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Abstract. Approximate integer programming is the following: For a given con-
vex body K ⊆ Rn , either determine whether K ∩Zn is empty, or find an inte-
ger point in the convex body 2 · (K − c)+ c which is K , scaled by 2 from its
center of gravity c. Approximate integer programming can be solved in time
2O(n) while the fastest known methods for exact integer programming run in
time 2O(n) ·nn . So far, there are no efficient methods for integer programming
known that are based on approximate integer programming. Our main contri-
bution are two such methods, each yielding novel complexity results.

First, we show that an integer point x∗ ∈ (K∩Zn) can be found in time 2O(n),
provided that the remainders of each component x∗i mod � for some arbitrar-
ily fixed �≥ 5(n+1) of x∗ are given. The algorithm is based on a cutting-plane
technique, iteratively halving the volume of the feasible set. The cutting planes
are determined via approximate integer programming. Enumeration of the
possible remainders gives a 2O(n)nn algorithm for general integer program-
ming. This matches the current best bound of an algorithm by Dadush (2012)
that is considerably more involved. Our algorithm also relies on a new asym-
metric approximate Carathéodory theorem that might be of interest on its own.

Our second method concerns integer programming problems in standard
equation form Ax = b,0 ≤ x ≤ u, x ∈ Zn . Such a problem can be reduced to
the solution of

∏
i O(logui + 1) approximate integer programming problems.

This implies, for example that knapsack or subset-sum problems with polyno-
mial variable range 0 ≤ xi ≤ p(n) can be solved in time (logn)O(n). For these
problems, the best running time so far was nn ·2O(n).
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1 Introduction

Many combinatorial optimization problems as well asmany problems from the algo-
rithmic geometry of numbers can be formulated as an integer linear program

max{〈c,x〉 | Ax ≤ b,x ∈Zn} (1)

where A ∈ Zm×n ,b ∈ Zm and c ∈ Zn , see, e.g. [16,27,30]. Lenstra [23] has shown that
integer programming can be solved in polynomial time, if the number of variables

is fixed. A careful analysis of his algorithm yields a running time of 2O(n2) times a
polynomial in the binary encoding length of the input of the integer program. Kan-
nan [19] has improved this to nO(n), where, from now on we ignore the extra factor
that depends polynomially on the input length. The current best algorithm is the one
of Dadush [10] with a running time of 2O(n) ·nn .

The questionwhether there exists a singly exponential time, i.e., a 2O(n)-algorithm
for integer programming is one of the most prominent open problems in the area of
algorithms and complexity. Integer programming can be described in the following
more general form. Here, a convex body is synonymous for a full-dimensional com-
pact and convex set.

Integer Programming (IP)

Given a convex body K ⊆ Rn , find an integer solution x∗ ∈ K ∩Zn or assert that
K ∩Zn =
.

The convex body K must be well described in the sense that there is access to a
separation oracle, see [16]. Furthermore, one assumes thatK contains a ball of radius
r > 0 and that it is contained in some ball of radius R. In this setting, the current best
running times hold as well. The additional polynomial factor in the input encoding
length becomes a polynomial factor in log(R/r ) and the dimension n. Central to this
paper is Approximate integer programming which is as follows.

Approximate Integer Programming (Approx-IP)

Given a convex body K ⊆ Rn , let c ∈ Rn be its center of gravity. Either find an
integer vector x∗ ∈ (2 · (K − c)+ c)∩Zn , or assert that K ∩Zn =
.

The convex body 2 · (K − c)+ c is K scaled by a factor of 2 from its center of grav-
ity. The algorithm of Dadush [11] solves approximate integer programming in singly
exponential time 2O(n). Despite its clear relation to exact integer programming, there
is no reduction from exact to approximate known so far. Our guiding question is the
following: Can approximate integer programming be used to solve the exact version
of (specific) integer programming problems?

1.1 Contributions of This Paper

We present two different algorithms to reduce the exact integer programming prob-
lem (IP) to the approximate version (APPROX-IP).
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a) Our first method is a randomized cutting-plane algorithm that, in time 2O(n) and
for any �≥ 5(n+1) finds a point in K ∩ (Zn/�) with high probability, if K contains
an integer point. This algorithm uses an oracle for (APPROX-IP) on K intersected
with one side of a hyperplane that is close to the center of gravity. Thereby, the
algorithm collects � integer points close to K . The collection is such that the con-
vex combination with uniform weights 1/� of these points lies in K . If, during an
iteration, no point is found, the volume of K is roughly halved and eventually K
lies on a lower-dimensional subspace on which one can recurse.

b) If equipped with the component-wise remainders v ≡ x∗ (mod �) of a solution
x∗ of (IP), one can use the algorithm to find a point in (K − v)∩Zn and combine
it with the remainders to a full solution of (IP), using that (K − v)∩�Zn �= 
. This
runs in singly exponential randomized time 2O(n). Via enumeration of all remain-
ders, one obtains an algorithm for (IP) that runs in time 2O(n) ·nn . This matches
the best-known running time for general integer programming [11], which is con-
siderably involved.

c) Our analysis depends on a new approximate Carathéodory theorem that we
develop in Sect. 4. While approximate Carathéodory theorems are known for cen-
trally symmetric convex bodies [4,26,28], our version is for general convex sets
andmight be of interest on its own.

d) Our second method is for integer programming problems Ax = b, x ∈ Zn , 0 ≤
x ≤ u in equation standard form. We show that such a problem can be reduced
to 2O(n) · (∏i log(ui +1)) instances of (APPROX-IP). This yields a running time of
(logn)O(n) for such IPs, in which the variables are bounded by a polynomial in the
dimension. The so-far best running time for such instances 2O(n)·nn . Well known
benchmark problems in this setting are knapsack and subset-sum with polyno-
mial upper bounds on the variables, see Sect. 5.

1.2 RelatedWork

If the convex body K is an ellipsoid, then the integer programming problem (IP)
is the well known closest vector problem (CVP) which can be solved in time 2O(n)

with an algorithm by Micciancio and Voulgaris [25]. Blömer and Naewe [7] previ-
ously observed that the sampling technique of Ajtai et al. [1] can bemodified in such
a way as to solve the closest vector approximately. More precisely, they showed that a
(1+ε)-approximation of the closest vector problem can be found in timeO(2+1/ε)n

time. This was later generalized to arbitrary convex sets by Dadush [11]. This algo-
rithm either asserts that the convex body K does not contain any integer points, or it
finds an integer point in the body stemming fromK is scaled by (1+ε) from its center
of gravity. Also the running time of this randomized algorithm is O(2+1/ε)n . In our
paper, we restrict to the case ε = 1 which can be solved in singly exponential time.
The technique of reflection sets was also used by Eisenbrand et al. [13] to solve (CVP)
in the �∞-norm approximately in timeO(2+ log(1/ε))n .

In the setting in which integer programming can be attacked with dynamic pro-
gramming, tight upper and lower bounds on the complexity are known [14,17,20].
Our nn ·2O(n) algorithm could be made more efficient by constraining the possible
remainders of a solution (mod �) efficiently. This barrier is different than the one in
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classical integer-programming methods that are based on branching on flat direc-
tions [16,23] as they result in a branching tree of size nO(n).

The subset-sum problem is as follows. Given a set Z ⊆N of n positive integers and
a target value t ∈ N, determine whether there exists a subset S ⊆ Z with

∑
s∈S s = t .

Subset sum is a classical NP-complete problem that serves as a benchmark in algo-
rithm design. The problem can be solved in pseudopolynomial time [5] by dynamic
programming. The current fastest pseudopolynomial-time algorithm is the one of
Bringmann [8] that runs in time O(n+ t ) up to polylogarithmic factors. There exist
instances of subset-sumwhose set of feasible solutions, interpreted as 0/1 incidence
vectors, require numbers of value nn in the input, see [2]. Lagarias and Odlyzko [21]
have shown that instances of subset sum in which each number of the input Z is

drawn uniformly at random from {1, . . . ,2O(n2)} can be solved in polynomial time
with high probability. The algorithm of Lagarias and Odlyzko is based on the LLL-
algorithm [22] for lattice basis reduction.

2 Preliminaries

A latticeΛ is the set of integer combinations of linearly independent vectors, i.e.Λ :=
Λ(B) := {Bx | x ∈ Zr } where B ∈ Rn×r has linearly independent columns. The deter-
minant is the volume of the r -dimensional parallelepiped spanned by the columns
of the basis B , i.e. det(Λ) :=

√
detr (BTB). We say that Λ has full rank if n = r . In that

case the determinant is simply det(Λ)= |detn(B)|. For a full rank latticeΛ, we denote
the dual lattice byΛ∗ = {y ∈Rn | 〈x, y〉 ∈Z∀x ∈Λ}. Note that det(Λ∗) ·det(Λ)= 1. For
an introduction to lattices, we refer to [24].

A setQ ⊆Rn is called a convex body if it is convex, compact and has a non-empty
interior. A set Q is symmetric if Q = −Q. Recall that any symmetric convex body Q
naturally induces a norm ‖ · ‖Q of the form ‖x‖Q =min{s ≥ 0 | x ∈ sQ}. For a full rank
latticeΛ⊆Rn and a symmetric convex bodyQ ⊆Rn wedenoteλ1(Λ,Q) :=min{‖x‖Q |
x ∈ Λ \ {0}} as the length of the shortest vector with respect to the norm induced by
Q. We denote the Euclidean ball by Bn

2 := {x ∈Rn | ‖x‖2 ≤ 1} and the �∞-ball by Bn∞ :=
[−1,1]n . An (origin centered) ellipsoid is of the form E = A(Bn

2 ) where A : Rn → Rn is
an invertible linear map. For any such ellipsoid E there is a unique positive definite
matrix M ∈ Rn×n so that ‖x‖E =

�
xTMx. The barycenter (or centroid) of a convex

bodyQ is the point 1
Voln (Q)

∫

Q x dx. We will use the following version of (APPROX-IP)

that runs in time 2O(n), provided that the symmetrizer for the used center c is large
enough. This is the case for c being the center of gravity, see Theorem 3. Note that the
center of gravity of a convex body can be (approximately) computed in randomized
polynomial time [6,12].

Theorem 1 (Dadush [11]). There is a 2O(n)-time algorithm APXIP(K ,c,Λ) that takes
as input a convex set K ⊆ Rn, a point c ∈ K and a lattice Λ ⊆ Rn. Assuming that
Voln((K − c)∩ (c −K )) ≥ 2−Θ(n)Voln(K ) the algorithm either returns a point x ∈ (c +
2(K −c))∩Λ or returns EMPTY if K ∩Λ=
.
One of the classical results in the geometry of numbers is Minkowski’s Theorem
which we will use in the following form:
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Theorem 2 (Minkowski’s Theorem). For a full rank lattice Λ⊆ Rn and a symmetric
convex body Q ⊆Rn one has

λ1(Λ,Q)≤ 2 ·
( det(Λ)

Voln(Q)

)1/n

We will use the following bound on the density of sublattices which is an imme-
diate consequence of Minkowski’s Second Theorem. Here we abbreviate λ1(Λ) :=
λ1(Λ,Bn

2 ).

Lemma 1. Let Λ ⊆ Rn be a full rank lattice. Then for any k-dimensional sublattice
Λ̃⊆Λ one has det(Λ̃)≥ (λ1(Λ)�

k
)k .

Finally, we revisit a few facts from convex geometry. Details and proofs can be
found in the excellent textbook by Artstein-Avidan, Giannopoulos andMilman [3].

Lemma 2 (Grünbaum’s Lemma). Let K ⊆ Rn be any convex body and let 〈a,x〉 = β

be any hyperplane through the barycenter of K . Then 1
e Voln(K )≤Voln({x ∈K | 〈a,x〉 ≤

β})≤ (1− 1
e )Voln(K ).

For a convex body K , there are two natural symmetric convex bodies that approxi-
mate K in many ways: the “inner symmetrizer” K ∩ (−K ) (provided 0 ∈ K ) and the
“outer symmetrizer” in form of the difference body K −K . The following is a conse-
quence of a more general inequality of Milman and Pajor.

Theorem 3. Let K ⊆Rn be any convex body with barycenter 0. Then Voln(K ∩(−K ))≥
2−nVoln(K ).

In particular Theorem 3 implies that choosing c as the barycenter of K in Theorem 1
results in a 2O(n) running time—however this will not be the choice that we will later
make for c. Also the size of the difference body can be bounded:

Theorem 4 (Inequality of Rogers and Shephard). For any convex body K ⊆ Rn one
has Voln(K −K )≤ 4nVoln(K ).

Recall that for a convex bodyQ with 0 ∈ int(Q), the polar isQ◦ = {y ∈Rn | 〈x, y〉≤
1∀x ∈Q}. We will use the following relation between volume of a symmetric convex
body and the volume of the polar; to be precise we will use the lower bound (which
is due to Bourgain andMilman).

Theorem 5 (Blaschke-Santaló-Bourgain-Milman). For any symmetric convex body
Q ⊆Rn one has

Cn ≤ Voln(Q) ·Voln(Q◦)
Voln(Bn

2 )
2 ≤ 1

where C > 0 is a universal constant.

Wewill also rely on the result of Frank and Tardos to reduce the bit complexity of
constraints:

Theorem 6 (Frank, Tardos [15]). There is a polynomial time algorithm that takes
(a,b) ∈ Qn+1 and Δ ∈ N+ as input and produces a pair (ã, b̃) ∈ Zn+1 with ‖ã‖∞, |b̃| ≤
2O(n3) · ΔO(n2) so that 〈a,x〉 = b ⇔ 〈ã,x〉 = b̃ and 〈a,x〉 ≤ b ⇔ 〈ã,x〉 ≤ b̃ for all
x ∈ {−Δ, . . . ,Δ}n.
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3 The Cut-Or-Average Algorithm

First, we discuss our CUT-OR-AVERAGE algorithm that on input of a convex set K , a
latticeΛ and integer �≥ 5(n+1), either finds a point x ∈ Λ

� ∩K or decides thatK ∩Λ=

 in time 2O(n). Note that for any polyhedron K = {x ∈Rn | Ax ≤ b} with rational A,b
and lattice Λ with basis B one can compute a value of Δ so that log(Δ) is polynomial
in the encoding length of A, b and B and K ∩Λ �= 
 if and only if K ∩[−Δ,Δ]n∩Λ �= 
.
See Schrijver [31] for details. In other words, w.l.o.g. we may assume that our convex
set is bounded. The pseudo code of the algorithm can be found in Fig. 1. An intuitive
description of the algorithm is as follows: we compute the barycenter c of K and an
ellipsoid E that approximates K up to a factor of R = n+1. Then we iteratively use
the oracle for approximate integer programming from Theorem1 to find a convex
combination z of lattice points in a 3-scaling of K until z is close to the barycenter c.
If this succeeds, then we can directly use an asymmetric version of the Approximate
Carathéodory Theorem (Lemma9) to find an unweighted average of � lattice points
that lies in K ; this would be a vector of the form x ∈ Λ

� ∩K . If the algorithm fails
to approximately express c as a convex combination of lattice points, then we will
have found a hyperplane H going almost through the barycenter c so that K ∩H≥
does not contain a lattice point. Then the algorithm continues searching in K ∩H≤
(Fig. 2). This case might happen repeatedly, but after polynomial number of times,
the volume of K will have dropped below a threshold so that we may recurse on a
single (n−1)-dimensional subproblem. We will now give the detailed analysis. Note
that in order to obtain a clean exposition we did not aim to optimize any constant.
However by merely tweaking the parameters one could make the choice of � = (1+
ε)n work for any constant ε> 0.

3.1 Bounding the Number of Iterations

We begin the analysis with a few estimates that will help us to bound the number of
iterations.

Lemma 3. Any point x found in line (7) lies in a 3-scaling of K around c, i.e. x ∈
c+3(K −c) assuming 0< ρ ≤ 1.

Proof. We verify that

x ∈ (c−ρd)+2(K − (c−ρd))= c+2(K −c)+ρd ⊆ c+3(K −c)

using that ‖ρd‖E = ρ ≤ 1.

Next we bound the distance of z to the barycenter:

Lemma 4. At the beginning of the kth iterations of the WHILE loop on line (5), one

has ‖c− z‖2E ≤ 9R2

k .

Proof. We prove the statement by induction on k. At k = 1, by construction on line
(4), z ∈ c+2(K −c)⊆ c+2RE . Thus ‖c− z‖2E ≤ (2R)2 ≤ 9R2, as needed.
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Fig. 1. The Cut-Or-Average algorithm.

Fig. 2. Visualization of the inner WHILE loop whereQ :=K ∩ {x ∈Rn | 〈a,x〉 ≥
〈

a,c+ ρ
2 d

〉

}.

Now assume k ≥ 2. Let z,z ′ denote the values of z during iteration k − 1 before
and after the execution of line (9) respectively, and let x be the vector found on line
(7) during iteration k−1. Note that z ′ = (1− 1

k )z+ 1
k x. By the induction hypothesis, we

have that ‖z−c‖2E ≤ 9R2/(k−1). Our goal is to show that ‖z ′ −c‖2E ≤ 9R2/k. Letting d
denote the normalized version of z− c, we see that ‖d‖E = 1 and hence d ∈K − c. By
construction 〈a,x− c〉 ≥ 0 and from Lemma3 we have x ∈ c+3(K − c) which implies
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‖x− c‖E ≤ 3R. The desired bound on the E-norm of z ′ − c follows from the following
calculation:

‖z ′ −c‖2E =
∥
∥
∥

(

1− 1

k

)

(z− c)+ 1

k
(x− c)

∥
∥
∥
2

E

=
(

1− 1

k

)2‖z− c‖2E −2
(

1− 1

k

) 1

k
〈a,x−c〉+ 1

k2 ‖x−c‖2E
≤

(

1− 1

k

)2‖z− c‖2E +
1

k2 ‖x−c‖2E

≤
((

1− 1

k

)2 1

k−1
+ 1

k2

)

·9R2 = 9R2

k
.

In particular Lemma4 implies an upper bound on the number of iterations of the
inner WHILE loop:

Corollary 1. The WHILE loop on line (5) never takes more than 36R2 iterations.

Proof. By Lemma4, for k := 36R2 one has ‖c− z‖2E ≤ 9R2

k ≤ 1
4 .

Next, we prove that every time we replace K by K ′ ⊂K in line (8), its volume drops by
a constant factor.

Lemma 5. In step (8) one has Voln(K ′) ≤ (1− 1
e ) · (1+

ρ
2 )

n ·Voln(K ) for any ρ ≥ 0. In

particular for 0≤ ρ ≤ 1
4n one has Voln(K ′)≤ 3

4Voln(K ).

Proof. The claim is invariant under affine linear transformations, hence we may
assume w.l.o.g. that E = Bn

2 , M = In and c = 0. Note that then Bn
2 ⊆ K ⊆ RBn

2 . Let
us abbreviate K≤t := {x ∈K | 〈d ,x〉 ≤ t }. In this notation K ′ =K≤ρ/2. Recall that Grün-
baum’s Lemma (Lemma2) guarantees that 1

e ≤ Voln (K≤0)
Voln (K ) ≤ 1− 1

e . Moreover, it is well

known that the function t �→ Voln(K≤t )1/n is concave on its support, see again [3].
Then

Voln(K≤0)1/n ≥
( 1

1+ρ/2

)

·Voln(K≤ρ/2)1/n +
( ρ/2

1+ρ/2

)

·Voln(K≤−1)1/n
︸ ︷︷ ︸

≥0

≥
( 1

1+ρ/2

)

·Voln(K≤ρ/2)1/n

and so (

1− 1

e

)

·Voln(K )≥Voln(K≤0)≥
( 1

1+ρ/2

)n ·Voln(K≤ρ/2)

Rearranging gives the first claim in the form Voln(K≤ρ/2)≤ (1− 1
e ) · (1+

ρ
2 )

n ·Voln(K ).

For the 2nd part we verify that for ρ ≤ 1
4n one has (1− 1

e )·(1+
ρ
2 )

n ≤ (1− 1
e )·exp(

ρ
2 )≤ 3

4 .

Lemma 6. Consider a call of CUT-OR-AVERAGE on (K ,Λ) where K ⊆ rBn
2 for some

r > 0. Then the total number of iterations of the outer WHILE loop over all recursion
levels is bounded by O(n2 log( nr

λ1(Λ) )).
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Proof. Consider any recursive run of the algorithm. The convex set will be of the
form K̃ := K ∩U and the lattice will be of the form Λ̃ := Λ∩U where U is a sub-
space and we denote ñ := dim(U ). We think of K̃ and Λ̃ as ñ-dimensional objects.
Let K̃t ⊆ K̃ be the convex body after t iterations of the outer WHILE loop. Recall that
Volñ(K̃t ) ≤ ( 34 )

t ·Volñ(K̃ ) by Lemma5 and Volñ(K̃ ) ≤ r ñVolñ(Bñ
2 ). Our goal is to show

that for t large enough, there is a non-zero lattice vector y ∈ Λ̃∗ with ‖y‖(K̃t−K̃t )◦ ≤ 1
2

which then causes the algorithm to recurse. To prove existence of such a vector y , we
use Minkowski’s Theorem (Theorem2) followed by the Blaschke-Santaló-Bourgain-
Milman Theorem (Theorem5) to obtain

λ1(Λ̃
∗, (K̃t − K̃t )

◦)
Thm 2≤ 2 ·

( det(Λ̃∗)
Volñ((K̃t − K̃t )◦)

)1/ñ

Thm 5≤ 2C ·
( Volñ(K̃t − K̃t )

det(Λ̃) ·Volñ(Bñ
2 )

2

)1/ñ

Thm 4≤ 2 ·4 ·
�
ñ

2
·C

( Volñ(K̃t )

det(Λ̃) ·Volñ(Bñ
2 )

)1/ñ

≤ 4C
�
ñ · r · (3/4)t/ñ

det(Λ̃)1/ñ
≤ 4C · ñ · r

λ1(Λ)
· (3/4)t/ñ

Here we use the convenient estimate of Volñ(Bñ
2 ) ≥ Volñ(

1�
ñ
B ñ∞)= ( 2�

ñ
)ñ . Moreover,

we have used that by Lemma1 one has det(Λ̃) ≥ (λ1(Λ)�
ñ

)ñ . Then t = Θ(ñ log( ñr
λ1(Λ) ))

iterations suffice until λ1(Λ̃∗, (K̃t − K̃t )◦) ≤ 1
2 and the algorithm recurses. Hence the

total number of iterations of the outer WHILE loop over all recursion levels can be
bounded byO(n2 log( nr

λ1(Λ) )).

The iteration bound of Lemma6 can be improved by amortizing the volume reduc-
tion over the different recursion levels following the approach of Jiang [18].We refrain
from that to keep our approach simple.

3.2 Correctness and Efficiency of Subroutines

Next, we verify that the subroutines are used correctly. The proofs in this section are
deferred to the full version of this paper.

Lemma 7. For any convex body K ⊆ Rn one can compute the barycenter c and a 0-
centered ellipsoid E in randomized polynomial time so that c+E ⊆K ⊆ c+ (n+1)E .

In order for the call of APXIP in step (7) to be efficient, we need that the sym-
metrizer of the set is large enough volume-wise, see Theorem1. In particular for any
parameters 2−Θ(n) ≤ ρ ≤ 0.99 and R ≤ 2O(n) we will have Voln((Q − c̃)∩ (c̃ −Q)) ≥
2−Θ(n)Voln(Q) which suffices for our purpose.

Lemma 8. In step (7), the setQ := {x ∈K | 〈a,x〉 ≥ 〈
a,c+ ρ

2d
〉
} and the point c̃ := c+ρd

satisfy Voln((Q− c̃)∩ (c̃−Q))≥ (1−ρ)n · ρ
2R ·2−n ·Voln(Q).
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3.3 Conclusion on the Cut-Or-Average Algorithm

From the discussion above, we can summarize the performance of the algorithm in
Fig. 1 as follows:

Theorem 7. Given a full rankmatrix B ∈Qn×n and parameters r > 0 and �≥ 5(n+1)
with � ∈ N and a separation oracle for a closed convex set K ⊆ rBn

2 , there is a ran-
domized algorithm that with high probability finds a point x ∈ K ∩ 1

�Λ(B) or decides
that K ∩Λ(B)=
. Here the running time is 2O(n) times a polynomial in log(r ) and the
encoding length of B.

This can be easily turned into an algorithm to solve integer linear programming:

Theorem 8. Given a full rank matrix B ∈ Qn×n, a parameter r > 0 and a separation
oracle for a closed convex set K ⊆ rBn

2 , there is a randomized algorithm that with high
probability finds a point x ∈ K ∩Λ(B) or decides that there is none. The running time
is 2O(n)nn times a polynomial in log(r ) and the encoding length of B.

Proof. Suppose that K ∩Λ �= 
 and fix an (unknown) solution x∗ ∈ K ∩Λ. We set
� := �5(n+1)�. We iterate through all v ∈ {0, . . . ,�−1}n and run Theorem7 on the set
K and the shifted lattice v +�Λ. For the outcome of v with x∗ ≡ v mod � one has
K ∩ (v +�Λ) �= 
 and so the algorithm will discover a point x ∈K ∩ (v +Λ).

4 An Asymmetric Approximate Carathéodory Theorem

The Approximate Carathéodory Theorem states the following.

Given any point-set X ⊆ Bn
2 in the unit ball with 0 ∈ conv(X ) and a parameter

k ∈N, there exist u1, . . . ,uk ∈ X (possibly with repetition) such that
∥
∥
∥
∥
∥

1

k

k∑

i=1
ui

∥
∥
∥
∥
∥
2

≤O
(

1/
�
k
)

.

The theorem is proved, for example, by Novikoff [28] in the context of the percep-
tron algorithm. An �p-version was provided by Barman [4] to find Nash equilibria.
Deterministic and nearly-linear time methods to find the convex combination were
recently described in [26]. In the following, we provide a generalization to asymmet-
ric convex bodies and the dependence on k will beweaker but sufficient for our anal-
ysis of our CUT-OR-AVERAGE algorithm from Sect. 3.

Recall that with a symmetric convex bodyK , we one can associate theMinkowski
norm ‖ ·‖K with ‖x‖K = inf{s ≥ 0 | x ∈ sK }. In the following we will use the same
definition also for an arbitrary convex set K with 0 ∈ K . Symmetry is not given but
one still has ‖x+ y‖K ≤ ‖x‖K +‖y‖K for all x, y ∈Rn and ‖αx‖K =α‖x‖K for α ∈R≥0.
Using this notation we can prove the main result of this section.

Lemma 9. Given a point-set X ⊆K contained in a convex set K ⊆Rn with 0 ∈ conv(X )
and a parameter k ∈N, there exist u1, . . . ,uk ∈ X (possibly with repetition) so that

∥
∥
∥
∥
∥

1

k

k∑

i=1
ui

∥
∥
∥
∥
∥
K

≤min{|X |,n+1}/k.
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Moreover, given X as input, the points u1, . . . ,uk can be found in time polynomial in
|X |, k and n.

Proof. Let � = min{|X |,n+1}. The claim is true whenever k ≤ � since then we may
simply pick an arbitrary point in X . Hence from now on we assume k > �.

By Carathéodory’s theorem, there exists a convex combination of zero, using �

elements of X . We write 0=∑�
i=1λi vi where vi∈X , λi ≥ 0 for i ∈ [�] and

∑�
i=1λi = 1.

Consider the numbers Li = (k−�)λi +1. Clearly,
∑�

i=1Li = k. This implies that there

exists an integer vector μ ∈N� with μ ≥ (k −�)λ and
∑�

i=1μi = k. It remains to show
that we have ∥

∥
∥
∥
∥

1

k

�∑

i=1
μi vi

∥
∥
∥
∥
∥
K

≤ �/k.

In fact, one has

∥
∥
∥

�∑

i=1
μi vi

∥
∥
∥
K
=

∥
∥
∥

�∑

i=1
(μi − (k−�)λi )
︸ ︷︷ ︸

≥0
vi + (k−�)

︸ ︷︷ ︸
≥0

�∑

i=1
λi vi

∥
∥
∥
K

≤
�∑

i=1
(μi − (k−�)λi )‖vi‖K

︸ ︷︷ ︸
≤1

+(k−�)
∥
∥
∥

�∑

i=1
λi vi

∥
∥
∥
K

︸ ︷︷ ︸
=0

≤ �.

For the moreover part, note that the coefficients λ1, . . . ,λ� are the extreme points of
a linear program which can be found in polynomial time. Finally, the linear system
μ ≥ �(k −�)λ�,∑�

i=1μi = k has a totally unimodular constraint matrix and the right
hand side is integral, hence any extremepoint solution is integral aswell, see e.g. [31].

Lemma 10. For any integer �≥ 5(n+1), the convex combination μ computed in line
(10) satisfies

∑
x∈X μxx ∈K .

Proof. We may translate the sets X and K so that c = 0 without affecting the claim.
Recall that z ∈ conv(X ). By Carathéodory’s Theorem there are v1, . . . ,vm ∈ X withm ≤
n+1 so that z ∈ conv{v1, . . . ,vm} and so 0 ∈ conv{v1− z, . . . ,vm − z}. We have vi ∈ 3K
by Lemma3 and−z ∈ 1

4E ⊆ 1
4K as well as z ∈ 1

4K . Hence ‖vi −z‖K ≤ ‖vi‖K +‖−z‖K ≤
13
4 . We apply Lemma9 and obtain a convex combination μ ∈ Zm

≥0
� with ‖∑m

i=1μi (vi −
z)‖ 13

4 K ≤ m
� . Then

∥
∥
∥

m∑

i=1
μi vi

∥
∥
∥
K
≤

∥
∥
∥

m∑

i=1
μi (vi − z)

∥
∥
∥
K
+‖z‖K

︸ ︷︷ ︸
≤1/4

≤ 13

4

m

�
+ 1

4
≤ 1

if �≥ 13
3 m. This is satisfies if �≥ 5(n+1).

5 IPs with Polynomial Variable Range

Now we come to our second method that reduces (IP) to (APPROX-IP) that applies
to integer programming in standard equation form

Ax = b, x ∈Zn , 0≤ xi ≤ ui , i = 1, . . . ,n, (2)
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Here, A ∈ Zm×n , b ∈ Zm , and the ui ∈ N+ are positive integers that bound the vari-
ables from above. Our main goal is to prove the following theorem.

Theorem 9. The integer feasibility problem in standard equation form (see (2)) can
be solved in time 2O(n)∏n

i=1 log2(ui +1).

We now describe the algorithm. It is again based on the approximate integer pro-
gramming technique of Dadush [11]. We exploit it to solve integer programming
exactly via the technique of reflection sets developed by Cook et al. [9]. For each
i = 1, . . . ,n we consider the two families of hyperplanes that slice the feasible region
with the shifted lower and upper bounds respectively

xi = 2 j−1 and xi = ui −2 j−1, 0≤ j ≤ �log2(ui )�. (3)

Following [9], we consider two points w,v that lie in the region between two consec-
utive planes xi = 2 j−1 and xi = 2 j for some j . Suppose thatwi ≤ vi holds. Let s be the
point such that w = 1/2(s+ v). The line-segment s,v is the line segment w,v scaled
by a factor of 2 from v . Let us consider what can be said about the i -th component of
s. Clearly si ≥ 2 j−1− (2 j −2 j−1)= 0. Similarly, if w and v lie in the region in-between
xi = 0 and xi = 1/2, then si ≥−1/2. We conclude with the following observation.

Lemma 11. Consider the hyperplane arrangement defined by the equations (3) as
well as by xi = 0 and xi = ui for 1≤ i ≤ n. Let K ⊆Rn a cell of this hyperplane arrange-
ment and v ∈K . If K ′ is the result of scaling K by a factor of 2 from v, i.e.

K ′ = {v +2(w − v) |w ∈K },

then K ′ satisfies the inequalities −1/2≤ xi ≤ ui +1/2 for all 1≤ i ≤ n.

We use this observation to prove Theorem9:

Proof (Proof of Theorem 9). The task of (2) is to find an integer point in the affine sub-
space defined by the system of equations Ax = b that satisfies the bound constraints
0 ≤ xi ≤ ui . We first partition the feasible region with the hyperplanes (3) as well as
xi = 0 and xi = ui for each i . We then apply the approximate integer programming
algorithm with approximation factor 2 on each convex set PK = {x ∈Rn | Ax = b}∩K
where K ranges over all cells of the arrangement. In 2O(n) time, the algorithm either
finds an integer point in the convex set CK that results from PK by scaling it with a
factor of 2 from its center of gravity, or it asserts that PK does not contain an integer
point. Clearly, CK ⊆ {x ∈ Rn | Ax = b} and if the algorithm returns an integer point
x∗, then, by Lemma11, this integer point also satisfies the bounds 0 ≤ xi ≤ ui . The
running time of the algorithm is equal to the number of cells times 2O(n) which is
2O(n)∏n

i=1 log2(ui +1).

IPs in Inequality Form

We can also use Theorem9 to solve integer linear programs in inequality form. Here
the efficiency is strongly dependent on the number of inequalities.
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Theorem 10. Let A ∈Qm×n, b ∈Qm, c ∈Qn and u ∈Nn+. Then the integer linear pro-
gram

max
{〈c,x〉 | Ax ≤ b, 0≤ x ≤ u, x ∈Zn}

can be solved in time nO(m) · (2log(1+Δ))O(n+m) where Δ :=max{ui | i = 1, . . . ,n}.

Proof. Via binary search it suffices to solve the feasibility problem

〈c,x〉 ≥ γ, Ax ≤ b, 0≤ x ≤ u, x ∈Zn (4)

in the same claimed running time. We apply the result of Frank and Tardos (Theo-
rem6) and replace c,γ,A,b by integer-valued objects of bounded ‖·‖∞-norm so that
the feasible region of (4) remains the same.Hencewemay indeed assume that c ∈Zn ,

γ ∈ Z, A ∈ Zm×n and b ∈ Zm with ‖c‖∞, |γ|,‖A‖∞,‖b‖∞ ≤ 2O(n3) ·ΔO(n2). Any feasible
solution x to (4) has a slack bounded by γ−〈c,x〉 ≤ |γ|+‖c‖∞·n ·Δ≤N where wemay

choose N := 2O(n3)ΔO(n2). Similarly bi −Ai x ≤N for all i ∈ [n]. We can then introduce
slack variables y ∈Z≥0 and z ∈Zm

≥0 and consider the system

〈c,x〉+ y = γ, Ax+ z = b,
0≤ x ≤ u, 0≤ y ≤N , 0≤ z j ≤N ∀ j ∈ [m],
(x, y,z) ∈Zn+1+m

(5)

in equality form which is feasible if and only if (4) is feasible. Then Theorem9 shows
that such an integer linear program can be solved in time

2O(n+m) ·
( n∏

i=1
ln(1+ui )

)

· (ln(1+N ))m+1 ≤ nO(m) · (2log(1+Δ))O(n+m).

Subset Sum and Knapsack

The subset-sum problem (with multiplicities) is an integer program of the form (2)
with one linear constraint. Polak and Rohwedder [29] have shown that subset-sum
with multiplicities—that means

∑n
i=1 xi zi = t ,0 ≤ xi ≤ ui ∀i ∈ [n],x ∈ Zn—can be

solved in timeO(n+z5/3max) times a polylogarithmic factor where zmax :=maxi=1,...,n zi .
The algorithm of Frank and Tardos [15] (Theorem6) finds an equivalent instance in

which zmax is bounded by 2O(n3)uO(n2)
max . All-together, if each multiplicity is bounded

by a polynomial p(n), then the state-of-the-art for subset-sum with multiplicities is
straightforward enumeration resulting in a running time nO(n) which is the current
best running time for integer programming. We can significantly improve the run-
ning time in this regime. This is a direct consequence of Theorem10.

Corollary 2. The subset sumproblemwithmultiplicities of the form
∑n

i=1 xi zi = t ,0≤
x ≤u,x ∈Zn can be solved in time 2O(n) · (log(1+‖u‖∞))n. In particular if each multi-
plicity is bounded by a polynomial p(n), then it can be solved in time (logn)O(n).

Knapsack with multiplicities is the following integer programming problem

max
{〈c,x〉 | x ∈Zn

≥0, 〈a,x〉 ≤β,0≤ x ≤ u
}
, (6)
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where c,a,u ∈ Zn
≥0 are integer vectors. Again, via the preprocessing algorithm of

Frank and Tardos [15] (Theorem6) one can assume that ‖c‖∞ as well as ‖a‖∞ are

bounded by 2O(n3)uO(n2)
max . If each ui is bounded by a polynomial in the dimen-

sion, then the state-of-the-art for this problem is again straightforward enumera-
tion which leads to a running time of nO(n). Also in this regime, we can significantly
improve the running time which is an immediate consequence of Theorem10.

Corollary 3. A knapsack problem (6) can be solved in time 2O(n) · (log(1+‖u‖∞))n. In
particular if ‖u‖∞ is bounded by a polynomial p(n) in the dimension, it can be solved
in time (logn)O(n).
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