
A Fast Combinatorial Algorithm
for the Bilevel Knapsack Problem

with Interdiction Constraints

Noah Weninger(B) and Ricardo Fukasawa

University of Waterloo, Waterloo, ON, Canada
{nweninger,rfukasawa}@uwaterloo.ca

Abstract. We consider the bilevel knapsack problem with interdiction
constraints, a fundamental bilevel integer programming problem which
generalizes the 0-1 knapsack problem. In this problem, there are two knap-
sacks and n items. The objective is to select some items to pack into the
first knapsack such that themaximumprofit attainable from packing some
of the remaining items into the second knapsack is minimized. We present
a combinatorial branch-and-bound algorithm which outperforms the cur-
rent state-of-the-art solutionmethod in computational experiments by 4.5
times on average for all instances reported in the literature. On many of
the harder instances, our algorithm is hundreds of times faster, and we
solved 53 of the 72 previously unsolved instances. Our result relies fun-
damentally on a new dynamic programming algorithm which computes
very strong lower bounds. This dynamic program solves a relaxation of
the problem from bilevel to 2n-level where the items are processed in an
online fashion. The relaxation is easier to solve but approximates the orig-
inal problem surprisingly well in practice. We believe that this same tech-
nique may be useful for other interdiction problems.

Keywords: Bilevel programming · Interdiction · Knapsack problem ·
Combinatorial algorithm · Dynamic programming · Branch and bound

1 Introduction

Bilevel integer programming (BIP), a generalization of integer programming
(IP) to two-round two-player games, has been increasingly studied due to its
wide real-world applicability [5,12,17]. In the BIP model, there are two IPs,
called the upper level (or leader) and lower level (or follower), which share some
variables between them. The objective is to optimize the upper level IP but with
the constraint that the shared variables must be optimal for the lower level IP.
The term interdiction is used to describe bilevel problems in which the upper
level IP has the capability to block access to some resources used by the lower
level IP. The upper level is typically interested in blocking resources in a way
that produces the worst possible outcome for the lower level IP. For instance,
the resources may be nodes or edges in a graph, or items to be packed into a
knapsack. These problems often arise in military defense settings (e.g., see [17]).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 438–452, 2023.
https://doi.org/10.1007/978-3-031-32726-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_31&domain=pdf
http://orcid.org/0000-0002-0546-4774
http://orcid.org/0000-0001-8785-5906
https://doi.org/10.1007/978-3-031-32726-1_31


A Fast Combinatorial Algorithm for BKP 439

In this paper we study the bilevel knapsack problem with interdiction con-
straints (BKP), which was introduced by DeNegre in 2011 [6]. This problem is
a natural extension of the 0-1 knapsack problem (KP) to the bilevel setting.
Formally, we are given n items. Each item i ∈ {1, . . . , n} has an associated profit
pi ∈ Z>0, upper-level weight wU

i ∈ Z>0 and lower-level weight wL
i ∈ Z≥0. The

upper-level knapsack has capacity CU ∈ Z≥0 and the lower-level knapsack has
capacity CL ∈ Z≥0. We use the standard notation: for a vector x and set S we
let x(S) :=

∑
i∈S xi. The problem BKP can then be stated as follows:

min
X∈U

max
Y ∈L(X)

p(Y ) (objective)

where U =
{
X ⊆ {1, . . . , n} : wU (X) ≤ CU

}
, (upper level)

and L(X) =
{
Y ⊆ {1, . . . , n} \ X : wL(Y ) ≤ CL

}
. (lower level)

We call a solution (X,Y ) feasible if X ∈ U and Y ∈ argmax{p(Ŷ ) : Ŷ ∈
L(X)}. A solution (X,Y ) is optimal if it minimizes p(Y ) over all feasible solu-
tions. Note that determining whether (X,Y ) is feasible is weakly NP-Hard.

Given that “the knapsack problem is believed to be one of the ‘easier’ NP-
hard problems,” [16] one may propose that BKP may also be one of the ‘easier’
Σp

2-hard problems. While this may indeed be the case, unlike KP, which admits
a pseudopolynomial time algorithm, BKP remains NP-complete when the input
is described in unary and thus has no pseudopolynomial time algorithm unless
P = NP [1]. In addition, BKP is a Σp

2-complete problem, which means it cannot
even be modelled as an IP with polynomially many variables and constraints,
unless the polynomial hierarchy collapses. A recent positive theoretical result for
BKP is a polynomial-time approximation scheme [3].

This theoretical hardness seemed to have been confirmed by the struggle of
computational approaches to solve small instances. Until recently, proposed algo-
rithms – either generic BIP algorithms [6,8,19] or more specific algorithms for
BKP (or slight generalizations of it) [2,9,13] – were only able to solve instances
with at most 55 items. A breakthrough result came in a paper by Della Croce and
Scatamacchia [4], that proposed a BKP-specific algorithm (henceforth referred
to as DCS ) which was able to solve instances containing up to 500 items.

It is worth noting that all papers prior to DCS only consider instances which
were generated in an uncorrelated fashion, meaning that weights and profits
were chosen uniformly at random with no correlation between the values. The
DCS algorithm is able to solve uncorrelated instances with 500 items in less
than a minute, but its performance drops significantly even for weakly corre-
lated instances, and most strongly correlated instances remain unsolved after an
hour of computing time. These results seem to mimic what is known for KP:
uncorrelated KP instances are some of the easiest types of instances to solve [16]
and early KP algorithms such as expknap [15] could quickly solve uncorrelated
instances but struggled with strongly correlated ones.

A common aspect among all methods in the literature is that they rely fun-
damentally on MIP solvers. In this paper, we present a simple combinatorial
branch-and-bound algorithm for solving BKP. Our algorithm improves on the



440 N. Weninger and R. Fukasawa

performance of the DCS algorithm for 94% of instances, even achieving a speedup
of orders of magnitude in many cases. Furthermore, our algorithm appears to
be largely impervious to correlation: it solves strongly correlated instances with
ease, only significantly slowing down when the lower-level weights equal the prof-
its (i.e., the subset sum case). In Sect. 2, we describe our algorithm. Our algo-
rithm relies fundamentally on a new strong lower bound computed by dynamic
programming which we present in Sect. 3. Section 4 details our computational
experiments. We conclude in Sect. 5 with some directions for future research.
We note that some proofs were omitted for brevity.

2 A Combinatorial Algorithm for BKP

In this section we describe our exact solution method for BKP. At a high level,
the algorithm is essentially just standard depth-first branch-and-bound. Our
strong lower bound, defined later in Sect. 3, is essential for reducing the search
space. To begin formalizing this, we first define the notion of a subproblem.

Definition 1. A subproblem (X, i) consists of some i ∈ {1, . . . , n + 1} and set
of items X ⊆ {1, . . . i − 1} such that X ∈ U .

Note that this definition depends on the ordering of the items, which throughout
the paper we assume to be such that p1

wL
1

≥ p2
wL

2
≥ · · · ≥ pn

wL
n

with ties broken by
placing items with larger pi first. These subproblems will form the nodes of the
branch-and-bound tree; (∅, 1) is the root node, and for every X ∈ U , (X,n+1) is
a leaf. Every non-leaf subproblem (X, i) has the child (X, i+1), which represents
omitting item i from the upper-level solution. Non-leaf subproblems (X, i) with
X ∪ {i} ∈ U have an additional child (X ∪ {i}, i + 1) which represents including
item i in the upper-level solution.

The algorithm simply starts at the root and traverses the subproblems in a
depth-first manner, preferring the child (X ∪ {i}, i + 1) if it exists because it
is more likely to lead to a good solution. Every time the search reaches a leaf
(X,n + 1), we solve the knapsack problem max{p(Y ) : Y ∈ L(X)} to get a
feasible solution, and updating the incumbent if appropriate.

2.1 The Bound Test

At each node (X, i) of the branch-and-bound, we find a lower bound on the
optimal value of that subproblem by the use of a bound test algorithm, which
tests lower bounds against a known incumbent solution value z∗.

The lower bound used to prune a subproblem is computed in three steps: (1)
we solve a knapsack problem on items {1, . . . , i−1}\X, (2) we compute a lower
bound for BKP restricted to items {i, . . . , n}, and (3) we combine (1) and (2)
into a lower bound for the descendants of (X, i).

For step (1), we define a function K(X̄, c), which, for a given X̄ ⊆ {1, . . . , n}
and c ≥ 0, returns the optimal value of the knapsack problem with weights wL,
profits p, and capacity c, under the restriction that items in X̄ cannot be used:



A Fast Combinatorial Algorithm for BKP 441

K(X̄, c) = max
{
p(Y ) : Y ⊆ {1, . . . , n} \ X̄ and wL(Y ) ≤ c

}
.

For step (2), we need a function ω(i, cU , cL) which is a lower bound on BKP but
with upper-level capacity cU , lower-level capacity cL, and restricted to items
{i, . . . , n}. So, formally, ω must satisfy

ω(i, cU , cL) ≤ min{K(X ′ ∪ {1, . . . , i − 1}, cL) : X ′ ⊆ {i, . . . , n}, wU (X ′) ≤ cU}.

We will define precisely what ω is in Sect. 3; for now, we only need to know that
it has this property. We now prove the following lemma, which describes how to
achieve step (3).

Lemma 1. Let (X, i) be a subproblem. For all c ∈ {0, . . . , CL},
K (X ∪ {i, . . . , n}, c) + ω

(
i, CU − wU (X), CL − c

)

≤ min
{
p(Ȳ ) : (X̄, Ȳ ) is feasible for BKP and X̄ ∩ {1, . . . , i − 1} = X

}
.

Proof. First, note that for any X ′ ⊆ {i, . . . , n},

K(X ∪ {i, . . . , n}, c) + K(X ′ ∪ {1, . . . , i − 1}, CL − c) ≤ K(X ∪ X ′, CL).

Thus, if we let χ′ := {X ′ ⊆ {i, . . . , n} : wU (X ′) ≤ CU − wU (X)} and take the
minimum with respect to χ′ we get

K(X∪{i, . . . , n}, c)+ω(i, CU−wU (X), CL−c) ≤ min{K(X∪X ′, CL) : X ′ ∈ χ′}.

and now just note that this last term is equal to

min
{
p(Ȳ ) : (X̄, Ȳ ) is feasible for BKP and X̄ ∩ {1, . . . , i − 1} = X

}
. 	


From this, it follows that for any c ∈ {0, . . . , CL}, if we have

K (X ∪ {i, . . . , n}, c) + ω
(
i, CU − wU (X), CL − c

) ≥ z∗

then we can prune subproblem (X, i). We also note that the lower bound still
remains valid if we replace K (X ∪ {i, . . . , n}, c) by a feasible solution to that
problem. This is what is done in the function BoundTest in Algorithm 1 whose
correctness is established by the following lemma.

Lemma 2. If BoundTest(X, i) returns true, then subproblem (X, i) can be
pruned.

We end with an important consideration regarding the efficient implementa-
tion of Algorithm 1. The greedy part of the bound test (Lines 2 to 4) appears
to require time O(n). However, considering how we choose to branch, the val-
ues wg and pg can be computed in time O(1) given their values for the parent
subproblem. To determine K(X ∪ {i, . . . , n}, c), we use the standard dynamic
program (DP) for knapsack. However, for each bound test, it is only necessary
to compute a single row of a DP table (i.e., fill in all CL capacity values for the
row associated with item i) from the row computed in the parent subproblem.
By doing this, the entire BoundTest function will run in time O(CL). Further-
more, when the branch-and-bound reaches a leaf, the knapsack solution needed
to update the upper bound will already have been found by the bound test.



442 N. Weninger and R. Fukasawa

Algorithm 1: Returns true if the subproblem (X, i) can be pruned.
Precondition: z∗ is the value of the best incumbent solution

1 function BoundTest(X, i)
2 wg, pg ← 0;
3 for j = 1, . . . , i − 1 do
4 if j /∈ X and wg + wL

j ≤ CL then wg ← wg + wL
j , pg ← pg + pj ;

5 if pg + ω(i, CU − wU (X), CL − wg) ≥ z∗ then return true;

6 for c = 0, . . . , CL do
7 if K(X ∪ {i, . . . , n}, c) + ω(i, CU − wU (X), CL − c) ≥ z∗ then return

true;

8 return false;

2.2 Computing Initial Bounds

In our algorithm, a strong initial upper bound z∗ can help decrease the size of
the search tree. For this we use a simple heuristic we call GreedyHeuristic.
GreedyHeuristic works in two steps. First, an upper level set X̄ is picked by
solving max {p(X) : X ∈ U}. Then the lower level solution Ȳ is picked by solving
max

{
p(Y ) : Y ∈ L(X̄)

}
. We say GreedyHeuristic returns (X̄, Ȳ , z̄), where z̄

is the objective value of the solution (X̄, Ȳ ). We now establish a case in which
GreedyHeuristic actually returns an optimal solution.

Lemma 3. GreedyHeuristic() returns an optimal solution if there exists an
optimal solution (X,Y ) for BKP where Y = {1, . . . , n} \ X.

The proof is skipped for brevity, but we remark that previous work has noted
that BKP is very easily solved for such instances [2,4]. Following [4], we use an
LP to detect some cases where the GreedyHeuristic is optimal. The below
formulation LB(i) is a simplified version of the LP in [4].

LB(i) = min
∑i−1

j=1 pj(1 − xj)

such that
∑i−1

j=1 wU
j xj ≤ CU

CL − wL
i + 1 ≤ ∑i−1

j=1 wL
j (1 − xj) ≤ CL

0 ≤ x ≤ 1, x ∈ R
i−1

We define LB(i) = ∞ if the LP is infeasible. This LP is used by the following
lemma. We skip the proof for brevity.

Lemma 4. Suppose GreedyHeuristic() returns (X̄, Ȳ , z̄). If z̄ ≤ min{LB(c) :
1 ≤ c ≤ n} then (X̄, Ȳ ) is optimal for BKP.

Before starting our branch-and-bound algorithm, we run GreedyHeuristic
and check if it is optimal using Lemma 4. This enables us to quickly solve trivial
instances without needing to run our main algorithm.



A Fast Combinatorial Algorithm for BKP 443

3 Lower Bound

In this section we define the lower bound ω(i, cU , cL) that we use in our algo-
rithm. Recall that ω(i, cU , cL) must lower bound the restriction of BKP where
we can only use items {i, . . . , n}, have upper-level capacity cU , and lower-level
capacity cL. Our lower bound is based on dynamic programming (DP), which
computes ω(i, cU , cL) for all parameter values with time and space complexity
O(nCUCL).

The main idea for the lower bound is to obtain good feasible solutions for
the lower-level problem. Perhaps the most obvious way is to assume that the
lower-level problem finds a greedy solution. It is not hard to see why this is a
lower bound: a greedy lower-level solution will always achieve profit at most that
of an optimal lower-level solution. We can compute this lower bound with the
following recursively-defined DP algorithm:

ωg(i, cU , cL) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if cU < 0,

−∞ if cL < 0,

0 if cU ≥ 0, cL ≥ 0 and i > n,

ωg(i + 1, cU , cL) if cU ≥ 0, wL
i > cL and i ≤ n.

min

{
ωg(i + 1, cU − wU

i , cL),

ωg(i + 1, cU , cL − wL
i ) + pi

}

if cU ≥ 0, wL
i ≤ cL and i ≤ n.

The first three expressions are to take care of trivial cases. The fourth case skips
any item which cannot fit in the lower-level knapsack, as it would be pointless
for the upper level to take such an item. The fifth case picks the worse (i.e.,
better for the upper level) out of the two possible greedy solutions from the two
children nodes of subproblem (X, i).

This lower bound already has very good performance in practice. However,
we can do better by making a deceptively simple modification: giving the lower
level the option to ignore an item. This modification produces our strong DP
lower bound, ω, which is equal to ωg in the first three cases, but instead of the
last two cases we get:

ω(i, cU , cL) = min

⎧
⎪⎨

⎪⎩

ω(i + 1, cU − wU
i , cL),

max

{
ω(i + 1, cU , cL − wL

i ) + pi,

ω(i + 1, cU , cL)

}

⎫
⎪⎬

⎪⎭

if cU ≥ 0, cL ≥ 0
and i ≤ n.

It is not a hard exercise to show that ωg(i, cU , cL) ≤ ω(i, cU , cL) for all 1 ≤
i ≤ n, 0 ≤ cU ≤ CU and 0 ≤ cL ≤ CL. Extrapolating our intuition about
ωg, formulation ω appears to actually find optimal lower-level solutions, so one
might guess that ω(1, CU , CL) is actually optimal for BKP, if it weren’t that
this is impossible unless P = NP [1]. The subtlety is that by giving the lower
level a choice of whether to take an item, we have also given the upper level the



444 N. Weninger and R. Fukasawa

power to react to that choice. Specifically, the upper level choice of whether to
take item i can depend on how much capacity the lower level has used on items
{1, . . . , i − 1}. Evidently, this is not permitted by the definition of BKP, which
dictates that the upper level solution is completely decided prior to choosing the
lower level solution. However, our experiments show that this actually gives the
upper level an extremely small amount of additional power in practice.

The lower bound ω may also be interpreted as a relaxation from a 2-round
game to a 2n-round game. This may seem to be making the problem more
difficult, but each round is greatly simplified, so the problem becomes easier to
solve. This 2n-round game is as follows. In round 2i − 1, the leader (the upper
level player) decides whether to include the item i. In round 2i, the follower (the
lower level player) responds to the leader’s decision: if item i is still available,
then the follower decides whether to include item i. The score of the game is
simply the total profit of all items chosen by the follower. It is straightforward to
see that the minimax value of this game (i.e., the score given that both players
follow an optimal strategy) is equal to ω(1, CU , CL).

We now show formally that ω(1, CU , CL) lower bounds the optimal objective
value of BKP. To this end we define ωX , a modified version of ω where instead
of the minimization in the case where cU ≥ 0, cL ≥ 0 and i ≤ n, the choice is
made depending on whether i ∈ X for some given set X. ωX(i, cU , cL) is equal
to ωg in the first three cases, but replaces the last two cases with:

ωX(i, cU , cL) =
⎧
⎪⎨

⎪⎩

ωX(i + 1, cU − wU
i , cL) if cU ≥ 0, cL ≥ 0, i ≤ n and i ∈ X,

max

{
ωX(i + 1, cU , cL − wL

i ) + pi,

ωX(i + 1, cU , cL)

}

if cU ≥ 0, cL ≥ 0, i ≤ n and i /∈ X.

With this simple modification, we claim that ωX(1, CU , CL) = max{p(Y ) : Y ∈
L(X)} (and similarly for other i, cU , and cL). To formalize this, we show that
ωX and K (as defined in Sect. 2.1) are equivalent in the following sense.

Lemma 5. For all 1 ≤ i ≤ n, X ⊆ {i, . . . , n}, cU ≥ wU (X) and cL ≥ 0,

ωX(i, cU , cL) = K(X ∪ {1, . . . , i − 1}, cL).

Proof. Given that cU ≥ wU (X), the case cU < 0 can not occur in the expan-
sion of ωX(i, cU , cL), so ωX(i, cU , cL) = ωX(i,∞, cL). Consider the 0-1 knapsack
problem with profits p′ and weights w′ formed by taking p′ = p and w′ = wL

except with p′
j = w′

j = 0 for items j ∈ X. We can then simplify the definition of
ωX(i,∞, cL) by using p′ and w′ to effectively skip items in X:

ωX(i,∞, cL) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞ if cL < 0,

0 if cL ≥ 0 and i > n,

max

{
ωX(i + 1,∞, cL − w′

i) + p′
i,

ωX(i + 1,∞, cL)

}

if cL ≥ 0 and i ≤ n.



A Fast Combinatorial Algorithm for BKP 445

The recursive definition of ωX(i,∞, cL) above describes the standard DP
algorithm for 0-1 knapsack with capacity cL, profits p′ and weights w′ but
restricted to items {i, . . . , n}; this is the same problem which is solved by
K(X ∪ {1, . . . , i − 1}, cL). 	

We now establish that ω(i, cU , cL) is a lower bound as desired.

Theorem 1. For all 1 ≤ i ≤ n, cU ≥ 0 and cL ≥ 0,

ω(i, cU , cL) ≤ min
X⊆{i,...,n} :wU (X)≤cU

K(X ∪ {1, . . . , i − 1}, cL).

Proof. By definition, ωX(i, cU , cL) = ∞ if wU (X) > cU , so

min
X⊆{i,...,n}

ωX(i, cU , cL) = min
X⊆{i,...,n} :wU (X)≤cU

ωX(i, cU , cL)

= min
X⊆{i,...,n} :wU (X)≤cU

K(X ∪ {1, . . . , i − 1}, cL).

where the last equality follows from Lemma 5. Therefore, it suffices to show that
ω(i, cU , cL) ≤ minX⊆{i,...,n} ωX(i, cU , cL). The proof is by induction on i from
n + 1 to 1. Let cU ≥ 0 and cL ≥ 0 be arbitrary. Our inductive hypothesis is that
ω(i, cU , cL) ≤ minX⊆{i,...,n} ωX(i, cU , cL). For the base case, where i = n + 1, by
definition we have ω(i, cU , cL) = ωX(i, cU , cL) = 0 for any X ⊆ {i, . . . , n} = ∅.
Now we prove the inductive case. Let 1 ≤ i ≤ n be arbitrary and assume that
the inductive hypothesis holds for i + 1, with every cU ≥ 0 and cL ≥ 0. We
present only the case where wU

i ≤ cU and wL
i ≤ cL. The remaining cases (where

wU
i > cU or wL

i > cL) are just simpler versions of this.

ω(i, cU , cL) = min

{
ω(i + 1, cU − wU

i , cL),

max
{

ω(i + 1, cU , cL − wL
i ) + pi, ω(i + 1, cU , cL)

}

}

≤ min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
X⊆{i+1,...,n}

ωX(i + 1, cU − wU
i , cL),

max

⎧
⎪⎨

⎪⎩

min
X⊆{i+1,...,n}

ωX(i + 1, cU , cL − wL
i ) + pi,

min
X⊆{i+1,...,n}

ωX(i + 1, cU , cL)

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤ min

⎧
⎪⎪⎨

⎪⎪⎩

min
X⊆{i+1,...,n}

ωX(i + 1, cU − wU
i , cL),

min
X⊆{i+1,...,n}

max

{
ωX(i + 1, cU , cL − wL

i ) + pi,

ωX(i + 1, cU , cL)

}

⎫
⎪⎪⎬

⎪⎪⎭

= min
X⊆{i+1,...,n}

min

⎧
⎪⎨

⎪⎩

ωX(i + 1, cU − wU
i , cL),

max

{
ωX(i + 1, cU , cL − wL

i ) + pi,

ωX(i + 1, cU , cL)

}

⎫
⎪⎬

⎪⎭

= min
X⊆{i,...,n}

ωX(i, cU , cL). 	




446 N. Weninger and R. Fukasawa

Note that in particular, this implies that ω(1, CU , CL) ≤ minX∈U K(X,CL) =
minX∈U maxY ∈L(X) p(Y ), i.e., ω(1, CU , CL) is a lower bound for BKP.

We end this section with a simple observation. The approach we derived for
our problem was based on obtaining good feasible solutions to the lower problem.
Now, if the lower problem is already NP-hard, one may ask how useful can an
approximate solution to the lower level be. For this, we consider a very generic
problem:

z∗ := min
x∈U

max
y∈L(x)

c(x, y) (1)

For each x ∈ U , assume there exists y ∈ L(x) that maximizes the inner problem.
Let y∗(x) be such a maximizer of c(x, y) for y ∈ L(x). The following lemma then
shows that if we can solve the problem with an approximate lower level, instead
of an exact one, we get an approximate solution to (1).

Lemma 6. Suppose we have a function f(x) such that for all x ∈ U :

– f(x) ∈ L(x), and
– c(x, f(x)) ≤ c(x, y∗(x)) ≤ αc(x, f(x)), for some α ≥ 1.

Let x̃ ∈ arg min
x∈U

c(x, f(x)). Then c(x̃, y∗(x̃)) ≤ αz∗.

Proof. Let (x∗, y∗(x∗)) be the optimal solution to (1). Then

1
α

c(x̃, y∗(x̃)) ≤ c(x̃, f(x̃)) ≤ c(x∗, f(x∗)) ≤ c(x∗, y∗(x∗)) = z∗. 	

While this does not immediately give an approximation algorithm for the

problem, we believe it may be useful to simplify some Σp
2-hard bilevel interdiction

problems and, for that reason, we include this lemma in this work. Note that an
analogous result can be also derived for a max−min problem.

4 Computational Results

In this section, we perform computational experiments to compare our algorithm
(Comb) with the method from [4] (DCS ). Given that the superiority of the DCS
algorithm over other approaches has been well demonstrated we do not compare
our algorithm directly to the prior works [2,6,8,9,18,19].

4.1 Implementation

We were unable to obtain either source code or a binary from the authors of
[4], so we reimplemented their algorithm. We use Gurobi 9.5 instead of CPLEX
12.9, and obviously run it on a different machine, so an exact replication of
their results is nearly impossible. Nonetheless, we found our reimplementation
produces results very similar to what is reported in [4], and even solves three
additional instances which were not solved in [4]. Therefore, we believe that any
comparison with our version of the DCS algorithm is reasonably fair.



A Fast Combinatorial Algorithm for BKP 447

Both Comb and DCS were run using 16 threads. However, not all parts of the
algorithms were parallelized. Specifically, in the DCS implementation, the only
part which is parallelized is the MIP solver. In the implementation of Comb,
we only parallelized two parts: the computation of the lower bound ω and the
computation of the initial lower bound min{LB(c) : 1 ≤ c ≤ n}.

Our code is implemented in C++ and relies on OpenMP 4.5 for parallelism,
Gurobi 9.5 for solving MIPs, and the implementation of the combo knapsack
algorithm [14] from [11]. The code was executed on a Linux machine with four
16-core Intel Xeon Gold 6142 CPUs @ 2.60 GHz and 256 GB of RAM. All code
and instances are available at https://github.com/nwoeanhinnogaehr/bkpsolver.

4.2 Instances

Our test set contains all instances described in the literature [2,4,6,10,19] and
1660 new instances which we generated. The first 1500 were generated as follows.
For each n ∈ {10, 25, 50, 102, 103, 104}, INS ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
and R ∈ {10, 25, 50, 100, 1000}, we generated five instances according to five
different methods, which we call classes 1-5. All weights and profits were selected
uniformly at random in the range [1, R], but for some of the five classes, we
equated wL, wU or p with each other:

1. wL, wU and p are independent (uncorrelated)
2. wL = p but wU is independent (lower subset-sum)
3. wU = p but wL is independent (upper subset-sum)
4. wL = wU = p (both subset-sum)
5. wL = wU but p is independent (equal weights)

The capacities are chosen as follows. Let CL =
⌈
INS/11 · ∑

i w
L
i

⌉
and choose

CU uniformly at random in the range [CL − 10, CL + 10]. If there is any item
with wL

i < CL or wU
i < CU , then we increase the appropriate capacity so that

this is not the case. This is the same way that the capacities are selected in
[2,4,10], except that we exclude instances that would almost certainly be solved
by the initial bound test and we include half integral values of INS. Note that
the easiest and hardest instances reported in the literature were uncorrelated
and lower subset-sum, respectively [4]. Hence, we expect these new instances to
capture both best-case and worst-case behavior from the solvers.

The remaining 160 instances were intended to test the case where the capacity
is very large but the number of items is small. These instances were generated
following the same scheme as above except that we only generated uncorrelated
instances, and we chose n ∈ {5, 10, 20, 30} and R ∈ {103, 104, 105, 106}. To the
best of our knowledge, instances with such large capacity have not been evaluated
previously.

4.3 Results

Our results on instances from the literature are summarized in Table 1. To best
match the test environment used for the original DCS implementation, we ran

https://github.com/nwoeanhinnogaehr/bkpsolver


448 N. Weninger and R. Fukasawa

Table 1. Results for instances from the literature, grouped by instance type.

Group Num DCS Comb

Opt Best Avg Max Opt Best Avg Max

uncorrelated 940 940 66 2.32 15.73 940 874 0.31 6.48

weak correlated 50 50 0 13.49 72.64 50 50 0.26 3.54

strong correlated 50 41 0 689.58 3,600 50 50 0.34 3.98

inverse strong corr. 50 38 0 919.91 3,600 50 50 1.07 34.69

almost strong corr. 50 40 0 815.4 3,600 50 50 0.24 3.16

subset-sum 50 35 0 1,087.18 3,600 42 42 586.29 3,600

even-odd subset-sum 50 36 0 1,033.98 3,600 42 42 581.42 3,600

even-odd strong corr. 50 41 0 747.12 3,600 50 50 0.61 17.21

similar weight uncorr. 50 50 0 22.89 79.85 50 50 0.05 0.08

the tests with a time limit of 1 h, and used the same parameters for the DCS algo-
rithm as reported by the authors [4]. For each instance group and each solver, we
reported the number of instances solved to optimality (column Opt), the number
of instances on which the solver took strictly less time than the other solver (col-
umn Best), the average wall-clock running time in seconds (column Avg) and the
maximum wall-clock running time in seconds (column Max). Note that measur-
ing wall-clock time as opposed to CPU time only disadvantages our algorithm,
if anything, because the DCS implementation utilizes all 16 threads for a large
proportion of the time due to parallelization within Gurobi, whereas the same is
not true for our algorithm. Overall, our solver had better performance on 1258 of
the 1340 instances (about 94%), achieving about 4.5 times better performance on
average, and solving 53 of the 69 instances which our DCS implementation did
not (the original DCS implementation did not solve 72 instances). These results
demonstrate the remarkable advantage that Comb has on hard instances. DCS
struggles with all instances involving strong or subset-sum correlation, but Comb
only significantly slows down for subset-sum instances.

In Fig. 1, we plot a performance profile for instances from the literature com-
paring the DCS algorithm to some variants of our algorithm. This type of graph
plots, for each instance, the ratio of each algorithm’s performance to the per-
formance of the best algorithm for that instance. The instances are sorted by
difficulty. Note that instances which timed out are counted as 3600 s seconds. For
a comprehensive introduction to performance profiles, see [7]. The two variants
of Comb included are Comb-weak, which uses the lower bound ωg instead of ω,
and Comb-greedy, which uses a greedy lower bound test, i.e., where Lines 6 to 7
are omitted from Algorithm 1. The graph indicates that while Comb does better
with more threads and the main variant is best, the single-threaded version and
the variants still outperform 16-thread DCS. Although it is not depicted in the
performance profile, we also tested variants with different item orderings, and
found the one described in Sect. 2 to be the best. This is somewhat expected as
this is the same ordering that gives rise to the greedy algorithm for 0-1 knapsack.



A Fast Combinatorial Algorithm for BKP 449

21 23 25 27 29 211 213 215

Number of times worse than best solver

0

20

40

60

80

100
P
er
ce
nt

of
in
st
an

ce
s

Comb (1 thread)
Comb (4 threads)
Comb (16 threads)
Comb-weak (16 threads)
Comb-greedy (16-threads)
DCS (16 threads)

Fig. 1. Performance profile for all instances from the literature.

We now turn our attention to the new instances. Due to the large number
of new instances and high difficulty, we used a reduced time limit of 15 min
(900 s) in order to complete the testing in a timely fashion. For these tests we
use the same DCS parameters used by the DCS authors for testing their own
instances [4].

The results for the new instances are summarized in Tables 2 and 3. Note
that there are 300 instances of each group, but Table 2 only instances for which
our test machine had enough memory to store the DP table used in Comb. The
performance of DCS is reported on the remaining instances in Table 3. We can
see that Comb offers a significant speed improvement for all classes, and although
both solvers are roughly equally capable of solving instances in the uncorrelated,
upper subset-sum, equal weights, and large capacity classes, Comb solved 122
more of the instances in the lower subset-sum and both subset-sum classes than
DCS. Extrapolating from the results in Table 2, we suspect that given sufficient
memory, our solver would be able to solve many more of these instances with
better performance than DCS.

In Tables 5 and 6, we report some statistics collected during the tests of
our algorithm. In these tables, RootTime is the average number of (wall clock)
seconds required to perform the initial bound test and compute the DP table,
OptTime is the average number of seconds that branch-and-bound takes to find
an optimal solution (excluding RootTime), ProofTime is the average number of
seconds needed to prove optimality after an optimal solution is found, Nodes
is the average number of nodes searched by branch-and-bound, and RootGap%
is 100 · (z̄ − ω(1, CU , CL))/z̄ where z̄ is the value of the solution returned by
GreedyHeuristic. These tables only consider instances which fit in memory and
did not time out, as some of the columns are undefined otherwise. Considering all



450 N. Weninger and R. Fukasawa

Table 2. Summary of results for new instances, grouped by class.

DCS Comb

Group Num Opt Best Avg Max Opt Best Avg Max

uncorrelated 243 241 3 12.42 900 243 240 0.96 24.02

lower subset-sum 256 173 0 320.36 900 236 236 73.62 900

upper subset-sum 235 235 5 2.7 89.25 235 230 0.79 21.08

both subset-sum 235 130 0 423.83 900 189 189 184.9 900

equal weights 236 236 9 2.2 120.55 236 227 0.7 18.38

large capacity 92 90 1 38.78 900 92 91 2.31 22.72

Table 3. Summary of results for DCS on
new instances which our solver could not fit
in memory, grouped by class.

Group Num Opt Avg Max

uncorrelated 57 41 487.85 900

lower subset-sum 44 1 886.75 900

upper subset-sum 65 59 283.34 900

both subset-sum 65 0 900 900

equal weights 64 62 175.92 900

large capacity 68 5 864.33 900

Table 4. An instance with n
items, CU = n−1 and CL = n that
has optimal objective value n − 1
but ω(1, CU , CL) = 1.

item no. p wU wL

1 1 1 1

.

..
.
..

.

..
.
..

n-1 1 1 1

n n-1 n-1 n

instances which fit in memory, the average root gap is 3.22%, and the maximum
is 57.89%.

Evidently, the root gap is typically very small and in fact ω(1, CU , CL) ≥
0.5OPT in all tested instances. However, the worst case approximation factor
of ω is actually unbounded. Table 4 describes a family of instances with n items
for which OPT = (n−1)ω(1, CU , CL). Despite this, branch-and-bound is able to
solve these instances using only O(n) nodes. On the other hand, it is interesting
to note that the subset-sum instances typically have very small root gaps, but
solving them to optimality is evidently very hard.

Evidently, the main disadvantage of our algorithm is its high memory usage.
In our solver, we use a few simple tricks to reduce memory usage slightly: when
possible, we store the DP table entries as 16-bit integers, and we avoid computing
table entries for capacity values which cannot be seen in any feasible solution.
Other optimizations to reduce memory usage are certainly possible as well, such
as a DP-with-lists type approach, but we have not implemented this.



A Fast Combinatorial Algorithm for BKP 451

Table 5. Statistics from our solver, for instances from the literature.

Group RootTime OptTime ProofTime NumNodes RootGap%

uncorrelated 0.3 0.03 0.02 12,053.23 5.4

weak correlated 0.25 0.04 0.03 7,130.98 2.04

strong correlated 0.26 0.03 0.11 571,473.6 2.98

inverse strong corr. 0.37 0.04 0.73 4,751,888.08 0.39

almost strong corr. 0.24 0.03 0.03 735.76 2.99

subset-sum 0.08 0.05 12.22 104,067,718.79 0.02

even-odd subset-sum 0.07 0.04 6.42 61,246,957.64 0.02

even-odd strong corr. 0.26 0.03 0.37 2,551,213.42 2.95

similar weight uncorr. 0.05 0.05 0.05 0 0

Table 6. Statistics from our solver, for new instances.

Group RootTime OptTime ProofTime Nodes RootGap%

uncorrelated 0.86 0.27 0.17 73,616.37 9.86

lower subset-sum 0.95 0.8 3.43 11,293,085.12 1.27

upper subset-sum 0.79 0 0 182.99 5.75

both subset-sum 0.16 3.02 7.68 117,664,085.82 3.44

equal weights 0.7 0.02 0.02 14.65 1.64

large capacity 2.31 0 0 29.82 10.15

5 Conclusion

We presented a new combinatorial algorithm for solving BKP that is on average
4.5 times better, and achieves up to 3 orders of magnitude improvement in
runtime over the performance of the previous state-of-the-art algorithm, DCS.
The only disadvantage of our algorithm that we identified in computational
testing is the high memory usage. Because of this, if memory is limited and
time is not a concern, it may be a better idea to use DCS. However, if there
is any correlation between the lower-level weights and profits, DCS is unlikely
to solve the instance in any reasonable amount of time, so it is preferable to
use our algorithm on a machine with a large amount of memory, and/or to use
additional implementation tricks to reduce the memory usage.

For future work, it would be of interest to investigate whether our lower
bound can be strengthened further (say, to an O(1)-approximation). We expect
that it would be straightforward to generalize this work to the multidimensional
variant of BKP (i.e., where there are multiple knapsack constrains at each level),
although the issues with high memory usage would likely become worse in this
setting. It may also be straightforward to apply this technique to covering inter-
diction problems. Beyond this, we suspect that a similar lower bound and search
algorithm can be used to efficiently solve a variety of interdiction problems.



452 N. Weninger and R. Fukasawa

References

1. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A study on the computa-
tional complexity of the bilevel knapsack problem. SIAM J. Optim. 24(2), 823–838
(2014)

2. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: Bilevel knapsack with inter-
diction constraints. INFORMS J. Comput. 28(2), 319–333 (2016)

3. Chen, L., Wu, X., Zhang, G.: Approximation algorithms for interdiction problem
with packing constraints. arXiv preprint arXiv:2204.11106 (2022)

4. Della Croce, F., Scatamacchia, R.: An exact approach for the bilevel knapsack
problem with interdiction constraints and extensions. Math. Program. 183(1), 249–
281 (2020)

5. Dempe, S.: Bilevel optimization: theory, algorithms, applications and a bibliogra-
phy. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp.
581–672. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6 20

6. DeNegre, S.: Interdiction and discrete bilevel linear programming, Ph. D. thesis,
Lehigh University (2011)

7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

8. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm
for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

9. Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M.: Interdiction games and monotonic-
ity, with application to knapsack problems. INFORMS J. Comput. 31, 390–410
(2019)

10. Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for gener-
alized interdiction problems. Eur. J. Oper. Res. 267, 40–51 (2018)

11. Fontan, F.: Knapsack solver (Github repository). https://github.com/fontanf/
knapsacksolver (2017)

12. Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M.: A survey on mixed-integer pro-
gramming techniques in bilevel optimization. EURO J. Comput. Optimiz. 9,
100007 (2021)

13. Lozano, L., Bergman, D., Cire, A.A.: Constrained shortest-path reformulations for
discrete bilevel and robust optimization. arXiv preprint arXiv:2206.12962 (2022)

14. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for
the 0–1 knapsack problem. Manage. Sci. 45(3), 414–424 (1999)

15. Pisinger, D.: An expanding-core algorithm for the exact 0–1 knapsack problem.
Eur. J. Oper. Res. 87(1), 175–187 (1995)

16. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32,
2271–2284 (2005)

17. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms.
Eur. J. Oper. Res. 283(3), 797–811 (2020)

18. Tahernejad, S., Ralphs, T.K., DeNegre, S.T.: A branch-and-cut algorithm for
mixed integer bilevel linear optimization problems and its implementation. Math.
Program. Comput. 12(4), 529–568 (2020)

19. Tang, Y., Richard, J.P.P., Smith, J.C.: A class of algorithms for mixed-integer
bilevel min-max optimization. J. Global Optim. 66, 225–262 (2016)

http://arxiv.org/abs/2204.11106
https://doi.org/10.1007/978-3-030-52119-6_20
https://github.com/fontanf/knapsacksolver
https://github.com/fontanf/knapsacksolver
http://arxiv.org/abs/2206.12962

	A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints
	1 Introduction
	2 A Combinatorial Algorithm for BKP
	2.1 The Bound Test
	2.2 Computing Initial Bounds

	3 Lower Bound
	4 Computational Results
	4.1 Implementation
	4.2 Instances
	4.3 Results

	5 Conclusion
	References




