).

m(NE) denotes the function that determines the number of shards in
epoch E. The transactions of epoch E are TE . i denotes the block round
(its relation to the communication rounds depends on the employed
components).

Result: Shard state T = {T0, T1, . . . }.

/* Initialization */

1 i ← 1
2 E ← 0

/* Beginning of epoch: retrieve identities from Sybil resistant

protocol, execute the DRG protocol to create the new epoch

randomness, and assign nodes to shards */

3 if i mod R = 1 :
4 E ← E + 1
5 if i �= 1 :
6 NE ← Sybil(rE−1)

7 rE ← DRG(NE)

8 Call Divide2Shards(NE , m(NE), rE)

/* End of epoch: compact the state of the shard */

9 elif i mod R = 0 :
10 Call CompactState(i)

/* During epoch: run the consensus protocol for intra-shard and

cross-shard transactions */

11 else:
12 if If transaction t ∈ TE is cross-shard :
13 Call CrossShard(t) ; // Invokes Consensus in multiple shards

14 else:
15 Call Consensus(t)

16 i ← i + 1
17 Go to step 3

addressed with simple solutions, such as changing the consensus protocol (trade-
off performance with security), replacing the epoch transition process with one
similar to (fixed) OmniLedger, etc. Although OmniLedger (with the proposed
fix) maintains a robust sharded ledger in a stronger model (as defined in Sect. 2),
RapidChain introduces practical speedups on specific components of the system.
These improvements are not asymptotically important – and thus not captured
by our framework – but might be significant for the performance of deployed
sharding protocols.

Finally, we include in the comparison Chainspace, which maintains a robust
sharded transaction ledger but only in the permissioned setting against a static
adversary. Chainspace could be secure in our model in the permissioned setting if
it adopts OmniLedger’s epoch transition protocols and the proposed fix for data
availability in the verifiable compaction of state. We omit the security proofs for
Chainspace since they are either included in [3] or are similar to OmniLedger.
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Table 1. Summarizing sharding protocol properties under our model

Protocol Persistence Consistency Liveness Scalability Permissionless S.-adaptive

Elastico ✓ ✗ ✓ ✗ ✓ ✓

Monoxide ✓ ✓ ✓ ✗ ✓ ✓

OmniLedger ✓ ✓ ✗ ✓ ✓ ✓

RapidChain ✓ ✓ ✓ ✓ ✓ ∼
Chainspace ✓ ✓ ✓ ✓ ✗ ✗

Discussion. Although we restrict our evaluation to the most impactful (so
far) sharding proposals, we stress that the power of our framework and the
bounds we provide are not limited to these works. For instance, we observe that
Chainweb [37], a recently deployed sharding proposal, does not scale because it
violates Theorem 11. We believe our framework is general enough to cover most
sharding approaches, and we aspire it will be established as a tool for proving
the security of future sharding protocols.

Figures

Table 2. (Glossary) The parameters in our analysis.

n number of parties

f number of Byzantine parties

m number of shards

v average transaction size (number of inputs and outputs)

E epoch, i. e., a set of consecutive rounds

T set of transactions (input)

k “depth” security parameter (persistence)

u “wait” time (liveness)

ωm communication factor

ωs space factor

ωc computational factor

σ throughput factor

μ chain quality parameter

τ chain growth parameter

v average transaction size

m′ degree of parallelism

γ average number of a shard’s interacting shards (cross-shard)
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A Limitations of Sharding Protocols

A.1 General Bounds

First, we prove there is no robust sharded transaction ledger that has a constant
number of shards. Then, we show that there is no protocol that maintains a
robust sharded transaction ledger against an adaptive adversary.

Lemma 14. In any robust sharded transaction ledger the number of shards
(parametrized by n) is m = ω(1).

Proof. Suppose there is a protocol that maintains a constant number m of
sharded ledgers, denoted by x1, x2, . . . , xm. Let n denote the number of par-
ties and T the number of transactions to be processed (wlog assumed to be
valid). A transaction is processed only if it is stable, i.e. is included deep
enough in a ledger (k blocks from the end of the ledger where k a security
parameter). Each ledger will include T/m transactions on expectation. Now
suppose each party participates in only one ledger (best case), thus broad-
casts, verifies, and stores the transactions of that ledger only. Hence, every
party stores T/m transactions on expectation. The expected space factor is
ωs =

∑
∀i∈[n]

∑
∀x∈Li

|x�k|/(n|T |) =
∑

∀x∈Li

T
nmT = n

nm = Θ( 1
m ) = Θ(1), when

m in constant. Thus, scalability is not satisfied.

Suppose a party is participating in shard xi. If the party maintains infor-
mation (e.g. the headers of the chain for verification purposes) on the chain of
shard xj , we say that the party is a light node for shard xj . In particular, a light
node for shard xj maintains information at least proportional to the length of the
shard’s chain xj . This holds because blocks must be of constant size to be able
to scale in bandwidth (aka communication), and thus storing all the headers of
a shard is asymptotically similar in overhead to storing the entire shard with the
block content. Sublinear light clients [15,28] verifiably compact the shard’s state,
thus are not considered light nodes but are discussed later. We next prove that
if parties act as light clients to all shards involved in cross-shard transactions,
then the sharded ledger can scale only if each shard does not interact with all
the other shards (or a constant fraction thereof).

Lemma 15. For any robust sharded transaction ledger that requires every par-
ticipant to be a light node for all the shards affected by cross-shard transactions,
it holds E(γ) = o(m).

Proof. We assumed that every ledger interacts on average with γ different
ledgers, i. e., the cross-shard transactions involve γ many different shards on
expectation. The block size is considered constant, meaning each block includes
at most e transactions where e is constant. Thus, each party maintaining a ledger
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and being a light node to γ other ledgers must store on expectation (1 + γ
e ) T

m
information. Hence, the expected space factor is

E(ωs) =
∑

∀i∈[n]

∑

∀x∈Li

|x�k|/(n|T |) = n
(1 + γ

e ) T
m

nT
= Θ

( γ

m

)

where the second equation holds due to linearity of expectation. To satisfy scal-
ability, we demand E(ωs) = o(1), thus γ = o(m).

Next, we show that there is no protocol that maintains a robust transaction
ledger against an adaptive adversary in our model. We highlight that our result
holds because we assume any node is corruptible by the adversary. If we assume
more restrictive corruption sets, e.g. each shard has at least one honest well-
connected node, sharding against an adaptive adversary may be possible if we
employ other tools, such as fraud and data availability proofs [4].

Theorem 10. There is no protocol maintaining a robust sharded transaction
ledger against an adaptive adversary in our model controlling f ≥ n/m, where
m is the number of shards, and n is the number of parties.

Proof (Towards contradiction). Suppose there exists a protocol Π that maintains
a robust sharded ledger against an adaptive adversary that corrupts f = n/m
parties. From the pigeonhole principle, there exists at least one shard xi with
at most n/m parties (independent of how shards are created). The adversary is
adaptive, hence at any round can corrupt all parties of shard xi. In a malicious
shard, the adversary can perform arbitrary operations, thus can spend the same
UTXO in multiple cross-shard transactions. However, for a cross-shard transac-
tion to be executed it needs to be accepted by the output shard, which is honest.
Now, suppose Π allows the parties of each shard to verify the ledger of another
shard. For Lemma 15 to hold, the verification process can affect at most o(m)
shards. Note that even a probabilistic verification, i. e., randomly select some
transactions to verify, can fail due to storage requirements and the fact that the
adversary can perform arbitrarily many attacks. Therefore, for each shard, there
are at least 2 different shards that do not verify the cross-shard transactions
(since Lemma 15 essentially states they cannot all be verified). Thus, the adver-
sary can simply attempt to double-spend the same UTXO across every shard
and will succeed in the shards that do not verify the validity of the cross-shard
transaction. Hence, consistency is not satisfied.

A.2 Bounds Under Uniform Shard Creation

In this section, we assume that the creation of shards is UTXO-dependent; trans-
actions are assigned to shards independently and uniformly at random. This
assumption is in sync with the proposed protocols in the literature. In a non-
randomized process of creating shards, the adversary can precompute and thus
bias the process in a permissionless system. Hence, all sharding proposals employ
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a random process for shard creation. Furthermore, all shards validate approxi-
mately the same amount of transactions; otherwise the efficiency of the protocol
would depend on the shard that validates most transactions. For this reason,
we assume the UTXO space is partitioned to shards uniformly at random. Note
that we consider UTXOs to be random strings.

Under this assumption, we prove a constant fraction of transactions are cross-
shard on expectation. As a result, we prove no sharding protocol can maintain a
robust sharded ledger when participants act as light clients on all shards involved
in cross-shard transactions. Our observations hold for any transaction distribu-
tion DT that results in a constant fraction of cross-shard transactions.

Lemma 16. The expected number of cross-shard transactions is Θ(|T |).
Proof. Let Yi be the random variable that shows if a transaction is cross-shard;
Yi = 1 if txi ∈ T is cross-shard, and 0 otherwise. Since UTXOs are assigned
to shards uniformly at random, Pr[i ∈ xk] = 1

m , for all i ∈ v and k ∈ [m] =
{1, 2, . . . ,m}. The probability that all UTXOs in a transaction tx ∈ T belong
to the same shard is 1

mv−1 (where v is the cardinality of UTXOs in tx). Hence,
Pr[Yi = 1] = 1− 1

mv−1 . Thus, the expected number of cross-shard transactions is
E(

∑
∀txi∈T Yi) = |T |(1− 1

mv−1

)
. Since, m(n) = ω(1) (Lemma 14) and v constant,

the expected cross-shard transactions converges to T for n sufficiently large.

Lemma 17. For any protocol that maintains a robust sharded transaction
ledger, it holds γ = Θ(m).

Proof. We assume each transaction has a single input and output, hence v =
2. This is the worst-case input for evaluating how many shards interact per
transaction; if v � 2 then each transaction would most probably involve more
than two shards and thus each shard would interact with more different shards
for the same set of transactions.

For v = 2, we can reformulate the problem as a graph problem. Suppose we
have a random graph G with m nodes, each representing a shard. Now let an edge
between nodes u and w represent a transaction between shards u and w. Note
that in this setting we allow self-loops, which represent the intra-shard trans-
actions. We create the graph G with the following random process: We choose
an edge independently and uniformly at random from the set of all possible
edges including self-loops, denoted by E′. We repeat the process independently
|T | times, i. e., as many times as the cardinality of the transaction set. We note
that each trial is independent and the edges chosen uniformly at random due
to the corresponding assumptions concerning the transaction set and the shard
creation. We will now show that the average degree of the graph is Θ(m), which
immediately implies the statement of the lemma.

Let the random variable Yi represent the existence of edge i in the graph,
i. e., Yi = 1 if edge i was created at any of the T trials, 0 otherwise. The set of
all possible edges in the graph is E, |E| =

(
m
2

)
= m(m−1)

2 . Note that this is not
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the same as set E′ which includes self-loops and thus |E′| =
(
m
2

)
+m = m(m+1)

2 .
For any vertex u of G, it holds

E[deg(u)] =
2E[

∑
∀i∈E Yi]
m

where deg(u) denotes the degree of node u. We have,

Pr[Yi = 1] = 1 − Pr[Yi = 0]

= 1 − Pr[Yi = 0 at trial 1]Pr[Yi = 0 at trial 2] . . .

P r[Yi = 0 at trial T] = 1 −
(
1 − 2

m(m + 1)

)|T |

Thus,

E[deg(u)] =
2m(m − 1)

2

[
1 −

(
1 − 2

m(m + 1)

)|T |]

= (m − 1)
[
1 −

(
1 − 2

m(m + 1)

)|T |]

Therefore, for many transactions we have |T | = ω(m2) and consequently
E[deg(u)] = Θ(m).

Theorem 11. There is no protocol that maintains a robust sharded transaction
ledger in our model under uniform space partition when parties are light nodes
on the shards involved in cross-shard transactions.

Proof. Immediately follows from Lemmas 15 and 17.

A.3 Bounds Under Random Permutation of Parties to Shards

In this section, we assume parties are periodically randomly shuffled among
shards, using a random permutation of their IDs. Any other shard assignment
strategy yields equivalent or worse guarantees since we have no knowledge of
which parties are Byzantine. Our goal is to upper bound the number of shards
for a protocol that maintains a robust sharded transaction ledger in our security
model. To satisfy the security properties, we demand each shard to contain at
least a constant fraction of honest parties 1−a (< 1− f

n ), where a is the tolerance
of the shards. This is due to classic lower bounds of consensus protocols [35].

The size of a shard is the number of the parties assigned to the shard. We
say shards are balanced if all shards have approximately the same size. In what
follows, we assume shards to be balanced (this can be done by drawing uniformly
at random a balanced partition of parties). We denote by p = f/n the (constant)
fraction of the Byzantine parties. A shard is a-honest if at least a fraction of
1 − a parties in the shard are honest.

The following lemma, proven by Raab and Steger [42] will be useful later:
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Lemma 18. Let M be the random variable that counts the number of balls in
any bin if we throw pn balls independently and uniformly at random into m bins.
Then Pr[M > kα] = o(1) if α > 1 and Pr[M > kα] = 1 − o(1) if 0 < α < 1,
where

kα =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

log m

log m log m
pn

∗ (1 + α
log(2) m log m

pn

log m log m
pn

) if m
polylog(m) ≤ pn � m log m,

(dc − 1 + α) log m if pn = cm log m for some constant c,
pn
m + α

√
2pn

m log m if m log m � pn ≤ mpolylog(m),
pn
m +

√
2pn log m

m (1 − log(2) m
2α log m ) if pn � m(log m)3

(1)

Lemma 19. Given n parties are assigned uniformly at random to m shards of
constant size s = n

m and the adversary corrupts at most f = pn parties, all
shards are a-honest (p, a are constants with p the proportion of corrupted parties
and a the tolerance of the model) with probability 1 − o(1) if and only if the
number of shards is at most n = cmlog(m)/p, where c is a constant and p/a is
small enough depending only on the value of c.

Proof. We start by reformulating the problem in order to show it is equivalent
to the well-know Generalized Birthday Paradox.

Assuming we build m shards of equivalent size s = n
m using a random per-

mutation with uniform probability. Then this is equivalent to distributing the
Byzantine processes to shards at random following a uniform law, but with the
shards being of maximum size s. In other words, we throw f = pn balls in m bins
of limited capacity s. We would like to know the probability that the maximum
load of the bins be greater or equal to a.

Reformulated as the Birthday paradox, what is the probability that, in a
room of n people whose birthdays are spread uniformly at random over m days,
a people share the same birthday? We denote that probability by f(pn,m, a).

Notice that our reformulation as the Birthday Paradox does not take into
account the limited size of the possible birthdays (no more than s people can have
the same birthday). Both problems are however equivalent, as we can reconstruct
that probability easily using Bayes’ formula:

P (A|B) =
P (B|A) ∗ P (A)

P (B)

Where A = “the maximum load is ≤ as”, B = “the maximum load is ≤ s” and
A|B = C =”all shards are a − honest. P (B|A) = 1 since a < 1 so

P (C) =
P (A)
P (B)

hence solving the Birthday Paradox solves our problem with very little addi-
tional calculation. Our calculation will actually be conducted using A′ = “the
maximum load is ≥ as” and B′ = “the maximum load is ≥ s”
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P (C) =
1 − P (A′)
1 − P (B′)

Since 1−o(1)
1−o(1) ≥ 1− o(1), it is sufficient for P (C) = 1− o(1) that P (A′) = o(1)

and P (B′) = o(1). The problem is sometimes denoted as the Cell Occupancy
Problem [23].

We then use Lemma 18 (beware, in the original paper [42] n and m are
reverse when compared with our notation). We want α > 1, kα = an

m .
When applying this, we immediately get impossible equations for the third

and fourth values of kα, hence it is not possible to have m in that range of values
compared to n (m � nlog(n)):

an

m
=

pn

m
+ α

√

2
pn

m
log m

(a − p)n
m

= α

√

2
pn

m
log m

n

m
=

α
√

2p

(a − p)

√
n

m
log m

√
n =

α
√

2p

(a − p)

√
m log m

n =
α22p

(a − p)2
m log m

As we can see, we also violate the hypothesis that pn � m log m, which is absurd.
For the fourth equation, we can simply notice that since α > 1, (1− log(2) m

2α log m ) ≤ 1
hence reusing the calculation made for the third case n will be even smaller when
compared with m log m, thus the hypothesis pn � m(log m)3 is broken.

The equations however is correct under the hypothesis that pn = cm log m
(see calculation below). This indicates that this is as high a value of m we can
use while keeping the shards safe with overwhelming probability.

an

m
= (dc − 1 + α) log m

n =
1
a
(dc − 1 + α)m log m

We can see already that we are indeed verifying the hypothesis pn = cm log m
for some constant c (the constant dc is a scalar not dependant on either n or
m). If kα = n

m , then n = (dc − 1 + α)m log m and the hypothesis is also verified.
We now need to make sure that α > 1 for both cases.
Since, by hypothesis, pn = cm log m, we identify that c = p

a (dc − 1 + α),
where dc ≥ c. In order to obtain α > 1, it is necessary that c > p

adc where p < a.
dc is a function of c with dc > c, hence for a given c it is always possible to
enforce α > 1 if p/a is small enough.

for the case kα = n
m , the previous result holds trivially with a = 1.
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Fig. 1. p/a = g(c) as described in Corollary 20. p is the proportion of corrupted parties
in the system, while 1 − a is the maximum proportion of corrupted parties allowed per
shard.

Using the previous calculations, we can exhibit the trade-off between security
and scalability in a mathematical formulation in Corollary 20. A systems designer
may choose to adjust either parameter p/a or c, one being computed thanks
to the chosen value of the other. Since the expression is not mathematically
intuitive, we provide a plotting of the increasing function p/a = g(c) in Fig. 1.

Corollary 20. In a sharding protocol maintaining a robust sharded transaction
ledger against an adversary, the trade-off between scalability (low value of c)
and security (high value of p/a) is described by c

dc
> p

a . c is the multiplicative
constant in the relation pn = cm log(m), dc is a function of c, while p and 1 − a
are the proportion of corrupted parties in the system and per shard, respectively.

Proof. According to Lemma 19, the constant dc is a real number dependant only
on c and

c

dc
>

p

a

which means the value of p/a is ceiled by the value of c/dc.
As explained in [42], dc is the solution to the equation 1+x(log(c)− log(x)+

1)−c = 0 that is greater than c. Thus we have the exact mathematical expression
of the well-known security/scalability trade-off.

Corollary 21. In a sharding protocol maintaining a robust sharded transaction
ledger against an adversary, m is upper-bounded by f(n) = n

c′ log( n
c′ log(n) )

with

c′ = c
p and c a constant as described in Corollary 20.

Proof. Because of Lemma 19, cm log(m) = pn. using m = n
c′ log(m) (a), we obtain

m = n
c′ log( n

c′ log(m) )
and since n ≥ m, an upper-bound is f(n) = n

c′ log( n
c′ log(n) )

.

Note we could build a tighter but more complex upper bound by replacing m
by its expression (a) instead of n as many times as desired.

Next, we prove that any sharding protocol may scale at most by an n/ log n
factor. This bound refers to independent nodes. If, for instance, we “shard” per
authority, but all authorities represented in each shard, the bound of the theorem
does not hold and the actual system should be considered sharded since every
authority holds all the data.
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Theorem 12. Any protocol that maintains a robust sharded transaction ledger
in our model under uniformly random partition of the state and parties, can scale
at most by a factor of m, where n = c′m log m and the constant c′ encompasses
the trade-off between security and scalability.

Proof. In our security model, the adversary can corrupt f = pn parties, p con-
stant. Hence, from Corollary 20, m = O( n

log m ). Each party stores at least T/m

transactions on average and thus the expected space factor is ωs ≥ nT/m
T = n

m .
Therefore, any sharding protocol can scale at most O( n

log m ).

Next, we show that any sharding protocol that satisfies scalability requires
some process of verifiable compaction of state such as checkpoints [33], crypto-
graphic accumulators [10], zero-knowledge proofs [9], non-interactive proofs of
proofs-of-work [15,28], proof of necessary work [27] or erasure codes [26]. Such
a process allows the state of the distributed ledger (e.g., stable transactions) to
be compressed significantly while users can verify the correctness of the state.
Intuitively, in any sharding protocol secure against a slowly adaptive adversary
parties must periodically shuffle in shards. To verify new transactions the par-
ties must receive a verifiably correct UTXO pool for the new shard without
downloading the full shard history; otherwise the communication overhead of
the bootstrapping process eventually exceeds that of a non-sharded blockchain.
Although existing evaluations typically ignore this aspect with respect to band-
width, we stress its importance in the long-term operation: the bootstrap cost will
eventually become the bottleneck due to the need for nodes to regularly shuffle.

Theorem 13. Any protocol that maintains a robust sharded transaction ledger
in our model, under uniformly random partition of the state and parties, employs
verifiable compaction of the state.

Proof (Towards contradiction). Suppose there is a protocol that maintains a
robust sharded ledger without employing any process that verifiably compacts
the blockchain. To guarantee security against a slowly-adaptive adversary, the
parties change shards at the end of each epoch. At the beginning of each epoch,
the parties must process a new set of transactions. To check the validity of this
new set of transactions, each (honest) shard member downloads and maintains
the corresponding ledger. Note that even if the party only maintains the hash-
chain of a ledger, the cost is equivalent to maintaining the list of transactions
given that the block size is constant. We will show that the communication factor
increases with time, eventually exceeding that of a non-sharded blockchain; thus
scalability is not satisfied from that point on.

In each epoch transition, a party changes shards with probability 1 − 1/m,
where m is the number of shards. As a result, a party changing a shard in

epoch k must download the shard’s ledger of size
k · T

m
. Therefore, the expected

communication factor of bootstrapping during the k-th epoch transition is
k · T

m
·

(1 − 1
m

). We observe the communication overhead grows with the number of
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epochs k, hence it will eventually become the scaling bottleneck. For instance,
for k > m · n, the communication factor is greater than linear to the number of
parties in the system n, thus the protocol does not satisfy scalability.

Theorem 13 holds even if parties are not assigned to shards uniformly at random
but follow some other shuffling strategy like in [43]. As long as a significant frac-
tion of honest parties change shards from epoch to epoch, verifiable compaction of
state is necessary to restrict the bandwidth requirements during bootstrapping
in order to satisfy scalability.

B Analysis

We show that Divide & Scale is secure in our model (i. e., satisfies persistence,
consistency, and liveness), while its efficiency (i. e., scalability and throughput
factor) depends on the chosen subprotocols. For the purpose of our analysis, we
assume all employed subprotocols satisfy liveness.

Theorem 22. Divide & Scale satisfies persistence in our system model assum-
ing at most f Byzantine nodes.

Proof. Assuming Sybil guarantees the fair distribution of identities (Sybil, prop-
erty iv), and Divide2Shard maintains the distribution within the desired limits
to guarantee the securities bounds of Consensus (Divide2Shard, property iii),
the common prefix property is satisfied in each shard, so persistence is satisfied.

Theorem 23. Divide & Scale satisfies consistency in our system model assum-
ing at most f Byzantine nodes.

Proof. Transactions can either be intra-shard (all UTXOs within a single shard)
or cross-shard. Consistency is satisfied for intra-shard transactions as long as
Sybil and Divide2Shard result in a distribution that respects the security
bounds of Consensus, hence the common prefix property is satisfied. Further-
more, consistency is satisfied for cross-shard transactions from the CrossShard
protocol as long as it correctly provides atomicity.

Theorem 24. Divide & Scale satisfies liveness in our system model assuming
at most f Byzantine nodes.

Proof. Follows from the assumption that all subprotocols satisfy liveness, as well
as the CompactState protocol that ensures data availability between epochs.

Scalability. The scalability of Divide & Scale depends on the worse scal-
ing factor, i. e., communication, space, computation, of all the components it
employs. The maximum scaling factor for DRG, Divide2Shards, Sybil, and
CompactState can be amortized over the rounds of an epoch because these pro-
tocols are executed once per epoch. Thus, the size of an epoch is critical for
scalability. Intuitively, this implies that if the size of the epoch is small, hence
the adversary highly-adaptive, sharding is not that beneficial as the protocols that
are executed on the epoch transaction are as resource demanding as the consensus
in a non-sharded system.
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Throughput Factor. Similarly to scalability, the throughput factor also
depends on the chosen subroutines, and in particular, Consensus and
CrossShards. To be specific, the throughput factor depends on the shard growth
and shard quality parameters which are determined by Consensus. In addition,
given a transaction input, the degree of parallelism, which is the last component
of the throughput factor, is determined by the maximum number of shards pos-
sible and the way cross-shard transactions are handled. The maximum number
of shards depends on Consensus and Divide2Shards, while CrossShard deter-
mines how many shards are affected by a single transaction. For instance, if the
transactions are divided in shards uniformly at random, Divide & Scale can scale
at most by n/ log n as stated in Corollary 20. We further note that the minimum
number of affected shards for a specific transaction is the number of UTXOs
that map to different shards; otherwise security cannot be guaranteed.

We demonstrate in Appendix C how to calculate the scaling factors and the
throughput factor for OmniLedger and RapidChain.

C Evaluation of Existing Protocols

In this section, we evaluate existing sharding protocols in our model with respect
to the desired properties defined in Sect. 2.2. A summary of our evaluation can
be found in Table 1 in Sect. 5.

The analysis is conducted in the synchronous model and thus any details
regarding performance on periods of asynchrony are discarded. The same holds
for other practical refinements that do not asymptotically improve performance.

C.1 Elastico

Overview. Elastico is the first distributed blockchain sharding protocol intro-
duced by Luu et al. [36]. The protocol lies in the intersection of traditional
BFT protocols and the Nakamoto consensus. The protocol is synchronous and
proceeds in epochs. The setting is permissionless, and during each epoch, the
participants create valid identities for the next epoch by producing proof-of-work
(PoW) solutions. The adversary is slowly-adaptive (see Sect. 2) and controls at
most 25% of the computational power of the system or equivalently f < n

4 out
of n valid identities in total.

At the beginning of each epoch, parties are partitioned into small shards
(committees) of constant size c. The number of shards is m = 2s, where s is
a small constant such that n = c · 2s. A shard member contacts its directory
committee to identify the other members of the same shard. For each party,
the directory committee consists of the first c identities created in the epoch
in the party’s local view. Transactions are randomly partitioned in disjoint sets
based on the hash of the transaction input (in the UTXO model); hence, each
shard only processes a fraction of the total transactions in the system. The
shard members execute a BFT protocol to validate the shard’s transactions and
then send the validated transactions to the final committee. The final committee
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consists of all members with a fixed s-bit shards identity, and is in charge of two
operations: (i) computing and broadcasting the final block, which is a digital
signature on the union of all valid received transactions6 (via executing a BFT
protocol), and (ii) generating and broadcasting a bounded exponential biased
random string to be used as a public source of randomness in the next epoch
(e.g. for the PoW).

Consensus: Elastico does not specify the consensus protocol but instead can
employ any standard BFT protocol, like PBFT [17].

CrossShard & StatePartition: Each transaction is assigned to a shard
according to the hash of the transaction’s inputs. Every party maintains the
entire blockchain, thus each shard can validate the assigned transaction indepen-
dently, i. e., there are no cross-shard transactions. Note that Elastico assumes
that transactions have a single input and output, which is not the case in cryp-
tocurrencies as discussed in Sect. 3. To generalize Elastico’s transaction assign-
ment method to multiple inputs, we assume each transaction is assigned to the
shard corresponding to the hash of all its inputs. Otherwise, if each input is
assigned to a different shard according to its hash value, an additional protocol
is required to guarantee the atomicity of transactions and hence the security
(consistency) of Elastico.

Sybil: Participants create valid identities by producing PoW solutions using
the randomness of the previous epoch.

Divide2Shards & CompactState: The protocol assigns each identity to a ran-
dom shard in 2s, identified by an s-bit shard identity. At the end of each epoch,
the final committee broadcasts the final block that contains the Merkle hash root
of every block of all shards’ block. The final block is stored by all parties in the
system. Hence, when the parties are re-assigned to new shards they already have
the hash-chain to confirm the shard ledger and future transactions. Essentially,
an epoch in Elastico is equivalent to a block generation round.

DRG: In each epoch, the final committee (of size c) generates a set of random
strings R via a commit-and-XOR protocol. First, all committee members gen-
erate an r-bit random string ri and send the hash h(ri) to all other committee
members. Then, the committee runs an interactive consistency protocol to agree
on a single set of hash values S, which they include on the final block. Later,
each (honest) committee member broadcasts its random string ri to all parties
in the network. Each party chooses and XORs c/2 + 1 random strings for which
the corresponding hash exists in S. The output string is the party’s randomness
for the epoch. Note that r > 2λ + c − log(c)/2, where λ is a security parameter.

6 The final committee in Elastico broadcasts only the Merkle root for each block.
However, this is asymptotically equivalent to including all transactions since the
block size is constant. Furthermore, the final committee does not check if the received
transactions are conflicting but merely verifies the presence of signatures.
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Analysis. Elastico’s threat model allows for adversaries that can drop or modify
messages, and send different messages to honest parties, which is not allowed in
our model. However, we show that even under a more restrictive adversarial
model, Elastico fails to meet the desired sharding properties. Specifically, we
prove Elastico does not satisfy scalability and consistency. From the security
analysis of [36], it follows that Elastico satisfies persistence and liveness in our
system model.

Theorem 25. Elastico does not satisfy consistency in our system model.

Proof. Suppose a party submits two valid transactions, one spending input x and
another spending input x and input y. Note that the second is a single transaction
with two inputs. In this case, the probability that both hashes (transactions),
H(x, y) and H(x), land in the same shard is 1/m. Hence, the probability of a
successful double-spending in a set of T transactions is almost 1−(1/m)T , which
converges to 0 as T grows, for any value m > 1. However, m > 1 is necessary to
satisfy scalability (Lemma 14). Therefore, there will be almost surely a round
in which two parties report two conflicting transactions. Since the final commit-
tee does not verify the validity of transactions but only checks the appropriate
signatures are present, consistency is not satisfied.

Lemma 26. The communication and space factors of Elastico are ωm = Θ(n)
and ωs = Θ(1).

Proof. At the end of each epoch, which corresponds to the generation of one
block per shard, the final committee broadcasts the final block to the entire net-
work. All parties download and store the final block. hence all parties maintain
the entire input set of transactions. Since the block size is considered constant,
downloading and storing the final block which consists of the hash-chains of all
shards is equivalent to downloading and storing all the shards’ ledgers. It follows
that the space factor is ωs = Θ(1) as all parties store a constantly-compressed
version of the input T , regardless of the nature of the input set T . Similarly,
it follows that the communication factor is ωm = Θ(n) as the broadcast of the
final block takes place regularly at the generation of one block per shard, i. e.,
Elastico’s epoch. ��
Theorem 27. Elastico does not satisfy scalability in our system model.

Proof. Immediately follows from Definition 4 and Lemma 26. ��

C.2 Monoxide

Overview. Monoxide [53] is an asynchronous proof-of-work protocol, where the
adversary controls at most 50% of the computational power of the system. The
protocol uniformly partitions the space of user addresses into shards (zones)
according to the first k bits. Every party is permanently assigned to a shard
uniformly at random. Each shard employs the GHOST [47] consensus protocol.
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Participants are either full-nodes that verify and maintain the transaction
ledgers, or miners investing computational power to solve PoW puzzles for profit
in addition to being full-nodes. Monoxide introduces a new mining algorithm,
called Chu-ko-nu, that enables miners to mine in parallel for all shards. The Chu-
ko-nu algorithm aims to distribute the hashing power to protect individual shards
from an adversarial takeover. Successful miners include transactions in blocks.
A block in Monoxide is divided into two parts: the chaining block that includes
all metadata (Merkle root, nonce for PoW, etc.) creating the hash-chain, and
the transaction-block that includes the list of transactions. All parties maintain
the hash-chain of every shard in the system.

Furthermore, all parties maintain a distributed hash table for peer discovery
and identifying parties in a specific shard. This way the parties of the same
shard can identify each other and cross-shard transactions are sent directly to
the destination shard. Cross-shard transactions are validated in the shard of the
payer and verified from the shard of the payee via a relay transaction and the
hash-chain of the payer’s shard.

Consensus: The consensus protocol of each shard is GHOST [47]. GHOST is
a DAG-based consensus protocol similar to Nakamoto consensus [40], but the
consensus selection rule is the heaviest subtree instead of the longest chain.

StatePartition: Monoxide is account-based hence all transactions are single
input and single output.

CrossShard: An input shard is a shard that corresponds to the address of a
sender of a transaction (payer) while an output shard one that corresponds to
the address of a receiver of a transaction (payee). Each cross-shard transaction
is processed in the input shard, where an additional relay transaction is created
and included in a block. The relay transaction consists of all metadata needed to
verify the validity of the original transaction by only maintaining the hash-chain
of a shard (i. e. for light nodes). The miner of the output shard verifies that the
relay transaction is stable and then includes it in a block in the output shard.
Note that in case of forks in the input shard, Monoxide invalidates the relay
transactions and rewrites the affected transaction ledger to maintain consistency.

Sybil: In a typical PoW election scheme, the adversary can create many iden-
tities and target its computational power to specific shards to gain control over
more than half of the shard’s participants. In such a case, the security of the pro-
tocol fails (both persistence and consistency properties do not hold). To address
this issue, Monoxide introduces a new mining algorithm, Chu-ko-nu, that allows
parallel mining on all shards. Specifically, a miner can batch valid transactions
from all shards and use the root of the Merkle tree of the list of chaining headers
in the batch as input to the hash, alongside with the nonce (and some configu-
ration data). Thus, when a miner successfully computes a hash lower than the
target, the miner adds a block to every shard.

Divide2Shards: Parties are permanently assigned to shards uniformly at ran-
dom according the first k bits of their address.
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DRG: The protocol uses deterministic randomness (e.g. hash function) and does
not require any random source.

CompactState: No compaction of state is used in Monoxide.

Analysis. We prove that Monoxide satisfies persistence, liveness, and consis-
tency, but does not satisfy scalability. The same result is also immediately derived
from our impossibility result stated in Theorem 11 as Monoxide demands each
party to verify cross-shard transactions by acting as a light node to all shards;
effectively demonstrating the effectiveness of our framework and the usability of
our results.

Theorem 28. Monoxide satisfies persistence and liveness in our system model
for f < n/2.

Proof. From the analysis of Monoxide, it holds that if all honest miners follow
the Chu-ko-nu mining algorithm, then honest majority within each shard holds
with high probability for any adversary with f < n/2 (Sect. 5.3 [53]).

Assuming honest majority within shards, persistence depends on two fac-
tors: the probability a stable transaction becomes invalid in a shard’s ledger,
and the probability a cross-shard transaction is reverted after being confirmed.
Both these factors solely depend on the common prefix property of the shards’
consensus mechanism. Monoxide employs GHOST as the consensus mechanism
of each shard, hence the common prefix property is satisfied if we assume that
invalidating the relay transaction does not affect other shards [29]. Suppose
common prefix is satisfied with probability 1 − p (which is overwhelming on the
“depth” security parameter k). Then, the probability none of the outputs of a
transaction are invalidated is (1−p)(v−1) (worst case where v−1 outputs – relay
transactions – link to one input). Thus, a transaction is valid in a shard’s ledger
after k blocks with probability (1 − p)v, which is overwhelming in k since v is
considered constant. Therefore, persistence is satisfied.

Similarly, liveness is satisfied within each shard. Furthermore, this implies
liveness is satisfied for cross-shard transactions. In particular, both the initiative
and relay transactions will be eventually included in the shards’ transaction
ledgers, as long as chain quality and chain growth are guaranteed within each
shard [29]. ��
Theorem 29. Monoxide satisfies consistency in our system model for f < n/2.

Proof. The common prefix property is satisfied in GHOST [30] with high prob-
ability. Thus, intra-shard transactions satisfy consistency with high probabil-
ity (on the “depth” security parameter). Furthermore, if a cross-shard trans-
action output is invalidated after its confirmation, Monoxide allows rewriting
the affected transaction ledgers. Hence, consistency is restored in case of cross-
transaction failure. Thus, overall, consistency is satisfied in Monoxide. ��
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Note that allowing to rewrite the transaction ledgers in case a relay transac-
tion is invalidated strengthens the consistency property but weakens the persis-
tence and liveness properties.

Intuitively, to satisfy persistence in a sharded PoW system, the adversarial
power needs to be distributed across shards. To that end, Monoxide employs
a new mining algorithm, Chu-ko-nu, that incentivizes honest parties to mine
in parallel on all shards. However, this implies that a miner needs to verify
transactions on all shards and maintain a transaction ledger for all shards. Hence,
the computation and space factors are proportional to the number of (honest)
participants and the protocol does not satisfy scalability.

Theorem 30. Monoxide does not satisfy scalability in our system model for
f < n/2.

Proof. Let m denote the number of shards (zones), mp the fraction of mining
power running the Chu-ko-nu mining algorithm and md the rest of the mining
power (mp + md = 1). Additionally, suppose ms denotes the mining power of
one shard. The Chu-ko-nu algorithm enforces the parties to verify transactions
that belong to all shards, hence the parties store all sharded ledgers. To satisfy
scalability, the space factor of Monoxide can be at most o(1). Similarly, it follows
that the verification overhead expressed through the computational factor must
be bounded by o(n). Thus, at most o(n) parties can run the Chu-ko-nu mining
algorithm, hence nmp = o(n). We note that the adversary will not participate
in the Chu-ko-nu mining algorithm as distributing the hashing power is to the
adversary’s disadvantage.

To satisfy persistence, every shard running the GHOST protocol [47] must
satisfy the common prefix property. Thus, the adversary cannot control more
than ma < ms/2 hash power, where ms = md

m + mp. Consequently, we have
ma < ms

2(md+mp)
= 1

2 − md(m−1)
2m(md+mp)

. For n sufficiently large, mp converges to 0;

hence ma < 1
2 − (m−1)

2m = 1
2m . From Lemma 14, m = ω(1), thus the adversarial

power ma < 0 for sufficiently large n. We conclude that Monoxide does not
satisfy scalability in our model. Moreover, we identify in Monoxide a clear trade-
off between security and scaling storage and verification. ��

C.3 OmniLedger

Overview. OmniLedger [33] proceeds in epochs, assumes a partially syn-
chronous model within each epoch (to be responsive), synchronous communi-
cation channels between honest parties (with a large maximum delay), and
a slowly-adaptive computationally-bounded adversary that can corrupt up to
f < n/4 parties.

The protocol bootstraps using techniques from ByzCoin [31]. The core idea
is that there is a global identity blockchain that is extended once per epoch with
Sybil resistant proofs (proof-of-work, proof-of-stake, or proof-of-personhood [12])
coupled with public keys. At the beginning of each epoch a sliding window
mechanism is employed to define the eligible validators as the ones with identities
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in the last W blocks, where W depends on the adaptivity of the adversary. For
our definition of slowly adaptive, we set W = 1. The UTXO space is partitioned
uniformly at random into m shards, each shard maintaining its own ledger.

At the beginning of each epoch, a new common random value is created via a
distributed randomness generation (DRG) protocol. The DRG protocol employs
verifiable random functions (VRF) to elect a leader who runs RandHound [51]
to create the random value. The random value is used as a challenge for the next
epoch’s identity registration and as a seed to assigning identities of the current
epoch into shards.

Once the participants for this epoch are assigned to shards and bootstrap
their internal states, they start validating transactions and updating the shards’
transaction ledgers by operating ByzCoinX, a modification of ByzCoin [31].
When a transaction is cross-shard, a protocol that ensures the atomic operation
of transactions across shards called Atomix is employed. Atomix is a client-driven
atomic commit protocol secure against Byzantine adversaries.

Consensus: OmniLedger suggests the use of a strongly consistent consensus in
order to support Atomix. This modular approach means that any consensus
protocol [17,25,31,32,44] works with OmniLedger as long as the deployment
setting of OmniLedger respects the limitations of the consensus protocol. In
its experimental deployment, OmniLedger uses a variant of ByzCoin [31] called
ByzCoinX [32] in order to maintain the scalability of ByzCoin and be robust as
well. We omit the details of ByzCoinX as it is not relevant to our analysis.

StatePartition: The UTXO space is partitioned uniformly at random into m
shards.

CrossShard (Atomix): Atomix is a client-based adaptation of two-phase atomic
commit protocol running with the assumption that the underlying shards are
correct and never crash. This assumption is satisfied because of the random
assignment of parties to shards, as well as the Byzantine fault-tolerant consensus
of each shard.

In particular, Atomix works in two steps: First, the client that wants the
transaction to go through requests a proof-of-acceptance or proof-of-rejection
from the shards managing the inputs, who log the transactions in their internal
blockchain. Afterwards, the client either collects proof-of-acceptance from all the
shards or at least one proof-of-rejection. In the first case, the client communicates
the proofs to the output shards, who verify the proofs and finish the transaction
by generating the necessary UTXOs. In the second case, the client communicates
the proofs to the input shards who revert their state and abort the transaction.
Atomix, has a subtle replay attack, hence we analyze OmniLedger with the
proposed fix [48].

Sybil: A global identity blockchain with Sybil resistant proofs coupled with
public keys is extended once per epoch.

Divide2Shards: Once the parties generate the epoch randomness, the parties
can independently compute the shard they are assigned to for this epoch by
permuting (mod n) the list of validators (available in the identity chain).
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DRG: The DRG protocol consists of two steps to produce unbiasable randomness.
On the first step, all parties evaluate a VRF using their private key and the
randomness of the previous round to generate a “lottery ticket”. Then the parties
broadcast their ticket and wait for Δ to be sure that they receive the ticket with
the lowest value whose generator is elected as the leader of RandHound.

This second step is a partially-synchronous randomness generation protocol,
meaning that even in the presence of asynchrony safety is not violated. If the
leader is honest, then eventually the parties will output an unbiasable random
value, whereas if the leader is dishonest there are no liveness guarantees. To
recover from this type of fault the parties can view-change the leader and go
back to the first step in order to elect a new leader.

This composition of randomness generation protocols (leader election and
multiparty generation) guarantees that all parties agree on the final randomness
(due to the view-change) and the protocol remains safe in asynchrony. Further-
more, if the assumed synchrony bound (which can be increasing like PBFT [17])
is correct, an honest leader will be elected in a constant number of rounds.

Note, however, that the DRG protocol is modular, thus any other scalable
distributed randomness generation protocol with similar guarantees, such as
Hydrand [45] or Scrape [16], can be used.

CompactState: A key component that enables OmniLedger to scale is the epoch
transition. At the end of every epoch, the parties run consensus on the state
changes and append the new state (e.g. UTXO pool) in a state-block that points
directly to the previous epoch’s state-block. This is a classic technique [17] during
reconfiguration events of state machine replication algorithms called checkpoint-
ing. New validators do not replay the actual shard’s ledger but instead, look only
at the checkpoints which help them bootstrap faster.

In order to guarantee the continuous operation of the system, after the par-
ties finish the state commitment process, the shards are reconfigured in small
batches (at most 1/3 of the parties in each shard at a time). If there are any
blocks committed after the state-block, the validators replay the state-transitions
directly.

Analysis. In this section, we prove OmniLedger satisfies persistence, consis-
tency, and scalability (on expectation) but fails to satisfy liveness. Nevertheless,
we estimate the efficiency of OmniLedger by providing an upper bound on its
throughput factor.

Lemma 31. At the beginning of each epoch, OmniLedger provides an unbiased,
unpredictable, common to all parties random value (with overwhelming probabil-
ity in t within t rounds).

Proof. If the elected leader that orchestrates the distributed randomness gen-
eration protocol (RandHound or equivalent) is honest the statement holds. On
the other hand, if the leader is Byzantine, the leader cannot affect the security
of the protocol, meaning the leader cannot bias the random value. However, a
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Byzantine leader can delay the process by being unresponsive. We show that
there will be an honest leader, hence the protocol will output a random value,
with overwhelming probability in the number of rounds t.

The adversary cannot pre-mine PoW puzzles, because the randomness of each
epoch is used in the PoW calculation of the next epoch. Hence, the expected
number of identities the adversary will control (number of Byzantine parties) in
the next epoch is f < n/4. Hence, the adversary will have the smallest ticket
– output of the VRF – and thus will be the leader that orchestrates the dis-
tributed randomness generation protocol (RandHound) with probability 1/2.
Then, the probability there will be an honest leader in t rounds is 1 − 1

2t , which
is overwhelming in t.

The unpredictability is inherited by the properties of the employed dis-
tributed randomness generation protocol. ��

Lemma 32. The distributed randomness generation protocol has O(n log2 n
R )

amortized communication complexity, where R is the number of rounds in an
epoch.

Proof. The DRG protocol inherits the communication complexity of Rand-
Hound, which is O(c2n) [45]. In [51], the authors claim that c is constant. How-
ever, the protocol requires a constant fraction of honest parties (e.g. n/3) in each
of the n/c partitions of size c against an adversary that can corrupt a constant
fraction of the total number of parties (e.g. n/4). Hence, from Lemma 19, we
have c = Ω(log n), which leads to communication complexity O(n log2 n) for
each epoch. Assuming each epoch consist of R rounds, the amortized per round
communication complexity is O(n log2 n

R ). ��
Corollary 33. In each epoch, the expected size of each shard is n/m.

Proof. Due to Lemma 31, the n parties are assigned independently and uniformly
at random to m shards. Hence, the expected number of parties in a shard is n/m.

��
Lemma 34. In each epoch, all shards are 1

3 -honest for m ≤ f(n) with f(n) as
described in Corollary 21.

Proof. Due to Lemma 31, the n parties are assigned independently and uniformly
at random to m shards. Since a = 1/3 > p = 1/4, both a, p constant, the
statement holds from Lemma 19 and Corollary 21. ��
Note that the bound is theoretical and holds for a large number of parties since
the probability tends to 1 as the number of parties grows. For practical bounds,
we refer to OmniLedger’s analysis [33].

Theorem 35. OmniLedger satisfies persistence in our system model for f <
n/4.
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Proof. From Lemma 34, each shard has an honest supermajority 2
3

n
m of partici-

pants. Hence, persistence holds by the common prefix property of the consensus
protocol of each shard. Specifically, for ByzCoinX, persistence holds for depth
parameter k = 1 because ByzCoinX guarantees finality. ��
Theorem 36. OmniLedger does not satisfy liveness in our system model for
f < n/4.

Proof. To estimate the liveness of the protocol, we need to examine all
the subprotocols: (i) Consensus, (ii) CrossShard or Atomix, (iii) DRG, (iv)
CompactState, and (v) Divide2Shards.

Consensus: From Lemma 34, each shard has an honest supermajority 2
3

n
m of

participants. Hence, in this stage liveness holds by chain growth and chain qual-
ity properties of the underlying blockchain protocol (an elaborate proof can be
found in [24]). The same holds for CompactState as it is executed similarly to
Consensus.

CrossShard: Atomix guarantees liveness since the protocol’s efficiency depends
on the consensus of each shard involved in the cross-shard transaction. Note that
liveness does not depend on the client’s behavior; if the appropriate information
or some part of the transaction is not provided in multiple rounds to the parties
of the protocol then the liveness property does not guarantee the inclusion of the
transaction in the ledger. Furthermore, if some other party wants to continue the
process it can collect all necessary information from the ledgers of the shards.

DRG: During the epoch transition, the DRG protocol provides a common ran-
dom value with overwhelming probability within t rounds (Lemma 31). Hence,
liveness is satisfied in this subprotocol as well.

Divide2Shrds: Liveness is not satisfied in this protocol. The reason is that a
slowly-adaptive adversary can select who to corrupt during epoch transition,
and thus can corrupt a shard from the previous epoch. Since the compact state
has not been disseminated in the network, the adversary can simply delete the
shard’s state. Thereafter, the data unavailability prevents the progress of the
system. ��
Theorem 37. OmniLedger satisfies consistency in our system model for f <
n/4.

Proof. Each shard is 1
3 -honest (Lemma 34). Hence, consistency holds within

each shard, and the adversary cannot successfully double-spend. Neverthe-
less, we need to guarantee consistency even when transactions are cross-shard.
OmniLedger employs Atomix, a protocol that guarantees cross-shard transac-
tions are atomic. Thus, the adversary cannot validate two conflicting transac-
tions across different shards.

Moreover, the adversary cannot revert the chain of a shard and double-spend
an input of a cross-shard transaction after the transaction is accepted in all
relevant shards because persistence holds (Theorem 35). Suppose persistence
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holds with probability p. Then, the probability the adversary breaks consistency
in a cross-shard transaction is the probability of successfully double-spending
in one of the relevant to the transaction shards, 1 − pv, where v is the average
size of transactions. Since v is constant, consistency holds with high probability,
given that persistence holds with high probability. ��

To prove OmniLedger satisfies scalability (on expectation) we need to evalu-
ate the scaling factors in the following subprotocols of the system: (i) Consensus,
(ii) CrossShard, (iii) DRG, and (iv) Divide2Shards. Note that CompactState is
merely an execution of Consensus.

Lemma 38. The scaling factors of Consensus are ωm = O(n/m), ωs =
O(1/m), and ωc = O(n/m).

Proof. From Corollary 33, the expected number of parties in a shard is n/m.
ByzCoin has quadratic to the number of parties’ worst-case communication com-
plexity, hence the communication factor of the protocol is O(n/m). The verifica-
tion complexity collapses to the communication complexity. The space factor is
O(1/m), as each party maintains the ledger of the assigned shard for the epoch.

��
Lemma 39. The communication factor of Atomix (CrossShard) is ωm =
O(v n

m ), where v is the average size of transactions.

Proof. In a cross-shard transaction, Atomix allows the participants of the output
shards to verify the validity of the transaction’s inputs without maintaining any
information on the input shards’ ledgers. This holds due to persistence (see
Theorem 35).

Furthermore, the verification process requires each input shard to verify the
validity of the transaction’s inputs and produce a proof-of-acceptance or proof-
of-rejection. This corresponds to one query to the verification oracle for each
input. In addition, each party of an output shard must verify that all proofs-
of-acceptance are present and no shard rejected an input of the cross-shard
transaction. The proof-of-acceptance (or rejection) consists of the signature of
the shard which is linear to the number of parties in the shard. The relevant
parties have to receive all the information related to the transaction from the
client (or leader), hence the communication factor is O(v n

m ).
So far, we considered the communication complexity of Atomix. However,

each input must be verified within the corresponding input shard. From Lemma
38, we get that the communication factor at this step is O(v n

m ).

Lemma 40. The communication factor of Divide2Shards is ωm = O( n
mR ),

while the space factor is ωs = O(1/R), where R is size of an epoch.

Proof. During the epoch transition each party is assigned to a shard uniformly
at random and thus most probably needs to bootstrap to a new shard, meaning
the party must store the new shard’s ledger. At this point, within each shard
OmniLedger introduces checkpoints, the state blocks that summarize the state of
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the ledger (CompactState). Therefore, when a party syncs with a shard’s ledger,
it does not download and store the entire ledger but only the active UTXO pool
corresponding to the previous epoch’s state block.

For security reasons, each party that is reassigned to a new shard must receive
the state block of the new shard by O(n/m) parties. Thus, the communication
complexity of the protocol is O( n

mR ) amortized per round, where R is the number
of rounds in an epoch.

The space complexity is constant but amortized over the epoch length since
the state block has a constant size and is broadcast once per epoch, ωs = O(1/R).
There is no verification process at this stage. ��
Theorem 41. OmniLedger satisfies scalability in our system model for f < n/4
with communication and computational factor O(n/m) and space factor O(1/m),
where n = O(m log m).

Proof. To evaluate the scalability of OmniLedger, we need to estimate the dom-
inating scaling factors of all the subprotocols of the system: (i) Consensus, (ii)
CrossShard, (iii) DRG, and (iv) Divide2Shards.

The scaling factors of Consensus are ωm = O(n/m), ωs = O(1/m), and ωc =
O(n/m) (Lemma 38), while Atomix (CrossShard) has expected communication
factor O(v n

m ) (Lemma 39) where the average size of transaction v is constant
(see Sect. 3).

The epoch transition consists of the DRG, CompactState, and Divide2Shards
protocols. We assume a large enough epoch in rounds, R = Ω(n log n), in order
to amortize the communication-heavy protocols that are executed only once
per epoch. CompactState has the same overhead as Consensus hence it is not
critical. For R = Ω(n log n), DRG has an expected amortized communication
factor O(log n) (Lemma 32), while Divide2Shards has an expected amortized
communication factor of ωm = O( 1

m log n ) and an amortized space factor of
ωs = O(1/R) = O( 1

n log n )(Lemma 40).
Overall, considering the worst of the aforementioned scaling factors for

OmniLedger, we have expected communication and computational factors
O(n/m) and space factor O(1/m), where n = O(m log m) (see Lemma 14 and
Lemma 34). ��

Theorem 42. In OmniLedger, the throughput factor is σ = μ · τ · m

v
< μ·τ ·f(n)

v

where f(n) = n
c′ log( n

c′ log(n) )
with c′ = c

p and c a constant as described in Corol-

lary 20.

Proof. In Atomix, at most v shards are affected per transaction, thus m′ < m/v7.
From Lemma 19 and Corollary 21, n ≤ f(n). Therefore, σ < μ·τ ·f(n)

v ��
7 Note that if v is constant, a more elaborate analysis could yield a lower upper

bound on m′ better than m/v (depending on DT ). However, if v is not constant but
approximates the number of shards m, then m′ is also bounded by the scalability
of the Atomix protocol (Lemma 39), and thus the throughput factor can be much
lower.
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The parameter v depends on the input transaction set. The parameters
μ, τ, a, p depend on the choice of the consensus protocol. Specifically, μ represents
the ratio of honest blocks in the chain of a shard. On the other hand, τ depends
on the latency of the consensus protocol, i. e., what is the ratio between the
propagation time and the block generation time. Last, a expresses the resilience
of the consensus protocol (e.g., 1/3 for PBFT), while p the fraction of corrupted
parties in the system (f = pn).

In OmniLedger, the consensus protocol is modular, so we chose to maintain
the parameters for a fairer comparison to other protocols.

C.4 RapidChain

Overview. RapidChain [55] is a synchronous protocol and proceeds in epochs.
The adversary is slowly-adaptive, computationally-bounded and corrupts less
than 1/3 of the participants (f < n/3).

The protocol bootstraps via a committee election protocol that selects O(
√

n)
parties – the root group. The root group generates and distributes a sequence
of random bits used to establish the reference committee. The reference com-
mittee consists of O(log n) parties, is re-elected at the end of each epoch, and is
responsible for: (i) generating the randomness of the next epoch, (ii) validating
the identities of participants for the next epoch from the PoW puzzle, and (iii)
reconfiguring the shards from one epoch to the next (to protect against single
shard takeover attacks).

The parties are divided into shards of size O(log n) (committees). Each shard
handles a fraction of the transactions, assigned based on the prefix of the trans-
action ID. Transactions are sent by external users to an arbitrary number of
active (for this epoch) parties. The parties then use an inter-shard routing scheme
(based on Kademlia [38]) to send the transactions to the input and output shards,
i. e., the shards handling the inputs and outputs of a transaction, resp.

To process cross-shard transactions, the leader of the output shard creates an
additional transaction for every different input shard. Then the leader sends (via
the inter-shard routing scheme) these transactions to the corresponding input
shards for validation. To validate transactions (i. e., a block), each shard runs a
variant of the synchronous consensus of Ren et al. [44] and thus tolerates 1/2
Byzantine parties.

At the end of each epoch, the shards are reconfigured according to the par-
ticipants registered in the new reference block. Specifically, RapidChain uses a
bounded version of Cuckoo rule [46]; the reconfiguration protocol adds a new
party to a shard uniformly at random, and also moves a constant number of
parties from each shard and assigns them to other shards uniformly at random.

Consensus: In each round, each shard randomly picks a leader. The leader
creates a block, gossips the block header H (containing the round and the Merkle
root) to the members of the shard, and initiates the consensus protocol on H. The
consensus protocol consists of four rounds: (1) The leader gossips (H, propose),
(2) All parties gossip the received header (H, echo), (3) The honest parties that
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received at least two echoes containing a different header gossip (H ′, pending),
where H ′ contains the null Merkle root and the round, (4) Upon receiving nf

m +1
echos of the same and only header, an honest party gossips (H, accept) along with
the received echoes. To increase the transaction throughput, RapidChain allows
new leaders to propose new blocks even if the previous block is not yet accepted
by all honest parties.

StatePartition: Each shard handles a fraction of the transactions, assigned
based on the prefix of the transaction ID.

CrossShard: For each cross-shard transaction, the leader of the output shard
creates one “dummy” transaction for each input UTXO in order to move the
transactions’ inputs to the output shard, and execute the transaction within the
shard. To be specific, assume we have a transaction with two inputs I1, I2 and
one output O. The leader of the output shard creates three new transactions: tx1

with input I1 and output I ′
1, where I ′

1 holds the same amount of money with I1
and belongs to the output shard. tx2 is created similarly. tx3 with inputs I ′

1 and
I ′
2 and output O. Then the leader sends tx1, tx2 to the input shards respectively.

In principle, the output shard is claiming to be a trusted channel [6] (which is
guaranteed from the assignment), hence the input shards should transfer their
assets there and then execute the transaction atomically inside the output shard
(or abort by returning their assets back to the input shards).

Sybil: A party can only participate in an epoch if it solves a PoW puzzle with
the previous epoch’s randomness, submit the solution to the reference committee,
and consequently be included in the next reference block. The reference block
contains the active parties’ identities for the next epoch, their shard assignment,
and the next epoch’s randomness, and is broadcast by the reference committee
at the end of each epoch.

Divide2Shards: During bootstrapping, the parties are partitioned indepen-
dently and uniformly at random in groups of size O(

√
n) with a deterministic

random process. Then, each group runs the DRG protocol and creates a (local)
random seed. Every node in the group computes the hash of the random seed
and its public key. The e (small constant) smallest tickets are elected from each
group and gossiped to the other groups, along with at least half the signatures of
the group. These elected parties are the root group. The root group then selects
the reference committee of size O(log n), which in turn partitions the parties
randomly into shards as follows: each party is mapped to a random position in
[0, 1) using a hash function. Then, the range [0, 1) is partitioned into k regions,
where k is constant. A shard is the group of parties assigned to O(log n) regions.

During epoch transition, a constant number of parties can join (or leave) the
system. This process is handled by the reference committee which determines the
next epoch’s shard assignment, given the set of active parties for the epoch. The
reference committee divides the shards into two groups based on each shard’s
number of active parties in the previous epoch: group A contains the m/2 larger
in size shards, while the rest comprise group I. Every new node is assigned



238 Z. Avarikioti et al.

uniformly at random to a shard in A. Then, a constant number of parties is
evicted from each shard and assigned uniformly at random in a shard in I.

DRG: RapidChain uses Feldman’s verifiable secret sharing [22] to distributively
generate unbiased randomness. At the end of each epoch, the reference commit-
tee executes a distributed randomness generation (DRG) protocol to provide the
random seed of the next epoch. The same DRG protocol is also executed during
bootstrapping to create the root group.

CompactState: No protocol for compaction of the state is used.

Analysis. RapidChain does not maintain a robust sharded transaction ledger
under our security model since it assumes a weaker adversary. To fairly evaluate
the protocol, we weaken our security model. First, assume the adversary can-
not change more than a constant number of Byzantine parties during an epoch
transition, which we term constant-adaptive adversary. In general, we assume
bounded epoch transitions, i. e., at most a constant number of leave/join requests
during each transition. Furthermore, the number of epochs is asymptotically
less than polynomial to the number of parties. In this weaker security model, we
prove RapidChain maintains a robust sharded transaction ledger, and provide
an upper bound on the throughput factor of the protocol.

Note that in cross-shard transactions, the “dummy” transactions that are
committed in the shards’ ledgers as valid, spend UTXOs that are not signed by
the corresponding users. Instead, the original transaction, signed by the users, is
provided to the shards to verify the validity of the “dummy” transactions. Hence,
the transaction validation rules change. Furthermore, the protocol that handles
cross-shard transactions has no proof of security against Byzantine leaders. For
analysis purposes, we assume the following holds:

Assumption 43. CrossShard satisfies safety even under a Byzantine leader (of
the output shard).

Lemma 44. The communication factor of DRG is O(n/m).

Proof. The DRG protocol is executed by the final committee once each epoch.
The size of the final committee is O(n/m) = O(log n). The communication
complexity of the DRG protocol is quadratic to the number of parties [22].
Thus, the communication factor is O(n/m). ��
Lemma 45. In each epoch, all shards are 1

2 -honest for m ≤ f(n) with f(n)
from Corollary 21.

Proof. During the bootstrapping process of RapidChain (first epoch), the n par-
ties are partitioned independently and uniformly at random into m shards [22].
For p = 1/3, the shards are 1

2 -honest only if m ≤ f(n) with f(n) from corol-
lary 21. At any time during the protocol, all shards remain 1

2 -honest ( [55],
Theorem 5). Hence, the statement holds after each epoch transition, as long as
the number of epochs is o(n). ��
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Lemma 46. In each epoch, the expected size of each shard is O(n/m).

Proof. During the bootstrapping process of RapidChain (first epoch), the n par-
ties are partitioned independently and uniformly at random into m shards [22].
The expected shard size in the first epoch is n/m. Furthermore, during epoch
transition the shards remain “balanced” (Theorem 5 [55]), i. e., the size of each
shard is O(n/m). ��
Theorem 47. RapidChain satisfies persistence in our system model for
constant-adaptive adversaries with f < n/3 and bounded epoch transitions.

Proof. The consensus protocol in RapidChain achieves safety if the shard has
no more than t < 1/2 fraction of Byzantine parties ([55], Theorem 2). Hence,
the statement follows from Lemma 45. ��
Theorem 48. RapidChain satisfies liveness in our system model for constant-
adaptive adversaries with f < n/3 and bounded epoch transitions.

Proof. To estimate the liveness of RapidChain, we need to examine the following
subprotocols: (i) Consensus, (ii) CrossShard, (iii) DRG, and (iv) Divide2Shards.

The consensus protocol in RapidChain achieves liveness if the shard has less
than n

2m Byzantine parties (Theorem 3 [55]). Thus, liveness is guaranteed during
Consensus (Lemma 45).

Furthermore, the final committee is 1
2 -honest with high probability. Hence,

the final committee will route each transaction to the corresponding output
shard. We assume transactions will reach all relevant honest parties via a gossip
protocol. RapidChain employs IDA-gossip protocol, which guarantees message
delivery to all honest parties (Lemma 1 and Lemma 2 [55]). From Assumption 43,
the protocol that handles cross-shard transactions satisfies safety even under a
Byzantine leader. Hence, all “dummy” transactions will be created and eventu-
ally delivered. Since the consensus protocol within each shard satisfies liveness,
the “dummy” transactions of the input shards will become stable. Consequently,
the “dummy” transaction of the output shard will become valid and eventually
stable (consensus liveness). Thus, CrossShard satisfies liveness.

During epoch transition, DRG satisfies liveness [22]. Moreover, Divide2Shards
allows only for a constant number of leave/join/move operations and thus ter-
minates in a constant number of rounds. ��
Theorem 49. RapidChain satisfies consistency in our system model for
constant-adaptive adversaries with f < n/3 and bounded epoch transitions.

Proof. In every epoch, each shard is 1
2 -honest; hence, the adversary cannot

double-spend and consistency is satisfied.
Nevertheless, to prove consistency is satisfied across shards, we need to prove

that cross-shard transactions are atomic. CrossShard in RapidChain ensures
that the “dummy” transaction of the output shard becomes valid only if all
“dummy” transactions are stable in the input shards. If a “dummy” transaction
of an input shard is rejected, the “dummy” transaction of the output shard will
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not be executed, and all the accepted “dummy” transactions will just transfer
the value of the input UTXOs to other UTXOs that belong to the output shard.
This holds because the protocol satisfies safety even under a Byzantine leader
(Assumption 43).

Lastly, the adversary cannot revert the chain of a shard and double-spend
an input of the cross-shard transaction after the transaction is accepted in all
relevant shards because consistency with each shard and persistence (Theorem
35) hold. Suppose persistence holds with probability p. Then, the probability
the adversary breaks consistency in a cross-shard transaction is the probability
of successfully double-spending in one of the relevant to the transaction shards,
hence 1 − pv where v is the average size of transactions. Since v is constant,
consistency holds with high probability, given persistence holds with high prob-
ability. ��

Similarly to OmniLedger, to calculate the scaling factor of RapidChain,
we need to evaluate the following protocols of the system: (i) Consensus, (ii)
CrossShard, (iii) DRG, and (iv) Divide2Shards.

Lemma 50. The scaling factors of Consensus are ωm = O( n
m ), ωs = O( 1

m ),
and ωc = O( n

m ).

Proof. From Lemma 46, the expected number of parties in a shard is O(n/m).
The consensus protocol of RapidChain has quadratic to the number of par-
ties’ communication complexity. Hence, the communication factor Consensus is
O( n

m ). The verification complexity (computational factor) collapses to the com-
munication complexity. The space factor is O( 1

m ), as each party maintains the
ledger of the assigned shard for the epoch.

Lemma 51. The communication and computational factors of CrossShard are
both ωm = ωc = O(v n

m ), where v is the average size of transactions.

Proof. During the execution of the protocol, the interaction between the input
and output shards is limited to the leader, who creates and routes the “dummy”
transactions. Hence, the communication complexity of the protocol is dominated
by the consensus within the shards. For an average size of transactions v, the
communication factor is O(vn/m + v) = O(vn/m) (Lemma 46). Note that this
bound holds for the worst case, where transactions have v−1 inputs and a single
output while all UTXOs belong to different shards.

For each cross-shard transaction, each party of the input and output shards
queries the verification oracle once. Hence, the computational factor is O(vn/m).
The protocol does not require any verification across shards, thus the only storage
requirement per party is to maintain the ledger of its own shard. ��
Lemma 52. The communication factor of Divide2Shards is O(R·n

m2 ).

Proof. The number of join/leave and move operations is constant per epoch,
denoted by k. Further, each shard is 1

2 -honest (Lemma 45) and has size O( n
m )

(Lemma 46); these guarantees hold as long as the number of epochs is o(n).
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Each party changing shards receives the new shard’s ledger of size T/m by
O(n/m) parties in the new shard. Thus the total communication complexity at
this stage is O( T

m · n
m ), hence the communication factor is O( T

m2 ) = O(R·e
m2 ),

where R is the number of rounds in each epoch and e the number of epochs
since genesis. Since e = o(n), the communication factor is O(R·n

m2 ).
��

Theorem 53. RapidChain satisfies scalability in our system model for constant-
adaptive adversaries with f < n/3 and bounded epoch transitions, with com-
munication and computational factor O(n/m) and space factor O(1/m), where
n = O(m log m), assuming epoch size R = O(m).

Proof. Consensus has on expectation communication and computational factors
bounded by O(n/m) and space factor O(1/m) (Lemma 50). These bounds are
similar in CrossShard where the communication and computational factors are
bounded by O(vn/m) (Lemma 51), where v is constant (see Sect. 3).

During epoch transitions, the communication factor dominates: In DRG ωm =
O( n

m ) (Lemma 44) while in Divide2Shards ωm = O(n·R
m2 ) (Lemma 52). Thus

for R = O(m), the communication factor during epoch transitions is O(n/m).
Overall, RapidChain’s expected scaling factors are as follows: ωm = ωc =

O(n/m) = O(log m) and ωs = O(1/m), where the equation holds for n =
c′m log m (Lemma 45).

Theorem 54. In RapidChain, the throughput factor is σ = μ · τ · m

v
< μ·τ ·f(n)

v

with f(n) = n
c′ log( n

c′ log(n) )
with c′ = c

p and constant c from Corollary 20.

Proof. At most v shards are affected per transaction – when each transaction
has v − 1 inputs and one output, and all belong to different shards. Therefore,
m′ < m/v. From Lemma 19 and Corollary 21, m < f(n). Therefore, σ < μ·τ ·f(n)

v .
��

In RapidChain, the consensus protocol is synchronous and thus not practi-
cal. We estimate the throughput factor irrespective of the chosen consensus, to
provide a fair comparison to other protocols. We notice that both RapidChain
and OmniLedger have the same throughout factor when v is constant.

We provide an example of the throughput factor in case the employed consen-
sus is the one suggested in RapidChain. In this case, we have a = 1/2, p = 1/4
(hence p/a = 2/3), μ < 1/2 (Theorem 1 [55]), and τ = 1/8 (4 rounds are needed
to reach consensus for an honest leader, and the leader will be honest every two
rounds on expectation [54].). Note that τ can be improved by allowing the next
leader to propose a block even if the previous block is not yet accepted by all
honest parties; however, we do not consider this improvement. Because of the
values of p and a we can compute c � 2.6, thus c′ � 10.4. Hence, for v = 5, we
have throughput factor:

σ <
1
2

· 1
8

· 1
5

· 1
10.4

n

log( n
10.4 log n )

=
n

832 log( n
10.4 log n )
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C.5 Chainspace

Chainspace is a sharding protocol introduced by Al-Bassam et al. [3] that oper-
ates in the permissioned setting. The main innovation of Chainspace is on the
application layer. Specifically, Chainspace presents a sharded, UTXO-based dis-
tributed ledger that supports smart contracts. Furthermore, limited privacy is
enabled by offloading computation to the clients, who need to only publicly pro-
vide zero-knowledge proofs that their computation is correct. Chainspace focuses
on specific aspects of sharding; epoch transition or reconfiguration of the pro-
tocol is not addressed. Nevertheless, the cross-shard communication protocol,
namely S-BAC, is of interest as a building block to secure sharding.

S-BAC Protocol. S-BAC is a shard-led cross-shard atomic commit protocol used
in Chainspace. In S-BAC, the client submits a transaction to the input shards.
Each shard internally runs a BFT protocol to tentatively decide whether to
accept or abort the transaction locally and broadcasts its local decision to other
shards that take part in the transaction. If the transaction fails locally (e.g., is a
double-spend), then the shard generates pre-abort(T), whereas if the transaction
succeeds locally the shard generates pre-accept(T) and changes the state of the
input to ‘locked’. After a shard decides to pre-commit(T), it waits to collect
responses from other participating shards, and commits the transaction if all
shards respond with pre-accept(T), or aborts the transaction if at least one
shard announces pre-abort(T). Once the shards decide, they send their decision
(accept(T) or abort(T)) to the client and the output shards. If the decision is
accept(T), the output shards generate new ‘active’ objects and the input shards
change the input objects to ‘inactive’. If an input shard’s decision is abort(T),
all input shards unlock the input objects by changing their state to ‘active’.

S-BAC, just like Atomix, is susceptible to replay attacks [48]. To address this
problem, sequence numbers are added to the transactions, and output shards
generate dummy objects during the first phase (pre-commit, pre-abort). More
details and security proofs can be found on [48], as well as a hybrid of Atomix
and S-BAC called Byzcuit.
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Abstract. We study a very restrictive graph exploration problem. In
our model, an agent without persistent memory is placed on a vertex of
a graph and only sees the adjacent vertices. The goal is to visit every
vertex of the graph, return to the start vertex, and terminate. The agent
does not know through which edge it entered a vertex. The agent may
color the current vertex and can see the colors of the neighboring vertices
in an arbitrary order. The agent may not recolor a vertex. We investigate
the number of colors necessary and sufficient to explore all graphs. We
prove that n−1 colors are necessary and sufficient for exploration in gen-
eral, 3 colors are necessary and sufficient if only trees are to be explored,
and min(2k−3, n−1) colors are necessary and min(2k−1, n−1) colors are
sufficient on graphs of size n and circumference k, where the circumfer-
ence is the length of a longest cycle. Moreover, we prove that recoloring
vertices is very powerful by designing an algorithm with recoloring that
uses only 7 colors and explores all graphs.

Keywords: Graph exploration · Mobile agents · Zero memory

1 Introduction

Say you wake up one morning in an unknown hotel with the desire to stroll
around and visit every place in the city. Considering your terrible headache, you
don’t bother to remember anything about which places you have visited, but
still, at the end of the day, you want to return to your hotel. You know this is
not possible without further aid so you decide to take some crayons with you
and color every place you visit. You are endowed with keen eyes and you’re able
to see the colors of the places around you. All you now need to know is how
many colors you have to take along and how you color the places. This paper
deals exactly with that situation.
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The exploration of an unknown environment by a mobile entity is one of
the basic tasks in many areas. Its applications range from robot navigation over
image recognition to sending messages over a network. Due to the manifold
purposes, there is a great deal of different settings in which exploration has been
analyzed. In this paper, we consider the fundamental problem of a single agent,
e.g., a robot or a software agent, that has to first explore all vertices of an initially
unknown undirected graph G, then return to the start vertex and terminate. By
exploring we mean that the agent is located at a vertex and can, in each step,
either go to an adjacent vertex or terminate.

If the vertices of G have unique labels and without further restrictions to the
agent, this becomes a trivial task. However, in many applications, the environ-
ment is unknown and the agent is a simple and inexpensive device. Hence, we
consider anonymous graphs, that is, there are no unique labels on the vertices
or edges. Moreover, the edges have no port labels; the labeling is given implicitly
by the order in which the agent sees the edges and can be different at each visit
of a vertex. The agent itself is oblivious, that is, it has no persistent memory.
Such agents are sometimes also called zero-memory algorithms or 1-state robots
[1,2].

Clearly, with these restrictions, there does not exist a feasible exploration
algorithm. In fact, not even a graph consisting of one single edge could be
explored since the algorithm would not know when to terminate. Therefore,
in most models with anonymous graphs and oblivious agents, the agent remem-
bers through which port it entered a vertex. We, in contrast, assume that the
agent does not know through which edge it entered a vertex. This is sometimes
called unknown inports or no inports [6]. Instead, we allow the agent to color
the current vertex, a feature which is also referred to as placing distinguishable
pebbles [4] or labeling vertices [1]. In this paper, we prefer the notion of color-
ing1. This notion emphasizes that a colored vertex may never be recolored unless
we explicitly allow it and then use the term “recoloring.” However, having the
ability to color vertices alone is still utterly useless for an oblivious agent that
has to return to the start vertex. Therefore, we relax our restrictions by allowing
the agent to see the labels (i.e., colors) of the neighboring vertices.

We consider storage efficiency and analyze the minimum amount of colors
necessary and sufficient to explore any graph with n vertices. We prove that 3
colors are both necessary and sufficient to explore trees, whereas n − 1 colors
are necessary and sufficient to explore every graph with n vertices. This striking
difference is not limited to planarity, graphs of large treewidth or graphs with
a large feedback vertex set; in fact, even planar graphs with treewidth 2 and
feedback vertex set number 1 need Ω(n) colors. We discover that the driving
parameter of a graph is its circumference, the length of a longest cycle. We show
that 2k − 1 colors are sufficient and min{2k − 3, n − 1} colors are necessary to
explore all graphs of circumference at most k. Finally, we make an ostensibly

1 Note that this coloring is just a normal labeling and has nothing to do with graph
coloring such as in 3-Coloring; it is perfectly fine to color adjacent vertices with
the same color.
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inconspicuous change to our model and analyze the case where we allow recol-
oring vertices. We show that, in this model, 7 colors are enough to explore all
graphs.

This paper is organized as follows. In the rest of this introduction, we consider
related work and lay out the basic definitions. In Sect. 2, we present the analysis
when the graphs to be explored are trees. In Sect. 3, we analyze the general case
before we then turn to graphs of a certain circumference in Sect. 4. Afterwards,
we consider recoloring in Sect. 5 before we conclude in Sect. 6. Due to space
constraints, some proofs are omitted.

1.1 Related Work

There is a vast body of literature on exploration and navigation problems. A
great deal of aspects have been analyzed; in general, they can be categorized
along four dimensions: environment, agent, goal, complexity measure. We briefly
discuss these dimensions and highlight the setting considered in this paper.

The environment dimension is concerned with whether there is a specific
geometric setting or a more abstract setting such as a graph or a graph class.
Sometimes there are special environmental features such as faulty links or, as in
our case, local memory, sometimes also called storage. In the agent dimension,
we find the aspects such as whether there is a single agent or whether there are
multiple agents; whether the agents are deterministic or probabilistic; whether
the agents have some restrictions such as limited memory, range or view ; and
whether the agents possess special abilities such as marking of vertices or tele-
portation. Some goals include mapping the graph, finding a treasure, meeting,
exploring all edges, and exploring all vertices. For the latter, most researchers
consider one of the following three modes of termination: perpetual exploration,
where the agent has to visit every vertex infinitely often; exploration with stop,
where the agent has to stop at some point after it has explored everything;
and exploration with return, where the agent has to return to the starting point
after the exploration and then terminate. The main complexity measures are
time complexity, space/memory complexity, storage complexity and competitive
ratio2.

As highlighted above, in this paper, we focus on vertex exploration by a
single agent with local memory or storage. For an overview on this segment of
exploration problems, we refer to the excellent overview of Das [2] and the first
two chapters of [5] by Gąsieniec and Radzik. We are not aware of any research
on the exploration of anonymous graphs by oblivious agents where the labels
of the neighboring vertices are visible. However, the models of Cohen et al. [1]
and Disser et al. [4] are similar to ours; they analyze graph exploration with
anonymous graphs, local port labels, a single oblivious agent, and the ability to
label the current vertex.

2 Here, we use “time complexity” as the complexity of the algorithm that calculates
the decisions of the agent and “competitive ratio” as the number of time steps of the
agent compared to an optimal number of time steps.
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In the model of Cohen et al. [1], there is a robot R with a finite number of
states that has to explore all vertices of an unknown undirected graph and then
terminate. The robot sees at each vertex the incident edges as port numbers. The
order of these edges is fixed per vertex, but unknown to R. The robot knows
through which port it entered a vertex. In a preprocessing state, the vertices are
labeled with pairwise different labels. Cohen et al. analyzed how many labels are
necessary to explore all graphs. They proved that a robot with constant memory
can explore all graphs with just three labels. Moreover, they showed that for any
d > 4, an oblivious robot that uses at most �log d� − 2 pairwise different labels
cannot explore all graphs of maximum degree d.

Their model is different from ours in several ways: In our model, the incoming
port number is not known, the order of the port numbering is not fixed, the labels
may not be changed, and the algorithm has to return to the start vertex, but,
most importantly, the algorithm sees the labels of the adjacent vertices. Even
though the models are quite different, we can see that known inports is a much
stronger feature than seeing the labels of neighboring vertices: Our general lower
bound does not depend on the maximum degree, but on the number of vertices
in the graph. We provide a lower bound that is linear in the number of vertices
even when the maximum degree is restricted to 3.

The model of Disser et al. [4] is even closer to our model. Here, the labels—
they call them distinguishable pebbles—are assigned during the exploration by
the agent/algorithm as well. Moreover, the goal is exploration with return. They
showed that, for any agent with sub-logarithmic memory, Θ(log log n) labels are
necessary and sufficient to explore any graph with n vertices. Moreover, they
characterized the trade-off between memory and the number of labels: When
the agent has Ω(log(n)) bits of memory, all graphs on n vertices can be explored
without any labels. As soon as the agent only has O(log(n)1−ε) bits of memory,
Ω(log log(n)) labels are needed to explore all graphs on n vertices. However, with
that many labels, even a constant amount of memory suffices for the exploration.

As before, this model does not directly compare to ours since neither is
contained in the other. Their results seem to support the idea that knowing
inports is stronger than seeing the labels of neighboring vertices; however, the
focus of their work was on constant or sub-logarithmic memory.

1.2 Basic Definitions

We use the usual notions from graph theory as found for example in the textbook
by Diestel [3]. The graph exploration setting considered in this paper is defined as
follows. We first describe the setting informally. An agent is placed on a vertex,
called the start vertex, of an undirected connected graph and moves along edges,
one edge per step. In a step, the agent may use an arbitrary natural number to
color the vertex on which it is currently located, if this vertex was uncolored up
to now, and then move to a neighbor. As basis for its decisions, the agent may
only use the color of the current vertex and the colors of the neighboring vertices.
The agent can neither use the identity of the vertices nor any numbering of the
edges. The agent has no persistent memory; in particular, the agent does not



250 H.-J. Böckenhauer et al.

know through which edge it entered the current vertex (if any; the start vertex
is not entered from anywhere). On the basis of the coloring of the current vertex
and the neighbors, the agent chooses a neighbor it wants to move to, or it decides
to stop. For no decision or choice can the agent distinguish between neighbors
that have the same color.

The task is to provide a strategy for the agent—which is called an algorithm
Alg—that determines for each situation the action of the agent in such a way
that, no matter on which graph and on which start vertex the agent is placed,
and no matter which neighbors are used to go to if there is a choice, the agent
will visit all vertices, return to the start vertex, and stop there.

As with classical online problems, the concept of an adversary is useful to
formulate bounds on the number of colors necessary and sufficient to explore all
graphs. This adversary makes the decisions that are left open in the informal
description above, namely choosing the start vertex and choosing the vertex the
agent visits next if there is a choice among neighbors of the same color to which
the agent wants to go. For all graphs and for all possible choices of the adversary,
the agent must visit all vertices and then stop on the start vertex.

An algorithm in this model is a function that determines what the agent
should do when located on a vertex with a certain color structure in the neigh-
borhood. We denote the color structure by a pair (c0, E), where c0 ∈ N stands for
the color of the current vertex and E : N → N, where E is 0 almost everywhere,
stands for the colors of the neighbors. For a number c ∈ N, E(c) stands for
the number of neighbors of color c. In cases where we consider only a restricted
amount of colors, we consider functions c0 and E of smaller domain, for example
colors c0 ∈ {1, . . . , nc}, and E : {1, . . . , nc} → N. We denote the set of all pairs
(c0, E) by E and call it the environment.

An algorithm in this model is a function move : E → N × N ∪ {Stop}, with
the restriction that whenever move(c0, E) = (c1, d), we must have E(d) > 0,
that is, the algorithm is not allowed to send the agent to a neighbor that does
not exist. When the number of colors allowed is at most nc, the range of move
is {1, . . . , nc} × {1, . . . , nc} ∪ {Stop}. Moreover, we must have c1 = c0 unless
c0 = 0, that is, the agent may only color the current vertex if it was not colored
before. We analyze the model where this last restriction is canceled in Sect. 5.

To carry out an algorithm on a given graph G, we use an adversary, and carry
out steps. Initially, all vertices are uncolored, that is, have color 0. The adversary
selects a start vertex v0 and places the agent there. Then, each step works as
follows: The agent is located in a vertex v. The coloring in the neighborhood
is translated into an element (c0, f) of E in the obvious way, by counting the
number of neighbors for each occurring color. The value move(c0, f) determined
by the algorithm is then used as follows. If it is Stop, the run of the algorithm
stops. If it is a pair (c1, d), vertex v is colored with color c1, and the adversary
chooses a neighbor of v of color d, to which the agent moves for the next step.

An algorithm successfully explores all graphs if for all graphs G and for all
adversaries, after finitely many steps, all vertices of G have been visited (they
do not need to have a color c > 0, but they must have been the “current vertex”
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in some step), the agent is located on the start vertex v0, and the decision of the
algorithm is Stop. An algorithm is correct on a graph class C if it successfully
explores all graphs G ∈ C.

Throughout the paper, we denote by n the number of vertices of G and use
[n] to denote {1, . . . , n}. For a vertex v ∈ V , we write c(v) ∈ N for its color;
N(v) for the open neighborhood of v, that is, the set of vertices adjacent to
v; and N [v] for the closed neighborhood of v, where N [v] := N(v) ∪ {v}. We
use mod1 to denote a modulo operator shifted by 1, i.e., n mod1 m := ((n − 1)
mod m) + 1. Instead of having the numbers 0, . . . , m − 1 as the outcome of the
modulo operation, one thus obtains the numbers 1, . . . ,m. For convenience, we
sometimes speak of an algorithm behaving in a particular way and mean by this
formulation that the agent of the algorithm behaves in a particular way.

2 Exploration of Trees

We begin by analyzing the problem on trees. We show that only three colors
are enough to explore all trees. In line with the research that analyzes graph
exploration with pebbles, we do not count 0 as a color. The idea of the algorithm
is to alternatingly label the vertices with colors 1, 2, and 3 and then follow a
simple depth-first search (DFS) strategy. Since there are no cycles, there is always
a unique path back to the start vertex and backtracking is possible. Moreover,
the start vertex is recognized by the fact that it is the only vertex with color 1
where all neighbors have color 2. The formalization of this strategy, which we
call TreeExploration, is omitted here; it enables us to use at most 3 colors
and successfully explore all graphs, which we note as a first theorem:

Theorem 1. TreeExploration is correct on trees and uses at most 3 colors.

We prove that TreeExploration is optimal in the sense that it is impossi-
ble to use fewer than 3 colors to solve graph exploration in our model on trees.
Before doing so, we make the following crucial observation.

Observation 1 (Functional Nature). Due to its functional nature, once an
algorithm is in a vertex v where all vertices in N [v] have been colored and takes a
decision upon which it goes to a neighbor w or upon which the adversary chooses
neighbor w as next vertex, this choice can be made by the adversary each time
the algorithm returns to v.

Theorem 2. There is no algorithm that solves graph exploration as in our model
on every tree and that uses less than 3 colors.

Proof. Assume by contradiction that there exists such an algorithm. Consider a
path with seven vertices. Denote them by v1 to v7 in sequential order. Let v1 be
the start vertex.

For i ∈ [5], if an agent does not color vi, it cannot visit vi+2: The agent could
continue to vi+1, but then it cannot distinguish between vi and vi+2. Therefore,
the adversary can make the agent go back to vi. If the agent now does not
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color vi,3 it is caught in an endless loop by Observation 1, which contradicts the
assumption that the algorithm works correctly on all trees.

When the agent has reached v7, it has to return to v1. It must make a step
from v4 to v3 at some point. If c(v3) = c(v5), the adversary can make the agent
go back to v5 instead, which again opens the way to an endless loop. Hence,
c(v3) �= c(v5). The same is true at v3 and at v2. Hence, c(v4) �= c(v2) and
c(v1) �= c(v3). Without loss of generality, assume c(v1) = 1. Then this implies
that either (c(v1), . . . , c(v5)) = (1, 1, 2, 2, 1) or (c(v1), . . . , c(v5)) = (1, 2, 2, 1, 1).

If (c(v1), . . . , c(v5)) = (1, 1, 2, 2, 1), the agent has to go from v4 to v3; however,
then the agent goes from v3 back to v4 because of its functional nature. Similarly,
if (c(v1), . . . , c(v5)) = (1, 2, 2, 1, 1), the agent has to go from v3 to v2, but then
it goes from v2 back to v3. �	

3 Exploration of General Graphs

How can an agent proceed on graphs that are not necessarily trees? Again, a
depth-first search strategy suffices; however, this time, the agent uses almost as
many colors as vertices.

Let us first describe the idea. The agent starts at the start vertex and colors it
with color 1. This vertex is the root. All other vertices will receive larger colors;
hence, the root is easy to recognize. We wish to carry out DFS. It is easy to
go whenever possible to an unexplored—or, equivalently, uncolored—neighbor
of the current vertex. But how shall the agent find the way back? The idea
is to color a new vertex with a color by 1 larger than the largest color in the
neighborhood. This ensures that colors increase along paths taken forward in the
tree. A notable exception is when the agent arrives at a leaf in the DFS tree, that
is, a vertex where all neighbors are colored. Then, the agent can save a color by
assigning the largest color in the neighborhood—which is the color of the vertex
the agent came from–instead of the largest color in the neighborhood plus one.
For backtracking from a vertex v, the agent goes to a vertex whose color is one
less than c(v). Such a vertex always exists, except if v is the root. The only
thing one has to prove is that this neighbor is unique. The formal description of
DepthFirstSearch is omitted here.

Clearly, DepthFirstSearch is well defined and uses at most n − 1 col-
ors. To show that DepthFirstSearch explores all vertices, we first prove that
whenever DepthFirstSearch goes to a vertex that has been colored before,
this vertex is the predecessor4 of the current vertex.

Theorem 3. DepthFirstSearch is correct and uses at most n − 1 colors.

3 Note that the agent may have colored vi+1 and thus the environment of the second
visit of vi may be different from the environment of the first visit, leading to a
potentially different decision.

4 By predecessor of a vertex v that is not the root, we mean the neighbor w from
which the agent moved to v when v was first visited.
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We are going to show in the following that DepthFirstSearch is optimal
in our model. Hence, our perspective changes. We now deal with an unknown
algorithm of which we only know that it successfully explores all graphs. In
order to show a lower bound, we have to define a graph and the decisions of
an adversary such that every algorithm with a limited amount of colors fails to
explore our graph given the decisions of our adversary.

We start with an easy observation and two technical lemmas, whose proofs
are omitted in this extended abstract. These lemmas will be crucial in creating
lower bounds for our model. They will allow us to define an instance and then
argue that the agent has to take a certain path in this instance and cannot
choose a different route.

Observation 2. If the agent of an algorithm Alg that successfully explores all
graphs arrives at a colored vertex v and there is an uncolored neighbor, then the
agent has to visit an uncolored neighbor next.

Lemma 1. Let Alg be an algorithm that successfully explores all graphs. If the
agent of Alg is on a vertex v with only one colored neighbor p, which is its
predecessor, and at least one uncolored neighbor u, and if p has an uncolored
neighbor v′ �= v, then the algorithm has to go to an uncolored neighbor of v.

Lemma 2. Let Alg be an algorithm that successfully explores all graphs.
Assume the agent has just moved from a (now) colored vertex p to an uncol-
ored vertex v, and that p has at least one other uncolored neighbor v′. Then the
agent must color v now.

We now prove that DepthFirstSearch uses the minimal number of colors
necessary.

Theorem 4. For every algorithm Alg that successfully explores all graphs and
for every natural number n there is a graph G of size n such that Alg uses at
least n − 1 colors to explore G.

Proof. For n at most 4, we verify the statement by checking all cases. For n ≤ 5,
assume towards contradiction that there is an algorithm Alg that, for some
n0 ≥ 5, uses at most n0 − 2 colors on every graph of size n0. We are going to
define a family of graphs of size 2(n0 − 1) − 1 and prove that there is a graph
G0 in this family such that Alg uses at least n0 − 1 colors on its first n0 − 1
steps in order to successfully explore G0. Afterwards, we define a graph G1 of
size n0 which locally looks, for the first n0 − 1 steps, exactly as G0. Therefore,
Alg uses at least n0 − 1 colors on G0 as well.

We construct our family of graphs as follows. Consider a graph G that consists
of a path v1, . . . , vn0−1 of length n0 − 1 where, for each r ∈ [n0 − 1], a leaf lr is
connected to vr. For fixed i, j ∈ [n0 − 1], we merge the leaves li and lj and call
the new vertex li/j and the graph Gn0,i,j . Such a graph is depicted in Fig. 1.

Consider any general algorithm Alg with at most n0 −2 colors that explores
a graph Gn0,r,s for yet to be determined r and s. The adversary makes such
decisions that Alg walks from v1 to vn0−1 without exploring any leaves or
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Fig. 1. The graph Gn0,i,j

leaving any visited vertex uncolored. This is possible by Lemma 1 and Lemma
2.

By the pigeonhole principle, there are i < j such that Alg assigns the same
color to vi and vj . Let r = i and s = j; in other words, consider the exploration
of Alg on Gn0,i,j . Without loss of generality, we assume that vi and vj are not
adjacent since, if that were the case, clearly, all vk with k > j would be assigned
the color of vj and Alg cannot explore all graphs this way.

On its way back to v1, Alg reaches vj at some point. From there, Alg has
to visit li/j by Observation 2. Since Alg cannot distinguish vi and vj when
located in li/j , the adversary can send Alg to either vertex if Alg wants to
visit a neighbor. If Alg decides not to color li/j , then the adversary sends Alg

to vi and Alg will have to go to li/j by Observation 2 and then either color li/j

or be caught in an endless loop. Hence, Alg colors li/j and then goes to one of
its neighbors. The adversary is going to send Alg to vi.

When Alg arrives in vi, the closed neighborhood N [vi] is colored. If Alg

decides to go to li/j , it will then again be sent to vi and will never terminate. If
Alg decides to go to vi−1, it will never visit any leaf between vi and vj . If Alg

decides to go to vi+1, then Alg can never terminate since all paths from vi+1

to v1 lead through vi and from there, Alg always chooses vi+1. Therefore, no
matter how Alg behaves, it cannot successfully explore Gn0,i,j , unless it uses at
least n0 − 1 colors on the first n0 − 1 steps.

Consider now the graph G1 depicted in Fig. 2. G1 consists of a path of n0 −1
vertices that are connected to a universal vertex u. Locally, G1 looks exactly the
same as Gn0,i,j . An algorithm can only successfully explore Gn0,i,j if it assigns
n0 − 1 colors on the first n0 − 1 steps during the exploration of Gn0,i,j . Then,
however, such an algorithms assigns n0 −1 colors on the first n0 −1 steps during

Fig. 2. The graph G1 for the general lower bound
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Algorithm 1. SmallDFSk

1: if c(v) = 0 then

2: c(v) :=

((
maxk

v′∈N(v)
c(v′)

)
+ 1

)
mod1 (2k − 1)

3: if there is an uncolored neighbor w then
4: go to w
5: else if there is a neighbor w with c(w) = (c(v)− 1) mod1 (2k − 1) then
6: go to w
7: else
8: terminate

the exploration of G1 as well. G1 has n0 vertices; hence, we have discovered a
graph on n0 vertices where Alg uses at least n0 − 1 colors. This contradicts our
assumption and thus finishes the proof. �	

4 Between Trees and General Graphs

We want to discover the parameter that determines the difficulty of graph explo-
ration of a given graph. Since the exploration of trees is quite easy, it is tempting
to think that a good parameter to measure the difficulty for graph exploration
could be treewidth, feedback vertex set, number of cycles, etc. However, consid-
ering the difficult instance in Fig. 1, we see that treewidth and feedback vertex
set are no suitable parameters. In fact, even restricting the number of cycles to
1 and the maximum degree to 3 does not remove the linear amount of colors.
Bipartite graphs as generalizations of trees might still serve as plausible candi-
dates. After all, the proof of Lemma 2 does not work for bipartite graphs and
the graphs Gn0,i,j used in the construction for Theorem 4 are not bipartite if
j − i is odd. However, these defects can be remedied and only exploring bipartite
graphs is almost as difficult as exploring all graphs.

We now argue why the circumference of a graph, i.e., the size of a longest
simple cycle, is the right parameter. First, we observe that the construction from
the proof of Theorem 4 immediately results in the following corollary:

Corollary 1. Any algorithm needs at least k − 2 colors to color all graphs of
circumference at most k.

Second, we present with SmallDFSk an algorithm that uses at most 2k −
1 colors and successfully explores all graphs of circumference at most k ≥ 3.
This algorithm sorts numbers a, b with respect to whether the distance between
a, . . . , b or the distance between b, b+1, . . . , 2k−1, 1, 2, . . . , a is larger. We use the
following maximum function for three natural numbers a, b, k with a ≤ b ≤ 2k−1:

maxk{a, b} :=

{
a, if |b − a + 1| < |2k − b + a|
b, if |b − a + 1| > |2k − b + a|.
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Note that, if the two values (b − a + 1) and (2k − b + a) were equal, this would
imply 2(b − a) = 2k − 1, which is impossible for three natural numbers a, b and
k. In other words, maxk is well-defined. With this maximum function, that is,
calculating modulo 2k − 1 shifted by 1, a number is smaller than the next k − 1
numbers and larger than the preceding k − 1 numbers.

The strategy of SmallDFSk is a depth-first search strategy that assigns color
c mod1 (2k − 1) to vertices that are visited in distance c − 1 (in the depth-first
search tree) from the start vertex. This is done by looking at all neighbor colors
and then assigning the largest color modulo (2k − 1) to the current vertex.
However, in order to be able to assign the color 1 after the color 2k − 1, the
algorithm takes the maximum function defined above to determine the largest
color number. Since there are no cycles of length k + 1, the maximum function
is well-defined. Thus, it is possible, as we are going to prove in a moment, to
determine the direct predecessor and backtrack accurately.

We can prove that SmallDFSk terminates on the start vertex and only
on the start vertex; the proofs are omitted here. We have yet to show that all
vertices are indeed explored.

Lemma 3. On any vertex v, either SmallDFSk goes to an unvisited vertex or
it goes back to the direct predecessor of v.

Proof. We prove something slightly different, namely that (1) SmallDFSk

always assigns color c(v′) + 1 mod1 (2k − 1) to a vertex v with predecessor
v′ and that (2) there is never a vertex v with two neighbors w1, w2 with
c(w1) = c(w2) = c(v) − 1 mod1 (2k − 1). This implies that SmallDFSk always
goes back to the direct predecessor.

Assume towards contradiction that one of these two claims is wrong. Consider
the first step in which one of these claims is wrong. We have three cases:

Case 1 In this step, SmallDFSk does not assign color c(v′) + 1 mod1 (2k − 1)
to a vertex v with predecessor v′. This can only happen if there is a neighbor
x of v with greater color than v′, that is, maxk{c(x), c(v′)} = c(x).
Both x and v′ are colored before v. Assume as subcase 1.1 that x is col-
ored before v′. Consider the search sequence (x, v1, . . . , vn, v′) of SmallDFSk

between x and v′. The first step when SmallDFSk “skips” a color is between
v′ and v; hence, the colors between vertices next to each other in this search
sequence differ by exactly 1. Since c(x) is smaller than the next k−1 numbers
and since we have maxk{c(x), c(v′)} = c(x), there have to be at least k − 1
vertices between x and v′. Thus, we have together with v a cycle of length at
least k + 2, which is not allowed. Hence, x is not colored first.
Consider subcase 1.2, namely that v′ is colored before x. Then SmallDFSk

went from v′ to x, then back to v′ and then to v. However, this is not pos-
sible since backtracking (applying line 6) is only allowed when there are no
uncolored neighbors and thus, SmallDFSk cannot backtrack from x, which
has v as an uncolored neighbor.

Case 2 In this step, SmallDFSk assigns color c(v) to a vertex v with two
neighbors w1, w2 with c(w1) = c(w2) = c(v)− 1 mod1 (2k − 1). Assume with-
out loss of generality that first w1 is visited (and colored), then w2, then v.
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We can argue exactly as before. The search sequence of SmallDFSk between
w1 and w2 is (w1, v1, . . . , vr, w2). SmallDFSk could not backtrack from w1

and thus went to some uncolored vertex v1. Again, backtracking would only
be possible up to w1; therefore, we can assume without loss of generality that
all vertices v1, . . . , vr in the search sequence are visited for the first time. In
order for w2 to obtain the same color as w1, there have to be at least 2k − 2
vertices between w1 and w2. Since w1 and w2 are both adjacent to v, this
results in a cycle of size 2k + 1.

Case 3 In this step, SmallDFSk assigns color c(w1) to a vertex w1 adjacent
to a vertex v with c(w1) = c(v) − 1 mod1 (2k − 1) and v is adjacent to a
vertex w2 �= w1 with c(w2) = c(w1). Consider the search sequence (v, . . . , w1)
between v and w1. Since w1 receives a greater number than v, there have to
be at least k − 1 vertices between v and w1. Together with v and w1, they
form a cycle of size k + 1, which is impossible.

We see that the assumption that one of these two claims is wrong leads to a
contradiction; therefore, both claims are true, which proves the lemma. �	

It is easy to prove that SmallDFSk explores all vertices and we thus obtain
the following theorem.

Theorem 5. SmallDFSk uses at most 2k − 1 colors and is correct on graphs
with circumference at most k.

Contrasting Corollary 1 and Theorem 5, we see that SmallDFSk uses at
most k + 1 too many colors. We narrow this gap with the following theorem.

Theorem 6. An algorithm needs at least 2k − 3 colors to successfully color all
graphs of circumference at most k.

Proof. Let Alg be an algorithm that uses at most 2k − 4 colors and colors
every graph of circumference k. Without loss of generality, assume that Alg uses
exactly 2k−4 colors. The colors Alg assigns have to repeat at some point, that is,
if we let Alg explore a path v1, . . . , vr of length r > 2k−4, after some initial color
assignments c(v1), c(v2), . . . , c(vs), the colors Alg assigns always follow the same
pattern c(vs), c(vs+1), . . . , c(vt), c(vs), c(vs+1) etc. Without loss of generality, we
assume this pattern starts with v1. This behavior can be enforced even if we add
some leaves or connect some vertices of the path: Due to Lemma 1, a general
algorithm may not go back to a visited vertex if there is an unvisited neighbor.
Therefore, we may even add some leaves to the path or connect some vertices
of the path and there is still an adversary that ensures that Alg goes from v1
directly to vr without visiting any leaf (apart from v1 and vr, of course) and
without taking any shortcuts.

Consider now the two graphs G1 and G2 from Fig. 3, both consisting of a
path v1, . . . , v2k of length 2k−1 and one shortcut edge and some leaves attached
to it. Note that both G1 and G2 have circumference exactly k.

Consider the exploration of Alg on G1. As explained, there is an adversary
that lets Alg walk from v1 to v2k−2 without taking the shortcut {v1, vk} and
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Fig. 3. The graphs G1 (black and blue) and G2 (black and red). (Color figure online)

without exploring the leaves. Moreover, by assuming that the repeating pattern
of Alg starts with v1, we obtain in particular that c(v1) = c(v2k−3).

Now, on vertex vk, Alg receives as input c(vk) = 0 and the colors c(v1),
c(vk−1), and 0 and assigns color c(vk) > 0. Then, Alg goes on to explore the
rest of the graph. At some point, Alg returns to vk and receives as input c(vk)
and the colors c(v1), c(vk−1), and c(vk+1). Since lk−1 has not yet been explored
and since upon going to v1, Alg has to terminate, it is crucial that Alg chooses
vk−1 as its next vertex.

However, consider now the exploration of Alg on G2. Since G2 looks locally
exactly like G1, there is an adversary that lets Alg behave on G2 exactly as on
G2 for at least the first 2k − 3 steps. On vertex v2k−2, Alg receives as input
c(v2k−2) = 0 and the colors c(v2k−3) = c(v1), c(vk−1), and 0. This is the same
input as before and because of its functional nature, Alg has to assign color
c(v2k−2) = c(vk) > 0 and then has to go to the unvisited neighbor v2k−1. On
v2k−1, Alg is in the same situation as during the exploration of G1 on vk+1

and assigns color c(v2k−1) = c(vk+1). After then visiting v2k, Alg returns to
v2k−2. Now, its input is again c(vk) = c(v2k−2) and the colors c(v1) = c(v2k−3),
c(vk−1), and c(v2k−1) = c(vk+1).

However, this time, since l2k−3 has not yet been explored, it is crucial for
Alg to choose v2k−3 and not vk−1. Since Alg is a function, it cannot out-
put different values on the same input; hence, Alg fails to explore either G1

or G2. �	

5 Exploration with Recoloring

In this section, we allow recoloring of already colored vertices.
We prove that, in this case, seven colors are enough to explore any graph.

This demonstrates the superior strength of strategies with recoloring. We omit
the formal description of our algorithm Recolorer. Let us describe the basic
strategy. We abuse the term “color” and say a vertex either receives label x or a
label 1, 2 or 3 together with one of the two colors green and red. The special label
x is assigned to delete vertices, that is, to mark vertices to which the algorithm
must never return. The algorithm performs breadth-first search and labels every
vertex in depth k, i.e., at distance k from the start vertex with label k+1 mod1 3.
Unless a vertex is deleted, the labels are never changed, only the colors.
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We imagine the start vertex as top vertex and go from top to bottom when
moving further away from the start vertex. Since vertices in depth k have only
neighbors in depth k−1, k, and k+1, this labeling provides a sense of direction.

When Recolorer is on a vertex v that is in depth k, we call neighbors
in depth k − 1 parents (of v), neighbors in depth k + 1 children (of v), and
neighbors in the same depth as v siblings. Note that the agent is going to be
able to determine whether labeled neighbors are parents, siblings, or children.
To ensure that all vertices in a certain depth are colored, the algorithm colors
the vertices from green to red and vice versa, depending on the current phase.

There are green phases and red phases in alternating order.
Initially, the start vertex receives label 1 and color red. Then, a green phase

starts. In a green phase, the algorithm follows the red labels from 1 to 2 to 3 to
1 etc. until an unvisited vertex is reached. This vertex is then marked with the
next label and colored green. The algorithm then proceeds to a parent p. If p has
unvisited neighbors—these are all children, as we will see—, then one of these
neighbors is visited. Otherwise, if all children of p are colored, the algorithm
goes down to a child of the same color as p until it eventually finds an unvisited
vertex, which is then colored green before going up to a parent. As soon as all
children of a parent are of another color, the algorithm recolors the parent and
then goes up to a grandparent. This process takes place until the start vertex
is reached and all children of the start vertex are colored green. Now, the start
vertex is marked green as well and a red phase starts, which works analogously.

This process would suffice to achieve perpetual exploration. To ensure that
the algorithm terminates, the algorithm deletes a vertex whenever all its children
are deleted or if there are no children at all. An example is depicted in Fig. 4.

We have the following theorem, whose proof we omit here.

Theorem 7. There is an algorithm that never uses more than 7 colors and
explores every graph with recoloring.

We mention that allowing the recoloring of vertices might render it feasible
to adapt an algorithm by Cohen et al. [1, Theorem 2.1], which uses 25 colors, to
obtain a weaker version of Theorem 7. It is possible to simulate the knowledge
of the inport via color-encoded temporary flags in the vertices (each flag-type
doubling the number of colors), and it seems that the other extra feature of
their model, namely the fixed port numbers, can be compensated in our model
by the agent directly seeing the labels of all neighboring vertices. Another small
difference is that our agent is required to terminate at the start vertex, whereas
in the model by Cohen at al., the agent may terminate as soon as the entire graph
is explored. This issue is easy to address, however. We can simulate an algorithm
not guaranteeing a termination at the start vertex twice: first once after marking
the start vertex with a unique flag, and then a second time, with a different
set of colors (effectively squaring the number of required colors), starting from
the vertex at which the previous simulation terminated, until the marked start
vertex is encountered, prompting the algorithm to terminate. However, even if
the simulation as described above is possible, the required number of colors will
be in the hundreds or thousands instead of seven.
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Fig. 4. An example of an exploration by Recolorer.

6 Conclusion

We investigated graph exploration by a very limited agent and showed tight
bounds for the exploration of trees and of general graphs. Essential for our upper
bounds was the idea that the algorithm needs a way to uniquely determine the
direct predecessor of a vertex. On a high level, our algorithms try to enumerate
the number of situations that can occur locally. Surprisingly, we discovered that
this number is not determined by the degree of a vertex, but by the circumference
of the graph. We showed almost tight lower bounds for graphs of a certain
circumference as well.
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For our lower bounds, Lemma 1 and Lemma 2 form the basis of our argumen-
tation. They make it possible to construct specific graphs and know exactly—up
to renaming of the colors—how a general algorithm behaves on this graph.

Finally, we studied the case where recoloring vertices is allowed. We showed
that in this case, seven colors are already sufficient to explore all graphs, which
stands in stark contrast to the amount of colors needed in general.

There are at least three ways to continue this research. First, it would be
interesting to generalize Lemma 1 and Lemma 2 to certain subgraphs or minors.
This would facilitate the analysis of graph exploration in our model for large
graph classes. Second, a natural extension of our model would be to allow a con-
stant number of memory bits. This would in particular enable a direct compari-
son to the existing research on oblivious graph exploration with known inports.
Third, it might be interesting to analyze how additional information can help the
agent. On the one hand, one could study the classical advice complexity model
for similar graph exploration models; on the other hand, one could restrict the
advice to vertices. This would allow comparing global advice and local advice,
which is much more restricted, but can be accessed exactly when needed.

Acknowledgments. We thank the anonymous reviewers for their useful suggestions
for improvement.
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Abstract. This paper investigates the energy complexity of distributed
graph problems in multi-hop radio networks, where the energy cost of
an algorithm is measured by the maximum number of awake rounds
of a vertex. Recent works revealed that some problems, such as broad-
cast, breadth-first search, and maximal matching, can be solved with
energy-efficient algorithms that consume only poly log n energy. How-
ever, there exist some problems, such as computing the diameter of the
graph, that require Ω(n) energy to solve. To improve energy efficiency
for these problems, we focus on a special graph class: bounded-genus
graphs. We present algorithms for computing the exact diameter, the
exact global minimum cut size, and a (1 ± ε)-approximate s-t minimum
cut size with Õ(

√
n) energy for bounded-genus graphs. Our approach is

based on a generic framework that divides the vertex set into high-degree
and low-degree parts and leverages the structural properties of bounded-
genus graphs to control the number of certain connected components in
the subgraph induced by the low-degree part.

Keywords: Energy-aware computation · Radio networks · Diameter

1 Introduction

We consider the multi-hop radio network model [16] of distributed computing,
where a communication network is modeled as a graph G = (V,E): Each vertex
v ∈ V is a computing device and each edge {u, v} ∈ E indicates that u and v are
within the transmission range of each other. The graph topology of the under-
lying network G is initially unknown to all devices, except that two parameters
n = |V | and Δ = maxv∈V deg(v) are global knowledge.

Communication proceeds in synchronized rounds. All devices agree on the
same start time. In each round, each device can choose to do one of the following
three operations: (i) listen to the channel, (ii) transmit a message, or (iii) stay
idle. We do not allow a device to simultaneously transmit and listen, and we
assume that there is no message size constraint.

Each transmitting or idle device does not receive any feedback from the
communication channel, so a transmitting device u does not know whether its
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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message is successfully received by any of its neighbors N(u). A listening device
v successfully receives a message from a transmitting device u ∈ N(v) if u is
the only transmitting device in N(v). If the number of transmitting devices in
N(v) is zero, then a listening device v hears silence. For the case the number
of transmitting devices in N(v) is greater than one, then the feedback that a
listening device v receives depends on the underlying model. In the No-CD model
(without collision detection), v still hears silence. In the CD model (with collision
detection), v hears collision. All our algorithms presented in this paper work in
the No-CD model.

We assume that each device has access to an unlimited local random source.
We say that an event occurs with high probability (w.h.p.) if the event occurs with
probability 1−1/poly(n). In this paper, we only consider Monte Carlo algorithms
that succeed w.h.p. If we let each vertex v ∈ V locally assign themselves O(log n)-
bit identifiers ID(v), then they are distinct with high probability, so we assume
that each device has a distinct identifier of length O(log n).

Complexity Measures. Time and energy are the two main complexity measures of
a distributed algorithm in radio networks. The time complexity of an algorithm is
the number of rounds of the algorithm. The energy complexity of an algorithm
is the maximum energy cost of a device, where the energy cost of a device v
is the number of rounds that v is non-idle. We only consider worst-case time
and energy complexities. The motivation for studying energy complexity is that
energy is a scarce resource in small battery-powered wireless devices, and such
devices can save energy by entering a low-power sleep mode.

1.1 Prior Work

Most of the early work on the energy complexity focused on single-hop radio
networks, which is the special case that G = (V,E) is a complete graph. Over the
last two decades, there is a long line of research to optimize the energy complexity
of leader election and its related problems in single-hop radio networks [6,8,9,
11,13,14,29–32,34,35,39].

This line of research was recently extended to multi-hop radio networks [10,
12,19,20]. Chang et al. [10] considers the problem of broadcasting a mes-
sage from one device to all other devices in a multi-hop radio network. They
showed that broadcasting can be done in poly log n energy. Specifically, they
presented randomized broadcasting algorithms for CD and No-CD using energy
O

(
log n log log Δ
log log log Δ

)
and O(log Δ log2 n) w.h.p., respectively. They also proved that

any algorithm transmitting a message from one endpoint to the other endpoint of
an n-vertex path costs Ω(log n) energy in expectation. The lower bound applies
even to the LOCAL model of distributed computing.

Chang et al. [12] showed that breadth-first search can be done w.h.p. using
2O(√

log n log log n) energy in No-CD. Their algorithm is based on a hierarchical
clustering using the low-diameter decomposition algorithm of Miller, Peng, and
Xu [38]. The energy complexity of breadth-first search was recently improved
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to poly log n by Dani and Thomas [20]. Combining the polylogarithmic-energy
breadth-first search algorithm with the diameter approximation algorithm of
Roditty and Williams [41], an approximation D̃ of the diameter D such that
D̃ ∈ [�2D/3�,D] can be computed with Õ(

√
n) energy w.h.p. [12]. The notation

Õ(·) suppresses any poly log n factor.
Dani et al. [19] showed that a maximal matching can be computed in

O(Δ log n) time and O(log Δ log n) energy w.h.p. in No-CD. There exists a fam-
ily of graphs such that these time and energy bounds are simultaneously optimal
up to polylogarithmic factors.

1.2 Our Contribution

Not all problems admit energy-efficient algorithms in multi-hop radio networks.
It was shown in [12] that any algorithm that computes a (1.5−ε)-approximation
of the diameter requires Ω̃(n) energy w.h.p. The lower bound holds even on
graphs with arboricity O(log n) and treewidth O(log n).

To improve energy efficiency for diameter computation, we focus on the class
of bounded-genus graphs. We show that the diameter of the graph can be com-
puted using Õ(

√
n) energy w.h.p. in bounded-genus graphs.

Theorem 1. There is an algorithm that computes the diameter in Õ(n1.5) time
and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Our approach is based on a generic framework that divides the vertex set into
high-degree and low-degree parts. We then classify the connected components of
the subgraph induced by the low-degree part into several types. We will leverage
the structural properties of bounded-genus graphs to upper-bound the number of
connected components of one type. For the remaining connected components, we
will design energy-efficient algorithms that extract all the necessary information
from these connected components for the purpose of diameter computation.

Our approach is sufficiently general so that it is applicable to other problems
as well. Using the same approach, we show that the exact global minimum cut
size and a (1± ε)-approximate s-t minimum cut size can also be computed using
Õ(

√
n) energy w.h.p. in bounded-genus graphs.

Theorem 2. There is an algorithm that computes the minimum cut size in
Õ(n1.5) time and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Theorem 3. There is an algorithm that computes an (1 ± ε)-approximate s–t
minimum cut size in Õ(n1.5) · ε−O(1) time and Õ(

√
n) · ε−O(1) energy w.h.p. for

bounded-genus graphs in No-CD.

To complement these algorithmic results, we show that any algorithm that
computes the exact size of an s–t minimum cut or a global minimum cut requires
Ω(n) energy. The lower bound for the s–t minimum cut holds even for planar
bipartite graphs, so it is necessary that we consider approximation algorithms
for this problem. These lower bounds apply to both No-CD and CD.
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Theorem 4. For any randomized algorithm that computes the s–t minimum
cut size of a planar bipartite graph w.h.p. in CD, the energy complexity of the
algorithm is Ω(n).

Theorem 5. For any randomized algorithm that computes the minimum cut
size of a unit-disc graph w.h.p. in CD, the energy complexity of the algorithm is
Ω(n).

1.3 Additional Related Work

There are numerous works studying energy-aware distributed computing in
multi-hop networks from different perspectives. In radio networks, the power
of a signal received is proportional to O(1/dα), where d is the distance to the
sender, and α is a constant related to environmental factors. Kirousis et al. [33]
studied the optimization problem of assigning transmission ranges of devices
subject to some connectivity and diameter constraints so as to minimize the
total power consumption. See [2,17,43] for related work.

There are several works [7,22,42] on the subject of reducing the number of
rounds or transmissions required to complete a specific communication task. In
the setting of known network topology, Gasieniec et al. [23] designed a random-
ized protocol for broadcasting in O(D + kn1/(k−2) log2 n) rounds such that each
device transmits at most k times.

The energy complexity has recently been studied in the well-known LOCAL
and CONGEST models of distributed computing [3,5,15,21,27].

There is a large body of research on distributed graph algorithms in pla-
nar networks, bounded-genus networks, or more broadly H-minor-free networks:
distributed approximation [1,18,36,44], low-congestion shortcuts and its appli-
cations [24–26,28], and other planar graph algorithms [37,40].

1.4 Organization

In Sect. 2, we present the basic tools. In Sect. 3, we present our lower bounds. In
Sect. 4, we present our decomposition of bounded-genus networks. In Sect. 5 and
Appendix A, we present our algorithm for diameter computation. In Appendix
B, we present our algorithm for minimum cut computation. In Appendix C, we
present the proof details for our basic tools.

2 Tools

2.1 Communication Between Two Sets of Vertices

Let S and R be two vertex sets that are not necessarily disjoint. The task
SR-comm [10] is defined as follows. Each vertex u ∈ S holds a message mu that
it wishes to send, and each vertex v ∈ R wants to receive a message from vertices
in N+(v) ∩ S, where N+(v) = N(v) ∪ {v} is the inclusive neighborhood of v.
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Table 1. The time and energy complexities of SR-comm and its variants.

Task Time Energy

SR-comm O(log Δ log n) O(log Δ log n)

SR-commall O(Δ′ log n) O(Δ′ log n)

SR-commmin O(K log Δ log n) O(log K log Δ log n)

SR-commmax

SR-commapx O(ε−6 log W log Δ log n) O(ε−6 log W log Δ log n)

SR-commmulti O(M log Δ log2 n) O(M log Δ log2 n)

Specifically, the task SR-comm requires that for each vertex v ∈ R with
N+(v) ∩ S �= ∅, vertex v receives a message mu from at least one vertex u ∈
N+(v) ∩ S w.h.p. Several variants of SR-comm are defined as follows.

All messages: SR-commall. The task SR-commall requires that each vertex v ∈
R receives the message mu for each u ∈ N+(v) ∩ S w.h.p.

Approximate sum: SR-commapx. Suppose the message mu sent from each
vertex u ∈ S is an integer within the range [W ]. The task SR-commapx requires
each vertex v ∈ R computes an (1±ε)-factor approximation of the summation∑

u∈N+(v)∩S mu w.h.p.
Minimum and maximum: SR-commmin and SR-commmax. The message mu

sent from each vertex u ∈ S contains a key ku from the key space [K] =
{1, 2, . . . ,K}. For SR-commmin, it is required that w.h.p., each vertex v ∈ R
with N+(v)∩S �= ∅ receives a message mu from a vertex u ∈ N+(v)∩S such
that ku = minu′∈N+(v)∩S ku′ . The task SR-commmax is defined analogously
by replacing minimum with maximum.

Multiple messages: SR-commmulti. Consider the setting where each vertex
u ∈ S holds a set of messages Mu. For each message m, all vertices hold-
ing the same message m have access to some shared random bits associated
with m. We assume that for each v ∈ R, the number of distinct messages
in

⋃
u∈N+(v)∩S Mu is upper bounded by a number M that is known to all

vertices. The task SR-commmulti requires that each vertex v ∈ R receives all
distinct messages in

⋃
u∈N+(v)∩S Mu w.h.p.

Table 1 summarizes the time and energy complexities of our algorithms for
these tasks. For SR-commall, the parameter Δ′ can be any known upper bound
on |S ∩ N(v)|, for each v ∈ R. For example, we may set Δ′ = Δ if no better
upper bound is known. The proofs for these results are left to Appendix C.

2.2 Communication via a Good Labeling

A good labeling is a vertex labeling L : V (G) 
→ {0, . . . , n − 1} such that each
vertex v with L(v) > 0 has a neighbor u with L(u) = L(v) − 1 [10]. A vertex
v is called a layer-i vertex if L(v) = i. Observe that if there is a unique layer-0
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vertex r, then L represents a tree T rooted at r, so we call r the root of the good
labeling L. Since a vertex might have multiple choices of the parent, the tree T
is not unique in general. The following lemma was proved in [10].

Lemma 1 ([10]). A good labeling L with a unique layer-0 vertex can be con-
structed in O(n log Δ log2 n) time and O(log Δ log2 n) energy w.h.p.

The following lemma shows that a good labeling allows the vertices in the
graph to broadcast messages in an energy-efficient manner.

Lemma 2. Suppose that we are given a good labeling L with a unique layer-0
vertex. Then we can achieve the following.

1. It takes O(nΔ log n) time and O(Δ log n) energy for each vertex to broadcast
a message to the entire network w.h.p.

2. It takes O(nx log Δ log2 n) time and O(x log Δ log2 n) energy for x vertices to
broadcast messages to the entire network w.h.p.

Proof. Let r be the root of L. For the first task, consider the following algorithm.
We relay the message of each vertex to the root r using the following convergecast
algorithm. For i = n − 1 down to 1, do SR-commall with S being the set of all
layer-i vertices and R being the set of all layer-(i−1) vertices. For each execution
of SR-commall, each vertex in S transmits not only its message but also all other
messages that it has received so far. Although we perform SR-commall n − 1
times, each vertex only participates at most twice. By Lemma 22, the cost of
the convergecast algorithm is O(nΔ log n) time and O(Δ log n) energy.

At the end of the convergecast algorithm, the root r has gathered all messages
sent during the algorithm. After that, the root r then broadcasts this information
to all vertices via the following divergecast algorithm. For i = 0 to n − 2, do
SR-comm with S being the set of all layer-i vertices and R being the set of
all layer-(i + 1) vertices. Similarly, although we perform SR-comm for n − 1
times, each vertex only participates at most twice. By Lemma 21, the cost of
the divergecast algorithm is O(n log Δ log n) time and O(log Δ log n) energy. At
the end of the divergecast algorithm, all vertices have received all messages.

For the rest of the proof, we consider the second task. Let X be the set of
x vertices that attempt to broadcast a message. We solve this task similarly in
two steps:

– We first do a convergecast, using SR-commmulti with M = x, to gather all
x messages to the root. By Lemma 23, SR-commmulti costs O(x log Δ log2 n)
time, so the convergecast costs O(nx log Δ log2 n) time and O(x log Δ log2 n)
energy.

– After that, we do a divergecast based on SR-comm to broadcast these mes-
sages from root to everyone. The divergecast costs O(n log Δ log n) time and
O(log Δ log n) energy.

In order to use SR-commmulti, the initial holder of each message m needs to first
generate a sufficient number of random bits and attach them to the message.
These random bits serve as the shared randomness associated with the message
m, which is needed in the definition of SR-commmulti. �
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Lemma 3. There is an algorithm that lets all vertices learn the entire graph
topology in O(nΔ log n) time and O(Δ log n) energy w.h.p.

Proof. We first let each vertex v learn the list of identifiers in N(v) by doing
SR-commall with S = R = V , where the message of each vertex v is ID(v). By
Lemma 22, this step takes O(Δ log n) time and energy. After that, we apply
Lemma 1 to construct a good labeling with a unique layer-0 vertex, and then
we apply Lemma 2(1) to let all vertices learn the entire network topology by
having each v broadcasting ID(v) and the list of identifiers in N(v). This step
takes O(nΔ log n) time and O(Δ log n) energy. �

3 Lower Bounds

In this section, we prove the two lower bounds: Theorems 4 and 5.

Theorem 4. For any randomized algorithm that computes the s–t minimum
cut size of a planar bipartite graph w.h.p. in CD, the energy complexity of the
algorithm is Ω(n).

Proof. Suppose that there is a randomized algorithm A that computes the exact
s–t minimum cut size of any planar bipartite graph with high probability and
using o(n) energy. Let G be a complete bipartite graph K2,Δ with the bipartition
{s, t} and {v1, . . . , vΔ}. Set X = Δ/5. We select Δ to be sufficiently large so that
it is guaranteed that both s and t use at most X unit of energy in an execution
of A on G.

Let G′ be the result of removing vΔ from G. The size of a s–t minimum cut
of G is Δ, and the size of a s–t minimum cut of G′ is Δ − 1. Therefore, A lets s
correctly distinguish between G and G′ with high probability.

Consider an execution of A on G. Let S be the subset of {v1, . . . , vΔ} such
that vi ∈ S if there is a time slot τ where (i) vi transmits, (ii) the number of
vertices in {v1, . . . , vΔ} that transmit is at most 2, and (iii) at least one of s and
t listens.

We claim that |S| ≤ 4X = 4Δ/5. Let T be the set of all time slots τ such that
the above conditions (i), (ii), and (iii) hold for at least one vi ∈ {v1, . . . , vΔ}.
In view of condition (ii), we must have |T | ≥ |S|/2. In view of condition (iii), if
τ ∈ T , then at least one of s and t must listen at time τ , so the energy cost of
one of s and t must be at least |T |/2 ≥ |S|/4, which implies X ≥ |S|/4.

Let E be the event that vΔ /∈ S in an execution of A on G. Whether or
not E occurs depends only on the local randomness stored in the vertices {s, t}
and {v1, . . . , vΔ}. Since |S| ≤ 4Δ/5, at least 1/5 fraction of the vertices in
{v1, . . . , vΔ} are not in S. Since the probability that vi /∈ S is identical for all
vi ∈ {v1, . . . , vΔ}, we have Pr[E ] ≥ 1/5.

Consider the following scenario. All vertices in {s, t} and {v1, . . . , vΔ} have
decided their random bits in advance. With probability 1/2, we run A on G.
With probability 1/2, we run A on G′. If E occurs, then the execution of A on
both G and G′ is completely identical from the point of view of each vertex,
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except for vΔ. Therefore, conditioning on event E , the probability that vertex s
correctly decides whether the underlying graph is G or G′ is at most 1/2, as s
can only guess randomly.

Since Pr[E ] ≥ 1/5, the probability that vertex s fails to correctly decide
whether the underlying graph is G or G′ is at least (1/2) · (1/5) = 1/10, so s
fails to correctly calculate the s–t minimum cut with probability at least 1/10 in
the above scenario. This contradicts the assumption that A is able to compute
the s–t minimum cut with high probability. �
Theorem 5. For any randomized algorithm that computes the minimum cut
size of a unit-disc graph w.h.p. in CD, the energy complexity of the algorithm is
Ω(n).

Proof. Consider the case where the underlying graph is Kn with probability
1/2, and is Kn − e with probability 1/2, where the edge e is chosen uniformly
at random from the set of all edges in Kn. Let A be any randomized algorithm
that computes the size of a minimum cut exactly with high probability. Observe
that the size of a minimum cut of Kn is n − 1 and the size of a minimum cut of
Kn − e is n − 2, so A is able to distinguish between Kn and Kn − e with high
probability. It was shown in [12] that any algorithm that distinguishes between
Kn and Kn − e with success probability at least 3/4 necessarily has energy cost
Ω(n) in both CD and No-CD, so the energy complexity of A is Ω(n). �

4 Graph Partitioning

The genus of a graph G is the minimum number g such that G can be drawn on
an oriented surface of g handles without crossing. For example, planar graphs
are the graphs with genus zero, and the graphs that can be drawn on a torus
without crossing are the graphs with genus at most one. A class of graphs is
called bounded-genus if the genus of all graphs in the class can be upper bounded
by some constant g = O(1). In this section, we consider a classification of the
connected components of the subgraph induced by the low-degree vertices in a
bounded-genus graph. Our algorithms, which will be presented in subsequent
sections, make use of the classification.

Let G = (V,E) be any bounded-genus graph. Let VH be the set of vertices
that have degree at least

√
n. Let VL = V \ VH . Since bounded-genus graphs

have arboricity O(1), we have |E| = O(n), which implies |VH | = O(
√

n).
From now on, we assume |VH | ≥ 1, since otherwise G has maximum degree

Δ ≤ √
n, so we can already solve all problems using O(nΔ log Δ log n)) = Õ(n1.5)

time and O(Δ log Δ log n)) = Õ(
√

n) energy by learning the entire graph topol-
ogy using the algorithm of Lemma 3.

Given a set of vertices S, we write G[S] to denote the subgraph of G induced
by S and write G+[S] to denote the subgraph of G induced by all edges that
have at least one endpoint in S. We divide the connected components of G[VL]
into three types.
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Type 1. A connected component S of G[VL] is of type-1 if |S| <
√

n and
|⋃w∈S N(w)∩VH | = 1. For each vertex u ∈ VH , we write C(u) to denote the
set of type-1 components S such that

⋃
w∈S N(w) ∩ VH = {u}.

Type 2. A connected component S of G[VL] is of type-2 if |S| <
√

n and
|⋃w∈S N(w) ∩ VH | = 2. For each pair of two distinct vertices {u, v} ⊆
VH , we write C(u, v) to denote the set of type-2 components S such that⋃

w∈S N(w) ∩ VH = {u, v}.
Type 3. A connected component S of G[VL] is of type-3 if it is neither of type-1

nor of type-2.

A connected component S of G[VL] is of type-3 if |S| ≥ √
n or |⋃w∈S N(w) ∩

VH | ≥ 3. The number of type-3 components S with |S| ≥ √
n is clearly at

most |V |/√n =
√

n. We will show that the number of type-3 components with
|⋃w∈S N(w) ∩ VH | ≥ 3 is also O(

√
n).

Lemma 4. Let G = (V,E) be a bipartite graph of genus at most g. Let V = X ∪
Y be the bipartition of G. If deg(v) ≥ 3 for each v ∈ X, then |X| ≤ 2|Y |+4(g−1).

Proof. Consider any embedding of G into a surface of genus g, and let F be set
of faces. In a bipartite graph, each face has at least four edges, and each edge
appears in at most two faces, so |E| ≥ 2|F |. Combining this inequality with
Euler’s polyhedral formula |V | − |E| + |F | ≥ 2 − 2g, we obtain that

2V | − |E| ≥ 4(1 − g).

Since deg(v) ≥ 3 for each v ∈ X, we have |E| ≥ 3|X|, so

2V | − |E| = 2(|X| + |Y |) − |E| ≤ 2(|X| + |Y |) − 3|X| = 2|Y | − |X|.
Combining these upper and lower bounds of 2|V | − |E|, we obtain that 2|Y | −
|X| ≥ 4(1 − g), so |X| ≤ 2|Y | + 4(g − 1), as required. �

Note that Lemma 4 is precisely the reason that our algorithms only apply
to bounded-genus graphs and do not work on an arbitrary H-minor-free graph.
Consider a complete bipartite graph with the bipartition X and Y such that
|Y | = 3. Such a graph does not contain K5 as a minor, regardless of the size of
X. Therefore, K5-minor-freeness does not allow us to upper bound |X| by any
function of |Y |. Therefore, the bounded-genus requirement in Lemma 4 cannot
be relaxed to H-minor-freeness for an arbitrary H.

Lemma 5. If G is a bounded-genus graph, then the number of type-3 compo-
nents is O(

√
n).

Proof. A connected component S of G[VL] is of type-3 if |S| ≥ √
n or

|⋃w∈S N(w) ∩ VH | ≥ 3. As discussed earlier, the number of type-3 components
S with |S| ≥ √

n is at most
√

n, so we just need to prove that the number of
type-3 components S with |⋃w∈S N(w) ∩ VH | ≥ 3 is also O(

√
n). Consider a

bipartite graph G∗ = (V ∗, E∗) with the bipartition V ∗ = X∗ ∪ Y ∗ defined as
follows.
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– X∗ is the set of all type-3 components S such that |⋃w∈S N(w) ∩ VH | ≥ 3.
– Y ∗ = VH .
– For each component S ∈ X∗ and each vertex v ∈ Y ∗, {S, v} ∈ E∗ if v ∈⋃

w∈S N(w).

Alternatively, G∗ can be constructed from G by the following steps.

– Remove all type-1, type-2, and type-3 components S with |⋃w∈S N(w) ∩
VH | ≤ 2.

– For each type-3 component S with |⋃w∈S N(w) ∩ VH | ≥ 3, contract S into a
vertex.

As G∗ can be obtained from G via a sequence of edge contractions and
vertex removals, G∗ is a bounded-genus graph. Observe that deg(S) ≥ 3 for
each S ∈ X∗ in G∗, so we may apply Lemma 4, which shows that the number
|X∗| of type-3 components S such that |⋃w∈S N(w) ∩ VH | ≥ 3 satisfies |X∗| ≤
2|Y ∗| + O(1) = 2|VH | + O(1) = O(

√
n). �

We write GH to denote the graph defined by the vertex set VH and the edge
set {{u, v} : |C(u, v)| > 0}. The following observation is useful.

Lemma 6. If G is a bounded-genus graph, then GH is also a bounded-genus
graph, so the number of edges in GH is O(

√
n) and there exists an edge orien-

tation of GH such that each vertex has outdegree O(1).

Proof. The graph GH can be obtained from G via a sequence of edge contractions
and vertex removals, so GH is a bounded-genus graph. As bounded-genus graphs
have arboricity O(1), and so the number of edges in GH is at most linear in the
number of vertices in GH , which is O(

√
n), and we can orient the edges of GH

in such a way that each vertex has outdegree O(1). �

5 Diameter

In this section, we show that for bounded-genus graphs, the diameter can be com-
puted using Õ(

√
n) energy. We begin with discussing the high-level proof idea.

First of all, using Lemma 2, learning the entire graph topology of the subgraph
induced by VH and all type-3 components is doable using Õ(

√
n) energy. Intu-

itively, this is due to the following facts: (i) |VH | = O(
√

n), (ii) deg(v) = O(
√

n)
for each v ∈ VL, and (iii) the number of type-3 components is O(

√
n).

The main difficulty in the diameter computation is dealing with type-1 and
type-2 components. For example, a vertex u ∈ VH can be connected to Θ(n)
type-1 components in that |C(u)| = Θ(n). Since we aim for an algorithm with
energy complexity Õ(

√
n), throughout the entire algorithm, u can only receive

messages from at most Õ(
√

n) components in C(u). The challenge here is to show
that the diameter can still be calculated with a limited amount of information
about type-1 and type-2 components and show that such information can be
extracted in an energy-efficient manner in the radio network model.



272 Y.-J. Chang

We will define a set of parameters of type-1 and type-2 components and show
that with these parameters, the exact value of the diameter can be calculated.
Based on this result, we will define a subgraph G� of G such that the diameter
of G equals the diameter of G�, and then in Appendix A we will design an
energy-efficient algorithm to learn the graph topology of G�.

In the subsequent discussion, we write eccentricity(u, S) to denote
maxv∈S dist(u, v). By default, all distances are measured in the underlying net-
work G. We use subscripts to describe distances that are measured in a vertex
set, an edge set, or a subgraph.

Parameters for Type-1 Components. We first consider the type-1 components in
C(u), for any vertex u ∈ VH .

(Ai[u], ai[u]). Let A1[u] be a component S ∈ C(u) that maximizes
eccentricity(u, S), and let A2[u] be a component S ∈ C(u)\{A1[u]} that maxi-
mizes eccentricity(u, S). For i ∈ {1, 2}, we write ai[u] = eccentricity(u,Ai[u]).

(B[u], b[u]). Let B[u] be a component S ∈ C(u) that maximizes
maxs,t∈S∪{u} dist(s, t), and we write b[u] = maxs,t∈B[u]∪{u} dist(s, t).

In the above definitions, ties can be broken arbitrarily if there are multiple
choices. Some of the above definitions become undefined when |C(u)| is too
small. For example, if |C(u)| = 1, then A2[u] and a2[u] are undefined. In such a
case, we set these parameters to their default values: zero or an empty set. For
example, if |C(u)| = 1, then we set A2[u] = ∅ and a2[u] = 0.

Any path connecting a vertex in
⋃

S∈C(u) S to the rest of the graph must pass
the vertex u ∈ VH , so the amount of information we can afford to extract from⋃

S∈C(u) S is limited. Intuitively, for the purpose of calculating the diameter, we
only need the following information from

⋃
S∈C(u) S:

– The longest distance between two vertices in
⋃

S∈C(u) S ∪ {u}, which is
max{b[u], a1[u] + a2[u]}.

– The longest distance between u and a vertex in
⋃

S∈C(u) S, which is a1[u].

Regardless of the size of C(u), we only need to learn a1[u], a2[u], and b[u] from
the components of C(u). Later we will show that these parameters can be learned
efficiently via SR-commmax.

Parameters for Type-2 Components. Next, we consider the type-2 components
in C(u, v), for any two distinct vertices u, v ∈ VH .

(R[u, v], r[u, v]). Let R[u, v] be a component S ∈ C(u, v) that minimizes
distG+[S](u, v), and we write r[u, v] = distG+[R[u,v]](u, v). In other words,
R[u, v] is a component that contains a shortest path between u and v, among
all u–v paths via the vertices in

⋃
S∈C(u,v) S.

(Ak
i [u, v], ak

i [u, v]). For each component S ∈ C(u, v), we write Su,k to denote
the set of vertices {w ∈ S : distG+[S](w, v) − distG+[S](w, u) ≥ k}. In other



Energy Complexity in Bounded-Genus Networks 273

words, Su,k is the set of all vertices in S whose distance to u in G+[S] is
shorter than that to v by at least k.
Let Ak

1 [u, v] be a component S ∈ C(u, v) that maximizes eccentricityG+[S]

(u, Su,k), and let Ak
2 [u, v] be a component S ∈ C(u, v)\{Ak

1 [u, v]} that max-
imizes eccentricityG+[S](u, Su,k). We write ak

i [u, v] = eccentricityG+[Ak
i [u,v]]

(u,Ak
i [u, v]). We only consider k ∈ {−√

n, . . . ,
√

n}.
(Bl[u, v], bl[u, v]). For a component S ∈ C(u, v), we write Gl[S] to denote the

graph resulting from adding to G+[S] a path of length l connecting u and
v, and we write φl(S) to denote the maximum value of distGl[S](s, t) among
all pairs of vertices s, t ∈ S ∪ {u, v}. A useful observation here is that if
distV \S(u, v) = l, then φl(S) equals the maximum value of distG(s, t) among
all pairs of vertices s, t ∈ S ∪ {u, v}.
Let Bl[u, v] be a component S ∈ C(u, v) \ {R[u, v]} that maximizes φl(S),
and we write bl(u, v) = φl(Bl[u, v]). We only consider l ∈ {1, . . . ,

√
n}.

Similar to the parameters of type-1 components, all the above parameters
are set to their default values if they are undefined. Note that the definitions of
ak

i [u, v] and Ak
i [u, v] are asymmetric in the sense that we might have ak

i [u, v] �=
ak

i [v, u] and Ak
i [u, v] �= Ak

i [v, u]. All remaining parameters for type-2 components
are symmetric.

We briefly explain how the above parameters can be used in the diameter
calculation. Let P = (s, . . . , t) be an s–t shortest path in G whose length equals
the diameter. There are three possible ways that P intersects the vertex set⋃

S∈C(u,v) S.

– Suppose s and t are within G+[S], for a component S ∈ C(u, v). In this case,
if distV \S(u, v) = l, then the length of P equals φl(S) = bl[u, v].

– Suppose there is a subpath P ′ = (u, . . . , v) of P whose intermediate vertices
are all in

⋃
S∈C(u,v) S. In this case, the length of P ′ equals r[u, v].

– Suppose there is a component S ∈ C(u, v) such that s ∈ S and t /∈ S ∪{u, v}.
Suppose u is the first vertex of P that is not in S. Consider the subpath
P ′ = (s, . . . , u) of P . If dist(t, v)−dist(t, u) = k, then we must have s ∈ Su,k,
since otherwise dist(s, v)+dist(v, t) is smaller than the length of P , violating
the assumption that P is an s–t shortest path. If t /∈ Ak

1 [u, v], then the length
of P ′ equals ak

1 [u, v]. If t ∈ Ak
1 [u, v], then the length of P ′ equals ak

2 [u, v].

Intuitively, the above discussion shows that the parameters described above
capture all the necessary information needed to be extracted from the type-2
components for the purpose of diameter computation. We have O(

√
n) parame-

ters for each C(u, v). We will later show that all these parameters can be learned
using O(

√
n) energy.

The graph G�. We define G� as the subgraph induced by the union of (i) VH ,
(ii) all type-3 components, (iii) A1[u], A2[u], and B[u], for each u ∈ VH , and
(iv) Ak

i [u, v], Ak
i [v, u], Bl[u, v], and R[u, v], for each pair of distinct vertices

{u, v} ⊆ VH , i ∈ {1, 2}, k ∈ {−√
n, . . . ,

√
n}, and l ∈ {1, . . . ,

√
n}. In the

subsequent discussion, we prove that the diameter of G equals the diameter
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of G�, so the task of computing the diameter of G is reduced to learning the
topology of G�. We will show that the following two statements are correct.

(S1) For each pair of vertices {s, t} in graph G�, we have distG(s, t) =
distG�(s, t).

(S2) For each pair of vertices {s, t} in graph G, there exists a pair of vertices
{s′, t′} in graph G� satisfying distG(s, t) ≤ distG(s′, t′).

These statements imply that G and G� have the same diameter. We first prove
that (S1) is true.

Lemma 7. For any two vertices s and t in G�, we have distG(s, t) =
distG�(s, t).

Proof. We choose P to be an s–t path in G whose length is distG(s, t) that uses
the minimum number of vertices not in G�. If P is entirely in G�, then we are
done. For the rest of the proof, we assume that P is not entirely in G�. Then
P contains a subpath P ′ = (u, . . . , v) whose intermediate vertices are all within
a type-2 component S ∈ C(u, v) that is not included to G�. By the definition
of R[u, v], the length of P ′ is at least r[u, v], which is the shortest path length
between u and v via R[u, v]. Therefore, replacing P ′ with a shortest u–v path
in Rj [u, v], which is entirely in G�, does not increase the path length. This
contradicts our choice of P . Hence P is entirely in G�. �
Lemma 8. Let S be a type-1 or type-2 component that is not included in G�.
Let s ∈ S. Let t be any vertex in G that does not belong to G+[S]. Then there
exists a vertex s′ in G� such that distG(s′, t) ≥ distG(s, t).

Proof. Let P be an s–t shortest path in G. Suppose that S ∈ C(u) is of type-1.
Because S is not included in G�, we must have |C(u)| ≥ 3, so both A1[u] �= S
and A2[u] �= S are not ∅. Let i ∈ {1, 2} be an index such that t is not in Ai[u].
Consider the subpath P̃ = (s, . . . , u) of P . By the definition of ai[u] and Ai[u],
the length of P̃ is at most ai[u], and there exists a vertex s′ ∈ Ai[u] such that
the length of the shortest path between s′ and u equals ai[u]. Thus, we have

distG(s′, t) = distG(s′, u) + distG(u, t) ≥ distG(s, u) + distG(u, t) = distG(s, t).

Next, consider the case that S ∈ C(u, v) is of type-2. The path P must
contain at least one of u and v. Without loss of generality, assume that u is
the first vertex of P that is not in S, so there is a subpath P̃ = (s, . . . , u) of
P such that all vertices in P̃ other than u are in S. The length of P equals
distG+[S](s, u) + distG(u, t).

Let k = distG+[S](s, v) − distG+[S](s, u), so Su,k ⊇ {s} �= ∅. Since S is not of
type-3, |S| <

√
n, so k ∈ {−√

n, . . . ,
√

n}. Because S is not included in G�, both
Ak

1 [u, v] �= S and Ak
1 [u, v] �= S are not ∅. At least one of Ak

1 [u, v] and Ak
2 [u, v]

does not contain t. We choose S′ = Ak
i [u, v] as any one of them that does not

contain t. We choose s′ ∈ S′ as a vertex such that distG+[S′](s′, u) = ak
i [u, v]
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and distG+[S′](s′, v) − distG+[S′](s′, u) ≥ k. The existence of such a vertex s′ is
guaranteed by the definition of Ak

i [u, v].
Our plan is to show that (i) ak

i [u, v] + distG(u, t) ≥ distG(s, t) and (ii)
distG(s′, t) = ak

i [u, v] + distG(u, t). Combining these two inequalities give us
the desired result: distG(s′, t) ≥ distG(s, t).

Proof of (i). By the definition of Ak
i [u, v], we must have

distG+[S′](s′, u) = ak
i [u, v] ≥ distG+[S](s, u),

so we have

ak
i [u, v] + distG(u, t) ≥ distG+[S](s, u) + distG(u, t) = distG(s, t).

Proof of (ii). Suppose that (ii) is not true. Then any shortest path between s′

and t must contain a subpath P ′ = (s′, . . . , v) such that u is not in P ′, and so
we have:

distG(s′, t) = distG+[S′](s′, v) + distG(v, t) < distG+[S′](s′, u) + distG(u, t).

Combining this inequality with the known fact distG+[S′](s′, v) − distG+[S′]
(s′, u) ≥ k, we have:

distG(u, t) − distG(v, t) > distG+[S′](s′, v) − distG+[S′](s′, u) ≥ k,

which implies that distG(v, t) < distG(u, t)−k (�). We calculate an upper bound
of distG(s, t):

distG(s, t) ≤ distG+[S](s, v) + distG(v, t)

= (k + distG+[S](s, u)) + distG(v, t) by definition of k.

< (k + distG+[S](s, u)) + (distG(u, t) − k) by (�).

= distG+[S](s, u) + distG(u, t).

This contradicts the assumption that P is a shortest path between s and t in G,
as the length of P equals distG+[S](s, u) + distG(u, t). �

The following lemma shows that (S2) is true.

Lemma 9. For any two vertices s and t in graph G, there exist two vertices s′

and t′ in graph G� such that distG(s, t) ≤ distG(s′, t′).

Proof. If both s and t are already in G�, then we are done by setting s′ = s and
t′ = t. In the subsequent discussion, we focus on the case that at least one of s
and t is not in G�. By symmetry, we will assume that s is not in G�, so there is
a type-1 or a type-2 component S that is not included in G� such that s ∈ S.

Case 1: t belongs to G+[S]. If S ∈ C(u) for some u ∈ VH , then there exist two
vertices s′ and t′ in the component B[u] ∈ C(u) such that distG(s′, t′) = b[u] ≥
distG(s, t) by the definition of B[u].
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The remaining case is that S ∈ C(u, v) for some u, v ∈ VH . Let l =
distV \S(u, v). We observe that l ≤ r[u, v]. The reason is that the existence
of a component S �= R[u, v] guarantees that R[u, v] �= ∅, which implies that
l = distV \S(u, v) ≤ distG+[R[u,v]](u, v) = r[u, v], as G+[R[u, v]] is a subgraph of
G[V \ S].

Since R[u, v] is of type-2, we have r[u, v] ≤ |R[u, v]| + 1 ≤ √
n, so

l ∈ {1, . . . ,
√

n} Consider the component Bl[u, v] ∈ C(u, v). We observe that
l = distV \Bl[u,v](u, v), since the shortest u–v path length via R[u, v] is at most
the length of any u–v path via S or Bl[u, v], by our choice of R[u, v]. More
precisely, we have l = distV \S(u, v) = distV (u, v) = distV \Bl[u,v](u, v), as the
above discussion implies that including S and excluding Bl[u, v] in the sub-
script does not change the shortest u–v path length. Here we use the fact that
Bl[u, v] �= R[u, v], which is due to the definition of Bl[u, v].

Since l = distV \Bl[u,v](u, v), by the definition of Bl[u, v], there exist two ver-
tices s′ and t′ in G+[Bl[u, v]] such that distG(s′, t′) ≥ distG(s, t), since otherwise
we would have selected Bl[u, v] = S.

Case 2: t does not belong to G+[S]. We apply Lemma 8 to find a vertex s′ in
G� such that distG(s, t) ≤ distG(s′, t). If t is already in G�, then we are done.
Otherwise, there is a type-1 or a type-2 component S′ that is not included in
G� such that t ∈ S′. There are two sub-cases.
– Suppose s′ belongs to G+[S′]. Then we may apply the same argument for

Case 1 above to find two vertices s′′ and t′′ in G� such that distG(s, t) ≤
distG(s′, t) ≤ distG(s′′, t′′).

– Suppose s′ does not belong to G+[S′]. Then we may apply Lemma 8 again
to find a vertex t′ in G� such that distG(s, t) ≤ distG(s′, t) ≤ distG(s′, t′).

In both sub-cases, we can find two vertices in G� whose distance in G is at least
distG(s, t). �
Lemma 10. The diameter of G equals the diameter of G�.

Proof. Lemma 7 shows that (S1) is true. Lemma 9 shows that (S2) is true. These
two results together imply that G and G� have the same diameter. Statement
(S1) implies that the diameter of G� is at most the diameter of G. For the other
direction, let s and t be two vertices in G such that dist(s, t) equals the diameter
of G. By (S2), there exist two vertices s′ and t′ in G� such that distG(s, t) ≤
distG(s′, t′). By (S1), distG(s′, t′) = distG�(s′, t′), so the diameter of G� is at
least the diameter of G. �

In Appendix A, we will design an energy-efficient algorithm to learn the graph
topology of G�. This algorithm, combined with Lemma 10, allows us to prove
Theorem 1.

A Learning the Topology of G�

By Lemma 10, the task of computing the diameter of a bounded-genus graph
G is reduced to computing the diameter of G�. In this section, we show that all
vertices can learn the graph topology of G� using Õ(

√
n) energy.
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Recall that GH is the graph defined by the vertex set VH and the edge set
{{u, v} : |C(u, v)| > 0}. By Lemma 6, we know that E(GH) = O(

√
n) and there

exists an assignment F : E(GH) 
→ VH mapping each pair {u, v} ∈ E(GH) to
one vertex in {u, v} such that each w ∈ VH is mapped to at most O(1) times.
Let A′ be any deterministic centralized algorithm that finds such an assignment
F , and we fix F � to be the outcome of A′ on the input GH . If each vertex v ∈ V
already knows the graph GH , then v can locally calculate F � by simulating A′.

To learn G�, we will let each vertex u ∈ V learn the following information:

Basic information I0(u). For each vertex u ∈ V , I0(u) contains the following
information: (i) whether u ∈ VH or u ∈ VL, (ii) the list of vertices in N(u)∩VH ,
and (iii) the set of all pairs {u′, v′} ∈ E(GH).
If u is in a connected component S of G[VL], then I0(u) contains the following
additional information: (i) the list of vertices in S, and (ii) the topology of
the subgraph G+[S].

Information about type-1 components I1(u). For each u ∈ VH , I1(u) con-
tains the graph topology of G+[S′], for each S′ = A1[u], A2[u], and B[u].

Information about type-2 components I2(u). For each u ∈ VH , I2(u) con-
tains the following information. For each pair {u, v} ∈ E(GH) such that
F �({u, v}) = u, I2(u) includes the graph topology of G+[S′], for each
S′ = Ak

i [u, v], Ak
i [v, u], Bl[u, v], and R[u, v], for each i ∈ {1, 2}, k ∈

{−√
n, . . . ,

√
n}, and l ∈ {1, . . . ,

√
n}.

The information I0(u) contains the graph topology of GH , allowing each
vertex u to calculate F � locally. Note that I1(u) and I2(u) contain nothing if
u ∈ VL. The following lemma shows that the graph topology of G� can be learned
efficiently given that each vertex u ∈ V already knows I0(u), I1(u), and I2(u).

Lemma 11. Given that each u ∈ V already knows I0(u), I1(u), and I2(u),
using Õ(n1.5) time and Õ(

√
n) energy, we can let all vertices in G learn the

graph topology of G� w.h.p.

Proof. To learn G�, it suffices to know the following information: (i) I1(u) and
I2(u) for each u ∈ VH , (ii) the graph topology of G+[S] for each type-3 compo-
nent S, and (iii) the graph topology of the subgraph induced by VH . For each
type-3 component S, let rS be the smallest ID vertex in S. In view of the above,
to let each vertex learn the topology of G�, it suffices to let the following O(

√
n)

vertices broadcast the following information:

– For each u ∈ VH , u broadcasts I1(u), I2(u), and the list of vertices N(u)∩VH ,
which is contained in I0(u).

– For each u ∈ VL such that u = rS for a type-3 component S, u broadcasts
the graph topology of G+[S]. Note that each vertex u ∈ VL can decide locally
using the information in I0(u) whether or not u itself is rS for a type-3
component S.
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Since |VH | = O(
√

n) and the number of type-3 components is also O(
√

n) by
Lemma 5, the number of vertices that need to broadcast is O(

√
n). We run

the algorithm of Lemma 1 to find a good labeling L of G, and then we use
Lemma 2(2) with x = O(

√
n) to let the above O(

√
n) vertices broadcast their

information. This can be done in time Õ(n1.5), and energy Õ(
√

n). After that,
all vertices know the graph topology of G�. �

Next, we consider the task of learning the basic information I0(u).

Lemma 12. Using Õ(
√

n) time and energy, we can let all vertices v ∈ V learn
the following information w.h.p.

– Each v ∈ V learns whether v ∈ VH or v ∈ VL.
– If v ∈ VH , then v also learns the list of vertices in N(v) ∩ VH .
– If v ∈ VL, then v also learns the two lists of vertices N(v)∩VL and N(v)∩VH .

Proof. First, we run SR-commapx with W = 1, ε = 1, S = R = V , and mu = 1,
for each u ∈ S. This step lets each v ∈ V estimate deg(v) up to a factor of 2.
This step costs poly log n time, by Lemma 27.

After that, we run SR-commall with S = V and R being the set of all vertices
v whose estimate of deg(v) is at most 2

√
n. The message mv for each vertex v

is ID(v), and we use the bound Δ′ = 4
√

n for SR-commall. Recall that VL is the
set of vertices of degree at most

√
n, so we must have VL ⊆ R. The algorithm

of SR-commall allows each vertex v ∈ R to calculate deg(v) precisely. Therefore,
after this step, each vertex v ∈ V has enough information to decide whether
v ∈ VH or v ∈ VL. Furthermore, if v ∈ VL, then v knows the list of all vertices
N(v). This step takes Õ(

√
n) time, by Lemma 22.

In order for each vertex to learn all the required vertex lists, we run
SR-commall again with the following parameters: S = VH , R = V , and the
message mv for each vertex v ∈ S is its ID(v). This time we may use the bound
Δ′ =

√
n ≥ |VH |. After the algorithm of SR-commall, each vertex v ∈ V knows

the list of vertices in N(v) ∩ VH . For each v ∈ VL, since v already knows the list
of all vertices N(v), it can locally calculate the list N(v) ∩ VL. This step also
takes Õ(

√
n) time. �

Lemma 13. Using Õ(n1.5) time and Õ(
√

n) energy, we can let all vertices v in
all connected components S of G[VL] learn (i) the vertex set S and (ii) the graph
topology of G+[S] w.h.p.

Proof. First, we apply Lemma 12 to let all vertices v ∈ VL learn the two lists
N(v) ∩ VL and N(v) ∩ VH . To let all vertices learn the required information in
the lemma statement, it suffices to let each vertex v ∈ S broadcast the two lists
N(v)∩VL and N(v)∩VH to all other vertices in S, for all connected components
S of G[VL].

We do the above broadcasting task in parallel, for all connected components
S of G[VL]. We use Lemma 1 to let each component S compute a good labeling,
and then we use Lemma 2(1) to let each vertex v ∈ S broadcast the two lists
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N(v) ∩ VL and N(v) ∩ VH to all other vertices in S. Recall that the degree of
any vertex in VL is less than

√
n, so the algorithm of Lemma 2(1) costs Õ(n1.5)

time and Õ(
√

n) energy. �
For each connected component S of G[VL], at the end of the algorithm of

Lemma 13, each vertex w ∈ S is able to determine the type of S. If S is of type-1,
w knows the vertex u ∈ VH such that S ∈ C(u). If S is of type-2, w knows the
two vertices u, v ∈ VH such that S ∈ C(u, v). Given such information, in the
following lemma, we design an algorithm for learning the topology of GH .

Lemma 14. Suppose that each vertex in each type-2 component S already knows
(i) the vertex set S and (ii) the graph topology of G+[S]. Using Õ(n1.5) time and
Õ(

√
n) energy, all vertices in the graph can learn the set of all pairs {u, v} ∈

E(GH) w.h.p.

Proof. First of all, we let all vertices in VH agree on a fixed ordering VH =
{v1, . . . , v|H|} as follows. We use Lemma 1 to compute a good labeling of G,
and then we use Lemma 2(2) with x =

√
n to let each vertex v ∈ VH broadcast

ID(v). After that, we may order VH = {v1, . . . , v|H|} by increasing ordering of
ID. This step takes Õ(n1.5) time and Õ(

√
n) energy.

Next, we consider the task of letting each u ∈ VH learn the list of all v ∈ VH

such that C(u, v) �= ∅. We solve this task by |VH | invocations of SR-comm. Given
a type-2 component S ∈ C(u, v), we define zu,S as the smallest-ID vertex in
N(v)∩S. The vertex zu,S will be responsible for letting v know that C(u, v) �= ∅.
For i = 1 to |VH |, we do an SR-comm with R = VH and S being the set
of all vertices zvi,S such that S is a type-2 component S with vi ∈ G+[S].
Observe that a vertex u ∈ VH receives a message during the ith iteration if
and only if C(u, vi) �= ∅, i.e., {u, vi} ∈ E(GH). By Lemma 21, this step takes
|VH | · poly log n = Õ(

√
n) time.

At the end of the above algorithm, each u ∈ VH knows the list of all v ∈ VH

such that C(u, v) �= ∅. In order to let all vertices in G learn the topology of GH ,
it suffices to let all u ∈ VH broadcast this information. This can be done using
Lemma 2(2) with x =

√
n, which costs Õ(n1.5) time and Õ(

√
n) energy. �

Lemma 15. In Õ(n1.5) time and Õ(
√

n) energy, we can let all u ∈ V learn
I0(u) w.h.p.

Proof. This follows from Lemma 13 and Lemma 14. �
Next, we consider the task of learning I1(u) and I2(u).

Lemma 16. Suppose that each v ∈ V knows I0(v). Using Õ(n1.5) time and
Õ(

√
n) energy, we can let all vertices u ∈ VH learn I1(u) and I2(u) w.h.p.

Proof. Consider any vertex u ∈ VH . For each component S ∈ C(u), we let
rS,u be the smallest-ID vertex in the set S ∩ N(u). For each v ∈ VH such that
F �({u, v}) = u, and for each component S ∈ C(u, v), we similarly let rS,u be
the smallest-ID vertex in the set S ∩ N(u). As we will later see, rS,u will be the
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vertex in S responsible for sending the graph topology G+[S] to u in case G+[S]
belongs to I1(u) or I2(u).

Recall that I1(u) and I2(u) consist of the graph topology G+[S′] of some
selected type-1 and type-2 component S′ such that u belongs to G+[S′]. We
will present a generic approach that lets u ∈ VH learn one graph topology in
I1(u) and I2(u). As we will later see, the cost of learning one graph topology is
poly log n time and energy. If the graph topology to be learned is in C(u), then
only u and the vertices rS,u for all S ∈ C(u) need to participate in the algorithm
for learning the graph topology. If the graph topology to be learned is in C(u, v),
then only u and the vertices rS,u for all S ∈ C(u, v) need to participate in the
algorithm for learning the graph topology. We only describe the algorithms that
let u ∈ VH learn A1[u] and A2[u]. The algorithms for learning the remaining
graph topologies are analogous.

Learning A1[u]. Recall that A1[u] is a component S′ ∈ C(u) that maximizes
eccentricity(u, S′). To learn A1[u], we use SR-commmax with S = {rS,u :
S ∈ C(u)} and R = {u}. The message mv of v = rS,u is the graph topology
of G+[S], and the key of v = rS,u is kv = eccentricity(u, S). Since each type-
1 and type-2 component satisfies |S| ≤ √

n, the maximum possible value
of eccentricity(u, S) is

√
n, so the size of the key space for SR-commmax is

K =
√

n.
If |C(u)| > 0, then the message that u receives from SR-commmax is the
topology of G+[S′], for a component S′ ∈ C(u) that attains the maximum
value of eccentricity(u, S′) among all components in C(u), so u may set
A1[u] = S′. If |C(u)| = 0, the vertex u receives nothing from SR-commmax,
so u may set A1[u] = ∅. By Lemma 24, the cost of SR-commmax is
O(log K log Δ log n) = poly log n.

Learning A2[u]. The procedure for learning A2[u] is almost exactly the same as
that for A1[u], with only one difference. Recall that A2[u] is a component S′ ∈
C(u) \ {A1[u]} that maximizes eccentricity(u, S′), so we need to exclude the
component A1[u] from participating. To do so, before we apply SR-commmax,
we use one round to let u send ID(rA1[u],u) to all vertices {rS,u : S ∈ C(u)}.
This allows each rS,u to learn whether or not S = A1[u].

For each u ∈ VH , the number of pairs {u, v} such that F �({u, v}) = u is O(1),
so the number of graph topologies needed to be learned in I1(u) and I2(u) by
u is O(

√
n). The total number of graph topologies needed to be learned, for all

u ∈ VH , is at most |VH | · O(
√

n) = O(n). We fix any ordering of these learning
tasks and solve them sequentially. For each of these tasks, we use the above
generic approach to solve the task, so the time and energy cost for learning
one graph topology is poly log n. Since there are O(n) tasks, the overall time
complexity is O(n) ·poly log n = Õ(n). Each vertex participates in O(

√
n) tasks,

so the overall energy complexity is O(
√

n) · poly log n = Õ(
√

n). �
Lemma 17. Using Õ(n1.5) time and Õ(

√
n) energy, we can let all vertices in

G learn the graph topology of G� w.h.p.
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Proof. The lemma follows from combining Lemmas 11, 15 and 16. �
Now we are ready to prove Theorem 1.

Theorem 1. There is an algorithm that computes the diameter in Õ(n1.5) time
and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Proof. The theorem follows from combining Lemmas 10 and 17. �

B Minimum Cut

In this section, we apply the approach introduced in Sect. 5 to show that (i) the
exact global minimum cut size and (ii) an approximate s–t minimum cut size
of any bounded-genus graph can be computed in Õ(

√
n) energy. We follow the

same approach introduced in Sect. 5. That is, we still decompose the vertex set
into VH and VL, and we categorize the connected components of G[VL] into three
types. The only difference here is the information that we extract from type-1
and type-2 components.

Given a cut C = (X,V \ X) of G = (V,E), the two vertex sets X �= ∅ and
V \ X �= ∅ are called the two parts of C, and the cut edges of C are defined as
{{u, v} : u ∈ X, v ∈ V \ X}. The size of a cut C, which we denote as |C|, is
defined as the number of cut edges of C. A minimum cut of a graph is a cut C
that minimizes |C| among all possible cuts. An s–t minimum cut of a graph is a
cut C the minimizes |C| among all possible cuts subject to the constraint that s
and t belong to different parts. We consider the following definitions:

c(S). For any type-1 component S, let c(S) be the minimum cut size of G+[S].
c′(S). For any type-2 component S ∈ C(u, v), let c′(S) be the u–v minimum cut

size of G+[S].
c′′(S). For any type-2 component S ∈ C(u, v), let c′′(S) be the minimum cut

size of G+[S] among all cuts such that both u and v are within the same part
of the cut.

We make the following observations.

Lemma 18. Let C = (X,V \ X) be any minimum cut of G. For any vertex
u ∈ VH , one of the following statements is true:

– One part of the cut contains all vertices in
⋃

S∈C(u) S ∪ {u}.
– the size of the cut is minS∈C(u) c(S).

Proof. Suppose that the first statement is false. Then there exists a component
S′ ∈ C(u) such that S′ ∪ {u} intersects both parts of the cut, so C′ = (X ∩
(S′ ∪ {u}), (V \ X) ∩ (S′ ∪ {u})) is a cut of G+[S′]. Therefore, minS∈C(u) c(S) ≤
c(S′) ≤ |C′| ≤ |C|. To prove that the second statement is true, we just need to
show that |C| ≤ minS∈C(u) c(S). This inequality follows from the observation
that for any component S ∈ C(u), any cut of G+[S] can be extended to a cut of
G of the same size by adding all vertices in V \ (S ∪ {u}) to the part of the cut
that contains u. �
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Lemma 19. Let C = (X,V \ X) be any minimum cut of G. For two distinct
vertices u, v ∈ VH , one of the following statements is true:

– One part of the cut contains all vertices in
⋃

S∈C(u,v) S ∪ {u, v}.
– The size of the cut is minS∈C(u,v) c′′(S).
– u and v belong to different parts of the cut, and the number of cut edges that

have at least one endpoint in
⋃

S∈C(u,v) S′ is
∑

S∈C(u,v) c′(S).

Proof. Suppose that the first statement is false. We first focus on the case where u
and v belong to the same part of the cut C. In this case, there exists a component
S′ ∈ C(u, v) such that S′ ∪ {u, v} intersects both parts of the cut, so C′ =
(X∩(S′∪{u, v}), (V \X)∩(S′∪{u, v})) is a cut of G+[S] such that u and v belong
to the same part of the cut. Therefore, minS∈C(u,v) c′′(S) ≤ c′′(S′) ≤ |C′| ≤ |C|.
Similar to the proof of Lemma 18, we also have |C| ≤ minS∈C(u,v) c′′(S), as any
cut of G+[S] such that u and v belong to the same part of the cut can be extended
to a cut of G of the same size. Therefore, we must have |C| = minS∈C(u,v) c′′(S),
that is, the second statement is true.

For the rest of the proof, we consider the case where u and v belong to
different parts of the cut C. For each component S ∈ C(u, v), we write ZS to
denote the number of cut edges of C that have at least one endpoint in S. Then
we must have ZS = c′(S), since otherwise C is not a minimum cut. Therefore,
the number of cut edges that have at least one endpoint in

⋃
S∈C(u,v) S′ is∑

S∈C(u,v) c′(S), that is, the third statement is true. �
Using the above two observations, we prove Theorem 2.

Theorem 2. There is an algorithm that computes the minimum cut size in
Õ(n1.5) time and Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Proof. Bounded-genus graphs have bounded arboricity. The minimum degree of
any graph of arboricity α is at most 2α − 1. The minimum cut size of any graph
is at most the minimum degree of the graph. Therefore, there is a constant λ0

such that the minimum cut size of G is at most λ0.
Define the graph G	 as the result of applying the following operations to G:

– Remove all type-1 components.
– For each pair {u, v} of distinct vertices in VH with |C(u, v)| > 0, replace

C(u, v) with min{λ0,
∑

S∈C(u,v) c′(S)} multi-edges between u and v.

By Lemmas 18 and 19, the minimum cut size of G is the minimum of the following
numbers:

– The minimum value of minS∈C(u) c(S) among all u ∈ VH such that |C(u)| > 0.
– The minimum value of minS∈C(u,v) c′′(S) among all u, v ∈ VH such that

|C(u, v)| > 0.
– The minimum cut size of G	.

For each vertex u ∈ V , we define I	
0 (u), I	

1 (u), and I	
2 (u) as follows.
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– I	
0 (u) is the same as the basic information I0(u) defined in Sect. 5.

– I	
1 (u) contains the number minS∈C(u) c(S).

– I	
2 (u) contains minS∈C(u,v) c′′(S) and min{λ0,

∑
S∈C(u,v) c′(S)}, for all pairs

{u, v} ∈ E(GH) such that F �({u, v}) = u.

Similar to the proof of Theorem 1, I1(u) and I2(u) contain nothing if u ∈ VL.
As I	

0 (u) = I0(u), we may use the algorithm of Lemma 15 to let all vertices
u ∈ V learn the information I	

0 (u) using Õ(n1.5) time and Õ(
√

n) energy.
The algorithm of Lemma 16 can be modified to allow all vertices u ∈ VH

learn the information I	
1 (u) and I	

2 (u). Specifically, the number minS∈C(u) c(S)
can be learned by the same algorithm for learning A1[u] described in the proof
of Lemma 15 by replacing SR-commmax with SR-commmin letting v = rSu

use
the key kv = c(S). The algorithm for learning minS∈C(u,v) c′′(S) is similar.

For each pair {u, v} ∈ E(GH) such that F �({u, v}) = u, to let u learn
min{λ0,

∑
S∈C(u,v) c′(S)}, we use SR-commapx with the following parameters:

– S = {rS,u : S ∈ C(u, v)}.
– R = {u}.
– ε = 1/(2λ0 + 1).
– W = λ0.
– For each S ∈ C(u, v), the message mv of the representative v = rS,u of S is

min{λ0, c
′(S)}.

After the algorithm of SR-commapx, u learns an (1 ± ε)-approximation of
∑

v∈N+(u)∩S
mv =

∑
S∈C(u,v)

min{λ0, c
′(S)}.

We claim that this allows u to calculate min{λ0,
∑

S∈C(u,v) c′(S)} precisely. To
prove this claim, we break the analysis into two cases. Let x be the approximation
of

∑
S∈C(u,v) min{λ0, c

′(S)} computed by SR-commapx.
If min{λ0,

∑
S∈C(u,v) c′(S)} = λ0, then

∑
v∈N+(u)∩S

mv =
∑

S∈C(u,v)

min{λ0, c
′(S)} ≥ λ0,

which implies
x ≥ (1 − ε)λ0 > λ0 − 1/2.

If min{λ0,
∑

S∈C(u,v) c′(S)} =
∑

S∈C(u,v) c′(S), then

∑
v∈N+(u)∩S

mv =
∑

S∈C(u,v)

min{λ0, c
′(S)} =

∑
S∈C(u,v)

c′(S),
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which implies

x ∈
⎡
⎣(1 − ε)

∑
S∈C(u,v)

c′(S), (1 + ε)
∑

S∈C(u,v)

c′(S)

⎤
⎦

⊆
⎡
⎣

⎛
⎝ ∑

S∈C(u,v)

c′(S)

⎞
⎠ − 1

2
,

⎛
⎝ ∑

S∈C(u,v)

c′(S)

⎞
⎠ +

1
2

⎤
⎦ .

Therefore, u can calculate min{λ0,
∑

S∈C(u,v) c′(S)} precisely from x. By
Lemma 27, the cost for u to calculate min{λ0,

∑
S∈C(u,v) c′(S)} via SR-commapx

is poly log n time.
For each u ∈ VH , the number of pairs {u, v} such that F �({u, v}) = u is

O(1), so the number of parameters needed to be learned in I	
1 (u) and I	

2 (u) by
u is O(1). The total number of parameters needed to be learned, for all u ∈ VH ,
is at most |VH | · O(1) = O(

√
n). We fix any ordering of these learning tasks and

solve them sequentially. The time and energy cost for learning one parameter is
poly log n. Since there are O(

√
n) tasks, the overall time complexity for learning

I	
1 (u) and I	

2 (u) for all u ∈ VH is O(
√

n) · poly log n = Õ(
√

n).
In view of the above discussion, the minimum cut size of G can be calculated

from the following information: (i) I	
1 (u) and I	

2 (u) for all u ∈ VH , (ii) the
topology of G+[S] for each type-3 component S, and (iii) the topology of the
subgraph induced by VH . By replacing I1(u) and I2(u) with I	

1 (u) and I	
2 (u) in

the description of the algorithm of Lemma 11, we obtain an algorithm that lets
all vertices learn this information using Õ(n1.5) time and Õ(

√
n) energy. �

The proof of Theorem 3 is similar to that of Theorem 2. The main difference
for the setting of s–t minimum cut is that if s or t happens to be within a type-1
or a type-2 component S, then we additionally need to learn the topology of
G+[S]. Any type-1 component that does not contain s or t is irrelevant to the
s–t minimum cut size.

In the subsequent discussion, we fix s and t to be any two distinct vertices
of G. for each x ∈ {s, t}, let Sx be the type-1 or type-2 component containing
x. In case x is not contained in any type-1 or type-2 component, we let Sx = ∅.
We define G• as the result of applying the following operations to G.

– Remove all type-1 components, except for Ss and St.
– For each pair {u, v} of distinct vertices in VH with |C(u, v) \ {Ss, St}| > 0,

replace all components in C(u, v)\{Ss, St} with
∑

S∈C(u,v)\{Ss,St} c′(S) multi-
edges between u and v.

Similar to Lemmas 18 and 19, we have the following observation.

Lemma 20. Both G and G• have the same minimum s–t cut size.

Proof. Fix C = (X,V \ X) to be any minimum s–t cut of G, where s ∈ X and
t ∈ V \ X. To show that both G and G• have the same minimum s–t cut size,
it suffices to show the following two statements:
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– For each type-1 component S that is not Ss and St, we must have either
S ⊆ X or S ⊆ V \ X.

– For each pair {u, v} of distinct vertices in VH with |C(u, v)\{Ss, St}| > 0, if u
and v belong to different parts of cut C, then the number of cut edges of C with
at least one endpoint in

⋃
S∈C(u,v)\{Ss,St} S equals

∑
S∈C(u,v)\{Ss,St} c′(S).

The first statement follows from the observation that for each u ∈ VH , all ver-
tices in

⋃
S∈C(u)\{Ss,St} S must belong to the part of cut C that u belongs to, since

otherwise C is not a minimum s–t cut, as moving all vertices in
⋃

S∈C(u)\{Ss,St} S
to the part of cut that u belongs to reduces the number of cut edges.

To show the second statement, consider a pair {u, v} of distinct vertices in VH

with |C(u, v) \ {Ss, St}| > 0 such that u and v belong to different parts of cut C.
Similar to the proof of Lemma 19, for each component S ∈ C(u, v)\{Ss, St}, we
write ZS to denote the number of cut edges of C that have at least one endpoint
in S. Then we must have ZS = c′(S), since otherwise C is not a minimum cut.
Therefore, the number of cut edges of C that have at least one endpoint in⋃

S∈C(u,v)\{Ss,St} S′ is
∑

S∈C(u,v)\{Ss,St} c′(S). �
We are ready to prove Theorem 3.

Theorem 3. There is an algorithm that computes an (1 ± ε)-approximate s–t
minimum cut size in Õ(n1.5) · ε−O(1) time and Õ(

√
n) · ε−O(1) energy w.h.p. for

bounded-genus graphs in No-CD.

Proof. Let G̃• be any graph such that for each pair of vertices {u, v}, the number
of mult-edges in G̃• is within a (1± ε) factor of the number of mult-edges in G•.
By Lemma 20, the minimum s–t cut size in G̃• is a (1± ε)-approximation of the
minimum s–t cut size of G. Therefore, the task of computing the minimum s–t
cut size of G is reduced to computing such a graph G̃•.

For each u ∈ VH , we let I•
2 (u) contain the number

∑
S∈C(u,v)\{Ss,St} c′(S)

for all pairs {u, v} ∈ E(GH) with F �({u, v}) = u. The same algorithm for
learning I	

2 (u) presented in the proof of Theorem 2 can be applied here to let
all u ∈ VH approximately learn each number in I•

2 (u) within a (1 ± ε) factor, by
using SR-commapx with parameter ε. We can tolerate this approximation factor
because here our goal is to learn G̃•.

In view of the above, a (1± ε)-approximation of the minimum s–t cut size of
G can be calculated from the following information: (i) I•

2 (u) for all u ∈ VH , (ii)
the topology of G+[S] for S = Ss, S = St, and each type-3 component S, and
(iii) the topology of the subgraph induced by VH . Same as the proof of Theorem
2, we can obtain an algorithm that lets all vertices learn this information using
Õ(n1.5) · ε−O(1) time and Õ(

√
n) · ε−O(1). Here the extra ε−O(1) is due to the use

of SR-commapx, which requires ε−O(1) · poly log n time and energy. �

C Algorithms for Communication Between Two Sets
of Vertices

In this section, we present our algorithms for SR-comm and its variants. Recall
that SR-comm requires that each vertex v ∈ R with N+(v) ∩ S �= ∅ receives a
message mu from at least one vertex u ∈ N+(v) ∩ S w.h.p.
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Lemma 21. ( [4]) SR-comm can be solved in time O(log Δ log n) and energy
O(log Δ log n).

Proof. By the definition of SR-comm, each vertex v ∈ S ∩ R is not required to
receive any message from other vertices, as we already have v ∈ N+(v) ∩ S.
Therefore, in the subsequent discussion, we assume that S ∩ R = ∅.

The task SR-comm with S ∩R = ∅ can be solved using the well-known decay
algorithm of [4], which repeats the following routine for C log n times: For i = 1
to log Δ, let each vertex u ∈ S transmit with probability 2−i. Each v ∈ R is
always listening throughout the procedure. Here C > 0 is some large enough
constant to be determined.

Consider a vertex v ∈ R such that N(v) ∩ S �= ∅. Let i� be the largest
integer i such that 2i ≤ 2|N(v) ∩ S|. Consider a time slot t where each vertex
u ∈ S transmits with probability 2−i�

. For notational simplicity, we write n′ =
|N(v)∩S| and p′ = 2−i�

. Our choice of i� implies that 1/n′ ≥ p′ ≥ 1/(2n′). The
probability of the event that exactly one vertex in the set N(v) ∩ S transmits
equals n′p′(1 − p′)n′−1 ≥ 1/(2e). The calculation follows from the inequalities
n′p′ ≥ 1/2 and (1 − p′)n′−1 ≥ (1 − 1/n′)n′−1 ≥ 1/e.

If the above event occurs, then v successfully receives a message mu from
a vertex u ∈ N(v) ∩ S. The probability that v does not receive any mes-
sage from vertices in N(v) ∩ S throughout the entire algorithm is at most
(1 − 1/(2e))C log n = n−Ω(C). By setting C to be a large enough constant, the
algorithm successfully solves SR-comm w.h.p., and the time and energy complex-
ities of the algorithm are O(log Δ log n). �

Recall that the goal of SR-commall is to let each vertex u ∈ S ∩N+(v) deliver
a message mu to v ∈ R, for each v ∈ R.

Lemma 22. SR-commall can be solved in time O(Δ′ log n) and energy
O(Δ′ log n), where Δ′ is an upper bound on |S ∩ N(v)|, for each v ∈ R.

Proof. Consider the algorithm which repeats the following routine for C ·Δ′ log n
rounds, for some sufficiently large constant C > 0. In each round, each vertex
u ∈ S sends mu with probability 1/Δ′. For each u ∈ R, if u does not send in
this round, then u listens.

Let e = {u, v} be any edge with u ∈ S and v ∈ R. In one round of the
above algorithm, u successfully sends a message to v if (i) all vertices in {v} ∪
(S ∩ N(v)) \ {u} do not send, and (ii) u sends. Therefore, the probability that u
successfully sends a message to v is

(1 − 1/Δ′)|S∩N(v)|−1 · (1/Δ′) ≥ (1 − 1/Δ′)Δ′−1 · (1/Δ′) ≥ 1/(eΔ′)

The probability that u does not successfully send a message to v throughout
all C · Δ′ log n rounds is at most (1 − 1/(eΔ′))C·Δ′ log n = n−Ω(C). Selecting a
large enough constant C, by a union bound for all u ∈ S ∩ N(v) and all v ∈ R,
we conclude that the algorithm solves SR-commall w.h.p. The time and energy
complexities are O(Δ′ log n). �
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Recall that the task SR-commmulti requires that each vertex v ∈ R receive
all distinct messages in

⋃
u∈N+(v)∩S Mu, where is the Mu is the set of messages

hold by u.

Lemma 23. SR-commmulti can be solved in time O(M log Δ log2 n) and energy
O(M log Δ log2 n), where M is an upper bound on the number of distinct mes-
sages in

⋃
u∈N+(v)∩S , for each v ∈ R.

Proof. Consider the algorithm which repeatedly runs SR-comm for C · M log n
times, where in each iteration, the sets (S ′,R′) for SR-comm are chosen randomly
as follows. We select R′ as a random subset of R such that each v ∈ R joins R′

with probability 1/2. We select S ′ as a random subset of S \ R′ such that for
each message m, all vertices in S \R′ that hold m join S ′ with probability 1/M ,
using the shared randomness associated with the message m.

Due to the shared randomness, if u ∈ S \R′ joins S ′ due to message m, then
all vertices in S\R′ holding the same message m also joins S ′. Note that a vertex
u ∈ S \R′ might hold more than one message in that |Mu| > 1. The probability
that u ∈ S \ R′ joins S ′ equals Pr[Binomial(|Mu|, 1/M) ≥ 1], because each
message m ∈ Mu lets u join S ′ with probability 1/M independently.

To analyze the algorithm, we focus on one vertex v ∈ R in one iteration of
the above algorithm. Consider any message m ∈ ⋃

u∈N(v)∩S Mu \ Mv. Observe
that v receives m if the following three events E1, E2, and E3 occur:

– E1 is the event that v joins R′.
– E2 is the event that at least one vertex u ∈ N(v) ∩ S with m ∈ Mu does not

join R′.
– E3 is the event that the subset of vertices of N(v)∩S \R′ joining S ′ is exactly

the set of all vertices u ∈ N(v) ∩ S \ R′ with m ∈ Mu.

If E1, E2, and E3 occur, then v ∈ R′, N(v)∩S ′ �= ∅, and all vertices u ∈ N(v)∩S ′

satisfy m ∈ Mu. Therefore, conditioning on E1, E2, and E3, SR-comm in this
iteration allows v to receive message m.

The way R′ is selected implies that Pr[E1] = 1/2 and Pr[E2] ≥ 1/2. Observe
that E1 and E2 are independent events. The way S ′ is selected implies that
Pr[E3|E1 ∩E2] ≥ Pr[Binomial(M, 1/M) = 1] = (1/M) · (1−1/M)M−1 ≥ 1/(eM).
Therefore, the probability that v receives m in this iteration is at least 1/(4eM).

The probability that v does not receive m in all iterations is at most
(1 − 1/(4eM))C·M log n = n−Ω(C). Selecting a large enough constant C, by a
union bound for all v ∈ R and all m ∈ ⋃

u∈N(v)∩S Mu \ Mv, we conclude
that the algorithm solves SR-commall w.h.p. The time and energy complexities
are O(M log Δ log2 n), as the number of iterations is O(M log n) and the time
complexity of each iteration is O(log Δ log n) by Lemma 21. �

Consider the setting where the message mu sent from each vertex u ∈ S con-
tains a key ku from the key space [K] = {1, 2, . . . ,K}. Recall that SR-commmin

requires that each vertex v ∈ R with N+(v)∩S �= ∅ receives a message mu from
a vertex u ∈ N+(v) ∩ S such that ku = minu′∈N+(v)∩S ku′ .
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Lemma 24. Both SR-commmin and SR-commmax can be solved in time
O(K log Δ log n) and energy O(log K log Δ log n). For the special case of S∩R =
∅ and |R ∩ N(u)| ≤ 1 for each u ∈ S, the time complexity can be improved to
O(log K log Δ log n).

Proof. We only prove the lemma for SR-commmin, as the proof for SR-commmax is
the same. The proof presented here is analogous to the analysis of a deterministic
version of SR-comm in [10]. Observe that we can do SR-comm once to let each
v ∈ R test whether or not N+(v) ∩ S �= ∅. If a vertex v ∈ R knows that
N+(v) ∩ S = ∅, then v may remove itself from R. Thus, in the subsequent
discussion, we assume N+(v) ∩ S �= ∅ for each v ∈ R.

Let v ∈ R, and we define fv = minu∈N+(v)∩S ku. The high-level idea of the
algorithm is to conduct a binary search to determine all log K bits of the binary
representation of fv.

General Case. Suppose at some moment each vertex v ∈ R already knows the
first x bits of fv. The following procedure allows each v ∈ R to learn the (x+1)th
bit of fv. For each (x+1)-bit binary string s, we do SR-comm with the following
choices of (S ′,R′):

– S ′ is the set of vertices u ∈ S such that the first x + 1 bits of ku equal s.
– R′ is the set of vertices v ∈ R such that the first x bits of fv equal the first

x bits of s.

In this procedure, we perform 2x+1 times of SR-comm in total, but each vertex
only participates in at most three of them, as each vertex joins S ′ at most once
and joins R′ at most twice. Thus, the procedure costs O(2x log Δ log n) time and
O(log Δ log n) energy, by Lemma 21. For each v ∈ R, the messages that v receive
during the procedure allows v to determine the (x + 1)th bit of fv.

We will run the above procedure for log K iterations from x = 0 to x =
log K − 1. Observe that in the last iteration, each vertex v ∈ R is guaranteed
to receive a message mu from a vertex u ∈ N+(v) ∩ S such that ku = fv =
minw∈N+(v)∩S kw, so this algorithm allows us to solve SR-commmin. The overall
time complexity of the algorithm is

log K−1∑
x=0

O(2x log Δ log n) = O(K log Δ log n),

and the overall energy complexity of the algorithm is

log K−1∑
x=0

O(log Δ log n) = O(log K log Δ log n).

Special Case. For the rest of the proof, we focus on the special case of S ∩R = ∅
and |R ∩ N(u)| ≤ 1 for each u ∈ S. These assumptions imply that the family
of sets (S ∩ N(v)) ∪ {v} for all v ∈ R are disjoint. The high-level idea is that
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for each v ∈ R, we may let the set of vertices (S ∩ N(v)) ∪ {v} jointly conduct
a binary search to determine all bits of fv = minu∈N(v)∩S ku, in parallel for all
v ∈ R.

Suppose that for each vertex v ∈ R, all vertices in the set (S ∩ N(v)) ∪ {v}
already know the first x bits of fv. We present a more efficient algorithm that
let all vertices in the set (S ∩ N(v)) ∪ {v} learn the (x + 1)th bit of fv.

Step 1. Perform SR-comm with the following choices of (S ′,R′):
– R′ = R.
– S ′ is the subset of S that contains all vertices u ∈ S satisfying the follow-

ing conditions:
• The first x bits of ku equal the first x bits of fv, where v is the unique

vertex in R ∩ N(u).
• The (x + 1)th bit of ku is 0.

This step allows each v ∈ R to learn the (x + 1)th bit of fv. If v ∈ R
receives a message in SR-comm, then v knows that the (x + 1)th bit of fv is
0. Otherwise, v knows that the (x + 1)th bit of fv is 1.

Step 2. Perform SR-comm with the following choices of (S ′,R′):
– R′ = S.
– S ′ = R.
This step lets each v ∈ R send the (x + 1)th bit of fv to all vertices in
S ∩ N(v).

The time and energy complexities of this algorithm are asymptotically the same
as that of SR-comm, which are O(log Δ log n). As discussed earlier, to solve
SR-commmin, all we need to do is to run the above algorithm from x = 0 to
x = log K − 1. The overall time and energy complexities of the algorithm for
SR-commmin are O(log K log Δ log n), as there are log K iterations. �

For the rest of the section, we consider the task SR-commapx, which requires
each vertex v ∈ R to compute an (1± ε)-factor approximation of the summation∑

u∈N+(v)∩S mu. We need the following fact, whose correctness can be verified
by means of a simple calculation.

Lemma 25. There exist three universal constants 0 < ε0 < 1, N0 ≥ 1, and
c0 ≥ 1 such that the following statement holds: For any pair of numbers (N, ε)
such that N ≥ N0 and ε0 ≥ |ε| ≥ c0/

√
N ,

e−1(1 − 0.51ε2) ≤ (1 + ε)(1 − (1 + ε)/N)N−1 ≤ e−1(1 − 0.49ε2).

Note that the parameter ε in Lemma 25 can be either positive or negative.
For the rest of the section, we assume that the message mu sent from each
vertex u ∈ S is an integer within the range [W ]. We first consider the special
case of SR-commapx with W = 1. In this case, SR-commapx is the same as
the approximate counting problem whose goal is to let each v ∈ R compute
|N+(v) ∩ S|, up to a (1 ± ε)-factor error.

Lemma 26. For W = 1, SR-commapx can be solved in O((1/ε5) log Δ log n)
time and energy.
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Proof. In this proof, we will focus on a slightly different task of estimating |N(v)∩
S| within a (1±ε)-factor approximation, for each v ∈ R. If each v ∈ R knows such
an estimate of |N(v)∩S|, then v can locally calculate an estimate of |N+(v)∩S|
within a (1 ± ε)-factor approximation, thereby solving SR-commapx for the case
of W = 1.

Basic Setup. Let C > 0 be a sufficiently large constant. Let ε0, N0, and c0 be
the constants in Lemma 25. We assume that ε ≤ ε0. If this is not the case, then
we may reset ε = ε0.

The algorithm consists of two phases. The first phase of the algorithm aims
to achieve the following goals: For each v ∈ R, either (i) v learns the number
|N(v) ∩ S| exactly or (ii) v detects that ε ≥ 10c0/

√|N(v) ∩ S|. For each vertex
v ∈ R that calculates the number |N(v)∩S| exactly in the first phase, we remove
v from R. The second phase of the algorithm then solves SR-commapx for the
remaining vertices in R. These vertices v ∈ R satisfy ε ≥ 10c0/

√|N(v) ∩ S|.

The First Phase. We define Z = (10c0/ε)2. The algorithm consists of C ·Z log n
rounds, where we do the following in each round:

– Each vertex u ∈ S ∪R flips a biased coin that produces head with probability
1/Z.

– Each u ∈ S sends ID(u) if the outcome of its coin flip is head.
– Each vertex v ∈ R listens if the outcome of its coin flip is tail.

For each vertex v ∈ R, there are two cases:

– Suppose that there is a vertex u ∈ N(v)∩S such that the number of messages
that v receives from is smaller than 0.5 · (C log n)/e. Then v decides that
ε ≥ 10c0/

√|N(v) ∩ S| and proceeds to the second phase.
– Suppose that for all vertices u ∈ N(v) ∩ S, the number of messages that v

receives from is at least 0.5 · (C log n)/e. Then v calculate |N(v) ∩ S| by the
number of distinct IDs that v receives.

The time complexity of the first phase of the algorithm is C · Z log n =
O((1/ε2) log n).

Analysis. To analyze the algorithm, let e = {u, v} be any edge such that u ∈ S
and v ∈ R. In one round of the above algorithm, u successfully sends a message
to v if and only if (i) the outcome of u’s coin flip is head, and (ii) the outcome
of the coin flips of all vertices in (N(v) ∩ S) ∪ {v} \ {u} are all tails. This event
occurs with probability p� = (1 − 1/Z)|N(v)∩S| · (1/Z). Let X be the number of
times v receives a message from u. To prove the correctness of the algorithm, we
show the following three concentration bounds:

– If v ∈ R satisfies ε ≤ 10c0/
√|N(v) ∩ S|, then Pr[X ≥ 0.8 · (C log n)/e] =

1 − n−Ω(C).
– If v ∈ R satisfies ε ≥ 20c0/

√|N(v) ∩ S|, then Pr[X ≤ 0.2 · (C log n)/e] =
1 − n−Ω(C).

– If v ∈ R satisfies ε ≤ 20c0/
√|N(v) ∩ S|, then Pr[X ≥ 1] = 1 − n−Ω(C).
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We show the correctness of the algorithm given these concentration bounds.
For the case ε ≥ 20c0/

√|N(v) ∩ S|, the second bound implies that the number
of messages that v receives from u is greater than 0.5 · (C log n)/e w.h.p., so v
correctly decides that ε ≥ 10c0/

√|N(v) ∩ S| and proceeds to the second phase.
For the case ε ≤ 20c0/

√|N(v) ∩ S|, the third bound implies that v receives
at least one message from each vertex in N(v) ∩ S w.h.p., so v can calculate
|N(v)∩S| precisely. The only remaining thing to show is that when ε is at most
10c0/

√|N(v) ∩ S|, w.h.p. v does not decide that ε ≥ 10c0/
√|N(v) ∩ S|. This

follows from the first bound, which implies that the number of messages that v
receives from u is greater than 0.5 · (C log n)/e w.h.p.

We prove the three concentration bounds as follows:

– Suppose that vertex v ∈ R satisfies ε ≤ 10c0/
√|N(v) ∩ S|. We show that

in this case the number of messages that v receives from u ∈ N(v) ∩ S is
at least 0.8 · (C log n)/e, with probability 1 − n−Ω(C). In this case, we have
Z = (10c0/ε)2 ≥ |N(v) ∩ S|, so p� = (1 − 1/Z)|N(v)∩S| · (1/Z) ≥ (1 −
1/Z)Z · (1/Z) ≥ 0.9/(eZ). The expected value μ of X satisfies μ = C ·
Z log n ·p� ≥ 0.9(C log n)/e. By a Chernoff bound, Pr[X ≤ 0.8 ·(C log n)/e] ≤
exp(−Ω(C log n)) = n−Ω(C).

– Suppose that vertex v ∈ R satisfies ε ≥ 20c0/
√|N(v) ∩ S|. We show that

in this case the number of messages that v receives from u ∈ N(v) ∩ S
is at most 0.2 · (C log n)/e, with probability 1 − n−Ω(C). In this case, we
have Z = (10c0/ε)2 ≤ |N(v) ∩ S|/4, so p� = (1 − 1/Z)|N(v)∩S| · (1/Z) ≤
(1 − 1/Z)4Z · (1/Z) ≤ 1/(e4Z). The expected value μ of X satisfies μ =
C ·Z log n · p� ≤ (C log n)/e4 < 0.1(C log n)/e. By a Chernoff bound, Pr[X ≥
0.2 · (C log n)/e] ≤ exp(−Ω(C log n)) = n−Ω(C).

– Suppose that vertex v ∈ R satisfies ε ≤ 20c0/
√|N(v) ∩ S|. We show that in

this case the number of messages that v receives from u ∈ N(v)∩S is at least
1, with probability 1−n−Ω(C). In this case, we have Z = (10c0/ε)2 ≥ |N(v)∩
S|/4, so p� = (1 − 1/Z)|N(v)∩S| · (1/Z) ≥ (1 − 1/Z)4Z · (1/Z) ≥ 0.9/(e4Z).
We have Pr[X < 1] = (1 − p�)CZ log n ≤ (1 − 0.9/(e4Z))CZ log n = n−Ω(C).

The Second Phase. For each vertex v ∈ R that have already calculated the
number |N(v) ∩ S| exactly in the first phase, v removes itself from R. We know
that all the remaining vertices in R satisfy ε ≥ 10c0/

√|N(v) ∩ S|.
We consider the sequence of sending probabilities: p1 = 2/Δ, and pi =

min{1, pi−1 · (1 + ε)} for i > 1. We let i� = O((1/ε) log Δ) be the smallest
index i such that pi = 1.

The second phase of the algorithm consists of i� iterations, where the ith
iteration repeats the following procedure for C · (1/ε4) log n times for all vertices
v ∈ S ∪ R:

– v flips a fair coin.
– If the outcome of the coin flip is head and v ∈ S, then v sends with probability

pi.
– If the outcome of the coin flip is tail and v ∈ R, then v listens to the channel.
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After finishing the algorithm, each vertex v ∈ R finds an index i′ such that
the number of messages that v successfully receives during the i′th iteration is
the highest. Then v decides that 2/pi′ is an estimate of |N(v) ∩ S| within a
factor of (1 ± ε). The time complexity of the second phase of the algorithm is
i� · C · (1/ε4) log n = O((1/ε5) log Δ log n).

Analysis. To show the correctness of the above algorithm, in the subsequent
discussion, we focus on a vertex v ∈ R in the ith iteration. We say that i is good
for v if pi/2 is within a (1 ± 0.6ε)-factor of 1/|N(v) ∩ S|, and we say that i is
bad for v if pi/2 is not within a (1 ± ε)-factor of 1/|N(v) ∩ S|. Our choice of the
sequence (p1, p2, . . .) implies that there must be at least one good index i for v.

We write psuci to denote the probability that v successfully receives a message
in one round of the ith iteration. From the description of the algorithm, we have

psuci = (1/2) · |N(v) ∩ S| · (pi/2) · (1 − (pi/2))|N(v)∩S|−1.

We define

pgood = (1/2) · e−1(1 − 0.51(0.6ε)2) and pbad = (1/2) · e−1(1 − 0.49ε2).

We claim that (i) psuci ≥ pgood if i is good for v and (ii) psuci ≤ pbad if i is bad
for v.

We first prove this claim for the case that i is good for v. For simplicity,
we write N = |N(v) ∩ S|. Since i is good, pi/2 = (1 + ε′)/|N(v) ∩ S| for some
ε′ ∈ [−0.6ε, 0.6ε]. Using the new notations, we may rewrite psuci as

psuci = (1/2) · |N(v) ∩ S| · (pi/2) · (1 − (pi/2))|N(v)∩S|−1

= (1/2) · (1 + ε′) · (1 − (1 + ε′))N−1.

By Lemma 25, we infer that psuci ≥ (1/2) · e−1(1 − 0.51(ε′)2) ≥ e−1(1 −
0.51(0.6ε)2) = pgood.

Now consider the case i is bad for v. Again, we write N = |N(v) ∩ S|.
Since i is bad, pi/2 = (1 + ε′)/|N(v) ∩ S| for some ε′ /∈ (−ε, ε). The above
formula for psuci still applies to this case, and Lemma 25 implies that psuci ≤
(1/2) · e−1(1 − 0.49(ε′)2) ≤ e−1(1 − 0.49ε2) = pbad.

Let X be the number of messages that v receives in the ith iteration of the
algorithm. The expected value of X is μ = psuci ·C · (1/ε4) log n. For the case i is
good for v, we have μ ≥ pgood ·C · (1/ε4) log n, so by a Chernoff bound, we have:

Pr[X ≤ (1 − 0.01ε2)pgood · C · (1/ε4) log n] = e−Ω(ε4·C·(1/ε4) log n) = n−Ω(C).

For the case i is bad for v, we have μ ≤ pbad · C · (1/ε4) log n, so by a Chernoff
bound, we have:

Pr[X ≥ (1 + 0.01ε2)pbad · C · (1/ε4) log n] = e−Ω(ε4·C·(1/ε4) log n) = n−Ω(C).

Since (1− 0.01ε2)pgood > (1+0.01ε2)pbad, we conclude that w.h.p. the index
i′ selected by v must be good, which implies that the estimate 2/pi′ calculated
by v is within a (1 ± ε)-factor of |N(v) ∩ S|, as we know that pi′/2 is within a
(1 ± 0.6ε)-factor of 1/|N(v) ∩ S|, as i′ is good. �
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In the following lemma, we extend Lemma 26 to any value of W .

Lemma 27. SR-commapx can be solved in O((1/ε6) log W log Δ log n) time and
energy.

Proof. We let ε′ = Θ(ε) be chosen such that (1+ε′)2 < 1+ε and (1−ε′)2 > 1−ε.
We consider the following sequence: w1 = 1 and wi = min{W, (1 + ε′)wi−1} for
i > 1. Let i� be the smallest index i such that wi = W .

From i = 1 to i�, we run the algorithm of Lemma 26 with the following
setting:

– S ′ is the vertices u ∈ S with mu ∈ (wi−1, wi].
– R′ = R.
– The error parameter is ε′.

The algorithm of Lemma 26 lets each v ∈ R′ compute an (1 ± ε′)-factor approx-
imation of |N+(v) ∩ S ′| using O((1/ε5) log Δ log n) time and energy.

For each v ∈ R, we write Ni to denote the number of vertices u ∈ N+(v)∩S
such that mu ∈ (wi−1, wi], and we write Ñi to denote the estimate of |N+(v)∩S ′|
computed by v in the ith iteration. We have the following observations:

– Ñi is an (1 ± ε′)-factor approximation of Ni.
–

∑i�

i=1 wiNi is an (1 ± ε′)-factor approximation of
∑

u∈N+(v)∩S mu.

Thus,
∑i�

i=1 wiÑi, which can be calculated locally at v at the end of the algo-
rithm, is an (1 ± ε)-factor approximation of

∑
u∈N+(v)∩S mu, by our choice of

ε′.
By Lemma 26, the time and energy complexities for each iteration are

O((1/ε5) log Δ log n). The total number of iterations is i� = O((1/ε) log W ).
Thus, the overall time and energy complexities are O((1/ε6) log W log Δ log n).

�
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2. Ambühl, C.: An optimal bound for the MST algorithm to compute energy efficient
broadcast trees in wireless networks. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming, pp.
1139–1150. Springer, Berlin Heidelberg, Berlin, Heidelberg (2005)

3. Augustine, J., Moses, Jr, W.K., Pandurangan, G.: Distributed MST computation
in the sleeping model: awake-optimal algorithms and lower bounds. arXiv preprint
arXiv:2204.08385 (2022)

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: an exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

http://arxiv.org/abs/2204.08385


294 Y.-J. Chang

5. Barenboim, L., Maimon, T.: Deterministic logarithmic completeness in the dis-
tributed sleeping model. In: Gilbert, S. (ed.) 35th International Symposium on
Distributed Computing (DISC). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 209, pp. 10:1–10:19. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.DISC.2021.10

6. Bender, M.A., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with
log-logstar channel accesses. In: Proceedings of the 48th Annual ACM Symposium
on Theory of Computing (STOC), pp. 499–508 (2016). https://doi.org/10.1145/
2897518.2897655

7. Berenbrink, P., Cooper, C., Hu, Z.: Energy efficient randomised communication
in unknown adhoc networks. Theor. Comput. Sci. 410(27), 2549–2561 (2009).
https://doi.org/10.1016/j.tcs.2009.02.002

8. Bordim, J.L., Jiangtao, C., Hayashi, T., Nakano, K., Olariu, S.: Energy-efficient
initialization protocols for ad-hoc radio networks. IEICE Trans. Fundam. Electron.
Commun. Comput. Sci. 83(9), 1796–1803 (2000)

9. Caragiannis, I., Galdi, C., Kaklamanis, C.: Basic computations in wireless net-
works. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 533–542.
Springer, Heidelberg (2005). https://doi.org/10.1007/11602613 54

10. Chang, Y., Dani, V., Hayes, T.P., He, Q., Li, W., Pettie, S.: The energy complex-
ity of broadcast. In: Proceedings of the 2018 ACM Symposium on Principles of
Distributed Computing (PODC) (2018)

11. Chang, Y., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential separations
in the energy complexity of leader election. In: Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pp. 771–783 (2017)

12. Chang, Y.J., Dani, V., Hayes, T.P., Pettie, S.: The energy complexity of BFS in
radio networks. In: Proceedings of the 39th Symposium on Principles of Distributed
Computing (PODC), pp. 273–282. ACM (2020). https://doi.org/10.1145/3382734.
3405713

13. Chang, Y.J., Duan, R., Jiang, S.: Near-optimal time-energy trade-offs for deter-
ministic leader election. In: Proceedings of the 33th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA). ACM (2021)

14. Chang, Y.J., Jiang, S.: The energy complexity of Las Vegas leader election. In:
Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pp. 75–86 (2022)

15. Chatterjee, S., Gmyr, R., Pandurangan, G.: Sleeping is efficient: MIS in O(1)-
rounds node-averaged awake complexity. In: Proceedings of the 39th Symposium on
Principles of Distributed Computing (PODC), pp. 99–108. ACM (2020). https://
doi.org/10.1145/3382734.3405718

16. Chlamtac, I., Kutten, S.: On broadcasting in radio networks-problem analysis and
protocol design. IEEE Trans. Commun. 33(12), 1240–1246 (1985)

17. Clementi, A.E.F., Crescenzi, P., Penna, P., Rossi, G., Vocca, P.: On the complexity
of computing minimum energy consumption broadcast subgraphs. In: Ferreira, A.,
Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 121–131. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44693-1 11
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Abstract. We propose and study a problem inspired by a common task
in disaster, military, and other emergency scenarios: search and rescue.
Suppose an object (victim, message, target, etc.) is at some unknown
location on a path. Given one or more mobile agents, also at initially
arbitrary locations on the path, the goal is to find and deliver the object
to a predefined destination in as little time as possible. We study the
problem for the one- and two-agent cases and consider scenarios where
the object and agents are arbitrarily (adversarially, even) placed along a
path of either known (and finite) or unknown (and potentially infinite)
length. We also consider scenarios where the destination is either at the
endpoint or in the middle of the path. We provide both deterministic
and randomized online algorithms for each of these scenarios and prove
bounds on their (expected) competitive ratios.

Keywords: mobile · delivery · search · online · competitive ratio ·
search and rescue

1 Introduction

In this paper, we study a search and rescue problem where a set of autonomous
agents on a one-dimensional path must cooperate to find and deliver an object
to its destination (another location on the path) in as little time as possible.
Formally, we consider a line with origin 0 onto which n agents with different
speeds and an object which must be delivered to 0 are initially located arbitrar-
ily (adversarially, even). We propose algorithms for scenarios where the object
and agents are placed on the finite intervals [0, 1] and [−1, 1] but also discuss
how slightly modified versions of the algorithms are equally competitive for the
infinite intervals [0,∞) and (−∞,∞). Agents can pick up, carry, and give the
object to other agents (via physical handover) but can only communicate face-
to-face. We assume agents can always move at their maximum speeds and that
direction changes and handovers are instantaneous. In the offline setting, where
the locations of all other agents and the object are known, this problem is equiv-
alent to the Pony Express Communication Problem, for which an optimal offline
algorithm is known [11]. In the online setting, this problem is related to search
problems like the cow-path problem but differs in that we must consider the
time required to deliver the object after it has been found. A strategy that con-
siders the search and delivery components of the problem separately may not
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be optimal. For example, a search algorithm that minimizes the time to find the
object might force agents into worst-case positions for the subsequent delivery.

Our goal is to find online algorithms with minimal competitive ratio. The
competitive ratio of an online algorithm A is the maximum over all problem
instances I of the ratio between the delivery time by A and the delivery time
by an optimal offline algorithm for the same instance. Formally, the competitive
ratio of A is

sup
I

TA,I

T ∗
I

where TA,I is the delivery time of algorithm A on instance I and T ∗
I is the optimal

offline delivery time for instance I. We say an algorithm with a competitive
ratio c is c-competitive. For the problem studied in this paper, a c-competitive
algorithm guarantees the object is delivered to the origin in at most c · T ∗ time,
where T ∗ is the optimal (offline) delivery time had the location of the object
been known to all agents from the start.

The results of the paper are summarized in the following table.

Table 1. Table of results: lower and upper bounds on the competitive ratios proven for
each model studied where W (x) is the product logarithm (Lambert W function [14])
of x and, for the two-agent scenarios, v is the relative speed of the slower agent with
respect to the faster agent (i.e. if agents have speeds v1 and v2 such that v2 ≤ v1, then
v = v2/v1).

Agents Destination Randomized Lower Bound Upper Bound Section

1 endpoint no 1 +
√

2 1 +
√

2 4.1

yes 5/3 2 4.1

middle no 5 5 4.2

yes 5/3 1 + 1
2W (1/e)

≈ 2.79556 4.2

2 endpoint no 1 +
√

2 min
(
1 +

√
2, 3−v

1+v

)
5

2 with radios endpoint no 1 +
√

2 min
(
1 +

√
2, 3

1+2v

)
5.1

The layout of the paper is as follows. We survey related work in Sect. 2 and
then present some preliminaries on the model and notation in Sect. 3. We begin
our study in Sect. 4 by focusing on the problem with a single agent, consider-
ing scenarios with the destination at the endpoint (Sect. 4.1) and in the middle
(Sect. 4.2), presenting deterministic and randomized algorithms for both sce-
narios. We present preliminary results for the multi-agent case by studying the
problem for agents with no communication ability in Sect. 5 and then consider
the case where agents can communicate (i.e. via radio) in Sect. 5.1. Finally, we
conclude the paper with a summary of results and a discussion of areas for future
work in Sect. 6. All proofs omitted due to space constraints can be found in the
appendix.
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2 Related Work

Cooperative mobile agents with communication constraints have been used to
study search, exploration, rendezvous, message delivery, and other problems
related to the search and rescue problem studied in this paper. Cow-path prob-
lems, first introduced in 1964 [2], are especially related to the search component
of the problem we study. In its simplest form, the cow-path problem involves find-
ing a target on a line with a single agent in as little time as possible. A simple
9-competitive algorithm has been shown to be optimal [2,21]. As a fundamental
problem in search theory, many variants of the original cow-path problem have
been proposed and solved for different models and using a variety of techniques.
For multi-agent systems, it is sometimes framed as an evacuation problem, where
the goal is to minimize the time for every agent to find and travel to an exit
whose location is unknown [3,17]. The Group Search problem, on the other hand,
requires any one agent to find the target [16]. These problems have been studied
for many different topologies including the bounded line [4], the ring [24,28],
the disk [15], simple polygons [26], for multiple paths (the original problem is a
two-path system - left and right from the starting location of the agent) [25], the
plane [20], in graphs [3], and in trees [19]. Competitive algorithms for multi-agent
systems have been proposed [3,8,15,17,18,20,24,28], sometimes allowing some
of the agents to be faulty [18,24]. A randomized algorithm has also been shown
to dramatically improve the competitive ratio by a factor of almost 2 for the
original problem (and to a lesser extent for the multi-path variant) [25]. Search
for mobile targets has also been studied [6,13,21].

While cow-path problems relate directly with the search component of the
problem studied in this paper, they do not consider the rescue component. The
subsequent delivery that must occur after the object has been found fundamen-
tally changes the problem. Recently, there has been work in data delivery by
systems of mobile agents on the line [7,11], in the plane [10,12], and in graphs
by energy-constrained agents [1,5]. The recently proposed Pony Express Com-
munication Problem [11], where agents must cooperate to transmit an object
from one endpoint of a line segment to the other, is most similar to the prob-
lem we study in this paper. In the offline setting, where the locations of the
object and all agents are known to every agent ahead of time, our problem is
equivalent to the Pony Express Communication Problem, for which an optimal
offline algorithm exists. Essentially, the search and rescue problem we study here
can be described as the Pony Express Communication Problem where the initial
location of the object is unknown.

We are not aware of any existing work on this problem for the line, though
it has been studied on the disk for the one- [23] and two-agent [22] cases. The
problem considers agents which start at the center of a unit disk and the object
and destination at unknown points on the perimeter of the disk. Algorithms for
different communication models (wireless and face-to-face) have been presented
and their worst-case delivery times proven. Both algorithms have a constant com-
petitive ratio of 1 + π, but rely on the assumption that the positive arc-distance
between the exit and target is known ahead of time. In this paper, we make no
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assumptions about the distance of the object and also provide algorithms for
both wireless and face-to-face communication models for the two-agent case.

Much of the existing work on search and rescue, exploration, and other
cooperative tasks for multi-agent systems consider rather complex models
and/or environments (obstacles, complex communication networks, communi-
cation dropouts, object recognition, urban or disaster environments, etc.). Tech-
niques like queuing theory [9], machine learning [27], and heuristic-based [27]
algorithms have been used to great effect. In this paper, we study the prob-
lem under a much simpler model in order to provide foundational theoretical
guarantees with the hope that they can be used as a basis for future work.

3 Model and Notation

We consider agents that have a constant maximum speed and can start, stop,
change directions, and pick up/hand over the object instantaneously. We assume
agents can only move finite distances (they cannot move an infinitesimal distance
in some direction). Agents may hand over the object to another agent only
when they are collocated (face-to-face). In the offline setting, agents know the
position of the object and the positions/speeds of all other agents at all times.
In the online setting, however, agents do not know the position of the object or
the positions/speeds of other agents. Except in Sect. 5.1, agents are assumed to
have no ability to wireless communicate with each other. In all other sections,
agents can only communicate with each other through face-to-face encounter.
In both the face-to-face and wireless communication models, agents may share
their entire state with each other instantaneously. We denote the initial position
of the object by s and the (unknown) position of the object by y. For the single
agent case we assume, without loss of generality, that the agent’s speed is 1. For
the two agent case, we use v1 and v2 to denote the speeds of the two agents such
that v1 ≥ v2 > 0. We use v = v2/v1 to denote the relative speed of the slower
agent with respect to the faster agent.

4 A Single Agent

First, we study the problem for the case of a single agent. In this case, we can
without any loss of generality assume the agent’s speed to be 1. In other words,
we simply define a unit of time to be the amount of time it takes for the agent
to traverse the unit interval.

4.1 Destination at the Endpoint

In this section, we consider the interval [0, 1] where the destination is at 0 and
the agent’s initial position is s ≥ 0. Then, we discuss how the results extend to
the unbounded interval [0,∞).



Search and Rescue on the Line 301

Deterministic Algorithms. We start by showing a lower bound for any deter-
ministic online single-agent algorithm.

Theorem 4.1. Any online algorithm for the single-agent case has competitive
ratio at least 1 +

√
2.

Proof. Suppose the agent starts at position 1
2 . It is clear that any valid algo-

rithm must eventually reach both endpoints 0 and 1 (otherwise there would
exist instances of the problem, with the object at either 0 or 1, where the agent
never finds the object). First, consider an algorithm which reaches 1 before 0.
By adversarially placing the object at 0, the agent cannot deliver it before time
2
(
1
2

)
+ 1

2 = 3
2 while an optimal algorithm would have delivered the object in

time 1
2 , resulting in a competitive ratio of 3.

Now let’s consider algorithms that reach endpoint 0 first. Let x be the largest
visited point on the interval

[
1
2 , 1

)
. In other words, the agent travels first to x and

then to 0. As an adversary, we can choose to place the object either at y ∈ (x, 1]
or at 0. If we choose the former, the delivery time of any algorithm is at least(
2x − 1

2

)
+ 2y while the optimal delivery time is

(
y − 1

2

)
+ y. If we choose the

latter, however, the delivery time of any algorithm is at least
(
x − 1

2

)
+ x while

the optimal delivery time is 1
2 . Since we have the power to choose whichever is

worse for the algorithm, the competitive ratio can be written:

max
(

sup
y>x

[
2x − 1

2 + 2y

2y − 1
2

]
,
2x − 1/2

1
2

)
= max

(
sup
y>x

[
1 +

2x

2y − 1
2

]
, 4x − 1

)
(1)

= max
(

8x − 1
4x − 1

, 4x − 1
)

≥ 1 +
√

2 (2)

Observe supy>x

[
1 + 2x

2y− 1
2

]
= 8x−1

4x−1 since 2x
2y− 1

2
is decreasing with respect to y.

Then, the inequality above follows since 8x−1
4x−1 is decreasing on

(
1
2 , 1

)
, 4x − 1 is

increasing on
(
1
2 , 1

)
, and they intersect at x = 1

2 + 1
2
√
2
. Thus, for any algorithm

(which determines a value for x), the competitive ratio is at least 1 +
√

2. ��
Now, we present Algorithm 1 and prove it to be optimal.

Algorithm 1. Online algorithm for agent starting at s ∈ [0, 1]

1: x ← min
(
1, s

(
1 + 1√

2

))

2: move along path s → x → 0 → 1, returning to 0 with the object once it is found

Theorem 4.2. Algorithm 1 has a competitive ratio of at most 1 +
√

2.

Proof. Essentially, the algorithm involves traveling right toward 1 until reaching
a point x = min

(
1, s

(
1 + 1√

2

))
, then traveling all the way to 0 (delivering the
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Fig. 1. The dashed line represents movement of agent executing Algorithm 1. The
agent travels from its starting position at s to the point x, then to 0, then to 1 and
back to 0 again. Once the agent encounters the object along this path it returns to 0
(not drawn).

object if it found it along the way). If the agent still does not have the object,
it traverses the entire interval to the object (all the way to 1 if necessary) and
back (Fig. 1). Using a similar method as was used in proving Theorem 4.1, there
are three interesting cases:

Case 1: s = 0. In this case, x = 0 and the algorithm clearly performs
optimally, since it simply moves right until finding the object and then moves
back to 0.

Case 2: s ≥ 2 − √
2. In this case, x = 1 and so placing the object at y < s

maximizes the competitive ratio (since any y ≥ s would result in an optimal
delivery time):

(x − s) + x

s
=

2 − s

s
≤ 1 +

√
2

Case 3: 0 < s < 2 − √
2. In this case, s < x < 1 and the maximum

competitive ratio is achieved either by placing the object at some position y < s
or at some position y > x (since any s ≤ y ≤ x would result in an optimal
delivery time):

max
(

sup
y>x

[
(2x − s) + 2y
(y − s) + y

]
,
(x − s) + x

s

)
= max

(
4x − s

2x − s
,
2x − s

s

)

= max
(
1 +

√
2, 1 +

√
2
)

(3)

= 1 +
√

2

where Eq. (3) follows since x = s
(
1 + 1√

2

)
in this case. Thus, Algorithm 1 has

a competitive ratio of at most 1 +
√

2. ��
This result is particularly interesting when compared to the search and deliv-

ery problems separately. First, observe that for the search problem with no lower
bound on the distance of the target to the agent’s starting location, there is no
competitive online algorithm! The agent must move some distance either left
or right to begin with - whatever that distance is, we can place the object an
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arbitrarily small fraction of the distance in the other direction, making the com-
petitive ratio of the algorithm arbitrarily large. The delivery problem on the line
segment, on the other hand, is trivial with one agent - just go to the object and
then the destination. A competitive online algorithm for the search and rescue
problem, however, does exist and is not trivial!

It’s important to understand that Algorithm 1 does not minimize the worst-
case delivery time of the object. In fact, a simple algorithm of just going to
1 and then back to 0 terminates in at most time 2 (when the object is at 1)
while Algorithm 1 can take up to 2 +

√
2 time (when s = 2 − √

2 − ε for some
arbitrarily small ε > 0 and the object is at 1). Rather, Algorithm 1 minimizes
the delivery time compared to the optimal delivery time if the location of the
object were known. The aforementioned simple algorithm, on the other hand,
might take time 2 to deliver an object that could have been delivered almost
instantaneously! Algorithm 1 guarantees this never happens—an object that
can be delivered in time t optimally will be delivered in at most (1 +

√
2)t time.

So Algorithm 1 (and any other which minimizes competitive ratio in general)
might be described as an algorithm that minimizes the regret that an agent has
after discovering the location of the object.

There is another even more important scenario where an algorithm’s com-
petitive ratio is more useful than its worst-case runtime: when the worst-case
runtime is unbounded. Consider the situation where an agent no longer knows
the length of the path ahead of it—only its initial distance to 0. In the extreme
case, the object could be anywhere on the interval [0,∞). In this case, there is
no simple exhaustive search algorithm that terminates in bounded time because
the path could go on forever (or in a more realistic scenario, for a really, really
long time)! Even for this extreme case, Algorithm 2 (a slight modification of
Algorithm 1 which simply removes the upper bound on the agent’s search to
the right of s), will still deliver the object to its destination in 1 +

√
2 times the

optimal time.

Algorithm 2. Online algorithm for agent starting at s ∈ [0,∞)

1: x ← s
(
1 + 1√

2

)

2: move along path s → x → 0 → ∞, returning to 0 with the object once it is found

Corollary 1. Algorithm 2 has a competitive ratio of 1 +
√

2.

Proof. Follows directly from the proof for Algorithm 1. ��

Using Randomization. The analysis for Algorithm 1 involved reasoning about
how an adversary might place the object at worst-case positions along the line-
segment. By using randomization, we can mitigate the damage an adversary can
do by not committing to a predictable, deterministic algorithm. First, we prove
a lower bound on how well a randomized algorithm can do:
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Theorem 4.3. Every randomized online algorithm for the single-agent case has
an expected competitive ratio of at least 5/3.

Proof. Consider the scenario where the agent is at some position s < 1
2 and the

object is placed on the interval (s, 2s] uniformly at random with probability 2/3
and at 0 with probability 1/3. Observe in the former case, the expected position
of the object is (2s + s)/2 = 3s/2. Since the object cannot be in the interval
(0, s], any optimal online algorithm must involve the agent either moving along
the path s → 0 → 1 or along the path s → x → 0 → 1 (returning to 0 as soon as
the object is found, of course) for some x ∈ (s, 1]. If the agent moves to 0 first,
then the expected competitive ratio is

1
3

· 1 +
2
3

·
(

2(3s)/2 + s

2(3s)/2 − s

)
=

1
3

+
2
3

(
3s + s

3s − s

)
= 5/3

If instead, the agent moves to some position x ∈ (s, 2s], then the probability that
the agent finds the object (in optimal time) on (s, x] is 2

3 · x−s
s . On the other

hand, the probability that the object is in the interval (x, 2s] is 2
3 · 2s−x

s . Given
this situation, observe that the expected position of the object in this case is
(2s + x)/2. Thus the competitive ratio can be written:

1
3

· 2x − s

s
+

2
3

(
x − s

s
· 1 +

2s − x

s
· 2x − s + 2(x + 2s)/2

2(x + 2s)/2 − s

)
=

s2 + 11sx − 2x2

3s2 + 3sx

which has a maximum value of 5/3 (at both x = s and x = 2s). Thus, any deter-
ministic algorithm for this distribution of inputs has an expected competitive
ratio of at least 5/3. Finally, by Yao’s Minimax Principle [29], every randomized
algorithm must have an expected competitive ratio of at least 5/3. ��

Now, we present a simple randomized algorithm: with probability 1
2 , the

agent will simply execute an algorithm very similar to Algorithm 1, otherwise
the agent will move directly to 0 and then, if it still hasn’t found the object,
move towards 1 until it does and then return to 0.

Algorithm 3. Online randomized algorithm for agent starting at s ∈ [0, 1]
1: Let p be a random bit
2: if p = 0 then
3: move along path s → min(2s, 1) → 0 → 1, returning to 0 with the object once

it is found
4: else
5: move along path s → 0 → 1, returning to 0 with the object once it is found

Theorem 4.4. Algorithm 3 has an expected competitive ratio of 2.

Proof. First, we consider the case where s < 1/2. Observe the object is either
in the interval (0, s), (s, 2s], or (2s, 1]. The goal of the adversary now is to place
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the object in the interval which maximizes the expected competitive ratio. For
example, if the object is in the first interval, then the algorithm is optimal with
probability 1/2 (the agent goes towards 0). Otherwise, it has a competitive ratio
of 2(2s)−s

s = 3. The adversary is not required to commit to a deterministic
strategy, however. Consider a mixed strategy where the adversary places the
object in (0, s) with a probability of q, in (s, 2s] with a probability of r, and in
(2s, 1] with a probability of 1 − q − r. Let CR denote the competitive ratio of
Algorithm 3. Then the expected competitive ratio can be written:

E[CR] =
1
2

(
q · 1 + r · 2y2 + s

2y2 − s
+ (1 − q − r)

2y3 + s

2y3 − s

)
+

1
2

(
q · 2(2s − s) + s

s
+ r · 1 + (1 − q − r)

2y3 + 3s

2y3 − s

)

E[CR] ≤ 1
2

(
q · 1 + r · 3 + (1 − q − r)

5
3

)
+

1
2

(
q · 3 + r · 1 + (1 − q − r)

7
3

)
= 2

where y2 and y3 are the expected positions of the object in cases 2 and 3,
respectively. The above inequality follows from worst-case values (those which
maximize the competitive ratio) y2 approaches s (from above) and y3 approaches
2s (from above).

Now we must consider the case where s ≥ 1/2. In this case, there are only two
intervals in which the adversary may place the object. Let q′ be the probability
the object is in [0, s) (case 1) and 1 − q′ the probability it is in (s, 1] (case 2).
Then the competitive ratio can be written:

E[CR] =
1
2

(
q′ · 1 + (1 − q′) · 2y′

2 + s

2y′
2 − s

)
+

1
2

(
q′ · 2 − s

s
+ (1 − q′) · 1

)

E[CR] ≤ 1
2

(q′ · 1 + (1 − q′) · 3) +
1
2

(q′ · 3 + (1 − q′) · 1) = 2

where y′
2 is the expected position of object in case 2. The above inequality follows

from the worst-case value (that which maximizes the competitive ratio) where
y′
2 approaches s (from above). ��

The expected competitive ratio of Algorithm 3 is significantly lower than the
competitive ratio of the deterministic Algorithm 1, especially with respect to the
lower bound on the competitive ratio of any randomized algorithm.

Remark 1. A slight modification of Algorithm 3 for the unbounded interval
[0,∞) (simply replace 1 in the paths with ∞) has the same expected com-
petitive ratio since the second scenario discussed in the proof for Theorem 4.4
is essentially eliminated and the analysis for the first scenario is equivalent.

4.2 Destination in the Middle

Up until this point, we’ve only considered scenarios where the destination is at
an endpoint. In this section, we consider situations where the object may be on
either side of the destination.
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Deterministic Algorithms. We start by showing the necessity of an additional
assumption for this variant of the problem: the agent’s initial position cannot be
at 0 (the destination).

Lemma 4.1. For any initial configuration where the agent starts at 0 and the
object is on one of two paths emanating from 0, there is no competitive algorithm.

Proof. Any algorithm must involve the agent doing one of two things at time
t = 0:

1. wait for some time t′

2. move some distance d′ > 0 down one of the paths

In the first case, an adversary may simply place the object along any of the paths
an arbitrarily small distance d/2 away from 0 (so the optimal delivery time is
d). The competitive ratio in this case is at least t′/d, which is arbitrarily large
as d → 0. In the second case, an adversary may place the object an arbitrarily
small distance d/2 away from 0 along any path except the one the agent traveled
down. Again, the competitive ratio is at least d′/d, which is arbitrarily large as
d → 0 (since d′ > 0). ��

Thus, we assume, without loss of generality that the agent starts at some
position s > 0 (all proofs follow for s < 0 via a symmetrical argument). We
present an online “zig-zag” algorithm (Algorithm 4) which involves the agent
searching a distance 2s to the left (crossing 0) and returning to s, then a distance
4s to the right and returning to s, then a distance 8s to left and returning to s,
and so on, doubling its search distance in each round (Fig. 2). In other words,
the agent follows the trajectory s → −s → 5s → −7s → 15s → . . ..

Algorithm 4. Online Algorithm for agent starting at s 
= 0
1: i ← 1
2: x ← −s
3: while object not found do
4: move toward x
5: if arrived at x �= s or an endpoint then
6: x ← s
7: else if arrived at s then
8: i ← i + 1
9: x ← s + (−1)i · 2is

10: Return to 0 with object

Now, we will show an upper bound of 5 on its competitive ratio, then prove
it is optimal.

Theorem 4.5. Algorithm 4 has a competitive ratio of 5.
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Fig. 2. The dashed line represents movement of agent executing Algorithm 4. The
agent travels from its starting position at s to the point −s, then to 5s, and so on.
Upon finding the object, the agent returns to 0 (not drawn).

Proof. In Algorithm 4, the agent starts at s and moves left and right in alter-
nating rounds, doubling the distance it travels each round. In round i = 1, 2, . . . ,
the agent moves a distance 2is (left in odd rounds and right in even rounds) out
and back to s (for a total of 2i+1). In the case an endpoint is reached, the agent
would turn around rather than finish travelling the full distance of the round.
However, to simplify the analysis it is easier to consider the alternate algorithm
A′ such that the agent does not turn around early and travels a distance 2i (out
and back) no matter what, traveling beyond the endpoint if necessary. It is clear
that our original algorithm cannot perform worse than A′ and in cases where
an endpoint is never reached before finding the object, the two algorithms are
identical. Thus, any upper bound on the competitive ratio of A′ is also an upper
bound on Algorithm 4. For the following analysis, assume the algorithm we are
referring to is A′.

Without loss of generality, suppose s > 0 (a symmetric argument follows
when s < 0). Let y be the position of the object. Then there are three interesting
cases: when −s ≤ y ≤ s, when y > s, and when y < −s. The first case is the
simplest to analyze. Since −s ≤ y < s, the object is found in round 1 and is
clearly optimal. For the second case, if the object is found in round 2, then
s < y < 5s and the competitive ratio is

3s + 2y

2y − s
≤ 5 (4)

since the left-hand side of Inequality (4) is decreasing with respect to y and
y > s. Otherwise, y > 5s and so the object must be found in some even round
k > 2. Also, observe 2k−2s < y − s (otherwise the object would have been found
in an earlier round), implying 2k < 4(y−s)

s . The delivery time of A′, then, is

TA′ =
k−1∑

i=1

2i+1s + 2y − s = 2s
(
2k − 2

)
+ 2y − s

TA′ < 2s

(
4(y − s)

s
− 2

)
+ 2y − s = 10y − 13s,
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while the optimal delivery time is 2y − s, thus the competitive ratio is at most
(10y − 13s)/(2y − s) ≤ 5. Finally, when y < −s, the object must be found in
some odd round k > 2. Then, we have 2k−2s < s + |y| (otherwise the object
would have been found in an earlier round just as in the first case), implying
2k < 4(s+|y|)

s . The delivery time of A′ in this case is

k−1∑

i=1

2is + 2|y| + s = 2s(2k − 2) + 2|y| + s

< 2s

(
4(s + |y|)

s
− 2

)
+ 2|y| + s = 10|y| + 5s,

while the optimal delivery time is 2|y|+ s. Thus the competitive ratio is at most
(10|y| + 5s)/(2|y| + s) ≤ 5. ��
Remark 2. Note that algorithm A′ is exactly the algorithm for the unbounded
case, so the competitive ratio of at most 5 applies to both the bounded and
unbounded cases.

Theorem 4.6. Every online algorithm for the single-agent, line model must
have a competitive ratio of at least 5.

Using Randomization. Again, the analysis of Algorithm 4 involved reasoning
about worst-case positions of the object. The following algorithm and subsequent
upper bound are very similar to the well-known optimal randomized algorithm
for the cow-path search problem [25]. The algorithm is essentially a standard
zig-zag algorithm (like Algorithm 4) except that the starting search direction
and initial search distance are randomized. In the following Algorithm 5, the
random bit p determines the initial search direction and the random number
ε ∈ (0, 1) determines the initial search distance (which is rεs for some constant
r > 1).

Algorithm 5. Online randomized algorithm for agent starting at s 
= 0 with
expansion rate r > 1
1: let p be a random bit
2: sample ε uniformly at random from the interval (0, 1)
3: i ← 1
4: x ← s + (−1)i−p · ri+εs
5: while object not found do
6: move toward x
7: if arrived at x �= s or an endpoint then
8: x ← s
9: else if arrived at s then

10: i ← i + 1
11: x ← s + (−1)i−p · ri+εs

12: Return to 0 with object
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Theorem 4.7. The expansion rate r = 1
W (1/e) ≈ 3.59112 yields an expected

competitive ratio of 1 + 1
2W (1/e) ≈ 2.79556 for Algorithm 5 where W (x) is the

product logarithm (Lambert W function [14]) of x.

Remark 3. Note that, again, algorithm A′ is exactly the modified version of A
that would be used in the unbounded case, so the competitive ratio of at most
1 + 1

2W (1/e) applies to both the bounded and unbounded cases.

5 Two Agents

In this section, we present results for multi-agent search and rescue, considering
the case of two agents initially located at the same point s on the line segment but
with different speeds v1 and v2. Without loss of generality, we assume v1 ≥ v2.
We refer to the agent with speed v1 as the “first” or “fast” agent and the agent
with speed v2 as the “second” or “slow” agent. The goal is the same, except
agents may hand over the object to each other via face-to-face encounter. We
denote v = v2/v1 as the speed of the slower agent relative to the faster agent
(observe 0 ≤ v ≤ 1). The delivery time of the optimal algorithm, then, is clearly
(2y − s)/v1, where the fast agent delivers the object entirely by itself.

Remark 4. By Theorem 4.1, whenever v2 = 0, the lower bound of 1+
√

2 applies
to the two-agent case directly.

Now we present Algorithm 6, an online algorithm which involves the slow
agent moving toward 1 and the fast agent moving toward 0 only if doing so is
better than the fast agent simply executing Algorithm 1 by itself.

Algorithm 6. Online two-agent algorithm for agents starting at s ∈ [0, 1]
1: if other agent is faster then
2: x ← 1
3: else if 2−√

2

2+
√
2

< v < 1 then
4: x ← 0
5: else
6: x ← s(1 + 1/

√
2)

7: move along path s → x → 0 → 1, returning to 0 with the object once it is found
and handing it over to any faster agent encountered

Theorem 5.1. For any system with two agents starting at position s ∈ [0, 1],
Algorithm 6 has a competitive ratio of min

(
1 +

√
2, 3−v

1+v

)
where v = v2/v1.

Proof. First, observe that since both agents start at s, an optimal offline algo-
rithm involves only the first agent moving directly toward the object and then
to 0 for delivery. Thus, in the case where v ≤ 2−√

2
2+

√
2

or v = 1, the first agent
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exactly performs Algorithm 1, and so a competitive ratio of 1 +
√

2 is achieved.
The interesting case, then is when 2−√

2
2+

√
2

< v < 1. Let y be the position of the
object along the line segment. Clearly if y ≤ s, then the algorithm is optimal.
If y > s, then there are two possible scenarios. If s + y ≤ (y − s)/v, then the
fast agent reaches the object at the same time or before the slow agent, so the
competitive ratio is

2y + s

2y − s
≤ 2y + 1−v

1+v y

2y − 1−v
1+v y

=
3 + v

3v + 1
.

If s + y > (y − s)/v, then the slow agent reaches the object first, picks it up,
and moves toward 0 until encountering the fast agent for a handover. Then the
fast agent delivers the object. In this case, the delivery time can be written as
the sum of the time it took to meet (t = 2y

1+v ) and the time for the fast agent to
carry the object the remaining distance (y − (tv − (y − s)) = 2y − tv − s) for a
total time of 4y

1+v − s. Thus, the competitive ratio is

4y
1+v − s

2y − s
≤ 3 − v

1 + v

since the function is decreasing with respect to y in the y > s region and thus
obtains its maximum value at y = s. Finally, observe the second case dominates
the competitive ratio:

3 − v

1 + v
≥ 3 + v

1 + 3v
⇒ 3 + 8v − 3v2 ≥ 3 + 4v + v2 ⇒ v(1 − v) ≥ 0

Of course this condition is always satisfied since 0 ≤ v ≤ 1. ��
Observe that since agents start at the same position, Algorithm 1 still has

a competitive ratio of 1 +
√

2. Algorithm 6 is only better when v2 > 2−√
2

2+
√
2
v1 ≈

0.1716v1. In other words, as long as one agent is not too much faster than the
other, Algorithm 6 is more competitive.

5.1 Agents with Radios

In Algorithm 6, the fast agent moves toward 0 and only turns around to help the
slower agent if it reaches 0 without finding the object. If the slow agent finds the
object before the fast agent reaches 0 and the agents can communicate, though,
then clearly the fast agent should turn around immediately to acquire the object
as quickly as possible.

Theorem 5.2. Algorithm 7 has a competitive ratio of min
(
1 +

√
2, 3

1+2v

)
.

Observe that Algorithm 7 has a better competitive ratio than Algorithm 1
whenever the slow agent has speed greater than 2−√

2
2+2

√
2

≈ 0.1213. Recall for
the case where agents cannot communicate, the slow agent only helps when its
speed is greater than 2+

√
2

2−√
2

≈ 0.1716.
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Algorithm 7. Online two-agent algorithm for agent starting at s ∈ [0, 1]
1: if other agent is faster then
2: x ← 1
3: else if 2−√

2

2+2
√
2

< v < 1 then
4: x ← 0
5: else
6: x ← s(1 + s/

√
2)

7: move along path s → x → 0 → 1, returning to 0 with the object once it is found
and handing it over to any fast agent encountered

6 Conclusion

In this paper, we propose a problem inspired by search and rescue, a task that
cooperative robotic systems have long showed promise in assisting with. We
provide both deterministic and randomized algorithms for the single-agent case
and provide lower and upper bounds on their competitive ratios. We showed
the search and rescue problem is fundamentally different than the search and
delivery problems considered separately, which are trivial. For the case where the
destination is in the middle, however, the optimal (deterministic and random-
ized) algorithms are essentially the same as the well-known optimal algorithms
for search problem, though the resulting competitive ratios are different. For
the two-agent case, we essentially provide one algorithm and demonstrate how
extra communication ability between the two agents affects its competitive ratio.
While the deterministic single-agent algorithms are optimal, it’s not clear if the
randomized and multi-agent algorithms can be improved. This is an interesting
area for future work on this problem. Other areas that deserve more attention are
the study of search and rescue for other topologies (i.e. the ring, the plane, and
trees/graphs) and for more general multi-agent scenarios (with different starting
locations, communication abilities, etc.).

Appendix

A Proofs From Sect. 4 (A Single Agent)

Theorem 4.6. Every online algorithm for the single-agent, line model must
have a competitive ratio of at least 5.

Proof. Consider a scenario where the agent is placed at some arbitrarily small
distance s > 0 away from 0 and the object is at least a distance 2s from s. Any
algorithm must involve a sequence of positive distances x1, x2, x3, . . . such that
the agent moves left (or right) a distance x1 and back to s, then right (or left)
a distance x2 and back to s, and so on. Clearly any optimal online algorithm
of this form must satisfy xi+2 > xi and any algorithm with a competitive ratio
of 5 or better must satisfy xi ≤ 3xi−1 where x1 ≥ 2s (since the object at least
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a distance 2s from s). Thus, xi < 2s · 3i−1 for all i ≥ 2 and so the number of
required turning points for an optimal online algorithm can be made arbitrarily
large (by setting s to be arbitrarily small).

For some sequence of turning points, suppose the object is found on the
kth round (k can be arbitrarily large by the argument above) and observe the
competitive ratio can then be written

sup
k,y,s

∑k−1
i=1 2xi + 2y ± s

2y ± s
= sup

k

∑k−1
i=1 xi + xk−2

xk−2

= 1 + sup
k

∑k−1
i=1 xi

xk−2
≥ 1 + sup

k

∑k−1
i=1 ri

rk−2
= 1 + sup

k

rk − r

(r − 1)rk−2

where r > 1 (the expansion factor). The above inequality follows from Corollary
7.11 of Sect. 7.2 of [21] (following the method for proving the 9-competitive search
on an infinite line in Sect. 8.2.1 of [21]). Then, since rk−r

(r−1)rk−2 is increasing with

respect to k (its derivative r3−k ln r
r−1 is greater than 0 for any r > 1), we can

simplify the competitive ratio to

1 + sup
k

rk − r

(r − 1)rk−2
= 1 + lim

k→∞
rk − r

(r − 1)rk−2
= 1 +

r2

r − 1

which has a minimum value of 5 for r = 2. ��
Theorem 4.7. The expansion rate r = 1

W (1/e) ≈ 3.59112 yields an expected
competitive ratio of 1 + 1

2W (1/e) ≈ 2.79556 for Algorithm 5 where W (x) is the
product logarithm (Lambert W function [14]) of x.

Proof. Just as in the proof for Theorem 4.5, we consider the alternate algorithm
A′ such that the agent does not turn around early upon reaching an endpoint. It
is clear that our original algorithm cannot perform worse than A′ and in cases
where an endpoint is never reached, the two algorithms are identical.

Let d = s · rk+δ denote the position of the object where 0 ≤ δ < 1. By
executing Algorithm 5, the agent moves a distance ri+ε to the left and right
in alternating rounds i = 1, 2, . . .. Consider the round when the agent moves a
distance s · rk for the first time. If the agent moves rk distance for the first time
in the opposite direction of the object, then it will definitely find the object in
round k + 1. The expected competitive ratio in this case can be written:

E

[∑k
i=1 s · 2ri+ε + 2d ± s

2d ± s

]

= E

[∑k
i=1 2ri+ε + 2rk+δ ± 1

2rk+δ ± 1

]

= E

[

1 +
2rε

(
rk+1 − r

)

(2rk+δ ± 1) (r − 1)

]

= 1 +
2
(
rk+1 − r

)

(2rk+δ ± 1) (r − 1)
· E [rε]

= 1 +
2
(
rk+1 − r

)

(2rk+δ ± 1) ln r
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since E[rε] =
∫ r

1
x 1

x ln r dx = r−1
ln r .

On the other hand, if the agent moves a distance s · rk for the first time in
the direction of the object, it will find it on round k if ε ≥ δ and on round k + 2
otherwise. Let B be the event that ε ≥ δ, then the expected competitive ratio
can be written:

E

[

Pr[B]

[∑k−1
i=1 s · 2ri+ε + 2d ± s

2d ± s

]

+ (1 − Pr[B])

[∑k+1
i=1 s · 2ri+ε + 2d ± s

2d ± s

]]

= E

[
Pr[B]

[
1 +

2rε(rk − r)
(2rk+δ ± 1) (r − 1)

]
+ (1 − Pr[B])

[
1 +

2rε(rk+2 − r)
(2rk+δ ± 1) (r − 1)

]]

= Pr[B]
[
1 +

2(rk − r)
(2rk+δ ± 1) (r − 1)

· E [rε|B]
]

+ (1 − Pr[B])
[
1 +

2(rk+2 − r)
(2rk+δ ± 1) (r − 1)

· E [
rε|B]

]

= Pr[B]
[
1 +

2(rk − r)(r − rδ)
(2rk+δ ± 1) (r − 1) ln rPr[B]

]

+ (1 − Pr[B])
[
1 +

2(rk+2 − r)(rδ − 1)
(2rk+δ ± 1) (r − 1) ln rPr[B]

]

since E[rε|B] =
∫ r

rδ x 1
Pr[B]·x ln r dx = r−rδ

ln rPr[B] and E[rε|B] =
∫ rδ

1
x 1

Pr[B]·x ln r
dx =

rδ−1
ln rPr[B]

. Then the expression can be further simplified:

= 1 +
2(rk − r)(r − rδ)

(2rk+δ ± 1) (r − 1) ln r
+

2(rk+2 − r)(rδ − 1)
(2rk+δ ± 1) (r − 1) ln r

= 1 +
2

(2rk+δ ± 1) (r − 1) ln r

(
(rk − r)(r − rδ) + (rk+2 − r)(rδ − 1)

)

= 1 +
2

(2rk+δ ± 1) (r − 1) ln r
(r − 1)(rδ+k + rd+k+1 − rk+1 − r)

= 1 +
2(rδ+k + rd+k+1 − rk+1 − r)

(2rk+δ ± 1) ln r

Observe that, since the initial search direction is chosen uniformly randomly, the
total expected competitive ratio is

1
2

[

1 +
2
(
rk+1 − r

)

(2rk+δ ± 1) ln r

]

+
1
2

[
1 +

2(rδ+k + rd+k+1 − rk+1 − r)
(2rk+δ ± 1) ln r

]

= 1 +

(
rk+1 − r

)

(2rk+δ ± 1) ln r
+

(rδ+k + rd+k+1 − rk+1 − r)
(2rk+δ ± 1) ln r

= 1 +
rk+δ(1 + r) − 2r

(2rk+δ ± 1) ln r
≤ 1 +

rk+δ(1 + r) − (1 + r)
(2rk+δ − 1) ln r − ln r

= 1 +
(1 + r)(rk+δ − 1)
ln r (2rk+δ − 2)

= 1 +
1 + r

2 ln r
.
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Finally, with an expansion rate of r = 1
W (1/e) ≈ 3.59112, the above upper bound

becomes 1 + 1
2W (1/e) ≈ 2.79556. ��

B Proofs From Sect. 5 (Two Agents)

Theorem 5.2. Algorithm 7 has a competitive ratio of min
(
1 +

√
2, 3

1+2v

)
.

Proof. The proof is very similar to that of Theorem 5.1. Without loss of gener-
ality, suppose the first agent has a speed of 1 and the second agent a speed of
v ≤ 1. For the case where v ≤ 2−√

2
2+2

√
2

or v = 1, the first agent exactly performs

Algorithm 1, and so a competitive ratio of 1 +
√

2 is achieved. The interesting
case, then is when 2−√

2
2+2

√
2

< v < 1. First, if the fast agent still arrives at the
object first, the competitive ratio is 3+v

1+3v (using the same analysis as used in the
proof for Theorem 5.1). Otherwise, if the slow agent arrives at the object before
the fast agent reaches 0 (i.e. s > y−s

v ⇒ y < s(v + 1)), then the competitive
ratio is

t + (y − (tv − (y − s)))
2y − s

=
s(2 − v) − 2y

v(s − 2y)
≤ 3

1 + 2v

where t =
2(y−(s− y−s

v ))
1+v is the time the agents meet for a handover. The first

equality follows from substituting this value for t and the final inequality follows
since s(2−v)−2y

v(s−2y) is increasing with respect to y (its derivative with respect to y,
2s(1−v)
v(s−2y)2 , is positive for all v < 1) and y < s(v+1). On the other hand, if the slow
agent finds the object after the fast agent reaches 0 but still before it catches up
(s < y−s

v < y + s), then the competitive ratio is

t + (y − (tv − (y − s)))
2y − s

=
s(1 + v) − 4y

(1 + v)(s − 2y)
=

s(1 + v) − 4y

s(1 + v) − 2y(1 + v)
≤ 3

1 + 2v

where t = 2y
1+v is the time the agents meet for a handover. The first equality

follows from substituting this value for t and the final inequality follows since
s(1+v)−4y

s(1+v)−2y(1+v) is decreasing with respect to y (its derivative with respect to y,
2s(v−1)

(1+v)(s−2y)2 , is negative for all v < 1) and y > s(1 + v). Finally, observe the
second and third cases dominate the competitive ratio:

3
1 + 2v

≥ 3 + v

1 + 3v
⇒ 3 + 9v ≥ 3 + 7v + 2v2 ⇒ v(1 − v) ≥ 0

Clearly this condition is always satisfied since 0 ≤ v ≤ 1. ��
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Abstract. We consider the problem of computing routing schemes in
the HYBRID model of distributed computing where nodes have access
to two fundamentally different communication modes. In this problem
nodes have to compute small labels and routing tables that allow for
efficient routing of messages in the local network, which typically offers
the majority of the throughput. Recent work has shown that using the
HYBRID model admits a significant speed-up compared to what would be
possible if either communication mode were used in isolation. Nonethe-
less, if general graphs are used as the input graph the computation of
routing schemes still takes polynomial rounds in the HYBRID model.

We bypass this lower bound by restricting the local graph to unit-
disc-graphs and solve the problem deterministically with running time
O(|H|2 + log n), label size O(log n), and size of routing tables O(|H|2 ·
log n) where |H| is the number of “radio holes” in the network. Our work
builds on recent work by Coy et al., who obtain this result in the much
simpler setting where the input graph has no radio holes. We develop
new techniques to achieve this, including a decomposition of the local
graph into path-convex regions, where each region contains a shortest
path for any pair of nodes in it.

1 Introduction

The HYBRID model was introduced as a means to study distributed systems
which leverage multiple communication modes of different characteristics [3].
Of particular interest are networks that combine a local communication mode,
which has a large bandwidth but is restricted to edges of a graph on the nodes
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tion, and techniques. A full version is available at https://arxiv.org/abs/2210.05333:
the section numbering is the same in both versions.
We would like to thank Martijn Struijs for valuable discussions concerning the geomet-
ric insights of the paper. Any errors remain our own.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
S. Rajsbaum et al. (Eds.): SIROCCO 2023, LNCS 13892, pp. 317–338, 2023.
https://doi.org/10.1007/978-3-031-32733-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32733-9_14&domain=pdf
https://arxiv.org/abs/2210.05333
https://doi.org/10.1007/978-3-031-32733-9_14


318 S. Coy et al.

of the network, with a global communication mode where any two nodes may
communicate in principle, but the bandwidth is heavily restricted. This con-
cept captures various real distributed systems, notably networks of cellphones
that combine high bandwidth but locally restricted wireless communication on
a unit-disc-graph with data transmission over the cellular network.

Routing Schemes are one of the most fundamental distributed data structures,
most prominently employed in the Internet, and are used to forward packets
among connected nodes in a network in order to facilitate data exchange between
any pairs of nodes. In the distributed variant of the problem the nodes initially
only know their incident neighbors in the network and need to communicate as
efficiently as possible using their available means of communication such that
subsequently each node knows its label and a routing table with the following
properties. Given a packet with the label of the receiver node in the header, any
node must be able to forward this packet in the network using the label and
its routing table such that the packet eventually reaches the intended receiver.
Algorithms for routing schemes in hybrid networks are of increasing importance,
as contemporary communication standards support such settings, one prominent
example being the 5G standard [2]. Formally we define routing schemes as fol-
lows.

Definition 1 (Routing Schemes). A routing scheme on a connected graph
G = (V,E) consists of labels λ(v) and routing functions (aka routing table) ρv

for each v ∈ V . ρv maps labels to neighbors of v in G, such that the following
holds. Let s, t ∈ V . Let v0 = s and vi+1 = ρvi

(λ(t)) for i ≥ 1. Then there is an
� ∈ N, such that v� = t. A routing scheme is an approximation with stretch α if
�st ≤ α · hop(s, t) for all s, t ∈ V , where hop(s, t) is smallest number of edges of
any st-path, and �st is the length of the induced routing path from s to t.1

Since typically large amounts of packets are exchanged between senders and
receivers as part of simultaneously ongoing sessions we concentrate on routing
schemes for the local network graph, which offers much larger throughput that
than what is possible on the global network, since the latter either involves higher
costs or is more restricted as infrastructure is shared, like communicating via the
cellular network (however, we need very little local communication to actually
compute the routing scheme).

Our first goal is to optimize the round complexity of computing such a routing
scheme, which is important since frequent changes in the topology of a local
network among mobile devices necessitates its fast re-computation. The second
goal is to minimize the size of the labels and local routing tables as these must
be shared in advance (e.g. via the global network) to initiate a session between
two nodes. The third goal is to minimize the stretch of the routing path between
sender and receiver, minimizing latency and alleviating congestion.

1 Minimizing hop-distance in a unit-disc-graph essentially minimizes the Euclidean
distance that the path covers, thus graph weights are not required.
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We consider the above problem in the HYBRID model that has received
increasing attention during the last few years [1,3,6–8,10–12]. Formally, the
HYBRID model builds on the classic principle of synchronous message passing:

Definition 2 (Synchronous message passing, cf. [18]). We have n com-
putational nodes with some initial state and unique identifiers (IDs) in [n] :=
{1, . . . , n}. Time is slotted into discrete rounds. In each round, nodes receive
messages from the previous round; they perform (unlimited) computation based
on their internal states and the messages they received so far; and finally, based
on those computations, they send messages to other nodes in the network.

Note that the synchronous message passing model focuses on the analysis of
round complexity of a distributed problem (the number of rounds required to
solve it). The HYBRID model restricts which nodes may communicate in a given
round and to what extent.

Definition 3 (HYBRID model, cf. [3]). The local communication mode is mod-
eled as a connected graph, in which each node is initially aware of its neighbors
and is allowed to send a message of size λ bits to each neighbor in each round.
In the global communication mode, each round each node may send or receive γ
bits to/from every other node that can be addressed with its ID in [n] in case it
is known. If any restrictions are violated in a given round, an arbitrary subset
of messages is dropped.

In this paper, we consider a weak form of the HYBRID model, which
sets λ ∈ O(log n) and γ ∈ O(log2 n), which corresponds to the com-
bination of the classic distributed models CONGEST2 as local mode, and
NODE CAPACITATED CLIQUE (NCC)3 as global mode. Note that while it might
appear that more global than local communication is allowed in our model, the
local network allows each node to exchange a messages with each neighbor (of
which there could be Θ(n)), which is not possible in the global network.

The distributed problem of computing routing schemes on the local commu-
nication graph is an excellent fit for the HYBRID model, since the problem is
known to require ˜Ω(n) rounds of communication (where ˜O, ˜Ω hides polylogn
factors) if only either communication via the local mode or the global mode is
permitted, see [12]. The lower bound for the local communication mode holds
even if the input graph is a path and even for unbounded local communication.

It is natural to wonder if adding a modest amount of global communication
on top of a local network significantly improves the required number of commu-
nication rounds to establish a routing scheme in the network. This question was
recently answered positively by [12], where it was shown that routing schemes
with small labels can be computed in ˜O(n1/3) rounds for arbitrary local graphs.

2 Some previous papers that consider hybrid models use λ = ∞, i.e., the LOCAL model
as local mode.

3 Our methods also work for to the stricter NCC0 model as the global network, where
only incident nodes in the local network and those that have been introduced, can
communicate globally.
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However, [12] also shows that a polynomial number of rounds is required to solve
the problem even approximately (in particular, an exact solution with labels up
to size O(n2/3) requires ˜Ω(n1/3) rounds).

To mitigate this lower bound, [8] considers local communication networks
that are restricted to certain interesting classes of graphs for which they can
compute routing schemes in just O(log n) rounds. In this article we will continue
this line of work and consider local communication graphs that are unit-disk
graphs (UDGs). Such a UDG G = (V,E) satisfies the property that nodes are
embedded in the Euclidean plane and are connected iff they are at distance at
most 1. Note that UDGs have been extensively studied as a model capturing
how multiple devices using wireless ad-hoc connections communicate (see, e.g.,
[4,5,8,13–15], all of which handle routing schemes in such UDGs).

In [8] it was shown that the nodes of a UDG can together simulate a much
simpler grid graph structure with constant overhead in round complexity, such
that the connectivity, the hole-freeness, and the hop distance up to a constant
factor are preserved. Furthermore, [8] shows that a routing scheme on a grid
graph can efficiently be transformed into a routing scheme for the underlying
UDG, which introduces only a constant overhead on label size and local routing
information and takes only a constant number of additional rounds.

This allows them to consider the much simpler grid graphs for the computa-
tion of routing schemes to generate good routing schemes for UDGs. However,
their actual algorithm for computing a routing scheme for a grid graph comes
with a caveat: it works only for grid graphs without holes, which, loosely speak-
ing, are points in the grid without nodes on them that are enclosed by a cycle
in the grid graph (more formally in Sect. 2), which implies routing schemes only
for UDGs without “radio holes”, which roughly correspond to areas enclosed by
the UDG that are not covered by nodes (see [8] for the formal definition of radio
holes in UDGs).

In this work we extend the solution to UDGs with such radio holes. Note
that the transformations given in [8] from UDGs to grid graphs work even if
there are holes, which essentially allows us to focus on the computation routing
schemes for grid graphs with holes, which gives the same for arbitrary UDGs,
which have a set H of radio holes (formally defined later). Our algorithm is
asymptotically as efficient (in computation time, and label and table sizes of the
resulting routing scheme) as the algorithm of [8] if the number of holes |H| is
small.

We stress that it is significantly more challenging to compute routing schemes
on grid graphs with such holes than on grid graphs without holes. In the paper
of Coy et al. [8] the authors heavily exploit the property that any simple st-path
can be deformed into any other simple st-path: this is not true in our setting.
In particular, it is easy to come up with examples of grid graphs with |H| holes
for which there are at least 2|H| “reasonable” classes of st-paths (intuitively:
paths which do not completely encircle or spiral around holes) which cannot be
deformed into each other. Worse still, we can make all-but-one of these classes of
paths almost arbitrarily long, and so we cannot just consider one arbitrary class
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of st-paths and obtain an approximate shortest path. We must determine the
class in which an exact shortest st-path lies, which seems to require a sparsifying
structure that scales in complexity with the number of holes.

1.1 Contributions

Our main contribution is the extension of the result presented in Coy et al., [8],
which assumes that no holes are present making the problem much simpler.

Theorem 1 (Main Result for Grid Graphs). Given a grid graph Γ with a
set H of holes (defined in Sect. 2), we can compute an exact routing scheme for
Γ in O(|H|2+log n) rounds in the HYBRID model (notably, even NCC0 suffices).
The labels are of size O(log n); nodes need to locally store O(|H|2 log n) bits.

Note that since grid graphs have constant degree, the local network can be
simulated using the NCC0 model. Therefore, in the theorem above and in all our
subsequent claims about grid graphs, the use of HYBRID can be replaced with
the weaker NCC0 model. Although this is interesting, we consider computation
of routing schemes solely in the global network as an artificial problem: the fact
that we are computing a routing scheme for a local network suggests that this
network can be used to help construct it. Furthermore, the local network of the
HYBRID model is required by [8] to efficiently transform a unit disc graph into a
sparsifying grid graph structure that approximates it well (we briefly summarize
this in Sect. 2). This result leads to the following corollary:

Corollary 1 (Main Result for UDGs). The routing scheme of Theorem 1
can be transformed into a routing scheme which yields constant-stretch shortest
paths for unit-disk graphs in the HYBRID model. Round complexity, label size,
and local storage are asymptotically the same.

We believe that several of our technical contributions are of independent
interest. Our main technical contribution is a decomposition of a grid graph
into simple, path-convex regions which have useful properties for routing. We
also provide a small skeleton structure of the UDG called a landmark graph
such that shortest paths in the landmark graph are topologically the same (i.e.,
circumnavigate holes in the same way) as in the original graph, which may be
useful when solving shortest paths on grid graphs and UDGs in HYBRID or
for similar problems in other models of computation. Furthermore we give an
O(log n) round algorithm for solving SSSP exactly in simple grid graphs and an
O(log n) round algorithm for finding the distance from every node in a simple
grid graph to a portal.

1.2 Related Work

Shortest Paths in Hybrid Networks. Previous work in the HYBRID model
has mostly focused on shortest path problems [1,3,6,10,11]. In the k-sources
shortest path (k-SSP) problem, all nodes must learn their distance in the



322 S. Coy et al.

(weighted) local network to a set of k sources. Particular focus has been given
to the all-pairs (APSP, k = n) and single-sources (SSSP, k = 1) shortest-path
problems. Note that solving the APSP problem gives a solution to the routing
scheme problem. The complexity of APSP is essentially settled: [3,11] give an
algorithm taking ˜O(

√
n) rounds, and this matches a lower bound of ˜Ω(

√
k) to

solve k-SSP even for polynomial approximations. This lower bound even matches
a deterministic algorithm due to [1], although only with an approximation factor
of O( log n

log log n ).4 For k-SSP the ˜Ω(
√

k) lower bound has been matched by [6] with
a constant stretch algorithm, given sufficiently large k (roughly k ∈ Ω(n2/3))
(See Footnote 4). Whether there are any ˜O(

√
k) round k-SSP algorithms on

general graphs for 1 < k < n2/3 remains open. The state-of-the-art algorithm
for exact SSSP is provided by [6] and takes O(n1/3) rounds (See Footnote 4). A
recent result by [19], which solves SSSP by ˜O(1) applications of an instruction
set called “minor-aggregation” when given access to an oracle that solves the
so called Eulerian Orientation problem, can be adapted for a (1+ε) approxima-
tion of SSSP in ˜O(1) rounds, as was shown in [21] (See Footnote 4). An exact,
deterministic solution for SSSP in O(log n) rounds has been achieved on specific
classes of graphs (e.g. cactus graphs, which includes trees) by [10]. Another exact
SSSP algorithm that takes ˜O(

√
SPD) rounds (where SPD is the shortest-path-

diameter of the local graph) is provided by [3].

Routing Schemes in Distributed Networks. Our work builds on [8], in
which they show how to compute a routing scheme for a UDG, by computing
a routing scheme for a corresponding grid graph (see Sect. 2). Their approach
requires a simplifying assumption: the grid graph needs to be free of holes (for-
mally defined in the next section), and this imposes a similar restriction on the
underlying UDG. We remove that assumption in this work. In a recent arti-
cle, [12] considers computing routing schemes in the HYBRID model on general
graphs: they show that in ˜O(n1/3) rounds one can compute exact routing schemes
with labels of size ˜O(n2/3) bits, or constant stretch approximations with smaller
labels of O(log n) bits. Interestingly, [12] also gives lower bounds: they show that
it takes ˜Ω(n1/3) rounds to compute exact routing schemes that hold for relabel-
ings of size O(n2/3) and on unweighted graphs. They also give polynomial lower
bounds for constant approximations on weighted graphs, implying that in order
to overcome this lower bound in round complexity and label size, the restriction
to a class of graphs is necessary! The distributed round complexity of computing
routing schemes was also considered in the CONGEST model. In general, it takes
˜Ω(

√
n + D) rounds to solve the problem [20] (where D is the graph diameter).

This was nearly matched in a series of algorithmic results [9,16,17], for example,
[9] gives a solution with stretch O(k), routing tables of size ˜O(n1/k), labels of
size ˜O(k) in O

(

n1/2+1/k + DG

) · no(1) rounds.

4 These results are in the more powerful hybrid combination of LOCAL and NCC.
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2 Unit Disk Graphs and Grid Graphs

In this section we mainly introduce concepts, which we require in many of the
following sections. We consider the class of Unit Disk Graphs where each node
v ∈ V is associated with a unique point in R

2 and two nodes u, v ∈ V share an
edge {u, v} ∈ E iff ‖u−v‖2 ≤ 1. Grid graphs can be seen as a sparsifying struc-
ture for UDGs which can be easily simulated while preserving certain geometric
properties and significantly simplifying the construction of algorithms for the
original UDG (cf., [8], more on that further below). A grid graph Γ = (VΓ , EΓ )
is a graph where the vertices V uniquely correspond to points on a square grid
Z
2 and two such vertices are connected by an edge in EΓ iff their corresponding

points on the grid are horizontally or vertically adjacent.
As was shown in [8], one can compute and simulate a grid-graph abstraction

Γ = (VΓ , EΓ ) of any input UDG using only local communication in O(1) rounds.
In this simulated grid graph Γ , each grid node is represented with a nearby node
in the UDG. Any UDG node represents at most a constant number of grid nodes
(and can thus simulate all grid nodes it represents). This means that approximate
paths with good stretch on the UDG can be constructed from shortest paths
on the grid graph abstraction Γ . In particular, any constant stretch routing
scheme on Γ also gives a constant stretch routing scheme on the underlying
UDG. Therefore in order to obtain constant stretch routing schemes on UDGs
it suffices to consider the problem on the (easier) class of grid graphs.

Theorem 2 (cf. [8]). Any algorithm that computes routing schemes with
stretch s, labels of at most x and local routing information at most y bits on
any grid graph in z rounds (where x, y, z depend on n) implies an algorithm to
compute a routing scheme with stretch 36 · s on any UDG with labels of O(x)
bits, local routing information of O(y) bits in O(z) rounds.

In order to describe the geometric structure of UDGs G = (V,E) and grid
graphs Γ = (VΓ , EΓ ) (which are also UDGs) we require some basic notation.
We define a path Π ⊆ E as set of edges that form a sequence of incident
edges in G. By |Π| we denote the number of edges (or hops) of a path Π. The
distance between two nodes u, v ∈ V is defined as d(u, v) := minu-v- path Π |Π|.
We will drop the subscript G when the graph in question is clear from context.
Let Πx be the set of horizontal edges in the grid graph Γ . Then dx,Γ (u, v) :=
minu-v- path Π |Πx| is the horizontal distance between u and v. Analogously we
define the vertical edges Πy in Γ and vertical distance dy,Γ .

To analyze grid graphs we define some geometric structures, starting with
portals [8] (see Fig. 1 for a visualization). Let EΓ,v be the set of vertical edges
of some grid graph Γ . Then the vertical portals are the connected components
of the sub graph (VΓ , EΓ,v). We say that portals p1 and p2 are adjacent if p1 is
connected by an (horizontal) edge in E to a node in p2. Horizontal portals and
the corresponding terms are defined analogously.
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Next, we (informally) introduce the concept of holes in a grid graph (the
formal definition is given in the full version). The area SΓ that is covered by a
grid graph can be described by “filling in” the grid cells (those are unit squares
[a, a+1]× [b, b+1] with a, b ∈ Z) where all four corner nodes represent nodes in
Γ as well as all edges of Γ . The holes are the connected areas in the Euclidean
plane which are not “filled” (R2 \ SΓ ). The unique unbounded hole is called the
outer hole, all others are inner holes, which we describe with the set H. Figure 2
(top left) shows such a grid graph, where SΓ is given by the white area and holes
are shaded gray.

We now give some additional definitions pertaining holes. By the boundary
of some H ∈ H we describe the subset of nodes of VΓ that are that are located
on the geometric boundary of the set H ⊆ R

2. We say that a portal p is incident
to some hole H if p has a non-empty intersection with the boundary of H. Note
that [8] gives an efficient algorithm for the special case of computing routing
schemes in simple grid graphs, i.e., H = ∅.

Theorem 3 (cf. [8]). An exact routing scheme for a simple grid graph Γ using
node labels and local space of O(log n) bits can be computed in O(log n) rounds
in the HYBRID model.

3 Shortest Paths Computations

In this section, we present an O(log n) single source shortest paths (SSSP) algo-
rithm for simple grid graphs. As the result of this algorithm’s execution, each
node learns its distance to some dedicated source node s. Note that nodes can
easily infer predecessor pointers comparing their own distances with their neigh-
bors’. We will make use of this algorithm in the later sections as a subroutine.
We start by stating our main theorem.

Theorem 4. SSSP can be solved in a simple grid graph in O(log n) rounds.

To achieve the logarithmic runtime, we split the SSSP problem into two
subproblems: Horizontal SSSP, which only considers the horizontal steps a path
makes and Vertical SSSP, which only considers the vertical steps a path makes.
To be able to efficiently solve these problems, we introduce horizontal and vertical
portal graphs, which are depicted in Fig. 1 as well.

Definition 4. Given a grid graph Γ , we define the vertical portal graph Pv to
be the graph with vertices corresponding to the vertical portals of Γ . Two vertices
in Pv are connected by an edge iff their corresponding portals are connected by
a horizontal edge in Γ . The horizontal portal graph Ph is defined analogously.
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Fig. 1. A simple grid graph (left) and the corresponding horizontal portal graph Ph

(center) and vertical portal graph Pv (right).

Note that the Pv graph only retains horizontal distances and the Ph graph
only retains vertical distances. As the portal graph of a simple grid graph always
is a tree—a fact that we prove in the full version of the paper—we can use the
SSSP algorithm for trees presented in [10] to solve Horizontal SSSP for Γ on
Pv and Vertical SSSP for Γ on Ph. It remains to combine the resulting distance
values, which can be done by each node locally by adding them up. We move
the proof of this fact to the full version of the paper as well.

We can expand this algorithm to compute the distance of each node to a
dedicated source portal P , i.e., to the closest node on that portal, by picking an
arbitrary node of P as the starting node and setting the we weight of all edges
on P to 0.

Corollary 2. Given a simple grid graph Γ and a portal P in Γ , we can compute
the distances of every vertex in Γ to P in O(log n) rounds.

4 Pathconvex Region Decomposition

In this section we give our main technical contribution: that grid graphs can
be partitioned into comparatively few sets of nodes (with some overlap at the
borders) called regions {R1, . . . , R�} with V = R1 ∪· · ·∪R� that are simple (i.e.,
without holes) and path-convex, which is defined as follows:

Definition 5 (Path Convexity). Let Γ = (V,E) be a grid graph and let
R ⊆ V . Then R is called path-convex if for any pair u, v ∈ R there is a shortest
uv-path contained completely within that region.

We achieve a simple and convex region decomposition R by disconnecting
parts of Γ and considering each connected component as a separate region. For
this, we create copies of nodes that are on the border of at least two regions and
only connect each copy to neighbors in one of those regions. The construction
breaks down into three main steps. Firstly, we decompose Γ into simple regions.
Secondly, we break those regions up further into “tunnels”, which overlap in at
most two portals (called gates) with their neighboring regions. Finally, we show
that such tunnels have crucial properties that allows us to make them path-
convex by subdividing them a constant number of times. Figure 2 visualizes
the three steps on our example grid graph. Ultimately, we prove the following
theorem.
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Fig. 2. The top left image shows the grid graph that we will use and develop throughout
the sections of this article. In Sect. 4 we split this grid graph into simple regions (top
right), tunnels (bottom left) and path-convex regions (bottom right). The color red
marks the newly introduced splits in each step. (Color figure online)

Theorem 5. For any grid graph Γ , a decomposition into O(|H|) simple, path-
convex regions can be computed in O(|H| + log n) rounds in the HYBRID model.

Splitting Operations. To achieve the desired region decomposition we split the
grid graph at strategic locations (see Fig. 3). The most basic splitting operation
is to split a grid graph (or a region) at some portal (in this case vertical), where
each node will simulate two copies of itself, a “right copy” which has no left
neighbor and a “left copy” which has no right neighbor. This establishes a new
grid graph, where nodes that have been split will act only in the role of the
nodes they simulate, which blocks paths through the splitting portal and might
disconnect Γ .

If such a splitting portal touches the boundary of a hole, we often further
split at a boundary node. In particular, we split the simulated boundary node
that is on the “same side” as the hole (say the left copy if the hole is left of
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the portal) into a “top” and “bottom” copy, which do not have a bottom or top
neighbor, respectively. This is where up to three regions may intersect in the
resulting region decomposition and can also be used to break up cycles around
a hole, thereby making the resulting regions simple. We describe such splitting
operations in detail in the full version.

Fig. 3. An example of the “splitting operations” at the blue portal and the blue node.
We start by splitting all nodes on the blue portal to make left and right copies, not
connected to each other. Then, we split the left copy of the blue node to create upper
and lower copies. (Color figure online)

The region decomposition is given implicitly by the connected components
in the grid graph formed by the simulated nodes after splitting at a portal or a
node. These regions overlap only in node sets that form portals (i.e., vertically
connected components). To distinguish those from ordinary portals, we call these
gates. Furthermore, we refer to connected segments of the boundary nodes of
some region which are not on gates, as walls.

4.1 Decomposition into Simple Regions

The first step is to split our grid graph into regions without holes. We show
that a relatively simple procedure, described below, can achieve this goal. The
implementation details in our computational model and the proofs are given in
the full version.

Splitting Γ into Simple Regions. For each inner hole H ∈ H of Γ we repeat
the following. Let vH be the leftmost node on the boundary of H (we make
vH unique by choosing the northernmost among leftmost boundary-nodes). Let
PH be the unique vertical portal with vH ∈ PH . We conduct splits at PH and
vH as described further above. In general, PH might contain leftmost nodes of
boundaries of several different inner holes. In that case we conduct the vertical
split at the northernmost node of each such hole (and each such inner hole needs
not be considered further, i.e., we only split PH itself once). Figure 4 shows an
example of the procedure.
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Fig. 4. Decomposition of grid graph into simple regions. Red lines mark portals through
a leftmost node of some hole at which a split occurs. Further splits take place at a
leftmost node of each hole. In particular the portal on the top right is split at two
nodes. (Color figure online)

The connected components that result from the above construction form
regions that are simple. The idea is that each such split will make the grid
graph at the portal PH horizontally impassable and at vH vertically impassable.
Roughly speaking, the split at a portal and a node on the portal and hole bound-
ary creates a “thin” hole such that in the resulting graph two holes “merge”,
and become a single hole. This decreases the overall number of inner holes by at
least one. By repeating this split for each inner hole we will be left with one hole
in the end, which is the outer hole. In the full version we prove that the regions
are simple, that there are at most |H|+1 of them and that the construction can
be done in O(log n) rounds in the HYBRID model.

4.2 Decomposition into Tunnel Regions

Our next step is to ensure that each region is a tunnel, which we define as a
region that has at most two gates. As a consequence of the previous Sect. 4.1,
we start out with a grid graph Γ that is decomposed into simple regions.

In the following, we say that two vertical portals are adjacent to each other,
if at least two nodes of either portal are connected by a horizontal grid edge.
Recall that we defined walls as connected segments of nodes on the boundary
of a some given hole that are not part of gates. It is computationally not very
hard for the nodes of the same wall or gate to compute an identifier in O(log n)
rounds (details in the full version) in the HYBRID model.

The notion of walls and gates allows us to define junction portals that we
require for the next stage of our decomposition. Informally, a junction portal
is a portal at which a simple region “diverges” into at least three “tunnels”
(although there are some degenerate cases for such junction portals, where a
gate cuts away one of these divergent “tunnels”). Formally we define:
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Definition 6 (Junction Portals). Let R be a simple region. A vertical portal
P in R is a junction portal if one of the following conditions holds:

i. P has at least 3 adjacent portals each intersecting at least 2 distinct walls.
ii. P is a gate, and has at least 2 adjacent portals each intersecting at least 2

distinct walls.

The idea is to perform portal splitting operations on each junction portal
and on specific nodes on the junction portal in order to separate these divergent
tunnels. The construction works as follows. Let P be a junction portal according
to Definition 6, which implies that there are at least 2 adjacent portals which
each intersect multiple distinct walls. Suppose that portals P1, P2, . . . , Pk are
such portals with the property of intersecting distinct walls to the left of P (the
procedure for those to the right is analogous). We first split the region at the
portal P . Then we conduct a node-split at the bottom-most node on P that is
adjacent to some node on Pi for 1 ≤ i < k.

In the full version, we prove that if we are given a simple region decompo-
sition, then after splitting at junction portals as described above we obtain a
decomposition into a number of tunnel regions that is linear in |H| and that all
required computations can be accomplished in O(log n) rounds.

Fig. 5. Examples of Definition 6 case (i) (left) and (ii) (right). Red portals mark the
junction portals. Blue portals intersect at least two distinct walls. In case (i) the red
portal was not previously a gate but has at least 3 incident blue portals. In case (ii)
the red portal is already a gate. Since the area to its right was removed in the previous
simplification step it has just two adjacent blue portals. (Color figure online)

4.3 Path-Convex Decomposition

Finally, we make the tunnel regions path-convex (cf. Definition 5), by splitting
them at appropriate portals. Essentially, we will separate any pair of nodes in
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such a tunnel for which there is a shortest path in Γ that travels outside the
tunnel. The main question answered in this section is where the tunnels should
be split in order to make them path-convex. The construction is in fact not very
complicated, the main challenge is the proof of correctness, i.e., showing that
all “offending” node pairs whose shortest path runs outside of the region are
separated. We approach this by first showing the claim for well-behaved special
cases and subsequently reduce the general cases to these special ones.

First, we impose the assumption that we have a tunnel region T with gates
that are single nodes g and g′, see Fig. 6. We show that we can split T into
path-convex regions at two portals Px and Py. Roughly, if dx = dx,T (g, g′) is the
horizontal distance from g to g′ in T then Px is defined by the nodes which are
at distance dx

2 , which we show forms a vertical portal. The horizontal portal Py

is defined analogously. We split T at Px and Py (cf., Fig. 6).
We then remove the assumption that the gates are point-shaped and distin-

guish two cases, depending on whether there is a horizontal portal connecting
the two gates (see Fig. 7). We give a decomposition procedure for each case (visu-
alized in Fig. 7), where the first case (a) is well behaved and the second case (b)
has the following property. For any pair of nodes in a region in the “middle part”
a path between two nodes in T that goes outside T can also leave and enter T
through two fixed nodes g, g′ on the gates G,G′ without becoming any longer.
This essentially allows us to assume that all paths go through g, g and fall back
to the proof of correctness for case (b), i.e., we split the “middle part” at Px, Py.

In the full version we conclude, first, that each region is path-convex; second,
that each tunnel-region is split into a constant number of sub-regions and third,
that the whole procedure can be conducted in O(log n) rounds in the HYBRID
model. Combining this with our results from the previous subsections culminates
in the proof of Theorem 5.

5 Landmarks

After completing a regionalization of the grid graph, we want to exploit this
abstraction to construct a small skeleton graph that captures the topological
structure of the graph. We place these landmarks such that for any source node
s and target node t, a shortest path can usually be constructed by: (i) routing
from s to some landmark in its region; (ii) routing from that landmark to a
landmark in t’s region; and then (iii) finally routing from this landmark to t.
We call a path of this type a landmark path. Sometimes there is no shortest st-
path which is a landmark path, but in these cases a shortest st-path still passes
through the same regions as a shortest landmark path: we will explain this case
at the end of this section.

This result suggests a natural approach. Since s lies in the same region as
its closest landmark we can use our SSSP result from Sect. 3 to find a shortest
path to it. To support routing between landmarks in different regions, we create
“virtual edges” which connect landmarks to each other. Then, by distributing
the landmark graph to all nodes, it can be determined locally which landmarks
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g

g′

Px

Py

Fig. 6. Splitting tunnels into path-convex regions with point shaped gates.

Fig. 7. Splitting tunnels into path-convex regions in the two cases.
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Fig. 8. An overview of our landmark construction.

are on the shortest landmark path, and hence which route a shortest path has
to take around the holes H (covered in more detail in Sect. 6). Distributing this
landmark graph efficiently requires that it is small. We choose our landmarks
carefully so that there are only O(|H|) of them in each region (giving O(|H|2)
in total), and that there are only O(|H|2) many “virtual edges” between them
in total.

Besides optimizing the number of landmarks, we need to place them in
enough locations so that they appear on many shortest paths, and capture all of
the different ways in which we could route between and around holes. We place
landmarks in the following locations (see also Fig. 8a):

Definition 7. Suppose v ∈ VΓ lies on a gate G. Let P be the portal perpendic-
ular to G passing through v, and let R be one of the regions incident to G. Note
that v is one of the endpoints of P ∩R (P restricted to R). Then v is a landmark
if one of the following holds:

i. v is an endpoint of G.
ii. v is an overhang-induced landmark. Let u be the other endpoint of P ∩R.

Then v is a landmark if for some p ∈ P ∩ R, p is on a wall W , and u is on
either W or a gate which is not G.

iii. v is a projection landmark if any node on portal P is a landmark of either
of the first two types.

We also need to select our “virtual edges” carefully to minimize the number
of edges and reflect the topological properties of the grid graph Γ . Naively,
a virtual edge between every pair of landmarks would give a landmark graph
of size O(|H|4). Creating virtual edges between all pairs of landmarks in the
same region, still results in O(|H|2) edges per region, thus O(|H|3) in total. We
construct an even smaller selection of landmark edges, of size O(|H|2) as follows.
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Fig. 9. The landmarks are placed on the gates of the region decomposition according
to Definition 7 (left). They are connected with virtual edges according to Definition 8
(right). For clarity, we will omit the virtual edges in future figures.

Fig. 10. An example of the case where there are no landmarks on a shortest path
from s to t. The red crosses are landmarks; the blue lines are gates; the green path
is a shortest landmark path; and the orange path is a shortest st-path. (Color figure
online)

Definition 8. There is a virtual edge between landmarks u and v if: (i) u and
v are on the same gate with no landmark between them; or (ii) u and v are on
different gates incident to the same region, and v is the closest landmark on its
gate to u.

The process of constructing the landmark graph is depicted in Fig. 9. The
fact that each region is bounded by constantly many gates gives us that each
landmark has a constant number of incident virtual edges. We remark that nodes
can be informed whether they are landmarks, and landmarks can be informed
of adjacent landmarks in the landmark graph, in only O(log n) rounds.

Lemma 1. The landmark graph has O(|H|2) vertices and O(|H|2) edges.

In the full version, we show that the landmark edges that we select suffice
to make the resulting landmark graph faithful to the distances in the original
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graph Γ thus “encoding” shortest paths between any pair of landmarks. This
essentially covers the case when a shortest st-path passes through landmarks.

Finally, we give a characterisation of the case where no st-shortest-path is a
landmark path. The intuition is that in such a case, it suffices to know which
regions to go through: routing greedily between them gives a shortest path. A
visual depiction of such a case is given in Fig. 10.

Lemma 2. If no shortest st-path is a landmark path, then consider the sequence
of regions (R1 . . . Rm) that are passed by the shortest landmark path from s ∈ R1

to t ∈ Rm. The path formed by routing from s to the closest point in R1, then
to the closest point in R2, repeating this way until the closest point in Rm is
reached, and finally routing to t, is a shortest st-path.

6 Routing

Our goal in this section is to define the routing scheme that has the properties
described in Theorem 1. Recall Definition 1, where we defined a routing scheme
to consist of node labels λ(v) and routing tables ρv for each v ∈ V . In this
section, we will describe how to construct routing tables of size O(|H|2 · log n)
and node labels of size O(log n), and how we can use them to route a packet
from a source node to a target node.

Routing Tables. As the purpose of the landmark graph is to capture the structure
of the graph, it will form the main part of each node’s routing table. In this way,
each node learns where the holes are positioned in the graph and how they
should be circumnavigated. To enable the nodes to use this knowledge to make
routing decisions, we add additional labels to the edges of the landmark graph.
Specifically, we label the nodes of the landmark graph with the gate identifiers
of the gates they lie on, and the edges of the landmark graph with the region
identifiers of the regions they lie on. We do this in order to add information
about the region decomposition to the landmark graph, since we need to know
which regions the landmarks correspond to.

The landmark graph is of size O(|H|2 · log n) by Lemma 1. Since we only add
labels of size O(log n) to each edge, the size increases by a constant factor, and
we can distribute the landmark graph and the labels in O(|H|2 + log n) rounds
using well-known techniques for token dissemination.

Lemma 3. Each node can learn the landmark graph and the landmark graph’s
labels O(|H|2 + log n) rounds. Each node learns O(|H|2 · log n) bits this way.

We describe the details of the landmark graph labels’ computation, how to
distribute them, and the landmark graph itself in the full version.
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Node Labels. The landmark graph is part of the routing tables, so the nodes
know the structure of the graph. However, to route a packet to a target node,
they also need to know where the target node is. This information is encoded
in the node label. Specifically, each node’s label contains its own identifier, its
region identifier, and the distances to close landmarks adjacent to its region. The
first two are used to decide whether a given packet is already at its destination
or in its destination region. If neither is the case, the third can be used by a node
to locally add itself and the target node to the landmark graph, solve SSSP on
this augmented landmark graph, and decide in which direction to route a packet.
In total, O(log n) bits per node are required to encode this information.

Fig. 11. When source and target of a routing request are in the same region (left), we
employ the routing scheme from [8] (right).

Lemma 4. Each node can learn its region identifier and the distance to the
landmarks required to connect it to the landmark graph O(log n) rounds. Each
node learns O(log n) bits this way.

The details of the computation of these labels and which landmarks need to
be included in a node’s label can be found in the full version of the paper.

Routing Scheme. To explain how the nodes can use the routing tables and node
labels to make routing decisions, we describe how a node v = (v.id, v.D, v.rid)
forwards a packet with destination t = (t.id, t.D, t.rid). id, D, and rid correspond
to the nodes’ identifiers, their distances to close landmarks and their region
identifiers respectively.

If v.id = t.id, the packet arrived at its destination and does not need to be
forwarded anymore. If the packet is already in the correct region (i.e., v.rid =
t.rid), the algorithm of [8] can be used, since each region is simple (Fig. 11).
Otherwise, v augments its local copy of the landmark graph by adding itself and
t to it using v.D and t.D. This allows v to locally solve SSSP, learning a shortest
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Fig. 12. When source and target node are in different regions (top left), they are
added to the landmark graph, enabling each node to locally find a shortest path from
the source node to the target node in the landmark graph (top right). After the source
node performs this computation, it forwards the packet towards the suggested region
boundary (bottom left). This is repeated until the packet the target region, where we
it can be forwarded using the algorithm from [8] (bottom right).

path from v to t in the landmark graph. By inspecting the first node of this
shortest landmark path, it can decide which gate should be crossed next and
infer to which neighbor the packet should be forwarded (Fig. 12). This yields
Theorem 1, the details are given in the full version.

7 Conclusion

We believe that there are several interesting directions for interesting follow-up
work. Efficiently computing compact routing schemes in more general classes of
geometrically interesting graphs (for example planar graphs or visibility graphs)
is a natural next step. We suspect that an extension to 3 and higher dimensions
might be quite difficult (in particular the geometry required will certainly be
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more challenging), but the 3-dimensional case could have practical applicability
in sensor networks and swarm robotics.
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Abstract. By prior work, it is known that any distributed graph algo-
rithm that finds a maximal matching requires Ω(log∗ n) communication
rounds, while it is possible to find a maximal fractional matching in
O(1) rounds in bounded-degree graphs. However, all prior O(1)-round
algorithms for maximal fractional matching use arbitrarily fine-grained
fractional values. In particular, none of them is able to find a half-integral
solution, using only values from {0, 1

2
, 1}. We show that the use of fine-

grained fractional values is necessary, and moreover we give a complete
characterization on exactly how small values are needed: if we consider
maximal fractional matching in graphs of maximum degree Δ = 2d, and
any distributed graph algorithm with round complexity T (Δ) that only
depends on Δ and is independent of n, we show that the algorithm has
to use fractional values with a denominator at least 2d. We give a new
algorithm that shows that this is also sufficient.

Keywords: maximal matching · fractional matching · half-integral
matching · distributed graph algorithms

1 Introduction

By prior work, it is known that there is a distributed graph algorithm that
finds a maximal fractional matching (see Sect. 1.2) in O(Δ) rounds in graphs
of maximum degree Δ [3]; in particular, the running time is independent of
n and only depends on Δ. However, the algorithm uses very fine-grained frac-
tional values; when Δ increases, the denominators grow exponentially fast. In
this work we show that this is necessary: any distributed graph algorithm that
finds a maximal fractional matching in T (Δ) rounds, independently of n, has
to use fractional values with a denominator at least 2�Δ/2� (and this is tight).
In particular, there cannot be a T (Δ)-rounds algorithm for finding a maximal
half-integral matching.

1.1 Distributed Maximal Matching Is Hard

Maximal matching is one of the classic problems in the field of distributed graph
algorithms, studied extensively since the very early days of the field in the 1980s
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[4,6–8,11,13,17]. In the maximal matching problem, the task is to find a match-
ing (a set of edges without common vertices) that is not a strict subset of another
matching. This is something one can trivially find in a centralized setting (pick
independent edges greedily until you are stuck), but this is a challenging coordi-
nation task in a distributed setting, for two reasons:

1. One has to break symmetry. For example, if the input graph is a cycle, one has
to select some but not all edges—the input is symmetric, but the output is
not. The task is not solvable at all without resorting to, e.g., unique identifiers
or randomness, and even then we cannot solve the task in constant number
of rounds; maximal matching in cycles requires Ω(log∗ n) rounds [14,16].

2. One has to solve a local coordination task. Even if we have a Δ-regular bipar-
tite graph, with the bipartition given, we still need Ω(Δ) rounds to find a
maximal matching, at least in sufficiently large graphs [4].

On the positive side, O(Δ + log∗ n)-round distributed algorithms for finding a
maximal matching in a graph of maximum degree Δ are known [18]; one can
also make different trade-offs between dependency on Δ vs. n [6–8], but it is
impossible to achieve a running time of T (Δ), independent of n [14,16]. All
of these results hold in the usual LOCAL model of distributed computing (see
Sect. 2.2 for the details).

1.2 Distributed Fractional Matching is Easier

A matching M ⊆ E in a graph G = (V,E) can be interpreted as a function x
that assigns value x(e) = 1 to each edge e ∈ M . If we let

x[v] =
∑

e∈E:v∈e

x(e)

denote the sum of labels on edges incident to node v ∈ V , then we can define
that function x : E → {0, 1} is a matching if x[v] ≤ 1 for all v ∈ V . Moreover,
x is a maximal matching if for each edge {u, v} ∈ E at least one endpoint is
saturated, i.e., x[u] = 1 or x[v] = 1. Finally, x is a maximum matching if it
maximizes

∑
e x(e).

Fig. 1. (a) A maximal matching. (b) A maximal fractional matching. (c) A maximal
half-integral matching. The orange nodes are saturated. (Color figure online)

We can now also consider the fractional relaxation of this integer program.
We say that x : E → [0, 1] is a fractional matching if it satisfies x[v] ≤ 1 for each
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v ∈ V , it is a maximal fractional matching if x[u] = 1 or x[v] = 1 for each edge
{u, v} ∈ E, and it is a maximum fractional matching if it maximizes

∑
e x(e).

See Fig. 1 for illustrations.
Note that any maximal matching is also a maximal fractional matching, but

the converse is not necessarily true. However, maximal fractional matchings share
many useful properties of maximal matchings. For example, the set of saturated
nodes forms a 2-approximation of a minimum vertex cover [5].

When we consider distributed graph algorithms for maximal fractional match-
ings, one of the obstacles discussed in Sect. 1.1 goes away: we do not need to break
symmetry. For example, if the graph is a cycle, we can simply label all edges with
1/2. More generally, if we have a d-regular graph, we can label all edges with 1/d.
The lower bound of Ω(log∗ n) from [14,16] for symmetry-breaking problems no
longer applies.

While the case of non-regular graphs is much more challenging, it is never-
theless possible to design distributed algorithms that find a maximal fractional
matching in O(Δ) rounds, independently of n [3]. It is also known that the local
coordination challenge does not disappear; o(Δ)-round algorithms do not exist
[10].

1.3 What About Half-Integral Matchings?

The fractional matching polytope is half-integral (see e.g. [20, Sect. 30.3]). That
is, there exists a maximum fractional matching in which x(e) ∈ {0, 1

2 , 1} for
every edge e ∈ E.

There is also a simple distributed strategy that at first seems to lead to
half-integral solutions (see e.g. [2]). First, construct the bipartite double cover
G′ = (V ′, E′) of the graph G = (V,E): for each node v ∈ V we have two nodes
v1 and v2 in V ′, and for each edge {u, v} ∈ E we have two edges {u1, v2} and
{u2, v1} in E′. Now G′ is bipartite, and we know the bipartition, with nodes v1
on one side and nodes v2 on the other side. We can now apply any algorithm
that finds a matching x′ in the bipartite graph G′, and this can be mapped into
a half-integral matching x by setting

x[{u, v}] =
x′[{u1, v2}] + x′[{u2, v1}]

2
. (1)

Hence, we could use any distributed algorithm designed for bipartite graphs—
there is a very simple algorithm that finds a maximal matching in bipartite
graphs in O(Δ) rounds independently of n. Then by applying (1) we could turn
it into a fractional matching.

There is, unfortunately, a catch: while (1) will preserve feasibility (given
a matching x′ it will result in a fractional matching x), it will not preserve
maximality: even if x′ is a maximal matching, it is not necessarily the case that
x is a maximal fractional matching. Could we nevertheless find a half-integral
matching efficiently with a distributed algorithm?

If we consider prior distributed algorithms for maximal fractional matching
[2,3], they are very far from being able to produce half-integral matchings. For
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example, [2] uses fractional values with denominators as large as 2Δ−1 and [3]
is even worse. In this work we show that denominators exponential in Δ are
necessary, but we can still do better than prior work.

1.4 Contributions

Our main result is a full characterization of exactly how fine-grained fractional
values are necessary:

Theorem 1 (Upper bound). There is a T (Δ)-round distributed algorithm
that finds a maximal fractional matching in graphs of maximum degree Δ ≤ 2d+1
using only fractional numbers of the form a/b where a = 0, 1, . . . , 2d and b = 2d.

Theorem 2 (Lower bound). There is no T (Δ)-round distributed algorithm
for any function T that finds a maximal fractional matching in graphs of max-
imum degree Δ ≤ 2d + 2 using only fractional numbers of the form a/b where
a = 0, 1, . . . , 2d and b = 1, 2, . . . , 2d.

We emphasize that the upper bound only uses multiples of 1/2d, while the
lower bound also excludes the possibility of finding a maximal matching using,
e.g., values that are multiples of 1/Δ.

As a corollary of these results, we also have a full characterization of the
complexity of half-integral matchings:

Corollary 1. It is possible to find a maximal half-integral matching in graphs
of maximum degree Δ = 3 in O(1) rounds.

Corollary 2. It is not possible to find a maximal half-integral matching in
graphs of maximum degree Δ = 4 in O(1) rounds.

For larger values of Δ, the range of fractional numbers we use is much smaller
than in prior work. In our algorithm, the denominator is upper bounded by 2Δ/2,
while in prior work [2] it is approximately 2Δ.

1.5 Key New Ideas

While the upper bound of Theorem 1 is a relatively simple adaptation of ideas
from prior work, the lower bound of Theorem 2 requires a development of a new
proof strategy.

Prior lower-bound techniques in this area tend to fall in one of these cate-
gories, each unsuitable for us:

1. The lower-bound construction is a regular graph [4,12]. In Δ-regular graphs
we can trivially find a fractional matching using the value 1/Δ, which is
exponentially far from the lower bound in Theorem 2 that we aim at proving.

2. The lower-bound result aims at establishing that one needs some specific
number of rounds, e.g., Ω(Δ) rounds [4,10,12]. However, in Theorem 2 we
aim at proving that even if the round complexity is, say, exponential in Δ,
one cannot avoid using fine-grained fractional values.



Distributed Half-Integral Matching and Beyond 343

Fig. 2. (a) In prior work [10,12], all the heavy lifting is done in a so-called EC model,
in which edges are undirected but colored. Self-loops represent undirected edges. For
example, a node with 2 self-loops represents a node in the middle of a 2-regular tree,
i.e., a long path. (b) In this work, we work in the PO model. Self-loops represent long
directed paths. For example, a node with 2 self-loops represents a node in the middle
of a 4-regular tree in which all nodes have indegree 2 and outdegree 2.

Our proof strategy superficially resembles the one used in [10,12] in the sense
that we start with one node and k self-loops, which represents the local view of
a node in the middle of a regular graph, and then we start unfolding the loops.
At each point of the process we see what is the output the algorithm commits to,
and then we continue the process until we are left with a concrete lower-bound
graph. However, there are major differences; see Fig. 2:

– In [10,12] they start with a pair of nodes. The nodes have self-loops, and
each self-loop represents an undirected edge; the entire argument relies on the
fact that an algorithm cannot break symmetry between two ends of such an
edge. At each step they unfold a relevant loop, doubling the number of nodes,
and then they mix elements from two instances, resulting in another pair of
instances. In each iteration they lose one self-loop but force the algorithm to
look one step further.

– In this work we start with a single node. The node has self-loops, but this
time each self-loop represents a long directed path; our argument relies on the
fact that an algorithm cannot break local symmetry between two nodes near
the middle of the path. At each step we unfold a relevant loop, but this will
turn one node into a directed path of length Θ(T ). We are interested in the
behavior of the algorithm both in the middle of the path and at the endpoints
of the path. In each iteration we lose one self-loop but force the algorithm to
use at least twice as large denominators.
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2 Preliminaries

2.1 Graphs and Self-loops

For a graph G = (V,E), we write Δ(G) to denote the maximum degree of the
graph. We use just Δ when G is clear from the context. For any natural number
d ∈ N, we use Gd to represent the family of graphs such that G ∈ Gd if Δ(G) ≤ d.
Throughout this work, we will assume that the maximum degree of the input
graph G is a globally known constant.

In what follows, we will refer to a self-loop simply as a loop. Each loop counts
as one incoming and one outgoing edge (in particular, in G2d a node can have
at most d self-loops). We call a graph loopy if each vertex of the graph has at
least one loop.

2.2 Model of Computing

Our main results, Theorems 1 and 2, hold in the usual LOCAL model [14,19].
For simplicity, we will focus here on deterministic algorithms (even though the
results are not hard to extend to randomized algorithms).

However, to prove the lower bound result, it will be convenient to first prove
the lower bound in a weaker model (called PO here, following [10]) and then
extend the result from the PO model to the LOCAL model. It will be easiest
to define everything we need by starting with the deterministic port-numbering
model (PN).

Fig. 3. Models of computing used in this work.

PN Model (Port Numbering) [1,21]. Let G = (V,E) be the input graph.
In the PN model, each node v ∈ V is a computer and each edge {u, v} ∈ E is
a communication link between two computers. Initially, each computer is only
aware of its degree; nodes of the same degree start with the same initial state.

The endpoints of the edges are labeled with port numbers; a node of degree
d can refer to its incident edges with the numbers 1, 2, . . . , d; see Fig. 3. The port
numbering comes from an adversary; a distributed algorithm in the PN model
has to work correctly for any given port numbering.

Computation proceeds in synchronous communication rounds. In each round,
each node can
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1. send a message to each neighbor,
2. receive a message from each neighbor, and
3. update its local state based on the current state and the messages it received.

After each round, each node can decide whether it stops and announces its own
part of the output—in the case of the maximal fractional problem, the output of
a node indicates the fractional value assigned to each incident edge. The running
time of the algorithm is the number of rounds until all nodes have stopped and
announced their local outputs.

PO Model (Port Numbering and Orientation) [10,15]. Algorithms in the
PO model behave in exactly the same way as in the PN model. However, there is
one additional piece of information available to the algorithm: each edge {u, v} ∈
E is oriented (arbitrarily, by the adversary); see Fig. 3. More precisely, each node
knows for each incident edge whether it is “outgoing” or “incoming”.

While an arbitrary orientation may not seem particularly useful, note that
the PO model is strictly stronger than the PN model. For example, if we have a
graph G with two nodes and one edge, it is trivial to find a proper 2-coloring of
G in the PO model in 0 rounds, while it is impossible to solve in the PN model
in any number of rounds.

LOCAL Model [14,19]. Algorithms in the LOCAL model also behave in exactly
the same way as in the PN model, but there is again one additional piece of
information available to the algorithm: each node is labeled (arbitrarily, by the
adversary) with a unique identifier from a polynomially-sized set; see Fig. 3.

Again, the LOCAL model is strictly stronger than the PO model. For exam-
ple, maximal matching cannot be found in the PO model if the input graph is
a cycle that is consistently oriented, while the task is solvable in the LOCAL
model in O(log∗ n) rounds.

However, it turns out that constant-time algorithms in the LOCAL model
are not much stronger than algorithms in the PO model, see e.g. [9,10]. This
is the idea we will also make use of in this work: our main goal is to prove a
lower bound in the LOCAL model, but it will be convenient to first study the
PO model.

2.3 Applying PO Algorithms to Loopy Graphs

To prove the lower-bound result of Theorem 2, we will study the output of a
PO algorithm A in some loopy graph G. However, when we consider distributed
graph algorithms, we usually assume that the input graph is loop-free.

However, the output of A in loopy graphs is nevertheless well-defined. When
we refer to the output of A on some edge e in G, we refer to the result of the
following thought experiment: Unfold all loops in G, as shown in Fig. 2b, and
hence we arrive at a tree G′. Then apply A in G′ (as the running time of A
is independent of the size of the input graph, this is well-defined). Edge e in G
corresponds to infinitely many edges e′ in G′, but each such edge is symmetric
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and hence the output of A on each such edge e′ is the same; hence we can take
any such edge e′ and interpret its label as the output of A on e.

In particular, if A finds a maximal fractional matching in any loop-free graph
G′, it will also produce a maximal fractional matching in the loopy graph G (the
label of the loop is counted twice).

3 Lower Bound Result

In this section we prove the lower-bound result, Theorem 2. It turns out that
the critical resource is the number of factors of 2 in the denominators. We start
by defining sets of rational numbers that will precisely capture how fine-grained
values are needed.

3.1 Sets of Rational Numbers

Any natural number x ≥ 1 can be written as x = 2n · m where n ≥ 0 and m ≡ 1
mod 2. We refer to e(x) = 2n as the even part of x and o(x) = m as the odd
part of x. For x = 0, we define e(x) = 0 and o(x) = 1.

We extend this notion to rational numbers as follows. If x = p/q in the
reduced form, we define the even part of the denominator ē(x) = e(q) and the
odd part of the denominator ō(x) = o(q). For example, ē(0/1) = ē(1/1) = 1,
ē(1/3) = 1 and ē(1/4) = 4.

For each n ≥ 1, we define

Rn =
{
x ∈ Q : 0 ≤ x ≤ 1 and ē(x) = 2n

}
,

R≤n = R0 ∪ R1 ∪ · · · ∪ Rn,

R≥n = Rn ∪ Rn+1 ∪ · · · ,

R>n = Rn+1 ∪ Rn+2 ∪ · · · .

For example, we have

R0 =
{
0, 1, 1

3 , 2
3 , 1

5 , 2
5 , 3

5 , 4
5 , . . .

}
,

R1 =
{

1
2 , 1

6 , 5
6 , . . .

}
,

R2 =
{

1
4 , 3

4 , 1
12 , 5

12 , 7
12 , 11

12 , . . .
}
.

We can view Rn as the set of fractional numbers whose denominator has exactly
n trailing zeros in its binary representation. Note that for each rational number
x ∈ [0, 1] there exists exactly one n such that x ∈ Rn.

3.2 High-Level Plan

In Sect. 3.3 we prove the following lemma, which essentially shows that we can
without loss of generality focus on the PO model:
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Lemma 1. Fix a natural number Δ ∈ N. Then, for any natural number T ∈ N,
the following holds: if there exists a T -round algorithm that solves the maximal
fractional matching problem using values in a set R in the LOCAL model on
any graph with maximum degree Δ, then there exists a T -round algorithm that
solves the maximal fractional matching problem using values in set R in the PO
model for any loopy graph G with maximum degree Δ.

Then in Sect. 3.4 we prove the following lemma, which captures exactly how
fine-grained rational values are needed in the PO model:

Lemma 2. Fix natural number d ∈ N. Then, for any natural number T ∈ N,
there does not exist any algorithm in the PO model that uses T rounds and
computes a valid solution for the maximal fractional matching problem using the
values from R≤d−1 for loopy graphs in graph family G2d.

By putting together Lemma 1 and Lemma 2, we obtain:

Lemma 3. Fix a natural number d ∈ N. Then, for any natural number T ∈ N,
there does not exist any algorithm in the LOCAL model that uses T rounds and
computes a valid solution for the maximal fractional matching problem using the
values from R≤d−1 for the graph family G2d.

Now, Theorem 2 directly follows from Lemma 3.

3.3 Proof of Lemma 1

In [10], a similar result is shown with the exception that the edge labels are
arbitrary. However, the same proof follows when we add the restriction that the
edge labels come from R. This result is a simple extension of [10, Sections 5.3–
5.4], where we can see that the simulation argument does not make changes in
the value used for the PO model.

3.4 Proof of Lemma 2

Preliminary Observations. We first make a few observations regarding our
problem. First recall the way in which we use loops to represent a node in the
middle of a directed path (Fig. 2).

Observation 1. If a node has a loop then it must be saturated.

Proof. If a node with a loop was not saturated, we would have a directed path
of unsaturated nodes and, in particular, edges with unsaturated endpoints. 	


In a saturated node, the labels of incident edges have to sum up to 1. The
following observation captures a key property related to how the even parts of
the denominators behave when rational numbers sum up to 1.
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Observation 2. Let n ≥ 1 and k
m·2n ∈ Rn. Consider the equation

2�1 + . . . + 2�r + x1 + . . . + xr′ +
k

m · 2n
= 1,

where each �i and xi can be any non-negative rational number. Then, either
�i ∈ R>n or xi ∈ R≥n for some i. Put otherwise, either some �i has the even
part of the denominator larger than 2n or some xi has the even part of the
denominator at least 2n.

Proof. First consider the equation

x1 + . . . + xq +
k

m · 2n
= 1

in which each xi can be any non-negative rational number. We show that there
exists an index i for which xi ∈ R≥n. We can rewrite it as solving the equation

x1 + . . . + xq =
m · 2n − k

m · 2n
,

where m·2n−k
m·2n ∈ Rn. If each xi had the even part of the denominator less than

2n, then x1+ . . .+xq would also have the even part of the denominator less than
2n. This is because when we add two rationals a1

b1
and a2

b2
we get

a1

b1
+

a2

b2
=

a1 · (�/b1) + a2 · (�/b2)
�

where � = lcm(b1, b2), the least common multiple of b1 and b2. The even part
of � will be bounded above by the maximum of the even parts of b1 and b2.
However, if x1 + . . .+xq has the even part of the denominator less than 2n, then
it contradicts the fact that the sum equals m·2n−k

m·2n .
Now, in order to prove the original statement of Observation 2, it is sufficient

to replace xr′+i by 2�i. If xr′+i ∈ R≥n then �i ∈ R>n. 	


Assumptions. We now proceed to prove Lemma 2 by contradiction. For the
sake of contradiction, we assume that when we fix a nautral number d ∈ N, there
exists a natural number T ∈ N such that the following holds: there exists a PO
algorithm A that solves the maximal fractional matching problem in T rounds
using values from the set R≤d−1 for graph family G2d.

Properties. Now, our lower bound construction observes the behavior of A on
different kinds of graphs in G2d to reason about the set of values that is used.
We will construct a sequence of loopy graphs G0, G1, . . . , Gd−1 to argue that the
further we go, the more fine-grained value must be used by our algorithm.

For each i = 0, 1, . . . d − 1, we will maintain the following properties:

P1 Gi ∈ G2d.
P2 Graph Gi without loops forms a tree.
P3 Each node of Gi has at least d − i loops.
P4 There is an integer j(i) > i and a node vi in Gi such that A labels at least

one loop of vi with a rational value x ∈ Rj(i).
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Fig. 4. Construction for d = 2 and T = 3. Graph G0 consists of d self-loops. When
we apply A to G0, at least one of the loops will get labeled by a value in R≥1; in this
example the value was 0.5 ∈ R1. To construct G1, we remove this loop to arrive at
graph G′

0, take 2T + 3 copies of G′
0, and connect them with a directed path. The key

observation is that given the output of A in G0 we also know the output of A around
the node in the middle of G1—this node is called the root node of G1.

Base Case. Our first graph G0 consists of a single node v0 with d oriented self
loops (see Fig. 4).

Graph G0 satisfies properties P1, P2 and P3 by construction, so we now
need to verify only P4. Consider that A assigns values a1, . . . , ad to the loops
of v0. Since v0 has loops, it must be saturated (recall Observation 1), and hence
it must satisfy that 2a1 + 2a2 + . . . + 2ad = 1. This is equivalent to solving
a1 + a2 + . . . + ad = 1/2 and by Observation 2 we know that there exists an i
with ai ∈ R≥1.

Inductive Step. Given Gi−1, we construct Gi as follows; see Fig. 4:

S1 Construct the graph G′
i−1 from Gi−1 by removing the loop of vi−1 for which

A assigned a value in Rj(i−1).
S2 Create 2T + 3 copies of G′

i−1.
S3 For each k = 1, 2, . . . , 2T + 2, connect node vi−1 in copy number k to node

vi−1 in copy number k + 1; these new edges are called path edges.
S4 Node vi−1 in copy number T + 2 is called the root node of Gi.

This way we form a directed path of length 2T + 3, with the root node
in the middle of the path, as shown in Fig. 4. The key observation is that the
output of algorithm A on the root node of Gi is the same as the output of A
for vi−1 in Gi−1, due to the fact that the radius-T neighborhood of the root
node in Gi is isomorphic to the radius-T neighborhoods of vi−1 in Gi−1 (once
we conceptually unfold all loops). This property is illustrated in Fig. 4: compare
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the radius-T neighborhood of the black node in the unfolding of G0 with the
radius-T neighborhoods of the root node of G1.

Given Gi−1 satisfies all the properties, we need to show that the same is true
for Gi. P1, P2 and P3 are satisfied by construction. To prove P4, consider the
root node of Gi. Since its behavior is completely characterized, we know that it
will label the incident path edges with values from Rj(i−1).

Recall that, by P2, the graph Gi without loops forms a tree. We will navigate
in this tree, starting from the root node, and moving away from it until we satisfy
P4. We maintain the following invariant; see Fig. 5:

Definition 1 (path invariant). If v is the current node, and P is the unique
path from v to the root, we have already concluded that A labels each edge of P
with a value from R≥j(i−1).

To get started, let e be one of the path edges incident to the root node, and let
v be the other end of e. As we discussed earlier, we know that e is labeled with
a value from Rj(i−1).

Fig. 5. Inductive step in the proof of Lemma 2 (Sect. 3.4). We have already concluded
that all edges in the path between v and the root node are labeled with values from
R≥1. We now ask how algorithm A will label the other edges around v. (a) One possible
solution: edge x1 is labeled with a value 0.9 = 9

2·5 ∈ R1. We did not yet establish
property P4, but we can extend the R1-labeled path further away from the root node—
eventually we will encounter a leaf node. (b) Another possible solution: we managed
to label x1 with a less fine-grained value 0.8 ∈ R0. However, this means that loop �1 is
labeled with a more fine-grained value 0.05 = 1

22·5 ∈ R2. We have established P4.
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Now assume that we have reached some node v this way. Let P be the path
from v to the root, and let e be the first edge of P , let L be the set of loops
incident to v, and let X be the set of non-loop edges incident to v that are
different from e. That is, we already know the label of edge e, but we do not yet
know how A will label L and X.

Node v is loopy, so it must be saturated. The saturation condition for v is
equivalent to solving the equation

2�1 + . . . + 2�r + x1 + . . . + xr′ +
k

m · 2n
= 1,

where n ≥ j(i − 1), values �i represent the values assigned to the loops in L,
values xi represent the values assigned to the edges in X, and k

m·2n refers to the
value from R≥j(i−1) assigned to edge e. With the help of Observation 2, we know
that one of the two cases must be true:

1. One of the loops in L has the even part of the denominator 2n′
for n′ > n. In

this case, we have established P4.
2. One of the edges {u, v} ∈ X has the even part of the denominator at least 2n.

We have found another edge labeled with a value from R≥j(i−1), and we can
extend the path P by moving from v to u, still satisfying the path invariant.

Note that this process will eventually terminate, as Gi without loops is a (finite)
tree, and hence we will eventually reach a leaf node with X = ∅. We have
established that our construction of graph Gi satisfies properties P1–P4.

Conclusion. When we take i = d − 1, we have a graph Gd−1 ∈ G2d which
needs to use even part of the denominator at least 2d. However, values with
denominator 2d are not present in the set R≤d−1. Thus, we have our desired
contradiction.

This concludes the proof of Lemma 2, and hence also the proofs of Lemma 3
and our main lower bound result Theorem 2.

4 Upper Bound Result

Here, we prove the statement of Theorem 1. We will use the notation

S(d) =
{ i

2d
: i ∈ {0, 1, . . . , 2d}

}
.

We need to show that there is a T (Δ)-round, independent of n, distributed
algorithm that solves maximal fractional matching in graph family G2d+1 using
labels from S(d). We prove the claim by induction, as follows:

– Base case (Lemma 4): S(1) suffices for G2.
– Odd step (Lemma 5): if S(d) suffices for G2d, then S(d) also suffices for G2d+1.
– Even step (Lemma 6): if S(d) suffices for G2d+1, then S(d + 1) suffices for

G2d+2.
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We use T (Δ) to represent the number of rounds taken by our algorithm for
graph family GΔ. We show that in each of the above steps, T (Δ) is just a function
of Δ and is independent of number of nodes n. We will give a PN algorithm,
which implies the existence of a LOCAL algorithm.

Lemma 4. There is a constant-time PN algorithm that finds a maximal frac-
tional matching in G2 using values from S(1).

Proof. In this case, we want to pick x(e) ∈ {0, 1
2 , 1} for each e ∈ E. We can

achieve a simple distributed algorithm with 1 round of communication. Each
vertex v, communicates its degree to its neighbors. Any degree 2 vertex can
safely assign the value 1

2 to both of its incident edges. For a degree 1 vertex, it
will assign the value 1

2 to the incident edge if the other endpoint has degree 2
and will assign the value 1, if the other endpoint is 1 as well.

We can see that for each vertex v, the sum of the values assigned to its
incident edges is at most 1. By the nature of our algorithm, every degree 2
node is saturated. So, every edge which has a degree 2 endpoint satisfies that
one of its endpoints is saturated. The only remaining scenario is when both
of the endpoints are degree 1. In this setting, our algorithm assigns the edge
with value 1 in which case both of its endpoints are saturated as well. Using 1
round of communication, we have obtained a solution for the maximal fractional
matching using values {0, 1

2 , 1} when Δ = 2. This gives us T (2) = 1. 	

Lemma 5. Fix d ∈ N. Assuming that S(d) is sufficient to obtain the solution
for G2d, S(d) is sufficient to obtain the solution for G2d+1 as well.

Proof. Assume that A is a PN algorithm that computes the solution for G2d using
values in S(d). We now describe PN algorithm A′ that computes the solution
for G ∈ G2d+1 using values in S(d). Algorithm A′ takes the following steps (see
Fig. 6 for an illustration):

Step 1: Edge labelling. First, we use the port numbers to define a label for
each edge. For each edge e = {u, v}, there exists numbers i, j ≤ Δ(G) such
that port i of u is connected to port j of v. We label this edge with the set
{i, j}. Then L = {{i, j} : 1 ≤ i, j ≤ Δ(G)} denotes the set of possible edge
labels. We have |L| = O(Δ2) different edge labels. For each � ∈ L, we define
the subgraph G� of G that contains all the edges labelled �. We write degG�

(v)
for the degree of node v in graph G�. A key observation is that for each � and
v, we have degG�

(v) ≤ 2, i.e., each G� is a collection of paths and cycles.
Step 2: Edge Classification. We classify each edge into two types: “Mid” and

“End”. Consider any edge e = {u, v} and say it had label � ∈ L. We say that
e is of type “Mid” if degG�

(u) = 2 and degG�
(v) = 2. Put otherwise, all edges

that are in the middle of the path or part of a cycle in G� are classified with
type “Mid”. All other edges are classified as “End”. Note that each node can
determine the types of its incident edges in two rounds of communication.

Step 3: Solve for “Mid” edges. Consider subgraph G′ of G that contains all
edges of type “Mid”. We argue that Δ(G′) ≤ 2d. To see this, consider any
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Fig. 6. (a) A graph G ∈ G3, with a port numbering. (b) The subgraph G� for label
� = {1, 2}, with the edge types “End” and “Mid” indicated.

vertex v ∈ V . If degG(v) = 2d + 1, there exists � ∈ L such that degG�
(v) = 1,

and therefore at least one edge adjacent to v will receive type “End” and will
not be part of G′. Now we have a subgraph G′ of G with Δ(G′) ≤ 2d, and
we can simulate A in G′.

Step 4: Extend for “End” edges. We notice that each edge e ∈ G′ satisfies
the maximality condition, i.e., at least one endpoint is saturated. Thus, we
now need to ensure the same for edges of type “End”. For a label � ∈ L, let
GEnd

� be the set of edges labelled � of type “End”. We know that edges of
type “End” can only be part of paths of length 1 and 2 in GEnd

� . We proceed
to satisfy the maximality condition for edges of type “End” by considering
them sequentially on the labels � ∈ L. Consider an edge e = {u, v} ∈ GEnd

� .
If we assign x(e) = min{1 − x[u], 1 − x[v]} then we can ensure that e satisfies
the maximality condition along with ensuring that both u and v satisfy the
feasibility condition. The only issue that can arise here is that some other
edge adjacent to u or v is trying to update its value in parallel with edge
e. Since we are looking at edge of type “End” and proceeding sequentially
based on label � ∈ L, the above issue can only be caused by paths of length
2. However, the middle vertex of this path can decide the sequential order in
which the two edges are considered, after which this issue is avoided.

Step 1 and 2 take a constant number of rounds. Step 3 takes T (2d) rounds
to run algorithm A on graph G′. Step 4 considers O(Δ2) labels, and for an
individual label �, it takes constant time to assign the values. Overall, the time
taken for graph of maximum degree Δ = 2d+1 is given by the function T (Δ) ≤
c1+c2Δ

2+T (Δ−1) for some constants c1 and c2. Since T (Δ−1) is independent
of n, T (Δ) is independent of n as well. Thus, we have obtained a valid solution
for the maximal fractional matching problem for graphs in G2d+1 using values
from the set S(d). 	
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Lemma 6. Fix d ∈ N. If S(d) is sufficient to obtain the solution for G2d+1, then
S(d + 1) is sufficient to obtain the solution for G2d+2.

Proof. The proof for this theorem uses the same ideas as done in [2]. Consider
any graph G ∈ G2d+2 and let A be the PN algorithm that uses values in S(d)
to compute a valid solution for graphs in G2d+1. We make use of the following
definitions from [2]:

Definition 2 (almost-saturating solutions). A half-integral fractional
matching x : E → {0, 1

2 , 1} is almost-saturating if the following conditions hold
for each node v:

– If x[v] = 0, then x[u] = 1 for all neighbors u of v.
– If x[v] = 1/2, then x[u] = 1 for at least one neighbor of v.

Definition 3 (half-saturated edges). Consider an almost-saturating solution
x : E → {0, 1

2 , 1}. An edge e = {u, v} is:

– half-saturated if x[u] = x[v] = 1/2,
– fully-saturated if x[u] = 1 or x[v] = 1.

In [2] there is an algorithm that finds an almost-saturating solution in O(Δ)
rounds. Let x̄ denote the almost-saturating solution for G, and we let G′ to
be the subgraph induced by the half-saturated edges; note that for each node
v there has to be at least one incident edge that is not half-saturated. Hence
G′ ∈ G2d+1, and we can apply A to produce a solution x′ for G′ using values in
set S(d). We can then extend domain of x′ to E by setting x′(e) = 0 for e �∈ G′.
Setting x(e) = x̄(e) + x′(e)/2 now gives a maximal fractional matching for the
graph G. This is because for any edge e = {u, v} in G′, we have x̄[u] = x̄[v] = 1/2
and x′[u] = 1 or x′[v] = 1. Moreover, x(e) ∈ S(d + 1). The number of rounds
for graphs of degree Δ = 2d + 2 is given by T (Δ) ≤ c1 + c2Δ + T (Δ − 1) for
some constants c1 and c2. Since T (Δ − 1) is independent of n, T (Δ) is also
independent of n. 	


5 Conclusions

Our results give a complete characterization of how fine-grained fractional values
are needed in a distributed algorithm that finds a maximal fractional matching
in any running time T (Δ) that only depends on the maximum degree Δ and
is independent of n. The main open question is if we can achieve this bound in
time T (Δ) = O(Δ)—this would be optimal by [10].
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Abstract. We address the problem of designing a distributed algorithm
for two robots that sketches the boundary of an unknown shape. Criti-
cally, we assume a certain amount of delay in how quickly our robots can
react to external feedback. In particular, when a robot moves, it commits
to move along path of length at least λ, or turn an amount of radians
at least λ for some positive λ ≤ 1/26, that is normalized based on a
unit diameter shape. Then, our algorithm outputs a polygon that is an
ε-sketch, for ε = 8

√
λ, in the sense that every point on the shape bound-

ary is within distance ε of the output polygon. Moreover, our costs are
asymptotically optimal in two key criteria for the robots: total distance
travelled and total amount of rotation.

Additionally, we implement our algorithm, and illustrate its output
on some specific shapes.

Keywords: Boundary Sketch · Robotics · Drones · Distributed
Algorithms · Euclidean Plane

1 Introduction

What if a robot cannot react instantaneously? In particular, suppose a robot
alternates between (1) analyzing past sensor data in order to plan motion of
some minimum amount; and (2) executing that plan and gathering new data.
Thus, some small, but finite time elapses between first sensing data; and then
planning motion.

Now imagine we want such robots to traverse the boundary of an unknown
shape in the Euclidean plane. The robots know nothing about the shape in
advance, and can only gather local information as they traverse the shape bound-
ary. If the boundary is a continuous curve, efficiently tracing the exact boundary
seems challenging. Instead, our goal is to obtain an ε-sketch: a traversal curve
with the property that every point in the actual boundary is within distance ε of
some point of the sketch; ε will be related to the parameter giving the minimum
amount a robot can move.
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Finally, we want to obtain this ε-sketch “efficiently”. Unfortunately, for most
efficiency measures like time or energy usage, cost is a complicated function of
the path travelled, since it must account for both angular and linear momentum.
This makes it hard to devise an algorithm with provable asymptotic bounds.
Instead, prior work generally either provably optimizes at most one parameter
related to efficiency, such as amount turned [27], or distance travelled [22].

In this paper, we take a different approach. Our goal is a bicreteria: minimize
both (1) distance travelled, and (2) amount turned. Rather serendipitously, we
show that using 2 robots it is possible to asymptotically minimize both criteria.
This has broad implications for minimizing a large class of efficiency measures.
In particular, our algorithm is also asymptotically optimal for any efficiency
function that is polynomial in distance traveled and/or amount turned.

Novelty of Result. The novelty of our results is thus three-fold. First, we
handle non-zero robot reaction time and also non-instantaneous sensor measure-
ments. Thus, we improve over control-theoretic results which assume instanta-
neous reaction time, and instantaneous and continual measurements of quanti-
ties such as boundary gradient [8,9,15,17], boundary distance [10,16,20,21], or
field measurements [26,28,29]. Second, we assume no a priori shape knowledge.
Thus we improve over “robotic coverage” results [4,22,27], which assume a priori
knowledge of the boundary. Finally, we asymptotically optimize two key criteria:
distance travelled and amount turned. Thus, we improve over results [22,27] that
provably only optimize only one such criterion.

1.1 Problem Statement

We consider the problem of approximately traversing the boundary of an
unknown shape in the Euclidean plane, using two robots.

Problem Parameters. The diameter of the shape is normalized so that it is 1 unit.
Our model depends critically on a parameter λ < 1/26, which describes both
the “smoothness” of the shape boundary and the reaction time of the robots as
described below.

The Robots. We make the following assumptions about the two robots.

– Every time a robot moves, it must commit to travelling a path that has
distance of at least λ, or turning at least λ radians.

– At any point in time, each robot knows its location and whether it is inside
or outside the shape. The robots are both initially located a distance of at
most

√
λ from the shape boundary.

– When a robot crosses the shape boundary, it learns the gradient at the cross-
ing point.1

– The robots can instantaneously communicate with each other.
1 A robot can consider the last gradient encountered in any path of length λ, so

estimation of the gradient at the crossing can be computed efficiently (Details in
Sect. A.1).
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The Boundary. The boundary of the shape is a curvilinear polygon2, which infor-
mally is a closed, non-intersecting loop consisting of a finite number of curves,
connected at vertices. Curvilinear polygons include all shapes with boundaries
whose gradients are continuous at all but a finite number of points; for example,
shapes defined by unions of Gaussians and polygons. They also seem to be the
most general shape for which the total rotation of the shape is well-defined.

We make the following additional assumptions about the shape boundary.

– The intersection of the boundary with any ball of a radius 4
√

λ centered on
a point of the boundary contains exactly one path component. (See footnote
2)

– The vertices of the boundary are at least
√

λ distance apart from each other.
– The boundary is twice continuously differentiable except at the vertices.

Our Goal. Our goal is to use the robots to estimate the boundary in the form
of an ε-sketch, while minimizing both distance travelled and the amount turned
by the robots.

Main Result. Our main result is given in the following theorem.

Theorem 1. For any positive λ < 1/26, there exists an algorithm that uses
2 robots to compute an ε-sketch of the boundary, for ε = 8

√
λ. Moreover the

algorithm requires the robots to travel a total distance and rotate a total amount
that are both asymptotically optimal.

As as a corollary we can use this ε-sketch to estimate the area of the shape.

Corollary 1. Our algorithm can estimate the area of the shape up to an additive
error of O(�

√
λ), where � is the perimeter of the shape.

1.2 Technical Overview

We now give some intuition behind our algorithm and the proof of Theorem 1.

BOUNDARY-SKETCH Intuition. Our algorithm works by trying to ensure
a sandwich invariant : the robots are traveling in parallel lines on both sides of
the boundary. When a robot crosses the boundary, this invariant fails since both
robots are now on the same side of the shape. We want the robot that crossed
to go back to the other side of the shape in order to reestablish the sandwich
invariant. The subroutine CROSS-BOUNDARY performs this function.

The main idea in CROSS-BOUNDARY is to use the boundary gradient
learned at the crossing point, to guide the robot back to the other side of the
shape and reestablish the sandwich invariant. In CROSS-BOUNDARY, the
crossing robot successively takes small steps at a gradually increasing offset from
the gradient at the last crossing. The angular offset is in the direction (clock-
wise or counterclockwise) of the shape boundary. Essentially the robot travels a
2 These terms are formally defined in Sect. 3.1 in Definition 4 and Definition 6.
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Fig. 1. Illustration of BOUNDARY-SKETCH and CROSS-BOUNDARY. Red curve
indicates the shape boundary, blue and green curves indicate the trajectory of the
robots that sandwich the boundary. Notice that upon crossing, a dotted blue line
(illustrating CROSS-BOUNDARY) indicates a change in direction and step length as
discussed in this section. (Color figure online)

regular polygon that approximates a small circle, until it crosses the boundary
again. After the crossing, the robot reorients its direction so that both robots are
moving in parallel lines the sandwich the boundary. See Fig. 1. By repeatedly re-
establishing the sandwich invariant whenever it fails, BOUNDARY-SKETCH
progressively computes an ε-sketch of the boundary.

BOUNDARY-SKETCH Analysis. Our proof of correctness requires tools from
real analysis, differential geometry and topology. A main technical challenge is
the proof that BOUNDARY-SKETCH produces an ε sketch, for ε = 8

√
λ.

Key milestones in this proof include lemmas showing that the sketch exists; it
does not self-intersect; and that the sketch and the shape boundary are “close”.
We use proof by contradiction extensively to show these results. In particular,
we repeatedly construct balls of radius 4

√
λ that violate the path component

assumption unless our desired result holds.

Optimality of Distance Traversed. This part of the asymptotic analysis is rel-
atively straightforward. First, we claim when the sandwich invariant fails, the
robots at the end of CROSS-BOUNDARY 1) either cover Ω(

√
λ) distance of

the shape boundary or 2) traverse a small distance O(
√

λ) between successive
instances of Case 1 during a number of executions of CROSS-BOUNDARY.
This is proven in Lemma 12, which immediately shows that since the former Case
1 occurs at most O(�/

√
λ) times, the robots traverse O(�) distance to restore

the sandwich invariant.
Second, the robots take the shortest path when the sandwich invariant holds,

since they move in a straight line parallel to each other, they also traverse O(�)
distance in this case. The optimality of distance traversed follows by combining
these two facts.
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Optimality of Rotation. To prove bounds on rotation, we need to introduce
additional formal definitions in Sect. 3.1, and develop a few helper lemmas in
Sect. 3.2. Our first main results is an application of Rolle’s Theorem to show
the existence, between any points x and y on the shape boundary, of a tangent
line somewhere on the boundary between these points that is parallel to the line
joining x and y (See Lemma 20). This result has multiple applications including
proving two key lemmas, Lemmas 5 and 14. These lemmas were proven via a
reduction from the problem for general shapes to shapes that are a polygon.
The case of a polygon is one that we can handle easily in the first few lemmas
in Sects. 3.2 and 3.4.

Lemma 5 is our first key lemma about our unit-diameter shape. It states that
the perimeter of our shape is asymptotically bounded by the total “rotation”
in the boundary. In particular, it states that � = O(φ), where � is the shape
perimeter and φ is the boundary rotation, i.e. the total amount a single robot
would rotate if it could follow the shape boundary exactly.

The proof of Lemma 5, requires usage of the property of uniform continuity of
the curvature (a fact that we prove using continuity of the curvature along with
some topological properties) to split the curve into a finite number of segments,
whose endpoints we define to be vertices of a certain polygon. Next, to compare
the perimeter of the shape against the perimeter of this polygon, we borrow
a key result in differential geometry from [2] stated as Lemma 2. This lemma
from differential geometry compares the path length of a curve with bounded
curvature against the length of a line segment connecting two endpoints of that
curve, and shows that the former is bounded by a constant times the latter. The
other case of unbounded curvature is easy to handle from the definition of total
rotation in terms of curvature.

Finally, to compare the total rotation of the polygon against the total rotation
of the shape boundary, we recall Lemma 20, which says that the shape has at
least some point with a boundary gradient that is parallel to the respective side
of the polygon. Thus, the total rotation of the polygon is a lower bound on the
total rotation of the shape boundary. Thus, we conclude that the shape boundary
rotates at least as much as the constructed polygon boundary.

Lemma 14 is another key lemma for bounding the robot rotation. Lemma 14
bounds the number of times the robots make a turn of

√
λ radians during

CROSS-BOUNDARY. Once again, we consider the case where the shape
boundary between crossings is a polygon first, and then apply Lemma 20 to
derive the asymptotics for the general case. Next, we multiply this bound with
the rotation angle

√
λ to bound the overall rotation during all executions of

CROSS-BOUNDARY.
Lemma 5 handles an intermediate step where total rotation during

CROSS-BOUNDARY include the term � and Lemma 14 handles the rest of
the analysis of CROSS-BOUNDARY. Together, these two lemmas prove the
optimality of rotation by the robots.
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1.3 Related Work

Application Domains. Robot exploration of a shape is a long-standing prob-
lem, which has exploded in popularity recently with the advent of drones
and other autonomous devices. Application domains are numerous, running
the gamut from surveillance of: forest fires [11,13]; harmful algae blooms [18];
mosquito populations [27,30,31]; oil spills [12,23]; radiation leaks [6]; and vol-
canic emissions [32].

Boundary Search. Our algorithm assumes that the robots are initially located
close to the boundary. The boundary search problem instead requires the robots
to actually find the boundary. Many algorithms for boundary search have been
proposed, techniques used include: random walk [6], spiral search [12], gradient
following [24], and finite difference approximation based on partial differential
equations [7].

Boundary Following. In boundary following, the goal is for the robots to tra-
verse the shape boundary, given that they all initially start close to the boundary.
This is the problem addressed in our paper. Many control-theoretic algorithms
for boundary following offer provable guarantees that their output converges to
the exact boundary under certain assumptions on the boundary shape. How-
ever, to the best of our knowledge all such results: (1) assume instantaneous and
continuous tracking of some quantity such as boundary gradient or distance to
boundary; (2) assume infinitesimally accurate control of the robots; and (3) do
not give asymptotic bounds on robot travel time or energy expenditure.

Many such prior results use instantaneous and continuous gradient measure-
ments to control the robots tracking the boundary [8,9,15,17]. Some prior results
depend on instantaneous and continuous measurements of other quantities; for
example, distance from the boundary [10,16,20,21]; or field measurements defin-
ing the shape [26,28,29].

Robotic Coverage. In the robotic coverage problem, a robot must visit within
some given distance of every point in a target shape. Many variants of this
problem are known to be NP-Hard, even with a single robot. Thus, many result
either use approximation algorithms or heuristics to optimize some criteria such
as distance travelled [22] or amount turned [27]. See [4] for a general overview of
results. The problem has been extended to multiple robots [5,14]. Our problem
is both easier and harder than the typical robotic coverage problem. It is easier
in that we only seek to cover a 1-dimensional boundary, and not a 2-dimensional
shape. It is harder in that it is online: no information about the shape is known
in advance.

2 Our Algorithm: BOUNDARY-SKETCH

Our algorithm BOUNDARY-SKETCH is described in Algorithm 3 (see Fig. 2).
It uses a helper algorithm, CROSS-BOUNDARY, that is described in Algo-
rithm 2. We assume an auxiliary function incomplete that the robots are capable
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of, that checks if they have completed a tour around the shape. In addition, by
gradient in this algorithm, we mean the direction of the gradient vector.

For simplicity of presentation our algorithms are described in a central-
ized manner, without explicit communication. To parallelize our algorithms, the
robots must sometimes send messages. In particular, if a robot crosses the bound-
ary during some step, it needs to send that information to the other robot.

Fig. 2. Figure illustrating a sample execution of BOUNDARY-SKETCH. The red
curve indicates the shape boundary and the blue, green curves indicate the path of the
robots in progression. (Color figure online)

Algorithm 1. Ensures the robots are at distance
√

λ from each other and are
oriented in the same direction. Additional discussion with illustrative diagrams
of this synchronization is in Appendix D.
1: procedure SYNCHRONIZE(D1, D2)
2: Path ← the polyline path of D2 from last crossing of BOUNDARY-SKETCH

with the shape till current position.
3: ∇ ← the gradient at the last boundary crossing for D2.
4: L1 ← the line in the direction of ∇ through D1’s position.
5: L2 ← the line in the direction of ∇ through D2’s position.
6: if L1 crosses Path then
7: Move D2 in its current direction until it is

√
λ distance away from L1.

Change direction to ∇ and take a single step of length λ.
8: Move D1 along L1 until it is

√
λ away from D2.

9: else
10: Move D1 in its current direction until it is

√
λ distance away from L2.

Change direction to ∇ and move until the distance from D2 is
√

λ.
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Algorithm 2. Reestablishes “Sandwich” Invariant
1: procedure CROSS-BOUNDARY(D1, D2, α)
2: p ← last position of D1 before crossing
3: R ← the vertices of the regular polygon including D1’s position with exterior

angle
√

λ and the edge beginning at D1’s position facing the direction of ∇ + α.
4: P ← the vertices of the convex hull of R ∪ {p}. For all i : 0 ≤ i ≤ |P | − 1, let

Pi be the i-th vertex in this convex hull, ordered such that P0 = p and P1 = D1’s
current position.

5: ∇ ← gradient at the last boundary crossing of D1

6: i ← 1.
7: while neither robot has crossed the boundary AND i + 1 < |P | do
8: D1 moves to Pi+1.
9: D2 moves to closest point from it that is

√
λ distance away from Pi and

orthogonal to ∇ + iα
10: i ← i + 1

11: while neither robot has crossed the boundary do
12: D1 moves towards point p taking steps of length λ.
13: D2 moves to closest point from it that is

√
λ distance away from D1 and

orthogonal to D1’s direction.

14: if D2 crossed the boundary then
15: SYNCHRONIZE (D1, D2)
16: else
17: ∇ ← the current direction of D1.

Algorithm 3. Initially, robots are
√

λ apart; one inside and one outside
1: procedure BOUNDARY-SKETCH(λ) �
2: D1, D2 ← the two robots
3: ∇ ← boundary gradient at point of crossing with line segment between D1 and D2

4: α ← √
λ

5: while Incomplete(D1, D2) do
6: if inside (D1) XOR inside (D2) then
7: D1 and D2 both move λ distance in the direction of ∇
8: if inside (D1) = false and inside (D2) = false then
9: α ← −√

λ
10: CROSS-BOUNDARY(D1, D2, α)
11: elseif inside (D1) = true and inside (D2) = true
12: α ← √

λ
13: CROSS-BOUNDARY (D2, D1, α)

3 Analysis

In this section, we give the proof of Theorem 1. We divide the analysis into
four sections. First, we formalize the notions of curve, path length and total
rotations of a curve in our problem model. In addition, we formally state in the
language of topology what path and path component means. The second section
establishes some helper lemmas in computational geometry that will be applied
in the later sections. Next, we prove that BOUNDARY-SKETCH terminates
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and outputs an ε-sketch of γ, where ε = 8
√

λ. Finally, we provide asymptotic
analysis of BOUNDARY-SKETCH.

3.1 Formal Problem Model

The shape is represented by a curve in the Euclidean space. We make use of
several definitions, repeated below, about this curve from [19].

Definition 1. A point γ(t) of a parameterized curve γ is called a regular point
if γ′(t) �= 0; otherwise γ(t) is a singular point of γ. A curve is regular if all of
its points are regular.

Definition 2. A curve γ : [a, b] → R
2 is called a unit-speed curve if for all

t ∈ [a, b], |γ′(t)| = 1.

The next claim which is Proposition 1.3.6 from [19] relates unit-speed
parametrization of curves with regular curves.

Lemma 1. A parametrized curve has a unit-speed reparametrization if and only
if it is regular.

In what follows, we assume γ is regular unless otherwise stated.

Definition 3. If γ is a unit-speed curve with parameter t, its curvature κ(t) at
the point γ(t) is defined to be |γ′′(t)|.

Next we generalize the notion of curve by allowing the possibility of corners.
More precisely, we use the definition 13.2.1 from [19].

Definition 4. A curvilinear polygon in R
2 is a continuous map γ : R → R

2

such that, for some real number T and some values 0 = t0 < t1 < ... < tn = T :

1. γ(t) = γ(t′) if and only if t′ − t is an integer multiple of T .
2. γ is smooth on each of the open intervals (t0, t1), (t1, t2), ..., (tn−1, tn).
3. The one-sided derivatives,

γ′−(ti) = lim
t→t−i

γ(t) − γ(ti)
t − ti

, γ′+(ti) = lim
t→t+i

γ(t) − γ(ti)
t − ti

exist for all i = 1, ..., n and are non-zero and not parallel.

The points γ(ti) are called the vertices of the curvilinear polygon γ, and the
segments of it corresponding to the open intervals (ti−1, ti) are called its edges.
Here T is called the period of γ and if the curve has unit-speed i.e. |γ′(t)| = 1
for all t ∈ R, then the length of γ, denoted �(γ) is T , which is the sum of the
length of its edges.
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Definition 5. Given a curvilinear polygon γ with vertices at t0, t1, ..., tn ∈ [0, T ]
where T is its period , let θ±

i be the angles between γ′±(ti) and X-axis. Define
δi = θ+i − θ−

i to be the external angle at the vertex γ(ti). The total rotation of γ
over the entire period T , denoted φ, is defined to be,

φ =
n∑

i=1

δi +
∫ �(γ)

0

|κ(t)|dt

where we set the speed of γ to be the unit speed.

Next, we state a couple of definitions from the Topology textbook of Munkres
[3].

Definition 6. Given points x and y of a topological space X, a path in X from
x to y is a continuous map f : [a, b] → X of some closed interval in the real
line into X, such that f(a) = x and f(b) = y. Furthermore, x, y ∈ X are said
to be path connected if there is a path from x to y. In addition, define an
equivalence relation between pairs x, y ∈ X if there is a path in X from x to y.
The equivalence classes are called the path components of X.

Finally, we define ε-sketch.

Definition 7. For ε > 0 and a regular curvilinear polygon γ, we say a non self-
intersecting polygon P is an ε-sketch of γ if every point on γ lies at most an ε
distance away from P .

Next we begin the analysis with some helper lemmas, some of which are in
the Appendix B.

3.2 Helper Lemmas

We start with a lemma found in the following simplified form (p. 272) in [2].

Lemma 2. For every real number K > 0, any curve in R
2 with curvature at

every point not greater than χ ∈ [0,K) is not longer than a circular arc of
curvature χ whose end points are opposite points of the circumference.

Lemma 3. Let γ : [a, b] → R
2 be a regular curve and κ : [a, b] → R be the

curvature function of γ. If |κ(t)| ≤ 1/π for all t ∈ [a, b], then
∫ b

t=a

|γ′(t)|dt ≤ π|γ(b) − γ(a)|/2

Proof. Let A = γ(a), B = γ(b) and ρ = |γ(b) − γ(a)|. Now consider the circle
drawn from the midpoint of AB with radius ρ/2. Since the shape is bounded by
a unit square, ρ ≤ √

2. In addition, we have for all t ∈ [a, b], |κ(t)| ≤ 1/π ≤ 2/ρ.
Setting χ = 1/π,K = 2/ρ, we get by Lemma 2,

∫ b

a

|γ′(t)|dt ≤ πρ/2 = π|γ(b) − γ(a)|/2

This completes the proof.
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Next we recall a definition from real analysis.

Definition 8. A function f : X → Y with X ⊂ R
n and Y ⊂ R

m for n,m ∈ N

is called uniformly continuous on X if for every real number ε > 0, there exists
a natural number N such that for every x, y ∈ X,

|x − y| < 1/N =⇒ |f(x) − f(y)| < ε

We now state the following lemma that is a simplified form of Theorem 4.19
in [1].

Lemma 4. Let f : [a, b] → R be a continuous mapping with a, b ∈ R. Then f is
uniformly continuous on [a, b].

Lemma 5. Let γ be a curvilinear polygon in R
2. Then �(γ) is O(φ), where φ is

the total rotation of γ.

Proof. Partition into Segments:
Let γ be parametrized by its length, then its period T = �. Suppose γ has m

vertices γ(d1), γ(d2), ..., γ(dm) where di ∈ [0, �] for all i = 1, ...,m. We also set
dm+1 = d1.

Since [dj , dj+1] is closed and κ is continuous over [dj , dj+1], by Lemma 4, κ
is uniformly continuous over [dj , dj+1]. That means for all x, y ∈ [dj , dj+1] and
j ∈ [1,m] ∩ N, there exists n ∈ N such that,

|x − y| < (dj+1 − dj)/n =⇒ ||κ(x)| − |κ(y)|| ≤ |κ(x) − κ(y)| < 1/2π (1)

We now partition each [dj , dj+1] into at most n segments of the form [ak, bk]
where ak = (k − 1)δj/n, bk = kδj/n, δj = dj+1 − dj for k ∈ [1, n] ∩ N. Observe
that, by inequality 1 for each of these segments [ak, bk], either for all t ∈ [ak, bk],
|κ(t)| ≥ 1/2π or for all t ∈ [ak, bk], |κ(t)| ≤ 1/π. We denote these cases by cases
1, 2 in their respective order.

Finally, over the entire domain [0, T ] there are mn segments. Let these seg-
ments be indexed by i and let �i and φi indicate the perimeter length and the
angle turned by the shape in the i-th segment [ai, bi].

Case 1:
Since for all t ∈ [ai, bi], |κ(t)| ≥ 1/2π then,

φi =
∫ bi

ai

|κ(t)|dt ≥
∫ bi

ai

1/2πdt

=⇒ φi ≥ 1/2π�i

=⇒ �i ≤ 2πφi

Case 2:
Next we handle the other case where the segment [ai, bi] has the property that
for all t ∈ [ai, bi], |κ(t)| ≤ 1/π.
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Let P be a polygon consisting of vertices equal to the endpoints of each seg-
ment of the shape. For a fixed side of this polygon the endpoints are γ(ai), γ(bi).
Let �P be the perimeter length of P .

By Lemma 3, we have �i ≤ π|γ(bi) − γ(ai)|/2. Hence the total length of the
shape over all segments covered by these two cases is at most π�P /2.

By Lemma 20, there exists a value c ∈ [ai, bi] such that γ′(c) is parallel to
γ(bi) − γ(ai).

Clearly then φ ≥ η where η is the sum of the exterior angles of P .
By Lemma 19, �P ≤ η. This means the length of the perimeter of the shape

over all the segments covered by this case is at most πφ/2.

Conclusion:
Combining both cases gives �(γ) ≤ 2πφ i.e. �(γ) = O(φ).

3.3 Correctness of BOUNDARY-SKETCH

Let ζ1, ζ2 be the parametrized curves for the path of the robots D1 and D2

in BOUNDARY-SKETCH. Let ti ∈ [0, �(γ)] such that γ(ti) is i-th point of
crossing of either robot with the boundary.

Lemma 6. The regular polygon constructed in the While loop of Algorithm 2
has diameter at most 2

√
λ.

Proof. During Step 10 or Step 13, the regular polygon has diameter at most
λ/ sin

√
λ. By the inequality sin(2x) ≥ x for x ∈ [0, π/4] and since 0 <

√
λ < π/4,

we have
λ/ sin

√
λ ≤ 2

√
λ

Lemma 7. Suppose Algorithm 2 is invoked after crossing the shape for the i-th
time. Then γ(ti+1) is at most 3

√
λ distance away from the nearest robot for all

invocations of Algorithm 2. In addition, |γ(ti) − γ(ti+1| ≤ 3
√

λ and the nearest
robot traverses no more than 3

√
λ distance during the execution of Algorithm 2.

Proof. First we show that γ(ti+1) is at most 3
√

λ distance away for all invoca-
tions of Algorithm 2. If γ(ti+1) is on the boundary of the regular polygon, then
it is at most 2

√
λ distance away by Lemma 6. Otherwise by triangle inequality

it is at most, 2
√

λ+λ < 3
√

λ distance away, where the first term is the distance
from last visited vertex to the starting vertex of the polygon and the second
term is the distance from the starting vertex to γ(ti), which are bounded by the
diameter of the regular polygon and step length respectively.

Furthermore, following the argument above, |γ(ti) − γ(ti+1)| ≤ 3
√

λ and the
nearest robot traverses no more than 3

√
λ.

Lemma 8. During the While loop of Algorithm 3, BOUNDARY-SKETCH
maintains a distance of at most

√
λ between each of the robots and the shape

boundary throughout all executions of Step 7.

Proof. This is immediate from the assumption that the robots maintain a dis-
tance of

√
λ between them and that the shape is sandwiched there.
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Lemma 9. BOUNDARY-SKETCH maintains a distance of at most 8
√

λ
between the shape boundary and each of the robots.

Proof. By Lemma 8, throughout all executions of Step 7 inside the While loop
in Algorithm 3, every point of γ is at a distance of at most

√
λ from ζ1 and ζ2.

Suppose here Algorithm 2 is invoked after crossing the shape for the i-th
shape. We will show that over the interval [ti, ti+1], γ is always at most 7

√
λ

distance away from the nearest robot.
First by Lemma 7 γ(ti+1) is at most 3

√
λ distance away for all invocations

of Algorithm 2. In addition, |γ(ti) − γ(ti+1)| ≤ 3
√

λ.
Now define d(x) = |γ(ti+1)−γ(x)| for all x ∈ [ti, ti+1]. We claim that d(x) ≤

4
√

λ for all x ∈ [ti, ti+1]. If not, consider a ball B of radius 4
√

λ centered at
γ(ti+1). Observe that the path from γ(ti) to γ(ti+1) must be contained in B or
else we will have two different sections that are disjoint inside this ball. This
contradicts our path component assumption.

That means we can get to γ(ti+1) first with at most 3
√

λ distance traversal
by Lemma 7 and then from γ(ti+1) to the respective point, which is at most
4
√

λ distance away by the above argument. Finally, noting that the robots are
apart by at most

√
λ distance and by triangle inequality, the lemma follows.

Lemma 10. ζ1, ζ2 have finite periods and therefore they intersect the shape
finitely many times.

Proof. Based on our assumption, BOUNDARY-SKETCH selects the direction
of the gradient to move away from the region the robots came from. Since the
length of γ is finite and the step length of the robots is at least λ, the lemma
follows.

Lemma 11. ζ1, ζ2 do not self-intersect over their respective periods.

Proof. We will prove this for ζ1, the proof is identical for ζ2.
Suppose there exists u, v ∈ [0, �(ζ1)] such that ζ1(u) = ζ1(v) and u �= v.
Observe that, unless crossed γ is always on the same direction (clockwise or

counterclockwise) from D1 and opposite otherwise.
Without loss of generality, assume that γ was on the clockwise direction of

D1 at u. Note that ζ1(u) must be inside the shape or else it implies D1 went
back to the direction it came from. Let L be the interval of γ with distance at
most 2

√
λ from ζ1(u) on this direction. By Lemma 8, L is nonempty.

Now consider for v an interval R of γ that is on the counterclockwise direction
from D1 at u and that the distance of every point in R from ζ1(u) is at most
2
√

λ. By Lemma 8 R is nonempty.
Now consider the ball B centered at ζ1(u) with radius 2

√
λ. We now show

that the intersection of B with L and R are disjoint. If they are not disjoint,
they are path connected without crossing themselves, since the latter violates the
assumption that γ is a simple i.e. non self-intersecting curve.

If they are path connected, BOUNDARY-SKETCH crosses this path since
L and R are on different directions of ζ1(u). But since D1 upon crossing the
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shape, chooses to go away from the direction it came from, it must be that R is
on the counterclockwise direction of ζ1(v), a contradiction.

Therefore L and R must be disjoint. Finally, we pick any point c ∈ L and
consider a ball B1 of radius 4

√
λ centered at c. Observe that, L and R can only

be connected inside this ball in one direction, otherwise it will imply the shape
has a bounding box of side length O(

√
λ), which contradicts our assumption

that the λ is scaled with respect to the diameter of the shape and is at most
1/26.

If L and R connects inside B1, consider the robot path going in the other
direction. We can extend L and R in this direction a distance of at most 8

√
λ

until we can construct another ball B2 where L and R do not connect. If this
construction is not possible, one of the robots must have crossed the boundary
and we can construct this ball B2 with radius 4

√
λ centered at that point of

crossing, but this contradicts our assumption on path component.

Lemma 12. For each execution of Algorithm 1, the robots cover Ω(
√

λ)
distance of the shape boundary. In addition, the distance traversed by the
robots between successive executions of Algorithm 1 and during executions of
CROSS-BOUNDARY is O(

√
λ).

Proof. The first claim follows immediately since the robot that crosses the
boundary changes from D1 to D2 and the robots are

√
λ distance apart from

each other.
Next, between successive executions of Algorithm 1, robot D1 may cross the

boundary at the end of CROSS-BOUNDARY. The total number of steps robot
D1 can take over this period cannot be more than 2π/

√
λ since at each step it

turns
√

λ and a total turn over a convex path is at most 2π. Since each step is
of length λ, the claim follows.

Lemma 13. ζ1, ζ2 are 8
√

λ-sketches of γ.

Proof. This follows immediately from Lemmas 9, 11 and Definition 7.

3.4 Asymptotic Analysis

By Lemma 10, BOUNDARY-SKETCH crosses the shape finitely many times.
Let m be the number of crossings and for i ≤ m, φi be the angle the shape
turns over [ti, ti+1] and define A = {1, 2, ...,m} and f : A → N such that f(i) is
the number of iterations the While loop inside Algorithm 2 executes in between
the robots crossing the shape boundary for the i and i + 1-th time. Some of the
lemmas analyzing the case of a polygon are in the Appendix C.

Lemma 14. If
√

λ ≤ φi ≤ π/8 for some positive integer i ≤ m, f(i) ≤
8φi/

√
λ + φi−1/

√
λ + 1.

Proof. The trivial case is where Algorithm 2 is not executed at all i.e. f(i) = 0.
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Suppose there are j vertices of γ defined over [ti, ti+1]. Let these vertices be
indexed γ(ak) where ak ∈ (ti, ti+1) for all 1 ≤ k ≤ j. If j = 0, select a value
a1 = (ti+1 + ti)/2. In addition, let a0 = ti, aj+1 = ti+1.

By Lemma 20, for all 0 ≤ k ≤ j, there exists a ck ∈ (ak, ak+1) such that
γ′(ck) is parallel to the line segment joining γ(ak) and γ(ak+1). This means if we
consider a polygon P with j + 1 vertices being γ(ak) for 0 ≤ k ≤ j, the amount
P rotates is at most the amount γ rotates over [ti, ti+1].

If φ′
i is the amount of rotation of P , then by Lemma 23,

f(i) ≤ 8φ′
i/

√
λ + φi−1/

√
λ + 1 ≤ 8φi/

√
λ + φi−1/

√
λ + 1

Lemma 15. If π/8 ≥ φi ≥ √
λ, after resetting ∇ in lines 15 or 17 of Algorithm

2, the robots turn at most 8φi +φi−1 +
√

λ as the algorithm continues to execute
Algorithm 3.

Proof. The angle the robot needs to turn to reorient itself with respect to the
boundary just crossed is at most 8φi + φi−1 +

√
λ, since the robot orientation

itself is no more off than 8φi + φi−1 +
√

λ by Lemma 14.

Lemma 16. Let I be those indices such that,
√

λ ≤ φi ≤ π/8 for i ∈ I. Then
the total radians turned by the algorithm for the φi values indexed by I is O(φ).

Proof. Observe that,
∑

i∈I φi ≤ φ. In addition by Lemma 14 f(i) ≤ 8φi/
√

λ +
φi−1/

√
λ + 1 and by Lemma 15 the angle turned after resetting ∇ in lines 15 or

17 in Algorithm 2 is at most 8φi + φi−1 +
√

λ.
Thus the total radians turned by the algorithm for the φi values indexed by

I is at most:

∑

i∈I

√
λf(i) + 8φi + φi−1 +

√
λ ≤

∑

i∈I

16φi + 2φi−1 +
√

λ = 16φ + |I|
√

λ = O(φ)

where we note φi ≥ √
λ implies |I| = O(φ/

√
λ).

Theorem 2. The robots in BOUNDARY-SKETCH traverse a total distance
of O(�).

Proof. During Step 7 of Algorithm 3, the robots take the shortest path and thus
the distance traversed is bounded by the shape perimeter. Hence overall the total
distance traversed during execution of Step 7 is O(�).

Now each time Algorithm 1 is executed, the robots cover at least Ω(
√

λ)
distance of the shape boundary. This means Algorithm 1 is executed at most
O(�/

√
λ) times. In addition, between successive executions of Algorithm 1 and

during executions of CROSS-BOUNDARY the robots traverse a distance at
most O(

√
λ) by Lemma 12.

Combining we have that �(ζ1) and �(ζ2) are both O(�).

Theorem 3. The total rotation by the robots in BOUNDARY-SKETCH is
O(φ).
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Proof. The number of indices i ≤ m such that φi ≤ √
λ is O(�/λ). For each of

these indices, the robots rotate O(λ) angle in CROSS-BOUNDARY by Lemma
21. Since � = O(φ), for these indices the robots rotate O(φ).

Now, if π/8 ≥ φi ≥ √
λ, by Lemma 16, the robots rotate a total of O(φ)

radians.
If φi > π

8 during execution of Algorithm 2, BOUNDARY-SKETCH turns
at most 2π. Thus, the radians turned is bounded by 16φi. In total, across all
iterations of Algorithm 2 where φi > π

8 , the robots rotate at most 16φ.
In addition, by Lemma 25, the robots asymptotically rotate the same.
Finally, during execution of Step 7 the robots do not rotate at all. Combining

all of the above, we have the theorem.

Corollary 2. The area estimated by BOUNDARY-SKETCH differs from the
actual shape area by O(�

√
λ).

Proof. BOUNDARY-SKETCH computes the area of the polygon generated
by successive positions of one of the robots (say the one that starts from the
inside). By Lemma 9, this polygon stays within at most 8

√
λ distance from the

shape boundary. Hence, the area of the polygon differs from the shape area by
at most O(�

√
λ).

4 Simulations

We present preliminary simulation results to illustrate the precision of ε-sketch
for various values of λ. To start with, we tested our algorithm for a small number
of intersecting gaussians with different variances. Next, we test our algorithm
on the boundary of shapes drawn from real world shape data. Both of these
simulations demonstrate encouraging convergence of ε-sketch to the shape as λ
decreases.

Intersecting Gaussians. In our experiments, the shape is an intersection of
a few two dimensional gaussians. We discuss experimental details of gradient
estimation for this shape in the Appendix A.1.

Definition 9. In two dimensions, the elliptical gaussian function f for uncor-
related varieties X and Y having a bivariate normal distribution and standard
deviations σx, σy is defined to be,

f(x, y) =
1

2πσxσy
e−[(x−σx)

2/(2σx)
2+(y−σy)

2/(2σy)
2]

Test Shape. We generate a test shape in MATLAB with four gaussians with
centers (1, 1), (−2, 0), (1, 0), (4, 0) and corresponding standard deviations

(0.8, 0.8), (1, 1), (1.2, 1.2), (0.7, 0.7).

We also ignore the 1/2π factor in front of the definition.
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Fig. 3. BOUNDARY-SKETCH for λ = 0.0001, the green border marks the shape
boundary sandwiched by the inner and outer robots. (Color figure online)

BOUNDARY-SKETCH for different λ. For the same shape as above, we run
BOUNDARY-SKETCH for

√
λ values of 0.0001, 0.000025, 0.000001. Figure 3

illustrates the output for λ = 0.0001 and the other two Figs. 5, 6 in Appendix
A.1 demonstrate notable improvement in precision as λ gets smaller.

Real World Plume Shapes. We also utilize a real world shape from a volcanic
plume in La Palma (see Fig. 7 in Appendix A.2) and use a Python program to
generate a polytope approximation of it. The gradient of the boundary then is
easily found by the gradient of the corresponding side of the polygon. Next we
ran BOUNDARY-SKETCH for different values of λ on this shape. Figure 4
illustrates the output of the algorithm and Figs. 8, 9 in Appendix A.2 demon-
strate notable improvement once again in precision as λ gets smaller.
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Fig. 4. BOUNDARY-SKETCH for λ = 0.0001, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border). (Color
figure online)

5 Conclusion

We have described a distributed algorithm to enable two robots to traverse the
perimeter of a curvilinear polygon. Our algorithm is novel in three key ways.
First, it does not assume that the robots can respond instantaneously to sen-
sor data, instead assuming a minimum amount of movement or rotation occurs
between motion planning events. Second, it does not assume that the robots have
access to instantaneous and continual sensor readings. Finally, our algorithm is
simultaneously asymptotically optimal in two criteria: both total distance trav-
elled by the robots, and also total amount turned by the robots.

Several open problems remain including the following. First, lower bounds:
even though our algorithm is asymptotically optimal in both distance travelled
and distance turned, we still would like to know if 2 robots are strictly neces-
sary. Can a single robot achieve the same asymptotic results? We conjecture
the answer is no, even if the single robot is attempting to follow a (unknown)
function in the Euclidean plane defined from the values x = 0 to x = 1. Sec-
ond, Can we reduce the value of ε in the ε-sketch returned by our algorithm? In
particular, is it possible to obtain a value of ε that is o(

√
λ)? Finally, How does

our algorithm perform when deployed in the real world? A real-world application
domain of particular interest to us is tracing boundaries of volcanic CO2 plumes.
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A Simulation Figures

A.1 Intersecting Gaussians

Gradient Estimation. To estimate the gradient at a point of intersection, we
formulate a least squares error (LSQ) problem and solve it using the pseudo-
inverse, as described below.

Least Squares Error Formulation. Assume we have three points a, b, c that are
close together, and that we have the values f(a), f(b), f(c). For the sake of the
BOUNDARY-SKETCH, these three points can be said to be successive points
of a robot’s path with the middle one being where it crosses the shape boundary.
Then we estimate the gradient ∇f(b) = (x′, y′) as a vector that minimizes the
following sum:

(f(a) − f(b) − ∇f(b) · (a − b))2 + (f(c) − f(b) − ∇f(b) · (c − b))2

Setting the rows of a 2 × 2 matrix A to be a − b, c − b respectively and the
entries of vector β to be f(a) − f(b), f(c) − f(b) respectively, this problem is
formally solving for the vector v such that, |Av − β|2 is smallest.

Finally, we utilize the pseudo-inverse method for solving LSQ as discussed in
numerous sources e.g. in Sect. 4.5 of [25].

Fig. 5. BOUNDARY-SKETCH for λ = 0.000025, the green border marks the shape
boundary sandwiched by the inner and outer robots. (Color figure online)
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Fig. 6. BOUNDARY-SKETCH for λ = 0.000001, the green border marks the shape
boundary sandwiched by the inner and outer robots. (Color figure online)
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A.2 Real World Plume Shapes

Fig. 7. Volcanic plume in La Palma observed on September 20, 2021.
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Fig. 8. BOUNDARY-SKETCH for λ = 0.000025, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border). (Color
figure online)
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Fig. 9. BOUNDARY-SKETCH for λ = 0.000001, the green border marks the shape
boundary sandwiched by the inner and outer robots (red and blue border). (Color
figure online)

B Helper Lemmas

Lemma 17. � is Ω(1)

Proof. Since the diameter of the shape is scaled to be 1, � ≥ 1 and the lemma
follows.

Lemma 18. The number of vertices in γ is at most �/
√

λ.

Proof. This is immediate from the assumption that each of the vertices are at
least

√
λ distance apart.

Lemma 19. If a curve γ is a polygon and φ is the total rotation of this polygon,
then �(γ) ≤ φ.

Proof. Suppose the vertices of the polygon P are given by a list of n points
v1, v2, ..., vn. Then � =

∑n
i=1 |vi − vi+1| where we set vn+1 = v1, vn+2 = v2.

Now fix three successive vertices, vi, vi+1, vi+2 for 1 ≤ i ≤ n and denote
them A,B,C respectively. In addition, let a = |AB|, b = |BC|, c = |CA|, α =
∠BAC, β = ∠ABC,ω = ∠BCA.

By the law of sines,

a

sinα
=

b

sin β
=

c

sinω
= 2ρ
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where ρ is the radius of the circumcircle of the triangle ABC.
Since the polygon is bounded by a unit square, ρ ≤ 1. By the inequality

sin x ≤ x for all x ∈ R, we have,

a ≤ 2α

b ≤ 2β

Hence,
a + b ≤ 2(α + β) = 2(π − ω) = 2φi

where φi is the i-th exterior angle of P .
Summing over all i ∈ [1, n] we get,

2�(γ) =
n∑

i=1

|vi − vi+1| + |vi+1 − vi+2| ≤ 2
n∑

i=1

φi = 2φ

This implies,
�(γ) ≤ φ

Lemma 20. Let γ : [0, L] → R
2 be a regular curve parametrized by its arc length

L such that γ(0) �= γ(L). Then there exists c ∈ (0, L) such that γ′(c) is parallel
to the line segment joining γ(0) and γ(L).

Proof. Let γ(t) = (x(t), y(t)) for all t ∈ [0, L] where x, y are differentiable single
valued real functions defined over [0, L].

Let u be the vector from γ(0) to γ(L). That is,

u = γ(0) − γ(0) = (x(L) − x(0), y(L) − y(0))

Let v be a vector perpendicular to γ(L) − γ(0). Since, 〈u, v〉 = 0, we can
write,

v = (y(0) − y(L),−x(0) + x(L))

Now consider the function f defined as follows over [0, L],

f(t) = γ(t) · v = x(t)(y(0) − y(L)) + y(t)(x(L) − x(0))

Observe that, f(0) = f(L). Hence by Rolle’s theorem there exists c ∈ (0, L)
such that, f ′(c) = 0. Since, for all t ∈ (0, L), f ′(t) = 〈γ′(t), v〉 + 〈γ(t), v′〉 =
〈γ′(t), v〉, we conclude, 〈γ′(c), v〉 = 0.

This means γ′(c) is perpendicular to v. Since u is perpendicular to v as well,
we conclude that, γ′(c) is parallel to u.
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C Asymptotic Analysis

Lemma 21. Let j > 1 be an index such that, after crossing the boundary at
point D (Fig. 10), D1,D2 are both outside or D1,D2 are both inside. Then the
number of times the While loop in Step 7 of Algorithm 2 executes before the
robots cross the line DB is at most φj−1/

√
λ + 1.

Proof. Define ψj to be the change of gradient in radians between γ(tj−1) and
γ(tj). Clearly, φj−1 ≥ ψj .

The vertical distance from the robot at the beginning of the execution of
Algorithm 2 to the line DB is at most λ sin(ψj +

√
λ).

Thus after ψj/
√

λ+1 ≤ φj−1/
√

λ+1 steps, the robots will cross DB, which
concludes the proof.

Lemma 22. Suppose γ defines a polygon. Given an instance of crossing the
shape at a point D, let β be the first exterior angle of the shape continuing from
D. If β is the only exterior angle of γ from D to the next point of crossing and√

λ ≤ β ≤ π/8, then the While loop in Step 7 of Algorithm 2 executes at most
8β/

√
λ times to cover the distance from B to C.

Proof. Figure 10 illustrates this lemma where ∠BAC = β. Note that the radius
of the circumcircle of the triangle �ABC is at most the radius ρ of the circum-
circle of the regular polygon in the diagram indicated by dotted lines. Given the
exterior angle

√
λ and side length λ of the regular polygon, the radius of the

circumcircle is ρ = λ/2 sin(
√

λ). By Lemma 6, ρ ≤ √
λ.

Now by the law of sines, |BC|/ sin β = 2ρ and this implies |BC| ≤ 2β
√

λ.

Fig. 10. Figure for Lemmas 21 and 22, the red color indicates the shape boundary,
blue color indicates path of the nearest robot, black colored segment is a construction
for the proof.
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Next, the angle β′ formed by the chord BC with the center of the regular
polygon is at most,

2 arcsin

(
2β sin(

√
λ)√

λ

)
≤ 2 arcsin(2β) ≤ 4β√

1 − (2β)2
≤ 4β√

1 − π2/16
≤ 8β

Next we multiply this angle with the radius to get the arc length between B
and C,

s = ρβ′ ≤ 8β
√

λ

Finally, noting that the arc length covered by every step of the robots is at
least λ, we get that after 8β/

√
λ steps from B the robots will cross AC.

Lemma 23. If γ is a polygon and if for some i ≤ m,
√

λ ≤ φi ≤ π/8, then
f(i) ≤ 8φi/

√
λ + φi−1/

√
λ + 1.

Proof. The trivial case is where Algorithm 2 is not executed at all i.e. f(i) = 0.
Observe that the motion of the robots during the execution of Algorithm 2

forms part of the perimeter of a convex polygon with side lengths and exterior
angles being λ and

√
λ respectively (except for the first and last sides).

Now suppose there are j vertices of γ defined over [ti, ti+1]. Let these vertices
be indexed γ(ak) where ak ∈ [ti, ti+1] for all k ∈ [1, j]. Finally, let βk be the
exterior angle at γ(ak). By Lemma 21, there will be at most φi−1/

√
λ+1 before

the robot crosses the nearest side of the exterior angle at γ(a1).
Next, observe that by Lemma 22 the nearest robot to the shape will cross

one of the sides of the exterior angle at γ(ak) by at most 8βk/
√

λ iterations of
the While loop in Algorithm 2.

In addition, the shape boundary turns either in convex or concave manner.
If the turn at an index changes from convex to concave or concave to convex,
it may actually move the sides of γ closer for the robot and hence the amount
the angle βk contributes to the overall iterations run inside the While loop of
Algorithm 2 is at most 8βk/

√
λ. Therefore,

f(i) ≤
j∑

k=1

8βk/
√

λ + φi−1/
√

λ + 1 = 8φi/
√

λ + φi−1/
√

λ + 1

D Synchronization Details

Our final two lemmas show that the other robot do not rotate or traverse asymp-
totically more than the robot nearest to the boundary. In addition, we discuss
briefly the synchronization steps in Algorithm 1.
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Fig. 11. Figure for synchronization steps in CROSS-BOUNDARY, green and blue
curves indicate robot path, red curve indicates the shape boundary. (Color figure online)

Observe that in Fig. 11, after reorientating itself to the curve gradient direc-
tion, the green and blue curves are “closer” to each other. But this can easily be
handled by letting the blue or green curve based robot traverse a little longer,
in particular greater than

√
λ − λ > λ distance and then turn. This synchro-

nization that maintains the distance of
√

λ between the two robots guarantees
that between successive executions of Algorithm 1, the robots will cover Ω(

√
λ)

distance of the shape boundary, in turn we are able to prove Lemma 12.

Lemma 24. For each execution of Algorithm 2, D2 traverses a distance of
O(

√
λ).

Fig. 12. Figure for Lemmas 24 and 25

Proof. In Fig. 12, the line segment AC describes the path of D1 and D2 can move
either directly from B to D or B to D via E. Now, by Algorithm 2 description,
|AC| = |DE| = λ. Note that, ∠BAE =

√
λ and |BA| = |AE| =

√
λ. Thus by

the law of sine, |EB|/ sin
√

λ =
√

λ/ sin((π − √
λ)/2) Hence,

|EB| ≤ λ/ cos(
√

λ/2) ≤ 2λ.

Thus, the path length of D2 at each step is at most 3λ.
In the last step independent of which robot encountered the shape boundary

and whether they are both inside or outside or one inside and one outside, D2
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will traverse at most a constant factor of
√

λ by the above discussion based on
Fig. 11. Finally, noting that D1 traverses O(

√
λ) distance according to Lemma

7, D2 traverses O(
√

λ) during each execution of Algorithm 2.

Lemma 25. For each execution of Algorithm 2, D2 does not rotate asymptoti-
cally more than D1.

Proof. We only need to check that the rotation of the green path towards BE
and then ED is asymptotically bounded by D1’s rotation. For brevity, we simply
note this follows by elementary euclidean geometric comparison of various angles,
beginning from the rotation of the red path to AC.

Finally, in the last step, both robots turn towards a common direction i.e.
gradient at a point of crossing the boundary.
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Abstract. We study the classical Cops and Robber game when the
cops and the robber move on an infinite periodic sequence G =
(G0, . . . , Gp−1)

∗ of graphs on the same set V of n vertices: in round t, the
topology of G is Gi = (V, Ei) where i ≡ t (mod p). As in the traditional
case of static graphs, the main concern is on the characterization of the
class of periodic temporal graphs where k cops can capture the robber.
Concentrating on the case of a single cop, we provide a characteriza-
tion of copwin periodic temporal graphs. Based on this characterization,
we design an algorithm for determining if a periodic temporal graph is
copwin with time complexity O(p n2 + n m), where m =

∑
i∈Zp

|Ei|,
improving the existing O(p n3) bound. Let us stress that, when p = 1
(i.e., in the static case), the complexity becomes O(n m), improving the
best existing O(n3) bound.

1 Introduction

Cops & Robber Games. Cops & Robber (C&R) is a pursuit-evasion game
played in rounds on a finite graph G between a set of k ≥ 1 cops and a single
robber. Before starting the game, an initial position on the vertices of G is chosen
first by the cops, then by the robber. Then, in each round, first the cops, then
the robber, move to a neighbouring vertex or (if allowed by the variant of the
game) stay in their current location. The game ends if at least one cop moves
to the vertex currently occupied by the robber, in which case the cops capture
the robber and win. The robber wins by forever avoiding capture. In the original
version [30,33], the graph G is connected and undirected, there is a single cop
and, in each round, the players are allowed to move to a neighbouring vertex or
not to move. Moreover, the cops and the robber have perfect information. It has
been then extended to permit multiple cops [2]. This version, which we shall call
standard, is the most commonly investigated.
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Among the many variants of this game (for a partial list, see [4,5]), two
are of particular interest to us. The first is the (much less investigated) natural
generalization when the graph G is a strongly connected directed graph [25,27];
we shall refer to this version as directed. Also of interest is the variant, called fully
active (or restless), in which the players must move in every round; proposed for
the standard game [19], it can obviously be extended to the directed version.

In the extensive research (see [5] for a review), the main focus is on character-
izing the class of k-copwin graphs; i.e., those graphs where there exists a strategy
allowing k cops to capture the robber regardless of the latter’s decisions. Related
questions are to determine the minimum number of cops capable of winning in
G, called the copnumber of G, or just to decide whether k cops suffice. Currently,
the most efficient algorithm for deciding whether or not a graph is k-copwin in
the standard game is O(k nk+2) [32], which yields O(n3) for the case k = 1.

In the existing literature on the C&R game, with only a couple of recent
exceptions, all results are based on the assumption that the graph on which the
game is played is static; that is, its link structure is the same in every round.
The question naturally arises: what happens if the link structure of the graph
changes in time, possibly in every round? This question is particularly relevant
in view of the intense research on time-varying graphs in the last two decades.

Temporal Graphs. The extensive investigations on computational aspects of
time-varying graphs have been motivated by the development and increasing
importance of highly dynamic networks, where the topology is continuously
changing. Such systems occur in a variety of settings, ranging from wireless
ad-hoc networks to social networks. Various formal models have been advanced
to describe the dynamics of these networks (e.g., [8,21,34]).

When time is discrete, as in the C&R game, the dynamics of these networks
is usually described as an infinite sequence G = (G0, G1, . . . ), called temporal
graph (or evolving graph), of static graphs Gi = (V,Ei) on the same set V of
vertices; the graph Gi is called snapshot (of G at time i), and the aggregate
graph G = (V,∪iEi) is called the footprint (or underlying) graph. This model,
originally suggested in [15,20], has become the de-facto standard in the ensuing
investigations.

All the studies are being carried out under some assumptions restricting the
arbitrariness of the changes. Some of these assumptions are on the “connectiv-
ity” of the graphs Gi in the sequence; they range from the (strong) 1-interval
connectivity requiring every Gi to be connected (e.g., [22,26,31]), to the weaker
temporal connectivity allowing each Gi to be disconnected but requiring the
sequence to be connected over time (e.g., [7,17]). Another class of assumptions
is on the “frequency” of the existence of the links in the sequence. An important
assumption in this class is periodicity: there exists a positive integer p such that
Gi = Gi+p for all i ∈ Z (e.g., [16,23,24]).

A large number of studies has focused on mobile entities operating on tem-
poral graphs, under different combinations of the above (and other) restrictive
assumptions. Among them, computations include graph exploration, dispersion,
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and gathering (e.g., [1,6,10–13,17,18]; for a recent survey see [9]). Until very
recently, none of these studies considered C&R.

Conceptually, the extension of C&R to a temporal graph G = (G0, G1, . . . ) is
quite natural. Initially, first the cops, then the robber, choose a starting position
on the vertices of G0. At the beginning of round t ≥ 0, the players are in Gt

and, after making their decisions and moves (according to the rules of the game),
they find themselves in Gt+1 in the next round. The game ends if and only if a
cop moves to the vertex currently occupied by the robber; in this case the cops
have won. The robber wins by forever preventing the cops from winning.

Existing Results. This extension has been first investigated by Erlebach and
Spooner [14]. They considered the standard game with a single cop under the
periodic frequency restriction; they presented an algorithm to determine if a
periodic temporal graph is copwin, and mentioned that it can be extended to
k > 1 cops. In this pioneering study, the results are obtained by reformulating
the problem in terms of a reachability problem and solving the latter; this,
unfortunately, does not provide insights on the temporal nature of the game.

Using the same reduction to reachability games, and thus with the same
drawbacks as [14], Balev et al. [3] studied the standard game in temporal graphs
under the 1-interval connectivity restriction. They showed how to determine
whether a single cop can capture the robber in a fixed temporal window, and
indicated how their algorithm can be extended to the case of k > 1 cops. They
also considered an “on-line” version of the problem, i.e. where the sequence of
graphs is a priori unknown; these results however are not relevant for the “full-
disclosure” problem studied here.

Finally, if the temporal graph is not given explicitly (i.e., as the sequence of
snapshots), but only implicitly by means of the Boolean edge-presence function
(e.g., [8]), the problem of deciding whether a single cop has a winning strategy in
the standard game on a periodic temporal graph has been shown to be NP -hard
[28,29], answering a question raised in [14].

Contributions. We focus on the C&R game in periodic temporal graphs, con-
centrating on the case of a single cop. We study the unified version of the game
defined as follow: in every round i ≥ 0, Gi is directed and the players are restless.
Observe that the standard and the directed versions, both in the original and
restless variant, can be expressed as a restless game played on (appropriately
chosen) directed graphs.

For the unified game, we provide a complete characterization of copwin peri-
odic temporal graphs, establishing several basic properties on the nature of a
copwin game in such graphs. We do so by employing a compact representation
of periodic temporal graphs, introducing the novel notion of augmented arenas,
and using these structures to extend to the temporal domain classical concepts
such as corners and covers.

These characterization results are general, in the sense that they do not
rely on any assumption on properties such as connectivity, symmetry, reflexivity
held (or not held) by the individual snapshot graphs in the sequence. The only
requirement, for the game to be defined, and thus playable, is that every node
in the graph must have an outgoing edge.
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Based on these results, we design an algorithm that determines if a periodic
temporal graph is copwin in time O(p n2+n m), where m =

∑
i∈Zp

|Ei|, improv-
ing on the existing O(p n3) bound established by [14]. Let us stress that, in the
static case studied in the literature, the complexity becomes O(n m), improving
the best existing O(n3) bound [32]; in particular our bound becomes O(n2) for
sparse graphs.

All our results are established for the unified version of the game. Therefore,
all the characterization properties and algorithmic results hold for the standard
and for the directed games studied in the literature, both when the players
are restless and when they are not. They hold also for all those settings, not
considered in the literature, where there is a mix of nodes: those where the
players must leave and those where the players can wait; furthermore such a mix
might be time-varying (i.e., different in every round). Due to space constraints,
some proofs are missing.

2 Definitions and Terminology

2.1 Graphs and Time

Static Graphs. We denote by G = (V,E), or sometimes by G = (V (G), E(G)),
the directed graph with set of vertices V and set of edges E ⊆ V ×V . A self-loop
is an edge of the form (u, u); if (u, u) ∈ E for all u ∈ V , then we will say that G
is reflexive. If (v, u) ∈ E whenever (u, v) ∈ E, we will say that G is symmetric
(or undirected). Given a graph G′, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G), then
we say G′ is a subgraph of G and write G′ ⊆ G. A subgraph G′ ⊆ G is proper,
written G′ ⊂ G, if G′ �= G. For reasons apparent later, we shall refer to a graph
G so defined as a static graph, and say it is playable if every node has at least
one outgoing edge.

Temporal Graphs. A time-varying graph G is a graph whose set of edges
changes in time1. A temporal graph is a time-varying graph where time is assumed
to be discrete and to have a start; i.e., time is the set Z

+ of positive integers
including 0. A temporal graph G is represented as an infinite sequence G =
(G0, G1, . . . ) of static graphs Gi = (V,Ei) on the same set of vertices V ; we
shall denote by n = |V | the number of vertices. The graph Gi is called the
snapshot of G at time i ∈ Z

+, and the aggregate graph G = (V,
⋃

i Ei) is called
the footprint of G. A temporal graph G is said to be reflexive if all its snapshots
are reflexive, symmetric if all its snapshots are symmetric.

Given two nodes x, y ∈ V , a strict journey (or temporal walk), from x to y
starting at time t is any finite sequence π(x, y) = 〈(z0, z1), (z1, z2), . . . , (zk−1, zk)〉
where z0 = x, zk = y, and (zi, zi+1) ∈ Et+i for 0 ≤ i < k. In the following, for
simplicity, we will omit the adjective “strict”. A temporal graph G is temporally
connected if for any u, v ∈ V and any time t ∈ Z

+ there is a journey from u
to v that starts at time t. Observe that, if G is temporally connected, then its

1 The terminology in this section is from [8].
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footprint is strongly connected even when all its snapshots are disconnected. A
temporal graph G is said to be always connected (or 1-interval connected) if all
its snapshots are strongly connected.

A temporal graph G is periodic if there exists a positive integer p such that
for all i ∈ Z

+, Gi = Gi+p. If p is the smallest such integer, then p is called
the period of G and G is said to be p-periodic. We shall represent a p-periodic
temporal graph G as G = (G0, . . . , Gp−1)

∗; all operations on the indices will be
taken modulo p. An example of a temporal periodic graph G with p = 4 is shown
in Fig. 1; observe that G is temporally connected, however most of its snapshots
are disconnected directed graphs, and none of them is strongly connected.

Let G = (G0, G1, . . . , Gp−1)
∗ and H = (H0,H1, . . . , Hp−1)

∗ be two temporal
periodic graphs with the same period on the same set V of vertices; we say H
is a periodic subgraph of G, written H ⊆ G, if Hi ⊆ Gi for every i ∈ Zp =
{0, 1, . . . , p− 1}. We shall denote by H ⊂ G the fact that H is a proper subgraph
of G; i.e., H ⊆ G but H �= G. Let us point out the obvious but useful fact that
static graphs are temporal periodic graphs with period p = 1. In this paper we
focus on C&R games in periodic temporal graphs, henceforth referred to simply
as periodic graphs, concentrating on the case of a single cop.

Consider the following class of directed static graphs, we shall call arenas.

Definition 1 (Arena). Let k ≥ 1 be an integer and W be a non-empty finite
set. An arena of length k on W is any static directed graph M = (Zk×W,E(M))
where E(M) ⊆ {((i, w), ([i + 1]k, w′))|i ∈ Zk and w,w′ ∈ W}, and [i]k denotes i
modulo k.

A periodic graph G = (G0, . . . , Gp−1)
∗ with period p and set of nodes V

has a unique correspondence with the arena D = (Zp × V,E(D)) where, for
all i ∈ Zp, ((i, u), ([i + 1]p, v)) ∈ E(D) if and only if (u, v) ∈ Ei, called the
arena of G. In particular, the arena D of G explicitly preserves the snapshot
structure of G: for all i ∈ Zp, there is an obvious one-to-one correspondence
between the snapshot Gi of G and the subgraph Si of D, called slice (or stage),
where V (Si) = {(i, v), v ∈ V } and E(Si) = {((i, u), ([i + 1]p, v))|(u, v) ∈ Ei)}.
An example of a periodic graph G and its arena D is shown in Fig. 1. In the
following, when no ambiguity arises, D shall indicate the arena of G.

The vertices of an arena D will be called temporal nodes. Given a temporal
node (i, u) ∈ V (Si) we shall denote by Ni(u,D) the set of its outneighbours,
and by Γi(u,D) = {v ∈ V |([i + 1]p, v) ∈ Ni(u,D)} the corresponding set of
nodes in Gi. We define Γ in

i (u,D) similarly for the inneighbours. A temporal
node (i, u) ∈ V (Si) is said to be a star if Γi(u,D) = V . It is said to be anchored
if there exists a journey from some node (0, v) ∈ V (S0) to (i, u). A subarena of
D = (Zp ×V,E(D)) is any arena D′ = (Zp ×V,E(D′)) where E(D′) ⊆ E(D); we
shall denote by D′ ⊂ D the fact that D′ is a subarena of D with E(D′) ⊂ E(D).

2.2 Cop & Robber Game in Periodic Graphs

The extension of the game from static to temporal graphs is quite natural.
Initially, first the cop, then the robber, chooses a starting position on the vertices
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Fig. 1. A periodic graph G = (G0, G1, G2, G3)
∗, its footprint G, and the corresponding

arena.

of G0. Then, at each time t ∈ Z
+, first the cop, then the robber, moves to a

vertex adjacent to its current position in Gi, where i = [t]p. Thus, in round t,
the players are in G[t]p and, after making their decisions and moves, they find
themselves in G[t+1]p in the next round. The game ends if and only if the cop
moves to the vertex currently occupied by the robber; in this case the cop has
won. The robber wins by forever preventing the cop from winning. Moreover,
the cops and the robber have perfect information.

A play on the arena D of G follows the play on G in a direct obvious way:
at each time t ∈ Z

+, first the cop, then the robber, chooses a new node in the
outneighbourhood of its current position and moves there. The cop wins and
the game ends if it manages to move to a temporal node ([t + 1]p, u) while the
robber is on ([t]p, u). The robber wins by forever escaping capture from the cop,
in which case the game never ends.

We consider the version of the game where all players are restless, i.e., they all
move to a different node in each round. In this version, the only requirement on
G is that it is playable: in each snapshot, every node must have an outgoing edge.
In what follows we only consider playable periodic graphs. No other requirement
such as connectivity, symmetry or reflexivity is imposed on G.

We call this version of the game unified. Observe that the standard version,
both in the original or restless variant, as well as the non-restless directed version
can actually be redefined as a restless game played in this unified version: a
pair of directed edges between a pair of nodes corresponds to an unidirected
link between them, and the presence of a self-loop at a node allows the players
currently there not to move to a different node in the current round.
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A configuration is a triple (t, c, r) ∈ Z
+ × V × V , denoting the position

c ∈ V of the cop and r ∈ V of the robber at the beginning of round t ∈ Z
+.

Let CG = (V (CG), E(CG)) be the infinite directed graph, called configuration
graph of D, describing all the possible configurations (t, u, v) together with the
following subset of their temporal connections in D:

V (CG) = {(t, u, v)| t ∈ Z
+; ([t]p, u), ([t]p, v) ∈ V (D)}

E(CG) = {((t, u, v), (t + 1, u′, v′))| t ∈ Z
+; u �= v; u′ ∈ Γ[t]p (u, D) , v′ ∈ Γ[t]p (v, D)}.

Observe that CG is acyclic; the source nodes (i.e., the nodes with no in-edges)
are those with t = 0, the sink nodes (i.e., the nodes with no out-edges) are those
with u = v. A playing strategy for the cop is any function σc : V (CG) → V where,
for every (t, u, v) ∈ V (CG), σc(t, u, v) ∈ Γ[t]p(u,D), and σc(t, u, v) = u if u = v;
it specifies where the cop should move in round t if the cop is at ([t]p, u), the
robber is at ([t]p, v), and it is the cop’s turn to move. A playing strategy σr for
the robber is defined in a similar way.

A configuration (t, u, v) is said to be copwin if there exists a strategy σc such
that, starting from (t, u, v), the cop wins the game regardless of the strategy
σr of the robber; such a strategy σc will be said to be copwin for (t, u, v). A
strategy σc is said to be copwin if there exists a temporal node (0, u) such that
σc is winning for all (0, u, v), v ∈ V . If a copwin strategy exists, then G and its
arena D are said to be copwin, else they are robberwin.

3 Copwin Periodic Graphs

3.1 Preliminary

In the analysis of the standard game played in a static graph, an important role
is played by the notions of corner node and its cover. The usual meaning is that
if the robber is on the corner, after the cop has moved to the cover, no matter
where the robber plays, the robber gets captured by the cop in the next round.

In an arena D, the same meaning is provided directly by the notions of
“temporal corner” and “temporal cover”.

Definition 2 (Temporal Corner and Temporal Cover). A temporal node (t, u)
in an arena D is said to be a temporal corner of temporal node (t+1, v) if u �= v
and Γt (u,D) ⊆ Γt+1 (v,D). The temporal node (t+1, v) is said to be a temporal
cover of (t, u).

Lemma 1. Every copwin arena contains a temporal corner.

This necessary condition, although important, provides only limited indica-
tions on how to solve the characterization problem.

3.2 Augmented Arenas and Characterization

The crucial element in the characterization of copwin periodic graphs is the
notion of augmented arena.



Cops & Robber on Periodic Temporal Graphs 393

Definition 3 (Augmented Arena). Let D be the arena of G. An augmented
arena A of D is an arena of length p such that D ⊆ A and, for each edge
((t, x), (t + 1, y)) ∈ E(A), the configuration (t, x, y) is winning for the cop in D.

We shall refer to the edges of the augmented arena A of D as shadow edges.
Observe that, by definition, all edges of D are shadow edges of A. Let A(D)
denote the set of augmented arenas of D. Observe that, by definition of D, for
each edge ((t, x), (t + 1, y)) ∈ E(D), the configuration (t, x, y) is winning for the
cop in D. Therefore, D ∈ A(D). Further observe the following:

Property 1. The partial order (A(D),⊂) induced by edge-set inclusion on A(D)
is a complete lattice. Hence (A(D),⊂) has a maximum which we denote by A∗.

We have now the elements for the characterization of copwin periodic graphs.

Theorem 1 (Characterization Property). An arena D is copwin if and only A∗

contains an anchored star.

Proof (only if). Let A∗ contain an anchored star (t, u), t ∈ Zp. By definition of
star, Γt (u,A∗) = V ; thus, by definition of augmented arena, for every v ∈ V the
configuration (t, u, v) is copwin, i.e. there is a copwin strategy σc from (t, u, v).

Since (t, u) is anchored, there exists a journey π((0, x), (t, u)), starting at time
0 and ending at time t, to (t, u) from some temporal node (0, x). Consider now
the cop strategy σ′

c of: (1) initially positioning itself on the temporal node (0, x),
(2) then moving according to the journey π((0, x), (t, u)) and, once on (t, u), (3)
following the copwin strategy σc from (t, u, w), where w is the position of the
robber at the beginning of round t. This strategy σ′

c is winning for all (0, x, v),
v ∈ V ; hence D is copwin.

(if) Let D be copwin. We then show that there must exist an augmented arena
A of D that contains an anchored star. Since D is copwin, by definition, there
must exist some starting position (0, c) for the cop such that, for all positions
(0, r) initially chosen by the robber, the cop eventually captures the robber. In
other words, all the configurations (0, c, v) with v ∈ V are copwin; thus the
arena A obtained by adding to E(D) the set of edges {((0, c), (1, v))|v ∈ V }
is an augmented arena of D and (0, c) is an anchored star. By Property 1,
E(A) ⊆ E(A∗) and the theorem follows. �

The characterization of copwin periodic graphs provided by Theorem 1 indi-
cates that, to determine whether or not an arena D is copwin, it suffices to check
whether A∗ contains an anchored star. To be able to transform this fact into
an effective solution procedure, some additional concepts need to be introduced
and properties established.

3.3 Shadow Corners and Augmentation

Other crucial elements in the analysis of copwin periodic graphs are the concepts
of corner and cover, introduced in Sect. 3.1 for arenas, now in the context of
augmented arenas.
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Definition 4 (Shadow Corner and Shadow Cover). Let A be an augmented
arena of D. A temporal node (t, u) is a shadow corner of a temporal node (t+1, v),
with v �= u, if Γt (u,D) ⊆ Γt+1 (v,A). The temporal node (t + 1, v) will then be
called the shadow cover of (t, u).

By definition, any temporal corner is a shadow corner, and its temporal covers
are shadow covers. An example is shown in Fig. 2; the red links indicate the
neighbours of node (t, u) in D, while in green are indicated the edges to the
neighbours of (t + 1, v) that exists in A but not in D.

Fig. 2. Node (t, u) is a shadow corner of (t + 1, v). (Color figure online)

The role that shadow corners play with regards to the set A(D) of augmented
arenas of D is expressed by the following.

Theorem 2 (Augmentation Property). Let A ∈ A(D); (t, x), (t, y) ∈ V (D);
and z ∈ Γt (x,D). If (t, y) is a shadow corner of (t + 1, z), then the arena
A′ = A ∪ {((t, x), (t + 1, y))} is an augmented arena of D.

Proof. Let A be an augmented arena of D and let (t, x), (t, y), (t + 1, z) ∈ V (D)
where z ∈ Γt (x,D) and (t, y) is a shadow corner of (t + 1, z). The theorem
follows if ((t, x), (t + 1, y)) is already an edge of A. Consider the case where
((t, x), (t + 1, y)) /∈ E(A). Since (t, y) is a shadow corner of (t + 1, z), then for
every w ∈ Γt (y,D) we have that ((t+1, z), (t+2, w)) ∈ E(A); i.e., (t+1, z, w) is
winning for the cop. Since z ∈ Γt (x,D), if the cop moves from (t, x) to (t + 1, z)
when the robber is on (t, y), then regardless of the robber’s move, the resulting
configuration would be winning for the cop. In other words, (t, x, y) is a winning
configuration for the cop. It follows that A′ = A ∪ {((t, x), (t + 1, y))} is an
augmented arena of D. �
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In other words, given an augmented arena, by identifying a (still unconsid-
ered) shadow corner and its covers, new shadow edges may be determined and
added to form a denser augmented arena.

3.4 Determining A∗

The properties expressed by Theorem 2, in conjunction with that of Theorem 1,
provide an algorithmic strategy to construct A∗: start from an augmented arena;
determine new shadow edges; add them to the set of shadow edges, creating a
denser augmented arena; repeat this process until the current augmented arena
A either contains an anchored star or is A∗.

To be able to employ the above strategy, a condition is needed to determine if
the current augmented arena of D is indeed A∗. This is provided by the following.

Theorem 3 (Maximality Property). Let A ∈ A(D). Then A = A∗ if and only
if, for every edge ((t, x), (t + 1, y)) /∈ E(A), there exists no z ∈ Γt (x,D) such
that Γt (y,D) ⊆ Γt+1 (z,A).

Proof (only if). By contradiction, let A = A∗ but there exists an edge
((t, x), (t + 1, y)) /∈ E(A) and a temporal node z ∈ Γt (x,D) such that
Γt (y,D) ⊆ Γt+1 (z,A). This means that (t, y) is a shadow corner of (t+1, z). By
Theorem 2, A′ = A ∪ {((t, x), (t + 1, y))} is an augmented arena of D; however,
E(A′) contains one more edge than E(A), contradicting the assumption that A
is maximum.

(if) Let A �= A∗; that is, there exists ((t, x), (t + 1, y)) ∈ E(A∗) \ E(A). By
definition, the configuration (t, x, y) is copwin; let σc be a cop winning strategy
for the configuration (t, x, y); i.e., starting from (t, x, y), the cop wins the game
regardless of the strategy σr of the robber.

Let C = (V (C), E(C)) ⊆ CG be the directed acyclic graph of configurations
induced by σc starting from (t, x, y), and defined as follows: (1) (t, x, y) ∈ V (C);
(2) if (t′, u, v) ∈ V (C) with t′ ≥ t and u �= v, then, for all w ∈ Γt′(v,D),
(t′+1, σc(t′+1, u, v), w) ∈ V (C) and ((t′, u, v), (t′+1, σc(t′+1, u, v), w))) ∈ E(C).

Observe that in C there is only one source (or root) node, (t, x, y), and every
(t′, w, w) ∈ V (C) is a sink (or terminal) node. Since σc is a winning strategy for
the root, every node in C is a copwin configuration, and every path from the
root terminates in a sink node (see Fig. 3).

Partition V (C) into two sets, U and W where U = {(i, u, v)|((i, u), (i+1, v)) ∈
E(A)} and W = V (C)\U . Observe that every sink of V (C) belongs to U ; on the
other hand, since ((t, x), (t + 1, y)) /∈ E(A) by assumption, the root belongs to
W (see Fig. 4). Given a node κ = (i, u, v) ∈ V (C), let C[κ] denote the subgraph
of C rooted in κ.

Claim. There exists κ ∈ V (C) such that all nodes of C[κ] except the root belong
to U .

Proof of Claim. Let P0 be the set of sinks of C. Starting from k = 0, consider
the set Pk+1 of all in-neighbours of any node of Pk; if Pk+1 does not contains an



396 J.-L. De Carufel et al.

Fig. 3. The directed acyclic graph C of configurations induced by σc starting from
(t, x, y). (Color figure online)

Fig. 4. The sets U (green) and W (purple). (Color figure online)

element of W , then increase k and repeat the process. Since (t, x, y) ∈ W , this
process terminates for some j ≥ 1, and the Claim holds for every κ ∈ Pj . �

Let (t′, x′, y′) be a node of V (C) satisfying the above Claim (see Fig. 5). Thus
((t′, x′), (t′ + 1, y′)) /∈ E(A) but, since (t′, x′, y′) is copwin, ((t′, x′), (t′ + 1, y′)) ∈
A∗. By the Claim, all other nodes of C[(t′, x′, y′)] belong to U , in particular the
set of nodes {(t′ + 1, w, z)|w = σc(t′, x′, y′), z ∈ Γt′(y′,D)}. This means that,
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Fig. 5. (t′, x′, y′) satisfies the Claim. (Color figure online)

for every z ∈ Γt′(y′,D), (t′ + 1, w, z) ∈ E(A). In other words, Γt′ (y′,D) ⊆
Γt′+1 (w,A); that is, (t′, y′) is a shadow corner of (t′ + 1, w) (see Fig. 6).

Fig. 6. (t′, y′) is a shadow corner of (t′ + 1, w). (Color figure online)

Summarizing: by assumption A �= A∗; as shown, ((t′, x′), (t′ + 1, y′)) /∈
E(A∗) \ E(A), and w ∈ Γt′ (x′,D) is a shadow cover of (t′, y′); that is,
Γt′ (y′,D) ⊆ Γt′+1 (w,A), concluding the proof of the if part of the theorem.

�



398 J.-L. De Carufel et al.

4 Algorithmic Determination

In this section we show that the results established in the previous sections
provide all the tools necessary to design an algorithm to determine whether or
not a periodic graph G is copwin. Furthermore, if G is copwin, the algorithm can
actually provide a winning cop strategy σc.

4.1 Solution Algorithm

General Strategy. Given a periodic graph G, or equivalently its arena D, to
determine whether or not it is copwin, by Theorem 1, it is sufficient to determine
whether or not its maximal augmented arena A∗ contains an anchored star.
Hence, informally, a basic solution approach is to start from A = D, repeatedly
determine a “new” shadow edge (i.e., in E(A∗) \ E(A)), using Theorem 2, and
consider the new augmented arena obtained by adding such an edge. This process
is repeated until either the current augmented arena A contains an anchored star,
or no other “missing” shadow edge exists. In the former case, by Theorem 1, D
is copwin; in the latter case, by Theorem 3, the current augmented arena is A∗

and, if it does not contain an anchored star, D is robberwin.
A general strategy based on this approach operates in a sequence of iterations,

each composed of two operations: the examination of a shadow edge, and the
examination of new shadow corners (if any) determined in the first operation.
More precisely, in each iteration: (i) A “new” (i.e., not yet examined) shadow
edge e = ((t, x), (t + 1, y)) is examined to determine if its presence transforms
some nodes into new shadow corners of (t, x). (ii) Each of these new shadow
corners is examined, determining if its presence generates new shadow edges. By
the end of the iteration, the shadow edge e and the new shadow corners of (t, x)
examined in this iteration are removed from consideration. This iterative process
continues until there are no new shadow edges to be examined (i.e. A = A∗) or
there is an anchored star in A.

Fig. 7. Outline of general strategy where the iterative process terminates when A = A∗.
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An outline of the strategy, where the iterative process is made to terminate
when A = A∗, is shown in Fig. 7.

Algorithm Description. Let us present the proposed algorithm, CopRob-
berPeriodic, which follows directly the general strategy described above to
determine whether or not an arena D = ((Zp × V ), E(D)) is copwin, where
V = {v1, . . . , vn}.

We denote by A the current augmented arena of D, by A its adjacency
matrix, and by At the adjacency matrix of slice St of A. Auxiliary structures
used by the algorithm include the queue SE , of the known shadow edges that
have not been examined yet; a n × n Boolean matrix SEt for each t, initialized
to At, used to indicate shadow edges already known; a n×n Boolean matrix SCt

for each t, initialized to zero and used to indicate the detected shadow corners;
more precisely, SCt[x, y] = 1 indicates that (t, x) has been determined to be a
shadow corner of (t + 1, y),

The algorithm is composed of two phases: Initialization, in which all the
necessary structures are set up and preliminary computations are performed;
and Iteration, a repetitive process where the two basic operations of the general
strategy (described in Sect. 4.1) are performed in each iteration: examination of
a “new” shadow edge (to determine “new” shadow corners generated by that
edge) and examination of the “new” shadow corners (to determine “new” shadow
edges generated by that corner).

The structure used to determine new shadow corners is the set {DIF(t, x, y) :
t ∈ Zp, x, y ∈ V } of n2p Boolean arrays of dimension n. For all x, v ∈ V and
t ∈ Zp, the value of the cell DIF(t, x, y)[i] indicates whether vi ∈ Γt (x,D) \
Γt+1 (y,A) (in which case DIF(t, x, y)[i] = 1) or vi ∈ Γt (x,D) ∩ Γt+1 (y,A)
(in which case DIF(t, x, y)[i] = 0). Note that, if vi /∈ Γt(x,D), the value of
DIF(t, x, y)[i] is left undefined; indeed, the algorithm only initializes and uses
the |Γt(x,D)| cells corresponding to the elements of Γt(x,D); we shall call those
cells the core of DIF(t, x, y).

The algorithm also maintains a variable φ (DIF(t, x, y)) indicating the current
number of core cells with value “1” in array DIF(t, x, y); this variable is initialized
to |Γt(x,D)|. Observe that, by definition of DIF(t, x, y), φ (DIF(t, x, y)) = 0 iff
(t, x) is a shadow corner of (t + 1, y).

In each iteration of the Iteration phase, a new shadow edge is taken from SE ,
added to the augmented arena A, and examined. The examination of a shadow
edge ((t, x), (t + 1, y)) involves (i) the update of DIF(t − 1, z, x)[y] for any in-
neighbour (t − 1, z), in D, of (t, y) and, for any such in-neighbour, (ii) the test
to see if the presence of the edge ((t, x), (t + 1, y)) in the augmented arena has
created new shadow corners among such in-neighbours2. If new shadow corners
exist, they may in turn have created new shadow edges originating from the
in-neighbours, in D, of (t, x). In fact, any in-neighbour (t − 1, w) of (t, x) such
that ((t − 1, w), (t, z)) is not already in the augmented arena is a new shadow
2 Such would be any (t − 1, z) for which the update has resulted in an array DIF(t −

1, z, x) that contains only zero entries.
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edge: a move of the cop from (t − 1, w) to (t, x) is fatal for the robber wherever
it goes; in such a case, the algorithm then adds ((t − 1, w), (t, z)) to SE .

The pseudo code of the algorithm is shown in Algorithm1. Not shown are
several very low level (rather trivial) implementation details. These include, for
example, the fact that the core cells of DIF(t, x, y) are connected through a dou-
bly linked list, and that, for efficiency reasons, we also maintain two additional
doubly linked lists: one going through the core cells of the array containing “1”,
the other linking the core cells containing “0”.

4.2 Analysis

Correctness. Let us prove the correctness of Algorithm CopRobberPeriodic.
Let D = (Zp × V,E(D)) be the arena of a p-periodic graph with n = |V | and
m = |E(D)|.
Lemma 2. Algorithm CopRobberPeriodic terminates after at most |E(A∗)|
− |E(D)| iterations.

Given an augmented arena A and a shadow edge e = ((t, x), (t + 1, y)) ∈
E(A∗) \E(A), we shall say that e is an implicit shadow edge of A if there exists
z ∈ Γt (x,D) such that (t, y) is a shadow corner of (t + 1, z) in A.

Lemma 3. At the end of the Initialization phase: (i) for all and only the tem-
poral corners (t, x) of (t + 1, y) in D, SCt[x, y] = 1 and φ (DIF(t, x, y)) = 0; (ii)
all implicit shadow edges of D are in SE; furthermore, the entry in SE of all
edges of D and implicit shadow edges of D, is 1.

Let us consider the Initialization phase as iteration 0 of the Iteration phase;
hence, the entire algorithm can be viewed as a sequence of iterations. Denote by
Aj the augmented arena at the beginning of the j-th iteration, with A0 = D.
We now show that, at the beginning of iteration j, all shadow corners of Aj−1

have been examined and all implicit shadow edges of Aj−1 are in SE .

Lemma 4. At the beginning of iteration j > 0:

(a) φ (DIF(t, x, y)) = 0 if and only if (t, x) is a shadow corner of (t + 1, y) in
Aj−1; furthermore, in such a case, SCt[x, y] = 1.

(b) SE contains all the implicit shadow edges of Aj−1; furthermore, in SE, the
entry of the edges of Aj−1 and of the implicit shadow edges of Aj−1 is 1.

Theorem 4. Algorithm CopRobberPeriodic correctly determines whether or
not an arena D is copwin.

Complexity. Let us analyze the cost of Algorithm CopRobberPeriodic.
Given D = (Zp × V,E(D)), let mi denote the number of edges of slice Si of
D, i ∈ Zp, and m = |E(D)| =

∑p−1
i=0 mi the total number of edges of D. As

usual, n = |V |.
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Algorithm 1: CopRobberPeriodic

Input: Arena D = (Zp × V, E(D)), with V = {v1, . . . , vn}
1 Initialization
2 A := D
3 SE := A
4 SE := ∅
5 SC :=Zero /* a table of p zero matrices, each of size n × n */
6 foreach t ∈ Zp, u, v ∈ V do
7 φ (DIF(t, u, v)) := |Γt(u, D)|
8 foreach w ∈ Γt (u, D) do
9 if At+1[v, w] = 1 then

10 DIF(t, u, v)[w] := 0
11 φ (DIF(t, u, v)) := φ (DIF(t, u, v)) − 1
12 if φ (DIF(t, u, v)) = 0 and SCt[u, v] = 0 then
13 SCt[u, v] := 1

14 foreach z ∈ Γ in
t+1 (v, D) do

15 if SEt[z, u] = 0 then
16 SEt[z, u] := 1
17 SE ← ((t, z), (t + 1, u))

18 else
19 DIF(t, u, v)[w] := 1

20 Iteration
21 while SE �= ∅ do
22 ((t, x), (t + 1, y)) ← SE
23 At(x, y) := 1

24 foreach z ∈ Γ in
t (y, D) do

25 if DIF(t − 1, z, x)[y] = 1 then
26 DIF(t − 1, z, x)[y] := 0
27 φ (DIF(t − 1, z, x)) := φ (DIF(t − 1, z, x)) − 1

28 if φ (DIF(t − 1, z, x)) = 0 and SCt−1[z, x] = 0 then
29 SCt−1[z, x] := 1

30 foreach w ∈ Γ in
t (x, D) do

31 if SEt−1[w, z] = 0 then
32 SEt−1[w, z] := 1
33 SE ← ((t − 1, w), (t, z))

34 if A contains an anchored star then D is copwin
35 else D is robberwin

Theorem 5. Algorithm CopRobberPeriodic determines in time O(n2p +
nm) whether or not D is copwin.

Proof. We first derive the cost of the Initialization phase. Observe that the
initialization of A, SE, SC (Lines 2–4) can be performed with O(n2p) operations.
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Then, Line 7 is executed n2p times. The cost of the initialization of DIF and of
φ (DIF) (Lines 6–13, 18–19), which includes the update of some entries of SC,
plus the cost of the initialization of SE (Lines 14–17), which includes the update
of some entries of SE, require at most

n2p +
∑

i∈Zp,u∈V

O(|Γi(u,D)|) +
∑

i∈Zp,v∈V

O(|Γ in
i (v,D)|) =

p−1∑

i=0

O(n(mi + mi−1)),

which sums up to O(n2p + nm) operations for the Initialization phase.
Let us consider now the Iteration phase. The while loop will be repeated

until in the current augmented arena A there are no more shadow edges to
be examined (i.e. A = A∗). By Lemma 2, the total number of iterations is
|E(A∗)| − |E(D)| ≤ n2p − m. Further observe that every operation performed
during an iteration requires constant time.

In each iteration, two processes are being carried out. The first process (Lines
24–27) is the determination of all new shadow corners (if any) of (t, x) created
by (the addition of) the shadow edge ((t, x), (t + 1, y)) being examined. The
total cost of this process in this iteration is at most two operations for each in-
neighbour of (t, y), i.e., at most 2c1|Γ in

t (y,D)|, where c1 ∈ O(1) is the constant
cost of performing a single operation in this process.

This process is repeated in all iterations, each time with a different shadow
edge being examined. Thus, the cost of 2c1|Γ in

t (y,D)| will be incurred for all
((t, x), (t + 1, y)) ∈ E(A∗); that is, at most n times. Summarizing, for each
y ∈ V, t ∈ Zp this process costs 2c1n|Γ in

t (y,D)|. Hence the total cost of this
process over all iterations is

∑

y∈V,t∈Zp

2 c1 n |Γ in
t (y,D)| = 4 c1 n

p−1∑

t=0

mt = O(nm).

The second process, to be performed only if new shadow corners of (t, x)
have been found in the first process, is the determination (Lines 28–33) of all
the new shadow edges (if any) created by the found new shadow corners, and
their addition to SE . The cost of this process for a new shadow corner in this
iteration is c2|Γ in

t (x,D)|, where c2 ∈ O(1) is the constant cost of performing a
single operation in this process. Observe that, if a new shadow corner of (t, x)
is found in this iteration, it will not be considered in any subsequent iteration
(Lines 28–29). Hence, the cost c2|Γ in

t (x,D)| will be incurred at most once for
each shadow corner of (t, x); that is, at most n times. Summarizing, for each
x ∈ V, t ∈ Zp this process costs at most 2c2n|Γ in

t (x,D)|. Hence the total cost of
this process over all iterations is

∑

x∈V,t∈Zp

2 c2 n |Γ in
t (x,D)| = 4 c2 n

p−1∑

t=0

mt = O(nm).

Consider now the last step of the algorithm, of determining if the constructed
A contains an anchored star. To determine all the stars (if any) in A∗ can be
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done by checking the degree of each temporal node in A∗, i.e., in O(np) time.
To determine if at least one of them is anchored can be done by a DFS traversal
of A∗ starting from each root node (0, x), for a total of at most O(n2 + nm)
operations. It follows that the total cost of the algorithm is O(pn2 + nm) as
claimed. �

The bound established by Theorem 5 improves on the existing O(p n3) bound
[14]; in particular, in periodic graphs with sparse snapshots the proposed algo-
rithm terminates in O(p n2) time. Furthermore, since a static graph is a periodic
graph with p = 1, the bound of Theorem 5 becomes O(n m), improving the exist-
ing O(n3) bound [32]; in particular our bound becomes O(n2) for sparse graphs.

4.3 Extensions

Determining a Copwin Strategy. The algorithm, as described, determines
whether or not the arena D (and, thus, the corresponding temporal graph G) is
copwin. Simple additions to the algorithm would allow it to easily determine a
copwin strategy σc if D is copwin. For any shadow edge e = ((t, x), (t + 1, y), let
ρ(t, x, y) be defined as follows. If e = ((t, x), (t+1, y) ∈ E(D), then ρ(t, x, y) = y.
If e = ((t, x), (t + 1, y) ∈ E(A∗) \ E(D), when e is inserted in SE , either during
the Initialization or the Iteration phase, then ρ(t, x, y) = z where (t+1, z) is the
shadow cover of (t, y) determined in the corresponding phase of the algorithm
(Line 12 if Initialization, Line 28 if Iteration).

Recall that, if D is copwin, A∗ must contain an anchored star, say (t, x),
Since (t, x) is a star, if the cop is located on (t, x) and the robber is located on
(t, y), by moving according to ρ (starting with ρ(t, x, y)) the cop will eventually
capture the robber. Since (t, x) is anchored, it is reachable from some node in
G0, say (0, v); that is, there is a journey π((0, v), (t, x)) from (0, v) to (T, x),
where [T ]p = t. Consider now the following strategy σc for the cop: (1) choose as
initial location (0, v); (2) follow π((0, v), (t, x)); (3) follow ρ. Using this strategy,
the cop will eventually capture the robber.

More Cops & One Robber. The framework presented so far can be gener-
alized to the case when there are k > 1 cops. By shifting from a representation
in terms of directed graphs to one in terms of directed multi-hypergraphs, it is
possible to extend all the basic concepts introduced for k = 1. Indeed, all the
fundamental properties of augmented arenas continue to hold in this extended
setting, and the same strategy can be used to determine if a periodic graph is
k-copwin. The strategy can be implemented by a direct extension of the solution
algorithm for k = 1.
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Abstract. We consider the CONGEST model on a network with n
nodes, m edges, diameter D, and integer costs and capacities bounded
by poly n. In this paper, we show how to find an exact solution to the
minimum cost flow problem in n1/2+o(1)(

√
n +D) rounds, improving the

state of the art algorithm with running time m3/7+o(1)(
√

nD1/4
+D) [16],

which only holds for the special case of unit capacity graphs. For cer-
tain graphs, we achieve even better results. In particular, for planar
graphs, expander graphs, no(1)-genus graphs, no(1)-treewidth graphs, and
excluded-minor graphs our algorithm takes n1/2+o(1)D rounds. We obtain
this result by combining recent results on Laplacian solvers in the CON-
GEST model [3,16] with a CONGEST implementation of the LP solver
of Lee and Sidford [29], and finally show that we can round the approx-
imate solution to an exact solution. Our algorithm solves certain linear
programs, that generalize minimum cost flow, up to additive error ε in
n1/2+o(1)(

√
n + D) log3(1/ε) rounds.

Keywords: CONGEST model · Minimum Cost Flow · LP solver

1 Introduction

The CONGEST model [38] is one of the most widely studied distributed models.
It consists of a network of n nodes that communicate in synchronous rounds,
where each node can exchange a message of size O(log n) with each of its neigh-
bors. The minimum cost flow problem is considered one of the harder problems in
the CONGEST model. Although the highest lower bound is Ω̃(

√
n+D), which is

the same as for ‘easier’ problems such as shortest path, minimum spanning trees,
bipartiteness, s-t connectivity [15,39,43], it was only recently that the first dis-
tributed algorithm was presented [16]. For the approximate version there exists
some further, also quite recent, results [6,19]. These results use the powerful
Laplacian paradigm to obtain their results.

The Laplacian paradigm encompasses a series of algorithms that combine
numerical and combinatorial techniques. The Laplacian matrix of a weighted
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graph G is defined as L(G) ∶ =Deg(G) − A(G), where Deg(G) is the diagonal
weighted degree matrix: Deg(G)uu ∶ =

∑
(u,v)∈E w(u, v) and Deg(G)uv ∶ = 0 for

u≠ v, and A(G) is the adjacency matrix: A(G)uv ∶=w(u, v). This line of research
was initiated by Spielman and Teng [46], who showed that linear equations in
the Laplacian matrix of a graph can be solved in near-linear time. More efficient
sequential and parallel Laplacian solvers have been presented since [10,23,25–
28,41]. The Laplacian paradigm has booked many successes, including but not
limited to flow problems [5,12,22,33,34,36,37,40,44], bipartite matching [7], and
(parallel) shortest paths [4,31].

Recently, these developments have also made their way to the distributed
world [3,6,16,17,19]. In particular, Forster, Goranci, Liu, Peng, Sun, and Ye [16]
provide a Laplacian solver that takes no(1)(

√
n + D) rounds, which is near-

optimal: they provide a Ω̃(
√

n + D) lower bound. Furtermore, they show that
their Laplacian solver leads to an implementation of (minimum cost) maximum
flow algorithms [12,37] in the CONGEST model. In this paper, we significantly
improve the round complexity of the algorithms solving the exact variants of
these flow problems.

1.1 Our Results

Our main result is an algorithm that solves the minimum cost flow problem, so
in particular also the maximum flow problem.

Theorem 1. There exists an algorithm that, given a directed graph G = (V,E,w)
with integer costs q ∈Zm

>0 and capacities c ∈Zm
>0 satisfying ||q||�, ||c||� ≤M , com-

putes a minimum cost maximum s-t flow in Õ(
√

nTLaplacian(G) log3 M) rounds
in the CONGEST model, where TLaplacian(G) is the number of rounds needed to
solve a Laplacian system on G.

We know that TLaplacian(G) = no(1)(
√

n +D) for general graphs [16], which is
near-optimal. However, for certain graphs we can get better results. This is based
on the concept of universally optimal algorithms, which takes the topology of the
input graph into account. The details regarding this can be found in Sect. 1.2.
In particular, we have TLaplacian(G)=no(1)D for planar graphs, expander graphs,
no(1)-genus graphs, no(1)-treewidth graphs, and excluded-minor graphs.

Further we remark that Cohen, Mądry, Sankowski, and Vladu [12] show that
the negative weight single source shortest path problem can be reduced to min-
imum cost flow and a non-negative weight shortest path computation. Using [8]
for the latter in Õ(

√
nD1/4

+D) rounds, we obtain the following corollary.

Corollary 1. There exists an algorithm that, given a directed graph G =

(V,E,w) with integer weights w∈Zm satisfying ||w||�≤M , and source s∈V , com-
putes shortest paths from s in Õ(

√
nTLaplacian(G) log3 M) rounds in the CON-

GEST model, where TLaplacian(G) is the number of rounds needed to solve a
Laplacian system on G.

We obtain Theorem 1 by writing the problem as an LP, solving this LP up
to high precision and rounding the result. Hereto we present an LP solver for
certain linear programs in the CONGEST model.
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Formally, the setting is as follows. Let A ∈Rm×n, b ∈Rn, c ∈Rm, li ∈R∪{−�},
and ui ∈ R∪{+�} for all i ∈ [m], where we assume li ≠ −� or ui ≠ +�. The
linear program we want to solve is as follows

OPT ∶= min
x∈Rm

∶AT x=b
∀i∈[m]∶li≤xi≤ui

cT x.

We assume that the set of feasible solutions to the LP Ωo
∶= {x ∈ Rm

∶AT x =
b, li ≤ xi ≤ ui} is non-empty.

Theorem 2. Let A ∈Rm×n be a constraint matrix with rank(A) = n, let b ∈Rn

be a demand vector, and let c ∈ Rm be a cost vector. Moreover, let x0 ∈ Ωo be
a given initial point. Suppose a CONGEST network consists of n nodes, where
each node i knows both every entire j-th row of A for which Aji ≠ 0 and knows
(x0)j if Aji≠0. Moreover, suppose that for every y∈Rn and positive diagonal W ∈
Rm×m we can compute (AT WA)−1y up to precision poly(1/m) in TLaplacian(G)
rounds. Let U ∶= max{||1/(u−x0)||�, ||1/(x0 − l)||�, ||u− l||�, ||c||�}. Then with
high probability the CONGEST algorithm LPSolve outputs a vector x ∈Ωo with
cT x ≤OPT + ε in Õ(

√
n log3(U/ε)TLaplacian(G)) rounds.

Intuitively, U is a bound on the size of any constants or variables appearing
in the LP. For graph problems, this is usually bounded by a polynomial in n and
M .

The formal statement of this theorem might seem somewhat convoluted;
essentially it means that we can solve linear programs whose constraint matrix
can be expressed in terms of the adjacency matrix, where each node knows
the entries in the constraint matrix corresponding to its incident edges. Analo-
gously, a node has to output the variables corresponding to its incident edges.
This includes flow problems, see Sect. A. It also includes approximate fractional
maximal matching. However, here the running time does not come close to the
O(log(nM)/ε2) running time of Ahmadi, Kuhn, and Oshman [2] (at least for
ε =Ω(1/n1/4)).

1.2 Related Work

Distributed Flow Algorithms. Our main point of reference is Forster, Goranci,
Liu, Peng, Sun, and Ye [16]. They provide the previous best minimum cost flow
solver, which takes m3/7+o(1)(

√
nD1/4

+ D) rounds1. Their approach uses the
framework from Cohen, Mądry, Sankowski, and Vladu [12], which uses Õ(m3/7)
iterations of another interior point method to solve a (different) LP representing
the problem. We bring this number of iterations down to Õ(n1/2). Moreover, this
approach leads to an approximate solution that has to be made into an exact
solution by running Õ(m3/7) shortest path computations. Currently, the state
of the art for algorithm for shortest path computations takes Õ(

√
nD1/4

+ D)

1 For simplicity, we restrict ourselves to graphs with weights bounded by poly(m)
when discussing related work.
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rounds [8], which is already (slightly) worse than the global (near optimal) round
complexity for solving Laplacian systems. Moreover, this means that their set-up
cannot benefit from the recent progress of (almost) universally optimal Laplacian
solvers. Our approach solves the LP up to a higher precision, such that an
internal rounding procedure gives the exact solution, and no further shortest
path computations are necessary. A further improvement is that [16] only solves
minimum cost flow in graphs with unit capacities, where we solve it for arbitrary
capacities. Further, [16] provides a maximum flow algorithm for graphs with
arbitrary capacities, which takes Õ(m3/7U1/7(no(1)(

√
n +D) +

√
nD1/4) +

√
m)

rounds. This is the previous best result for maximum flow in the CONGEST
model.

For approximate versions, there exist some further results that only hold
for undirected graphs. Ghaffari et al. [19] give a (1 + ε)-approximate maximum
flow in weighted undirected graphs in no(1)(

√
n+D)/ε3 rounds. Further, Becker

et al. [6] gave a (1 + ε)-approximation to unit capacity minimum cost flow in
undirected graphs in Õ(n/ε2) rounds.

Interior Point Methods for Flow Problems. The line of work giving solutions
for flow problems through interior point methods is initiated by Daitch and
Spielman [13], who leverage the Laplacian solver of Spielman and Teng [46] in
an Õ(m3/2) time algorithm. The most recent development is the near-linear time
algorithm of Chen et al. [9]. However, their algorithm uses Ω(m) iterations, which
seems to render it hard to implement it efficiently in a distributed setting, as any
intuitive implementation uses at least one round per iteration. The algorithms
with lowest iteration counts have either Θ(m3/7) iterations [12,37], or Θ(

√
n)

iterations [29]. In our work, we show how to implement the latter efficiently in
the CONGEST model.

Distributed Laplacian Solvers and Shortcut Quality. Forster et al. [16] provide
a CONGEST model algorithm with TLaplacian(G) = no(1)(

√
n + D), and show

that this is existentially optimal. For any graph, we know that TLaplacian(G) =
Ω(D), however it turns out that the

√
n-term is not necessary for every instance.

To make this precise, we define the shortcut quality of a graph, as introduced
by Ghaffari and Haeupler [18]. Intuitively, the shortcut quality tells us how
easy it is, given some partition of the nodes, to compute some simple function
(e.g., a minimum over the values held by nodes) on each part separately. Since
distributed algorithm design often has such functions at its core, the shortcut
quality can be used both for better upper and lower bounds.

Definition 1. Let G = (V,E) be an undirected graph whose node set V is par-
titioned into k disjoint subsets V = P1 ⊍ P2 ⊍ · · · ⊍ Pk, such that each induced
subgraph G[Pi] is connected. A collection of k subgraphs H1, · · · ,Hk is called a
shortcut of G with congestion c and dilation d if

1. the (hop) diameter of G[Pi] ∪Hi is at most d;
2. every edge is included in at most c graphs Hi.
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The quality of the shortcut is defined as c+d. The shortcut quality of G, denoted
by SQ(G), is defined as the smallest shortcut quality of the worst-case partition
of V into connected parts.

Anagnostides et al. [3] provide efficient algorithms for Laplacian solving in
terms of the shortcut quality. Moreover, they provide an Ω̃(SQ(G)) lower bound.
Theorem 3 ([3]). There exists a Laplacian solver with error ε > 0 in the CON-
GEST model that, given a graph G, takes no(1) poly(SQ(G)) log(1/ε) rounds. In
graphs with minor density δ and hop-diameter D, it takes no(1)δD log(1/ε).

Note that on graphs with minor density no(1) the algorithm takes
no(1)D log(1/ε) rounds, matching the lower bound up to no(1) factors.
This includes planar graphs, no(1)-genus graphs, no(1)-treewidth graphs, and
excluded-minor graphs.

Further note that in particular on graphs G with SQ(G)=no(1) the algorithm
takes no(1) log(1/ε) rounds. This includes expanders, hop-constrained expanders,
and the classes mentioned above with restricted diameter D = no(1).

2 Overview and Techniques

2.1 LP Solver

For our LP solver, we give an implementation of Lee and Sidford’s [29] LP
solver in the CONGEST model. For correctness, we refer to [29]. In a similar
fashion, Forster and de Vos [17] gave an implementation of this algorithm in the
Broadcast Congested Clique. In this distributed model, each round each node
can send the same O(log n)-bit message to every other node in the network.
This is in contrast to the CONGEST model, where nodes can send different
messages, but only to its neighbors. Forster and de Vos essentially show that
this LP framework uses

√
n iterations, where each iteration involves:

(1) Matrix-vector multiplication involving some matrix with entries correspond-
ing to edges;

(2) Approximately solving a Laplacian system;
(3) Computing leverage scores;
(4) Projecting on a mixed norm ball.

For this section (and the formulation of Theorem 2), we assume that matrix-
vector multiplication can be done efficiently. In practice, this means that we have
to be able to write the constraint matrix in terms of the adjacency matrix. In
other words, there should only be constraints that correspond to edges.

For (2), we can use [3,16], as mentioned in Sect. 1.2.
Concerning (3); the leverage score of a matrix M is defined by σ(M) ∶

= diag(M(MT M)−1MT ), where diag(·) returns the diagonal vector. We remark
(similar to [17,29]) that, using the Johnson-Lindenstrauss Lemma, we can com-
pute a sufficient approximation by some local sampling and a small number
of matrix-vector multiplications and Laplacian solves. Details can be found in
Sect. 3.
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It remains to show that we can ‘project on a mixed norm ball’. The objective
here is to project a vector a ∈Rm onto a ball of mixed norm. In particular, given
l ∈Rm, we consider the ball of mixed norm 1: B ∶= {x ∶ ||x||2 + ||l−1x||� ≤ 1}. Now
we need to compute x ∈ B closest to a, more formally we need to compute

arg max||x||2+||l−1x||
�

≤1 aT x.

We do this by borrowing ideas from [17,29]. Details can be found in Sect. 3.

2.2 Minimum Cost Flow

Let G = (V,E) be a directed graph, with integer capacities c ∈Zm
≥0, integer costs

q ∈ Zm
≥0, and source and target nodes s and t respectively. The minimum cost

(maximum) flow problem is to find an s-t flow of minimum cost, among all such
flows of maximum value. More formally, we say that f ∈RE

≥0 is a s-t flow if fe≤ce

for all e ∈E and
∑

e∈E∶v∈e fe = 0. The value of the flow is
∑

v∈V ∶(s,v)∈E f(s,v). The
maximum flow, is the flow of maximum value and the minimum cost (maximum)
flow is the flow of minimum cost

∑
e∈E feqe among all flows of maximum value.

The minimum cost flow problem has a natural corresponding linear program.
However, the state-of-the-art LP solvers only provide an approximate solution.
To turn this efficiently into an exact solution, we do not consider the textbook
LP formulation, but one that is closely related. After solving this up to high
precision (additive error ε = O(1/poly(m))), we use the well-known fact that a
minimum cost flow problem with integer input admits an optimal solution with
integer values [24], and we (internally) round the approximate fractional solution
to an optimal integer solution.

The technical contribution is to show that this particular LP formulation
satisfies the demands of Theorem 2. This is done in Sect. A.

3 A Distributed LP Solver

In this section, we present our algorithm to solve a linear program, given a
Laplacian solver. First, we reiterate the formal description of the problem. Let
A ∈Rm×n, b ∈Rn, c ∈Rm, li ∈R∪{−�}, and ui ∈R∪{+�} for all i ∈ [m], where
we assume li ≠ −� or ui ≠ +�. The linear program we try to solve is as follows

OPT ∶= min
x∈Rm

∶AT x=b
∀i∈[m]∶li≤xi≤ui

cT x.

We assume that the set of feasible solutions to the LP Ωo
∶= {x∈Rm

∶AT x=b, li≤
xi ≤ ui} is non-empty.

Theorem 2. Let A ∈Rm×n be a constraint matrix with rank(A) = n, let b ∈Rn

be a demand vector, and let c ∈Rm be a cost vector. Moreover, let x0 ∈ Ωo be a
given initial point. Suppose a CONGEST network consists of n nodes, where each
node i knows both every entire j-th row of A for which Aji ≠0 and knows (x0)j if
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Aji ≠0. Moreover, suppose that for every y ∈Rn and positive diagonal W ∈Rm×m

we can compute (AT WA)−1y up to precision poly(1/m) in TLaplacian(G) rounds.
Let U ∶= max{||1/(u − x0)||�, ||1/(x0 − l)||�, ||u − l||�, ||c||�}. Then with high
probability the CONGEST algorithm LPSolve(outputs a vector) x ∈ Ωo with
cT x ≤OPT + ε in Õ(

√
n log3(U/ε)TLaplacian(G)) rounds.

The algorithm we provide in this section is an implementation of Lee and
Sidford’s [29] in the CONGEST model. We refer to them for the proof of cor-
rectness. For the two subroutines that we change, computing leverage scores and
projecting on a mixed norm ball, we provide a correctness analysis. The remain-
der of this section consists of presenting the algorithm and proving the bound
on the number of rounds. In both we follow notation of Forster and de Vos [17],
who provide the equivalent for the Broadcast Congested Clique.

Lee and Sidford [30]2 show that it is sufficient to solve equations involving
AT DA up to precision poly(1/m). We use this fact for our running time, and
simplify our presentation by writing as if we solve such equations exactly. Simi-
larly, we need to perform matrix-vector multiplication with the adjacency matrix
and diagonal matrices only up to precision poly(ε/(mU)). Further we can assume
all values are upper bounded by poly(mU/ε). Due to the bandwidth constraint
of the CONGEST model, these multiplications take Õ(log(U/ε)) rounds. At the
end of the computation both incident nodes to an edge know its value.

Further, we use throughout in runtime bounds that D = Õ(TLaplacian(G)),
which holds since TLaplacian(G) = Ω̃(SQ(G)) = Ω̃(D) [3].

Definitions and Set-Up. On a high level, we perform a weighted path following
interior point method. This means that throughout a number of iterations, given
a current point x(i)

∈Ωo, we find a point x(i+1)
∈Ωo closer to the optimal solution.

To control that a point x(i) stays away from the boundary, we need to control
lj ≤ x

(i)
j ≤ uj for j ∈ [n]. This is done using a barrier function φi(xi), which goes

to � when xi goes to the boundary, i.e., to lj or uj . The path then looks as
follows:

x(i)
= arg minAT x=b

⎛

⎝i · cT x +
∑

j∈[m]

φj(xj)

⎞

⎠ . (1)

To make this work, we need some more properties on φ, leading to the defi-
nition of a self-concordant barrier function.

Definition 2. A convex, thrice continuously differentiable function φ ∶ K → Rn

is a ν-self-concordant barrier function for open convex set K⊆Rn if the following
three conditions are satisfied

1. limi→� φ(xi)=� for all sequences (xi)i∈N with xi∈K converging to the bound-
ary of K.

2. |φ′′′(x)[h, h, h]| ≤ 2|φ′′(x)[h, h]|3/2 for all x ∈K and h ∈Rn.
2 In this section, we refer to the arXiv version [30] rather than the conference ver-

sion [29], whenever the technical details can only be found there.
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3. |φ′(x)[h]| ≤√
ν|φ′′(x)[h, h]|1/2 for all x ∈K and h ∈Rn.

In our case, we choose φ as follows.

– If li is finite and ui = +�, we use a log barrier: φi(x) ∶= − log(x − li).
– If li = −� and ui is finite, we use a log barrier: φi(x) ∶= − log(ui − x).
– If li and ui are finite, we use a trigonometric barrier: φi(x) ∶= −log cos(aix+bi),

where ai ∶=
π

ui−li
and bi ∶= −

π
2

ui+li
ui−li

.

This φ is a 1-concordant barrier function [30]. It can be computed internally
in the CONGEST model, since we only require local knowledge of the con-
straints. By using this function in Eq. 1, we obtain a Õ(

√
m log(1/ε)) iteration

method [42].
We can generalize Eq. 1 to

x(i)
= arg minAT x=b

⎛

⎝i · cT x +
∑

j∈[m]

gj(x)φj(xj)

⎞

⎠ , (2)

for some weight functions gj ∶ Ω
o → Rm

≥0. Lee and Sidford [29] show that using
regularized Lewis weights we only need Õ(

√
n log(1/ε)) iterations.

To give the formal definition of the regularized Lewis weight function, we
first introduce some general notation.

– For any matrix M ∈ Rn×n, we let diag(M) ∈ Rn denote the diagonal of M ,
i.e., diag(M)i ∶=Mii.

– For any vector x ∈Rn, we write upper case X ∈Rn×n for the diagonal matrix
associated to x, i.e., Xii ∶=xi and Xij ∶= 0 if i ≠ j.

– For x ∈Ωo, we write Ax ∶= (Φ′′(x))−1/2A.
– For h ∶ Rn → Rm and x ∈Rn, we write Jh(x) ∈Rm×n for the Jaccobian of h

at x, i.e., [Jh(x)]ij ∶= ∂
∂xj

h(x)i.
– For positive w ∈ Rn

>0, we let || · ||w the norm defined by ||x||2w =
∑

i∈[n] wix
2
i ,

and we let || · ||w+� the mixed norm defined by ||x||w+� = ||x||� +Cnorm||x||w
for some constant Cnorm > 0 to be defined later.

– Whenever we apply scalar operation to vectors, these operations are applied
coordinate-wise, e.g., for x, y ∈Rn we have [x/y]i ∶=xi/yi, and [x−1]i ∶=x−1i .

Definition 3. A differentiable function g ∶ Ωo → Rm
>0 is a (c1, cs, ck)-weight

function if the following bounds holds for all x ∈Ωo and i ∈ [m]:

– size bound: max{1, ||g(x)||1} ≤ c1;
– sensitivity bound: eT

i G(x)−1Ax(AT
x G(x)−1Ax)−1AT

x G(x)−1ei ≤ cs;
– consistency bound: ||G(x)−1Jg(x)(Φ′′(x))−1/2||g(x)+� ≤ 1 − ck < 1.

We denote Cnorm ∶= 24
√

csck.

Following Lee and Sidford [29], we use the regularized Lewis weights. The 
p-
Lewis weights generalize a 
2 measure of row importance called leverage scores.
They are a key tool in approximating matrix 
p-norms.



414 T. de Vos

Definition 4. For M ∈Rm×n with rank(M) = n, we let

σ(M) ∶= diag(M(MT M)−1MT )

denote the leverage scores of M . For all p > 0, we define the 
p-Lewis weights

wp(M) as the unique vector w ∈ Rm
>0 such that w = σ(W

1
2−

1
p M), where w =

diag(W ). We define the regularized Lewis weights as g(x) ∶=wp(Mx) + c0, for
p = 1 − 1

log(4m) and c0 ∶=
n
2m .

The regularized Lewis weight function g is a (c1, cs, ck)-weight function with
c1 ≤

3
2n, cs ≤ 4, and ck ≤ 2 log(4m) [30].

As said before, Lee and Sidford show that using Eq. 2 with this weight func-
tion for Õ(

√
n log(1/ε)) iterations gives an ε-approximate solution to our LP.

Computing Leverage Scores. Existing techniques for computing regularized
Lewis weights compute leverage scores σ(M) ∶= diag(M(MT M)−1MT ) as an
intermediate step. As shown later, by repeatedly computing leverage scores,
we can approximate the Lewis weights. Unfortunately, there are no known effi-
cient algorithms for computing leverage scores exactly. However, obtaining a
sufficiently close approximation is feasible [11,14,32,35,45,47]. We observe that
σ(M)i = ||M(MT M)−1MT ei||22, and note that by the Johnson-Lindenstrauss
lemma [21] this norm can be approximately preserved under projections onto
a low dimensional subspace. In particular Achlioptas [1] gives an explicit (ran-
domized) construction.

Theorem 4 ([1]). Let m > 0 be an integer, let η, β > 0 be parameters, let k =
Ω(β log m/η2) be an integer, and let R ∈Rk×m be a random matrix, where Rij =

±1/
√

k, each with probability 1/2. Then for any x ∈Rm we have

P[(1 − η)||x||2 ≤ ||Rx||2 ≤ (1 + η)||x||2] ≥ 1 −m−β .

Now we are ready to given an algorithm to compute σ(apx) such that (1 −
η)σ(M)i ≤ σ

(apx)
i ≤ (1 + η)σ(M)i, for all i ∈ [m].

Algorithm 1: ComputeLeverageScores(M,η)
1 Set k =Θ(log(m)/η2).
2 Let R ∈Rk×m be a matrix where Rij = ±1/

√
k, each with probability 1/2.

3 Compute p(j) =M(MT M)−1MT R(j) for j ∈ [k].
4 return

∑k
j=1

(
p(j)

)2
.

Lemma 1. For any η > 0, with probability at least 1 − 1/mO(1) the CONGEST
model algorithm ComputeLeverageScores(M,η) computes σapx(M) such that

(1 − η)σ(M)i ≤ σapx(M)i ≤ (1 + η)σ(M)i

for all i ∈ [m]. If M =WA, for some diagonal W ∈Rm×m, then it terminates in
Õ((log(U/ε) + TLaplacian(G))/η2) rounds.
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Proof. ComputeLeverageScores(M,η) returns σapx(M)i. Using that the matrix
M(MT M)−1MT is symmetric, we obtain

σapx(M)i ∶=

k∑

j=1

(M(MT M)−1MT R(j))2i

=

k∑

j=1

(RM(MT M)−1MT )2ji

= ||RM(MT M)−1MT ei||22.
Since we also have σ(M)i = ||M(MT M)−1MT ei||22, Theorem 4 gives us that

(1 − η)σ(M)i ≤ σapx(M)i ≤ (1 + η)σ(M)i,

with probability at least 1−1/mO(1). Using a union bound, we can get the same
guarantee for all i ∈ [m] simultaneously.

In the CONGEST model, we construct the required random matrix R as fol-
lows. For each edge, the node with higher ID flips k coins to determine the val-
ues ±1/

√
k and sends the result over the edge. This takes O(k/ log n) = O(1/η2)

rounds.
For the computation in line 3, we note that we can view this as k times

– a matrix-vector multiplication MT R(j), followed by
– a Laplacian system solve (MT M)−1MT R(j), as MT M =AT W 2A, followed by
– a matrix-vector multiplication M(MT M)−1MT R(j).

The first and last step can be done in Õ(log(U/ε)) rounds, and the Laplacian
solve can be done in TLaplacian(G) rounds. Finally, line 4 can be done internally.
Hence we have total running time Õ((log(U/ε) + TLaplacian(G))/η2).

Computing the Weight Function. We continue by providing the algorithms for
computing the initial weights, and for updating the weights throughout the path
finding algorithm. As we use the latter for the former, we give the latter first.

Algorithm 2: ComputeApxWeights(M,p,w(0), η)

1 L =max{4, 8
p}, r = p2(4−p)

220 , and δ = (4−p)η
256 .

2 T =
⌈
80

(
p
2 +

2
p

)
log

(
pn
32η

)⌉
.

3 for j = 1, . . . , T − 1 do

4 σ(j)
=ComputeLeverageScores(W

1
2−

1
p

(j) M, δ/2).
5 for i ∈ [m] do

6 Let w
(j+1)
i be the median of (1 − r)w(0)

i , w
(j)
i −

1
L

(

w
(0)
i −

w
(0)
i

w
(j)
i

σ
(j)
i

)

,

and (1 + r)w(0)
i .

7 return w(T ).
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Lemma 2. Let W ∈Rm×m be some diagonal matrix, let w(0)
∈Rm

>0 be a vector,
and let η ∈ (0, 1] and p ∈ [1 − 1/ log(4m), 2] be parameters. Set M =WA. Then
ComputeApxWeights(M,p,w(0), η) returns approximate weights in

Õ( log(1/η)
η2 (log(U/ε) + TLaplacian(G)))

rounds.

Proof. The algorithm consists of T = Õ((p + 1
p ) log(p/η)) iterations. Using the

assumption that p∈[1−1/ log(4m), 2], we get T =Õ(log(1/η). In each iteration, we

call ComputeLeverageScores(W
1
2−

1
p

(j) M, δ/2) and compute some medians, the
latter of which can be done internally. The call to ComputeLeverageScores takes
Õ((log(U/ε) + TLaplacian(G))/(δ/2)2) = Õ((log(U/ε) + TLaplacian(G))/η2) rounds,
giving us the total running time as stated.

For the properties and correctness of the approximate weights we refer to [30].
Using the following algorithm, we compute the initial weights. We do this by
iteratively bringing the all-ones vector closer to the initial weight vector.

Algorithm 3: ComputeInitialWeights(A, ptarget, η)

1 p = 2.
2 w = 12ck1.
3 while p ≠ ptarget do
4 h = min{2,p}

√
n log

me2

n

· r.

5 Let p(new) be the median of p − h, ptarget, and p + h.
6 w=ComputeApxWeights(A, p(new), wp(new)/p, p2(4−p)

222 ).
7 p = p(new).
8 return ComputeApxWeights(A, ptarget, w, η).

Lemma 3. Let η ∈ (0, 1] and ptarget ∈ [1 − 1/ log(4m), 2] be parameters, then the
CONGEST model algorithm ComputeInitialWeights(A, ptarget, η) returns
initial weights in Õ((

√
n + log(1/η)

η2 (log(U/ε) + TLaplacian(G))) rounds.

Proof. The while loop of line 3 finishes in O(
√

n(ptarget + 1
ptarget

) log(m/n)) iter-
ations. Using that ptarget ∈ [1− 1/ log(4m), 2], this simplifies to Õ(

√
n) iterations.

Each iteration consists of internally computing h and some medians, and a call
to ComputeApxWeights. This call requires precision p2(4−p)

222 , which is Ω(1) for
our range of p. So the while loop takes Õ(

√
n(log(U/ε) + TLaplacian(G))) rounds

in total.
Then in line 8 we call ComputeApxWeights with precision η, which takes

Õ( log(1/η)
η2 (log(U/ε) + TLaplacian(G))) rounds. Together this gives the stated run-

ning time.

For the properties and correctness of the initial weights we refer to [30].
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Algorithm. In this section, we give the formal algorithm for solving the LP,
together with a series of lemmas proving the running time of each subroutine.

Algorithm 4: LPSolve(x0, ε)
Input: an initial point x0 such that AT x0 = b.

1 w =ComputeInitialWeights(A, 1 − 1/ log(4m), 1
216 log3 m

)+ n
2m ,

d = −wφ′(x0).
2 t1 = (227m3/2U2 log4 m)−1, t2 =

2m
η , η1 =

1
218 log3 m

, and η2 =
ε

8U2 .
3 (x(new), w(new))=PathFollowing(x0, w, 1, t1, η1, d).
4 (x(final), w(final))=PathFollowing(x(new), w(new), t1, t2, η2, c).
5 return x(final).

After computing the initial weights, this algorithm calls PathFollowing
twice, first to move the given initial point towards a central starting point with
respect to the cost vector c, and second to move the path along from there. The
algorithm PathFollowing is as follows.

Algorithm 5: PathFollowing(x,w, tstart, tend, η, c)

1 t = tstart, R = 1
768c2k log(36c1csckm)

, and α = R
1600

√
n log2 m

.
2 while t ≠ tend do
3 (x,w) =CenteringInexact(x,w, t, c).
4 Let t be the median of (1 − α)t, tend, and (1 + α)t.
5 for i = 1, . . . , 4ck log( 1

η ) do
6 (x,w)=CenteringInexact(x,w, tend, c).
7 return (x,w).

The progress steps in PathFollowing are made by CenteringInexact, which
is as follows.

Algorithm 6: CenteringInexact(x,w, t, c)

1 R = 1
768c2k log(36c1csckm)

, and η = 1
2ck

.

2 δ =

∣
∣
∣
∣

∣
∣
∣
∣Px,w

(
tc+wφ′(x)
w
√

φ′′(x)

)∣
∣
∣
∣

∣
∣
∣
∣
w+�

// where

Px,w ∶= I −W −1Ax(AT
x W −1Ax)−1AT

x .

3 x(new)
= x − 1√

φ′′(x)
Px,w

(
tc−wφ′(x)
w
√

φ′′(x)

)

.

4 z = log
(
ComputeApxWeights(Ax(new) , 1 − 1/ log(4m), w, eR

− 1)
)
.

5 u =
(
1 − 6

7ck

)
δ·ProjectMixedBall(−∇Φ η

12R (z − log(w)), Cnorm
√

w).

6 w(new)
= exp(log(w) + u).

7 return
(
x(new), w(new)

)
.

We present the subroutine ProjectMixedBall in Sect. 4. We prove the run-
ning times of these three algorithms in reverse order.
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Lemma 4. The CONGEST model algorithm CenteringInexact(x,w, t, c) ter-
minates in Õ(log2(U/ε)TLaplacian(G)) rounds.

Proof. Computing Px,w

(
tc+wφ′(x)
w
√

φ′′(x)

)

takes Õ(TLaplacian(G)) rounds, using inter-

nal computation for multiplying with diagonal matrices and a Laplacian solve.
To compute δ and make it known to every node, we use Õ(D log(U/ε)) rounds.

Next, we call ComputeApxWeights with precision η = Ω̃(1), so this takes
Õ(log(U/ε) + TLaplacian(G)) rounds by Lemma 2. Finally we call the algorithm
ProjectMixedBall, which takes

Õ(D log2(U/ε)) = Õ(log2(U/ε)TLaplacian(G))

rounds by Lemma 7.

We use this result to prove the running time of PathFollowing.

Lemma 5. Let tstart, tend≥1, and η∈(0, 1] be parameters. The CONGEST model
algorithm PathFollowing(x,w, tstart, tend, η, c) terminates in

Õ(
√

n(| log(tend/tstart)| + log(1/η)) log2(U/ε)TLaplacian(G))

rounds.

Proof. First, we note that the while loop of line 2 uses Õ(
√

n(| log(tend/tstart)|+
log(1/η))) iterations [30]. Each such iteration consists of a call to
CenteringInexact and internal computations. Then the for loop of line 5 takes
O(ck log(1/η)) iterations, each consisting of a call to CenteringInexact. Clearly
this is dominated by the running time of the while loop.

Since CenteringInexact takes Õ(log2(U/ε)TLaplacian(G)) rounds by Lemma
4, we obtain the stated running time.

Finally, we give the running time of the complete algorithm.

Lemma 6. Given ε > 0, the CONGEST model algorithm LPSolve(x0, ε) termi-
nates in Õ(

√
n log3(U/ε)TLaplacian(G)) rounds.

Proof. Apart from some internal computation, this algorithm consists of three
different parts: computing initial weight and two calls to PathFollowing with
different parameters.

The call to ComputeInitialWeights takes

Õ(
√

n(log(U/ε) + TLaplacian(G)))

rounds, since we call it with precision 1
216 log3 m

.
The execution of PathFollowing(x0, w, 1, t1, η1, d) takes

Õ(
√

n log(U) log2(U/ε)TLaplacian(G))

rounds, by Lemma 5 and plugging in t1 and η1.
The execution of PathFollowing(x(new), w(new), t1, t2, η2, c) takes

Õ(
√

n log3(U/ε)TLaplacian(G))

rounds, by Lemma 5 and plugging in t1, t2 and η2.
The last running time dominates the first two and gives the stated result.
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4 Projecting on a Mixed Norm Ball

In this section, we present a CONGEST algorithm for projecting on a mixed
norm ball. This problem is defined as follows. Given a, l ∈Rm, find

arg max||x||2+||l−1x||
�

≤1 aT x.

In the original work, Lee and Sidford [30] initially sort m values and precompute
m functions on a and l. In the CONGEST model, these are expensive routines.
We borrow ideas from Forster and de Vos [17], who overcame the same problem
for the Broadcast Congested Clique. The rough idea is to only sort implicitly,
and perform a binary search to reduce the number of functions that we have
to compute to a manageable amount. We provide pseudocode in Algorithm 7,
with more details in the proof of Lemma 7. The pseudocode has a rather compli-
cated binary search and some daunting equations in it. Both are probably best
understood by examining the proof.

Note that this problem has little to do with the graph structure in the CON-
GEST model, and as expected the algorithm actually does not make use of the
graph structure other than establishing a shortest path tree for communication.

Algorithm 7: ProjectMixedBall(a, l)

1 Determine the minimum value, maximum value, and step size of
{|ai|/li ∶ i ∈ [m]}, denote this space of possible values S.

2 For s ∈ S, let i be the index of the value |ai|/li closest to s.
3 Perform a binary search on S w.r.t. gi:
4 Compute

∑
k∈[j] |ak||lk|, ∑

k∈[j] a
2
k, and

∑
k∈[j] l

2
k for j ∈ {i − 1, i}.

5 Internally compute

gi ∶= max
t∶it=i

t
∑

k∈[i]

|ak||lk| +
√

(1 − t)2 − t2
∑

k∈[i]

l2k

√

||a||22 −
∑

k∈[i]

a2
k.

6 Let t be the index corresponding to the maximal gi.

7 xi
j ∶=

⎧
⎪⎨

⎪⎩

t
1−t sign(aj)lj if j ∈ [i]
√

1−
(

t
1−t

)2 ∑
k∈[i] l2k

||a||22−
∑

k∈[i] a2
k

aj otherwise.

8 return x

Lemma 7. Suppose the vectors a, l ∈Rm are distributed over the network such
that: 1) for each i∈ [m], ai and li are known by exactly one node, 2) a node knows
ai if and only if it knows li. Moreover, suppose that ||a||�, ||l||� ≤O(poly(m)U).
Then the algorithm ProjectMixedBall(a, l) finds

arg max||x||2+||l−1x||
�

≤1 aT x

up to precision O(1/(poly(mU/ε)) in Õ(D log2(U/ε)) rounds in the CONGEST
model.
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Proof. We rewrite the problem into maximizing over some concave function,
which has a unique maximum that can be found using a binary search over the
domain. We start by parameterizing the 
2-norm:

max
||x||2+||l−1x||

�

≤1
aT x = max

0≤t≤1

[

max
||x||2≤1−t, −tli≤xi≤tli

aT x

]

= max
0≤t≤1

(1 − t)

⎡

⎣ max
||x||2≤1, −

t
1−t li≤xi≤

t
1−t li

aT x

⎤

⎦

= max
0≤t≤1

g(t),

where we define g(t) as

g(t) ∶= (1 − t)

⎡

⎣ max
||x||2≤1, −

t
1−t li≤xi≤

t
1−t li

aT x

⎤

⎦ .

We conceptually sort the values of a and l with |ai|/li monotonically decreasing,
i.e., we only sort them for this notation in the proof, the algorithm does not sort
the values. Next, we write it for the first coordinate i ∈ [m] such that

1−
(

t
1−t

)2 ∑
k∈[it]

l2k

||a||22−
∑

k∈[it]
a2
k
≤

(
t

1−t

)2
l2i

a2
i

.

Now it can be shown (see e.g. [30]) that the vector that attains the maximum
in g(t) is xit

∈Rm, defined by

xit
j ∶=

⎧
⎪⎨

⎪⎩

t
1−t sign(aj)lj if j ∈ [it]√

1−
(

t
1−t

)2 ∑
k∈[it]

l2k

||a||22−
∑

k∈[it]
a2
k

aj otherwise.

We substitute this into the definition of g(t):

g(t) = t
∑

k∈[it]

|ak||lk| +
√

(1 − t)2 − t2
∑

k∈[it]

l2k

√

||a||22 −
∑

k∈[it]

a2
k.

We note that g(t) is a concave function (its second derivative is non-positive),
hence it has a unique maximum. We find this maximum by searching over the
domain. To do this, we rewrite g in terms of the index it:

max
0≤t≤1

g(t) = max
0≤t≤1

max
i∈[m]

gi(t)

=max
i∈[m]

max
t∶it=i

gi(t),

where

gi(t) ∶= t
∑

k∈[i]

|ak||lk| +
√

(1 − t)2 − t2
∑

k∈[i]

l2k

√

||a||22 −
∑

k∈[i]

a2
k.
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Now fix a index i, and suppose a node knows
∑

k∈[j] |ak||lk|, ∑
k∈[j] a

2
k, and

∑
k∈[j] l

2
k for j ∈ {i − 1, i}. Then we can internally compute gi ∶= maxt∶it=i gi(t),

because we can internally find the range of t where it = i, since we have that
it ≥ is if t ≤ s, hence the set of t such that it = j is an interval.

Next, we describe how to compute the sums
∑

k∈[j]. We do this by construct-
ing a shortest path tree of diameter D from the node holding the values aj , lj .
Along the tree, we aggregate the values of |ak||lk|, a2

k, or l2k respectively, for all
k ≤ j. The result can be broadcasted to all nodes without incurring extra costs.
Note that if the indices are not known explicitly, the node holding aj and lj , can
first broadcast |aj |/lj , and then other nodes only add their values |ai||li| (and
others respectively) if |ai|/li≤|aj |/lj . Since the values need to be maintained with
precision poly(mU/ε), sending one message needs at most Õ(log(U/ε)) rounds,
so the whole procedure takes at most Õ(D log(U/ε)) rounds.

Naively, we would now be done by a simple binary search over i∈[m], however
we have the complication that we have only conceptually sorted the indices and
hence nodes do not know which indices belong to the values they are holding.
Instead we do a binary search over the possible values of |ai|/li. Again using a
communication tree from an arbitrary leader, we can find the global minimum,
global maximum, and step size (least common multiple of denominators li) for
the |ai|/li values. As not all values in the search space appear, we take the closest
appearing value for a given value in the binary search. This gives a total search
space of size O(poly(mU/ε)), so we need Õ(log(U/ε) iterations, each taking
Õ(D log(U/ε)) rounds.

A Minimum Cost Flow

In this section, we prove Theorem 1 by applying Theorem 2 to a suitable linear
program and rounding the result to an exact solution accordingly. This particular
LP formulation of minimum cost flow has first been presented by Daitch and
Spielman [13], and is used by Lee and Sidford [30], and Forster and de Vos [17].
As opposed to the formulation of Theorem 1, we use |V | and |E| in this section to
indicate the size of the node and edge set. We reserve n and m for the dimensions
of the linear program, in line with Sect. 3. We write M for the maximal edge
capacity and cost.

Let B ∈R(|V |−1)×|E| be the edge-node incidence matrix with the row for the
source s omitted. The variables of the LP consist of x∈R|E|, y, z ∈R|V | and F ∈R.
The linear program is defined as follows.
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min q̃T x + λ(1T y + 1T z) − 2nM̃F

subject to Bx + y − z = Fet,

0 ≤ xi ≤ ci,

0 ≤ yi ≤ 4V |M,

0 ≤ zi ≤ 4V |M,

0 ≤ F ≤ 2V |M,

where M̃ ∶= 8|E|2M3, λ ∶= 28160|E|82M9, and q̃ = c+ r, where for each edge re is
a uniformly random number from

{
1

4|E|2M2 , 2
4|E|2M2 , . . . , 2|E|M

4|E|2M2

}
. Daitch and

Spielman [13] show that with probability at least 1/2 this problem has a unique
solution, which is also a valid solution to the original problem. After applying
this reduction we (conceptually) scale everything by 4|E|2M2 to ensure the cost
vector is integral again.

We set the variables as follows to obtain an initial interior point: F =|V |M,x=
c
2 , y = 2|V |M1 − (B c

2 )− + Fet, z = 2|V |M1 + (B c
2 )+, where we denote a+ and a−

for the vectors defined by

(a+)i ∶=

{
ai if ai ≥ 0;
0 else.

and (a−)i ∶=

{
ai if ai ≤ 0
0 else.

respectively.
Next, we describe how we transform an ε-approximate solution x to this LP

into an exact solution for the minimum cost flow problem. By introducing extra
variables y and z, we might have overshot the flow by at most 1T y + 1T z ≤ ε.
To correct for this we set x̃ = (1 − ε)x. We set ε ∶= 1

320|E|4M5 , and then the error
with respect to the unique solution is at most 1/6 [30], so we have we can simply
round the flow on each edge to the closest integer. Clearly both these steps can
be done internally in the CONGEST model.

To solve the above LP, we use Theorem 2 with A=[B I −I −et]T . Actually, this
does not use the entire network, but only n= |V |−1 nodes, since the source does
not need to participate in the computation. Since the knowledge of the node-
incident matrix B is distributed as required, the knowledge of A is distributed
as required. The last step is to show that we can solve equations in AT WA
in TLaplacian. This follows from [20] and is made explicit in [17,23], who show
that AT WA is symmetric and diagonally dominant, hence equations in AT WA
can be solved by solving two Laplacian equations. We get U/ε =M poly(|V |), so
log3(U/ε) = Õ(log3 M).
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and unit capacity minimum cost flow in õ(m10/7 logw) time (extended abstract).
In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, pp. 752–771. SIAM (2017). https://doi.org/10.1137/1.
9781611974782.48

13. Daitch, S.I., Spielman, D.A.: Faster approximate lossy generalized flow via interior
point algorithms. In: Proceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC 2008), pp. 451–460 (2008). https://doi.org/10.1145/1374376.
1374441

14. Drineas, P., Magdon-Ismail, M., Mahoney, M.W., Woodruff, D.P.: Fast approxi-
mation of matrix coherence and statistical leverage. J. Mach. Learn. Res. 13(1),
3475–3506 (2012). announced at ICML 2012

https://doi.org/10.4230/LIPIcs.DISC.2018.6
https://doi.org/10.4230/LIPIcs.DISC.2018.6
https://doi.org/10.4230/LIPIcs.DISC.2022.6
https://doi.org/10.1109/FOCS46700.2020.00018
https://doi.org/10.1109/FOCS46700.2020.00018
https://doi.org/10.1137/19M1286955
https://doi.org/10.1109/FOCS46700.2020.00090
https://doi.org/10.1109/FOCS46700.2020.00090
https://doi.org/10.1007/s00446-021-00412-8
https://doi.org/10.1007/s00446-021-00412-8
https://doi.org/10.1145/2591796.2591833
https://doi.org/10.1145/2688073.2688113
https://doi.org/10.1145/2688073.2688113
https://doi.org/10.1137/1.9781611974782.48
https://doi.org/10.1137/1.9781611974782.48
https://doi.org/10.1145/1374376.1374441
https://doi.org/10.1145/1374376.1374441


424 T. de Vos

15. Elkin, M.: An unconditional lower bound on the time-approximation trade-off for
the distributed minimum spanning tree problem. SIAM J. Comput. 36(2), 433–456
(2006). https://doi.org/10.1137/S0097539704441058

16. Forster, S., Goranci, G., Liu, Y.P., Peng, R., Sun, X., Ye, M.: Minor sparsifiers
and the distributed Laplacian paradigm. In: Proceedings of the 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, pp. 989–999. IEEE
(2021). https://doi.org/10.1109/FOCS52979.2021.00099, https://doi.org/10.1109/
FOCS52979.2021.00099

17. Forster, S., de Vos, T.: The Laplacian paradigm in the broadcast congested clique.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing,
PODC 2022, pp. 335–344. ACM (2022). https://doi.org/10.1145/3519270.3538436,
https://doi.org/10.1145/3519270.3538436

18. Ghaffari, M., Haeupler, B.: Distributed algorithms for planar networks II: low-
congestion shortcuts, MST, and min-cut. In: Krauthgamer, R. (ed.) Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, pp. 202–219. SIAM (2016). https://doi.org/10.1137/1.9781611974331.
ch16

19. Ghaffari, M., Karrenbauer, A., Kuhn, F., Lenzen, C., Patt-Shamir, B.: Near-
optimal distributed maximum flow. SIAM J. Comput. 47(6), 2078–2117 (2018).
https://doi.org/10.1137/17M113277X, announced at PODC 2015

20. Gremban, K.D.: Combinatorial preconditioners for sparse, symmetric, diagonally
dominant linear systems. Ph.D. thesis, Carnegie Mellon University, Pittsburgh
(1996)

21. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert
space. Contemp. Math. 26, 189–206 (1984)

22. Kelner, J.A., Lee, Y.T., Orecchia, L., Sidford, A.: An almost-linear-time algorithm
for approximate max flow in undirected graphs, and its multicommodity general-
izations. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, pp. 217–226. SIAM (2014). https://doi.org/10.
1137/1.9781611973402.16

23. Kelner, J.A., Orecchia, L., Sidford, A., Zhu, Z.A.: A simple, combinatorial algo-
rithm for solving SDD systems in nearly-linear time. In: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing (STOC 2013), pp. 911–920
(2013). https://doi.org/10.1145/2488608.2488724

24. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2006)
25. Koutis, I., Miller, G.L., Peng, R.: A nearly-m log n time solver for SDD linear

systems. In: Proceedings of the IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, pp. 590–598. IEEE Computer Society (2011).
https://doi.org/10.1109/FOCS.2011.85

26. Koutis, I., Miller, G.L., Peng, R.: Approaching optimality for solving SDD lin-
ear systems. SIAM J. Comput. 43(1), 337–354 (2014). https://doi.org/10.1137/
110845914, announced at FOCS 2010

27. Kyng, R., Lee, Y.T., Peng, R., Sachdeva, S., Spielman, D.A.: Sparsified cholesky
and multigrid solvers for connection Laplacians. In: Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, pp. 842–850.
ACM (2016). https://doi.org/10.1145/2897518.2897640

28. Kyng, R., Sachdeva, S.: Approximate gaussian elimination for Laplacians - fast,
sparse, and simple. In: Proceedings of the IEEE 57th Annual Symposium on Foun-
dations of Computer Science, FOCS 2016, pp. 573–582. IEEE Computer Society
(2016). https://doi.org/10.1109/FOCS.2016.68

https://doi.org/10.1137/S0097539704441058
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1109/FOCS52979.2021.00099
https://doi.org/10.1145/3519270.3538436
https://doi.org/10.1145/3519270.3538436
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1137/1.9781611974331.ch16
https://doi.org/10.1137/17M113277X
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1137/1.9781611973402.16
https://doi.org/10.1145/2488608.2488724
https://doi.org/10.1109/FOCS.2011.85
https://doi.org/10.1137/110845914
https://doi.org/10.1137/110845914
https://doi.org/10.1145/2897518.2897640
https://doi.org/10.1109/FOCS.2016.68


Minimum Cost Flow in the CONGEST Model 425

29. Lee, Y.T., Sidford, A.: Path finding methods for linear programming: solving linear
programs in Õ(
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Abstract. We study the two-party communication complexity of func-
tions with large outputs, and show that the communication complexity
can greatly vary depending on what output model is considered. We
study a variety of output models, ranging from the open model, in which
an external observer can compute the outcome, to the XOR model, in
which the outcome of the protocol should be the bitwise XOR of the
players’ local outputs. This model is inspired by XOR games, which are
widely studied two-player quantum games.

We focus on the question of error-reduction in these new output mod-
els. For functions of output size k, applying standard error reduction
techniques in the XOR model would introduce an additional cost linear
in k. We show that no dependency on k is necessary. Similarly, standard
randomness removal techniques, incur a multiplicative cost of 2k in the
XOR model. We show how to reduce this factor to O(k).

In addition, we prove analogous error reduction and randomness
removal results in the other models, separate all models from each other,
and show that some natural problems – including Set Intersection and
Find the First Difference – separate the models when the Hamming
weights of their inputs is bounded.

Keywords: Communication complexity · error reduction ·
non-Boolean functions

1 Introduction

Most of the literature on the topic of communication complexity has focused
on Boolean functions. The usual definition stipulates that at the end of the
protocol, one of the players knows the value of the function. In the rectangle
based lower bounds, the assumption is slightly stronger: at the end of the pro-
tocol, the transcript of the protocol determines a combinatorial rectangle of
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inputs that all evaluate to the same outcome. This means that given the tran-
script (together with the public coins, in the randomized public-coin setting), an
external observer can determine the output. In the case of Boolean functions, this
assumption makes no significant difference since the player who knows the value
of the function can send it in the last message of the protocol, at an additional
cost of at most one bit. When the function has large outputs, however, sending
the value of the function as part of the transcript could cost more than all the
prior communication. When this happens, then what should be considered the
“true” communication complexity of the problem?

When studying functions with large outputs, several fundamental questions
and issues emerge. What lower bound techniques extend to non-Boolean func-
tions? When composing protocols with large outputs, it may not be useful for
both players to know the values of the intermediate functions, and the aggre-
gated cost of relaying the outcome at each intermediate step could exceed the
complexity of the composed problem. These issues are also applicable to infor-
mation complexity, where the cost is measured in information theoretic terms
instead of in number of bits of communication. Requiring protocols to reveal
the outcome as part of the transcript could be an obstacle to finding very low
information protocols. It also raises the following issue: how does one amplify
success when outputs are large? Amplification schemes typically involve repeat-
ing a protocol and taking a majority outcome, but finding said majority outcome
näıvely incurs a cost that depends on the length of the output. We explore these
issues, and give new models and amplification schemes.

Well-studied examples of functions with large outputs include asymmetric
games, like the NBA problem [34,35] (see also [32, Example 4.53, p. 64]), and
many problems where the output is essentially of the same size as the input
(e.g., computing the intersection of two sets [14,15]). A decision version of a
large-output function may or may not have a similar communication complexity
(e.g., Set Disjointness [3,29,39], as opposed to deciding if the parties’ numbers
sum to something greater than a given constant [33,43]). Large output func-
tions also appear when studying whether multiple instances of the same func-
tion exhibit economies of scale, known as direct sum problems, along with their
variants such as agreement and elimination [1,2,6]. In these and other prob-
lems, computing one bit of the output can be just as hard or significantly easier
than computing the full output, depending on the function and on the model.
Finally, simulation protocols, whose output are transcripts of another protocol,
have played a key role in compression [9–11,30,40] as well as structural results
[13,24,25,37]. The Find the First Difference problem has been instrumental in
compression protocols. Better protocols are known when weaker output condi-
tions are required [4,5].

1.1 Output Models

We put forward several natural alternatives to the model where the transcript
and public randomness reveal (possibly without containing it explicitly) the value
of the function (we call this the open model). In the local model, both players
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Fig. 1. The various models of communication and problems separating them. An arrow
from A to B indicates that a communication protocol for a task of type A is also a
communication protocol for a task of type B. Details of the stronger separations are
provided in Appendix A.

can determine the value of the function locally (but an external observer might
not be able to do so – unlike in the open model). In the unilateral model, one
player always learns the answer. In the one-out-of-two model, the player who
knows the answer can vary. In the split model, the bits of the output are split
between the players in an arbitrary way known to both players. Finally, in the
XOR model, each player outputs a string and the result is the bitwise XOR of
these outputs. The models form a hierarchy, shown in Fig. 1. We defer formal
definitions to Appendix A.

In the context of protocols, we make a distinction between what the players
output and what the protocol computes. For example, in the XOR model, players
output strings a and b but the result of the protocol is a ⊕ b. We will use the
word “output” to designate what the players output at the end of the protocol,
and “result” or “outcome” to be the outcome of the protocol (which should be
– either probably or certainly – the value or output of the function). Similarly,
we will use the term “protocol” to designate the full mechanism for producing
the result, and “communication protocol” for the interactive part of the protocol
where the players exchange messages, not including the output mechanism.

Among all the models we propose, the XOR model is perhaps the most interest-
ing. This model was partly inspired by (quantum) XOR games, where the players
do not exchange any messages (for example [7,16,36]). One interesting property
of the XOR model is that it could be the case, for example, that the output dis-
tribution of each player, taken individually, is uniform1, revealing nothing about
either input or even the value of the function, when run as a black box.

Moreover, it is common in communication complexity to consider the com-
plexity of Boolean functions composed with some “gadget” applied to the inputs.
For example, for a Boolean function f , one can ask what is the communication
complexity of F (u, v) = f(u ⊕ v), where bitwise XOR is applied as a gad-
get on the inputs. The XOR model can be seen as applying the XOR gadget
to the outputs instead of the inputs: the players output (a, b), and we require
F (u, v) = a ⊕ b for the computation to be correct.

1 Any protocol in this model can be converted into a protocol of same complexity with
this property: the players pick a shared random string r of the same length as the
output, and output a⊕ r (b⊕ r), where a, b were the outputs of the original protocol.
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1.2 Our Contributions

We focus on the XOR model where the players each output a string and the
outcome of the protocol is the bitwise XOR of these strings.

Error Reduction. We consider the question of error reduction in Sect. 5. Error
reduction is usually a simple task: repeat a computation enough times, and take
the majority outcome. However, in the XOR model, neither of the players knows
any of the outcomes, so neither can compute the majority outcome without
additional communication. Sending over all the outcomes so one of the players
can compute the majority would add a prohibitive Θ(k) term, where k is the
length of the output. Removing this dependency on k is possible, however, and
doing so requires quite elaborate protocols that highlight, and circumvent, the
inherent limitations of the XOR model (Theorem 2).

We further improve the dependency on the error parameter ε for direct sum
problems (Theorem 4), by combining protocols for amortized Equality [20] and
Find the First Difference [21], as well as Gap Hamming Distance [18,27,41,42].

Deterministic Versus Randomized Complexity. In Sect. 6, we revisit the classical
result that states that for any Boolean function, the deterministic communica-
tion complexity is at most exponential in the private coin randomized complex-
ity. Once again, if the size of the output is k, then applying existing schemes
naively to our weaker models adds a multiplicative cost of 2k. We show that a
dependency of a factor of k suffices (Theorem 6).

Gap Majority Composed with XOR. To prove our results for the XOR model,
we consider the non-Boolean Gap Majority problem composed with an XOR
gadget. In the standard majority problem, the input is a set of elements and the
goal is to find the element which appears most often. The gap majority problem
adds the promise that the majority element should appear at least some a fixed
fraction (more than half) of the time. Composition with an XOR gadget turns
the problem into a communication complexity problem (see Sect. 5). We show
that the communication complexity of this problem is closely related to the
problems of reducing error and removing randomness in the XOR model.

Other Models and Separations. We define several communication models and
give problems that maximally separate them (Appendix A).

We provide additional results in the full version of this paper [23]. We revisit
error reduction and randomness removal in other models. Notably, we reduce
the dependency on k to a factor of log(k) in the one-out-of-two model, and
remove this dependency entirely when the error parameter ε is bounded by 1/3.
We study a few additional problems which exhibit gaps between our various
communication models. In particular, several common problems exhibit a gap
when the Hamming weights of their inputs are bounded. We also show how lower
bound techniques can be adapted to our weak output models by revisiting the
notion of monochromatic rectangles associated with the leaves of a protocol tree.
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It is important to note that our results mostly do not apply to large-output
relations (such as the variants of direct sum, elimination and agreement), as
many of our proofs crucially rely on the fact that there is a single correct answer.

2 Related Work

Previous works have addressed the question of the output model for large output
functions. Braverman et al. [12] make a distinction between “simulation” and
“strong simulation” of a protocol. In a strong simulation, an external observer
can determine the result without any knowledge of the inputs. In their paper on
compression to internal information [5], Bauer et al. stress the importance, when
compressing to internal information, that the compression itself need not reveal
information to an external observer. They consider two output models which
they call internal and external computation. In external computation (which
we call the open model), an external observer can determine the result of the
protocol, whereas in internal computation (which we call the local model), the
players both determine the result at the end of the protocol.2 They observe
that in the deterministic setting, for total functions, the two models coincide,
but they can differ in the distributional setting. They consider a key problem
of finding the first bit where two strings differ, when each player has one of
the two strings. This problem is used in reconciliation protocols to find the first
place where transcripts differ. Feige et al. [21] externally (openly) solve Find the
First Difference in O(log(n

ε )), which was shown to be tight by Viola [43]. Bauer
et al. [5] give an internal (local) protocol with a better complexity, where the
improvement depends on the entropy of the input distribution.

3 Preliminaries

An introduction to communication complexity can be found in Kushilevitz and
Nisan’s [32], and Rao and Yehudayoff’s [38] textbooks.

We denote by X (resp. Y) the set of inputs of Alice (resp. Bob), RA her
private randomness (RB for Bob), and Rpub the public randomness accessible
to both players. When |X | = |Y|, we denote by n the size of the input (so that
n = �log(|X |)�). When computing a function, we denote by k the length of the
output, Z the image of the function and k = �log(|Z|)�. We sometimes consider
an additional output symbol �.

We define a full protocol as the combination of a communication protocol and
an output mechanism (this is discussed in Appendix A). We define a (two-player)
communication protocol Π as a full binary tree where each non-leaf node v is
assigned a player Pv amongst A(lice) and B(ob), and a mapping N v into {0, 1}
whose input space depends on which player the node was assigned to. When
Pv = A (resp. B) then N v’s input space is X ×RA×Rpub (resp. Y ×RB×Rpub).

2 We prefer the terms open and local to avoid any confusion between the notions of
internal and external computation, and internal and external information.
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Note that the tree and each node’s owner are fixed and do not depend on the
input. In an execution of a communication protocol, the two players walk down
the tree together, starting from the root, until they reach a leaf. Each step down
the tree is done by letting the player who owns the current node v apply its
corresponding mapping N v, and sending the result to the other player. If it is 0,
the players replace the current node by its left child, and otherwise by its right
child. The communication cost CC(Π) of a protocol Π is the total number of
bits exchanged for the worst case inputs.

Since an execution of a communication protocol Π is entirely defined by the
players’ inputs ((x, y) ∈ X×Y) and the randomness (the players’ private random-
ness rA ∈ RA and rB ∈ RB as well as the public randomness r ∈ Rpub), we also
view the communication protocol as a function Π : X × Y × RA × RB × Rpub →
{0, 1}∗ whose values we call transcripts of Π. For the purposes of this paper, we
do not include the public randomness as part of the transcript. For a given pro-
tocol Π, we denote by Tπ = Π(X,Y,RA, RB, R) the random variable over tran-
scripts of the protocol that naturally arises from X, Y , RA, RB, and R, taken as
random variables. We denote by Tπ the support of the distribution Tπ. We denote
by x, y, z, rA, rB, r, tπ elements of the sets X ,Y,Z,RA,RB,Rpub, Tπ, respectively,
which in turn are the supports of the random variables X,Y,Z,RA, RB, R, Tπ.

We recall definitions and known bounds of functions that will be used in
this paper. For all of these problems, note that the communication complexity
is of the same order of magnitude whether we require that both players know
the output or only one of them, since the size of the output is no larger than
the communication required for one player to know the output. In the remain-
der of this section, we denote by Rε(f) the minimal communication cost of a
randomized protocol computing function f with error at most ε when, say, Bob
outputs. D(f) = R0(f) denotes the deterministic communication complexity.
Unless otherwise specified, our protocols use both private and public coins. We
use the ‘priv’ superscript to indicate when only private randomness is used.

Definition 1 (Find the First Difference problem). FtFDn : {0, 1}n ×
{0, 1}n → {0, . . . , n} is defined as FtFDn(x, y) = min({i : xi �= yi} ∪ {n}).

Proposition 1. For any 0 < ε < 1
2 , Rε(FtFDn) ∈ Θ(log(n) + log(1/ε)) [21,43].

The upper bound uses a walk on a tree where steps are taken according
to results from hash functions. The lower bound is from a lower bound on the
Greater Than function GTn, which reduces to FtFDn. For a good exposition
of the upper bound, see Appendix C in [4].

Definition 2 (Gap Hamming Distance problem). Let n,L, U be integers
such that 0 ≤ L < U ≤ n. GHDL,U

n : {0, 1}n × {0, 1}n → {0, 1} is a promise
problem where the input satisfies the promise that the Hamming distance between
inputs x, y is either ≥ U or ≤ L. Then GHDL,U

n (x, y) = 1 in the first case and
0 in the second case.

The bounds on Gap Hamming Distance vary depending on the parameters.
In this paper we use a linear upper bound which is essentially tight in the regime
we require. Many other bounds are known for other regimes [17,18,31,41,42,44].



Communication Complexity of Large Output Functions 433

Definition 3 (Equality problem). EQn : {0, 1}n × {0, 1}n → {0, 1} is
defined as EQn(x, y) = 1x=y. The k-fold Equality problem is EQ⊗k

n ((x1, . . . , xk),
(y1, . . . , yk)) = (EQn(x1, y1), . . . ,EQn(xk, yk)), where (xi, yi) ∈ {0, 1}n for all i.

Proposition 2. For 0 < ε < 1
2 , Rε(EQ⊗k

n ) ∈ Θ(k + log(1/ε)).

The algorithm from [26] which achieves optimal communication uses hashing
just like the algorithm for a single instance. It saves on communication compared
to k successive uses of a protocol for equality with error ε/k by having players
hash all k instances simultaneously, exchange results, and repeat this process,
exploiting that they have less and less to communicate about. Intuitively, the
number of unequal instances to discover should decrease as the algorithm runs.
Once it has been determined for an instance (xi, yi) that xi �= yi through unequal
hashes, the players do not need to speak further about this instance. An unequal
instance is unlikely to survive many tests, which means that late in the algorithm
the players can exchange their hashes using that most of them should agree.
The idea was also present in previous algorithms [20] which improved on the
trivial algorithm. The lower bound is just from Ω(k) bits of communication
being necessary to send k bits worth of information, even with ε error.

4 The XOR model

In the XOR model, each player outputs a string and the value of the function
is the bitwise XOR of the two outputs (Definition 4). This model is inspired by
XOR games which have been widely studied in the context of quantum nonlo-
cality as well as unique games.

Definition 4 (XOR computation). Consider a function f whose output set
is Z = {0, 1}k. A protocol Π is said to XOR-compute f with ε error if there
exist two mappings OA and OB with OA : Tπ × Rpub × RA × X → {0, 1}k and
similarly OB : Tπ × Rpub × RB × Y → {0, 1}k such that for all (x, y) ∈ X × Y,
Prr,rA,rB

[OA(tπ, r, rA, x) ⊕ OB(tπ, r, rB, y) = f(x, y)] ≥ 1 − ε.

We define Dxor(f) (resp. Rxor
ε (f)) as the best communication cost of any

protocol that computes f in the XOR model with error ε = 0 (resp. with error
at most ε, for 0 < ε < 1

2 ). (Notations are defined similarly for our other models
with superscripts open, loc,A,B, uni, 1of2, spl.)

5 Error Reduction and the Gap Majority Problem

We study the cost of reducing the error of communication protocols in our weaker
models of communication where the outcome of the protocol is not known to
both of the players. We focus on the more interesting case of the XOR model
here, and results for the other models are in the full version of this paper [23].

Standard error reduction schemes work by repeating a protocol many times
in order to compute and output the most frequently occurring value among
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all the executions. Repeating the protocol enough times ensures that with high
probability, the output that appears the most is correct. One can derive an upper
bound on the number of iterations needed from Hoeffding’s inequality.

Lemma 1 (Hoeffding’s inequality). Consider N independent Bernoulli tri-
als (Vi)i∈[N ] of expected value p. We have

Pr
[
| 1
N

N∑
i=1

Vi − p| ≥ δ

]
≤ 2 · exp

(
− δ2 N

2p(1 − p)

)
.

The following holds in the setting where Bob outputs the value of the function
at the end of the protocol.

Theorem 1 (Folklore, see [32]). Let 0 < ε′ < ε < 1
2 , and Cε,ε′ = 2ε(1−ε)

( 1
2−ε)2

ln
(
2
ε′

)
.

For all functions f : X × Y → Z, RB
ε′(f) ≤ Cε,ε′ · RB

ε (f).

Note that it is important here that f is a function, not a relation, so that
there is a unique correct output and the player(s) can compute the majority.

In the XOR model, finding the majority result among some number T of runs
is much more difficult than in the standard model, since neither of the players
can identify reasonable candidates as the majority answer. Exchanging all of the
T k-bit outputs would result in a bound of Rxor

ε′ (f) ≤ Cε,ε′(Rxor
ε (f) + k). We

show that this dependence on k is unnecessary.

Theorem 2. Let 0 < ε′ < ε < 1
2 , Cε,ε′ = 8ε

(
1
2 − ε

)−2ln
(
8
ε′

)
. For all f : X×Y →

{0, 1}k, Rxor
ε′ (f) ≤ Cε,ε′ · Rxor

ε (f) + O(Cε,ε′).

In order to prove this result, we introduce the Gap Majority (GapMAJ)
problem, show how Theorem 2 reduces to solving GapMAJ◦XOR (Lemma 2),
then give an upper bound on solving GapMAJ◦XOR (Theorem 3).

The partial function GapMAJN,k,ε,μ has N strings of length k as input and
the promise is that there is a string z of length k that appears with μ weight at
least (1 − ε) among the N strings, where μ is a distribution over indices in [N ].

Definition 5 (Gap Majority). In the GapMajority problemGapMAJN,k,ε,μ:(
{0, 1}k

)N → {0, 1}k the input is (Z1, . . . , ZN ), and μ is a fixed distribution over
the indices [N ]. When unspecified, μ is understood to be the uniform distribution.
The promise is that ∃z ∈ {0, 1}k such that μ({i ∈ [N ] : Zi = z}) ≥ (1 − ε). Then

GapMAJN,k,ε,μ((Zi)i∈[N ]) = z s.t. μ({i : Zi = z}) ≥ (1 − ε).

In GapMAJ◦XOR, the players are given N strings of length k and their
goal is to compute GapMAJ on the bitwise XOR of their inputs whenever the
GapMAJ promise is satisfied. (Notice that when k = 1, this is equivalent to
the Gap Hamming Distance problem (Definition 2) with parameters L = εN ,
U = (1 − ε)N .)
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For inputs (X1, . . . , XN ), (Y1, . . . , YN ) to GapMAJN,k,ε,μ◦XOR, we will
refer to a pair (Xi, Yi) as a row, and we call Xi Alice’s ith row, and Yi Bob’s ith
row. As a warm-up exercise, we show that error reduction reduces to solving an
instance of GapMAJ◦XOR.

Lemma 2. Let 0 < ε′ < ε < 1
2 and Cε,ε′ = 2ε

(
1
2 − ε

)−2ln
(
4
ε′

)
. For every f :

X ×Y → {0, 1}k, Rxor
ε′ (f) ≤ Cε,ε′ ·Rxor

ε (f)+Rxor
ε′/2

(
GapMAJCε,ε′ ,k, 14+

ε
2
◦XOR

)
.

Proof (Proof of Lemma 2). Let π be a protocol which XOR-computes f(x, y)
with ε-error and π′ be a protocol which computes GapMAJCε,ε′ ,k, 14+

ε
2
◦XOR

in the XOR model, with error ε′/2. We consider the following protocol, which
we denote by π̂: first, run π Cε,ε′ times; then, use the outputs produced by this
computation as inputs for π′, run the latter protocol, and output the result.
We analyze the new protocol π̂ as follows. The outputs produced in the first
step are strings X1, · · · ,XCε,ε′ on Alice’s side, and Y1, · · · , YCε,ε′ for Bob. A
run of π is correct iff Xi ⊕ Yi = f(x, y). By Hoeffding’s bound (Lemma 1),
applied with N = Cε,ε′ , Vi = 1 if Xi ⊕ Yi �= f(x, y) and Vi = 0 otherwise for
i = 1, . . . , N , p = E[Vi] ≤ ε, and δ = 1

2 ( 12 − ε), we get that with probability
at least 1 − 2e−δ2N/(2p(1−p)) ≥ 1 − ε′/2, a fraction p + δ ≤ ( 12 + ε)/2 of the
N computations err. In other words, with probability at most ε′/2, the above
strings fail to satisfy the promise in the definition of GapMAJCε,ε′ ,k, 14+

ε
2
◦XOR.

Conditioned on this not happening (i.e., on the promise being met), π′ (hence π̂)
errs with probability at most ε′/2. The overall error is at most ε′.

To derive a general upper bound on error reduction using Lemma 2, it would
suffice to have an upper bound on Rxor

ε′ (GapMAJN,k,ε◦XOR). When the error
parameter is large (ε ≤ ε′), GapMAJ◦XOR in the XOR model is trivial: the
players just need to sample a common row and output according to that row.
However, Lemma 2 requires solving a GapMAJ◦XOR instance with small
error ε′/2, which takes us back to square one: finding an error reduction scheme
that we can apply to GapMAJ◦XOR.

In the remainder of the section, we give a protocol for GapMAJ◦XOR
(Sect. 5.1) followed by an error reduction scheme for direct sum functions
(Sect. 5.2). In both cases, we use the structure of the XOR function and a proto-
col for Equality on pairs of rows to find a majority outcome. The error reduction
scheme for direct sum functions is a refinement of Lemma 2 and is useful in cases
where the starting error is very close to 1

2 and where computing one bit of the
output is significantly less costly than computing the full output.

5.1 Solving GapMAJ◦XOR

Given an instance of GapMAJN,k,ε◦XOR, if Alice and Bob pick a row and
output what they have on this row, they get the correct output with probability
≥ 1 − ε. Recall that we would like to achieve error ε′ < ε without incurring a
dependence on parameter k, which in our application to error reduction corre-
sponds to the length of the output. We show that this is possible.
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Theorem 3. Let 0 < ε′ < ε < 1
2 . Then

Rxor
ε′ (GapMAJN,k,ε◦XOR) ≤ O

(
N + log

(
1
ε′

))
.

Proof Idea. We use the fact that a ⊕ b = a′ ⊕ b′ iff a ⊕ a′ = b ⊕ b′.
Therefore, the players can identify rows that XOR to a same string by solv-
ing instances of Equality. This idea alone is enough to obtain a protocol for
GapMAJN,k,ε◦XOR of complexity O

(
N2 + log

(
1
ε′

))
by computing Equality

for all
(
N
2

)
pairs of rows to identify the majority outcome. We improve on this

by reducing the number of computed Equality instances using Erdős-Rényi ran-
dom graphs (Lemma 3).

Lemma 3 (Variation of eq. (9.18) in [19]). Let G(n, p(n)) be the distribution
over graphs of n vertices where each edge is sampled with independent probability
p(n). Let L1(G) be the size of the largest connected component of G. Then:

∀α ∈ [0, 1], c ∈ R
+, Pr[L1(G(n, c/n)) < (1 − α)n] ≤ e(ln(2)−

α
2 (1− α

2 )c)n.

In particular this probability goes to 0 as n goes to infinity when αc > 4 ln(2).

For completeness, the proof is given in Appendix C.1.

Proof (Proof of Theorem 3). Consider the GapMAJ◦XOR instance as a N ×k
matrix such that (Xi)i∈[N ] are the rows of Alice and (Yi)i∈[N ] are the rows of
Bob. By the promise of the GapMAJ◦XOR problem, we know there exists a
z ∈ {0, 1}k such that {i : Xi ⊕ Yi = z} ≥ (1 − ε)N . The goal is now for Alice
and Bob to identify a row belonging to this large set of rows that XOR to the
same k-bit string.

Let i and j be the indices of two rows. The event that the two rows XOR
to the same string is expressed as Xi ⊕ Yi = Xj ⊕ Yj , which is equivalent to
Xi ⊕ Xj = Yi ⊕ Yj . This means that we can test whether any two rows XOR to
the same bit string with a protocol for Equality.

The protocol goes through the following steps:

1. The players pick rows randomly, enough rows so that with high probability,
a constant fraction of the rows XOR to the majority element z.

2. The players solve instances of Equality to find large sets of rows that XOR to
the same string. In each such large set of rows, they pick a single row. This
leaves them with a constant number of candidate rows that might XOR to
the majority element z.

3. The players decide between those candidates by comparing them with all the
rows. There is one candidate row that XORs to the same string as most rows;
this row XORs to the majority element z.

Step 1. Using public randomness, Alice and Bob now pick a multiset S of all
their rows of size |S| = Tε′ = 50 ln

(
10
ε′

)
. Each element of S is picked uniformly

and independently. Using Hoeffding’s inequality (Lemma 1), with probability
≥ 1 − ε′

5 more than 2
5 of those executions XOR to the majority element z.



Communication Complexity of Large Output Functions 437

Step 2. We now consider S as the vertices V of a random graph G = G(V,E),
in which each edge is picked with a probability c

|V | with c > 0. Consider
the subgraph G′ of G induced on the vertices V ′ ⊆ V that correspond to
executions that XOR to the majority element z. From the previous step, we
know that |V ′| ≥ 2

5Tε′ = 20 ln
(
10
ε′

)
. The subgraph G′ is a random graph

where each edge was picked with the same probability c
|V | = c′

|V ′| where c′ =

c |V ′|
|V | ≥ 2

5c. By Lemma 3, this subgraph G′ contains a connected component

of size ≥ (1 − 1
12 )|V ′| ≥ 11

30 |V | with probability ≥ 1 − 2−|V ′| ≥ 1 − ε′
5 for

c ≥ 720
143 ln(2) ≈ 3.49 as |V ′| ≥ 20 ln

(
10
ε′

)
≥ log

(
5
ε′

)
.

At this point, Alice (resp. Bob) computes the bitwise XOR of all pairs of
executions that correspond to an edge in G: (Xi ⊕ Xj)(i,j)∈E,i<j (resp. (Yi ⊕
Yj)(i,j)∈E,i<j). For ε′ small enough, with high probability (≥ 1 − ε′

5 ), the set
of edges of G is smaller than 2c ·Tε′ by Hoeffding’s inequality (the players can
abort the protocol otherwise). Then, Alice and Bob solve ≤ 2c · Tε′ instances
of Equality with (total) error ≤ ε′

5 to discover a large set of rows that XOR
to a same bit string. We now have groups of rows that we know XOR to the
same bit string, at least one of which represents more than 11

30 of S’s rows
because of the Hoeffding argument combined with the random graph lemma.
Now for each submultiset of rows of S that XOR to the same bit string
and represents more than 11

30 of all of S’s rows, pick an arbitrary row in the
submultiset. If there is only one such submultiset, Alice and Bob can end the
protocol here, outputting the content of the row selected in this submultiset.
If there were two such submultisets, then let i1 and i2 be the indices picked
in each submultiset.

Step 3. To decide between their two candidates, Alice and Bob solve N Equality
instances between Xi1⊕Xj and Yi1⊕Yj for all j ∈ [N ] with error ≤ ε′

5 . If more
than half of the N rows XOR to the same string as the ith1 row, Alice and
Bob output their ith1 row. Otherwise, they output the other candidate row i2.

The complexity of computing GapMAJN,k,ε◦XOR with error ε′ < ε satisfies

Rxor
ε′

(
GapMAJN,k,ε◦XOR

)
≤ Rε′/5

(
EQ⊗2cTε′

k

)
+ Rε′/5

(
EQN

k

)
.

To conclude, we apply an amortized protocol for Equality (Proposition 2).

Combining Lemma 2 and Theorem 3 concludes the proof of Theorem 2. We
give additional results on the GapMAJ◦XOR problem in the full version of
the paper [23].

5.2 XOR Error Reduction for Direct Sum Functions

The protocol of Theorem 2 first generates a full instance of GapMAJ◦XOR,
then solves this instance. The generation of this instance might create an implicit
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dependency on the output length k of f , which in the regime where ε is very
close to 1/2 can be prohibitive. We give a different protocol in which the players
are not required to fully generate these intermediate results.

For large output functions, generating one bit of the output can be much less
costly than generating all k, for example, when f is a direct sum of k instances of
a function g. We state our stronger amplification theorem for the case of direct
sum problems of Boolean functions, but we note that the protocol could be used
for other problems where computing one bit of the output is less costly than
computing the entire output.

Theorem 4. Let 0 < ε′ < ε < 1
2 and Cε,ε′ = 8ε

(
1
2 − ε

)−2ln
(
12
ε′

)
. For any

g : X × Y → {0, 1} and f = g⊗k,

Rxor
ε′ (f) ≤ 50 ln

(
12
ε′

)
· Rxor

ε (f) + Cε,ε′ · Rxor
ε (g) + O(Cε,ε′ + log(k)) .

Notice that the Cε,ε′ factor – which scales with
(
1
2 − ε

)−1 – applies to the com-
plexity of g, not of f .

Proof Idea. Instead of iterating the basic protocol Cε,ε′ times, we will start by
iterating it a smaller number of times which does not depend on ε, but only on
log( 1

ε′ ). This number of iterations suffices to guarantee that the most frequent
outcome represents more than a 1/3 fraction of the rows. If no other outcome
represents a large fraction of the rows, we output according to a row from this
large fraction. Otherwise, still, at most two outcomes can represent more than a
1/3 fraction of the rows. We identify a “critical index” of the output function, one
that will help us identify the majority result among the two candidate outcomes.
We do so by solving a Gap Hamming Distance instance on the critical index. In
these remaining Cε,ε′ runs, we only need one of the k bits of the output.

Details of the proof are given in the full version of the paper [23].

6 Deterministic Versus Randomized Complexity

We now turn to removing randomness from private coin protocols.
The standard scheme to derive a deterministic protocol from a private coin

protocol3 proceeds as follows [32, Lemma 3.8, page 31]. The players exchange
messages to estimate the probability of each transcript. They use the fact that
the probability of a transcript can be factored into two parts, each of which can
be computed by one of the two players. One of the players sends all of its factors
to the other, up to some precision, and the second player can then estimate the
probability of each transcript. Each transcript determines an output, therefore
from the estimate for the transcripts’ probabilities, this player can derive an
estimate for the probability of each output, and output the majority answer.

3 For public coins, the exponential upper bounds do not hold, for example in the case
of the Equality function, which has an O(1) public coin randomized protocol, but
requires n bits of communication to solve deterministically.
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Theorem 5 (Lemma 3.8 in [32], page 31). For any function f : X ×Y → Z
and 0 < ε < 1

2 , let R = Rpriv
ε (f). Then D(f) ≤ 2R

(
R + log

(
1

1
2−ε

)
+ 1

)
.

Using this well-known result for our output models (first adding k bits of com-
munication to the original protocol of cost R to obtain a protocol that works in
the unilateral model) would add 2RR · 2k bits to the complexity. For the XOR
model, we reduce the dependency to a O(2Rk) term. In the full version of the
paper [23], we show some lower dependencies on k in our other models.

We formalize the problem which we call Transcript Distribution Estimation.
Let Δ(μ, ν) = 1

2

∑
u∈U |μ(u) − ν(u)| be the total variation distance between two

probability distributions μ and ν over a universe U . For a protocol Π, let Tπ be
the set of transcripts of Π, and for (x, y) ∈ X × Y, let us denote by T x,y

π the
distribution over Tπ witnessed when running Π on (x, y).

The key step of the proof of Theorem 5 is a protocol (in the standard model)
for the following problem.

Definition 6 (Transcript Distribution Estimation problem). For any
protocol Π and δ < 1

2 , we say that a protocol Π̃ solves TDEΠ,δ in model M if,
for each input (x, y), Π̃ computes in the sense of model M a distribution T̃ x,y

π

such that Δ(T̃ x,y
π , T x,y

π ) ≤ δ.

Lemma 4 (Implicit in [32], page 31). Let Π be a private coin communication
protocol and Tπ its set of possible transcripts. For any 0 < δ < 1

2 , D(TDEΠ,δ) ≤
|Tπ| · �log

(
|Tπ|

δ

)
�.

In their proof, Kushilevitz and Nisan [32] require only one of the players to
learn an estimate of the probability of each leaf. Here we require both players
to learn the same estimate, which can be achieved with a factor of two in the
communication. Details are given in the full version of the paper [23].

In the XOR model, however, sharing such an estimate is not sufficient to
remove randomness. At each leaf, each player outputs values with some prob-
ability (depending on their private randomness), so there can be as many as
|Z| outputs per leaf by each player, making identifying the majority outcome
impossible. We prove the following bound on deterministic communication in
the XOR model.

Theorem 6. Let 0 < ε < 1/2 and f : X × Y → Z = {0, 1}k. Let R =
Rxor,priv

ε (f), M = 16 ·
(
1
2 − ε

)−2 · 2R, and ε′ = 5
8 − ε

4 . Then

Dxor(f) ≤ Dloc(TDEΠf ,ε′− 1
2
) + Dxor(GapMAJM,k,ε′,μ◦XOR)

≤
(
2R+1

)
·
(
R + log

(
8

1
2−ε

)
+ 1

)
+ k ·

(
5 − 2ε

4
M + 1

)
.

where μ is an unspecified distribution over [M ] known to both players.

Proof Idea. We reduce the problem of finding the majority outcome to a much
smaller instance of GapMAJ◦XOR by discretizing the probabilities of the
outputs. This lets us reduce the dependence on the size of the output to just a
factor of k = log(|Z|) (instead of a factor of 22k = |Z|2).
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Proof (Proof of Theorem 6). Let Π be an optimal private coin XOR protocol
for f . The players start running a protocol for TDEΠ,δ in the local model (an
adaptation of Lemma 4; full details are in the complete version of this paper [23])
with δ = 1

4

(
1
2 − ε

)
, thus learning within statistical distance δ the probability

distribution over leaves that results from the protocol.
Let oA(. | w, x) and oB(. | w, y) be the two independent probability dis-

tributions over {0, 1}k according to which Alice and Bob output, conditioned
on reaching leaf w, having received inputs x and y. To reduce the problem to
GapMAJ◦XOR, they discretize oA and oB into �δ−1� events. Let ȯA denote
the discretization of oA with following properties for Alice (Similarly for ȯB ):

∀z, w : ȯA(z | w, x) · �δ−1� ∈ N and |oA(z | w, x) − ȯA(z | w, x)| ≤ 1
�δ−1� .

A simple greedy approach to discretization goes like this:

1. Replace all oA(z | w, x) by ȯA(z | w, x) = 1
�δ−1���δ−1�oA(z | w, x)�.

2. While the probabilities of ȯA sum to less than 1, pick a z s.t. oA(z |
w, x) − ȯA(z | w, x) is maximal. For that z, set ȯA(z | w, x) =

1
�δ−1���δ−1�oA(z | w, x)�.

The players then construct a distributional GapMAJ◦XOR instance with
M rows where M = �δ−1�2|Tπ| in the following way:

– For each leaf w the players define �δ−1�2 rows. Rows are indexed by (i, j) ∈
[�δ−1�] × [�δ−1�] and are such that:

• For each z, there are exactly �δ−1�ȯA(z | w, x) indices iz ∈ [�δ−1�] such
that Alice outputs z on all rows of the form (iz, j),∀j.

• For each z, there are exactly �δ−1�ȯB(z | w, y) indices jz ∈ [�δ−1�] such
that Bob outputs z on all rows of the form (i, jz),∀i.

– The probability of the row (i, j) associated to the leaf w under the distribution
μ is taken to be plf(w | x, y) · �δ−1�−2, where plf(w | x, y) is the probability of
ending in a leaf w in the original protocol Π. (μ is the unspecified distribution
over [M ] in the statement of Theorem 6.)

The players then solve the GapMAJ◦XOR instance and output the result.
Clearly, the above procedure has the previously claimed communication com-
plexity. It remains to show that the players built a valid GapMAJ◦XOR
instance whose result is f(x, y), that is, picking a random row according to
μ from this GapMAJ◦XOR instance gives outputs zA and zB on Alice and
Bob’s sides such that zA ⊕ zB = f(x, y) with probability > 1

2 .

1. In the original protocol Π, let pout(z | x, y) be the probability of computing
z (after the XOR), pout(z | w, x, y) that same probability conditioned on the
protocol ending in leaf w, and for all w let oA(. | w, x) (resp. oB(. | w, y)) be
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the distribution according to which Alice (resp. Bob) outputs once in leaf w.
Then pout(z | x, y) can be expressed as:

pout(z | x, y) =
∑
w

plf(w | x, y) · pout(z | w, x, y)

=
∑
w

plf(w | x, y) ·
∑
zA,zB

zA⊕zB=z

oA(zA | w, x) · oB(zB | w, x).

By correctness of the protocol, pout(f(x, y) | x, y) ≥ 1 − ε.
2. Consider p′lf(. | x, y), p′out(. | x, y), p′out(. | w, x, y), ȯA(. | w, x) and ȯB(. | w, y)

the approximations of the above quantities encountered when building our
instance of GapMAJ◦XOR. The probability p′out(z | x, y) that a random
row of our weighted GapMAJ◦XOR instance corresponds to a given z is:

p′out(z | x, y) =
∑
w

p′lf(w | x, y) ·
∑
zA,zB

zA⊕zB=z

ȯA(zA | w, x) · ȯB(zB | w, x).

3. p′lf(. | x, y) is δ-close to plf(. | x, y) in statistical distance. ȯA(. | w, x) is
point-wise δ-close to oA(. | w, x) (and similarly for ȯB and oB).

Consider oA · oB the distribution over z ∈ {0, 1}k defined by oA · oB(z) =∑
z′ oA(z′ | w, x) · oB(z ⊕ z′ | w, y). Similarly define oA · ȯB and ȯA · ȯB. Point 3

above implies that ȯA · ȯB is point-wise δ-close to oA · ȯB, which is itself point-wise
δ-close to oA · oB. One can check that ȯA · ȯB is point-wise 2δ-close to oA · oB.

Using Lemma 5 (Appendix C.2) with V ∼ pout, V ′ ∼ p′out, U ∼ plf ,
U ′ ∼ p′lf , Vu ∼ oA · oB and V ′

u ∼ ȯA · ȯB, we get that p and p′ are point-
wise 3δ-close. Since δ was taken to be 1

4

(
1
2 − ε

)
, the probability that the random

row of the GapMAJ◦XOR instance corresponds to f(x, y) is: p′out(f(x, y)) ≥
pout(f(x, y)) − 3δ ≥ (1 − ε) − 3

4

(
1
2 − ε

)
= 1

2 + 1
4

(
1
2 − ε

)
> 1

2 .

7 Conclusion and Open Questions

We have presented output models that are tailored for non-Boolean functions.
We hope that these will find many applications, including extensions to infor-
mation complexity, a better understanding of direct sum problems, simulation
protocols, new lower bounds for these models, to name just a few.

The Gap Majority composed with XOR problem (Definition 5) is closely
related to the Gap Hamming Distance, extended to a large alphabet but with
an additional promise, so lower bounds for GHD do not apply. We conjecture
that its deterministic communication complexity is Ω(εNk), matching the trivial
upper bound. If true, this would indicate that our randomness removal scheme
(Theorem 6) is close to tight.
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conversations and the anonymous referees for their numerous suggestions to improve
the paper’s presentation. This work was funded in part by the ANR grant FLITTLA
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A Models for Large-Output Functions

One standard definition of communication complexity requires that at the end of
the communication protocol, the output of the computation can be determined
from the transcript of the communication and the public randomness (it is the
model used in rectangle bounds). It is easy to find examples where such a def-
inition makes it necessary to exchange much more communication than seems
natural. For example,

Example 1. Consider the function f : {0, 1}n × {0, 1}n → {0, 1}n, f(x, y) = x,
and assume we want to compute it with the promise x = y.

A protocol for f requires n bits of communication if the result of the protocol
has to be apparent from the communication and the public randomness, even
though both players know f(x, y) right from the start.

In this section, we formally define the output models and prove separation
results. The most interesting models are arguably the weakest ones: the one-out-
of-two (Definition 12), the split (Definition 14), and the XOR models (Definition
4).

A.1 The Open Model

We start with the formal definition of our model which reveals the most infor-
mation regarding the outcome of the computation. We call it the open model.

This is the model for which the partition bounds [28], in the form in which
they appear in the literature, give lower bounds.

Definition 7 (Open computation). A protocol Π is said to openly compute
f with ε error if there exists a mapping O : Tπ × Rpub → Z such that: for all
(x, y) ∈ X × Y,

Pr
r,rA,rB

[O(tπ, r) = f(x, y)] ≥ 1 − ε.

A.2 The Local Model

In the previous model, protocols are revealing, in the sense that the result of the
computation can not be a secret only known to the players. In the local model,
we only require that both players, at the end of the protocol, can output the
value of the function (or the same valid output, in the case of a relation).

Definition 8 (Local computation). A protocol Π is said to locally compute
f with ε error if there exist two mappings OA and OB with OA : Tπ × Rpub ×
RA × X → Z and similarly OB : Tπ × Rpub × RB × Y → Z such that: for all
(x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x) = OB(tπ, r, rB, y) = f(x, y)] ≥ 1 − ε.
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Bauer et al. [5] remarked that for total functions and relations, the determin-
istic open and local communication complexities are the same. Example 1 shows
a separation between the deterministic complexities of computing a function
with a promise.

For randomized communication, the local model is separated from the open
model by the following total function, as seen in Theorem 7 (Fig. 2):

Definition 9 (Equality with output problem). EQout
n : {0, 1}n×{0, 1}n →

{0, 1}n ∪ {�} is defined as

EQout
n (x, y) =

{
x ifx = y

� otherwise

Fig. 2. The communication matrix of EQout
3

Theorem 7. ∀f : X × Y → Z with k = �log|Z|� and ε > 0,

Rloc
ε (f) ≤ Ropen

ε (f) ≤ Rloc
ε (f) + k, and

Rloc
1/4(EQout

n ) ≤ 4, Ropen
1/4 (EQout

n ) ∈ Ω(n).

We provide a full proof of this theorem, but because all the results of the
form RM1

ε (f) ≤ RM2
ε (f) or RM1

ε (f) ≤ RM2
ε (f)+k for two models M1 and M2

can be proved by essentially the same proof, we will omit them in proofs of later
similar theorems, only proving the separation result.

Proof (Proof of Theorem 7).

Proof of Rloc
ε (f) ≤ Ropen

ε (f): An open protocol for a function f is also a local
protocol for f , as the players can take as mappings OA and OB the mapping
O of the open protocol (ignoring both players’ randomness and input).
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Proof of Ropen
ε (f) ≤ Rloc

ε (f) + k: Let Π be a local protocol for computing f
with error at most ε. Consider Π ′, the protocol that consists of first running
the protocol Π, and then Alice sends OA(tπ, r, rA, x) – what she would output
at the end of Π to locally compute f – over the communication channel. This
only requires k additional bits of communication. Now Π ′ is an open protocol,
since an external observer can use the last k bits of the transcript as probable
f(x, y).

Both the lower bound and the upper bound on EQout directly follow from
propositions and theorems previously seen in this manuscript.

Local model upper bound: The players apply the standard protocol for EQ
(Proposition 2). If the strings are different, they output �, otherwise Alice
outputs x and Bob outputs y.

Open model lower bound: Consider the mapping O of the open protocol Π
and notice that for all x, Prr[O(Π(x, x, r), r) = x] ≥ 3/4. Consider that the
players have a public randomness source Rpub that is the uniformly random
distribution over {0, 1}k. Then the above statement implies |O−1(x)| ≥ 3

4 ·2k.
Since ∪xO−1(x) ⊆ Tπ × {0, 1}k, we have that 3

4 · 2k · 2n ≤ 2CC(Π) · 2k hence
CC(Π) ≥ n + log

(
3
4

)
∈ Ω(n). This is also true when the source of public

randomness is not a uniform distribution over {0, 1}k because of the fact
that any non-uniform source of randomness can be simulated with arbitrary
precision by a uniform source of randomness.

In the full version of the paper, we generalize this to show that any open
protocol for a problem requires Ω(k) communication. This result follows from
analyzing a lower bound known as the weak partition bound [22].

A.3 The Unilateral Models

In this section, we consider models of communication complexity where we
require that at the end of the protocol, one player can output the value of
the function (or a valid output, in the case of a relation). One-way problems are
usually stated in this model.

Definition 10 (Unilateral computation). A protocol Π is said to Alice-
compute f with ε error if there exists a mapping OA : Tπ × Rpub × RA × X → Z
such that: for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x) = f(x, y)] ≥ 1 − ε.

Bob-computation is defined in a similar manner.
A protocol is said to unilaterally compute f if it Alice-computes or Bob-

computes f .

Our definition of the unilateral model corresponds to a minimum of two
models, each assigned to a player. The unilateral models are separated from
each other and the local model by the following functions, where a given player
possesses all the information about the output (Fig. 3).
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Definition 11 (Unilateral identity problems). idA
n : {0, 1}n × {0, 1}n →

{0, 1}n is defined as
idA

n(x, y) = x

idBn is defined similarly, with opposite roles for Alice and Bob.

Fig. 3. The communication matrix of idA
3 and idB

3

Theorem 8. ∀f : X × Y → Z with k = �log|Z|�, λ ∈ [0, 1] and ε > 0

Runi
ε (f) ≤ Rloc

ε (f) ≤ Ropen
ε (f) ≤ Runi

ε (f) + k,

Dloc(f) ≤ DA(f) + DB(f), Rloc
ε (f) ≤ RA

λε(f) + RB
(1−λ)ε(f), and

Duni(idA
n) = DA(idA

n) = DB(idB
n) = 0, Rloc

1/4(id
A
n) = Rloc

1/4(id
B
n) ∈ Ω(n).

The first line also holds for relations, but the second line does not: consider
as counterexample the relation f : {0, 1}n × {0, 1}n → 2{0,1}n

, f(x, y) = {x, y}.
This problem does not require any communication in both unilateral models
(DA(f) = DB(f) = 0), but in the local model, the fact that the players need to
agree on a single output makes the communication of order Ω(n) in both the
deterministic and the randomized setting (Dloc(f) ≥ Rloc

ε (f) ∈ Ω(n)).

Proof (Proof of Theorem 8). We omit the proof of the first two lines, that are only
based on using the same protocol with the different proper mappings, or sending
what one would output in a lower model over the communication channel.

We prove a slightly stronger result for the separation: that RB
1/4(id

A
n) ∈ Ω(n).

Alice model upper bound: Alice outputs her x, which requires no communi-
cation.

Bob model lower bound: Let us consider DB
1/4(id

A
n, μ) where μ is the uniform

distribution. Bob has to output one of 2n equiprobable answers. With com-
munication C, Bob can only have 2C different answers, so Bob is wrong with
probability ≥ 1 − 2C−n. Since Bob is supposed to make less than 1

4 error, we
have: C ≥ n + log

(
3
4

)
, so RB

1/4(id
A
n) ∈ Ω(n).



446 L. Fontes et al.

A.4 The One-Out-of-Two Model

In the unilateral models, the player that outputs the result at the end of the
protocol is fixed. In particular, it does not depend on the inputs. In the one-
out-of-two model, we relax this condition: correctly computing a function in the
one-out-of-two model corresponds to an execution such that at the end of the
protocol:

– one player outputs a special symbol � �∈ Z (which corresponds to silence)
– the other players outputs f(x, y).

Intuitively, we not only require that one of the players outputs the correct
answer, but also that she knows that her output is probably correct, while the
other knows that other player has a good answer to output. If we were only
requiring that one player gives the correct answer, then all Boolean functions
would be solved with zero communication in this model. In contrast, our model
does not trivialize the communication complexity of Boolean functions.

Definition 12 (One-out-of-two computation). A protocol Π is said to one-
out-of-two compute f with ε error if there exist two mappings OA and OB with
OA : Tπ × Rpub × RA × X → Z ∪ {�} and similarly OB : Tπ × Rpub × RB × Y →
Z ∪ {�} such that: for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[(OA(tπ, r, rA, x),OB(tπ, r, rB, y)) ∈ {(f(x, y),�), (�, f(x, y))}] ≥ 1 − ε.

The next proposition shows that any one-out-of-two protocol can be trans-
formed into another one-out-of-two protocol of lesser or equal error and using
only one additional bit of communication, such that at the end of the protocol
it is always the case that exactly one player outputs a value in Z and the other
stays silent (outputs �).

Proposition 3. Consider a function f : X × Y → Z and Π a one-out-of-two
protocol for f with error ε > 0 of communication cost C. Then there exists a
one-out-of-two protocol Π ′ of communication cost (C + 1) that computes f with
the same error but with mappings such that it is always the case that only one
of them speaks at the end:

∀x, y, rA, rB, r, tπ′ = Π ′(x, y, rA, rB, r) :
(O′

A(tπ′ , r, rA, x),O′
B(tπ′ , r, rB, y)) ∈ (Z × {�}) ∪ ({�} × Z).

Proof (Proof of Proposition 3). Let Π be a one-out-of-two protocol for f and
OA,OB the associated mappings. We define the protocol Π ′ to be a protocol
that first behaves as Π (getting a transcript tπ) and when we hit a leaf in the
protocol for Π, Alice sends a bit of communication to Bob following this rule:

– If OA(tπ, r, rA, x) = �, Alice sends 0 to Bob.
– Otherwise Alice sends 1 to Bob.
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Let cA be this control bit, sent by Alice in the last round of the new protocol
Π ′. Then, Alice keeps the same mapping OA whereas Bob’s new mapping O′

B is
such that:

O′
B(tπ′ , r, rB, y) =

⎧⎪⎨
⎪⎩

� if ca = 1,

OB(tπ, r, rB, y) if ca = 0and OB(tπ, r, rB, y) �= �,

z picked u.a.r. inZ, otherwise.

Intuitively, Alice tells Bob whether to speak or not, and he obeys. Since the
only cases where this changes what the players output is when they were going
to both speak or both stay silent, the error does not increase in the process. We
separate the one-out-of-two model from the unilateral models with the following
function, where the first bit essentially determines which player possesses the
output of the function (Fig. 4).

Definition 13 (Conditional identity problem). The function CondIdn :
{0, 1}n × {0, 1}n → {0, 1}n is defined as

CondIdn(x, y) =

{
x if x0 = y0,

y otherwise,

where x0 is the fist bit of x, similarly for y.

Fig. 4. The communication matrix of CondId3

Theorem 9. ∀f : X × Y → Z with k = �log|Z|� and ε > 0

R1of2
ε (f) ≤ Runi

ε (f) ≤ Rloc
ε (f) ≤ Ropen

ε (f) ≤ R1of2
ε (f) + k + 1, and

D1of2(CondIdn) ∈ O(1), Runi
ε (CondIdn) ∈ Ω(n).

Proof (Proof of Theorem 9). Again, we focus on the separation result.
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One-out-of-two model upper bound: Alice and Bob send each other x0 and
y0. If x0 = y0, Alice outputs x, otherwise Bob outputs y. This only takes 2
bits of communication.

Unilateral model lower bound: Let us consider DB
1/4(CondIdn, μ) where

μ is the uniform distribution over (x, y) such that x0 = y0. Having received
any given x, Bob has to output one of 2n−1 equiprobable answers. With
communication C, Bob can only have 2C different answers, so Bob is wrong
with probability ≥ 1 − 2C−n+1. Since Bob is supposed to make less than 1

4
error, we have: C ≥ n−1+log

(
3
4

)
, so RB

1/4(CondIdn) ∈ Ω(n). By symmetry,
we also have RA

1/4(CondIdn) ∈ Ω(n), so Runi
1/4(CondIdn) ∈ Ω(n).

A.5 The Split Model

In our next model, we allow the answer to be split between the two players.
In the one-out-of-two model, one of the player had to output the full output,
while the other stayed fully silent. In contrast, in the split model we allow both
players to output part of the result. We only require that any given bit is output
by exactly one player (the other player stays silent on this particular bit). In a
valid split computation, it may be that the first bit of f(x, y) is output by Alice,
while the second one is output by Bob.

Definition 14 (Split computation). A protocol Π is said to split compute
f with ε error if there exist two mappings OA and OB with OA : Tπ × Rpub ×
RA ×X → {0, 1, ∗} and similarly OB : Tπ ×Rpub ×RB ×Y → {0, 1, ∗} such that:
for all (x, y) ∈ X × Y,

Pr
r,rA,rB

[OA(tπ, r, rA, x) xx OB(tπ, r, rB, y) = f(x, y)] ≥ 1 − ε.

where (a xx b)i

⎧⎪⎨
⎪⎩

ai if bi = ∗,

bi if ai = ∗,

∗ otherwise.

We call weave the binary operator xx : {0, 1, ∗}k × {0, 1, ∗}k → {0, 1, ∗}k

described at the end of Definition 14, that recombines the parts split among the
players.

To separate this model from the one-out-of-two model, we introduce a prob-
lem where the information about the output is naturally split between the two
players (Fig. 5). We do so in a manner which makes computing this problem in
the split model trivial, while the fact that one of the players must aggregate
complete information about the output in the one-out-of-two model leads to a
large amount of communication.

Definition 15 (Split identity problem). SplitIdn : {0, 1}n × {0, 1}n →
{0, 1}n is defined as

SplitIdn(x, y)i =

{
xi if i = 0 mod 2,

yi otherwise.
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Fig. 5. The communication matrix of SplitId3

Theorem 10. ∀f : X × Y → Z with k = �log|Z|� and ε > 0

Rspl
ε (f) ≤ R1of2

ε (f) ≤ Rspl
ε (f) + �k/2� + 1, and

Dspl(SplitIdn) ∈ O(1), R1of2
ε (SplitIdn) ∈ Ω(n).

Proof (Proof of Theorem 10). There is a small subtlety here, that the players
may make the error of having too many or too few ∗ symbols at the end of the
split protocol. Our proof that R1of2

ε (f) ≤ Rspl
ε (f) + �k/2� + 1 must not rely on

this assumption: we can not, for instance, say “the player with fewer ∗ symbols
speaks first”, as this could result in an ambiguous protocol.

Proof of R1of2
ε (f) ≤ Rspl

ε (f)+ �k/2�+1: Let Π be an optimal split protocol. At
the end of Π, Alice counts how many ∗ symbols she would output in the split
protocol. She sends a 1 bit if that number is greater than �k/2�, 0 otherwise.
If she sent a 0, she then sends �k/2� bits, the first of which are, in order, the
non-∗ symbols she would have output, in order, in the split protocol. If she
sent a 1, it is Bob that sends the first �k/2� non-∗ bits that he would have
output in the split protocol. In both cases, if there are not enough bits to
send, the players append 0’s as needed to reach �k/2� bits.
If it is Alice that is sending the non-∗ symbols of her split output, then Bob
will replace the ∗ symbols in his split output by the bits sent by Alice before
outputting it as final step of the one-out-of-two protocol. The situation is
symmetric if Bob is sending his non-∗ bits. If there are too many or not
enough bits to replace the ∗ symbols, the bits are discarded or we just put 0.
This protocol is unambiguous (it does not rely on Alice and Bob not having
exactly k stars together) and is correct in the one-out-of-two model whenever
the original protocol was correct in the split model.

The separation result again bounds the size of rectangles that do not make
too many errors.
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Split model upper bound: Alice replaces odd positions in x by ∗, Bob replaces
even positions of y by ∗. They then each output their resulting string, which
computes SplitIdn(x, y) in the split model. This requires no communication.

One-out-of-two model lower bound: Consider D1of2
1/4 (SplitIdn, μ), where μ

is the uniform distribution over (x, y) such that xi = 0 for odd i and yi = 0
for even i, and consider the communication matrix M̃SplitIdn

of this reduced
(but still total) problem. This reduces the number of inputs to 2n. Let Π
be an optimal deterministic one-out-of-two protocol of communication C =
D1of2

1/4 (SplitIdn, μ).

Π partitions the communication matrix M̃SplitIdn
with striped rectangles: in

any given rectangle, the output of the one-out-of-two protocol can depend on
either the row or on the column, but not both. But for our problem, every
cell of the communication matrix has a different output, so any rectangle of
width and height both at least 2 makes an error in at least half its cells.
A rectangle of width or height at most 1 contains at most 2n/2 elements,
therefore at most 2C+n/2 elements are covered by a rectangle that makes
less than half error on its elements. Therefore at least 2n − 2C+n/2 inputs
are covered by rectangles with at least 1/2 error, so Π makes error at least
2−n · 1

2

(
2n − 2C+n/2

)
. This error has to be less than 1

4 , so:

1
4

≥ 2−n · 1
2

(
2n − 2C+n/2

)
⇒ C ≥ n/2 − 1

Which completes our proof that R1of2
1/4 (SplitIdn) ≥ D1of2

1/4 (SplitIdn, μ) ∈
Ω(n).

The XOR Model. In our final model, the players both output a k bit string at
the end of the protocol. A computation correctly computes the value of f(x, y)
when the bit-wise XOR of the two strings is equal to f(x, y).

Definition 4 (XOR computation). Consider a function f whose output set
is Z = {0, 1}k. A protocol Π is said to XOR-compute f with ε error if there
exist two mappings OA and OB with OA : Tπ × Rpub × RA × X → {0, 1}k and
similarly OB : Tπ × Rpub × RB × Y → {0, 1}k such that for all (x, y) ∈ X × Y,
Prr,rA,rB

[OA(tπ, r, rA, x) ⊕ OB(tπ, r, rB, y) = f(x, y)] ≥ 1 − ε.

The XOR model is separated from the one-out-of-two model by the following
function (Fig. 6):

Definition 16. XORn : {0, 1}n × {0, 1}n → {0, 1}n is defined by
XORn(x, y) = (xi ⊕ yi)i∈[n]

Theorem 11. ∀f : X × Y → Z with k = �log|Z|� and ε > 0 ,

Rxor
ε (f) ≤ Rspl

ε (f) ≤ R1of2
ε (f) ≤ Runi

ε (f) ≤ Rxor
ε (f) + k, and

Dxor(XORn) = 0, Rspl
ε (XORn) ∈ Ω(n).
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Fig. 6. The communication matrix of XOR3

Proof (Proof of Theorem 11).

XOR model upper bound: Alice and Bob can just each output their input,
which requires no communication.

Split model lower bound: Let us consider Dspl
1/4(XORn, μ) where μ is the

uniform distribution. Let Π be an optimal deterministic one-out-of-two pro-
tocol of communication C = Dspl

1/4(XORn, μ).
Π partitions the communication matrix MXORn

into 2C rectangles. Let us
first assume that in each rectangle, each bit of the output is output by a fixed
player. We will see later that our argument still holds without this assump-
tion.
In each of the 2C rectangles, one of the players has to output less than n/2
bits of the output. Let us consider a rectangle where Bob outputs at most
half the bits of the output. Then, on a given row of this rectangle, there can
be at most 2n/2 different outputs. But the XORn problem is such that on
a given row, all cells have a different output. We will argue that this bounds
the size of the rectangles that do not make a lot of error.
Let a rectangle contain at least 23n/2+1 elements. Since a row or column con-
tains at most 2n elements, such a rectangle contains at least 2n/2+1 rows and
columns. Therefore, the player that outputs at most half the bits of the out-
put in the split model will output at most 2n/2 different strings on a given row
or column that contains more than 2n/2+1 different values, so the rectangle
has error on at least half of its elements.
If the players do not always split the outputs bits in the same way, consider
the largest set of rows such that Alice outputs a given subset of the output
bits, and the largest set of columns such that Bob outputs a given subset of
the output bits. If the sets of output bits that Alice and Bob output on those
rows and columns are not the complement of each other, the rectangle is in
error on at least half of its elements. If the sets correctly partition the output
bits, we do the same argument as before: let us assume that Bob outputs
at most half the bits in the subrectangle we defined. Then no more than 2n
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cells can be correct in any row of this subrectangle, and rows outside of the
subrectangle are also mostly error, therefore the rectangle has error on at
least half of its elements.
At most 2C+3n/2+1 elements are in rectangles with error strictly less than
half, so the error made by the protocol is at least 1

2 · 2−2n
(
22n − 2C+3n/2+1

)
.

The error has to be less than 1
4 , so:

C ≥ n/2 − 2

Which completes our proof that Rspl
1/4(XORn) ≥ Dspl

1/4(XORn, μ) ∈ Ω(n).

A.6 Relations Between Models

The next proposition summarizes the relations between models in Theorems 7
to 11.

Proposition 4. ∀f : X × Y → Z with k = �log|Z|� and ε > 0 we have:

Ropen
ε (f) ≥ Rloc

ε (f) ≥ max
(
RA

ε (f), RB
ε (f)

)
≥ min

(
RA

ε (f), RB
ε (f)

)
= Runi

ε (f)

≥ R1of2
ε (f) ≥ Rspl

ε (f) ≥ Rxor
ε (f) (1)

Rloc
2ε (f) ≤ RA

ε (f) + RB
ε (f) (2)

Ropen
ε (f) ≤ Runi

ε (f) + k (3)

Ropen
ε (f) ≤ R1of2

ε (f) + k + 1 (4)

R1of2
ε (f) ≤ Rspl

ε (f) + �k/2� + 1. (5)

Runi
ε (f) ≤ Rxor

ε (f) + k. (6)

The same statements hold for deterministic communication and communication
with private randomness only. All statements except subproposition 2 also hold
for relations and nondeterministic communication.

Proposition 4 shows that the models form a natural hierarchy and can be
ordered from most to least communication intensive. We also summarize this
hierarchy in Fig. 1, in the main text. This figure also displays separating problems
other than those in this section, in Appendix.

B Summary of Our Results

In this section, we summarize the results in this paper. Table 1 summarizes the
problems we have studied which show gaps between the different output models.
Table 2 summarizes the bounds on GapMAJ◦XOR in various models. Table 3
summarizes error reduction bounds and derandomization.

The upper bounds on the Gap Majority problem, are summarized in Table 2.
We conjecture a matching lower bound to our stated deterministic O(εNk) upper
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Table 1. Summary of the communication complexities of our separating problems in all
models. The definitions of the problems and the proofs are in Appendix A and the full
version of this paper [23]. In this table, n is the input length, k is the output length, M
is an output model, M ∈ {open, loc,A,B, uni, 1of2, xor}, and t is the Hamming weight
of an instance.

open local unilateral 1-out-of-2 XOR

EQout
n RM

1/3 ∈ Θ(n) RM
1/3 ∈ Θ(1)

t−INTn RM
1/3 ∈ Θ(t · log(n)) RM

1/3 ∈ Θ(t)

idA
n RM

1/3 ∈ Θ(n) DM = 0

CondIdn RM
1/3 ∈ Θ(n) DM = 2

MAXn RM
1/3 ∈ Θ(n) RM

1/3 ∈ Θ(log(n))

t−FtFDn RM
1/3 ∈ Θ(log(n)) RM

1/3 ∈ Θ(log(t) + log log(n))

XORn RM
1/3 ∈ Θ(n) DM = 0

GapMAJN,k,1/3◦XOR RM
1/3 ∈ Θ(k) RM

1/3 = 0

GapMAJN,k,2/5◦XOR RM
1/3 ∈ Θ(k) RM

1/3 ∈ O(1)

Table 2. Upper bounds on GapMAJ◦XOR. In this table, N, k, ε are the parameters
of the Gap Majority problem, and ε′ is the error parameter. Proofs in the full version
of this paper [23].

Upper bounds

ε′ ≥ ε Rxor
ε′ 0

Rxor,priv
ε′ log(N)

Ropen
ε′ 2k

Ropen,priv
ε′ 2k + log(N)

0 < ε′ < ε Rxor
ε′ O

(
min

(
Cε,ε′ , N + log

(
1
ε′

)))

ε′ = 0 Duni (2εN + 1)k

bound. Studying the communication complexity of this problem is of theoretical
interest, as we have seen in this paper that fundamental results in communi-
cation complexity, namely error reduction and derandomization, are related to
the GapMAJ◦XOR problem in the XOR model. Improving the deterministic
upper bound on GapMAJ◦XOR would yield a better derandomization result
through Theorem 6. Similarly, improving the randomized upper bounds could
improve error reduction through Lemma 2. Conversely, considering that we have
an upper bound of log(N) on the private coin XOR communication complexity
of GapMAJ◦XOR, proving a Ω(Nk) lower bound on its deterministic com-
munication complexity would indicate that our derandomization theorem in the
XOR model (Theorem 6) is close to tight.
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Table 3. Summary of our error reduction and derandomization schemes. In all state-
ments above, f is a function whose output length is k, ε is the starting error parame-

ter, ε′ is the target error parameter, R = RM
ε (f), Cε,ε′ ∈ O

(
ε
(
1
2

− ε
)−2

log
(

1
ε′

))
and

C′
ε,ε′ ∈ O

(
log

(
1
ε′

)
+ log

(
1

1
2 −ε

))
.

Error reduction

model Upper bounds (condition)

open Rε′(f) ≤ Cε,ε′ · Rε(f)

local

unilateral

1-out-of-2 Rε′(f) ≤ Cε,ε′(Rε(f) + 1) + C′
ε,ε′

split Rε′(f) ≤ Cε,ε′Rε(f) + O(Cε,ε′)

XOR Rε′(f) ≤ Cε,ε′Rε(f) + O(Cε,ε′)

Rε′(f) ≤ 50 ln
(
12
ε′

)
Rε(f) + Cε,ε′Rε(g) + O(Cε,ε′ + log(k)) (f = g⊗k)

Derandomization

model Upper bounds (condition)

open D(f) ∈ O
(
2R

(
R + log( 1

1
2 −ε

)
))

local

unilateral D(f) ∈ O
(
2R

(
R + log( 1

1
2 −ε

)
))

1-out-of-2 D(f) ∈ O
(
2R

(
R + log( 1

1
2 −ε

)
))

D(f) ∈ O
(
2R

(
R + log( 1

1
2 −ε

)
)

+ log(k)
)

split D(f) ∈ O
(
2R

(
R + log( 1

1
2 −ε

)
)

+ k
)

D(f) ∈ O
(
2R

(
R + log( 1

1
2 −ε

)
)

+ 2R
(
1
2

− ε
)−2

k
)

XOR D(f) ∈ O
(
2R

(
R + log( 1

1
2 −ε

)
)

+ 2R
(
1
2

− ε
)−2

k
)

C Technical Lemmas

C.1 Proof of the Random Graph Lemma

The proof of the random graph lemma stated in Sect. 5.1 and used to solve
GapMAJ◦XOR is a simple variation of a result of Erdős and Rényi [19]. The
result they proved is in a model of random graphs where a fixed number of edges
are picked randomly from the set of all possible edges, while we are interested in
a model of random graphs where each edge is picked with a fixed probability p
independently of other edges. The two models are known to have essentially sim-
ilar asymptotic behaviours. Readers interested in the theory of random graphs
might refer to [8].
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Proof (Proof of Lemma 3). We observe as in [19] that if no connected component
of more than (1−α)n vertices exists, then we can partition the vertices into two
disconnected sets of size n0 and n1 such that α

2 n ≤ n0 ≤ n1 ≤
(
1 − α

2

)
n.

Given a partition of the vertices into sets of size n0 and n1, the probability
that those two sets are disconnected is (1 − p(n))n0n1 . With p(n) = c

n , and
since there are less than 2n possible partitions, the probability that there is no
connected component of more than (1 − α)n vertices is bounded by:

2n
(
1 − c

n

)n0n1

≤ 2ne−c
n0n1

n ≤ 2ne−c α
2 (1− α

2 )n = e(ln(2)−
α
2 (1− α

2 )c)n

C.2 Distribution Distance Lemma

The following lemma is used in Sect. 6.

Lemma 5. Let U and V be random variables over their respective domain U
and V. For all u ∈ U , let us consider VU=u the random variable V conditioned
on the event [U = u]. Assume there exists two constants δU and δV and two
random variables U ′ and V ′ over the same domains as U and V such that:

Δ(U,U ′) ≤ δU ∀u ∈ U : d∞(VU=u, V ′
U ′=u) ≤ δV .

Then:
d∞(V, V ′) ≤ δU + δV .

Proof (Proof of Lemma 5). Let us show that ∀v ∈ V, |Pr[V = v] − Pr[V ′ = v]| ≤
δU +δV . Fix an arbitrary v ∈ V, then the probabilities Pr[V = v] and Pr[V ′ = v]
can be written as:

– Pr[V = v] =
∑

u∈U Pr[U = u] · Pr[V = v | U = u],
– Pr[V ′ = v] =

∑
u∈U Pr[U ′ = u] · Pr[V ′ = v | U ′ = u].

Hence using our two hypotheses above we get:

Pr[V = v] − Pr[V ′ = v]

=
∑
u∈U

(Pr[U = u] · Pr[V = v | U = u] − Pr[U ′ = u] · Pr[V ′ = v | U ′ = u])

≤
∑
u∈U

((Pr[U = u] − Pr[U ′ = u]) Pr[V = v | U = u] + δV Pr[U ′ = u])

≤
∑

u∈U :Pr[U=u]>Pr[U ′=u]

(Pr[U = u] − Pr[U ′ = u]) + δV

≤ δU + δV .

We can prove Pr[V = v]−Pr[V ′ = v] ≥ −(δU + δV ) following the same proof
method, and combining the two we get the desired result:

∀v ∈ V : |Pr[V = v] − Pr[V ′ = v]| ≤ δU + δV .
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Abstract. It is known that, for every k ≥ 2, C2k-freeness can be decided
by a generic Monte-Carlo algorithm running in n1−1/Θ(k2) rounds in the
congest model. For 2 ≤ k ≤ 5, faster Monte-Carlo algorithms do exist,
running in O(n1−1/k) rounds, based on upper bounding the number of
messages to be forwarded, and aborting search sub-routines for which this
number exceeds certain thresholds. We investigate the possible extension
of these threshold-based algorithms, for the detection of larger cycles.
We first show that, for every k ≥ 6, there exists an infinite family of
graphs containing a 2k-cycle for which any threshold-based algorithm
fails to detect that cycle. Hence, in particular, neither C12-freeness nor
C14-freeness can be decided by threshold-based algorithms. Nevertheless,
we show that {C12, C14}-freeness can still be decided by a threshold-
based algorithm, running in O(n1−1/7) = O(n0.857...) rounds, which is
faster than using the generic algorithm, which would run in O(n1−1/22) �
O(n0.954...) rounds. Moreover, we exhibit an infinite collection of families
of cycles such that threshold-based algorithms can decide F-freeness for
every F in this collection.

Keywords: Cycle-Freeness · Distributed Computing · congest model

1 Introduction

1.1 Objective

Graphs excluding a fixed family F of graphs, whether it be as subgraphs, induced
subgraphs, topological subgraphs, or minors, play a huge role in theoretical com-
puter science, especially in graph theory as well as in algorithm design and com-
plexity, from standard and parametrized complexity, to the design of approxi-
mation and exact algorithms. Famous examples in structural graph theory are
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Wagner’s theorem stating that a finite graph is planar if and only if it does not
have K5 or K3,3 as a minor, and the forbidden subgraph problem which looks for
the maximum number of edges in any n-vertex graph excluding a given graph G
as induced subgraph. In the algorithm and complexity framework, it is known
that the vertex coloring problem is NP-hard in triangle-free (i.e., C3-free) graphs,
but many families F have been identified, for which computing the chromatic
number of graphs excluding every graph in F as induced subgraphs can be done
in polynomial time. For instance, it is known that, for a graph H of at most six
vertices, vertex coloring for {C3,H}-free graphs is polynomial-time solvable if
H is a forest not isomorphic to K1,5, and NP-hard otherwise [2]. Another recent
illustration of the importance of F-free graphs, is graph isomorphism, which can
be tested in time npolylog(k) on all n-node graphs excluding an arbitrary k-node
graph as a topological subgraph [13].

In the context of distributed computing for networks however, still very little
is known about F-free graphs, even for the most basic case where the graphs
in F must be excluded as mere subgraphs (not necessarily induced). In fact,
up to our knowledge, most of the work in this domain has focused on the stan-
dard congest model, and its variants. Recall that the congest model is a
distributed computing model for networks where the nodes of a graph execute
the same algorithm, as a sequence of synchronous rounds, during which every
node is bounded to exchange messages of O(log n) bits with each of its neighbors
(see [14]). Also recall that a distributed algorithm A decides a graph property
P if, for every input graph G, the following holds: G satisfies P if and only if
A accepts at every node of G. Deciding H-freeness is a fruitful playground for
inventing new techniques for the design of efficient congest algorithms. Indeed,
the problem itself is local, yet the limited bandwidth of the links imposes severe
limitations on the ability of every node to gather information about nodes at
distance more than one from it.

An important case is checking the absence of a cycle of given size as a sub-
graph. On the negative side, for every k ≥ 2, deciding C2k+1-freeness requires
Ω̃(n) rounds in congest, even for randomized algorithms [6]. However, for every
k ≥ 2, C2k-freeness can be solved by Monte-Carlo algorithms performing in a
sub-linear number of rounds. For instance C4-freeness can be decided (deter-
ministically) in O(

√
n) rounds [6], and, for every k ≥ 3, the round-complexity of

C2k-freeness is at most O(n1−2/(k2−2k+4)) if k is even, and O(n1−2/(k2−k+2)) if
k is odd (see [9]).

The round-complexity of deciding C2k-freeness has been recently improved
(see [4]), for small values of k, by an elegant algorithm which, for every 2 ≤ k ≤ 5,
runs in O(n1−1/k) rounds. For k = 2 the (randomized) algorithms in [4,9] runs
with the same asymptotic complexity as the (deterministic) algorithm in [6], i.e.,
in O(

√
n) rounds, and this cannot be improved, up to a logarithmic multiplicative

factor [6]. However, for k ∈ {3, 4, 5}, the current best-known upper bound on
the round-complexity of deciding C2k-freeness is O(n1−1/k). Interestingly, the
algorithm in [4] also allows to decide whether the girth of a network is at most g,
in Õ(n1−2/g) rounds. In other words, the algorithm decides {Ck, 3 ≤ k ≤ g}-
freeness for any given g.
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In a nutshell, the algorithm in [4] is based on the notion of light and heavy
nodes, where a node is light if its degree is at most n1/k, and heavy other-
wise. Cycles of length 2k composed of light nodes only can be found in at most∑k−1

i=0 ni/k = Θ(n1−1/k) rounds, by brute-force search, using color-coding [1].
For finding cycles containing at least one heavy node, it is noticed that, by pick-
ing a node s uniformly at random, the probability that s is neighbor of a heavy
node is at least n1/k/n, and thus, by repeating the experiment Θ(n1−1/k) times,
a neighbor of a heavy node belonging to some 2k-cycle will be found with con-
stant probability, if it exists. The node s chosen at a given time of the algorithm
initiates brute-force searches from all its heavy neighbors in parallel, each one
searching for a cycle containing it, using color coding. The main point in the
algorithm is the following. It is proved that, for every k ∈ {2, 3, 4, 5}, and every
i ∈ {1, . . . , k − 1}, there is a constant threshold Tk(i) such that, if a node col-
ored i or 2k− i has to forward more than Tk(i) searches initiated from the heavy
neighbors of s, then that node can safely abort the search, without preventing
the algorithm from eventually detecting a 2k-cycle, if it exists. It follows that
the parallel searches initiated by the random source s run in O(1)-rounds, and
thus the “threshold-based” algorithm in [4] runs in O(n1−1/k) rounds overall.

The objective of this paper is to determine under which condition, and for
which graph family F , threshold-based algorithms can be used for deciding F-
freeness.

1.2 Our Results

Our first contribution is a negative result. For every k ≥ 6, we exhibit an infinite
family of graphs in which any threshold-based algorithm fails to decide C2k-
freeness. That is, we show that, for k ≥ 6, a threshold-based algorithm must
forward a non-constant amount of messages at some step to guarantee that
the parallel searches initiated by the random source s detect a 2k-cycle. More
specifically, we show the following.

Theorem 1. For every k ≥ 6, there exists an infinite family G of graphs
containing a unique 2k-cycle C = (u0, u1, . . . , u2k−1) such that, for every
T ∈ o(n1/6/ log n), the threshold-based algorithm fails to detect C in at least
one n-node graph in G if the thresholds are set to T .

In other words, Theorem 1 says that, for every k ≥ 6, there are no effi-
cient threshold-based algorithms capable to decide C2k-freeness. In particular,
neither C12-freeness nor C14-freeness can be decided by a threshold-based algo-
rithm. Nevertheless, our second contribution states that this is not the case of
determining whether a graph is free of both C12 and C14.

Theorem 2. {C12, C14}-freeness can be decided by a threshold-based algorithm
running in O(n1− 1

7 ) rounds.

Note that the generic algorithm from [9] would run in O(n1− 1
22 ) = O(n0.954...)

rounds for deciding {C12, C14}-freeness by checking separately whether the graph
contains a C12, and whether the graph contains a C14. Instead, our algorithm
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performs in O(n1−1/7) = O(n0.857...) rounds. Note that establishing that
{C10, C12}-freeness can be decided by a threshold-based algorithm running in
O(n1− 1

6 ) rounds is rather easy because C10-freeness can be decided by such an
algorithm. The point is that, again, thanks to Theorem 1, neither C12-freeness
nor C14-freeness can be decided by a threshold-based algorithm.

Finally, note that, by construction, threshold-based algorithms can decide
Fk-freeness, for every k ≥ 2, where Fk = {C2� | 2 ≤ � ≤ k}. This raises the
question of identifying infinite collections of smaller families F of cycles for
which threshold-based algorithms succeed to decide F-freeness. We identify two
such families.

Theorem 3. Let k ≥ 2, F ′
k = {C4� | 1 ≤ � ≤ k}, and F ′′

k = {C4�+2 | 1 ≤ � ≤ k}.
Both F ′

k-freeness and F ′′
k -freeness can be decided by threshold-based algorithms

running in Õ(n1−1/2k) rounds, and Õ(n1−1/(2k+1)) rounds, respectively.

Due to lack of space, the proof of this latter theorem in placed in Appendix F.

1.3 Related Work

Deciding H-freeness for a given graph H has been considered in [7], which
describes an algorithm running in Õ(n2−2/(3k+1)+o(1)) rounds for k-node
graphs H. This round complexity is nearly matching the general lower bound
Ω̃(n2−Θ(1/k)) established in [9]. This latter bound can be overcome for specific
graphs H, and typically when H is a cycle.

For every k ≥ 3, Ck-freeness can be decided in O(n) rounds (see, e.g., [11]).
However, the exact round-complexity of deciding Ck-freeness varies a lot depend-
ing on whether k is even or odd. It was proved in [6] that deciding C2k+1-freeness
requires Ω̃(n) rounds for k ≥ 2. Nevertheless, sub-linear algorithms are known
for even cycles. In particular, the round-complexity of deciding C4-freeness was
established as Θ̃(n1/2) in [6]. The lower bound Ω̃(n1/2) rounds is also known
to hold for deciding C2k-freeness, for every k ≥ 3 [11]. The best generic upper
bound for deciding C2k-freeness is Õ(n1−Θ(1/k2)) rounds [9]. Faster algorithms
are known, but for specific values of k only. Specifically, for every k ∈ {3, 4, 5},
C2k-freeness can be decided in O(n1−1/k) rounds [4]. The special case of triangle
detection, i.e., deciding C3-freeness is widely open.

It may also be worth mentioning the study of cycle-detection in the context of
a model stronger than congest, namely in the congested cliquemodel. In this
model, efficient algorithms have been designed. In particular, it was shown in [5]
that C3-freeness can be decided in O(n0.158) rounds, C4-freeness can be decided
in O(1) rounds, and Ck-freeness can be decided in O(n0.158) rounds for any k ≥ 5.

The interested reader is referred to [3] for a recent survey on subgraph detec-
tion, and related problems, in congest or similar models.

2 Preliminaries

In this section, we recall the main techniques used for deciding whether the
graph contain a cycle of a given length as a subgraph, and we summarize the
threshold-based algorithms defined in [4].
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2.1 Subgraph Detection

Recall that a graph H is a subgraph of a graph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G). Given a graph H, a deterministic distributed algorithm A for
the CONGEST model decides H-freeness in R(·) rounds if, for every n-node
graph G, whenever A runs in G, each node outputs “accept” or “reject” after
R(n) rounds, and

G contains H as a subgraph ⇐⇒ at least one node of G rejects.

A randomized Monte-Carlo algorithm decides H-freeness if, for every n-node
graph G,
{

G contains H as a subgraph =⇒ Pr[at least one node of G rejects] ≥ 2/3.
G does not contain H as a subgraph =⇒ Pr[all nodes accept] ≥ 2/3.

In fact, most algorithms for deciding H-freeness are 1-sided, i.e., they alway
accept H-free graphs, and may err only by failing to detect an existing copy of
H in G. By repeating the execution of 1-sided error algorithms for sufficiently
many times, one can make the error probability as small as desired.

In the case H = C2k, which is the framework of this paper, one standard
technique, called color-coding [1], plays a crucial role and was used in many
algorithms for detecting cycles in various contexts (see, e.g., [4,8,10]).

Color Coding. Let G = (V,E), and W ⊆ V . For deciding whether there is a 2k-
cycle including one node in W , let every node of G pick a color in {0, . . . , 2k−1}
uniformly at random. Then every node w ∈ W colored 0 launches a search, called
color-BFS(k,w), by sending its identifier to all its neighbors colored 1 and 2k−1.
Every node colored 1 receiving an identifier from a node colored 0 forwards that
identifier to all its neighbors colored 2, while every node colored 2k −1 receiving
an identifier from a node colored 0 forwards it to all its neighbors colored 2k−2.
More generally, for every i = 2, . . . , k − 1, every node colored i receiving an
identifier from a node colored i − 1 forwards it to all its neighbors colored i+ 1,
and, for every i = 2k − 2, . . . , k + 1, every node colored i receiving an identifier
from a node colored i+1 forwards it to all its neighbors colored i − 1. If a node
colored k receives a same identifier from a neighbor colored k − 1, and from a
neighbor colored k + 1, then it rejects.

The number of rounds required by color-BFS(k,W ) is at most k |W |. Also, if
the nodes in the graphs have maximum degree Δ, then the number of rounds is
at most O(Δk−1). Overall, we have

#rounds color − BFS(k,W ) = O(min{k |W |, Δk−1}). (1)

If there is a 2k-cycle passing through a node in W , then the probability that this
cycle is colored appropriately is at least ρ = 1/(2k)2k, and therefore the cycle is
found with probability at least ρ. By repeating the procedure a constant number
of times proportional to (2k)2k, the cycle is found with probability at least 2/3.
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2.2 Threshold-Based Algorithms

We denote the algorithm defined in [4] by A�. This algorithm, summarized in
Algorithm 1, heavily uses color-coding. A node u of G is called light if deg(u) ≤
n1/k, and heavy otherwise. A 2k-cycle C containing only light nodes is called
light cycle, and is heavy otherwise.

Detecting Light Cycles. Detecting whether there is a light 2k-cycle is easy by
applying color-coding in the subgraph G[U ] of G induced by light nodes U (i.e.,
only light nodes participate). By Eq. (1) with Δ = n1/k, we get that the detection
of light cycles takes O(n1−1/k) rounds. If a light 2k-cycle exists in the graph,
some light node rejects with constant probability, and we are done.

Detecting Heavy Cycles. For detecting heavy cycles, A� picks a node s uniformly
at random in the graph1. The idea is that if there is a heavy 2k-cycle in the
graph, say C = (u0, u1, ..., u2k−1) where u0 is heavy, then the probability that a
neighbor s of u0 is picked is at least n−(1−1/k) since deg(u0) ≥ n1/k. Therefore,
by repeating Θ(n1−1/k) times the choice of s, a neighbor of u0 will be picked with
constant probability. For each choice of s, the goal is to proceed with searching
a 2k-cycle in a constant number of rounds.

The chosen node s launches color-BFS(k, s) for figuring out whether there is
a 2k-cycle passing through s. By Eq. (1) with |W | = 1, this takes O(1) rounds.
If a 2k-cycle is detected, some node rejects, and we are done.

We therefore assume from now that s does not belong to a 2k-cycle. The
source node s then sends a message to all its heavy neighbors W , and each
of these neighbors w launches color-BFS(k,w), in parallel. At this point, one
cannot simply rely on Eq. (1) with |W | ≤ deg(s) to bound the round-complexity
of color-BFS(k,W ) because s may have non-constant degree. The central trick
used in [4] consists to provide each node with a threshold for the number of
messages the node can forward at a given step of a color-BFS. In case the number
of messages to be transmitted exceeds the threshold, then the node aborts, i.e.,
it stops participating to the current color-BFS. It is shown that such threshold-
based approach may prevent the nodes to detect 2k-cycles, but not too often,
and that a 2k-cycle will be detected with constant probability anyway, if it exists.
This is summarized by the following lemma.

Lemma 1 ([4]). Let C = (u0, u1, ..., u2k−1) be a 2k-cycle in G, with u0 heavy,
and of maximum degree among the nodes in C. For every k ∈ {2, 3, 4, 5},
there exists a constant αk > 0, and there exist constant thresholds Tk(i),
i = 1, . . . , k − 1, such that, even if nodes colored i or 2k − i abort the search
launched from the set W of heavy neighbors of s ∈ NG(u0) at the i-th step of
color − BFS(k,W ) whenever they generate a congestion larger than Tk(i), still,
for a fraction at least αk of the neighbors s of u0, the cycle C will be found,
unless s itself belongs to a 2k-cycle.
1 This can be done by letting each node choosing an integer value in {1, . . . , n3}

uniformly at random; The node s with smallest value is the chosen node. With high
probability, this node is unique.
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That is, A� sets thresholds (depending on k), and if the volume of commu-
nication generated by the color-BFS(k,W ) launched in parallel by all the heavy
neighbors W of a random source s exceeds these thresholds, then the search
aborts. Yet, it is proved in [4] that this does not prevent a 2k-cycle to be found,
if it exists.

Algorithm 1. Deciding C2k-Freeness by the Threshold Algorithm A� from [4]
1: color-BFS(k, U) in G[U ] � U = {u ∈ V (G) | deg(u) ≤ n1/k}
2: for i = 1 to Θ(n1−1/k) do
3: s ← random node in G � W = {v ∈ NG(s) | deg(v) > n1/k}
4: color-BFS(k, s)
5: color-BFS(k, W ) with threshold Tk(i), i ∈ {1, . . . , k − 1}
6: end for

The algorithm A� is summarized in Algorithm 1. Each color-BFS includes
∼ (2k)2k executions of color-coding to guarantee 2k-cycle detection with proba-
bility at least 2/3. Instruction 1 performs in Θ(n1−1/k) rounds because G[U ] has
maximum degree n1/k. It finds a light 2k-cycle, if it exists, with probability 2/3.
Instruction 4 performs in O(1) rounds for each constant k ≤ 5, and, if s belongs
to a 2k-cycle, it finds such a cycle with probability 2/3. Instruction 5 also per-
forms in O(1) rounds as well, thanks to the thresholds specified in Lemma 1.
If there is a heavy 2k-cycle, and if s does not belong to a 2k-cycle, then that
heavy 2k-cycle is found with probability 2/3. Overall, A� performs in O(n1−1/k)
rounds, and succeeds with probability 2/3.

In the next section, we shall show that thresholds Tk(i), i = 1, . . . , k − 1, such
as the ones specified in Lemma 1 cannot be set for k ≥ 6.

3 Limits of the Threshold-Based Algorithms

This section is entirely dedicated to the proof of Theorem 1, which is essentially
based on proving the impossibility of setting a constant Tk(k − 3) for k ≥ 6. For
this purpose, we exhibit a class of graph {Gk | k ≥ 6} such that each Gk does
not contain any light cycle C2k, and contains exactly one heavy cycle C2k. The
construction of Gk for k ≥ 6 is split in two cases: a generic construction, which
works for all k ≥ 7, and a specific construction for G6. We begin the proof by
the generic case.

Let k ≥ 7. The graph Gk is composed of the following nodes (see Fig. 1), for
N ≥ 1:

– The 2k nodes of the unique 2k-cycle C� = (u0, u1, ..., u2k−1);
– The set S = {sp, p ∈ {1, . . . , N}} of N neighbors of u0;
– The set W = {wq

k−4, q ∈ {1, . . . , N}} of N neighbors of uk−3;
– For (p, q) ∈ {1, . . . , N}2, the set {wp,q

j , j ∈ {0, . . . , k − 5}} of the nodes on a
path from node sp to node in wq

k−4;
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– For (p, q) ∈ {1, . . . , N}2, the set {vp,q,r
0 , r ∈ {1, . . . , N}} of private neighbors

of node wp,q
0 (these nodes are added in order to ensure that wp,q

0 is heavy);
– For (p, q) ∈ {1, . . . , N}2, the set {vp,q,r

k−5 : r ∈ {1, . . . , N}} of private neighbors
of node wp,q

k−5 (as above, this makes node wp,q
k−5 heavy).

The number of nodes in Gk is n = Θ(N3).

Fig. 1. The graph Gk for k ≥ 7 and N = 3.

The proof of the following result can be found in Appendix A.

Lemma 2. For every k ≥ 7, C� is the unique 2k-cycle in Gk, and is a heavy
cycle.

As a consequence of Lemma 2, a 2k-cycle in Gk can only be detected if
the algorithm picks the random source s in NGk

(C�), i.e., it must pick s ∈
S ∪ W ∪ C�. Also, if s ∈ S ∪ W , then s does not belong to a 2k-cycle, and
thus s will initiate the search for C2k from each of its heavy neighbors.

Lemma 3. Let T ∈ o(n1/3/ log n), and let us set Tk(k − 3) = T in the threshold-
based algorithm. If s ∈ S (resp., s ∈ W ), then the probability that uk−3

(resp., u0) forwards at most T messages during a search phase from heavy nodes
is exp(−Θ(n1/3)).

Proof. By the symmetry of Gk, the roles of S ∪ {u0} and W ∪ {uk−3} are iden-
tical. We shall thus prove the lemma only for s ∈ S, i.e., s = sp for some
p ∈ {1, . . . , N}. For every q ∈ {1, . . . , N}, let Xq be the following Bernoulli ran-
dom variable, assuming each node picks a color in {0, . . . , 2k − 1} uniformly at
random. We say that the path wp,q

0 , . . . , wp,q
k−5, w

q
k−4 is well-colored if, for every

i ∈ {0, . . . , k − 5}, wp,q
i is colored i, and wq

k−4 is colored k − 4. We define

Xq =
{
1 if the path (wp,q

0 , . . . , wp,q
k−5, w

q
k−4) is well-colored;

0 otherwise.
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Let then X =
∑N

q=1 Xq be the random variable that counts the number of
identifiers different from id(u0) that uk−3 has to forward, that is, the identifiers
of all the nodes wp,q

0 satisfying Xq = 1. X follows a Binomial law of parameters
N and r = ( 1

2k )
k−3, so its expectation is E(X) = Nr. Since every node wp,q

0 has
a unique path with length k − 3 to node uk−3, we get that

Pr[X ≤ T ] =
T∑

t=0

Pr[X = t] =
T∑

t=0

(
N

t

)

rt(1 − r)N−t

≤
T∑

t=0

N t rte(N−t) ln(1−r) ≤ (T + 1)NT rT eN ln(1−r)

= NT e−Θ(N).

Therefore, the probability that uk−3 has to forward at most T messages is
O(NT e−Θ(N)). If T = o(N/ logN) � o(n1/3/ log n), then this probability is
asymptotically equal to exp(−Θ(n1/3)). �

To conclude the proof of Theorem 1 for k ≥ 7 note that, even by fixing all
thresholds to T ∈ o(n1/3/ log n), Algorithm A� fails to detect the unique (heavy)
cycle C� almost surely. Indeed when picking vertex s in S (or, symmetrically,
s in W ), the algorithm succeeds with probability exp(−Θ(n1/3)), since vertex
uk−3 aborts almost surely. The other possibility of detecting the cycle is when
the algorithm picks s directly on C�, which only contains 2k vertices, so the
success possibility is O(1/n). Hence, although the algorithm makes Õ(n1−1/k)
independent random choices of s, the probability of success is only Õ(n−1/k).

The specific case k = 6 is treated in Appendix B, which completes the proof
of Theorem 1.

4 Deciding {C12, C14}-Freeness
This section is entirely dedicated to the proof of Theorem 2. We rely mostly
on the threshold algorithm as such, with the following slight modification, for
simplifying the analysis.

Remark. For exhibiting the thresholds T2k(i), 1 ≤ i ≤ 2k − 1, it is conve-
nient to assume that, instead of repeating O(n1−1/k) random choices of s, and
then, for each chosen s, repeating ∼ (2k)2k random choices of colors (for the
color-BFSs), the algorithm proceeds as follows: The outer loop repeats ∼ (2k)2k

random assignments of colors, and the inner loop repeats O(n1−1/k) random
choices of s (for each of the ∼ (2k)2k color-assignments). In fact, it simplifies
the presentation even further by assuming that the random colors are in the
range {−1, 0, . . . , 2k − 1}. The extra color −1 is used only by s, and s launches
color-BFS(W ) only under the condition that s has random color −1. None of
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these changes affect the performances of the algorithm, up to a constant factor
in the round-complexity.

The algorithm starts by checking the existence of a light 12-cycle or a light
14-cycle. This is achieved in O(n6/7) rounds, by parallel color-BFSs running
on the light nodes only (see Sect. 2.2). For detecting heavy cycles, the algorithm
proceeds as the threshold algorithm, by repeating the choice of a random node s.
For each choice, the chosen node s checks whether it belongs to a 12-cycle or to
a 14-cycle, by performing two series of color-BFS(s), one for detecting a possible
12-cycle passing through s, and one for detecting a possible 14-cycle. If no such
cycles are detected, then s proceeds as follows.

Looking for 14-cycles. Node s launches color-BFS(W ), from the set W of all
its heavy neighbors, with appropriate thresholds T7(i), 1 ≤ i ≤ 6, that will
be specified later. The crucial point here is that if the algorithm proceeds by
checking the existence of 12-cycles and of 14-cycles. By checking both lengths,
we will be able to establish a result similar to Lemma 1, that is, if there is a
14-cycle in G, say C = (u0, . . . , u13), with u0 heavy, and of maximum degree
among the nodes in C, then there exists a constant α > 0, such that, even
if nodes colored i or 14 − i abort the search launched from the set W at the
i-th step of color − BFS(W ) whenever they generate a congestion larger than
T7(i), still, for a fraction at least α of the neighbors s of u0, the cycle C
will be found with probability at least 2/3. In other words, if a node rejects
during this phase, it is because there is a 12-cycle, or there is a 14-cycle.
On the other hand, the fact that all nodes accept during this phase only
provides a (statistical) guarantee on the absence of 14-cycles, but provides
little information on the absence of 12-cycles.

Looking for 12-cycles. Again, node s launches color-BFS(W ), but for 12-cycles
now, with the mere thresholds T6(i) = 1 for all i = 1, . . . , 5. The crucial point
here is that, assuming that the graph is C14-free, then a threshold of 1 suffices.
There will only ever be one message crossing an edge in a well-colored heavy
12-cycle. This latter fact is easy to establish, so most of the proof consists in
proving the existence of the thresholds when looking for 14-cycles.

To set the values T7(i) for 1 ≤ i ≤ 6, let us define T7(0) = 1. Our construc-
tion is then inductive, and, for i > 0, we shall set T7(i) = f(i) · T7(i − 1) for
appropriate constants f(i). Let us assume that the graph contains a 14-cycle,
denoted by C� = (u0, u1, . . . , u13), where u0 is of maximum degree in C�, and,
for every i = 0, . . . , 13, node ui is colored i. From now on, we will work only on
the nodes u0, u1, . . . , u7. By symmetry, the same arguments will apply to nodes
u0, u13, . . . , u7. Before further defining the setting of the proof, recall that, as
underlined before, the O(n1−1/k) drawings of nodes s are performed on a given
coloring of the graph with colors in {−1, 0, . . . , 13}, and that only a picked node s
colored −1 invokes color-BFS(W ).

The lemma below is generic, as it applies to all k ≥ 2. Recall that a path
s, w0, . . . , wi−1, ui from node s to node ui is well-colored if s is colored −1, ui is
colored i, and, for every j = 0, . . . , i − 1, node wj is colored j by color-coding.
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Lemma 4. Let k ≥ 2 be an integer. For every i ∈ {1, . . . , k − 1}, let ρ be the
maximum number of node-disjoint well-colored paths from s to ui. If s launches
color-BFS(W ) from all its heavy neighbors colored 0, then ui cannot receive more
than ρ · Tk(i − 1) identifiers from nodes colored i − 1.

Proof. Let S be a set of ρ node-disjoint, well-colored paths from s to ui. Let
w0 ∈ W be a heavy neighbor of s colored 0, and let us assume that id(w0) has
reached ui. It follows that there is a well-colored path P of length i from w0 to ui.
The path P must intersect some path P ′ = {w′

0, . . . , w
′
i−1} in S (perhaps even

P = P ′). As a consequence, id(w0) is included in the at most Tk(i−1) identifiers
that node w′

i−1 may forward to ui. Therefore, the number of identifiers received
by ui during color-BFS(W ) does not exceed ρ · Tk(i − 1). �

Given f : {1, . . . , 6} → N to be fixed later, we define, for every i ∈ {1, . . . , 6},
the set of nodes

B(i) = {s ∈ NG(u0) | (color(s) = −1) ∧ (s /∈ C12 ∨ C14) ∧ (ρ(s) > f(i))},

where ρ(s) denotes the maximum number of node-disjoint well-colored paths
from s to node ui in the graph. Thanks to Lemma 4, we have that a neighbor
of u0 colored −1 and not in any 12- or 14-cycle, causing ui to receive more than
T7(i) identifiers, is in B(i). This set of nodes thus represents the bad neighbors
of u0, those that will prevent us from detecting any cycle whenever any such
neighbor is picked.

The rest of this section will prove that the bad nodes represent only a fraction
of the neighbors of u0. It follows that, by performing sufficiently many choices
of s, the probability to select a good neighbour s of u0, which will not cause con-
gestion, and will thus allow detecting the cycle, is still Ω(n−6/7). The parameter
f(i) makes the connection between the parameter T7(i) used by the algorithm,
and the set of nodes we do not want to pick as the source s. Formally we are
aiming at showing the following result.

Proposition 1. Let us set f(1) = 60, f(2) = f(3) = 10, f(4) = f(5) = 5, and
f(6) = 6. With this setting, we get

∣
∣
⋃6

i=1 B(i)
∣
∣ ≤ 35

72 deg(u0) + 3.

The thresholds yielded by the function f defined in Proposition 1 are:

T7(1) = 60 T7(2) = 600 T7(3) = 6 000
T7(4) = 30 000 T7(5) = 150 000 T7(6) = 900 000

To prove Proposition 1, our strategy is to bound each |B(i)| separately by a
fraction of the degree of u0 (for i = 1, 2, 3), or by a constant (for i = 4, 5, 6). Let
us now consider the values of i = 1, . . . , 6 successively.

Case i = 1. Our goal is to bound |B(1)|, given f(1) = 60. To achieve that, we
will show that the nodes colored 0 whose identifiers can reach u1 when a node
s ∈ B(1) is picked have to be sufficiently many compared to B(1) itself. Otherwise
a 12-cycle that involves nodes from B(1) would appear, which contradicts the
definition of the set of bad nodes.
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Lemma 5. If f(1) ≥ 60 then |B(1)| ≤ 1
4 deg(u0).

Proof. Let W0 denote the set of nodes x �= u0 colored 0 such that x is a heavy
neighbor of a node in B(1), and a neighbor of u1. This means that for any node
s ∈ B(1) that is picked, the identifiers that u1 receives are those of u0 and of
nodes in W0. Let us then consider the bipartite graph H formed by nodes of
B(1) and W0, and the edges between B(1) and W0. Let H ′ be the subgraph of
H obtained by iteratively deleting all nodes of degree at most 11. If H ′ is not
empty, then, since all its vertices have degree at least 12, we can construct a
path of length 11 starting from any vertex of H ′. Thanks to the fact that H ′ is
bipartite, this path has either both endpoints in B(1), or both in W0, meaning
that they are linked to u0 or u1, creating a 12-cycle with the path. This cannot
be true as it would mean that some nodes in B(1) are in a 12-cycle. It follows
that H ′ is empty. As a consequence,

60 · |B(1)| ≤ f(1) · |B(1)| ≤ |E(H)| < 12 (|B(1)| + |W0|),

where the second inequality comes the fact that any node in B(1) has a degree
larger than f(1) in H, and the third inequality comes from the fact that our
iterative removing of nodes of degree at most 11 in H has removed all of the
nodes. This yields |W0| > 4|B(1)|. Under our assumption that u0 has maximum
degree in C�, we then get deg(u0) ≥ deg(u1) ≥ |W0| ≥ 4 |B(1)|. �
Case i = 2. To prove upper bounds on the number of bad nodes for i = 2,
as well as for i > 2, we use the following lemma that allows us to assume the
existence of node-disjoint well-colored paths from different nodes in B(i) to ui.

Lemma 6. Let b ≥ 1, and let U be a set of nodes. If f(i) ≥ (b − 1)i + |U | then
either |B(i)| < b, or, for any c ∈ {0, . . . , b − 1}, any nodes s1, . . . , sc ∈ B(i),
any collection C of c node-disjoint well-colored paths from B(i) to ui that do not
intersect U , and any s ∈ B(i)�{s1, . . . , sc}, there exists well-colored path P that
does not intersect U nor any path in C.

Proof. Let C =
{
P j = (sj , wj

0, . . . , w
j
i−1) | j = 1, . . . , c

}
. A well-colored path

from any node s ∈ B(i) to ui cannot go through any other node in B(i) as the
bad nodes are colored −1. Such a path may however contain some nodes in U ,
or in the paths in C. There are less than ci + |U | such nodes in total. Since
f(i) ≥ ci + |U |, any node s ∈ B(i) � {s1, . . . , sc} has at least ci + |U | + 1 node-
disjoint well-colored paths to ui. Therefore, there is a well-colored path from s
to ui that does not contain any node in U nor any node in the paths in C, as
claimed. �

To find upper bounds on the sizes of B(2) and B(3), the strategy is similar to
the case i = 1. The novelty is to consider each color of the node-disjoint paths
from nodes in B(i) to ui, and to show that the paths cannot merge at nodes
of the considered color without making the nodes of B(i) appear in a 12- or
14-cycle.
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Lemma 7. If f(2) ≥ 10 then |B(2)| ≤ 1
9 deg(u0) + 2.

Proof. We say that two well-colored paths from B(i) to ui merge at color j if
(1) they are node-disjoint before color j, and (2) they use the same nodes of
color j. We first consider paths merging at color 1.

Claim 1. If f(2) ≥ 6, |B(2)| ≥ 3, and there exist two distinct nodes s1, s2 ∈ B(2)
with paths merging at color 1, then one of those paths goes through u0.

Proof of claim. For the purpose of contraposition, let us assume that there exist
two distinct nodes s1, s2 in B(2) that have well-colored paths P 1 = (s1, w1

0, x1),
and Pz = (s2, z0, x1) to u2 merging at color 1, with w1

0 �= u0 and z0 �= u0. Then,
by applying Lemma 6 with b = 3 and U1 = {u0, z0}, we get that, if |B(2)| ≥ 3,
then (1) there exists a well-colored path P 2 = (s2, w2

0, w
2
1) to u2 that does not

intersect U1 ∪P 1, and (2) for all s3 ∈ B(2)�{s1, s2}, there is a well-colored path
P 3 = (s3, w3

0, w
3
1) to u2 that does not intersect U1 ∪ P 1 ∪ P 2. As a consequence,

(u0, s
1, w1

0, x1, z0, s
2, w2

0, w
2
1, u2, w

3
1, w

3
0, s

3)

is a 12-cycle (see Fig. 2-right), which contradicts s1, s2, s3 ∈ B(2). This means
that nodes in B(2) cannot have paths that merge at color 1 except if one of these
paths goes through u0. �

We now consider paths merging at color 0.

Claim 2. Let s1, s2 ∈ B(2) with s1 �= s2, and let x0 �= u0 such that s1 has a
well-colored path P 1 = (s1, x0, w

1
1) to u2, and s2 ∈ N(x0). If f(2) ≥ 8 then there

are no two distinct nodes s3, s4 ∈ B(2)�{s1, s2} having paths merging at a node
colored 0 different from u0 and x0.

Proof of claim. Let us assume, for the purpose of contradiction, that there exist
s3, s4 ∈ B(2) � {s1, s2} that have well-colored paths P 3 = (s3, y0, w3

1) and Py =
{s4, y0, w

3
1} to u2, merging at color 0 with y0 �= u0, x0. Applying Lemma 6 with

b = 4 and U = {u0, x0, y0}, we get that if |B(2)| ≥ 4, then there is a well-colored
path P 4 = (s4, w4

0, w
4
1) to u2 that does not intersect U ∪P 1 ∪P 2 ∪P 3. It follows

that
(u0, s

1, x0, s
2, w2

0, w
2
1, u2, w

4
1, w

4
0, s

4, y0, s
3)

is a 12-cycle (see Fig. 2-left), which contradicts the fact that s1, s2, s3, s4 ∈ B(2).
This means that nodes in B(2) � {s1, s2} cannot have well-colored paths to u2

merging at any node colored 0 different than u0 or x0. �
In the end, by combining the impossibility results of Claims 1 and 2, two

situations can occur. The first scenario is that the nodes s1 and s2 defined in
Claim 2 do not exist, and any two nodes s, s′ ∈ B(2) cannot merge their well-
colored paths to u2, except in u0. As every node in B(2) has at least f(2) + 1
node-disjoint well-colored paths to u2. By discarding (if it exists) the one going
through u0, we still have f(2) paths not merging with any other well-colored
path from B(2) to u2. It follows that f(2) · |B(2)| ≤ deg(u2).
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Fig. 2. Bold cycles are 12-cycles appearing whenever nodes in B(2) have merged paths.

The other scenario is that the nodes s1 and s2 as in Claim 2 do exist. In
this case, any other two nodes s, s′ ∈ B(2) cannot merge their well-colored paths
to u2, except in u0 or x0. Discarding paths going through those two nodes, any
node s ∈ B(2) � {s1, s2} still has at least f(2) − 1 paths not merging with any
other well-colored path from B(2) � {s1, s2} to u2. It follows that

(f(2) − 1) · (|B(2)| − 2) ≤ deg(u2).

Therefore, in all cases, we have (|B(2)|−2)(f(2)−1) ≤ deg(u2) ≤ deg(u0), which
proves Lemma 7. �
Case i = 3. We show that the nodes in B(3) cannot have their paths merging
before reaching u3 (see proof in Appendix C).

Lemma 8. If f(3) ≥ 10 then |B(3)| ≤ 1
8 deg(u0).

Case i ∈ {4,5,6}. For i = 4, 5, 6, with values of f(i) satisfying the inequality
in the statement of Lemma 6, the mere existence of one or two nodes in B(i) is
impossible, as such nodes would appear in a 12- or 14-cycle. This is shown below
(see proof in Appendix D).

Lemma 9. The following holds:

– If f(4) ≥ 5 then |B(4)| ≤ 1.
– If f(5) ≥ 5 then B(5) = ∅.
– If f(6) ≥ 6 then B(6) = ∅.

Proposition 1 directly follows from Lemmas 5, and 7–9. Since, for every i ∈
{1, . . . , 6}, T7(14 − i) = T7(i) induces the same upper bound for |B(14 − i)| as
for |B(i)|, we get that

∣
∣
⋃

i∈{1,...,13}�{7} B(i)
∣
∣ ≤ 35

36 deg(u0) + 6. It follows that
∣
∣N(u0)�

⋃
i∈{1,...,13}�{7} B(i)

∣
∣ ≥ 1

36 deg(u0)−6. As a consequence, the number of
good neighbours s of u0 (not belonging to any B(i) is at least a constant fraction
of deg(u0). This means that after Θ(n6/7) repetitions of the choice of s, a node in
N(u0)�

⋃
i∈{1,...,13}�{7} B(i) that is colored −1 will be picked with probability at

least 2/3. By the previous Lemmas, this node will lead to a rejection, detecting
a 12- or 14-cycle.
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Looking for a C 12. At this point, we can assume that there are no 14-cycle in
the graph because, if there were, then the algorithm would have rejected before.
Let us then assume the existence of a 12-cycle C� = {u0, . . . , u11}, that is well
colored, where u0 a heavy node. Then, by fixing T6(i) = 1 for every i = 1, . . . , 5,
u6 will reject. Indeed, recall that there are Ω(n1/6) neighbors of u0 colored −1.
Therefore, by performing O(n6/7) iterations, the probability of picking s ∈ N(u0)
colored −1 is at least 2/3. Whenever such a node s is picked, u0 sends its iden-
tifier. Suppose that ui is the first node in C� to receive 2 identifiers. Then, by
Lemma 4, one of these identifiers comes from a path w0, w1, ..., wi−1 that is node-
disjoint from {u0, . . . , ui−1}. Therefore, (s, w0, w1, ..., wi−1, ui, ui+1, ..., u11, u0) is
a 14-cycle, a contradiction, which completes the proof of Theorem 2.

Remark. A threshold algorithm deciding {C10, C12}-freeness in O(n1−1/6)
rounds is given in Appendix E.

5 Conclusion

The threshold-based approach, as used in [4], is appealing for the design of effi-
cient congest algorithms deciding C2k-freeness, for arbitrary k ≥ 2. It was suc-
cessfully applied to k ∈ {2, . . . , 5}, resulting in algorithms deciding C2k-freeness
in O(n1−1/k) rounds. We have shown that it is hopeless to use the threshold-
based approach as such for k ≥ 6.

Nevertheless, we have also shown that, despite this limit, the threshold-based
approach can be used to design algorithms for deciding {C12, C14}-freeness in
n1− 1

7 rounds, even if neither C12-freeness nor C14-freeness can be decided in the
same round-complexity by threshold-based algorithms. We do not know whether
this is just a specific case, or whether there is an infinite collection of pairs (k, k′)
with k > k′ such that {C2k′ , C2k}-freeness can be decided in O(n1−1/k) rounds
by a threshold-based algorithm.

So far, the best known generic algorithm, i.e., an algorithm applying to all
k ≥ 2, decides C2k-freeness in n1−1/Θ(k2) rounds [9], and it is open whether one
can do better in general. It may actually be the case that the round-complexity
of deciding C2k-freeness is precisely Θ(n1−1/k) for all k ≥ 2, but this is just a
guess.

Acknowledgements. The authors are thankful to Pedro Montealegre and Ivan Rapa-
port for fruitful initial discussions about the power and limit of the threshold-based
algorithms from [4].

Appendix

A Proof of Lemma 2

We can view Gk as a weighted graph Ĝk, with the following edge-weights (see
Fig. 3):
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– For every p ∈ {1, . . . , N}, the edge between u0 and sp has weight 1; Similarly,
for every q ∈ {1, . . . , N}, the edge between uk−3 and wq

k−4 has weight 1;
– All the part of Gk including the nodes wp,q

j for (p, q) ∈ {1, . . . , N}2 and
j ∈ {0, . . . , k − 5} is replaced by a complete bipartite graph KN,N with
partitions S and W , with edge-weights k − 3;

– The path u0, . . . , uk−3 is replaced by two parallel edges e1 and e2 with respec-
tive weights k − 3 and k + 3;

– The private neighbors of wp,q
0 and wp,q

k−5, (p, q) ∈ {1, . . . , α}2, are simply
discarded.

Note that there is a one-to-one correspondence between the cycles in Gk and the
cycles in Ĝk. Moreover, if the lengths of the cycles in Ĝk take into account the
edge-weights, then this correspondence also preserve the lengths.

Fig. 3. The weighted graph ̂Gk for k ≥ 7 and N = 3.

Any cycle in Ĝk different from C� = (e1, e2), but using e2 has length larger
than 2k. Any cycle in Ĝk different from C� = (e1, e2), but using e1 must contain
an odd number 2x + 1 of edges from the complete bipartite subgraph KN,N .
Therefore it has length k −3+1+(2x+1)(k −3)+1 for some integer x ≥ 0. For
x = 0, this length is 2k − 4, and, for x ≥ 1, this length is at least 4k − 10 > 2k
for every k ≥ 6. For similar reasons, every cycle passing through u0 or uk−3, but
not both, is also of length k − 3+ 1+ (2x+1)(k − 3)+ 1 for some integer x ≥ 0,
and the same analysis holds. Every cycle passing through u0 and uk−3 but not
using e1 nor e2 contains an even number of edges from the KN,N . Thus is has a
length of the form 2(k − 3) + 4 + 2x(k − 3) for some integer x ≥ 0. For x = 0,
this length is 2k − 2, and, for x ≥ 1, this length is at least 4k − 8 > 2k for any
k ≥ 6. Finally, every cycle fully included in the complete bipartite graph KN,N

has length of the form 2(x + 2)(k − 3) for some integer x ≥ 0. This length is at
least 4k − 12 > 2k, for every k ≥ 7. �

B The Specific Construction for k = 6

Lemma 2 does not hold for k = 6. Indeed, any 4-tuple (s, s′, w2, w
′
2) ∈ S2 × W 2

induces a 12-cycle in the complete bipartite graph KN,N in Ĝ6. Nevertheless,
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there are no C12 in G6 passing through u0 or u3, other than C�. We slightly
modify G6 to extend Lemma 2 to k = 6. Specifically, we replace the complete
bipartite graph in Ĝ6 by a dense bipartite graph with no 4-cycle, using the
following lemma.

Lemma 10 ([12]). There exists an infinite family of C4-free graphs {Gd |
d prime} such that, for every prime number d, Gd is a d-regular bipartite graph
in which each partition has size d2, and |E(Gd)| = d3 + o(d3).

Let N = d2. In Ĝ6, we replace the complete bipartite graph KN,N by Gd.
With this modification, Lemma 2 holds. We now revisit Lemma 3. X becomes
a random variable following a Binomial law with parameters

√
N and ( 1

12 )
3. As

a consequence,
Pr[X ≤ T ] = O(NT e−Θ(

√
N)).

Therefore, the probability that u3 has to forward at most T messages is
O(NT e−Θ(

√
N)). If T = o(

√
N/ logN) � o(n1/6/ log n), then this probabil-

ity is asymptotically equal to exp(−Θ(n1/6)). So for k = 6 we obtain a
result similar to Lemma 3, by simply replacing the value of threshold T by
o(

√
N/ logN) � o(n1/6/ log n). The proof of Theorem 1 follows as for k ≥ 7. �

C Proof of Lemma 8

We first consider paths merging at color 2.

Claim 3. If f(3) ≥ 8, and if there exist two distinct nodes s1, s2 ∈ B(3) that
have well-colored paths merging at a node of color 2 different from u2, then one
of these paths goes through u0 or u1.

Proof of claim. Suppose that there exist s1, s2 ∈ B(3) that have well-colored
paths P 1 = (s1, w1

0, w
1
1, x2) and Pz = (s2, z0, z1, x2) to u3 merging at color 2

with u0 /∈ {z0, w1
0}, u1 /∈ {z1, w1

1}, and x2 �= u2. Then, applying Lemma 6 with
b = 2 and U = {u0, u1, u2, z0, z1}, we get that if |B(3)| ≥ 2, then there is a
well-colored path P 2 = (s2, w2

0, w
2
1, w

2
2) to u3 that does not intersect U ∪ P 1.

Therefore
(u0, s

1, w1
0, w

1
1, x2, z1, z0, s

2, w2
0, w

2
1, w

2
2, u3, u2, u1)

is a 14-cycle (see Fig. 4-right), which contradicts s1, s2 ∈ B(3). This means that
nodes in B(3) cannot have well-colored paths to u3 merging at any node colored
2 (except if they go through u0 or u1, or merge at u2). �
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We now consider paths merging at color 1.

Claim 4. If f(3) ≥ 7, and if there exist two distinct nodes s1, s2 ∈ B(2) that
have well-colored paths merging at a node of color 1 different from u1, then one
of these paths goes through u0, or they both go through u2.

Proof of claim. Suppose that there exist s1, s2 ∈ B(3) that have well-colored
paths P 1 = (s1, w1

0, x1, w
1
2) and Pz = (s2, z0, x1) to u3 merging at color 1,

with u0 /∈ {w1
0, z0} and w1

2 �= u2. Applying Lemma 6 with b = 2 and U =
{u0, u1, u2, z0}, we get that if |B(3)| ≥ 2, then there is a well-colored path P 2 =
(s2, w2

0, w
2
1, w

2
2) to u3 that does not intersect U ∪ P 1. This implies that

(u0, s
1, w1

0, x1, z0, s
2, w2

0, w
2
1, w

2
2, u3, u2, u1)

is a 12-cycle (see Fig. 4-center), which contradicts s1, s2 ∈ B(3). This means that
nodes in B(3) cannot have well-colored paths to u3 merging at any node colored 1
other than u1, except if it goes through u0 or u2. �

We finally consider paths merging at color 0.

Claim 5. If f(3) ≥ 8 and |B(3)| ≥ 3, then there are no two distinct nodes
s1, s2 ∈ B(2) that have paths merging at a node of color 0 different from u0.

Proof of claim. Suppose that there exists s1, s2 ∈ B(3) that have well-colored
paths P 1 = (s1, x0, w

1
1, w

1
2) and Px = {s2, x0, w

1
1, w

1
2} to u3 merging at color 0,

with x0 �= u0. Applying Lemma 6 with b = 3 and U = {u0, x0}, we get that
if |B(3)| ≥ 3, then (1) there is a well-colored path P 2 = (s2, w2

0, w
2
1, w

2
2) to u3

that does not intersect U ∪ P 1, and (2) for all s3 ∈ B(3) � {s1, s2}, there is a
well-colored path P 3 = (s3, w3

0, w
3
1, w

3
2) to u3 that does not intersect U ∪P 1∪P 2.

Therefore,
(u0, s

1, x0, s
2, w2

0, w
2
1, w

2
2, u3, w

3
2, w

3
1, w

3
0, s

3)

is a 12-cycle (see Fig. 4-left), which contradicts s1, s2, s3 ∈ B(3). This means that
nodes in B(3) cannot have well-colored paths to u3 merging at color 0 (except
u0). �

By combining the impossibility results of Claims 3, 4 and 5, it follows that
paths from B(3) to u3 can only merge if they go through u0, u1 or u2. Let us
discard paths passing through those nodes. As each node in B(3) has at least
f(3)+1 node-disjoint paths to u3, at least f(3)−2 of these paths do not intersect
any other path from B(3). Therefore, (f(3) − 2) · |B(3)| ≤ deg(u3) ≤ deg(u0),
which proves Lemma 8. �
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Fig. 4. Bold cycles are 12- and 14-cycles appearing whenever nodes in B(3) have merged
paths.

D Proof of Lemma 9

We treat each i = 4, . . . , 6 sequentially.

Claim 6. If f(4) ≥ 5 then |B(4)| ≤ 1.

Proof of claim. Let U = {u0}. According to Lemma 6 applied with b = 2, we
have that if |B(4)| ≥ 2 then (1) for all s1 ∈ B(4), there is a well-colored path
P 1 = (s1, w1

0, w
1
1, w

1
2, w

1
3) to u4 that does not intersect U , and (2) for all s2 ∈

B(3) � {s1}, there is a well-colored path P 2 = (s2, w2
0, w

2
1, w

2
2, w

2
3) to u4 that

does not intersect U ∪ P 1. It follows that

(u0, s
1, w1

0, w
1
1, w

1
2, w

1
3, u4, w

2
3, w

2
2, w

2
1, w

2
0, s

2)

is a 12-cycle (see Fig. 5-left), which contradicts s1, s2 ∈ B(4). �
The arguments for i = 5, 6 are a reformulation of Observation 2 in [4], we

give them for the sake of completeness.

Claim 7. If f(5) ≥ 5 then B(5) = ∅.
Proof of claim. Let U = {u0, u1, u2, u3, u4}. By Lemma 6 applied with b = 1,
if B(5) is not empty, then for every s1 ∈ B(5), there is a well-colored path
P 1 = (s1, w1

0, w
1
1, w

1
2, w

1
3, w

1
4) to u5 that does not intersect U . Therefore,

(u0, s
1, w1

0, w
1
1, w

1
2, w

1
3, w

1
4, u5, u4, u3, u2, u1)

is a 12-cycle (see Fig. 5-center), which contradicts s1 ∈ B(5). �

Claim 8. If f(6) ≥ 6 then B(6) = ∅.
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Fig. 5. Bold cycles are 12- and 14-cycles appearing whenever there are two nodes in
B(4), or one node in B(5), B(6).

Proof of claim. Let U = {u0, u1, u2, u3, u4, u5}. Applying Lemma 6 with b = 1,
we get that if B(6) is not empty, then, for every s1 ∈ B(6), there is a well-colored
path P 1 = (s1, w1
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5) to u6 that does not intersect U . As a

consequence,
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1
5, u6, u5, u4, u3, u2, u1)

is a 14-cycle (see Fig. 5-right), which contradicts s1 ∈ B(6). �
The lemma directly follows from Claims 6–8. �

E Deciding {C10, C12}-Freeness
We begin by deciding C10-freeness on its own. This is doable using the threshold
approach, with the threshold T5(i), i = 1, . . . , 4, given in [4]. If a heavy 10-cycle
C = (u0, . . . , u9) exists, then, by repeating O(n4/5) times the choice of s, the
probability that C is detected is at least 9/10. If no node has rejected during
the search for a 10-cycle, then we can assume that the graph is C10-free. The
search for a 12-cycle is still performed by the threshold algorithm. Note that we
have proved that deciding C12-freeness cannot be done by a threshold algorithm.
However, we are now working under the assumption that the graph is C10-free.
Searching for light 12-cycles can be done in O(n5/6) rounds. Let us assume that
there exists a heavy 12-cycle C� = {u0, . . . , u11} where u0 has maximum degree
in the cycle, and, for every i = 0, . . . , 11, node ui has picked color i. Let us
fix T6(i) = T5(i) for i = 1, . . . , 4. Then there is at least a constant fraction of
neighbors s of u0 such that, if s is chosen by the algorithm, then ui and u12−i

receive at most T6(i) identifiers, for all 1 ≤ i ≤ 4.
Finally let T6(5) = T6(4). This is sufficient because, by Lemma 4, if u5

receives more than T6(4) identifiers, then there exist two node-disjoint well-
colored paths from s to u5. The combination of these two paths is a 12-cycle.
Therefore a node s picked by the algorithm is either in a 12-cycle of his own or
will not cause u5 to receive more than T6(4) identifiers.
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F Proof of Theorem 3

This section is dedicated to the proof of Theorem 3. In essence, the algorithm
deciding {C4� | 1 ≤ � ≤ k}-freeness performs by successively deciding C4�-
freeness, for � = 1, . . . , k, using threshold-based algorithms. This sequence of
algorithms runs in O(n1−1/2k) rounds. The same holds for deciding {C4�+2 |
1 ≤ � ≤ k}-freeness, with round-complexity O(n1−1/(2k+1)). The proof mostly
consists in showing that thresholds can be defined with the guarantee that, if
the graph contains a 4�-cycle (or a (4� + 2)-cycle), then this cycle is detected
with constant probability. Let us start with Fk = {C4� | 1 ≤ � ≤ k}, k ≥ 1.

The base case is � = 1, i.e., deciding C4-freeness. It was shown in [4] that, in
this case, a threshold T2(1) = 1 suffices. Let us now assume that we have set up
appropriate thresholds for deciding Fk−1-freeness. For deciding Fk-freeness, it is
sufficient to decide Fk−1-freeness first, and then deciding C4k-freeness. Therefore
it is sufficient that the algorithm deciding C4k-freeness succeeds whenever the
graph is Fk−1-free. So, from this point on, we assume that the graph has no 4�-
cycles, for all � = 1, . . . , k−1. To decide C4k-freeness under this latter hypothesis,
we set the thresholds as T2k(0) = 1, and, for i ≥ 1,

T2k(i) =
{

T2k(i − 1) if i is odd,
(i + 1) · T2k(i − 1) if i is even.

To prove that the thresholds work, let C = (u0, . . . , u4k−1) be a 4k-cycle in
the graph, where u0 is the heavy node with largest degree in C. Let us assume
that, for every i = 0, . . . , 4k − 1, node ui is colored i. Note that this occurs with
probability at least 1/(4k+1)4k. Let s be a neighbor of u0 not belonging to any
4k-cycle, and let us assume that s is colored −1. We define a well-colored path
from s to a node ui as a path of the form s, w0, . . . , wi−1, ui where, for every
j = 0, . . . , i − 1, node wj is colored j.

To prove that our thresholds are sufficient, we now consider separately the
odd and even indices.

Odd Indices. Let i be an odd index with 1 ≤ i ≤ 2k − 1, and let ρ be the
maximum number of node-disjoint, well-colored paths from s to ui. Let us prove
by contradiction that ρ = 1 (see Fig. 6(left) for an illustration of the case ρ ≥ 2).
Indeed, ρ ≥ 1 as {u0, . . . , ui−1} is a well-colored path from s to ui. Suppose now
that there exist two node-disjoint well-colored paths from s to ui, denoted by P
and P ′. Then {s} ∪ P ∪ {ui} ∪ P ′ is a (2i + 2)-cycle. As i is odd, we get that
2i + 2 is a multiple of 4. If i ≤ 2k − 3, this contradicts our assumption that the
graph is Fk−1-free. If i = 2k − 1, then s is in a 4k-cycle that the algorithm finds
when it performs color-BFS(s). Since ρ = 1, by Lemma 4, node ui receives at
most T2k(i − 1) identifiers.

Even Indices. Let i be an even index with 1 ≤ i ≤ 2k − 2, and let ρ be the
maximum number of node-disjoint well-colored paths from s to ui. Let us assume
that s is such that ui receives more than (i + 1) · T2k(i − 1) identifiers from
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nodes colored i − 1. By Lemma 4, ρ ≥ i + 2. Therefore, there exists a well-
colored path from s to ui that does not go through u0. Let us denote this path
P = {w0, . . . , wi−1}. Let s′ be the next neighbor of u0 colored −1 that the
algorithm picks. Let us define ρ′ as the maximum number of node-disjoint well-
colored paths from s′ to ui. If for the source node s′, node ui also receives more
than (i + 1) · T2k(i − 1) identifiers from nodes colored i − 1, then, thanks to
Lemma 4, ρ′ ≥ i+2. It follows that there exists a well-colored path from s′ to ui

that does not go through any of the i + 1 nodes u0, w0, . . . , wi−1. Let us denote
this path by P ′. As a consequence, {s, u0, s

′} ∪ P ′ ∪ {ui} ∪ P is a (2i + 4)-cycle
(see Fig. 6(right)). Since i is even, 2i + 4 is a multiple of 4. If i ≤ 2k − 4, this
contradicts the assumption that the graph is Fk−1-free. If i = 2k−2, then s is in
a 4k-cycle, which is detected by s. Therefore, if the algorithm picks a neighbor s
of u0 colored −1 that causes ui to receive more than T2k(i) identifiers, then no
other neighbor s′ of u0 can also cause ui to receive more than T2k(i) identifiers,
as s would then be in a cycle that would be detected by s.

Fig. 6. Cycles of Fk−1 or 4k-cycles appearing whenever neighbors of u0 have node-
disjoint well-colored paths to ui. On the left, i is odd; On the right, i is even.

Wrap Up. It results from our analyses for odd and even indices that at most
k − 1 neighbors s of u0 colored −1 may prevent the detection of the 4k-cycle
(u0, . . . , u4k−1), namely at most one source s for each node u2i, for 1 ≤ i ≤ k−1.
Since there are Ω(n1/2k) neighbors of u0 colored −1, the algorithm will randomly
choose at least k different neighbors of u0 whenever Θ(n1−1/2k) random choices
are performed. This completes the proof for {C4� | 1 ≤ � ≤ k}-freeness, k ≥ 1.

{C4�+2 | 1 ≤ � ≤ k}-freeness. The proof for {C4�+2 | 2 ≤ � ≤ k}-freeness can be
adapted with very little changes from the proof for {C4� | 2 ≤ � ≤ k}-freeness
by inverting the roles of odd and even values of i to compute T2k+1(i).

Indeed, let i be an even index. Similarly to the case of odd indices for {C4� |
2 ≤ � ≤ k}-freeness, if there are two node-disjoint well-colored paths from a
picked s to ui, then s is in a (2i + 2)-cycle (see Fig. 6(left)). With i being even,
the cycle belongs to {C4�+2 | 2 ≤ � ≤ k}.
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On the other hand, let i be an odd index. Similarly to the case of even
indices for {C4� | 2 ≤ � ≤ k}-freeness, if ui receives more than (i + 1)T2k(i − 1)
identifiers for two different source nodes s and s′, then s is in a (2i + 4)-cycle
(see Fig. 6(right)). With i being odd, the cycle belongs to {C4l+2|2 ≤ l ≤ k}.

Consequently, the algorithm works by fixing T2k(0) = 1 and, for i ≥ 1,

T2k(i) =
{
(i + 1) · T2k(i − 1) if i is odd,
T2k(i − 1) if i is even.

This completes the proof of Theorem 3. �
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Abstract. We study the design of energy-efficient algorithms for the
LOCAL and CONGEST models. Specifically, as a measure of complex-
ity, we consider the maximum, taken over all the edges, or over all the
nodes, of the number of rounds at which an edge, or a node, is active
in the algorithm. We first show that every Turing-computable problem
has a CONGEST algorithm with constant node-activation complexity,
and therefore constant edge-activation complexity as well. That is, every
node (resp., edge) is active in sending (resp., transmitting) messages for
only O(1) rounds during the whole execution of the algorithm. In other
words, every Turing-computable problem can be solved by an algorithm
consuming the least possible energy. In the LOCAL model, the same
holds obviously, but with the additional feature that the algorithm runs
in O(poly(n)) rounds in n-node networks. However, we show that insist-
ing on algorithms running in O(poly(n)) rounds in the CONGEST model
comes with a severe cost in terms of energy. Namely, there are prob-
lems requiring Ω(poly(n)) edge-activations (and thus Ω(poly(n)) node-
activations as well) in the CONGEST model whenever solved by algo-
rithms bounded to run in O(poly(n)) rounds. Finally, we demonstrate
the existence of a sharp separation between the edge-activation com-
plexity and the node-activation complexity in the CONGEST model, for
algorithms bounded to run in O(poly(n)) rounds. Specifically, under this
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constraint, there is a problem with O(1) edge-activation complexity but
Ω̃(n1/4) node-activation complexity.

Keywords: Synchronous distributed algorithms · LOCAL and
CONGEST models · Energy efficiency

1 Introduction

1.1 Objective

Designing computing environments consuming a limited amount of energy while
achieving computationally complex tasks is an objective of utmost importance,
especially in distributed systems involving a large number of computing entities.
In this paper, we aim at designing energy-efficient algorithms for the standard
LOCAL and CONGEST models of distributed computing in networks [11]. Both
models assume a network modeled as an n-node graph G = (V,E), where each
node is provided with an identifier, i.e., an integer that is unique in the network,
which can be stored on O(log n) bits. All nodes are assumed to run the same
algorithm, and computation proceeds as a series of synchronous rounds (all nodes
start simultaneously at round 1). During a round, every node sends a message to
each of its neighbors, receives the messages sent by its neighbors, and performs
some individual computation. The two models LOCAL and CONGEST differ
only in the amount of information that can be exchanged between nodes at each
round.

The LOCAL model does not bound the size of the messages, whereas the
CONGEST model allows only messages of size O(log n) bits. Initially, every
node v ∈ V knows solely its identifier id(v), an upper bound of the number n of
nodes, which is assumed to be polynomial in n and to be the same for all nodes,
plus possibly some input bit-string x(v) depending on the task to be solved by
the nodes. In this paper, we denote by N the maximum between the largest
identifier and the upper bound on n given to all nodes. Hence N = O(poly(n)),
and is supposed to be known by all nodes. After a certain number of rounds,
every node outputs a bit-string y(v), where the correctness of the collection of
outputs y = {y(v) : v ∈ V } is defined with respect to the specification of the
task to be solved, and may depend on the collection of inputs x = {x(v) : v ∈ V }
given to the nodes, as well as on the graph G (but not on the identifiers assigned
to the nodes, nor on the upper bound N).

Activation Complexity. We measure the energy consumption of an algorithm A
by counting how many times each node and each edge is activated during the
execution of the algorithm. More specifically, a node v (resp., an edge e) is
said to be active at a given round r if v is sending a message to at least one
of its neighbors at round r (resp., if a message traverses e at round r). The
node-activation and the edge-activation of an algorithm A running in a graph
G = (V,E) are respectively defined as

nact(A) := max
v∈V

#activation(v), and eact(A) := max
e∈E

#activation(e),
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where #activation(v) (resp., #activation(e)) denotes the number of rounds dur-
ing which node v (resp., edge e) is active along the execution of the algorithm A.
By definition, we have that, in any graph of maximum degree Δ,

eact(A) ≤ 2 · nact(A), and nact(A) ≤ Δ · eact(A). (1)

Objective. Our goal is to design frugal algorithms, that is, algorithms with con-
stant node-activation, or to the least constant edge-activation, independent of
the number n of nodes and of the number m of edges. Indeed, such algorithms
can be viewed as consuming the least possible energy for solving a given task.
Moreover, even if the energy requirement for solving the task naturally grows
with the number of components (nodes or edges) of the network, it grows linearly
with this number whenever using frugal algorithms. We refer to node-frugality
or edge-frugality depending on whether we focus on node-activation or edge-
activation, respectively.

1.2 Our Results

We first show that every Turing-computable problem1 can thus be solved by a
node-frugal algorithm in the LOCAL model as well as in the CONGEST model.
It follows from Eq. 1 that every Turing-computable problem can be solved by
an edge-frugal algorithm in both models. In other words, every problem can
be solved by an energy-efficient distributed algorithm. One important question
remains: what is the round complexity of frugal algorithms?

In the LOCAL model, our node-frugal algorithms run in O(poly(n)) rounds.
However, they may run in exponentially many rounds in the CONGEST model.
We show that this cannot be avoided. Indeed, even if many symmetry-breaking
problems such as computing a maximal-independent set (mis) and comput-
ing a (Δ + 1)-coloring can be solved by a node-frugal algorithm performing in
O(poly(n)) rounds, we show that there exist problems (e.g., deciding C4-freeness
or deciding the presence of symmetries in the graph) that cannot be solved in
O(poly(n)) rounds in the CONGEST model by any edge-frugal algorithm.

Finally, we discuss the relation between node-activation complexity and edge-
activation complexity. We show that the bounds given by Eq. 1 are essentially
the best that can be achieved in general. Precisely, we identify a problem, namely
Depth First Pointer Chasing (dfpc), which has edge-activation complex-
ity O(1) for all graphs with an algorithm running in O(poly(n)) rounds in the
CONGEST model, but satisfying that, for every Δ = O

((
n

log n

)1/4), its node-
activation complexity in graphs with maximum degree Δ is Ω(Δ) whenever
solved by an algorithm bounded to run in O(poly(n)) rounds in the CONGEST
model.

Our main results are summarized in Table 1.

1 A problem is Turing-computable if there exists a Turing machine that, given any
graph with identifiers and inputs assigned to the nodes, computes the output of each
node in the graph.
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Table 1. Summary of our results where, for a problem Π, Π ∈ O(f(n)) means that
the corresponding complexity of Π is O(f(n)) (same shortcut for Ω).

Awakeness Node-Activation Edge-Activation

LOCAL • ∀Π, Π ∈ O(log n) with
O(poly(n)) rounds [2]
• st ∈ Ω(logn) [2]

• ∀Π, Π ∈ O(1) with
O(poly(n)) rounds

• ∀Π, Π ∈ O(1) with
O(poly(n)) rounds

CONGEST • mis ∈ O(polyloglog(n))
with O(polylog(n))
rounds [6] (randomized)
• mst ∈ O(log n) with
O(poly(n)) rounds [1]

• ∀Π, Π ∈ O(1)
• poly(n) rounds
⇒ ∃Π ∈ Ω(poly(n))

• poly(n) rounds
⇒ dfpc ∈ Ω̃(n1/4)

• ∀Π, Π ∈ O(1)
• poly(n) rounds
⇒ ∃Π ∈ Ω(poly(n))

• dfpc ∈ O(1) with
O(poly(n)) rounds
• Π ∈ FO and Δ = O(1)
⇒ Π ∈ O(1) with

O(poly(n)) rounds [8]

Our Techniques. Our upper bounds are mostly based on similar types of upper
bounds techniques used in the sleeping model [2,4] (cf. Sect. 1.3), based on con-
structing spanning trees along with gathered and broadcasted information. How-
ever, the models considered in this paper do not suffer from the same limitations
as the sleeping model (cf. Sect. 2), and thus one can achieve activation complex-
ity O(1) in scenarios where the sleeping model limits the awake complexity to
Ω(log n).

Our lower bounds for CONGEST are based on reductions from 2-party com-
munication complexity. However, as opposed to the standard CONGEST model
in which the simulation of a distributed algorithm by two players is straightfor-
ward (each player performs the rounds sequentially, one by one, and exchanges
the messages sent across the cut between the two subsets of nodes handled by the
players at each round), the simulation of distributed algorithms in which only
subsets of nodes are active at various rounds requires more care. This is especially
the case when the simulation must not only control the amount of information
exchanged between these players, but also the number of communication steps
performed by the two players. Indeed, there are 2-party communication com-
plexity problems that are hard for k steps, but trivial for k + 1 steps [10], and
some of our lower bounds rely on this fact.

1.3 Related Work

The study of frugal algorithms has been initiated in [8], which focuses on the
edge-frugality in the CONGEST model. It is shown that for bounded-degree
graphs, any problem expressible in first-order logic (e.g., C4-freeness) can be
solved by an edge-frugal algorithm running in O(poly(n)) rounds in the CON-
GEST model. This also holds for planar graphs with no bounds on the maximum
degree, whenever the nodes are provided with their local combinatorial embed-
ding. Our results show that these statements cannot be extended to arbitrary
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graphs as we prove that any algorithm solving C4-freeness in O(poly(n)) rounds
in the CONGEST model has edge-activation Ω̃(

√
n).

More generally, the study of energy-efficient algorithms in the context of
distributed computing in networks has been previously considered in the frame-
work of the sleeping model, introduced in [4]. This model assumes that nodes
can be in two states: awake and asleep. A node in the awake state performs as
in the LOCAL and CONGEST models, but may also decide to fall asleep, for
a prescribed amount of rounds, controlled by each node, and depending on the
algorithm executed at the nodes. A sleeping node is totally inactive in the sense
that it does not send messages, it cannot receive messages (i.e., if a message is
sent to a sleeping node by an awake neighbor, then the message is lost), and
it is computationally idle (apart from counting rounds). The main measure of
interest in the sleeping model is the awake complexity, defined as the maximum,
taken over all nodes, of the number of rounds at which each node is awake during
the execution of the algorithm.

In the LOCAL model, it is known [2] that all problems have awake complexity
O(log n), using algorithms running in O(poly(n)) rounds. This bound is tight in
the sense that there are problems (e.g., spanning tree construction) with awake
complexity Ω(log n) [2,3].

In the CONGEST model, It was first shown [4] that mis has constant average
awake complexity, thanks to a randomized algorithm running in O(polylog(n))
rounds. The round complexity was improved in [7] with a randomized algo-
rithm running in O(log n) rounds. The (worst-case) awake complexity of mis

was proved to be O(log log n) using a randomized Monte-Carlo algorithm run-
ning in O(poly(n)) rounds [6]. This (randomized) round complexity can even
be reduced to O(log3 n · log log n · log� n), at the cost of slightly increasing the
awake complexity to O(log log n · log� n). mst has also been considered, and it
was proved [1] that its (worst-case) awake complexity is O(log n) thanks to a
(deterministic) algorithm running in O(poly(n)) rounds. The upper bound on
the awake complexity of mst is tight, thank to the lower bound for spanning
tree (st) in [2].

2 Preliminaries

In this section, we illustrate the difference between the standard LOCAL and
CONGEST models, their sleeping variants, and our node- and edge-activation
variants. Figure 1(a) displays the automaton corresponding to the behavior of a
node in the standard models. A node is either active (A) or terminated (T). At
each clock tick (i.e., round) a node is subject to message events corresponding to
sending and receiving messages to/from neighbors. A node remains active until
it terminates.

Figure 1(b) displays the automaton corresponding to the behavior of a node
in the sleeping variant. In this variant, a node can also be in a passive (P) state.
In this state, the clock event can either leave the node passive, or awake the
node, which then moves back to the active state.
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Finally, Fig. 1(c) displays the automaton corresponding to the behavior of
a node in our activation variants. It differs from the sleeping variant in that a
passive node is also subject to message events, which can leave the node passive,
but may also move the node to the active state. In particular, a node does not
need to be active for receiving messages, and incoming messages may not trigger
an immediate response from the node (e.g., forwarding information). Instead, a
node can remain passive while collecting information from each of its neighbors,
and eventually react by becoming active.

Example 1: Broadcast. Assume that one node of the n-node cycle Cn has a token
to be broadcast to all the nodes. Initially, all nodes are active. However, all nodes
but the one with the token become immediately passive when the clock ticks for
entering the second round. The node with the token sends the token to one of
its neighbors, and becomes passive at the next clock tick. Upon reception of the
token, a passive node becomes active, forwards the token, and terminates. When
the source node receives the token back, it becomes active, and terminates. The
node-activation complexity of broadcast is therefore O(1), whereas it is known
that broadcasting has awake complexity Ω(log n) in the sleeping model [2].

Example 2: At-Least-One-Leader. Assume that each node of the cycle Cn has an
input-bit specifying whether the node is leader or not, and the nodes must col-
lectively check that there is at least one leader. Every leader broadcasts a token,
outputs accept, and terminates. Non-leader nodes become passive immediately
after the beginning of the algorithm, and start waiting for N rounds (recall that
N is an upper bound on the number n of nodes). Whenever the “sleep” of a (pas-
sive) non-leader is interrupted by the reception of a token, it becomes active,
forwards the token, outputs accept, and terminates. After N rounds, a passive
node that has not been “awaken” by a token becomes active, outputs reject, and
terminates. This guarantees that there is at least one leader if and only if all
nodes accept. The node-activation complexity of this algorithm is O(1), while
the awake complexity of at-least-one-leader is Ω(log n) in the sleeping model, by
reduction to broadcast.

The following observation holds for LOCAL and CONGEST, by noticing that
every algorithm for the sleeping model can be implemented with no overheads
in terms of node-activation.

Observation 1. In n-node graphs, every algorithm with awake complexity a(n)
and round complexity r(n) has node-activation complexity at most a(n) and
round complexity at most r(n).

It follows from Observation 1 that all upper bound results for the awake
complexity directly transfer to the node-activation complexity. However, as we
shall show in this paper, in contrast to the sleeping model in which some problems
(e.g., spanning tree) have awake complexity Ω(log n), even in the LOCAL model,
all problems admit a frugal algorithm in the CONGEST model, i.e., an algorithm
with node-activation O(1).
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Definition 1. A LOCAL or CONGEST algorithm is node-frugal (resp., edge-
frugal) if the activation of every node (resp., edge) is upper-bounded by a constant
independent of the graph, and of the identifiers and inputs given to the nodes.

3 Universality of Frugal Algorithms

In this section we show that every Turing-computable problem can be solved by
frugal algorithms, both in the LOCAL and CONGEST models. Thanks to Eq. 1,
it is sufficient to prove that this holds for node-frugality.

Lemma 1. There exists a CONGEST algorithm electing a leader, and con-
structing a BFS tree rooted at the leader, with node-activation complexity O(1),
and performing in O(N2) = O(poly(n)) rounds.

Proof. The algorithm elects as leader the node with smallest identifier, and initi-
ates a breadth-first search from that node. At every node v, the protocol performs
as follows.

– If v has received no messages until round id(v) · N , then v elects itself as
leader, and starts a BFS by sending message (id(v), 0) to all its neighbors.
Locally, v sets its parent in the BFS tree to ⊥, and the distance to the root
to 0.

– Otherwise, let r be the first round at which vertex v receives a message. Such
a message is of type (id(u), d) where u is the neighbor of v which sent the
message to v, and d is the distance from u to the leader in the graph. Node v
sets its parent in the BFS tree to id(u), its distance to the root to d+1, and,
at round r + 1, it sends the message (id(v), d + 1) to all its neighbors. (If v
receives several messages at round r, from different neighbors, then v selects
the messages coming from the neighbors with smallest identifier).

The node v with smallest identifier is indeed the node initiating the BFS, as
the whole BFS is constructed between rounds id(v) · N and id(v) · N + N − 1,
and N ≥ n. The algorithm terminates at round at most O(N2). ��

An instance of a problem is a triple (G, id, x) where G = (V,E) is an n-node
graph, id : V → [1, N ] with N = O(poly(n)), and x : V → [1, ν] is the input
assignment to the nodes. Note that the input range ν may depend on n, and even
be exponential in n, even for classical problems, e.g., whenever weights assigned
to the edges are part of the input. A solution to a graph problem is an output
assignment y : V → [1, μ], and the correctness of y depends on G and x only,
with respect to the specification of the problem. We assume that μ and ν are
initially known to the nodes, as it is the case for, e.g., mst, in which the weights
of the edges can be encoded on O(log n) bits.

Theorem 1. Every Turing-computable problem has a LOCAL algorithm with
O(1) node-activation complexity, and running in O(N2) = O(poly(n)) rounds.
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Proof. Once the BFS tree T of Lemma 1 is constructed, the root can (1) gather
the whole instance (G, id, x), (2) compute a solution y, and (3) broadcast y to
all nodes. Specifically, every leaf v of T sends the set

E(v) =
{{(id(v), x(v)), (id(w), x(w))} : w ∈ N(v)

}

to its parent in T . An internal node v waits for receiving a set of edges S(u)
from each of its children u in T , and then forwards the set

S(v) = E(v) ∪ (∪u∈child(v)S(u))

to its parent. This set can be encoded in O(N2) bits by the adjacency matrix
of the subgraph induced by the edges in S(v). Each node of T is activated once
during this phase, and thus the node-activation complexity of gathering is 1.
Broadcasting the solution y from the leader to all the nodes is achieved along
the edges of T , again with node-activation 1. ��

The algorithm used in the proof of Theorem 1 cannot be implemented in
CONGEST due to the size of the messages, which may require each node to be
activated more than a constant number of times. To keep the node-activation
constant, we increased the round complexity of the algorithm.

Lemma 2. Every node-frugal algorithm A performing in R rounds in the
LOCAL model with messages of size at most M bits2 can be implemented by
a node-frugal algorithm B performing in R 2M rounds in the CONGEST model.

Proof. Let v be a node sending a message m through an incident edge e at
round r of A. Then, in B, v sends one “beep” through edge e at round r 2M + t
where t is lexicographic rank of m among the at most 2M messages generated
by A. ��
Theorem 2. Every Turing-computable problem has a CONGEST algorithm
with O(1) node-activation complexity, and running in 2poly(n)(1+log(νμ)) rounds
for inputs in the range [1, ν] and outputs in the range [1, μ].

Proof. The algorithm used in the proof of Theorem 1 used messages of size at
most N2 + N log ν bits during the gathering phase, and of size at most N logμ
bits during the broadcast phase. The result follows from Lemma 2. ��

Of course, there are many problems that can be solved in the CONGEST
model by a frugal algorithm much faster than the bound from Theorem 2. This
is typically the case of all problems that can be solved by a sequential greedy
algorithm visiting the nodes in arbitrary order, and producing a solution at the
currently visited node based only on the partial solution in the neighborhood of
the node. Examples of such problems are mis, Δ + 1-coloring, etc. We call such
problem sequential-greedy.
2 Without loss of generality, in A each node sends the same message to all its neighbors

at each round when it is active. Otherwise, the different messages can be merged
into one, by adding the identifiers of the neighbors.
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Theorem 3. Every sequential-greedy problem whose solution at every node can
be encoded on O(log n) bits has a node-frugal CONGEST algorithm running in
O(N) = O(poly(n)) rounds.

Proof. Every node v ∈ V generates its output at round id(v) according to its
current knowledge about its neighborhood, and sends this output to all its neigh-
bors. ��

4 Limits of CONGEST Algorithms with Polynomially
Many Rounds

Given a graph G = (V,E) such that V is partitioned in two sets VA, VB , the set
of edges with one endpoint in VA and the other in VB is called the cut. We denote
by e(VA, VB) the number of edges in the cut, and by n(VA, VB) the number of
nodes incident to an edge of the cut. Consider the situation where there are
two players, namely Alice and Bob. We say that a player controls a node v if
it knows all its incident edges and its input. For a CONGEST algorithm A, we
denote A(I) the output of A on input I = (G, id, x). We denote RA(n) the
round complexity of A on inputs of size n.

Lemma 3 (Simulation lemma). Let A be an algorithm in the CONGEST
model, let I = (G, id, x) be an input for A, and let VA, VB be a partition of V (G).
Suppose that Alice controls all the nodes in VA, and Bob controls all the nodes
in VB. Then, there exists a communication protocol P between Alice and Bob
with at most 2 · min(n(VA, VB) · nact(A), e(VA, VB) · eact(A)) rounds and using
total communication O(min(n(VA, VB) · nact(A), e(VA, VB) · eact(A)) · (log n +
logRA(n)), such that each player computes the value of A(I) at all nodes he or
she controls.

Proof. In protocol P, Alice and Bob simulate the rounds of algorithm A in
all the nodes they control. The simulation run in phases. Each phase is used to
simulate up to a certain number of rounds t of algorithm A, and takes two rounds
of protocol P (one round for Alice, and one round for Bob). By simulating A
up to t rounds, we mean that Alice and Bob know all the states of all the nodes
they control, on every round up to round t.

In the first phase, players start simulating A from the initial state. Let us
suppose that both Alice and Bob have already executed p ≥ 0 phases, meaning
that they had correctly simulated A up to round t = t(p) ≥ 0. Let us explain
phase p + 1 (see also Fig. 2).

Starting from round t, Alice runs an oblivious simulation of algorithm A over
all nodes that she controls. By oblivious, we mean that Alice assumes that no
node of VB communicates a message to a node in VA in any round at least t. The
oblivious simulation of Alice stops in one of the following two possible scenarios:

(1) All nodes that she controls either terminate or enter into a passive state
that quits only on an incoming message from VB.
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(2) The simulation reaches a round ra where a message is sent from a node in
VA to a node in VB .

At the same time, Bob runs and oblivious simulation of A starting from
round t (i.e. assuming that no node of VA sends a message to a node in VB in
any round at least t). The oblivious simulation of Bob stops in one of the same
two scenarios analogous to the ones above. In this case, we call rb the round
reached by Bob in his version of scenario (2).

At the beginning of a phase, it is the turn of Alice to speak. Once the oblivious
simulation of Alice stops, she is ready to send a message to Bob. If the simulation
stops in the scenario (1), Alice sends a message “scenario 1 ” to Bob. Otherwise,
Alice sends ra together with all the messages sent from nodes in VA to nodes in
VB at round ra, to Bob. When Bob receives the message from Alice, one of the
following situations holds:

Case 1: the oblivious simulation of both Alice and Bob stopped in the first
scenario. In this case, since A is correct, there are no deadlocks. Therefore, all
vertices of G reached a terminal state, meaning that the oblivious simulation
of both players was in fact a real simulation of A, and the obtained states are
the output states. Therefore, Bob sends a message to Alice indicating that the
simulation is finished, and indeed Alice and Bob have correctly computed the
output of A for all the nodes they control.

Case 2: the oblivious simulation of Alice stopped in scenario (1), and the one
of Bob stopped in the scenario (2). In this case, Bob infers that his oblivious
simulation was correct. He sends rb and all the messages communicated in round
rb through the cut to Alice. When Alice receives the message of Bob, she updates
the state of the nodes she controls up to round rb. It follows that both players
have correctly simulated algorithm A up to round rb > t.

Case 3: the oblivious simulation of Alice stopped in scenario (2), and the one of
Bob stopped in scenario (1). In this case, Bob infres that the simulation of Alice
was correct up to round ra. He sends a message to Alice indicating that she has
correctly simulated A up to round ra, and he updates the states of all the nodes
he controls up to round ra. It follows that both players have correctly simulated
A up to round ra > t.

Case 4: the oblivious simulation of both players stopped in scenario (2), and
ra > rb. Bob infers that his oblivious simulation was correct up to rb, and that
the one of Alice was not correct after round rb. Then, the players act in the same
way as described in Case 2. Thus, both players have correctly simulated A up
to round rb.

Case 5: the oblivious simulation of both players stopped in scenario (2), and
rb > ra. Bob infers that his oblivious simulation was incorrect after round ra,
and that the one of Alice was correct up to round ra. Then, the players act in the
same way as described in Case 3. Thus, both players have correctly simulated A
up to round ra.
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Case 6: the oblivious simulation of both players stopped in scenario (2), and
rb = ra. Bob assumes that both oblivious simulations were correct. He sends rb

together with all the messages communicated from his nodes at round rb through
the cut. Then, he updates the states of all the nodes he controls up to round rb.
When Alice receives the message from Bob, she updates the states of the nodes
she controls up to round rb. It follows that both players have correctly simulated
A up to round rb > t.

Observe that, except when the algorithm terminates, on each phase of the
protocol, at least one node controlled by Alice or Bob is activated. Since the
number of rounds of P is twice the number of phases, we deduce that the total
number of rounds is at most

2 · min(n(VA, VB) · nact(A), e(VA, VB) · eact(A)).

Moreover, on each round of P, the players communicate O((log(RA(n))+log n) ·
e(VA, VB)) bits. As a consequence, the total communication cost of P is

O((log(RA(n))+log n)·e(VA, VB))·min(n(VA, VB)·nact(A), e(VA, VB)·eact(A))),

which completes the proof. ��
We use the simulation lemma to show that there are problems that cannot

be solved by a frugal algorithm in a polynomial number of rounds. In problem
C4-freeness, all nodes of the input graph G must accept if G has no cycle of
4 vertices, and at least one node must reject if such a cycle exists. Observe that
this problem is expressible in first-order logic, in particular it has en edge-frugal
algorithm with a polynomial number of rounds in graphs of bounded degree [8].
We show that, in graphs of unbounded degree, this does not hold anymore.
We shall also consider problem Symmetry, where the input is a graph G with
2n nodes indexed from 1 to 2n, and with a unique edge {1, n + 1} between
GA = G[{1, . . . , n}] and GB = G[{n + 1, . . . , 2n}]. Our lower bounds holds
even if every node is identified by its index. All nodes must output accept if
the function f : {1, . . . , n} → {n + 1, . . . , 2n} defined by f(x) = x + n is an
isomorphism from GA to GB , otherwise at least one node must output reject.

The proof of the following theorem is based on classic reductions from com-
munication complexity problems Equality and Set Disjointness (see, e.g.,
[9]), combined with Lemma 3. It can be found in Appendix A.

Theorem 4. Any CONGEST algorithm solving Symmetry (resp., C4-free-

ness) in polynomially many rounds has node-activation and edge-activation at
least Ω

(
n2

log n

)
(resp., Ω

( √
n

log n

)
).

5 Node Versus Edge Activation

In this section we exhibit a problem that admits an edge-frugal CONGEST
algorithm running in a polynomial number of rounds, for which any algorithm
running in a polynomial number of rounds has large node-activation complexity.
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We proceed by reduction from a two-party communication complexity prob-
lem. However, unlike the previous section, we are now also interested in the
number of rounds of the two-party protocols. We consider protocols in which
the two players Alice and Bob do not communicate simultaneously. For such a
protocol P, a round is defined as a maximal contiguous sequence of messages
emitted by a same player. We denote by R(P) the number of rounds of P.

Let G be a graph, and S be a subset of nodes of G. We denote by ∂S the
number of vertices in S with a neighbor in V \S.

Lemma 4 (Round-Efficient Simulation lemma). Let A be an algorithm
in the CONGEST model, let I = (G, id, x) be an input for A, and let VA, VB be
a partition of V (G). Let us assume that Alice controls all the nodes in VA, and
Bob controls all the nodes in VB, and both players know the value of nact(A).
Then, there exists a communication protocol P between Alice and Bob such
that, in at most min(∂VA, ∂VB) ·nact(A) rounds, and using total communication
O

((
(∂(VA)+∂(VB)) ·nact(A)

)2 · (log n+logRA(n))
)
bits, each player computes

the value of A(I) at all the nodes he or she controls.

Proof. In protocol P, Alice and Bob simulate the rounds of algorithm A at
all the nodes each player controls. Without loss of generality, we assume that
algorithm A satisfies that the nodes send messages at different rounds, by merely
multiplying by N the number of rounds.

Initially, Alice runs an oblivious simulation of A that stops in one of the
following three cases:

1. Every node in VA has terminated;
2. Every node in VA entered into the passive state that it may leave only after

having received a message from a node in VB (this corresponds to what we
called the “first scenario” in the proof of Lemma 3);

3. The number of rounds RA(n) is reached.

Then, Alice sends to Bob the integer t1 = 0, and the set M1
A of all messages

sent from nodes in VA to nodes in VB in the communication rounds that she
simulated, together with their corresponding timestamps. If the number of mes-
sages communicated by Alice exceeds nact(A) · ∂A, we trim the list up to this
threshold.

Let us suppose that the protocol P has run for p rounds, and let us assume
that it is the turn of Bob to speak at round p + 1—the case where Alice speaks
at round p + 1 can be treated in the same way. Moreover, we assume that P
satisfies the following two conditions:

1. At round p, Alice sents an integer tp ≥ 0, and a list of timestamped messages
Mp

A corresponding to messages sent from nodes in VA to nodes in VB in an
oblivious simulation of A starting from a round tp.

2. Bob had correctly simulated A at all the nodes he controls, up to round tp.

We now describe round p+1 (see also Fig. 3). Bob initiates a simulation of A
at all the nodes he controls. However, this simulation is not oblivious. Specifically,
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Bob simulates A from round tp taking into account all the messages sent from
nodes in VA to nodes in VB, as listed in the messages Mp

A. The simulation stops
when Bob reaches a round tp+1 > tp at which a node in VB sends a message to
a node in VA. Observe that, up to round tp+1, the oblivious simulation of Alice
was correct. At this point, Bob initiates an oblivious simulation of A at all the
nodes he controls, starting from tp+1. Finally, Bob sends to Alice tp+1, and the
list Mp+1

B of all timestamped messages sent from nodes in VB to nodes in VA

resulting from the oblivious simulation of the nodes he controls during rounds at
least tp+1. Using this information, Alice infers that her simulation was correct
up to round tp+1, and she starts the next round for protocol P.

The simulation carries on until one of the two players runs an oblivious
simulation in which all the nodes he or she controls terminate, and no messages
were sent through the cut in at any intermediate round. In this case, this player
sends a message “finish” to the other player, and both infer that their current
simulations are correct. As a consequence, each player has correctly computed
the output of A at all the nodes he or she controls.

At every communication round during which Alice speaks, at least one vertex
of VA which has a neighbor in VB is activated. Therefore, the number of rounds of
Alice is at most ∂VA · nact(A). By the same argument, we have that the number
of rounds of Bob is at most ∂VB · nact(A). It follows that

R(P) = min(∂VA, ∂VB) · nact(A).

At each communication round, Alice sends at most ∂(VA) ·nact(A) timestamped
messages, which can be encoded using O

(
∂(VA) · nact(A) · (log n + logRA(n))

)

bits. Similarly, Bob sends O
(
∂(VB) ·nact(A) · (log n+logRA(n))

)
bits. It follows

that

C(P) = O
((

(∂(VA) + ∂(VB)) · nact(A)
)2 · (log n + logRA(n))

)
,

which completes the proof. ��
In order to separate the node-activation complexity from the edge-activation

complexity, we consider a problem called Depth First Pointer Chasing,
and we show that this problem can be solved by an edge-frugal CONGEST
algorithm running in O(poly(n)) rounds, whereas the node-activation complexity
of any algorithm running in O(poly(n)) rounds for this problem is Ω(Δ), for any
Δ ∈ O

(
(n/ log n)1/4 )

. The lower bound is proved thanks to the Round-Efficient
Simulation Lemma (Lemma 3), by reduction from the two-party communication
complexity problem Pointer Chasing, for which too few rounds imply large
communication complexity [10].

In the Depth First Pointer Chasing, each node v of the graph is given as
input its index DFS(v) ∈ [n] in a depth-first search ordering (as usual we denote
[n] = {1, . . . , n}). Moreover the vertex indexed i is given a function fi : [n] → [n],
and the root (i.e., the node indexed 1) is given a value x ∈ [n] as part of its input.
The goal is to compute the value of fn ◦ fn−1 ◦ · · · ◦ f1(x) at the root.
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Lemma 5. There exists an edge-frugal CONGEST algorithm for problem
Depth First Pointer Chasing, with polynomial number of rounds.

The lemma is established using an algorithm that essentially traverses the
DFS tree encoded by the indices of the nodes, and performs the due partial com-
putation of the function at every node, that is, the node with index i computes
fi ◦ fi−1 . . . f1(x), and forwards the result to the node with index i + 1. The
detailed proof can be found in Appendix B.

Let us recall the Pointer Chasing problem as defined in [10]. Alice is
given a function fA : [n] → [n], and a number x0 ∈ [n]. Bob is given function
fB : [n] → [n]. Both players have a parameter k ∈ [n]. Note that the size
of the input given to each player is Θ(n log n) bits. The goal is to compute
(fA ◦ fB)k(x0), i.e., k successive iterations of fA ◦ fB applied to x0. We give a
slightly simplified version of the result in [10].

Lemma 6 (Nissan and Wigderson [10]). Any two-party protocol for
Pointer Chasing using less than 2k rounds has communication complexity
Ω(n − k log n).

We have now all ingredients for proving the main result of this section.

Theorem 5. For every Δ ∈ O
(
(n/ log n)1/4

)
, every CONGEST algorithm

solving Depth First Pointer Chasing in graphs of maximum degree Δ with
polynomialy many rounds has node-activation complexity Ω(Δ).

Proof. Let k be the parameter of Pointer Chasing that will be fixed later.
The lower bound is established for this specific parameter k. Let us consider an
arbitrary instance of Pointer Chasing fA, fB : [n] → [n], and x0 ∈ [n], with
parameter k. We reduce that instance to a particular instance of Depth First

Pointer Chasing (see Fig. 4).
The graph is a tree T on n vertices, composed of a path (v1, . . . , vn−2k), and

2k leaves vn−2k+1, . . . , vn, all adjacent to vn−2k. Node v1 is called the root, and
node vn−2k is said central. Note that the ordering obtained by taking DFS(vi) = i
is a depth-first search of T , rooted at v1. The root v1 is given value x0 as
input. If i ≤ n − 2k, then function fi is merely the identity function f (i.e.,
f(x) = x for all x). For every j ∈ [k], let aj = vn−k+2j−1, and bj = vn−k+2j .
All nodes bj get as input the function fB , and all nodes aj get the function fA.
Observe that the output of Depth First Pointer Chasing on this instance
is precisely the same as the output of the initial instance of Pointer Chasing.
Indeed, fn−2k ◦ fn−2k−1 ◦ · · · ◦ f1 is the identity function, and the sequence
fn◦fn−1◦· · ·◦fn−2k+2◦fn−2k+1 alternates nodes of “type” aj with nodes of “type”
bj , for decreasing values of j ∈ [k], and thus corresponds to fA ◦fB ◦ · · ·◦fA ◦fB ,
where the pair fA ◦ fB is repeated k times, exactly as in problem Pointer

Chasing.
We can now apply Round-Efficient Simulation Lemma. Let Alice control all

vertices aj , for all j ∈ [k], and vertices v1, . . . , vn−2k. Let Bob control vertices bj ,
for all j ∈ [k]. See Fig. 4. Note that Alice and Bob can construct the subgraph
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that they control, based only on their input in the considered Pointer Chasing

instance, and they both now value k.

Claim. If there exists a CONGEST algorithm A for Depth First Pointer

Chasing on n-node graphs performing in RA rounds with node-activation
smaller than 2k, then Pointer Chasing can be solved by a two-party protocol
P in less than 2k rounds, with communication complexity O(k4(log n+logRA))
bits.

The claim directly follows from Lemma 4. Indeed, by construction, ∂VA = 1
and ∂VB = k. Since we assumed nact(A) < 2k, the two-way protocol P provided
by Lemma 4 solves the Pointer Chasing instance in less than 2k rounds, and
uses O(k4(log n + logRA)) bits.

By Lemma 6, we must have k4(log n + logRA) ∈ Ω(n − k log n). Therefore,
if our CONGEST algorithm A has polynomially many rounds, we must have
k ∈ Ω

((
n

log n

)1/4
)
. Since our graph has maximum degree Δ = 2k + 1, the

conclusion follows. ��

6 Conclusion

In this paper, we have mostly focused on the round complexity of (deterministic)
frugal algorithms solving general graph problems in the LOCAL or CONGEST
model. It might be interesting to consider specific classical problems. As far as
“local problems” are concerned, i.e., for locally checkable labeling (LCL) prob-
lems, we have shown that MIS and (Δ+1)-coloring admit frugal algorithms with
polynomial round complexities. It is easy to see, using the same arguments, that
problems such as maximal matching share the same properties. It is however not
clear that the same holds for (2Δ − 1)-edge coloring.

Open Problem 1. Is there a (node or edge) frugal algorithm solving (2Δ− 1)-
edge-coloring with round complexity O(poly(n)) in the CONGEST model?

In fact, it would be desirable to design frugal algorithms with sub-polynomial
round complexities for LCL problems in general. In particular:

Open Problem 2. Is there a (node or edge) frugal algorithm solving mis or
(Δ + 1)-coloring with round complexity O(polylog(n)) in the LOCAL model?

The same type of questions can be asked for global problems. In particular,
it is known that MST has no “awake frugal” algorithms, as MST has awake
complexity Ω(log n), even in the LOCAL model. In contrast, frugal algorithms
for MST do exist as far as node-activation complexity is concerned. The issue is
about the round complexities of such algorithms.

Open Problem 3. Is there a (node or edge) frugal algorithm solving mst with
round complexity O(poly(n)) in the CONGEST model?
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Another intriguing global problem is depth-first search (dfs), say starting
from an identified node. This can be performed by an edge-frugal algorithm
performing in a linear number of rounds in CONGEST. However, it is not clear
whether the same can be achieved by a node-frugal algorithm.

Open Problem 4. Is there a node-frugal algorithm solving dfs with round
complexity O(poly(n)) in the CONGEST model?

Finally, we have restricted our analysis to deterministic algorithms, and it
might obviously be worth considering randomized frugal algorithms as well.

Acknowledgements. The authors are thankful to Benjamin Jauregui for helpful dis-
cussions about the sleeping model.

Appendix

A Proof of Theorem 4

In problem Equality, two players Alice and Bob have a boolean vector of size
k, xA for Alice and xB for Bob. Their goal is to answer true if xA = xB , and
false otherwise. The communication complexity of this problem is known to
be Θ(k) [9]. Let k = n2. We can interpret xA and xB as the adjacency matrix of
two graphs GA and GB in an instance of Symmetry. It is a mere technicality to
“shift” GB as if its vertices were indexed from 1 to n, such that Symmetry is true
for G iff xA = xB . Moreover, Alice can construct GA from its input xA, and Bob
can construct GB from xB . Both can simulate the unique edge joining the two
graphs in G. Therefore, by Lemma 3 applied to G, if Alice controls the vertices
of GA, and Bob controls the vertices of GB , then any CONGEST algorithm A
solving Symmetry in polynomially many rounds yields a two-party protocol for
Equality on n2 bits. Since graphs GA and GB are linked by a unique edge, the
total communication of the protocol is O(eact(A) · log n) and O(nact(A) · log n).
The result follows.

In Set Disjointness, each of the two players Alice and Bob has a Boolean
vector of size k, xA for Alice, and xB for Bob. Their goal is to answer true if
there is no index i ∈ [k] such that both xA[i] and xB [i] are true (in which case,
xA and xB are disjoint), and false otherwise. The communication complexity of
this problem is known to be Θ(k) [9]. We use the technique in [5] to construct an
instance G for C4 freeness, with a small cut, from two Boolean vectors xA, xB

of size k = Θ(n3/2). Consider a C4-free n-vertex graph H with a maximum
number of edges. Such a graph has k = Θ(n3/2) edges, as recalled in [5]. We
can consider the edges E(H) as indexed from 1 to k, and V (H) as [n]. Let now
xA and xB be two Boolean vectors of size k. These vectors can be interpreted
as edge subsets E(xA) and E(xB) of H, in the sense that the edge indexed i in
E(H) appears in E(xA) (resp. E(xB)) iff xA[i] (resp. xB [i]) is true. Graph G is
constructed to have 2n vertices, formed by two sub-graphs GA = G[{1, . . . , n}]
and GB = G[{n+1, . . . , 2n}]. The edges of E(GA) are exactly the ones of E(xA).
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Similarly, the edges of E(GB) correspond to E(xA), modulo the fact that the
vertex indexes are shifted by n, i.e., for each edge {u, v} ∈ E(xB), we add edge
{u+n, v+n} to GB . Moreover we add a perfect matching to G, between V (GA)
and V (GB), by adding all edges {i, i + n}, for all i ∈ [n]. Note that G is C4-
free if and only if vectors xA and xB are disjoint. Indeed, since GA, GB are
isomorphic to sub-graphs of H, they are C4-free. Thus any C4 of G must contain
two vertices in GA and two in GB , in which case the corresponding edges in
GA and GB designate the same bit of xA and xB respectively. Moreover Alice
and Bob can construct GA and GB , as well as the edges in the matching, from
their respective inputs xA and xB. Therefore, thanks to Lemma 3, a CONGEST
algorithm A for C4-freeness running in a polynomial number of rounds can
be used to design a protocol P solving Set Disjointness on k = Θ(n3/2)
bits, where Alice controls V (GA) and Bob controls V (GB). The communication
complexity of the protocol is O(eact(A) · n · log n), and O(nact(A) · n · log n),
since the cut between GA and GB is a matching. The result follows. ��

B Proof of Lemma 5

At round 1, each node v transmits its depth-first search index DFS(v) to its
neighbors. Therefore, after this round, every node knows its parent, and its
children in the DFS tree. Then the algorithm merely forwards messages of type
m(i) = fi ◦ fi−1 . . . f1(x), corresponding to iterated computations for increasing
values i, along the DFS tree, using the DFS ordering. That is, for any node v,
let MaxDFS(v) denote the maximum DFS index appearing in the subtree of
the DFS tree rooted at v. We will not explicitly compute this quantity but it
will ease the notations. At some round, vertex v of DFS index i will receive a
message m(i − 1) from its parent (of index i − 1). Then node v will be in charge
of computing message m(MaxDFS(v)), by “calling” its children in the tree, and
sending this message back to its parent. In this process, each edge in the subtree
rooted at v is activated twice.

The vertex of DFS index 1 initiates the process at round 2, sending f1(x) to its
child of DFS index 2. Any other node v waits until it receives a message from its
parent, at a round that we denote r(v). This message is precisely m(i−1) = fi−1◦
fi−2 . . . f1(x), for i = DFS(v). Then v computes message m(i) = fi◦fi−1 . . . f1(x)
using its local function fi. If it has no children, then it sends this message m(i)
to its parent at round r(v) + 1. Assume now that v has j children in the DFS
tree, denoted u1, u2, . . . , uj , sorted by increasing DFS index. Observe that, by
definition of DFS trees, DFS(uk) = MaxDFS(uk−1) + 1 for each k ∈ {2, . . . , j}.
Node v will be activated j times, once for each edge {v, uk}, 1 ≤ k ≤ j, as
follows. At round r(v) + 1 (right after receiving the message from its parent),
v sends message m(i) to its child u1, then it awaits until round r1(v) when it
gets back a message from u1.

The process is repeated for k = 2, . . . , j: at round rk−1(v) + 1, node v sends
the message m(DFS(uk) − 1) received from uk−1 to uk, and waits until it gets
back a message from uk, at round rk(v). Note that if k < j then this message is
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m(DFS(uk+1)− 1), and if k = j then this message is m(MaxDFS(v)). At round
rj(v) + 1, after having received messages from all its children, v backtracks
message m(MaxDFS(v)) to its parent. If v is the root, then the process stops.

The process terminates in O(n) rounds, and, except for the first round, every
edge of the DFS tree is activated twice: first, going downwards, from the root
towards the leaves, and, second, going upwards. At the end, the root obtains the
requested message m(n) = fn ◦ fn−1 . . . f1(x). ��

C Figures

Fig. 1. (a) Classical model (b) Sleeping model, (c) Activation model.

Fig. 2. Illustration of one phase of the simulation protocol. Assuming that the players
agree on the simulation of algorithm A up to round t, each player runs an oblivious
simulation at the nodes they control. In the example of the figure, the next message
corresponds to a node controlled by Bob, who sends a message to a node in VA at
round rb. The oblivious simulation of Alice is not aware of this message, and incor-
rectly considers that a message is sent from VA to VB at round ra > rb. Using the
communication rounds in this phase, the players agree that the message of Bob was
correct. Thus the simulation is correct up to round rb, for both players.
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Fig. 3. Illustration of the round-efficient simulation protocol for algorithm A. After
round p, Alice has correctly simulated the algorithm up to round tp. It is the turn
of Bob to speak in round p + 1. In round p, Alice sent to Bob the set of messages
Mp

A, obtained from an oblivious simulation of A starting from tp. Only the first three
messages are correct, since at round tp+1 Bob communicates a message to Alice. Then,
Bob runs an oblivious simulation of A starting from tp+1, and communicates all the
messages sent from nodes VB to nodes in VA. In this case the two first messages are
correct.

Fig. 4. Reduction from Pointer Chasing to Depth First Pointer Chasing.
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Abstract. A branch vertex in a tree is a vertex of degree at least three.
We study the NP -hard problem of constructing spanning trees with as
few branch vertices as possible. This problem generalizes the famous
Hamiltonian Path problem which corresponds to the case of no vertices
having degree three or more. It has been extensively studied in the litera-
ture and has important applications in network design and optimization.
In this paper, we study the problem of finding a spanning tree with the
minimum number of branch vertices in graphs of bounded neighbor-
hood diversity. Neighborhood diversity, a generalization of vertex cover
to dense graphs, plays an important role in the design of algorithms for
such graphs.

Keywords: Spanning tree · Fixed parameterized algorithms ·
Neighborhood diversity

1 Introduction

A branch vertex of a tree is a vertex having degree at least three. Let G = (V,E)
be a connected graph. The Minimum Branch Vertices spanning tree problem
asks to find a spanning tree of G having the smallest number of branch vertices
among all the spanning trees of G. We notice that a spanning tree without branch
vertices is a Hamilton path of G, hence a hamiltonian path can be regarded as
a spanning tree with no branch vertices.

The problem of determining a spanning tree with a bounded number of
branch vertices, is of practical importance in scenarios where it is desirable to
minimize the number of vertices that need to be considered or processed in
some way, such as in network design and optimization. The Minimum Branch

Vertices was first studied in relation to a problem in wavelength-division multi-
plexing (WDM) technology in optical networks, where one wants to minimize the
number of lightsplitting switches in a light-tree; the interested reader is referred
to [24] for more details.

In general, switching between different service providers incurs into switching
costs. Cognitive radio networks (CRN) operate across a wide frequency range
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in the spectrum and frequently require frequency switching; therefore, bounding
the number of switches has high importance both in terms of delay and energy
consumption [29,39]. Notice that the energy consumption aspect of this switching
cost is especially important in the recently active research area of green networks
[8,10]. Furthermore, operating with a wide range of frequencies is a property not
only of CRNs but also of other 5G technologies.

1.1 Notation and Definitions

Given an undirected graph G = (V,E), where V is the set of vertices and E is
the set of edges, we use n and m to denote the number of vertices and edges in
the graph, respectively. The neighborhood of a vertex v is denoted by ΓG(v) =
{u ∈ V | {u, v} ∈ E}. In general, the neighborhood of a set U ⊆ V is denoted
by ΓG(U) = {v ∈ V − U | {u, v} ∈ E, u ∈ U}. The degree of a vertex v ∈ V (G)
is the number of edges incident on it, dG(v) = |ΓG(v)|1.

A branch vertex is a vertex having degree at least three. If G is a connected
graph, we let b(G) denote the smallest number of branch vertices in any spanning
tree of G. Since a spanning tree without branch vertices is a Hamiltonian path
of G, we have b(G) = 0 if and only if G admits a Hamiltonian path. We study
the following problem:

Minimum Branch Vertices (MBV)
Instance: A connected graph G = (V,E).
Goal: Find a spanning tree of G having b(G) branch vertices.

1.2 Previous Works

Since its proposal, MBV has been a widely studied problem, both from the
algorithmic and the graph-theoretic point of view. Most of the previous work
on this problem has yielded upper bounds on the number of branch vertices in
the resulting tree, but these bounds were not tight. Gargano et al. [25] proved
that it is NP-complete to decide whether, given a graph G and an integer k, G
admits a spanning tree with at most k branch vertices, even in cubic graphs. In
the same paper, the authors give an algorithm that finds a spanning tree with
1 branch vertex if each set of 3 independent vertices of the input graph G has
degree sum at least equal to |V (G)| − 1. Results for the MBV problem have
been given in [38]. The author proves the existence of an algorithm that finds
a spanning tree with O(log |V (G)|) branch vertices whenever the degree of each
vertex of the input graph is Ω(n); moreover, an approximation factor better than
O(log |V (G)|) would imply that NP ⊆ DTIME(nO(log log n)). An algorithm to
construct spanning trees with few branch vertices in claw-free graphs has been
presented in [35]. Other results including mathematical formulations, heuristics
and approximation results can be found in [4–6,9,11–13,27,32–34,37,40–42].

In this paper we study MBV from a parameterized complexity point of view.
1 In the following we use omit the graph name G (e.g. we use d(v), instead of dG(v))

whenever the graph is clear from the context.
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1.3 Parameterized Complexity

Parameterized complexity is a refinement to classical complexity theory in which
one takes into account not only the input size, but also other aspects of the
problem given by a parameter p. A problem with input size n and parameter
p is called fixed parameter tractable (FPT) if it can be solved in time f(p) · nc,
where f is a computable function only depending on p and c is a constant.

Neighborhood Diversity. Graphs of bounded neighborhood diversity can be
seen as the simplest of dense graphs and thus neighborhood diversity plays an
important role in the design of algorithms for such graphs.

Given a graph G = (V,E), two vertices u, v ∈ V are said to have the same
type if Γ (v) − {u} = Γ (u) − {v}. The neighborhood diversity nd(G) of a graph
G is the minimum number nd of sets in a partition V1, V2, . . . , Vnd, of the vertex
set V , such that all the vertices in Vi have the same type, for i ∈ {1, . . . , nd}.

The neighborhood diversity parameter, was first introduced by Lampis in
[31]. It has then received much attention [1,2,7,14–16,23,26,28,43], also due to
the fact that, contrary to other popular parameters, it is computable in linear
time.

The family {V1, V2, . . . , Vnd} is called the type partition of G. Notice that each
Vi induces either a clique or an independent set in G. Moreover, for each Vi and
Vj in the type partition, either each vertex in Vi is a neighbor of each vertex in
Vj or no vertex in Vi has a neighbor in Vj . Hence, between each pair Vi and Vj

there is either a complete bipartite graph or no edge at all.
Starting from a graph G and its type partition V = {V1, . . . , Vnd}, we can see

each element of V as a vertex of a new graph H, called the type graph of G, with
- V (H) = {1, 2, · · · , nd}
- E(H) = {{x, y} | x �= y and for each u ∈ Vx, v ∈ Vy it holds that {u, v} ∈ E }.
For sake of clearness, we will refer to the vertices of H as types and reserve the
term vertex to those in G.

Example 1. Figure 1 shows a graph G and its type graph H corresponding to
the type partition V = {V1, . . . , V10} where V1 = {a}, V2 = {c, d}, V3 = {b}, V4 =
{e}, V5 = {f, g}, V6 = {h}, V7 = {i}, V8 = {l}, V9 = {m}, V10 = {n}. Note that
G cannot contain a hamiltonian path; hence, b(G) ≥ 1.

Other Graph Parameters. It was proved in [3] that MBV is FPT with respect
to treewidth. The treewidth parameter, which represents a way to describe the
distance between a graph and a tree, was introduced by Robertson and Seymour
[36] and has been widely used in parameterized complexity of graph optimization
problems [18,19]. We recall that graphs of small treewidth are necessarily sparse
and that neighborhood diversity, which is a good parameters in case of dense
graphs, is incomparable to the treewidth.

Cliquewidth, defined in [17], covers a larger family of graphs with respect both
to treewidth and neigborhood diversity, including many dense graphs. However,
several natural problems become W[1]-hard when parameterized by this measure.
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Fig. 1. A graph G (on the left) and its type graph H (on the right). Dashed circles
group vertices having the same type.

In particular, this is the case with the MBV problem. Indeed, it was proven in
[21] that the (MBV special case) Hamiltonian Path problem is W[1]-Hard
when parameterized by cliquewidth.

When the parameter is the modular-width [22], the Hamiltonian Path

problem becomes fixed parameter tractable. We notice that, modular-width is
stronger than neighborhood diversity in the sense that graphs of bounded neigh-
borhood diversity have bounded modular-width, while the converse may not be
true.

We present a FPT algorithm for the problem of determining the minimum
number of branch vertices in any spanning tree of G, parameterized by neighbor-
hood diversity, leaving open the question to asses the paremterized complexity
of MBV with respect to modular-width.

A summary of the relations which hold between some popular graph parame-
ters is given in Fig. 2. We refer to [20] for the formal definitions of the parameters.

2 The Algorithm

This rest of the paper is devoted to prove the following theorem.

Theorem 1. The Minimum Branch Vertices spanning tree problem is FPT
when parameterized by neighborhood diversity.

We first give a characterization of the spanning trees of a graph G with b(G)
branch vertices in terms of neighborhood diversity.

Lemma 1. Let G = (V,E) be a connected graph with type partition V = {V1, V2,
. . . , Vnd}. Any spanning tree of G with b(G) branch vertices has at most one
branch vertex belonging to any set of the type partition V. Hence, b(G) ≤ nd.

Proof. Let T be a spanning tree of G with b(G) branch vertices and assume,
by contradiction, that there exists a set Vi ∈ V containing at least two branch
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Fig. 2. A summary of the relations holding among some popular parameters. We use
mw(G), tw(G), cw(G) and vc(G) to denote modular-width, treewidth, cliquewidth and
minimum vertex cover of a graph G, respectively. Solid arrows denote generalization,
e.g., modular-width generalizes neighborhood diversity. Dashed arrows denote that the
generalization may exponentially increase the parameter.

vertices in T . Using the fact that all the vertices in Vi share the same neighbor-
hood outside Vi we can construct a new spanning tree T ′ of G with exactly one
branch vertex in Vi. In particular, rooting T in any vertex and choosing any of
the branch vertices in Vi, let say u, we can move the children of all the other
branch vertices in Vi so that they become children of u. ��

Let G = (V,E) be a connected graph with type partition V =
{V1, V2, . . . , Vnd} and let H = ({1, . . . , nd}, E(H)) be the corresponding type
graph. By exploiting Lemma 1, the algorithm proceeds by considering all the
subsets BH ⊆ {1, . . . , nd}, ordered by size, and verifying if it there exists a span-
ning tree in G with |BH | branch vertices each chosen from a different type set
Vi with i ∈ BH .

We notice that, since modular-width generalizes neighborhood diversity, the
algorithm in [22] also gives a FPT algorithm for Hamiltonian Path parame-
terized by neighborhood diversity. As a consequence, the algorithm in [22] can
be used for the case BH = ∅. Hence, in the following we assume |BH | ≥ 1.

The identification of the spanning tree of G goes through the solution of
an Integer Linear Program that uses the properties of the type partition V =
{V1, V2, . . . , Vnd} of G. Namely, if the set BH is such that the ILP does not admit
a solution, then the set is discarded; if for BH the ILP admits a solution, we will
show how to obtain a spanning tree of G having exactly |BH | branch vertices
(recall that the sets BH are considered by increasing size). The optimal spanning
tree will be indeed shown to correspond to the smallest BH for which the ILP
admits a solution. We now give a description of our algorithm.

For each set BH �= ∅, we select an arbitrary r ∈ BH and construct a digraph

HBH
= ({1, . . . , nd} ∪ {s}, ABH

),

where s �∈ V (H) is an additional vertex that will be called the source type. HBH

is obtained from the type graph H by replacing every edge {i, j} ∈ E(H) by
the two directed arcs (i, j) and (j, i), and then adding the directed arc (s, r).
Formally, ABH

= {(s, r)} ∪ {(i, j), (j, i) | {i, j} ∈ E(H)}.
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We use the solution of the following Integer Linear Programming (ILP) to
select arcs of HBH

that will help to construct the desired spanning tree in G.
For each arc (i, j) ∈ ABH

, the non negative decision variable xij represents
the load to be put on (i, j). The load of the arc (s, r) is set to 1.

xsr = 1 (1)
∑

j:(j,i)∈ABH

xji ≤ |Vi| ∀i ∈ {1, . . . , nd} s.t. Vi is a clique (2)

∑

j:(j,i)∈ABH

xji = |Vi| ∀i ∈ {1, . . . , nd} s.t. Vi is an ind. set (3)

∑

�:(i,�)∈ABH

xi� −
∑

j:(j,i)∈ABH

xji ≤ 0 ∀i ∈ {1, . . . , nd} − BH (4)

ysr = nd (5)
∑

j:(j,i)∈ABH

yji −
∑

�:(i,�)∈ABH

yi� = 1 ∀i ∈ {1, . . . , nd} (6)

yij ≤ nd xij ∀(i, j) ∈ ABH
(7)

yij , xij ∈ N ∀(i, j) ∈ ABH
(8)

The total incoming load at type i ∈ {1, . . . , nd} has to be at most |Vi| in
case Vi is a clique and exactly |Vi| in case Vi is an independent set. Constraints
(2) and (3) correspond to this requirement. Constraint (4) binds the relation
between the total incoming and outgoing loads at any type i �∈ BH , namely i
must have an outgoing load upper bounded by its incoming load.

Constraints (5) and (6) use a single commodity flow in which s is used as the
source and the other types are demand vertices. For each arc (i, j) ∈ ABH

, the
non negative decision variable yij represents the quantity of flow from type i to
type j.

Each type i ∈ {1, . . . , nd} has demand of one unit; therefore, the difference
between the inflow and the outflow must be exactly one. Meanwhile, the supply
quantity at the source s has to be exactly nd to reach each of the types in
{1, . . . , nd}.

Constraint (7) stresses variable yij = 0 whenever xij = 0; thus if no load is
put on (i, j) then type j is not to be reached trough type i.

3 The Spanning Tree Construction

Given an integer solution (y, x), if any, to the above ILP, the values of variables
y imply that each type i ∈ {1, . . . , nd} − {r} is reached from the source s. Then,
by the construction of digraph HBH

, each type i ∈ {1, . . . , nd} is reached from
type r. Furthermore, by the relation between variables x and y (constraint (7)),
we know that each type i ∈ {1, . . . , nd} obtains incoming load from at least one
of its neighbors.
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Claim 1. The subgraph Hx of HBH
with vertex set {1, . . . , nd} and arc set {(i, j)

| xij ≥ 1} contains a directed path from r to any other type.

Example 1 (cont.). Figure 3 shows the digraph Hx subgraph of HBH
obtained

from H, given in Fig. 1, for BH = {1} and the solution (y, x) of ILP. The pair
on each arc (i, j) corresponds to (yij , xij).

Fig. 3. Digraph Hx subgraph of HBH obtained from H, given in Fig. 1, for BH = {1}
and the solution (y, x) of ILP. The pair on each arc (i, j) corresponds to (yij , xij).

Our algorithm uses the values of variables x to obtain a spanning tree T of
G with k = |BH | branch vertices, one in each of the type sets Vi with i ∈ BH .

To describe the construction of T we first introduce some useful notation.
For each i ∈ {1, . . . , nd}, we denote by In(i) the set of the types from which

there exist arcs in Hx toward i, that is, In(i) = {j |xji ≥ 1};. Moreover, we
define

αi =
∑

j:j∈In(i)

xji (9)

that represents the number of vertices of Vi whose parent in T is a vertex outside
Vi, and

βi =

{∑
�:i∈In(�) xi� if i �∈ BH

1 if i ∈ BH

(10)

that represents the number of vertices of Vi, that will be the parent of some
vertex in ∪�:i∈In(�)V�. In particular, if i �∈ BH then xi� vertices of Vi will be
chosen to be each the parent of exactly one vertex in V�, while if i ∈ BH then
exactly one vertex of Vi will be the parent of all the

∑
�:i∈In(�) xi� vertices in

V�. Notice that by Claim 1 (αi ≥ 1) and constraint (4), it follows that for each
i = 1, . . . , nd

αi ≥ βi.
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Finally, we set si = |Vi| − αi. We notice that if Vi is an independent set then
si = 0 since the constraint (3) of ILP imposes

∑
j:(j,i)∈ABH

xji = |Vi|. Hence,
if si > 0 then any selection of si vertices of Vi induces a clique; moreover, no
branch vertex of T will be among them.

3.1 The Case si = 0, for Each Type i

For sake of simplicity, we first describe the proposed algorithm in the case si =
0 for each i ∈ {1, . . . , nd}. Next, we show how a simple modification of the
algorithm allows to cover the general case in which si > 0 for some type i.

The algorithm TREE constructs a spanning tree of G iteratively by exploring
unexplored vertices of G, until possible, and maintains a main subtree T and
a forest whose roots are progressively connected to T to assemble the spanning
tree. The process stops when all the vertices of G are explored.

The algorithm uses a queue Q to enqueue the explored vertices and maintains
a set R of the roots of trees of explored vertices that wait to be connected to the
main tree T . The forest structure is described through the parent function π.

At the beginning the set R is empty. Chosen any vertex ur ∈ Vr (recall
that by construction r ∈ BH), the procedure EXPLORE(ur) carries out the
construction of the main tree T rooted at ur and marks as explored all the
reached vertices (adding them to the set Ex). Clearly, for each explored vertex
v there is a path in T joining ur to v.

Algorithm 1. TREE(G,V, BH)
1: R = ∅, B = ∅, Ex = ∅
2: π(u) = nhil for each u ∈ V (G)
3: Let ur ∈ BH

4: EXPLORE(ur)
5: while V − Ex �= ∅ do
6: - Let Vj be any set s.t. (Vj − Ex �= ∅ �= Vj ∩ Ex) and βj ≥ 1
7: - Let w ∈ Vj ∩ Ex and u ∈ (Vj − Ex) − R
8: - Set π(u) = π(w), Ex = Ex − {w}, R = R ∪ {w}
9: - EXPLORE(u)

10: end while
11: return π, B

However, it can occur that some of the vertices have not been explored (i.e.,
V −Ex �= ∅). In such a case an explored vertex w is chosen so that it belongs to a
type set Vj , which also contains at least a never explored vertex u able to explore
at least one unexplored neighbour (that is, w ∈ Vj ∩ Ex and u ∈ (Vj − Ex)− R
and βj ≥ 1; the existence of such a set Vj is assured by Lemma 4). By using the
properties of the neighborhood diversity, we know that since u and w belong to
the same type set Vj , they have the same neighborhood. Hence, the algorithm
lets that:
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Algorithm 2. EXPLORE(u)
1: Let Q be an empty queue
2: Q.enqueue(u), Ex = Ex ∪ {u}
3: while Q �= ∅ do
4: v = Q.dequeue
5: Let v ∈ Vi

6: if i /∈ BH and βi ≥ 1 then
7: - Let v′ ∈ V� − Ex for some � s.t. i ∈ In(�)
8: - π(v′) = v, Ex = Ex ∪ {v′}
9: if v′ �∈ R then Q.enqueue(v′)

10: else R = R − {v′}
11: end if
12: - α� = α� − 1, βi = βi − 1
13: else if i ∈ BH and βi = 1 then
14: - B = B ∪ {v}
15: for each � s.t. i ∈ In(�) do
16: - Let Ai� ⊆ V� − Ex s.t. |Ai�| = xi�

17: - α� = α� − xi�,
18: for each v′ ∈ Ai� do
19: - π(v′) = v Ex = Ex ∪ {v′}
20: if v′ �∈ R then Q.enqueue(v′)
21: else R = R − {v′}
22: end if
23: end for
24: end for
25: - βi = βi − 1
26: end if
27: end while

– the parent of w (recall that w is explored) becomes the parent of u, and
– w (the root of a subtree of explored vertices) is added to R and removed

from Ex (this will allow w to be later explored and added, together with its
subtree, to the main tree T ), and

– EXPLORE(u) is called to start a new exploration from u.

Notice that the algorithm modifies the forest by assigning to u the parent of
w and only later (after adding u and some descendants of u) adding again the
subtree rooted in w to the main tree T . This allows connecting new vertices in
V − Ex to the main tree T ; the particular choice of u and w will be shown to
avoid the possibility that the algorithm fails, due to the fact that no arc can
be added to T without forming a cycle or creating an extra branch vertex (see
Fig. 4 for an example). The process is iterated as long as there are unexplored
vertices, i.e. V (G) − Ex �= ∅.

The procedure EXPLORE(u) starts with Q containing only the vertex u and
pads the main tree T (recall that (unless u = ur) the parent of u is a vertex
already in T thus constructing a subtree rooted at u spanning on all the newly
explored vertices). EXPLORE(u) uses for each type i the values of αi and βi that
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are initially defined as in (9) and (10). The value αi =
∑

j:j∈In(i) xji counts the
number of vertices of Vi that must be assigned a parent outside Vi; in particular,
xji vertices of Vi have to be explored by vertices in Vj . The value βi counts the
number of vertices of Vi on which the EXPLORE procedure must be called; in
particular,

– if i ∈ BH then exactly 1 vertex in Vi becomes a branch vertex in T : it is set
as the parent of xi� unexplored vertices in V� for each � such that xi� ≥ 1
(i.e., i ∈ In(�)), and

– if i �∈ BH then
∑

�:i∈In(�) xi� vertices in Vi are chosen and each one becomes
the parent of one unexplored vertex in V�.

Recall that, by the ILP constraints, we know that αi ≥ βi and that we assume
si = 0. As a consequence, we have αi = |Vi| for each i ∈ {1, . . . , nd}. When
a vertex v ∈ Vi is dequeued from Q in EXPLORE(u) then the value of βi is
decreased by one if v explores (i.e., if βi ≥ 1); furthermore, the value α� is
decreased by the number of vertices in V� that v explores, for i ∈ In(�). Hence,
at the beginning of each iteration of the while loop in EXPLORE(u) the values
of αi represents the number of vertices in Vi that remain to be explored while
βi is the number of vertices in Vi on which EXPLORE must still be called. Note
that when a vertex v ∈ Vi is dequeued from Q in EXPLORE(u), with u �= ur,
and βi ≥ 1, the algorithm checks if the neighbour v′, that v explores, is in R
(i.e., v′ is a root of a tree in the forest). In this case v′ is not enqueued in Q and
v′, with the tree rooted at it, is connected to the main tree T .

Example 1 (cont.). Figure 4 shows the construction of the spanning tree of
G made by algorithm TREE(G,V, BH = {1}), where a ∈ V1 is the only branch
vertex and is the root of the spanning tree. The red edges in Fig. 4(a) show the
main tree obtained at the end of EXPLORE(a) when Ex = {a, b, c, d, e, g,m, n}.
Since V (G)−Ex �= ∅, the algorithm TREE finds V5 = {f, g} having g ∈ V5 ∩Ex
and f ∈ V5 − Ex and β5 = 1, so obtaining the forest shown by the red edges in
Fig. 4(b), with two trees one rooted at a and the other one rooted at g where
R = {g}. EXPLORE(f) explores the remaining unexplored vertices of G and
reconnect g with its descendants to the main tree, so obtaining the spanning
tree of G with branch vertex a, as shown in Fig. 4(c).

Lemma 2. At the end of EXPLORE(ur) the function π describes a tree, rooted
at ur, spanning the set Ex ⊂ V of explored vertices. The vertices in B ∩ Ex are
the branch vertices.

Proof. When EXPLORE(ur) is called, vertex ur is the first explored vertex (i.e.
it is added to the set Ex) and is enqueued in Q. After that, each time a vertex
v ∈ Vi is dequeued from Q (recall, v ∈ Ex is an explored vertex), the algorithm
can either stop its exploration (i.e., v is a leaf in T and this occurs when βi = 0)
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Fig. 4. Construction by TREE(G, V, BH = {1}) of the spanning tree with B = {a}. In
order to have exactly one branch vertex, the initial choice of g as child of e is incorrect
(see (a)). Hence, the algorithm fixes such an error by choosing f as child of e, while
keeping the already explored subtree rooted at g (see (b)). Finally, the exploration
from f allows to reach g and have the desired spanning tree (see (c)).

or explore one o more unexplored neighbors of v; since R = ∅ (i.e., no tree is in
the forest), such neighbors are enqueued in Q and become children of v in T ,
through the function π. Hence, any explored vertex has ur has ancestor, i.e., the
function π describes a path joining any explored vertex to ur. Noticing that no
vertex can be enqueued twice in Q (since any enqueued vertex is also marked as
explored), we have that the function π does not create cycles.

Now, we prove that when a vertex v is dequeued from Q, it has the needed
number of unexplored neighbors. If βi = 0 then v is e leaf in T ; hence, we only
have to consider the case βi ≥ 1. If v ∈ Vi with i �∈ BH then v has βi ≥ 1
unexplored neighbor and one of them can be added to T as child of v. If i ∈ BH

then v is the first vertex of Vi to be explored and all the xi� vertices in V� are
unexplored and can be added to T as children of v, for each � such that xi� ≥ 1.
Hence v becomes a branch vertex in T and is put in B. ��

Fix any iteration of the while loop in algorithm TREE and define Ĥx as the
subgraph of Hx containing the arc (i, j) if, at the beginning of the while loop,
less than xij vertices in Vj have been assigned a parent in Vi.

Lemma 3. Let j be any type in Ĥx. The following properties hold for Ĥx:

(a) If Vj ⊆ Ex then the type j is isolated in Ĥx.
(b) The type r s.t. Vr contains the root ur of T has no outgoing arcs in Ĥx.
(c) Vj �⊆ Ex if and only if j has at least one incoming arc in Ĥx.
(d) If Vj ∩ Ex = ∅ then j keeps in Ĥx all the incoming and outgoing arcs it has

in Hx.
(e) If Vj − Ex ⊆ R then j has no outgoing arcs in Ĥx.
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Proof. Consider property (a). If each vertex in Vj is explored, then it has a
parent in T and, recalling that

∑
t:t∈In(j) xtj = |Vj | (note that sj = 0 and then

constraints (2) and (3) in ILP are satisfied in equality) it follows that j has no
incoming arc in Ĥx. Moreover, procedure EXPLORE implies that once a vertex
in Vj is explored (i.e. it has assigned a parent) then it will be assigned at least
one child as long as there exist vertices to be explored from Vj (i.e., if βj ≥ 1).
In particular, if j �∈ BH then since |Vj | ≥ ∑

t:j∈In(t) xjt (see constraint (4) in
ILP), it follows that xjt vertices in Vt have a parent in Vj , for each t such that
j ∈ In(t). Hence j has no outgoing arc surviving in Ĥx. If, otherwise, j ∈ BH

then the first explored vertex in Vj has xjt > 0 children in Vt for each t such
that j ∈ In(t). Hence, also in this case j has no outgoing arc surviving in Ĥx.
Property (b) follows by noticing that, by construction, ur is a branch vertex of
T and has xrt children in each Vt such that xrt > 0, (i.e., r ∈ In(t)).

Property (c) follows by noticing that Vj �⊆ Ex is equivalent to say that
∑

t:t∈In(j)

xtj = |Vj | > |Vj ∩ Ex|.

Property (d) follows by noticing that Vj ∩ Ex = ∅ implies that Vj still has an
incoming neighbour for each t such that xtj > 0 and an outgoing neighbor for
each t such that xjt > 0.

Property (e) follows by noticing that when the algorithm TREE disconnects a
vertex w and adds it in R, vertex w has already been assigned its child/children.
Hence, if Vj does not contain any unexplored vertex outside R then βj has been
decreased to 0 meaning that all the xtj arcs from a vertex in Vt to one in Vj

have been added to the forest, for each j = 1, . . . , nd. ��
Lemma 4. Let Ex be the set of explored vertices at the beginning of any iter-
ation of the while loop in algorithm TREE. If V − Ex �= ∅ then there exists a
type j such that Vj − Ex �= ∅ �= Vj ∩ Ex and βj ≥ 1.

Proof. By (a) and (c) of Lemma 3, we know that each type j in Ĥx either is
isolated or has at least an incoming arc. Hence, focus on the subset of non-
isolated types. Knowing that each of them has an incoming arc, we have that
Ĥx contains a cycle. Then, each type j on such a cycle has an outgoing arc and
satisfies βj ≥ 1.

We show now that at least one type j on the cycle has Vj ∩ Ex �= ∅. Point
(b) of Lemma 3 implies that Ĥx does not contain any path from r to any type
on the cycle. If we suppose that for each type j in the cycle Vj ∩ Ex = ∅, then
(d) of Lemma 3 implies that also Hx does not contain a path from r to j, thus
contradicting Claim 1. ��

Lemma 5. After each call of EXPLORE(u) the function π describes a forest
spanning the vertices in Ex ∪ R of explored vertices and consisting of |R| + 1
trees respectively rooted at ur and at the vertices in R. The vertices in B are the
only branch vertices in the forest.
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Proof. When EXPLORE(u) is called, the function π describes a forest, spanning
the current set Ex ∪ R, whose roots are the vertices in {ur} ∪ R and where
R ⊂ V (G) − Ex.

We notice that by Lemma 2, this is true the first time EXPLORE is called,
that is, after the call to EXPLORE(ur) (at that time R = ∅). We prove that the
claim is also true at the end of each call to EXPLORE(u).

When EXPLORE(u) is called, Q is empty; vertex u is explored (i.e. it is
added to Ex) and enqueued in Q. Then EXPLORE(u) proceeds, exactly as
in EXPLORE(ur), dequeueing vertices from Q and exploring their unexplored
neighbors, so constructing a subtree of the main tree T rooted at u described by
function π.

The only difference with EXPLORE(ur) is when one of the vertices explored
is v′ ∈ R. Vertex v′ ∈ R is removed from R and connected to the main tree
T through the function π and marked as explored (see lines 8, 19) exactly as
any other explored vertex. However v′ is not enqueued in Q since it has already
explored its neighbors; hence, v′ is connected to T together with its subtree of
explored vertices. ��

We are now able to prove the following result.

Lemma 6. The algorithm TREE returns a spanning tree of G, described by
function π, with branch vertex set B.

Proof. By Lemma 2 we know that algorithm TREE constructs through proce-
dure EXPLORE(ur) a main tree T , described by π. In case T does not span all
the vertices in V (G) then, Lemma 4 and (e) in Lemma 3 assure that the algo-
rithm finds a type set Vj with an explored vertex w ∈ Vj ∩Ex and an unexplored
vertex u ∈ (Vj −Ex)−R that allows disconnecting w (with its subtree) from the
main tree T , so that it becomes one of the roots of trees in R, to use the parent
of w in T to connect u to T and to start a new exploration from u (since u �∈ R
and βj ≥ 1) calling EXPLORE(u). By Lemma 5, this allows padding T with the
subtree rooted a u of new explored vertices and/or some of the trees rooted at
vertices in R. The iteration of the above procedure until no unexplored vertex
exists in V (G) gives the lemma. ��

3.2 The General Case

In this section we present a simple modification to the algorithm given in the
previous section to cover the case in which si ≥ 1 for some type i ∈ {1, . . . , nd}.

First of all recall that si = |Vi| − ∑
j:j∈In(i) xji and that by constraint (2)

and (3) in ILP, it can occur that si ≥ 1 only if Vi is a clique.
Our algorithm proceeds first selecting a set Si ⊆ Vi such that |Si| = si

for each i with si ≥ 1. Then, we consider the subgraph G′ of G induced by
the vertex set V (G) − ∪i:si≥1Si, and the type partition V ′ = {V ′

1 , · · · , V ′
nd} of

G′ where V ′
i = Vi − Si, and we call algorithm TREE(G′,V, BH). Let T ′ be the

spanning tree of G′ described by the function π returned by the algorithm TREE,
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and let B be the branch vertex set of T ′. Now, we pad T ′ with ∪i:si≥1Si so that
it becomes a spanning tree of G and keeps the branch vertex set B unchanged.

– For each i such that si ≥ 1 and i ∈ BH , we make the branch vertex u ∈ V ′
i ∩B

the parent of all the vertices in Si; formally, π(v) = u for each v ∈ Si.
– For each i such that si ≥ 1 and i �∈ BH , we choose any vertex u ∈ V ′

i = Vi−Si

and substitute the arc to u from its parent π(u) by a path Pi going from π(u)
to u through all the vertices in Si; formally, let Si = {v1, . . . , vsi

}, we set
π(v1) = π(u), π(vj+1) = vj for j = 1, . . . , si − 1, and π(u) = vsi

.

4 The Algorithm Complexity

Summarizing, the proposed method:
For each fixed set BH ⊆ {1, . . . , nd}, ordered by size, the algorithm

– solves the corresponding ILP
– if a solution exists for the current set BH , it uses algorithm TREE to construct

a spanning tree of G with |BH | branch vertices.

Jansen and Rohwedderb [30] have recently showed that the time needed to
find a feasible solution of an ILP with p integer variables and q constraints is
O(

√
qΔ)(1+o(1))q + O(qp), where Δ is the biggest absolute value of any coef-

ficient in the ILP. As our ILP has at most q = nd2 + 3nd + 2 constraints,
at most p = 2(nd2 + 1) variables and Δ = nd, the time needed to solve it
is O(nd2)(1+o(1))(nd2+3nd+2) + O(nd4). Using the solution (y, x) of the ILP, the
algorithm TREE returns the spanning tree of G in time O(n2). Overall, the
algorithm requires time 2nd(O(nd2)(1+o(1))(nd2+3nd+2) + O(nd4)) + O(n2).

5 Optimality

In this section we show that if no set BH ⊆ {1, . . . , nd}, with |BH | = k, exists
for which the ILP admits a solution then does not exist a spanning tree in G
with k branch vertices, that is b(G) ≥ k + 1.

This will allow to say that the optimal spanning tree in G corresponds to the
smallest set BH ⊆ {1, . . . , nd} for which the ILP admits a solution, if any.

Lemma 7. If there exists a spanning tree in G with k ≥ 1 branch vertices then
there exists a set BH ⊆ {1, . . . , nd} with |BH | = k, and a solution (x, y) of the
corresponding ILP.

Proof. Let T be a spanning tree in G with branch vertex set B such that |B| = k.
We show how to obtain from T and B an assignment of values to the variables
in x and y that satisfy the constraint (1)–(8) of ILP. Let BH = {i | B ∩ Vi �=
∅, i = 1, . . . , nd}. By Lemma 1 we have |BH | = |B|. Choose any r ∈ BH and a
vertex ur ∈ B ∩ Vr. Root T at ur and direct each edge in T so that there is a
path of directed arcs from ur to any vertex u ∈ V (G)− {ur}. Let AT be the set
of all the arcs in T .
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We set xsr = 1 (satisfying constraint (1) of ILP), and for i, j ∈ {1, . . . , nd},

xij = |{(u, v) | (u, v) ∈ AT , u ∈ Vi, v ∈ Vj}|.

Let In(i) = {j | xji ≥ 1}, for i = 1, . . . , nd. Since each vertex u ∈ Vi has a parent
in T , we have that if Vi is an independent set then the parent of each u ∈ Vi is a
vertex in some Vj with j ∈ In(i), while if Vi is a clique then the parent of u ∈ Vi

can be either a vertex in Vi or a vertex in Vj with j ∈ In(i). This implies that

∑

j

xji = |Vi| if Vi is an independent set,
∑

j

xji ≤ |Vi| if Vi is a clique,

satisfying constraints (2) and (3) of ILP.
If i �∈ BH then Vi does not contain branch vertices. Hence, each vertex u ∈ Vi

can be the parent of at most one vertex. Hence,
∑

�:(i,�)

xi� ≤
∑

j:(j,i)

xji

satisfying constraint (4) of ILP.
To assign values to the variables y, we introduce the digraph Hx having

vertex set {1, . . . , nd} and arc set {(i, j) | xij ≥ 1}. Let Tx be the tree rooted
at r obtained by a BFS visit of Hx. For each i ∈ {1, . . . , nd} − {r}, let p(i) the
parent of i in Tx. Pad Tx, adding arc (s, r) (i.e., p(r) = s). We set ysr = nd
(satisfying constraint (5) of ILP) and for i ∈ {1, . . . , nd} − {r} we set

yji =

{
the number of vertices in the subtree of Tx rooted at i if j = p(i)
0 if j �= p(i)

Hence, ∑

j:(j,i)

yji = yp(i)i = 1 +
∑

�:p(�)=i

yi� = 1 +
∑

�:(�,i)

yi�

satisfying constraint (6) of ILP.
We notice that the number of vertices in the subtree of Tx rooted at i is at

most nd, for each i ∈ {1, . . . , nd}. Moreover, recalling that xp(i)i ≥ 1„ we know
that Hx contains (p(i), i). Therefore, we get

yp(i)i ≤ nd ≤ nd xp(i)i

satisfying constraint (7) of ILP since yji = 0 for each j �= p(i). ��

6 Conclusion and Open Problems

In this paper, we have studied the parameterized complexity of finding a span-
ning tree with the minimum number of branch vertices. We have shown that the
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problem is fixed-parameter tractable when parameterized by the neighborhood
diversity of the input graph. We have provided an exact algorithm for finding
such a spanning tree, which is based on a ILP approach.

Future work can investigate the complexity of the problem when other graph
properties are used as parameter. In particular, it would be interesting to asses
the parameterized complexity of MBT with respect to modular-width.
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on the infinite line. Feasible solutions are agent trajectories in which all agents
reach the target sooner or later. A special feature of our problem is that the agents
are p-faulty, meaning that every attempt to change direction is an independent
Bernoulli trial with known probability p, where p is the probability that a turn
fails. We are looking for agent trajectories that minimize the worst-case expected
termination time, relative to the distance of the hidden target to the origin (com-
petitive analysis). Hence, searching with one 0-faulty agent is the celebrated lin-
ear search (cow-path) problem that admits optimal 9 and 4.59112 competitive
ratios, with deterministic and randomized algorithms, respectively.

First, we study linear search with one deterministic p-faulty agent, i.e., with no
access to random oracles, p ∈ (0, 1/2). For this problem, we provide trajectories
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domized), independently of the underlying communication model. As a result,
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(which we show can be achieved with arbitrarily high concentration) or a compet-
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1 Introduction

Linear search refers to the problem of searching for a point target which has been placed
at an unknown location on the real line. The searcher is a mobile agent that can move
with maximum speed 1 and is starting the search at the origin of the real line. The goal
is to find the target in minimum time. This search problem provides a paradigm for
understanding the limits of exploring the real line and has significant applications in
mathematics and theoretical computer science.

In the present paper we are interested in linear search under a faulty agent which is
disoriented in that when it attempts to change direction not only it may fail to do so but
also cannot recognize that the direction of movement has changed. More precisely, for
some 0 ≤ p ≤ 1, a successful turn occurs with probability 1−p but the agent will not be
able to recognize this until it has visited an anchor, a known, preassigned point, placed
on the real line. Despite this faulty behaviour of the agent it is rather surprising that it
is possible to design algorithms which outperform the well-known zig-zag algorithm
whose competitive ratio is 9.

1.1 Related Work

Search by a single agent on the real line was initiated independently by Bellman [9]
and Beck [6–8] almost 50 years ago; the authors prove the well known result that a
single searcher whose max speed is 1 cannot find a hidden target placed at an initial
distance d from the searcher in time less than 9d. These papers gave rise to numerous
variants of linear search. Baeza-Yates et. al. [3,4] study search problems by agents
in other environments, e.g. in the plane or starting at the origin of w concurrent rays
(also known as the “Lost Cow” problem). Group search was initiated in [11] where
evacuation (a problem similar to search but one minimizing the time it takes for the
last agent to reach the target) by multiple agents that can communicate face-to-face was
studied. An extension to the problem, where one tries to minimize the weighted average
of the evacuation times was studied in [18]. There is extensive literature on this topic
and [12] provides a brief survey of more recent topics on search.

Linear search with multiple agents some of which may be faulty, Crash or Byzan-
tine, was initiated in the work of [15] and [13], respectively. In this theme, one uses the
power of communication in order to overcome the presence of faults. For three agents
one of which is Byzantine, [22] shows that the proportional schedule presented in [15]
can be analyzed to achieve an upper bound of 8.653055. Recently, [14] gives a new
class of algorithms for n agents when the number of Byzantine faulty among them is
near majority, and the best known upper bound of 7.437011 on an infinite line for three
agents one of which is Byzantine.

The present paper focuses on probabilistic search. The work of Bellman [9] and
Beck [6–8], also mentioned above, has probabilistic focus. In addition numerous themes
on probabilistic models of linear search can be found in the book [2] of search games
and rendezvous, as well as in [1,21].

Search which takes into account the agent’s turning cost is the focus of
[2][Section 8.4] as well as the paper [16]. Search with uncertain detection is studied
in [2][Section 8.6]. According to this model the searcher is not sure to find the target
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when reaching it; instead it is assumed that the probability the searcher will find it on its
k-th visit is pk, where

∑
k≥0 pk = 1. A particular case of this is search with geometric

detection probability [2][Section 8.6.2] in which the probability of finding the target in
the k-th visit is (1 − p)k−1p. [20] investigates searching for a one-dimensional random
walker and [5] is concerned with rendezvous search when marks are left at the starting
points. In another result pertaining to different kind of probabilistic faults, [10] studies
the problem on the half-line (or 1-ray), where detecting the target exhibits faults, i.e.
every visitation is an independent Bernoulli trial with a known probability of success
p. Back to searching the infinite line, a randomized algorithm with competitive ratio
4.59112 for the cow path problem can be found in [19] and is also shown to be optimal.
In a strong sense, the results in this work are direct extensions of the optimal solutions
for deterministic search in [3] and for randomized search in [19]. To the best of our
knowledge the linear search problem considered in our paper has never been investi-
gated before. We formally define our problem in Sect. 2. Then in Sect. 3 we elaborate
further on the relevance of our results to [3] and [19].

2 Model and Problem Definition (p-PDLS)

We introduce and study the so-called Probabilistically Disoriented Linear Search prob-
lem (or p-PDLS, for short), associated with some probability p. We generalize the well
studied linear search problem (also known as cow-path) where the searcher’s trajectory
decisions exhibit probabilistic faults. The value p will quantify a notion of probabilistic
failure (disorientation).

In p-PDLS, an agent (searcher) can move at unit speed on an infinite line, where
any change of direction does not incur extra cost. On the line there are two points,
distinguishable from any other point. Those points are the origin, i.e. the agent’s starting
location, and the target, which is what the agent is searching for and which can be
detected when the agent walks over it.

The agents have a faulty behaviour. If the agent tries to change direction (even after
stopping), then with known probability p the agent will fail and she will still move
towards the same direction. Consequent attempts to change direction are independent
Bernoulli trials with probability of success 1 − p. Moreover the agent is oblivious to
the result of each Bernoulli trial, i.e. the agent is not aware if it manages to change
direction. We think of this probabilistic behaviour as a co-routine of the agent that fails
to be executed with probability p. An agent which satisfies this property for a given
p is called p-faulty. Moreover we assume, for the sake of simplicity, that at the very
beginning the p-faulty agent starts moving to a specific direction, without fault.

The agent’s faulty behaviour is compensated by that it can utilize the origin and the
target to recover its perception of orientation. Indeed, suppose that the agent passes over
the origin and after time 1 it decides to change direction. In additional time 1, the agent
has either reached the origin, in which case it realizes it turned successfully, or it does
not see the origin, in which case it detects that it failed to turn. We elaborate more on
this idea later.

A solution to p-PDLS is given by the agent’s trajectory (or agents’ trajectories),
i.e. instructions for the agent(s) to turn at specific times which may depend on previous
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observations (e.g. visitations of the origin and when they occurred). A feasible trajec-
tory is a trajectory in which every point on the infinite line is visited (sooner or later)
with probability 1 (hence a 1-faulty agent admits no feasible trajectory).

For a point x ∈ R (target) on the line, we define the termination cost of a feasible tra-
jectory in terms of competitive analysis. Indeed, if E(x) denotes the expected time that
target x is reached by the last agent (so by the only agent, if searching with one agent),
where the expectation is over the probabilistic faults or even over algorithmic random-
ized choices, then the termination cost for target (input) x is defined as E(x)/|x|. The
competitive ratio of the feasible trajectory is defined then as lim supx E(x)/|x|.

For the sake of simplicity, our definition deviates from the standard definition of the
competitive ratio for linear search in which the performance is defined as the supremum
over x with absolute value bounded by a constant d, usually d = 1. However it can be
easily seen that the two measures differ by at most ε, for any ε > 0 using a standard
re-scaling trick (see for example [18]) that shows why the value of d is not important,
rather what is important is that d is known to the algorithm.

Specifications When Searching with Two Agents: When searching with two p-faulty
agents, the value of p is common to both, as well as the probabilistic faults they exhibit
are assumed to be independent Bernoulli trials. The search by two p-faulty agents can
be done either in the wireless or the face-to-face model. In the former model, we assume
that agents are able to exchange messages instantaneously, whereas in the face-to-face
model messages can be exchanged only when the agents are co-located.

In either communication model, we assume that the two agents can detect that (and
when) they meet. As a result, we naturally assume that upon a meeting, a p-faulty agent
can also act as a distinguished point (same as the origin), hence helping the other agent
to turn. Later, we will call an agent who facilitates the turn Follower, and the agent who
performs the turn Leader. As long as the agents have a way to resolve the two roles
(which will be built in to our algorithms), we also assume that the Leader moving in
any direction can “pick up” another faulty agent she meets so that the two continue
moving in that direction. This means that two agents meeting at a point can continue
moving to the direction of the leader (with probability 1) even if the non-leader is idle.
This property is motivated by that, effectively, the leader does not change direction, and
hence there is no risk to make a mistake. Finally we note that two p-faulty agents can
move at speed at most 1, independently of each other, as well as any of them can slow
down or even stay put, complying still with the faulty turn specifications.

2.1 Notes on Algorithmic and Adversarial Randomness

The algorithms (feasible trajectories) that we consider are either deterministic or ran-
domized, independently of the randomness induced by the faultiness. In particular, the
efficiency measure is defined in the same way, where any expectations are calculated
over the underlying probability space (induced by the combination of probabilistic
faults and the possible randomized algorithmic choices). Moreover, if the algorithm
is randomized then an additional random mechanism is used that is independent of the
faulty behaviour. For example, a randomized agent (algorithm) can choose a number
between 0 and 1 uniformly at random. A p-faulty agent that has access to a random
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oracle will be called randomized, and deterministic otherwise (but both exhibit proba-
bilistically failed turns).

It follows by our definitions that 0-PDLS with one deterministic agent is the cele-
brated linear search problem (cow-path) which admits a provably optimal trajectory of
competitive ratio 9 [3]. In the other extreme, 1-PDLS does not admit a feasible solu-
tion, since the agent moves indefinitely along one direction. In a similar spirit we show
next in Lemma 1 that the problem is meaningful only when p < 1/2.

Lemma 1. No trajectory for p-PDLS has bounded competitive ratio when p ≥ 1/2.

It is essential to note that in our model, the probabilistic faulty turns of a agent do
hinder the control of the trajectory, but also introduce uncertainty of the algorithmic
strategy for the adversary. As a result, the probabilistic movement of the agent (as long
as p > 0), even though it is not controlled by the algorithm, it can be interpreted as an
algorithmic choice that is set to stone. Therefore, the negative result of [19] implies the
following lower bound for our problem.

Corollary 1. For any p ∈ (0, 1/2), no solution for p-PDLS with one agent (determin-
istic or randomized) has competitive ratio lower than 4.59112.

3 Contributions’ Outline and Some Preliminary Results

Our main results in this work pertain to upper bounds for the competitive ratio that (one
or two) faulty agents can achieve for p-PDLS.

3.1 Results Outline for Searching with One Faulty Agent

This is an extended abstract. Any omitted proofs can be found in the full version of
the paper [17]. Here, we start our exposition with search algorithms for one p-faulty
agent. In Sect. 4 we analyze the performance of a deterministic search algorithm, whose
performance is summarized in Theorem 2 on page 8. The section serves as a warm-up
for the calculations we need for our main result when searching with one randomized p-
faulty agent. Indeed, in Sect. 5 we present a randomized algorithm whose performance
is summarized in Theorem 3 on page 10. The reader can see the involved formulas in
the formal statements of the theorems, so here we summarize our results graphically in
Fig. 1. Some important observations are in place.

Comments on the expansion factors: We emphasize that both our algorithms are
adaptations of the standard zig-zag algorithms of [3] and [19] which are optimal for
the deterministic and randomized model, respectively, when searching with a 0-faulty
agent. The zig-zag algorithms are parameterized by the so-called expansion factor g
that quantifies the rate by which the searched space is increased in each iteration that
the searcher changes direction. In our case however, we are searching with p-faulty
agents, where p > 0, and as a result, the algorithmic choice for how the searched space
expands cannot be fully controlled (since turns are subject to probabilistic faults). This
is the reason that, in our case, the analyses of these algorithms are highly technical,
which is also one of our contributions.
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Fig. 1. Graphical summary of the positive results pertaining to searching with one p-faulty agent,
p ∈ (0, 1/2).

On a relevant note, the optimal expansion factor for the optimal deterministic 0-
faulty agent is 2, while the expansion factors g = g(p) we use for the deterministic
p-faulty agent, p ∈ (0, 1/2), are decreasing in p. As p → 0, we use expansion factor
1 +

√
2, and the expansion factor drops to 2, for all p ≥ 0.146447. When it comes to

our randomized algorithm, the chosen expansion factor is again decreasing in p, starting
from the same choice as for the optimal randomized 0-faulty agent of [19], and being
equal to 2 for all p ≥ 0.241516.1 The expansion factors are depicted in Fig. 1b.

Comments on the established competitive ratios: By the proof of Lemma 1 it follows
that as p → 1/2, the optimal competitive ratio for p-PDLS is of order Ω(1/(1 − 2p).
Hence for the sake of better exposition, we depict in Fig. 1a the established competitive
ratios scaled by 1/2 − p. Moreover, the results are optimal up to a constant factor when
p → 1/2.

It is also interesting to note that for small enough values of p, the established com-
petitive ratios are better than the celebrated optimal competitive ratio 9 for 0-PDLS.
This is because our algorithms leverage the probabilistic faults to their advantage, mak-
ing the adversarial choices weaker. Indeed, algebraic calculations show that the com-
petitive ratios of the deterministic and the randomized algorithms are less than 9 when
p ≤ 0.390388 and when p ≤ 0.436185, respectively. Moreover, when searching with
one p-faulty agent and p → 0, the competitive ratio of our deterministic algorithm tends
to 6.82843 < 9 and of our randomized algorithm to the provably optimal competitive
ratio of 1

W( 1
e ) + 1 ≈ 4.59112, where W (·) is the Lambert W-Function. It is important

to also note that for deterministic algorithms only, there is no continuity at p = 0, since
when the agent exhibits no faults, the adversary has certainty over the chosen trajectory
and hence is strictly more powerful.

1 For simplicity, we only give numerical bounds on p. All mentioned bounds of p in this section
have explicit algebraic representations that will be discussed later.
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Values of p close to 1/2 give rise to interesting observations too. Indeed, it is easy
to see in Fig. 1a that the derived comparative ratios are of order Θ (1/(1 − 2p)). More
interestingly, the difference of the established competitive ratios of the deterministic and
the randomized algorithms is Θ (1/(1 − 2p)) too, when p → 1/2. Hence the improve-
ment when utilizing controlled (algorithmic) randomness is significant. We ask the fol-
lowing critical question:

“Does access to a random oracle provide an advantage for p-PDLS with one
agent?”

Somehow surprisingly, we answer the question in the negative! More specifically, we
show, for all p ∈ (0, 1/2) and using the probabilistic faults in our advantage, how
a deterministic p-faulty agent (deterministic algorithm) can simulate a randomized p-
faulty agent (randomized algorithm). Hence our improved upper bound of Theorem 3
which is achieved by a randomized algorithm can be actually simulated by a determin-
istic p-faulty agent. The proof of this claim relies on that our randomized algorithm
assumes access to a randomized oracle that samples only from uniform distributions
a finite number of times (in fact only 2). The main idea is that a deterministic agent
can stay arbitrarily close to the origin, sampling arbitrarily many random bits using it’s
faulty turns, allowing her to simulate queries to a random oracle.

Theorem 1. For any p ∈ (0, 1/2), let c be the competitive ratio achieved by a random-
ized faulty agent for p-PDLS, having access (finite many times) to an oracle sampling
from the uniform distribution. Then for every ε > 0, there is a deterministic p-faulty
agent for the same problem with competitive ratio at most c + ε.

3.2 Results Outline for Searching with Two Faulty Agents

We conclude our contributions in Sect. 6 where we study p-PDLS with two agents.
First we show how two (deterministic) p-faulty agents (independently of the underlying
communication model) can simulate the trajectory of any (one) 0-faulty agent. As an
immediate corollary, we derive in Theorem 4 on page 13 a method for finding the target
with two p-faulty agents that has competitive ratio 9 + ε, for every ε > 0. Most impor-
tantly as long as p > 0, the result holds not only in expectation, but with arbitrarily
large concentration.

Motivated by similar ideas, we show in Theorem 5 on page 14 how two determin-
istic p-faulty agents can simulate the celebrated optimal randomized algorithm for one
agent for 0-PDLS, achieving competitive ratio arbitrarily close to 4.59112. The result
holds again regardless of the communication model. However, in this case we cannot
guarantee a similar concentration property as before.

Finally, we study the problem of searching with two wireless p-faulty agents. Here
we are able to show in Theorem 6 on page 14 how both agents can reach any target
with competitive ratio 3 + 4

√
p(1 − p), in expectation. The performance is increasing

in p < 1/2, ranging from 3 (the optimal competitive ratio when searching with two
wireless 0-fault agents) to 5. However, as before we can control the concentration of the
performance, making it arbitrarily close to 3 + 4

√
p(1 − p) with arbitrary confidence.

Hence, this gives an advantage over Theorem 5 for small values of p, i.e. when the
derived competitive ratio is smaller than 4.59112. In this direction, we show that when
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p > 0.197063 the competitive ratio exceeds 4.59112, and hence each of the results
described above are powerful in their own right.

4 Searching with One Deterministic p-Faulty Agent

We start by describing a deterministic algorithm for searching with a p-faulty agent,
where p ∈ (0, 1/2). Our main result in this section reads as follows.

Theorem 2. p-PDLS with one agent admits a deterministic algorithm with competitive
ratio equal to 2(

√
2 + 2) when 0 < p ≤ 1

4 (2 − √
2), and equal to 6 − 4p + 1

1−2p when
1
4 (2 − √

2) < p < 1/2.
We emphasize that having p > 0 will be essential in our algorithm. This is because

the probabilistic faults introduce uncertainty for the adversary. For this reason, it is
interesting but not surprising that we can in fact have competitive ratio 2(

√
2 + 2) ≈

6.82843 < 9 for all p < 1
8

(√
17 − 1

) ≈ 0.390388.
First we give a verbose description of our algorithm, that takes as input p ∈ (0, 1),

and chooses parameter g = g(p) which will be the intended expansion rate of the
searched space. In each iteration of the algorithm, the agent will be passing from the
origin with the intention to expand up to gi in a certain direction. When distance gi is
covered, the agent attempts to return to the origin. After additional time gi the agent
knows if the origin is reached, in which case she expands in the opposite direction
with intended expansion gi+1. If not, the agent knows she did not manage to turn, and
proceeds up to point gi+1 (this is why we require that g ≥ 2). Then, she makes another
attempt to turn. This continues up to the event that the agent succeeds in turning at gj ,
for some j > i, and then the agent attempts to expand in the opposite direction with
intended expansion length gj+1. The algorithm starts by searching towards an arbitrary
direction, say right, with intended expansion g0. later on, it will become clear that the
termination time of the algorithm converges only if g < 1/p.

In order to simplify the exposition (and avoid repetitions), we introduce first subrou-
tine Algorithm 1 which is the baseline of both algorithms we present for searching with
one agent. Here, this is followed by Algorithm 2 which is our first search algorithm.

As we explain momentarily, Theorem 2 follows directly by the following technical
lemma.

Lemma 2. Fix p ∈ (0, 1/2) and g ∈ [2, 1/p). If the target is placed in (gt, gt+1], then
the competitive ratio of Algorithm 2 is at most (1−p)g

(1−gp)

(
1+(1−2p)g

g−1 + (1 − 2p)t+1
)

+ 1.

Taking the limit when t → ∞ of the expression of Lemma 2 shows that the com-
petitive ratio of Algorithm 2 is

f DET
p (g) := 1 − g(2 g(p − 2)p + g + 2)

(1 − g)(1 − gp)

for all p, g complying with the premise.2

2 If one wants to use the original definition of the competitive ratio, then by properly re-scaling
the searched space (just by scaling the intended turning points), one can achieve competitive
ratio which is additively off by at most ε from the achieved value, for any ε > 0.
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Algorithm 1. Baseline Search
Require: g, p, i, d

1: repeat
2: repeat
3: Move towards point dgi with speed 1
4: until The target is found ∨ gi time has passed
5: while The origin is ¬found ∧ the target is ¬found do
6: Set d ← −d {This changes the direction but it can fail with probability p}
7: Set i ← i + 1
8: repeat
9: Move towards point dgi with speed 1

10: until Either the target is found or gi − gi−1 time has passed or the origin is
found

11: end while
12: until The target is found

Algorithm 2. Faulty Deterministic Linear Search

Require: 2 ≤ g ≤ 1/p and 0 < p < 1/2
1: Set i ← 0 and d ← 1 {d ∈ {1, −1} represents direction (1 going right and −1

going left)}
2: Run Algorithm 1 with parameters g, p, i, d.

Next we optimize function f DET
p (g). When p ≤ 1

4
(
2 − √

2
)
, the optimal expansion

factor (optimizer of f DET
p (g)) is g0(p) := −(√

2+2)p+
√
2+1

1−2p2 . It is easy to see that 2 ≤
g0(p) < 1/p, for all p ≤ 1

4
(
2 − √

2
)

(in fact the strict inequality holds for all 0 < p <

1). In this case the induced competitive ratio becomes 2
(√

2 + 2
) ≈ 6.82843.

When p ≥ 1
4

(
2 − √

2
)
, the optimal expansion factor (at least 2) is g = 2, in which

case the competitive ratio becomes 6 − 4p + 1
1−2p . Interestingly, the competitive ratio

becomes at least 9 for p ≥ 1
8

(√
17 − 1

) ≈ 0.390388. In other words, 0.390388 is a
threshold for the probability associated with the agent’s faultiness for which, at least
for the proposed algorithm, that probabilistic faultiness is useful anymore towards beat-
ing the provably optimal deterministic bound of 9. On a relevant note, recall that by
Lemma 1, there is a threshold probability p′ such that any algorithm (even randomized)
has competitive ratio at least 9 when searching with a p-faulty agent, when p ≥ p′.

5 Searching with One Randomized (Improved Deterministic)
p-Faulty Agent

In this section we equip the p-faulty agent with the power of randomness, and we show
the next positive result. Note that due to Theorem 1, the results can be simulated by a
deterministic p-faulty agent too, up to any precision.
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Theorem 3. Let p0 = 1
8

(
5 −

√
1 + ln2(2) + 6 ln(2) − ln(2)

)
≈ 0.241516. For

each p < p0, let also gp denote the unique root, no less than 2, of

hp(g) := (1 − gp)(1 + g(1 − 2p)) − g(1 − p) ln g. (1)

Then for each p ∈ (0, 1/2), p-PDLS with one agent admits a randomized algorithm
with competitive ratio at most

⎧
⎨

⎩
gp

(
1−p

1−gpp

)2
+ 1, p ∈ (0, p0]

(1 − p) 1+2(1−2p)
(1−2p) ln(2) + 1, p ∈ (p0, 1/2).

Elementary calculations show that the competitive ratio of Theorem 3 remains at most

9, as long as p ≤ 1
8

(
7 +

√
1 + 256 ln2(2) − 96 ln(2) − 16 ln(2)

)
≈ 0.436185.

First we argue that the premise regarding gp of Theorem 3 is well defined. Indeed,
consider hp(g) as in (1). We have that ∂hp(g)/∂p = 4g2p − g2 − 3g + g ln g ≤
−3g + g ln g < 0, for all p ≤ 1/4. Therefore, hp(2) = 8p2 − 10p + 2p ln(2) + 3 −
2 is decreasing in p, and hence hp(2) > hp0(2) = 0, by the definition of p0. Also
hp(4) = 32p2 − 28p + 4p ln(4) + 5 − 4 ln 4 is decreasing in p too, and therefore
hp(4) ≤ h0(4) = 5 − 4 ln 4 ≈ −0.545177 < 0. This means that hp(g) has indeed
a root, with respect to g, in [2, 4), for all p ∈ (0, p0]. Next we show that this root is
unique. Indeed, we have ∂hp(g)/∂g = 4gp2 − 2gp + p ln g − ln g − 2p ≤ − ln g < 0,
for p ∈ [0, 1/2]. Therefore, for all p ≤ p0 < 1/2, function hp(g) is decreasing in g,
and hence any root is unique, that is gp is indeed well-defined and lies in the interval
[2, 1/p), for all p ∈ (0, 1/2).

Next, we observe that as p → 0, the competitive ratio promised by Theorem 3 when
searching with a p-faulty agent (i.e. a nearly non-faulty agent) is given by g0 being
the root of g − g ln g + 1, i.e. g0 = 1

W( 1
e ) ≈ 3.59112, where W (·) is the Lambert

W-Function.3 Moreover, the induced competitive ratio is 1 + g0 ≈ 4.59112, which is
exactly the competitive ratio of the optimal randomized algorithm for the original linear
search problem due to Kao et al [19]. We view this also as a sanity check regarding the
correctness of our calculations.

Not surprisingly, our algorithm that proves Theorem 3 is an adaptation of the cele-
brated optimal randomized algorithm for linear search with a 0-faulty agent of [19]. As
before, the search algorithm, see Algorithm 3 below, is determined by some expansion
factor g, that represents the (intended, in our case, due to faults) factor by which the
searched space is extended to, each time the direction of movement changes. The ran-
domized algorithm makes two queries to a random oracle. First it chooses a random bit,
representing an initial random direction to follow. Second, the algorithm samples ran-
dom variable ε that takes a value in [0, 1], uniformly at random. Variable ε quantifies a
random scale to the intended turning points. It is interesting to note that setting ε = 0 in
Algorithm 3 deterministically, and removing the initial random direction choice, gives
rise to the previous deterministic Algorithm 2.

3 The Lambert W-Function is the inverse function of L(x) = xex.
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Algorithm 3. Faulty Randomized Linear Search

Require: g ≥ 2 and 0 < p < 1/2
1: Choose ε from [0, 1) uniformly at random
2: Set i ← ε and d ← 1 {d ∈ {1, −1} represents direction (1 going right and −1

going left)}
3: Run Algorithm 1 with parameters g, p, i, d.

We show next how Theorem 3 follows by the following technical lemma.

Lemma 3. For any p ∈ (0, 1/2) and any g ∈ [2, 1/p), if the target is placed in the
interval (gt, gt+1], then the competitive ratio of Algorithm 3 is at most

1 + 1
(1 − gp) ln g

(
(1 − p)(1 − g(−1 + 2p))(1 + (−1 + 2p)t)

+ 2(1−p)
gt + 2 g(1 − p)(p + gt(−1 + p)(−1 + 2p)t

)

.

Recall that p ∈ (0, 1/2), so taking the limit of the expression of Lemma 3 when
t → ∞, and after simplifying algebraically the expression, shows that the competitive
ratio of Algorithm 3 is at most

f RAND
p (g) := 1 + (1 − p)(1 + g(1 − 2p))

(1 − gp) ln g
,

for all p, g complying with the premise. Next we optimize f RAND
p (g) for all parameters

p ∈ (0, 1/2), under the constraint that 2 ≤ g < 1/p. In particular, we show that
the optimizers of f RAND

p (g) are gp, if p ≤ p0, and g = 2 otherwise resulting in the
competitive ratios as described in Theorem 3.

First we compute ∂
∂g f RAND

p (g) = 1−p
g(1−gp)2 ln2 g

hp(g), where hp(g) is the same
as (1). As already proven below the statement of Theorem 3, we have that hp(g) has a
unique root in the interval [2, 4). Next we show that f RAND

p (g) is convex.

Indeed, we have that ∂2

∂g2 f RAND
p (g) = 1−p

g2(1−gp)3 ln3(g)sp(g), where sp(g) =
∑3

i=0 αip
i is a degree 3 polynomial in p with coefficients α3 = 2 g+g(− ln g)+ln(g)+

2, α2 = 2g
(−2g + g ln2 g − ln g − 4

)
, α1 = g2 (

2g − 2 ln2 g + g ln g + 3 ln g + 10
)
,

and α0 = −2g3(ln g + 2). As a result, it is easy to verify that sp(g) remains positive
for all p ∈ (0, 1/2), condition on that g ∈ [2, 4] (in fact the optimizers as described in
Theorem 3 do satisfy this property). We conclude that f RAND

p (g) is convex in g.
Together with our previous observation, this means that, under constraint g ≥ 2,

function f RAND
p (g) is minimized at the unique root of ∂

∂g f RAND
p (g) when p ≤ p0, and at

g = 2 when p ∈ [p0, 1/2). These are exactly the optimizers described in Theorem 3,
where in particular the competitive ratio f RAND

p (g) is simplified taking into consideration
that for the chosen value of g we have that sp(g) = 0, for all p ≤ p0.

Lastly, it remains to argue that all optimizers of f RAND
p (g) are indeed at most 1/p.

For this, it is enough to show that the unique root gp of hp(g) is at most 1/p, for all
p ≤ p0 (since for larger values of p we use expansion factor g = 2). For this, and since
g ≥ 2, we have hp(g) ≤ 2 g2p2 − g2p − 3 gp + gp ln 2 + g − g ln 2 + 1. The latest
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expression is a polynomial in p of degree 2, which has only one of its roots positive,
namely

−√
(−3p + p ln 2 + 1 − ln 2)2 − 4 (2p2 − p) + 3p + p(− ln 2) − 1 + ln 2

2p (2p − 1) .

Simple calculations then can show that the latter expression is at most 1/p for all p ∈
(0, 1/2). In fact one can show that the expression above, multiplied by p, is strictly

increasing in p and at p = 1/4 > p0 becomes 1
4

(
1 − ln 8 +

√
9 + (ln 8 − 2) ln 8

)
≈

0.486991 < 1/2. That shows that for each p < p0 we have that for the unique root gp

of hp(g) the inequality gp < 1/2p < 1/p is valid, as desired.

6 Searching with Two p-Faulty Agents

In this section we present algorithms for p-PDLS for two faulty agents, for all p ∈
(0, 1/2). Central to our initial results is the following subroutine that, at a high level,
will be used by a p-faulty agent, the Leader, in order to make a “forced” turn, with the
help of a Follower, which can be either a distinguished immobile point, e.g. the target or
the origin, or another p-faulty agent. In this process the p-faulty agent who undertakes
the role of the Follower may need to either slow down or even halt for some time, still
complying with the probabilistic faulty turns (once halted, she can continue moving in
the previous direction, but changing it is subject to a fault).

Algorithm 4. Force Change Direction (Instructions for a Leader)
Require: γ small real number, Follower either mobile or immobile.

1: repeat
2: Change direction {This fails with probability p}
3: Move for time γ if Follower is mobile, and γ ← 2γ if Follower is immobile.
4: until You meet with follower
5: Communicate to Follower the Leader’s direction

It will be evident, in the proof of Lemma 4 below, that Algorithm 4 will allow
an agent to change direction arbitrarily close to an intended turning point, and with
arbitrary concentration (both controlled by parameter γ).

The next lemma refers to a task that two p-faulty agents can accomplish indepen-
dently of the underlying communication model. At a high level, the lemma establishes
that two p-faulty agents can bypass the probabilistic faults at the expense of giving up
the independence of the searchers’ moves.

Lemma 4. For every p ∈ [0, 1/2), two p-faulty agents can simulate the trajectory of a
deterministic 0-faulty agent within any precision (and any probability concentration).
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Proof. Consider two p-faulty agents that are initially collocated at the origin. We show
how the agents can simulate (at any precision) a deterministic trajectory. For this we
need to show how the two agents can successfully make a turn at any point without
deviating (in expectation) from that point.

Indeed, consider a scheduled turning point and consider the two p-faulty agents
approaching that point. For some γ > 0 small enough, at time 2γ before the agents
arrive at the point, the two agents undertake two distinguished roles, that of a Leader
and that of a Follower. The roles can remain invariant throughout the execution of the
algorithm. The Follower instantaneously slows down so that when the distance of the
Leader and the Follower becomes 2γ, the Follower is γ/(1−p) before the turning point
(which is strictly more than γ and strictly less than 2γ), and as a result the Follower has
passed the turning point by 1−2p

1−p γ. At this moment, the Follower resumes full speed,
and both agents move towards the same direction as before. Then, the Leader runs
Algorithm 4 with mobile Follower being the other p-faulty agent.

Note that if at any moment the two agents meet, it is because after a successful turn
the two have moved towards each other for time γ, whereas if a turn is unsuccessful the
two preserve their relative distance γ. Therefore, since the moment of the first turning
attempt, the two agents meet in expected time

∑∞
i=0(i + 1)γ(1 − p)pi = γ

1−p . We
conclude that the expected meeting (and turning) point is the original turning point.
Most importantly, the probability that the resulting turning point is away from the given
turning point drops exponentially with p, and is also proportional to γ, which can be
independently chosen to be arbitrarily small. �

Lemma 4 is quite powerful, since it shows how to simulate deterministic turns with
arbitrarily small deviation from the actual turning points. More importantly, that devia-
tion can be chosen to drop arbitrarily fast, dynamically, hence we can achieve smaller
expected deviation later in the execution of the algorithm, compensating this way for
the passed time. Therefore, we obtain the following theorem.

Theorem 4. For all p ∈ [0, 1/2), two deterministic faulty agents can solve p-PDLS
with competitive ratio 9 + ε, for every ε > 0, independently of the underlying commu-
nication model. Also, the performance is concentrated arbitrarily close to 9 + ε.

Is it worthwhile noticing that agents’ movements, in the underlying algorithm of
Theorem 4 is still probabilistic, due to the probabilistic faulty turns. However, choosing
appropriate parameters every time Algorithm 4 is invoked, one can achieve arbitrary
concentration in the expected performance of the algorithm, hence the bound of 9 + ε
can be practically treated as deterministic.

In contrast, using the same trick, we can achieve a much better competitive ratio, but
only in expectation equal to the one of [19] (with uncontrolled concentration). To see
how, note that by the proof of Theorem 1, the two p-faulty agents can stay together in
order to collect sufficiently many random bits and simulate any finite number of queries
to a random oracle. Then using Lemma 4, the agents simulate the optimal randomized
algorithm of [19] with performance 4.59112, designed originally for one randomized
0-faulty agent that makes only 2 queries to the uniform distribution. In other words, the
two deterministic p-faulty agents can overcome their faulty turns using Lemma 4 and
the lack of random oracle by invoking Theorem 1. To conclude, we have the following
theorem which requires that p > 0.
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Theorem 5. Two deterministic faulty agents can solve p-PDLS with competitive ratio
4.59112+ε, for every ε > 0 and for every p ∈ (0, 1/2), independently of the underlying
communication model.

In our final main result we show that two p-faulty agents operating in the wireless
model can do better than 9 for all p < 1/2, as well as better than 4.59112 for a large
spectrum of p values. Note that the achieved competitive ratio is at least 3, which is the
optimal competitive ratio for searching with two 0-faulty agents in the wireless model,
and that our result matches this known bound when p → 0.

Theorem 6. Two deterministic p-faulty agents in the wireless model can solve p-PDLS
with competitive ratio 3 + 4

√
p(1 − p) + ε, for every ε > 0 and for every p ∈ [0, 1/2).

Algorithm 5. Search with two wireless p-faulty agents
Require: p-faulty agents with distinct roles of Leader and Follower, s < 1 and γ > 0.

1: Agents search in opposite direction until target is found and reported.
2: Target finder becomes Leader, and non-finder becomes Follower.
3: Non-finder changes speed to s, attempts a turn (that fails with probability), and

continues moving until she meets with the finder.
4: Finder moves in same direction for γ > 0 and runs Algorithm 4 (target plays role

of Follower), until the target is reached again.
5: Finder (Leader) continues until she meets the non-finder.
6: Non-finder (Follower) stays put until met by the Finder (Leader) again.
7: Leader continues moving in the same direction (away from the target and the Fol-

lower) for time γ and then runs Algorithm 4 with the Follower being the immobile
agent, in order to turn.

8: When the Leader turns successfully, she picks up the Follower, and continuing in
the same direction, together, they move to the target.

Proof (sketch of Theorem 6). The proof is given by the performance analysis of Algo-
rithm 5 for a proper choice of speed s < 1. In this simplified (sketch of) proof, we
make the assumption that the target finder (using the target) as well as the two agents
when walking together can make a deterministic turn. Indeed, using Algorithm 4 one
can show, we show how the actual probabilistically faulty turns have minimal impact in
the competitive ratio.

We assume that the target is reported by the finder at time 1, when the distance
of the two agents is 2. As for the non-finder, she turns successfully when she receives
the wireless message with probability 1 − p. Since the finder moves towards her, their
relative speed 1 + s. This means that they meet in additional time 2/(1 + s), during
which time the non-finder has moved closer to the target by 2s/(1 + s). Hence, when
the two agents meet, they are at distance 2 − 2s/(1 + s) from the target.

On the other hand with probability p the non-finder fails to turn, and the two
agents continue to move towards the same direction, only that the non-finder’s new
speed is s. So, their relative speed in this case is 1 − s. This means that they meet
in additional time 2/(1 − s), during which time the non-finder has moved further
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from the target by 2s/(1 − s). Hence, when the two agents meet, they are at dis-
tance 2 + sW + s(2 + sW )/(1 − s) from the target. Also recall that when they meet,
they can make together a forced turn (that affects minimally the termination time),
inducing this way total termination time (and competitive ratio, since the target was at

distance 1) 3 + p
(

2
1−s + 2s

1−s

)
+ (1 − p)

(
2

1+s − 2s
1+s

)
= 5−s(s+4−8p)

1−s2 . We choose

s = s(p) = 1−2
√

p−p2

1−2p , the minimizer of the latter expression, that can be easily seen
to attain values in (0, 1) for all p ∈ (0, 1/2), hence it is a valid choice for a speed.
Now we substitute back to the formula of the competitive ratio, and after we simplify
algebraically, the expression becomes 3 + 4

√
(1 − p)p. �

It is worthwhile noticing that the upper bound 4.59112 of Theorem 5 holds in expec-
tation, without being able to control the deviation. However, the upper bound of The-
orem 6 holds again in expectation, but the resulting performance can be concentrated
around the expectation with arbitrary precision. Moreover, the derived competitive ratio
is strictly increasing in p < 1/2, and ranges from 3 to 5. Hence, the drawback of Theo-
rem 6 is that for high enough values of p (p > 0.197063), the induced competitive ratio
exceeds 4.59112. Therefore, we have the incentive to choose either the algorithm of
Theorem 6, when p ≤ 0.197063, and the algorithm of Theorem 5 otherwise. It would
be interesting to investigate whether a hybrid algorithm, combining the two ideas, could
accomplish an improved result

7 Conclusion

In this paper we studied a new mobile agent search problem whereby an agent’s ability
to navigate in the search space exhibits probabilistic faults in that every attempt by the
agent to change direction is an independent Bernoulli trial (the agent fails to turn with
probability p < 1/2). When searching with one agent, our best performing algorithm
has optimal performance 4.59112 as p → 0, performance less that 9 for p ≤ 0.436185,
and optimal performance up to constant factor and unbounded as p → 1/2. When
searching with two faulty agents, we provide 3 algorithms with different attributes.
One algorithm has (expected) performance 9 with arbitrary concentration, the other
has performance 4.59112, and finally one has performance 3 + 4

√
p(1 − p) (ranging

between 3 and 5) again with arbitrary concentration.
It is rather surprising that even in this probabilistic setting with one searcher, we can

design algorithms that outperform the well-known zig-zag algorithm for linear search
whose competitive ratio is 9, as well as that the problem with two searchers admits
bounded competitive ratio for all p ∈ (0, 1/2), and unlike the one search problem.
Interesting questions for further research could definitely arise in the study of similar,
related “probabilistic navigation” faults either for their own sake or in conjunction with
“communication” faults in more general search domains (e.g., in the plane or more
general cow path with w rays) and for multiple (possibly collaborating) agents.
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Abstract. We consider packet forwarding in the adversarial queueing
theory (AQT) model introduced by Borodin et al. In this context, a
series of recent works have established optimal bounds for buffer space
usage of O(log n) for simple network topologies, where n is the size of
the network. Optimal buffer space usage, however, comes at a cost: any
protocol that achieves o(n) buffer space usage cannot guarantee bounded
packet latency.

In this paper, we introduce a generalization of the AQT model that
allows for packet swaps in addition to regular forwarding operations. We
show that in this model, it is possible to simultaneously achieve both
optimal buffer space usage and packet latency when the network is a
path of length n. To this end, we introduce an analytic tool we call
the smoothed configuration of the network. We employ the smoothed
configuration to reason about packet latency for a large family of local
forwarding protocols, whereby we derive our main result. We also employ
the smoothed configuration to analyze the total buffer space usage of
forwarding protocols under stochastic packet arrivals. We show that the
total network load is n in its steady state, but that the system takes
exponential time in expectation to reach a total load of n.

Keywords: adversarial queueing theory · packet forwarding · packet
swaps · buffer space usage · packet latency

1 Introduction

Packet forwarding is a fundamental problem that arises throughout computer
science, electrical engineering, and operations research. In store-and-forward net-
works indivisible items—referred to as packets—arrive spontaneously in a net-
work and must be routed to their respective destinations. Packet movement is
restricted by the network topology and link capacity constraints. As packets
move through the network, they are stored in buffers in intermediate locations.
Buffers are limited in the number of packets they can store, so efficient buffer
management is essential.

In a seminal work, Borodin et al. [2] introduced model of queueing networks
known as Adversarial Queueing Theory (AQT). In AQT, packets are injected
into a network with a prescribed path from their source to destination. AQT
parameterizes injection patterns in terms of long-term average edge utilization
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S. Rajsbaum et al. (Eds.): SIROCCO 2023, LNCS 13892, pp. 536–557, 2023.
https://doi.org/10.1007/978-3-031-32733-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32733-9_24&domain=pdf
http://orcid.org/0000-0002-7723-9090
https://doi.org/10.1007/978-3-031-32733-9_24


Packet Forwarding with Swaps 537

as well as short-term “burstiness.” The goal is to determine scheduling protocols
that are stable in the sense that for all feasible injection patterns, the buffers
remain bounded. AQT also focused primarily on buffer space usage, and not
other measures of efficiency such as packet latency.

Stability gives a qualitative measure of buffer space usage, in that it only
distinguishes bounded and unbounded buffer requirements. Adler and Rosén [1],
however, gave the first quantitative bounds for AQT. Specifically, they showed
that for DAG networks, using “longest-in-system” (LIS) results in buffer space
requirements that are at most linear in the network size.

A recent series of work initiated by Miller and Patt-Shamir [4] analyzes the
buffer space requirement for non-greedy forwarding protocols on simple net-
work topologies such as information gathering networks. Miller and Patt-Shamir
showed that when the network is a tree with n nodes and all packets share the
same destination, a centralized (non-greedy) protocol achieves buffer space O(1),
whereas any greedy protocol requires space Ω(n). Subsequent work analyzed
trade-offs between buffer space requirement and protocol locality [3,7,8,10],
while other works consider tradeoffs between buffer space usage and injection
rate [5,9].

In [3,7], Dobrev et al. and Patt-Shamir and Rosenbaum independently intro-
duced the same local forwarding protocol, Odd-Even Downhill (OED) forward-
ing, which achieves optimal buffer space usage of Θ(log n) for single-destination
paths of length n. Patt-Shamir and Rosenbaum, however, showed that this opti-
mal buffer space usage comes at a cost: any protocol that guarantees o(n) buffer
space usage cannot simultaneously achieve bounded packet latency. Their argu-
ment crucially relies on the assumption that packet motion is one-directional (a
standard assumption in AQT).

1.1 Our Contributions

In this paper, we introduce an augmented model for AQT which allows for
adjacent buffers to swap packets in addition to normal forwarding operations.
In this model, we show that the buffer space/latency dichotomy demonstrated
in [7] no longer holds for the single destination path network. More generally,
we introduce a family of “1/2-local” forwarding protocols. Informally, these are
protocols for which the decision of whether a packet is forwarded across an edge
is determined only by the states of the edge’s endpoints. (Greedy and OED
forwarding are both examples of 1/2-local protocols.) We analyze a large sub-
class of 1/2-local protocols, which we call “solid” protocols, that are particularly
well-behaved. We show that a natural packet swapping strategy ensures that all
solid protocols deliver packets in the same order given the same arrival order.
As a result, we show that a modified OED algorithm with swaps simultaneously
achieves (asymptotically) optimal buffer space usage and maximum latency.

Theorem 1. Suppose G is a path network of length n, all packets share a com-
mon destination, and packets arrive according to a (ρ, σ)-bounded injection pat-
tern with ρ ≤ 1. Then OED with swaps incurs a worst-case maximum buffer
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space usage of Θ(log n+σ), and maximum packet latency of at most n+σ. This
buffer space usage is asymptotically optimal for local forwarding protocols, and
the latency is optimal for all protocols.

To prove Theorem 1, we introduce an analytic tool, which we call the
smoothed configuration. The smoothed configuration essentially describes a linear
ordering of packets in the network by the order in which they will be delivered.
The dynamics of individual packets in an arbitrary solid protocol may be com-
plex, but the dynamics of the corresponding smoothed configuration are always
simple: every packet in the smoothed configuration always progress a single step
towards the destination each round, and these dynamics are the same for all
solid protocols with swaps.

We then employ the machinery of the smoothed configurations to reason
about stochastic, rather than adversarial, injection patterns. We introduce a
“random injection model” in which a single packet is injected into a uniformly
random buffer each round. We analyze the total network load of solid protocols
in this model. We show that for a path of length n, the total load grows to n
almost surely. Interestingly, once the total load becomes sufficiently large (αn
for some α < 1), it increases exponentially slowly. The expected times between
steps in which the total load increases is exponential in n.

The remainder of the paper is organized as follows: In Sect. 2, we provide
basic definitions state related results. In Sect. 3, we state the main lemmas and
prove Theorem 1. Section 4 contains our analysis of the random injection model,
and we conclude with open questions in Sect. 5. Complete proofs of lemmas
appear in the appendices.

2 Background and Prerequisites

2.1 Network and Protocols

We consider the adversarial queueing theory (AQT) model introduced by
Borodin et al. [2]. In this model, the network consists of a directed graph
G = (V,E). Each edge e = (u, v) ∈ E has an associated buffer (also denoted e)
that stores packets as they wait to cross the edge e from u to v. Each edge e has
an associated capacity , denoted C(e) that specifies the number of packets that
can be forwarded across e in a single step. In this paper, we restrict attention to
networks with unit-capacity edges—i.e., C(e) = 1 for all e.

A packet p is a pair p = (tp, Pp) where tp is the round in which p is injected,
and P = (v0, v1, . . . , v�) is a directed path in G. We call the buffer e1 = (v0, v1)
p’s source and v� is p’s destination . The interpretation is that p = (t, P ) is
injected into buffer e1 = (v0, v1) in round t. The packet must be forwarded
along buffers in P to its destination, at which point we say p is absorbed . An
adversary or injection pattern is a multiset of packets.

An execution proceeds in synchronous rounds, t = 1, 2, . . .. Each round t
consists of two steps: an injection step in which new packets arrive in the
network, and a forwarding step in which buffers forward packets across their
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corresponding edges. In each round, the injection step precedes the forwarding
step. When referring to the state of the network, we will use t to represent round
t after the injection step and before the forwarding step. We use t′ to represent
the time after both the injection and forwarding steps of round t.

A configuration C(G) specifies the contents of—i.e., the multiset of packets
contained in—each buffer in the network. We use Ct(G) and Ct′

(G) to denote
the configurations of the network at times t and t′ in an execution (with t and
t′ as specified in the previous paragraph). Similarly, we use C(e) and C(S) to
refer to the configuration of a single buffer or set S ⊆ E of buffers. For a given
configuration, the load of a buffer, L(e), is the number of packets stored in e;
i.e., L(e) = |C(e)|. As with C, we use a superscript t or t′ to specify the load of
a buffer at a particular time step.

A forwarding protocol , Π, is a rule that specifies which packets are for-
warded across each link in the network. That is, a forwarding protocol determines
for each configuration C(G) of a network the updated configuration C′(G) after
packets are forwarded.

In this paper, we consider the restricted setting in which the network G
consists of a path of n + 1 nodes, labeled 1, 2, . . . , n + 1, and n edges/buffers
E = (1, 2), (2, 3), . . . , (n, n + 1). We assume that all edges have unit capacity
(C(e) = 1) and all packets share the common destination n+ 1. We refer to this
restricted network as the single destination path of size n. In this setting,
we adopt simplified notation where we identify each node x ∈ {1, 2, . . . , n} with
its unique outgoing buffer. For example, C(x) and L(x) specify a configuration
and load of the buffer (x, x + 1). We also use the notation [a, b] where a ≤
b ∈ {1, 2, . . . , n} to denote the set of buffers with labels {a, a + 1, . . . , b}. For an
interval A, we write L(A) =

∑
x∈A L(x).

Parameterized Injection Patterns. AQT considers (adversarial) injection pat-
terns that parameterized by their long-term average rate (ρ) as well as their
burstiness (σ). In the case of the single-destination path, such a parameteriza-
tion simply bounds the total number of packets injected into the network in
every time interval.

Definition 1. Let ρ, σ ≥ 0 be parameters, and let A be an injection pattern. We
say that A is (ρ, σ)-bounded if for every T consecutive rounds, the total number
of packets injected by A during those rounds is at most ρT + σ. We denote the
family of all (ρ, σ)-bounded adversaries by A(ρ, σ).

Since we assume that network edge capacities are all 1, we restrict attention
to (ρ, σ)-bounded adversaries with ρ ≤ 1. With this assumption, we always have
ρ = O(1), so ρ does not appear our asymptotic expressions for buffer space
usage.

Recently, Rosenbaum [10] introduced a refinement of the (ρ, σ) model that
parameterizes adversaries jointly by injection round and location.
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Definition 2 ([10]). Let ρ, σ,B ≥ 0 be parameters and let A be an injection
pattern. Then we say that A is locally (ρ, σ,B)-bounded if for every T consec-
utive rounds and every subset S of buffers, the total number packets injected by
A into buffers in S during the T rounds is at most ρT + B |S| + σ. We denote
the family of all locally (ρ, σ,B)-bounded adversaries by A(ρ, σ,B).

We note that every locally (ρ, σ,B)-bounded adversary is also (ρ, σ + nB)-
bounded, but the converse does not hold. That is, A(ρ, σ,B) ⊂ A(ρ, σ + nB)
(and the opposite inclusion does not hold).

1/2-Local and Solid Protocols. We consider stateless forwarding protocols for
which the decision of whether or not each buffer x forwards depends only on
the configurations of x and x + 1. We refer to such protocols as 1/2-local
forwarding protocols.

When we are not concerned with latency, we represent a 1/2-local protocol
Π for a unit-capacity network as a function Π : IN+ × IN → {0, 1} where the
first argument to the function is the load of a buffer x, the second argument is
the load of the following buffer x + 1, and Π(L(x),L(x + 1)) = 1 if and only if
Π stipulates that x forwards a packet to x + 1.

Example 1. The following protocols are 1/2-local forwarding protocols:

Greedy For greedy forwarding, Π(a, b) = 1 for all a > 0 and for all b. That is,
under greedy forwarding, every non-empty buffer forwards.

Downhill The downhill forwarding protocol is defined by Π(a, b) = 1 ⇐⇒ a >
b. That is, a buffer forwards precisely when its load is strictly larger than the
next buffer’s load.

OED The odd-even downhill (OED) protocol of [3,7] has Π(a, b) = 1 ⇐⇒ a >
b or a = b and a is odd.

We will show that a certain class of 1/2-local protocols, which we call solid
protocols, behave similarly with respect to packet dynamics.

Definition 3. A 1/2-local protocol Π is a solid forwarding protocol if

1. Π(1, 1) = 1, and
2. for all n,m ∈ IN such that n > m, Π(n,m) = 1.

For example, the greedy and odd-even downhill forwarding protocols are
solid protocols, but downhill forwarding is not a solid protocol (as for downhill
forwarding, Π(1, 1) = 0).

As defined above, 1/2-local and solid forwarding protocols define whether
or not a buffer should forward, but do not specify which packet should be for-
warded. For the remainder of the paper, we assume that packets are forwarded
according to longest in system (LIS) scheduling. A buffer always forwards
its oldest packet (if any). To this end we assume packets are ordered according
to lexicographical latency-ordering , and that each buffer acts as a priority
queue with respect to this ordering. In the case of a tie (i.e., multiple packets
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are injected in the same round), ties are broken in an arbitrary, but consistent
manner (e.g., according to injection buffer).

In order to simplify our bookkeeping going forward, we assume that each
packet p has a unique identifier id(p) ∈ IN, and that ids are assigned sequen-
tially. That is, the “first” injected packet has id(p) = 1, the second has id 2, and
so on. If multiple packets are injected in the same round, they receive distinct
consecutive ids. We say that p is older than q if id(p) < id(q).

For a given buffer x, we will use h(x) to refer to the highest-priority or
oldest packet in x in C(G), and we will use l(x) to refer to the lowest-priority
or youngest packet in x.

Buffer Space Usage and Latency. Two primary measures of the quality of a
forwarding protocol Π are its buffer space requirement and maximum latency.

Definition 4. Let Π be a protocol and A an injection pattern. Then the buffer
space requirement of Π against A is supt,i L

t(i). That is, the buffer space
requirement is the supremumum of buffer sizes in an execution of Π with injec-
tion pattern A. More generally, given any family F of injection patterns, we
define the buffer space requirement of Π against F to be supA∈F supt,i L

t(i).

In independent works, Dobrev et al. [3] and Patt-Shamir and Rosenbaum [7]
showed that OED forwarding (Example 1) achieves asymptotically optimal
buffer space usage among local forwarding protocols against (ρ, σ)-bounded
adversaries. Recently, Rosenbaum [10] showed that OED has optimal buffer
space usage against locally (ρ, σ,B)-bounded adversaries, even when compared
to centralized protocols.

Theorem 2 (Rosenbaum[10], cf.[3,7]). Let F = A(ρ, σ,B) be the family of
locally (ρ, σ,B)-bounded adversaries on a single destination path of size n. Then
OED has buffer space requirement Θ(B log n+σ). This buffer space requirement
is asymptotically optimal, as every (centralized, randomized) protocol has buffer
space requirement Ω(B log n + σ). In particular, for a standard (ρ, σ)-bounded
adversary, OED’s buffer space requirement is Θ(log n + σ).1

Packet latency measures how many rounds elapse between when a packet is
injected and when the packet is absorbed at its destination.

Definition 5. Fix a protocol Π and injection pattern A and packet p ∈ A. Let
tp denote the time p is injected and let sp denote the time p is absorbed at its
destination, with the convention sp = ∞ if p is never absorbed. The latency of

1 For the standard (ρ, σ)-bounded injection model, OED’s buffer space requirement is
only optimal among local forwarding protocols—i.e., protocols where each buffer’s
decision to forward depends only on the state of that buffer’s distance O(1)
neighborhood. Indeed, there are centralized protocols whose buffer space usage is
O(ρ + σ) [4,5] in the standard injection model. In locally (ρ, σ, B)-bounded model,
however, OED’s buffer space usage is optimal even when compared to centralized
protocols. See [10].
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p is sp − tp. The maximum latency of Π against A is supp∈A sp − tp. Given
a family F of injection patterns, the maximum latency of Π is the supremum of
the maximum latencies of Π against A ∈ F .

Greedy forwarding with LIS scheduling achieves optimal latency against
(ρ, σ)-bounded adversaries.

Theorem 3 (cf.[1]). Let G be a single destination path of size n. Then the
maximum latency of greedy forwarding with LIS priority against locally (ρ, σ,B)-
bounded adversaries is Θ(n+σ). Moreover, the maximum latency of any protocol
is Ω(n + σ).

The buffer-space optimal OED protocol, however, does not guarantee finite
latency. In fact, Patt-Shamir and Rosenbaum showed a strict dichotomy between
buffer space usage and latency.

Theorem 4 ([7]). Let G be a single destination path with unit capacity edges,
and let F be the family of (1, 0)-bounded adversaries on G. Then for any protocol
Π, if Π has maximum latency < ∞, then the buffer space usage of Π is Ω(n).

The argument of Theorem 4 crucially relies on the assumption that packet
movement in the single destination path is one-directional. We next introduce
a model that allows for packet swaps between adjacent buffers. Or main result
shows that the conclusion of Theorem 4 fails in the augmented model.

Protocols with Swaps. In order to achieve linear latency on the path, we consider
an extended model which additionally allows each buffer x to send one packet
backwards to buffer x − 1. In this model, we can augment solid forwarding
protocols to define solid forwarding protocols with swaps.

Definition 6. Let Π be a solid forwarding protocol. Π’s associated solid for-
warding protocol with swaps ΠS is a protocol which, given a buffer x such
that L(x) > 0:

1. If Π(L(x),L(x + 1)) = 1, x forwards its oldest packet to x + 1, and
2. If Π(L(x),L(x + 1)) = 0 and x’s oldest packet is older than x + 1’s youngest

packet, then x forwards its oldest packet to x+1 and x+1 sends its youngest
packet back to x.

The following lemma asserts that for single destination paths, a protocol Π
and its associated protocol with swaps ΠS have the same buffer space usage.

Lemma 1. Let A be any injection pattern on a single-destination path. Let Π be
any solid forwarding protocol, and ΠS the associated protocol with swaps. Then
for all times t, all buffers x have the same load under ΠS as Π.

Proof. We argue by induction on t. The base case t = 0 is trivial, as all buffers
are initially empty. For the inductive step, suppose the lemma holds a time t. To
see that both protocols incur the same loads at time t′ (i.e., after forwarding),
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observe that (1) if buffer x forwards according to Π, then so does ΠS , and (2)
if x does not forward according to Π, then either x does not forward in ΠS or x
and x + 1 swap. In the case of a packet swap, x’s net load is unchanged, hence
x has the same load under Π and ΠS .

2.2 Smoothed Dynamics

The primary tool we use to derive our results is the smoothed configuration ,
which is derived from a packet configuration on a path network. For a configu-
ration C(G) of a path G of length n, the corresponding smoothed configuration
S(C(G)) is the result of applying Algorithm 1 to C(G). For convenience, we
write S(G) = S(C(G)) (Fig. 1).

Algorithm 1. Smoothing C(G)
x ← n
Q ← an empty priority queue, with priority by packet age
S(G) ← an empty configuration with buffers . . . , −2, −1, 0, 1, 2, . . . , n
while x ≥ 1 or |Q| > 0 do

for p ∈ C(x) do
Q.enqueue(p)

end for
if |Q| > 0 then

S(x) ← Q.dequeue()
end if
x ← x − 1

end while
return S(G)

Fig. 1. The result of applying Algorithm 1 to the packet configuration in the top panel,
Ct(G), is the corresponding smoothed configuration St(G) in the bottom panel.
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In order to create the smoothed configuration S(G) from C(G), the algorithm
moves left from the rightmost buffer in C(G), picking up all of the packets in each
buffer, placing them into the queue Q, and then dropping one packet into S(x) if
the queue is non-empty. Note that for any x ∈ (−∞, n] we have |S(x)| ∈ {0, 1}.
We refer to Q as the smoothing queue for S(G), and denote the set of packets
in Q over a buffer x in Algorithm 1 after enqueueing the packets in x and before
dequeueing a packet by Q(x). From Algorithm 1, we observe that

|Q(x)| =

⎧
⎪⎨

⎪⎩

L(x) x = n,

L(x) + max {0, |Q(x + 1)| − 1} 1 ≤ x < n,

max {0, |Q(x + 1)| − 1} x < 1.

In our arguments, we will also use s(x) when SL(x) = 1 to refer to the packet
in buffer x in the smoothed configuration.

To characterize the packet dynamics of the smoothed configuration, we break
a smoothed configuration S(G) down into its component smoothed plateaus. A
smoothed plateau is a maximal interval I of buffers in a smoothed configuration
S(G) such that for each buffer x in I, SL(x) = 1.

3 Latency Analysis

In this section, we prove two primary results for the latency of solid protocols
with swaps. First, Theorem 5 states that any solid forwarding protocol on a
path of length n has a maximum packet latency of n + σ − 1 against any (1, σ)
adversary. Second, Theorem 6 states that any protocol in the packet-swapping
model on a path of n buffers must have worst-case packet latency of n + σ − 1.

Theorem 5. Let G be a single destination path of length n, let ΠS be a solid
forwarding protocol with swaps, and let A ∈ A(1, σ). Then the maximum latency
of ΠS against A is at most n + σ − 1.

Theorem 6. For any protocol Π in the packet-swapping model on a single-
destination path network G of length n, there exists a (1, σ) adversary A such
that the maximum latency of packets on G is at least n + σ − 1.

Theorem 1 follows from Theorem 5 applied to OED forwarding together with
Theorem 2.

Proof (Theorem 1). Let Π be OED forwarding and ΠS OED with swaps. By
Theorem 2, the buffer space usage of Π is Θ(log n + σ), which is optimal. By
Lemma 1, ΠS also has (optimal) buffer space requirement Θ(log n + σ). The
latency bound of ΠS follows from Theorem 5.

The idea of our proof of Theorem 5 is to connect the dynamics of solid
protocols with swaps with the dynamics of smoothed configurations and their
component smoothed plateaus. The main technical piece is Lemma 4, which
states that each packet in a smoothed configuration moves one buffer forward
after a round’s forwarding step. More formally, Lemma 4 implies the following
corollary:
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Corollary 1. Let G be a path network of length n, Π a 1/2-local forwarding
protocol with swaps, and C(G) a configuration of packets on G. Let Π(C(G))
denote the configuration that results from forwarding the packets in a configura-
tion of G according to Π. Then S ◦ Π(C(G)) = Π ◦ S(C(G)); the operations of
smoothing and forwarding under Π commute (Fig. 2).

Fig. 2. An illustration of Corollary 1. Starting from Ct(G), smoothing (St(G)) and

then forwarding (St′
(G)) is equivalent to forwarding (Ct′

(G)) and then smoothing

(St′
(G)).

Corollary 1 is valuable because the dynamics of smoothed configurations
under all solid protocols are the same: since every buffer in a smoothed configu-
ration contains either 0 or 1 packets, every buffer in the smoothed configuration
forwards. Thus, in the smoothed configuration, every packet progresses one step
towards the destination during forwarding. Together with Lemma 5, which states
that a preexisting packet’s location in the smoothed configuration is unaffected
by injection, Lemma 4 implies that st(x) = st+1(x+1) for all rounds t. Lemma 6
allows us to conclude that the left-most non-empty buffer in a smoothed config-
uration in any given round t before forwarding is 1 − σ, and thus the maximum
latency of any solid protocol with swaps is n + σ − 1.

For a path network G of length n, we assume there are two extra buffers
n + 1 and n + 2 which are cleared after the forwarding step and before the
injection step of each round in order to simplify the arguments that follow.

The first component of our argument for Lemma 4, informally speaking, is
to show that smoothed plateaus move forward one buffer during any round’s
forwarding step. In order to do so, we break each smoothed plateau down into
islands, and characterize how these islands move during forwarding in Lemma 2.
The proofs of Lemmas 2, 3, 4, and 5 can be found in the appendix.
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Definition 7. Let G be a path network of length n with configuration C(G),
and let I = [a, b] be an interval of buffers such that:

1. For all x ∈ I, L(x) > 0,
2. Either a = 1 or L(a − 1) = 0, and
3. L(b + 1) = 0.

Then I is an island in C(G).

Lemma 2. Let G be a path network of length n with associated solid forwarding
protocol Π. If I = [a, b] is an island in Ct(G) before forwarding, then the packets
that were in I occupy the interval I ′ in Ct′

(G) after forwarding, where I ′ is either
[a + 1, b + 1] if Lt′

(a) = 0 or [a, b + 1] if Lt′
(a) > 0. Furthermore, in either case,

for all x in I ′, Lt′
(x) > 0.

Lemma 3. Let H be a path network with an associated solid forwarding protocol
Π, and suppose that M = [a, b] is a smoothed plateau in Ct(H). Then M ′ =
[a + 1, b + 1] is a smoothed plateau in Ct′

(H).

To show that smoothed plateaus move forward one buffer during forwarding,
we consider a smoothed plateau as composed of islands and gaps, intervals of
empty buffers in the packet configuration. We use induction in combination with
Lemma 2 to show that if these gaps were filled before forwarding, then they are
filled after forwarding.

Next, we show that each individual packet in a smoothed plateau moves
forward one buffer. Since a smoothed configuration is made up of only smoothed
plateaus, Lemma 4 implies that each packet in any smoothed configuration moves
forward one buffer during forwarding.

Lemma 4. Let G be a path network of length n with associated solid forwarding
protocol with swaps ΠS, and suppose there is a smoothed plateau at M = [a, b] in
St(G) before forwarding. Then in St′

(G), there is a smoothed plateau at M ′ =
[a + 1, b + 1] such that for all x ∈ M , st(x) = st′

(x + 1).

In order to prove Lemma 4, we consider the states of the smoothing queue
over a buffer x before forwarding and over the next buffer x + 1 after forward-
ing. Specifically, we show that for each buffer x in the smoothed configura-
tion, Qt′

(x + 1) ⊆ Qt(x) and st(x) ∈ Qt′
(x + 1), which together imply that

st(x) = st′
(x + 1).

For the final technical piece of Theorem 7, we show that any preexisting
packet in the smoothed configuration remains in the same location after injec-
tion.

Lemma 5. Let G be a path network of length n, Π a 1/2-local forwarding pro-
tocol with swaps, and S(t−1)′

(G) a smoothed configuration of packets for G in
round t−1 before injection for round t but after forwarding for round t−1. Then
for all buffers x in (−∞, n] such that SL(t−1)′

(x) > 0, we have s(t−1)′
(x) = st(x).
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To prove Lemma 5, we show that for each buffer x in the smoothed configu-
ration (x ∈ (−∞, n]), Q(t−1)′

(x) ⊆ Qt(x) and Qt(x) \ Q(t−1)′
(x) contains only

packets injected in round t. Theorem 7 then follows almost immediately from
Lemmas 4 and 5.

Theorem 7. Let G be a path network of length n, and let x be a buffer in St(G),
i.e., x ∈ (−∞, n]. Let p = st(x). Then p is absorbed in round t + (n − x).

Proof (Theorem 7). We first show that for any round t + s where 0 ≤ s ≤ n − x,
before forwarding for round t + s, st+s(x + s) = p. We induct on s.

Base Case (s = 0): Clear.
Inductive Step (0 < s ≤ n − x): Suppose that st+s−1(x + s − 1) = p. After

forwarding for round t + s − 1, since x + s − 1 is in a smoothed plateau
before forwarding, st+s−1(x + s − 1) = s(t+s−1)′

(x + s) by Lemma 4. Next,
after injection for round t + s, by Lemma 5, we still have st+s(x + s) =
s(t+s−1)′

(x + s) = p and the claim holds.

Finally, Lemma 6 allows us to conclude that the minimum non-empty buffer
in a smoothed configuration is 1−σ, and thus that the maximum packet latency
of any solid forwarding protocol with swaps is n + σ − 1.

Lemma 6. Suppose A is a (1, σ)-bounded injection pattern and Π is a solid
protocol. Then for all times t and buffers x ∈ [n], we have Lt([1, x]) ≤ x + σ.

We are now ready to prove Theorem 5.

Proof (Theorem 5). We claim that, for any round t ∈ IN before forwarding, the
minimum smoothed configuration buffer x ∈ (−∞, n] such that SLt(x) > 0 is
1 − σ. We will utilize Lemma 6, which states that before forwarding for any
y ∈ [1, n], there are at most y +σ packets in [1, y]. As in previous arguments, we
also assume there is an extra buffer n + 1 which is cleared after forwarding.

For a configuration at timestep t, let y be the minimum buffer in [1, n] such
that |Qt(y)| = 0, and let z = y − 1. Then for all x ∈ [1, z], SLt(x) > 0 and
Lt([1, z]) ≤ z + σ. Thus, at most z + σ packets are enqueued and z packets are
dequeued over [1, z] and |Qt(0)| ≤ σ, and the minimum non-empty buffer in the
smoothed configuration is 1 − σ as claimed. From Theorem 7, this packet will
be absorbed in n − (1 − σ) = n + σ − 1 rounds.

We also provide a lower bound on protocol latency in the packet-swapping
model. Specifically, any protocol in this model has worst-case packet latency
of n + σ − 1, and thus, all solid forwarding protocols with swaps have optimal
worst-case latency.

Proof (Theorem 6). Let A be any (1, σ) adversary which injects 1+σ packets into
buffer x = 1 in round 1, and let A1 denote the set of packets injected in round
1 by A. Since there is no buffer behind buffer 1, x = 1 can only lose at most
one packet per round. Thus, at timestep t = 1 + σ before forwarding, at least
one packet in A1 remains in buffer 1, i.e.

∣
∣A1 ∩ Ct(1)

∣
∣ > 0. Let p ∈ At ∩ Ct(1).

Since p can move forward at most one buffer per round, at the earliest, p will be
absorbed in round t + (n − 1) = σ + n. Thus, p’s latency is at best σ + n − 1.
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4 Total Load Analysis

In this section, we turn our attention to stochastic, rather than adversarial,
packet injections. Again, we consider the single-destination path. Specifically,
we analyze the following stochastic process: each round, (the index of) a buffer
x ∈ [1, n] is chosen independently and uniformly at random, and a single packet
is injected into buffer x. We identify such an injection pattern with an infinite
sequence of iid random variables x1, x2, . . . where each xi is chosen uniformly
from [1, n]. We refer to this process as the random injection model .

In this section, we analyze the total (network) load in the random injection
model when packets are forwarded according to a solid protocol. Here the total
(network) load at time t is the total number of packets in the network at time
t. We denote the total load by Lt.

We first observe that Lt is a non-decreasing function of t. To see this, note
that the random injection model injects precisely one packet into the network
per round, while the final buffer forwards at most one packet per round. For an
injection pattern A and (solid) forwarding protocol Π, we define A’s increasing
sequence t1 < t2 < t3 < · · · to be the sequence of times at which Lt increases.
More formally, we define

ti = inf
{
t
∣
∣Lt ≥ i

}
.

Our main result in this section concerns the expected growth of the sequence
(ti). Specifically, we show that under the random injection model, any solid
forwarding protocol total network load reaches, but does not exceed, n almost
surely. On the other hand, Lt grows slowly: once Lt exceeds a certain threshold
(αt for some constant α < 1), the expected time until Lt increases is exponential
in n.

Theorem 8. Let Π be a solid forwarding protocol, and suppose packets are
injected into a single destination path of size n according to the random injec-
tion model. Let t1, t2, . . . denote the increasing sequence for the process. Then
the following hold:

1. tn < ∞ almost surely (with probability 1),
2. tk = ∞ for all k > n, and
3. there exists a constant α < 1 such that for all k ≥ αn, E(tk+1 − tk) = 2Ω(n).

The first claim of Theorem 8 follows from the observation that if A makes n
consecutive injections into buffer 1, then the total load will be (at least) n for
any forwarding protocol. Indeed, after n−1 forwarding steps, none of the packets
injected into buffer 1 can have been absorbed, hence in round n there are (at
least) n packets in the network. In the random injection model, the probability
that any n consecutive injections are made to buffer 1 is n−n > 0 Thus, in
an infinite execution the total load reaches n almost surely. The second claim
of Theorem 8 follows from Lemma 6, and the observation that every injection
pattern in the random injection model is (1, 0)-bounded.
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The focus of this section is to establish Claim 3 of Theorem 8. To this end,
we employ the machinery of smoothed configurations developed in the previous
sections. We state the following consequence of (the proof of) Theorem 5:

Corollary 2. Let G be a the single destination path of size n. Suppose A is
(1, σ)-bounded, Π is a solid forwarding protocol, and C is a configuration of G
during some round of an execution (after injection and before forwarding). Let
S be the associated smoothed configuration. Then for all i < 1 − σ, S(i) = 0.
That is, in the smoothed configuration, the left-most packet is in buffer at most
1 − σ.

In the case of the random injection model, Corollary 2 implies that in a
smoothed configuration S, only buffers in [n] are non-empty. Now let S′ denote
the smoothed configuration after forwarding and before the next injection step.
By Lemma 3, S′(i) = S(i − 1). In particular, S′(1) = 0.

Definition 8. Let C be a configuration of a single destination path and S its
associated smoothed configuration. We say that buffer i is a gap in S if S(i) = 0.

In accordance with Lemma 3, with think of gaps as moving forward (along
with packets) during each forwarding step for the smoothed configuration. A
packet injection may, however, destroy a gap in S. The following lemma shows
that the total load of the network increases during an injection round if and only
if a gap remains at buffer n after injection. If a gap persists from its creation in
some round t′ to buffer n in round t + n, we say that the gap survives.

Lemma 7. Consider the random injection model with solid protocol Π. Let Ct

be a configuration at time t, and St its associated smoothed configuration. Sup-
pose the total load of the network is k = Lt, so that tk ≤ t. Then Lt+1 = Lt + 1
(equivalently tk+1 = t + 1) if and only if St has a gap in buffer n.

From the discussion above, we make the following observations. In each for-
warding step of a round t, a gap is created in buffer 1. During the injection step
of round t+1, the injected packet destroys a gap in the corresponding smoothed
configuration. If the injection occurs at buffer i, then the right-most gap j ≤ i
is the gap that is destroyed as the result of the injection. All other gaps remain
after injection. During a forwarding step, Lemma 3 implies that all gaps progress
forward a single step. Observe that if the gap survives then, St+n contains a gap
in buffer n (namely, the gap created in round t). Applying Lemma 7, we obtain
the following result.

Lemma 8. Consider an execution of a solid protocol Π in the random injection
model. Then for any time t ≥ 1, the total network load increases in round t + n
if and only if the gap created during the forwarding step of round t survives.

Lemma 8 illuminates our path towards proving claim 3 of Theorem 8: in
order to show that it is unlikely that the total load increases in round t + n,
it suffices to show that the gap created in round t is unlikely to survive. The
following definition and lemma provide necessary conditions for a gap to survive.
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Definition 9. Suppose a gap g is created in round t so that the gap occupies
buffers 1, 2, . . . in rounds t, t + 1, . . . until it either survives or is destroyed. We
say that the injection in round t + k is ahead of g if the injection is made to a
buffer j ≥ k.

Lemma 9. Suppose g is a gap created in round t. Then if g survives, there were
at most n − Lt injections ahead of g in rounds t + 1, t + 2, . . . , t + n.

The following corollary (proven in the appendix) is obtain by applying a
suitable Chernoff bound to bound the probability that few packets are injected
ahead of a gap.

Corollary 3. Let δ be any constant satisfying 0 < δ < 1
2 . Suppose Lt ≥ ( 12+δ)n.

Then the probability that the gap g formed in round t survives is at most e−nδ2/4.

Corollary 3 implies that if the total load satisfies Lt ≥ ( 12 + δ)n, then the
total load is unlikely to increase in round t + n. Since Lt is non-decreasing, the
same bound applies to the probability that the total load increases in rounds
t + n + 1, t + n + 2, . . .. Thus, a simple union bound implies that probability
the load increases at any round in the range t + n, t + n + 1, · · · , t + n + C is
at most Ce−Ω(n). However, this argument does not give an upper bound Lt+n.
Nonetheless, assuming Lt = (12 + δ)n, we obtain the following bound on the
probability that Lt+n is large.

Lemma 10. Suppose the total network load at time t is Lt = (12 + δ)n. Then
for α = 1 − (12 − δ)2/16, we have Pr(Lt+n ≥ αn) = e−Ω(n).

We are now ready to complete our proof of Theorem 8.

Proof (Claim 3 of Theorem 8). Fix δ to be any value satisfying 0 < δ < 1
2 , and

let t denote the first round in which Lt = (12 + δ)n. Let k = αn, where α is
the value in Lemma 10. By Lemma 10, tk ≥ t + n with probability 1 − eΩ(n).
Conditioned on tk ≥ t + n, Corollary 3 implies that for any round t′ > tk, the
probability that t′ = tk+1 is e−Ω(n). Applying a union bound, we find that for
any c = e−o(n), the probability that tk+1 ≤ tk + c is e−Ω(n), from which Claim 3
of Theorem 8 follows.

5 Conclusions and Open Questions

Our main result from Sect. 3 establishes that optimal buffer space usage and
optimal latency are simultaneously achievable for the single destination path
network in a model that allows for packets to be moved backwards (or swapped).
From previous results, this additional capability is necessary. We suggest several
lines of future work here.
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1. To what extent can our results and techniques be generalized to networks
beyond the single-destination path? It seems plausible that our techniques
might be generalized to single destination trees (the context of [3,7]). Can
our techniques be further generalized to paths with multiple destinations (for
example in the model of [5]), or to more general topologies?

2. Our results focus on the case of a network with unit capacity edges. Can
our results be extended to higher capacities as well? A bundling strategy
analyzed in [10] shows that optimal buffer space usage can be achieved on a
general capacity path, but the strategy poses issues with respect to latency
because some packets are ignored by the general capacity variant of OED.
Nonetheless, it seems plausible that a variant of forwarding with swaps might
generalize to general capacity setting.

To our knowledge, the stochastic process described in Sect. 4 has not been
studied previously. We think it would be interesting to get a better understanding
of the dynamics of different forwarding protocols in the random injection model.

1. What is a typical maximum load in the steady state for the random injection
model for greedy forwarding? For OED forwarding? Preliminary experiments
indicate that typical loads for OED are quite small (possibly O(1)), while
greedy forwarding incurs large loads in the final buffer (e.g., Ω(n)). Can
these observations be explained analytically?

2. Can the analysis of the total load in the random injection model be tightened?
Our simulations seem to indicate that the total load grows exponentially
slowly even for a total load of (1/2 + δ)n, but our techniques only give this
result for total loads much closer to n.

Appendix: Latency of Solid Forwarding Protocols with
Swaps

Proof (Lemma 2). First, it is clear that any packet in I at t can only occupy
a buffer in [a, b + 1] at t′. Furthermore, since I is an island in Ct(G), either
Lt(a− 1) = 0 or a = 1, and Lt(b+1) = 0, so no other packets occupy any buffer
in [a, b+1] after forwarding. We next induct on the suffixes of I ′, [b+1− i, b+1]
where 0 ≤ i < b + 1 − a, to show that each buffer in [a + 1, b + 1] is non-empty
in Ct′

(G).

Base Case (i = 0): Since I is an island in Ct(G), Lt(b + 1) = 0 so b forwards a
packet to b + 1 ∈ I ′ and Lt′

(b + 1) > 0.
Inductive Step (0 < i < b+1−a): Assume that the lemma holds for the interval

[b+1− (i−1), b+1] where 0 ≤ i < b+1−a. Since i < b+1−a, Lt(b− i) > 0.
If either Lt(b + 1 − i) > 1, or Lt(b + 1 − i) = 1 but b + 1 − i does not forward
during round t, then we know that Lt′

(b + 1 − i) ≥ 1. On the other hand if
Lt(b+1−i) = 1 and b+1−i forwards during round t, then since Lt(b−i) > 0,
by Definition 3, b + 1 − i receives a packet during forwarding from b − i ∈ I
and thus Lt′

(b + 1 − i) = 1. Combining this with the inductive hypothesis,
we get that for each buffer x ∈ [b + 1 − i, b + 1], Lt′

(x) > 0.
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Thus, the statement holds for all i < b + 1 = a. If Lt(a) > 1 or Lt(a) = 1
but a does not forward during round t, then the lemma holds for I ′ = [a, b + 1].
Otherwise, it holds for I ′ = [a + 1, b + 1].

Proof (Lemma 3). Let M1 = [a1, b1],M2 = [a2, b2, ], . . . , Mk = [ak, bk] ⊆ M be
the islands contained in M (from right to left) in Ct(H). We first claim that for
each buffer x ∈ M ′, SLt′

(x) = 1. Notice that we must have b = b1.
Define M ′

1 = [a1+1, b1+1],M ′
2 = [a2+1, b2+1], . . . , M ′

k = [ak+1, bk+1], G1 =
[b2+1, a1−1], G2 = [b3+1, a2−1], . . . , Gk−1 = [bk +1, ak−1−1], Gk = [a, ak −1],
and G′

1 = [b2+2, a1], G′
2 = [b3+2, a2], . . . , G′

k−1 = [bk +2, ak−1], G′
k = [a+1, ak].

The Gis represent the gaps between the islands contained in M in Ct(H).
Note that the intervals Mi, Gi are disjoint and that M ′

i , G
′
i are also disjoint.

Furthermore, note that ∪k
i=1 (Mi ∪ Gi) = M and that ∪k

i=1(M
′
i ∪ G′

i) = M ′.
Lemma 2 implies that for all x ∈ ∪k

i=1M
′
i , SL

t′
(x) = 1.

We will make frequent use of the following observations, where I = [a, b] is
any interval of buffers, in our arguments:

1. If |Q(b)| ≥ |I|, then ∀x ∈ I, SL(x) = 1. Furthermore, if each buffer x in I is
empty but has SL(x) = 1, then |Q(b)| ≥ |I|.

2. |Q(a − 1)| ≥ L(I) − |I|.
To prove our first claim, we show that for all i such that 1 ≤ i ≤ k, that for

all x ∈ G′
i, SL

t′
(x) = 1.

Base Case (i = 1): Since M is a smoothed plateau in Ct(H), we know that
|Qt(b1 + 1)| = 0, and since ∀x ∈ G1 ∪M1 we have SLt(x) = 1, we know that
|Qt(a1 − 1| = Lt(M1) − |M1| ≥ |G1|. There are two cases to consider:
1. Lt′

(a1) > 0. From Lemma 2, since M1 is an island in Ct(H),

Lt(M1) = Lt′
(M ′

1) + Lt′
(a1) =⇒ Lt′

(M ′
1) + Lt′

(a1) − |M1| ≥ |G1| ,

and thus

Lt′
(M ′

1) + Lt′
(a1) − (|M1| + 1) ≥ |G′

1| − 1 =⇒
∣
∣
∣Qt′

(a1 − 1)
∣
∣
∣ ≥ |G′

1| − 1.

Combining this with the assumption that Lt′
(a1) > 0 =⇒ SLt′

(a1) = 1,
we get that ∀x ∈ G′

1, SL
t′
(x) = 1 since all buffers in G′

1 except a1 are
empty.

2. Lt′
(a1) = 0. In this case, Lt′

(M ′
1) = Lt(M1) and |M1| = |M ′

1|, so
Lt′

(M ′
1) − |M ′

1| ≥ |G′
1|, and therefore

∣
∣
∣Qt′

(a1)
∣
∣
∣ ≥ |G′

1| where all buffers

in G′
1 are empty in Ct′

(H). Thus, ∀x ∈ G′
1,SL

t′
(x) = 1.

Inductive Step (k ≥ i > 1): Suppose that for all j < i, for all x ∈ G′
j , we

have SLt′
(x) = 1. Let Ni = [ai, b]. Since M is a smoothed plateau in Ct(H)

and Lt(ai − 1) = 0, we know that |Qt(ai − 1)| = Lt(Ni) − |Ni| and that
|Qt(ai − 1)| ≥ |Gi|. There are two cases to consider:
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1. Lt′
(ai) = 0. Let N ′

i = [ai +1, b+1]. First, because Lt′
(ai) = 0, by Lemma

2 we know that Lt′
(N ′

i) = Lt(Ni), and since |N ′
i | = |Ni|, we have that

Lt′
(Ni) − |N ′

i | = Lt(Ni) − |Ni|, and thus by observation 2
∣
∣
∣Qt′

(ai)
∣
∣
∣ ≥ Lt(Ni) − |Ni| =

∣
∣Qt(ai − 1)

∣
∣ ≥ |Gi| = |G′

i| .

Thus,
∣
∣
∣Qt′

(ai)
∣
∣
∣ ≥ |G′

i| where all buffers in G′
i are empty in Ct′

(H), so

∀x ∈ G′
i, SL

t′
(x) = 1.

2. Lt′
(ai) > 0. Let N ′

i = [ai, b+1]. In this case we know that Lt(Ni)−|Ni|−
1 = Lt′

(N ′
i) − |N ′

i | since Lt(Ni) = Lt′
(N ′

i) and |Ni| = |N ′
i | − 1. By the

same reasoning as case 1,
∣
∣
∣Qt′

(ai − 1)
∣
∣
∣ ≥ Lt′

(N ′
i) − |N ′

i | = Lt(Ni) − |Ni| − 1

=
∣
∣Qt(ai − 1)

∣
∣ − 1 ≥ |Gi| − 1 = |G′

i| − 1.

Since by assumption Lt′
(ai) > 0 =⇒ SLt′

(ai) = 1, and since∣
∣
∣Qt′

(ai − 1)
∣
∣
∣ ≥ |G′

i| − 1, where all buffers in G′
i except ai are empty

in Ct′
(H), we have that for all x ∈ G′

i, SL
t′
(x) = 1.

Combining the arguments above, we see that for all x ∈ M ′, SLt′
(x) > 0.

Finally, we show that SLt′
(a) = SLt′

(b + 2) = 0. M is one of possibly many
smoothed plateaus in Ct(H). Label the l ≥ 1 smoothed plateaus in Ct(H) (from
right to left) R1 = [c1, d1], . . . , Rl = [cl, dl].

We show for all 1 ≤ i ≤ l that SLt′
(ci) = SLt′

(di + 2) = 0 by induction. We
will use the following observation: for a suffix I = [a, n + 2] of buffers, we must
have Lt(I) ≥ SLt(I), and in particular, if |Qt(a − 1)| = 0, i.e., SLt(a − 1) = 0,
then Lt(I) = SLt(I).

Base Case (i = 1): Since Lt([d1 + 1, n]) = 0, we have Lt′
([d1 + 2, n]) = 0 so

SLt′
(d1 + 2) = 0. Let I = [c1, n + 2]. For c1, since SLt(c1 − 1) = 0 by

assumption, c1 receives no packets during forwarding so Lt(I) = Lt′
(I), and

furthermore Lt(I) = SLt(I). If SLt′
(c1) = 1, then SLt′

(I) = SLt(I) + 1
since by our previous results SLt(R1) = SLt(R′

1) where R′
1 = [c1 +1, d1 +1].

Thus, SLt′
(I) > SLt(I) which, since Lt′

(I) ≥ SLt′
(I) implies Lt′

(I) > Lt(I),
a contradiction. Thus, SLt′

(c1) = 0.
Inductive Step (1 < i ≤ l): Assume that for all j < i, SLt′

(cj) = SLt′
(dj+2) = 0.

For di+2, by assumption di+2 ≤ ci−1, and all buffers x in [di+1, ci−1−1] have
SLt(x) = 0. If di +2 < ci−1, then SLt(di +2) = 0 and since SLt(di +1) = 0,
we still have SLt′

(di + 2) = 0 after forwarding. On the other hand if ci−1 =
di + 2, then by inductive hypothesis SLt′

(ci−1) = 0 ⇐⇒ SLt′
(di + 2) = 0.

For ci, let I = [ci, n + 2]. By assumption, ci receives no packets during
forwarding and SLt(ci − 1) = 0 so Lt(I) = Lt′

(I) = SLt(I). If SLt′
(ci) = 1,
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then SLt′
(I) = SLt(I) + 1 since each Rm for m ≤ i moves forward one

buffer during forwarding. As in the base case, this is a contradiction and
thus SLt′

(ci) = 0.

Proof (Lemma 4). First, because the buffer loads of each x ∈ [1, n] are the same
under ΠS as under Π, Lemma 3 implies that there will be a smoothed plateau
at M ′ = [a + 1, b + 1] in St′

(G). What is left to show is that for all i such that
0 ≤ i ≤ b − a, st(b − i) = st′

(b − i + 1). We prove the claim using induction.

Base Case (i = 0): Since M is a smoothed plateau in Ct(G), |Qt(b + 1)| = 0 but
|Qt(b)| > 0, so Lt(b) > 0. Thus, b forwards ht(b) = st(b) to the empty buffer
b+1. At t′, ht(b) is the only packet in b+1 and from Lemma 3, we will have∣
∣
∣Qt′

(b + 2)
∣
∣
∣ = 0, so st(b) = st′

(b + 1).

Inductive Step (1 ≤ i ≤ b − a): Suppose for all 0 ≤ j < i that st(b − j) =
st′

(b − j + 1). Let x = b − i, and p = st(x). From Algorithm 1, p is the
oldest packet in Qt(x), which is the set of packets in Ct([x, b]) and not
in {st(y) | y ∈ [x + 1, b]}. Furthermore, st′

(x + 1) is the oldest packet in
Qt′

(x + 1), which is the set of packets in Ct′
([x + 1, b + 1]) and not in{

st′
(y)

∣
∣
∣ y ∈ [x + 2, b + 1]

}
. We show 1. that Qt′

(x + 1) ⊆ Qt(x), and 2.

that p ∈ Qt′
(x + 1), which together imply that p = st′

(x + 1).
1. Let r be any packet in Qt′

(x + 1). At timestep t, r could have been in
any buffer in the interval [x, b+2]. Since Lt(b+1) = 0, r was not in b+1
at t. Nor was r in b + 2 at t since under ΠS , no buffer will send a packet
backwards to an empty buffer, so r was in [x, b] at t. Furthermore, from
Algorithm 1 and by assumption that r ∈ Qt′

(x + 1),

r �∈
{

st′
(y)

∣
∣
∣ y ∈ [x + 2, b + 1]

}
.

By the inductive hypothesis, this set is the same as {st(y) | y ∈ [x + 1, b]}
so r ∈ Qt(x) and Qt′

(x + 1) ⊆ Qt(x).
2. First, since p ∈ Qt(x),

p �∈ {
st(y)

∣
∣ y ∈ [x + 1, b]

}
=

{
st′

(y)
∣
∣
∣ y ∈ [x + 2, b + 1]

}
.

If p was in a buffer in [x+2, b] at t, then at t′, p is in a buffer in [x+1, b+
1] since packets can only move forward or backward one buffer during
forwarding. Thus, in this case p ∈ Qt′

(x + 1).
If p was in x + 1 and p was sent backward during forwarding, then there
was an older packet in x at t than p, so p �= st(x), a contradiction.
Finally, if p was in x at timestep t, there are two cases. Notice that
p = ht(x). First, if p is in x at t′, then lt(x + 1) > p and Lt(x + 1) ≥ 2,
so lt(x + 1) was older than p and in Qt(x), so p �= st(x). Second, if p is
in x − 1 at t′, then Lt(x) ≥ 2 and p = lt(x), so p �= st(x). Thus, if p was
in x at timestep t, then p must be in x + 1 at t′ and so p ∈ Qt′

(x + 1).
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Proof (Lemma 5). We prove the following claim, which implies the lemma: for
all x ∈ (−∞, n], Q(t−1)′

(x) ⊆ Qt(x) and Qt(x)\Q(t−1)′
(x) contains only packets

injected in round t. We induct on the buffers in the network from right to left,
showing that for all i ≥ 0, the claim holds for x = n − i. Note that we call a
packet p new if tp = t.

Base Case (i = 0): From Algorithm 1, we know that Q(t−1)′
(n) = C(t−1)′

(n)
and that Qt(n) = Ct(n). During injection for round t, buffer n cannot lose
any packets, and only gains some new packets (or potentially none). Thus,
C(t−1)′

(n) ⊆ Ct(n) with the difference containing only new packets, and the
claim holds for x = n.

Inductive Step (i > 0): Let x = n − i, and assume that Q(t−1)′
(x + 1) ⊆

Qt(x + 1) with only new packets in the difference between the two sets.
If

∣
∣
∣Q(t−1)′

(x + 1)
∣
∣
∣ = 0, the same argument from the base case applies to x.

Otherwise, by the inductive hypothesis, the oldest packet p in Q(t−1)′
(x+1)

is the oldest packet in Qt(x+1) as well, so p is dequeued from both. Letting
R = Q(t−1)′

(x + 1) \ {p} and R′ = Qt(x + 1) \ {p} denote the states of the
queue over x + 1 after dequeueing at timesteps (t − 1)′ and t, respectively,
we see that R ⊆ R′ as well with only new packets in the difference, and
from Algorithm 1, Q(t−1)′

(x) = R ∪ C(t−1)′
(x) and Qt(x) = R′ ∪ Ct(x),

where R∩C(t−1)′
(x) = R′ ∩Ct(x) = ∅. Thus, since x only gains new packets

during injection, Q(t−1)′
(x) ⊆ Qt(x) with the difference containing only new

packets, we get that the claim holds for buffer x.

This claim implies the lemma since, for each x ∈ (−∞, n] with SL(t−1)′
(x) >

0, p = s(t−1)′
(x) ∈ Qt(x) and since all of the packets in Qt(x) \ Q(t−1)′

(x) are
younger than p, we have p = st(x). Thus, the lemma holds.

Lemma 6 is analogous to a special case of Lemma 3.4 in [7] (with j = 0).
While the proof in [7] is stated only for OED forwarding, the proof for j = 1
only relies upon the properties shared by all solid protocols.

Appendix: Total Load Analysis

Proof (Lemma 7). For the =⇒ direction, suppose Lt+1 = Lt + 1. This implies
that the total load increased after forwarding and injection. Since one packet
was injected in round t + 1, buffer n must not have forwarded, hence Lt(n) = 0.
Therefore, buffer n must be empty in St as well, since the smoothing process
never moves packets forward.

Conversely, suppose St has a gap in buffer n. Then Lt(n) = 0, hence no packet
is absorbed during the forwarding step: Lt′

= Lt. Since a packet is injected in
the next injection step, we have Lt+1 = Lt′

+ 1 = Lt + 1.

Proof (Lemma 9). We argue the contrapositive. Suppose that at least n−Lt +1
injections occur ahead of g. Observe that after the first forwarding step, there
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are at most n−Lt gaps ahead of g. By Lemma 3, the number of gaps ahead of g
is non-increasing during each forwarding step. Further, by Lemma 5, the number
of gaps ahead of g decreases each time a packet is injected ahead of g (unless
the injection destroys g). Therefore, after (at most) n−Lt injections ahead of g,
either no gaps remain ahead of g or g was destroyed. Any subsequent injection
ahead of g will destroy g (if it wasn’t already destroyed), and the desired result
follows.

Proof (Corollary 3). We argue that when Lt ≥ ( 12 +δ)n, the probability that the
gap created in round t survives is exponentially small in n. To this end, for each
t and i ∈ [n], we define the random variable Xt

i to be 1 if the injection in round
t + i occurs ahead of the gap formed in round t and 0 otherwise. For each round
t, let jt denote the buffer into which the adversary injects in round t. Then

Xt
i =

{
1 jt+i ≥ t + i − 1
0 otherwise.

(1)

Thus, the sum Xt = Xt
1 + Xt

2 + · · · + Xt
n is the total number of packets

injected ahead of the gap created in round t. Observe that for a fixed t, the
variables Xt

1,X
t
2, . . . , X

t
n are independent, and that

Pr(Xt
i = 1) =

n − i + 1
n

. (2)

Therefore, linearity of expectation gives

μ = E(Xt) =
n∑

i=1

n − i + 1
n

=
1
2
(n + 1).

If Lt > ( 12 + δ)n, then in order for the gap formed in round t to survive, at
most ( 12 − δ)n < (1 − δ)μ packets have been injected ahead of g. The corollary
follows by applying the following Chernoff bound to bound the probability of
this event.

Lemma 11 (Cf. Theorem 4.5 in [6]). Suppose Y1, Y2, . . . , Yn are independent
Poisson trials with Pr(Yi) = pi, let Y =

∑n
i=1 Yi, and μ = E(Y ). Then for

0 < δ < 1, we have
Pr(Y ≤ (1 − δ)μ) ≤ e−μδ2/2.

Proof (Lemma 10). Let S be a smoothed configuration with total load Lt =
(12 + δ)n. Let g1, g2, . . . , gk be the gaps in the configuration at time t, where
k = (12 − δ)n. We bound Lt+n by giving an upper bound on the number of the
gaps g1, . . . , gk that survive. Specifically, we will show that a constant fraction
of the gaps are destroyed with very high probability. To this end, assume that g1
is the rightmost gap, g2 the next gap to the left, and so on. Thus, each gj is in
buffer i < n− j. Let s = (12 −δ)n/4. Observe that in rounds t+1, t+2, . . . , t+s,
at most s gaps could survive. Further, in these rounds, any injection into a buffer
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i satisfying i > n−2s is guaranteed to destroy one of the gaps g1, g2, . . . , gk (and
not a gap that was created in some round t′ ≥ t). We call an injection into a
buffer i > n − 2s a good injection. Observe that if the are γ ≤ s good injections
in rounds t + 1, t + 2, . . . , t + 4s, then in round t + n, the total load satisfies
Lt+n ≤ n − γ.

The probability that any injection is good is 2s
n = (12 − δ)/2. Therefore, the

expected number of good injections in rounds t+1, . . . , t+s is μ = s(12 − δ)/2 =
(12 − δ)2/8 = 2α. Applying Lemma 11, with δ = 1

2 gives the desired result.
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Abstract. Fast distributed algorithms that output a feasible solution
for constraint satisfaction problems, such as maximal independent sets,
have been heavily studied. There has been much less research on dis-
tributed sampling problems, where one wants to sample from a distribu-
tion over all feasible solutions (e.g., uniformly sampling a feasible solu-
tion). Recent work (Feng, Sun, Yin PODC 2017; Fischer and Ghaffari
DISC 2018; Feng, Hayes, and Yin arXiv 2018) has shown that for some
constraint satisfaction problems there are distributed Markov chains that
mix in O(log n) rounds in the classical Local model of distributed com-
putation. However, these methods return samples from a distribution
close to the desired distribution, but with some small amount of error.
In this paper, we focus on the problem of exact distributed sampling.
Our main contribution is to show that these distributed Markov chains
in tandem with techniques from the sequential setting, namely coupling
from the past and bounding chains, can be used to design O(log n)-round
Local model exact sampling algorithms for a class of weighted local
constraint satisfaction problems. This general result leads to O(log n)-
round exact sampling algorithms that use small messages (i.e., run in
the Congest model) and polynomial-time local computation for some
important special cases, such as sampling weighted independent sets (aka
the hardcore model) and weighted dominating sets.

Keywords: Distributed Sampling · Bounding Chains · Perfect
Sampling · Coupling from the Past

1 Introduction

There is a vast body of literature on the distributed complexity of solving local
constraint satisfaction problems (CSPs) on graphs [2,3,5,21,22,24,28]. Here
“local” refers to the fact that the constraints span vertices with a constant diam-
eter in the underlying graph. These local CSPs include classic “symmetry break-
ing” problems such as maximal independent sets, (Δ+1)-colorings, and maximal
matchings [1,3,12,26]. A distributed algorithm solving one of these local CSPs
is required to construct some feasible solution of the local CSP. In contrast, this
paper focuses on the problem of sampling a feasible solution of a local CSP. In the
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sampling problem the algorithm is required to output a solution sampled from
the set of all feasible solutions of the CSP according to some desired probability
distribution. Clearly, the sampling problem is at least as hard as the construc-
tion problem because solving the sampling problem requires the construction
of a feasible solution. More precisely, we are interested in sampling solutions of
local weighted CSPs. Here “weighted” refers to an assignment of a weight to each
feasible solution of the CSP with the stipulation that the solutions be sampled
with probabilities proportional to the weights. When the weights are identical,
the sampling distribution is uniform.

Traditionally, in the sequential setting, sampling from a weighted local CSP
on a graph involved running an ergodic Markov chain with a stationary distri-
bution matching the desired distribution. After running for a long enough time,
the distribution of the current state of the chain becomes arbitrarily close to
(within any ε in terms of total variation distance) the desired distribution. For
a given ε, the time required for this is known as the mixing time. After the
mixing time is reached the current state of the chain is returned. The two most
simple examples of Markov chains that are used to sample from weighted local
CSPs are the Metropolis-Hastings algorithm and the Glauber dynamics [23]. For
some weighted local CSPs (e.g., proper colorings) with certain parameters, these
chains have mixing times of O(n log n

ε ), where n is the number of nodes in the
graph.

A distributed Markov Chain for sampling from a weighted local CSP, the Local
Metropolis chain, was introduced by Feng, Sun, and Yin [8]. This chain allows
every vertex to simultaneously propose a new label, rather than a single selected
vertex. This chain is easily implemented in the Local model of distributed
computing, taking a constant number of rounds for each step of the chain. For
certain weighted local CSPs, the chain can also be implemented in the Congest

model, taking a constant number of rounds for each step of the chain. Both
Fischer and Ghaffari [10] and Feng, Hayes, and Yin [7] showed that this chain
could be improved, at least in the case of colorings1, by only updating a small
fraction of marked nodes in each step instead of attempting to update every node
at every step. For colorings, the Local Metropolis chain [8] has a mixing time of
O(log n

ε ) when the palette has at least αΔ colors for any constant α > 2 +
√
2.

The improvement in [7,10] only requires α > 2, while achieving the same mixing
time. Here, n is the number of vertices and Δ is the maximum degree of the
graph. The point to note about these algorithms is that they return a state
drawn from a distribution that approximates the desired distribution within a
total variation distance of ε. Furthermore, the bound on the mixing time grows
as ε becomes smaller. The current paper focuses on exact distributed sampling,
i.e., the setting where ε = 0.

1 Fischer and Ghffari [10] claim that their approach, where not every vertex is marked,
has an O(log n

ε
)-round mixing time for a more general class of weighted CSPs than

colorings, though the proof of this does not appear in the paper.
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In the sequential setting, one elegant and well known method for sampling
exactly from the stationary distribution of a Markov chain is coupling from the
past (CFTP) [29], introduced by Propp and Wilson. In its original form, CFTP
took exponential time in general, so its use was limited to Markov chains that
had state spaces with special properties (e.g., the monotonicity property). Sub-
sequently, Nelander and Häggström [16] and Huber [17] showed that in cases
where the original CFTP algorithm may not be tractable, augmenting the algo-
rithm with bounding chains may still allow the algorithm to be used. The main
contribution of this paper is showing that it is possible to use CFTP and the
bounding chain technique in the Local model. We use CFTP and the bounding
chain technique in conjunction with the Markov chains described in the previous
paragraph, to sample exactly from weighted local CSPs. Our algorithms are fast
and in some cases run in the Congest model. Our results are described in more
detail in the next section.

Comparable Results. While the papers [7,8,10] focus on approximate distributed
sampling, there are two recent papers on exact sampling of certain weighted local
CSPs. Feng and Yin [9] use a seminal result of Jerrum, Valiant, and Vazirani
[19], showing that for certain problems exact sampling reduces to approximate
counting by using a rejection sampling procedure. They present a distributed
implementation of that approach. Guo, Jerrum, and Liu [14] present a sampling
version of the Lovász Local Lemma that can be applied in the distributed setting
to exactly sample from some weighted local CSPs.

Our approach using CFTP and bounding chains differs significantly from
both of these techniques. All three techniques also differ in terms of the weighted
local CSPs they are able to sample from. However, our techniques lead to results
for the hardcore model that improve upon the results of [9,14]. A precise com-
parison appears further below.

1.1 Main Results

The main results of our paper can be summarized as follows.

1. We present a distributed Markov chain for sampling from weighted local CSPs
and prove that it has the correct stationary distribution. This chain is based
on the Local Metropolis chain from [8] and the coloring chains from [7,10].
We believe that this chain may be the generalization briefly alluded to by
Fischer and Ghaffari in [10].

2. We apply the CFTP with bounding chains approach to the above-mentioned
distributed Markov chain. We then present a condition that guarantees ter-
mination of this algorithm in O(log n) rounds with high probability in the
Local model. Thus, under a fairly general condition, we obtain an O(log n)-
round algorithm in the Local model for exact sampling from weighted local
CSPs. This result is an improvement by a factor of n over the sequential
setting running time of O(n log n), for a slightly different condition, given by
[16].
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3. We finally show that the general algorithm described above leads to O(log n)-
round, small-message (i.e., Congest model), sampling algorithms for the
weighted independent sets (aka hardcore model) problem and the weighted
dominating sets problem. For the hardcore model, we are able to sample
within a constant multiple of the hardness threshold for this problem (see the
end of this section). Our algorithms do not abuse the power of the Congest

model and ensure that every local computation runs in polynomial time.
The hardcore model is governed by a parameter λ > 0, called the fugacity
of the model. Each independent set of size x is assigned a weight of λx;
therefore, the desired probability distribution assigns the same probability
to all independent sets of the same size. Furthermore, when λ < 1, small
independent sets are more likely than large independent sets. Our algorithm2

for the hardcore model requires λ ≤ α
Δ , for any constant α < 1. This almost

matches the condition λ ≤ α
Δ−1 that [16] gives for O(n log n) time in the

sequential setting. We also derive a similar condition for weighted dominating
sets.
Feng and Yin [9] also present results for exactly sampling from the hardcore
model. Their algorithm is much slower than ours, taking O(log3 n) rounds,
and it also uses large messages and exponential-time local computations. How-
ever, their result holds for a wider range of the fugacity parameter, specifically
when λ < (Δ−1)Δ−1

(Δ−2)Δ . Note that from [8], sampling from the hardcore model

is hard in the Local model for λ > (Δ−1)Δ−1

(Δ−2)Δ . In the sequential setting,
the same threshold is a barrier between polynomial and non-polynomial sam-
pling, unless RP=NP [11,31,32,34], given the connection between approxi-
mate counting and sampling [19,30]. Like us, Guo, Jerrum, and Liu [14] pro-
vide an O(log n)-round w.h.p. Congest algorithm for exact sampling from
the hardcore model using polynomial-time local computation; however, they
require a smaller range of λ than us, specifically λ ≤ 1

2
√

eΔ−1
.

Our algorithm improves over both [9,14], as every vertex always outputs its
label in an exact sample. The algorithm from [9] succeeds with high probabil-
ity and returns an exact sample conditioned on success; however, it may fail
and failures cannot be detected by every vertex locally. On the other hand,
the algorithm from [14] always succeeds in a random amount of time like ours;
however, a vertex cannot locally determine when its portion of the output is
finalized.

2 Technical Preliminaries

2.1 Sampling Weighted Local CSPs

A weighted CSP on a graph G = (V,E) consists of a set L of vertex labels and
a collection S ⊆ 2V of constraint sets, in addition to a constraint CR for each
2 Results on the hardcore often assume that algorithms run on graphs of constant

degree. In this sense, we require λ < 1
Δ

. Furthermore, on graphs of bounded degree,
our results can likely be slightly improved by using the LubyGlauber chain from [8].
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constraint set R . A labeling assigns an element in L to each vertex in V ; thus
LV is the set of all labelings of G. For a labeling � ∈ LV , v ∈ V , and R ⊆ V ,
we use �(v) to denote the label that � assigns to vertex v and � �R to denote the
restriction of � to R. Each constraint CR maps the set of all restricted labelings
� �R to the non-negative reals. The weight of labeling � is

∏
R∈S CR(� �R). We call

a labeling valid if it has weight greater than zero. A CSP is typically defined as
the problem of finding an arbitrary valid labeling. The weighted CSP is to sample
valid labelings, where the probability of choosing a labeling is proportional to
its weight. This probability distribution of labelings will be referred to as π.

For notational convenience, we will assume that S does not contain any
singleton sets. Instead, we will assume that for each vertex v there is a separate
unary constraint bv : L → R

≥0, that maps a label assigned to v to a non-negative
real number. Note that this is without loss of generality because for any v ∈ V ,
we can set bv(x) = 1 for all x ∈ L. With this additional notation, the weight of
a labeling � can be written as

∏

v

bv(�(v)) ·
∏

R∈S
CR(� �R). (1)

when there is a constant k such that every constraint set has a diameter in the
graph G bounded by k, then the weighted CSP is called a weighted local CSP.
Note that the diameter here refers to the distance in G, not the distance in the
subgraph of G induced by R.

We consider three examples of weighted local CSPs in this paper: weighted
independent sets (the hardcore model), weighted dominating sets, and (briefly)
the Ising model.

– Weighted independent sets are a weighted local CSP taking a parameter λ > 0
commonly called the fugacity. Here, the set of labels L = {0, 1}, the vertices
labeled 1 form the independent set. Each unary constraint bv is the function
bv(0) = 1, bv(1) = λ. The collection S of constraint sets is E, the set of all
edges in the graph. For every edge e = {u, v}, the constraint Ce(�(u), �(v)) =
0 if �(u) = �(v) = 1; otherwise, Ce(�(u), �(v)) = 1. Ce is simply ensuring
that the valid labelings are independent sets of G. Here an independent set
of size x has weight λx. Thus all independent sets of the same size have
uniform probability; however, for λ < 1 small independent sets have a higher
probability than large independent sets.

– Weighted dominating sets are a weighted local CSP very similar to weighted
independent sets. This CSP also takes a parameter λ > 0 and has the same
set of labels and unary constraints. The collection S of constraint sets consists
of inclusive neighborhoods Nv = Nbr+(v) for each vertex v. The constraint
Cnv

maps to 1 if at least one of the vertices in the inclusive neighborhood has
the label 1 and 0 otherwise.

– The Ising model, in a simple form as given by [8], is another weighted local
CSP. Here there are two possible labels, {−1, 1}, for each vertex, and bv(−1) =
bv(1) = 1. β > 0 is provided with the model. Each pair of adjacent vertices
has a constraint that maps to β if the vertices have the same label and 1
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otherwise. The weight given to a labeling is βa, where a is the number of
edges that have both of their vertices assigned the same label.

2.2 Related Work on Lower Bounds

The discussion thus far has been on upper bounds. However, there are interesting
lower bounds for sampling from the hardcore model in the Local model [8,14].
Feng, Sun, and Yin show an Ω(Diam) round lower bound on n-vertex graphs
with diameter Diam = Ω(n1/11), when λ > (Δ−1)Δ−1

(Δ−2)Δ . Guo, Jerrum, and Liu
[14] show a more general Ω(log n)-round lower bound. Similar bounds exist or
can be derived for other weighted local CSPs, see the two cited papers.

3 Distributed Markov Chain

In this section, we present a distributed Markov chain for sampling from weighted
local CSPs (see Algorithm 1). In subsequent sections we show that it is possible
to use this chain to exactly sample solutions of weighted local CSPs efficiently
in the Local model (and in the Congest model in some cases). Our Markov
chain is a simple modification of the LocalMetropolis Markov chain, given in
[8]. The LocalMetropolis chain contains a propose step in which each vertex
v independently proposes a label σv in L with probability proportional to bv(σv).
This is followed by a probabilistic local filter that is applied to each constraint
set. We describe this in more detail in the next paragraph. If all the constraint
sets containing a vertex v pass the local filter, then v adopts σv; otherwise it
retains its old label. We modify this Markov chain by first marking each vertex
independently with a fixed probability p and then allowing only the marked
vertices to be active in each step. This idea – of randomly sampling vertices
which will be active – is a standard idea in randomized distributed algorithms
(for example, Luby’s algorithm [1,26]), but more to the point it was used in [7,10]
to speed up their distributed Markov chain for coloring. In particular, [7,10] both
present the chain resulting from augmenting the LocalMetropolis chain for
colorings to have a set of marked vertices. Furthermore, we infer that the Markov
chain we present is the generalization mentioned by [10].

We now describe the local filtering step. During each step of the chain, if a
vertex v is marked then it has a current label Xv and a proposed label σv; other-
wise, it only has a current label Xv. For each constraint set R, we now consider a
collection L(R) of labelings of R. In particular, we call (�(v1), �(v2), . . . , �(v|R|))
a potential labeling of R, if each label �(vi) is chosen from either Xvi

or σvi
, and

as long as at least one of the |R| choices was made from σ. We now let L(R)
be the collection of all potential labelings, with the note that it can contain the
same element multiple times if there are multiple valid ways of choosing it. To
be technically correct, each potential labeling should be represented as a binary
vector, however we bend notation and treat a potential labeling as a labeling of
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the constraint set. Each constraint set R passes the local filter with probability

∏

�∈L(R)

CR(�)
C∗

R

. (2)

Here, C∗
R refers to the maximum value that the constraint can take over its entire

domain LR. C∗
R can be assumed to be nonzero; otherwise, every labeling would

be invalid.

Fig. 1. Example illustrating the computation of local filter probabilities for the
weighted independent set problem.

Figure 1 shows an example of how to apply the local filter to the weighted
independent set problem. The figure shows a subgraph with 3 vertices and along-
side each vertex we show its current label (top) and proposed label (bottom).
Vertex w has “x” as its proposed label because it is not marked active in this
iteration. Vertex v participates in two constraint sets R1 and R2 corresponding
to the two edges incident on it. The potential labelings L(R1) and L(R2) of each
constraint set are shown. Each tuple in L(R1) (respectively, L(R2)) shows u’s
label (respectively, v’s label) followed by v′s label (respectively, w’s label). Note
that tuple (1, 0) does not appear in L(R1) because that would correspond to both
labels being chosen from the current labels. Finally, the values of the constraint
function are shown on the right. In this case we use the same constraint function
for every constraint set. Note that the expression in (2) evaluates to 0 for R1

indicating that R1 does not pass the local filter. For R2 the local filter evaluates
to 1, indicating that R2 does pass the local filter. Since not all constraint sets of
v pass the local filter, v does not update its label.

We next prove that the Markov chain given by Algorithm 1 is ergodic (ape-
riodic and irreducible) with π as its stationary distribution under a mild con-
dition; for any two valid states X and Y , we have a sequence of valid states
X = Z1, ..., Zn = Y , where adjacent states differ at only a single vertex. Recall
that π is the distribution over labelings of G in which each labeling � has prob-
ability proportional to its weight, expression (1). This proof is based on and an
extension of the proof from [8]. The chain is clearly aperiodic since every state
can transition to itself. Furthermore, the condition mentioned above ensures
irreducibility. It remains to show that π is the stationary distribution. A stan-
dard way of showing that a distribution π is stationary for a Markov chain with
transition matrix M is to prove the detailed balance equations,
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Algorithm 1
Require: each vertex v initially has label Xv

each v ∈ V is marked active with probability p
for each active vertex v ∈ V do � Propose step

v chooses σv ∈ L with probability proportional to bv(σv)
end for
for each constraint set R ∈ S do � Local Filter step

R passes the local filter with probability
∏

�∈L(R)
CR(��R)

C∗
R

end for
for each active vertex v ∈ V do � Finalize labels

if all constraint sets in S containing v pass their checks then
Xv = σv

end if
end for

π(X) · M [X,Y ] = π(Y ) · M [Y,X]

for all states of the chain X,Y . As noted in [8], a slightly stronger condition is
needed for the chain to have the correct limit distribution if it starts in a state
with weight 0. This point will not concern us, as we will view the chain as only
being defined over valid states.

Theorem 1. Let M be the transition matrix of the Markov chain defined by
Algorithm 1. For all states X,Y we have π(X) · M [X,Y ] = π(Y ) · M [Y,X].

Proof. Let X �= Y be two valid labelings, thus X and Y are also states in the
Markov chain. Let Xv be the current label of vertex v and σv be the proposed
label if the vertex is marked, otherwise let σv = �. We also define the binary
vector I, where for each constraint set T ∈ S, IT = 1 if the constraint set T
passes its check and IT = 0 otherwise. If a vertex v is contained in any constraint
set T such that IT = 0, we call v restricted. Note that (σ, I) defines a function
from one state to another.

Given a pair of states, X and Y , there could be many tuples (σ, I) that map
X to Y and similarly many tuples (σ′, I′) that map Y to X. We now show
a bijection between tuples mapping X to Y and tuples mapping Y to X. Let
(σ, I) be a tuple mapping X to Y . From (σ, I), we construct (σ′, I′), a function
mapping Y to X as follows. For every vertex where Yv �= Xv, let σ′

v = Xv. For
all other vertices, let σ′

v = σv. Finally, let I = I′. To see that (σ′, I′) maps Y to
X, first note that for any vertex v where Xv �= Yv, we must have σv = Yv and
v must be unrestricted in I. This means that v is unrestricted in I′ and since
σ′

v = Xv, we see that (σ′, I′) maps Yv to Xv. For a vertex v where Xv = Yv,
either (a) σv = Yv = Xv, (b) σv = �, or (c) v is restricted in I. In case (a),
σ′

v = Yv = Xv, in case (b) σ′
v = �, and in case (c) v is restricted in I′. In all

three cases, (σ′, I′) maps Yv to Xv. It can be checked that this construction gives
a bijection (σ, C) ↔ (σ′, C′) between tuples that map from X to Y and those
that map from Y to X.
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It is now sufficient to show

P (σ)P (I|σ,X))
P (σ′)P (I′|σ′, Y ))

=
π(Y )
π(X)

. (3)

This is because

π(X) · M [X, Y ] = π(X)
∑

P (σ)P (I|σ, X)) = π(Y )
∑

P (σ′)P (I′|σ′, X)) = π(Y )M [Y, X],

where the middle equality follows from (3).
To show (3), we first observe that

P (σ)
P (σ′)

=
∏

v|Xv �=Yv

p · bv(Yv)
p · bv(Xv)

=
∏

v

bv(Yv)
bv(Xv)

.

We now consider P (I|σ,X))
P (I′|σ′,Y )) . Since each constraint is passed or failed indepen-

dently,
P (I|σ,X))
P (I′|σ′, Y ))

=
∏

T∈S

P (IT |σ,X))
P (I′

T |σ′, Y ))
.

There are now two cases to consider.

Case IT = 0. In this case, every vertex in the constraint set T is restricted. For
each of these vertices, we must have Xv = Yv and also σv = σ′

v. This means
that the set of potential labelings L(T ) used in the local filter probability
(2) are identical for the chain in state X and the chain in state Y . Thus
P (IT = 0|σ,X) = P (I′

T = 0|σ′, Y ). Therefore, we can can rewrite the ratio
P (IT = 0|σ,X)/P (I′

T = 0|σ′, Y ) as

P (IT = 0|σ,X))
P (I′

T = 0|σ′, Y ))
= 1 =

CT (Yv1 , . . . , Yv|T |)
CT (Xv1 , . . . , Xv|T |)

.

Case IT = 1. We establish a mapping between potential labels in set L(T ) for
state X and potential labels in set L(T ) for state Y that is almost a bijection.
Let X = (Xv1 ,Xv2 , . . . ,Xv|T |) be a potential labeling for state X. From X ,
we create a potential labeling Y = (Yv1 ,Yv2 . . . ,Yv|T |) for state Y , as follows.
– If Xvi

was chosen from Xvi
and Xvi

= Yvi
we can let Yvi

be chosen from
Yvi

.
– If Xvi

was chosen from Xvi
and Xvi

�= Yvi
we can let Yvi

be chosen from
σ′

i. Note that in this case, σ′
vi

= Xvi
.

– If Xvi
was chosen from σvi

and Xvi
= Yvi

we can let Yvi
be chosen from

σ′
vi

.
– If Xvi

was chosen from σvi
and Xvi

�= Yvi
we can let Yvi

be chosen from
Yvi

.
Note that in all 4 cases, Xvi

= Yvi
.

Note that Y is a potential labeling from L(T ) as long as not every
choice was from Yvi

. There is exactly one choice for the labels in X =
(Xv1 ,Xv2 , . . . ,Xv|T |) that is mapped to Y = (Yv1 , Yv2 , . . . , Yv|T |). In this
choice, every Xvi

was chosen from σvi
when Xvi

�= Yvi
and Xi when
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Xvi
= Yvi

. We denote this label X ′ and see that X ′ = (Yv1 , Yv2 , . . . , Yv|T |).
Furthermore, since X �= Y at least one choice for X ′ was made from σ so X ′

is a valid labeling.
Now recall that P (IT = 1|σ,X) =

∏
�∈L(T )

CT (��T )
C∗

T
according to (2). Thus, in

the ratio P (IT = 1|σ,X)/P (I′
T = 1|σ, Y ), all terms in the numerator cancel

out except for CT (Yv1 , Yv2 , . . . , Yv|T |). By a symmetric argument, there is a
single term CT (Xv1 ,Xv2 , . . . , Xv|T |) left in the denominator.

Altogether, this shows

P (IT = 1|σ,X))
P (I′

T = 1|σ′, Y ))
=

CT (Yv1 , ..., Yv|T |)
CT (Xv1 , ...,Xv|T |)

,

completing the proof.

4 Distributed Coupling from the Past

4.1 Coupling from the Past

Coupling from the past (CFTP), introduced in [29], is a technique for sampling
exactly from the stationary distribution of an ergodic Markov chain. A chapter
covering coupling from the past can be found in [23]. Suppose the Markov chain
is defined over a set of states Ω and has a transition matrix M . Following the
notation in [33], let f : Ω × {0, 1}∗ → Ω be a function such that P (f(X, r) =
Y ) = M [X,Y ], when r is a string chosen uniformly at random from {0, 1}∗. The
function f is called a random mapping representation of the transition matrix
M and is known to always exist (see Proposition 1.5 in [23]).

The function f allows us to use a common source of randomness and evolve
a chain beginning from each state σ ∈ Ω in a “coupled” manner. More precisely,
for integer t, let rt ∈ {0, 1}∗ be chosen uniformly at random. Let ft : Ω → Ω be
the function ft(X) = f(X, rt). Now define a function F t2

t1 : Ω → Ω for integers
t2 ≥ t1 as

F t2
t1 (X) = (ft2−1 ◦ ft2−2 ◦ · · · ◦ ft1)(X) = ft2−1(ft2−2(. . . ft1(X))).

The function F t2
t1 defines a coupled evolution of states from time t1 to time t2

with the property that P (F t2
t1 (X) = Y ) = M t2−t1 [X,Y ]. For each σ ∈ Ω, F t

0(σ)
defines the state at time t of a Markov chain beginning at σ and with transition
matrix M . The entire collection of Markov chains that evolve in this manner,
one starting in each state of Ω and using common random strings, is called a
grand coupling [23].

Now consider the function

F 0
−T (X) = (f−1 ◦ f−2 ◦ · · · ◦ f−T )(X) = f−1(f−2(. . . f−T (X))).

The insight of the CFTP technique is that if we can show that with probability
1 there exists a T such that F 0

−T is a constant function (i.e., every state in Ω
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is mapped to the same state by F 0
−T ), then the unique element in this image is

drawn exactly from the stationary distribution π of the Markov chain. We now
provide some intuition for this possibly surprising claim. First note that if F 0

−T1

maps all elements in Ω to ω ∈ Ω, then for any T2 > T1, the function F 0
−T2

also
maps all elements in Ω to ω. Note that this is not true for the symmetric and
invalid sampling technique, “coupling to the future”, where we use FT

0 instead
of F 0

−T . The critical difference here is that even if FT
0 becomes constant for a

sufficiently large T , we may not have FT+1
0 = FT

0 . We can therefore intuitively
think of CFTP as computing F 0

−∞. Since the stationary distribution is the limit
distribution of an ergodic Markov chain, the unique element in the image of F 0

−∞
is drawn exactly from the stationary distribution.

This insight suggests a natural algorithm for exact sampling. Starting with
T ′ = 1, compute F 0

−T ′(Ω) and check if |F 0
−T ′(Ω)| = 1. If it is, we output the

unique element (state) in F 0
−T ′(Ω), otherwise we double the value of T ′ and

repeat. Propp and Wilson point out that by choosing to double T ′ at each
iteration we only overshoot the smallest value of T where |F 0

−T (Ω)| = 1 by a
constant multiple [29]. To avoid biasing the samples it is critical that the same
choice of functions f−1, f−2, . . . is used to compute F 0

−T ′ each time T ′ is increased
and that the process is not stopped even if T ′ grows large without F 0

−T ′ becoming
constant.

Given that |Ω| can be exponentially large relative to the size of the input, a
problem with this algorithm is efficiently checking if F 0

−T ′ is a constant function.
Another issue is that in general the final value of T ′ needed may be large.

4.2 Bounding Chains

It is easy to check if F 0
−T is a constant function in the special case where the

grand coupling has a property called monotonicity [29]; however, we want to
sample from weighted local CSPs where monotonicity may not exist. Häggström
and Nelander [16] and Huber [17] describe the bounding chain technique for
determining when coupling from the past gives a constant function. The idea, is
that for each vertex we compute a superset of the labels it could be assigned by
F 0

−T for an unknown valid input labeling. If this label set is a singleton for every
vertex, F 0

−T is a constant function. Note that the converse does not necessarily
hold. When the label set of every vertex is a singleton, we call F 0

−T singular
(acknowledging the slight abuse of notation, since singularity also depends on
the method of computing the label sets). We can implement CFTP by checking
whether F 0

−T is singular, instead of constant. Note that a trivial choice for each
label set is L, however, this will lead to an algorithm that never terminates.

To give a concrete practical example, consider sampling from the hardcore
model in the sequential setting using bounding chains [16]. One step of the
Markov chain is defined as follows. A uniformly random vertex v is selected and
a coin is flipped with probability of heads λ

1+λ . If the coin flip is tails then v is
removed from the independent set. If the coin flip is heads and if no neighbors
of v are in the current independent set, then v joins the independent set. The
random mapping representation of this Markov chain, f , can be defined in a
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natural way with the random string r encoding a vertex and a coin flip, chosen
with the correct distribution from all (vertex, coin flip) pairs.

We now compute a superset of labels each vertex can be assigned by F 0
−T . We

use a recursive approach. In the trivial base case, T = 0, every vertex receives
the label set {0, 1}, indicating that in some states the vertex is outside the
independent set and in some states the vertex is inside the independent set. For
T ≥ 1, we first compute the label set for every vertex for F 0

−T+1. If the operation
of f−T is the removal of vertex v from the independent set, we can be sure that
regardless of the input state, v has the label 0. Thus v’s set of possible labels
is set to {0}. On the other hand, when f−T represents v attempting to join the
independent set, there are a few cases. If every neighboring vertex of v has the
label set {0} from the recursive call, then v joins the independent set regardless
of the input state, and is assigned the label set {1}. If any neighboring vertex
of v has the label set {1} from the recursive call, the join will fail regardless of
the input state, and v will get the label set {0}. In the remaining case, whether
the join succeeds may depend on the input state. Thus we assign v the label set
{0, 1}. Every other vertex simply keeps its set from the recursive call. It is shown
in [16], that singularity occurs for this process for T = O(n log n) in expectation,
as long as the fugacity λ ≤ α

Δ−1 , for any constant α < 1. This also holds with
high probability.

4.3 Distributed Bounding Chains

This section contains our main result in which we show how to apply CFTP
and the bounding chain technique to the distributed Markov chain defined in
Algorithm 1. This yields Theorem 2 which shows that if the weighted local CSP
satisfies a general condition we can sample exactly in O(log n) rounds in the
Local model. With additional conditions we get an O(log n)-round Congest

algorithm. Note that on some weighted local CSPs, such as colorings, this algo-
rithm will run forever. Furthermore, as stated earlier, terminating long running
instances of the algorithm before a sample is returned may bias the results.

We first note that there is a clear choice of a random mapping representation
of the chain described by Algorithm 1. In Algorithm 1, three random choices
are made: (i) each v ∈ V is marked active with probability p, (ii) each active
vertex v picks a label σv with probability proportional to bv(σv), and (iii) each
constraint set R passes the local filter with a certain probability (defined in Eq.
(2)). These random choices can be collectively specified by string r ∈ {0, 1}∗

chosen uniformly at random. Since we want to execute this algorithm in the
Local model, we note that rt can be generated in a distributed fashion. Each
vertex v can locally pick a random bit specifying whether it is marked active and
choose σv at random from L proportional to its bv values. To determine if the
constraint set R passes the local filter, we could have one vertex in R (e.g., the
vertex with the highest ID in R) pick a number uniformly at random from [0, 1].
To avoid worrying about precision, we actually let this vertex generate a binary
table (with arbitrary precision) specifying whether the constraint will pass or
not given every possible combination of current labels and proposals.
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The algorithm starts with T ′ = 1 and every vertex having label set {l ∈ L :
bv(l) > 0}. The algorithm then proceeds in stages 1, 2, . . .. After each stage, T ′

is doubled. At the start of a stage, some vertices have already output a label; we
call these vertices coalesced and the remaining vertices uncoalesced. Each stage is
initiated by uncoalesced vertices. The coalesced vertices are in a “stand by” mode
for the stage and will only become active if and when prompted by uncoalesced
vertices. At the end of a stage, any uncoalesced vertices that now have singleton
label sets output the unique label in their label sets. The algorithm is complete
after every vertex outputs a label.

Each stage consists of two phases, a preprocessing phase and a main phase.
We now describe both of these phases separately. Recall that k is the largest
diameter for any constraint.

Preprocessing Phase. First, each uncoalesced vertex v notifies every vertex w
in its (inclusive) kT ′ hop neighberhood that w will be active in the stage. Each
active vertex also learns its shortest path length from an uncoalesced vertex.
Next, each active vertex generates its portion of the random strings r−T ′ , ...,
r−(T ′/2)−1. These correspond to functions f−(T ′/2+1), f−(T ′/2+2), . . . , f−T ′ . Note
that the random strings ri, i > −(T ′/2) − 1, are retained from the previous
stage.

Main Phase. Every active vertex begins the phase by resetting its label set to
{l ∈ L : bv(l) > 0}. The main phase is composed of T ′ steps {0, ..., T ′ − 1}.

At step i, every active vertex v with distance at most k(T ′ − 1 − i) from an
uncoalesced vertex collects the part of r−T ′+i as well as the current label set
from every vertex in its k hop neighborhood. Now v has enough information to
compute the label f−T ′+i assigns to v for every labeling of its k hop neighbor-
hood. v can now update its label set to be the union of the label it is assigned by
f−T ′+i for every possible labeling of its k hop neighborhood. A labeling is only
possible if every vertex is given a label from its label set.

At the end of the phase, any vertices that have singleton label sets output
the single label in their label set.

4.4 Analysis

At the end of the main phase, every vertex that was uncoalesced at the beginning
of the stage has computed an upper bound on the set of labels that it could
possibly be assigned by F 0

−T ′ . Now consider a vertex v that has a singleton label
set at the end of the main phase. This means that regardless of the input labeling,
F 0

−T ′ assigns v a single label l. Since functions are composed in a “backwards”
order, we also know that F 0

−T ′′ assigns v the single label l for all T ′′ > T ′.
Once every vertex has output a label, we see that F 0

−T ′ is singular. Furthermore,
the labeling output by the vertices is the unique labeling in the image of F 0

−T ′ .
Therefore the output labeling is exactly drawn from π, the desired sampling
distribution, since π is also the stationary distribution of the Markov chain by
Theorem 1.
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The algorithm runs in O(k · T ∗) rounds in the Local model, where T ∗

is the smallest value such that F 0
−T ∗ is singular. When k = 1 and the set of

labels for the vertices has constant size, the algorithm runs in O(T ∗) rounds
in the Congest model. In theory, our algorithm requires exponential work per
machine; however, for some practical examples such as the hardcore model and
weighted dominating sets only polynomial work is required per machines. This
is because we can determine all of the possible labels of a vertex with a simple
rule.

We now prove a theorem that shows that in some cases T ∗ = O(log n) with
high probability. This theorem statement is similar to Theorem 2 from [16];
however, our method of proof is slightly different. Following the lead from that
paper (they credit some ideas to Murdoch and Green [27]), we choose γ to be a
lower bound, over every vertex v, on the probability that fi assigns v a single label
l ∈ L regardless of the input labeling, conditioned on v being marked active. We
also choose β to be an upper bound, over every vertex v, on the probability that
for any two labelings l1, l2 with l1(v) = l2(v) we have (fi(l1))(v) �= (fi(l2))(v),
conditioned on v being marked active. Intuitively, γ and β describe the likelihood
of a vertex moving towards or respectively away from a singleton label.

Theorem 2. The distributed bounding chain has T ∗ = O( 1
pγ−Δkpβ log n) with

high probability if γ > Δkβ, where Δi is the number of nodes in the largest
(exclusive) i hop neighborhood of the graph and k is the maximum diameter of
any constraint.

Proof. We will use the standard trick of considering the value of T needed for
FT
0 to be singular, instead of directly considering T ∗. While ’Coupling to the

Future’ is not a valid sampling technique, the distributions of time needed for
singularity are the same for FT

0 and F 0
−T . Let Y v

t be the indicator random
variable for whether vertex v is always given a singleton label set by F t

0 . Let Yt

be the sum of all the Y v
t . Assuming that the set of possible labels for each vertex

contains at least two elements, we have Y0 = n. The only way for a vertex with
a singleton label set to grow in size, is if it shares a constraint with a vertex with
a non-singleton label set. We can now see

E[Yt+1] ≤ Yt + YtΔkpβ − Ytpγ = Yt(1 + Δkpβ − pγ) = Yt(1 − (pγ − Δkpβ)).

We want to have pγ − Δkpβ > 0, which is equivalent to the condition γ > Δkβ.
Setting α = (pγ − Δkpβ), we now have, for 0 < α < 1,

E[Yt+1] =
n∑

i=0

E[Yt+1|Yt = i]P (Yt = i) ≤
n∑

i=0

(1 − α)iP (Yt = i) = (1 − α)E[Yt].

By induction, it follows that E[Yt] ≤ (1 − α)tn. By Markov’s inequality, for
T = O( 1

α log n), it follows that P (YT ≥ 1) ≤ 1
n , which completes the proof.

Corollary 1. When γ − Δkβ > r for some constant r > 0, the algorithm runs
in O(k log n) rounds in the Local model. Furthermore, if k = 1 and L has finite
size, the algorithm runs in O(log n) rounds in the Congest model.
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5 Results for Specific CSPs

Theorem 3. An O(log n) round Congest algorithm exists for sampling from
the hardcore model when the fugacity λ ≤ α

Δ for any constant α < 1.

Proof. Note that a choice of γ is 1
1+λ

(
1 − Δp λ

1+λ

)
, since a vertex will always

accept a proposal to leave the independent set if no neighboring vertex is marked
and proposing to join the independent set. A choice of β is λ

1+λ , since the label
set of a vertex can only grow if the vertex is proposing to join the independent
set. Finally, Δk = Δ. Thus we need γ − Δβ > r > 0, for some constant r.

Note that
1

1 + λ

(
1 − Δp

λ

1 + λ

) − Δ
λ

1 + λ
≥ 1

1 + λ

(
1 − p

α

1 + λ

) − α

1 + λ
=

1 − α

1 + λ
− pα

(1 + λ)2
≥ 1 − α − pα

1 + λ
≥ 1 − α(1 + p)

1 + α

Choosing p small enough we are done.

Theorem 4. An O(log n) Congest algorithm exists for sampling weighted
dominating sets when λ ≥ αΔ2 for any constant α > 1.

Proof. While there are now constraints that are not unary or binary, we are
still able to run the algorithm in the Congest model. This is because necessary
information can be aggregated at the vertex at the center of each constraint and
then distributed to the other vertices of the constraint.

Similar to the hardcore model we can choose γ = λ
1+λ

(
1 − Δkp 1

1+λ

)
and

β = 1
1+λ . Note that here Δk = Δ + Δ(Δ − 1) = Δ2. Again it is sufficient for

γ − Δkβ > r > 0, for some constant r.

λ

1 + λ

(
1 − Δkp

1
1 + λ

) − Δk
1

1 + λ
≥ αΔk

1 + αΔk

(
1 − Δkp

1 + αΔk

) − Δk

1 + αΔk
=

Δk

1 + αΔk

(

α
(1 + Δk(α − p)

1 + αΔk

) − 1
)

≥ 1
1 + α

(

α
(α − p

α

) − 1
)

=
a − p − 1
1 + a

We are done as long as p is sufficiently small.

Remark 1. The simplified Ising model with parameter β > 1 remains monotone
in the distributed setting; see [29] for a more detailed explanation in the sequen-
tial setting. Our algorithm can be modified to give samples from the Ising model.
Instead of keeping track of potential labels for each vertex, each vertex keeps
track of its label when the input of F−T is � and ⊥. When they are equal, the
vertex outputs this label. We don’t have a bound on the runtime of this app-
roach; however, combining the analysis of monotone CFTP [29] and the remark
of [10]3 may imply an efficient, O(log2 n) round, Congest algorithm for some
range of β.
3 They mention that the Dobrushin condition [6] is enough for fast mixing of their

chain; however, we cannot guarantee that we are using the generalization they men-
tion and also they don’t provide a proof of their claim.
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6 Conclusion

We have shown that for certain weighted local CSPs, CFTP combined with
the bounding chain technique allows efficient exact sampling in the Local and
sometimes even the Congest model. Previous work [9,14] that achieved results
for exact distributed sampling used very different techniques, so a conceptual
contribution of our paper is showing that CFTP and bounding chains should
also be added to our toolkit for exact distributed sampling. We wish to highlight
two open questions suggested by this work.

Does there exist a logarithmic-round Congest or Local algorithm that
exactly samples uniform colorings from a palette of size O(Δ)? In the sequential
setting, one of the original papers describing bounding chains showed that there
is a polynomial-time exact coloring algorithm when the number of colors is
Θ(Δ2) [17]. Very recent work on bounding chains in the sequential setting has
shown that uniform exact sampling of colorings is possible in polynomial time
using only Θ(Δ) colors [4,18].

Compared to the Congest model, many problems can be solved much faster
in “all-to-all” communication models such as the CongestedClique model
[13,15,20,25]. A question suggested by recent work on distributed sampling is
whether much faster distributed sampling algorithms – exact or approximate –
can be designed for the CongestedClique model.
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Abstract. We consider a natural problem dealing with weighted packet
selection across a rechargeable link, which e.g., finds applications in cryp-
tocurrency networks. The capacity of a link (u, v) is determined by how
much nodes u and v allocate for this link. Specifically, the input is a
finite ordered sequence of packets that arrive in both directions along
a link. Given (u, v) and a packet of weight x going from u to v, node
u can either accept or reject the packet. If u accepts the packet, the
capacity on link (u, v) decreases by x. Correspondingly, v’s capacity on
(u, v) increases by x. If a node rejects the packet, this will entail a cost
affinely linear in the weight of the packet. A link is “rechargeable” in
the sense that the total capacity of the link has to remain constant, but
the allocation of capacity at the ends of the link can depend arbitrarily
on the nodes’ decisions. The goal is to minimise the sum of the capacity
injected into the link and the cost of rejecting packets. We show that the
problem is NP-hard, but can be approximated efficiently with a ratio of
(1 + ε) · (1 +

√
3) for some arbitrary ε > 0.

Keywords: network algorithms · approximation algorithms ·
complexity · cryptocurrencies · payment channel networks

1 Introduction

This paper considers a novel and natural throughput optimization problem where
the goal is to maximise the number of packets routed through a network. The
problem variant comes with a twist: link capacities are “rechargeable”, which is
primarily motivated by payment-channel networks routing cryptocurrencies.

We confine ourselves to a single capacitated network link and consider a
finite ordered sequence of packet arrivals in both directions along the link. This
can be modelled by a graph that consists of a single edge between two vertices
u and v, where bu and bv represent the capacity u and v inject into the edge
respectively. Each packet in the sequence has a weight (or value) and a direction
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(either going from u to v, or from v to u). When u forwards a packet going in the
direction u to v, u’s capacity bu decreases by the packet weight and v’s capacity
bv correspondingly increases by the packet weight (see Fig. 1 for an example).
Node u can also reject to forward a packet, incurring a cost linear in the weight
of the packet. The links we consider are rechargeable in the sense that the total
capacity bu + bv of the link can be arbitrarily distributed on both ends, but the
total capacity of the link cannot be altered throughout the lifetime of the link.
Given a packet sequence, our goal is to minimise the sum of the cost of rejecting
packets and the amount of capacity allocated to a link.

The primary motivating example of our model is payment channel net-
works [7,8] supporting cryptocurrencies [1,12]. These networks are used to route
payments of some amount (i.e. weighted packets in our model) in a multi-hop
fashion between any two users of the network. In this way, users can directly
transact with other users off-chain, and in so doing avoid the hefty transaction
fees as well as long delays they would incur when transacting on the blockchain.
Any two users in a payment channel network can create a channel (i.e. recharge-
able link in our model) between themselves and deposit some funds only to
be used in this channel (i.e. the initial capacity injected at each endpoint in
our model). We note that users can always retrieve their funds in the payment
channel at any time, but this would involve closing the channel and taking out
the funds. For users that transact frequently and hence use payment channel
networks, frequently closing channels and withdrawing their funds would defeat
the purpose of them using payment channels as they would now need go back to
transacting on the blockchain which is costly. Thus, the amount of funds injected
into the payment channel can be seen as a “cost” for keeping the payment chan-
nel open to avoid using the blockchain. The total amount of funds deposited
in the channel is its total capacity and remains invariant for the lifetime of the
channel. Each payment moving across the channel simply updates the current
balances (i.e. capacity at each end point of the link) of the two users in the chan-
nel, while maintaining that the total amount of funds in the channel remains the
same.

Routing payments in payment channel networks comes with a profit: inter-
mediate nodes on a payment route typically charge a fee for forwarding payments
that is linear in the payment amount. Hence, if users reject to forward a payment,
they would lose out on profiting from this fee and thereby incur the fee amount
as opportunity cost. However, a depleted channel (i.e. a link with capacity 0 at
one end) due to indiscriminate forwarding of payments can also impact trans-
action throughput. In particular, a depleted channel cannot forward any further
payments unless the channel is closed and reopened with larger capacity, which
also incurs corresponding cost. Hence the choice of how much capacity to inject
into a channel and which transactions to forward and which to reject is crucial to
maintain the lifetime of a payment channel [4,10]. Channels in payment channel
networks are also rechargeable for security reasons, see [12] for more details.

Here we stress a crucial difference between our problem and problems on
optimising flows and throughput in typical capacitated communication net-
works [5,13]. In traditional communication networks, the capacity is usually
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independent in the two directions of the link [9]. In our case, however, the
amount of packets u sends to v in a link (u, v) directly affects v’s capability
to send packets, as each packet u send to v increases v’s capacity on (u, v).

We start with a description of rechargeable links, then explain the actions
nodes can take and corresponding costs. Finally, we state our main results.

Rechargeable Links. One unique aspect of our problem is that the links we con-
sider are rechargeable. Rechargeable links are links that satisfy the following
properties:

1. Given a link (u, v) with total capacity M , the capacity can be arbitrarily split
between both ends based on the number and weight of packets processed by
u and v. That is, bu and bv can be arbitrary as long as bu + bv = M and
bu, bv ≥ 0. See Fig. 1 for an example of how bu and bv can vary in the course
of processing packets.

2. The total capacity of a link is invariant throughout the lifetime of the link.
That is, it is impossible for nodes to add to or remove any part of the capacity
in the link. In particular, if a node is incident to more than one link in the
network, the node cannot transfer part of their capacity in one link to “top
up” the capacity in the other one.

Fig. 1. The diagram on the top shows the outcome of u successfully processing a packet
x of weight 10 along the link (u, v). The subsequent capacities of u and v are 0 and
17 respectively. The diagram on the bottom shows the outcome where, even though
the total capacity of the (u, v) link is 17, u’s capacity of 10 on (u, v) is insufficient to
forward a packet x of weight 15. As such, the subsequent capacities of u and v on the
link (u, v) remain the same.

Node Actions and Costs. First, we note that creating a link incurs an initial cost
of the amount the node allocates in the link. That is, if node u allocates bu in
link (u, v), the cost of creating the link (u, v) for u would be bu. Consider a link
(u, v) in the network and a packet going from u to v along the edge. Node u can
choose to do the following to the packet:
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– Accept packet. Node u can accept to forward the packet if their capacity
in (u, v) is at least the weight of the packet. The result of doing so decreases
their capacity by the packet weight and increases the capacity of v by the
packet weight. Note that apart from gradually depleting a node’s capacity,
accepting the packet does not incur any cost.

– Reject packet. Node u can also reject the packet. This could happen if u’s
capacity is insufficient, or if accepting the packet would incur a larger cost
in the future. For a packet of weight x, the cost of rejecting the packet is
f · x + m where f,m ∈ R

+.

We note that node u does not need to take any action for packets going in the
opposite direction (i.e. from v to u) as these packets do not affect u’s cost. See
Sect. 2 for more detail regarding packets.

Our Contributions. We introduce the natural weighted packet selection problem
and show that it is NP-hard by a reduction from subset sum. Our main contribu-
tion is an efficient constant-factor approximation algorithm. We further initiate
the discussion of how our approach can be generalised from a single link to a
more complex network.

Organisation. Section 2 introduces the requisite notations and definitions we use
in our paper, and also a formal statement of the weighted packet selection for a
link problem. Section 3 provides the necessary algorithmic building blocks we use
to construct our main algorithm. In Sect. 4, we present our main approximation
algorithm and prove that it achieves an approximation ratio of (1+ε)(1+

√
3) for

weighted packet selection in Theorem 1. We show that weighted packet selection
for a link is NP-hard in Sect. 5. Finally, we discuss some possible generalisations
of our algorithm from a single link to a larger network in Sect. 6. We conclude
our work by discussing future directions in Sect. 7.

2 Notation and Definitions

Packet Sequence. Let (u, v) be a link. We denote an ordered sequence of packets
by Xt = (x1, . . . , xt). Each packet xi ∈ Xt has a weight and a direction. We
simply use xi ∈ R

+ to denote the weight of the packet xi. We say a packet xi

goes in the left to right direction (resp. right to left) if it goes from u to v (resp.
from v to u). Let X→ denote the subsequence of Xt that consists of packets
going from left to right and X← the subsequence of Xt that consists of packets
going from right to left. For an integer t ≥ 1, we use [t] to denote {1, . . . , t}.

Problem Definition. We now formally define weighted packet selection for a link
. The input to our problem is a rechargeable link (u, v) and a sequence of packets
Xt arriving on that link. We adopt the optimisation problem perspective over
the entire link, instead of individual nodes. That is, we suppose nodes u and
v collaborate and act as a coalition regardless of how they decide to initially
split the capacity on both ends. The problem therefore is to compute the initial
capacity and distribution (how it should be split on both ends) on the link as
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well as to decide on whether to accept or reject each packet in Xt such that the
overall solution minimises the sum of the rejection cost as well as the cost of the
capacity locked in the link.

Optimal Algorithm and Costs. Let xmin be the weight of the packet with the
smallest weight in Xt and Mmax be the total capacity in the link needed to
accept all packets. Mmax for Xt is easy to compute in time O(t) and is upper
bounded by the sum of the weight of all packets in Xt. Similarly, given any
sequence of decisions, we can compute the minimal cost of the capacity locked
in the link and optimal initial distribution of capacity by greedy simulation.
Let OPT be the cost of the optimal algorithm and OPTM be the cost of the
optimal algorithm using a capacity of M in the link. Additionally, we use OPTR

to denote the cost of the optimal algorithm for rejecting packets and OPTC to
denote the corresponding capacity cost (i.e., amount of capacity injected in the
link). Similarly, we use OPTR

M to denote the cost for rejecting packets of the
optimal algorithm using a capacity of M in the link (note that OPTC

M = M ,
OPT = OPTC + OPTR, and OPTR

M ≤ OPTR).

3 Preliminary Insights and Algorithmic Building Blocks

We start our investigation of the weighted packet selection problem by describing
a procedure to approximate the optimal capacity in a link using binary search
and use this approximation to derive a lower bound on the cost of the optimal
algorithm. We then describe a linear program that fractionally accepts packets
(i.e. part of a packet can be accepted) given a fixed link capacity M and show
that the solution of the linear program given M is a lower bound on the cost of
the optimal algorithm given M . These results are used as building blocks for our
main algorithm and theorem in Sect. 4. Nevertheless, we also present a simpler
example of how to use the solution of the linear program that also comes with
some guarantees in Appendix A which may be of independent interest.

3.1 Approximating the Optimal Capacity

We present a lemma that allows us to fix the capacity of the link to some value
M ∈ R

+ for a small trade-off in the approximation ratio. Recall that xmin is the
weight of the smallest packet in Xt and Mmax is the capacity needed to accept
all packets. Observe that if the optimal capacity is not 0, it has to lie in the
interval [xmin,Mmax]. We thus fix some ε > 0 and perform a search for M over
all k ∈ N such that xmin(1 + ε)k ≤ Mmax. Let us denote by LBM any lower
bound on OPTR

M , the optimal rejection cost using at most capacity M .
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Lemma 1. For any ε > 0, let M = {xmin(1 + ε)k|k ∈ N and xmin(1 + ε)k ≤
Mmax} ∪ {0}. Then, the following inequality holds:

min
M∈M

(
LBM +

M

1 + ε

)
≤ OPT

Proof. We first analyse the case where the optimal algorithm rejects all packets.
In this case, we know that since M contains 0, LB0 ≤ OPTR

0 = OPT0 = OPT ,
so the inequality holds.

Now, suppose that the optimal algorithm accepts at least one packet. This
means OPTC ≥ xmin. So there exists a k ∈ N such that xmin(1 + ε)k−1 ≤
OPTC ≤ xmin(1 + ε)k. Set M = xmin(1 + ε)k. We need to show that that
LBM + M

1+ε ≤ OPT = OPTR + OPTC . From the way we choose M , we know
that M

1+ε ≤ OPTC .
Now we just need to show LBM ≤ OPTR. Observe that the optimal rejection

cost for any link with larger capacity is always at most the rejection cost for any
link with smaller capacity, as in the worst case the algorithm in the former
setting accepts the same set of packets that the algorithm in the latter setting
accepts. Thus, for any M ′ ≥ M , OPTR

M ′ ≤ OPTR
M . And since we chose M as

an upper bound on OPTC , it means OPTR = OPTR
OPT C ≥ OPTR

M ≥ LBM . ��

Looking ahead, we describe an algorithm that is a (1 +
√

3)-approximation
of LBM in Sect. 4. Thus, together with Lemma 1, we can use this algorithm to
approximate weighted packet selection with a ratio of (1+ε)(1+

√
3) by running

the algorithm at most 1
ε log Mmax

xmin
times. We note that choosing a smaller value

of ε yields a better approximation, but increases the running time.

3.2 Linear Program Formulation

Here, we describe a linear program that computes a lower bound for OPTR
M . We

first observe that due to the capacity constraints, the optimal algorithm with
capacity M cannot accept packets with weight larger than M . Hence, for the
rest of the analysis, we assume that all packets in Xt have weight less than M .

In the linear program, we allow accepting a fractional amount of a packet.
That is, we create a variable 0 ≤ yi ≤ xi for every packet xi ∈ Xt that represents
the extent to which the packet is accepted. For instance, yi = xi

2 means that half
of xi is accepted. We introduce variables SL,i and SR,i denoting the capacity on
the left and right ends of the link after processing first i packets from Xt. We
reiterate that due to the rechargeable property of the link, SL,i +SR,i = M , and
0 ≤ SL,i, SR,i ≤ M .
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We can now formulate the linear program in Eq. (1):

minimise
∑

i

f(xi − yi) + m
xi − yi

xi
(1)

subject to ∀i : yi, SL,i, SR,i ≥ 0
∀i : yi ≤ xi

∀i : SL,i + SR,i = M

∀xi ∈ X→ : SL,i = SL,i−1 − yi

∀xi ∈ X→ : SR,i = SR,i−1 + yi

∀xi ∈ X← : SL,i = SL,i−1 + yi

∀xi ∈ X← : SR,i = SR,i−1 − yi

Let LPM be the solution of the linear program with capacity parameter M .
The following lemma states that LPM is a lower bound of the optimal cost of
the weighted packet selection for a link problem with capacity M .

Lemma 2. LPM ≤ OPTM for all M .

Proof. OPTM is an admissible solution to the linear program. If some other
(fractional) solution is found, we know that it is at most OPTM . ��

The linear program can be solved in time O(nω) where n is the number of
variables in the linear program and ω the matrix multiplication exponent [6]
(currently ω is around 2.37).

4 A Constant Approximation Algorithm

Based on the insights in the previous section, we now present a (1 +
√

3)-
approximation algorithm for the weighted packet selection for a link problem
with fixed capacity M . We present the formal description of the algorithm
in Algorithm 1 for packets xi ∈ X→ and omit the procedure for xi ∈ X←
as the decision process is symmetric.

In a nutshell, Algorithm 1 consists of three main ideas: first, it uses M capac-
ity to follow the decisions made by the linear program solution as much as pos-
sible, using an additional

√
3M as reserve capacity to fully accept some packets

that were fractionally accepted by the linear program. Second, Algorithm 1 tries
to maintain a balance in the distribution of capacity in both ends of the link.
Intuitively, any packet that is accepted by the linear program can be accepted
when the algorithm is in this balanced state.

Lastly, whenever the capacity is unbalanced: one side (wlog left side) has too
little capacity, the algorithm prioritises accepting packets that come from right
to left as well as rejecting packets that go from left to right. This brings the
capacity at both sides to the balanced state, and our analysis shows that the
approximation ratio is maintained below 1 +

√
3.
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Input and Initial Capacity Distribution. Algorithm 1 takes as input Xt and the
solution of linear program given a fixed capacity M . Recall that SL,i and SR,i

for i ∈ [t] are the capacity distributions from the linear program solution on the
left and right end of the link respectively after processing the ith packet. The
algorithm uses the initial distribution SL,0 and SR,0, and additionally creates 2
“reserve capacity buckets” RL and RR of size

√
3
2 M each on both ends. Thus,

the initial capacity of the left node would be SL,0 + RL and the initial capacity
of the right node would be SR,0+RR. Intuitively, one can think of the additional
capacity in RL and RR as a reserve source of capacity that is used to help Algo-
rithm 1 fully accept packets that are fractionally accepted in the linear program
solution.

Algorithm 1 accepts packets in the following way: for a packet of size xi

wlog in X→, assuming there is sufficient capacity in RL, the packet is accepted
using (xi − yi) capacity from RL and yi capacity from SL,i. The capacity of
SL,i decreases by yi and the capacity of SR,i increases by yi, and the capacity
in RL decreases by (xi − yi) while the capacity in RR increases by the same
amount. If the algorithm rejects xi, the algorithm takes yi from RR,i and adds
it to SR,i+1, and takes yi from SL,i and adds it to RL,i+1. We stress that in
doing so, the algorithm always ensures that the updates to SL,i and SR,i at
each step are exactly the same as the solution to the linear program. We also
note that Algorithm 1 always maintains the invariant that SL,i + SR,i = M and
RL + RR =

√
3M for all i.

We distinguish between three phases of Algorithm 1. We say the algorithm is
in the balanced phase if both RL ≥

√
3−1
2 and RR ≥

√
3−1
2 . If RL <

√
3−1
2 , we say

the algorithm is in the left phase, and if RR <
√
3−1
2 , we say the algorithm is in

the right phase. We also distinguish between 2 types of packets: little-accepted
and almost-accepted packets. We say a packet is little-accepted if yi

xi
<

√
3

1+
√
3
,

and almost-accepted if yi

xi
≥

√
3

1+
√
3
.

Balanced Phase. In the balanced phase, Algorithm 1 accepts all packets that are
almost-accepted in the linear program solution. It also accepts little-accepted
packets that allow it to remain in the balanced phase. That is, for a little-
accepted packet xi wlog in X→, it first checks if the left reserve RL is sufficient
to forward the packet, and that doing so keeps the algorithm in the balanced
phase (Line 4). If RL does not have sufficient capacity, the algorithm rejects xi

(Line 8).
We first show in the following lemma that rejecting any little-accepted packet

is safe in the sense that doing so will not push the approximation ratio of the
algorithm above 1 +

√
3.

Lemma 3. All little-accepted packets can be rejected while keeping the approxi-
mation ratio below 1 +

√
3.
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Algorithm 1. (1 +
√

3)-approximation algorithm
Input: packet sequence Xt, capacity M , solution of LPM :SL,i, SR,i, yi.
Output: decisions to accept or reject

1: initialise RL =
√
3
2

M , RR =
√
3
2

M
2: for i ∈ [t] do
3: if xi ∈ X→ then
4: if RL − (xi − yi) ≥

√
3−1
2

M then
5: Accept
6: RL = RL − (xi − yi)
7: RR = RR + (xi − yi)
8: else if xi is little-accepted then
9: Reject

10: RL = RL + yi

11: RR = RR − yi

12: else
13: φA, φR, U, R′

L, j ← DivideRL, LPM , Xt, i
14: UR ← {}
15: if R′

L < 0 then
16: UR, R′

L ← RejectBigXt, U, R′
L

17: Accept all xi ∈ φA ∪ (U \ UR)
18: Reject all xi ∈ φR ∪ UR.
19: RL = R′

L

20: RR =
√

3M − RL

21: i = j

Proof. Recall that rejecting a packet xi incurs a cost of fxi+m. From Eq. (1), the
cost of a little-accepted packet xi for the linear program is f ·(xi−yi)+mxi−yi

xi
≥

fxi

1+
√
3
+ m

1+
√
3

= 1
1+

√
3
(fxi+m). From Lemma 2, we know that the solution of the

linear program for a fixed capacity M is a lower bound on the optimal solution
with capacity M , hence rejecting little-accepted packets will not increase the
approximation ratio above 1 +

√
3. ��

In the next lemma (with proof in Appendix B.1), we show that processing
little-accepted packets does not affect whether the algorithm stays in the bal-
anced phase or not. This simplifies the decision making process of Algorithm 1
as it can just focus on the decision problem for almost-accepted packets.

Lemma 4. Algorithm 1 never leaves the balanced phase after processing a little-
accepted packet.

Left Phase. Since Algorithm 1 accepts all almost-accepted packets in the bal-
anced phase, it would sometimes have to enter the left or right phase. Here we
describe the procedure for what happens in the left phase (the right phase is
analogous).

Suppose Algorithm 1 enters the left phase after processing packet xi−1. The
objective of Algorithm 1 in this phase is to accept all almost-accepted packets
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among the unprocessed packets (i.e. packets xi, . . . , xt). If this is not possible,
the algorithm rejects some of them such that both of the following conditions
hold: first, the approximation ratio remains 1 +

√
3, and second, the algorithm

returns to a balanced phase.
To do so, Algorithm 1 calls a subroutine Divide (Line 13 in Algorithm 1) to

sort all unprocessed packets into three sets: φA, φR, U . Set φA contains all packets
from X←. These will be accepted as they will increase the left capacity reserve
RL and help to bring Algorithm 1 back into the balanced phase. Set φR contains
little-accepted packets from X→. These will be rejected and from Lemma 3 we
know that doing so does not increase the approximation ratio. Set U contains
almost-accepted packets from X→. Some of these packets will be accepted and
some rejected in a way that maintains the approximation ratio.

Divide (described in Algorithm 2) takes as input the packet sequence Xt,
the solution of the linear program as well as the current capacity in the left
reserve RL. Divide creates the sets φA, φR, U incrementally by processing each
unprocessed packet and accepting packets from φA ∪ U and rejecting packets
from φR until one of the following stopping conditions occurs:

1. RL < 0 which would mean the left capacity reserves are depleted
2. RL >

√
3−1
2

3. all packets are processed

If the first stopping condition is reached (Line 15 in Algorithm 1), the proce-
dure RejectBig is called. RejectBig (described in Algorithm 3) takes as input
the set U and outputs another set UR ⊂ U . This set UR is created by greed-
ily selecting the biggest sized packets in U (Line 3 in Algorithm 3) and adding
them to UR. These packets will be rejected and the left capacity reserves will
be accordingly updated after each rejected packet (Line 6 in Algorithm 3). The
procedure RejectBig terminates when the left capacity reserves RL ≥

√
3−1
2 .

Now we show that if Divide terminates on either the second and third stop-
ping condition, Algorithm 1 will either be in the balanced phase (second stopping
condition) or all packets will be processed and Algorithm 1 terminates (third
stopping condition).

Lemma 5. If Divide returns R′
L ≥ 0 and j, all almost-accepted packets

between i and j are accepted by Algorithm 1 and either all packets are processed
or RR,j ≥

√
3−1
2 and RL,j ≥

√
3−1
2 .

Proof. There are two reasons why Divide returned R′
L ≥ 0: either R′

L ≥
√
3−1
2

or j = t.
In both cases, we note that Divide simulated accepting all packets from φA

and U and rejecting all packets from φR, and at no time R′
L went below 0. That

means that Algorithm 1 just repeats decisions of Divide.
Finally, since RL +RR =

√
3 and all packets are smaller than M , this means

that Algorithm 1 after emerging from left-phase cannot plunge to a right-phase
right away. ��
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Algorithm 2. Function Divide to create sets φA, φR, and U .
Input: packet sequence Xt, solution of LP :SL,i, SR,i, yi, value RL, capacity M ,
Output: sets φA, φR, U , resulting RL

1: RL = RL − (xi − yi)
2: φA, φR, U ← {}, {}, {xi}
3: j = i

4: while RL ≥ 0 and RL <
√
3−1
2

and j < t do
5: j = j + 1
6: if xj ∈ X→ and xj is almost-accepted then
7: RL = RL − (xj − yj)
8: U ← U ∪ xj

9: else if xj ∈ X→ and xj is little-accepted then
10: RL = RL + yj

11: φR ← φR ∪ xj

12: else
13: RL = RL + (xj − yj)
14: φA ← φA ∪ xj

15: return φA, φR, U, RL, j

Algorithm 3. Function RejectBig to prune out packets from U .
Input: packet sequence Xt, set U , value R′

L

Output: set UR, value R′
L

1: UR ← {}
2: while R′

L <
√
3−1
2

do
3: xk ← biggest packet from U
4: U ← U \ xk

5: UR ← UR ∪ {xk}
6: R′

L = R′
L + xk

7: return UR, R′
L

As the penultimate step in our analysis, we show in the next lemma (with
proof in Appendix B.2) that RejectBig does not bring the approximation ratio
of Algorithm 1 over 1+

√
3. We do this by computing the rejection cost incurred

by Algorithm 1 on packets from UR and showing that it is always lower than
(1+

√
3) times the cost of the linear program on U . As the solution of the linear

program is a lower bound on the cost of the optimal algorithm, this shows that
Algorithm 1 maintains the approximation ratio even when rejecting packets from
UR.

Lemma 6. In Algorithm 1, for sets U and UR the following inequality holds:

(1 +
√

3)
∑

xi∈U

f · (xi − yi) + m
xi − yi

xi
≥

∑
xi∈UR

fxi + m

We now have all the necessary ingredients to state and prove our main the-
orem, which is that weighted packet selection can be approximated with an
approximation ratio of (1 + ε)(1 +

√
3).
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Theorem 1. The weighted packet selection for a link problem can be approxi-
mated with a ratio (1 + ε)(1 +

√
3) in time O(nω · 1

ε · log Mmax
xmin

), where ω is the
exponent of n in matrix multiplication.

Proof. We perform a search for the capacity of the link according to Lemma 1
and for every capacity M searched we solve the linear program (as stated in Eq.
(1)) and run Algorithm 1. The solution is the output of Algorithm 1 with the
smallest cost.

We know that xmin(1 + ε)
1
ε ·log Mmax

xmin ≥ Mmax. That means we need to solve
the linear program and run Algorithm 1 at most 1

ε · log Mmax
xmin

times.
From Lemma 2 we know that the solution of the linear program with param-

eter M is a lower bound for OPTR
M .

From Lemma 7, we know that Algorithm 1 accepts all fully-accepted pack-
ets. The algorithm can reject any little-accepted packets by Lemma 3. We also
know from Lemma 4 that in the balanced phase Algorithm 1 accepts all almost-
accepted packets and never leaves the phase after processing little-accepted pack-
ets. Finally, Lemma 6 shows that even in a left (or right) phase the approxima-
tion ratio of Algorithm 1 on almost-accepted packets is 1 +

√
3. This means

Algorithm 1 is (1 +
√

3)-approximation algorithm for the solution of the linear
program. Moreover, the algorithm uses (1 +

√
3) times more capacity that the

linear program.
Using Lemma 1, we find that the selected solution is a (1 + ε)(1 +

√
3)-

approximation of the weighted packet selection for a link problem. ��

5 Hardness

In this section, we show that weighted packet selection for a link is generally
NP-hard.

Theorem 2. Weighted packet selection for a link is NP-hard.

Proof. We show a reduction from the subset sum problem, which is known to
be NP-hard [2]. In the subset sum problem, we are given a multiset of integers
I := {i1, i2, . . . , in} and a target integer S. The goal is to find a subset of I with
a sum of S.

Consider the following question in the weighted packet selection for a link
problem: “is the cost below a given value?” We show this question is NP-hard.

We set the constants to m = 0 and f = 3
4 . We create a packet sequence

consisting of i1, i2, . . . , in where the jth packet in the sequence has weight ij
which is the jth element in I. These packets all go from left to right. Then we
add a packet of weight S going from right to left.

Suppose that there exists I ′ ⊆ I, such that
∑

j∈I′ ij = S. Then we show
that the cost is at most 1

4S + 3
4

∑
j∈I ij .

The solution reaching that cost is as follows: nodes start with capacity S on
the right and accept all packets from I ′ and then accept the last packet of weight
S. The cost is then S + 3

4

∑
j∈I\I′ ij . Since

∑
j∈I′ ij = S, the bound holds.



588 S. Schmid et al.

Now, suppose that there is no subset of I summing to S. Let A ⊆ I be any
set with sum A. We follow the same procedure as described above by starting
with A capacity on the right and accept all packets from A. The cost for the
packets going from left to right is A+ 3

4

∑
j∈I\A ij = 1

4A+ 3
4

∑
j∈I ij . Depending

on whether A < S or A > S, the last packet of size S can be either accepted
or rejected. Thus, we need to add min(max(S − A, 0), 3

4S) to the overall cost,
which represents either the additional capacity cost of “topping up” the initial
capacity of A on the right side by S −A such that we can accept the last packet,
or the additional cost of rejecting the last packet S, whichever is smaller. Since
A �= S, we know that

1
4
A +

3
4

∑
j∈I

ij + min(max(S − A, 0),
3
4
S) >

1
4
S +

3
4

∑
j∈I

ij

Rearranging, we get min(max(S − A, 0), 3
4S) > 1

4 (S − A), which means that
weighted packet selection for a link is NP-hard. ��

6 Extensions

We highlight two natural and interesting directions to generalise our approach
from a link to a network.

6.1 Cyclic Redistribution of Capacity to Reduce Cost

Suppose node u on link (u, v) is incident to ≥ 2 links (let us call one of the
incident links (u,w)). From our definition of rechargeable links (see Sect. 1),
we know it is not possible for u to increase the capacity on the (u, v) link by
transferring excess capacity from (u,w). However, if (u, v) and (u,w) are part of
a larger cycle in the network, u can send excess capacity from link to link in a
cyclic fashion starting from the (u,w) link and ending at (u, v) while maintaining
the invariant that the total capacity on each link as well as the sum of all the
capacities of a node on their incident links remains the same. This can be done
at any point in time without the need to transfer packets. We call this cyclic
redistribution (note that this is possible on payment channel networks [4,10,11]
and is known as rebalancing) and illustrate it with an example in Fig. 2. In some
situations, especially if the cost of closing and recreating a link is extremely large,
the possibility of cheaply shifting capacities in cycles can reduce the overall cost
to nodes in the network.

Let us denote the cost of decreasing capacities by x on the right and increasing
it by x on the left using cyclic redistribution by C(fx+m) for some C ≥ 1 (one
can view C as a function of the length of the cycle one sends the capacities
along).

Here, we sketch an approximation algorithm that solves the weighted packet
selection for a link problem with the possibility of cyclic redistribution. Note
that our sketch is not precise, we simply modify Algorithm 1 where we assume
the constants are already optimised for the basic problem.
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We modify the linear program by adding variables oi, i ∈ [t] with constraints
0 ≤ oi ≤ M . The variable oi denotes the capacity that was shifted from one
side to the other before the algorithm processes packet xi. We also modify the
capacity constraints in the following way (for the case where xi−1 ∈ X← and
xi ∈ X←): SL,i = SL,i−1 − oi + yi−1 and SR,i = SR,i−1 + oi − yi−1. We change
the signs of variables for the other cases. Finally, we add

∑
i C(foi + oi

M m) to
the objective in Eq. (1).

We divide the algorithm into epochs. We sum all oi in the current epoch. If
the sum is above 1

1+
√
3
M we perform cyclic distribution if needed and start a

new epoch. Note that in the current epoch, the optimal algorithm already paid
at least Cf M+m

1+
√
3
, so, we can move M capacity, incurring a cost at most 1 +

√
3

times bigger than the optimal algorithm for cyclic redistribution.
To deal with capacity changes inside each epoch, we increase RL and RR.

We initialise them in a way that they absorb changes of capacity in the first
epoch of our algorithm. After an epoch, we reset them by cyclic redistribution
such that they absorb changes of capacity in the next. The increase in RL and
RR is at most 1

1+
√
3
M . These changes increase the approximation ratio of our

algorithm from 1 +
√

3 to 1 +
√

3 + 1
1+

√
3
, which is 1+3

√
3

2 .

Fig. 2. The graph on the left depicts three nodes u, v, w connected in a cycle. The red
numbers by each link represent the capacity of a node in a certain link. u can increase
their capacity by 10 on the (u, v) link by first sending the excess capacity of 10 to w
along the (u, w) link. Then w sends the excess capacity of 10 to v along (w, v). Finally, v
sends capacity of 10 back to u along (v, u). The graph on the right depicts the updated
capacities of each node on each link after cyclic redistribution. (Color figure online)

6.2 Going from a Link to a General Network

Here we show how to extend the weighted packet selection problem from a single
link to a general network. We begin by describing the problem for a general
network.

Weighted Packet Selection for General Graph. The input to the problem is a
general graph G = (V,E) where each link in the graph is rechargeable, and an
ordered sequence of packet requests Xt = ((x1, p1), . . . (xt, pt)). xi ∈ R

+ denotes
the weight of the ith packet and pi represents the directed path through the
graph that the ith packet needs to be routed though. The actions and costs per
node are the same as described in Sect. 1 for the weighted packet selection for a
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link problem. As in the case of the problem confined to a single link, the goal
in this setting is also to optimise over the entire graph. That is, the goal is for
involved nodes to collaboratively decide on the initial capacity and distribution
for all involved links as well as which packets to accept or to reject, so as to
minimise the total rejection and capacity costs.

Solution Where there are Few Long Paths. We now present a simple solution in
the case where the input only contains a few packets that have to be routed over
multiple links. We first observe that if a packet has to be routed through a path
with length > 1, the packet has to be be accepted or rejected by all the links in
its routing path. Let us call a packet long if it needs to pass through more than
one link.

Thus far, we showed an approximation algorithm that solves the problem
if all packets only go through a single link. Suppose we are given the situation
where we can bound the number of long packets, say by �. Given a network and
packet sequence for which we know only � are long, we can approximate the
extended problem with approximation ratio (1+ ε)(1+

√
3) in time 2� times the

time needed for the problem confined to a single link by simply trying to accept
all subsets of paths of long packets. If the packet is accepted or rejected, we can
reflect it in the linear program by requiring yi = xi. Then Algorithm 1 surely
accepts this packet and the condition that the packet needs to be accepted by
all links it passes through is satisfied.

Heuristic for General Graphs. We now describe a heuristic for the general case
where the input sequence may contain many packets that have to be routed over
multiple links. In particular, some links can be used in more than 1 routing path.

The idea of the algorithm for the general case is as follows:

– We create and solve a linear program similar to the one defined in Sect. 3.2.
Compared to the linear program on a single link, this new linear program
returns how much a packet should be accepted (the fractional solution, output
of the linear program) on the whole path.

– Having the linear program solution for the whole graph, we look only at
decisions inside a single (arbitrary) link � and use Algorithm 1. This gives us
decisions for packets going through �.

– Respecting the decisions on �, we solve the problem recursively (link � is
removed).

Our approach does not give any theoretical guarantees, only that the decisions
on a link � are a (1+

√
3)- approximation while respecting the previous decisions.

We believe this opens an exciting avenue for future work.

7 Conclusion

We initiated the study of weighted packet selection over a rechargable capaci-
tated link, a natural algorithmic problem e.g., describing the routing of financial
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transactions in cryptocurrency networks. We showed that this problem is NP-
hard and provided a constant factor approximation algorithm.

We understand our work is a first step, and believe that it opens several inter-
esting avenues for future research. In particular, it remains to find a matching
lower bound for the achievable approximation ratio, and to study the perfor-
mance of our algorithm in practice. More generally, it would be interesting to
study the online version of the weighted packet selection problem, and explore
competitive algorithms. This version of the problem, when extended to a net-
work, can be seen as a novel version of the classic online call admission prob-
lem [3].
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by the European Research Council (ERC) Consolidator Project 864228 (AdjustNet),
2020-2025, the ERC CoG 863818 (ForM-SMArt), and the German Research Foundation
(DFG) grant 470029389 (FlexNets), 2021–2024.

A Example Algorithm

We present an example of how to use the solution of the linear program
in Sect. 3.2 for some fixed capacity M to create an algorithm that uses twice
as much capacity as the linear program but guarantees that all packets that are
fully accepted by the linear program (i.e. xi = yi) will also be fully accepted by
the algorithm.

Algorithm 4 describes the decision making process only for packets coming
from left to right on the link, i.e. X→. As the decision process for X← is sym-
metric, we omit it to avoid repetition. The algorithm takes as input the solution
to the linear program and the packet sequence Xt. Recall that SL,i and SR,i for
i ∈ [t] are the capacity distributions from the linear program solution on the
left and right end of the link respectively after processing the ith packet. The
algorithm uses the initial distribution SL,0 and SR,0, and additionally splits the
extra M capacity into 2 “reserve buckets” RL and RR of size M

2 each on both
ends. Thus, the initial capacity of the left node would be SL,0 + RL and the
initial capacity of the right node would be SR,0 + RR. Intuitively, one can think
of the additional capacity in RL and RR as a reserve source of capacity that is
used to help Algorithm 4 fully accept packets that are fractionally accepted in
the linear program solution. We stress that Algorithm 4 always maintains the
invariant that SL,i + SR,i = M and RL + RR = M for all i.

When processing each packet, say packet i which is wlog in X→, the algorithm
first checks if there is sufficient excess capacity in RL to accept the remaining
fraction of packet i (Line 4 in Algorithm 4). If so, the packet is accepted using
(xi − yi) capacity from RL and yi capacity from SL,i. The capacity of SL,i

decreases by yi and the capacity of SR,i increases by yi, and the capacity in RL

decreases by (xi − yi) while the capacity in RR increases by the same amount.
If there is insufficient capacity in RL,i, i.e. RL,i < xi − yi, the algorithm takes
yi from RR,i and adds it to SR,i+1, and takes yi from SL,i and adds it to RL,i+1
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Algorithm 4. Algorithm accepting all fully accepted packets
Input: packet sequence Xt, capacity M , solution of LP: SL,i, SR,i, yi.
Output: decisions to accept or reject
1: initialise RL = M

2
, RR = M

2

2: for i ∈ [t] do
3: if xi ∈ X→ then
4: if RL ≥ xi − yi then
5: Accept
6: RL = RL − (xi − yi)
7: RR = RR + (xi − yi)
8: SL,i = SL,i − yi

9: SR,i = SR,i + yi

10: else
11: Reject
12: RL = RL + yi

13: RR = RR − yi

14: SL,i = SL,i − yi

15: SR,i = SR,i + yi

(see Lines 12 to 15 in Algorithm 4). Note that the updates to SL,i and SR,i

at each step are exactly as the solution to the linear program (Lines 8 and 9
and Lines 14 and 15).

Lemma 7. Given the solution of the linear program, a sequence of packets Xt,
and link capacity M , Algorithm 4 incurs a link capacity cost of 2M and accepts
all packets fully accepted in the linear program.

Proof. Wlog, let the ith packet in the sequence belong to X→. After processing
the ith packet xi, we denote RL (resp. RR) at that step as RL,i (resp. RR,i). We
show that the link, at time i, has capacity at least SL,i on the left and at least
SR,i on the right.

When RL,i is large enough to accept packet xi, we use yi capacity from SL,i

and xi − yi capacity from RL,i. The capacity yi from the accepted packet goes
to SR,i+1 and the rest (xi − yi) of the capacity goes to RR,i+1.

If the packet is forced to be rejected, we know that RL,i < xi − yi. Since
RR,i = M − RL,i, we know that RR,i > M − xi + yi, and because all packets
have weight smaller than M , RR,i > yi follows. This means we can take yi

from RR,i and add it to SR,i+1 and remove yi from SL,i (because the capacity
disappeared from there) and add it to RL,i+1.

If the packet is fully accepted, then xi−yi = 0. This means that the condition
RL,i ≥ xi − yi is satisfied and the algorithm accepts it. ��

We conclude this example with two remarks.

Remark 1. Lemma 7 holds for any initial distribution of RL and RR so long as
RL + RR = M .
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Remark 2. Algorithm 4 is greedy and accepts all packets as long as RL ≥ xi−yi.
This could be suboptimal as it might not have enough capacity in RL to accept
important packets later in the sequence. However, to maintain the condition
RL, RR ≥ 0 in line 4 of Algorithm 4, we can substitute the conditional check
RL ≥ xi −yi with RR < yi at any point. Then, the proof of Lemma 7 still holds.
We note that one could use this as a heuristic to develop a better approximation
as it allows more fine-grained control over the greediness of the algorithm.

B Omitted Proofs

B.1 Proof of Lemma 4

Proof. Each little-accepted packet moves at most 1
1+

√
3
M from the left side to

the right side of a link, and at most
√
3

1+
√
3
M from the right side to the left side

of a link.
Because RL + RR =

√
3M and any packet has a weight at most M . If

RL − 1
1+

√
3
M <

√
3−1
2 M , then RR −

√
3

1+
√
3
M ≥

√
3−1
2 M .

That means that rejecting a little-accepted packet from X→ does not create
a situation where RR <

√
3−1
2 M . ��

B.2 Proof of Lemma 6

Proof. If R′
L ≥ 0, we know that all almost-accepted packets are accepted from

Lemma 5. For R′
L < 0 we prove that (1 +

√
3)

∑
xi∈U (xi − yi) ≥ ∑

xi∈UR
xi,

then we argue that the whole theorem holds.
Let D = RL,i−1−R′

L where R′
L is the value returned by Divide in Algorithm

1 on Line 13. We know that D ≥
√
3−1
2 M .

By following the changes of R′
L in Divide, we get∑

xi∈U

xi − yi = D +
∑

xi∈φR

yi +
∑

xi∈φA

xi − yi

By this we know that
∑

xi∈U xi − yi ≥ D.
Algorithm RejectBig removes packets from U until

∑
xi∈UR

xi ≥ D. If the

condition is satisfied, we know that RejectBig returns UR, because R′
L ≥

√
3−1
2 .

If |UR| = 1, we know that
∑

xi∈UR
xi ≤ M , because every xi ≤ M . So in

that case
∑

xi∈UR
xi ≤ M ≤ (1 +

√
3)

√
3−1
2 M ≤ (1 +

√
3)D.

If |U \ UR| > 1, we know that rejecting just one packet is not enough. This
means the biggest packet has weight at most D, so

∑
xi∈UR

xi ≤ 2D ≤ (1+
√

3)D.
Now, we know that Algorithm 1 rejects less weight than the linear program

times (1 +
√

3). It implies that (1 +
√

3)
∑

xi∈U f · (xi − yi) ≥ ∑
xi∈UR

fxi and
leaves us to prove (1 +

√
3)

∑
xi∈U

xi−yi

xi
≥ ∑

xi∈UR
m.

But we know that the packets are moved to UR from the biggest. For
every xk ∈ UR and xl ∈ U holds xl−yl

xl
≥ xl−yl

xk
. That means rejecting

smaller packets incurrs on average bigger cost than rejecting bigger packets,
so (1 +

√
3)

∑
xi∈U

xi−yi

xi
≥ ∑

xi∈UR
m. ��
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