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Abstract. The reformulation-linearization technique (RLT) is a promi-
nent approach to constructing tight linear relaxations of non-convex con-
tinuous and mixed-integer optimization problems. The goal of this paper
is to extend the applicability and improve the performance of RLT for
bilinear product relations. First, a method for detecting bilinear product
relations implicitly contained in mixed-integer linear programs is devel-
oped based on analyzing linear constraints with binary variables, thus
enabling the application of bilinear RLT to a new class of problems. Our
second contribution addresses the high computational cost of RLT cut
separation, which presents one of the major difficulties in applying RLT
efficiently in practice. We propose a new RLT cutting plane separation
algorithm which identifies combinations of linear constraints and bound
factors that are expected to yield an inequality that is violated by the
current relaxation solution. A detailed computational study based on
implementations in two solvers evaluates the performance impact of the
proposed methods.

Keywords: Reformulation-linearization technique · Bilinear
products · Cutting planes · Mixed-integer programming

1 Introduction

The reformulation-linearization technique (RLT) was first proposed by Adams
and Sherali [1–3] for bilinear problems with binary variables, and has been
applied to mixed-integer [18–20], general bilinear [21] and polynomial [24] prob-
lems. RLT constructs valid polynomial constraints, then linearizes these con-
straints by using nonlinear relations given in the problem and applying relax-
ations when such relations are not available. If relations used in the linearization
step are violated by a relaxation solution, this procedure may yield violated
cuts. By increasing the degree of derived polynomial constraints, hierarchies of
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relaxations can be constructed, which were shown to converge to the convex hull
representation of MILPs and mixed-integer polynomial problems where contin-
uous variables appear linearly [18–20].

RLT has been shown to provide strong relaxations [21,23], but this comes at
the cost of excessive numbers of cuts. To address this, Sherali and Tuncbilek [25]
proposed a technique to add a subset of RLT cuts, depending on signs of coef-
ficients of monomial terms in the original constraints and the RLT constraints.
Furthermore, the reduced RLT technique [12–14,22] yields equivalent represen-
tations with fewer nonlinear terms for polynomial problems containing linear
equality constraints.

We focus on RLT for bilinear products, which is of particular interest due
to the numerous applications whose models involve nonconvex quadratic non-
linearities [3,5,7–9,17]. Even in the bilinear case, large numbers of factors to be
multiplied and of RLT cuts that are generated as a result remain an issue that
can lead to considerable slowdowns, both due to the cost of cut separation and
the large sizes of resulting LP relaxations.

The first contribution of this paper is a new approach to applying RLT
to MILPs. Unlike the approaches that only introduce multilinear relations via
multiplication [18,19], this approach detects and enforces bilinear relations that
are already implicitly present in the model. A bilinear product relation where
one multiplier is a binary variable and the other multiplier is a variable with
finite bounds can be equivalently written as two linear constraints. We identify
such pairs of linear constraints that implicitly encode a bilinear product relation,
then utilize this relation in the generation of RLT cuts.

The second contribution of this paper addresses the major bottleneck for
applying RLT successfully in practice, which stems from prohibitive costs of
separating RLT cuts, by proposing an efficient separation algorithm. This algo-
rithm considers the signs of bilinear relation violations in a current LP relaxation
solution and the signs of coefficients in linear constraints in order to ignore com-
binations of factors that will not produce a violated inequality. Furthermore, we
propose a technique which projects the linear constraints onto a reduced space
and constructs RLT cuts based on the resulting much smaller system.

The rest of the paper is organized as follows. In Sect. 2, RLT for bilinear
products is explained. In Sect. 3, we describe the technique for deriving bilin-
ear product relations from MILP constraints. Section 4 presents the new cut
separation algorithm, and computational results are presented in Sect. 5.

2 RLT for Bilinear Products

We consider mixed-integer (nonlinear) programs (MI(N)LPs) of the extended
form where auxiliary variables w are introduced for all bilinear products:
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min cTx (1a)
s.t. Ax ď b, (1b)

g(x,w) ď 0, (1c)
xixj ĳ wij for all (i, j) P Iw, (1d)
x ď x ď x, w ď w ď w, (1e)

xj P R for all j P Ic, xj P {0, 1} for all j P Ib, (1f)

with I “ Ic YIb being a disjoint partition of variables x and x having dimension
|I| “ n. In the above formulation, x, x P R

n
, w,w P R

|Iw|
(R “ RY{´∞, `∞}),

c P R
n and b P R

m(l)
are constant vectors and A P R

m(l)×n is a coefficient
matrix, and the function g defines the nonlinear constraints. Constraint (1d)
defines the bilinear product relations in the problem and allows for inequalities
and equations. Let Ip denote the set of indices of all variables that participate
in bilinear product relations (1d).

Solvers typically employ McCormick inequalities [16] to construct an LP
relaxation of constraints (1d). These inequalities describe the convex hull of the
set given by the relation xixj ĳ wij :

xixj ` xixj ´ xixj ď wij , xixj ` xixj ´ xixj ď wij , (2a)

xixj ` xixj ´ xixj ě wij , xixj ` xixj ´ xixj ě wij , (2b)

where (2a) is a relaxation of xixj ď wij and (2b) is a relaxation of xixj ě wij .
In the presence of linear constraints (1b), this relaxation can be strengthened

by adding RLT cuts. Consider a linear constraint:
∑n

k“1 a1kxk ď b1. Multiplying
this constraint by nonnegative bound factors (xj ´ xj) and (xj ´ xj), where xj

and xj are finite, yields valid nonlinear inequalities. We will derive the RLT cut
using the lower bound factor. The derivation is analogous for the upper bound
factor. The multiplication, referred to as the reformulation step, yields:

n∑

k“1

a1kxk(xj ´ xj) ď b1(xj ´ xj).

This nonlinear inequality is then linearized in order to obtain a valid linear
inequality. The following linearizations are applied to each nonlinear term xkxj :

– xkxj is replaced by wkj if the relation xkxj ď wkj exists in the problem and
a1k ď 0, or if the relation xkxj ě wkj exists and a1k ě 0, or if the relation
xkxj “ wkj exists in the problem,

– if k “ j P Ib, then xkxj “ x2
j “ xj ,

– if k “ j R Ib, then xkxj “ x2
j is outer approximated by a secant from above

or by a tangent from below, depending on the sign of the coefficient,
– if k ‰ j, k, j P Ib and one of the four clique constraints is implied by the linear

constraints (1b), then: xk ` xj ď 1 ⇒ xkxj “ 0; xk ´ xj ď 0 ⇒ xkxj “ xk;
´xk ` xj ď 0 ⇒ xkxj “ xj ; ´xk ´ xj ď ´1 ⇒ xkxj “ xj ` xj ´ 1,

– otherwise, xkxj is replaced by its McCormick relaxation.
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The key step is the replacing of products xkxj with the variables wkj . When
a bilinear product relation xkxj ĳ wkj does not hold for the current relaxation
solution, this substitution may lead to an increase in the violation of the inequal-
ity, thus possibly producing a cut that is violated by the relaxation solution.

In the case that we have a linear equation constraint
∑n

k“1 a1kxk “ b1 and
all nonlinear terms can be replaced using equality relations, then RLT produces
an equation cut. Otherwise, the equation constraint is treated as two inequalities∑n

k“1 a1kxk ď b1 and
∑n

k“1 a1kxk ě b1 to produce inequality cuts.

3 Detection of Implicit Products

Consider a product relation wij “ xixj , where xi is binary. It can be equivalently
rewritten as two implications: xi “ 0 ⇒ wij “ 0 and xi “ 1 ⇒ wij “ xj . With
the use of the big-M technique, these implications can be represented as linear
constraints, provided that the bounds of xj are finite:

wij ´ xjxi ď 0, wij ´ xj ´ xjxi ď ´xj (3a)

´wij ` xjxi ď 0, ´ wij ` xj ` xjxi ď xj . (3b)

Linear constraints with binary variables can be analyzed in order to detect
constraint pairs of the forms (3). The method can be generalized to allow for
bilinear relations of the following form, with A,B,C,D P R:

Axi ` Bwij ` Cxj ` D ĳ xixj (4)

Theorem 1. Consider two linear constraints depending on the same three vari-
ables xi, xj and wij, where xi is binary:

a1xi ` b1wij ` c1xj ď d1, (5a)
a2xi ` b2wij ` c2xj ď d2. (5b)

If b1b2 ą 0 and γ “ c2b1 ´ b2c1 ‰ 0, then these constraints imply the following
product relation:

(1/γ)((b2(a1 ´ d1) ` b1d2)xi ` b1b2wij ` b1c2xj ´ b1d2) ď xixj if b1/γ ě 0,

(1/γ)((b2(a1 ´ d1) ` b1d2)xi ` b2b2wij ` b1c2xj ´ b1d2) ě xixj if b1/γ ď 0.

Proof. We begin by writing the bilinear relation (4), treating its coefficients and
inequality sign as unknown, and reformulating it as two implications:

xi “ 1 ⇒ Bwij ` (C ´ 1)xj ĳ ´D ´ A, (6a)
xi “ 0 ⇒ Bwij ` Cxj ĳ ´D, (6b)
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where the inequality sign must be identical in both implied inequalities. Similarly,
we rewrite constraints (5) with scaling parameters α and β:

xi “ 1 ⇒ αb1wij ` αc1xj ĳ α(d1 ´ a1), (7a)
xi “ 0 ⇒ βb2wij ` βc2xj ĳ βd2, (7b)

where the inequality signs depend on the signs of α and β.
The goal is to find the coefficients A,B,C and D and the inequality sign. We

require that coefficients and inequality signs in implications (6) and (7) match.
Solving the resulting system yields:

b1b2 ą 0, A “ (1/γ)(b2(a1 ´ d1) ` b1d2)
B “ b1b2/γ, C “ b1c2/γ, D “ ´b1d2/γ, γ ‰ 0,

where γ “ c2b1 ´ b2c1 and the inequality sign is ‘ď‘ if b1/γ ě 0, and ‘ě‘ if
b1/γ ď 0. Thus, the bilinear relation stated in this theorem is obtained. ��

Although the conditions of the theorem are sufficient for the bilinear product
relation to be implied by the linear constraints, in practice more conditions are
checked before deriving such a relation. In particular:

– At least one of the coefficients a1 and a2 must be nonzero. Otherwise, the
product relation is always implied by the linear constraints, including when
0 ă xi ă 1.

– The signs of the coefficients of the binary variable xi must be different, that is,
one linear relation is more restrictive when xi “ 1 and the other when xi “ 0.
While this is not necessary for the non-redundancy of the derived product
relation, by requiring this we focus on stronger implications (for instance,
for a linear relation a1xi ` b1wij ` c1xj ď d1 with a1 ą 0, we use the more
restrictive implication xi “ 1 ⇒ b1wij ` c1xj ď d1 ´ a1 rather than the less
restrictive implication xi “ 0 ⇒ b1wij ` c1xj ď d1).

In separation, the product relation (4) is treated similarly to product relations
wij ĳ xixj , with the linear left-hand side Axi ` Bwij ` Cxj ` D being used
instead of the individual auxiliary variable wij .

The detection algorithm searches for suitable pairs of linear relations and
derives product relations from them. Let xi, as before, be a binary variable. The
following relation types are considered as candidates for the first relation in such
a pair: implied relations of the form xi “ ξ ⇒ b̃1wij ` c̃1xj ď d̃1, where ξ “ 0
or ξ “ 1; and implied bounds of the form xi “ ξ ⇒ wij ď d̃1.

The second relation in a pair can be: an implied relation of the form xi “
ξ ⇒ b̃2wij ` c̃2xj ď d̃2, where ξ is the complement of ξ; if wij is non-binary,
an implied bound of the form xi “ ξ ⇒ wij ď d̃2; if wij is binary, a clique
containing the complement of xi if ξ “ 1 or xi if ξ “ 0, and wij or its complement;
a constraint on xj and wij ; or a global bound on wij . Cliques are constraints of
the form:

∑
kPJ xk `∑

kPJ (1´xk) ď 1, where J Ď Ib, J Ď Ib and J XJ “ H.
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4 Separation Algorithm

We present a new algorithm for separating RLT cuts within an LP-based branch-
and-bound solver. The branch-and-bound algorithm builds LP relaxations of
problem (1) by constructing linear underestimators of functions g in the con-
straint g(x,w) ď 0 and McCormick inequalities for constraints (1d).

Let (x∗,w∗) be the solution of an LP relaxation at a node of the branch-
and-bound tree, and suppose that (x∗,w∗) violates the relation xixj ĳ wij for
some i, j P Iw. Separation algorithms generate cuts that separate (x∗,w∗) from
the feasible region, and add those cuts to the solver’s cut storage.

The standard separation algorithm, which will serve as a baseline for compar-
isons, iterates over all linear constraints. For each constraint, it iterates over all
variables xj that participate in bilinear relations and generates RLT cuts using
bound factors of xj . Violated cuts are added to the MINLP solver’s cut storage.

4.1 Row Marking

Let the bound factors be denoted as f
(�)
j (x) “ xj ´ xj and f

(u)
j (x) “ xj ´ xj .

Consider a linear constraint multiplied by a bound factor:

f
(.)
j (x)arx ď f

(.)
j (x)br. (8)

The ith nonlinear term is a′
rixixj , where a′

ri “ ari when multiplying by
(xj ´xj) and a′

ri “ ´ari when multiplying by (xj ´xj). Following the procedure
described in Sect. 2, RLT may replace the product xixj with wij . The product
can also be replaced with a linear expression, but this does not change the
reasoning, and we will only use wij in this section.

If w∗
ij ‰ x∗

i x
∗
j , then such a replacement will change the violation of (8). The

terms whose replacement will increase the violation are of interest, that is, the
terms where:

a′
rix

∗
i x

∗
j ď a′

riw
∗
ij .

This determines the choice of bound factors to multiply with:

x∗
i x

∗
j ă w∗

ij ⇒ multiply by (xj ´ xj) if ari ą 0,
multiply by (xj ´ xj) if ari ă 0,

x∗
i x

∗
j ą w∗

ij ⇒ multiply by (xj ´ xj) if ari ą 0,
multiply by (xj ´ xj) if ari ă 0.

The separation algorithm is initialized by creating data structures to enable
efficient access to 1) all variables appearing in bilinear products together with a
given variable and 2) the bilinear product relation involving two given variables.

For each variable xi, linear rows are marked in order to inform the separation
algorithms which bound factors of xi they should be multiplied with, if any. The
algorithm can work with inequality rows in both ‘ď’ and ‘ě’ forms as well
as equation rows. For each bilinear product xixj , the row marking algorithm
iterates over all linear rows that contain xj with a nonzero coefficient. These
rows are stored in a sparse array and have one of the following marks:
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– MARK LT: the row contains a term arjxj such that arjx
∗
i x

∗
j ă arjw

∗
ij ;

– MARK GT: the row contains a term arjxj such that arjx
∗
i x

∗
j ą arjw

∗
ij ;

– MARK BOTH: the row contains terms fitting both cases above.

Row marks are represented by integer values 1, 2 and 3, respectively, and are
stored in two sparse arrays, row idcs and row marks, the first storing sorted row
indices and the second storing the corresponding marks. In the algorithm below,
we use the notation mark(r) to denote accessing the mark of row r by performing
a search in row idcs and retrieving the corresponding entry in row marks. We
also define a sparse matrix W with entries wij .

Input: x∗, w∗,W
1 marks :“ H
2 for i P Ip, j P nnz(wi) do
3 for r such that j P nnz(ar) do
4 if r R marks then
5 marks ← r
6 mark(r) :“ 0

7 if arjx
∗
i x

∗
j ă arjw

∗
ij then

8 mark(r) |“ MARK LT
9 else

10 mark(r) |“ MARK GT

The algorithm iterates over the sparse array of marked rows and generates
RLT cuts for the following combinations of linear rows and bound factors:

– If mark “ MARK LT, then “ď” constraints are multiplied with the lower
bound factor and “ě” constraints are multiplied with the upper bound factor;

– If mark “ MARK GT, then “ď” constraints are multiplied with the upper
bound factor and “ě” constraints are multiplied with the lower bound factor;

– If mark “ MARK BOTH, then both “ď” and “ě” constraints are multiplied
with both the lower and the upper bound factors;

– Marked equality constraints are always multiplied with xi itself.

4.2 Projection Filtering

If at least one of the variables xi and xj has a value equal to one of its bounds,
then the McCormick relaxation (2) is tight for the relation wij “ xixj . Therefore,
if xi or xj is at a bound and the McCormick inequalities are satisfied, then the
product relation is also satisfied. We describe the equality case here, and the
reasoning is analogous for the inequality case of xixj ĳ wij .



Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 21

Consider the linear system Ax ď b projected onto the set of variables whose
values are not equal to either of their bounds.

∑

kPJ 1

arkxk ď br ´
∑

kPJ 2

arkx∗
k, ∀r P 1, . . . ,m(l),

where J 1 Ď I is the set of all problem variables whose values in the solution x∗ of
the current LP relaxation are not equal to one of their bounds, and J 2 “ I \J 1.

Violation is then first checked for RLT cuts generated based on the projected
linear system. Only if such a cut, which we will refer to as a projected RLT cut,
is violated, then the RLT cut for the same bound factor and the corresponding
constraint in the original linear system will be constructed. Since x∗ is a basic LP
solution, in practice either x∗

k “ xk or x∗
k “ xk holds for many of the variables,

and the projected system often has a considerably smaller size than the original
system.

In the projected system multiplied with a bound factor f
(.)
j (x):

f
(.)
j (x) ·

∑

kPJ 1

arkxk ď f
(.)
j (x)(br ´

∑

kPJ 2

arkx∗
k), ∀r P 1, . . . ,m(l),

the only nonlinear terms are xjxk with k P J 1, and therefore, no substitution
xixk → wik is performed for k P J 2. If the McCormick inequalities for xi, xk and
wik hold, then x∗

i x
∗
k “ w∗

ik for k P J 2, and checking the violation of a projected
RLT cut is equivalent to checking the violation of a full RLT cut.

Depending on the solver, McCormick inequalities may not be satisfied at
(x∗,w∗). Thus, it is possible that x∗

i x
∗
k ‰ w∗

ik for some k P J 2, but these vio-
lations will not contribute to the violation of the projected RLT cut. In this
case, projection filtering has an additional effect: for violated bilinear products
involving variables whose values in x∗ are at bound, the violation of the prod-
uct will be disregarded when checking the violation of RLT cuts. Thus, adding
McCormick cuts will be prioritized over adding RLT cuts.

5 Computational Results

5.1 Setup

We tested the proposed methods on the MINLPLib1 [6] test set and a test
set comprised of instances from MIPLIB3, MIPLIB 2003, 2010 and 2017 [10],
and Cor@l [15]. These test sets consist of 1846 MINLP instances and 666
MILP instances, respectively. After structure detection experiments, only those
instances were chosen for performance evaluations that either contain bilinear
products in the problem formulation, or where our algorithm derived bilinear
products. This resulted in test sets of 1357 MINLP instances and 195 MILP
instances.

1 https://www.minlplib.org.

https://www.minlplib.org
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The algorithms were implemented in the MINLP solver SCIP [4]. We used a
development branch of SCIP (githash dd6c54a9d7) compiled with SoPlex 5.0.2.4,
CppAD 20180000.0, PaPILO 1.0.0.1, bliss 0.73p and Ipopt 3.12.11. The experi-
ments were carried out on a cluster of Dell Poweredge M620 blades with 2.50GHz
Intel Xeon CPU E5-2670 v2 CPUs, with 2 CPUs and 64GB memory per node.
The time limit was set to one hour, the optimality gap tolerance to 10´4 for
MINLP instances and to 10´6 for MILP instances, and the following settings
were used for all runs, where applicable:

– The maximum number of unknown bilinear terms that a product of a row
and a bound factor can have in order to be used was 20. Unknown bilinear
terms are those terms xixj for which no wij variable exists in the problem, or
its extended formulation which SCIP constructs for the purposes of creating
an LP relaxation of an MINLP.

– RLT cut separation was called every 10 nodes of the branch-and-bound tree.
– In every non-root node where separation was called, 1 round of separation

was performed. In the root node, 10 separation rounds were performed.
– Unless specified otherwise, implicit product detection and projection filtering

were enabled and the new separation algorithm was used.

5.2 Impact of RLT Cuts

In this subsection we evaluate the performance impact of RLT cuts. The following
settings were used: Off - RLT cuts are disabled; ERLT - RLT cuts are added
for products that exist explicitly in the problem; IERLT - RLT cuts are added
for both implicit and explicit products. The setting ERLT was used for the
MINLP test set only, since MILP instances contain no explicitly defined bilinear
products.

We report overall numbers of instances, numbers of solved instances, shifted
geometric means of the runtime (shift 1 s), and the number of nodes in the
branch-and-bound tree (shift 100 nodes), and relative differences between set-
tings. Additionally, we report results on subsets of instances. Affected instances
are instances where a change of setting leads to a difference in the solving pro-
cess, indicated by a difference in the number of LP iterations. [x,timelim] denotes
the subset of instances which took the solver at least x seconds to solve with
at least one setting, and were solved to optimality with at least one setting.
All-optimal is the subset of instances which were solved to optimality with both
settings.

Table 1 shows the impact of RLT cuts on MILP performance. We observe
a slight increase in time when RLT cuts are enabled, and a slight decrease in
number of nodes. The difference is more pronounced on ‘difficult’ instances:
a 9% decrease in number of nodes on subset [100,timelim] and 28% on subset
[1000,timelim], and a decrease of 21% in the mean time on subset [1000,timelim].

Table 2 reports the impact of RLT cuts derived from explicitly defined bilinear
products. A substantial decrease in running times and tree sizes is observed
across all subsets, with a 15% decrease in the mean time and a 19% decrease in
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Table 1. Impact of RLT cuts: MILP instances

Off IERLT IERLT/Off

Subset instances solved time nodes solved time nodes time nodes

All 971 905 45.2 1339 909 46.7 1310 1.03 0.98

Affected 581 571 48.8 1936 575 51.2 1877 1.05 0.97

[0,tilim] 915 905 34.4 1127 909 35.6 1104 1.04 0.98

[1,tilim] 832 822 47.2 1451 826 49.0 1420 1.04 0.98

[10,tilim] 590 580 126.8 3604 584 133.9 3495 1.06 0.97

[100,tilim] 329 319 439.1 9121 323 430.7 8333 0.98 0.91

[1000,tilim] 96 88 1436.7 43060 92 1140.9 31104 0.79 0.72

All-optimal 899 899 31.9 1033 899 34.1 1053 1.07 1.02

the number of nodes on all instances, and a 87% decrease in the mean time and
a 88% decrease in the number of nodes on the subset [1000,timelim]. 223 more
instances are solved with ERLT than with Off.

Table 3 evaluates the impact of RLT cuts derived from implicit bilinear prod-
ucts. Similarly to MILP instances, the mean time slightly increases and the mean
number of nodes slightly decreases when additional RLT cuts are enabled, but on
MINLP instances, the increase in the mean time persists across different instance
subsets and is most pronounced (9%) on the subset [100,timelim], and the num-
ber of nodes increases by 6 ´ 7% on subsets [100,timelim] and [1000,timelim].

Table 2. Impact of RLT cuts derived from explicit products: MINLP instances

Off ERLT ERLT/Off

Subset instances solved time nodes solved time nodes time nodes

All 6622 4434 67.5 3375 4557 57.5 2719 0.85 0.81

Affected 2018 1884 18.5 1534 2007 10.6 3375 0.57 0.51

[0,timelim] 4568 4434 10.5 778 4557 8.2 569 0.78 0.73

[1,timelim] 3124 2990 28.3 2081 3113 20.0 1383 0.71 0.67

[10,timelim] 1871 1737 108.3 6729 1860 63.6 3745 0.59 0.56

[100,tilim] 861 727 519.7 35991 850 196.1 12873 0.38 0.36

[1000,tilim] 284 150 2354.8 196466 273 297.6 23541 0.13 0.12

All-optimal 4423 4423 8.6 627 4423 7.5 518 0.87 0.83



24 K. Bestuzheva et al.

Table 3. Impact of RLT cuts derived from implicit products: MINLP instances

ERLT IERLT ERLT/IERLT

Subset instances solved time nodes solved time nodes time nodes

All 6622 4565 57.0 2686 4568 57.4 2638 1.01 0.98

Affected 1738 1702 24.2 1567 1705 24.8 1494 1.02 0.95

[0,timelim] 4601 4565 8.5 587 4568 8.6 576 1.01 0.98

[1,timelim] 3141 3105 21.1 1436 3108 21.4 1398 1.01 0.97

[10,timelim] 1828 1792 74.1 4157 1795 75.4 4012 1.02 0.97

[100,tilim] 706 670 359.9 22875 673 390.4 24339 1.09 1.06

[1000,tilim] 192 156 1493.3 99996 159 1544.7 107006 1.03 1.07

All-optimal 4532 4532 7.7 540 4532 7.8 529 1.02 0.98

Table 4 reports numbers of instances for which a change in the root node dual
bound was observed, where the relative difference is quantified as γ2´γ1

γ1
, where

γ1 and γ2 are root node dual bounds obtained with the first and second settings,
respectively. The range of the change is specified in the column ‘Difference’,
and each column shows numbers of instances for which one or the other setting
provided a better dual bound, within given range.

The results of comparisons Off /IERLT for MILP instances and Off /ERLT
for MINLP instances are consistent with the effect of RLT cuts on performance
observed in Tables 1 and 2. Interestingly, IERLT performs better than ERLT in
terms of root node dual bound quality. Thus, RLT cuts derived from implicit
products in MINLP instances tend to improve root node relaxations.

5.3 Separation

In Table 5, the setting Marking-off employs the standard separation algorithm,
and Marking-on enables the row marking and projection filtering algorithms
described in Sect. 4. Row marking reduces the running time by 63% on MILP
instances, by 70% on affected MILP instances, by 12% on MINLP instances and
by 22% on affected MINLP instances. The number of nodes increases when row
marking is enabled because, due to the decreased separation time, the solver can

Table 4. Root node dual bound differences

MILP MINLP

Difference Off / IERLT Off / ERLT ERLT / IERLT

0.01-0.2 54 / 62 224 / 505 379 / 441

0.2-0.5 2 / 4 23 / 114 44 / 48

0.5-1.0 0 / 3 40 / 150 19 / 30

ą1.0 0 / 2 4 / 182 4 / 23
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explore more nodes before reaching the time limit: this is confirmed by the fact
that on the subset All-optimal, the number of nodes remains nearly unchanged.

Table 5. Separation algorithm comparison

Marking-off Marking-on M-on/M-off

Test set subset instances solved time nodes solved time nodes time nodes

MILP All 949 780 124.0 952 890 45.2 1297 0.37 1.37

Affected 728 612 156.6 1118 722 46.4 1467 0.30 1.31

All-optimal 774 774 58.4 823 774 21.2 829 0.36 1.01

MINLP All 6546 4491 64.5 2317 4530 56.4 2589 0.88 1.12

Affected 3031 2949 18.5 1062 2988 14.3 1116 0.78 1.05

All-optimal 4448 4448 9.1 494 4448 7.4 502 0.81 1.02

Table 6 analyzes the percentage of time that RLT cut separation takes out
of overall running time, showing the arithmetic mean and maximum over all
instances, numbers of instances for which the percentage was within a given
interval, and numbers of failures. The average percentage is reduced from 54.2%
to 2.8% for MILP instances and from 15.1% to 2.4% for MINLP instances, and
the maximum percentage is reduced from 99.6% to 71.6% for MILP instances,
but remains at 100% for MINLP instances. The numbers of failures are reduced
with Marking-on, mainly due to avoiding failures that occur when the solver
runs out of memory.

Table 6. Separation times

Test set Setting avg % max % N(ă 5%) N(5-20%) N(20-50%) N(50-100%) fail

MILP Marking-off 54.2 99.6 121 117 169 552 16

Marking-on 2.8 71.6 853 87 31 4 0

MINLP Marking-off 15.1 100.0 3647 1265 1111 685 77

Marking-on 2.4 100.0 6140 376 204 49 16

Projection filtering has a minor impact on performance. When comparing
the runs where projection filtering is disabled and enabled, the relative differ-
ence in time and nodes does not exceed 1% on both MILP and MINLP instances,
except for affected MILP instances where projection filtering decreases the num-
ber of nodes by 4%. This is possibly occurring due to the effect of prioritizing
McCormick inequalities to RLT cuts when enforcing derived product relations.
The number of solved instances remains almost unchanged, with one less instance
being solved on both MILP and MINLP test sets when projection filtering is
enabled.
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5.4 Experiments with Gurobi

In this subsection we present results obtained by running the mixed-integer
quadratically-constrained programming solver Gurobi 10.0 beta [11]. The algo-
rithms for implicit product detection and RLT cut separation are the same as
in SCIP, although implementation details may differ between the solvers.

The internal Gurobi test set was used, comprised of models sent by Gurobi
customers and models from public benchmarks, chosen in a way that avoids
overrepresenting any particular problem class. Whenever RLT cuts were enabled,
so was implicit product detection, row marking and projection filtering. The time
limit was set to 10000 s.

Table 7 shows, for both MILP and MINLP test sets, the numbers of instances
in the test sets and their subsets, and the ratios of shifted geometric means of
running time and number of nodes of the runs with RLT cuts enabled, to the
same means obtained with RLT cuts disabled. The last row shows the numbers
of instances solved with one setting and unsolved with the other, that is, for
example, “RLT off: +41” means that 41 instances were solved with the setting
“off” that were not solved with the setting “on”.

While the results cannot be directly compared to those obtained with SCIP
due to the differences in the experimental setup, we observe the same tendencies.
In particular, RLT cuts yield small improvements on MILP instances which
become more pronounced on subsets [100,timelim] and [1000,timelim], and larger
improvements are observed on MINLP instances both in terms of geometric
means and numbers of solved instances. Relative differences are comparable to
those observed with SCIP, but the impact of RLT cuts is larger in Gurobi, and
no slowdown is observed with Gurobi on any subset of MILP instances.

Table 7. Results obtained with Gurobi 10.0 beta

MILP MINLP

Subset instances timeR nodeR instances timeR nodeR

All 5011 0.99 0.97 806 0.73 0.57

[0,timelim] 4830 0.99 0.96 505 0.57 0.44

[1,timelim] 3332 0.98 0.96 280 0.40 0.29

[10,timelim] 2410 0.97 0.93 188 0.29 0.20

[100,timelim] 1391 0.95 0.91 114 0.17 0.11

[1000,timelim] 512 0.89 0.83 79 0.12 0.08

Solved RLT off: +41; RLT on: +37 RLT off: +2; RLT on: +35

5.5 Summary

RLT cuts yield a considerable performance improvement for MINLP problems
and a small performance improvement for MILP problems which becomes more
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pronounced for challenging instances. The new separation algorithm drastically
reduces the computational burden of RLT cut separation and is essential to an
efficient implementation of RLT cuts, enabling the speedups we observed when
activating RLT.
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