
Alberto Del Pia · Volker Kaibel (Eds.)
LN

CS
 1

39
04

Integer Programming
and Combinatorial Optimization
24th International Conference, IPCO 2023
Madison, WI, USA, June 21–23, 2023
Proceedings

Lecture Notes in Computer Science 13904
Founding Editors
Gerhard Goos
Juris Hartmanis

Editorial Board Members
Elisa Bertino, Purdue University, West Lafayette, IN, USA
Wen Gao, Peking University, Beijing, China
Bernhard Steffen , TU Dortmund University, Dortmund, Germany
Moti Yung , Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

The series Lecture Notes in Computer Science (LNCS), including its subseries Lecture
Notes in Artificial Intelligence (LNAI) and Lecture Notes in Bioinformatics (LNBI),
has established itself as a medium for the publication of new developments in computer
science and information technology research, teaching, and education.

LNCS enjoys close cooperation with the computer science R & D community, the
series countsmany renowned academics among its volume editors and paper authors, and
collaborates with prestigious societies. Its mission is to serve this international commu-
nity by providing an invaluable service, mainly focused on the publication of conference
andworkshop proceedings and postproceedings. LNCScommenced publication in 1973.

Alberto Del Pia · Volker Kaibel
Editors

Integer Programming
and Combinatorial Optimization
24th International Conference, IPCO 2023
Madison, WI, USA, June 21–23, 2023
Proceedings

Editors
Alberto Del Pia
University of Wisconsin-Madison
Madison, WI, USA

Volker Kaibel
Otto-von-Guericke-Universität
Magdeburg, Sachsen-Anhalt, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-32725-4 ISBN 978-3-031-32726-1 (eBook)
https://doi.org/10.1007/978-3-031-32726-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8428-3914
https://orcid.org/0000-0002-0388-7597
https://doi.org/10.1007/978-3-031-32726-1

Preface

This volume contains extended abstracts of the papers presented at IPCO 2023, the 24th
Conference on Integer Programming and Combinatorial Optimization, held on June
21–23, 2023 in Madison, Wisconsin, USA.

IPCO is under the auspices of the Mathematical Optimization Society. Since its first
edition, held at the University of Waterloo, Canada in May 1990, it has become a most
important forum for presenting the latest results on the theory and practice of the various
aspects of discrete optimization. For this year’s 24th edition the conference had aProgram
Committee consisting of 16members. In response to the Call for Papers, we received 119
submissions and accepted 33 papers, with an acceptance ratio of 28%. In a single-blind
review process, each submission was reviewed by at least three Program Committee
members, and 246 additional reviews were provided by external experts. Because of the
limited number of time slots for presentations, many excellent submissions could not be
accepted. The page limit for contributions to these proceedings was set to 15. We expect
the full versions of the extended abstracts appearing in this Lecture Notes in Computer
Science volume to be submitted for publication in refereed journals. A special issue of
Mathematical Programming, Series B containing such versions is in process.

As has become a good tradition, IPCO 2023 had a Best Paper Award, which was
given to Daniel Dadush, Friedrich Eisenbrand, and Thomas Rothvoss for their paper
“From approximate to exact integer programming.” This year, IPCO was preceded by a
Summer School held during June 19–20, 2023, with lectures by Amitabh Basu (Johns
Hopkins University, USA), Fatma Kilinç-Karzan (Carnegie Mellon University, USA),
and Domenico Salvagnin (University of Padova, Italy). We thank them warmly for their
contributions. We would also like to thank

– the authors who submitted their research to IPCO;
– the members of the Program Committee;
– the expert additional reviewers;
– the members of the Local Organizing Committee;
– the Mathematical Optimization Society, in particular the members of its IPCO Steer-

ing Committee, Karen Aardal, Oktay Günlük, Jochen Könemann, and Giacomo
Zambelli;

– EasyChair for making the paper management simple and effective; and
– Springer for their efficient cooperation in producing this volume and for financial

support for the Best Paper Award.

We would further like to thank the following sponsors for their financial support: the
Wisconsin Institute for Discovery and the Department of Industrial & Systems Engineer-
ing at the University ofWisconsin-Madison, the Air Force Office of Scientific Research,

vi Preface

theOfficeofNavalResearch, FICO,Google,GurobiOptimization, andTheOptimization
Firm.

March 2023 Alberto Del Pia
Volker Kaibel

Organization

Program Committee

Merve Bodur University of Toronto, Canada
Jose Correa Universidad de Chile, Chile
Alberto Del Pia University of Wisconsin-Madison, USA
Yuri Faenza Columbia University, USA
Volker Kaibel (Chair) OVGU Magdeburg, Germany
Simge Kucukyavuz Northwestern University, USA
Andrea Lodi Cornell Tech, USA
Diego Moran Universidad Adolfo Ibañez, Chile
Giacomo Nannicini University of Southern California, USA
Britta Peis RWTH Aachen, Germany
Mohit Singh Georgia Institute of Technology, USA
Martin Skutella TU Berlin, Germany
Juan Pablo Vielma Massachusetts Institute of Technology, USA
Jens Vygen University of Bonn, Germany
Stefan Weltge TU München, Germany
Giacomo Zambelli London School of Economics and Political

Science, UK

viii Organization

Sponsors

Organization ix

Contents

Information Complexity of Mixed-Integer Convex Optimization 1
Amitabh Basu, Hongyi Jiang, Phillip Kerger, and Marco Molinaro

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products . . . 14
Ksenia Bestuzheva, Ambros Gleixner, and Tobias Achterberg

A Nearly Optimal Randomized Algorithm for Explorable Heap Selection 29
Sander Borst, Daniel Dadush, Sophie Huiberts, and Danish Kashaev

Sparse Approximation over the Cube . 44
Sabrina Bruckmeier, Christoph Hunkenschröder, and Robert Weismantel

Recycling Inequalities for Robust Combinatorial Optimizationwith Budget
Uncertainty . 58

Christina Büsing, Timo Gersing, and Arie M. C. A. Koster

Inapproximability of Shortest Paths on Perfect Matching Polytopes 72
Jean Cardinal and Raphael Steiner

Monoidal Strengthening and Unique Lifting in MIQCPs . 87
Antonia Chmiela, Gonzalo Muñoz, and Felipe Serrano

From Approximate to Exact Integer Programming . 100
Daniel Dadush, Friedrich Eisenbrand, and Thomas Rothvoss

Optimizing Low Dimensional Functions over the Integers 115
Daniel Dadush, Arthur Léonard, Lars Rohwedder, and José Verschae

Configuration Balancing for Stochastic Requests . 127
Franziska Eberle, Anupam Gupta, Nicole Megow, Benjamin Moseley,
and Rudy Zhou

An Update-and-Stabilize Framework for the Minimum-Norm-Point
Problem . 142

Satoru Fujishige, Tomonari Kitahara, and László A. Végh

Stabilization of Capacitated Matching Games . 157
Matthew Gerstbrein, Laura Sanità, and Lucy Verberk

xii Contents

Designing Optimization Problems with Diverse Solutions 172
Oussama Hanguir, Will Ma, and Christopher Thomas Ryan

ReLU Neural Networks of Polynomial Size for Exact Maximum Flow
Computation . 187

Christoph Hertrich and Leon Sering

On the Correlation Gap of Matroids . 203
Edin Husić, Zhuan Khye Koh, Georg Loho, and László A. Végh

A 4/3-Approximation Algorithm for Half-Integral Cycle Cut Instances
of the TSP . 217

Billy Jin, Nathan Klein, and David P. Williamson

The Polyhedral Geometry of Truthful Auctions . 231
Michael Joswig, Max Klimm, and Sylvain Spitz

Competitive Kill-and-Restart and Preemptive Strategies
for Non-clairvoyant Scheduling . 246

Sven Jäger, Guillaume Sagnol, Daniel Schmidt genannt Waldschmidt,
and Philipp Warode

A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP 261
Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 275
Aleksandr M. Kazachkov and Egon Balas

Optimal General Factor Problem and Jump System Intersection 291
Yusuke Kobayashi

Decomposition of Probability Marginals for Security Games in Abstract
Networks . 306

Jannik Matuschke

Set Selection Under Explorable Stochastic Uncertainty via Covering
Techniques . 319

Nicole Megow and Jens Schlöter

Towards a Characterization of Maximal Quadratic-Free Sets 334
Gonzalo Muñoz, Joseph Paat, and Felipe Serrano

Compressing Branch-and-Bound Trees . 348
Gonzalo Muñoz, Joseph Paat, and Álinson S. Xavier

Contents xiii

Exploiting the Polyhedral Geometry of Stochastic Linear Bilevel
Programming . 363

Gonzalo Muñoz, David Salas, and Anton Svensson

Towards an Optimal Contention Resolution Scheme for Matchings 378
Pranav Nuti and Jan Vondrák

Advances on Strictly Δ-Modular IPs . 393
Martin Nägele, Christian Nöbel, Richard Santiago, and Rico Zenklusen

Cut-Sufficient Directed 2-Commodity Multiflow Topologies 408
Joseph Poremba and F. Bruce Shepherd

Constant-Competitiveness for Random Assignment Matroid Secretary
Without Knowing the Matroid . 423

Richard Santiago, Ivan Sergeev, and Rico Zenklusen

A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem
with Interdiction Constraints . 438

Noah Weninger and Ricardo Fukasawa

Multiplicative Auction Algorithm for Approximate Maximum Weight
Bipartite Matching . 453

Da Wei Zheng and Monika Henzinger

A Linear Time Algorithm for Linearizing Quadratic and Higher-Order
Shortest Path Problems . 466

Eranda Çela, Bettina Klinz, Stefan Lendl, Gerhard J. Woeginger,
and Lasse Wulf

Author Index . 481

Information Complexity of Mixed-Integer
Convex Optimization

Amitabh Basu1, Hongyi Jiang2, Phillip Kerger1, and Marco Molinaro3,4(B)

1 Department of Applied Mathematics and Statistics, Johns Hopkins University,
Baltimore, USA

{abasu9,pkerger}@jhu.edu
2 School of Civil and Environmental Engineering, Cornell University, Ithaca, USA

hj348@cornell.edu
3 Microsoft Research, Redmond, USA

mmolinaro@microsoft.com
4 Computer Science Department, PUC-Rio, Rio de Janeiro, Brazil

Abstract. We investigate the information complexity of mixed-integer
convex optimization under different kinds of oracles. We establish new
lower bounds for the standard first-order oracle, improving upon the
previous best known lower bound. This leaves only a lower order linear
term (in the dimension) as the gap between the lower and upper bounds.
Further, we prove the first set of results in the literature (to the best of
our knowledge) on information complexity with respect to oracles based
on first-order information but restricted to binary queries, and discuss
various special cases of interest thereof.

Keywords: Mixed-integer optimization · Information complexity

1 First-order Information Complexity

We consider the problem class of mixed-integer convex optimization:

inf{f(x,y) : (x,y) ∈ C, (x,y) ∈ Z
n × R

d}, (1)

where f : Rn ×R
d → R∪{+∞} is a convex (possibly nondifferentiable) function

and C ⊆ R
n ×R

d is a closed, convex set. Given ε > 0, we wish to report a point
in

S((f, C), ε) := {(x,y) ∈ C ∩ dom(f) ∩ (Zn × R
d) : f(x,y) ≤ f(x′,y′) + ε,

∀(x′,y′) ∈ C ∩ dom(f) ∩ (Zn × R
d)}.

The first and third authors gratefully acknowledge support from Air Force Office of
Scientific Research (AFOSR) grant FA95502010341 and National Science Foundation
(NSF) grant CCF2006587. The fourth author was supported in part by the Coor-
denação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES, Brasil) - Finance
Code 001, by Bolsa de Produtividade em Pesquisa #312751/2021-4 from CNPq, and
FAPERJ grant “Jovem Cientista do Nosso Estado”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 1–13, 2023.
https://doi.org/10.1007/978-3-031-32726-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_1

2 A. Basu et al.

A point in S((f, C), ε) will be called an ε-approximate solution and points in
C ∩ dom(f) ∩ (Zn ×R

d) will be called feasible solutions. We say that x1, . . . ,xn

are the integer-valued decision variables or simply the integer variables of the
problem, and y1, . . . ,yd are called the continuous variables.

The notion of information complexity (a.k.a oracle complexity or analytical
complexity) goes back to foundational work by Nemirovski and Yudin [8] on
convex optimization (without integer variables) and is based on the following.
An algorithm for reporting an ε-approximate solution to an instance (f, C) must
be “given” the instance somehow. Allowing only instances with explicit, algebraic
descriptions (e.g., the case of linear programming) can be restrictive. To work
with more general, nonlinear instances, the algorithm is allowed to make queries
to an oracle to collect information about the instance. The standard oracle that
has been studied over the past several decades is the so-called first-order oracle,
which consists of two parts: i) a separation oracle that receives a point z ∈ R

n+d

and reports “YES” if z ∈ C and otherwise reports a separating hyperplane for z
and C, ii) a subgradient oracle that receives a point z ∈ R

n+d and reports f(z)
and a subgradient for f at z. The goal is to design a query strategy that can
report an ε-approximate solution after making the smallest number of queries.
Tight lower and upper bounds (differing by only a small constant factor) on
the number of queries were obtained by Nemirovski and Yudin in their seminal
work [8] (the case with no integer variables); roughly speaking, the bound is
Θ

(
d log

(
1
ε

))
. These insights were extended to the mixed-integer setting in [2,3,

9], with the best known lower and upper bounds stated in [2].
Observe that the response to any separation/subgradient query is a vector in

R
n+d. Thus, each query reveals at least n+d bits of information about the instance.

A more careful accounting that measures the “amount of information” accrued
would track the total number of bits obtained as opposed to just the total number
of oracle queries made. A natural question, posed in [2], is whether the bounds from
the classical analysis would change if one uses this new measure of the total number
of bits, as opposed to the number of queries. The intuition, roughly, is that one
should need a factor (n + d) log

(
1
ε

)
larger than the number of first-order queries,

because one should need to probe at least log
(
1
ε

)
bits in n+d coordinates to recover

the full subgradient/separating hyperplane (up to desired approximations). We
attempt to make some progress on this question in this paper.

The above discussion suggests that one should consider oracles that return a
desired bit of a desired coordinate of the separating hyperplane vector or subgra-
dient. However, one can imagine making other binary queries on the instance;
for example, one can pick a direction and ask for the sign of the inner product of
the subgradient and this direction. In fact, one can consider more general binary
queries that have nothing to do with subgradients/separating hyperplanes. If one
allows all possible binary queries, i.e., one can use any function from the space
of instances to {0, 1} as a query, then one can simply ask for the appropriate
bits of the true minimizer and in O((n + d) log(1/ε)) queries, one can get an
ε-approximate solution. A matching lower bound follows from a fairly straight-
forward counting argument. Thus, allowing for all possible binary queries gives
the same information complexity bound as the original Nemirovski-Yudin bound

Information Complexity of Mixed-Integer Convex Optimization 3

with subgradient queries in the n = 0 (no integer variables) case, but is an expo-
nential improvement when n ≥ 1 (see [2] and the discussion below). What this
shows is that the bounds on information complexity can be quite different under
different oracles. With all possible binary queries, while each query reveals only a
single bit of information, the queries themselves are a much richer class and this
compensates to give the same bound in the continuous case and exponentially
better bounds in the presence of integer variables. Thus, to get a better under-
standing of this trade-off, we restrict to queries that still extract information
from the subgradient or separating hyperplane at a point, and are thus “local”
in a sense. (In,d,R,ρ,M is the set of instances we focus on throughout the paper,
see Definition 2 for a formal definition.)

Definition 1. An oracle using first-order information consists of two parts:

1. For every z ∈ [−R,R]n+d, there exist two maps gsepz : In,d,R,ρ,M → R
n+d

and gsubz : In,d,R,ρ,M → R × R
n+d such that for all (f, C) ∈ In,d,R,ρ,M the

following properties hold.
(a) C ⊆ {z′ ∈ R

n+d : 〈gsepz (C), z′〉 < 〈gsepz (C), z〉} if z ∈ C and gsepz (C) = 0 if
z ∈ C. In other words, gsubz (f) returns a (normal vector to a) separating
hyperplane if z ∈ C. We will assume that a nonzero response gsepz (C) has
norm 1, since scalings do not change the separation property.

(b) gsubz (f) ∈ {f(z)}×∂f(z), where ∂f(z) denotes the subdifferential (the set
of all subgradients) of f at z. In other words, gsubz (f) returns the function
value and a subgradient for f at z. If f(z) = +∞, gsubz (f) returns a
separating hyperplane for z and the domain of f .1

Such maps will be called first-order maps. A collection of first-order maps,
one for every z, is called a (complete) first-order chart and will be denoted by
G.

2. There are two sets of functions Hsep and Hsub with domains R
n+d and R ×

R
n+d respectively. We will use the notation H = Hsep∪Hsub. H will be called

the collection of permissible queries of the oracle.

The algorithm, at any iteration, can choose a point z and a function h ∈ H
and it receives the response h(gsepz (f̂)) or h(gsubz (Ĉ)), depending on whether
h ∈ Hsep or h ∈ Hsub, where (f̂ , Ĉ) is the unknown instance.

In particular, when Hsep and Hsub consist only of the identity function, we
recover a standard first-order oracle. We will also study the cases where Hsep

and Hsub consist of functions that map a vector to a particular bit of a particular
coordinate, or the sign of the inner product with a particular direction, or the
set of all possible binary functions. In the last case, the oracle will be called the
general binary oracle based on G.

1 When the function value is +∞, we will count this as a separation query. In other
words, below we will assume without further comment that every functional query
returns a finite real value for the function and a subgradient at the queried point.

4 A. Basu et al.

1.1 Our Results

It is not hard to see that if we consider all possible instances of (1), then any
adaptive query strategy has infinite information complexity because a finite num-
ber of queries cannot distinguish between all possible instances. Thus, bounds
on the information complexity must be based on appropriate parameterizations
of the problem. We will focus on the following standard parameterization.

Definition 2. In,d,R,ρ,M is the set of all instances of (1) such that

(i) C ∩ dom(f) is contained in the box {z ∈ R
n × R

d : ‖z‖∞ ≤ R}.
(ii) If (x�,y�) is an optimal solution of the instance, then there exists ŷ ∈ R

d

satisfying {(x�,y) : ‖y− ŷ‖∞ ≤ ρ} ⊆ C. In other words, there is a “strictly
feasible” point (x�, ŷ) in the same fiber as the optimum (x�,y�).

(iii) f is Lipschitz continuous with respect to the ‖ · ‖∞-norm with Lipschitz
constant M on {x} × [−R,R]d for all x ∈ [−R,R]n ∩Z

n, where we use the
convention that if f is identically +∞ on {x}×[−R,R]d, then any M works
on this fiber. In other words, for any (x,y), (x,y′) ∈ (Zn×R

d)∩[−R,R]n+d

with ‖y−y′‖∞ ≤ R, |f(x,y)−f(x,y′)| ≤ M‖y−y′‖∞ with the convention
that ∞ − ∞ = 0.

We obtain the following results in this paper.

Results for n ≥ 1 (allowing integer variables).

1. In the classical setting where Hsep and Hsub consist only of the identity func-
tion (i.e. each query receives the entire subgradient/separating hyperplane),
we improve the best known lower bound (from [2]) on the number of queries
needed for the general mixed-integer case. In particular, we show that one
needs at least Ω

(
2nd log

(
MR

min{ρ,1}ε

))
queries, improving upon the previous

bound of Ω
(
2nd log

(
R
ρ

))
. We mention here that the first lower bound on

information complexity with integer constrained variables was established
in [3], for a specific class of algorithms/query strategies called cutting-plane
schemes. The lower bounds stated here (and in [2]) do not make any assump-
tions on the algorithms/query strategies.

2. This lower bound of Ω
(
2nd log

(
MR

min{ρ,1}ε

))
for the classical setting is com-

plemented by an upper bound of O
(
2nd(n + d) log

(
MR

min{ρ,1}ε

))
in the lit-

erature. This was first obtained in [9]; see [2] for a self-contained exposi-
tion. As mentioned before, we expect the information complexity in the set-
ting of binary oracles using first-order information to be at most a factor
(n + d) log

(
MR

min{ρ,1}ε

)
larger than the classical setting. We rigorously prove

this, under the additional assumption that the fiber containing the optimal
solution contains a point that is ρ-deep inside the feasible region C, i.e., a
ball of radius ρ centered at this point is contained in the set C. Note that this
is a stronger assumption compared to item (ii) in the definition of In,d,R,ρ,M .

Information Complexity of Mixed-Integer Convex Optimization 5

Results for n = 0 (continuous case with no integer variables).

1. When the separation and subgradient oracles can only be accessed through
(all) binary queries (i.e., Hsep and Hsub consist of all possible binary func-
tions on R

d), we show that strictly more queries are needed compared to
the classic setting of full oracle access. More precisely, compared to the
classic bound of Θ

(
d log

(
MR

min{ρ,1}ε

))
, we show that one needs at least

Ω̃
(
max

{
d

8
7 , d log

(
MR

min{ρ,1}ε

)})
binary queries (where Ω̃ hides polylogarith-

mic factors in d). This is obtained using recent lower bounds on “memory-
constrained” algorithms for convex optimization from [6].

2. We establish an upper bound of O
(
d2 log

(
MR

min{ρ,1}ε

)2)
for binary queries

using first-order oracles. This is an extension of a result from [11] that con-
sidered the unconstrained optimization setting.

3. We establish an upper bound of O
(
log |I| + d log

(
MR

min{ρ,1}ε

))
for any finite

subclass of instances I ⊆ In,d,R,ρ,M . Note that this can beat the lower bound
from Item 1 above, e.g., if |I| = 2O(d).

1.2 Formal Definitions and Statement of Results

For any set X, we will use X∗ to denote the set of all finite sequences of elements
from X (e.g., {0, 1}∗ denotes the set of all finite binary strings).

Definition 3. Given an oracle using first-order information (G,H), let Q be the
set of possible queries that can be made under this oracle (i.e., pairs (z, h) where
z ∈ R

n+d is a query point andh ∈ H). Let H denote the response set of the functions
in H (e.g., vectors for standard first-order oracles, or {0, 1} for binary queries).

A query strategy is a function D : (Q × H)∗ → Q. The transcript Π(D, I)
of a strategy D on an instance I = (f, C) is the sequence of query and response
pairs (qi, qi(I)), i = 1, 2, . . . obtained when one applies D on I, i.e., q1 = D(∅)
and qi = D((q1, q1(I)), . . . , (qi−1, qi−1(I))) for i ≥ 2.

The ε-information complexity icomp ε(D, I,G,H) of an instance I for a query
strategy D, with access to an oracle using first-order information (G,H), is
defined as the minimum natural number k such that the set of all instances which
return the same responses as the instance I to the first k queries of D have a
common ε-approximate solution. The ε-information complexity of the problem
class In,d,R,ρ,M , with access to an oracle using first-order information (G,H), is
defined as

icomp ε(n, d,R, ρ,M,G,H) := infD supI∈In,d,R,ρ,M
icomp ε(D, I,G,H)

where the infimum is taken over all query strategies.

We can now formally state our main results. Let Hbit be the set of binary queries
that return a desired bit (of a desired coordinate) of a subgradient/separating
hyperplane/function value. Let Hdir be the set of binary queries that returns

6 A. Basu et al.

the sign of the inner product of the subgradient/separating hyperplane with a
desired direction, or a desired bit of the function value.

Results for n ≥ 1 (allowing integer variables).

Theorem 1. There exists a complete first-order chart G such that for the stan-
dard first-order oracle based on G (i.e., H consists of the identity functions), we
have

icomp ε(n, d,R, ρ,M,G,H) = Ω
(
2n

(
1 + d log

(
MR

min{ρ,1}ε

)))
.

Theorem 2. Assume d ≥ 1. For U > 0, consider the subclass of instances of
In,d,R,ρ,M whose objective function values lie in [−U,U], and the fiber over the
optimal solution contains a z such that the (n + d)-dim ρ-radius ball centered
at z is contained in C. There exists a query strategy for this subclass that uses
(G,H), where G is any complete first-order chart and H is either Hbit or Hdir,
that reports an ε-approximate solution by making at most

O

(
2nd (n + d) log

(
dMR

min{ρ, 1}ε

))
·
(

(n + d) log
(

(n + d)MR

ε

)
+ log

U

ε

)

queries.

Prescribing an a priori range for objective function values is not a serious
restriction for two reasons: i) The difference between the maximum and the
minimum values of an objective function in In,d,R,ρ,M is at most 2MR, and
ii) All optimization problems whose objective functions differ by a constant are
equivalent. We also comment that while we assume d ≥ 1 in Theorem 2, similar
bounds can be established for the d = 0 case. We omit this here because a unified
expression for the d = 0 and d ≥ 1 cases becomes unwieldy and difficult to parse.

We remark that we can obtain the same result when the objective function
can only be accessed through comparisons of the form “Is f(z) ≤ f(z′)?”, i.e., no
access to the subgradients ∂f . Such algorithms are particularly useful in learning
from users’ behaviors, since while a user typically cannot accurately report its
(dis)utility value f(z) for an option z, it can more reliably compare the values
f(z) and f(z′) of two options; see [5,10] and references therein for discussions
and algorithms in the continuous case. To the best of our knowledge, no such
algorithm for the mixed-integer case has appeared explicitly in the literature.

We also remark that the additional assumption that a (n + d)-dim ρ-radius
is contained in C can be weakened by using a Lenstra-style algorithm, but this
yields a much worse dependence in d and n.

Results for n = 0 (continuous case with no integer variables).

Theorem 3. There exists a complete first-order chart G such that for the gen-
eral binary oracle based on G (i.e., H consists of all possible binary functions on
R

d), we have

icomp ε(d,R, ρ,M,G,H) = Ω̃
(
max

{
d

8
7 , d log

(
MR

min{ρ,1}ε

)})
,

where Ω̃ hides polylogarithmic factors in d.

Information Complexity of Mixed-Integer Convex Optimization 7

Theorem 4. For U > 0, consider the subclass of instances of Id,R,ρ,M whose
objective function values lie in [−U,U]. There exists a query strategy for this
subclass that uses (G,H), where G is any complete first-order chart and H is
either Hbit or Hdir, that reports an ε-approximate solution by making at most

O

(
d log

(
dMR

min{ρ, 1}ε

))
·
(

d log
(

dMR

ε

)
+ log

U

ε

)

queries.

Theorem 5. Given any subclass of finitely many instances I ⊂ In,d,R,ρ,M and
any complete first-order chart G, there exists a query strategy for this subclass
using the general binary oracle based on G that reports an ε-approximate solution
by making at most O

(
log |I| + d log

(
MR

min{ρ,1}ε

))
queries.

1.3 Discussion and Future Avenues

The concept of information complexity in continuous convex optimization and
its study go back several decades, and it is considered a fundamental question in
convex optimization. In comparison, much less work on information complexity
has been carried out in the presence of integer constrained variables. Neverthe-
less, we believe there are important and challenging questions that come up in
that domain that are worth studying. Further, even within the context of con-
tinuous convex optimization, the notion of information complexity has almost
exclusively focused on the number of first-order queries. As we hope to illus-
trate with the results of this paper, considering other kinds of oracles lead to
very interesting questions at the intersection of mathematical optimization and
information theory. In particular, the study of binary oracles promises to give
a more refined understanding of the fundamental question “How much infor-
mation about an optimization instance do we need to be able to solve it with
provable guarantees?”. For instance, establishing any superlinear (in the dimen-
sion) lower bound for the continuous problem with binary oracles, like the one
in Theorem 3, seems to be nontrivial. In fact, the results from [6], on which
Theorem 3 is based, were considered a breakthrough in establishing superlinear
lower bounds on space complexity of convex optimization. Even so, the right
bound is conjectured to be quadratic in the dimension (see Theorem 4) and our
Theorem 3 is far from that at this point. We thus view the results of this paper as
expanding our understanding of information complexity of optimization in two
different dimensions: what role does the presence of integer variables play and
what role does the nature of the oracle play (with or without integer variables)?
For integer variables, our first result brings the lower bound closer to the best

8 A. Basu et al.

known upper bound on information complexity based on the classical subgradi-
ent oracle. The remaining gap is now simply a factor linear in the dimension.
A conjecture in convex geometry first articulated in [9, Conjecture 4.1.20] and
elaborated upon in [2,3] would resolve this and would show that the right upper
bound is essentially equal to the lower bound we prove in this paper. Therefore,
we have reasons to believe that the right bound is the one we obtain in this
paper.

Beyond this, we believe the following additional conjectures to be good cat-
alysts for future research, especially in regard to understanding the interplay of
integer variables and other oracles.

Conjecture 1. Given an oracle (G,H) based on first-order information, suppose
there is a family of instances that establishes a lower bound �(d,R, ρ,M,G,H)
for the n = 0 (continuous) case. Then there exists a family of instances that
establishes a lower bound of 2n · �(d,R, ρ,M,G,H) for the n ≥ 1 case, i.e., the
general mixed-integer case.

Conjecture 2. If there exists a query strategy with worst case information com-
plexity u(n, d,R, ρ,M,G) under the standard first-order oracle based on a com-
plete first-order chart G, then there exists a query strategy with worst case infor-
mation complexity u(n, d,R, ρ,M,G) · O

(
(n + d) log

(
MR
ρε

))
under the general

binary oracle based G.

Both of the above results, if true, would be useful “transfer” theorems: the
first one for lower bounds, the second one for upper bounds. Conjecture 1 takes a
lower bound result for the continuous problem and lifts it to the general mixed-
integer case with a factor of 2n. This would be a general tool that can then
give Theorem 1 as a special case and also give a mixed-integer version of Theo-
rem 3 as a corollary. Further, if future research on the information complexity of
continuous convex optimization results in better/different lower bounds, these
would immediately imply new lower bounds for the mixed-integer case as well.
For instance, we believe the following conjecture to be true for the continuous
convex optimization problem.

Conjecture 3. There exists a complete first-order chart G such that the general

binary oracle based on G has information complexity Ω
(
d2 log

(
MR
ρε

)2)
.

Another version of Conjecture 3 is also stated in the language of “memory-
constrained” algorithms (see Sect. 2.2 below) in [6,11].

Conjecture 2 can be used to take upper bound results proved in the standard
first-order oracle setting and get upper bound results in the general binary oracle
setting. For instance, if the upper bound for the general mixed-integer problem
is improved by resolving the convex geometry conjecture mentioned above (and
we believe the lower bound is correct and the upper bound is indeed loose), then
this would also give better upper bounds for the general binary oracle setting.

Information Complexity of Mixed-Integer Convex Optimization 9

2 Proof Sketches

2.1 Proof Sketch of Theorem 1

The general strategy to prove Theorem 1 is the following: Given any query
strategy D, we will construct two instances (f1, C1), (f2, C2) ∈ In,d,R,ρ,M such
that the transcripts Π(D, (f1, C1)) and Π(D, (f2, C2)) are equal for the first k
terms if k is less than the lower bound, but S((f1, C1), ε) ∩ S((f2, C2), ε) = ∅.

The lower bound icomp ε(n, d,R, ρ,M,G,H) ≥
(
2n · d log

(
2R
3ρ

))
was estab-

lished in [2, Theorem 4.2]. Thus, it suffices to show icomp ε(n, d,R, ρ,M,G,H) ≥
d2n

⌊
log8

(
MR
2ε

)⌋
.

The idea is to use a family F of convex functions defined over [−R,R]d

described in [7,8] such that one needs at least d
⌊
log8

(
MR
2ε

)⌋
subgradient queries

to report an ε-approximate solution. In fact, for any query strategy in R
d,

one can adversarially construct subgradient responses such that if less than
d

⌊
log8

(
MR
2ε

)⌋
are made, one can report two functions from F that would have

provided the same responses as given by the adversary and yet have disjoint sets
of ε-approximate solutions. We now mimic this by putting the family F over the
fibers {x}× [−R,R]d for x ∈ {0, 1}n. Our constraint set C is going to be simply
[0, 1]n×[−R,R]d; thus, the separation oracle queries will provide no information.

We will create a nested sequence of polyhedra Y0 ⊇ Y1 ⊇ . . . ⊇ Yk contained
in [0, 1]n × [−R,R]d × R, where Yi corresponds to query i. This sequence will
depend on the queries made and will determine our responses. The set Yk will be
used to construct the epigraphs of two functions f1 and f2, whose ε-approximate
minimizers in Z

n × R
d will be disjoint. We now enumerate different cases:

1. If the query point is outside [0, 1]n × [−R,R]d, then the function value is
reported to be +∞ and a separating hyperplane is reported. Yi is not updated.

2. If the query point z = (x,y) is inside [0, 1]n × [−R,R]d, but x ∈ {0, 1}n, then
we simply report the function value from the current Yi set interpreted as an
epigraph and any subgradient at this point on Yi. Yi is not updated.

3. If the query point z = (x,y) ∈ {0, 1}n × [−R,R]d, we look at what the
response from the adversary would have been for the family F at the query
point y, and we rotate the corresponding subgradient hyperplane so that it
is valid for all other fibers {x′} × [−R,R]d for x′ ∈ {0, 1}n \ {x}, as well as
all points queried inside the hypercube, but not the fibers. This can be done
because the fibers are compact, and only a finite number of queries have been
made. We then update Yi by intersecting with this rotated halfspace, and
report this rotated halfspace as the response for this query.

If k < 2nd
⌊
log8

(
MR
2ε

)⌋
queries have been made, there must exist a fiber –

corresponding to say x� ∈ {0, 1}n – on which less than d
⌊
log8

(
MR
2ε

)⌋
queries

were made. We now take the two functions f̃1, f̃2 from F that would have given
the same responses on that fiber, with disjoint ε-approximate solutions. On the
other fibers corresponding to x = x�, we consider any function f̃x from F that
would have returned the same responses on that fiber (this can be ensured to

10 A. Basu et al.

exist given the structure of the family F), and define Ỹ x := {x} × epi(f̃x). For
query points z not on the fibers, we consider the sets Ỹ z := Yk ∩ ({z} × R).
For i = 1, 2, we define Ei as the convex hull of {x�} × epi(f̃i) and all the Ỹ x,
x = x� and Ỹ z for query points z not on the fibers. These convex hulls are
the epigraphs of two functions f1, f2 whose ε-approximate minimizers can be
shown to be exactly the points of the form (x�,y), where y is an ε-approximate
minimizer of f̃1, f̃2, respectively. These are disjoint sets and we are done.

2.2 Proof of Theorem 3

We need to introduce the idea of information memory of any query strat-
egy/algorithm.

Definition 4. A first-order query strategy with information memory comprises
three functions:

1. φquery : {0, 1}∗ → [−R,R]n × [−R,R]d.
2. φsep

update : (Rn × R
d) × {0, 1}∗ → {0, 1}∗.

3. φsub
update : (R × (Rn × R

d)) × {0, 1}∗ → {0, 1}∗.

Given access to a (complete) first-order chart G, the query strategy main-
tains an information memory, which is a finite length binary string in {0, 1}∗,
initialized as the empty string. At every iteration k = 1, 2, . . ., the query
strategy computes zk := φquery(rk−1) and updates its memory using either

rk = φsep
update

(
gsepzk

(Ĉ), rk−1

)
or rk = φsep

update

(
gsubzk

(f̂), rk−1

)
, where (f̂ , Ĉ) is the

unknown true instance. After finitely many iterations, the query strategy does a
final computation based on its information memory and reports an ε-approximate
solution, i.e., there is a final function φfin : {0, 1}∗ → Z

n × R
d.

The information memory complexity of an algorithm for an instance is the
maximum length of its information memory rk over all iterations k during the
processing of this instance.

Proposition 6. Let G be a (complete) first-order chart. For any first-order
query strategy A with information memory that uses G, there exists a query strat-
egy A′ using the general binary oracle based on G, such that for any instance
(f, C), if A stops after T iterations with information memory complexity Q, A′

stops after making at most Q · T oracle queries.
Conversely, for any query strategy A′ using the general binary oracle based

on G, there exists a first-order query strategy A with information memory such
that for any instance (f, C), if A′ stops after T iterations, A stops after making
at most T iterations with information memory complexity at most T .

Proof. Let A be a first-order query strategy with information memory. We can
simulate A by the query strategy whose queries are precisely the bits of the
information memory state rk at each iteration k of A. More formally, the query

Information Complexity of Mixed-Integer Convex Optimization 11

is z = φquery(rk−1) and h(·) = (φsep
update(·, rk−1))i or h(·) = (φsub

update(·, rk−1))i,
depending on which type of query was made.

Conversely, given a query strategy A′ based on the general binary oracle, we
can simulate it with a first-order query strategy with information memory where
in each iteration, we simply append the new bit queried by A′ to the current
state of the memory. ��

The following is (a rephrasing of) a result from [6].

Theorem 7. [6, Theorem 1] For every δ ∈ [0, 1/4], there is a class of instances
I ⊆ In,d,R,ρ,M and a (complete) first-order chart G such that any first-order
query strategy with information memory must have either d1.25−δ information
memory complexity (in the worst case) or make at least Ω̃(d1+

4
3 δ) iterations (in

the worst case).

Proof of Theorem 3. Setting δ = 3
28 in Theorem 7, we obtain that any first-order

query strategy uses either d8/7 information memory or makes at least Ω̃(d8/7)
iterations. Using the second part of Proposition 6, we obtain the desired lower
bound of Ω̃(d8/7) on the number of queries made by any query strategy using
the general binary oracle based on G. ��

2.3 Proof Sketch of Theorem 5

We will sketch the proof for solving the feasibility problem, optimization being
handled in a similar way by incorporating subgradients. Thus, we have a finite
set of instance I ⊆ Id,R,ρ with only continuous variables, a true (unknown)
instance C ∈ I, and our goal is to report a point in C using few binary queries
to a separation oracle. For that, we design a procedure that maintains a family
U ⊆ I of the instances that are still possible (which always includes the true
instance C), along with a polyhedron P containing C. We start with U = I and
P = [−R,R]d. We will show that we can always either reduce |U| or vol(P) by
a constant fraction with each query. For that, while |U| > 1 do the following:

– Set p equal to be the centroid of P . If the separation oracle at p reports that
p ∈ C, then we return p. Otherwise:

– Case 1: For every possible answer v ∈ R
d to the separation oracle, at most

half of the sets C ′ in U give that answer for the point p, namely gsepp (C ′) = v.
Then, there is a set of answers V ⊆ R

d such that the number of sets C ′ ∈ U
with gsepp (C ′) ∈ V is between 1

4 |U| and 3
4 |U|. Then querying whether the true

instance has gsepp (C) ∈ V (using the binary query h where h(v) = 1 iff v ∈ V)
we can eliminate at least a quarter of the instances of U as not possible. So
update U by deleting those instances from it.

– Case 2: There exists v̄ ∈ R
d such that more than half of the instances C ′

in U have gsepp (C ′) = v̄. Query whether the true instance has gsepp (C) = v̄
(using the binary query h that takes value 1 at v̄ and 0 everywhere else). If
gsepp (C) = v̄, then remove from U all instances C ′ such that gsepp (C ′) = v̄,

12 A. Basu et al.

reducing the size of U by at least half. Otherwise, we then know the exact
separating hyperplane for the true instance C, namely gsepp (C) = v̄, and so
employ it to update the relaxation as P ← P ∩ {x ∈ R

d : 〈v̄,x〉 ≤ 〈v̄,p〉}.

In each step, either the size of U decreases by at least 1/4, or the volume of P
decreases by a factor of at least 1

e (by Grünbaum’s Theorem [4]). The former can
only happen O(log |I|) times until U becomes a singleton (in which case we know
the true instance), whereas the latter can happen at most O

(
d log

(
R
ρ

))
times,

since C is always a subset of P and C contains an �∞-ball of radius ρ; thus,
vol(P) ≥ (2ρ)d. So the procedure succeeds in O

(
log |I| + d log

(
R
ρ

))
queries.

2.4 Proof Sketch of Theorems 2 and 4

Here we consider all instances In,d,R,ρ,M and again the goal is to solve convex
mixed-integer (Theorem 2) and continuous (Theorem 4) instances using few
binary queries (more specifically, bit queries or inner product sign queries) to the
separation and subgradient oracles. Our strategy is to: 1) solve the the problems
using approximate subgradients/separating hyperplanes; 2) use binary queries
to construct such approximations.

For the first item, we use the algorithm of [3] based on the centerpoint : this
is a point in the convex set where every halfspace supported on it cuts off a sig-
nificant (mixed-integer) volume of the set. Similar to the previous section, the
algorithm keeps an outer relaxation P of the feasible region C, and repeatedly
applies separation or subgradient-based cuts through the centerpoint of P ; the
assumption that the feasible region contains a ball (in the optimal fiber) estab-
lishes a volume lower bound that essentially limits the number of iterations of the
algorithm. While the original algorithm of [3] uses exact separation/subgradient
oracles, we show, not surprisingly, that approximate ones suffice.

The next item is to construct approximate separation/subgradient oracles
by using few binary queries to the exact ones. In case of bit queries Hbit this
is can be easily done by querying enough bits of the latter. The case of inner
product sign queries Hdir , namely that given a vector g we can pick a direction
a and ask “Is 〈a,g〉 ≥ 0?”, is more interesting. It boils down to approximating
the vector g (subgradient/separating hyperplane) using few such queries.2

Lemma 1. For any vector g ∈ R
d, using O(d log d

ε′) inner product sign queries
we can obtain a unit-length vector ĝ ∈ R

d such that
∥
∥ĝ − g

‖g‖
∥
∥ ≤ ε′.

Proof. sketch. We prove by induction on d that with d log 8
δ queries we can obtain

a unit-length vector ĝ with
∥
∥ĝ− g

‖g‖
∥
∥ ≤ 2dδ; the lemma follows by setting δ = ε′

2d .
In the 2-dimensional case can use log 8

δ queries to perform binary search and
obtain a cone of angle δπ

4 that contains g; any unit-length vector ĝ in this cone
has ‖ĝ − g

‖g‖‖ ≤ δ ≤ 4δ as desired.

2 This is related to (actively) learning the linear classifier whose normal is given by
g [1]. These methods can perhaps be adapted to our setting, but we present a
different and self-contained statement and proof.

Information Complexity of Mixed-Integer Convex Optimization 13

For the general case d > 2, we consider any 2-dim subspace A of R
d and

apply the previous case to obtain in log d
δ queries an approximation g̃ ∈ A to the

projection ΠAg of g onto A with guarantee ‖‖ΠAg‖ · g̃ − ΠAg‖ ≤ δ‖ΠAg‖ ≤
δ‖g‖. Then we consider the (d − 1)-dim subspace B := span{g̃, A⊥} and by
induction, with 2(d−1) log 8

δ queries we obtain a vector ĝ ∈ B that approximates
the projection ΠBg of g onto B with guarantee ‖‖ΠBg‖ · ĝ − ΠBg‖ ≤ 2(d −
1)δ‖ΠBg‖ ≤ 2(d − 1)δ‖g‖ (a total of less than 2d log 8

δ queries was then used).
One can then show that ĝ is the desired approximation of g, namely (letting
λA := ‖ΠAg‖ and λB := ‖ΠBg‖)
∥
∥g − ‖g‖ · ĝ∥

∥ ≤ ‖g − ΠBg‖ + ‖ΠBg − λB · ĝ‖ + ‖λB · ĝ − ‖g‖ · ĝ∥
∥ ≤ 2dδ‖g‖,

the upper bound on the first and third terms in the middle inequality following
from the fact dist(g, B) ≤ δ‖g‖ (by the guarantee of g̃) and the upper bound
on the second term following from the approximation guarantee of ĝ. ��

References

1. Balcan, M.-F., Long, P.: Active and passive learning of linear separators under
log-concave distributions. In: Shalev-Shwartz, S., Steinwart, I., (eds.) Proceedings
of the 26th Annual Conference on Learning Theory, volume 30 of Proceedings of
Machine Learning Research, pp. 288–316. Princeton, NJ, USA, 12–14 June 2013.
PMLR (2013)

2. Basu, A.: Complexity of optimizing over the integers. to appear in Mathematical
Programming, Series A (2022)

3. Basu, A., Oertel, T.: Centerpoints: a link between optimization and convex geom-
etry. SIAM J. Optim. 27(2), 866–889 (2017)

4. Grünbaum, B.: Partitions of mass-distributions and of convex bodies by hyper-
planes. Pacific J. Math. 10, 1257–1261 (1960)

5. Jamieson, K.G., Nowak, R.D., Recht, B.: Query complexity of derivative-free opti-
mization. In: Proceedings of the 25th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS2012, pp. 2672–2680, Red Hook, NY,
USA. Curran Associates Inc. (2012)

6. Marsden, A., Sharan, V., Sidford, A., Valiant, G.: Efficient convex optimization
requires superlinear memory. arXiv preprint arXiv:2203.15260 (2022)

7. Nemirovski, A.: Efficient methods in convex programming. Lecture Notes (1994)
8. Nemirovski, A.S., Yudin, D,B.: Problem complexity and method efficiency in opti-

mization. John Wiley (1983)
9. Oertel, T.: Integer convex minimization in low dimensions, Ph. D. thesis, Diss.,

Eidgenössische Technische Hochschule ETH Zürich, Nr. 22288 (2014)
10. Protasov, V.Y.: Algorithms for approximate calculation of the minimum of a con-

vex function from its values. Math. Notes 59(1), 69–74 (1996)
11. Woodworth, B., Srebro, N.: Open problem: the oracle complexity of convex opti-

mization with limited memory. In: Conference on Learning Theory, pp. 3202–3210.
PMLR (2019)

http://arxiv.org/abs/2203.15260

Efficient Separation of RLT Cuts
for Implicit and Explicit Bilinear

Products

Ksenia Bestuzheva1(B) , Ambros Gleixner1,2 , and Tobias Achterberg3

1 Zuse Institute Berlin, Berlin, Germany
{bestuzheva,gleixner}@zib.de
2 HTW Berlin, Berlin, Germany

3 Gurobi GmbH, Frankfurt am Main, Germany
achterberg@gurobi.com

Abstract. The reformulation-linearization technique (RLT) is a promi-
nent approach to constructing tight linear relaxations of non-convex con-
tinuous and mixed-integer optimization problems. The goal of this paper
is to extend the applicability and improve the performance of RLT for
bilinear product relations. First, a method for detecting bilinear product
relations implicitly contained in mixed-integer linear programs is devel-
oped based on analyzing linear constraints with binary variables, thus
enabling the application of bilinear RLT to a new class of problems. Our
second contribution addresses the high computational cost of RLT cut
separation, which presents one of the major difficulties in applying RLT
efficiently in practice. We propose a new RLT cutting plane separation
algorithm which identifies combinations of linear constraints and bound
factors that are expected to yield an inequality that is violated by the
current relaxation solution. A detailed computational study based on
implementations in two solvers evaluates the performance impact of the
proposed methods.

Keywords: Reformulation-linearization technique · Bilinear
products · Cutting planes · Mixed-integer programming

1 Introduction

The reformulation-linearization technique (RLT) was first proposed by Adams
and Sherali [1–3] for bilinear problems with binary variables, and has been
applied to mixed-integer [18–20], general bilinear [21] and polynomial [24] prob-
lems. RLT constructs valid polynomial constraints, then linearizes these con-
straints by using nonlinear relations given in the problem and applying relax-
ations when such relations are not available. If relations used in the linearization
step are violated by a relaxation solution, this procedure may yield violated
cuts. By increasing the degree of derived polynomial constraints, hierarchies of

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 14–28, 2023.
https://doi.org/10.1007/978-3-031-32726-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_2&domain=pdf
http://orcid.org/0000-0002-7018-7099
http://orcid.org/0000-0003-0391-5903
http://orcid.org/0000-0002-0862-7065
https://doi.org/10.1007/978-3-031-32726-1_2

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 15

relaxations can be constructed, which were shown to converge to the convex hull
representation of MILPs and mixed-integer polynomial problems where contin-
uous variables appear linearly [18–20].

RLT has been shown to provide strong relaxations [21,23], but this comes at
the cost of excessive numbers of cuts. To address this, Sherali and Tuncbilek [25]
proposed a technique to add a subset of RLT cuts, depending on signs of coef-
ficients of monomial terms in the original constraints and the RLT constraints.
Furthermore, the reduced RLT technique [12–14,22] yields equivalent represen-
tations with fewer nonlinear terms for polynomial problems containing linear
equality constraints.

We focus on RLT for bilinear products, which is of particular interest due
to the numerous applications whose models involve nonconvex quadratic non-
linearities [3,5,7–9,17]. Even in the bilinear case, large numbers of factors to be
multiplied and of RLT cuts that are generated as a result remain an issue that
can lead to considerable slowdowns, both due to the cost of cut separation and
the large sizes of resulting LP relaxations.

The first contribution of this paper is a new approach to applying RLT
to MILPs. Unlike the approaches that only introduce multilinear relations via
multiplication [18,19], this approach detects and enforces bilinear relations that
are already implicitly present in the model. A bilinear product relation where
one multiplier is a binary variable and the other multiplier is a variable with
finite bounds can be equivalently written as two linear constraints. We identify
such pairs of linear constraints that implicitly encode a bilinear product relation,
then utilize this relation in the generation of RLT cuts.

The second contribution of this paper addresses the major bottleneck for
applying RLT successfully in practice, which stems from prohibitive costs of
separating RLT cuts, by proposing an efficient separation algorithm. This algo-
rithm considers the signs of bilinear relation violations in a current LP relaxation
solution and the signs of coefficients in linear constraints in order to ignore com-
binations of factors that will not produce a violated inequality. Furthermore, we
propose a technique which projects the linear constraints onto a reduced space
and constructs RLT cuts based on the resulting much smaller system.

The rest of the paper is organized as follows. In Sect. 2, RLT for bilinear
products is explained. In Sect. 3, we describe the technique for deriving bilin-
ear product relations from MILP constraints. Section 4 presents the new cut
separation algorithm, and computational results are presented in Sect. 5.

2 RLT for Bilinear Products

We consider mixed-integer (nonlinear) programs (MI(N)LPs) of the extended
form where auxiliary variables w are introduced for all bilinear products:

16 K. Bestuzheva et al.

min cTx (1a)
s.t. Ax ď b, (1b)

g(x,w) ď 0, (1c)
xixj ĳ wij for all (i, j) P Iw, (1d)
x ď x ď x, w ď w ď w, (1e)

xj P R for all j P Ic, xj P {0, 1} for all j P Ib, (1f)

with I “ Ic YIb being a disjoint partition of variables x and x having dimension
|I| “ n. In the above formulation, x, x P R

n
, w,w P R

|Iw|
(R “ RY{´∞, `∞}),

c P R
n and b P R

m(l)
are constant vectors and A P R

m(l)×n is a coefficient
matrix, and the function g defines the nonlinear constraints. Constraint (1d)
defines the bilinear product relations in the problem and allows for inequalities
and equations. Let Ip denote the set of indices of all variables that participate
in bilinear product relations (1d).

Solvers typically employ McCormick inequalities [16] to construct an LP
relaxation of constraints (1d). These inequalities describe the convex hull of the
set given by the relation xixj ĳ wij :

xixj ` xixj ´ xixj ď wij , xixj ` xixj ´ xixj ď wij , (2a)

xixj ` xixj ´ xixj ě wij , xixj ` xixj ´ xixj ě wij , (2b)

where (2a) is a relaxation of xixj ď wij and (2b) is a relaxation of xixj ě wij .
In the presence of linear constraints (1b), this relaxation can be strengthened

by adding RLT cuts. Consider a linear constraint:
∑n

k“1 a1kxk ď b1. Multiplying
this constraint by nonnegative bound factors (xj ´ xj) and (xj ´ xj), where xj

and xj are finite, yields valid nonlinear inequalities. We will derive the RLT cut
using the lower bound factor. The derivation is analogous for the upper bound
factor. The multiplication, referred to as the reformulation step, yields:

n∑

k“1

a1kxk(xj ´ xj) ď b1(xj ´ xj).

This nonlinear inequality is then linearized in order to obtain a valid linear
inequality. The following linearizations are applied to each nonlinear term xkxj :

– xkxj is replaced by wkj if the relation xkxj ď wkj exists in the problem and
a1k ď 0, or if the relation xkxj ě wkj exists and a1k ě 0, or if the relation
xkxj “ wkj exists in the problem,

– if k “ j P Ib, then xkxj “ x2
j “ xj ,

– if k “ j R Ib, then xkxj “ x2
j is outer approximated by a secant from above

or by a tangent from below, depending on the sign of the coefficient,
– if k ‰ j, k, j P Ib and one of the four clique constraints is implied by the linear

constraints (1b), then: xk ` xj ď 1 ⇒ xkxj “ 0; xk ´ xj ď 0 ⇒ xkxj “ xk;
´xk ` xj ď 0 ⇒ xkxj “ xj ; ´xk ´ xj ď ´1 ⇒ xkxj “ xj ` xj ´ 1,

– otherwise, xkxj is replaced by its McCormick relaxation.

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 17

The key step is the replacing of products xkxj with the variables wkj . When
a bilinear product relation xkxj ĳ wkj does not hold for the current relaxation
solution, this substitution may lead to an increase in the violation of the inequal-
ity, thus possibly producing a cut that is violated by the relaxation solution.

In the case that we have a linear equation constraint
∑n

k“1 a1kxk “ b1 and
all nonlinear terms can be replaced using equality relations, then RLT produces
an equation cut. Otherwise, the equation constraint is treated as two inequalities∑n

k“1 a1kxk ď b1 and
∑n

k“1 a1kxk ě b1 to produce inequality cuts.

3 Detection of Implicit Products

Consider a product relation wij “ xixj , where xi is binary. It can be equivalently
rewritten as two implications: xi “ 0 ⇒ wij “ 0 and xi “ 1 ⇒ wij “ xj . With
the use of the big-M technique, these implications can be represented as linear
constraints, provided that the bounds of xj are finite:

wij ´ xjxi ď 0, wij ´ xj ´ xjxi ď ´xj (3a)

´wij ` xjxi ď 0, ´ wij ` xj ` xjxi ď xj . (3b)

Linear constraints with binary variables can be analyzed in order to detect
constraint pairs of the forms (3). The method can be generalized to allow for
bilinear relations of the following form, with A,B,C,D P R:

Axi ` Bwij ` Cxj ` D ĳ xixj (4)

Theorem 1. Consider two linear constraints depending on the same three vari-
ables xi, xj and wij, where xi is binary:

a1xi ` b1wij ` c1xj ď d1, (5a)
a2xi ` b2wij ` c2xj ď d2. (5b)

If b1b2 ą 0 and γ “ c2b1 ´ b2c1 ‰ 0, then these constraints imply the following
product relation:

(1/γ)((b2(a1 ´ d1) ` b1d2)xi ` b1b2wij ` b1c2xj ´ b1d2) ď xixj if b1/γ ě 0,

(1/γ)((b2(a1 ´ d1) ` b1d2)xi ` b2b2wij ` b1c2xj ´ b1d2) ě xixj if b1/γ ď 0.

Proof. We begin by writing the bilinear relation (4), treating its coefficients and
inequality sign as unknown, and reformulating it as two implications:

xi “ 1 ⇒ Bwij ` (C ´ 1)xj ĳ ´D ´ A, (6a)
xi “ 0 ⇒ Bwij ` Cxj ĳ ´D, (6b)

18 K. Bestuzheva et al.

where the inequality sign must be identical in both implied inequalities. Similarly,
we rewrite constraints (5) with scaling parameters α and β:

xi “ 1 ⇒ αb1wij ` αc1xj ĳ α(d1 ´ a1), (7a)
xi “ 0 ⇒ βb2wij ` βc2xj ĳ βd2, (7b)

where the inequality signs depend on the signs of α and β.
The goal is to find the coefficients A,B,C and D and the inequality sign. We

require that coefficients and inequality signs in implications (6) and (7) match.
Solving the resulting system yields:

b1b2 ą 0, A “ (1/γ)(b2(a1 ´ d1) ` b1d2)
B “ b1b2/γ, C “ b1c2/γ, D “ ´b1d2/γ, γ ‰ 0,

where γ “ c2b1 ´ b2c1 and the inequality sign is ‘ď‘ if b1/γ ě 0, and ‘ě‘ if
b1/γ ď 0. Thus, the bilinear relation stated in this theorem is obtained. ��

Although the conditions of the theorem are sufficient for the bilinear product
relation to be implied by the linear constraints, in practice more conditions are
checked before deriving such a relation. In particular:

– At least one of the coefficients a1 and a2 must be nonzero. Otherwise, the
product relation is always implied by the linear constraints, including when
0 ă xi ă 1.

– The signs of the coefficients of the binary variable xi must be different, that is,
one linear relation is more restrictive when xi “ 1 and the other when xi “ 0.
While this is not necessary for the non-redundancy of the derived product
relation, by requiring this we focus on stronger implications (for instance,
for a linear relation a1xi ` b1wij ` c1xj ď d1 with a1 ą 0, we use the more
restrictive implication xi “ 1 ⇒ b1wij ` c1xj ď d1 ´ a1 rather than the less
restrictive implication xi “ 0 ⇒ b1wij ` c1xj ď d1).

In separation, the product relation (4) is treated similarly to product relations
wij ĳ xixj , with the linear left-hand side Axi ` Bwij ` Cxj ` D being used
instead of the individual auxiliary variable wij .

The detection algorithm searches for suitable pairs of linear relations and
derives product relations from them. Let xi, as before, be a binary variable. The
following relation types are considered as candidates for the first relation in such
a pair: implied relations of the form xi “ ξ ⇒ b̃1wij ` c̃1xj ď d̃1, where ξ “ 0
or ξ “ 1; and implied bounds of the form xi “ ξ ⇒ wij ď d̃1.

The second relation in a pair can be: an implied relation of the form xi “
ξ ⇒ b̃2wij ` c̃2xj ď d̃2, where ξ is the complement of ξ; if wij is non-binary,
an implied bound of the form xi “ ξ ⇒ wij ď d̃2; if wij is binary, a clique
containing the complement of xi if ξ “ 1 or xi if ξ “ 0, and wij or its complement;
a constraint on xj and wij ; or a global bound on wij . Cliques are constraints of
the form:

∑
kPJ xk `∑

kPJ (1´xk) ď 1, where J Ď Ib, J Ď Ib and J XJ “ H.

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 19

4 Separation Algorithm

We present a new algorithm for separating RLT cuts within an LP-based branch-
and-bound solver. The branch-and-bound algorithm builds LP relaxations of
problem (1) by constructing linear underestimators of functions g in the con-
straint g(x,w) ď 0 and McCormick inequalities for constraints (1d).

Let (x∗,w∗) be the solution of an LP relaxation at a node of the branch-
and-bound tree, and suppose that (x∗,w∗) violates the relation xixj ĳ wij for
some i, j P Iw. Separation algorithms generate cuts that separate (x∗,w∗) from
the feasible region, and add those cuts to the solver’s cut storage.

The standard separation algorithm, which will serve as a baseline for compar-
isons, iterates over all linear constraints. For each constraint, it iterates over all
variables xj that participate in bilinear relations and generates RLT cuts using
bound factors of xj . Violated cuts are added to the MINLP solver’s cut storage.

4.1 Row Marking

Let the bound factors be denoted as f
(�)
j (x) “ xj ´ xj and f

(u)
j (x) “ xj ´ xj .

Consider a linear constraint multiplied by a bound factor:

f
(.)
j (x)arx ď f

(.)
j (x)br. (8)

The ith nonlinear term is a′
rixixj , where a′

ri “ ari when multiplying by
(xj ´xj) and a′

ri “ ´ari when multiplying by (xj ´xj). Following the procedure
described in Sect. 2, RLT may replace the product xixj with wij . The product
can also be replaced with a linear expression, but this does not change the
reasoning, and we will only use wij in this section.

If w∗
ij ‰ x∗

i x
∗
j , then such a replacement will change the violation of (8). The

terms whose replacement will increase the violation are of interest, that is, the
terms where:

a′
rix

∗
i x

∗
j ď a′

riw
∗
ij .

This determines the choice of bound factors to multiply with:

x∗
i x

∗
j ă w∗

ij ⇒ multiply by (xj ´ xj) if ari ą 0,
multiply by (xj ´ xj) if ari ă 0,

x∗
i x

∗
j ą w∗

ij ⇒ multiply by (xj ´ xj) if ari ą 0,
multiply by (xj ´ xj) if ari ă 0.

The separation algorithm is initialized by creating data structures to enable
efficient access to 1) all variables appearing in bilinear products together with a
given variable and 2) the bilinear product relation involving two given variables.

For each variable xi, linear rows are marked in order to inform the separation
algorithms which bound factors of xi they should be multiplied with, if any. The
algorithm can work with inequality rows in both ‘ď’ and ‘ě’ forms as well
as equation rows. For each bilinear product xixj , the row marking algorithm
iterates over all linear rows that contain xj with a nonzero coefficient. These
rows are stored in a sparse array and have one of the following marks:

20 K. Bestuzheva et al.

– MARK LT: the row contains a term arjxj such that arjx
∗
i x

∗
j ă arjw

∗
ij ;

– MARK GT: the row contains a term arjxj such that arjx
∗
i x

∗
j ą arjw

∗
ij ;

– MARK BOTH: the row contains terms fitting both cases above.

Row marks are represented by integer values 1, 2 and 3, respectively, and are
stored in two sparse arrays, row idcs and row marks, the first storing sorted row
indices and the second storing the corresponding marks. In the algorithm below,
we use the notation mark(r) to denote accessing the mark of row r by performing
a search in row idcs and retrieving the corresponding entry in row marks. We
also define a sparse matrix W with entries wij .

Input: x∗, w∗,W
1 marks :“ H
2 for i P Ip, j P nnz(wi) do
3 for r such that j P nnz(ar) do
4 if r R marks then
5 marks ← r
6 mark(r) :“ 0

7 if arjx
∗
i x

∗
j ă arjw

∗
ij then

8 mark(r) |“ MARK LT
9 else

10 mark(r) |“ MARK GT

The algorithm iterates over the sparse array of marked rows and generates
RLT cuts for the following combinations of linear rows and bound factors:

– If mark “ MARK LT, then “ď” constraints are multiplied with the lower
bound factor and “ě” constraints are multiplied with the upper bound factor;

– If mark “ MARK GT, then “ď” constraints are multiplied with the upper
bound factor and “ě” constraints are multiplied with the lower bound factor;

– If mark “ MARK BOTH, then both “ď” and “ě” constraints are multiplied
with both the lower and the upper bound factors;

– Marked equality constraints are always multiplied with xi itself.

4.2 Projection Filtering

If at least one of the variables xi and xj has a value equal to one of its bounds,
then the McCormick relaxation (2) is tight for the relation wij “ xixj . Therefore,
if xi or xj is at a bound and the McCormick inequalities are satisfied, then the
product relation is also satisfied. We describe the equality case here, and the
reasoning is analogous for the inequality case of xixj ĳ wij .

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 21

Consider the linear system Ax ď b projected onto the set of variables whose
values are not equal to either of their bounds.

∑

kPJ 1

arkxk ď br ´
∑

kPJ 2

arkx∗
k, ∀r P 1, . . . ,m(l),

where J 1 Ď I is the set of all problem variables whose values in the solution x∗ of
the current LP relaxation are not equal to one of their bounds, and J 2 “ I \J 1.

Violation is then first checked for RLT cuts generated based on the projected
linear system. Only if such a cut, which we will refer to as a projected RLT cut,
is violated, then the RLT cut for the same bound factor and the corresponding
constraint in the original linear system will be constructed. Since x∗ is a basic LP
solution, in practice either x∗

k “ xk or x∗
k “ xk holds for many of the variables,

and the projected system often has a considerably smaller size than the original
system.

In the projected system multiplied with a bound factor f
(.)
j (x):

f
(.)
j (x) ·

∑

kPJ 1

arkxk ď f
(.)
j (x)(br ´

∑

kPJ 2

arkx∗
k), ∀r P 1, . . . ,m(l),

the only nonlinear terms are xjxk with k P J 1, and therefore, no substitution
xixk → wik is performed for k P J 2. If the McCormick inequalities for xi, xk and
wik hold, then x∗

i x
∗
k “ w∗

ik for k P J 2, and checking the violation of a projected
RLT cut is equivalent to checking the violation of a full RLT cut.

Depending on the solver, McCormick inequalities may not be satisfied at
(x∗,w∗). Thus, it is possible that x∗

i x
∗
k ‰ w∗

ik for some k P J 2, but these vio-
lations will not contribute to the violation of the projected RLT cut. In this
case, projection filtering has an additional effect: for violated bilinear products
involving variables whose values in x∗ are at bound, the violation of the prod-
uct will be disregarded when checking the violation of RLT cuts. Thus, adding
McCormick cuts will be prioritized over adding RLT cuts.

5 Computational Results

5.1 Setup

We tested the proposed methods on the MINLPLib1 [6] test set and a test
set comprised of instances from MIPLIB3, MIPLIB 2003, 2010 and 2017 [10],
and Cor@l [15]. These test sets consist of 1846 MINLP instances and 666
MILP instances, respectively. After structure detection experiments, only those
instances were chosen for performance evaluations that either contain bilinear
products in the problem formulation, or where our algorithm derived bilinear
products. This resulted in test sets of 1357 MINLP instances and 195 MILP
instances.

1 https://www.minlplib.org.

https://www.minlplib.org

22 K. Bestuzheva et al.

The algorithms were implemented in the MINLP solver SCIP [4]. We used a
development branch of SCIP (githash dd6c54a9d7) compiled with SoPlex 5.0.2.4,
CppAD 20180000.0, PaPILO 1.0.0.1, bliss 0.73p and Ipopt 3.12.11. The experi-
ments were carried out on a cluster of Dell Poweredge M620 blades with 2.50GHz
Intel Xeon CPU E5-2670 v2 CPUs, with 2 CPUs and 64GB memory per node.
The time limit was set to one hour, the optimality gap tolerance to 10´4 for
MINLP instances and to 10´6 for MILP instances, and the following settings
were used for all runs, where applicable:

– The maximum number of unknown bilinear terms that a product of a row
and a bound factor can have in order to be used was 20. Unknown bilinear
terms are those terms xixj for which no wij variable exists in the problem, or
its extended formulation which SCIP constructs for the purposes of creating
an LP relaxation of an MINLP.

– RLT cut separation was called every 10 nodes of the branch-and-bound tree.
– In every non-root node where separation was called, 1 round of separation

was performed. In the root node, 10 separation rounds were performed.
– Unless specified otherwise, implicit product detection and projection filtering

were enabled and the new separation algorithm was used.

5.2 Impact of RLT Cuts

In this subsection we evaluate the performance impact of RLT cuts. The following
settings were used: Off - RLT cuts are disabled; ERLT - RLT cuts are added
for products that exist explicitly in the problem; IERLT - RLT cuts are added
for both implicit and explicit products. The setting ERLT was used for the
MINLP test set only, since MILP instances contain no explicitly defined bilinear
products.

We report overall numbers of instances, numbers of solved instances, shifted
geometric means of the runtime (shift 1 s), and the number of nodes in the
branch-and-bound tree (shift 100 nodes), and relative differences between set-
tings. Additionally, we report results on subsets of instances. Affected instances
are instances where a change of setting leads to a difference in the solving pro-
cess, indicated by a difference in the number of LP iterations. [x,timelim] denotes
the subset of instances which took the solver at least x seconds to solve with
at least one setting, and were solved to optimality with at least one setting.
All-optimal is the subset of instances which were solved to optimality with both
settings.

Table 1 shows the impact of RLT cuts on MILP performance. We observe
a slight increase in time when RLT cuts are enabled, and a slight decrease in
number of nodes. The difference is more pronounced on ‘difficult’ instances:
a 9% decrease in number of nodes on subset [100,timelim] and 28% on subset
[1000,timelim], and a decrease of 21% in the mean time on subset [1000,timelim].

Table 2 reports the impact of RLT cuts derived from explicitly defined bilinear
products. A substantial decrease in running times and tree sizes is observed
across all subsets, with a 15% decrease in the mean time and a 19% decrease in

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 23

Table 1. Impact of RLT cuts: MILP instances

Off IERLT IERLT/Off

Subset instances solved time nodes solved time nodes time nodes

All 971 905 45.2 1339 909 46.7 1310 1.03 0.98

Affected 581 571 48.8 1936 575 51.2 1877 1.05 0.97

[0,tilim] 915 905 34.4 1127 909 35.6 1104 1.04 0.98

[1,tilim] 832 822 47.2 1451 826 49.0 1420 1.04 0.98

[10,tilim] 590 580 126.8 3604 584 133.9 3495 1.06 0.97

[100,tilim] 329 319 439.1 9121 323 430.7 8333 0.98 0.91

[1000,tilim] 96 88 1436.7 43060 92 1140.9 31104 0.79 0.72

All-optimal 899 899 31.9 1033 899 34.1 1053 1.07 1.02

the number of nodes on all instances, and a 87% decrease in the mean time and
a 88% decrease in the number of nodes on the subset [1000,timelim]. 223 more
instances are solved with ERLT than with Off.

Table 3 evaluates the impact of RLT cuts derived from implicit bilinear prod-
ucts. Similarly to MILP instances, the mean time slightly increases and the mean
number of nodes slightly decreases when additional RLT cuts are enabled, but on
MINLP instances, the increase in the mean time persists across different instance
subsets and is most pronounced (9%) on the subset [100,timelim], and the num-
ber of nodes increases by 6 ´ 7% on subsets [100,timelim] and [1000,timelim].

Table 2. Impact of RLT cuts derived from explicit products: MINLP instances

Off ERLT ERLT/Off

Subset instances solved time nodes solved time nodes time nodes

All 6622 4434 67.5 3375 4557 57.5 2719 0.85 0.81

Affected 2018 1884 18.5 1534 2007 10.6 3375 0.57 0.51

[0,timelim] 4568 4434 10.5 778 4557 8.2 569 0.78 0.73

[1,timelim] 3124 2990 28.3 2081 3113 20.0 1383 0.71 0.67

[10,timelim] 1871 1737 108.3 6729 1860 63.6 3745 0.59 0.56

[100,tilim] 861 727 519.7 35991 850 196.1 12873 0.38 0.36

[1000,tilim] 284 150 2354.8 196466 273 297.6 23541 0.13 0.12

All-optimal 4423 4423 8.6 627 4423 7.5 518 0.87 0.83

24 K. Bestuzheva et al.

Table 3. Impact of RLT cuts derived from implicit products: MINLP instances

ERLT IERLT ERLT/IERLT

Subset instances solved time nodes solved time nodes time nodes

All 6622 4565 57.0 2686 4568 57.4 2638 1.01 0.98

Affected 1738 1702 24.2 1567 1705 24.8 1494 1.02 0.95

[0,timelim] 4601 4565 8.5 587 4568 8.6 576 1.01 0.98

[1,timelim] 3141 3105 21.1 1436 3108 21.4 1398 1.01 0.97

[10,timelim] 1828 1792 74.1 4157 1795 75.4 4012 1.02 0.97

[100,tilim] 706 670 359.9 22875 673 390.4 24339 1.09 1.06

[1000,tilim] 192 156 1493.3 99996 159 1544.7 107006 1.03 1.07

All-optimal 4532 4532 7.7 540 4532 7.8 529 1.02 0.98

Table 4 reports numbers of instances for which a change in the root node dual
bound was observed, where the relative difference is quantified as γ2´γ1

γ1
, where

γ1 and γ2 are root node dual bounds obtained with the first and second settings,
respectively. The range of the change is specified in the column ‘Difference’,
and each column shows numbers of instances for which one or the other setting
provided a better dual bound, within given range.

The results of comparisons Off /IERLT for MILP instances and Off /ERLT
for MINLP instances are consistent with the effect of RLT cuts on performance
observed in Tables 1 and 2. Interestingly, IERLT performs better than ERLT in
terms of root node dual bound quality. Thus, RLT cuts derived from implicit
products in MINLP instances tend to improve root node relaxations.

5.3 Separation

In Table 5, the setting Marking-off employs the standard separation algorithm,
and Marking-on enables the row marking and projection filtering algorithms
described in Sect. 4. Row marking reduces the running time by 63% on MILP
instances, by 70% on affected MILP instances, by 12% on MINLP instances and
by 22% on affected MINLP instances. The number of nodes increases when row
marking is enabled because, due to the decreased separation time, the solver can

Table 4. Root node dual bound differences

MILP MINLP

Difference Off / IERLT Off / ERLT ERLT / IERLT

0.01-0.2 54 / 62 224 / 505 379 / 441

0.2-0.5 2 / 4 23 / 114 44 / 48

0.5-1.0 0 / 3 40 / 150 19 / 30

ą1.0 0 / 2 4 / 182 4 / 23

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 25

explore more nodes before reaching the time limit: this is confirmed by the fact
that on the subset All-optimal, the number of nodes remains nearly unchanged.

Table 5. Separation algorithm comparison

Marking-off Marking-on M-on/M-off

Test set subset instances solved time nodes solved time nodes time nodes

MILP All 949 780 124.0 952 890 45.2 1297 0.37 1.37

Affected 728 612 156.6 1118 722 46.4 1467 0.30 1.31

All-optimal 774 774 58.4 823 774 21.2 829 0.36 1.01

MINLP All 6546 4491 64.5 2317 4530 56.4 2589 0.88 1.12

Affected 3031 2949 18.5 1062 2988 14.3 1116 0.78 1.05

All-optimal 4448 4448 9.1 494 4448 7.4 502 0.81 1.02

Table 6 analyzes the percentage of time that RLT cut separation takes out
of overall running time, showing the arithmetic mean and maximum over all
instances, numbers of instances for which the percentage was within a given
interval, and numbers of failures. The average percentage is reduced from 54.2%
to 2.8% for MILP instances and from 15.1% to 2.4% for MINLP instances, and
the maximum percentage is reduced from 99.6% to 71.6% for MILP instances,
but remains at 100% for MINLP instances. The numbers of failures are reduced
with Marking-on, mainly due to avoiding failures that occur when the solver
runs out of memory.

Table 6. Separation times

Test set Setting avg % max % N(ă 5%) N(5-20%) N(20-50%) N(50-100%) fail

MILP Marking-off 54.2 99.6 121 117 169 552 16

Marking-on 2.8 71.6 853 87 31 4 0

MINLP Marking-off 15.1 100.0 3647 1265 1111 685 77

Marking-on 2.4 100.0 6140 376 204 49 16

Projection filtering has a minor impact on performance. When comparing
the runs where projection filtering is disabled and enabled, the relative differ-
ence in time and nodes does not exceed 1% on both MILP and MINLP instances,
except for affected MILP instances where projection filtering decreases the num-
ber of nodes by 4%. This is possibly occurring due to the effect of prioritizing
McCormick inequalities to RLT cuts when enforcing derived product relations.
The number of solved instances remains almost unchanged, with one less instance
being solved on both MILP and MINLP test sets when projection filtering is
enabled.

26 K. Bestuzheva et al.

5.4 Experiments with Gurobi

In this subsection we present results obtained by running the mixed-integer
quadratically-constrained programming solver Gurobi 10.0 beta [11]. The algo-
rithms for implicit product detection and RLT cut separation are the same as
in SCIP, although implementation details may differ between the solvers.

The internal Gurobi test set was used, comprised of models sent by Gurobi
customers and models from public benchmarks, chosen in a way that avoids
overrepresenting any particular problem class. Whenever RLT cuts were enabled,
so was implicit product detection, row marking and projection filtering. The time
limit was set to 10000 s.

Table 7 shows, for both MILP and MINLP test sets, the numbers of instances
in the test sets and their subsets, and the ratios of shifted geometric means of
running time and number of nodes of the runs with RLT cuts enabled, to the
same means obtained with RLT cuts disabled. The last row shows the numbers
of instances solved with one setting and unsolved with the other, that is, for
example, “RLT off: +41” means that 41 instances were solved with the setting
“off” that were not solved with the setting “on”.

While the results cannot be directly compared to those obtained with SCIP
due to the differences in the experimental setup, we observe the same tendencies.
In particular, RLT cuts yield small improvements on MILP instances which
become more pronounced on subsets [100,timelim] and [1000,timelim], and larger
improvements are observed on MINLP instances both in terms of geometric
means and numbers of solved instances. Relative differences are comparable to
those observed with SCIP, but the impact of RLT cuts is larger in Gurobi, and
no slowdown is observed with Gurobi on any subset of MILP instances.

Table 7. Results obtained with Gurobi 10.0 beta

MILP MINLP

Subset instances timeR nodeR instances timeR nodeR

All 5011 0.99 0.97 806 0.73 0.57

[0,timelim] 4830 0.99 0.96 505 0.57 0.44

[1,timelim] 3332 0.98 0.96 280 0.40 0.29

[10,timelim] 2410 0.97 0.93 188 0.29 0.20

[100,timelim] 1391 0.95 0.91 114 0.17 0.11

[1000,timelim] 512 0.89 0.83 79 0.12 0.08

Solved RLT off: +41; RLT on: +37 RLT off: +2; RLT on: +35

5.5 Summary

RLT cuts yield a considerable performance improvement for MINLP problems
and a small performance improvement for MILP problems which becomes more

Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products 27

pronounced for challenging instances. The new separation algorithm drastically
reduces the computational burden of RLT cut separation and is essential to an
efficient implementation of RLT cuts, enabling the speedups we observed when
activating RLT.

Acknowledgements. The work for this article has been conducted within the
Research Campus Modal funded by the German Federal Ministry of Education and
Research (BMBF grant numbers 05M14ZAM, 05M20ZBM).

References

1. Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one
quadratic programming problems. Manage. Sci. 32(10), 1274–1290 (1986)

2. Adams, W.P., Sherali, H.D.: Linearization strategies for a class of zero-one mixed
integer programming problems. Oper. Res. 38(2), 217–226 (1990)

3. Adams, W.P., Sherali, H.D.: Mixed-integer bilinear programming problems. Math.
Program. 59(1), 279–305 (1993)

4. Bestuzheva, K., et al.: Enabling research through the SCIP optimization suite 8.0.
ACM Trans. Math. Softw. (2023). https://doi.org/10.1145/3585516

5. Buchheim, C., Wiegele, A., Zheng, L.: Exact algorithms for the quadratic linear
ordering problem. INFORMS J. Comput. 22(1), 168–177 (2010)

6. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib - a collection of test models
for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119
(2003). https://doi.org/10.1287/ijoc.15.1.114.15159

7. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout
design problems with unequal areas: a comparison of MILP and MINLP optimiza-
tion methods. Comput. Chem. Eng. 30(1), 54–69 (2005)

8. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic
survey I. Energy syst. 3(3), 221–258 (2012)

9. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic
survey II. Energy Syst. 3(3), 259–289 (2012)

10. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. 13(3), 443–490 (2021). https://doi.
org/10.1007/s12532-020-00194-3

11. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://
www.gurobi.com

12. Liberti, L.: Reduction constraints for the global optimization of NLPs. Int. Trans.
Oper. Res. 11(1), 33–41 (2004)

13. Liberti, L.: Reformulation and convex relaxation techniques for global optimiza-
tion. Ph.D. thesis. Springer (2004)

14. Liberti, L.: Linearity embedded in nonconvex programs. J. Global Optim. 33(2),
157–196 (2005)

15. Linderoth, J.T., Ralphs, T.K.: Noncommercial software for mixed-integer linear
programming. Integer Programm. Theory Practice 3, 253–303 (2005)

16. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: Part I - convex underestimating problems. Math. Program. 10(1), 147–175
(1976)

17. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global
optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

https://doi.org/10.1145/3585516
https://doi.org/10.1287/ijoc.15.1.114.15159
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
https://www.gurobi.com
https://www.gurobi.com

28 K. Bestuzheva et al.

18. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM J. Discret.
Math. 3(3), 411–430 (1990)

19. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations and convex hull character-
izations for mixed-integer zero-one programming problems. Discret. Appl. Math.
52(1), 83–106 (1994)

20. Sherali, H.D., Adams, W.P.: A reformulation-linearization technique (RLT) for
semi-infinite and convex programs under mixed 0–1 and general discrete restric-
tions. Discret. Appl. Math. 157(6), 1319–1333 (2009)

21. Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for
bilinear programming problems. J. Global Optim. 2(4), 379–410 (1992)

22. Sherali, H.D., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex
polynomial programming problems. J. Global Optim. 52(3), 447–469 (2012)

23. Sherali, H.D., Smith, J.C., Adams, W.P.: Reduced first-level representations via the
reformulation-linearization technique: results, counterexamples, and computations.
Discret. Appl. Math. 101(1–3), 247–267 (2000)

24. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial
programming problems using a reformulation-linearization technique. J. Global
Optim. 2(1), 101–112 (1992)

25. Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification
relaxations for univariate and multivariate polynomial programming problems.
Oper. Res. Lett. 21(1), 1–9 (1997)

A Nearly Optimal Randomized Algorithm
for Explorable Heap Selection

Sander Borst1(B) , Daniel Dadush1(B) , Sophie Huiberts2(B) ,
and Danish Kashaev1(B)

1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{sander.borst,dadush,danish.kashaev}@cwi.nl

2 Columbia University, New York, USA
sophie@huiberts.me

Abstract. Explorable heap selection is the problem of selecting the nth

smallest value in a binary heap. The key values can only be accessed by
traversing through the underlying infinite binary tree, and the complex-
ity of the algorithm is measured by the total distance traveled in the
tree (each edge has unit cost). This problem was originally proposed as
a model to study search strategies for the branch-and-bound algorithm
with storage restrictions by Karp, Saks and Widgerson (FOCS ’86), who
gave deterministic and randomized n · exp(O(

√
log n)) time algorithms

using O(log(n)2.5) and O(
√

log n) space respectively. We present a new
randomized algorithm with running time O(n log(n)3) against an oblivi-
ous adversary using O(log n) space, substantially improving the previous
best randomized running time at the expense of slightly increased space
usage. We also show an Ω(log(n)n/ log(log(n))) lower bound for any algo-
rithm that solves the problem in the same amount of space, indicating
that our algorithm is nearly optimal.

1 Introduction

Many important problems in theoretical computer science are fundamentally
search problems. The objective of these problems is to find a certain solution
from the search space. In this paper we analyze a search problem that we call
explorable heap selection. The problem is related to the famous branch-and-
bound algorithm and was originally proposed by Karp, Widgerson and Saks [13]
to model node selection for branch-and-bound with low space-complexity. Fur-
thermore, as we will explain later, the problem remains practically relevant to
branch-and-bound even in the full space setting.

Due to space limitations, we have omitted several proofs. These can be found in [7].
This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment QIP–805241).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 29–43, 2023.
https://doi.org/10.1007/978-3-031-32726-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_3&domain=pdf
http://orcid.org/0000-0003-4001-6675
http://orcid.org/0000-0001-5577-5012
http://orcid.org/0000-0003-2633-014X
http://orcid.org/0000-0002-7999-4989
https://doi.org/10.1007/978-3-031-32726-1_3

30 S. Borst et al.

The explorable heap selection problem1 is an online graph exploration prob-
lem for an agent on a rooted (possibly infinite) binary tree. The nodes of the tree
are labeled by distinct real numbers (the key values) that increase along every
path starting from the root. The tree can thus be thought of as a min-heap.
Starting at the root, the agent’s objective is to select the nth smallest value in
the tree while minimizing the distance traveled, where each edge of the tree has
unit travel cost. The key value of a node is only revealed when the agent visits
it, and the problem thus has an online nature. When the agent learns the key
value of a node, it still does not know the rank of this value.

A simple selection strategy is to use the best-first rule, which repeatedly
explores the unexplored node whose parent has the smallest key value. While
this rule is optimal in terms of the number of nodes that it explores, namely
Θ(n), the distance traveled by the agent can be far from optimal. In the worst-
case, an agent using this rule will need to travel a distance of Θ(n2) to find the
nth smallest value. A simple bad example for this rule is to consider a rooted tree
consisting of two paths (which one can extend to a binary tree), where the two
paths are consecutively labeled by all positive even and odd integers respectively.

Improving on the best-first strategy, Karp, Saks and Wigderson [13] gave a
randomized algorithm with expected cost n·exp(O(

√
log(n))) using O(

√
log(n))

working space. They also showed how to make the algorithm deterministic using
O(log(n)2.5) space. In this work, our main contribution is an improved random-
ized algorithm with expected cost O(n log(n)3) using O(log(n)) space. Given the
Ω(n) lower bound, our travel cost is optimal up to logarithmic factors. Further-
more we show that any algorithm for explorable heap selection that only uses s
units of memory, must take at least n · logs(n) time in expectation. An interest-
ing open problem is the question whether a superlinear lower bound also holds
without any restriction on the memory usage.

To clarify the memory model, it is assumed that any key value and O(log n)
bit integer can be stored using O(1) space. We also assume that maintaining the
current position in the tree does not take up memory. Furthermore, we assume
that key value comparisons and moving across an edge of the tree require O(1)
time. Under these assumptions, the running times of the above algorithms are
in fact proportional to their travel cost. Throughout the paper, we will thus use
travel cost and running time interchangeably.

Motivation. The motivation to look at this problem comes from the branch-
and-bound algorithm. This is a well-known algorithm that can be used for solving
many types of problems. In particular, it is often used to solve integer linear
programs (ILP), which are of the form arg min{c�x : x ∈ Z

n, Ax ≤ b}. In
that setting, branch-and-bound works by first solving the linear programming
(LP) relaxation, which does not have integrality constraints. The value of the
solution to the relaxation forms a lower bound on the objective value of the
original problem. Moreover, if this solution only has integral components, it
is also optimal for the original problem. Otherwise, the algorithm chooses a
component xi for which the solution value x̂i is not integral. It then creates two
new subproblems, by either adding the constraint xi ≤ �x̂i� or xi ≥ �x̂i�. This
1 [13] did not name the problem, so we have given a descriptive name here.

A Nearly Optimal Randomized Algorithm 31

operation is called branching. The tree of subproblems, in which the children
of a problem are created by the branching operation, is called the branch-and-
bound tree. Because a subproblem contains more constraints than its parent, its
objective value is greater or equal to the one of its parent.

At the core, the algorithm consists of two important components: the branch-
ing rule and the node selection rule. The branching rule determines how to split
up a problem into subproblems, by choosing a variable to branch on. Substantial
research has been done on branching rules, see, e.g., [2,4,14,15].

The node selection rule decides which subproblem to solve next. Not much
theoretical research has been done on the choice of the node selection rule. Tra-
ditionally, the best-first strategy is thought to be optimal from a theoretical
perspective because this rule minimizes the number of nodes that need to be
visited. However, to efficiently implement this rule the solver needs space pro-
portional to the number of explored nodes, because all of them need to be kept in
memory. In contrast to this, a simple strategy like depth-first search only needs
to store the current solution. Unfortunately, performing a depth-first search can
lead to an arbitrarily bad running time. This was the original motivation for
introducing the explorable heap selection problem [13]. By guessing the number
N of branch-and-bound nodes whose LP values are at most that of the optimal
IP solution (which can be done via successive doubling), a search strategy for
this problem can be directly interpreted as a node selection rule. The algorithm
that they introduced can therefore be used to implement branch-and-bound effi-
ciently in only O

(√
log(N)

)
space.

In practice, computers are usually able to store all explored nodes of the
branch-and-bound tree in memory. However, many MIP-solvers still make use of
a hybrid method that consists of both depth-first and best-first searches. This is
not only done because depth-first search uses less memory, but also because it is
often faster. Experimental studies have confirmed that the depth-first strategy
is in many cases faster than best-first one [8]. This seems contradictory, because
the running time of best-first search is often thought to be theoretically optimal.

In part, this contradiction can be explained by the fact that actual IP-solvers
often employ complementary techniques and heuristics on top of branch-and-
bound, which might benefit from depth-first searches. Additionally, a best-first
search can hop between different parts of the tree, while a depth first search
subsequently explores nodes that are very close to each other. In the latter
case, the LP-solver can start from a very similar state, which is known as warm
starting. This is faster for a variety of technical reasons [1]. For example, this
can be the case when the LP-solver makes use of the LU-factorization of the
optimal basis matrix [16]. Through the use of dynamic algorithms, computing
this can be done faster if a factorization for a similar LP-basis is known [19].
Because of its large size, MIP-solvers will often not store the LU-factorization
for all nodes in the tree. This makes it beneficial to move between similar nodes
in the branch-and-bound tree. Furthermore, moving from one part of the tree
to another means that the solver needs to undo and redo many bound changes,
which also takes up time. Hence, the amount of distance traveled between nodes

32 S. Borst et al.

in the tree is a metric that influences the running time. This can also be observed
when running the academic MIP-solver SCIP [12].

The explorable heap selection problem captures these benefits of locality by
measuring the running time in terms of the amount of travel through the tree.
Therefore, we argue that this problem is still relevant for the choice of a node
selection rule, even if all nodes can be stored in memory.

Related Work. The explorable heap selection problem was first introduced in
[13]. Their result was later applied to prove an upper bound on the parallel
running time of branch-and-bound [18].

When random access to the heap is provided at constant cost, selecting the
nth value in the heap can be done by a deterministic algorithm in O(n) time by
using an additional O(n) memory for auxilliary data structures [11].

The explorable heap selection problem can be thought of as a search game
[3] and bears some similarity to the cow path problem. In the cow path problem,
an agent explores an unweighted unlabeled graph in search of a target node.
The location of the target node is unknown, but when the agent visits a node
they are told whether or not that node is the target. The performance of an
algorithm is judged by the ratio of the number of visited nodes to the distance
of the target from the agent’s starting point. In both the cow path problem and
the explorable heap selection problem, the cost of backtracking and retracing
paths is an important consideration. The cow path problem on infinite b-ary
trees was studied in [9] under the assumption that when present at a node the
agent can obtain an estimate on that node’s distance to the target.

Other explorable graph problems exist without a target, where typically the
graph itself is unknown at the outset. There is an extensive literature on explo-
ration both in graphs and in the plane. Models have been studied, in which one
tried to minimize either the distance traveled or the amount of used memory.
For more information we refer to [6,20] and the references therein.

Outline. In Sect. 2 we formally introduce the explorable heap selection problem
and any notation we will use. In Sect. 3 we introduce a new algorithm for solving
this problem and provide a running time analysis. In Sect. 4 we give a lower
bound on the complexity of solving explorable heap selection using a limited
amount of memory.

2 The Explorable Heap Selection Problem

In this section we introduce the formal model for the explorable heap selection
problem. The input to the algorithm is an infinite binary tree T = (V,E), where
each node v ∈ V has an associated real value, denoted by val(v) ∈ R. We assume
that all the values are distinct and that for each node in the tree, the values of
its children are larger than its own value. The binary tree T is thus a heap.

We want to find the nth smallest value in this tree. This may be seen as an
online graph exploration problem where an agent can move in the tree and learns
the value of a node each time he explores it. At each time step, the agent resides

A Nearly Optimal Randomized Algorithm 33

at a vertex v ∈ V and may decide to move to either the left child, the right child
or the parent of v (if it exists, i.e. if v is not the root of the tree). Each traversal
of an edge costs one unit of time, and the complexity of an algorithm for this
problem is thus measured by the total traveled distance in the binary tree. The
algorithm is also allowed to store values in memory.

For a node v ∈ V , also per abuse of notation written v ∈ T , we denote by
T (v) the subtree of T rooted at v. For a tree T and a value L ∈ R, we define the
subtree TL := {v ∈ T | val(v) ≤ L}. We denote the nth smallest value in T by
SELECTT (n). This is the quantity that we are interested in finding algorithmi-
cally. We say that a value V ∈ R is good for a tree T if V ≤ SELECTT (n) and
bad otherwise. Similarly, we call a node v ∈ T good if val(v) ≤ SELECTT (n) and
bad otherwise. We use [k] to refer to the set {1, . . . , k}. When we write log(n),
we assume the base of the logarithm to be 2.

We will often instruct the agent to move to an already discovered good vertex
v ∈ V . The way this is done algorithmically is by saving val(v) in memory and
starting a depth first search at the root, turning back every time a value strictly
bigger than val(v) is encountered until finally finding val(v). This takes at most
O(n) time, since we assume v to be a good node. If we instruct the agent to go
back to the root from a certain vertex v ∈ V , this is simply done by traveling
back in the tree, choosing to go to the parent of the current node at each step.

In later sections, we will often say that a subroutine takes a subtree T (v)

as input. This implicitly means that we in fact pass it val(v) as input, make
the agent travel to v ∈ T using the previously described procedure, call the
subroutine from that position in the tree, and travel back to the original position
at the end of the execution. Because the subroutine knows the value val(v) of
the root of T (v), it can ensure it never leaves the subtree T (v), thus making it
possible to recurse on a subtree as if it were a rooted tree by itself.

We will sometimes want to pick a value uniformly at random from a set
of values {V1, . . . ,Vk} of unknown size that arrives in a streaming fashion, for
instance when we traverse a part of the tree T by doing a depth first search.
That is, we see the value Vi at the ith time step, but do not longer have access to
it in memory once we move on to Vi+1. This can be done by generating random
values {X1, . . . , Xk} where, at the ith time step, Xi = Vi with probability 1/i,
and Xi = Xi−1 otherwise. It is easy to check that Xk is a uniformly distributed
sample from {V1, . . . ,Vk}.

3 A New Algorithm

The authors of [13] presented a deterministic algorithm that solves the explorable
heap selection problem in n ·exp(O(

√
log(n))) time and O(n

√
log(n)) space. By

replacing the binary search that is used in the algorithm by a randomized vari-
ant, they can decrease the space requirements. This way, they get a randomized
algorithm with expected running time n·exp(O(

√
log(n))) and space complexity

O(
√

log(n)). Alternatively, the binary search can be implemented in a determin-
istic way by [17] to get the same running time with O(log(n)2.5) space.

34 S. Borst et al.

We present a randomized algorithm with a running time O(n log(n)3) and
space complexity O(log(n)). Unlike the algorithms mentioned before, our algo-
rithm fundamentally relies on randomness to bound its running time. This bound
only holds when the algorithm is run on a tree with labels that are fixed before
the execution of the algorithm. That is, the tree must be generated by an adver-
sary that is oblivious to the choices made by the algorithm. This is a stronger
assumption than is needed for the algorithm that is given in [13], which also
works against adaptive adversaries. An adaptive adversary is able to defer the
decision of the node label to the time that the node is explored. Note that this
distinction does not really matter for the application of the algorithm as a node
selection rule in branch-and-bound, since there the node labels are fixed because
they are derived from the integer program.

Theorem 1. There exists a randomized algorithm that solves the explorable
heap selection problem, with expected running time O(n log(n)3) and O(log(n))
space.

The explorable heap selection problem can be seen as the problem of finding
all n good nodes. Both our method and that of [13] function by first identifying a
subtree consisting of only good nodes. The children of the leaves of this subtree
are called “roots” and the subtree is extended by finding a number of new good
nodes under these roots in multiple rounds.

In [13] this is done by running O(c
√

2 log(n)) different rounds, for some con-
stant c > 1. In each round, the algorithm finds n/c

√
2 log(n) new good nodes.

These nodes are found by recursively exploring each active root and using binary
search on the observed values to discover which of these values are good. Which
active roots are recursively explored further depends on which values are good.
The recursion in the algorithm is at most O(

√
log(n)) levels deep, which is where

the space complexity bound comes from.
In our algorithm, we take a different approach. We will call our algorithm

consecutively with n = 1, 2, 4, 8, Hence, for a call to the algorithm, we can
assume that we have already found at least n/2 good nodes. These nodes form
a subtree of the original tree T . In each round, our algorithm chooses a random
root under this subtree and finds every good node under it. It does so by doing
recursive subcalls to the main algorithm on this root with values n = 1, 2, 4, 8,
As soon as the recursively obtained node is a bad node, the algorithm stops
searching the subtree of this root, since it is guaranteed that all the good nodes
there have been found. The largest good value that is found can then be used
to find additional good nodes under the other roots without recursive calls,
through a simple depth-first search. Assuming that the node values were fixed
in advance, we expect this largest good value to be greater than half of the
other roots’ largest good values. Similarly, we expect its smallest bad value to
be smaller than half of the other roots’ smallest bad values. By this principle,
a sizeable fraction of the roots can, in expectation, be ruled out from getting a
recursive call. Each round a new random root is selected until all good nodes
have been found. This algorithm allows us to effectively perform binary search

A Nearly Optimal Randomized Algorithm 35

on the list of roots, ordered by the largest good value contained in each of their
subtrees in O(log n) rounds, and the same list ordered by the smallest bad values
(Lemma 2). Bounding the expected number of good nodes found using recursive
subcalls requires a subtle induction on two parameters (Lemma 1): both n and
the number of good nodes that have been identified so far.

3.1 The Algorithm

The Extend procedure is the core of our algorithm. It finds the nthsmallest value
in the tree, under the condition that the kth smallest value L0 is provided to the
algorithm for some k ≥ n/2. Using this procedure, SELECT(n) can be solved by
consecutively calling Extend(T , ni, ki, Li) with parameters (ni, ki) = (2i, 2i−1)
for i ∈ {1, . . . , �log(n)�}.

Algorithm 1. The Extend procedure
1: Input: T : tree which is to be explored.
2: n ∈ N: total number of good values to be found in the tree T , satisfying n ≥ 2.
3: k ∈ N: number of good values already found in the tree T , satisfying k ≥ n/2.
4: L0 ∈ R: value satisfying DFS(T, L0, n) = k.
5: Output: the nth smallest value in T .
6: procedure Extend(T , n, k, L0)
7: L ← L0, U ← ∞
8: while k < n do
9: r ← random element from Roots(T , L0, L, U)

10: L′ ← max(L, val(r))
11: k′ ← DFS(T , L′, n) // count the number of values ≤ L′ in T
12: c ← DFS(T (r), L′, n) // count the number of values ≤ L′ in T (r)

13: c′ ← min(n−k′+c, 2c) // increase the number of values to be found in T (r)

14: while k′ < n do // loop until it is certified that SELECTT (n) ≤ L′

15: L′ ← Extend(T (r), c′, c, L′)
16: k′ ← DFS(T , L′, n)
17: c ← c′

18: c′ ← min(n − k′ + c, 2c)
19: end while
20: L̃, Ũ ← GoodValues(T, T (r), L′, n) // find the good values in T (r)

21: L ← max(L, L̃), U ← min(U , Ũ)
22: k ← DFS(T , L, n) // compute the number of good values found in T
23: end while
24: return L
25: end procedure

Let us describe a few invariants from the Extend procedure.

– L and U are respectively lower and upper bounds on SELECTT (n) during the
whole execution of the procedure.

– The integer k counts the number of values ≤ L in the full tree T .
– After an iteration of the inner while loop, L′ is set to the cth smallest value in

T (r). The variable c′ then corresponds to the next value we would like to find

36 S. Borst et al.

in T (r) if we were to continue the search. Note that c′ ≤ 2c, enforcing that the
recursive call to Extend satisfies its precondition, and that c′ ≤ n − (k′ − c)
implies that (k′ − c) + c′ ≤ n, which implies that the recursive subcall will
not spend time searching for a value that is known in advance to be bad.

– k′ always counts the number of values ≤ L′ in the full tree T . It is important
to observe that this is a global parameter, and does not only count values
below the current root. Moreover, k′ ≥ n implies that we can stop searching
below the current root, since it is guaranteed that all good values in T (r) have
been found, i.e., L′ is larger than all the good values in T (r).

We now describe the subroutines used in the Extend procedure.

The Procedure DFS. The procedure DFS is a variant of depth first search.
The input to the procedure is T , a cutoff value L ∈ R and an integer n ∈ N. The
procedure returns the number of vertices in T whose value is at most L.

It achieves that by exploring the tree T in a depth first search manner,
starting at the root and turning back as soon as a node w ∈ T such that val(w) >
L is encountered. Moreover, if the number of nodes whose value is at most L
exceeds n during the search, the algorithm stops and returns n + 1.

The algorithm output is the following integer. whose value is at most L:

DFS(T,L, n) := min
{∣∣TL

∣∣, n + 1
}
.

Observe that the DFS procedure allows us to check whether a node w ∈ T is a
good node, i.e. whether val(w) ≤ SELECTT (n). Indeed, w is good if and only if
DFS(T, val(w), n) ≤ n.

This procedure visits only nodes in TL or its direct descendants and its
running time is thus O(n). The space complexity is O(1), since the only values
needed to be stored in memory are L, val(v), where v is the root of the tree T ,
and a counter for the number of good values found so far.

The Procedure Roots. The procedure Roots takes as input a tree T as well
as a lower bound L0 ∈ R on the value of SELECTT (n). We assume that the
main algorithm has already found all the nodes w ∈ T satisfying val(w) ≤ L0.
This means that the remaining values the main algorithm needs to find in T are
all lying in the subtrees of the following nodes, that we call the L0-roots of T
(Fig. 1):

R(T,L0) :=
{
r ∈ T \ TL0

∣∣ r is a child of a node in TL0

}

In words, these are all the vertices in T one level deeper in the tree than
TL0 . In addition to that, the procedure takes two other parameters L,U ∈ R

as input, which correspond to (another) lower and upper bound on the value
of SELECTT (n). These lower and upper bounds will be updated during the
execution of the main algorithm. A key observation is that these bounds can
allow us to remove certain roots in R(T,L0) from consideration, in the sense
that all the good values in that root’s subtree will be certified to have already
been found (Fig. 2):

Roots(T,L0,L,U) :=
{

r ∈ R(T,L0) | ∃w ∈ T (r) with val(w) ∈ (L,U)
}

A Nearly Optimal Randomized Algorithm 37

1713115

3 3.5 5.5 4.5

2 4

1

Fig. 1. An illustration of R(T, L0) with L0 = 4. The number above each vertex is its
value, the blue nodes are R(T, L0), whereas the subtree above is TL0 . (Color figure
online)

9.5 7.5 8.5 9 12 15 10 16 19 18

1713115 6.5 8 6 7

5.5 4.5

Fig. 2. An illustration of the Roots procedure with L0 = 4, L = 7 and U = 10. Only
two active roots remain, and are both colored in blue. The other roots are considered
killed since all the good values have been found in their subtrees. (Color figure online)

This subroutine can be implemented by running a depth first search starting at
the root of T and exploring TL with its direct descendants. Since L is known to
be good, the running time is bounded by O(|TL|) = O(n). In the main algorithm,
we will only need this procedure in order to select a root from Roots(T, L0,L,U)
uniformly at random, without having to store the whole list in memory. This can
then be achieved in O(1) space, since one then only needs to store val(v),L0,L
and U in memory, where v is the root of the tree T .

The Procedure GoodValues. The procedure GoodValues takes as input a
tree T , a subtree T (r), a value L′ ∈ R≥0 and an integer n ∈ N. The procedure
then analyzes the set S :=

{
val(w)

∣
∣ w ∈ T (r), val(w) ≤ L′} and outputs both

the largest good value and the smallest bad value in that set, that we respectively
call L and U . If no bad values exist in S, the algorithm sets U = ∞.

The procedure can be implemented using a randomized binary search on the
values in S, where the procedure DFS is used to check whether a value is good.
This makes the procedure have a running time of O(n log n).

The procedure only needs O(1) space, since the only values necessary to be
kept in memory are val(v) (where v is the root of the tree T), val(r), L, U and
L′, as well as the fact that every call to DFS also requires O(1) space.

38 S. Borst et al.

3.2 Proof of Correctness

Theorem 2. At the end of the execution of Algorithm 1, L is set to the nth

smallest value in T . Moreover, the algorithm is guaranteed to terminate.

Proof sketch. The variable L is always set to the first output of the pro-
cedure GoodValues, which is always the value of a good node, implying
L ≤ SELECTT (n). The other inequality follows since the outer while loop ends
when at least n good nodes have been found in T .

3.3 Running Time Analysis

The main challenge in analyzing the running time of the algorithm is dealing
with the cost of the recursive subcalls in the Extend procedure. For this we
rely on two important ideas.

Firstly, note that n is the index of the node value that we want to find, while
k is the index of the node value that is passed to the procedure. So, the procedure
needs to only find n − k new good nodes. Our runtime bound for the recursive
subcalls that are performed does not just depend on n, but also on n − k.

We will show that the amount of travel done in the non-recursive part of a
call of Extend with parameters n and k is bounded by O(n log(n)2). We will
charge this travel to the parent call that makes these recursive calls. Hence, a
parent call that does z recursive calls with parameters (n1, k1), . . . , (nz, kz) will
be charged a cost of

∑z
i=1 ni log(ni)2. In our analysis, we will show that this

sum can be upper bounded by (n − k) log(n)2. So, for every recursive call with
parameters n and k, a cost of at most (n − k) log(n)2 is incurred by the caller.

Now we just need to bound the sum over (n − k) log(n)2 for all calls with
parameters n and k that are done. We do this by first considering a single
algorithm call with parameters n and k that makes z recursive subcalls with
parameters (n1, k1), . . . , (nz, kz). For such a subcall, we would like to bound the
sum

∑z
i=1(ni−ki) log(ni)2 by (n−k) log(n)2. However, this bound does not hold

deterministically. Instead, we show that this bound does hold in expectation.
Now we know that every layer of recursion incurs an expected cost of at

most (n−k) log(n)2. Because the parameter n will decrease by at least a constant
factor in each layer of recursion, there can be at most O(log(n)) layers. An upper
bound of O((n − k) log(n)3) on the expected running time of the Extend then
follows for the recursive part.

Combining this with the upper bound of O(n log(n)2) on the non-recursive
part, we get a total running time of O(n log(n)2) + O((n − k) log(n)3) for the
Extend procedure, which then implies a running time of O(n log(n)3) for the
SELECT procedure.

Let us now prove these claims. We first show that the expectation of∑z
i=1(ni − ki) is bounded.

Lemma 1. Let z be the number of recursive calls that are done in the main loop
of Extend(T , n�, k�, L) with parameter k ≥ 1. For i ∈ [z], let ni and ki be the

A Nearly Optimal Randomized Algorithm 39

values of n and k that are given as parameters to the ith such subcall. Then:

E

[z∑

i=1

ni − ki

]
≤ n� − k�.

Proof. Assume we have m roots, whose order is fixed. For i ∈ [z], let ri ∈ [m] be
such that the ith recursive subcall is done on the root with index ri. For t ∈ [m],
let st =

∑z
i=1 1ri=t(ni − ki). From the algorithm we see that when ri = t, all

successive recursive calls will also be on root t, until all good nodes under this
root have been found. The updated values of L and U ensure this root is never
selected again after this, hence all iterations i with ri = t are consecutive. Now
let at, bt be variables that respectively denote the first and last indices i with
ri = t. When there is no iteration i with ri = t, then at = bt = ∞.

For two calls i and i+1 with ri = t = ri+1, observe that after call i already ni

good nodes under root t have been found. On line 15, c′ corresponds to ni and c
corresponds to ki, hence ki+1 = ni. Therefore, the definition of st is a telescoping
series and can be rewritten as st = nbt − kat

, when we define k∞ = n∞ = 0.
Let p = n� −k� and let W = {w1, . . . , wp} denote the p smallest values under

T that are larger than L0, in increasing order. Now each of these values in W will
be part of a subtree generated by one of the roots. For the j ∈ [p], let dj ∈ [m] be
such that value wj is part of the subtree of root dj . Let St = {j ∈ [p] : dj = t}.
We will now show that for each root rt, we have E[st] ≤ |St|. This will imply
that E [

∑z
i=1 ni − ki] =

∑m
t=1 E[st] ≤ ∑m

t=1 |St| = n� − k�.
First, consider a root t with t �= dp. On line 9, each iteration a random

root is chosen. In every iteration root dp will be among the active roots. So the
probability that this root is chosen before root t is at least a half. In that case,
after the iteration of root dp, L will be set to wp. Then DFS(T , L, n) returns
n, and the algorithm terminates. Since no subcalls are done on root t, si = 0.

If the algorithm does do subcalls i with ri = t, then consider iteration bt,
the last iteration i that has ri = t. Before this iteration, already kbt good nodes
under the root have been found by the algorithm. It can be seen in the algorithm
on lines 13 and 18 that nbt ≤ 2kbt . Hence st = nbt − kat

≤ nbt ≤ 2kbt ≤ 2|St|.
We therefore have E[st] ≤ 1

2 · 0 + 1
2 · 2|St| = |St|.

Now consider the root dp. If Sdp
= [p], then sp = nbdp

−kadp
≤ n�−k� = |Sdp

|,
because nbdp

≤ n� and kadp
≥ k�. If Sdp

� [p], then there exists a j with dj �= dp.
Thus, we can define j∗ = max{j ∈ [p] : dj �= dp}. With probability a half, root
dj∗ is considered before root dp. If this happens, L will be equal to wj∗ when root
dp is selected by the algorithm. In particular, this means that kadp

will be equal
to j∗. Recall the stated invariant that c′ ≤ n� −k� = p, and hence nbdp

= c′ ≤ p.
Now we can see that sdp

= nbdp
− kadp

≤ p − j∗.
If root dp is chosen before root dj∗ , then consider the last recursive call bdp

to Extend that we do on root dp. Define A = [k′ − k�] ∩ Sdp
, i.e. the set of all

good values under root dp that have been found so far. We distinguish two cases.
If k′ − k� ≥ j∗, i.e., when all good values under dj∗ have been found, then

by definition of j�, [p] \ [k′ − k�] ⊆ [p] \ [j�] ⊆ Sdp
. Because A and [p] \ [k′ − k�]

40 S. Borst et al.

are disjoint, we have |A| + (n� − k′) = |A| + |[p] \ [k′ − k�]| ≤ |Sdp
|. Hence, we

have c′ ≤ n� − k′ + c = n� − k′ + |A| ≤ |Sdp
|. Therefore, sdp

≤ nbdp
= c′ ≤ |Sdp

|.
If k′ − k� < j∗ at the time of subcall bdp

, then the last good value under
dj∗ has yet to be found, implying that A ⊆ [j∗]. From the definition of j� we
get [p] \ [j�] ⊆ Sdp

. Hence, |A| ≤ |Sdp
| − |[p] \ [j�]| = |Sdp

| − (p − j�). Thus
c′ ≤ 2c = 2|A| ≤ 2(|Sdp

| − (p − j∗)). So, in this case we have sdp
≤ nbdp

= c′ ≤
2(|Sdp

| − (p − j∗)).
Collecting the three cases above, we find that

E[sdp
] ≤ 1

2
· (p − j∗) +

1
2

· max
(|Sdp

|, 2(|Sdp
| − (p − j∗))

)

≤ max
(

1
2
|Sdp

| +
1
2
(p − j∗), |Sdp

| − 1
2
(p − j∗)

)
.

Lastly, by definition of j∗ we have [p] \ [j∗] ⊆ Sdp
, from which it follows that

p − j∗ ≤ |Sdp
|. We finish the proof by observing that this implies

max
(

1
2
|Sdp

| +
1
2
(p − j∗), |Sdp

| − 1
2
(p − j∗)

)
≤ |Sdp

|,

which finishes the proof.

Lemma 2. The expected number of times that the outermost while-loop (at line
8) is executed by the procedure Extend is at most O(log(n)).

Proof sketch. Let A�(L) := {rj : �j > L} and Au(U) := {rj : uj < U}. Observe
that Roots(T,L0,L,U) = A�(L) ∪ Au(U) for any L ≤ U . One can show that
in each iteration the size of either A�(L) or Au(U) halves in expectation. Hence,
in expectation at most O(log R) iterations are needed, where log R is the initial
number of roots. Since R ≤ n, the lemma follows.

By an elementary analysis of the algorithm and applying Lemma2 we can prove
the following lemma.

Lemma 3. The expected running time of the non-recursive part of every call to
Extend is O(n log(n)2).

Finally we are able to prove the running time bound.

Lemma 4. Let R(T, n, k) denote the running time of a call to Extend(T , n,
k, L0). Then there exists C > 0 such that

E[R(T, n, k)] ≤ 5C(n − k) log(n)3 + Cn log(n)2.

Proof. We will prove this with induction on r := �log(n)�. For r = 1, we have
n ≤ 2. In this case R is constant, proving our induction base.

Now consider a call Extend(T , n, k, L0) and assume the induction claim
is true when �log(n)� ≤ r − 1. By Lemma 3, we can choose C such that this
running time is bounded by C · n log(n).

A Nearly Optimal Randomized Algorithm 41

Now we move on to the recursive part of the algorithm. All calls to
Extend(T , n, k, L0) with k = 0 will have n = 1, so each of these calls takes
only O(1) time. Hence we can safely ignore these calls.

Let z be the number of recursive calls to Extend(T , n, k, L0) that are done
from the base call with k ≥ 1. Let Ti, ki, ni for i ∈ [z] be the arguments of these
function calls. Note that n/2 ≥ ni ≥ 2 for all i. By the induction hypothesis the
expectation of the recursive part of the running time is:

E

[
z∑

i=1

R(Ti, ni, ki)

]

≤ E

[
z∑

i=1

5C log(ni)(ni − ki) log(ni)2 + Cni log(ni)2
]

≤ 5C log(n/2) E

[
r∑

i=1

ni − ki

]

log(n)2 + C log(n)2
r∑

i=1

ni

≤ 5C(log(n) − 1)(n − k) log(n)2 + 5C log(n)2(n − k)

≤ 5C(n − k) log(n)3.

Here we used Lemma 1 as well as the fact that
∑r

i=1 ni ≤ 4(n − k). To see this,
consider an arbitrary root q with s good values under it. Now

∑z
i=1 1Ti=T (q)ni ≤

∑�log(s+1)	
i=2 2i ≤ 2�log(s+1)	+1 ≤ 4s. In total there are n − k good values under

the roots, and hence
∑z

i=1 ni ≤ 4(n − k).
Adding the expected running time of the recursive and the non-recursive

part, we see that

E[R(T, n, k)] ≤ 5C(n − k) log(n)3 + Cn log(n)2.

3.4 Space Complexity Analysis

We prove in this section the space complexity of our algorithm.

Theorem 3. The procedure Extend runs in O(log(n)) space.

Proof. Observe that the subroutines DFS, Roots and GoodValues all require
O(1) memory, as argued in their respective analyses. Hence the space com-
plexity of the non-recursive part of the Extend is O(1). Any recursive subcall
Extend(Ti, ni, ki, Li) resulting from a call to Extend(T , n, k, L), will have
ni ≤ n/2. Hence, the depth of recursion is at most O(log(n)), which implies that
the same is true for the space complexity.

4 Lower Bound

In general, no lower bound is known for the running time of the selection problem.
However, we will show that any algorithm with space complexity at most s, has
a running time of at least Ω(n logs(n)). The tree that is used for the lower bound
construction is very simple: a root with two trails of length O(n) attached to it.

We will make use of a variant of the communication complexity model. In
this model there are two agents A and B, that both have access to their own

42 S. Borst et al.

sets of values in SA and SB respectively. These sets are the input. We have
|SA| = n+1 and |SB | = n. Assume that all values SA and SB are different. Now
consider the problem where player A wants to compute the median of SA ∪ SB .

Because the players only have access to their own values, they need to com-
municate. They use a protocol, that can consist of multiple rounds. In every odd
round, player A can do computations and send units of information to player
B. In every even round, player B does computations and sends information
to player A. We assume that sending one value from SA or SB takes up one
unit of information. Furthermore, we assume that, except for comparisons, no
operations can be performed on the values.

We can reduce median computation to the explorable heap selection problem.

Lemma 5. If there is a algorithm that solves SELECT(3n) in f(n)n time and g
space, then there is a protocol for median computation that uses f(n)/2 rounds
in each of which at most g units of information are sent.

By showing a lower bound on the number of necessary rounds for median com-
putation we can now prove the lower bound.

Theorem 4. The time complexity of any randomized algorithm for SELECT(n)
with at most g units of storage is Ω(n logg+1(n)).

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, TU Berlin (2009)
2. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett.

33(1), 42–54 (2005). https://doi.org/10.1016/j.orl.2004.04.002
3. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, vol. 55. Springer,

New York (2006). https://doi.org/10.1007/b100809
4. Balcan, M.F., Dick, T., Sandholm, T., Vitercik, E.: Learning to branch. In: ICML

(2018)
5. Banerjee, S., Cohen-Addad, V., Gupta, A., Li, Z.: Graph searching with predic-

tions, December 2022
6. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.)

Online Algorithms. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0029571

7. Borst, S., Dadush, D., Huiberts, S., Kashaev, D.: A nearly optimal randomized
algorithm for explorable heap selection, October 2022. https://doi.org/10.48550/
arXiv.2210.05982

8. Clausen, J., Perregaard, M.: On the best search strategy in parallel branch-and-
bound: best-first search versus lazy depth-first search. Ann. Oper. Res. 90, 1–17
(1999)

9. Dasgupta, P., Chakrabarti, P.P., DeSarkar, S.C.: A near optimal algorithm for
the extended cow-path problem in the presence of relative errors. In: Thiagarajan,
P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 22–36. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60692-0 38

10. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. J. Algorithms 51(1), 38–63 (2004). https://doi.org/10.1016/j.jalgor.2003.10.
002

https://doi.org/10.1016/j.orl.2004.04.002
https://doi.org/10.1007/b100809
https://doi.org/10.1007/BFb0029571
https://doi.org/10.48550/arXiv.2210.05982
https://doi.org/10.48550/arXiv.2210.05982
https://doi.org/10.1007/3-540-60692-0_38
https://doi.org/10.1016/j.jalgor.2003.10.002
https://doi.org/10.1016/j.jalgor.2003.10.002

A Nearly Optimal Randomized Algorithm 43

11. Frederickson, G.: An optimal algorithm for selection in a min-heap. Inf. Comput.
104(2), 197–214 (1993). https://doi.org/10.1006/inco.1993.1030

12. Gleixner, A.M.: Personal communication, November 2022
13. Karp, R.M., Saks, M.E., Wigderson, A.: On a search problem related to branch-

and-bound procedures. In: FOCS, pp. 19–28 (1986)
14. Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies

for mixed integer programming. INFORMS J. Comput. 11(2), 173–187 (1999).
https://doi.org/10.1287/ijoc.11.2.173

15. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236
(2017). https://doi.org/10.1007/s11750-017-0451-6

16. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound
algorithms: a survey of recent advances in searching, branching, and pruning. Dis-
cret. Optim. 19, 79–102 (2016). https://doi.org/10.1016/j.disopt.2016.01.005

17. Munro, J., Paterson, M.: Selection and sorting with limited storage. Theoret. Com-
put. Sci. 12(3), 315–323 (1980). https://doi.org/10.1016/0304-3975(80)90061-4

18. Pietracaprina, A., Pucci, G., Silvestri, F., Vandin, F.: Space-efficient parallel algo-
rithms for combinatorial search problems. J. Parallel Distrib. Comput. 76, 58–65
(2015)

19. Suhl, L.M., Suhl, U.H.: A fast LU update for linear programming. Ann. Oper. Res.
43(1), 33–47 (1993). https://doi.org/10.1007/BF02025534

20. Kamphans, T.: Models and algorithms for online exploration and search. Ph.D. the-
sis, Rheinische Friedrich-Wilhelms-Universität Bonn (2006). https://hdl.handle.
net/20.500.11811/2622

https://doi.org/10.1006/inco.1993.1030
https://doi.org/10.1287/ijoc.11.2.173
https://doi.org/10.1007/s11750-017-0451-6
https://doi.org/10.1016/j.disopt.2016.01.005
https://doi.org/10.1016/0304-3975(80)90061-4
https://doi.org/10.1007/BF02025534
https://hdl.handle.net/20.500.11811/2622
https://hdl.handle.net/20.500.11811/2622

Sparse Approximation over the Cube

Sabrina Bruckmeier1(B) , Christoph Hunkenschröder2 ,
and Robert Weismantel1

1 ETH Zürich, Zürich, Switzerland
{sabrina.bruckmeier,robert.weismantel}@ifor.math.ethz.ch

2 TU Berlin, Berlin, Germany
hunkenschroeder@tu-berlin.de

Abstract. This paper presents an analysis of the NP-hard minimization
problem min{‖b − Ax‖2 : x ∈ [0, 1]n, |supp(x)| ≤ σ}, where supp(x) :=
{i ∈ [n] : xi �= 0} and σ is a positive integer. The object of investigation
is a natural relaxation where we replace |supp(x)| ≤ σ by

∑
i xi ≤ σ. Our

analysis includes a probabilistic view on when the relaxation is exact. We
also consider the problem from a deterministic point of view and provide
a bound on the distance between the images of optimal solutions of the
original problem and its relaxation under A. This leads to an algorithm
for generic matrices A ∈ Zm×n and achieves a polynomial running time
provided that m and ‖A‖∞ are fixed.

Keywords: Sparse Approximation · Subset Selection · Signal
Recovery

1 Introduction and Literature Review

Due to the recent development of machine learning, data science and signal pro-
cessing, more and more data is generated, but only a part of it might be necessary
in order to already make predictions in a sufficiently good manner. Therefore,
the question arises to best approximate a signal b by linear combinations of no
more than σ vectors Ai from a suitable dictionary A =

(
A1, . . . , An

) ∈ Rm×n:

min ‖Ax − b‖2 subject to ‖x‖0 ≤ σ, (1)

where ‖x‖0 := |{i ∈ [n] : xi �= 0}|. Additionally, many areas of application
– as for example portfolio selection theory, sparse linear discriminant analysis,
general linear complementarity problems or pattern recognition – require the
solution x to satisfy certain polyhedral constraints. For instance motivated by
computer tomography, lower and upper bounds on the variables are considered
in [31]. While there exists a large variety of ideas how to tackle this problem,
the majority of them relies on the matrix A satisfying conditions such as being
sampled in a specific way or being close to behaving like an orthogonal system,
that might be hard to verify. Additionally, these algorithms commonly yield
results only with a certain probability or within an approximation factor that
again highly depends on the properties of A. A discussion of these ideas and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 44–57, 2023.
https://doi.org/10.1007/978-3-031-32726-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_4&domain=pdf
http://orcid.org/0000-0001-5673-3383
http://orcid.org/0000-0001-5580-3677
https://doi.org/10.1007/978-3-031-32726-1_4

Sparse Approximation Over the Cube 45

different names and variants of this problem is postponed to the end of the
introduction. In this work, we develop an exact algorithm that, without these
limitations on A, solves the Sparse Approximation problem in [0, 1]-variables,

min
x

‖Ax − b‖2 subject to x ∈ [0, 1]n and ‖x‖0 ≤ σ. (P0)

Theorem 1. Given A ∈ Zm×n, b ∈ Zm and σ ∈ Z≥1, we can find an opti-
mal solution x to Problem (P0) in (m‖A‖∞)O(m2) · poly(n, ln(‖b‖1)) arithmetic
operations.

Relaxing the pseudonorm ‖ · ‖0 by ‖ · ‖1 is a commonly used technique in the
literature. In contrast to previous results we are able to bound the distance
between the images of these solutions under A without any further assumptions
on the input data and therefore derive a proximity result that – to the best of
our knowledge – has not been known before.

Theorem 2. Let x̂ be an optimal solution to the following relaxation of (P0):

min
x

‖Ax − b‖2 subject to x ∈ [0, 1]n and ‖x‖1 ≤ σ.

Every optimal solution x� of (P0) satisfies

‖Ax� − Ax̂‖2 ≤ 2‖x̂ − �x̂�‖1 max
i=1,...,n

‖Ai‖2 ≤ 2m3/2‖A‖∞,

where �x̂� denotes the vector x̂ rounded down component-wise.

We also illuminate our approach from a probabilistic point of view. Specifically,
the hard instances are those where b is relatively close to the boundary of the
polytope Q := {Ax : x ∈ [0, 1]n, ‖x‖1 ≤ σ}. Conversely, if b is deep inside
Q or far outside of Q, then with high probability, an optimal solution to the
relaxation solves the initial problem (P0).

The paper is organized as follows. We conclude the introduction by providing
an overview on related literature. Section 2 discusses preliminaries. The proba-
bilistic analysis of a target vector b is carried out in Sect. 3. We then discuss
a worst-case proximity bound between optimal solutions of (P0) and a natural
relaxation in Sect. 4. This will allow us to formalize a deterministic algorithm in
Sect. 5.

In the literature, Problem (1) can be found under various modifications and
names, see e.g. [4,5,8,27]. A common variant in the context of random measure-
ments is often called Sparse Recovery, cf. [20], or Subset Selection for (linear)
regression, cf. [10], while the name (Best) Subset Selection is generally used with-
out further interpretation cf. [8,11,34], in contrast to Signal Recovery or Signal
Reconstruction as in [3]. If the vector b can be represented exactly, the problem
is called Exact Sparse Approximation or Atomic Decomposition, cf. [7,21,32,35].
Since the differences are marginal and the names in the literature not well-
defined, we restrain ourselves to the name Sparse Approximation for simplicity.

46 S. Bruckmeier et al.

In general, there are two common strategies used to tackle Sparse Approxima-
tion: Greedy algorithms and algorithms based on relaxations. A detailed dis-
cussion of those is beyond the scope of this paper. Let us rather put these
approaches into context below. The algorithms either recover the optimal sup-
port only under certain conditions (compare [1,8,9,32]), recover it with high
probability (see for example [13,34]) or approximate the solution (for instance
[10,14,21]). Unfortunately, because of their high computational cost most com-
mon greedy algorithms are not sufficient for large systems, though experiments
suggest that there still exist applicable greedy approaches, such as the Dropping
Forward-Backward Scheme, introduced by Nguyen [26]. While the idea of relax-
ing the pseudonorm ‖·‖0 by the norm ‖·‖1, as done for example in Basis Pursuit
by Chen, Donoho and Saunders [7], might seem intuitive, for a long time the suc-
cess of this method was not quite understood. This changed as Candes, Romberg
and Tao [4,6] discovered and improved the Uniform Uncertainty Principle. For
the usually problematic case of having not enough data points, the Dantzig Selec-
tor presented by Candes and Tao [5] yields a sophisticated estimator with high
probability. Similarly, LASSO based methods, see for instance [27], either recover
the support with high probability exactly under certain conditions, or fail with
high probability if the conditions are not met, cf. [33]. Finally, Garmanik and
Zadik [17] revealed interesting structural results, that explain the above men-
tioned all-or-nothing behavior. There also exists a series of papers in a similar
line of thought that relaxes ‖ · ‖0 by smooth, non-decreasing, concave functions,
see [12,15,16,19,22,24,29,30]. It can be shown that these relaxations converge
towards the optimal solution of (P0). Qian et al. [28] and Çivril [35] proved that,
unless P = NP , for a general matrix A Pareto Optimization and the two greedy
algorithms, Forward Selection and Orthogonal Matching Pursuit, are almost the
best we can hope for. This motivated a search for more efficiently solvable classes
of A, cf. [3,11,18,20]. Finally, it should be mentioned that there exists a variety
of Branch-and-Bound algorithms whose success though is in general only tested
experimentally, see [2,23].

2 Preliminaries

Let A ∈ Zm×n and b ∈ Zm. Moreover, let supp(x) denote the support of x, i.e.
supp(x) := {i ∈ [n] : xi �= 0} and set ‖x‖0 := |supp(x)|. For the rest of the
paper, x� denotes an optimal solution for (P0) for a given integer σ ∈ Z≥1. A
natural convex relaxation of (P0) is given by

min
x

‖Ax − b‖2 subject to x ∈ [0, 1]n and ‖x‖1 ≤ σ. (P1)

An optimal solution to (P1) will be denoted by x̂ throughout the paper. When
m = 1, there exists an optimal solution x̂ for (P1) that has at most one fractional
variable (see Lemma 4). This solution is also feasible for (P0), and hence optimal.
The idea of our approach is to establish a proximity result for Ax̂ and Ax�

respectively, that we can exploit algorithmically. This proximity bound depends
on m which comes as no surprise, given that the problem is NP-hard even for

Sparse Approximation Over the Cube 47

fixed values of m. The latter statement can be verified by reducing the NP-hard
partition problem to an instance of (P0).

Theorem 3. The problem (P0) is NP-hard, even if m = 2.

A simple but important ingredient of our proximity theorem is the following fact
that can be derived from elementary linear programming theory.

Lemma 4 (Few fractional entries).

1. Let x be a feasible point for (P0). There exists a solution x′ such that Ax = Ax′

with at most m fractional entries.
2. Let x be a feasible point for (P1). There exists a solution x′ such that Ax = Ax′

with at most m fractional entries.

Proof. 1. Let x be a solution of (P0) and denote S = supp(x). Let AS denote
the submatrix of A comprising the columns with indices in S. The set

PS(x) := {y ∈ R|S| : Ax = ASy, 0 ≤ y ≤ 1}
is a polytope. It is non-empty since x ∈ P , hence it has at least one vertex v.
By standard LP theory, at least |S| − m inequalities of the form 0 ≤ y ≤ 1
are tight at v. It follows that v has at most m fractional entries. The vertex
v can easily be extended to a solution x′ of (P0) by adding zero-entries.

2. Given the solution x to (P1), consider the optimization problem

min{
n∑

i=1

yi : y ∈ P{1,...,n}(x)}.

Let v be an optimal vertex solution. From Part 1. v has at most m fractional
entries. Since x is feasible for the above problem,

∑n
i=1 vi ≤ ∑n

i=1 xi ≤ σ.
�	

3 The �1-Relaxation for Random Targets b

In order to shed some light on Problem (P0) and its natural convex relax-
ation (P1) we first provide a probabilistic analysis to what extend optimal solu-
tions of (P1) already solve (P0). Let Q := {Ax ∈ Rm : x ∈ [0, 1]n, ‖x‖1 ≤ σ} be
the set of all points we can represent with the �1-relaxation. This section deals
with the question which vectors b are “easy” target vectors. It turns out that if b
is “deep” inside Q or far outside of Q, then the corresponding instances of (P0)
are easy with very high probability. In fact, there almost always exist optimal
solutions of (P1) that are already feasible for (P0) and hence optimal. Conversely,
if b is close to the boundary of Q, then the probability that an optimal solution
of (P1) solves (P0) is almost 0.

Theorem 5. Let A ∈ Rm×n and σ ≥ m be an integer. If b ∈ σ−m+1
σ Q, then

there exists x� ∈ [0, 1]n with ‖x�‖0 ≤ σ and Ax� = b.

48 S. Bruckmeier et al.

Proof. If b ∈ σ−m+1
σ Q, there exists a vector x̂ ∈ [0, σ−m+1

σ]n such that b = Ax̂
and ‖x̂‖1 ≤ σ−m+1. Let v be a vertex of {x ∈ [0, 1]n : Ax = b, ‖x‖1 ≤ σ−m+1},
which contains x̂. According to the constraint ‖x‖1 ≤ σ − m + 1, v has at most
σ − m + 1 integral non-zero entries. By Lemma 4, v has at most m fractional
entries. However, if there are fractional entries present, we can only have σ − m
integral entries, thus, ‖v‖0 ≤ σ. �	

Intuitively, the following theorem states that if b is sampled far away from Q,
then (P1) provides a solution to (P0) as well. Here B := {x ∈ Rm : ‖x‖2 ≤ 1}
denotes the Euclidean unit ball.

Theorem 6. Let A ∈ Rm×n, λ ≥ 0 and σ ≥ 1 be an integer. If b is sampled
uniformly at random from the convex set Q + λB, then with probability at least

(
λ

λ + σ
√

m‖A‖∞

)m

there exists x ∈ {0, 1}n that is optimal for (P1) and (P0).

Proof. Define P := {x ∈ [0, 1]n : ‖x‖1 ≤ σ}, hence we have Q = {Ax : x ∈ P}.
Observe that all vertices of P are in {0, 1}n, and as a consequence any vertex v
of Q can be written as

v = Ax with x a vertex in P that is integral. (2)

Hence, whenever an optimal solution to min{‖b − x‖2 : x ∈ Q} is attained by
a vertex of Q, the problem (P1) has an optimal integral vertex solution v. Since
an integral solution to (P1) is also feasible for (P0), the vector v is also optimal
for (P0).

Let V be the vertex set of Q. For v ∈ V , denote the normal cone of v by

Cv := {c ∈ Rm : cᵀ(w − v) ≤ 0 ∀w ∈ Q}.

Fix a vertex v and assume b ∈ v+Cv. We next show that v is an optimal solution
to min{‖b − x‖22 : x ∈ Q}. Since b = v + c with cᵀ(v − w) ≥ 0 for all w ∈ Q, we
obtain

‖b − w‖22 = ‖v − w + c‖22 = ‖v − w‖22 + ‖c‖22 + 2cᵀ(v − w) ≥ ‖c‖22 = ‖b − v‖22,
showing that v is optimal. By Eq. (2) there exists an integral x ∈ P such that
v = Ax and hence x is optimal for (P0). It remains to calculate the probability
that b ∈ v + Cv for some vertex v of Q. We obtain

vol

(
⋃

v∈V

(v + Cv) ∩ (Q + λB)

)

= vol

(
⋃

v∈V

Cv ∩ λB

)

= vol

((
⋃

v∈V

Cv

)

∩ λB

)

= vol(λB) = λm vol(B).

Sparse Approximation Over the Cube 49

In the second to last equality we used that the normal cones Cv tile the space
Rm.

Let μ > 0 be a constant s.t. Q ⊆ μB, e.g. μ = σ
√

m‖A‖∞. We have the
containment Q + λB ⊆ μB + λB = (μ + λ)B that allows us to estimate vol(Q +
λB) ≤ (λ + μ)m vol(B). The probability that b is sampled in one of the normal
cones is therefore

vol(λB)
vol(Q + λB)

≥ λm

(λ + μ)m
≥

(
λ

λ + σ
√

m‖A‖∞

)m

.

�	
Let us briefly comment on the probability quantity ρ := (λ/(λ+σ

√
m‖A‖∞))m.

If we choose λ = 2m3/2σ‖A‖∞ in Theorem 6, then ρ ≥ 1/2, as one can verify
with Bernoulli’s inequality. Figure 1 depicts the geometry underlying the proof of
Theorem 6. The vector b1 is sampled from the dotted area and hence, an optimal
solution of (P1) may use 2 fractional entries, and thus have support σ + 1. On
the other hand, the vector b2 is sampled from the dashed area, which leads to
the solution of (P1) corresponding to a vertex of Q. In the second case (P1) has
an integral solution, which automatically solves (P0).

Fig. 1. The sampling of the vector b from Q + λB

4 Proximity Between Optimal Solutions of (P0) and (P1)

In this section we illuminate the Problems (P0) and (P1) from a deterministic
point of view and develop worst-case bounds for the distance of the images of
corresponding optimal solutions under A. Our point of departure is an optimal
solution x̂ of (P1). The target is to show that there exists an optimal solution
x� of (P0) satisfying ‖A(x̂ − x�)‖2 ≤ 2m3/2‖A‖∞. Our strategy is to define a
hyperplane containing Ax̂ in the space of target vectors b that separates b from

50 S. Bruckmeier et al.

all vectors Ax with x feasible for (P0). The next step is to show that if we perturb
x̂ along the fractional variables, we will remain in this hyperplane. This has the
side-effect that we can find a feasible solution for (P0) whose image is in the
vicinity of Ax̂. The triangle inequality and basic geometry then come into play
to establish the claimed bound.

We introduce the hyperplane tangent to the ball B(b, ‖b − Ax̂‖2) in Ax̂,

H := {y ∈ Rm : (b − Ax̂)ᵀy = (b − Ax̂)ᵀAx̂}.

Lemma 7. We have (b − Ax̂)ᵀ(Ax − Ax̂) ≤ 0 for any point x feasible for (P1).

Proof. Assume that there exists a point x feasible for (P1) for which the
inequality (b − Ax̂)ᵀ(Ax − Ax̂) > 0 holds. As a convex combination the point
p := A(x̂ + ε(x − x̂)) is feasible for (P1) for each ε ∈ [0, 1], and we can estimate
the objective value as

‖b − p‖22 = ‖b − Ax̂‖22 + ε2‖A(x − x̂)‖22 − 2ε(b − Ax̂)ᵀ(Ax − Ax̂) < ‖b − Ax̂‖22
for ε small enough. This contradicts the optimality of x̂. We illustrate the argu-
ment geometrically in Fig. 2. �	

b
Ax̂

H
Ax

p

Fig. 2. If H does not separate b from Ax, there is a point p closer to b than Ax̂.

An important property is that H contains many points that we can easily
generate from x̂. This is made precise below. (Recall that Ai denotes the i-th
column of A).

Lemma 8. Define F := {i ∈ [n] : x̂i /∈ Z} where x̂ is an optimal solution
to (P1). We have

Ax̂ +

{
∑

i∈F
λiAi :

∑

i∈F
λi = 0

}

⊆ H.

Sparse Approximation Over the Cube 51

Proof. Let v := b − Ax̂ ∈ Rm be the normal vector of H and let

y =
∑

i∈F
λiei for some λi ∈ R with

∑

i∈F
λi = 0.

Since x̂i ∈ (0, 1) for all i ∈ F , there exists ε > 0 such that both points x̂ + εy
and x̂ − εy are feasible for (P1). By Lemma 7, we must have vᵀA(x̂ + εy − x̂) =
vᵀAεy ≤ 0 and −vᵀAεy ≤ 0, resulting in vᵀAy = 0. Thus, A(x̂ + y) ∈ H. �	
With these results we are now able to show a proximity result (Theorem 2)
between Ax̂ and Ax�. Here, �x̂� denotes the vector x̂ rounded down component-
wise.

Proof (Theorem 2). Given an optimal solution x̂ of (P1), let F = {i ∈ [n] :
x̂i ∈ (0, 1)}. Without loss of generality, we may assume that |F| ≤ m and
F = {1, 2, . . . , |F|}. Let k :=

∑
i∈F x̂i, and construct a feasible solution y for (P0)

from x̂ as follows:

yi :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, 1 ≤ i ≤ �k�
k − �k�, i = �k�
0, �k� + 1 ≤ i ≤ |F|
x̂i, i /∈ F .

The point y satisfies 0 ≤ yi ≤ 1 for all i ∈ [n] and ‖y‖0 = �‖x̂‖1� ≤ σ. Since
∑

i∈F
yi =

∑

i∈F
x̂i, (3)

Lemma 8 implies that Ay ∈ H and hence

‖b − Ay‖22 = ‖b − Ax̂‖22 + ‖Ax̂ − Ay‖22.
Assume ‖Ax� −Ax̂‖2 > ‖Ay−Ax̂‖2 holds for some optimal solution x� for (P0).
Since y is feasible for (P0), we also know ‖b − Ay‖2 ≥ ‖b − Ax�‖2. We are now
prepared to estimate (using Lemma 7 in the third line)

‖b − Ax�‖22 = ‖b − Ax̂ + Ax̂ − Ax�‖22
= ‖b − Ax̂‖22 + ‖Ax̂ − Ax�‖22 + 2(b − Ax̂)ᵀ(Ax̂ − Ax�)

≥ ‖b − Ax̂‖22 + ‖Ax̂ − Ax�‖22
> ‖b − Ax̂‖22 + ‖Ax̂ − Ay‖22
= ‖b − Ay‖22,

showing that x� is not optimal. The proof is finished by observing that Eq. (3)
also implies ‖x̂ − y‖1 ≤ 2‖x̂ − �x̂�‖1, and consequently

‖Ay − Ax̂‖2 ≤ 2‖x̂ − �x̂�‖1 max
i=1,...,n

‖Ai‖2 ≤ 2m3/2‖A‖∞.

�	

52 S. Bruckmeier et al.

5 A Deterministic Algorithm

The results presented so far give rise to a conceptually simple algorithm. Com-
pute an optimal solution x̂ to (P1). According to the proximity Theorem2, we
can limit our search for an optimal right-hand side vector b� = Ax� in the
vicinity of Ax̂. Since b� might be fractional, we cannot enumerate all possible
right-hand sides. Instead, we refine our approach by decomposing x� = z� + f�

into its integral part z� and its fractional part f�. We first guess the support F
of the fractional entries, which satisfies |F| ≤ m by Lemma 4. For the remaining
variables, we next establish a candidate set Z� comprising the potential vectors
z� in the decomposition of x�. It will be essential to determine a bound on |Z�|.
This is where the proximity theorem comes into play. We now enumerate the
elements of Z� and extend each of them by a vector f� whose support is in the
index set F that we guessed upfront. A composition of these two solutions will
provide x�.

This section is devoted to analyze this conceptually simple algorithm and
this way shed some light on some of the details required.

Before we describe the decomposition x� = z� +f� in more detail, we discuss
the standard obstacle in convex optimization that x̂ can only be approximated.
To be more precise, we call a solution x̄ to (P1) ε-close, if

‖b − Ax̄‖22 − ‖b − Ax̂‖22 ≤ ε2. (4)

We obtain a canonical corollary from the proximity Theorem2.

Corollary 9. Let x̄ be an ε-close solution of (P1).

1. Every optimal solution x� of (P0) satisfies

‖Ax� − Ax̄‖∞ ≤ 2m3/2‖A‖∞ + ε.

2. The integral part z� of x� satisfies

‖Az� − Ax̄‖∞ ≤ 3m3/2‖A‖∞ + ε.

Proof. We start by estimating the distance from Ax̄ to Ax̂ for an optimal solution
x̂ of (P1). We have

‖b − Ax̄‖22 = ‖b − Ax̂ + Ax̂ − Ax̄‖22
= ‖b − Ax̂‖22 + ‖Ax̂ − Ax̄‖22 + 2(b − Ax̂)ᵀ(Ax̂ − Ax̄),

where the last term is non-negative by Lemma 7. Rearranging terms, we obtain

‖Ax̂ − Ax̄‖22 = ‖b − Ax̄‖22 − ‖b − Ax̂‖22 − 2(b − Ax̂)ᵀ(Ax̂ − Ax̄) ≤ ε2.

Applying the triangle inequality and combining the above estimate with Theo-
rem 2, we have

‖Ax� − Ax̄‖∞ ≤ ‖Ax� − Ax̄‖2 ≤ ‖Ax� − Ax̂‖2 + ‖Ax̂ − Ax̄‖2
≤ 2m3/2‖A‖∞ + ε.

Sparse Approximation Over the Cube 53

For Part 2, recall that x� − z� = f� with ‖f�‖0 ≤ m, implying the inequality
‖A(x� − z�)‖∞ ≤ m‖A‖∞. We obtain

‖Az� − Ax̄‖∞ = ‖Az� − Ax� + Ax� − Ax̄‖∞
≤ ‖A(z� − x�)‖∞ + ‖Ax� − Ax̄‖∞

≤ m‖A‖∞ + 2m3/2‖A‖∞ + ε ≤ 3m3/2‖A‖∞ + ε.

�	
We next outline the decomposition x� = z� + f�. As a first step, we guess

the support of a minimal index set of fractional entries.

Lemma 10. There are (2‖A‖∞+1)m2
potentially different index sets supp(f�).

Proof. We notice that a minimal index set of fractional entries uses distinct
columns from the matrix A. There are at most (2‖A‖∞ + 1)m distinct columns
of A. Since the cardinality of a minimal index set of fractional entries is bounded
by m, there are at most ((2‖A‖∞ +1)m)m = (2‖A‖∞ +1)m2

potentially different
index sets. �	
A canonical approach would be to search for the vector f�. Then we run into
the problem that our objective is nonlinear, and hence f� depends on z�. This
requires us to first search for an optimal z� and then use continuous optimization
techniques to compute f�. In order to avoid to determine a minimal index set
of fractional entries, we also allow entries with index in F to be integral. Then
we need to guess only sets F ⊆ [n] with |F| = m.

We denote by A\f� the matrix A without the columns with index in supp(f�).
The next theorem shows that we can compute a small set Z� of possible vectors
for z�.

Theorem 11. Let x̄ be an ε-close solution to (P1). If supp(f�) is fixed, we can
compute a set Z� ⊆ {0, 1}n of candidate vectors such that x� = z� + f� with
z� ∈ Z�. This requires us to solve at most (6m3/2‖A‖∞ +2ε+1)m linear integer
programming problems.

Proof. We have Az� ∈ Ax̄ + [−Dε,Dε]m ∩ Zm, where Dε = 3m3/2‖A‖∞ + ε by
Corollary 9. For every b� ∈ Ax̄+[−Dε,Dε]m ∩Zm we solve the integer feasibility
problem

A\f�y = b�,
n−m∑

i=1

yi ≤ σ − m, y ∈ {0, 1}n−m.

If it has a feasible solution y, we can insert zero entries according to supp(f�)
and obtain a vector z ∈ {0, 1}n that qualifies as the vector z�. The set Z� is the
set of all extended vectors z. �	
It remains to compose each z� ∈ Z� with a vector f�. This is accomplished by
solving a series of least-square problems. The reason why we proceed in this way
is that it allows us to compute the exact vector f� as opposed to an ε-close
solution.

54 S. Bruckmeier et al.

Lemma 12 (Extension lemma). For each z ∈ Z� an optimal solution f to
min{‖b − Az − Af‖2 : supp(f) ⊆ supp(f�), 0 ≤ f ≤ 1} can be computed in
O(3mm3) arithmetic operations.

Proof. As fi = 0 for i /∈ supp(f�), we can restrict to the matrix Af� ∈ Zm×m

and solve the equivalent problem min{‖b′−Af�g‖2 : g ∈ [0, 1]m} for b′ := b−Az.
Without the variable bounds this is a least-square problem that can be solved in
O(m3) arithmetic operations. Let g� be an optimal solution. We guess the sets
S0 := {i : g�

i = 0} and S1 := {i : g�
i = 1}, and afterwards solve the modified

least-square problem min{‖b − Af�g‖2 : gi = 0 ∀i ∈ S0, gi = 1 ∀i ∈ S1}. If the
solution g is in [0, 1]n, its extension f ∈ [0, 1]n qualifies as f�. In the end, we
pick the best among all feasible extensions. As there are 3m guesses, this finishes
the proof. �	
This completes the presentation of the main steps to prove Theorem 1. In fact, in
order to obtain an optimal solution to (P0) one proceeds as follows. We first guess
the set supp(f�), determine the set Z� and compute for every z� ∈ Z� an optimal
vector f�. The best of all those solutions solves (P0). As a last technicality, we
have to show how to find an ε-close solution x̄ for which we fall back on [25,
Chap. 8].

Lemma 13 ([25, Chap. 8]). We can find a
√

m‖A‖∞-close solution for (P1)
in O (

n7/2 ln
(
n2σ‖b‖1

))
arithmetic operations.

Proof. We apply the results presented in [25, Chap. 8] that depend on several
parameters. Let P := {x ∈ [0, 1]n : ‖x‖1 ≤ σ} denote the feasible region of (P1)
and x̂ an optimal solution. We first need to estimate

D := max{‖b − Ay‖22 − ‖b − Ax̂‖22 : y ∈ P}.

For any y ∈ P we can estimate

‖b − Ay‖22 − ‖b − Ax̂‖22 = ‖Ay‖22 − ‖Ax̂‖22 + 2bᵀA(x̂ − y)

≤ σ2 m‖A‖2∞ + 4‖b‖1σ‖A‖∞
≤ 4σ2 m‖A‖2∞(‖b‖1 + 1),

resulting in D ≤ 4σ2m‖A‖2∞(‖b‖1 + 1). As the initial point in the interior of P
that is required in [25, Chap. 8] we choose w := σ

n+σ · 1 where 1 denotes the
all-ones vector. Next we estimate the asymmetry coefficient

α(P : w) := max{t : w + t(w − P) ⊆ P}.

Since [0, σ
n]n ⊆ P ⊆ [0, 1]n, for t = σ

n we obtain

w + t(w − P) ⊆ w + t(w − [0, 1]n) =
[
0, σ

n

]n ⊆ P,

thus α(P : w) ≥ σ
n . By [25, Chap. 8, Eq. 8.1.5] we can compute a feasible solution

x̄ of (P1) satisfying ‖b−Ax̄‖22−‖b−Ax̂‖22 ≤ δD in O(1)(2n+1)1.5n2 ln
(

2n+1
α(P :w)δ

)

arithmetic operations. Finally, by choosing δ = 1
4σ2(‖b‖1+1) finding a

√
m‖A‖∞-

close solution takes O (
n7/2 ln

(
n2σ‖b‖1

))
arithmetic operations. �	

Sparse Approximation Over the Cube 55

6 Extension

A natural generalization of our problem is to consider arbitrary upper bounds
ui > 0, i.e.

min
x

‖Ax − b‖2 subject to ‖x‖0 ≤ σ and 0 ≤ xi ≤ ui for all i ∈ [n]. (P ′
0)

The natural convex relaxation of (P ′
0) is given by:

min
x

‖Ax − b‖2 subject to
n∑

i=1

xi

ui
≤ σ and 0 ≤ xi ≤ ui for all i ∈ [n]. (P ′

1)

The results of Sects. 4 and 5 extend to this generalization in a straight-forward
manner. For the algorithm it implies that the number of arithmetic operations
increases by an additional factor of ‖u‖m

∞. The reason is the core of our approach:
The proximity bound between optimal solutions for (P ′

0) and (P ′
1) respectively,

increases by this factor. The proximity bound must however depend on ‖u‖∞ as
the following example shows:

Let n and u be even, non-negative integers. Set A := 1, σ := n
2 and b = u

21
where 1 denotes the all-ones vector. It can easily be checked that x̂ = u

21 is
optimal for (P ′

1) while

x�
i =

{
u
2 , i ∈ [σ]
0, i ∈ [n] \ [σ]

is optimal for (P ′
0). This shows that any approach aiming for a logarithmic depen-

dency on ‖u‖∞ requires techniques that are different from the ideas presented
in this paper.

Acknowledgements. The second and third author acknowledge support by the Ein-
stein Foundation Berlin.

References

1. Ament, S., Gomes, C.: On the optimality of backward regression: Sparse recovery
and subset selection. In: ICASSP 2021–2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), June 2021. https://doi.org/
10.1109/icassp39728.2021.9415082

2. Beale, E.M.L., Kendall, M.G., Mann, D.W.: The discarding of variables in mul-
tivariate analysis. Biometrika 54(3–4), 357–366 (1967). https://doi.org/10.1093/
biomet/54.3-4.357

3. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. IEEE Trans. Inf. Theory
52(2), 489–509 (2006). https://doi.org/10.1109/TIT.2005.862083

https://doi.org/10.1109/icassp39728.2021.9415082
https://doi.org/10.1109/icassp39728.2021.9415082
https://doi.org/10.1093/biomet/54.3-4.357
https://doi.org/10.1093/biomet/54.3-4.357
https://doi.org/10.1109/TIT.2005.862083

56 S. Bruckmeier et al.

4. Candes, E., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory
51(12), 4203–4215 (2005). https://doi.org/10.1109/TIT.2005.858979

5. Candes, E., Tao, T.: The Dantzig selector: statistical estimation when p is
much larger than n. Ann. Stat. 35(6), 2313–2351 (2007). https://doi.org/10.1214/
009053606000001523

6. Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and
inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).
https://doi.org/10.1002/cpa.20124

7. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM Rev. 43(1), 129–159 (2001). https://doi.org/10.1137/S1064827596304010

8. Couvreur, C., Bresler, Y.: On the optimality of the backward greedy algorithm for
the subset selection problem. SIAM J. Matrix Anal. Appl. 21(3), 797–808 (2000).
https://doi.org/10.1137/S0895479898332928

9. Das, A., Kempe, D.: Algorithms for subset selection in linear regression. In: Pro-
ceedings of the Fortieth Annual ACM Symposium on Theory of Computing. STOC
2008, pp. 45–54. Association for Computing Machinery, New York (2008). https://
doi.org/10.1145/1374376.1374384

10. Das, A., Kempe, D.: Submodular meets spectral: greedy algorithms for subset
selection, sparse approximation and dictionary selection. In: Proceedings of the
28th International Conference on International Conference on Machine Learning.
ICML 2011, pp. 1057–1064. Omnipress, Madison (2011). https://doi.org/10.5555/
3104482.3104615

11. Del Pia, A., Dey, S.S., Weismantel, R.: Subset selection in sparse matrices. SIAM
J. Optim. 30(2), 1173–1190 (2020). https://doi.org/10.1137/18M1219266

12. Di Lorenzo, D., Liuzzi, G., Rinaldi, F., Schoen, F., Sciandrone, M.: A concave
optimization-based approach for sparse portfolio selection. Optim. Methods Softw.
27(6), 983–1000 (2012). https://doi.org/10.1080/10556788.2011.577773

13. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006). https://doi.org/10.1109/TIT.2006.871582

14. Elenberg, E.R., Khanna, R., Dimakis, A.G., Negahban, S.: Restricted strong con-
vexity implies weak submodularity. Ann. Stat. 46(6B), 3539–3568 (2018). https://
doi.org/10.1214/17-AOS1679

15. Feng, M., Mitchell, J.J., Pang, J.S., Shen, X., Waechter, A.: Complementarity
formulations of �0-norm optimization. Pac. J. Optim. 14(2), 273–305 (2018)

16. Fung, G.M., Mangasarian, O.L.: Equivalence of minimal �0- and �1-norm solutions
of linear equalities, inequalities and linear programs for sufficiently small p. J.
Optim. Theory Appl. 151(1), 1–10 (2011). https://doi.org/10.1007/s10957-011-
9871-x

17. Gamarnik, D., Zadik, I.: High dimensional regression with binary coefficients. esti-
mating squared error and a phase transition. In: Proceedings of the 2017 Confer-
ence on Learning Theory. Proceedings of Machine Learning Research, vol. 65, pp.
948–953. PMLR, 07–10 July 2017

18. Gao, J., Li, D.: A polynomial case of the cardinality-constrained quadratic opti-
mization problem. J. Glob. Optim. 56(4), 1441–1455 (2013). https://doi.org/10.
1007/s10898-012-9853-z

19. Ge, D., Jiang, X., Ye, Y.: A note on the complexity of LP minimization. Math.
Program. 129, 285–299 (2011). https://doi.org/10.1007/s10107-011-0470-2

20. Gilbert, A., Indyk, P.: Sparse recovery using sparse matrices. Proc. IEEE 98(6),
937–947 (2010). https://doi.org/10.1109/JPROC.2010.2045092

https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1214/009053606000001523
https://doi.org/10.1214/009053606000001523
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1137/S1064827596304010
https://doi.org/10.1137/S0895479898332928
https://doi.org/10.1145/1374376.1374384
https://doi.org/10.1145/1374376.1374384
https://doi.org/10.5555/3104482.3104615
https://doi.org/10.5555/3104482.3104615
https://doi.org/10.1137/18M1219266
https://doi.org/10.1080/10556788.2011.577773
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1214/17-AOS1679
https://doi.org/10.1214/17-AOS1679
https://doi.org/10.1007/s10957-011-9871-x
https://doi.org/10.1007/s10957-011-9871-x
https://doi.org/10.1007/s10898-012-9853-z
https://doi.org/10.1007/s10898-012-9853-z
https://doi.org/10.1007/s10107-011-0470-2
https://doi.org/10.1109/JPROC.2010.2045092

Sparse Approximation Over the Cube 57

21. Gilbert, A.C., Muthukrishnan, S., Strauss, M.J.: Approximation of functions over
redundant dictionaries using coherence. In: SODA, pp. 243–252. Citeseer (2003).
https://doi.org/10.5555/644108.644149

22. Migot, T., Haddou, M.: A smoothing method for sparse optimization over polyhe-
dral sets. In: Le Thi, H.A., Pham Dinh, T., Nguyen, N.T. (eds.) Modelling, Compu-
tation and Optimization in Information Systems and Management Sciences. AISC,
vol. 359, pp. 369–379. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
18161-5 31

23. Hocking, R.R., Leslie, R.N.: Selection of the best subset in regression analy-
sis. Technometrics 9(4), 531–540 (1967). https://doi.org/10.1080/00401706.1967.
10490502

24. Mangasarian, O.: Minimum-support solutions of polyhedral concave pro-
grams. Optimization 45(1–4), 149–162 (1999). https://doi.org/10.1080/
02331939908844431

25. Nesterov, Y., Nemirovski, A.: Interior-point polynomial algorithms in convex pro-
gramming. In: SIAM Studies in Applied Mathematics (1994)

26. Nguyen, T.: Dropping forward-backward algorithms for feature selection. CoRR
abs/1910.08007 (2019)

27. Oymak, S., Thrampoulidis, C., Hassibi, B.: The squared-error of generalized lasso:
a precise analysis. In: 2013 51st Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pp. 1002–1009 (2013). https://doi.org/10.
1109/Allerton.2013.6736635

28. Qian, C., Yu, Y., Zhou, Z.H.: Subset Selection by Pareto Optimization. NIPS 2015,
pp. 1774–1782. MIT Press, Cambridge (2015). https://doi.org/10.5555/2969239.
2969437

29. Rinaldi, F.: Concave programming for finding sparse solutions to problems with
convex constraints. Optim. Methods Softw. 26(6), 971–992 (2011). https://doi.
org/10.1080/10556788.2010.511668

30. Rinaldi, F., Schoen, F.: Concave programming for minimizing the zero-norm over
polyhedral sets. Comput. Optim. Appl. 46, 467–486 (07 2010). https://doi.org/10.
1007/s10589-008-9202-9

31. Teng, Y., Qi, S., Xiao, D., Xu, L., Li, J., Kang, Y.: A general solution to least
squares problems with box constraints and its applications. Math. Probl. Eng.
2016 (2016)

32. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans.
Inf. Theory 50(10), 2231–2242 (2004). https://doi.org/10.1109/TIT.2004.834793

33. Wainwright, M.J.: Sharp thresholds for high-dimensional and noisy sparsity recov-
ery using �1-constrained quadratic programming (lasso). IEEE Trans. Inf. Theor.
55(5), 2183–2202 (2009). https://doi.org/10.1109/TIT.2009.2016018

34. Zhu, J., Wen, C., Zhu, J., Zhang, H., Wang, X.: A polynomial algorithm for best-
subset selection problem. Proc. Natl. Acad. Sci. 117(52), 33117–33123 (2020).
https://doi.org/10.1073/pnas.2014241117

35. Çivril, A.: A note on the hardness of sparse approximation. Inf. Process. Lett.
113(14), 543–545 (2013). https://doi.org/10.1016/j.ipl.2013.04.014

https://doi.org/10.5555/644108.644149
https://doi.org/10.1007/978-3-319-18161-5_31
https://doi.org/10.1007/978-3-319-18161-5_31
https://doi.org/10.1080/00401706.1967.10490502
https://doi.org/10.1080/00401706.1967.10490502
https://doi.org/10.1080/02331939908844431
https://doi.org/10.1080/02331939908844431
https://doi.org/10.1109/Allerton.2013.6736635
https://doi.org/10.1109/Allerton.2013.6736635
https://doi.org/10.5555/2969239.2969437
https://doi.org/10.5555/2969239.2969437
https://doi.org/10.1080/10556788.2010.511668
https://doi.org/10.1080/10556788.2010.511668
https://doi.org/10.1007/s10589-008-9202-9
https://doi.org/10.1007/s10589-008-9202-9
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1109/TIT.2009.2016018
https://doi.org/10.1073/pnas.2014241117
https://doi.org/10.1016/j.ipl.2013.04.014

Recycling Inequalities for Robust
Combinatorial Optimization with Budget

Uncertainty

Christina Büsing1 , Timo Gersing1(B) , and Arie M.C.A. Koster2

1 Combinatorial Optimization, RWTH Aachen University, Aachen, Germany
{buesing,gersing}@combi.rwth-aachen.de

2 Discrete Optimization, RWTH Aachen University, Aachen, Germany
koster@math2.rwth-aachen.de

Abstract. Robust combinatorial optimization with budget uncertainty
is one of the most popular approaches for integrating uncertainty in
optimization problems. The existence of a compact reformulation for
(mixed-integer) linear programs and positive complexity results give the
impression that these problems are relatively easy to solve. However, the
practical performance of the reformulation is actually quite poor when
solving robust integer problems due to its weak linear relaxation.

To overcome the problems arising from the weak formulation, we pro-
pose a procedure to derive new classes of valid inequalities for robust
binary optimization problems. For this, we recycle valid inequalities of
the underlying deterministic problem such that the additional variables
from the robust formulation are incorporated. The valid inequalities to
be recycled may either be readily available model constraints or actual
cutting planes, where we can benefit from decades of research on valid
inequalities for classical optimization problems.

We first demonstrate the strength of the inequalities theoretically,
by proving that recycling yields a facet-defining inequality in surpris-
ingly many cases, even if the original valid inequality was not facet-
defining. Afterwards, we show in a computational study that using recy-
cled inequalities leads to a significant improvement of the computation
time when solving robust optimization problems.

Keywords: Robust Optimization · Combinatorial Optimization ·
Integer Programming · Polyhedral Combinatorics

1 Introduction

Robust optimization is a widely used approach for integrating uncertainties into
optimization models. The concept of budgeted uncertainty by Bertsimas and
Sim [6] has received particular attention. However, despite its popularity and
the amount of research devoted to solving these kind of robust optimization
problems, instances of practical size often still pose a considerable challenge for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 58–71, 2023.
https://doi.org/10.1007/978-3-031-32726-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_5&domain=pdf
http://orcid.org/0000-0002-3394-2788
http://orcid.org/0000-0001-9291-0762
http://orcid.org/0000-0002-8035-7012
https://doi.org/10.1007/978-3-031-32726-1_5

Recycling Inequalities for Robust Combinatorial Optimization 59

MILP solvers [7]. In this context, we propose a new class of valid inequalities for
robust combinatorial optimization problems that are easy to compute and can
lead to a significant reduction of the computation time.

Without uncertainties, the so called nominal combinatorial optimization
problem NOM is defined as min{∑i∈[n] cixi|Ax ≤ b, x ∈ {0, 1}n}, with c ∈ R

n,
A ∈ R

m×n, and b ∈ R
m. Here, [n] = {1, . . . , n}. In the case of uncertainty in

the objective, the coefficients ci are replaced by uncertain coefficients c′
i from an

interval [ci, ci + ĉi]. We say that c′
i can deviate from its nominal value ci by up

to the deviation ĉi. Since the worst-case, in which all coefficients c′
i deviate to

ci + ĉi, is unlikely, Bertsimas and Sim [6] define an uncertainty budget Γ ∈ [0, n]
and only consider scenarios where at most �Γ � coefficients c′

i deviate to ci + ĉi

and one coefficient may deviate to ci + (Γ − �Γ �) ĉi. The robust counterpart, in
which we optimize against the worst-case, can be stated as

min
∑

i∈[n]

cixi + max
S∪{t}⊆[n]:

|S|≤�Γ	,t/∈S

(

(Γ − �Γ �) ĉtxt +
∑

i∈S

ĉixi

)

s.t. Ax ≤ b, x ∈ {0, 1}n
.

Dualizing the inner maximization problem [6] yields the compact robust problem

ROB
min Γz +

∑

i∈[n]

(cixi + pi)

s.t. (x, p, z) ∈ PROB, x ∈ {0, 1}n

with

PROB =

⎧
⎪⎨

⎪⎩
(x, p, z)

∣
∣
∣
∣
∣
∣
∣

Ax ≤ b

pi + z ≥ ĉixi ∀i ∈ [n]
x ∈ [0, 1]n , p ∈ R

n
≥0, z ∈ R≥0

⎫
⎪⎬

⎪⎭
.

Unfortunately, the formulation PROB is quite weak, often leading to much higher
computation times for solving ROB compared to NOM. In fact, the relative
integrality gap of the formulation PROB may be arbitrarily large, even if the
integrality gap of the corresponding nominal problem is zero. This is shown in
the following example from [7].

Example 1. Consider the easy problem of selecting the cheapest of n elements
min

{∑
i∈[n] cixi|

∑
i∈[n] xi = 1, x ∈ {0, 1}n

}
. The integrality gap is zero for all

c ∈ R
n. However, if we consider an instance of the uncertain counterpart ROB

with c ≡ 0, ĉ ≡ 1, and Γ = 1

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

z +
∑

i∈[n]

pi

∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

i∈[n]

xi = 1

pi + z ≥ xi ∀i ∈ [n]
x ∈ {0, 1}n

, p ∈ R
n
≥0, z ∈ R≥0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

60 C. Büsing et al.

then (x, p, z) =
(
1
n , . . . , 1

n , 0, . . . , 0, 1
n

)
is the unique optimal fractional solution

of value 1
n , while the objective value of an optimal integer solution is 1. Hence,

the integrality gap is 1
1/n = n, and thus unbounded.

The above example shows that optimal continuous solutions for ROB tend to
be highly fractional, as small values of xi allow for covering all right-hand sides
ĉixi in the constraints pi +z ≥ ĉixi with a small value of z, while choosing p ≡ 0.
On the one hand, such solutions are exactly what we aim for when striving for
robustness, as we distribute the risk as much as possible. On the other hand,
highly fractional optimal solutions for the linear relaxation imply the need for
much branching, and thus a high computational effort when solving ROB.

Bertsimas et al. [4] as well as Fischetti and Monaci [9] tested the practi-
cal performance of the compact reformulation PROB compared to a separation
approach using an alternative formulation with exponentially many inequalities,
each one modeling a scenario from the uncertainty set. Unfortunately, the alter-
native formulation is, despite its size, as weak as PROB and performs worse for
robust integer problems (but better for continuous problems) [4,9]. Joung and
Park [16] propose cuts that dominate the classic scenario inequalities and can
be separated by considering the robustness term as a submodular function and
greedily solving a maximization problem over the corresponding polymatroid.
Atamtürk [3] addresses this issue by proposing four different strong formulations.
The strongest of these preserves the integrality gap of the nominal problem, but
all four formulations are very large and hence, are outperformed by PROB [7].

The weak relaxation can be avoided by tentatively fixing the variable z to
different values, resulting in a series of nominal problems NOM to be solved
instead [2,5,19]. Lee and Kwon [17] showed that at most

⌈
n−Γ
2

⌉
+ 1 nominal

problems have to be solved. However, the computational effort is usually still
higher compared to solving ROB directly if n is large [7]. Hansknecht et al. [14]
improve on this with their divide & conquer approach, in which one prunes many
non-optimal values for z. In [7], non-optimal values for z are pruned even more
efficiently by exploiting structural insights and strong linearizations derived from
the following bilinear formulation

PBIL =

⎧
⎪⎨

⎪⎩
(x, p, z)

∣
∣
∣
∣
∣
∣
∣

Ax ≤ b

pi + xiz ≥ ĉixi ∀i ∈ [n]
x ∈ [0, 1]n , p ∈ R

n
≥0, z ∈ R≥0

⎫
⎪⎬

⎪⎭
.

This bilinear formulation strengthens the robustness constraints pi + z ≥ ĉixi

by multiplying z with xi, which is valid due to xi ∈ {0, 1}. While the bilinearity
is rather hindering for practical purposes, PBIL is theoretically very strong. In
fact, there exists no polyhedral formulation P for ROB with P � PBIL.

Contribution. In this paper, we use the bilinear formulation PBIL as a foundation
for the new class of recycled inequalities. To obtain these, we combine the strength
of the bilinear inequalities with the structural properties provided by inequalities
for the nominal problem NOM. By doing so, we can use inequalities for NOM

Recycling Inequalities for Robust Combinatorial Optimization 61

a second time to improve the formulation PROB. We show that in many cases
they even define facets of the convex hull of integer-feasible solutions

CROB = conv
({

(x, p, z) ∈ PROB
∣
∣x ∈ {0, 1}n})

.

A preliminary computational study reveals that separating recycled inequalities
can lead to a drastic improvement of both integrality gap and solving times. First
experiments with adapted MIPLIB [12] instances (to be presented in the journal
version) confirm these results for a broad set of robust problems.

All implemented algorithms and generated test instances are published
together with a package of algorithms for solving robust combinatorial opti-
mization problems [10] and benchmark instances [11] for those very problems.

Outline. In Sect. 2, we show how to derive recycled inequalities from valid
inequalities for NOM. In Sect. 3, we characterize valid inequalities for which
the respective recycled inequality is facet-defining. We also provide examples
indicating that this applies for many well-known valid inequalities for classical
optimization problems. In Sect. 4, we test recycled inequalities in a computa-
tional study, highlighting their practical value.

2 Recycling Valid Inequalities

As already mentioned, the bilinear inequalities pi +xiz ≥ ĉixi play a crucial role
for our recycled inequalities. To understand their strength intuitively, we recall
our observations from Example 1. There, we noticed that choosing fractional
values for xi is tempting, as we are then able to meet the inequalities pi+z ≥ ĉixi

with a small value of z and p ≡ 0. However, this advantage vanishes for the
bilinear inequalities pi + xiz ≥ ĉixi, as we always have z ≥ ĉi for xi 	= 0 and
pi = 0. To make use of this in practice, it would be beneficial to carry over the
strength of the bilinear inequalities to a linear formulation.

Multiplying linear inequalities with variables as an intermediate step in
order to achieve a stronger linear formulation is not a new approach. For the
Reformulation-Linearization-Technique by Sherali and Adams [20], one multi-
plies constraints with variables and linearizes the resulting products afterwards
via substitution with auxiliary variables. Our approach is different in the sense
that we don’t directly linearize the bilinear inequalities, and thus don’t cre-
ate auxiliary variables. Instead, we combine several of the bilinear inequalities
in order to estimate the non-linear terms against a linear term, using a valid
inequality for the corresponding nominal problem. From now on, let

CNOM = conv ({x ∈ {0, 1}n|Ax ≤ b})

be the convex hull of all integer nominal solutions. Then we combine the bilinear
inequalities and valid inequalities for CNOM as follows.

62 C. Büsing et al.

Theorem 1. Let
∑

i∈[n] πixi ≤ π0 be a valid inequality for CNOM with π ≥ 0.
Then the inequality

π0z +
∑

i∈[n]

πipi ≥
∑

i∈[n]

πiĉixi (1)

is valid for CROB.

Proof. Summing the bilinear constraints pi + xiz ≥ ĉixi, each with a factor of
πi, we obtain ∑

i∈[n]

πipi +
∑

i∈[n]

πixiz ≥
∑

i∈[n]

πiĉixi,

which is a valid inequality for CROB due to π ≥ 0. Now, since z ≥ 0 holds, we
have

∑
i∈[n] πixiz ≤ π0z, which proves the statement.
�

As we reuse the valid inequality
∑

i∈[n] πixi ≤ π0 to strengthen the formula-
tion PROB, we call (1) the recycled inequality of

∑
i∈[n] πixi ≤ π0. In accordance

with the requirements of Theorem1, we call
∑

i∈[n] πixi ≤ π0 recyclable if it is
valid for CNOM and π ≥ 0.

Note that we could also derive the concept of recycled inequalities on the
basis of the even stronger bilinear inequalities xi(pi + z) ≥ ĉixi, resulting from
multiplying both pi and z with xi. However, after summing the bilinear inequal-
ities with factors πi, this would yield the term

∑
i∈[n] πixipi, which we can only

estimate against
∑

i∈[n] πipi, yielding the same result as above.
To get a better understanding for recycled inequalities, let us recognize how

they compare to the bilinear inequalities over the course of their construction.
First, note that the sum of the bilinear inequalities is weaker than the bilinear
inequalities themselves. Hence, when separating a recycled inequality to cut-off
a fractional solution (x̃, p̃, z̃) ∈ PNOM, the inequality to be recycled should only
support indices i ∈ [n] with πi > 0 for which the bilinear inequality p̃i+x̃iz̃ ≥ ĉix̃i

is violated or tight. A second potential weakening occurs when applying the
estimation

∑
i∈[n] πixiz ≤ π0z. This implies that recycling

∑
i∈[n] πixi ≤ π0 is

especially interesting if it is binding for x̃.
Revisit Example 1, where we can recycle the valid inequality

∑
i∈[n] xi ≤ 1

implied by the constraint
∑

i∈[n] xi = 1. The corresponding recycled inequality
z+

∑
i∈[n] pi ≥ ∑

i∈[n] xi yields z+
∑

i∈[n] pi ≥ 1, and thus the optimal objective
value of the linear relaxation is now equal to the optimal integer objective value.
This intuitively highlights the strength of the recycled inequalities in the case
where both properties, a binding recyclable valid inequality and the violation of
supported bilinear inequalities, coincide.

3 Facet-Defining Recycled Inequalities

In this section, we show that recycled inequalities often define facets of the convex
hull of the robust problem CROB. To this end, we first determine the dimension
of CROB and assume for the sake of simplicity that the sets of solutions to our
problems are non-empty.

Recycling Inequalities for Robust Combinatorial Optimization 63

Lemma 1. We have dim
(CROB

)
= dim

(CNOM
)

+ n + 1.

Proof. For a polytope P ⊆ R
n, the number n − dim (P) equals the maxi-

mum number of linearly independent equations that are met by all x ∈ P .
Let

∑
i∈[n] (ωixi + ωn+ipi) + ω2n+1z = ω0 be an equation that is satisfied by all

(x, p, z) ∈ CROB. Since p and z can be raised arbitrarily and CROB 	= ∅, we have
ωn+1 = · · · = ω2n+1 = 0 and thus

∑
i∈[n] ωixi = ω0. Hence, the equations that

are met by all (x, p, z) ∈ CROB are exactly the equations that are met by all
x ∈ CNOM, which implies

dim
(CROB

)
= 2n + 1 − (

n − dim
(CNOM

))
= dim

(CNOM
)

+ n + 1.

�
Knowing the dimension of CROB, we are now able to study facet-defining

recycled inequalities. For this, we only consider inequalities
∑

i∈[n] πixi ≤ π0

consisting of variables with uncertain objective coefficients, i.e., we have πi = 0
for all i ∈ [n] with ĉi = 0. We call inequalities with this property uncertainty-
exclusive inequalities. Note that these are the only interesting inequalities for
recycling, because we can always drop variables xi with ĉi = 0. This strength-
ens the corresponding recycled inequality by removing πipi from the left-hand
side, while the right-hand side doesn’t change due to πiĉixi = 0. The following
theorem characterizes exactly under which conditions recyclable, uncertainty-
exclusive inequalities

∑
i∈[n] πix ≤ π0 yield facet-defining recycled inequalities,

based on the face F (π) =
{

x ∈ CNOM
∣
∣
∣
∑

i∈[n] πix = π0

}
. The statement may

seem very technical at first glance, but we will see afterwards that it is quite
powerful and has some surprising implications.

Theorem 2. Let
∑

i∈[n] πixi ≤ π0 be a recyclable, uncertainty-exclusive inequal-
ity and ej ∈ R

n+1 be the unit-vector for j ∈ S = {i ∈ [n]|πi = 0}. Then the recy-
cled inequality (1) is facet-defining for CROB if and only if there exist vectors{
x̃1, . . . , x̃n−|S|} ⊆ F (π) such that

{
ej

∣
∣j ∈ S

} ∪ {(
x̃1, 1

)
, . . . ,

(
x̃n−|S|, 1

)}
are

linearly independent.

Proof. First, note that the face of the recycled inequality is not equal to CROB,
since p and z can be raised arbitrarily. Thus, it is facet-defining if and only
if there exist dim

(CROB
)

= dim
(CNOM

)
+ n + 1 affinely independent vectors

(x, p, z) ∈ CROB that satisfy it with equality.
Regardless of π, there are dim

(CNOM
)

+ 1 + |S| affinely independent

(x, p, z) ∈ CROB satisfying (1) with equality. For this, let
{

x0, . . . , xdim(CNOM)
}

⊆
CNOM be affinely independent. We choose

(
xj , ĉ � xj , 0

)
for each j ∈{

0, . . . ,dim
(CNOM

)}
, where ĉ � xj refers to the component-wise multiplication,

i.e.,
(
ĉ � xj

)
i

= ĉix
j
i . By definition,

(
xj , ĉ � xj , 0

)
is within CROB and satisfies

(1) with equality. Additionally, we choose
(
x0, ĉ � x0 + ej , 0

)
for each j ∈ S.

Here, ej ∈ R
n with some abuse of notation. Again, this vector is within CROB

and satisfies (1) with equality due to πj = 0.

64 C. Büsing et al.

Now, the recycled inequality (1) is facet-defining if and only if there exists
a suitable extension of the vectors above, consisting of additional vectors(
x̃j , p̃j , z̃j

)
j∈[n−|S|] that satisfy (1) with equality and are affinely independent

to the vectors above. Such vectors need to satisfy the property

p̃j
i =

(
ĉi − z̃j

)
x̃j

i for all i ∈ [n] \ S and j ∈ [n − |S|] , (2)

as otherwise

π0z̃
j +

∑

i∈[n]

πip̃
j
i > π0z̃

j −
∑

i∈[n]

πiz̃
j x̃j

i +
∑

i∈[n]

πiĉix̃
j
i ≥

∑

i∈[n]

πiĉix̃
j
i .

One can show that any vectors
(
x̃j , p̃j , z̃j

)
j∈[n−|S|] with property (2) are

affinely independent to the ones above if and only if z̃j > 0 for all j ∈ [n − |S|]
and

{
ej

∣
∣j ∈ S

} ∪ {(
x̃1, 1

)
, . . . ,

(
x̃n−|S|, 1

)}
are linearly independent. To show

this, one subtracts
(
x0, ĉ � x0, 0

)
from all other vectors, yielding vectors that are

linearly independent if and only if the desired affine independency holds. Writing
the vectors in a matrix and performing basic column and row transformations
implies the result. We omit this step here due to space limitations.

With z̃j > 0 and πip̃
j
i = πi

(
ĉi − z̃j

)
x̃j

i , we also have

π0z̃
j +

∑

i∈[n]

πip̃
j
i =

∑

i∈[n]

πiĉix̃
j
i ⇔ π0z̃

j =
∑

i∈[n]

πiz̃
j x̃j

i ⇔ π0 =
∑

i∈[n]

πix̃
j
i ,

and thus
{
x̃1, . . . , x̃n−|S|} ⊆ F (π) if and only if

(
x̃j , p̃j , z̃j

)
j∈[n−|S|] fulfill the

recycled inequality (1) with equality. This shows the necessity of the condition.
Now, let

{
x̃1, . . . , x̃n−|S|} ⊆ F (π) be as specified in the theorem. To show

sufficiency of the condition, we only need to construct vectors
(
x̃j , p̃j , z̃j

)
j∈[n−|S|]

satisfying property (2) and z̃j > 0 for all j ∈ [n − |S|]. For each j ∈ [n − |S|], we
choose

(
x̃j , p̃j , z̃

)
with z̃ = min {ĉi|i ∈ [n] , ĉi > 0} and p̃j

i = max {0, ĉi − z̃} x̃j
i

for all i ∈ [n]. Then
(
x̃j , p̃j , z̃

)
is by definition within CROB and satisfies z̃ > 0.

Since
∑

i∈[n] πixi ≤ π0 is uncertainty-exclusive, we have πi = 0 for all ĉi < z̃,
and thus p̃j

i = (ĉi − z̃) x̃j
i for all i ∈ [n] \ S. Therefore,

(
x̃j , p̃j , z̃

)
also satisfies

property (2), which completes the proof.
�
A straightforward, but powerful implication of Theorem2 is that recycling

a uncertainty-exclusive inequality yields always a facet-defining inequality if
dim (F (π)) = n−1 holds. This is because there already exist n affinely indepen-
dent vectors satisfying

∑
i∈[n] πix = π0, which implies that there exist appro-

priate vectors
{
x1, . . . , xn−|S|}. Note that dim (F (π)) = n − 1 holds if F (π)

is either a facet of a full-dimensional polytope CNOM or if
∑

i∈[n] πix ≤ π0 is
actually an equation with F (π) = CNOM and dim

(CNOM
)

= n − 1. This is
summarized in the following corollary.

Corollary 1. Let
∑

i∈[n] πixi ≤ π0 be a recyclable, uncertainty-exclusive
inequality. The recycled inequality (1) is facet-defining for CROB if one of the
following holds:

Recycling Inequalities for Robust Combinatorial Optimization 65

– CNOM is full-dimensional and F (π) is a facet of CNOM,
– dim

(CNOM
)

= n − 1 and F (π) = CNOM.

Contrary to first intuition, it is also possible to obtain facet-defining inequali-
ties by recycling weaker inequalities that are neither facet-defining nor equations.
This is because Theorem 2 suggests that an inequality defining a low-dimensional
face can also be recycled to a facet-defining inequality if we have πi = 0 for many
i ∈ [n]. For example, consider an independent set problem on a graph with ver-
tices V = [n] and let Q ⊆ V be a clique. Then the clique inequality

∑
i∈Q xi ≤ 1

dominates all inequalities
∑

i∈Q′ xi ≤ 1 with Q′
� Q and is facet-defining if and

only if Q is a maximal clique with respect to inclusion [8]. However, the recycled
inequality z +

∑
i∈Q′ pi ≥ ∑

i∈Q′ ĉixi is facet-defining for all cliques Q′ ⊆ Q.
This is because the set

{
x̃1, . . . , x̃n−|S|} =

{
ej

∣
∣j ∈ Q′} meets the criteria of

Theorem 2 with S = V \ Q′. Other examples include odd-hole inequalities for
the independent set problem [18] and minimal cover inequalities for the knapsack
problem [8]. These are in general not facet-defining for their respective polytope,
but yield facet-defining recycled inequality for the robust counterpart. All these
examples are covered by the following corollary.

Corollary 2. Let CNOM be a full-dimensional polyhedron such that x ∈ CNOM

and 0 ≤ x′ ≤ x implies x′ ∈ CNOM. Furthermore, let
∑

i∈[n] πixi ≤ π0 be a
recyclable, uncertainty-exclusive inequality. The recycled inequality (1) is facet-
defining for CROB if

∑
i∈[n] πixi ≤ π0 is facet-defining for the restricted solution

space
{
x ∈ CNOM

∣
∣xi = 0 for all πi = 0

}
.

Note that the additional requirements on CNOM imply that the restricted
solution space is of dimension n−|S|, which guarantees that we find appropriate
vectors

{
x̃1, . . . , x̃n−|S|}.

One now might raise the question whether inequalities recycled from domi-
nated inequalities are actually of practical interest or whether they do not really
matter due to the special structure of the objective function. The following exam-
ple demonstrates that it can be beneficial to weaken an inequality before it is
recycled.

Example 2. Consider the robust problem

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2z +
∑

i∈[5]

−xi + pi

∣
∣
∣
∣
∣
∣
∣
∣
∣

3x5 +
∑

i∈[4]

xi ≤ 3

z + pi ≥ xi ∀i ∈ [5]

x ∈ {0, 1}5 , p ∈ R
5
≥0, z ∈ R≥0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

Choosing x =
(
3
4 , . . . , 3

4 , 0
)
, p ≡ 0, and z = 3

4 yields an optimal solution for the
linear relaxation of value − 3

2 . Recycling constraint 3x5 +
∑

i∈[4] xi ≤ 3 yields
3z + 3p5 +

∑
i∈[4] pi ≥ 3x5 +

∑
i∈[4] xi. After adding the recycled inequality,

an optimal choice is given by x =
(
3
4 , . . . , 3

4 , 0
)
, p =

(
0, . . . , 0, 1

4

)
, and z = 3

4 ,

66 C. Büsing et al.

with an objective value of − 5
4 . Note that we now choose p5 > 0 even though

x5 = 0 holds. This is because raising p5 has the same effect on the recycled
inequality as raising z, but is cheaper in the objective function. Since the bilinear
inequality p5 + x5z ≥ ĉ5x5 now has a slack of 1

4 , our observation from the last
section suggests that it may be beneficial to drop x5 from the valid inequality
for recycling. In fact, when recycling the dominated inequality

∑
i∈[4] xi ≤ 3

instead, we obtain 3z +
∑

i∈[4] pi ≥ ∑
i∈[4] xi and an optimal choice is now given

by x = (1, 1, 1, 0, 0), p ≡ 0, and z = 1, which yields an objective value of −1.

We can benefit from this insight on dominated inequalities when recycling
within a separation procedure to cut-off a fractional solution (x̃, p̃, z̃) ∈ PROB.
The violation of a recycled inequality is given by

∑
i∈[n] πi (ĉix̃i − p̃i) − π0z̃. In

order to maximize the violation, we can drop all variables xi from the recyclable
inequality

∑
i∈[n] πixi ≤ π0 with ĉix̃i − p̃i < 0. We use this in our computational

study in the next section, where we show that recycled inequalities are not only
interesting from a theoretical point of view, but also computationally relevant.

4 Computational Study

Due to space limitations, we present a preliminary computational study, in which
we test recycled inequalities for robust counterparts of two classical combinato-
rial problems, namely the weighted independent set problem and the weighted
bipartite matching problem.

In the following, we compare (i) computation times to asses an algorithm’s
performance and (ii) integrality gaps to evaluate the strength of a formulation.
Since displaying these for all algorithms and instances is impractical, we give
aggregated values using the shifted geometric mean, as proposed by Achter-
berg [1]. This is defined as

(
Πk

i=1 (vi + s)1/k
)

− s for values v1, . . . , vk ∈ R≥0

and a shifting parameter s ∈ R≥0. We always use s = 1 second for aggregating
computation times and s = 1% for aggregating integrality gaps. Furthermore,
we use a time limit of 3600 seconds for each algorithm and instance and set the
computation time to this value if an algorithm reaches the limit. Note that this
is a bias in favor of algorithms that reach the time limit for many instances.

All experiments have been implemented in Java 11 and are performed on a
single core of a Linux machine with an Intel R© CoreTM i7-5930K CPU @ 3.50GHz,
with 4 GB RAM reserved for each calculation. All LPs and MILPs are solved
using Gurobi version 9.5.0 [13] in single thread mode and all other settings at
default, if not stated otherwise.

All implemented algorithms [10] and generated test instances [11] are freely
available online.

4.1 Robust Independent Set

To show the effect of recycling a class of well-known valid inequalities in a sep-
aration procedure, we consider the robust maximum weighted independent set
problem on a graph with nodes V and edges E

Recycling Inequalities for Robust Combinatorial Optimization 67

max

⎧
⎪⎨

⎪⎩

∑

v∈V

cvxv − Γz −
∑

v∈V

pv

∣
∣
∣
∣
∣
∣
∣

xv + xw ≤ 1 ∀ {v, w} ∈ E

pv + z ≥ ĉvxv ∀v ∈ V

x ∈ {0, 1}V
, p ∈ R

V
≥0, z ∈ R≥0

⎫
⎪⎬

⎪⎭
.

As seen in Sect. 3, recycling a clique inequality
∑

v∈Q xv ≤ 1 yields a facet-
defining inequality for all cliques Q ⊆ V . We compare the separation of recycled
clique inequalities in the root node of the branching tree against the robust
default formulation PROB, which solely uses the constraints pi + z ≥ ĉixi. For
this, we use Gurobi’s callback to add the recycled inequalities as user cuts [13].
Every time Gurobi invokes the callback in the root node and reports a current
optimal fractional solution (x̃, p̃, z̃) ∈ PROB, we try to compute cliques Q ⊆ V
for which the recycled inequality z +

∑
v∈Q pv ≥ ∑

v∈Q ĉvxv is violated. Since
a node v ∈ V positively contributes to the violation if ĉvx̃v − p̃v > 0 holds,
we essentially need to solve a maximum weighted clique problem with weights
ĉvx̃v − p̃v. To separate many recycled inequalities at once, we extend each node
v ∈ V with ĉvx̃v − p̃v > 0 greedily to a clique Qv ⊆ V with v ∈ Qv. For
this, we start with Qv = {v} and then iteratively add v′ ∈ N (Qv) such that
ĉv′ x̃v′ − p̃v′ is maximal and non-negative. Finally, we return the corresponding
recycled inequality to Gurobi as a user cut if its violation is positive.

As a basis for our test instances, we use the graphs of the second DIMACS
implementation challenge on the clique problem [15]. Of the 66 DIMACS graphs,
we choose the 46 graphs that have at most 500 nodes, as otherwise the nominal
problem is already very hard. For each node v ∈ V , we generate independent and
uniformly distributed values cv ∈ {900, . . . , 1000} and correlated deviations ĉv =
�ξvcv�, with ξv ∈ [0.45, 0.55] being an independent and uniformly distributed
random variable. Since robust problems tend to be hard for Γ being somewhere
around half the number of variables with xi = 1 [7], we greedily compute an
independent set S ⊆ V and define Γ =

⌊
|S|
2

⌋
. For this, we start with S = ∅

and then iteratively add nodes v ∈ V \ N [S] such that |V \ N [S ∪ {v}]| is
maximal, with N [S′] being the closed neighborhood of S′. Using this procedure,
we randomly generate five robust independent set problems for each of the 46
DIMACS graphs, leaving us with 230 robust instances.

We show computational results for the robust default formulation PROB and
the recycling of clique inequalities in Table 1. Here, we see that the shifted
geometric mean of the integrality gaps is reduced absolutely by 220% from
1427.59% to 1207.59% when using recycled clique inequalities. For comput-
ing these gaps, we use the dual bound obtained by heuristically separating
recycled clique inequalities for subsequent linear relaxations until no violated
cuts are found. While the absolute reduction of the integrality gap is quite
impressive, the relative reduction does not adequately reflect the strength of
the recycled inequalities. This is due to the large integrality gap of the nominal
problem, which constitutes a major part of the total gap. Therefore, we also
test a stronger formulation for the nominal problem, in which we replace every

68 C. Büsing et al.

Table 1. Computational results for 230 instances of the robust maximum weighted
independent set problem.

separate recycled

robust default formulation clique inequalities

nominal formulation Gurobi’s cuts tilim time int. gap tilim time int. gap

edge enabled 24 26.15 1427.59% 22 31.03 1207.59%

disabled 40 51.01 20 20.34

clique enabled 61 133.62 135.30% 63 141.97 56.25%

disabled 78 187.21 54 89.24

constraint xv + xw ≤ 1 with
∑

v∈Q xv ≤ 1 for a clique Q ⊆ V with {v, w} ⊆ Q.
This clique formulation has a much tighter linear relaxation compared to the
previous edge formulation, and thus reduces the contribution of the nominal
problem to the integrality gap. Indeed, Table 1 shows that separating recycled
clique inequalities reduces the integrality gap by more than one half when using
the clique formulation. Apart from this observation, the clique formulation is
not of practical interest, as the solver performs better on the edge formulation.

Using the edge formulation, we are able to solve 2 more instances when
recycling clique inequalities, but observe an increase of the computation time.
This seems to be due to some interference with Gurobi’s own cutting planes.
When disabling Gurobi’s cutting planes, recycling is much better than using the
default formulation. In fact, disabling Gurobi’s cuts and using recycled clique
inequalities is the overall best performing approach, solving the most instances in
the least amount of computation time. This is true for both nominal formulations
and indicates that, given a careful implementation, recycling clique inequalities
yields a significant speedup compared to the robust default formulation.

4.2 Robust Bipartite Matching

We now consider the robust maximum weighted bipartite matching problem

max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

e∈E

cexe − Γz −
∑

e∈E

pe

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∑

e∈δ(v)

xe ≤ 1 ∀v ∈ V

pe + z ≥ ĉexe ∀e ∈ E

x ∈ {0, 1}E
, p ∈ R

E
≥0, z ∈ R≥0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

on a bipartite graph with nodes V and edges E. In contrast to the independent
set problem, for which the standard nominal formulation is quite weak, we have
PNOM = CNOM for the bipartite matching problem [8]. That is, the integrality
gap of the robust counterpart is only due to the robust substructure, which
allows us to test the strength of recycled inequalities to their limit.

We randomly generate instances by first dividing a given set of nodes V = [n]
into two partitions U =

[⌈
n
2

⌉]
and W =

{⌈
n
2

⌉
+ 1, . . . , n

}
. Afterwards, we

Recycling Inequalities for Robust Combinatorial Optimization 69

Table 2. Computational results for the robust maximum weighted bipartite matching
problem.

recycle constraints

robust default formulation recycle constraints and separate dominated

nodes Gurobi’s cuts tilim time int. gap tilim time int. gap tilim time int. gap

50 enabled 0 0.78 19.532% 0 0.53 0.326% 0 0.64 0.319%

disabled 10 3600.00 0 0.25 0 0.28

100 enabled 5 603.37 22.82% 0 4.76 0.319% 0 5.59 0.316%

disabled 10 3600.00 0 14.83 0 15.62

150 enabled 4 1405.15 23.66% 0 122.11 0.269% 0 158.81 0.265%

disabled 10 3600.00 6 1809.62 7 1873.43

sample for each node u ∈ U a random number φu ∈ [0, 1], modeling the proba-
bility with which an edge incident to u exists. Then for every w ∈ W , we add the
edge {u,w} with probability φu. Analogously to the independent set problem,
every weight is a random number ce ∈ {900, . . . , 1000} and the correlated devi-
ations are ĉe = �ξece� with ξe ∈ [0.45, 0.55]. Finally, as the number of edges in
a solution will most likely be near to n

2 , we set Γ =
⌊

n
4

⌋
. We use this procedure

to generate ten instances for different numbers of nodes n ∈ {50, 100, 150}.
Table 2 shows computational results for the robust default formulation and

two different approaches for using recycled inequalities. The first approach recy-
cles all constraints

∑
e∈δ(v) xe ≤ 1 for v ∈ V . The second approach additionally

separates violated recycled inequalities corresponding to dominated inequalities∑
e∈E′ xe ≤ 1 with E′ ⊆ δ (v) for v ∈ V in the root node of the branching tree.
It is evident that recycling inequalities is significantly better than solely using

the default formulation. We observe a significant strengthening of the formula-
tion, leading to a reduction of the integrality gap to nearly one-hundredth for
n = 150 nodes. This strength also translates to a higher number of instances
solved and much lower computation times. For n = 150, recycling constraints
leads to a speedup of more than 1000% with Gurobi’s cuts enabled.

The reduced integrality gap obtained by recycling dominated constraints
compared to the sole recycling of constraints

∑
e∈δ(v) xe ≤ 1 shows that recy-

cling dominated inequalities can improve the strength of the linear relaxation
in practice. However, as the recycled constraints already perform very well for
these instances, the improvement in the linear relaxation is very small. In fact,
the minor strengthening of the linear relaxation cannot compensate for the com-
putational load imposed by the additional inequalities, which leads to higher
computation times.

In any case, recycling valid inequalities yields a significant speed-up com-
pared to the default formulation. First experiments with adapted MIPLIB [12]
instances, which will be part of the full paper, confirm that this is also true for
a broad set of different robust problems. Here, we even observe that recycling
dominated inequalities can have a strong positive effect on the strength of the
linear relaxation.

70 C. Büsing et al.

5 Conclusion

In this paper, we proposed and analyzed recycled inequalities for robust combi-
natorial optimization problems with budget uncertainty. These can be derived in
linear time from valid inequalities for the nominal problem, which gives the possi-
bility to easily reuse model constraints and well known classical valid inequalities
in order to strengthen the linear relaxation of the robust problem. We highlighted
the theoretical strength of recycled inequalities by proving that they often define
facets of the convex hull of the robust problem, even when the underlying valid
inequality is dominated.

Our preliminary computational experiments reveal that recycled inequalities
are not only interesting from a theoretical point of view, but can also yield a
substantial speed-up in the optimization process. They thus extend the bound-
aries of computational tractability for one of the most popular approach for
integrating uncertainties into optimization problems.

Acknowledgements. This work was partially supported by the German Federal Min-
istry of Education and Research (grants no. 05M16PAA) within the project “Health-
FaCT - Health: Facility Location, Covering and Transport”, the Freigeist-Fellowship of
the Volkswagen Stiftung, and the German research council (DFG) Research Training
Group 2236 UnRAVeL.

Code Availability. All tested algorithms have been implemented in Java and are
available on GitHub, see [10].

Data Availability. All test instances used in our computational study are published

and available for download, sharing, and reuse, see [11].

References

1. Achterberg, T.: Constraint integer programming. Ph.D. Thesis, Technische Uni-
versitat Berlin (2007)

2. Álvarez-Miranda, E., Ljubić, I., Toth, P.: A note on the Bertsimas & Sim algorithm
for robust combinatorial optimization problems. 4OR 11(4), 349–360 (2013)

3. Atamtürk, A.: Strong formulations of robust mixed 0–1 programming. Math. Pro-
gram. 108(2–3), 235–250 (2006)

4. Bertsimas, D., Dunning, I., Lubin, M.: Reformulation versus cutting-planes for
robust optimization. CMS 13(2), 195–217 (2016)

5. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. 98(1–3), 49–71 (2003)

6. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
7. Büsing, C., Gersing, T., Koster, A.M.: A branch and bound algorithm for robust

binary optimization with budget uncertainty. Math. Program. Comput. (2023).
https://doi.org/10.1007/s12532-022-00232-2

8. Conforti, M., Cornuéjols, G., Zambelli, G., et al.: Integer Programming, vol. 271.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11008-0

9. Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain
(integer) linear programs. Math. Program. Comput. 4(3), 239–273 (2012)

https://doi.org/10.1007/s12532-022-00232-2
https://doi.org/10.1007/978-3-319-11008-0

Recycling Inequalities for Robust Combinatorial Optimization 71

10. Gersing, T.: Algorithms for robust binary optimization, December 2022. https://
doi.org/10.5281/zenodo.7463371

11. Gersing, T., Büsing, C., Koster, A.: Benchmark Instances for Robust Combinato-
rial Optimization with Budgeted Uncertainty, December 2022. https://doi.org/10.
5281/zenodo.7419028

12. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library. Math. Program. Comput. 13(3), 443–490 (2021). https://doi.
org/10.1007/s12532-020-00194-3

13. Gurobi Optimization, LLC: Gurobi optimizer reference manual, version 9.5 (2022).
http://www.gurobi.com

14. Hansknecht, C., Richter, A., Stiller, S.: Fast robust shortest path computations. In:
18th Workshop on Algorithmic Approaches for Transportation Modelling, Opti-
mization, and Systems (ATMOS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)

15. Johnson, D.S., Trick, M.A.: Cliques, coloring, and satisfiability: second DIMACS
implementation challenge, 11–13 October 1993, vol. 26. American Mathematical
Society (1996)

16. Joung, S., Park, S.: Robust mixed 0–1 programming and submodularity. INFORMS
J. Optim. 3(2), 183–199 (2021). https://doi.org/10.1287/ijoo.2019.0042

17. Lee, T., Kwon, C.: A short note on the robust combinatorial optimization problems
with cardinality constrained uncertainty. 4OR 12(4), 373–378 (2014)

18. Padberg, M.W.: On the facial structure of set packing polyhedra. Math. Program.
5(1), 199–215 (1973)

19. Park, K., Lee, K.: A note on robust combinatorial optimization problem. Manag.
Sci. Financ. Eng. 13(1), 115–119 (2007)

20. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems, vol. 31. Springer, New York (2013).
https://doi.org/10.1007/978-1-4757-4388-3

https://doi.org/10.5281/zenodo.7463371
https://doi.org/10.5281/zenodo.7463371
https://doi.org/10.5281/zenodo.7419028
https://doi.org/10.5281/zenodo.7419028
https://doi.org/10.1007/s12532-020-00194-3
https://doi.org/10.1007/s12532-020-00194-3
http://www.gurobi.com
https://doi.org/10.1287/ijoo.2019.0042
https://doi.org/10.1007/978-1-4757-4388-3

Inapproximability of Shortest Paths
on Perfect Matching Polytopes

Jean Cardinal1 and Raphael Steiner2(B)

1 Université Libre de Bruxelles (ULB), Brussels, Belgium
jean.cardinal@ulb.be

2 ETH Zurich, Zürich, Switzerland

raphaelmario.steiner@inf.ethz.ch

Abstract. We consider the computational problem of finding short
paths in the skeleton of the perfect matching polytope of a bipartite
graph. We prove that unless P = NP, there is no polynomial-time algo-
rithm that computes a path of constant length between two vertices
at distance two of the perfect matching polytope of a bipartite graph.
Conditioned on P �= NP, this disproves a conjecture by Ito, Kakimura,
Kamiyama, Kobayashi and Okamoto [SIAM Journal on Discrete Math-
ematics, 36(2), pp. 1102-1123 (2022)]. Assuming the Exponential Time
Hypothesis we prove the stronger result that there exists no polynomial-
time algorithm computing a path of length at most

(
1
4

− o(1)
)

logN
log logN

between two vertices at distance two of the perfect matching polytope of
an N -vertex bipartite graph. These results remain true if the bipartite
graph is restricted to be of maximum degree three.

The above has the following interesting implication for the perfor-
mance of pivot rules for the simplex algorithm on simply-structured
combinatorial polytopes: If P �= NP, then for every simplex pivot rule
executable in polynomial time and every constant k ∈ N there exists
a linear program on a perfect matching polytope and a starting vertex
of the polytope such that the optimal solution can be reached using
only two monotone non-degenerate steps from the starting vertex, yet
the pivot rule will require at least k non-degenerate steps to reach the
optimal solution. This result remains true in the more general setting of
pivot rules for so-called circuit-augmentation algorithms.

Keywords: Perfect matching polytopes · Simplex method · Pivot
rules · Circuit augmentations · Combinatorial reconfiguration

1 Introduction

The history of linear programming is intimately intertwined with that of
Dantzig’s simplex algorithm. While the simplex and its many variants are among

R. Steiner–Supported by an ETH Postdoctoral Fellowship.
A full version of this article can be found at https://arxiv.org/abs/2210.14608. Proofs
of statements marked with � are deferred to the full version.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 72–86, 2023.
https://doi.org/10.1007/978-3-031-32726-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_6&domain=pdf
http://orcid.org/0000-0002-2312-0967
http://orcid.org/0000-0002-4234-6136
https://arxiv.org/abs/2210.14608
https://doi.org/10.1007/978-3-031-32726-1_6

Inapproximability of Shortest Paths on Perfect Matching Polytopes 73

the most studied algorithms ever, a number of fundamental questions remain
open. It is not known, for instance, whether there exists a pivot rule that makes
the simplex method run in strongly polynomial time. Since the publication of the
first examples of linear programs that make the original simplex algorithm run
in exponential time, many alternative pivot rules have been proposed, fostering
a tremendous amount of work in the past 75 years, both from the combinatorial
and complexity-theoretic point of views.

The simplex algorithm follows a monotone path on the skeleton of the poly-
tope defining the linear program. The following natural question was recently
raised by De Loera, Kafer, and Sanità [16]:

“Can one hope to find a pivot rule that makes the simplex method use a shortest
monotone path?”.

As an answer, they proved that given an initial solution to a linear program,
it is NP-hard to find a (2−ε)-approximate shortest monotone path to an optimal
solution. It implies that unless P = NP, no polynomial-time pivot rule for the
simplex can be guaranteed to reach an optimal solution in a minimum number
of (non-degenerate) steps.

A similar result can also be deduced from two independent contributions, by
Aichholzer, Cardinal, Huynh, Knauer, Mütze, Steiner, and Vogtenhuber [2] on
the one hand, and by Ito, Kakimura, Kamiyama, Kobayashi, and Okamoto [29]
on the other hand. They proved that the above result holds for perfect matching
polytopes of planar and bipartite graphs, albeit with a slightly weaker inapprox-
imability factor of 3/2 instead of 2. Ito et al. [29] conjecture that there exists
a constant-factor approximation algorithm for the problem of finding a shortest
path between two perfect matchings on the perfect matching polytope.

Our main result is a disproof of this conjecture under the P �= NP assump-
tion: Strengthening the previous inapproximability results mentioned above, we
show that unless P = NP no C-approximation for a shortest path between two
vertices at distance 2 of a bipartite perfect matching polytope can be found in
polynomial time, for any (arbitrarily large) choice of C > 0. We also give an
even stronger inapproximability result under the Exponential Time Hypothesis
(ETH). The latter states that the 3-SAT problem cannot be solved in worst-case
subexponential time, and is one of the main computational assumptions of the
fine-grained complexity program [39]. As a consequence, there is not much hope
of finding a pivot rule for the simplex algorithm yielding good approximations
of the shortest path towards an optimal solution, even when the linear program
is integer and its associated matrix totally unimodular.

1.1 Our Result

We consider the complexity of computing short paths on the 0/1 polytope asso-
ciated with perfect matchings of a bipartite graph. Given a balanced bipartite
graph G = (V,E), where V is partitioned into two equal-size independent sets
A and B, we define the perfect matching polytope PG ⊆ R

E of G as the convex
hull of the 0/1 incidence vectors of perfect matchings of G.

74 J. Cardinal and R. Steiner

It is well-known (see e.g. Chapter 18 in [38]) that for bipartite graphs G,
there is a nice halfspace representation of PG. An edge-vector (xe)e∈E ∈ R

E is
in PG if and only if the following hold.

∑

e�v

xe = 1, (∀v ∈ V) (1)

xe ≥ 0, (∀e ∈ E). (2)

The above is a compact encoding of PG, with a number of constraints and
variables of size polynomial in G. The assumption that G is bipartite is crucial
here: For non-bipartite G the polytope defined by the above constraints has
non-integral vertices and is thus not a representation of PG [38]. The matrix
of this representation of a perfect matching polytope of a bipartite graph G is
simply the vertex-edge-incidence matrix of G, which is totally unimodular. The
problem of maximizing a linear functional wT x subject to constraints (1) and
(2) corresponds exactly to the problem of finding a perfect matching M of G
whose weight

∑
e∈M we is maximal.

Given that the simplex algorithm moves along the edges of a polytope, it is
crucial for our considerations to understand adjacency of vertices on PG. The
following result is well-known [13,30].

Lemma 1. For a bipartite graph G, two vertices of PG corresponding to two
perfect matchings M1 and M2 are adjacent in the skeleton of PG if and only if
the symmetric difference M1ΔM2 is a cycle in G.

This cycle is said to be alternating in both matchings, and one matching can
be obtained from the other by flipping this alternating cycle. In general, we will
say that two perfect matchings are at distance at most k from each other on PG,
for some positive integer k, if one can be obtained from the other by successively
flipping at most k alternating cycles.

Fig. 1. Two perfect matchings at distance two on the perfect matching polytope, but
whose symmetric difference consists of an arbitrarily large number of even cycles.

Inapproximability of Shortest Paths on Perfect Matching Polytopes 75

Note that given any two perfect matchings M1 and M2 of a bipartite graph
G, it is always the case that M1ΔM2 is a collection of vertex-disjoint even cycles
that are alternating in both matchings. The number of such cycles is therefore
an upper bound on the distance between M1 and M2 on PG. Interestingly, this
upper bound can be arbitrarily larger than the actual distance. Figure 1 shows
a construction of a graph G with two matchings at distance two on PG, whose
symmetric difference consists of an arbitrary number of cycles.

Our main result is the following.

Theorem 1. Let k ≥ 2 be any fixed integer. Unless P = NP, there does not
exist any polynomial-time algorithm solving the following problem:

Input: A bipartite graph G of maximum degree 3 and a pair of perfect matchings
M1,M2 of G at distance at most 2 on the polytope PG.

Output: A path from M1 to M2 in the skeleton of PG, of length at most k.

More strongly, for every absolute constant δ > 0, unless the Exponen-
tial Time Hypothesis fails, no polynomial-time algorithm can solve the above
problem when k is allowed to grow with the number N of vertices of G as
k(N) =

⌊(
1
4 − δ

)
log N

log log N

⌋
.

A path on the perfect matching polytope of a bipartite graph G is said
to be monotone with respect to some weight vector w = (we)e∈E ∈ R

E on the
edges of G if the perfect matchings along the path have monotonically increasing
total weights. Given two perfect matchings M1 and M2 at distance two on the
perfect matching polytope, one can assign weights to edges so that (i) the path
of length two between them is strictly monotone, and (ii) M2 is the unique
matching of maximal weight (this will be formally proven later in Lemma 4).
This allows us to formulate our result as one about the hardness of reaching an
optimal solution from a given feasible solution of a linear program on the perfect
matching polytope.

Corollary 1. Unless P = NP, there does not exist any polynomial-time
constant-factor approximation algorithm for the following optimization problem:

Input: A bipartite graph G = (V,E) of maximum degree 3, a weight function
E → R

+, and a perfect matching M of G.
Output: A shortest monotone path on PG from M to a maximum-weight perfect

matching of G.

Furthermore, assuming ETH, for an arbitrary but fixed δ > 0 no polynomial-
time algorithm can achieve an approximation ratio of less than

(
1
8 − δ

)
log N

log log N ,
where N := |V (G)|.

This corollary can be further interpreted as a statement on the existence
of a polynomial-time pivot rule that would make the simplex method use an
approximately shortest monotone path to a solution. Any such pivot rule could
be used as an approximation algorithm for the above problem, contradicting

76 J. Cardinal and R. Steiner

the computational hypotheses. While making this statement, it is important to
point out that here (and throughout this paper) we always measure the number
of non-degenerate steps during an execution of a pivot rule for the simplex
algorithm, and not the natural alternative, which would be the number of all
steps (including both degenerate and non-degenerate steps). A degenerate step in
a simplex algorithm here means a step that changes the basis of active variables,
but not the value of the current feasible solution.

1.2 Pivot Rules for Circuit-Augmentation Algorithms

Our work on distances in the skeleton of PG for bipartite graphs G was originally
motivated by questions regarding so-called circuit moves (or circuit augmenta-
tions), that have been recently studied in linear programming [11,15,16] as well
as in the context of relaxations of the Hirsch conjecture concerning the diameter
of polytopes [10,32]. A circuit move extends the simplex-paradigm of moving
along an incident edge of the constraint-polyhedron, by additionally allowing
to move along certain non-edge directions, called circuits. Given a linear pro-
gram, the circuits in a well-defined sense represent all possible edge-directions
that could occur after changing the right-hand side of the LP. The following is
a formal definition.

Definition 1 (cf. Definition 1 in [16]). Given a polyhedron of the form

P = {x ∈ R
n|Ax = b, Bx ≤ d},

a circuit is a vector g ∈ R
n \ {0} such that

1. Ag = 0, and
2. Bg is inclusion-wise support-minimal in the collection {By|Ay = 0, y �= 0}.

Given an LP {max cTx|x ∈ P} for a polyhedron P, a current feasible solution
x ∈ P and a circuit g with cTg > 0, a circuit move then consists of moving to a
new feasible solution x′ = x + t∗g, where t∗ ≥ 0 is maximal w.r.t. x + t∗g ∈ P.
Note that in general, an optimization algorithm based on a pivot rule for circuit
moves may traverse several non-vertices of the polyhedron before reaching an
optimal solution.

Our interest in the perfect matching polytope for understanding the com-
plexity of circuit-pivot algorithms came from the following statement (see the
full version for a proof).

Lemma 2 (�). Let G be a bipartite graph. Then if x is a vertex of PG, and
x′ �= x is obtained from x by a circuit move, then x′ is also a vertex of PG and
adjacent to x on the skeleton of PG.

This lemma implies that any sequence of circuit moves, applied starting from
a vertex of PG, will follow a monotone path on the skeleton of PG from vertex
to vertex. Consequently, Corollary 1 also yields an inapproximability result for
polynomial pivot rules for circuit augmentation, as follows.

Inapproximability of Shortest Paths on Perfect Matching Polytopes 77

Corollary 2. Unless P = NP, there does not exist a polynomial-time constant-
factor approximation algorithm for the following problem.

Input: A bipartite graph G of maximum degree 3, a vertex x ∈ PG and a linear
objective function.

Output: A shortest sequence of circuit moves on PG from x to an optimal solu-
tion.

Assuming ETH, no polynomial-time algorithm can achieve an approximation
ratio of less than

(
1
8 − δ

)
log N

log log N , where N := |V (G)| and δ > 0 is a constant.

A related inapproximability result (but for the largest improvement of the
objective function via a single circuit step) was obtained by Borgwardt, Brand,
Feldmann and Koutecký [9].

1.3 Related Works

Our work relates to two main threads of research in combinatorics and computer
science: one obviously related to the complexity of the simplex method and linear
programming in general, and another more recent one, aiming at building a thor-
ough understanding of the computational complexity of so-called combinatorial
reconfiguration problems.

Complexity of the Simplex Method. In 1972, Klee and Minty showed that
the original simplex method had an exponential worst-case behavior on what
came to be known as Klee-Minty cubes [34]. Since then, many other variants have
been shown to have exponential or superpolynomial lower bounds [4,7,19,24,31],
although subexponential rules are known [26]. More dramatic complexity results
have been obtained recently [1,20]. In particular, it was shown by Fearney and
Savani [21] that Dantzig’s original simplex method can solve PSPACE-complete
problems: Given an initial vertex, deciding whether some variable will ever be
chosen by the algorithm to enter the basis is PSPACE-complete. The simplex
method is also a key motivation for studying the diameter of polytopes, in par-
ticular the Hirsch conjecture, refuted in 2012 by Santos [37].

The hardness result on approximating monotone paths given by De Loera,
Kafer, and Sanità [16] is in fact a corollary of the NP-hardness of the follow-
ing problem: Given a feasible extreme point solution of the bipartite matching
polytope and an objective function, decide whether there is a neighbor extreme
point that is optimal. A related result for circulation polytopes was proved by
Barahona and Tardos [5]. These two results, as well as the hardness results from
Aichholzer et al. [2] and Ito et al. [29] rely on the NP-hardness of the Hamil-
tonian cycle problem. In order to deal with the approximability of the shortest
path, we have to resort to more recent inapproximability results on the longest
cycle problem [6].

78 J. Cardinal and R. Steiner

Reconfiguration of Matchings. The field of combinatorial reconfiguration
deals with the problems of transforming a given discrete structure, typically
a feasible solution of a combinatorial optimization problem, into another one
using elementary combinatorial moves [23,27,28,36]. The reachability problem,
for instance, asks whether there exists such a transformation, while the shortest
reconfiguration path problem asks for the minimum number of elementary moves.

A number of recent works in this vein deal with reconfiguration of matchings
in graphs [8,12,25,28,33]. Ito et al. [28] proved that the reachability problem
between matchings of size at least some input number k and under single edge
addition or removal was solvable in polynomial time. This was extended to an
adjacency relation involving two edges by Kaminsḱı, Medvedev and Milanić [33].
The problem of finding the shortest reconfiguration path under this model was
shown to be NP-hard [12,25]. Another line of work involves flip graphs on perfect
matchings in which the adjacency relation corresponds to flips of alternating
cycles of length exactly four [8,14,17,18,35]. Note that for bipartite graphs,
this flip graph is precisely the subgraph of the skeleton of the perfect matching
polytope that consists of edges of length two. Bonamy, Bousquet, Heinrich, Ito,
Kobayashi, Mary, Mühlentaler and Wasa [8] proved that the reachability problem
in these flip graphs is PSPACE-complete.

2 Proof of Theorem 1

2.1 Preliminaries

First note that perfect matchings of a bipartite graph G = (A ∪ B,E) with
|A| = |B| can also be represented by orientations of G in which every vertex
in A has outdegree one and every vertex in B has indegree one. The edges of
the matching are those oriented from A to B. Alternating cycles in a perfect
matching are one-to-one with directed cycles in this orientation, and flipping the
cycle amounts to reverting the orientations of all its arcs. We will switch from
one representation to another when convenient.

We prove Theorem 1 by reducing from the problem of approximating the
longest directed cycle in a digraph. We rely on the following two results from
Björklund, Husfeldt, and Khanna given as Theorems 1 and 2 in [6].

Theorem 2 (Björklund, Husfeldt, Khanna [6]). Consider the problem of
computing a long directed cycle in a given Hamiltonian digraph D on n vertices.

1. For every fixed 0 < ε < 1, unless P = NP, there does not exist any polynomial-
time algorithm that returns a directed cycle of length at least nε in D.

2. For every polynomial-time computable increasing function f : N → N in
ω(1), unless the Exponential Time Hypothesis fails, there does not exist any
polynomial-time algorithm that returns a directed cycle of length at least
f(n) log n in D.

Inapproximability of Shortest Paths on Perfect Matching Polytopes 79

Note that in the two problems, the input graph is guaranteed to be Hamil-
tonian, yet it remains hard to explicitly construct a directed cycle of some guar-
anteed length. Characterising the approximability of the longest cycle problem
in undirected graphs is a longstanding open question [3,22].

The second ingredient of our proof is the following lemma, perhaps of inde-
pendent interest, that bounds the increase in length of a longest directed cycle
after a number of cycle flips in a digraph.

Lemma 3. Let G be an undirected graph, and let C1, . . . , Ct be a sequence of
(not necessarily distinct) cycles in G. Let D0,D1, . . . , Dt be a sequence of orien-
tations of G such that for each i ∈ [t] the cycle Ci is directed in Di−1 and such
that Di is obtained from Di−1 by flipping Ci.

There exists a polynomial-time algorithm that, given as input a number �,
the orientations D0, . . . , Dt and a directed cycle C in Dt of length |C| > �t+1,
computes a directed cycle in D0 of length at least �.

The bound of Lemma 3 can be shown to be essentially tight. We refer to the
full version of this paper for an explicit description of a directed graph whose
maximum directed cycle is of length �, but after a sequence of at most t cycle
flips, it contains a directed cycle of length at least (�/2)t+1.

2.2 Reduction

Fig. 2. Illustration of the reduction in the proof of Theorem 1. Every vertex in the
given Hamiltonian digraph D (left) is replaced by the depicted gadget (right), yielding
a maximum degree-three bipartite graph with a perfect matching.

We now give a proof of Theorem 1, assuming Lemma 3.

Proof (Theorem 1). We consider the first problem in Theorem 2: For a fixed
ε > 0, given a Hamiltonian digraph D on n vertices, return a directed cycle of
length at least nε. We first construct a digraph D′ from D by replacing every
vertex v of D by the gadget illustrated on Fig. 2. The gadgets are obtained by
applying the following transformations1 to every vertex v of D:

1 We note that the sole prupose of splitting vertices into binary trees is to restrict
the maximum degree of the graph, the remainder of the proof is only based on the
4-cycles in the middle of the gadgets.

80 J. Cardinal and R. Steiner

1. The set of incoming arcs of v is decomposed into a balanced binary tree with
deg−

D(v) leaves and a degree-one root identified to v. Each internal node of
this binary tree (that is, all nodes except for the leaves and the roots of degree
1) is further split into an arc. All arcs of the tree are oriented towards the
root.

2. The set of outgoing arcs are split into a tree with deg+D(v) leaves in a similar
fashion, with all arcs oriented away from the root. The roots of the in- and
out-trees are both identified with v and thus equal to each other.

3. Finally, the vertex v itself is replaced by a directed 4-cycle, such that the
single incoming arc from the first tree and the single outgoing arc from the
second tree have adjacent endpoints on the cycle.

Fig. 3. Flipping the 4-cycles of each gadget in D′ can be done with two successive cycle
flips, using the Hamiltonian cycle of D.

The digraph D′ thus obtained is bipartite and subcubic.
Furthermore, it is easy to see by construction that for every vertex v ∈ V (D),

the corresponding gadget in D′ has at most

4deg−
D(v) + 4 + 4deg+D(v) ≤ 8(n − 1) + 4 < 8n

vertices, such that N := |V (D′)| < n · 8n = 8n2, and D′ is of polynomial size.
Furthermore, the orientation of D′ is such that every vertex in one side of

the bipartition has outdegree one, and every vertex in the other has indegree
one, hence it corresponds to a perfect matching M1. By flipping the alternating
4-cycle in each gadget, we obtain another perfect matching M2. We observe that
M2 can be obtained from M1 in two cycle flips, by using the Hamiltonian cycle
of D twice (see Fig. 3). Hence, while M1ΔM2 consists of n disjoint 4-cycles, M2

is in fact at distance two from M1 on the perfect matching polytope of D′. The
underlying undirected graph of D′ together with the two perfect matchings M1

and M2 therefore constitute an instance of the problem described in Theorem 1.
We now show that any sequence of length at most k of alternating cycle flips

Inapproximability of Shortest Paths on Perfect Matching Polytopes 81

transforming M1 into M2 can be turned in polynomial time into a cycle of length
at least nε in D, for some ε > 0 depending solely on k.

Consider a sequence of k cycles C ′
1, C

′
2, . . . , C

′
k in the underlying graph of D′,

such that C ′
1 is alternating with respect to the matching M1 in D′ (and thus

a directed cycle in D′); for every i = 2, . . . , k the cycle C ′
i is alternating with

respect to the perfect matching M1ΔC1Δ · · · ΔCi−1 (and thus a directed cycle
in the digraph obtained from D′ after flipping the cycles C ′

1, C
′
2, . . . , C

′
i−1, in this

order); and such that flipping all k alternating cycles in sequence transforms M1

into M2. Observe that the sum of the lengths of the cycles in this sequence must
be at least n, since all the orientations of the 4-cycles in the n different gadgets
in D′ have to be flipped, and since every single cycle C ′

i can intersect at most
|C ′

i| different gadget-4-cycles. Let � =
n1/(k+2)�. We have

k∑

i=1

|C ′
i| ≥ n = (1 − o(1))�k+2 >

k∑

i=1

�i+1,

hence from the pigeonhole principle, at least one cycle C ′
i in the sequence has

length |C ′
i| > �i+1. From Lemma 3, applied with this value of i, we can now

compute in polynomial time a directed cycle in D′ of length at least nε′
for

ε′ = 1/(k + 2). Let us call this cycle C ′. Note that for every gadget in D′

corresponding to a vertex v of D, either C ′ is vertex-disjoint from this gadget,
or it traverses it via exactly one directed path, consisting of a leaf-to-root path
in the in-tree, a directed path of length 7 touching the 4-cycle of the gadget, and
then a root-to-leaf path in the out-tree. From this it follows that by contracting
the edges of the gadgets, the cycle C ′ in D′ can be mapped to a cycle C in D.
Note that the in- and out-degree of a vertex in D is at most n − 1, thus all
the in- and out-trees in D′ corresponding to the gadgets have depth at most
2
log2 n�. Consequently, the length of C ′ can be shrinked by at most a factor of
4
log2 n� + 7 by contracting the gadgets. In other words, we obtain a directed
cycle C in D of length at least nε′

/(4
log2 n� + 7) = nε, for ε = ε′ − o(1).
Hence if we can obtain in polynomial time a sequence of at most k = O(1) flips
transforming M1 into M2, we can also find a cycle of length at least nε in D for
some fixed ε > 0. This establishes the first statement of Theorem 1.

It remains to prove the second statement. We consider the second problem
in Theorem 2, in which we seek a path of length at least f(n) log n, for some
computable function f(n) = ω(1). Suppose that for some δ > 0 there is a
polynomial-time algorithm that can find a sequence of at most k = k(N) =⌊(

1
4 − δ

)
log N

log log N

⌋
flips transforming M1 into M2. Note that for n large enough

k + 2 ≤
(

1
4

− δ

)
log 8n2

log log 8n2
+ 2 <

1
2
(1 − δ)

log n

log log n
.

82 J. Cardinal and R. Steiner

Now, from the same reasoning as above, we can turn such an algorithm into
a polynomial-time algorithm that finds a directed cycle in D of length at least

n1/(k+2)

4
log2 n� + 7
>

n2·log log n/((1−δ) log n)

O(log n)
= Ω

(
log2/(1−δ) n

log n

)
= f(n) log n,

for a computable function f(n) = Ω(log2δ/(1−δ) n) = ω(1). This, from Theo-
rem 2, is impossible unless the Exponential Time Hypothesis fails. �

In order to deduce Corollary 1 from Theorem 1, we need the following lemma.

Lemma 4 (�). Given a bipartite graph G = (V,E), let M1 and M2 be two
perfect matchings in G at distance two on the perfect matching polytope, hence
such that M2 = (M1ΔC1)ΔC2 for some pair C1, C2 of cycles in G, and such that
M1ΔC1 =: M ′ is also a perfect matching. Then there exists a weight function
w : E → R

+ such that

1. M2 is the unique maximum-weight perfect matching of G,
2. w(M1) < w(M ′) < w(M2) (where w(M) =

∑
e∈M w(e)).

In other words, there exists a linear program over the perfect matching polytope
of G such that the path M1,M1ΔC1 = M ′ = M2ΔC2,M2 is a strictly monotone
path and M2 is the unique optimum.

2.3 Proof of Lemma 3

Proof (Lemma 3). Let the orientations D0,D1, . . . , Dt of G be given as input,
together with a directed cycle C in Dt and a number � ∈ N such that |C| > �t+1.

Our algorithm starts by computing the sequence of cycles C1, . . . , Ct by deter-
mining for each i ∈ [t] the set of edges with different orientation in Di−1 and Di.
Next we compute in polynomial time the subgraph H of G which is the union
of the cycles C1, . . . , Ct in G. We in particular compute a list of the vertex sets
of its connected components, which we call Z1, . . . , Zc for some number c ≥ 1.

We need the following fact, proved in the full version:
Claim ✢ (�). For each r ∈ [c] the induced subdigraph D0[Zr] of D0 is

strongly connected.
Let (x0, x1, . . . , xk−1, xk = x0) be the cyclic list of vertices on the directed

cycle C in Dt, with edges oriented from xi to xi+1 for all i ∈ [k − 1]. By
assumption on the input, we have k = |C| > �t+1.

We first check if C is vertex-disjoint from H, in which case we may return
C, which is then also a directed cycle in D0 of length k > �t+1 ≥ �, as desired.

Otherwise, C intersects some of the components of H. We then for each
vertex xi ∈ V (C) compute a label lab(xi) ∈ [c + 1], defined as lab(xi) := r if
xi ∈ Zr lies in the r-th component of H, and lab(xi) := c+1 if xi is not a vertex
of H. We next compute an auxiliary weighted directed multigraph M on the
vertex set [c] as follows: For every maximal subsequence of C, of length at least

Inapproximability of Shortest Paths on Perfect Matching Polytopes 83

two, of the form xi, xi+1, . . . , xj (addition to be understood modulo k) such that
lab(xs) = c+1 for all s = i+1, . . . , j −1 (if any), we add an additional arc from
lab(xi) to lab(xj) and give it weight j − i, the corresponding number of arcs in
C. Note that the total arc weight in M is exactly |C|, while the total number of
arcs is exactly |V (C) ∩ V (H)| ≤ |V (H)|. The construction of M is illustrated in
Fig. 4.

Fig. 4. Construction of the auxiliary directed multigraph M in the proof of Lemma 3.
The cycle C is shown on the left, together with the connected components of H that
it intersects. The resulting weighted directed multigraph M is shown on the right.

Furthermore, by definition every vertex in M has the same number of incom-
ing and outgoing arcs. Hence, we may compute in polynomial time an edge-
disjoint decomposition of M into directed cycles (including possible loops) in
M . Let W1, . . . ,Wp for some p ∈ N be the list of edge-disjoint directed cycles in
this decomposition of M . We now create, for each Wi, a directed cycle Ki in D0

of length |Ki| ≥ weight(Wi), where weight(Wi) is the total arc weight of Wi, as
follows: Let (l0, l1, . . . , ls = l0) be the cyclic vertex-sequence of Wi.

For each arc (lj , lj+1) in Wi, we consider the corresponding subsequence
P (lj , lj+1) of C which starts in Zlj , ends in Zlj+1 , and all whose internal vertices
are not contained in H. We note that since arcs outside H have the same orien-
tation in D0 and Dt, the subsequence P (lj , lj+1) is a directed path or a directed
cycle also in D0 which starts in Zlj and ends in Zlj+1 .

We first check whether there exists an index j such that P (lj , lj+1) is a
directed cycle. In this case, necessarily Wi is a loop (i.e. s = 0) and lj = lj+1 = l0.
We thus may simply put Ki := P (lj , lj+1), with weight(Wi) = |Ki| satisfied by
definition of the weights in M .

Otherwise, each of the P (lj , lj+1) is a directed path in D0. We now make
use of Claim ✢, which tells us that D0[Zlj] is strongly connected for every
j = 0, 1, . . . , s − 1. We may therefore compute in polynomial time for each j =
0, 1, . . . , s−1 a directed path Qj in D0[Zlj] (possibly consisting of a single vertex)
which connects the endpoint of P (lj−1, lj) to the starting point of P (lj , lj+1)
(index-addition modulo s). Crucially, note that any two directed paths in the
collection {P (lj , lj+1), Qj |j = 0, 1, . . . , s−1} are vertex-disjoint except for shared
common endpoints. We now compute the directed cycle Ki in D0, which is
the union of the directed paths P (lj , lj+1) and the directed paths Qj for j =
0, . . . , s − 1. It is clear that its length |Ki| is lower-bounded by the sum of the

84 J. Cardinal and R. Steiner

lengths of the P (lj , lj+1), which by definition of M equals the sum of arc-weights
on Wi, i.e., we indeed have |Ki| ≥ weight(Wi) also in this case.

After having computed the directed cycles K1, . . . ,Kp in D0, the algorithm
checks whether one of the cycles has length |Ki| ≥ �. If so, it returns the cycle
Ki and the algorithm stops with the desired output. Otherwise, we have |Ki| < �
for i = 1, . . . , p, which implies that

�t+1 < |C| = weight(M) =
p∑

i=1

weight(Wi) ≤
p∑

i=1

|Ki| ≤ p(� − 1).

Note that p is at most as large as the number of arcs in M , which in turn is
bounded by |V (H)|. We thus obtain

�t+1 < |V (H)| · (� − 1) ≤
t∑

i=1

|Ci| · (� − 1).

This yields that
t∑

i=1

|Ci| >
�t+1

� − 1
>

t∑

i=1

�i.

Therefore there exists i ∈ {1, . . . , t} such that |Ci| > �i. The algorithm proceeds
by finding one cycle Ci with this property. Note that Ci is a directed cycle in
the orientation Di−1 of G. Hence a recursive call of the algorithm to the input
D0,D1, . . . , Di−1 and the cycle Ci will yield a directed cycle of length at least �
in D0, as desired. This proves the correctness of the described algorithm. As all
steps between two recursive calls are executable in polytime in the size of G and
t, and since there will clearly be at most t − 1 recursive calls in any execution of
the algorithm, the whole algorithm runs in polynomial time, as desired. �

References

1. Adler, I., Papadimitriou, C., Rubinstein, A.: On simplex pivoting rules and com-
plexity theory. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 13–24.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07557-0 2

2. Aichholzer, O., et al.: Flip distances between graph orientations. Algorithmica
83(1), 116–143 (2021)

3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
4. Avis, D., Friedmann, O.: An exponential lower bound for Cunningham’s rule.

Math. Program. 161(1–2), 271–305 (2017)
5. Barahona, F., Tardos, É.: Note on Weintraub’s minimum-cost circulation algo-

rithm. SIAM J. Comput. 18(3), 579–583 (1989)
6. Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths

and cycles. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-27836-8 21

https://doi.org/10.1007/978-3-319-07557-0_2
https://doi.org/10.1007/978-3-540-27836-8_21
https://doi.org/10.1007/978-3-540-27836-8_21

Inapproximability of Shortest Paths on Perfect Matching Polytopes 85

7. Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res.
2(2), 103–107 (1977)

8. Bonamy, M., et al.: The perfect matching reconfiguration problem. In: Rossmanith,
P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium on Mathemat-
ical Foundations of Computer Science, MFCS 2019, August 26–30, 2019, Aachen,
Germany. LIPIcs, vol. 138, pp. 80:1–80:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019)

9. Borgwardt, S., Brand, C., Feldmann, A.E., Koutecký, M.: A note on the approx-
imability of deepest-descent circuit steps. Oper. Res. Lett. 49(3), 310–315 (2021)

10. Borgwardt, S., Finhold, E., Hemmecke, R.: On the circuit diameter of dual trans-
portation polyhedra. SIAM J. Discrete Math. 29(1), 113–121 (2015)

11. Borgwardt, S., Viss, C.: A polyhedral model for enumeration and optimization over
the set of circuits. Discret. Appl. Math. 308, 68–83 (2022)

12. Bousquet, N., Hatanaka, T., Ito, T., Mühlenthaler, M.: Shortest reconfiguration
of matchings. In: Sau, I., Thilikos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp.
162–174. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30786-8 13

13. Chvátal, V.: On certain polytopes associated with graphs. J. Comb. Theory, Ser.
B 18(2), 138–154 (1975)

14. Cioabă, S.M., Royle, G., Tan, Z.K.: On the flip graphs on perfect matchings of com-
plete graphs and signed reversal graphs. Australas. J. Comb. 81, 480–497 (2021)

15. De Loera, J.A., Hemmecke, R., Lee, J.: On augmentation algorithms for linear and
integer-linear programming: from Edmonds-Karp to Bland and beyond. SIAM J.
Optim. 25(4), 2494–2511 (2015)

16. De Loera, J.A., Kafer, S., Sanità, L.: Pivot rules for circuit-augmentation algo-
rithms in linear optimization. SIAM J. Optim. 32(3), 2156–2179 (2022)

17. Diaconis, P.W., Holmes, S.P.: Matchings and phylogenetic trees. Proc. Natl. Acad.
Sci. USA 95(25), 14600–14602 (1998)

18. Diaconis, P.W., Holmes, S.P.: Random walks on trees and matchings. Electron. J.
Probab. 7(6), 1–17 (2002)

19. Disser, Y., Friedmann, O., Hopp, A.V.: An exponential lower bound for Zadeh’s
pivot rule. CoRR abs/1911.01074 (2019). http://arxiv.org/abs/1911.01074

20. Disser, Y., Skutella, M.: The simplex algorithm is NP-mighty. ACM Trans. Algo-
rithms 15(1), 5:1–5:19 (2019)

21. Fearnley, J., Savani, R.: The complexity of the simplex method. In: Servedio, R.A.,
Rubinfeld, R. (eds.) Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14–17, 2015, pp.
201–208. ACM (2015)

22. Gabow, H.N., Nie, S.: Finding a long directed cycle. ACM Trans. Algorithms 4(1),
7:1–7:21 (2008)

23. Gima, T., Ito, T., Kobayashi, Y., Otachi, Y.: Algorithmic meta-theorems for com-
binatorial reconfiguration revisited. In: Chechik, S., Navarro, G., Rotenberg, E.,
Herman, G. (eds.) 30th Annual European Symposium on Algorithms, ESA 2022,
September 5–9, 2022, Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 61:1–61:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

24. Goldfarb, D., Sit, W.Y.: Worst case behavior of the steepest edge simplex method.
Discret. Appl. Math. 1(4), 277–285 (1979)

25. Gupta, M., Kumar, H., Misra, N.: On the complexity of optimal matching reconfig-
uration. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds.) SOFSEM
2019. LNCS, vol. 11376, pp. 221–233. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-10801-4 18

https://doi.org/10.1007/978-3-030-30786-8_13
http://arxiv.org/abs/1911.01074
https://doi.org/10.1007/978-3-030-10801-4_18
https://doi.org/10.1007/978-3-030-10801-4_18

86 J. Cardinal and R. Steiner

26. Hansen, T.D., Zwick, U.: An improved version of the random-facet pivoting rule
for the simplex algorithm. In: Servedio, R.A., Rubinfeld, R. (eds.) Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14–17, 2015, pp. 209–218. ACM (2015)

27. van den Heuvel, J.: The complexity of change. In: Blackburn, S.R., Gerke, S.,
Wildon, M. (eds.) Surveys in Combinatorics 2013, London Mathematical Society
Lecture Note Series, vol. 409, pp. 127–160. Cambridge University Press (2013)

28. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

29. Ito, T., Kakimura, N., Kamiyama, N., Kobayashi, Y., Okamoto, Y.: Shortest recon-
figuration of perfect matchings via alternating cycles. SIAM J. Discret. Math.
36(2), 1102–1123 (2022)

30. Iwata, S.: On matroid intersection adjacency. Discret. Math. 242(1–3), 277–281
(2002)

31. Jeroslow, R.G.: The simplex algorithm with the pivot rule of maximizing criterion
improvement. Discret. Math. 4(4), 367–377 (1973)

32. Kafer, S., Pashkovich, K., Sanità, L.: On the circuit diameter of some combinatorial
polytopes. SIAM J. Discret. Math. 33(1), 1–25 (2019)

33. Kaminski, M., Medvedev, P., Milanic, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

34. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Inequalities, III
(Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to
the memory of Theodore S. Motzkin), pp. 159–175. Academic Press, New York
(1972)

35. Monroy, R.F., Flores-Peñaloza, D., Huemer, C., Hurtado, F., Wood, D.R., Urrutia,
J.: On the chromatic number of some flip graphs. Discret. Math. Theor. Comput.
Sci. 11(2), 47–56 (2009)

36. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018)
37. Santos, F.: A counterexample to the Hirsch conjecture. Ann. Math. 176(1), 383–

412 (2012)
38. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms

and Combinatorics, vol. 24. Springer (2003)
39. Williams, V.V.: On some fine-grained questions in algorithms and complexity. In:

Proceedings of the International Congress of Mathematicians (ICM 2018), pp.
3447–3487. World Scientific (2018)

Monoidal Strengthening and Unique
Lifting in MIQCPs

Antonia Chmiela1, Gonzalo Muñoz2(B), and Felipe Serrano3

1 Zuse Institute Berlin, Berlin, Germany
chmiela@zib.de

2 Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile
gonzalo.munoz@uoh.cl

3 I2DAMO GmbH, Berlin, Germany

serrano@i2damo.de

Abstract. Using the recently proposed maximal quadratic-free sets
and the well-known monoidal strengthening procedure, we show how
to improve intersection cuts for quadratically-constrained optimization
problems by exploiting integrality requirements. We provide an explicit
construction that allows an efficient implementation of the strengthened
cuts along with computational results showing their improvements over
the standard intersection cuts. We also show that, in our setting, there
is unique lifting which implies that our strengthening procedure is gen-
erating the best possible cut coefficients for the integer variables.

Keywords: MIQCP · monoidal strengthening · unique lifting

1 Introduction

In recent years, we have seen multiple efforts in generating valid linear inequali-
ties to quadratically constrained quadratic programs (QCQPs) which, using an
epigraph formulation, we can assume have the form

min{c̄Ts : s ∈ S ⊆ R
p} (1)

where S = {s ∈ R
p : sTQis+bTi s+ci ≤ 0, i = 1, . . . ,m}. One of the approaches

to generate such valid inequalities has been the intersection cut paradigm [1,13,
19] which works as follows. We assume we have f �∈ S, a basic feasible solution of
a linear programming (LP) relaxation of (1). Additionally, we assume we have a
simplicial conic relaxation K ⊇ S with apex f , and an S-free set C—a convex set
satisfying int(C)∩S = ∅—such that f ∈ int(C). Using these ingredients, we can
find a cutting plane separating f from S. In Fig. 1 we show a simple intersection
cut in the case when all p rays of K intersect the boundary of the S-free set C. In
such case, the intersection cut is simply defined by the hyperplane containing all
such intersection points. It is well known that one can assume C to be described
as C = {s ∈ R

p : φ(s − f) ≤ 1} where φ is a sublinear function. For instance, φ

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 87–99, 2023.
https://doi.org/10.1007/978-3-031-32726-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_7&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_7

88 A. Chmiela et al.

Fig. 1. An intersection cut (red) separating f from S (blue). The cut is computed
using the intersection points of an S-free set C (green) and the rays of a simplicial
cone K ⊇ S (boundary in orange) with apex f �∈ S. Figure obtained from [8] (Color
figure online).

can be chosen as the gauge of C − f [17]. Further assuming w.l.o.g that the LP
relaxation is in standard form, we consider the constraint f +

∑p
i=1 risi ∈ S with

ri ∈ R
p (e.g. the extreme rays of K) and si ∈ R+. Under these considerations,

the intersection cut separating f is

p∑

i=1

φ(ri)si ≥ 1. (2)

In [8,16] a method for constructing maximal quadratic-free sets (which ensures
separation of any basic feasible solution f �∈ S) and a computational implemen-
tation was developed, with positive results in a broad class of problems.

One of the limitations of these cutting planes is that they do not use any
integrality information: if we were to add integrality requirements to (1)—thus
obtaining an MIQCP—the intersection cuts would be completely oblivious to
this.

In this work, we remedy this via the monoidal strengthening framework [2];
a strengthening of intersection cuts based on integrality information. Monoidal
strengthening leverages the fact that some of the si in (2) are integer. The idea
is to take the relation f +

∑p
i=1 risi ∈ S and modify it in the following way.

Assume that all si are restricted to be integer. The above relation implies that
f +

∑p
i=1(r

i + mi)si ∈ S +
∑p

i=1 misi. The points
∑p

i=1 misi form a monoid
M = {m : m =

∑p
i=1 misi, si ∈ Z+}, that is, M satisfies 0 ∈ M and M + M =

M . Thus, we obtain the new relation: f +
∑p

i=1(r
i + mi)si ∈ S + M . If it turns

out that C is still S + M free, then we can use the function φ to generate a new
cut. The above is summarized in the following result by Balas and Jeroslow.

Theorem 1 ([2] Theorem 1). Let M be a monoid such that C is S + M -free
and let I = {i ∈ [p] : si ∈ Z} be the index set of the integer variables. Then,

∑

i/∈I

φ(ri)si +
∑

i∈I

inf
m∈M

φ(ri + m)si ≥ 1

is valid and dominates the intersection cut.

Monoidal Strengthening and Unique Lifting in MIQCPs 89

There are two main challenges in this technique. Firstly, to find a monoid
M such that C stays S + M -free. Note that, equivalently, we can find a monoid
M such that C − M is (possibly non-convex) S-free1. Secondly, to efficiently
solve the problem ψ(r) := infm∈M φ(r + m) for r the rays associated to integer
non-basic variables and thus obtain a stronger cut coefficients. In this work we
tackle both tasks.

In most of this article S is defined using a single quadratic inequality. As noted
in [16], using linear transformations (diagonalization and homogenization), one
can shift the focus from a generic quadratic set, S = {s ∈ R

p : sTQs+ bTs+c ≤
0}, to one of the following two sets:

Sh := {(x, y) ∈ R
n+m : ‖x‖ ≤ ‖y‖}, (3)

Sg := {(x, y) ∈ R
n+m : ‖x‖ ≤ ‖y‖, aTx + dTy = −1}. (4)

where max{‖a‖, ‖d‖} = 1. Whether S gets mapped to Sh or Sg depends on
whether the quadratic defining S is homogeneous or not. Thus, one of the goals
of this paper will be: using C as maximal Sh- and Sg-free sets of [16], to find a
monoid M such that C is Sh +M - or Sg +M -free and, subsequently, strengthen
the corresponding intersection cut.

Monoidal strengthening is also related to lifting [3,9–11]. A nice property
of ψ is that it is subadditive2. This implies that with ψ we obtain sequence
independent lifting, i.e. we can apply the strengthening to all integer variables at
the same time. However, the monoidal lifting function ψ is, in general, just one
possible way of lifting. We can define the best possible coefficient that a particular
integer variable can achieve, with the so-called lifting function π [4,10].

π(r) = sup
{

1 − φ(s)
σ

: f + s + σr ∈ S, σ ∈ Z≥1

}

. (5)

In general, π is not subadditive so we do not have sequence independent lifting
with it [4]. When it is subadditive, we say that there is unique lifting, because π
dominates any other lifting. For the case S = Z

n ∩ P it is well understood when
we have unique lifting [3]. Our final goal is to show that in our setting there
is unique lifting; more specifically, we show that choosing φ to be a minimal
representation3 of C − f , we have that π = ψ.

Contributions. Our main contributions are: (1) we show that the monoidal
strengthening framework does not produce any strengthening when S is defined
using a homogeneous quadratic; (2) in the non-homogeneous case, we show a
family of cases where monoidal strengthening can be applied and an explicit
monoid construction based on a maximal Sg-free set of [16] which can be used
for this strengthening; (3) we show an explicit formula for how to efficiently
1 With a slight abuse of notation, we refer to a non-convex set C − M as S-free

whenever the convex set C − m is S-free for every m ∈ M .
2 A function ψ is subadditive if ψ(x + y) ≤ ψ(x) + ψ(y).
3 This means that if ρ is such that C = {s ∈ R

p : ρ(s − f) ≤ 1} then ρ(s) ≥ φ(s).

90 A. Chmiela et al.

compute ψ(r) in practice; (4) we show that in our setting there is unique lifting
which, in particular, implies that ψ yields the best coefficients in the strength-
ening of the intersection cut; and (5) we present extensive computational results
that show the impact of this strengthening procedure.

We remark that, even though our constructions are based on the structure
of one quadratic, they can also be applied to MIQCPs with multiple quadratic
inequalities: using our approach, it suffices to have one quadratic inequality being
violated in order to ensure separation.

In the interest of space, we do not present all details in this extended abstract.
We refer the reader to our preprint available in [7].

2 Monoidal Strengthening in the Homogeneous Case

In this section, we analyze the case of Sh and show that the monoidal strength-
ening framework does not produce any improvements when the cuts are created
using maximal Sh-free sets. The main reason behind this fact is that Sh is a
cone, and consequently every maximal Sh-free set is a convex cone [6, Corollary
3]4; we show below why this is not a good setting for monoidal strengthening. In
fact, the results in this section apply to a generic closed cone S and are stated
with respect to such set.

As mentioned before, for a given S-free set C, we are interested in finding a
monoid M such that C − M is S-free. The following result shows that in this
case C − M = M . We remark that cone(·) is the cone generated by a set, which
may not be convex.

Theorem 2. Let S,C ⊆ R
n where S is a closed cone and C is a convex maximal

S-free set. Let M ⊆ R
n be a monoid such that C−M is S-free, then C−M = C.

In particular, this implies that the cut obtained from monoidal strengthening
would be the same as the standard intersection cut obtained through C.

Proof (sketch). Since M is a monoid, 0 ∈ M and thus C ⊆ C − M . It can
be shown that cl cone(M) is a convex cone such that C − cl cone(M) is S-free.
Note that C − cl cone(M) is convex, and thus the maximality of C implies that
C − cl cone(M) ⊆ C. Since C − M ⊆ C − cl cone(M), we conclude C − M = C.

This last result shows that in the presence of a maximal S-free set C, there is
not much to be gained from the monoidal strengthening framework when S is
a cone. This negative property, nonetheless, can be reinterpreted as a way of
detecting “non-maximality” of an S-free set: if one could find a monoid M such
that C −M is S-free and C −M �= C, then C is not maximal. We formalize this
in the next result.

4 This citation deals with a particular set S, but the proof can be easily extended to
any conic set S.

Monoidal Strengthening and Unique Lifting in MIQCPs 91

(a) Slices of S (blue) and Cθ (orange) (b) Slices of S (blue) and C′
θ (orange)

Fig. 2. Three-dimensional slices of S, Cθ and C′
θ in Example 1 given by a = 1/10.

Proposition 1. Let S be a closed cone and let C be a full dimensional closed
convex S-free cone. If there exists r /∈ −C such that C is S + cone(r)-free, then
C is not a maximal S-free set. Furthermore, C + cone(−r) is S-free and strictly
contains C.

The next example illustrates an application of the last proposition, in a con-
nection with the work of [6].

Example 1. Consider the set S = {(a, b, c, d) ∈ R
4 : ad = bc, a ≥ 0}. Although

this set does not fall into either the forms Sh or Sg which are our main objects of
interest, it is still a closed conic set to which the results of this section apply. The
set S is studied in [6], and appears when using lifted variables Xi,j representing
bilinear terms xixj . Let Cθ = {(a, b, c, d) ∈ R

4 : cos(θ)(a + d) + sin(θ)(b − c) ≥√
(a − d)2 + (b + c)2}. In [6, Theorem 7], the authors show that Cθ is maximal

S-free for values of θ that satisfy cos(θ) = 0 or sin(θ) = 0. Using the results of
this section, we can prove that if θ is such that cos(θ) �= 0 and sin(θ) �= 0, then
Cθ is not maximal S-free. More specifically, we can show that −e4 /∈ −Cθ and
that Cθ is S + cone(−e4)-free, where e4 = (0, 0, 0, 1). Using Proposition 1, this
implies that C ′

θ = Cθ + cone(e4) is S-free and strictly contains Cθ. We leave out
the details for the sake of brevity. In Fig. 2 we show a 3-dimensional slice of the
4-dimensional sets S and Cθ, for θ = π/4, showing how the S-free was enlarged.

We remark that one can actually show that C ′
θ is maximal S-free using the

maximality criteria of [15].

92 A. Chmiela et al.

(a) S (blue) with maximal S-free set C
(orange). In this case the two inequali-
ties of C intersect S.

(b) Set of points not in S and “to the
left of the exposing points” (green).
Note that the green region is not con-
tained on the orange region: see the top
left and bottom left.

Fig. 3. Constuction of the monoid for a maximal S-free set.

3 Monoidal Strengthening in the Non-homogeneous Case

In this case, the monoidal strengthening framework does produce improvements.
The intuition for our construction is as follows. Consider the maximal S-free set
C represented in Fig. 3a.

The set is maximal, because all of its defining inequalities αTs ≤ β have
exposing points [16], that is, there exists s0 ∈ C ∩ S with αTs0 = β such that
if γTs ≤ δ is any other non-trivial valid inequality for C that is tight at s0,
then there exists a μ > 0 such that γ = μα and β = μδ. For example, if C is
a polyhedron and s0 ∈ C ∩ S is an exposing point of an inequality, then that
inequality is a facet and s0 is in its relative interior. Thus, in the example of
Fig. 3a, the two exposing points of C are the points of the facets of C that are
tangent to S. We see that a way of translate C such that the translation is S-free
is by moving the apex of C to a point not in S and to the left of the exposing
points (see Fig. 3b). This is the basic idea behind our monoid construction, and
below we show how to formalize it.

3.1 A Technical Consideration for Sg

Before motivating the construction the monoid, we need to provide some details
on the construction of maximal Sg-free presented in [16]. This construction starts
from the maximal Sh-free set

Cλ = {(x, y) ∈ R
n+m : ‖y‖ ≤ λTx}, (6)

where λ is a vector in the unit sphere. Note that Cλ can be equivalently described
as Cλ = {(x, y) ∈ R

n+m : βTy ≤ λTx ∀β ∈ D1} where D1 is the unit sphere
of appropriate dimension. The proof that Cλ is maximal Sh-free boils down to
noting that for each β̂, the vector (λ, β̂) ∈ Sh ∩ Cλ is tight for the inequality

Monoidal Strengthening and Unique Lifting in MIQCPs 93

β̂Ty ≤ λTx and for no other of Cλ. This means that each inequality of Cλ indexed
by β has an exposing point in Sh.

Moving to the non-homogeneous case, since Sg = Sh ∩ H, where H =
{(x, y) ∈ R

n+m : aTx + dTy = −1}, the set C = Cλ ∩ H is clearly Sg-free5,
but it is not necessarily maximal. The maximal Sg-free constructed in [16] first
identifies the inequalities of Cλ for which an exposing point can be found in H,
keeps them, and relaxes the rest.

The inequalities given by β such that ‖β‖ = 1 and aTλ + dTβ < 0 are the
ones that have the desired exposing points; these exposing points are

− 1
aTλ + dTβ

(λ, β)

Maximality of the resulting set is shown using the exposing points above and, for
relaxed inequalities, a diverging sequence in Sg that approaches the inequality
indefinitely (an exposing sequence). This is due to the fact that these relaxed
inequalities may have never intersect Sg.

In our current monoid construction, we require that all inequalities to have
exposing points. This requirement translates to aTλ + dTβ < 0 for all β with
‖β‖ = 1. This, in turn, reduces to ‖d‖ < −aTλ. Note that this condition implies
that C = Cλ ∩ H is maximal Sg-free with respect to H [16]. Additionally, this
implies that we can assume ‖a‖ = max{‖a‖, ‖d‖} = 1. We believe that when
these assumptions are not fulfilled, monoidal strengthening cannot be applied.
Proving this conjecture is part of future work.

3.2 Monoid Construction

Using the considerations of the previous section, we can formalize the notion of
“left of the exposing points”: we first consider the halfspace {(x, y) ∈ R

n+m :
(a − λTaλ)Tx ≥ 0} which contains the exposing points and the directions of
lineality of Cλ ∩H. Secondly, when translating Cλ by a vector m we can modify
m by a vector in the lineality space of Cλ without changing the translation.
Thus, we restrict to vectors m that live in a subspace that contains the exposing
points and is orthogonal to the lineality space of Cλ ∩ H. This subspace is given
by 〈{λ, a}〉 × R

m where 〈{λ, a}〉 denotes the span of {λ, a}. Thus, we have the
following set representing the points “left of the exposing points”:

L = {(x, y) ∈ 〈{λ, a}〉 × R
m : aTx + dTy = −1, ‖x‖ ≥ ‖y‖, (a − λTaλ)Tx ≥ 0}.

To obtain the translation we find the apex of Cλ ∩H in the space 〈{λ, a}〉×R
m.

This point is given by

ν = (x0, 0) :=
(−1

1 − (λTa)2
a +

λTa

1 − (λTa)2
λ, 0

)

. (7)

5 Note that Sg is contained on a halfspace, so Sg-freeness is with respect to the induced
topology in H.

94 A. Chmiela et al.

Thus, L − ν is a candidate to represent the translations of C that would result
in an Sg-free set. Note that the assumptions ‖d‖ < −λTa and ‖d‖ ≤ 1 imply
(λTa)2 < 1, thus ν is well-defined. Recall that the translations we consider for
C are given by “minus the monoid” and that a monoid must contain the origin,
therefore our candidate for a monoid is

M = {(x, y) ∈ 〈{λ, a}〉 × R
m : aTx + dTy = 0, ‖x − x0‖ ≥ ‖y‖, (8)

(a − λTaλ)Tx ≤ −1} ∪ {(0, 0)}.

Theorem 3. Let M be defined as in (8) with ‖d‖ < −λTa and ‖a‖ = ‖λ‖ = 1.
The set M is a monoid.

Proof (sketch). This proof is highly technical, so we just present the high-level
strategy for obtaining the desired result. See [7] for the details.

We equivalently show that −M is a monoid. Thus, we take two vector
(xi, yi) ∈ −M , i = 1, 2, and show that their sum is in −M . This is triv-
ial whenever one of the vectors is (0, 0). The linear constraints in the defini-
tion of −M are satisfied trivially, hence the main argument is to show that
‖x1 + x2 + x0‖ ≥ ‖y1 + y2‖. This is equivalent to showing that the value of the
following optimization problem is non-negative.

min
xi,yi

{‖x1 + x2 + x0‖2 − ‖y1 + y2‖2 : (xi, yi) ∈ −M \ {(0, 0)}, i = 1, 2}

Using that ‖xi + x0‖ ≥ ‖yi‖ and (a − λTaλ)Txi ≥ 1 ⇔ −xT
0xi ≥ ‖x0‖2, we

can lower bound the objective function by ‖x1 + x2 + x0‖2 − ‖y1 + y2‖2 ≥
2xT

1x2 − 2yT
1 y2 − ‖x0‖2. Hence, to show that

min
xi,yi

{xT
1x2 − yT

1 y2 : (xi, yi) ∈ −M \ {(0, 0)}, i = 1, 2} (P)

is lower bounded by 1
2‖x0‖2 suffices. Note that we can decompose yi = ωid+ ρi

where ρi is orthogonal to d. Furthermore, since xi ∈ 〈{a, λ}〉, we can write xi =
θia + ηiλ. Using this together with the fact that λTx0 = 0 and aTx0 = −1, the
hyperplane in −M becomes 0 = aTxi +dTyi = θi +ηiλ

Ta+ωi‖d‖2. Furthermore,
we get −xT

0xi ≥ ‖x0‖2 ⇔ θi ≥ ‖x0‖2, and expanding the nonlinear constraint
we reformulate problem (P) as

min
θi,ηi,ωi,ρi

θ1θ2 + η1η2 + θ1η2λ
Ta + θ2η1λ

Ta − w1w2‖d‖2 − ρT1 ρ2

s.t. 0 ≤ θ2i + η2
i + 2θiηiλ

Ta − 2θi + ‖x0‖2 − w2
i ‖d‖2 − ‖ρi‖2

‖x0‖2 ≤ θi

‖d‖2ωi = −θi + ηiλ
Ta

(Pexp)

The remainder of the proof focuses on showing the desired lower bound for this
problem. The key elements of the proof involve: first showing that the problem is
simply bounded, then showing that constraint ‖x0‖2 ≤ θi can be assumed to be
tight. This is shown leveraging results from [18]. Using this we show the desired
lower bound (Pexp) ≥ 1

2‖x0‖2.

Monoidal Strengthening and Unique Lifting in MIQCPs 95

The last required result for monoidal strengthening is the following.

Theorem 4. Let Sg and Cλ be defined as in (4) and (6) respectively, and H =
{(x, y) ∈ R

n+m : aTx+dTy = −1}. Let M be defined as in (8) with ‖d‖ < −λTa
and ‖a‖ = ‖λ‖ = 1. The set Cλ ∩ H − M is Sg-free.

4 Solving the Monoidal Strengthening Problem

In order to strengthen the cut using Theorem 1 and the construction in Sect. 3,
we need to solve ψ(r) = infm∈M φ(r + m), where φ is such that Cλ ∩ H = {s :
φ(s−f) ≤ 1}. From now on, λ = fx

‖fx‖ , where f is the point we want to separate,
i.e., f /∈ Sg. Furthermore, we restrict Cλ ∩ H to 〈{λ, a}〉 × R

m because any
representation of Cλ ∩ H is invariant in the directions of the lineality space of
Cλ ∩ H, namely, 〈{λ, a}〉⊥ × {0}. Thus, we define C = Cλ ∩ H ∩ 〈{λ, a}〉 × R

m.
Likewise, we restrict all rays to 〈{λ, a}〉 × R

m.
We work with the minimal representation of C − f ; we can prove it is given

by

φ(s) =

{
sup‖β‖=1

βTsy−λTsx

λTfx−βTfy
, if s ∈ H and sx ∈ 〈{λ, a}〉

+∞, otherwise.
(9)

The monoidal problem is equivalent to ψ(r) = inf{τ : φ(r + m) ≤ τ,m ∈ M}.
In order to understand this problem better, we need to understand the set {s :
φ(s) ≤ τ}.

Lemma 1. Let φ be the minimal representation of C − f given in (9). Then
{s : φ(s) ≤ τ} = C −ν − τ(f −ν), where ν is defined in (7) (the apex of Cλ ∩H
in the space 〈{λ, a}〉 × R

m).

From this lemma, we can show that

ψ(r) = inf {τ : r + ν + τ(f − ν) ∈ C − M} . (10)

In other words, solving the monoidal strengthening problem reformulates to
finding the first intersection point between the line l(τ) = r + ν + τ(f − ν), and
the set C − M .

It can be shown that C − M = L ∪ C, thus, ψ(r) = inf{τ : l(τ) ∈ L ∪ C} =
min{τ1, τ2}, where τ1 = inf{τ : l(τ) ∈ L} and τ2 = inf{τ : l(τ) ∈ C}. Note
that τ2 corresponds to the normal intersection cut coefficient φ(r). The following
proposition shows how to evaluate ψ(r).

Proposition 2. Let τ̄ be the largest root of the univariate quadratic equation
‖lx(τ)‖2 = ‖ly(τ)‖2. If the root exists and l(τ̄) ∈ L, then ψ(r) = τ̄ . Otherwise,
ψ(r) = φ(r).

To finalize this section, we show how to use this result starting from a general
quadratic constraint. Consider S to be defined by a general quadratic constraint,
i.e., S = {s ∈ R

p : sTQs + bTs + c ≤ 0} with Q ∈ R
p×p, b ∈ R

p and c ∈ R. Let

96 A. Chmiela et al.

s̄ /∈ S be the point we want to separate. In [8] the authors transform S using
the eigenvalue decomposition Q = V ΘV T. Let θi, i ∈ [p], be the eigenvalues
of Q, and let I+ = {i : θi > 0}, I− = {i : θi < 0} and I0 = {i : θi = 0}.
Furthermore, denote by vi the i-th eigenvector of Q, that is, the i-th column of
V . We avoid showing the full transformation here, but an important fact is that
the conditions ‖d‖ < −λTa < 1 we need for applying monoidal strengthening in
Sg become

(V Tb)I0 = 0 ∧ c − 1
4

∑

i∈I+∪I−

(vT
i b)2

θi
> 0 (11)

The following result summarizes the necessary computations.

Proposition 3. Suppose conditions (11) are met. The computation of ψ(r) for
a given ray r reduces to computing the largest root of Aτ2 + Bτ + D = 0 where

A =
∑

i∈I+∪I−

θi

(
vT

i (s̄ − ν)
)2

, B = 2
∑

i∈I+∪I−

θi

(
vT

i (s̄ − ν)
)
(

vT
i (r + ν +

b

2θi
)
)

,

D =
∑

i∈I+∪I−

θi

(

vT
i (r + ν +

b

2θi
)
)2

+ κ

ν = − κ
∑

j∈I+
θj(vT

j (s̄ + b
2θj

))2
∑

j∈I+

vij(vT
j (s̄ +

b

2θj
)) −

∑

j∈I+∪I−

vij

vT
j b

2θj

κ = c − 1
4

∑

i∈I+∪I−

(vT
i b)2

θi

We note that we also need to compute the cut coefficient φ(r), but this can also
be done efficiently as shown in [8].

The expressions on the previous proposition may not provide too much insight
themselves, as they are accumulating a series of transformations to bring S to Sg.
However, we believe their value relies in that, given an eigenvalue decomposition
for a general quadratic inequality, one can simply plug-in the desired parameters
and obtain a univariate quadratic that yields the strengthened coefficients of an
intersection cut.

5 Unique Lifting

As mentioned in the introduction, monoidal strengthening is just one way of
improving the cut coefficients of integer variables. The best possible coefficient
that a particular integer variable can achieve is given by the lifting function π
defined in (5). If π is subadditive, then there is unique lifting [4]. This means that
the lifting using π can be applied simultaneously to all rays ri corresponding to
integer variables and dominates any other lifting. In this section, we show that
if we use φ the minimal representation of C − f shown in (9), we have π = ψ;

Monoidal Strengthening and Unique Lifting in MIQCPs 97

(a) ψ(r) in (10) searches for the smallest step
τ such that r + ν + τ(f − ν) ∈ C − M . The
latter set is depicted in green.

(b) π1(r) in (13) searches for the largest step
τ such that r + ν + τ(f − ν) ∈ Sg − rec(C).
The latter set is depicted in green

Fig. 4. Comparison of the definitions of ψ and π1 showing why they are equal. In both
figures, Sg is depicted in blue and C in orange. (Color figure online)

since ψ is a subadditive function we obtain unique lifting and, moreover, that
the procedure of Sect. 4 yields the best possible lifting coefficients.

Let π1 be the restriction of π to σ = 1. Slightly reformulating the optimization
problem, we see that

π1(r) = sup {τ : f + s + r ∈ Sg, φ(s) ≤ 1 − τ} (12)

Using Lemma 1, we can show that f + s + r ∈ Sg and φ(s) ≤ 1 − τ reformulate
to r + ν + τ(f − ν) ∈ Sg − (C − ν). Since C − ν = rec(C), (12) becomes

π1(r) = sup {τ : r + ν + τ(f − ν) ∈ Sg − rec(C)} . (13)

Notice that problem (13) is very similar to the monoidal problem (10). Moreover,
we can use this—plus structural results we leave out for the sake of space—to
show that ψ(r) = π1(r). This is almost what we want. In Fig. 4 we illustrate the
definitions of both π1 and ψ to provide some intuition on why this result holds.
To make the connection with π we prove the following lemma.

Lemma 2. Let M be a monoid such that C is S + M -free and π1(r) = sup{1 −
φ(s) : f + s + r ∈ S}. If π1 is subadditive, then π = π1 and we have unique
lifting.

Since ψ is subadditive and ψ = π1, we directly obtain the following theorem.

Theorem 5. Consider ψ the monoidal strengthening function and π the lifting
function, both defined using φ as in (9). Then π = ψ, in particular, there is
unique lifting.

6 Computational Results

In this section, we show results of computational experiments testing the effi-
cacy of the monoidal strengthening procedure we propose. We embedded the

98 A. Chmiela et al.

Table 1. Summary of results for branch-and-bound experiments. Rows labeled [t, 7200]
consider instances where one of the settings took at least t seconds. Columns labeled
relative show the relative improvement of monoidal compared to icuts.

subset instances icuts monoidal relative

solved time nodes solved time nodes time nodes

all 189 113 221.87 5282 115 214.63 5321 0.97 0.97

[0, 7200] 115 113 22.81 936 115 21.56 883 0.95 0.94

[1, 7200] 83 81 67.62 2377 83 62.40 2184 0.92 0.92

[10, 7200] 81 79 72.54 2574 81 66.56 2341 0.92 0.91

[100, 7200] 23 21 724.66 186545 23 565.24 144747 0.78 0.78

[1000, 7200] 10 8 2475.04 631764 10 1252.96 307639 0.51 0.49

computation of the monoidal strengthening cut coefficients in SCIP 8.0 [5] as a
subroutine of the already implemented intersection cut generator. As the under-
lying LP solver, we used CPLEX 12.10.0.0. For testing, we used a Linux cluster
of Intel Xeon CPU E5-2680 0 2.70 GHz with 20MB cache and 64GB main mem-
ory. The time limit in all experiments was set to two hours. The test set we
consider consists of the publicly available instances of the MINLPLib [14] and
QPLib [12]. We selected all non-convex instances with (mixed)-integer constri-
ants and at least one quadratic constraint of the correct case, leaving us with
95 instances. Furthermore, we filtered out all instances that are either infeasi-
ble, where no dual bound was found or where monoidal strengthening could not
been applied. This leaves us with a heterogeneous test set of 63 instances with
8–23826 variables and 12–24971 constraints. All experiments are run with three
different permutations for each instance. We treat every instance-permutation
pair as an individual instance, since permuting the constraints and variables of
a problem formulation may considerably change the solving process.

We consider two different settings that are both based on SCIP’s default
settings: icuts additionally generates the original intersection cuts, whereas
monoidal uses the strengthened cutting planes if possible. Furthermore, we
restrict icuts and monoidal to add at most 20 intersection cuts per quadratic
constraint. We found this to be the best performing setting compared to default
SCIP.

Summarized results can be found in Table 1. monoidal consistently outper-
forms icuts with respect to solving time as well as number of nodes needed.
On the whole test set, the strengthened intersection cuts reduce both metrics by
around 3% while solving two more instances. This improvement increases when
looking at harder instances: On the hardest test set [1000, 7200] containing only
instances for which at least one setting needs 1000 seconds or more, monoidal
uses 49% less time and 51% less nodes.

These results show that the proposed monoidal strengthening procedure sig-
nificantly improves the standard intersection cuts, which highlights the impor-
tance of exploiting integrality whenever possible. Nonetheless, our cuts are cur-
rently not able to improve the overall performance of default SCIP. One of the
main reasons is that our cuts, while helping in obtaining better dual bounds, are

Monoidal Strengthening and Unique Lifting in MIQCPs 99

negatively affecting the performance of SCIP’s primal heuristics. Improving this
behavior is subject of ongoing work.

References

1. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming.
Oper. Res. 19(1), 19–39 (1971)

2. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J.
Oper. Res. 4(4), 224–234 (1980)

3. Basu, A., Campelo, M., Conforti, M., Cornuéjols, G., Zambelli, G.: Unique lifting
of integer variables in minimal inequalities. Math. Program. 141(1–2), 561–576
(2012)

4. Basu, A., Dey, S.S., Paat, J.: Nonunique lifting of integer variables in minimal
inequalities. SIAM J. Discret. Math. 33(2), 755–783 (2019)

5. Bestuzheva, K., et al.: The SCIP Optimization Suite 8.0. ZIB-Report 21–41, Zuse
Institute Berlin, December 2021

6. Bienstock, D., Chen, C., Munoz, G.: Outer-product-free sets for polynomial opti-
mization and oracle-based cuts. Math. Program. 1–44 (2020)

7. Chmiela, A., Muñoz, G., Serrano, F.: Monoidal strengthening and unique lifting
in MIQCPs (2022). https://www.gonzalomunoz.org/publications/

8. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of
intersection cuts for QCQPs. Math. Program. pp. 1–38 (2022)

9. Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting.
Oper. Res. 59(3), 569–577 (2011)

10. Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program.
124(1–2), 143–174 (2010)

11. Fukasawa, R., Poirrier, L., Xavier, Á.S.: The (not so) trivial lifting in two dimen-
sions. Math. Program. Comput. 11(2), 211–235 (2018). https://doi.org/10.1007/
s12532-018-0146-5

12. Furini, F., et al.: A library of quadratic programming instances. Programming
Computation, QPLIB (2018)

13. Glover, F.: Convexity cuts and cut search. Oper. Res. 21(1), 123–134 (1973)
14. MINLP library (2010). http://www.minlplib.org/
15. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Bienstock, D., Zambelli,

G. (eds.) IPCO 2020. LNCS, vol. 12125, pp. 307–321. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45771-6 24

16. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. Math. Program. 1–42 (2021)
17. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
18. Santana, A., Dey, S.S.: The convex hull of a quadratic constraint over a polytope.

SIAM J. Optim. 30(4), 2983–2997 (2020)
19. Tuy, H.: Concave programming with linear constraints. In: Doklady Akademii

Nauk, vol. 159, pp. 32–35. Russian Academy of Sciences (1964)

https://www.gonzalomunoz.org/publications/
https://doi.org/10.1007/s12532-018-0146-5
https://doi.org/10.1007/s12532-018-0146-5
http://www.minlplib.org/
https://doi.org/10.1007/978-3-030-45771-6_24

From Approximate to Exact Integer
Programming

Daniel Dadush1, Friedrich Eisenbrand2, and Thomas Rothvoss3(B)

1 CWI, Amsterdam, The Netherlands
dadush@cwi.nl

2 EPFL, Lausanne, Switzerland
friedrich.eisenbrand@epfl.ch

3 University of Washington, Seattle, USA

rothvoss@uw.edu

Abstract. Approximate integer programming is the following: For a given con-
vex body K ⊆ Rn , either determine whether K ∩Zn is empty, or find an inte-
ger point in the convex body 2 · (K − c)+ c which is K , scaled by 2 from its
center of gravity c. Approximate integer programming can be solved in time
2O(n) while the fastest known methods for exact integer programming run in
time 2O(n) ·nn . So far, there are no efficient methods for integer programming
known that are based on approximate integer programming. Our main contri-
bution are two such methods, each yielding novel complexity results.

First, we show that an integer point x∗ ∈ (K∩Zn) can be found in time 2O(n),
provided that the remainders of each component x∗i mod � for some arbitrar-
ily fixed �≥ 5(n+1) of x∗ are given. The algorithm is based on a cutting-plane
technique, iteratively halving the volume of the feasible set. The cutting planes
are determined via approximate integer programming. Enumeration of the
possible remainders gives a 2O(n)nn algorithm for general integer program-
ming. This matches the current best bound of an algorithm by Dadush (2012)
that is considerably more involved. Our algorithm also relies on a new asym-
metric approximate Carathéodory theorem that might be of interest on its own.

Our second method concerns integer programming problems in standard
equation form Ax = b,0 ≤ x ≤ u, x ∈ Zn . Such a problem can be reduced to
the solution of

∏
i O(logui + 1) approximate integer programming problems.

This implies, for example that knapsack or subset-sum problems with polyno-
mial variable range 0 ≤ xi ≤ p(n) can be solved in time (logn)O(n). For these
problems, the best running time so far was nn ·2O(n).

A full version of this paper can be found under https://arxiv.org/abs/2211.03859.
D. Dadush—Supported by ERC Starting Grant no. 805241-QIP.
F. Eisenbrand—Supported by the Swiss National Science Foundation (SNSF) grant 185030 and
207365.
T. Rothvoss—Supported by NSF CAREER grant 1651861 and a David & Lucile Packard Foun-
dation Fellowship.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 100–114, 2023.
https://doi.org/10.1007/978-3-031-32726-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_8&domain=pdf
https://arxiv.org/abs/2211.03859
https://doi.org/10.1007/978-3-031-32726-1_8

From Approximate to Exact Integer Programming 101

1 Introduction

Many combinatorial optimization problems as well asmany problems from the algo-
rithmic geometry of numbers can be formulated as an integer linear program

max{〈c,x〉 | Ax ≤ b,x ∈Zn} (1)

where A ∈ Zm×n ,b ∈ Zm and c ∈ Zn , see, e.g. [16,27,30]. Lenstra [23] has shown that
integer programming can be solved in polynomial time, if the number of variables

is fixed. A careful analysis of his algorithm yields a running time of 2O(n2) times a
polynomial in the binary encoding length of the input of the integer program. Kan-
nan [19] has improved this to nO(n), where, from now on we ignore the extra factor
that depends polynomially on the input length. The current best algorithm is the one
of Dadush [10] with a running time of 2O(n) ·nn .

The questionwhether there exists a singly exponential time, i.e., a 2O(n)-algorithm
for integer programming is one of the most prominent open problems in the area of
algorithms and complexity. Integer programming can be described in the following
more general form. Here, a convex body is synonymous for a full-dimensional com-
pact and convex set.

Integer Programming (IP)

Given a convex body K ⊆ Rn , find an integer solution x∗ ∈ K ∩Zn or assert that
K ∩Zn =
.

The convex body K must be well described in the sense that there is access to a
separation oracle, see [16]. Furthermore, one assumes thatK contains a ball of radius
r > 0 and that it is contained in some ball of radius R. In this setting, the current best
running times hold as well. The additional polynomial factor in the input encoding
length becomes a polynomial factor in log(R/r) and the dimension n. Central to this
paper is Approximate integer programming which is as follows.

Approximate Integer Programming (Approx-IP)

Given a convex body K ⊆ Rn , let c ∈ Rn be its center of gravity. Either find an
integer vector x∗ ∈ (2 · (K − c)+ c)∩Zn , or assert that K ∩Zn =
.

The convex body 2 · (K − c)+ c is K scaled by a factor of 2 from its center of grav-
ity. The algorithm of Dadush [11] solves approximate integer programming in singly
exponential time 2O(n). Despite its clear relation to exact integer programming, there
is no reduction from exact to approximate known so far. Our guiding question is the
following: Can approximate integer programming be used to solve the exact version
of (specific) integer programming problems?

1.1 Contributions of This Paper

We present two different algorithms to reduce the exact integer programming prob-
lem (IP) to the approximate version (APPROX-IP).

102 D. Dadush et al.

a) Our first method is a randomized cutting-plane algorithm that, in time 2O(n) and
for any �≥ 5(n+1) finds a point in K ∩ (Zn/�) with high probability, if K contains
an integer point. This algorithm uses an oracle for (APPROX-IP) on K intersected
with one side of a hyperplane that is close to the center of gravity. Thereby, the
algorithm collects � integer points close to K . The collection is such that the con-
vex combination with uniform weights 1/� of these points lies in K . If, during an
iteration, no point is found, the volume of K is roughly halved and eventually K
lies on a lower-dimensional subspace on which one can recurse.

b) If equipped with the component-wise remainders v ≡ x∗ (mod �) of a solution
x∗ of (IP), one can use the algorithm to find a point in (K − v)∩Zn and combine
it with the remainders to a full solution of (IP), using that (K − v)∩�Zn �=
. This
runs in singly exponential randomized time 2O(n). Via enumeration of all remain-
ders, one obtains an algorithm for (IP) that runs in time 2O(n) ·nn . This matches
the best-known running time for general integer programming [11], which is con-
siderably involved.

c) Our analysis depends on a new approximate Carathéodory theorem that we
develop in Sect. 4. While approximate Carathéodory theorems are known for cen-
trally symmetric convex bodies [4,26,28], our version is for general convex sets
andmight be of interest on its own.

d) Our second method is for integer programming problems Ax = b, x ∈ Zn , 0 ≤
x ≤ u in equation standard form. We show that such a problem can be reduced
to 2O(n) · (∏i log(ui +1)) instances of (APPROX-IP). This yields a running time of
(logn)O(n) for such IPs, in which the variables are bounded by a polynomial in the
dimension. The so-far best running time for such instances 2O(n)·nn . Well known
benchmark problems in this setting are knapsack and subset-sum with polyno-
mial upper bounds on the variables, see Sect. 5.

1.2 RelatedWork

If the convex body K is an ellipsoid, then the integer programming problem (IP)
is the well known closest vector problem (CVP) which can be solved in time 2O(n)

with an algorithm by Micciancio and Voulgaris [25]. Blömer and Naewe [7] previ-
ously observed that the sampling technique of Ajtai et al. [1] can bemodified in such
a way as to solve the closest vector approximately. More precisely, they showed that a
(1+ε)-approximation of the closest vector problem can be found in timeO(2+1/ε)n

time. This was later generalized to arbitrary convex sets by Dadush [11]. This algo-
rithm either asserts that the convex body K does not contain any integer points, or it
finds an integer point in the body stemming fromK is scaled by (1+ε) from its center
of gravity. Also the running time of this randomized algorithm is O(2+1/ε)n . In our
paper, we restrict to the case ε = 1 which can be solved in singly exponential time.
The technique of reflection sets was also used by Eisenbrand et al. [13] to solve (CVP)
in the �∞-norm approximately in timeO(2+ log(1/ε))n .

In the setting in which integer programming can be attacked with dynamic pro-
gramming, tight upper and lower bounds on the complexity are known [14,17,20].
Our nn ·2O(n) algorithm could be made more efficient by constraining the possible
remainders of a solution (mod �) efficiently. This barrier is different than the one in

From Approximate to Exact Integer Programming 103

classical integer-programming methods that are based on branching on flat direc-
tions [16,23] as they result in a branching tree of size nO(n).

The subset-sum problem is as follows. Given a set Z ⊆N of n positive integers and
a target value t ∈ N, determine whether there exists a subset S ⊆ Z with

∑
s∈S s = t .

Subset sum is a classical NP-complete problem that serves as a benchmark in algo-
rithm design. The problem can be solved in pseudopolynomial time [5] by dynamic
programming. The current fastest pseudopolynomial-time algorithm is the one of
Bringmann [8] that runs in time O(n+ t) up to polylogarithmic factors. There exist
instances of subset-sumwhose set of feasible solutions, interpreted as 0/1 incidence
vectors, require numbers of value nn in the input, see [2]. Lagarias and Odlyzko [21]
have shown that instances of subset sum in which each number of the input Z is

drawn uniformly at random from {1, . . . ,2O(n2)} can be solved in polynomial time
with high probability. The algorithm of Lagarias and Odlyzko is based on the LLL-
algorithm [22] for lattice basis reduction.

2 Preliminaries

A latticeΛ is the set of integer combinations of linearly independent vectors, i.e.Λ :=
Λ(B) := {Bx | x ∈ Zr } where B ∈ Rn×r has linearly independent columns. The deter-
minant is the volume of the r -dimensional parallelepiped spanned by the columns
of the basis B , i.e. det(Λ) :=

√
detr (BTB). We say that Λ has full rank if n = r . In that

case the determinant is simply det(Λ)= |detn(B)|. For a full rank latticeΛ, we denote
the dual lattice byΛ∗ = {y ∈Rn | 〈x, y〉 ∈Z∀x ∈Λ}. Note that det(Λ∗) ·det(Λ)= 1. For
an introduction to lattices, we refer to [24].

A setQ ⊆Rn is called a convex body if it is convex, compact and has a non-empty
interior. A set Q is symmetric if Q = −Q. Recall that any symmetric convex body Q
naturally induces a norm ‖ · ‖Q of the form ‖x‖Q =min{s ≥ 0 | x ∈ sQ}. For a full rank
latticeΛ⊆Rn and a symmetric convex bodyQ ⊆Rn wedenoteλ1(Λ,Q) :=min{‖x‖Q |
x ∈ Λ \ {0}} as the length of the shortest vector with respect to the norm induced by
Q. We denote the Euclidean ball by Bn

2 := {x ∈Rn | ‖x‖2 ≤ 1} and the �∞-ball by Bn∞ :=
[−1,1]n . An (origin centered) ellipsoid is of the form E = A(Bn

2) where A : Rn → Rn is
an invertible linear map. For any such ellipsoid E there is a unique positive definite
matrix M ∈ Rn×n so that ‖x‖E =

�
xTMx. The barycenter (or centroid) of a convex

bodyQ is the point 1
Voln (Q)

∫

Q x dx. We will use the following version of (APPROX-IP)

that runs in time 2O(n), provided that the symmetrizer for the used center c is large
enough. This is the case for c being the center of gravity, see Theorem 3. Note that the
center of gravity of a convex body can be (approximately) computed in randomized
polynomial time [6,12].

Theorem 1 (Dadush [11]). There is a 2O(n)-time algorithm APXIP(K ,c,Λ) that takes
as input a convex set K ⊆ Rn, a point c ∈ K and a lattice Λ ⊆ Rn. Assuming that
Voln((K − c)∩ (c −K)) ≥ 2−Θ(n)Voln(K) the algorithm either returns a point x ∈ (c +
2(K −c))∩Λ or returns EMPTY if K ∩Λ=
.
One of the classical results in the geometry of numbers is Minkowski’s Theorem
which we will use in the following form:

104 D. Dadush et al.

Theorem 2 (Minkowski’s Theorem). For a full rank lattice Λ⊆ Rn and a symmetric
convex body Q ⊆Rn one has

λ1(Λ,Q)≤ 2 ·
(det(Λ)

Voln(Q)

)1/n

We will use the following bound on the density of sublattices which is an imme-
diate consequence of Minkowski’s Second Theorem. Here we abbreviate λ1(Λ) :=
λ1(Λ,Bn

2).

Lemma 1. Let Λ ⊆ Rn be a full rank lattice. Then for any k-dimensional sublattice
Λ̃⊆Λ one has det(Λ̃)≥ (λ1(Λ)�

k
)k .

Finally, we revisit a few facts from convex geometry. Details and proofs can be
found in the excellent textbook by Artstein-Avidan, Giannopoulos andMilman [3].

Lemma 2 (Grünbaum’s Lemma). Let K ⊆ Rn be any convex body and let 〈a,x〉 = β

be any hyperplane through the barycenter of K . Then 1
e Voln(K)≤Voln({x ∈K | 〈a,x〉 ≤

β})≤ (1− 1
e)Voln(K).

For a convex body K , there are two natural symmetric convex bodies that approxi-
mate K in many ways: the “inner symmetrizer” K ∩ (−K) (provided 0 ∈ K) and the
“outer symmetrizer” in form of the difference body K −K . The following is a conse-
quence of a more general inequality of Milman and Pajor.

Theorem 3. Let K ⊆Rn be any convex body with barycenter 0. Then Voln(K ∩(−K))≥
2−nVoln(K).

In particular Theorem 3 implies that choosing c as the barycenter of K in Theorem 1
results in a 2O(n) running time—however this will not be the choice that we will later
make for c. Also the size of the difference body can be bounded:

Theorem 4 (Inequality of Rogers and Shephard). For any convex body K ⊆ Rn one
has Voln(K −K)≤ 4nVoln(K).

Recall that for a convex bodyQ with 0 ∈ int(Q), the polar isQ◦ = {y ∈Rn | 〈x, y〉≤
1∀x ∈Q}. We will use the following relation between volume of a symmetric convex
body and the volume of the polar; to be precise we will use the lower bound (which
is due to Bourgain andMilman).

Theorem 5 (Blaschke-Santaló-Bourgain-Milman). For any symmetric convex body
Q ⊆Rn one has

Cn ≤ Voln(Q) ·Voln(Q◦)
Voln(Bn

2)
2 ≤ 1

where C > 0 is a universal constant.

Wewill also rely on the result of Frank and Tardos to reduce the bit complexity of
constraints:

Theorem 6 (Frank, Tardos [15]). There is a polynomial time algorithm that takes
(a,b) ∈ Qn+1 and Δ ∈ N+ as input and produces a pair (ã, b̃) ∈ Zn+1 with ‖ã‖∞, |b̃| ≤
2O(n3) · ΔO(n2) so that 〈a,x〉 = b ⇔ 〈ã,x〉 = b̃ and 〈a,x〉 ≤ b ⇔ 〈ã,x〉 ≤ b̃ for all
x ∈ {−Δ, . . . ,Δ}n.

From Approximate to Exact Integer Programming 105

3 The Cut-Or-Average Algorithm

First, we discuss our CUT-OR-AVERAGE algorithm that on input of a convex set K , a
latticeΛ and integer �≥ 5(n+1), either finds a point x ∈ Λ

� ∩K or decides thatK ∩Λ=

 in time 2O(n). Note that for any polyhedron K = {x ∈Rn | Ax ≤ b} with rational A,b
and lattice Λ with basis B one can compute a value of Δ so that log(Δ) is polynomial
in the encoding length of A, b and B and K ∩Λ �=
 if and only if K ∩[−Δ,Δ]n∩Λ �=
.
See Schrijver [31] for details. In other words, w.l.o.g. we may assume that our convex
set is bounded. The pseudo code of the algorithm can be found in Fig. 1. An intuitive
description of the algorithm is as follows: we compute the barycenter c of K and an
ellipsoid E that approximates K up to a factor of R = n+1. Then we iteratively use
the oracle for approximate integer programming from Theorem1 to find a convex
combination z of lattice points in a 3-scaling of K until z is close to the barycenter c.
If this succeeds, then we can directly use an asymmetric version of the Approximate
Carathéodory Theorem (Lemma9) to find an unweighted average of � lattice points
that lies in K ; this would be a vector of the form x ∈ Λ

� ∩K . If the algorithm fails
to approximately express c as a convex combination of lattice points, then we will
have found a hyperplane H going almost through the barycenter c so that K ∩H≥
does not contain a lattice point. Then the algorithm continues searching in K ∩H≤
(Fig. 2). This case might happen repeatedly, but after polynomial number of times,
the volume of K will have dropped below a threshold so that we may recurse on a
single (n−1)-dimensional subproblem. We will now give the detailed analysis. Note
that in order to obtain a clean exposition we did not aim to optimize any constant.
However by merely tweaking the parameters one could make the choice of � = (1+
ε)n work for any constant ε> 0.

3.1 Bounding the Number of Iterations

We begin the analysis with a few estimates that will help us to bound the number of
iterations.

Lemma 3. Any point x found in line (7) lies in a 3-scaling of K around c, i.e. x ∈
c+3(K −c) assuming 0< ρ ≤ 1.

Proof. We verify that

x ∈ (c−ρd)+2(K − (c−ρd))= c+2(K −c)+ρd ⊆ c+3(K −c)

using that ‖ρd‖E = ρ ≤ 1.

Next we bound the distance of z to the barycenter:

Lemma 4. At the beginning of the kth iterations of the WHILE loop on line (5), one

has ‖c− z‖2E ≤ 9R2

k .

Proof. We prove the statement by induction on k. At k = 1, by construction on line
(4), z ∈ c+2(K −c)⊆ c+2RE . Thus ‖c− z‖2E ≤ (2R)2 ≤ 9R2, as needed.

106 D. Dadush et al.

Fig. 1. The Cut-Or-Average algorithm.

Fig. 2. Visualization of the inner WHILE loop whereQ :=K ∩ {x ∈Rn | 〈a,x〉 ≥
〈

a,c+ ρ
2 d

〉

}.

Now assume k ≥ 2. Let z,z ′ denote the values of z during iteration k − 1 before
and after the execution of line (9) respectively, and let x be the vector found on line
(7) during iteration k−1. Note that z ′ = (1− 1

k)z+ 1
k x. By the induction hypothesis, we

have that ‖z−c‖2E ≤ 9R2/(k−1). Our goal is to show that ‖z ′ −c‖2E ≤ 9R2/k. Letting d
denote the normalized version of z− c, we see that ‖d‖E = 1 and hence d ∈K − c. By
construction 〈a,x− c〉 ≥ 0 and from Lemma3 we have x ∈ c+3(K − c) which implies

From Approximate to Exact Integer Programming 107

‖x− c‖E ≤ 3R. The desired bound on the E-norm of z ′ − c follows from the following
calculation:

‖z ′ −c‖2E =
∥
∥
∥

(

1− 1

k

)

(z− c)+ 1

k
(x− c)

∥
∥
∥
2

E

=
(

1− 1

k

)2‖z− c‖2E −2
(

1− 1

k

) 1

k
〈a,x−c〉+ 1

k2 ‖x−c‖2E
≤

(

1− 1

k

)2‖z− c‖2E +
1

k2 ‖x−c‖2E

≤
((

1− 1

k

)2 1

k−1
+ 1

k2

)

·9R2 = 9R2

k
.

In particular Lemma4 implies an upper bound on the number of iterations of the
inner WHILE loop:

Corollary 1. The WHILE loop on line (5) never takes more than 36R2 iterations.

Proof. By Lemma4, for k := 36R2 one has ‖c− z‖2E ≤ 9R2

k ≤ 1
4 .

Next, we prove that every time we replace K by K ′ ⊂K in line (8), its volume drops by
a constant factor.

Lemma 5. In step (8) one has Voln(K ′) ≤ (1− 1
e) · (1+

ρ
2)

n ·Voln(K) for any ρ ≥ 0. In

particular for 0≤ ρ ≤ 1
4n one has Voln(K ′)≤ 3

4Voln(K).

Proof. The claim is invariant under affine linear transformations, hence we may
assume w.l.o.g. that E = Bn

2 , M = In and c = 0. Note that then Bn
2 ⊆ K ⊆ RBn

2 . Let
us abbreviate K≤t := {x ∈K | 〈d ,x〉 ≤ t }. In this notation K ′ =K≤ρ/2. Recall that Grün-
baum’s Lemma (Lemma2) guarantees that 1

e ≤ Voln (K≤0)
Voln (K) ≤ 1− 1

e . Moreover, it is well

known that the function t �→ Voln(K≤t)1/n is concave on its support, see again [3].
Then

Voln(K≤0)1/n ≥
(1

1+ρ/2

)

·Voln(K≤ρ/2)1/n +
(ρ/2

1+ρ/2

)

·Voln(K≤−1)1/n
︸ ︷︷ ︸

≥0

≥
(1

1+ρ/2

)

·Voln(K≤ρ/2)1/n

and so (

1− 1

e

)

·Voln(K)≥Voln(K≤0)≥
(1

1+ρ/2

)n ·Voln(K≤ρ/2)

Rearranging gives the first claim in the form Voln(K≤ρ/2)≤ (1− 1
e) · (1+

ρ
2)

n ·Voln(K).

For the 2nd part we verify that for ρ ≤ 1
4n one has (1− 1

e)·(1+
ρ
2)

n ≤ (1− 1
e)·exp(

ρ
2)≤ 3

4 .

Lemma 6. Consider a call of CUT-OR-AVERAGE on (K ,Λ) where K ⊆ rBn
2 for some

r > 0. Then the total number of iterations of the outer WHILE loop over all recursion
levels is bounded by O(n2 log(nr

λ1(Λ))).

108 D. Dadush et al.

Proof. Consider any recursive run of the algorithm. The convex set will be of the
form K̃ := K ∩U and the lattice will be of the form Λ̃ := Λ∩U where U is a sub-
space and we denote ñ := dim(U). We think of K̃ and Λ̃ as ñ-dimensional objects.
Let K̃t ⊆ K̃ be the convex body after t iterations of the outer WHILE loop. Recall that
Volñ(K̃t) ≤ (34)

t ·Volñ(K̃) by Lemma5 and Volñ(K̃) ≤ r ñVolñ(Bñ
2). Our goal is to show

that for t large enough, there is a non-zero lattice vector y ∈ Λ̃∗ with ‖y‖(K̃t−K̃t)◦ ≤ 1
2

which then causes the algorithm to recurse. To prove existence of such a vector y , we
use Minkowski’s Theorem (Theorem2) followed by the Blaschke-Santaló-Bourgain-
Milman Theorem (Theorem5) to obtain

λ1(Λ̃
∗, (K̃t − K̃t)

◦)
Thm 2≤ 2 ·

(det(Λ̃∗)
Volñ((K̃t − K̃t)◦)

)1/ñ

Thm 5≤ 2C ·
(Volñ(K̃t − K̃t)

det(Λ̃) ·Volñ(Bñ
2)

2

)1/ñ

Thm 4≤ 2 ·4 ·
�
ñ

2
·C

(Volñ(K̃t)

det(Λ̃) ·Volñ(Bñ
2)

)1/ñ

≤ 4C
�
ñ · r · (3/4)t/ñ

det(Λ̃)1/ñ
≤ 4C · ñ · r

λ1(Λ)
· (3/4)t/ñ

Here we use the convenient estimate of Volñ(Bñ
2) ≥ Volñ(

1�
ñ
B ñ∞)= (2�

ñ
)ñ . Moreover,

we have used that by Lemma1 one has det(Λ̃) ≥ (λ1(Λ)�
ñ

)ñ . Then t = Θ(ñ log(ñr
λ1(Λ)))

iterations suffice until λ1(Λ̃∗, (K̃t − K̃t)◦) ≤ 1
2 and the algorithm recurses. Hence the

total number of iterations of the outer WHILE loop over all recursion levels can be
bounded byO(n2 log(nr

λ1(Λ))).

The iteration bound of Lemma6 can be improved by amortizing the volume reduc-
tion over the different recursion levels following the approach of Jiang [18].We refrain
from that to keep our approach simple.

3.2 Correctness and Efficiency of Subroutines

Next, we verify that the subroutines are used correctly. The proofs in this section are
deferred to the full version of this paper.

Lemma 7. For any convex body K ⊆ Rn one can compute the barycenter c and a 0-
centered ellipsoid E in randomized polynomial time so that c+E ⊆K ⊆ c+ (n+1)E .

In order for the call of APXIP in step (7) to be efficient, we need that the sym-
metrizer of the set is large enough volume-wise, see Theorem1. In particular for any
parameters 2−Θ(n) ≤ ρ ≤ 0.99 and R ≤ 2O(n) we will have Voln((Q − c̃)∩ (c̃ −Q)) ≥
2−Θ(n)Voln(Q) which suffices for our purpose.

Lemma 8. In step (7), the setQ := {x ∈K | 〈a,x〉 ≥ 〈
a,c+ ρ

2d
〉
} and the point c̃ := c+ρd

satisfy Voln((Q− c̃)∩ (c̃−Q))≥ (1−ρ)n · ρ
2R ·2−n ·Voln(Q).

From Approximate to Exact Integer Programming 109

3.3 Conclusion on the Cut-Or-Average Algorithm

From the discussion above, we can summarize the performance of the algorithm in
Fig. 1 as follows:

Theorem 7. Given a full rankmatrix B ∈Qn×n and parameters r > 0 and �≥ 5(n+1)
with � ∈ N and a separation oracle for a closed convex set K ⊆ rBn

2 , there is a ran-
domized algorithm that with high probability finds a point x ∈ K ∩ 1

�Λ(B) or decides
that K ∩Λ(B)=
. Here the running time is 2O(n) times a polynomial in log(r) and the
encoding length of B.

This can be easily turned into an algorithm to solve integer linear programming:

Theorem 8. Given a full rank matrix B ∈ Qn×n, a parameter r > 0 and a separation
oracle for a closed convex set K ⊆ rBn

2 , there is a randomized algorithm that with high
probability finds a point x ∈ K ∩Λ(B) or decides that there is none. The running time
is 2O(n)nn times a polynomial in log(r) and the encoding length of B.

Proof. Suppose that K ∩Λ �=
 and fix an (unknown) solution x∗ ∈ K ∩Λ. We set
� := �5(n+1)�. We iterate through all v ∈ {0, . . . ,�−1}n and run Theorem7 on the set
K and the shifted lattice v +�Λ. For the outcome of v with x∗ ≡ v mod � one has
K ∩ (v +�Λ) �=
 and so the algorithm will discover a point x ∈K ∩ (v +Λ).

4 An Asymmetric Approximate Carathéodory Theorem

The Approximate Carathéodory Theorem states the following.

Given any point-set X ⊆ Bn
2 in the unit ball with 0 ∈ conv(X) and a parameter

k ∈N, there exist u1, . . . ,uk ∈ X (possibly with repetition) such that
∥
∥
∥
∥
∥

1

k

k∑

i=1
ui

∥
∥
∥
∥
∥
2

≤O
(

1/
�
k
)

.

The theorem is proved, for example, by Novikoff [28] in the context of the percep-
tron algorithm. An �p-version was provided by Barman [4] to find Nash equilibria.
Deterministic and nearly-linear time methods to find the convex combination were
recently described in [26]. In the following, we provide a generalization to asymmet-
ric convex bodies and the dependence on k will beweaker but sufficient for our anal-
ysis of our CUT-OR-AVERAGE algorithm from Sect. 3.

Recall that with a symmetric convex bodyK , we one can associate theMinkowski
norm ‖ ·‖K with ‖x‖K = inf{s ≥ 0 | x ∈ sK }. In the following we will use the same
definition also for an arbitrary convex set K with 0 ∈ K . Symmetry is not given but
one still has ‖x+ y‖K ≤ ‖x‖K +‖y‖K for all x, y ∈Rn and ‖αx‖K =α‖x‖K for α ∈R≥0.
Using this notation we can prove the main result of this section.

Lemma 9. Given a point-set X ⊆K contained in a convex set K ⊆Rn with 0 ∈ conv(X)
and a parameter k ∈N, there exist u1, . . . ,uk ∈ X (possibly with repetition) so that

∥
∥
∥
∥
∥

1

k

k∑

i=1
ui

∥
∥
∥
∥
∥
K

≤min{|X |,n+1}/k.

110 D. Dadush et al.

Moreover, given X as input, the points u1, . . . ,uk can be found in time polynomial in
|X |, k and n.

Proof. Let � = min{|X |,n+1}. The claim is true whenever k ≤ � since then we may
simply pick an arbitrary point in X . Hence from now on we assume k > �.

By Carathéodory’s theorem, there exists a convex combination of zero, using �

elements of X . We write 0=∑�
i=1λi vi where vi∈X , λi ≥ 0 for i ∈ [�] and

∑�
i=1λi = 1.

Consider the numbers Li = (k−�)λi +1. Clearly,
∑�

i=1Li = k. This implies that there

exists an integer vector μ ∈N� with μ ≥ (k −�)λ and
∑�

i=1μi = k. It remains to show
that we have ∥

∥
∥
∥
∥

1

k

�∑

i=1
μi vi

∥
∥
∥
∥
∥
K

≤ �/k.

In fact, one has

∥
∥
∥

�∑

i=1
μi vi

∥
∥
∥
K
=

∥
∥
∥

�∑

i=1
(μi − (k−�)λi)
︸ ︷︷ ︸

≥0
vi + (k−�)

︸ ︷︷ ︸
≥0

�∑

i=1
λi vi

∥
∥
∥
K

≤
�∑

i=1
(μi − (k−�)λi)‖vi‖K

︸ ︷︷ ︸
≤1

+(k−�)
∥
∥
∥

�∑

i=1
λi vi

∥
∥
∥
K

︸ ︷︷ ︸
=0

≤ �.

For the moreover part, note that the coefficients λ1, . . . ,λ� are the extreme points of
a linear program which can be found in polynomial time. Finally, the linear system
μ ≥ �(k −�)λ�,∑�

i=1μi = k has a totally unimodular constraint matrix and the right
hand side is integral, hence any extremepoint solution is integral aswell, see e.g. [31].

Lemma 10. For any integer �≥ 5(n+1), the convex combination μ computed in line
(10) satisfies

∑
x∈X μxx ∈K .

Proof. We may translate the sets X and K so that c = 0 without affecting the claim.
Recall that z ∈ conv(X). By Carathéodory’s Theorem there are v1, . . . ,vm ∈ X withm ≤
n+1 so that z ∈ conv{v1, . . . ,vm} and so 0 ∈ conv{v1− z, . . . ,vm − z}. We have vi ∈ 3K
by Lemma3 and−z ∈ 1

4E ⊆ 1
4K as well as z ∈ 1

4K . Hence ‖vi −z‖K ≤ ‖vi‖K +‖−z‖K ≤
13
4 . We apply Lemma9 and obtain a convex combination μ ∈ Zm

≥0
� with ‖∑m

i=1μi (vi −
z)‖ 13

4 K ≤ m
� . Then

∥
∥
∥

m∑

i=1
μi vi

∥
∥
∥
K
≤

∥
∥
∥

m∑

i=1
μi (vi − z)

∥
∥
∥
K
+‖z‖K

︸ ︷︷ ︸
≤1/4

≤ 13

4

m

�
+ 1

4
≤ 1

if �≥ 13
3 m. This is satisfies if �≥ 5(n+1).

5 IPs with Polynomial Variable Range

Now we come to our second method that reduces (IP) to (APPROX-IP) that applies
to integer programming in standard equation form

Ax = b, x ∈Zn , 0≤ xi ≤ ui , i = 1, . . . ,n, (2)

From Approximate to Exact Integer Programming 111

Here, A ∈ Zm×n , b ∈ Zm , and the ui ∈ N+ are positive integers that bound the vari-
ables from above. Our main goal is to prove the following theorem.

Theorem 9. The integer feasibility problem in standard equation form (see (2)) can
be solved in time 2O(n)∏n

i=1 log2(ui +1).

We now describe the algorithm. It is again based on the approximate integer pro-
gramming technique of Dadush [11]. We exploit it to solve integer programming
exactly via the technique of reflection sets developed by Cook et al. [9]. For each
i = 1, . . . ,n we consider the two families of hyperplanes that slice the feasible region
with the shifted lower and upper bounds respectively

xi = 2 j−1 and xi = ui −2 j−1, 0≤ j ≤ �log2(ui)�. (3)

Following [9], we consider two points w,v that lie in the region between two consec-
utive planes xi = 2 j−1 and xi = 2 j for some j . Suppose thatwi ≤ vi holds. Let s be the
point such that w = 1/2(s+ v). The line-segment s,v is the line segment w,v scaled
by a factor of 2 from v . Let us consider what can be said about the i -th component of
s. Clearly si ≥ 2 j−1− (2 j −2 j−1)= 0. Similarly, if w and v lie in the region in-between
xi = 0 and xi = 1/2, then si ≥−1/2. We conclude with the following observation.

Lemma 11. Consider the hyperplane arrangement defined by the equations (3) as
well as by xi = 0 and xi = ui for 1≤ i ≤ n. Let K ⊆Rn a cell of this hyperplane arrange-
ment and v ∈K . If K ′ is the result of scaling K by a factor of 2 from v, i.e.

K ′ = {v +2(w − v) |w ∈K },

then K ′ satisfies the inequalities −1/2≤ xi ≤ ui +1/2 for all 1≤ i ≤ n.

We use this observation to prove Theorem9:

Proof (Proof of Theorem 9). The task of (2) is to find an integer point in the affine sub-
space defined by the system of equations Ax = b that satisfies the bound constraints
0 ≤ xi ≤ ui . We first partition the feasible region with the hyperplanes (3) as well as
xi = 0 and xi = ui for each i . We then apply the approximate integer programming
algorithm with approximation factor 2 on each convex set PK = {x ∈Rn | Ax = b}∩K
where K ranges over all cells of the arrangement. In 2O(n) time, the algorithm either
finds an integer point in the convex set CK that results from PK by scaling it with a
factor of 2 from its center of gravity, or it asserts that PK does not contain an integer
point. Clearly, CK ⊆ {x ∈ Rn | Ax = b} and if the algorithm returns an integer point
x∗, then, by Lemma11, this integer point also satisfies the bounds 0 ≤ xi ≤ ui . The
running time of the algorithm is equal to the number of cells times 2O(n) which is
2O(n)∏n

i=1 log2(ui +1).

IPs in Inequality Form

We can also use Theorem9 to solve integer linear programs in inequality form. Here
the efficiency is strongly dependent on the number of inequalities.

112 D. Dadush et al.

Theorem 10. Let A ∈Qm×n, b ∈Qm, c ∈Qn and u ∈Nn+. Then the integer linear pro-
gram

max
{〈c,x〉 | Ax ≤ b, 0≤ x ≤ u, x ∈Zn}

can be solved in time nO(m) · (2log(1+Δ))O(n+m) where Δ :=max{ui | i = 1, . . . ,n}.

Proof. Via binary search it suffices to solve the feasibility problem

〈c,x〉 ≥ γ, Ax ≤ b, 0≤ x ≤ u, x ∈Zn (4)

in the same claimed running time. We apply the result of Frank and Tardos (Theo-
rem6) and replace c,γ,A,b by integer-valued objects of bounded ‖·‖∞-norm so that
the feasible region of (4) remains the same.Hencewemay indeed assume that c ∈Zn ,

γ ∈ Z, A ∈ Zm×n and b ∈ Zm with ‖c‖∞, |γ|,‖A‖∞,‖b‖∞ ≤ 2O(n3) ·ΔO(n2). Any feasible
solution x to (4) has a slack bounded by γ−〈c,x〉 ≤ |γ|+‖c‖∞·n ·Δ≤N where wemay

choose N := 2O(n3)ΔO(n2). Similarly bi −Ai x ≤N for all i ∈ [n]. We can then introduce
slack variables y ∈Z≥0 and z ∈Zm

≥0 and consider the system

〈c,x〉+ y = γ, Ax+ z = b,
0≤ x ≤ u, 0≤ y ≤N , 0≤ z j ≤N ∀ j ∈ [m],
(x, y,z) ∈Zn+1+m

(5)

in equality form which is feasible if and only if (4) is feasible. Then Theorem9 shows
that such an integer linear program can be solved in time

2O(n+m) ·
(n∏

i=1
ln(1+ui)

)

· (ln(1+N))m+1 ≤ nO(m) · (2log(1+Δ))O(n+m).

Subset Sum and Knapsack

The subset-sum problem (with multiplicities) is an integer program of the form (2)
with one linear constraint. Polak and Rohwedder [29] have shown that subset-sum
with multiplicities—that means

∑n
i=1 xi zi = t ,0 ≤ xi ≤ ui ∀i ∈ [n],x ∈ Zn—can be

solved in timeO(n+z5/3max) times a polylogarithmic factor where zmax :=maxi=1,...,n zi .
The algorithm of Frank and Tardos [15] (Theorem6) finds an equivalent instance in

which zmax is bounded by 2O(n3)uO(n2)
max . All-together, if each multiplicity is bounded

by a polynomial p(n), then the state-of-the-art for subset-sum with multiplicities is
straightforward enumeration resulting in a running time nO(n) which is the current
best running time for integer programming. We can significantly improve the run-
ning time in this regime. This is a direct consequence of Theorem10.

Corollary 2. The subset sumproblemwithmultiplicities of the form
∑n

i=1 xi zi = t ,0≤
x ≤u,x ∈Zn can be solved in time 2O(n) · (log(1+‖u‖∞))n. In particular if each multi-
plicity is bounded by a polynomial p(n), then it can be solved in time (logn)O(n).

Knapsack with multiplicities is the following integer programming problem

max
{〈c,x〉 | x ∈Zn

≥0, 〈a,x〉 ≤β,0≤ x ≤ u
}
, (6)

From Approximate to Exact Integer Programming 113

where c,a,u ∈ Zn
≥0 are integer vectors. Again, via the preprocessing algorithm of

Frank and Tardos [15] (Theorem6) one can assume that ‖c‖∞ as well as ‖a‖∞ are

bounded by 2O(n3)uO(n2)
max . If each ui is bounded by a polynomial in the dimen-

sion, then the state-of-the-art for this problem is again straightforward enumera-
tion which leads to a running time of nO(n). Also in this regime, we can significantly
improve the running time which is an immediate consequence of Theorem10.

Corollary 3. A knapsack problem (6) can be solved in time 2O(n) · (log(1+‖u‖∞))n. In
particular if ‖u‖∞ is bounded by a polynomial p(n) in the dimension, it can be solved
in time (logn)O(n).

References

1. Miklós Ajtai, R.K., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem.
In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing,
pp. 601–610 (2001)

2. Alon, N., Vũ, V.H.: Anti-hadamardmatrices, coin weighing, threshold gates, and indecom-
posable hypergraphs. J. Comb. Theory Ser. A 79(1), 133–160 (1997)

3. Artstein-Avidan, S., Giannopoulos, A.,Milman, V.D.: Asymptotic geometric analysis. Part I,
Volume 202 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI (2015)

4. Barman, S.: Approximating nash equilibria and dense bipartite subgraphs via an approx-
imate version of Caratheodory’s theorem. In: Proceedings of the Forty-Seventh Annual
ACM Symposium on Theory of Computing, pp. 361–369 (2015)

5. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
6. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM (JACM)

51(4), 540–556 (2004)
7. Blömer, J., Naewe, S.: Sampling methods for shortest vectors, closest vectors and succes-

sive minima. Theor. Comput. Sci. 410(18), 1648–1665 (2009)
8. Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: Pro-

ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1073–1084. SIAM (2017)

9. Cook, W., Hartmann, M., Kannan, R., McDiarmid, C.: On integer points in polyhedra.
Combinatorica 12(1), 27–37 (1992)

10. Dadush, D.: Integer Programming, Lattice Algorithms, and Deterministic Volume Estima-
tion. Georgia Institute of Technology (2012)

11. Dadush, D.: A randomized sieving algorithm for approximate integer programming. Algo-
rithmica 70(2), 208–244 (2014)

12. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for approximating
the volume of convex bodies. J. ACM 38(1), 1–17 (1991)

13. Eisenbrand, F., Hähnle, N., Niemeier, M.: Covering cubes and the closest vector problem.
In: Proceedings of the Twenty-Seventh Annual Symposium on Computational Geometry,
pp. 417–423 (2011)

14. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer pro-
gramming using the Steinitz lemma. ACM Trans. Algorithms (TALG) 16(1), 1–14 (2019)

15. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in com-
binatorial optimization. Combinatorica 7(1), 49–65 (1987)

16. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Opti-
mization. Algorithms and Combinatorics, vol. 2. Springer, Heidelberg (1988). https://doi.
org/10.1007/978-3-642-78240-4

https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-642-78240-4

114 D. Dadush et al.

17. Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations
in Theoretical Computer Science Conference (ITCS 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2018)

18. Jiang, H.: Minimizing convex functions with integral minimizers. In: SODA, pp. 976–985.
SIAM (2021)

19. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper.
Res. 12(3), 415–440 (1987)

20. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer lin-
ear programming with few constraints. ACM Trans. Comput. Theory (TOCT) 12(3), 1–19
(2020)

21. Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. ACM (JACM)
32(1):229–246 (1985)

22. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients.
Mathematische annalen 261(ARTICLE), 515–534 (1982)

23. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res.
8(4), 538–548 (1983)

24. Micciancio, D., Goldwasser, S.: Complexity of lattice problems - a cryptograhic perspec-
tive. The Kluwer International Series in Engineering and Computer Science, vol. 671.
Springer, New York (2002). https://doi.org/10.1007/978-1-4615-0897-7

25. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most
lattice problems based on voronoi cell computations. In: Proceedings of the Forty-Second
ACM Symposium on Theory of Computing, pp. 351–358 (2010)

26. Mirrokni, V., Leme, R.P., Vladu, A.,Wong, S.C.: Tight bounds for approximateCarathéodory
and beyond. In: International Conference on Machine Learning, pp. 2440–2448. PMLR
(2017)

27. Nemhauser, G.L., Wolsey, L.A.: Integer programming. In: Nemhauser, G.L., et al. (eds.)
Optimization. Handbooks in Operations Research and Management Science, chapter VI,
vol. 1, pp. 447–527. Elsevier (1989)

28. Novikoff, A.B.: On convergence proofs for perceptrons. Technical report, Office of Naval
Research, Washington, D.C. (1963)

29. Polak, A., Rohwedder, L., Węgrzycki, K.: Knapsack and subset sum with small items. In:
48th International ColloquiumonAutomata, Languages, and Programming (ICALP 2021),
number CONF, pp. 106–1. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

30. Schrijver, A.: Polyhedral combinatorics. In: Graham, R., Grötschel, M., Lovász, L. (eds.)
Handbook of Combinatorics, chapter 30, vol. 2, pp. 1649–1704. Elsevier (1995)

31. Schrijver, A.: Theory of Linear and Integer Programming.Wiley-Interscience Series in Dis-
crete Mathematics and Optimization. Wiley, Hoboken (1999)

https://doi.org/10.1007/978-1-4615-0897-7

Optimizing Low Dimensional Functions
over the Integers

Daniel Dadush1, Arthur Léonard2, Lars Rohwedder3(B), and José Verschae4

1 CWI, Amsterdam, Netherlands
dadush@cwi.nl

2 ENS, Paris, France
arthur.leonard@ens.psl.eu

3 Maastricht University, Maastricht, Netherlands
l.rohwedder@maastrichtuniversity.nl

4 Pontificia Universidad Católica de Chile, Santiago, Chile
jverschae@uc.cl

Abstract. We consider box-constrained integer programs with objective
g(Wx)+ cTx, where g is a “complicated” function with an m dimensional
domain. Here we assume we have n � m variables and that W ∈ Z

m×n is
an integer matrix with coefficients of absolute value at most Δ. We design
an algorithm for this problem using only the mild assumption that the
objective can be optimized efficiently when all but m variables are fixed,

yielding a running time of nm(mΔ)O(m2). Moreover, we can avoid the term
nm in several special cases, in particular when c = 0.

Our approach can be applied in a variety of settings, generalizing sev-
eral recent results. An important application are convex objectives of low
domain dimension, where we imply a recent result by Hunkenschröder et
al. [SIOPT’22] for the 0-1-hypercube and sharp or separable convex g,
assuming W is given explicitly. By avoiding the direct use of proximity
results, which only holds when g is separable or sharp, we match their
running time and generalize it for arbitrary convex functions. In the case
where the objective is only accessible by an oracle and W is unknown,
we further show that their proximity framework can be implemented in

n(mΔ)O(m2)-time instead of n(mΔ)O(m3). Lastly, we extend the result
by Eisenbrand and Weismantel [SODA’17, TALG’20] for integer programs
with few constraints to a mixed-integer linear program setting where inte-
ger variables appear in only a small number of different constraints.

1 Introduction

Integer programming has played a crucial role in many areas of computer science,
operations research, and more recently, data science. Its modelling power allows

The first author has received funding from the European Research Council (ERC)
under the European Unions Horizon 2020 research and innovation programme: grant
agreement QIP805241.
The fourth author was partially funded by Fondecyt grant Nr. 1221460 and Centro de
Modelamiento Matemático (CMM), FB210005, BASAL funds, ANID-Chile.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 115–126, 2023.
https://doi.org/10.1007/978-3-031-32726-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_9&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_9

116 D. Dadush et al.

to capture a large diversity of settings. However, its general intractability makes
it challenging to derive a general algorithmic theory, and hence the focus has been
to consider meaningful special cases. The main theoretical result in this area has
been the algorithm by Lenstra [10], and the improvement by Kannan [7], which
show that integer programs are tractable as long as the dimension is constant.
In recent years, a surge of interest appeared regarding efficient algorithms for
integer programs under other assumptions. More recently, the seminal work by
Eisenbrand and Weismantel [4] for integer programs with a constant number of
constraints and bounded matrix coefficients sparked a new trend of improved
algorithms and lower bounds; see, e.g., [2,6,9].

In this paper, we study a new general framework that encompasses and fur-
ther extends many of the settings found in the literature. Consider the prob-
lem of optimizing a low dimensional objective function over a high dimensional
space Z

n. Formally, the problem is defined as

min cTx + g(Wx)
�i ≤ xi ≤ ui for all i ∈ {1, 2, . . . , n}, (1)
x ∈ Z

n.

We assume that W ∈ Z
m×n has entries of absolute value at most Δ. Here, W

can be interpreted as a projection matrix to a space of low dimension m � n,
where then the function g : Rm → R∪ {∞} is applied to the projection. We can
think of W as extracting a relatively small set of features from x. The vectors
� ∈ (Z ∪ {−∞})n and u ∈ (Z ∪ {∞})n are arbitrary variable bounds and c
represents a linear cost function.

Crucially, we only make a very mild assumption on g, namely that we can
solve (1) when all but m of the variables are fixed: given any I∪̇J = [n] with
|I| = m and any fixing z ∈ Z

J of the J-variables, we require that

min cIx + g(WIx + WJz)
s.t. �i ≤ xi ≤ ui for all i ∈ I, (2)

x ∈ Z
I ,

can be solved efficiently. Here cI = (ci)i∈I is the vector c restricted to indices in
I and similarly WI (resp. WJ) is the matrix W restricted to columns indexed
by I (resp. J). The requirement is intuitively necessary, because the only plau-
sible approach to efficiently solve the very general setting (1) is to exploit that
the function g is low dimensional. If we cannot even optimize over it in a low
dimensional coordinate subspace of Zn, then there is no hope to optimize over it
on all of Zn. Perhaps the most natural such setting is when g is convex and can
be accessed through gradient and function evaluation queries. Then (2) can be
solved in time that is exponential only in m, but polynomial in the other input
parameters, by the Lenstra-Kannan algorithm [7,10].

If g is indeed convex, the Lenstra-Kannan algorithm can also be used to
directly solve (1) in time ΔΔO(m) ·〈input〉O(1), where 〈input〉 denotes the encoding
size of the input. Indeed, we can merge variables with the same columns in

Optimizing Low Dimensional Functions 117

W , which reduces the dimension of the problem to n′ = (2Δ + 1)m. Notice
that the linear part of the objective may not remain linear, but it does remain
convex. Thus, we can apply Lenstra-Kannan to solve the problem in the claimed
running time.

This indicates that the problem is tractable for small values of Δ and m. Our
main result is an algorithm that avoids the double exponential running time.

Theorem 1. For any function g, problem (1) can be solved in time

nm · (mΔ)O(m2) · Q ,

where Q is the query time of the oracle for (2). In particular, for a convex
function g, the term Q can be replaced by 〈input〉O(1).

We notice that in this theorem the bound of Q for the convex case follows
by using the Lenstra-Kannan algorithm to solve the small dimensional subprob-
lem (2). In this case, the mO(m) factor in the running time of the Lenstra-Kannan
algorithm can be omitted as it is upper bounded by (mΔ)O(m2). Regarding the
nm term, as we explain below, it can be made lower order in interesting concrete
settings. We also remark that a term of the form Δm cannot be avoided due to
reductions from integer linear programming (see Sect. 1.1) and lower bounds for
that problem [6].

1.1 Applications

Low dimensional convex functions. The main inspiration for this work is a recent
study by Hunkenschröder, Pokutta, and Weismantel [5], who consider the prob-
lem

min
x∈{0,1}n

g(Wx) , (3)

where W ∈ Z
m×n with entries of absolute value at most Δ, g : Rm → R is a

“nice” sharp or separable convex function, and the algorithm can make func-
tion and gradient evaluations to the objective g(Wx). They further distinguish
between the case where W is given explicitly and where W is unknown to the
algorithm. Assuming g is separable, they provide an n(mΔ)O(m2)-time algorithm
when W is known, and an n(mLΔ)O(m3)-time algorithm when W is unknown
and g is assumed to have L-Lipschitz gradients1. They show similar results when
g is suitably “sharp”, though we omit the statements for concision.

As a direct application of Theorem 1, we extend the result of [5] to arbitrary
convex functions when W is known.

Corollary 1. When W is known and g is an arbitrary convex function, prob-
lem (3) can be solved in time

O(nm) + (mΔ)O(m2) .

1 They further require g to have an integer valued gradient on integer inputs.

118 D. Dadush et al.

The reduction to Theorem 1 is as follows: we first abandon the restriction of
x ∈ {0, 1}n in favor of the general bounded integer variables. Then, since any
two variables with the same column in the projection matrix W can be merged to
one (by adapting the box-constraints), we may assume without loss of generality
that n ≤ (2Δ + 1)m.

One of the main motivations in the work by Hunkenschröder et al. [5] is
to solve certain types of regression problems. For example, they examine an
integer compressed sensing problem, where one receives a small number m of
linear measurements of a high dimensional integral signal x∗ ∈ {0, 1}n which
one would like to (approximately) reconstruct. The received measurements are
of the form b = Wx∗, where W ∈ Z

m×n is an unknown matrix with coefficients
of size at most Δ. As an approximation to x∗, they compute the minimizer of
min{‖b−Wx‖2: x ∈ {0, 1}n}, under the assumption that one can only access W
indirectly via gradient and function evaluation queries to f(x) = ‖b − Wx‖2.

As we will explain later, in the compressed sensing and related settings, one
can essentially avoid any overhead from not knowing W . While we focus above
on the case where W is known, using orthogonal techniques, we can also improve
the running times in the unknown W setting by modifying the Hunkenschröder
et al. framework. We defer further discussion of their framework and our related
improvements to Sect. 4.

Mixed-Integer Linear Programming. Eisenbrand and Weismantel [4] studied the
complexity of integer programs of the form

min cTx

s.t. Ax = b, (4)
�i ≤ xi ≤ ui for all i ∈ {1, . . . , n},

x ∈ Z
n.

Specifically, they considered the setting where A has few rows and then used
the Steinitz Lemma to obtain an algorithm with running time (mΔ)O(m2) · n,
where Δ is the maximum absolute value in A. This has inspired a line of work
for similar settings, see for example [3,6,8,9]. Our setting is a generalization of
theirs: take A = W and let

g(Ax) =

{
0 if Ax = b,

∞ otherwise.

Here subproblem (2) corresponds to solving integer programming in m dimen-
sions, which can be done using Lenstra-Kannan. Alternatively, one could model
the problem as minimizing the convex function g(Ax) = ‖Ax − b‖ for some suit-
able norm. Moreover, our model generalizes beyond the scope of Eisenbrand and

Optimizing Low Dimensional Functions 119

Weismantel’s work to mixed-integer linear programming. Consider the problem

min cTx + dTy

s.t. Ax + By = b,

�i ≤ xi ≤ ui, for all i ∈ {1, . . . , n} (5)
x ∈ Z

n,

y ∈ P ⊆ R
h.

Here P is some polytope that can impose additional constraints on the contin-
uous variables. We can encode this problem in (1) by setting W = A and

g(Ax) =

{
min{dTy : By = b − Ax, y ∈ P} if this minimum exists,
∞ otherwise.

Notice that the oracle problem (2) in this case forms a mixed-integer linear
program itself, but with only m many integer variables; hence it can be solved
efficiently with the algorithm by Lenstra-Kannan.

Corollary 2. Assuming P can be efficiently separated over, problem (5) can be
solved in time

nm · (mΔ)O(m2) · 〈input〉O(1) .

We emphasize here that Δ is only a bound on the entries of A, but not necessarily
on those of B. Compared to the algorithm for the pure integer setting in [4], our
running time has an extra factor of nm, which however vanishes in some settings:
for example, when c = 0 or ui = ∞ for all i. In those cases we can again merge
variables that share the same column in W . The only other example we are aware
of that extends Eisenbrand and Weismantel’s setting to mixed-integer linear
programming is the work by Brand, Koutecký, and Ordyniak [2]. Their setting
can be considered orthogonal to ours. On the one hand, they study a much more
general structure of bounded treedepth programs, of which integer programs
with a bounded number of constraints are the simplest special case. On the other
hand, they impose these structural restrictions also on the continuous variables
(and additionally bounds on their coefficients), whereas we impose essentially
no restrictions on the structure of continuous variables or their coefficients.

To appreciate this, let us remark a pleasing aspect of the (straight-forward)
extension of Lenstra-Kannan to mixed-integer linear programs: it combines the
tractability of integer programs in fixed dimension with the tractability of linear
programs in any dimension, achieving essentially a generalization of both. Eisen-
brand and Weismantel’s algorithm, on the other hand, concerns the tractability
of integer programs with a fixed number of constraints (adding the necessary
assumption that Δ is bounded). In a similar spirit to the aforementioned gener-
alization, our algorithm combines this with the tractability of (arbitrary) linear
programs.

120 D. Dadush et al.

Integer linear programming with few complex variables. Recall the integer pro-
gramming setting (4) studied by Eisenbrand and Weismantel, for which they
gave an algorithm with running time (mΔ)O(m2) · n (with Δ being the maxi-
mum absolute value in A). The interesting parameter regime for this algorithm
is therefore when m and Δ are very small. Already for m = 1 this formulation
easily captures the Knapsack problem, which is weakly NP-hard and therefore
we cannot hope to reduce the dependency on Δ to, say, log(Δ) while still main-
taining polynomial dependency on n. In Lenstra-Kannan, on the other hand,
the dependency on the coefficients of the matrix is polynomial in the encoding
size, i.e., in log(Δ), but the dependency on n is exponential. These two rather
orthogonal results can be combined using Theorem 1.

Corollary 3. Consider the integer programming problem in (4) and partition
the columns of A into “simple” columns where the entries are bounded by Δ in
absolute value and “complex” columns where they are arbitrary. Suppose that
there are only k many complex columns. Then we can solve (4) in time

nm · (mΔ)m2 · kO(k) · 〈input〉O(1) .

For this we proceed as follows. Let S and C be the index sets of the simple and
complex columns and accordingly let AS and AC be the matrix A restricted
to these column sets. We define Problem (1) only on xS , the variables for the
simple columns. Then let

g(ASxS) =

{
min{cTCxC : ACxC = b − ASxS} if this minimum exists,
∞ otherwise.

The resulting subproblem (2) is then an integer program with m + k variables
that can be solved using Lenstra-Kannan. We note that one could even add
to (4) arbitrary additional constraints on the complex columns and still solve
the problem in the same way.

Variable-sized Knapsack. Antoniadis et al. [1] introduce a variant of the Knap-
sack problem with a non-linear cost function associated with the used capacity.
They show that the case where this function is concave is polynomial time solv-
able and describe an FPTAS for the convex case. Our result can be used to
devise a pseudopolynomial time algorithm for the convex case: the problem can
be expressed as

max

{
n∑

i=1

pixi − g

(n∑
i=1

wixi

)
: xi ∈ {0, 1, . . . , ui} for all i

}
. (6)

where pi is the profit of item i, wi the weight, and ui ∈ Z≥0 ∪ {∞} is a bound
on the number of items of this type. Straightforward generalizations to multi-
dimensional knapsack follow in a similar way.

Optimizing Low Dimensional Functions 121

Corollary 4. For a convex function g, problem (6) can be solved in time

(n + wmax)O(1).

Here, the oracle problem (2) reduces to a simple binary search. In general our
result fits well to problems with a similar spirit, where the constraints are not
hard, but they induce some penalty.

1.2 Overview of Techniques

The related results for more restrictive cases in [4] and [5] are based on proxim-
ity: the continuous relaxation of the problem, where the integer requirement is
omitted, is solved and if one can show that the solution for the relaxation and
the actual solution differ only slightly, then this can be exploited in reducing the
search space. The precise proximity theorem in [4] is as follows.

Theorem 2 (Eisenbrand and Weismantel [4]). Let z be an optimal vertex
solution to the linear program

max
{
cTx : Ax = b and �i ≤ xi ≤ ui for all i

}
,

where A ∈ Z
m×n has entries of size at most Δ. If there exists an integer solution,

then there is also an optimal integer solution x∗ with

‖x∗ − z‖1 ≤ m(2mΔ + 1)m .

Hunkenschröder et al. [5] consider the optimal solution to the continuous
relaxation of (3). In the special cases of separable convex and strict convex
functions they show that a similar proximity holds, which is a crucial ingredient
in their algorithm.

Already for general convex functions, however, the proximity bound can be
very large, as shown in an example in [5]. This forms a serious obstacle towards
our main result. We manage to circumvent this and still rely on proximity by
applying it in a different way. Consider for sake of illustration that we were able
to determine the value of b∗ = Wx∗, where x∗ is the optimal solution of (1).
Then it would be easy to recover x∗ (solving our problem) by applying the
integer linear programming algorithm by Eisenbrand and Weismantel [4]. The
algorithm works by computing the continuous solution z to Wx = b∗ and then
using that ‖z − x∗‖1 is bounded by Theorem 2. Indeed, this bound still holds
in our case when fixing b∗. However, it is not clear how to compute or guess b∗,
nor how to compute z without knowing b∗.

Let us now consider the case that the domain of each variable is Z≥0, which
is slightly simpler than the bounded case. Here we may assume that z has only
m non-zero components, which we can guess from nm candidates. We still do
not know b∗ or z, but we trivially know z on the n − m zero components. Intu-
itively, this is enough to apply proximity to recover x∗ on the zero components
of z. Moreover, recovering x∗ on the non-zero components of z is only an m-
dimensional problem, where we can apply the oracle problem (2).

122 D. Dadush et al.

For our general result with arbitrarily bounded variable domains, there is
another obstacle: if we try to generalize the previous line of arguments, it is still
true that there are only m “special” variables in z, namely variables that are not
tight on either of their bounds. For the remaining variables, however, it is not
immediately obvious whether they equal the lower bound or the upper bound
and if we do not know this, it is unclear how to determine x∗ on these tight
variables. We overcome this by guessing enough information about the dual so
that we can use complementary slackness to infer which bound that the tight
variables attain.

2 Non-negative Variables

For simplicity, in this section we first prove our main result for the variable
domain Z≥0, that is, �i = 0 and ui = ∞ for all i. Consider the optimal solution
x∗ to (1) and define b∗ = Wx∗. Furthermore, let z be an optimal vertex solution
to min{cTx : Wx = b∗, x ∈ R

n
≥0}. We emphasize that z is not necessarily integral.

By Theorem 2 there is an optimal integer solution x′ to min{cTx : Wx = b∗, x ∈
Z

n
≥0} with ‖x′ − z‖1 ≤ O(mΔ)m. We can assume without loss of generality that

x′ = x∗. Since z is a vertex solution, it has at least n − m zero components T .
It follows that

‖x∗
T ‖1 = ‖x∗

T − zT ‖1 ≤ ‖x∗ − z‖1 ≤ O(mΔ)m .

Thus,
‖WT x∗

T ‖1 ≤ mΔ · ‖x∗
T ‖1 ≤ O(mΔ)m+1 .

We now guess the indices of variables in T from the nm many candidates and
we guess the value of b(T) := WT x∗

T from the O(mΔ)(m+1)m many candidates.
It is now easy to recover x∗

T (or an equivalent solution) by solving

min
{

cTT xT : WT xT = b(T) and xi ∈ Z≥0 for all i ∈ T
}

.

Here we use the algorithm by Eisenbrand and Weismantel [4] or the improvement
in [6]. This requires time (mΔ)O(m) · n, which is insignificant compared to the
number of guesses above. The algorithm assumes a solution to the LP relaxation
is given, which, however, only serves the purpose of having a vector close to the
optimal solution (in �1-norm). For this purpose we can also simply take zT (the
zero vector). Let L be the set of indices not in T . To recover x∗

L we need to solve

min
{
cTLx∗

L + g(WLx∗
L + WT x∗

T) : x∗
i ∈ Z≥0 for all i ∈ L

}
.

This corresponds to an oracle query of the form (2). For each guess of T and b(T)

we compute a solution in this way and return the best among them. The running
time, which is dominated by the number of guesses, is therefore

nm · (mΔ)O(m2) · Q . (7)

In fact, the nm term here can be omitted, since one may assume without loss of
generality that no two columns of W are equal and therefore n ≤ (2Δ + 1)m.

Optimizing Low Dimensional Functions 123

3 Bounded Variables

Let again x∗ denote an optimal solution to (1) and b∗ = Wx∗. Let z be an
optimal solution to

min
{
cTx : Wx = b∗ and �i ≤ xi ≤ ui for all i

}
.

We assume that c is augmented slightly by adding εi to the ith component for
all i for some very small ε, which essentially implements a lexicographic tie-
breaking rule between solutions. Here ε can be treated symbolically. We note
that the dual of this linear program is

max
{

b∗Ty + �Ts� − uTsu : c − WTy = s� − su and s�
i , s

u
i ∈ R

n
≥0, y ∈ R

m
}

.

Let y, s�, su be an optimal vertex solution to the dual. Then there are m linearly
independent rows (WT)i with s�

i = su
i = 0 (otherwise it would not be a vertex

solution). We guess these rows among the nm candidates, which fully determines
y and in particular c − WTy. We may assume that (c − WTy)i �= 0 for the other
n − m rows, which follows from the perturbation with ε. If (c − WTy)i > 0
for some i we know that su

i > 0 and likewise if (c − WTy)i < 0, then s�
i >

0. By complementary slackness we can determine for these rows that zi = ui

(respectively, zi = �i). It follows that for n − m variables T we now determined
its value in z. Let L denote the m other variables. We now proceed similar to
the previous section. We again have that

‖x∗
T − zT ‖1 ≤ O(mΔ)m.

This implies that

‖WT x∗
T − WT zT ‖1 ≤ mΔ · ‖x∗

T ‖ ≤ O(mΔ)m+1 .

Since we know the value of WT zT , we can guess b(T) = WT x∗
T among the

O(mΔ)(m+1)m many candidates. Then we recover x∗
T using the algorithm by

Eisenbrand and Weismantel [4] (where we can use zT instead of an LP solution)
and x∗

L by applying (2) to

min{cTLx∗
L + g(WLx∗

L + WT x∗
T) : x∗

i ∈ {�i, �i + 1, . . . , ui} for all i ∈ L}.

Finally, we return the best solution computed for any guess.

4 Overview of Hunkenschröder Et Al. [5] and Related
Improvements

We now explain the high-level algorithm of Hunkenschröder et al. [5] in more
detail, as well as some improvements to their framework in the unknown W case.

Their algorithm starts with an optimal solution z to the continuous relaxation
min{g(Wx) : x ∈ [0, 1]n} having at most m fractional components (which is

124 D. Dadush et al.

easy to show to always exists). Here, z is assumed to be given by an oracle.
For the cases they consider, e.g., the separable case, they prove that there is a
“nearby” optimal integral solution x∗ satisfying ‖x∗−z‖1 ≤ (mΔ)O(m). Function
g being separable means that it can be decomposed into a sum of functions each
depending only on a single dimension, that is, g(Wx) = g1((Wx)1) + . . . +
gm((Wx)m). Using the proximity result, they guess b∗ = Wx∗ ∈ Z

m, where the
number of guesses is bounded by (mΔ)O(m2) (modulo an n factor, this is the
dominant term in the complexity), noting that ‖W (x∗ −z)‖∞ ≤ (mΔ)‖x∗ −z‖1.
They then recover an optimal solution by solving the integer program Wx =
b∗, x ∈ {0, 1}n. Note that this version of the algorithm requires W to be known.

When W is unknown, they show that one can replace W by a proxy matrix
W ′, whose rows correspond to linearly independent gradients of f(x) := g(Wx)
seen so far by the algorithm. Their first observation is that the gradients of
∇f(x) = WT∇g(Wx) are linear combinations of the rows of W . Their second
crucial observation is that for b∗ = W ′x∗, any integer solution to W ′x = b∗, x ∈
{0, 1}n, is either optimal or has a gradient ∇f(x) outside the row span of W ′, in
which case we can add an extra row to W ′. Thus, one can iterate the guessing
procedure with W replaced by W ′ at most m times before finding an optimal
solution. The blowup in complexity in this setting comes from a lack of control
over the coefficients appearing in W ′. Indeed, this is precisely why they require
that g has an L-Lipschitz gradient and integral gradients on integral inputs.

We remark that this idea can be implemented more efficiently without suf-
fering from the worse parameters of W ′. First, we observe that the cardinality
of the set

BN = {W ′x : x ∈ {0, 1}n, ‖�z� − x‖1 ≤ N}
can be bounded solely in N and the parameters of W . This is because each
row of W ′ is a linear combination of rows of W . Hence, Wx = Wx′ implies
W ′x = W ′x′ and therefore |BN | ≤ O(NΔ)m. Next, notice that BN can be
enumerated in time polynomial in n and |BN |: this follows from an induction
over n. To this end, for all n′ ≤ n + 1 we define

B
(n′)
N = {W ′x : x ∈ {0, 1}n, ‖�z� − x‖1 ≤ N, and xi = �zi� for all i ≥ n′} ,

where B
(n+1)
N = BN . We now iteratively generate the sets B

(n′)
N ′ by using B1

N ′ =
{W ′�z�} and the recurrence

B
(n′+1)
N ′ =

{
B

(n′)
N ′ ∪ (B(n′)

N ′−1 + W ′
n′) if �zn′� = 0,

B
(n′)
N ′ ∪ (B(n′)

N ′−1 − W ′
n′) if �zn′� = 1.

Here W ′
n′ is the n′th column of W ′. We note that every vector in B

(n′)
N ′−1 is

generated from some x with xn′ = 0 iff �zn′� = 0. Hence, when adding (resp.
removing) W ′

n′ there is again a legal x generating this vector (where ‖�z� − x‖1
has increased by one).

As in the algorithm of Hunkenschröder et al., we now start with W ′ hav-
ing only the single row ∇f(�z�). Then for every element of BN we consider a

Optimizing Low Dimensional Functions 125

corresponding integer solution x (note that such an x can easily be recovered
in the above recurrence) and check if ∇f(x) and the rows of W ′ are linearly
independent. If so, we add the gradient as a new row to W ′. We repeat for at
most m iterations until no new row is added. Then we return the best solution
x∗ seen during this process.

Theorem 3. Let g : Rm → R be a convex function, let f(x) := g(Wx) be acces-
sible via a function value and gradient oracle, where W ∈ Z

m×n is an unknown
matrix with entries of absolute value at most Δ. Then given an optimal solution
z to the continuous relaxation min{f(x) : x ∈ [0, 1]n} with at most m fractional
entries, one can compute an optimal integral solution in time n(NΔ)O(m). Here
N is the minimum ‖z − x∗‖1 over all optimal integer solutions x∗. In particular,
when g is separable convex, the running time becomes n(mΔ)O(m2).

5 Conclusion and Open Questions

In this paper we have demonstrated that the task of optimizing low dimensional
functions over a projection as introduced by Hunkenschröder et al. [5] remains
tractable even in much more general settings than originally considered. This
creates a bridge also to other lines of work in integer optimization, such as
integer programs with few constraints [4].

Our main result leaves open a few questions about the complexity of algo-
rithms for problem (1) or the central case of g being a convex function. As
mentioned before, one cannot hope to avoid a term of Δm in the running time
because of known conditional lower bounds. The necessity of the nm term or the
m2 exponent, however, appears less clear.

The algorithm for integer programming by Eisenbrand and Weismantel [4], a
special case of our setting (see applications), does not require the nm term and in
many cases we can avoid it as well by merging duplicate columns of W . It would
be nice if this term could be removed in general, or at least in the convex case.

Related to the m2 exponent, there is already a notorious question arising
from [4]. There, Eisenbrand and Weismantel gave an improved algorithm with
exponent O(m) instead of O(m2) for the case that there are no upper variable
bounds, but with bounds they require O(m2). It remains unclear whether this
is necessary. In our case even without upper bounds our algorithm need the
exponent O(m2). In fact, this exponent arises in several places: when guessing
the support (assuming n ≈ Δm) and when guessing the projection of the tight
variables b(T).

References

1. Antoniadis, A., Huang, C.-C., Ott, S., Verschae, J.: How to pack your items when
you have to buy your knapsack. In: Proceedings of MFCS, pp. 62–73 (2013)

2. Brand, C., Koutecký, M., Ordyniak, S.: Parameterized algorithms for MILPs with
small treedepth. In: Proceedings of AAAI, pp. 12249–12257 (2021)

126 D. Dadush et al.

3. Cslovjecsek, J., Eisenbrand, F., Hunkenschröder, C., Rohwedder, L., Weismantel,
R.: Block-structured integer and linear programming in strongly polynomial and
near linear time. In: Proceedings of SODA, pp. 1666–1681 (2021)

4. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer
programming using the Steinitz lemma. ACM Trans. Algorithms 16(1), 5:1-5:14
(2020)

5. Hunkenschröder, C., Pokutta, S., Weismantel, R.: Optimizing a low-dimensional
convex function over a high-dimensional cube. SIAM J. Optim. 2022, to appear

6. Jansen, K., Rohwedder, L.: On integer programming, discrepancy, and convolution.
Math. Oper. Res. (2022, to appear)

7. Kannan, R.: Improved algorithms for integer programming and related lattice prob-
lems. In: Proceedings of STOC, pp. 193–206 (1983)

8. Klein, K.-M.: About the complexity of two-stage stochastic IPs. Math. Program.
192(1), 319–337 (2022)

9. Knop, D., Pilipczuk, M., Wrochna, M.: Tight complexity lower bounds for integer
linear programming with few constraints. ACM Trans. Comput. Theory 12(3),
191–1919 (2020)

10. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math.
Oper. Res. 8(4), 538–548 (1983)

Configuration Balancing for Stochastic
Requests

Franziska Eberle1(B), Anupam Gupta2(B), Nicole Megow3(B),
Benjamin Moseley2(B), and Rudy Zhou2(B)

1 London School of Economics and Political Science, London, UK
f.eberle@lse.ac.uk

2 Carnegie Mellon University, Pittsburgh, PA, USA
anupamg@cs.cmu.edu, {moseleyb,rbz}@andrew.cmu.edu

3 University of Bremen, Bremen, Germany
nicole.megow@uni-bremen.de

Abstract. The configuration balancing problem with stochastic
requests generalizes well-studied resource allocation problems such as
load balancing and virtual circuit routing. There are given m resources
and n requests; each request has multiple possible configurations, each of
which increases the load of each resource by some amount. The goal is to
select one configuration for each request to minimize the makespan: the
load of the most-loaded resource. In the stochastic setting, the amount
by which a configuration increases the resource load is uncertain until
the configuration is chosen, but we are given a probability distribution.

We develop both offline and online algorithms for configuration bal-
ancing with stochastic requests. When the requests are known offline,
we give a non-adaptive policy for configuration balancing with stochas-
tic requests that O(log m

log log m
)-approximates the optimal adaptive policy,

which matches a known lower bound for the special case of load balanc-
ing on identical machines. When requests arrive online in a list, we give
a non-adaptive policy that is O(log m) competitive. Again, this result is
asymptotically tight due to information-theoretic lower bounds for spe-
cial cases (e.g., for load balancing on unrelated machines). Finally, we
show how to leverage adaptivity in the special case of load balancing on
related machines to obtain a constant-factor approximation offline and an
O(log log m)-approximation online. A crucial technical ingredient in all
of our results is a new structural characterization of the optimal adaptive
policy that allows us to limit the correlations between its decisions.

Keywords: stochastic scheduling · stochastic routing · load balancing

1 Introduction

This paper considers the configuration balancing problem: there are m resources
and n requests. Request j has qj configurations xj(1), . . . , xj(qj) ∈ R

m
≥0. We

F. Eberle—Supported by the Dutch Research Council (NWO), Netherlands Vidi grant
016.Vidi.189.087.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 127–141, 2023.
https://doi.org/10.1007/978-3-031-32726-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_10&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_10

128 F. Eberle et al.

must choose one configuration cj ∈ [qj] per request, which adds xj(cj) to the
load vector on the resources. The goal is to minimize the makespan, i.e., the
load of the most-loaded resource. Configuration balancing captures many natural
resource allocation problems where requests compete for a finite pool of resources
and the task is to find a “fair” allocation in which no resource is over-burdened.
Two well-studied problems of this form arise in scheduling and routing.

(i) In load balancing a.k.a. makespan minimization, there are m (unrelated)
machines and n jobs. Scheduling job j on machine i increases the load of i
by pij ≥ 0. The goal is to schedule each job on some machine to minimize
the makespan, i.e., the load of the most-loaded machine.

(ii) In virtual circuit routing or congestion minimization, there is a directed
graph G = (V,E) on m edges with edge capacities ce > 0 for e ∈ E, and n
requests, each request consisting of a source-sink pair (sj , tj) in G and a
demand dj ≥ 0. The goal is to route each request j from sj to tj via some
directed path, increasing the load/congestion of each edge e on the path by
dj/ce, while the objective is to minimize the load of the most-loaded edge.

Configuration balancing captures both problems by taking the m resources
to be the m machines or edges, respectively; each configuration now corresponds
to assigning a job to some machine or routing a request along some path.

Typically, job sizes or request demands are not known exactly when solv-
ing resource allocation problems in practice. This motivates the study of algo-
rithms under uncertainty, where an algorithm must make decisions given only
partial/uncertain information about the input. Uncertainty can be modeled in
different ways. In exceptional cases, a non-clairvoyant algorithm that has no
knowledge about the loads of requests may perform surprisingly well; an example
is Graham’s greedy list scheduling for load balancing on identical machines [15].
In general, a non-clairvoyant algorithm cannot perform well. Hence, we consider
a stochastic model, where the unknown input follows some known distribution
but the actual realization is a priori unknown. Such a model is natural when
there is historical data available from which such distributions can be deduced.

In the configuration balancing with stochastic requests problem, we assume
that each configuration c of request j is a random vector Xj(c) with known
distribution Dj(c) supported on R

m
≥0 such that the Xj(c)’s are independent

across different requests j. The actual realized vector of a configuration c of
request j is only observed after irrevocably selecting this particular configura-
tion for request j. The objective is to minimize the expected maximum load
(makespan) E

[
maxi

∑n
j=1 Xij(cj)

]
, where cj is the configuration chosen for

request j. We assume that we have oracle access to the Dj(c)’s; in particular
we assume that in constant time, we can compute any needed statistic of the
distribution Dj(c).

Further, we distinguish whether there is an additional dimension of uncer-
tainty or not, namely the knowledge about the request set. In the offline setting,
the set of requests and the distributions of the configurations of each request are
known up-front, and they can be selected and assigned to the resources irre-

Configuration Balancing for Stochastic Requests 129

vocably in any order. In the online setting, requests are not known in advance
and they are revealed one-by-one (online-list model). The algorithm learns the
stochastic information on configurations of a request upon its arrival, and must
select one of them without knowledge of future arrivals. After a configuration is
chosen irrevocably, the next request arrives.

In general, we allow an algorithm to base the next decision on knowledge
about the realized vectors of all previously selected request configurations. We
call such policies adaptive. Conversely, a non-adaptive policy is one that fixes
the particular configuration chosen for a request without using any knowledge
of the realized configuration vectors.

The goal of this paper is to investigate the power of adaptive and non-
adaptive policies for online and offline configuration balancing with stochas-
tic requests. We quantify the performance of an algorithm by bounding the
worst-case ratio of the achieved expected makespan and the minimal expected
makespan achieved by an optimal offline adaptive policy. We say that an algo-
rithm Alg α-approximates an algorithm Alg’ if, for any input instance, the
expected makespan of Alg is at most a factor α larger than the expected
makespan of Alg’; we refer to α also as approximation ratio. For online algo-
rithms, the term competitive ratio refers to their approximation ratio.

1.1 Our Results

Main Result. As our first main result, we present non-adaptive algorithms for
offline and online configuration balancing with stochastic requests.

Theorem 1. For configuration balancing with stochastic requests there is a
randomized offline algorithm that computes a non-adaptive policy that is a
Θ

(
log m

log log m

)
-approximation and an efficient deterministic online algorithm that

is a Θ(log m)-approximation when comparing to the optimal offline adaptive pol-
icy. Both algorithms run in polynomial time in the number of resources and the
total number of configurations over all requests.

The offline analysis relies on a linear programming (LP) relaxation of con-
figuration balancing, which has a known integrality gap of Θ

(
log m

log log m

)
, even for

virtual circuit routing [25], implying that the analysis is tight. In the online
setting, our analysis employs a potential function to greedily determine which
configuration to choose for each request. In particular, we generalize the idea
by [3] to the setting of configuration balancing with stochastic requests and
match a known lower bound for online deterministic load balancing on unre-
lated machines by [5].

If the configurations are not given explicitly as part of the input or the
number of configurations is large, then efficiently solving the problem requires
us to be able to optimize over configurations in polynomial time.

Applications. These results would hold for both load balancing on unrelated
machines and virtual circuit routing if we could guarantee that either the con-

130 F. Eberle et al.

figurations are given explicitly or the respective subproblems can be solved effi-
ciently. We can ensure this in both cases.

For stochastic load balancing on unrelated machines, the resources are the
m machines, and each job has m possible configurations – one corresponding
to assigning that job to each machine. Thus, we can efficiently represent all
configurations. Further, here the LP relaxation of configuration balancing used
in Theorem 1 is equivalent to the LP relaxation of the generalized assignment
problem (GAP) solved in [33], which gives a deterministic rounding algorithm.
Hence, Theorem 1 implies the following theorem. We omit the proof in this
extended abstract; see [14] for proof.

Theorem 2. There exist efficient deterministic algorithms that compute a non-
adaptive policy for load balancing on unrelated machines with stochastic jobs that
achieve an Θ

(
log m

log log m

)
-approximation offline and an Θ(log m)-approximation

online when comparing to the optimal offline adaptive policy.

These results are asymptotically tight due to the lower bound of Ω
(

log m
log log m

)
on the adaptivity gap [17] and the lower bound of Ω(log m) on the competitive
ratio of any deterministic online algorithm, even for deterministic requests [5].
This implies that the adaptivity gap for stochastic load balancing is Θ

(
log m

log log m

)
.

For virtual circuit routing, the resources are the m edges and each request has
a configuration for each possible routing path. Thus, efficiently solving the sub-
problems requires more work as the configurations are only given implicitly and
there can be exponentially many. For the offline setting, since the LP relaxation
has (possibly) exponentially many variables, we design an efficient separation
oracle for the dual LP in order to efficiently solve the primal. For the online
setting, we carefully select a subset of polynomially many configurations that
contain the configuration chosen by the greedy algorithm, even when presented
with all configurations. Thus, Theorem 1 implies that stochastic requests are not
harder to approximate than deterministic requests. We omit the proof in this
extended abstract; see [14] for proof.

Theorem 3. For routing with stochastic requests, there exist an efficient ran-
domized offline algorithm computing a non-adaptive policy that is a Θ

(
log m

log log m

)
-

approximation and an efficient deterministic online algorithm that computes an
Θ(log m)-approximation when comparing to the optimal offline adaptive policy.

Adaptive Policies for Related Machines. When each request j has m configura-
tions and configuration c ∈ [m] can be written as Xj(c) = Xj

si
ec, where ec ∈ R

m

is the cth standard unit vector, the problem is also known as load balancing
on related machines. We say that Xj is the size of request (or job) j and si

is the speed of resource (or machine) i. In this special case, we show how to
leverage adaptivity to overcome the Ω

(
log m

log log m

)
lower bound on the adaptivity

gap. Interestingly, our adaptive algorithms begin with a similar non-adaptive
assignment of jobs to machines, but we deviate from the assignment adaptively
to obtain our improved algorithms.

Configuration Balancing for Stochastic Requests 131

Theorem 4. For load balancing on related machines with stochastic jobs, there
exist efficient deterministic algorithms that compute an adaptive offline O(1)-
approximation and an adaptive online O(log log m)-approximation when com-
paring to the optimal offline adaptive policy.

It remains an interesting open question whether the online setting admits an
O(1)-competitive algorithm.

1.2 Technical Overview

We illustrate the main idea behind our non-adaptive policies, which compare to
the optimal offline adaptive policy. Throughout this paper, we let Opt denote
the optimal adaptive policy as well as its makespan. As in many other stochastic
optimization problems, our goal is to give a good deterministic proxy for the
makespan of a policy. Then, our algorithm will optimize over this deterministic
proxy to obtain a good solution. First, we observe that if all configurations were
bounded with respect to E[Opt] in every entry, then selecting configurations such
that each resource has expected load O(E[Opt]) gives the desired O

(
log m

log log m

)
-

approximation by standard concentration inequalities for independent sums with
bounded increments. Thus, in this case the expected load on each resource is a
good proxy. However, in general, we have no upper bound on Xij(c), so we
cannot argue as above. We turn these unbounded random variables (RVs) into
bounded ones in a standard way by splitting each request into truncated and
exceptional parts.

Definition 1 (Truncated and Exceptional Parts). Fix τ ≥ 0 as threshold.
For a RV X, its truncated part (w.r.t. threshold τ) is XT := X · 1X<τ and its
exceptional part is XE := X · 1X≥τ . Note that X = XT + XE.

It is immediate that the truncated parts XT
ij(c) are bounded in [0, τ]. Taking

τ = O(E[Opt]), we can control their contribution to the makespan using con-
centration. It remains to find a good proxy for the contribution of exceptional
parts to the makespan. This is one of the main technical challenges of our work
as we aim to compare against the optimal adaptive policy: adaptive policies have
much better control over the exceptional parts than non-adaptive ones.

Concretely, let cj be the configuration chosen by some fixed policy for
request j. Note that cj itself can be a random variable in {1, . . . , qj}. We want to
control the quantity E

[
maxi

∑n
j=1 XE

ij (cj)
]
. Since we have no reasonable bound

on the XE
ij (cj)’s, for non-adaptive policies, we can only upper bound the expected

maximum by the following sum

E

[
max

1≤i≤m

n∑
j=1

XE
ij (cj)

]
≤

n∑
j=1

E

[
max

1≤i≤m
XE

ij (cj)
]
. (1)

We call the right hand side total (expected) exceptional load. The above inequality
is tight up to constants for non-adaptive policies, so it seems like the total
expected exceptional load is a good proxy to use for our algorithm. However, it
is far from tight for adaptive policies as the following example shows.

132 F. Eberle et al.

Example 1. Recall that in load balancing on related machines, each request j
has m configurations and configuration c ∈ [m] has the special form of Xj(c) =
Xj

si
ec, where Xj is the processing time of job j and si is the speed of machine i.

We assume that there is one fast machine with speed s1 = 1 and m − 1 slow
machines with speed s2 = . . . = sm = 1

τm , where τ > 0 is the truncation thresh-
old. There are m jobs: a stochastic one with processing time Xj ∼ τ ·Ber

(
1
τ

)
and

m − 1 deterministic jobs with processing time Xj ≡ 1
m . The optimal adaptive

policy first schedules the stochastic job on the fast machine. If its realized size is
0, then it schedules all deterministic jobs on the fast machine as well. Otherwise
the realized size is τ and it schedules one deterministic job on each slow machine,
implying E[Opt] =

(
1 − 1

τ

)(
m−1

m

)
+ 1

τ · τ = Θ(1). However, the total expected
exceptional load (w.r.t. τ) is

∑
i,j E

[
XE

ij · 1j→i

]
= 1

τ (mτ) = m, where j → i
denotes that job j is assigned to machine i, i.e., configuration i is chosen for j.

In the example, the optimal adaptive policy accrues a lot of exceptional load,
but this does not have a large effect on the makespan. Concretely, (1) can be loose
by a Ω(m)-factor for adaptive policies. Thus, it seems that the total exceptional
load is a bad proxy in terms of lower-bounding Opt. However, we show that,
by comparing our algorithm to a near-optimal adaptive policy rather than the
optimal one, the total exceptional load becomes a good proxy in the following
sense. This is the main technical contribution of our work, and it underlies all
of our algorithmic techniques.

Theorem 5. For configuration balancing with stochastic requests, there exists
an adaptive policy with expected maximum load and total expected exceptional
load at most 2 · E[Opt] with respect to any truncation threshold τ ≥ 2 · E[Opt].
Further, any configuration c selected by this policy satisfies E

[
maxi Xi(c)

] ≤ τ .

The proof of the above relies on carefully modifying the “decision tree” rep-
resenting the optimal adaptive policy; see [14] for proof. In light of Theorem 5,
the deterministic proxies we consider are the expected truncated load on each
resource and the total expected exceptional load. All of our algorithms then pro-
ceed by ensuring that both quantities are bounded with respect to E[Opt]. In the
offline case, we round a natural assignment-type linear program (LP), and in the
online case, we use a potential-function argument. All of these algorithms actu-
ally output non-adaptive policies. For the special case of related-machines load
balancing, we also compute a non-adaptive assignment but instead of following
it exactly, we deviate using adaptivity and give improved solutions.

1.3 Related Work

While stochastic optimization problems have long been studied [6,11], approxi-
mation algorithms for them are more recent [13,29]. By now, multi-stage stochas-
tic problems (where uncertain information is revealed in stages) are well-under-
stood [9,19,34]. In contrast, more dynamic models, where the exact value of
an unknown parameter becomes known at times depending on the algorithms

Configuration Balancing for Stochastic Requests 133

decisions (serving a request) still remain poorly understood. Some exceptions
come from stochastic knapsack [8,12,16,28] as well as stochastic scheduling and
routing which we discuss below.

Scheduling. For load balancing with deterministic sizes, a 2-approximation in
the most general unrelated-machines offline setting [26] is known. For identical
machines (pij = pj for all jobs j), the greedy algorithm (called list scheduling)
is a

(
2 − 1

m

)
-approximation algorithm [15]. This guarantee holds even when the

jobs arrive online and nothing is known about job sizes. This implies a
(
2− 1

m

)
-

approximate adaptive policy for stochastic load balancing on identical machines.
Apart from this, prior work on stochastic scheduling has focused on

approximating the optimal non-adaptive policy. There are non-adaptive O(1)-
approximations known for identical machines [24], unrelated machines [17], the
�q-norm objective [30], and monotone, symmetric norms [21].

In contrast, our work focuses on approximating the stronger optimal adap-
tive policy. The adaptivity gap (the ratio between the expected makespan of
the optimal adaptive and non-adaptive policies) can be Ω

(
log m

log log m

)
even for the

simplest case of identical machines [17]. Thus, previous work on approximat-
ing the optimal non-adaptive policy does not immediately give any non-trivial
approximation guarantees for our setting. The only previous work on adaptive
stochastic policies for load-balancing (beyond the highly-adaptive list schedul-
ing) is by [32]. They propose scheduling policies whose degree of adaptivity can
be controlled by parameters and show an approximation factor of O(log log m)
for scheduling on identical machines.

Online load balancing with deterministic jobs is also well studied [4]. On
identical machines, the aforementioned list scheduling algorithm [15] is

(
2 −

1
m

)
-competitive. For unrelated machines, there is a deterministic O(log m)-

competitive algorithm [3] and this is best possible [5]. When the machines are
uniformly related, [7] design an O(1)-competitive algorithm for minimizing the
makespan. [22,23] study the multi-dimensional generalization to vector schedul-
ing under the makespan and the �q-norm objective.

To the best of our knowledge, configuration balancing has not been explicitly
defined before. The techniques of [3] give an O(log m)-competitive algorithm for
deterministic requests. It is also studied for packing integer programs [1,2,18].

Routing. For oblivious routing with stochastic demands, [20] give an algorithm
which is an O(log2 n)-approximation with high probability. Here, “oblivious”
refers to the requirement that the chosen path between a source-sink pair must
not depend on the current congestion of the network. In particular, after speci-
fying a set of paths for each possible source-sink pair, a demand matrix is drawn
from an a-priori known distribution and each demand needs to be routed along
one of the predefined paths. The obliviousness requirement is very different from
our setting and makes the two models essentially incomparable.

When dj = 1 for each source-sink pair, there is an O
(

log m
log log m

)
-approximation

algorithm by [31], which is best possible, unless NP ⊆ ZPTIME(nlog log n) [10].

134 F. Eberle et al.

In the online setting, when the source-sink pairs arrive online in a list and
have to be routed before the next pair arrives, [3] give a lower bound of Ω(log n)
on the competitive ratio of any deterministic online algorithm in directed graphs,
where n is the number of vertices. They also give a matching upper bound. For
more details on online routing we refer to the survey [27].

2 Configuration Balancing with Stochastic Requests

In this section, we prove our main results for the most general problem we
consider: configuration balancing. We give an O

(
log m

log log m

)
-approximation offline

and an O(log m)-approximation online; both algorithms are non-adaptive. Before
describing the algorithms, we give our main structural theorem that enables
all of our results. Roughly, we show that instead of comparing to the optimal
adaptive policy, by losing only a constant factor in the approximation ratio, we
can compare to a near-optimal policy that behaves like a non-adaptive one (w.r.t.
the proxy objectives we consider, namely, the total expected exceptional load).

2.1 Structural Theorem

In this section, we show that there exists a near-optimal policy as guaranteed by
Theorem 5. To this end, we modify the optimal policy by “restarting” whenever
an exceptional request is encountered. Additionally, we ensure that this modified
policy never selects a configuration c for a request j with E

[
maxi Xij(c)

]
> τ .

We let J denote the set of requests. For any subset J ′ ⊆ J , we let Opt(J ′)
denote the optimal adaptive policy (and its maximum load) on the set of
requests J ′. Note that Opt(∅) = 0. Our (existential) algorithm to construct
such a policy will begin by running the optimal policy Opt(J) on all requests.
However, once an exceptional request is encountered or the next decision will
choose a configuration with too large expected maximum, we cancel Opt(J)
and instead recurse on all remaining requests, ignoring all previously-accrued
loads; see Algorithm 1. The idea of our analysis is that we recurse with small
probability; see [14].

Theorem 5. For configuration balancing with stochastic requests, there exists
an adaptive policy with expected maximum load and total expected exceptional
load at most 2 · E[Opt] with respect to any truncation threshold τ ≥ 2 · E[Opt].
Further, any configuration c selected by this policy satisfies E

[
maxi Xi(c)

] ≤ τ .

Having this near-optimal policy at hand, the upshot is that we can bound
our subsequent algorithms with respect to the following LP relaxation (LPC) for
configuration balancing with stochastic requests. The variable ycj denotes select-
ing configuration c for request j. We take our threshold between the truncated
and exceptional parts to be τ . Using the natural setting of the y-variables as the
probabilities of the policy from Theorem 5, it is straight-forward to show that

Configuration Balancing for Stochastic Requests 135

Algorithm 1: Policy S(J)
R ← J // remaining requests
if R = ∅ then

return empty policy // finish

while R �= ∅ do
j ← first / next request considered by Opt(J)
cj ← configuration chosen for request j by Opt(J)

1 if E
[
maxi Xij(cj)

]
> τ then // maximum too large

break
else

choose cj for request j // S(J) follows Opt(J)
R ← R \ {j} // update remaining requests

2 if maxi Xij(cj) ≥ τ then // exceptional configuration observed
break

run S(R) // recurse with remaining requests

the following LP relaxation has a feasible solution, formalized in Lemma 1.
∑qj

c=1 ycj = 1 ∀ j ∈ [n]∑n
j=1

∑qj
c=1 E[XT

ij(c)] · ycj ≤ τ ∀ i ∈ [m]∑n
j=1

∑qj
c=1 E[maxi XE

ij (c)] · ycj ≤ τ

ycj = 0 ∀ j ∈ [n],∀ c ∈ [qj] : E[maxi Xij(c)] > τ
ycj ≥ 0 ∀ j ∈ [n],∀ c ∈ [qj]

(LPC)

Lemma 1. (LPC) has a feasible solution for any τ ≥ 2 · E[Opt].

2.2 Offline Setting

Our offline algorithm is the natural randomized rounding of (LPC). For the trun-
cated parts, the following inequality bounds their contribution to the makespan.

Lemma 2. Let S1, . . . , Sm be sums of independent RVs bounded in [0, τ] for
some τ > 0 such that E[Si] ≤ τ for all i ∈ [m]. Then, E[maxi Si] = O

(
log m

log log m

)
τ .

To bound the contribution of the exceptional parts, we use (1), i.e., the total
expected exceptional load. Using binary search for the correct choice of τ and
re-scaling the instance down by the current value of τ , it suffices to give an
efficient algorithm that either

– outputs a non-adaptive policy with expected makespan O
(

log m
log log m

)
, or

– certifies that E[Opt] > 1.

This is because for τ ∈ (
E[Opt], 2 · E[Opt]

]
, the re-scaling guarantees

E[Opt] ∈ [12 , 1) on the scaled instance, in which case the algorithm achieves
expected makespan O

(
log m

log log m

)
= O

(
log m

log log m

) · E[Opt].

136 F. Eberle et al.

Algorithm 2: Offline Configuration Balancing with Stochastic Requests
try to solve (LPC) with τ = 2
if (LPC) is feasible then

let y∗ be the outputted feasible solution
for each request j do

independently sample c ∈ [qj] with probability y∗
cj

choose sampled c as cj

else
return “E[Opt] > 1”

To that end, we use the natural independent randomized rounding of (LPC).
That is, if (LPC) has a feasible solution y∗, for request j, we choose configuration c
as configuration cj independently with probability y∗

cj ; see Algorithm 2.
If the configurations are given explicitly as part of the input, then (LPC)

can be solved in polynomial time and, thus, Algorithm 2 runs in polynomial
time. Hence, the O

(
log m

log log m

)
-approximate non-adaptive policy for configuration

balancing with stochastic requests (Theorem 1) follows from the next lemma.

Lemma 3. If (LPC) can be solved in polynomial time, Algorithm 2 is a
polynomial-time randomized algorithm that either outputs a non-adaptive pol-
icy with expected makespan O

(
log m

log log m

)
, or certifies correctly that E[Opt] > 1.

2.3 Online Setting

We now consider online configuration balancing where n stochastic requests
arrive online one-by-one, and for each request, one configuration has to be irre-
vocably selected before the next request appears. We present a non-adaptive
online algorithm that achieves a competitive ratio of O(log m), which is best
possible due to the lower bound of Ω(log m) [5].

By a standard guess-and-double scheme, we may assume that we have a good
guess of E[Opt]. We omit the proof, which is analogous to its virtual-circuit-
routing counterpart in [3].

Lemma 4. Given an instance of online configuration balancing with stochastic
requests, suppose there exists an online algorithm that, given parameter λ > 0,
never creates an expected makespan more than α · λ, possibly terminating before
handling all requests. Further, if the algorithm terminates prematurely, then it
certifies that E[Opt] > λ. Then, there exists an O(α)-competitive algorithm
for online configuration balancing with stochastic requests. Further, the resulting
algorithm preserves non-adaptivity.

We will build on the same technical tools as in the offline case. In particular, we
wish to compute a non-adaptive assignment online with small expected truncated
load on each resource and small total expected exceptional load. To achieve
this, we generalize the greedy potential function approach of [3]. Our two new
ingredients are to treat the exceptional parts of a request’s configuration as a

Configuration Balancing for Stochastic Requests 137

resource requirement for an additional, artificial resource and to compare the
potential of our solution directly with a fractional solution to (LPC).

Now we describe our potential function, which is based on an
exponential/soft-max function. Let λ denote the current guess of the optimum
as required by Lemma 4. We take τ = 2λ as our truncation threshold. Given
load vector L ∈ R

m+1, our potential function is

φ(L) =
m∑

i=0

(3/2)Li/τ .

For i ∈ [m], we ensure the ith entry of L is the expected truncated load on
resource i and use the 0th entry as a virtual resource that is the total expected
exceptional load. For any request j, let Lj be the expected load vector after
handling the first j requests, with Lij denoting its ith entry. Let Li0 := 0 for all i.
Upon arrival of request j, our algorithm tries to choose the configuration cj ∈ [qj]
that minimizes the increase in potential; see Algorithm 3.

Algorithm 3: Online Configuration Balancing with Stochastic Requests
� ← log3/2(2m + 2)

λ ← current guess of E[Opt]
τ ← 2λ truncation threshold
upon arrival of request j do

1 cj ← arg minc∈[qj]

(
(3/2)(L0j−1+E[maxi∈[m] XE

ij(c)])/τ +
∑m

i=1(
3/2)(Lij−1+E[XT

ij(c)])/τ
)

− φ(Lj−1)

if Lij−1 + E[XT
ij(cj)] ≤ �τ for all i ∈ [m] and L0j−1 + E[maxi∈[m] X

E
ij (cj)] ≤ �τ

then
choose cj for j

Lij ← Lij−1 + E[XT
ij(cj)] for all i ∈ [m]

L0j ← L0j−1 + E[maxi∈[m] X
E
ij (cj)]

else
return “E[Opt] > λ”

To analyze this algorithm, we compare its makespan with a solution to (LPC).
This LP has an integrality gap of Ω

(
log m

log log m

)
, which follows immediately from

the path assignment LP for virtual circuit routing [25]. Hence, a straightforward
analysis of Algorithm 3 comparing to a rounded solution to (LPC) gives an assign-
ment with expected truncated load per machine and total expected exceptional
load O

(
log m · log m

log log m) · E[Opt]. To get a tight competitive ratio of O(log m),
we avoid the integrality gap by comparing to a fractional solution to (LPC), and
we use a slightly different inequality than Lemma 2 for the regime where the
mean of the sums is larger than the increments by at most a O(log m)-factor.

Lemma 5. Let S1, . . . , Sm be sums of independent RVs bounded in [0, τ] for τ >
0 such that E[Si] ≤ O(log m)τ for all 1 ≤ i ≤ m. Then, E[maxi Si] ≤ O(log m)τ .

138 F. Eberle et al.

We give the guarantee for Algorithm 3, which implies the O(log m)-
competitive algorithm for online configuration balancing with stochastic
requests.

Lemma 6. Suppose the minimizing configuration in Line 1 can be found in
polynomial time. Then Algorithm 3 runs in polynomial time; it is deterministic,
non-adaptive and correctly solves the subproblem of Lemma 4 for α = O(log m).

3 Load Balancing on Related Machines

In this section, we improve on Theorem2 in the special case of related machines,
where each machine i has a speed parameter si > 0 and each job j an inde-
pendent size Xj such that Xij = Xj

si
. Recall that we gave a non-adaptive

O
(

log m
log log m

)
-approximation for unrelated machines. However, the adaptivity gap

is Ω
(

log m
log log m

)
even for load balancing on identical machines where every machine

has the same speed. Thus, to improve on Theorem 2, we need to use adaptivity.
The starting point of our improved algorithms is the same non-adaptive

assignment for unrelated-machines load balancing. However, instead of non-
adaptively assigning job j to the specified machine i, we adaptively assign j
to the least loaded machine with similar speed to i. We formalize this idea and
briefly explain the algorithms for offline and online load balancing on related
machines.

Machine Smoothing. In this part, we define a notion of smoothed machines.
We show that by losing a constant factor in the approximation ratio, we may
assume that the machines are partitioned into at most O(log m) groups such
that machines within a group have the same speed and the size of the groups
shrinks geometrically. Thus, by “machines with similar speed to i,” we mean
machines in the same group.

Formally, we transform an instance I of load balancing on m related machines
with stochastic jobs into an instance Is with so-called “smoothed machines” and
the same set of jobs with the following three properties:

(i) The machines are partitioned into m′ = O(log m) groups such that group
k consists of mk machines with speed exactly sk such that s1 < s2 < · · · <
sm′ .

(ii) For all groups 1 ≤ k < m′, we have mk ≥ 3
2mk+1.

(iii) Opt(Is) = O(Opt(I)).

To this end, we suitably decrease machine speeds and delete machines from
the original instance I; see [14] for the algorithm and the technical details.

Lemma 7. There is an efficient algorithm that, given an instance I of load
balancing with m related machines and stochastic jobs, computes an instance Is

of smoothed machines with the same set of jobs satisfying Properties (i) to (iii).

Configuration Balancing for Stochastic Requests 139

A similar idea for machine smoothing has been employed by Im et al. [23]
for deterministic load balancing on related machines. In their approach, they
ensure that the total processing power of the machines in a group decreases
geometrically rather than the number of machines.

Offline Setting. We run Algorithm2 on the configuration balancing instance
defined by the load balancing instance with smoothed machines. Given a job-to-
machine assignment, we list schedule the jobs assigned to a particular group on
the machines of this group. In the proof of Theorem 4, we rely on the following
strong bound on the expected maximum of the truncated load; see [14].

Lemma 8. Let c1, . . . , cm ∈ N≥1 be constants such that ci ≥ 3
2ci+1 for all 1 ≤

i ≤ m. Let S1, . . . , Sm be sums of independent random variables bounded in [0, τ]
such that E[Si] ≤ ciτ for all 1 ≤ i ≤ m. Then, E

[
maxi

Si

ci

] ≤ O(τ).

Online Setting. We apply a similar framework as above. Note that our online
configuration balancing algorithm loses a logarithmic factor in the number of
resources, so to obtain a O(log log m)-approximation, we aggregate each group
(in the smoothed-machines instance) as a single resource. Intuitively, this defi-
nition captures the fact that we will average all jobs assigned to a group over
the machines in this group. Thus, our configuration balancing instance will have
only O(log m) resources and applying Theorem 1 proves Theorem 4; see [14].

Conclusion

We considered the configuration balancing problem under uncertainty. In con-
trast to the (often overly optimistic) clairvoyant settings and the (often overly
pessimistic) non-clairvoyant settings, we consider the stochastic setting where
each request j presents a set of random vectors, and we need to (adaptively)
pick one of these vectors, to minimize the expected maximum load over the
m resources. We give logarithmic bounds for several general settings (which are
existentially tight), and a much better O(1) offline and O(log log m) online bound
for the related machines setting. Closing the gap for online related-machines load
balancing remains an intriguing open problem. More generally, getting a better
understanding of both adaptive and non-adaptive algorithms for stochastic pack-
ing and scheduling problems remains an exciting direction for research.

References

1. Agrawal, S., Devanur, N.R.: Fast algorithms for online stochastic convex program-
ming. In: Proceedings of SODA, pp. 1405–1424 (2015)

2. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear
programming. Oper. Res. 62(4), 876–890 (2014)

3. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S.A., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM 44(3),
486–504 (1997)

140 F. Eberle et al.

4. Azar, Y.: On-line load balancing. In: Fiat, A., Woeginger, G.J. (eds.) Online Algo-
rithms. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998). https://doi.
org/10.1007/BFb0029569

5. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. J. Algo-
rithms 18(2), 221–237 (1995)

6. Beale, E.M.L.: On minimizing a convex function subject to linear inequalities. J.
Roy. Stat. Soc. Ser. B. Methodol. 17, 173–184; discussion, 194–203 (1955)

7. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related
machines. J. Algorithms 35(1), 108–121 (2000)

8. Bhalgat, A., Goel, A., Khanna, S.: Improved approximation results for stochastic
knapsack problems. In: Proceedings of SODA, pp. 1647–1665. SIAM (2011)

9. Charikar, M., Chekuri, C., Pál, M.: Sampling bounds for stochastic opti-
mization. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.)
APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 257–269. Springer, Heidelberg
(2005). https://doi.org/10.1007/11538462 22

10. Chuzhoy, J., Guruswami, V., Khanna, S., Talwar, K.: Hardness of routing with
congestion in directed graphs. In: Proceedings of STOC, pp. 165–178. ACM (2007)

11. Dantzig, G.B.: Linear programming under uncertainty. Manag. Sci. 1, 197–206
(1955)

12. Dean, B.C., Goemans, M.X., Vondrák, J.: Approximating the stochastic knapsack
problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

13. Dye, S., Stougie, L., Tomasgard, A.: The stochastic single resource service-provision
problem. Naval Res. Logist. 50(8), 869–887 (2003)

14. Eberle, F., Gupta, A., Megow, N., Moseley, B., Zhou, R.: Configuration balancing
for stochastic requests. CoRR, abs/2208.13702 (2022)

15. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

16. Gupta, A., Krishnaswamy, R., Molinaro, M., Ravi, R.: Approximation algorithms
for correlated knapsacks and non-martingale bandits. In: Ostrovsky, R. (ed.) Pro-
ceedings of FOCS, pp. 827–836. IEEE Computer Society (2011)

17. Gupta, A., Kumar, A., Nagarajan, V., Shen, X.: Stochastic load balancing on
unrelated machines. Math. Oper. Res. 46(1), 115–133 (2021)

18. Gupta, A., Molinaro, M.: How the experts algorithm can help solve LPS online.
Math. Oper. Res. 41(4), 1404–1431 (2016)

19. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Sampling and cost-sharing: approximation
algorithms for stochastic optimization problems. SIAM J. Comput. 40(5), 1361–
1401 (2011)

20. Hajiaghayi, M.T., Kim, J.H., Leighton, T., Räcke, H.: Oblivious routing in directed
graphs with random demands. In: Proceedings of STOC, pp. 193–201. ACM (2005)

21. Ibrahimpur, S., Swamy, C.: Approximation algorithms for stochastic minimum-
norm combinatorial optimization. In: Proceedings of FOCS, pp. 966–977. IEEE
(2020)

22. Im, S., Kell, N., Kulkarni, J., Panigrahi, D.: Tight bounds for online vector schedul-
ing. SIAM J. Comput. 48(1), 93–121 (2019)

23. Im, S., Kell, N., Panigrahi, D., Shadloo, M.: Online load balancing on related
machines. In: Proceedings of STOC, pp. 30–43. ACM (2018)

24. Kleinberg, J.M., Rabani, Y., Tardos, É.: Allocating bandwidth for bursty connec-
tions. SIAM J. Comput. 30(1), 191–217 (2000)

25. Leighton, T., Rao, S., Srinivasan, A.: Multicommodity flow and circuit switching.
In: HICSS (7), pp. 459–465. IEEE Computer Society (1998)

https://doi.org/10.1007/BFb0029569
https://doi.org/10.1007/BFb0029569
https://doi.org/10.1007/11538462_22

Configuration Balancing for Stochastic Requests 141

26. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Math. Program. 46, 259–271 (1990)

27. Leonardi, S.: On-line network routing. In: Fiat, A., Woeginger, G.J. (eds.) Online
Algorithms. LNCS, vol. 1442, pp. 242–267. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0029572

28. Ma, W.: Improvements and generalizations of stochastic knapsack and Markovian
bandits approximation algorithms. Math. Oper. Res. 43(3), 789–812 (2018)

29. Möhring, R.H., Schulz, A.S., Uetz, M.: Approximation in stochastic scheduling:
the power of LP-based priority policies. J. ACM 46(6), 924–942 (1999)

30. Molinaro, M.: Stochastic p load balancing and moment problems via the l-function
method. In: Proceedings of SODA, pp. 343–354. SIAM (2019)

31. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably
good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

32. Sagnol, G., Schmidt, D., Waldschmidt, G.: Restricted adaptivity in stochastic
scheduling. In: Proceedings of ESA. LIPIcs, vol. 204, pp. 79:1–79:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021)

33. Shmoys, D.B., Tardos, É.: An approximation algorithm for the generalized assign-
ment problem. Math. Program. 62, 461–474 (1993)

34. Swamy, C., Shmoys, D.B.: Sampling-based approximation algorithms for multi-
stage stochastic optimization. SIAM J. Comput. 41(4), 975–1004 (2012)

https://doi.org/10.1007/BFb0029572
https://doi.org/10.1007/BFb0029572

An Update-and-Stabilize Framework
for the Minimum-Norm-Point Problem

Satoru Fujishige1 , Tomonari Kitahara2 , and László A. Végh3(B)

1 Research Institute for Mathematical Sciences, Kyoto University,
Kyoto 606-8502, Japan

fujishig@kurims.kyoto-u.ac.jp
2 Faculty of Economics, Kyushu University, Fukuoka 819-0395, Japan

tomonari.kitahara@econ.kyushu-u.ac.jp
3 Department of Mathematics, London School of Economics and Political Science,

London WC2A 2AE, UK
L.Vegh@lse.ac.uk

Abstract. We consider the minimum-norm-point (MNP) problem of
polyhedra, a well-studied problem that encompasses linear programming.
Inspired by Wolfe’s classical MNP algorithm, we present a general algo-
rithmic framework that performs first order update steps, combined with
iterations that aim to ‘stabilize’ the current iterate with additional pro-
jections, i.e., finding a locally optimal solution whilst keeping the current
tight inequalities. We bound the number of iterations polynomially in the
dimension and in the associated circuit imbalance measure. In particu-
lar, the algorithm is strongly polynomial for network flow instances. The
conic version of Wolfe’s algorithm is a special instantiation of our frame-
work; as a consequence, we obtain convergence bounds for this algorithm.
Our preliminary computational experiments show a significant improve-
ment over standard first-order methods.

1 Introduction

We study the minimum-norm-point (MNP) problem

Minimize 1
2 ||Ax − b||2 subject to 0 ≤ x ≤ u , x ∈ R

N , (P)

where m and n are positive integers, M = {1, · · · ,m} and N = {1, · · · , n},
A ∈ R

M×N is a matrix with rank rk(A) = m, b ∈ R
M , and u ∈ (R ∪ {∞})N .

This is an extended abstract. The full version including all omitted proofs is available
on arXiv:2211.02560.
SF’s research is supported by JSPS KAKENHI Grant Numbers JP19K11839 and
22K11922 and by the Research Institute for Mathematical Sciences, an International
Joint Usage/Research Center located in Kyoto University. TK is supported by JSPS
KAKENHI Grant Number JP19K11830. LAV’s research is supported by the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no. 757481–ScaleOpt).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 142–156, 2023.
https://doi.org/10.1007/978-3-031-32726-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_11&domain=pdf
http://orcid.org/0000-0002-0950-4278
http://orcid.org/0000-0002-9867-3902
http://orcid.org/0000-0003-1152-200X
https://arxiv.org/abs/2211.02560
https://doi.org/10.1007/978-3-031-32726-1_11

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem 143

We will use the notation B(u) := {x ∈ R
N | 0 ≤ x ≤ u} for the feasible set.

The problem (P) generalizes the linear programming (LP) feasibility problem:
the optimum value is 0 if and only if Ax = b, x ∈ B(u) is feasible. We say that
(P) is an uncapacitated instance if u(i) = ∞ for all i ∈ N .

The formulation (P) belongs to a family of problems for which Necoara, Nes-
terov, and Glineur [16] showed linear convergence bounds of first order meth-
ods. That is, the number of iterations needed to find an ε-approximate solution
depends linearly on log(1/ε). Such convergence has been known for strongly con-
vex functions, but this property does not hold for (P). However, [16] shows that
restricted variants of strong convexity also suffice. For problems of the form (P),
the required property follows using Hoffman-proximity bounds [13]; see [19] and
the references therein for recent results on Hoffman-proximity.

We propose a new algorithmic framework for the minimum-norm-point prob-
lem (P) that uses stabilizing steps between first order updates. Our algorithm
terminates with an exact optimal solution in a finite number of iterations. More-
over, we show poly(n, κ) running time bounds for multiple instantiations of the
framework, where κ is the circuit imbalance measure associated with the matrix
(A | Im) (see Sect. 2). This gives strongly polynomial bounds whenever κ is con-
stant; in particular, κ = 1 for network flow feasibility. We note that if A ∈ Z

M×N ,
then κ ≤ Δ(A) for the maximum subdeterminant Δ(A). Still, κ can be expo-
nential in the encoding length of the matrix.

The stabilizing step is inspired by Wolfe’s classical minimum-norm-point
algorithm [24]. This considers the variant of (P) where the box constraint
x ∈ B(u) is replaced by

∑
i∈N xi = 1, x ≥ 0. Wolfe’s algorithm is reminis-

cent of the simplex method. It comprises major and minor cycles, and at the
end of every major cycle, the algorithm maintains a corral solution: for a linearly
independent set of columns, the current point is the nearest point to b in the
affine hull of these columns, while it also falls inside their convex hull. Wolfe’s
algorithm has been successfully employed as a subroutine in various optimization
problems, e.g., submodular function minimization [11], see also [1,8,10]. Beyond
the trivial 2n bound, the convergence analysis remained elusive; the first bound
with 1/ε-dependence was given by Chakrabarty et al. [2] in 2014. Lacoste-Julien
and Jaggi [14] gave a log(1/ε) bound, parametrized by the pyramidal width of
the polyhedron. Recently, De Loera et al. [5] showed an example of exponential
time behaviour of Wolfe’s algorithm for the min-norm insertion rule (the ana-
logue of a pivot rule); no exponential example for other insertion rules such as
the linopt rule used in the application for submodular minimization.

Wolfe’s algorithm works with a polytope in V -representation. Concurrently
with Wolfe’s work, Wilhelmsen [23] proposed an equivalent algorithm for unca-
pacitated (conic) instances of (P), i.e., for a polytope in H-representation. This
algorithm can be seen as a special instantiation of our framework, and we show
an O(n4κ2‖A‖2 log(n + κ)) iteration bound.

A significant difference compared to the Wolfe and Wolfe–Wilhelmsen algo-
rithms is that the supports of our iterates are not required to be independent.
This provides much additional flexibility: our algorithm can be combined with

144 S. Fujishige et al.

a variety of first order methods. This feature also yields a significant advantage
in our computational experiments.

Overview of the Algorithm. A key concept in our algorithm is the centroid map-
ping, defined as follows. For disjoint subsets I0, I1 ⊆ N , we let L(I0, I1) denote
the affine subspace of R

N where x(i) = 0 for i ∈ I0 and x(i) = u(i) for i ∈ I1. For
x ∈ B(u), let I0(x) and I1(x) denote the subsets of coordinates i with x(i) = 0
and x(i) = u(i), respectively. A centroid mapping Ψ : B(u) → R

N is a map-
ping with the property that Ψ(x) ∈ argminy{ 1

2‖Ay − b‖2 | y ∈ L(I0(x), I1(x))}.
This mapping may not be unique, since the columns of A corresponding to
{i ∈ N | 0 < x(i) < u(i)} = N \ (I0(x) ∪ I1(x)) may not be independent: the
optimal centroid set is itself an affine subspace. The point x ∈ B(u) is stable
if Ψ(x) = x. Stable points can be seen as the analogues of corral solutions in
Wolfe’s algorithm.

Every major cycle starts with an update step and ends with a stable point.
The update step could be any first-order step satisfying some natural require-
ments, such as variants of Frank–Wolfe, projected gradient, or Wolfe updates.
As long as the current iterate is not optimal, this update strictly improves the
objective. Finite convergence follows by the fact that there can be at most 3n

stable points.
After the update step, we start a sequence of minor cycles. From the current

iterate x ∈ B(u), we move to Ψ(x) in case Ψ(x) ∈ B(u), or to the intersection of
the boundary of B(u) and the line segment [x, Ψ(x)] otherwise. The minor cycles
finish once x = Ψ(x) is a stable point. The objective 1

2‖Ax− b‖2 is decreasing in
every minor cycle, and at least one new coordinate i ∈ N is set to 0 or to u(i).
Thus, the number of minor cycles in any major cycle is at most n. One can use
various centroid mappings, with only a mild requirement on Ψ (see Sect. 2.2).

We present a poly(n, κ) convergence analysis in the uncapacitated case for
projected gradient and Wolfe updates. We expect that similar arguments extend
to the capacitated case. The proof has two key ingredients. First, we show linear
convergence of the first-order update steps (Theorem 3). Such a bound follows
already from [16]; we present a simple self-contained proof exploiting properties
of stable points and the uncapacitated setting. The second step of the analysis
shows that in every poly(n, κ) iterations, we can identify a new variable that
will never become zero in subsequent iterations (Theorem 2). The proof relies
on proximity arguments: we show that for any iterate x and any subsequent
iterate x′, the distance ‖x − x′‖ can be upper bounded in terms of n, κ, and the
optimality gap at x.

In Sect. 5, we present preliminary computational experiments using randomly
generated problem instances of various sizes. We compare the performance of
different variants of our algorithm to standard gradient methods. The algorithm
performs much better with projected gradient updates than with Wolfe updates.
We compare an ‘oblivious’ centroid mapping and one that chooses Ψ(x) as the a
nearest point to x in the centroid set in the ‘local norm’ (see Sect. 2.2). The latter
one appears to be significantly better. For choices of parameters n ≥ 2m, our
method with projected gradient updates and local norm mapping outperforms

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem 145

the accelerated gradient method—the best among classical methods—by a factor
10 or more in computational time.

Related Work. Arguments that show strongly polynomial convergence by grad-
ually revealing the support of an optimal solution are prevalent in combinatorial
optimization. These date back to Tardos’s [21] groundbreaking work giving the
first strongly polynomial algorithm for minimum-cost flows. Our proof is closer to
the dual ‘abundant arc’ algorithms in [9,17]. Tardos generalized the above result
for general LP’s, giving a running time dependence poly(n, logΔ(A)), where
Δ(A) is the largest subdeterminant of A. This framework was recently strength-
ened in [4] to poly(n, log κ(A)) running time for the circuit imbalance measure
κ(A). We note that the above algorithms—along with many other strongly poly-
nomial algorithms in combinatorial optimization—modify the problem directly
once new information is learned about the optimal support. In contrast, our
algorithm does not require any such modifications, nor a knowledge or estimate
on the condition number κ.

Strongly polynomial algorithms with poly(n, log κ(A)) running time bounds
can also be obtained using layered least squares interior point methods. This line
of work was initiated by Vavasis and Ye [22] using a related condition measure
χ̄(A). An improved version that also established the relation between χ̄(A) and
κ(A) was recently given by Dadush et al. [3]. We refer the reader to the survey
[6] for properties and further applications of circuit imbalances.

Further Related Work. There are similarities between our algorithm and the
Iteratively Reweighted Least Squares (IRLS) method that has been intensively
studied since the 1960’s [15,18]. For some p ∈ [0,∞], A ∈ R

M×N , b ∈ R
M , the

goal is to approximately solve min{‖x‖p : Ax = b}. At each iteration, a weighted
minimum-norm point min{〈w(t), x

〉
: Ax = b} is solved, where the weights

w(t) are iteratively updated. The LP-feasibility problem Ax = b, 0 ≤ x ≤ 1
for finite upper bounds u = 1 can be phrased as an �∞-minimization problem
min{‖x‖∞ : Ax = b − A1/2}. Ene and Vladu [7] gave an efficient variant of
IRLS for �1 and �∞-minimization; see their paper for further references. Some
variants of our algorithm solve a weighted least squares problem with changing
weights in the stabilizing steps. There are however significant differences between
IRLS and our method. The underlying optimization problems are different, and
IRLS does not find an exact optimal solution in finite time. Applied to LP in
the �∞ formulation, IRLS satisfies Ax = b throughout while violating the box
constraints 0 ≤ x ≤ u. In contrast, iterates of our algorithm violate Ax = b
but maintain 0 ≤ x ≤ u. The role of the least squares subroutines is also rather
different in the two settings.

2 Preliminaries

Notation. We use N ⊕ M for disjoint union (or direct sum) of the copies of the
two sets. For a matrix A ∈ R

M×N , i ∈ M and j ∈ N , we denote the ith row

146 S. Fujishige et al.

of A by Ai and jth column by Aj . Also for any matrix X denote by X� the
matrix transpose of X. We let ‖ · ‖p denote the �p vector norm; we use ‖ · ‖ to
denote the Euclidean norm ‖ · ‖2. For a matrix A ∈ R

M×N , we let ‖A‖ denote
the spectral norm, that is, the �2 → �2 operator norm.

For any x, y ∈ R
M we define 〈x, y〉 = ∑

i∈M x(i)y(i). We will use this notation
also in other dimensions. We let [x, y] := {λx + (1 − λ)y | λ ∈ [0, 1]} denote the
line segment between the vectors x and y.

Elementary Vectors and Circuits. For a linear space W � R
N , g ∈ W is an

elementary vector if g is a support minimal nonzero vector in W , that is, no
h ∈ W \{0} exists such that supp(h) � supp(g), where supp denotes the support
of a vector. We let F(W) ⊆ W denote the set of elementary vectors. A circuit
in W is the support of some elementary vector; these are precisely the circuits
in the associated linear matroid M(W).

The subspaces W = {0} and W = R
N are called trivial subspaces, all other

subspaces are nontrivial. We define the circuit imbalance measure

κ(W) := max
{∣

∣
∣
∣
g(j)
g(i)

∣
∣
∣
∣ | g ∈ F(W), i, j ∈ supp(g)

}

for nontrivial subspaces and κ(W) = 1 for trivial subspaces. For a matrix A ∈
R

M×N , we use κ(A) to denote κ(ker(A)).
Recall that a matrix is totally unimodular (TU) if the determinant of every

square submatrix is 0, +1, or −1. A result by Cederbaum from 1957 shows
that κ(W) = 1 if and only if there exists a TU matrix A ∈ R

M×N such that
W = ker(A). We also note that if A ∈ Z

M×N , then κ(A) ≤ Δ(A).
We say that the vector y ∈ R

N conforms to x ∈ R
N if x(i)y(i) > 0 whenever

y(i) = 0. Given a subspace W ⊆ R
N , a conformal circuit decomposition of a

vector v ∈ W is a decomposition

v =
�∑

k=1

hk ,

where � ≤ n and h1, h2, . . . , h� ∈ F(W) are elementary vectors that conform to
v. A fundamental result on elementary vectors asserts that for every subspace
W ⊆ R

N , every v ∈ W admits a conformal circuit decomposition, see e.g. [12,20].
Note that there may be multiple conformal circuit decompositions of a vector.

Given A ∈ R
M×N , we define the extended subspace XA ⊂ R

N⊕M as
XA := ker(A | −IM). Hence, for every v ∈ R

N , (v,Av) ∈ XA. For v ∈ R
N ,

the generalized path-circuit decomposition of v with respect to A is a decompo-
sition v =

∑�
k=1 hk, where � ≤ n, and for each 1 ≤ k ≤ �, (hk, Ahk) ∈ R

N⊕M is
an elementary vector in XA that conforms to (v,Av). Moreover, hk is an inner
vector in the decomposition if Ahk = 0 and an outer vector otherwise.

We say that v ∈ R
N is cycle-free with respect to A, if all generalized path-

circuit decompositions of v contain outer vectors only. The following lemma will
play a key role in analyzing our algorithms.

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem 147

Lemma 1. For any A ∈ R
M×N , let v ∈ R

N be cycle-free with respect to A.
Then, ‖v‖∞ ≤ κ(XA)‖Av‖1 and ‖v‖2 ≤ nκ(XA)‖Av‖2.
Remark 1. We note that a similar argument shows that ‖A‖ ≤ min{nκ(XA),√

nτ(A)κ(XA)}, where τ(A) is the maximum size of supp(Ah) for an elementary
vector (h,Ah) ∈ XA.

Example 1. If A ∈ R
M×N is the node-arc incidence matrix of a directed graph

D = (M,N). The system Ax = b, x ∈ B(u) corresponds to a network flow
feasibility problem. Here, b(i) is the demand of node i ∈ M , i.e., the inflow minus
the outflow at i is required to be b(i). Recall that A is a TU matrix; consequently,
(A| − IM) is also TU, and κ(XA) = 1. Our algorithm is strongly polynomial in
this setting. Note that inner vectors correspond to cycles and outer vectors to
paths; this motivates the term ‘generalized path-circuit decomposition’. We also
note τ(A) = 2, and thus ‖A‖ ≤ 2

√
n in this case.

2.1 Optimal Solutions and Proximity

We define the set
Z(A, u) := {Ax | x ∈ B(u)} .

Thus, Problem (P) is to find the point in Z(A, u) that is nearest to b with respect
to the Euclidean norm. We note that if the upper bounds u are finite, Z(A, u)
is called a zonotope.

Throughout, we let p∗ denote the optimum value of (P). Note that whereas
the optimal solution x∗ may not be unique, the vector b∗ := Ax∗ is unique by
strong convexity; we have p∗ = 1

2‖b − b∗‖2. We use

η(x) := 1
2‖Ax − b‖2 − p∗

to denote the optimality gap for x ∈ B(u). The point x ∈ B(u) is an ε-
approximate solution if η(x) ≤ ε.

For a point x ∈ B(u), let I0(x) := {i ∈ N : x(i) = 0}, I1(x) := {i ∈ N :
x(i) = u(i)}, and J(x) := N \ (I0(x) ∪ I1(x)). The gradient of the objective
1
2‖Ax − b‖2 in (P) can be written as

gx := A�(Ax − b) .

We recall the first order optimality conditions: x ∈ B(u) is an optimal solution
to (P) if and only if gx(i) = 0 for all i ∈ J(x), gx(i) ≥ 0 for all i ∈ I0(x), and
gx(i) ≤ 0 for all i ∈ I1(x). Using Lemma 1, we can show:

Lemma 2. For any x ∈ B(u), there exists an optimal solution x∗ to (P) such
that ‖x−x∗‖∞ ≤ κ(XA)‖Ax− b∗‖1, and hence, ‖x−x∗‖2 ≤ nκ(XA)‖Ax− b∗‖2.

148 S. Fujishige et al.

2.2 The Centroid Mapping

Let us denote by 3N the set of all ordered pairs (I0, I1) of disjoint subsets I0, I1 ⊆
N , and let I∗ := {i ∈ N | u(i) < ∞}. For any (I0, I1) ∈ 3N with I1 ⊆ I∗, we let

L(I0, I1) := {x ∈ R
N | ∀i ∈ I0 : x(i) = 0, ∀i ∈ I1 : x(i) = u(i) } .

We call {Ax | x ∈ B(u) ∩ L(I0, I1)} ⊆ Z(A, u) a pseudoface of the Z(A, u). We
note that every face of Z(A, u) is a pseudoface, but there might be pseudofaces
that do not correspond to any face. We define a centroid set for (I0, I1) as

C(I0, I1) := argmin
y

{‖Ay − b‖ | y ∈ L(I0, I1))} .

Proposition 1. For (I0, I1) ∈ 3N with I1 ⊆ I∗, C(I0, I1) is an affine subspace
of R

N , and there exists w ∈ R
M such that Ay = w for every y ∈ C(I0, I1).

The centroid mapping Ψ : B(u) → R
N is a mapping that satisfies

Ψ(Ψ(x)) = Ψ(x) and Ψ(x) ∈ C(I0(x), I1(x)) , ∀x ∈ B(u)

We say that x ∈ B(u) is a stable point if Ψ(x) = x. A simple, ‘oblivious’ centroid
mapping arises by taking the minimum-norm point of the centroid set:

Ψ(x) := argmin{‖y‖ | y ∈ C(I0(x), I1(x))} . (1)

However, this mapping has some undesirable properties. For example, we may
have an iterate x that is already in C(I0(x), I1(x)), but Ψ(x) = x. Instead, we
aim for centroid mappings that move the current point ‘as little as possible’.
The centroid mapping Ψ is called cycle-free, if the vector Ψ(x) − x is cycle-free
w.r.t. A for every x ∈ B(u).

Lemma 3. For every x ∈ B(u), let D(x) ∈ R
N×N
>0 be a positive diagonal matrix.

Then, the following Ψ(x) defines a cycle-free centroid mapping:

Ψ(x) := argmin{‖D(x)(y − x)‖ | y ∈ C(I0(x), I1(x))} . (2)

We emphasize that D(x) in the statement is a function of x and can be any
positive diagonal matrix. Note also that the diagonal entries for indices in
I0(x) ∪ I1(x) do not matter. In our experiments, defining D(x) with diagonal
entries 1/x(i)+1/(u(i)−x(i)) for i ∈ J(x) performs particularly well. Intuitively,
this choice aims to move less the coordinates close to the boundary. The next
proposition follows from Lagrangian duality. We note that Ψ(x) as in (1) or (2)
can be computed by solving a system of linear equations.

Proposition 2. For a partition N = I0 ∪ I1 ∪J , the centroid set can be written
as C(I0, I1) =

{
y ∈ L(I0, I1) | (AJ)�(Ay − b) = 0

}
.

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem 149

3 The Update-and-Stabilize Framework

Now we describe a general algorithmic framework MNPZ(A, b, u) for solving
(P), shown in Algorithm1. Similarly to Wolfe’s MNP algorithm, the algorithm
comprises major and minor cycles. We maintain a point x ∈ B(u), and x is
stable at the end of every major cycle. Each major cycle starts by calling the
subroutine Update(x); the only general requirement on this subroutine is:

(U1) for y = Update(x), y = x if and only if x is optimal to (P), and ‖Ay − b‖ <
‖Ax − b‖ otherwise, and

(U2) if y = x, then for any λ ∈ [0, 1), z = λy + (1 − λ)x satisfies ‖Ay − b‖ <
‖Az − b‖.

Property (U1) can be obtained from any first order algorithm; we introduce
some important examples below. Property (U2) might be violated if using a
fixed step-length, which is a common choice. In order to guarantee (U2), we can
post-process the first order update that returns y′ by choosing y as the optimal
point on the line segment [x, y′].

The algorithm terminates once x = Update(x). In the minor cycles, as long
as w := Ψ(x) = x, i.e., x is not stable, we set x := w if w ∈ B(u); otherwise, we
set the next x as the intersection of the line segment [x,w] and the boundary of
B(u). The requirement (U1) is already sufficient to show finite termination.

Algorithm 1: MNPZ(A, b, u)
Input : A ∈ R

M×N , b ∈ R
M , u ∈ (R ∪ {∞})N

Output: An optimal solution x to (P)
1 x ←initial point from B(u) ;
2 repeat
3 x ← Update(x) ; // Major cycle
4 w ← Ψ(x) ;
5 while Ψ(x) �= x // Minor cycle
6 do
7 α∗ ← argmax{α ∈ [0, 1] | x + α(w − x) ∈ B(u)} ;
8 x ← x + α∗(w − x) ;
9 w ← Ψ(x) ;

10 x ← w ;
11 until x = Update(x)
12 return x

Theorem 1. Consider any Update(x) subroutine that satisfies (U1) and any
centroid mapping Ψ . The algorithm MNPZ(A, b, u) finds an optimal solution to
(P) within 3n major cycles. Every major cycle contains at most n minor cycles.

150 S. Fujishige et al.

We can implement the Update(x) subroutine satisfying (U1) and (U2) using
various first order methods for constrained optimization. Recall the notation gx

for the gradient gx; we use g = gx when x is clear from the context. The following
property of stable points can be compared to the optimality conditions:

Lemma 4. If x(= Ψ(x)) is a stable point, then g(j) = 0 for all j ∈ J(x).

We now describe three classical options. We stress that the choice of the centroid
mapping Ψ can be chosen independently of the update step.

The Frank–Wolfe Update. The Frank–Wolfe or conditional gradient method is
applicable only in the case when u(i) is finite for every i ∈ N . In every update
step, we start by computing ȳ as the minimizer of the linear objective 〈g, y〉 over
B(u), that is,

ȳ ∈ argmin{〈g, y〉 | y ∈ B(u)}.

We set Update(x) := x if 〈g, ȳ〉 = 〈g, x〉, or y = Update(x) is selected so that
y minimizes 1

2‖Ay − b‖2 on the line segment [x, ȳ]. Clearly, ȳ(i) = 0 if g(i) > 0,
and ȳ(i) = u(i) if g(i) < 0. But, ȳ(i) can be chosen arbitrarily if g(i) = 0. In
this case, we keep ȳ(i) = x(i); this will be significant to guarantee stability of
solutions in the analysis.

The Projected Gradient Update. The projected gradient update moves in the
opposite gradient direction to ȳ := x − λg for some step-length λ > 0, and
obtains the output y = Update(x) as the projection y of ȳ to the box B(u). This
projection simply changes every negative coordinate to 0 and every ȳ(i) > u(i)
to y(i) = u(i). To ensure (U2), we can perform an additional step that replaces
y by the point y′ ∈ [x, y] that minimizes 1

2‖Ay′ − b‖2.
Consider now an uncapacitated instance (i.e., u(i) = ∞ for all i ∈ N), and

let x be a stable point. Recall I1(x) = ∅ in the uncapacitated setting. Lemma 4
allows us to write the projected gradient update in the following simple form
that also enables to use optimal line search. Define

zx(i) := max{−gx(i), 0},

and use z = zx when clear from the context. Note that x is optimal to (P) if
and only if z = 0. We use the optimal line search

y := argmin
y

{ 1
2‖Ay − b‖2 | y = x + λz, λ ≥ 0

}
.

If z = 0, this can be written explicitly as

y := x +
‖z‖2

‖Az‖2 z.

To verify this formula, note that ‖z‖2 = −〈g, z〉, since either z(i) = 0 or z(i) =
−g(i).

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem 151

The Wolfe Update. Our third update resembles Wolfe’s algorithm. In the unca-
pacitated case, it corresponds to the Wolfe–Wilhelmsen algorithm. Given a stable
point x ∈ B(u), we select a coordinate j ∈ N where either j ∈ I0(x) and g(j) < 0
or j ∈ I1(x) and g(j) > 0, and set y such that y(i) = x(i) if i = j, and y(j) is
chosen in [0, u(j)] so that 1

2‖Ay − b‖2 is minimized.
Analogously to Wolfe’s algorithm, we can maintain basic solutions through-

out. Namely, if AJ is linearly independent for J = J(x), then one can show that
AJ ′

is also linearly independent for J ′ = J(y) = J ∪ {j}, where y = Update(x).
Assume we start with x = 0, i.e., J(x) = I1(x) = ∅, I0(x) = N . Then,
AJ(x) remains linearly independent throughout. Hence, every stable solution
x is a basic solution to (P). Note that whenever AJ(x) is linearly independent,
C(I0(x), I1(x)) contains a single point, hence, Ψ(x) is uniquely defined.

Consider now the uncapacitated setting. For z = zx, let us return y = x if
z = 0. Otherwise, let j ∈ argmaxk z(k); note that j ∈ I0(x). Let

y(i) :=

{
x(i) if i ∈ N \ {j},

z(i)
‖Ai‖2 if i = j.

It is easy to verify that the Frank–Wolfe, projected gradient, and Wolfe
update rules all satisfy (U1) and (U2). For projected gradient, for the updates
in the uncapacitated form as described above, (U2) is guaranteed. For the gen-
eral form with upper bounds, we can perform a post-processing as noted above
to ensure (U2). We say that Update(x) is a cycle-free update rule, if for every
x ∈ B(u) and y = Update(x), x − y is cycle-free w.r.t. A. One can show that
the Frank–Wolfe, projected gradient, and Wolfe updates are all cycle-free.

4 Analysis

Theorem 2. Consider an uncapacitated instance of (P), and assume we use a
cycle-free centroid mapping. Algorithm1 terminates with an optimal solution in
O(n3κ2(XA)‖A‖2 log(n+κ(XA))) major cycles using projected gradient updates,
and in O(n4κ2(XA)‖A‖2 log(n + κ(XA))) major cycles using Wolfe updates. In
both cases, the total number of minor cycles is O(n4κ2(XA)‖A‖2 log(n+κ(XA))).

Proximity Bounds. We show that if using a cycle-free update rule and a cycle-free
centroid mapping, the movement of the iterates in Algorithm1 can be bounded
by the change in the objective value. First, a nice property of the centroid set is
that the movement of Ax directly relates to the decrease in the objective value.
Namely,

Lemma 5. For x ∈ B(u), let y ∈ C(I0(x), I1(x)). Then, ‖Ax − Ay‖2 = ‖Ax −
b‖2−‖Ay−b‖2. Consequently, if Ψ is a cycle-free centroid mapping and y = Ψ(x),
then

‖x − y‖2 ≤ n2κ2(XA)
(‖Ax − b‖2 − ‖Ay − b‖2) .

Next, let us consider the movement of x during a call to Update(x).

152 S. Fujishige et al.

Lemma 6. Let x ∈ B(u) and y = Update(x). Then, ‖Ax − Ay‖2 ≤ ‖Ax −
b‖2 − ‖Ay − b‖2. If using a cycle-free update rule, we also have

‖x − y‖2 ≤ n2κ2(XA)
(‖Ax − b‖2 − ‖Ay − b‖2) .

Lemma 7. Let x ∈ B(u), and let x′ be an iterate obtained by consecutive t
major or minor updates of Algorithm 1 using a cycle-free update rule and a
cycle-free centroid mapping, starting from x. Then,

‖x − x′‖ ≤ nκ(XA)
√
2t ·

√
1
2‖Ax − b‖2 − 1

2‖Ax′ − b‖2.

Geometric Convergence of the Projected Gradient and Wolfe Updates. Recall
that η(x) denotes the optimality gap at x.

Theorem 3. Consider an uncapacitated instance of (P), and let x ≥ 0 be a
stable point. Then for y = Update(x) using the projected gradient update, we
have η(y) ≤ (

1 − 1/(2n2κ2(XA)‖A‖2)) η(x). Using the Wolfe updates, we have
η(y) ≤ (

1 − 1/(2n3κ2(XA)‖A‖2)) η(x).

The theorem follows easily from the next two lemmas. First, we formulate the
update progress using optimal line search, and next, we use Lemma 2 to bound
‖z‖.

Lemma 8. For a stable point x ≥ 0, the projected gradient update satisfies
‖Ax− b‖2 −‖Ay − b‖2 ≥ ‖z‖2/‖A‖2, and the Wolfe update satisfies ‖Ax− b‖2 −
‖Ay − b‖2 = z(j)2/‖Aj‖2.
Lemma 9. For a stable point x ≥ 0 and the update direction z = zx, we have
‖z‖ ≥ √

η(x)/(
√
2nκ(XA)).

Proof. Let x∗ ≥ 0 be an optimal solution to (P) as in Lemma 2, and b∗ = Ax∗.
Using convexity of f(x) := 1

2‖Ax−b‖2, we have p∗ = f(x∗) ≥ f(x)+〈g, x∗−x〉 ≥
f(x) − 〈z, x∗ − x〉, where the second inequality follows by noting that for each
i ∈ N , either z(i) = −g(i), or z(i) = 0 and g(i)(x∗(i) − x(i)) ≥ 0. From the
Cauchy-Schwarz inequality and Lemma 2, we get p∗ ≥ f(x) − ‖z‖ · ‖x∗ − x‖ ≥
f(x)− nκ(XA)‖Ax − b∗‖ · ‖z‖, that is, ‖z‖ ≥ η(x)/nκ(XA)‖Ax − b∗‖. The proof
is complete by showing 2η(x) ≥ ‖Ax − b∗‖2.

Recalling that η(x) = 1
2‖Ax − b‖2 − 1

2‖Ax∗ − b‖2 and that b∗ = Ax∗, this
is equivalent to 〈Ax − Ax∗, Ax∗ − b〉 ≥ 0. This can be further written as 〈x −
x∗, gx∗〉 ≥ 0, which is implied by the first order optimality condition at x∗. This
proves 2η(x) ≥ ‖Ax − b∗‖2, and hence the lemma follows.

Overall Convergence Bounds. We now prove Theorem 2. Using Lemma 7 and
Theorem 3, we can derive the following stronger proximity bound:

Lemma 10. Consider an uncapacitated instance of (P). Let x ≥ 0 be an iterate
of Algorithm1 using projected gradient updates, and let x′ ≥ 0 be any later
iterate. Then, for a value Θ := O(n2.5κ2(XA)‖A‖), we have ‖x−x′‖ ≤ Θ

√
η(x).

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem 153

We need one more auxiliary lemma.

Lemma 11. Consider an uncapacitated instance of (P), and let x ≥ 0 be a
stable point. Let x̂ ≥ 0 such that for each i ∈ N , either x̂(i) = x(i), or x̂(i) =
0 < x(i). Then, ‖Ax̂ − b‖2 = ‖Ax − b‖2 + ‖Ax̂ − Ax‖2.
For the threshold Θ as in Lemma 10 and for any x ≥ 0, let us define

J�(x) :=
{

i | x(i) > Θ
√

η(x)
}

.

The following is immediate from Lemma 10.

Lemma 12. Consider an uncapacitated instance of (P). Let x ≥ 0 be an iterate
of Algorithm 1 using projected gradient updates, and x′ ≥ 0 be any later iterate.
Then, J�(x) ⊆ J(x′).

Proof (Proof of Theorem 2). At any point of the algorithm, let J� denote the
union of the sets J�(x) for all iterations thus far. Consider a stable iterate x
at the beginning of any major cycle, and let ε :=

√
η(x)/4nΘ‖A‖. Theorem 3

for projected gradient updates guarantees that within O(n2κ2(XA)‖A‖2 log(n+
κ(XA))) major cycles we arrive at an iterate x′ such that

√
η(x′) < ε. The

bound is O(n3κ2(XA)‖A‖2 log(n + κ(XA))) for Wolfe updates. We note that
log(n + κ(XA) + ‖A‖) = O(log(n + κ(XA))) according to Remark 1. We show
that

J�(x′) ∩ I0(x) = ∅. (3)

From here, we can conclude that J� was extended between iterates x and x′.
This may happen at most n times, and so we get the claimed bounds on the
number of major cycles. The bound on the minor cycles for projected gradient
updates follows since every major cycle contains at most n minor cycles. For
Wolfe updates, it follows since every major cycle adds on one component to
J(x) whereas every minor cycle removes at least one. Hence, the total number
of minor cycles is at most m plus the total number of major cycles.

For a contradiction, assume that (3) does not hold. Thus, for every i ∈ I0(x),
we have x′(i) ≤ Θε. Let us define x̂ ∈ R

N as x̂(i) := 0 if i ∈ I0(x), and
x̂(i) := x′(i) if i ∈ J(x). By the above assumption, ‖x̂ − x′‖∞ ≤ Θε, and
therefore ‖Ax̂−Ax′‖ ≤ √

nΘ‖A‖ε. From Lemma11, we can bound ‖Ax̂− b‖2 =
‖Ax′ − b‖2 + ‖Ax̂ − Ax′‖2 ≤ 2p∗ + (nΘ2‖A‖2 + 2)ε2. Recall that since x is a
stable solution, ‖Ax−b‖ = min {‖Ay − b‖ : y ∈ L(I0(x), ∅)}. Since x̂ is a feasible
solution to this program, it follows that ‖Ax̂ − b‖2 ≥ ‖Ax − b‖2. We get that
2η(x) = ‖Ax− b‖2 −2p∗ ≤ ‖Ax̂− b‖2 −2p∗ ≤ (nΘ2‖A‖2+2)ε2, in contradiction
with the choice of ε.

5 Computational Experiments

We give preliminary computational experiments of different versions of our algo-
rithm, and compare them to standard gradient methods. The experiments were

154 S. Fujishige et al.

programmed and executed by MATLAB version R2021b on a personal computer
having 11th Gen Intel(R) Core(TM) i7-11370H @ 3.30GHz and 16GB of mem-
ory. We present results on randomly generated uncapacitated instances. The
full version contains more experiments, also on capacitated instances, and also
including the Frank–Wolfe method.

The entries of the m × n matrix A and the m dimensional vector b were
chosen independently uniformly at random from the interval [−0.5, 0.5]. Thus,
the underlying LP Ax = b, x ≥ 0 may or may not be feasible. For the case m =
1000, n = 1050, this leads to infeasible instance with high probability. In this
case, we also generated feasible instances by sampling coefficients w(i) ∈ [0, 1]
uniformly at random, and setting b = Aw.

We test each combination of two update methods: Projected Gradient (PG)
and Wolfe (W); and two centroid mappings, the ‘oblivious’ mapping (1) and the
‘local norm’ mapping (2) with diagonal entries 1/x(i) + 1/(u(i) − x(i)). Recall
that for Wolfe updates, there is a unique centroid mapping. We benchmark
against standard constrained first order methods: the projected gradient (PG),
and the projected fast (accelerated) gradient method (PFG). In contrast to our
algorithm, these do not finitely terminate. We stopped these algorithms once
they found a near-optimal solution within a certain accuracy threshold.

We stopped each algorithm when the computation time reached 180 s. For
each (m,n), we test all the algorithms 10 times and the results shown below
are the 10-run averaged figures. Table 1 shows the overall computational times;
values in brackets show the number of trials whose computation time exceeded
180 s. For the ‘near-square’ case m = 1000, n = 1050, status ‘I’ denotes infeasible
and ‘F’ feasible instances. Table 2 shows the number of major cycles and the total
number of minor cycles.

In our framework, projected gradient updates perform significantly better
than Wolfe updates, except for infeasible ‘near-square’ instances. For Wolfe
updates, the number of major and minor cycles is similar; projected gradient
performs much fewer major cycles. Among the two centroid mappings, the ‘local-
norm’ update (2) performs significantly better than the ‘oblivious’ update (1).

There is a marked difference between infeasible and feasible ‘near-square’
instances. Our algorithms perform well on feasible instances. For infeasible
instances, the running time is much longer, with an excessive number of minor
cycles.

As one may expect, projected fast gradient is significantly better than project
gradient. For ‘rectangular’ (n ≥ 2m) instances, our method with projected gra-
dient updates together with the centroid mapping (2), outperforms fast gradient
by a factor 10 or more. This is despite the fact that centroid mappings are com-
putationally more expensive than first order methods. For feasible near-square
instances, the performance in these two cases is similar. However, for infeasible
near-square instances, our algorithms are outperformed by projected gradient
and projected fast gradient methods.

An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem 155

Table 1. Computation time (in sec) for random uncapacitated instances

m 100 200 300 500 500 1000 1000
n 200 400 600 1000 3000 1050 1050
Status I F

PG+(1) 0.37 3.19 11.07 79.17 142.67 (4) 58.57 5.68
PG+(2) 0.04 0.31 0.81 1.76 2.37 57.72 0.86
W 0.20 1.90 6.69 33.75 47.83 22.80 149.73
PG 3.49 87.07 (3) 118.91 (5) 112.85 (5) 5.31 6.26 180.00 (10)
PFG 0.17 4.13 17.48 47.33 (1) 6.17 5.15 92.59

Table 2. # of major cycles (first number) and total # of minor cycles (second number)
for random uncapacitated instances

m 100 200 300 500 500 1000 1000
n 200 400 600 1000 3000 1050 1050
Status I F

PG+(1) 6.0 9.5 11.6 11.9 1.0 4.1 1.0
199.7 462.6 759.6 1505.2 1513.9 599.7 31.6

PG+(2) 2.2 2.8 2.6 2.2 1.0 4.1 1.0
23.5 30.9 36.9 29.8 1.0 570.2 3.1

W 121 265.4 401.1 653.5 501.4 526.7 1091.6
144.6 333.4 506.1 810.2 508.2 530.8 1182.2

Acknowledgments. The third author would like to thank Richard Cole, Daniel
Dadush, Christoph Hertrich, Bento Natura, and Yixin Tao for discussions on first
order methods and circuit imbalances.

References

1. Bach, F.: Learning with submodular functions: a convex optimization perspective.
Found. Trends Mach. Learn. 6(2–3), 145–373 (2013)

2. Chakrabarty, D., Jain, P., Kothari, P.: Provable submodular minimization using
Wolfe’s algorithm. In: Advances in Neural Information Processing Systems, vol. 27
(2014)

3. Dadush, D., Huiberts, S., Natura, B., Végh, L.A.: A scaling-invariant algorithm for
linear programming whose running time depends only on the constraint matrix.
In: Proceedings of the 52nd Annual ACM Symposium on Theory of Computing
(STOC), pp. 761–774 (2020)

4. Dadush, D., Natura, B., Végh, L.A.: Revisiting Tardos’s framework for linear pro-
gramming: faster exact solutions using approximate solvers. In: Proceedings of the
61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
931–942 (2020)

156 S. Fujishige et al.

5. De Loera, J.A., Haddock, J., Rademacher, L.: The minimum Euclidean-norm point
in a convex polytope: Wolfe’s combinatorial algorithm is exponential. SIAM J.
Comput. 49(1), 138–169 (2020)

6. Ekbatani, F., Natura, B., Végh, A.L.: Circuit imbalance measures and linear pro-
gramming. In: Surveys in Combinatorics 2022. London Mathematical Society Lec-
ture Note Series, pp. 64–114. Cambridge University Press, Cambridge (2022)

7. Ene, A., Vladu, A.: Improved convergence for �1 and �∞ regression via iteratively
reweighted least squares. In: International Conference on Machine Learning, pp.
1794–1801. PMLR (2019)

8. Fujishige, S.: Lexicographically optimal base of a polymatroid with respect to a
weight vector. Math. Oper. Res. 5(2), 186–196 (1980)

9. Fujishige, S.: A capacity-rounding algorithm for the minimum-cost circulation
problem: a dual framework of the Tardos algorithm 35(3), 298–308 (1986)

10. Fujishige, S., Hayashi, T., Yamashita, K., Zimmermann, U.: Zonotopes and the
LP-Newton method. Optim. Eng. 10(2), 193–205 (2009)

11. Fujishige, S., Isotani, S.: A submodular function minimization algorithm based on
the minimum-norm base. Pac. J. Optim. 7(1), 3–17 (2011)

12. Fulkerson, D.: Networks, frames, blocking systems. Math. Decis. Sci. Part I, Lect.
Appl. Math. 2, 303–334 (1968)

13. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res.
Natl. Bur. Stand. 49(4), 263–265 (1952)

14. Lacoste-Julien, S., Jaggi, M.: On the global linear convergence of Frank-Wolfe
optimization variants. In: Advances in Neural Information Processing Systems,
vol. 28 (2015)

15. Lawson, C.L.: Contribution to the theory of linear least maximum approximation.
Ph.D. thesis (1961)

16. Necoara, I., Nesterov, Y., Glineur, F.: Linear convergence of first order methods
for non-strongly convex optimization. Math. Program. 175(1), 69–107 (2019)

17. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res.
41(2), 338–350 (1993)

18. Osborne, M.R.: Finite Algorithms in Optimization and Data Analysis. Wiley,
Hoboken (1985)

19. Peña, J., Vera, J.C., Zuluaga, L.F.: New characterizations of Hoffman constants
for systems of linear constraints. Math. Program. 1–31 (2020)

20. Rockafellar, R.T.: The elementary vectors of a subspace of RN . In: Combinatorial
Mathematics and Its Applications: Proceedings North Carolina Conference, Chapel
Hill, 1967, pp. 104–127. The University of North Carolina Press (1969)

21. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combina-
torica 5(3), 247–255 (1985)

22. Vavasis, S.A., Ye, Y.: A primal-dual interior point method whose running time
depends only on the constraint matrix 74(1), 79–120 (1996)

23. Wilhelmsen, D.R.: A nearest point algorithm for convex polyhedral cones and
applications to positive linear approximation. Math. Comput. 30(133), 48–57
(1976)

24. Wolfe, P.: Finding the nearest point in a polytope. Math. Program. 11(1), 128–149
(1976)

Stabilization of Capacitated Matching
Games

Matthew Gerstbrein1, Laura Sanità2, and Lucy Verberk3(B)

1 University of Waterloo, Waterloo, Canada
mlgerstbrein@uwaterloo.ca

2 Bocconi University, Milan, Italy
laura.sanita@unibocconi.it

3 Eindhoven University of Technology, Eindhoven, The Netherlands
l.p.a.verberk@tue.nl

Abstract. An edge-weighted, vertex-capacitated graph G is called stable
if the value of a maximum-weight capacity-matching equals the value of a
maximum-weight fractional capacity-matching. Stable graphs play a key
role in characterizing the existence of stable solutions for popular combi-
natorial games that involve the structure of matchings in graphs, such as
network bargaining games and cooperative matching games.

The vertex-stabilizer problem asks to compute a minimum number of
players to block (i.e., vertices of G to remove) in order to ensure stability
for such games. The problem has been shown to be solvable in polynomial-
time, for unit-capacity graphs. This stays true also if we impose the restric-
tion that the set of players to block must not intersect with a given specified
maximum matching of G.

In this work, we investigate these algorithmic problems in the more
general setting of arbitrary capacities. We show that the vertex-stabilizer
problem with the additional restriction of avoiding a given maximum
matching remains polynomial-time solvable. Differently, without this
restriction, the vertex-stabilizer problem becomes NP-hard and even hard
to approximate, in contrast to the unit-capacity case.

Finally, in unit-capacity graphs there is an equivalence between the
stability of a graph, existence of a stable solution for network bargaining
games, and existence of a stable solution for cooperative matching games.
We show that this equivalence does not extend to the capacitated case.

Keywords: Matching · Game theory · Network bargaining

1 Introduction

Network Bargaining Games (NBG) and Cooperative Matching Games (CMG)
are popular combinatorial games involving the structure of matchings in graphs.
CMG were introduced in the seminal paper of Shapley and Shubik 50 years
ago [18], and have been widely studied since then. NBG are relatively more
recent, and were defined by Kleinberg and Tardos [14] as a generalization of
Nash’s 2-player bargaining solution [17].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 157–171, 2023.
https://doi.org/10.1007/978-3-031-32726-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_12&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_12

158 M. Gerstbrein et al.

Instances of these games are described by a graph G = (V,E) with weights
w ∈ R

E
≥0, where the vertices and the edges model the players and their potential

interactions, respectively. The value of a maximum-weight matching, denoted
as ν(G), is the total value that players can collectively accumulate. The goal,
roughly speaking, is to assign values to players in such a way that players have
no incentive to deviate from the current allocation.

Formally, in an instance of a NBG, players want to enter in a deal with one
of their neighbours, and agree on how to split the value of the deal given by
the weight of the corresponding edge. Hence, an outcome is naturally associated
with a matching M of G representing the deals, and allocation vector y ∈ R

V
≥0

with yu + yv = wuv if uv ∈ M , and yv = 0 if v is not matched. An outcome
(M,y) is stable if each player’s allocation yu is at least as large as their outside
option, formally defined as maxv:uv∈E\M{wuv − yv}.

In an instance of a CMG, one wants to find an allocation of total value ν(G),
given by a vector y ∈ R

V
≥0 in which no subset of players can gain more by forming

a coalition. This condition is enforced by the constraint
∑

v∈S yv ≥ ν(G[S]) for
all S ⊆ V , where G[S] indicates the subgraph of G induced by the vertices in S.
Such allocation is called stable, and the set of stable allocations constitutes the
core of the game.

Despite having been defined in different contexts, there is a tight link between
stable solutions of these types of games. In particular, if each game is played on
the same graph G, then it has been shown that either a stable solution exists
for both games, or for neither game. This follows as both games admit the same
polyhedral characterization of instances with stable solutions [7,14]. Specifically,
a stable solution exists if and only if ν(G) equals the value of the standard linear
programming (LP) relaxation of the maximum matching problem defined as

νf (G) := max

{

w�x :
∑

u:uv∈E

xuv ≤ 1 ∀v ∈ V, x ≥ 0

}

. (1)

A graph G for which ν(G) = νf (G) is called stable. As a result of this
characterization, it is easy to see that there are graphs which do not admit
stable solutions (to either type of game), such as odd cycles. Given that not all
graphs are stable, naturally arises the stabilization problem of how to minimally
modify a graph to turn it into a stable one. Stabilization problems attracted a
lot of attention in the literature in the past years (see e.g. [1,3–6,13,15,16]).

In this context, very natural operations to stabilize graphs are edge- and
vertex-removal operations. Those have an interesting interpretation: they corre-
spond to blocking interactions and players, respectively, in order to ensure a sta-
ble outcome. While removing a minimum number of edges to stabilize a graph is
NP-hard already for unit weight graphs [4], and even hard-to-approximate with
a constant factor [11,15], stabilizing the graph via vertex-removal operations
turned out to be solvable in polynomial-time. Specifically, [1,13] showed that
computing a minimum-cardinality set of players to block in order to stabilize an
unweighted graph (called the vertex-stabilizer problem) can be done in polyno-
mial time. Furthermore, [1] showed that computing a minimum set of players to
block in order to make a given maximum matching realizable as a stable outcome

Stabilization of Capacitated Matching Games 159

(called the M -vertex-stabilizer problem) is also efficiently solvable. The authors
of [15] showed that both results generalize to weighted graphs.

This paper focuses on Capacitated NBG, introduced by Bateni et al [2] as a
generalization of NBG, to capture the more realistic scenario where players are
allowed to enter in more than one deal. This generalization can be modeled by
allowing for vertex capacities c ∈ Z

V
≥0. The notion of a matching is therefore

generalized to a c-matching, where each vertex v ∈ V is matched with at most
cv vertices. In this case, the value of a maximum-weight c-matching of a graph
G is denoted as νc(G), and the standard LP relaxation is given by

νc
f (G) := max

{

w�x :
∑

u:uv∈E

xuv ≤ cv ∀v ∈ V, 0 ≤ x ≤ 1

}

. (2)

An outcome to the NBG is associated with a c-matching M and a vector
a ∈ R

2E
≥0 that satisfies auv + avu = wuv if uv ∈ M , and auv = avu = 0 otherwise.

The concepts of outside option and stable outcome can be defined similarly as
in the unit-capacity case, see [2].

The authors of [2] proved that the LP characterization of stable solutions
generalize, i.e., there exist a stable outcome for the capacitated NBG on G if
and only if νc(G) = νc

f (G) (i.e., G is stable). Farczadi et al [9] show that some
other important properties of NBG extend to this capacitated generalization,
such as the possibility to efficiently compute a so-called balanced solution (we
refer to [9] for details).

The goal of this paper is to investigate whether the other two significant
features of NBG mentioned before generalize to the capacitated setting. Namely:

(i) Can one still efficiently stabilize instances via vertex-removal operations?
(ii) Does the equivalence between existence of stable allocations for capacitated

CMG and existence of stable solutions for capacitated NBG still hold?

Our Results. In this paper we provide an answer to the above questions.
We investigate the M -vertex-stabilizer problem and the vertex-stabilizer

problem in the capacitated setting in Sects. 3 and 4, respectively. While for
unit-capacity graphs both problems are efficiently solvable, we show that adding
capacities makes the complexity status of the vertex-stabilizer problem diverge.
In particular, we prove that the vertex-stabilizer problem is NP-complete, and
no n1−ε-approximation is possible, for any ε > 0, unless P=NP. Note that a
trivial n-approximation algorithm can be easily developed.

In contrast, we show that the M -vertex-stabilizer problem is still polynomial-
time solvable in the capacitated setting. Our results here extend those of [15] for
unit-capacity graphs, and builds upon an auxiliary construction of [9].

Finally, in Sect. 5 we show that the equivalence between stability of a graph,
existence of a stable allocation for CMG and existence of a stable outcome for
NBG does not extend in the capacitated setting. In particular, we provide an
unstable graph which does attain a stable allocation for the capacitated CMG.1

1 It is stated in [8] (Theorem 2.3.9) that a stable allocation for capacitated CMG exists
iff G is stable, but our example shows this statement is not correct.

160 M. Gerstbrein et al.

2 Preliminaries and Notation

Problem Definition. A set S ⊆ V is called a vertex-stabilizer if G \ S is
stable, where G \ S is the subgraph induced by the vertices V \ S. We say that
a vertex-stabilizer S preserves a matching M of G if M is a matching in G \ S.

We now formally define the stabilization problems considered in this paper.
Vertex-stabilizer Problem: given G = (V,E) with edge weights w ∈ R

E
≥0 and

vertex capacities c ∈ Z
V
≥0, find a vertex-stabilizer of minimum cardinality.

M-vertex-stabilizer Problem: given G = (V,E) with edge weights w ∈ R
E
≥0,

vertex capacities c ∈ Z
V
≥0, and a maximum-weight c-matching M , find a vertex-

stabilizer of minimum cardinality among the ones preserving M .
An instance of the vertex-stabilizer problem will be denoted as (G,w, c). An

instance of the M -vertex-stabilizer problem will be denoted as [(G,w, c),M]. We
say that an instance is stable if G is stable. Without loss of generality, we can
assume that cv is bounded by the degree of v ∈ V .

Notation. For a vertex v, we let δ(v) be the set of edges of G incident into it,
we let N(v) be the set of its neighbours, and N+(v) = N(v) ∪ {v}. For F ⊆ E,
we denote by dF

v the degree of v in G with respect to the edges in F . We define
w(F) :=

∑
e∈F we. Given a c-matching M , we say that v ∈ V is exposed if

dM
v = 0, and covered if dM

v > 0. We also use these terms for feasible solutions x
of (2), called fractional c-matchings, e.g., v is exposed if

∑
e∈δ(v) xe = 0. We let

n := |V |, and � denote the symmetric difference operator.
We denote a (uv-)walk W by listing its edges and endpoints sequentially, i.e.,

by W = (u; e1, . . . , ek; v). We define its inverse as W−1 = (v; ek, . . . , e1;u). Note
that a path is a walk in which edges do not repeat, and internal vertices do not
repeat. A cycle is a path which starts and ends at the same vertex. If we refer
to the edge set of a walk W , we just write W . Note that this can be a multi-set.

Duality and Augmenting Structures. The dual of (2) is given by

τ c
f (G) := min

{
c�y + 1�z : yu + yv + zuv ≥ wuv ∀uv ∈ E, y ≥ 0, z ≥ 0

}
. (3)

A solution (y, z) feasible for (3) is called a fractional vertex cover. By LP theory,
we have νc(G) ≤ νc

f (G) = τ c
f (G).

Definition 1. We say that a walk W is M -alternating (w.r.t. a matching M)
if it alternates edges in M and edges not in M . We say W is M -augmenting if
it is M -alternating and w(W \ M) > w(W ∩ M). An M -alternating uv-walk W
is proper if dW�M

u ≤ cu and dW�M
v ≤ cv.

Definition 2. Given an M -alternating walk W = (u; e1, . . . , ek; v) and an ε >
0, the ε-augmentation of W is the vector xM/W (ε) ∈ R

E given by

xM/W
e (ε) =

{
1 − κ(e)ε if e ∈ M,

κ(e)ε if e /∈ M,
(4)

Stabilization of Capacitated Matching Games 161

where κ(e) = |{i ∈ [k] : ei = e}|. We say that W is feasible if there exists an ε > 0
such that the corresponding ε-augmentation of W is a fractional c-matching.

Remark 1. A feasible M -alternating walk with distinct endpoints is proper.

Definition 3. An odd cycle C = (v; e1, . . . , ek; v) is called an M -blossom if it
is M -alternating such that either e1 and ek are both in M , or are both not in
M . The vertex v is called the base of the blossom.

Definition 4. An M -flower C ∪ P consists of an M -blossom C with base u
and an M -alternating path P = (u; e1, . . . , ek; v) such that (P,C, P−1) is M -
alternating and feasible. The vertex v is called the root of the flower. The flower
is M -augmenting if

w(C \ M) + 2w(P \ M) > w(C ∩ M) + 2w(P ∩ M). (5)

Definition 5. An M -bi-cycle C ∪ P ∪ D consists of two M -blossoms C and D
with bases u and v, respectively, and an M -alternating path P = (u; e1, . . . , ek; v)
such that (P,D, P−1, C) is M -alternating. The bi-cycle is M -augmenting if

w(C \M)+2w(P \M)+w(D \M) > w(C ∩M)+2w(P ∩M)+w(D∩M). (6)

Note that, in the last two definitions, it may happen that P has no edges.

Auxiliary Construction. We will use a construction given in [9], to transform
an M -vertex-stabilizer instance [(G,w, c),M] into another one ([(G′, w′,1),M ′])
defined on an auxiliary graph with unit capacities.

Construction: [(G,w, c),M] → [(G′, w′,1),M ′]

1. For each v ∈ V , create the set Cv = {v1, . . . , vcv} of cv copies of v, add Cv to
V (G′), and initialize J(v) = {1, . . . , cv}.

2. For each uv ∈ M , add a single edge uivj to both E(G′) and M ′ with edge-
weight wuv, where i ∈ J(u) and j ∈ J(v) are chosen arbitrarily. Remove i
and j from J(u) and J(v), respectively.

3. For each edge uv ∈ E \ M , add an edge uivj to E(G′) with edge-weight wuv,
for all ui ∈ Cu and vj ∈ Cv.

See Fig. 1 for an example. In this figure it is easy to see that the matching M ′

in G′ is not maximum, even though M is maximum in G.2

Remark 2. If [(G,w, c),M] has auxiliary [(G′, w′,1),M ′], and X ⊆ V is any set
of vertices which avoids M , then (G \ X)′ = G′ \ X ′, where X ′ = ∪v∈XCv.

We define a map η to go back from the auxiliary graph G′ to the original
graph G. Specifically, if ui ∈ V (G′)∩ Cu for some u ∈ V , then η(ui) := u, and if
uivj ∈ E(G′) such that ui ∈ Cu, vj ∈ Cv for some u, v ∈ V , then η(uivj) := uv.
This extends in the obvious way to paths, cycles, walks, and so on.

We will need the following theorem.
2 It was stated in [9, corollary 1] that M is maximum if and only if M ′ is maximum,

but this example shows this to be false.

162 M. Gerstbrein et al.

t u v x

y

z

cba

(a) Original graph.

t1 u1

v1

v2

x1

x2

y1

z1

c1

b1

b2

a1

(b) Auxiliary graph.

Fig. 1. Example of the auxiliary construction on an instance [(G, w, c), M]. Capacities
are all 1 except for cv = cx = cb = 2. Weights are all 1 except for wbc = 0.5. The
matching is displayed as bold edges.

Theorem 1. [(G,w, c),M] is not stable if and only if the graph G′ in the
auxiliary instance [(G′, w′,1),M ′] contains at least one of the following: (i)
an M ′-augmenting flower; (ii) an M ′-augmenting bi-cycle; (iii) a proper M ′-
augmenting path; (iv) an M ′-augmenting cycle.

Proof. It was proven in [9, Theorem 2] that [(G,w, c),M] is not stable if and only
if [(G′, w′,1),M ′] is not stable. We distinguish two scenarios for when the latter
condition occurs. If M ′ is maximum-weight, then G′ contains an M ′-augmenting
flower or bi-cycle, see [15, Theorem 1]. If M ′ is not maximum-weight, G′ must
contain a proper M ′-augmenting path or cycle, by standard matching theory. ��

We will refer to an augmenting structure of type (i) − (iv) in Theorem 1 as
a basic augmenting structure. The next lemma follows from [15].

Lemma 1. Let [(G′, w′,1),M ′] be an unstable instance of NBG.

(a) For any M ′-exposed vertex u, one can compute a feasible M ′-augmenting
walk starting at u of length at most 3 |V (G′)|, or determine that none exists,
in polynomial time.

(b) A feasible M ′-augmenting uv-walk contains a feasible M ′-augmenting uv-
path (proper if u = v), an M ′-augmenting cycle, an M ′-augmenting flower
rooted at u or v, or an M ′-augmenting bi-cycle. Furthermore, this augment-
ing structure can be computed in polynomial time.

Proof. (a) When given a graph G′, a matching M ′, a vertex u, and an integer k,
algorithm 3 in [15] computes a feasible M ′-augmenting uv-walk of length at most
k, or determines none exist, for all v ∈ V (G′). Correctness is shown in Lemma 7
and 8 in [15]. The algorithm is polynomial time in k, |V (G′)|, and |E(G′)|. We
use this algorithm and select an arbitrary v for which a uv-walk is returned, or
determine that no such walk starting at u exists. Since we set k = 3 |V (G′)|, this
procedure terminates in polynomial time.

(b) Lemma 9 in [15] states that a feasible M ′-augmenting uv-walk contains
a feasible M ′-augmenting uv-path, an M ′-augmenting cycle, an M ′-augmenting

Stabilization of Capacitated Matching Games 163

flower rooted at u or v, or an M ′-augmenting bi-cycle. By remark 1 the path is
proper if u = v. Lemma 9 in [15] is proven in a constructive way, hence it also
gives a way to compute the augmenting structure in polynomial time. ��

The following easy lemma will be useful.

Lemma 2. Given [(G,w, c),M] and auxiliary [(G′, w′,1),M ′], let P be a feasi-
ble M ′-augmenting walk. Then, η(P) is a feasible M -augmenting walk.

Proof. Let e1 = uv and e2 = vw be two consecutive edges on P . Then η(e1)
and η(e2) are the corresponding edges on η(P), and they are both incident with
η(v). Hence, η(P) is a walk. For any edge e on P , we have e ∈ M ′ if and only if
η(e) ∈ M . In addition, w′

e = wη(e). So, η(P) is an M -augmenting walk. Suppose
P = (u; e1, . . . , ek; v). Feasibility of P means that either e1 ∈ M ′, or u is M ′-
exposed. Likewise for ek and v. It follows that either η(e1) ∈ M , or η(u) is
M -unsaturated. Likewise for η(ek) and η(v). This means η(P) is feasible. ��

The next theorem is standard.

Theorem 2. [(G,w, c),M] is stable if and only if G does not contain a feasible
M -augmenting walk.

Proof. (⇒) Assume there exists a feasible M -augmenting walk W . Since W is
augmenting, w(W \ M) > w(W ∩ M), and since W is feasible, xM/W (ε) is a
fractional c-matching for some fixed ε > 0. Together they imply

νc
f (G) ≥ w�xM/W (ε) = w(M) − εw(W ∩ M) + εw(W \ M) > w(M), (7)

i.e., the instance [(G,w, c),M] is not stable.
(⇐) Assume the instance is not stable. Then by Theorem 1, the graph

G′ from the auxiliary [(G′, w′,1),M ′] contains a basic augmenting structure,
which clearly is a feasible M ′-augmenting walk P . Then η(P) is a feasible M -
augmenting walk, by Lemma 2. ��

3 M -vertex-stabilizer

The goal of this section is to prove the following theorem.

Theorem 3. The M -vertex-stabilizer problem on weighted, capacitated graphs
can be solved in polynomial time.

Overview of the Strategy. A natural strategy would be to first apply the auxiliary
construction described in Sect. 2 to reduce to unit-capacity instances, and then
apply the algorithm proposed in [15] which solves the problem exactly. However,
there is a critical issue with this strategy. Namely, the auxiliary construction
applied to unstable instances does not always preserve maximality of the cor-
responding matchings, as shown in Fig. 1. In that example, the matching M ′

is not maximum in G′. The algorithm of [15], if applied to an instance where

164 M. Gerstbrein et al.

the given matching is not maximum, is not guaranteed to find an optimal solu-
tion, but only a 2-approximate one (see Theorem 12 in [15]). In addition, since
the auxiliary construction splits a vertex into multiple ones, we may even get
infeasible solutions. As a concrete example of this, the algorithm of [15] applied
to the instance of Fig. 1b will include b2 in its proposed solution. Mapping this
solution to our capacitated instance would imply to remove b, which is clearly
not allowed as b is M -covered.

To overtake this issue, we do not apply the algorithm of [15] as a black-box,
but use parts of it (highlighted in Lemma 1) in a careful way. In particular, we
use it to compute a sequence of feasible augmenting walks in G′. We actually
show that the walks in G′ which might create the issue described before when
mapped backed to G, are the walks in which at least one edge of G is traversed
more than once in opposite directions, and that have two distinct endpoints.
When this happens, we prove that we can modify the walk and get one where the
endpoints coincide, which will still be feasible and augmenting. In this latter case,
we can then either correctly identify a vertex to remove (the unique endpoint),
or determine that the instance cannot be stabilized.

A More Detailed Description. We start by defining the operation of traceback,
which we will use to modify the feasible augmenting walks, when needed.

Definition 6. Given [(G,w, c),M] and an M -alternating walk P = (u; e1, . . . ,
ek; v) which repeats an edge in opposite directions, let t be the least index such
that et = es for some s < t, and es and et are traversed in opposite directions by
P . Then the u-traceback and v-traceback of P are defined as the walks tb(P, u) =
(e1, . . . , et, es−1, es−2, . . . , e1) and tb(P, v) = (ek, ek−1 . . . , es, et+1, et+2, . . . , ek).

The next lemma explains how to use the traceback operation. Due to space
constraint, the proof is deferred to the full version of this extended abstract [10].

Lemma 3. Given [(G,w, c),M] and auxiliary [(G′, w′,1),M ′], let P ′ = (ui; e′
1,

. . . , e′
k; vj) be a proper M ′-augmenting path such that both ui and vj are M ′-

exposed and η(ui) = η(vj). Then tb(η(P ′), η(ui)) and tb(η(P ′), η(vj)) are well-
defined, feasible M -alternating walks, and at least one of them is M -augmenting.

Proof (Proof of Theorem 3). Let [(G,w, c),M] be the input for the M -vertex-
stabilizer problem, with auxiliary [(G′, w′,1),M ′]. Algorithm 1 iteratively con-
siders an M ′-exposed vertex ui, and computes a feasible M ′-augmenting walk
U starting at ui, if one exists. Lemma 2 implies that η(U) is a feasible M -
augmenting walk in G. Theorem 2 implies that we need to remove at least one
vertex of the walk η(U) to stabilize the graph. Note that every vertex a = ui, vj

of U is M ′-covered, and hence, η(a) is M -covered. Therefore, the only vertices
we can potentially remove are η(ui) or η(vj). Hence, if both η(ui) and η(vj) are
M -covered, the graph cannot be stabilized and Algorithm 1 checks this in line
9. If only one among η(ui) and η(vj) is M -covered, then necessarily we have
to remove the M -exposed vertex among the two. Algorithm 1 checks this in

Stabilization of Capacitated Matching Games 165

Algorithm 1: finding an M -vertex-stabilizer
input: [(G, w, c), M]

1 compute the auxiliary [(G′, w′,1), M ′]
2 initialize S ← ∅, L ← M ′-exposed vertices
3 while L �= ∅ do
4 select ui ∈ L and compute a feasible M ′-augmenting walk starting at ui

using lemma 1(a)
5 if no such walk exists then
6 L ← L \ {ui}
7 else
8 consider the computed feasible M ′-augmenting uivj-walk
9 if both η(ui) and η(vj) are M-covered then

10 return infeasible
11 else if η(ui) is M-covered and η(vj) is not then
12 S ← S ∪ η(vj), G ← G \ η(vj), G′ ← G′ \ Cη(vj), L ← L \ Cη(vj)

13 else if η(vj) is M-covered and η(ui) is not then
14 S ← S ∪ η(ui), G ← G \ η(ui), G′ ← G′ \ Cη(ui), L ← L \ Cη(ui)

15 else
16 if η(ui) = η(vj) then
17 S ← S ∪ η(ui), G ← G \ η(ui), G′ ← G′ \ Cη(ui), L ← L \ Cη(ui)

18 else
19 find a basic M ′-augmenting structure W contained in the

uivj-walk using lemma 1(b)
20 if W is an M ′-augmenting cycle or bi-cycle then
21 return infeasible

22 if W is an M ′-augmenting flower rooted at ui then
23 S ← S ∪ η(ui), G ← G \ η(ui), G′ ← G′ \ Cη(ui),

L ← L \ Cη(ui)

24 if W is an M ′-augmenting flower rooted at vj then
25 S ← S ∪ η(vj), G ← G \ η(vj), G′ ← G′ \ Cη(vj),

L ← L \ Cη(vj)

26 if W is a proper M ′-augmenting uivj-path then
27 compute tb(η(W), η(ui)) and tb(η(W), η(vj))
28 if tb(η(W), η(ui)) is M-augmenting then
29 S ← S ∪ η(ui), G ← G \ η(ui), G′ ← G′ \ Cη(ui),

L ← L \ Cη(ui)

30 if tb(η(W), η(vj)) is M-augmenting then
31 S ← S ∪ η(vj), G ← G \ η(vj), G′ ← G′ \ Cη(vj),

L ← L \ Cη(vj)

32 if w(M) < νc
f (G) then

33 return infeasible
34 else
35 return S

166 M. Gerstbrein et al.

line 11 and 13. Note that, by remark 2, instead of computing a new auxiliary for
the modified G, we can just remove Cη(ui) (resp. Cη(vj)) from G′. Similarly, if
η(ui) = η(vj) and η(ui) is M -exposed, we necessarily have to remove η(ui). Algo-
rithm 1 checks this in line 16. If instead η(ui) = η(vj), and both are M ′-exposed,
we apply Lemma 1(b) to find a basic augmenting structure W contained in U .
Once again, we know by Lemma 2 and Theorem 2 that we need to remove a ver-
tex in η(W). In case W is a cycle or bi-cycle, all vertices of η(W) are M -covered
so the graph cannot be stabilized and Algorithm 1 checks this in line 20. In
case W is a M ′-augmenting flower with base ui or vj , Algorithm 1 accordingly
removes η(ui) or η(vj) as all other vertices in η(W) are M -covered, in line 23
and 25. Finally, if W is a proper (because η(ui) = η(vj)) M ′-augmenting path,
by Lemma 3 we know that we can find a feasible M -augmenting walk, where
the only M -exposed vertex is either η(ui) or η(vj). Once again, this implies that
this vertex must be removed. Algorithm 1 does so in lines 29 and 31.

From the discussion so far, it follows that when we exit the while loop each
vertex in S is a necessary vertex to be removed from G, in order to stabilize
the instance. We now argue that either removing all vertices in S is also suffi-
cient, or G cannot be stabilized. Suppose that G \ S is not stable. Theorem 1
implies that (G \S)′ contains a basic augmenting structure Q. Note that Q can-
not be an M ′-augmenting flower with exposed root, or a proper M ′-augmenting
path with at least one exposed endpoint. To see this, observe that a flower and
path are feasible M ′-augmenting walks of length at most 3 |V (G′)| and |V (G′)|,
respectively. Hence, they would have been found by Algorithm 1 in line 4, contra-
dicting that Q exists in (G\S)′. It follows that Q is a basic augmenting structure
where all vertices are M ′-covered. By Lemma 2 η(Q) is a feasible M -augmenting
walk where all vertices are M -covered. This implies that G cannot be stabilized.
Furthermore, using the ε-augmentation of η(Q) we can obtain a fractional c-
matching whose value is strictly greater than w(M). Hence, w(M) < νc

f (G \ S).
Algorithm 1 correctly determines this in line 32. This proves correctness of our
algorithm.

Finally, we argue about the running time of the algorithm. Note that each
operation that the algorithm performs can be done in polynomial time. Fur-
thermore, after each iteration of the while loop, we either determine that the
instance cannot be stabilized, or remove a vertex from G. Therefore, the while
loop can be executed at most n times. The result follows. ��

We close this section with a remark. The authors in [15] have also consid-
ered the following problem: given a weighted graph G and a (non necessarily
maximum-weight) matching M , find a minimum-cardinality S ⊆ V such that
G \ S is stable, and M is a maximum-weight matching in G \ S. This is a gener-
alization of our definition of the M -vertex-stabilizer problem, which essentially
allows M to be not maximum-weight.3 The authors show that this problem is

3 In fact, this is the way the M -vertex-stabilizer problem is defined in [15]. We instead
use the original definition in [1,6] which assumes M to be maximum.

Stabilization of Capacitated Matching Games 167

NP-hard, but admits a 2-approximation algorithm (we mentioned this in the
strategy overview), which is best possible assuming Unique Game Conjecture.

With a minor modification of Algorithm 1, we can generalize this result to
the capacitated setting. We state here the result, and refer to the full version of
this extended abstract paper for details [10].

Theorem 4. Given a weighted, capacitated graph G = (V,E) and a c-matching
M , the problem of computing a minimum-cardinality S ⊆ V such that G \ S is
stable, and M is a maximum-weight c-matching in G \ S, admits an efficient
2-approximation algorithm.

4 Vertex-Stabilizer

The goal of this section is to prove the following theorem.

Theorem 5. The vertex-stabilizer problem on capacitated graphs is NP-
complete, even if all edges have unit-weight. Furthermore, no efficient n1−ε-
approximation exists for any ε > 0, unless P = NP.

Note that, given an unstable instance (G,w, c), removing all vertices (but
two) trivially yields a stable graph. This gives a (trivial) n-approximation algo-
rithm for the vertex-stabilizer problem. The theorem above essentially implies
that one cannot hope for a much better approximation. To prove it, we will use:

Minimum Independent Dominating Set (MIDS) Problem. Given a
graph G = (V,E), compute a minimum-cardinality subset S ⊆ V that is inde-
pendent (for all uv ∈ E at most one of u and v is in S) and dominating (for all
v ∈ V at least one u ∈ N+(v) is in S).

There is no efficient n1−ε-approximation for any ε > 0 for the MIDS problem,
unless P = NP. [12, corollary 3]

Proof (Proof of Theorem 5). The decision variant of the problem asks to find a
vertex-stabilizer of size at most k. This problem is in NP, since if a vertex set
S is given, it can be verified in polynomial time if |S| ≤ k and if νc(G \ S) =
νc

f (G\S). We prove the NP-hardness and the inapproximability result by giving
an approximation-preserving reduction from the MIDS problem.

Let G = (V,E) be an instance of the MIDS problem. For v ∈ V , we define
the gadget Γv by

V (Γv) = N+(v) ∪ {v1, v2, v3, v4} , (8)

E(Γv) =
{
uv1 : u ∈ N+(v)

} ∪ {v1v2, v2v3, v3v4, v2v4} . (9)

For e = uv ∈ E and i ∈ {1, . . . , n}, we define the gadget Γ i
uv by

V (Γ i
uv) =

{
u, v, ei

1, e
i
2, e

i
3, e

i
4, e

i
5
}

, (10)

E(Γ i
uv) =

{
uei

1, vei
1, e

i
1e

i
2, e

i
1e

i
3, e

i
3e

i
4, e

i
4e

i
5, e

i
3e

i
5
}

. (11)

168 M. Gerstbrein et al.

v3 v4

v2

v1

v · · · N(v)

(a) Gadget Γv.

ei4 ei5

ei3
ei2

ei1

u v

(b) Gadget Γ i
uv.

Fig. 2. Examples of gadgets.

See Fig. 2 for an example of these gadgets. Now let G′ be defined as the union
of all Γv and all Γ i

uv, such that vertices from V overlap. We set the capacity as
follows: cv = d

E(G′)
v for all v ∈ V , cv1 = dE

v + 1 for all v ∈ V , cei
1
= cei

3
= 2

for ei
1, e

i
3 ∈ V (Γ i

uv) for all e = uv ∈ E and i ∈ {1, . . . , n}, and cv = 1 for all
remaining v ∈ V (G′). All edges are set to have unit-weight. The key point is:

Claim. G has an independent dominating set of size at most k if and only if
(G′,1, c) has a vertex-stabilizer of size at most k.

Proof. (⇒) Let S be an independent dominating set of G of size k. The vertices in
S naturally correspond with vertices in G′. We show that S is a vertex-stabilizer
of (G′,1, c).

We define a c-matching M and fractional vertex cover (y, z) on G′ \ S as
follows. First, set yv = 0 for all v ∈ V \ S.

Next, for all v ∈ V , consider Γv. Add {uv1 : u ∈ N+(v) \ S}∪{v1v2, v3v4} to
M . Note that at least one vertex from N+(v) is in S, since S is dominating. Set
yv1 = 0, yv2 = 1, yv3 = yv4 = 0.5, ze = 1 for all e ∈ {uv1 : u ∈ N+(v) \ S} and
ze = 0 for the remaining edges in the gadget.

Finally, for all e = uv ∈ E and i ∈ {1, . . . , n}, consider Γ i
uv. Since S is

independent, at most one of u and v is in S. If neither are in S, add both uei
1

and vei
1 to M . If one of them is in S, without loss of generality let it be u, then

add vei
1 and ei

1e
i
2 to M . Furthermore, add ei

3e
i
4 and ei

3e
i
5 to M . Set yei

1
= 1,

yei
2
= 0, yei

3
= yei

4
= yei

5
= 0.5, and zf = 0 for all edges f in the gadget.

Let x be the indicator vector of M . One can verify that x and (y, z) satisfy
the complementary slackness conditions for νc

f (G
′ \ S) and τ c

f (G
′ \ S). Since x

is integral, this implies that G′ \ S is stable.
(⇐) Let S be a vertex-stabilizer of (G′,1, c) of size k. We show that: (i) S

contains at least one vertex of each gadget Γv; (ii) without loss of generality, one
can assume that at most one of u and v is in S for each edge uv ∈ E.

(i) Suppose for the sake of contradiction that there is some v ∈ V such that S
contains no vertices of Γv. Since G′ \S is stable, there is a maximum-cardinality

Stabilization of Capacitated Matching Games 169

fractional c-matching x∗, that is integral. Define for each e ∈ E(G′ \ S)

xe =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x∗
e if e ∈ E(G′ \ S) \ E[Γv],

1 if e ∈ {uv1 : u ∈ N+(v)} ,

0 if e = v1v2,

0.5 if e ∈ {v2v3, v3v4, v2v4} .

(12)

Note that x is a fractional c-matching in G′ \ S, since x∗ is. However,∑
e∈E[Γv] xe = dv +2.5 >

∑
e∈E[Γu] x

∗
e, since x∗ is integral. Hence, 1�x > 1�x∗,

contradicting the optimality of x∗.
(ii) Suppose there is some e = uv ∈ E such that S contains both u and v. All

gadgets Γ i
uv are then components in G′ \ S. If u and v are the only vertices in S

from some component Γ i
uv, then a maximum-cardinality fractional c-matching in

this components is given by xei
1ei

2
= xei

1ei
3
= 1 and xei

3ei
4
= xei

4ei
5
= xei

3ei
5
= 0.5.

Which means this component is not stable, and thus G′ \ S is not stable, a
contradiction. Hence, S must contain at least one vertex of each Γ i

uv that is
neither u nor v. Consequently, k = |S| ≥ n + 2. Since G has only n vertices,
it obviously has an independent dominating set of size at most n, and hence of
size at most k. Such a set can for example be obtained by a greedy approach.
Hence, for the remainder of the proof we can assume that at most one of u and
v is in S for each uv ∈ E.

We now create a set S′ ⊆ V from S, that is an independent dominating set
of G of size at most k, as follows. Iterate over v ∈ V . Let Sv = S ∩ V (Γv). Note
that Sv = ∅ by (i). Define

S′
v =

{
(Sv ∪ S′) ∩ N+(v) if this is nonempty,

v otherwise.
(13)

Set S′ = S′ ∪ S′
v, and repeat for the next vertex.

Clearly, all S′
v’s are nonempty, which means that S′ contains at least one

vertex from N+(v) for all v ∈ V , which means S′ is dominating.
Suppose for the sake of contradiction that S′ contains both u and v for some

edge uv ∈ E. We know S did not contain both of them, by (ii). If S contained
exactly one of them, without loss of generality let it be u. Then, when v is
considered by the iterative process, (Sv ∪ S′) ∩ N+(v) contains u, but not v.
In particular, this means that we did not add v to S′

v and consequently also
not to S′, a contradiction. If S contained neither of them, then because we do
the process iteratively, one of them will be added first to S′. Without loss of
generality let it be u. Then again, when v is considered by the iterative process,
(Sv ∪ S′)∩ N+(v) contains u but not v, so we reach a contradiction in the same
way. In conclusion, S′ is independent.

For all v ∈ V , before we added S′
v to S′, we had |S′

v \ S′| ≤ |Sv|. Conse-
quently, |S′| ≤ ∪v∈V |Sv| ≤ |S| = k. ��

By this claim, any minimum-cardinality vertex-stabilizer of (G′,1, c) is of
the same size as any minimum independent dominating set of G. Further, any

170 M. Gerstbrein et al.

efficient α-approximation algorithm for the vertex-stabilizer problem translates
into an efficient α-approximation algorithm for the MIDS problem. Hence, the
result follows from the inapproximability of the MIDS problem. ��

5 Capacitated Cooperative Matching Games

Cooperative matching games in unit-capacity graphs, defined in the introduction,
extend quite easily to capacitated graphs, by replacing each ν with νc. In unit-
capacity graphs G the following statements are equivalent [7,14]:

(i) G is stable,
(ii) there exists an allocation in the core of the CMG on G,
(iii) there exists a stable outcome for the NBG on G.

We here note that the equivalence does not extend to capacitated graphs.
In particular, as mentioned in the introduction, we still have (i) ⇐⇒ (iii)

proven in [2, corollary 3.3]. The implication (i) =⇒ (ii) still holds, and follows
from [2, lemma 3.4]4. However, the graph G given in Fig. 3 shows that (ii) =⇒
(i) (and hence (ii) =⇒ (iii)).

Assuming all the edges of G in Fig. 3 have unit weight, it is quite easy to
see that νc(G) = 3 and νc

f (G) = 3.5, thus G is not stable. One can check that
y = (1, 1, 1, 0) is in the core.

2 2

2 1

1 1

1 0

Fig. 3. On the left: the graph G where the values close to the vertices indicate the
capacities. Bold edges indicate a maximum c-matching. On the right: the graph G
where the values close to the vertices indicate the allocation y. A maximum fractional
c-matching is given by xe = 1

2 for dashed edges, xe = 1 otherwise.

Acknowledgements. The second and third authors are supported by the NWO VIDI
grant VI.Vidi.193.087. The second author thanks the 2021 Hausdorff Research Institute
for Mathematics Program Discrete Optimization, during which part of this work was
developed.

References

1. Ahmadian, S., Hosseinzadeh, H., Sanità, L.: Stabilizing network bargaining games
by blocking players. Math. Program. 172, 249–275 (2018)

2. Bateni, M., Hajiaghayi, M., Immorlica, N., Mahini, H.: The cooperative game
theory foundations of network bargaining games (2010)

4 [2] assumes that the graph is bipartite, but bipartiteness is not needed in their proof.

Stabilization of Capacitated Matching Games 171

3. Biró, P., Kern, W., Paulusma, D.: On solution concepts for matching games. In:
Kratochvíl, J., Li, A., Fiala, J., Kolman, P. (eds.) Theory Appl. Models Comput.,
pp. 117–127. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)

4. Bock, A., Chandrasekaran, K., Könemann, J., Peis, B., Sanità, L.: Finding small
stabilizers for unstable graphs. Math. Program. 154, 173–196 (2015)

5. Chandrasekaran, K.: Graph stabilization: a survey. In: Fukunaga, T.,
Kawarabayashi, K. (eds.) Combinatorial Optimization and Graph Algorithms, pp.
21–41. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-6147-9_2

6. Chandrasekaran, K., Gottschalk, C., Könemann, J., Peis, B., Schmand, D., Wierz,
A.: Additive stabilizers for unstable graphs. Discret. Optim. 31, 56–78 (2019)

7. Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combina-
torial optimization games. Math. Oper. Res. 24(3), 751–766 (1999)

8. Farczadi, L.: Matchings and games on networks, Ph. D. thesis, University of Water-
loo (2015)

9. Farczadi, L., Georgiou, K., Könemann, J.: Network bargaining with general capac-
ities. arXiv preprint arXiv:1306.4302 (2013)

10. Gerstbrein, M., Sanità, L., Verberk, L.: Stabilization of capacitated matching
games. arXiv preprint (2022)

11. Gottschalk, C.: Personal communication (2018)
12. Halldórsson, M.M.: Approximating the minimum maximal independence number.

Inf. Process. Lett. 46(4), 169–172 (1993)
13. Ito, T., Kakimura, N., Kamiyama, N., Kobayashi, Y., Okamoto, Y.: Efficient stabi-

lization of cooperative matching games. Theoret. Comput. Sci. 677, 69–82 (2017)
14. Kleinberg, J.M., Tardos, É.: Balanced outcomes in social exchange networks. In:

Proceedings of the 40th STOC, pp. 295–304 (2008)
15. Koh, Z.K., Sanità, L.: Stabilizing weighted graphs. Math. Oper. Res. 45(4), 1318–

1341 (2020)
16. Könemann, J., Larson, K., Steiner, D.: Network bargaining: using approximate

blocking sets to stabilize unstable instances. In: Serna, M. (ed.) SAGT 2012.
LNCS, pp. 216–226. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33996-7_19

17. Nash, J.F.: The bargaining problem. Econometrica 18, 155–162 (1950)
18. Shapley, L., Shubik, M.: The assignment game i: The core. Internat. J. Game

Theory 1(1), 111–130 (1971)

https://doi.org/10.1007/978-981-10-6147-9_2
http://arxiv.org/abs/1306.4302
https://doi.org/10.1007/978-3-642-33996-7_19
https://doi.org/10.1007/978-3-642-33996-7_19

Designing Optimization Problems
with Diverse Solutions

Oussama Hanguir1(B), Will Ma2, and Christopher Thomas Ryan3

1 Industrial Engineering and Operations Research, Columbia University,
New York, NY 10027, USA
oh2204@columbia.edu

2 Graduate School of Business, Columbia University, New York, NY 10027, USA
wm2428@gsb.columbia.edu

3 UBC Sauder School of Business, University of British Columbia,
Vancouver, BC V6T 1Z2, Canada

chris.ryan@sauder.ubc.ca

Abstract. We consider the problem of designing a linear program that
has diverse solutions as the right-hand side varies. This problem arises
in video game settings where designers aim to have players use different
“weapons” or “tactics” as they progress. We model this design question
as a choice over the constraint matrix A and cost vector c to maximize
the number of possible supports of unique optimal solutions (what we
call “loadouts”) of Linear Programs max{c�x | Ax ≤ b, x ≥ 0} with
nonnegative data considered over all resource vectors b. We provide an
upper bound on the optimal number of loadouts and provide a family
of constructions that have an asymptotically optimal number of load-
outs. The upper bound is based on a connection between our problem
and the study of triangulations of point sets arising from polyhedral
combinatorics, and specifically the combinatorics of the cyclic polytope.
Our asymptotically optimal construction also draws inspiration from the
properties of the cyclic polytope.

Keywords: linear programming · triangulations · diversity

1 Introduction

In this paper, we formulate the problem of designing linear programs that allow
for diversity in their optimal solutions. This setting is motivated by video games,
in particular, the design of competitive games where players optimize their
strategies to improve their in-game status. For such games, a desideratum for
game designers is for optimizing players to play different strategies at different
stages of the game. Informally, we interpret the player’s problem as solving a Lin-
ear Program of the form max{c�x | Ax ≤ b, x ≥ 0}. Players at different stages
of the game have different resource vectors b. The columns of A correspond to
the tools that the player can use in the game. We call a subset of these tools
(represented by subsets of the columns of A) a loadout (which literally means
the equipment carried into battle by a soldier), if they correspond to the support
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 172–186, 2023.
https://doi.org/10.1007/978-3-031-32726-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_13&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_13

Designing Optimization Problems with Diverse Solutions 173

of an optimal solution x∗ to the linear program max{c�x | Ax ≤ b, x ≥ 0} for
some resource vector b (In fact, we require x∗ to be the unique optimal solution
of this linear program, for reasons that will become clear later). The support of
a vector corresponds to a selection of the available tools, forming a strategy for
how the player approaches the game given available resources. We assume that
the game designer is able to choose A and c. We refer to this choice as the design
of the game. We measure the diversity of a design as the number of possible
loadouts that arise as the resource vector b changes.

For a fixed design (A, c) and resource vector b, players solve the linear pro-
gram

LP (A, c, b) : max{c�x | Ax ≤ b, x ≥ 0}, (1)

where c, A, and b all have nonnegative data. If x is the optimal solution of
LP (A, c, b), we define the support of x as supp(x) � {i ∈ {1, . . . , n} | xi > 0}. If
x is the unique optimal solution of LP (A, c, b), then we call supp(x) an optimal
loadout (or simply, a loadout) of design (A, c).

For fixed n and m, the loadout maximization problem is to choose c and A
that maximize the total number of loadouts of the design (A, c). That is, the
goal is to design benefits for each tool (the vector c) and limitations on investing
in tools (the matrix A) so that the linear programs LP (A, c, b) have as many
possible supports of unique optimal solutions as possible, as b varies in R

m.

Our Contributions: Our first contribution consists in introducing the loadout
maximization problem and establishing a link between the loadout maximiza-
tion problem and the theory of polyhedral subdivisions and triangulations. In
particular, for a fixed design (A, c), the theory of triangulations offers a nice
decomposition of the cone generated by the columns of the constraint matrix A.
This decomposition depends on the objective vector c. We show that for a fixed
design (A, c), the loadouts can be seen as elements of this decomposition. This
allows us to use a set of powerful tools from the theory of triangulations to prove
structural results on the loadouts of a design.

Our second contribution is to show a non-trivial upper bound on the number
of loadouts of any design. The upper bound involves an interesting connection
to the faces of the so-called cyclic polytope, a compelling object central to the
theory of polyhedral combinatorics. We also show that this upper bound holds
when the constraints of the linear program are equality constraints.

The third contribution of this paper is to present a construction of a design
(A, c) with a number of loadouts that asymptotically matches the above upper
bound. Furthermore, for cases with few constraints, we present optimal construc-
tions that exactly match the upper bound. Due to space constraints, we defer
the proofs to the full version1.

Related Work. Our work is closely related to parametric linear programming,
which is the study of how optimal properties depend on parameterizations of
the data. The study of parametric linear programming dates back to the work
of [12,14], [19], and [18] in the 1950s and 1960s. In parametric programming,

1 Full version: https://arxiv.org/abs/2106.11538.

https://arxiv.org/abs/2106.11538

174 O. Hanguir et al.

the objective is to understand the dependence of optimal solutions on one or
more parameters; that is, on the entries of A, b, and c. Our work is novel in
the sense that the objective is to understand the structure of the supports of
optimal solutions by fixing A and c and having b vary in R

m
≥0. To the best of our

knowledge, this question has not previously been studied in the literature.
There have been several studies on the interface of optimization and video

games. [8,15,17]. Guo et al. [7] study the impact of selling virtual currency
on players’ gameplay behavior, game provider’s strategies, and social welfare.
Another significant research direction concentrates on studying “loot boxes” in
video games. Chen et al. [2] study the design and pricing of loot boxes, while
Ryan et al. [13] study the pricing and deployment of enhancements that increase
the player’s chance of completing the game. Chen et al. [3] and Huang et al. [9]
study the problem of in-game matchmaking to maximize a player’s engagement
in a video game.

2 Statement of Main Results

In this section, we state our main results. To make these statements precise, we
require some preliminary definitions. Let [k] denote the set {1, . . . , k} for any
positive integer k. Using this notation, we can define the support of x ∈ R

n
≥0

as supp(x) = {j ∈ [n] | xj > 0}. For a matrix A ∈ R
m×n
≥0 , the (i, j)th entry is

denoted aij for i ∈ [n] and j ∈ [m], the jth column is denoted Aj for j ∈ [n],
and the ith row is denoted ai (where ai is a column vector) for i ∈ [m]. For a
column vector y ∈ R

m, y�Aj denote the scalar product of y and column Aj , i.e.,
y�Aj =

∑m
i=1 yiai,j .

Recall the definition of the linear program LP (A, b, c) in (1). As mentioned in
the introduction, we are interested in the unique optimal solutions of the design
(A, c). For simplicity, we simply call these the loadouts of design (A, c); that
is, L ⊆ [n] is a loadout of design (A, c) if there exists a nonnegative resource
vector b ∈ R

m
≥0 such that LP (A, c, b) has a unique optimal solution x∗ with

supp(x∗) = L. We say that loadout L is supported by resource vector b. If |L| = k
then we say L is a k-loadout. Given a design (A, c) and an integer k ∈ [m], let
Lk(A, c) denote the set of all k-loadouts of design (A, c). The set of all loadouts
of any size is L(A, c) � ∪n

k=1Lk(A, c).
Using this notation, we can restate the loadout optimization problem. Given

dimensions n and m and integer k ≤ n, the k-loadout optimization problem is

max{|Lk(A, c)| | A ∈ R
m×n, c ∈ R

n, A and c are nonnegative}. (Lk)

We can assume without loss of generality that the linear programs LP (A, c, b)
are bounded and thus possess an optimal solution because otherwise there is no
optimal solution and, therefore, no loadout.

Given that a loadout corresponds to the support of a unique solution of a
linear program, any optimal solution with support size greater than m cannot
be unique. Therefore, the number of k-loadouts when k > m is always equal
to zero. This leads us to consider the optimization problems (Lk) only for k ∈

Designing Optimization Problems with Diverse Solutions 175

{1, . . . ,min(m,n)}. For convenience, we will avoid the trivial case of k = 1
where the optimal number of loadouts is min(m,n). A final case we eliminate
immediately is when min(m,n) = n, i.e. m ≥ n. In this case, a trivial design is
optimal. By setting A = In to be the identity matrix of size n, and c = (1, . . . , 1),
we ensure that for k ∈ [1, n], every one of the

(
n
k

)
subsets is a loadout. In

summary, we proceed without loss under the assumption that n > m ≥ k ≥ 2.

2.1 The Cyclic Polytope

All of our bounds are intimately related to the number of faces on the cyclic
polytope, which is formally defined in Sect. 3. A remarkable aspect of the cyclic
polytope is that for n > m ≥ 2, the cyclic polytope C(n,m) simultaneously
maximizes the number of k-dimensional faces for all k = 0, . . . , m − 1 among m-
dimensional polytopes over n vertices, a property known as McMullen’s Upper
Bound Theorem [11]. The number of k-dimensional faces on C(n,m) is given by
the formula

fk(C(n,m)) =
�m/2�∑

�=0

(
�

m − k − 1

)(
n − m + � − 1

�

)

+
m∑

�=�m/2�+1

(
�

m − k − 1

)(
n − � − 1

m − �

)

.

When k = m − 1, through the “hockey stick” identity on Pascal’s triangle,
this simplifies to

fm−1(C(n,m)) =
(

n − �m/2�
	m/2

)

+
(

n − 	m/2
 − 1
�m/2� − 1

)

.

2.2 Results and Techniques

Theorem 1. Fix positive integers n,m, k with n > m ≥ k ≥ 2. Then the number
of k-loadouts for any design (A, c) with A ∈ R

m×n and c ∈ R
n satisfies

|Lk(A, c)| ≤ fk−1(C(n + 1,m)) −
(

m

k − 1

)

. (2)

We note that the trivial upper bound on the number of k-loadouts in a design
with n tools is

(
n
k

)
. When m < n, the RHS of (2) will always be smaller than

this trivial upper bound, which shows that having a limited number of resource
types in the game does indeed prevent all subsets of tools from being viable.

Theorem 2. Fix positive integers n,m, k with n > m ≥ k ≥ 2. Then there
exists an explicit design (A, c) with A ∈ R

m×n
≥0 and c ∈ R

n
≥0 that satisfy

|Lk(A, c)| ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fk−1(C(n,m)) if k < m/2
fk−1(C(n,m))/2 if k ≥ m/2 andm is odd,

or k = m/2 andm is even
fk−1(C(n,m))/4 if k > m/2 andm is even.

176 O. Hanguir et al.

The constructions from Theorem 2 are always within a 1/4-factor of being
optimal asymptotically as n → ∞ because it is known that

lim
n→∞

fk−1(C(n,m))
fk−1(C(n + 1,m))

= 1.

Theorem 3. For n > m = 3, there exists an explicit design (A, c) with A ∈
R

m×n
≥0 and c ∈ R

n
≥0 that satisfy |L3(A, c)| ≥ 2n − 5 and |L2(A, c)| ≥ 3n − 6.

Theorem 4. For n > m = 2, there exists an explicit design (A, c) with A ∈
R

m×n and c ∈ R
n that satisfy |L2(A, c)| ≥ n − 1.

The constructions from Theorem 3 and Theorem 4 are exactly tight ; it can
be checked that they match the upper bound expression from Theorem 1 when
evaluated at m = 3 and m = 2.

Example of Construction from Theorem 2 and Intuition. Table 1 shows
an example of the asymptotically optimal construction for m = 4 and n = 6.
The fact that the cost vector is (1, 1, . . . , 1) is simply a normalization and can be
assumed without loss. Our construction provides a pattern that game designers
can follow to diversify loadouts on a set of tools 1, . . . , n, by having two types of
constraints. The first type of constraints (rows 1 and 3) accords more importance
to tools with big indices (because these tools have lower costs to rows 1 and 3)
while the second type of constraints (rows 2 and 4) give more advantage to tools
with a small index (because these tools have lower costs to rows 2 and 4). This
“tension” between the two types of constraints ensures that a given combination
of tools cannot be optimal for too many resource vectors. This captures the rough
intuition that a game with an overpowered tool (meaning one that is more useful
than the others but also not significantly “cumbersome” to limit its use) leads to
uniform strategies among players. In other words, for diversity, all tools should
have strengths and weaknesses.

Table 1. Example of our construction with m = 4, n = 6, and M = 64 + 1.

c 1 1 1 1 1 1

A 1 2 3 4 5 6

M − 12 M − 22 M − 32 M − 42 M − 52 M − 62

13 23 33 43 53 63

M − 14 M − 24 M − 34 M − 44 M − 54 M − 64

We end this section with a high-level overview of our approach for establishing
our upper and lower bounds. All the undefined terminology used here will be
defined in more detail in later sections. We prove our upper bound Theorem 1
using a sequence of transformations.

We first introduce the intermediate concept of an equality loadout problem
that replaces the inequality constraint Ax ≤ b with an equality Ax = b. We show
that for a fixed design (A, c) and for every dimension k, the number of k-loadouts

Designing Optimization Problems with Diverse Solutions 177

is less than the number of k-equality loadouts (Lemma 1). This allows us to focus
on proving an upper bound on the number of equality loadouts. Here, we can
exploit the dual structure of the equality LP and prove that equality loadouts
belong to a cell complex Δc(A) that is characterized by A and c. Importantly, we
show that loadouts correspond to simplicial cells in this cell complex (Lemma
2). In turn, this allows us to, without loss of generality, assume that Δc(A) is a
triangulation (as opposed to an arbitrary subdivision), of a cone in the positive
orthant of Rm (Lemma 3). We show that triangulations of cones in the positive
orthant of R

m correspond to triangulations of points in the lower dimension
R

m−1 (Lemma 4). Finally, we show that the simplices in this triangulation can
be embedded into faces of a simplicial polytope in R

m. Therefore, any upper
bound on the number of faces of polytopes in R

m implies an upper bound on
the number of loadouts. This allows us to invoke the “maximality” of the cyclic
polytope with respect to its number of faces mentioned in Sect. 2.1. Therefore,
the number faces of the cyclic polytope of dimension m bounds the number
of faces in a polytope of dimension m, and implies a bound on the number of
equality loadouts. We also carefully count the number of extraneous faces added
through our transformations, by invoking a bound on the minimal number of
faces a polytope can have, which allows us to derive tight bounds for small values
of m (Lemma 5).

To prove our complementing lower bound Theorem 2, we first explicitly pro-
vide our design (A, c) in Sect. 5.1, which is also inspired by the cyclic polytope.
Compared to the cyclic polytope, every even row of the matrix A has been
“flipped”, as we show in the proof, which we now outline. First, we focus on
the dual program of LP (A, c, b) and present a sufficient condition (Definition
4) for loadouts in terms of dual variables (Lemma 7). We show that by taking
hyperplanes corresponding to the facets of the cyclic polytope in dimension m,
one can attempt to construct dual variables that satisfy the sufficient condition
(Lemma 8). Our aforementioned “flipping” of the even rows in A is crucial to
this construction of the dual variables. We show that as long as the facet of the
cyclic polytope is of the “odd” parity, the constructed dual variables will indeed
be sufficient (Lemma 9), and hence such a facet and all of the faces contained
within it correspond to loadouts. To be more precise, we require odd parity when
m is even, and even parity when m is odd. What we mean by the parity of a
facet will be made clear later. Therefore, to count the number of k-loadouts, we
need to count the number of (k − 1)-dimensional faces on a cyclic polytope in
dimension m that are contained within at least one odd facet. To the best of
our knowledge, this is an unsolved problem in the literature. Nonetheless, using
Gale’s evenness criterion we can map this to a purely combinatorial problem on
binary strings. Through some combinatorial bijections, we show that at worst a
factor of 4 is lost when one adds the requirement that the (k − 1)-dimensional
face must be contained within at least one odd facet, with the factor improving
to 2 if m is odd, and improving to 1 if k is small. These arguments form the
cases in Theorem 2. We should note that generally, a cyclic polytope does not
have an equal number of odd and even facets. Therefore, one should not expect
this factor to always be 2.

178 O. Hanguir et al.

3 Preliminaries

We present terminology we use in the proofs of both Theorems 1 and 2. Addi-
tional terminology needed in the proof of only one of these results is found in
the relevant sections.

A d-simplex is a d-dimensional polytope that is the convex hull of d + 1
affinely independent points. For instance, a 0-simplex is a point, a 1-simplex is a
line segment and 2-simplex is a triangle. For a matrix A = (A1, . . . , An) of rank
m, let cone(A) = cone({A1, . . . , An}) represent the closed convex polyhedral
cone {Ax | x ∈ R

n
≥0}. We use the notation cone(C) to denote the cone generated

by the columns indexed by C ⊆ [n]. If C ⊆ [n] is a subset of indices, the relative
interior of C is the relatively open (i.e., open in its affine hull) convex set

relintA(C) �
{ ∑

j∈C

λAj | λj > 0 for all j ∈ C, and
∑

j∈C

λj = 1
}
.

A subset F of polytope P is a face if there exists α ∈ R
n and β ∈ R such that

α�x + β ≤ 0 for all x ∈ P and F = {x ∈ P | α�x + β = 0}. If dim(F) = k
then F is called a k-dimensional face or k-face. The faces of dimensions 0, 1,
and dim(P) − 1 are called vertices, edges, and facets, respectively. Furthermore,
we say that F is face of C, where F,C ⊆ [n], when cone(F) is a face of cone(C).
We define a polyhedral subdivision of cone(A) as follows.

Definition 1. Let A = (A1, . . . , An) be a matrix of rank m. A collection S of
subsets of [n] is a polyhedral subdivision of cone(A) if it satisfies the following
conditions:

– (CP): If C ∈ S and F is a face of C, then F ∈ S . (Closure Property)
– (UP): cone({1, . . . , n}) ⊂

⋃

C∈S

cone(C). (Union Property)

– (IP): If C,C ′ ∈ S with C �= C ′, then relintA(C) ∩ relintA(C ′) = ∅. (Inter-
section Property)

If the set of indices {j1, . . . , jk} belongs to a subdivision of cone(A), then it
is called a cell of the subdivision, and if the cone is of dimension k, it is called
a k-cell. We note that a polyhedral cone subdivision is completely specified by
listing its maximal cells.

Next, we define a special subdivision of cone(A) as a function of the cost
vector c. The cells of this subdivision map to the loadouts of the design (A, c).
For A ∈ R

m×n
≥0 and c ∈ R

n
≥0, we define the polyhedral subdivision Δc(A) of

cone(A) as the family of subsets of {1, . . . , n} such that C ∈ Δc(A) if and only if
there exists a column vector y ∈ R

m such that y�Aj = cj if j ∈ C and y�Aj > cj

if j ∈ {1, . . . , n}\C. In such a case, we say C is a cell of Δc(A) and that Δc(A) is
a cell complex. A cell C ∈ Δc(A) is simplicial if the column vectors (Aj)j∈C are
linearly independent. If all the cells of Δc(A) are simplicial, then we say Δc(A)
is a triangulation. The maximum size of a simplicial cell is m. The next results
shows that Δc(A) is indeed a polyhedral subdivision of cone(A).

Designing Optimization Problems with Diverse Solutions 179

Proposition 1. Δc(A) is a polyherdal subdivision of cone(A).

Intuitively, we can think of the subdivision Δc(A) as follows: take the cost
vector c, and use it to lift the columns of A to R

n+1 then look at the projection
of the upper faces (those faces you would see if you “look from above”). This is
illustrated in Example 1.

Example 1. Consider the following matrix and cost vectors

A =
(

1/4 1/2 3/4
1 1 1

)

, c1 = (2, 2.125 + ε, 2.25) and c2 = (2, 2.125 − ε, 2.25),

where ε > 0 is a small constant. The corresponding subdivisions of cone(A) are

Δc1(A) =
{
{1, 2}, {2, 3}, {1}, {2}, {3}, ∅

}
and Δc2(A) =

{
{1, 2, 3}, {1}, {3}, ∅

}
.

For example, to see that {1, 2} is a cell of Δc1(A), we consider y = (0.5 +
4ε, 1.875 − ε). One can verify that y�A1 = c1 and y�A2 = c2, while y�A3 > c3.
We observe that for the cost vector c1, the cell {1, 2} is simplicial, while for c2,
the cell {1, 2, 3} is not simplicial.

In our definition of simplicial cell, we mentioned that if all the cells in the
subdivision Δc(A) are simplicial, then Δc(A) is called a triangulation. More
generally, a triangulation of cones is a cone subdivision where all the cells are
simplicial (the columns of every cell are linearly independent). We will also define
the notion of triangulations of point configurations, that is sets of points whose
convex hull is subdivided into simplices. The formal definition mirrors that of
polyhedral subdivisions and can be found in the full version of the paper.

Definition 2 (Cyclic Polytope). The cyclic polytope C(n, d) is defined as the
convex hull of n distinct vertices on the moment curve t �→ (t, t2, . . . , td). The
precise choice of which n points on this curve are selected is irrelevant for the
combinatorial structure of this polytope.

Definition 3 (f-vector). The f-vector of a d-dimensional polytope P is given
by (f0(P), . . . , fd−1(P)), where fi(P) is the number of i-dimensional faces
in the d-dimensional polytope for all i = 0, . . . , d − 1. For instance, a 3-
dimensional cube has eight vertices, twelve edges, and six facets, so its f-vector
is (f0(P), f1(P), f2(P)) = (8, 12, 6).

4 Upper Bound (Proof of Theorem 1)

Throughout this section we fix positive integers n > m ≥ 2 and A ∈ R
m×n
≥0 , c ∈

R
n
≥0. We start by formally introducing the equality loadout problem. We consider

the parametric family of linear programming problems with equality constraints

LP=(A, c, b) : max{c�x | Ax = b, x ≥ 0},

180 O. Hanguir et al.

By analogy to the definition of loadouts in Sect. 2, an equality loadout is defined
as a subset of indices L ⊆ {1, . . . , n} such that there exists a resource vector b for
which LP=(A, c, b) has a unique optimal solution x∗ such that supp(x∗) = L. If
|L| = k then we say that L is a k-equality loadout. Given A and c and an integer
k ∈ [m], let Lk

=(A, c) denote the family of all equality loadouts L of dimension k.
Finally, L=(A, c) denotes the family of equality loadouts of all dimensions given
A and c. Namely, L=(A, c) � ∪m

k=1Lk
=(A, c). The following proposition bounds

the number of loadouts by the number of equality loadouts, for fixed A and c.

Lemma 1. For every A ∈ R
m×n
≥0 , c ∈ R

n
≥0 and k ∈ [m], Lk(A, c) ⊆ Lk

=(A, c).

In the rest of this section, assume without loss of generality that A is a full-
row rank matrix. We present, for all k ∈ [m], an upper bound for the number
|Lk

=(A, c)| of equality loadouts of size k with respect to the design (A, c).
Some of the results of this section are known in the literature (an excel-

lent reference is the textbook [4]), but we present them using our notation and
adapted to the loadout terminology. We provide proofs for clarity and of our a
desire to be as self-contained as possible. The proofs are also suggestive of some
aspects of our later constructions in Sect. 5.

From Equality Loadouts to Triangulations. The following result links the
optimal solutions of LP=(A, c, b) to the cells of subdivision Δc(A).

Proposition 2. ([16], Lemma 1.4) The optimal solutions x to LP=(A, c, b) are
the solutions to the problem

Find x ∈ R
n s.t. Ax = b, x ≥ 0 and supp(x) lies in a cell of Δc(A). (3)

Lemma 2. A subset L ⊆ [n] is a loadout of (A, c) if and only if it is a simplicial
cell in the subdivision Δc(A).

The lemma above implies that we can focus on the simplicial cells of the
subdivision Δc(A). We next show that we can consider without loss of generality
choices of c where all the cells of Δc(A) are simplicial. The idea is that if Δc(A)
has some non-simplicial cells, then we can “perturb” the cost vector c to some c′

and transform at least one non-simplicial cell into one or more simplicial cells.
This perturbation conserves all the simplicial cells of Δc(A) and thus the number
of equality loadouts for the design (A, c′) cannot be less than the number of
equality loadouts for the design (A, c). Without loss of optimality, we can ignore
cost vectors c that give rise to non-simplicial cells. We first define the notion of
refinement that formalizes the “perturbation” of c.

Given two cell complexes C1 and C2, we say that C1 refines C2 if every cell of
C1 is contained in a cell of C2. [4, Lemma 2.3.15] shows that if c′ = c + ε · e is
perturbation of c with ε > 0 sufficiently small and e = (1, . . . , 1), then the new
subdivision Δc′(A) refines Δc(A). Since Δc′(A) refines Δc(A), then Δc′(A) will
have more cells. However, it is not clear if Δc′(A) will have more simplicial cells
than Δc(A). We show in the following lemma that this is the case.

Lemma 3. A refinement of Δc adds to the number of simplicial cells in Δc.

Designing Optimization Problems with Diverse Solutions 181

In [4, Corollary 2.3.18], it is shown Δc(A) can be refined to a triangulation
within a finite number of refinements (suffices for c′ to be generic). Therefore,
the lemma above implies that in order to maximize the number of loadouts for
any dimension k ≤ m, we can restrict attention to designs (A, c) such that Δc(A)
is a triangulation without loss of generality.

We observe that since the matrix A ∈ R
m×n
≥0 has all nonnegative entries,

cone(A) is contained entirely in the positive orthant and therefore cannot contain
a line. Cones that do not contain lines are called pointed. The following lemma
shows that triangulations of pointed cones in dimension m are equivalent to
triangulations of a non-restricted set of points (columns) in dimension m − 1.
This implies that equality loadouts can be seen as cells of a triangulation of a
point configuration.

Lemma 4 ([1], Theorem 3.2). Every triangulation T of a pointed cone of
dimension m can be considered as a triangulation T ′ of a point configuration
of dimension m − 1 such that for 1 ≤ k ≤ m, the k-simplices of T map to
(k − 1)-simplices of T ′.

Lemma 4 implies that equality loadouts of dimension k correspond to (k−1)-
simplices in a triangulation of a point configuration in dimension m − 1.

From Cells of a Triangulation to Faces of a Polytope ([4], Corollary
2.6.5). We now show that any n-point triangulation in R

m−1 can be embedded
onto the boundary of an (n+1)-vertex polytope in R

m, in a way such that (k−1)-
simplices in the triangulation correspond to (k − 1)-faces on the polytope. We
then apply the cyclic polytope upper bound on the number of (k − 1)-faces on
any (n+1)-vertex polytope in R

m to establish our result. To get a tighter bound,
we carefully subtract the “extraneous” faces added from the embedding that did
not correspond to (k−1)-simplices in the original triangulation. We lower bound
the number of such extraneous faces using the lower bound theorem of [10].

Let T denote the original n-point triangulation in R
m−1. We will use conv T

to refer to the polytope obtained by taking the convex hull of all the faces in T .
Let gk−1(T) denote the number of (k − 1)-simplices in the triangulation T . We
embed conv T into a polytope P in R

m as follows. Let z1, . . . , zn ∈ R
m−1 denote

the vertices in triangulation T . We now define the following lifted points in R
m.

For all i = 1, . . . , n, let zi denote the point (zi
1, . . . , z

i
m−1, 0). For all i = 1, . . . , n,

let z̄i denote the point (zi
1, . . . , z

i
m−1, ε), for some fixed ε > 0. Let ε > 0, and

replace each point zi that is in the interior of conv({z1, . . . , zn}) by the “lifted”
point z̄i = (zi

1, . . . , z
i
m−1, ε). The points on the boundary of conv({z1, . . . , zn})

are not lifted. Let S be the set of the n points in R
m after lifting. Let Sm be the

unit sphere of Rm with center at the origin, and S′ be the projection of S onto
Sm, where every point is projected along the line connecting the point to the
center of the sphere. The set S′ has the property that all the points that are on
the “equator” hyperplane zm = 0 are exactly the projections of the points of S
on the boundary of conv(S) (the points that were not lifted). The other points
of S′ are in the “northern hemisphere” (the half space xm > 0). The final step
is to adjoin the boundary points to the “south pole”, (0, . . . , 0,−1) ∈ R

m. Let
P be the resulting polytope, i.e., P = conv(S′).

182 O. Hanguir et al.

The next lemma shows that for 2 ≤ k ≤ m, the (k − 1)-dimensional faces of
P are either (k − 1)-simplices of T , or (k − 2)-faces of T that were adjoined to
the south pole.

Lemma 5. For 2 ≤ k ≤ m, we have fk−1(P) = gk−1(T) + fk−2(T).

The previous lemma implies that gk−1(T) = fk−1(P) − fk−2(T). Since P
has n + 1 points, we know from the upper bound theorem that fk−1(P) ≤
fk−1(C(n + 1,m)). Therefore, gk−1(T) ≤ fk−1(C(n + 1,m)) − fk−2(T), and all
we need is a lower bound on fk−2(T). The following lemma uses the lower bound
theorem (Theorem 1.1, [10]) to establish a lower bound on fk−2(T). The lower
bound theorem presents a lower bound on the number of faces in every dimension
among all polytopes of dimension d over p points, for d ≥ 2 and p ≥ 2.

Lemma 6. For 2 ≤ k ≤ m, we have gk−1(T) ≤ fk−1(C(n + 1,m)) −
(

m
k−1

)
.

See the full version of the paper to see how these lemmas come together to
prove Theorem 1.

5 General Lower Bound (Proof of Theorem 2)

Throughout this section, we fix positive integers n > m ≥ 4, and explicitly
present designs (A, c) that have the number of k-loadouts promised in Theorem
2 for all k ≤ m. For m = 2 and m = 3, the exactly optimal designs are presented
in the full version. All of the designs constructed in this paper will satisfy the
property that A has linearly independent rows, hence we assume in the rest of
this section that A is a full row rank matrix.

5.1 Construction Based on Moment Curve

Let t1, . . . , tn be arbitrary real numbers satisfying 0 < t1 < t2 < . . . < tn. Let
M be an arbitrary constant satisfying M ≥ tm. We define the design (A, c) so
that c = (1, . . . , 1) ∈ R

n and A = [v′
m(t1), . . . v′

m(tn)]. where

t �→ v′
m(t) =

(

t,M − t2, t3,M − t4, . . . ,
(−1)m + 1

2
M − (−1)mtm

)�
∈ R

m.

Note that the final row equals M − tm if m is even, or tm if m is odd.
For any such values t1, . . . , tn and M , we will get a design that satisfies

our Theorem 2. We set all the entries of the cost vector c to 1 to simplify
computations. It is not a requirement and the construction would still hold by
setting cj to be any positive number and scaling the column Aj by a factor of cj .
We will also later show that any of these constructions satisfy our assumption
of A having full row rank.

Designing Optimization Problems with Diverse Solutions 183

Motivation Behind the Construction. Let P be the convex hull of
{v′

m(t1), . . . v′
m(tn)}. Let t �→ vm(t) = (t, t2, t3, . . . , tm)T ∈ R

m denote the m-
dimensional original moment curve the defines the cyclic polytope.

The choice of the curve v′
m is motivated by role the cyclic polytope plays in

our corresponding upper bound Theorem 1. In fact, Theorem 1 shows that the
number of k-dimensional loadouts is less than the number of (k−1)-dimensional
faces of the cyclic polytope C(n + 1,m) (for 2 ≤ k ≤ m). An ideal lower bound
proof would connect the number of loadouts to the number of faces of the cyclic
polytope. However, simply setting the columns of the constraint matrix A to
be points on the moment curve of the cyclic polytope does not guarantee the
existence of loadouts. We therefore, introduce the curve v′

m that describes a
“rotated” cyclic polytope and show that it is rotated to ensure that the sup-
porting normals of “half” of the facets are nonnegative. We use these rotated
facets to construct a number of loadouts that asymptotically matches the upper
bound. The rotation is performed by multiplying the even coordinates of the
moments curve by −1, and we use a sufficiently big constant M to ensure the
positivity of the new constraint matrix.

5.2 Dual Certificate for Loadouts

Using LP duality, we derive a sufficient condition for subsets of [n] to be loadouts.

Definition 4. A set C ⊆ [n] is an inequality cell of the design (A, c) if there
exists a variable y ∈ R

m such that

yi > 0, ∀ i ∈ [m];

y�Aj = cj , ∀ j ∈ C;

y�Aj > cj , ∀ j �∈ C.

Here, y can be interpreted as a dual variable. However, in contrast to the
definition of a cell that features in Proposition 2, here we require y > 0. This is
because non-negativity is needed for y to be feasible in the dual when the LP has
an inequality constraint Ax ≤ b instead of an equality constraint as considered
in Proposition 2.

Lemma 7. Suppose C ⊆ [n] is an inequality cell with |C| = m. Then every
non-empty subset of C is a loadout.

To establish Lemma 7, we show that for every subset L ⊆ C, y will verify the
complementary slackness constraints with a primal variable x that has support
equal to L. This establishes the optimality of x, and to show its uniqueness, we
use the assumption that A has a full row rank equal to m.

Note that this lemma only works in one direction. If L is a loadout, it is not
clear that we can find a corresponding dual certificate that satisfies Definition 4.
However, for our construction, we only need the direction proved in the lemma.

In order to prove Theorem 2, we consider our design from Sect. 5.1, and
show that there are many inequality cells of cardinality m. To do so, we take an

184 O. Hanguir et al.

arbitrary C ⊆ [n] with |C| = m and consider the hyperplane that goes through
the m points {v′

m(tj) | j ∈ C}. We show in Lemma 8 that the coefficients of the
equation for this hyperplane have the same sign. We then use these coefficients
to construct a candidate dual vector y. The last step (Lemma 9) is to show that
when the hyperplane satisfies a gap parity combinatorial condition, this dual
vector will indeed satisfy Definition 4, certifying that C is an inequality cell.

Lemma 8. Let C = {j1, . . . , jm} ⊆ [n] be a subset of m indices with j1 < · · · <
jm. The equation

det
(

1 . . . 1 1
v′

m(tj1) . . . v′
m(tjm) y

)

= 0 (4)

defines a hyperplane in variable y ∈ R
m that passes through the points

v′
m(tj1), . . . , v

′
m(tjm). Furthermore if equation (4) is written in the form α1y1 +

. . . αmym − β = 0, then we have α1 �= 0, . . . αm �= 0, β �= 0, and

sign(α1) = . . . = sign(αm) = sign(β) = (−1)� m
2 �+m+1,

where sign(αj) is equal to 1 if αj > 0 and equal to −1 otherwise.

We now consider a subset C = {j1, . . . , jm} ⊆ [n] with j1 < · · · < jm,
such that the corresponding hyperplane has equation α1y1 + . . . αmym − β = 0,
as defined above. The previous lemma shows that the dual variable y = α/β
satisfies yi > 0 for all i ∈ [m]. We now proceed towards a gap parity condition
on the subset C under which setting y = α/β also satisfies Definition 4.

Definition 5. (Gaps). For a set C ⊂ [n], a gap of C refers to an index i ∈
[n] \ C. A gap i of C is an even gap if the number of elements in C larger than
i is even, and i is an odd gap otherwise.

Definition 6. (Facets and Gap Parity). A subset C ⊆ [n] is called a facet if
|C| = m and either: (i) all of its gaps are even; or (ii) all of its gaps are odd. If
all of its gaps are even, then we call C an even facet and define g(C) = 2. On
the other hand, if all of its gaps are odd, then we call C an odd facet and define
g(C) = 1. We let g(C) ∈ {1, 2} denote the gap parity of a facet C, with g(C)
being undefined if C is not a facet.

Lemma 9. Every facet C with g(C) �≡ m (mod 2) is an inequality cell.

The proofs of Lemmas 8 and 9 require some technical developments on the
sub-determinants of A. The outline of the proof of Lemma 9 is as follows. To
show that C = {j1, . . . , jm} is an inequality cell, we consider the dual certificate
y = α

β where α1y1 + . . . αmym − β = 0 is the equation of C. By Lemma 8, β

and α have the same signs, and that β �= 0 and αi �= 0 for i ∈ [m]. Therefore,
yi > 0, ∀i ∈ [m]. For j ∈ C,

y�v′
m(tj) =

α�v′
m(tj)
β

=
β

β
= 1 = cj .

The last step is to show y�v′
m(tj) > cj for j �∈ C.

Designing Optimization Problems with Diverse Solutions 185

5.3 Counting the Number of k-Loadouts

The preceding duality certificates combine to provide a purely combinatorial
lower bound on the number of k-loadouts in our construction. Indeed, Lemma
7 shows a subset L ⊆ [n] with |L| = k is a k-loadout as long as L is contained
within some inequality cell C. In turn, Lemma 9 shows that C is an inequality
cell as long as it is a facet with gap parity opposite to m.

The last step is to count the number of k-subsets that are contained within at
least one facet with gap parity opposite to m, for all k = 1, . . . ,m. The challenge
is not to over-count these subsets because such a subset can be contained in
different facets. We map the counting of these subsets to a purely combinatorial
problem on binary strings. Through some combinatorial bijections, we show that
at worst a factor of 4 is lost when one adds the requirement that the (k − 1)-
dimensional face must be contained within at least one odd facet, with the factor
improving to 2 if m is odd, and improving to 1 if k is small. The full proofs are
deferred to the full version.

6 Conclusion

We study the novel problem of diversity maximization. This problem can be
motivated by the video game design context where designing for diversity is one
of its core design philosophies. We model this diversity optimization problem as a
parametric linear programming problem where we are interested in the diversity
of supports of optimal solutions. Using this model, we establish upper bounds
and construct designs that match this upper bound asymptotically.

To our knowledge, this is the first paper to systematically study the ques-
tion of “diversity maximization” as we have defined it here. The goal here is
“diverse-in diverse-out”, if two players have right-hand resource vectors, they
will optimally play different strategies. We believe there could be other applica-
tions for “diverse-in diverse-out” optimization problems. Consider, for example,
a diet problem where a variety of ingredients are used in the making of meals,
depending on different availability in resources. We leave this exploration for
future work. There are also natural extensions to our model and analysis that
could be pursued. For instance, we have studied the linear programming version
of the problem. An obvious next step is the integer linear setting, which also
arises naturally in the design of games.

Just as in our analysis of the linear program, a deep understanding of the
parametric nature of the integer optimization problems is necessary to proceed
in the integer setting. [16] introduce a theory of reduced Gröbner bases of toric
ideals that play a role analogous to triangulations of cones.

Another compelling extension would involve mixed -integer decision sets. This
will require a deep appreciation of parametric mixed-integer linear programming,
a topic that remains of keen interest in the integer programming community (see,
for instance, [5,6]). Finally, another direction is to consider multiple objectives
for the player. In our setting, we have assumed a single meaningful objective for
the player, such as maximizing the damage of a loadout of weapons.

186 O. Hanguir et al.

References

1. Beck, M., Robins, S.: Computing the Continuous Discretely: Integer-Point Enu-
meration in Polyhedra. Springer, NY (2007). https://doi.org/10.1007/978-0-387-
46112-0

2. Chen, N., Elmachtoub, A.N., Hamilton, M.L., Lei, X.: Loot box pricing and design.
Management Science (forthcoming) (2020)

3. Chen, Z., et al.: EOMM: An engagement optimized matchmaking framework. In:
Proceedings of the 26th International Conference on World Wide Web, pp. 1143–
1150 (2017)

4. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms
and Applications. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
12971-1

5. Eisenbrand, F., Shmonin, G.: Parametric integer programming in fixed dimension.
Math. Oper. Res. 33(4), 839–850 (2008)

6. Gribanov, D., Malyshev, D., Pardalos, P.: Parametric integer programming
in the average case: sparsity, proximity, and FPT-algorithms. arXiv preprint
arXiv:2002.01307 (2020)

7. Guo, H., Hao, L., Mukhopadhyay, T., Sun, D.: Selling virtual currency in digital
games: implications for gameplay and social welfare. Inf. Syst. Res. 30(2), 430–446
(2019)

8. Guo, H., Zhao, X., Hao, L., Liu, D.: Economic analysis of reward advertising. Prod.
Oper. Manag. 28(10), 2413–2430 (2019)

9. Huang, Y., Jasin, S., Manchanda, P.: “Level up”: leveraging skill and engagement
to maximize player game-play in online video games. Information Systems Research
30(3), 927–947 (2019)

10. Kalai, G.: Rigidity and the lower bound theorem 1. Invent. Math. 88(1), 125–151
(1987)

11. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika
17(2), 179–184 (1970)

12. Mills, H.: Marginal values of matrix games and linear programs. In: Kuhn, H.W.,
Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 183–194. Prince-
ton University Press (1956)

13. Ryan, C.T., Sheng, L., Zhao, X.: Selling enhanced attempts. Available at SSRN
3751523 (2020)

14. Saaty, T., Gass, S.: Parametric objective function (part 1). J. Oper. Res. Soc. Am.
2(3), 316–319 (1954)

15. Sheng, L., Ryan, C.T., Nagarajan, M., Cheng, Y., Tong, C.: Incentivized actions
in freemium games. Manufacturing & Service Operations Management (2020)

16. Sturmfels, B., Thomas, R.R.: Variation of cost functions in integer programming.
Math. Program. 77(2), 357–387 (1997)

17. Turner, J., Scheller-Wolf, A., Tayur, S.: Scheduling of dynamic in-game advertising.
Oper. Res. 59(1), 1–16 (2011)

18. Walkup, D., Wets, R.: Lifting projections of convex polyhedra. Pac. J. Math. 28(2),
465–475 (1969)

19. Williams, A.: Marginal values in linear programming. J. Soc. Ind. Appl. Math.
11(1), 82–94 (1963)

https://doi.org/10.1007/978-0-387-46112-0
https://doi.org/10.1007/978-0-387-46112-0
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/978-3-642-12971-1
http://arxiv.org/abs/2002.01307

ReLU Neural Networks of Polynomial Size
for Exact Maximum Flow Computation

Christoph Hertrich1(B) and Leon Sering2

1 London School of Economics and Political Science, London, UK
c.hertrich@lse.ac.uk

2 ETH Zurich, Zurich, Switzerland
sering@math.ethz.ch

Abstract. This paper studies the expressive power of artificial neural
networks with rectified linear units. In order to study them as a model of
real-valued computation, we introduce the concept of Max-Affine Arith-
metic Programs and show equivalence between them and neural net-
works concerning natural complexity measures. We then use this result
to show that two fundamental combinatorial optimization problems can
be solved with polynomial-size neural networks. First, we show that for
any undirected graph with n nodes, there is a neural network (with fixed
weights and biases) of size O(n3) that takes the edge weights as input
and computes the value of a minimum spanning tree of the graph. Sec-
ond, we show that for any directed graph with n nodes and m arcs,
there is a neural network of size O(m2n2) that takes the arc capacities
as input and computes a maximum flow. Our results imply that these
two problems can be solved with strongly polynomial time algorithms
that solely uses affine transformations and maxima computations, but
no comparison-based branchings.

Keywords: Neural Network Expressivity · Strongly Polynomial
Algorithms · Minimum Spanning Tree Problem · Maximum Flow
Problem

1 Introduction

Artificial neural networks (NNs) achieved breakthrough results in various appli-
cation domains like computer vision, natural language processing, autonomous
driving, and many more [40]. Also in the field of combinatorial optimization
(CO), promising approaches to utilize NNs for problem solving or improving
classical solution methods have been introduced [7]. However, the theoretical
understanding of NNs still lags far behind these empirical successes.

All neural networks considered in this paper are feedforward neural networks
with rectified linear unit (ReLU) activations, one of the most popular models in
practice [19]. These NNs are directed, acyclic, computational graphs in which

The full version is available on arXiv: https://arxiv.org/abs/2102.06635.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 187–202, 2023.
https://doi.org/10.1007/978-3-031-32726-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_14&domain=pdf
http://orcid.org/0000-0001-5646-8567
http://orcid.org/0000-0003-2953-1115
https://arxiv.org/abs/2102.06635
https://doi.org/10.1007/978-3-031-32726-1_14

188 C. Hertrich and L. Sering

Fig. 1. A small NN with
two input neurons x1 and
x2, a single ReLU neuron
labelled with the shape of
the ReLU function, and one
output neuron y. It com-
putes the function
x �→ y
= x2 − max { 0, x2 − x1 }
= −max { −x2, −x1 }
= min { x1, x2 } .

Fig. 2. This example shows that the outcome of one
iteration of the Edmonds-Karp algorithm for com-
puting a maximum flow depends discontinuously on
the arc capacities. Here, a small adjustment of the
capacity of arc st leads to a drastic change of the
flow after the first iteration.

each edge is equipped with a fixed weight and each node with a fixed bias.
Each node (neuron) computes an affine transformation of the outputs of its
predecessors and applies the ReLU activation function x �→ max{0, x} on top.
The full NN then computes a function mapping real-valued inputs to real-valued
outputs. A simple example is given in Fig. 1.

The neurons are commonly organized in layers. The depth, width, and size of
an NN are defined as the number of layers, the maximum number of neurons per
layer, and the total number of neurons, respectively. An important theoretical
question about these NNs is concerned with their expressivity: which functions
can be represented by an NN of a certain depth, width, or size?

Neural network expressivity has been thoroughly investigated from an
approximation point of view. For example, so-called universal approximation
theorems [3,11,31] show that every continuous function on a bounded domain
can be arbitrarily well approximated with only a single nonlinear layer. However,
for a full theoretical understanding of this fundamental machine learning model
it is necessary to understand what functions can be exactly expressed with dif-
ferent NN architectures. For instance, insights about exact representability have
boosted our understanding of the computational complexity of the task to train
an NN with respect to both, algorithms [4,36] and hardness results [9,18,20].

Poly-Size ReLU Neural Networks for Maximum Flow Computation 189

It is known that a function can be expressed with a ReLU NN if and only if
it is continuous and piecewise linear (CPWL) [4]. However, many surprisingly
basic questions remain open. For example, it is not known whether two layers of
ReLU units (with any width) are sufficient to compute the function f : R4 → R,
x �→ max{0, x1, x2, x3, x4} [24,28].

In this paper we explore another fundamental question within the research
stream of exact representability: what are families of CPWL functions that can
be represented with ReLU NNs of polynomial size? In other words, using NNs
as a model of computation operating on real numbers (in contrast to Turing
machines or Boolean circuits, which operate on binary encodings), which prob-
lems do have polynomial complexity in this model?

Our motivation to study this model stems from a variety of different perspec-
tives, including strongly polynomial time algorithms, arithmetic circuit complex-
ity, parallel computation, and learning theory. We believe that classical combi-
natorial optimization problems are a natural example to study this model of
computation because their algorithmic properties are well understood in each of
these areas.

Clearly, if there are polynomial-size NNs to solve a certain problem, and
assuming that the weights of these NNs are computable in polynomial time1,
then there exists a strongly polynomial time algorithm for that problem, simply
by executing the NN. However, the converse might be false. This is due to the fact
that ReLU NNs only allow a very limited set of possible operations, namely affine
combinations and maxima computations. In particular, every function computed
by such NNs is continuous, making it impossible to realize instructions like a
simple if -branching based on a comparison of real numbers. In fact, there are
related models of computation for which the use of branchings is exponentially
powerful [32].

For some CO problems, classical algorithms do not involve comparison-based
branchings and, thus, can easily be implemented as an NN. This is, for example,
true for many dynamic programs. In these cases, the existence of efficient NNs
follows immediately. We refer to Hertrich and Skutella [29] for some examples of
this kind. In particular, polynomial-size NNs to compute the length of a shortest
path in a network from given arc lengths are possible.

For other problems, like the Minimum Spanning Tree Problem or the Max-
imum Flow Problem, all classical algorithms use comparison-based branchings.
For example, many maximum flow algorithms use them to decide whether an
arc is part of the residual network. More specifically, in the Edmonds-Karp algo-
rithm a slight perturbation (from 0 to ε) in the capacities can lead to different
augmenting path and therefore to a completely different intermediate flow; see
Fig. 2. Such a discontinuous behavior can never be represented by a ReLU NN.

1 In circuit complexity language, one would say “if there is a uniform neural network
family to solve a certain problem”.

190 C. Hertrich and L. Sering

1.1 Our Main Results

In order to make it easier to think about NNs in an algorithmic way, we intro-
duce the pseudo-code language Max-Affine Arithmetic Programs (MAAPs). We
show that MAAPs and NNs are equivalent (up to constant factors) concerning
three basic complexity measures corresponding to depth, width, and overall size
of NNs. Hence, MAAPs serve as a convenient tool for constructing NNs with
bounded size and could be useful for further research about NN expressivity
beyond the scope of this paper.

We use this result to prove our two main theorems. The first one shows that
computing the value of a minimum spanning tree has polynomial complexity on
NNs. The proof is based on a result from subtraction-free circuit complexity [17].

Theorem 1. For a fixed graph with n vertices, there exists an NN of depth
O(n log n), width O(n2), and size O(n3) that correctly maps a vector of edge
weights to the value of a minimum spanning tree.

The second result shows that computing a maximum flow has polynomial
complexity on NNs. Since all classical algorithms involve conditional branchings
based on the comparison of real numbers, the proof involves the development of
a new strongly polynomial maximum flow algorithm which avoids such branch-
ings. While, in terms of standard running times, the algorithm is definitely not
competitive with algorithms that exploit comparison-based branchings, it is of
independent interest with respect to the structural understanding of flow prob-
lems.

Theorem 2. Let G = (V,E) be a fixed directed graph with s, t ∈ V , |V | = n,
and |E| = m. There exists an NN of depth and size O(m2n2) and width O(1)
that correctly maps a vector of arc capacities to a vector of flow values in a
maximum s-t-flow.

Let us point out that in case of minimum spanning trees, the NN computes
only the objective value, while for maximum flows, the NN computes the actual
solution. There is a structural reason for this difference: Due to their continuous
nature, ReLU NNs cannot compute a discrete solution vector, like an indicator
vector of the optimal spanning tree, because infinitesimal changes of the edge
weights would lead to jumps in the output. For the Maximum Flow Problem,
however, the optimal flow itself does indeed have a continuous dependence on
the arc capacities.

1.2 Discussion of the Results

Before presenting our result in more detail, we discuss the significance and lim-
itations of our results from various perspectives. Due to space constraints, we
refer to the full version for a more detailed discussion.

Learning Theory. A standard approach to create a machine learning model
usually contains the following two steps. The first step is to fix a particular

Poly-Size ReLU Neural Networks for Maximum Flow Computation 191

hypothesis class. When using NNs, this means to fix an architecture, that is, the
underlying graph of the NN. Then, each possible choice of weights and biases
of all affine transformations in the network constitutes one hypothesis in the
class. The second step is to run an optimization routine to find a hypothesis in
the class that fits given training data as accurately as possible. A core theme in
learning theory is to analyse how the choice of the hypothesis class influences
different kind of errors made by the machine learning model.

While there exist many attempts to mathematically explain the mysterious
success of modern NNs [8], there is still a long way ahead of us. Understanding
what CPWL functions are actually contained in the hypothesis classes defined
by NNs of a certain size (in particular, polynomial size) is a key insight in this
direction. We see our combinatorial, exact perspective as a counterbalance and
complement to the usual approximate point of view.

Strongly Polynomial Time Algorithms. As pointed out above, polynomial-
size NNs correspond to a subclass of strongly polynomial time algorithms with
a very limited set of operations allowed. Given that this subclass stems from
one of the most basic machine learning models, our grand vision, to which we
contribute with our results, is to understand for different CO problems whether
they admit strongly polynomial time algorithms of this type.

Algorithms of this type have not been known before for the two problems
considered in this paper. It remains an open question whether such algorithms,
and hence, polynomial-size NNs, exist to solve other CO problems for which
strongly polynomial time algorithms are known. Can they, for instance, compute
the weight of a minimum weight perfect matching in (bipartite) graphs? Can they
compute the cost of a minimum cost flow from either node demands or arc costs,
while the other of the two quantities is considered to be fixed?

A major open question is also to prove lower bounds on NN sizes. Can we
find a family of CPWL functions (corresponding to a CO problem or not) that
can be evaluated in strongly polynomial time, but not computed by polynomial-
size NNs? While proving lower bounds in complexity theory always seems to
be a challenging task, we believe that not all hope is lost. For example, in the
area of extended formulations, it has been shown that there exist problems (in
particular, minimum weight perfect matching) which can be solved in strongly
polynomial time, but every linear programming formulation to this problem must
have exponential size [52]. Possibly, one can show in the same spirit that also
polynomial-size NN representations are not achievable.

Boolean Circuits. Even though NNs are naturally a model of real computation,
it is worth to have a look at their computational power with respect to Boolean
inputs. Interestingly, this makes understanding the computational power of NNs
much easier. It is easy to see that ReLU NNs can directly simulate AND-, OR-,
and NOT-gates, and thus every Boolean circuit [44]. Hence, in Boolean arith-
metics, every problem in P can be solved with polynomial-size NNs.

However, requiring the networks to solve a problem for all possible real-
valued inputs seems to be much stronger. Consequently, the class of functions
representable with polynomial-size NNs is much less understood than in Boolean

192 C. Hertrich and L. Sering

arithmetics. Our results suggest that rethinking and forbidding basic algorithmic
paradigms (like comparison-based branchings) can help towards improving this
understanding.

Arithmetic Circuits. As a circuit model with real-valued computation, ReLU
networks are naturally closely related to arithmetic circuits. Just like NNs, arith-
metic circuits are computational graphs in which each node computes some arith-
metic expression (traditionally addition or multiplication) from the outputs of
all its predecessors. Arithmetic circuits are well-studied objects in complexity
theory [56]. Closer to ReLU NNs, there is a special kind of arithmetic circuits
called tropical circuits [33]. In contrast to ordinary arithmetic circuits, they con-
tain maximum (or minimum) gates instead of sum gates and sum gates instead
of product gates. Thus, they are arithmetic circuits in the max-plus algebra.

A tropical circuit can be simulated by an NN of roughly the same size since
NNs can compute maxima and sums. However, neural networks are strictly more
powerful than tropical circuits for two reasons: they can realize subtractions (that
is, tropical division) by using negative weights and scalar multiplication (tropical
exponentiation) with any real number. Thus, lower bounds on the size of tropical
circuits do not apply to NNs. A particular example with an exponential gap
between NNs and tropical circuits is the computation of the value of a minimum
spanning tree. By Jukna and Seiwert [34], no polynomial-size tropical circuit can
do this. However, Theorem 1 shows that NNs of cubic size (in the number of
nodes of the input graph) are sufficient for this task.

Parallel Computation. Neural networks are naturally a model of parallel com-
putation by performing all operations within one layer at the same time. With-
out going into detail here, the depth of an NN is related to the running time
of a parallel algorithm, its width is related to the required number of process-
ing units, and its size to the total amount of work conducted by the algorithm.
One takeaway from this perspective is that, although the result by Arora et al.
[4] guarantees that logarithmic depth should be sufficient to compute a max-
imum flow, this would probably require superpolynomial width and size. The
reason is that the Maximum Flow Problem is P-complete [22,23], meaning that
it probably cannot be efficiently parallelized.

1.3 Further Related Work

Using NNs to solve optimization problems started with so-called Hopfield net-
works in the 1980s [30,35,57], which has also been specialized to the Maximum
Flow Problem [2,14,45]. However, the NNs used in these works are conceptually
very different from modern feedforward NNs that are considered in this paper.

In recent years interactions between NNs and CO have regained a lot of
attention in the literature [7], for example, for boosting MIP solvers [42] and
solving specific CO problems [6,16,37,38,47,60]. These approaches usually are
of heuristic nature without quality or running time guarantees.

Concerning the expressivity of ReLU neural networks, various trade-
offs between depth and width of NNs [4,15,25,27,41,46,51,53,58,59,62] and

Poly-Size ReLU Neural Networks for Maximum Flow Computation 193

approaches to count and bound the number of linear regions of a ReLU
NN [26,43,50,51,54] have been found. NNs have been studied from a circuit com-
plexity point of view before [5,49,55]. However, these works focus on Boolean
circuit complexity of NNs with sigmoid or threshold activation functions. We are
not aware of previous work investigating the computational power of ReLU NNs
as arithmetic circuits operating on the real numbers.

For an introduction to classical minimum spanning tree and maximum flow
algorithms, we refer to textbooks [1,39,61]. The asymptotically fastest known
combinatorial maximum flow algorithm due to Orlin [48] runs in O(nm) time
for n nodes and m arcs. Recently, almost linear, weakly polynomial algorithms
based on interior point methods have been developed [10]. However, polynomial-
size NNs necessarily correspond to strongly polynomial algorithms.

2 Algorithms and Proof Overview

In this section we provide an intuitive overview of how we prove our results. The
detailed proofs are deferred to the full version due to space constraints.

Max-Affine Arithmetic Programs. For the purpose of algorithmic investi-
gations of ReLU NNs, we introduce the pseudo-code language Max-Affine Arith-
metic Programs (MAAPs). A MAAP operates on real-valued variables. The only
operations allowed in a MAAP are computing maxima and affine transforma-
tions of variables as well as parallel and sequential for loops with a fixed2 number
of iterations. In particular, no if branchings are allowed. With a MAAP A, we
associate three complexity measures d(A), w(A), and s(A), which can easily be
calculated from a MAAP’s description. The intuition behind these measures is
that they correspond (up to constant factors) to the depth, width, and size of an
NN computing the same function as the MAAP does. We formalize this intuition
by proving the following proposition, which is similar to the transformation of
circuits into straight-line programs in Boolean or arithmetic circuit complexity.

Proposition 3. For a function f : Rn → R
m the following is true.

(i) If f can be computed by a MAAP A, then it can also be computed by an NN
with depth d(A) + 1, width w(A), and size s(A).

(ii) If f can be computed by an NN with depth d + 1, width w, and size s, then
it can also be computed by a MAAP A with d(A) = d, w(A) = 2w, and
s(A) = 4s.

The proof of the proposition works by providing explicit constructions to
convert a MAAP into an NN (part (i)), and vice versa (part (ii)) while taking
care that the different complexity measures translate respectively.

The takeaway from this exercise is that for proving that NNs of a certain
size can compute certain functions, it is sufficient to develop an algorithm in the
2 In this context, fixed means that the number of iterations cannot depend on the

specific instance. It can still depend on the size of the instance (e.g., the size of the
graph in case of the two CO problems considered in this paper).

194 C. Hertrich and L. Sering

Algorithm 1: MSTn: Compute the value of a minimum spanning tree for
the complete graph on n ≥ 3 vertices.
Input: Edge weights (xij)1≤i<j≤n.

1 yn ← mini∈[n−1] xin

2 for each 1 ≤ i < j ≤ n − 1 do parallel
3 x′

ij ← min { xij , xin + xjn − yn }
4 return yn +MSTn−1

(
(x′

ij)1≤i<j≤n−1

)

form of a MAAP that computes the same function and to bound its complexity
measures d(A), w(A), and s(A).

Minimum Spanning Trees. A spanning tree in an undirected graph is a set
of edges that is connected, spans all vertices, and does not contain any cycle. For
given edge weights, the Minimum Spanning Tree Problem is to find a spanning
tree with the least possible total edge weight.

Classical algorithms for the Minimum Spanning Tree Problem, for example
Kruskal’s or Prim’s algorithm, compare the edge weights and use comparison-
based branchings to determine the order in which edges are added to the solution.
Thus, they cannot be written as a MAAP or implemented as an NN. Instead,
Theorem 1 can be shown by translating an arithmetic circuit with additional
division gates by Fomin et al. [17] to a tropical circuit with additional subtraction
gates. We refer to the full version for more details.

While this tropicalization is already sufficient to justify the existence of
polynomial-size NNs to compute the value of a minimum spanning tree, to unveil
the algorithmic ideas behind this construction, we provide an equivalent, com-
pletely combinatorial proof of Theorem 1, making use of MAAPs and Proposition
3.

Without loss of generality, we restrict ourselves to complete graphs. Edges
missing in the actual input graph can be represented with large weights such
that they will never be included in a minimum spanning tree. For n = 2 vertices,
the MAAP simply returns the weight of the only edge of the graph. For n ≥ 3,
our MAAP is given in Algorithm 1.

Let us mention that the use of recursions is just a technicality because for each
fixed n, the recursion can be unrolled and the MAAP can be stated explicitly.
In each step, one node of the graph is deleted and all remaining edge weights are
updated in such a way that the objective value of the minimum spanning tree
problem in the original graph can be calculated from the objective value in the
smaller graph. This idea of removing the vertices one by one can be seen as the
translation of the so-called star-mesh transformation used by Fomin et al. [17]
into the combinatorial world.

We prove Theorem 1 in the full version by, firstly, showing that Algorithm
1 indeed computes the correct objective value, and secondly, bounding its com-
plexity measures d(A), w(A), and s(A) and applying Proposition 3.

Poly-Size ReLU Neural Networks for Maximum Flow Computation 195

Maximum Flows. For a given directed graph with a source node s, a sink
node t, and nonnegative capacities on each arc, the Maximum Flow Problem
asks to find a flow value for each arc such that no capacity is exceeded, the
inflow equals the outflow at each node except for s and t, and the outflow at s
(or equivalently the inflow at t) is maximised.

Since classical maximum flow algorithms rely on conditional branchings based
on the comparison of real numbers (for instance, to check which arcs are con-
tained in the residual network), we develop a new maximum flow algorithm in
the form of a MAAP (see Algorithms 2 and 3), which then translates to an NN of
the claimed size by Proposition 3. In the description of the algorithm, we assume
without loss of generality that for each arc e = uv ∈ E also its reverse arc vu
is contained in E and let �E denote a subset of all arcs containing exactly one
arc for each pair of antiparallel arcs. To point out the ability of neural networks
to parallelize well, we sometimes use parallel loops even though this does not
significantly reduce asymptotic complexity measures in our case.

To explain our algorithm, let us start by recalling the key ideas of the clas-
sical Edmonds-Karp-Dinic algorithm [12,13]. The algorithm repeatedly finds a
shortest s-t path in the residual graph G∗ = (V,E∗), and sends the maximum
possible amount of flow on such a path, that is, saturates at least one arc. The
algorithm terminates by returning a minimum cut once t cannot be reached from
s in the residual graph. The key insight in the analysis is that the distance from s
to t in the residual graph is non-decreasing, and strictly increases within at most
m such iterations. Thus, the number of iterations can be bounded by O(nm).

A shortest path can be characterized by distance labels. The vector d ∈ R
V
+

is a distance labelling if d(s) = 0 and d(v) ≤ d(u) + 1 for every residual arc
uv ∈ E∗. If there exists an s-t path P such that d(v) = d(u) + 1 for every arc
in P , then P is a shortest path. Identifying a shortest path is equivalent to finding
distance labels and such a path. We note that the preflow-push algorithm [21]
explicitly relies on using distance labels and pushing flow on residual arcs uv
with d(v) = d(u)+1. However, finding such a labelling requires if -branchings as
it needs to identify the arcs in E∗, that is, arcs with positive residual capacity.

At a high level, our algorithm is similar, but it avoids knowing the arcs in
the residual graph and the length k of the shortest residual s-t path explicitly.
Instead, we guess k in each iteration of the main procedure (Algorithm 2), making
sure that we never overestimate the true length. The guess is initialized as k =
1 and, in accordance with the Edmonds-Karp-Dinic analysis, we increment k
by one in every m iterations. Based on our guess for k, we use a subroutine
FindAugmentingFlowk (Algorithm 3) with the following feature: if the actual
shortest path length is exactly k, the subroutine will send flow from s to t on
(possibly multiple) paths of length exactly k, saturating at least one arc. If the
shortest path is longer than k, nothing happens in the current iteration.

Instead of distance labels, the subroutine computes fattest path values ai,v

(line 7 to 11) that represent the maximum amount of flow that can be sent
from v to t on a path of length exactly i. Such values can be obtained by a
simple dynamic program that is easy to implement as a MAAP. Thus, a path

196 C. Hertrich and L. Sering

Algorithm 2: Compute a maximum flow for a fixed graph G = (V,E).
Input: Capacities (νe)e∈E .

// Initializing:
1 for each uv ∈ �E do parallel
2 xuv ← 0 // flow; negative value correspond to flow on vu
3 cuv ← νuv // residual forward capacities
4 cvu ← νvu // residual backward capacities

// Main part:
5 for k = 1, . . . , n − 1 do
6 for i = 1, . . . , m do
7 (ye)e∈ �E ← FindAugmentingFlowk((ce)e∈E)

/* Returns an augmenting flow (respecting the residual
capacities) that only uses paths of length exactly k and
saturates at least one arc. */

// Augmenting:
8 for each uv ∈ �E do parallel
9 xuv ← xuv + yuv

10 cuv ← cuv − yuv

11 cvu ← cvu + yuv

12 return (xe)e∈ �E

(s = vk, vk−1, . . . , v1, v0 = t) of length exactly k is contained in the residual
network if and only if ai,vi

> 0 for all i = 1, . . . , k. Our algorithm makes sure
that we only send flow along arcs that are contained in such paths. In particular,
the current iteration will send positive flow if and only if ak,s > 0. However, we
cannot recover the shortest s-t path with capacity ak,s. Therefore, in general,
flow will not be sent along a single path and the value of the flow output by
FindAugmentingFlowk might be strictly less than ak,s.

After computing the ai,v values, FindAugmentingFlowk greedily pushes flow
from s towards t, using a lexicographic selection rule to pick the next arc to
push flow on (line 12 to 22). On the high level, this is similar to the preflow-push
algorithm, but using the ai,v values that encode the shortest path distance infor-
mation implicitly. This may leave some nodes with excess flow; a final cleanup
phase (line 23 to 29) is needed to send the remaining flow back to the source s.

An example for the FindAugmentingFlowk-subroutine is given in Fig. 3. We
emphasize again that, although the description of the subroutine in the example
in Fig. 3 seems to rely heavily on the distance of a node to t, this information is
calculated and used only in an implicit way via the precomputed ai,v values. This
way, we are able to implement the subroutine without the usage of comparison-
based branchings.

The proof of correctness for our algorithm consists of two main steps. The
first step is the analysis of the subroutine. This involves carefully showing that
the returned flow indeed satisfies flow conservation, is feasible with respect to the
residual capacities, uses only arcs that lie on a s-t-path of length exactly k in the

Poly-Size ReLU Neural Networks for Maximum Flow Computation 197

Algorithm 3: FindAugmentingFlowk for a fixed graph G = (V,E) and a
fixed length k.
Input: Residual capacities (ce)e∈E .

// Initializing:
1 for each vw ∈ �E do parallel
2 zvw ← 0 // flow in residual network
3 zwv ← 0

4 for each (i, v) ∈ [k] × (V \ { t }) do parallel
5 Y i

v ← 0 // excessive flow at v in iteration i (from k to 1)
6 ai,v ← 0 // initialize fattest path values

// Determining the fattest path values:
7 for each v ∈ N−

t do parallel
8 a1,v ← cvt

9 for i = 2, 3, . . . , k do
10 for each v ∈ V \ { t } do parallel
11 ai,v ← max

w∈N+
v \{ t } min { ai−1,w, cvw }

// Pushing flow of value ak,s from s to t:
12 Y k

s ← ak,s // excessive flow at s
13 for i = k, k − 1, . . . , 2 do
14 for v ∈ V \ { t } in index order do
15 for w ∈ N+

v \ { t } in index order do
// Push flow out of v and into w:

16 f ← min { Y i
v , cvw, ai−1,w − Y i−1

w } // value we can push over
vw such that this flow can still arrive at t

17 zvw ← zvw + f

18 Y i
v ← Y i

v − f

19 Y i−1
w ← Y i−1

w + f

20 for each v ∈ N−
t do parallel

// Push flow out of v and into t:
21 zvt ← Y 1

v

22 Y 1
v ← 0

// Clean-up by bounding:
23 for i = 2, 3, . . . , k − 1 do
24 for w ∈ V \ { t } in reverse index order do
25 for v ∈ N−

w \ { t } in reverse index order do
26 b ← min { Y i

w, zvw } // value we can push backwards along vw
27 zvw ← zvw − b

28 Y i
w ← Y i

w − b

29 Y i+1
v ← Y i+1

v + b

30 for each uv ∈ �E do parallel
31 yvw ← zvw − zwv

32 return (ye)e∈ �E

198 C. Hertrich and L. Sering

Fig. 3. Example of the FindAugmentingFlowk subroutine for k = 4. The edge labels in
the top figure are the residual capacity bounds in the current iteration. The first step
is to compute the fattest path values ai,v, which are depicted as node labels in the top
figure. The values Y i

v always denote the excessive flow of a vertex v with distance i from
the sink. All values that are not displayed are zero. At s, we initialize Y 4

s = a4,s = 6.
Then, excessive flow is pushed greedily towards the sink, as shown in the four figures
in the middle. While doing so, we ensure that at each vertex the arriving flow does not
exceed its value ai,v. For this reason, flow can get stuck, as it happens at v4 in this
example. Therefore, in a final cleanup phase, depicted in the two bottom figures, we
push flow back to the source s. Observe that the result is an s-t-flow that is feasible
with respect to the residual capacities, uses only paths of length k = 4, and saturates
the arc v6t.

Poly-Size ReLU Neural Networks for Maximum Flow Computation 199

residual network, and most importantly, if such a path exists, it saturates at least
one arc. This last property can be shown using the lexicographic selection rule to
pick the next arc to push flow on. Note that, in general, the subroutine neither
returns a single path (as in the Edmonds-Karp algorithm [13]), nor a blocking
flow (as in the Dinic algorithm [12]). The second main step is to show that,
nevertheless, the properties of the subroutine are sufficient to ensure that the
distance from s to t in the residual network increases at least every m iterations,
such that we terminate with a maximum flow after nm iterations.

With the correctness of the whole MAAP at hand, Theorem 2 follows by
simply counting the complexity measures d(A), w(A), and s(A), and applying
Proposition 3.

Acknowledgements. A large portion of this work was completed while both authors
were affiliated with TU Berlin. We thank Max Klimm, Jennifer Manke, Arturo Merino,
Martin Skutella, and László Végh for many inspiring and fruitful discussions and valu-
able comments. Christoph Hertrich acknowledges funding by DFG-GRK 2434 Facets of
Complexity and by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement ScaleOpt-757481).
Leon Sering acknowledges funding by DFG Excellence Cluster MATH+ (EXC-2046/1,
project ID: 390685689).

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Upper Saddle River, New Jersey, USA (1993)

2. Ali, M.M., Kamoun, F.: A neural network approach to the maximum flow problem.
In: IEEE Global Telecommunications Conference GLOBECOM’91: Countdown to
the New Millennium. Conference Record, pp. 130–134 (1991)

3. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations.
Cambridge University Press, Cambridge (1999)

4. Arora, R., Basu, A., Mianjy, P., Mukherjee, A.: Understanding deep neural net-
works with rectified linear units. In: International Conference on Learning Repre-
sentations (2018)

5. Beiu, V., Taylor, J.G.: On the circuit complexity of sigmoid feedforward neural
networks. Neural Netw. 9(7), 1155–1171 (1996)

6. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv:1611.09940 (2016)

7. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. arXiv:1811.06128 (2018)

8. Berner, J., Grohs, P., Kutyniok, G., Petersen, P.: The modern mathematics of deep
learning. arXiv:2105.04026 (2021)

9. Bertschinger, D., Hertrich, C., Jungeblut, P., Miltzow, T., Weber, S.: Training fully
connected neural networks is ∃R-complete. arXiv:2204.01368 (2022)

10. Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum
flow and minimum-cost flow in almost-linear time. arXiv:2203.00671 (2022)

11. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math.
Control Signals Syst. 2(4), 303–314 (1989)

http://arxiv.org/abs/1611.09940
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/2105.04026
http://arxiv.org/abs/2204.01368
http://arxiv.org/abs/2203.00671

200 C. Hertrich and L. Sering

12. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in a network
with power estimation. Soviet Math. Doklady 11, 1277–1280 (1970)

13. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM 19(2), 248–264 (1972)

14. Effati, S., Ranjbar, M.: Neural network models for solving the maximum flow
problem. Appl. Appl. Math. 3(3), 149–162 (2008)

15. Eldan, R., Shamir, O.: The power of depth for feedforward neural networks. In:
Conference on Learning Theory, pp. 907–940 (2016)

16. Emami, P., Ranka, S.: Learning permutations with Sinkhorn policy gradient.
arXiv:1805.07010 (2018)

17. Fomin, S., Grigoriev, D., Koshevoy, G.: Subtraction-free complexity, cluster trans-
formations, and spanning trees. Found. Comput. Math. 16(1), 1–31 (2016)

18. Froese, V., Hertrich, C., Niedermeier, R.: The computational complexity of ReLU
network training parameterized by data dimensionality. arXiv:2105.08675 (2021)

19. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In:
14th International Conference on Artificial Intelligence and Statistics, pp. 315–323
(2011)

20. Goel, S., Klivans, A.R., Manurangsi, P., Reichman, D.: Tight hardness results for
training depth-2 ReLU networks. In: 12th Innovations in Theoretical Computer
Science Conference (ITCS ’21) (2021)

21. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum-flow problem. J.
ACM (JACM) 35(4), 921–940 (1988)

22. Goldschlager, L.M., Shaw, R.A., Staples, J.: The maximum flow problem is log
space complete for P. Theoretical Comput. Sci. 21(1), 105–111 (1982)

23. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-
completeness theory. Oxford University Press, Oxford (1995)

24. Haase, C.A., Hertrich, C., Loho, G.: Lower bounds on the depth of integral ReLU
neural networks via lattice polytopes. In: International Conference on Learning
Representations (ICLR) (2023)

25. Hanin, B.: Universal function approximation by deep neural nets with bounded
width and ReLU activations. Mathematics 7(10), 992 (2019)

26. Hanin, B., Rolnick, D.: Complexity of linear regions in deep networks. In: Interna-
tional Conference on Machine Learning (2019)

27. Hanin, B., Sellke, M.: Approximating continuous functions by ReLU nets of mini-
mal width. arXiv:1710.11278 (2017)

28. Hertrich, C., Basu, A., Di Summa, M., Skutella, M.: Towards lower bounds on the
depth of ReLU neural networks. Adv. Neural. Inf. Process. Syst. 34, 3336–3348
(2021)

29. Hertrich, C., Skutella, M.: Provably good solutions to the knapsack problem via
neural networks of bounded size. In: AAAI Conference on Artificial Intelligence
(2021)

30. Hopfield, J.J., Tank, D.W.: Neural computation of decisions in optimization prob-
lems. Biol. Cybernet. 52(3), 141–152 (1985)

31. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
Netw. 4(2), 251–257 (1991)

32. Jerrum, M., Snir, M.: Some exact complexity results for straight-line computations
over semirings. J. ACM (JACM) 29(3), 874–897 (1982)

33. Jukna, S.: Lower bounds for tropical circuits and dynamic programs. Theory Com-
put. Syst. 57(1), 160–194 (2015)

34. Jukna, S., Seiwert, H.: Greedy can beat pure dynamic programming. Inf. Process.
Lett. 142, 90–95 (2019)

http://arxiv.org/abs/1805.07010
http://arxiv.org/abs/2105.08675
http://arxiv.org/abs/1710.11278

Poly-Size ReLU Neural Networks for Maximum Flow Computation 201

35. Kennedy, M.P., Chua, L.O.: Neural networks for nonlinear programming. IEEE
Trans. Circuits Syst. 35(5), 554–562 (1988)

36. Khalife, S., Basu, A.: Neural networks with linear threshold activations: structure
and algorithms. In: International Conference on Integer Programming and Com-
binatorial Optimization, pp. 347–360. Springer, Cham (2022). https://doi.org/10.
1007/978-3-031-06901-7_26

37. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial opti-
mization algorithms over graphs. In: Advances in Neural Information Processing
Systems 30 (2017)

38. Kool, W., van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
In: International Conference on Learning Representations (2019)

39. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th
edn. Springer, Heidelberg (2008). https://doi.org/10.1007/3-540-29297-7

40. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
41. Liang, S., Srikant, R.: Why deep neural networks for function approximation? In:

International Conference on Learning Representations (2017)
42. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236

(2017). https://doi.org/10.1007/s11750-017-0451-6
43. Montufar, G.F., Pascanu, R., Cho, K., Bengio, Y.: On the number of linear regions

of deep neural networks. In: Advances in Neural Information Processing Systems,
vol. 27 (2014)

44. Mukherjee, A., Basu, A.: Lower bounds over Boolean inputs for deep neural net-
works with ReLU gates. arXiv:1711.03073 (2017)

45. Nazemi, A., Omidi, F.: A capable neural network model for solving the maximum
flow problem. J. Comput. Appl. Math. 236(14), 3498–3513 (2012)

46. Nguyen, Q., Mukkamala, M.C., Hein, M.: Neural networks should be wide enough
to learn disconnected decision regions. In: International Conference on Machine
Learning (2018)

47. Nowak, A., Villar, S., Bandeira, A.S., Bruna, J.: Revised Note on Learning Algo-
rithms for Quadratic Assignment with Graph Neural Networks. arXiv:1706.07450
(2017)

48. Orlin, J.B.: Max flows in O(nm) time, or better. In: Proceedings of the Forty-Fifth
Annual ACM Symposium on Theory of Computing (STOC ’13), pp. 765–774.
Association for Computing Machinery (2013)

49. Parberry, I., Garey, M.R., Meyer, A.: Circuit Complexity and Neural Networks.
MIT Press, Cambridge (1994)

50. Pascanu, R., Montufar, G., Bengio, Y.: On the number of inference regions of
deep feed forward networks with piece-wise linear activations. In: International
Conference on Learning Representations (2014)

51. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Dickstein, J.S.: On the expressive
power of deep neural networks. In: International Conference on Machine Learning
(2017)

52. Rothvoß, T.: The matching polytope has exponential extension complexity. J. ACM
(JACM) 64(6), 1–19 (2017)

53. Safran, I., Shamir, O.: Depth-width tradeoffs in approximating natural functions
with neural networks. In: International Conference on Machine Learning (2017)

54. Serra, T., Tjandraatmadja, C., Ramalingam, S.: Bounding and counting linear
regions of deep neural networks. In: International Conference on Machine Learning
(2018)

55. Shawe-Taylor, J.S., Anthony, M.H., Kern, W.: Classes of feedforward neural net-
works and their circuit complexity. Neural Netw. 5(6), 971–977 (1992)

https://doi.org/10.1007/978-3-031-06901-7_26
https://doi.org/10.1007/978-3-031-06901-7_26
https://doi.org/10.1007/3-540-29297-7
https://doi.org/10.1007/s11750-017-0451-6
http://arxiv.org/abs/1711.03073
http://arxiv.org/abs/1706.07450

202 C. Hertrich and L. Sering

56. Shpilka, A., Yehudayoff, A.: Arithmetic circuits: a survey of recent results and open
questions. Now Publishers Inc. (2010)

57. Smith, K.A.: Neural networks for combinatorial optimization: a review of more
than a decade of research. INFORMS J. Comput. 11(1), 15–34 (1999)

58. Telgarsky, M.: Representation benefits of deep feedforward networks.
arXiv:1509.08101 (2015)

59. Telgarsky, M.: Benefits of depth in neural networks. In: Conference on Learning
Theory, pp. 1517–1539 (2016)

60. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, vol. 28 (2015)

61. Williamson, D.P.: Network Flow Algorithms. Cambridge University Press, Cam-
bridge (2019)

62. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural
Netw. 94, 103–114 (2017)

http://arxiv.org/abs/1509.08101

On the Correlation Gap of Matroids

Edin Husić1 , Zhuan Khye Koh2(B) , Georg Loho3 , and László A. Végh4

1 IDSIA, USI-SUPSI, Lugano, Switzerland
edin.husic@supsi.ch

2 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
zhuan.koh@cwi.nl

3 University of Twente, Enschede, The Netherlands
g.loho@utwente.nl

4 London School of Economics and Political Science, London, UK
l.vegh@lse.ac.uk

Abstract. A set function can be extended to the unit cube in various
ways; the correlation gap measures the ratio between two natural exten-
sions. This quantity has been identified as the performance guarantee in
a range of approximation algorithms and mechanism design settings. It is
known that the correlation gap of a monotone submodular function is at
least 1 − 1/e, and this is tight for simple matroid rank functions.

We initiate a fine-grained study of the correlation gap of matroid rank
functions. In particular, we present an improved lower bound on the cor-
relation gap as parametrized by the rank and girth of the matroid. We
also show that for any matroid, the correlation gap of its weighted rank
function is minimized under uniform weights. Such improved lower bounds
have direct applications for submodular maximization under matroid con-
straints, mechanism design, and contention resolution schemes.

1 Introduction

A continuous function h : [0, 1]E → R+ is an extension of a set function f : 2E →
R+ if for every x ∈ [0, 1]E , h(x) = Eλ[f(S)] where λ is a probability distribution
over 2E with marginals x, i.e.,

∑
S:i∈S λS = xi for all i ∈ E. Note that this

in particular implies f(S) = h(χS) for every S ⊆ E, where χS denotes the 0-1
indicator vector of S.

Two natural extensions are the following. The first one corresponds to sam-
pling each i ∈ E independently with probability xi, i.e., λS =

∏
i∈S xi

∏
i/∈S(1−

xi). Thus,
F (x) :=

∑

S⊆E

f(S)
∏

i∈S

xi

∏

i/∈S

(1 − xi) . (1)

This is an extended abstract. The full version of the paper with all proofs
is available on arXiv:2209.09896. This project has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no. 757481–ScaleOpt).
Z. K. Koh—This work was done while the author was at the London School of Eco-
nomics.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 203–216, 2023.
https://doi.org/10.1007/978-3-031-32726-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_15&domain=pdf
http://orcid.org/0000-0002-6708-5112
http://orcid.org/0000-0002-4450-8506
http://orcid.org/0000-0001-6500-385X
http://orcid.org/0000-0003-1152-200X
https://arxiv.org/abs/2209.09896
https://doi.org/10.1007/978-3-031-32726-1_15

204 E. Husić et al.

This is known as the multilinear extension in the context of submodular opti-
mization, see [8]. The second extension corresponds to the probability distribu-
tion with maximum expectation:

f̂(x) := max
λ

⎧
⎨

⎩

∑

S⊆E

λSf(S) :
∑

S⊆E:i∈S

λS = xi ∀i ∈ E,
∑

S⊆E

λS = 1, λ ≥ 0

⎫
⎬

⎭
. (2)

Equivalently, f̂(x) is the upper part of the convex hull of the graph of f ; we call
it the concave extension following terminology of discrete convex analysis [20].

Agrawal, Ding, Saberi and Ye [2] introduced the correlation gap as the worst
case ratio

CG(f) := min
x∈[0,1]E

F (x)

f̂(x)
. (3)

It bounds the maximum loss incurred in the expected value of f by ignoring
correlations. This quantity plays a fundamental role in stochastic optimization [2,
22], mechanism design [7,18,28], prophet inequalities [11,15,24], and a variety
of submodular optimization problems [3,12].

The focus of this paper is on weighted matroid rank functions. For a matroid
M = (E, I) and a weight vector w ∈ R

E
+, the corresponding weighted matroid

rank function is given by

rw(S) := max {w(T) : T ⊆ S, T ∈ I} .

It is monotone nondecreasing and submodular. Recall that a function f : 2E → R

is monotone if f(X) ≤ f(Y) for all X ⊆ Y ⊆ E, and submodular if f(X) +
f(Y) ≥ f(X ∩ Y) + f(X ∪ Y) for all X,Y ⊆ E.

The correlation gap of a weighted matroid rank function has been identi-
fied as the performance guarantee in a range of approximation algorithms and
mechanism design settings:

Monotone Submodular Maximization. Calinescu et al. [8] considered the problem
of maximizing a sum of weighted matroid rank functions

∑m
i=1 fi subject to a

matroid constraint. Using an LP relaxation and pipage rounding [1], they gave
a (1 − 1/e)-approximation algorithm. This was extended by Shioura [26] to the
problem of maximizing a sum of monotone M �-concave functions [19]. In [9],
a (1 − 1/e)-approximation algorithm was obtained for maximizing an arbitrary
monotone submodular function subject to a matroid constraint.

A fundamental special case of this model is the maximum coverage problem.
Given m subsets Ei ⊆ E, the corresponding coverage function is defined as
f(S) = |{i ∈ [m] : Ei ∩ S
= ∅}|. Note that this is a special case of maximizing
a sum of matroid rank functions: f(S) =

∑m
i=1 ri(S) where ri(S) is the rank

function of a rank-1 uniform matroid with support Ei. Even for maximization
under a cardinality constraint, there is no better than (1 − 1/e)-approximation
for this problem unless P = NP (see Feige [16]).

Recently, tight approximations have been established for the special case
when the function values fi(S) are determined by the cardinality of the set S.

On the Correlation Gap of Matroids 205

Barman et al. [5] studied the maximum concave coverage problem: given a mono-
tone concave function ϕ : Z+ → R+ and weights w ∈ R

m
+ , the submodular func-

tion is defined as f(S) =
∑m

i=1 wiϕ(|S ∩ Ei|).1 The maximum coverage problem
corresponds to ϕ(x) = min{1, x}; on the other extreme, for ϕ(x) = x we get the
trivial problem f(S) =

∑
j∈S |{i ∈ [m] : j ∈ Ei}|. In [5], they present a tight

approximation guarantee for maximizing such an objective subject to a matroid
constraint, parametrized by the Poisson curvature of the function ϕ.

This generalizes previous work by Barman et al. [6] which considered ϕ(x) =
min{�, x} (for � > 1), motivated by the list decoding problem in coding theory.
It also generalizes the work by Dudycz et al. [14] which considered geometri-
cally dominated concave functions ϕ, motivated by approval voting rules such as
Thiele rules, proportional approval voting, and p-geometric rules. In both cases,
the obtained approximation guarantees improve over the 1 − 1/e factor.

In the full version, we make the observation that the algorithm of Calinescu
et al. [8] and Shioura [26] actually has an approximation ratio of mini∈[m] CG(fi).
We also prove that the Poisson curvature of ϕ is equal to the correlation gap of
the functions ϕ(|S ∩ Ei|). Hence, the approximation guarantees in [5,6,14] are
in fact correlation gap bounds, and they can be obtained via a single unified
algorithm, i.e., the one by Calinescu et al. [8] and Shioura [26]. In particular, the
result of Barman et al. [6] which concerned ϕ(x) = min{�, x} (for � > 1) boils
down to the analysis of uniform matroid correlation gaps.

Sequential Posted-Price Mechanisms. Following Yan [28], consider a seller with a
set of identical services (or goods), and a set E of unit-demand agents. Each agent
i ∈ E has a private valuation vi for winning the service, and 0 otherwise, where
vi is drawn independently from a known distribution Fi with positive smooth
density function over [0, L] for some large L. The seller can only service certain
subsets of the agents simultaneously; this is captured by a matroid M = (E, I)
where I represents the feasible subsets.

Mechanisms like Myerson’s mechanism [21] or the VCG mechanism [13,17,
27] have optimal revenue or welfare guarantees, but suffer from complicated
formats [4] or high computational overhead [23]. Hence, simple mechanisms are
often favoured in practice, such as sequential posted-price mechanisms (SPM),
in which the seller makes take-it-or-leave-it price offers to agents one by one. Yan
[28] showed that the greedy SPM of Chawla et al. [10] achieves an approximation
ratio of infw∈R

E
+

CG(rw), where rw is the weighted rank function of M with
weights w.

Contention Resolution Schemes. Chekuri et al. [12] introduced contention res-
olution (CR) schemes as a tool for maximizing a (not necessarily monotone)
submodular function f subject to downward-closed constraints, such as matroid
constraints, knapsack constraints, and their intersections. Let M = (E, I) be
a matroid imposing one of these constraints. Given a fractional solution x with

1 We note that such functions are exactly the one-dimensional monotone M �-concave
functions fi : Z+ → R+.

206 E. Husić et al.

multilinear extension value F (x), their CR scheme randomly rounds x to an
integral solution χS where S ∈ I such that E[χS] ≥ infw∈R

E
+

CG(rw)F (x). Here,
rw is again the weighted rank function of M with weights w.

Motivated by the significance of the correlation gap in algorithmic applica-
tions, we study the correlation gap of weighted matroid rank functions. It is
well-known that CG(f) ≥ 1−1/e for every monotone submodular function f [8].
Moreover, the extreme case 1 − 1/e is already achieved by the rank function of
a rank-1 uniform matroid as |E| → ∞. More generally, the rank function of a
rank-� uniform matroid has correlation gap 1− e−���/�! ≥ 1− 1/e [6,28]. Other
than for uniform matroids, we are not aware of any previous work that gave
better than 1 − 1/e bounds on the correlation gap of specific matroids.

First, we show that among all weighted rank functions of a matroid, the
smallest correlation gap is realized by its (unweighted) rank function.

Theorem 1. For any matroid M = (E, I) with rank function r = r1,

inf
w∈R

E
+

CG(rw) = CG(r).

For the purpose of lower bounding CG(rw), Theorem 1 allows us to ignore
the weights w and just focus on the matroid M. As an application, to bound the
approximation ratio of sequential posted-price mechanisms as in [28], it suffices
to focus on the underlying matroid. We remark that M can be assumed to be
connected, that is, it cannot be written as a direct sum of at least two nonempty
matroids. Otherwise, r =

∑m
i=1 ri for matroid rank functions ri with disjoint

supports, and so CG(r) = mini∈[m] CG(ri). For example, the correlation gap of a
partition matroid is equal to the smallest correlation gap of its parts (uniform
matroids).

Our goal is to identify the parameters of a matroid which govern its corre-
lation gap. A natural candidate is the rank r(E). However, as pointed out by
Yan [28], there exist matroids with arbitrarily high rank whose correlation gap
is still 1−1/e, e.g., partition matroids with rank-1 parts. The 1−e−���/�! bound
for uniform matroids [6,28] is suggestive of girth as another potential candidate.
Recall that the girth of a matroid is the smallest size of a dependent set. On its
own, a large girth does not guarantee improved correlation gap bounds: in the
full version, we show that for any γ ∈ N, there exist matroids with girth γ whose
correlation gaps are arbitrarily close to 1 − 1/e.

It turns out that the correlation gap heavily depends on the relative values
of the rank and girth of the matroid. Our second result is an improved lower
bound on the correlation gap as a function of these two parameters.

Theorem 2. Let M = (E, I) be a loopless matroid with rank function r, rank
r(E) = ρ, and girth γ. Then,

CG(r) ≥ 1 − 1
e
+

e−ρ

ρ

(
γ−2∑

i=0

(γ − 1 − i)
[(

ρ

i

)

(e − 1)i − ρi

i!

])

≥ 1 − 1
e

.

Furthermore, the last inequality is strict whenever γ > 2.

On the Correlation Gap of Matroids 207

Figure 1 illustrates the behaviour of the expression in Theorem 2. For any
fixed girth γ, it is monotone decreasing in ρ. On the other hand, for any fixed
rank ρ, it is monotone increasing in γ. In the full version, we also give com-
plementing albeit non-tight upper bounds that behave similarly with respect to
these parameters. When ρ = γ − 1, our lower bound simplifies to 1 − e−ρρρ/ρ!,
i.e., the correlation gap of a rank-ρ uniform matroid (proven in the full version).

Fig. 1. Our correlation gap bound as a function of the rank ρ and girth γ separately.

The rank and girth have meaningful interpretations in the aforementioned
applications. For instance, consider the problem of maximizing a sum of weighted
matroid rank functions

∑m
i=1 fi under a matroid constraint (E,J). For every

i ∈ [m], let Mi be the matroid of fi. In game-theoretic contexts, each fi usually
represents the utility function of agent i. Thus, our goal is to select a bundle of
items S ∈ J which maximizes the total welfare. If Mi has girth γ and rank ρ,
this means that agent i is interested in γ−1 ≤ k ≤ ρ items with positive weights.
The special case ρ = γ − 1 (uniform matroids) has already found applications
in list decoding [6] and approval voting [14]. On the other hand, for sequential
posted-price mechanisms, if the underlying matroid M has girth γ and rank ρ,
this means that the seller can service γ − 1 ≤ k ≤ ρ agents simultaneously.

To the best of our knowledge, our results give the first improvement over the
(1 − 1/e) bound on the correlation gap of general matroids. We hope that our
paper will motivate further studies into more refined correlation gap bounds,
exploring the dependence on further matroid parameters, as well as obtaining
tight bounds for special matroid classes.

1.1 Our Techniques

We now give a high-level overview of the proofs of Theorem 1 and Theorem 2.

Weighted Rank Functions. The first step in proving both theorems is to deduce
structural properties of the points which realize the correlation gap. In Theo-
rem 4, we show that such a point x can be found in the independent set polytope

208 E. Husić et al.

P. This implies that r̂w(x) = w�x for any weights w ∈ R
E
+. Moreover, we deduce

that x(E) is integral.
To prove Theorem 1, we fix a matroid M and derive a contradiction for a non-

uniform weighting. More precisely, we consider a weighting w ∈ R
E
+ and a point

x∗ ∈ [0, 1]E which give a smaller ratio Rw(x∗)/r̂w(x∗) < CG(r). By the above, we
can use the simpler form Rw(x∗)/r̂w(x∗) = Rw(x∗)/w�x∗. We pick w such that
it has the smallest number of different values. If the number of distinct values
is at least 2, then we derive a contradiction by showing that a better solution
can be obtained by increasing the weights in a carefully chosen value class until
they coincide with the next smallest value. The greedy maximization property
of matroids is essential for this argument.

Uniform Matroids. Before outlining our proof of Theorem 2, let us revisit the
correlation gap of uniform matroids. Let M = (E, I) be a uniform matroid on
n elements with rank ρ = r(E). If ρ = 1, then it is easy to verify that the
symmetric point x = (1/n) · 1 realizes the correlation gap 1 − 1/e. Since x lies
in the independent set polytope, we have r̂(x) = 1�x = 1. If one samples each
i ∈ E with probability 1/n, the probability of selecting at least one element is
R(x) = 1− (1−1/n)n. Thus, CG(r) = 1− (1−1/n)n, which converges to 1−1/e
as n → ∞. More generally, for ρ ≥ 1, Yan [28] showed that the symmetric point
x = (ρ/n) · 1 similarly realizes the correlation gap 1 − e−ρρρ/ρ!.

Poisson Clock Analysis. To obtain the (1 − 1/e) lower bound on the correla-
tion gap of a monotone submodular function, Calinescu et al. [8] introduced an
elegant probabilistic analysis. Instead of sampling each i ∈ E with probability
xi, they consider n independent Poisson clocks of rate xi that are active during
the time interval [0, 1]. Every clock may send at most one signal from a Poisson
process. Let Q(t) be the set of elements whose signal was sent between time 0
and t; the output is Q(1). It is easy to see that E[f(Q(1))] ≤ F (x).

In [8], they show that the derivative of E[f(Q(t))] can be lower bounded as
f∗(x) − E[f(Q(t))] for every t ∈ [0, 1], where

f∗(x) := min
S⊆E

(

f(S) +
∑

i∈E

fS(i)xi

)

(4)

is an extension of f such that f∗ ≥ f̂ . The bound E[f(Q(1))] ≥ (1 − 1/e)f∗(x)
is obtained by solving a differential inequality. Thus, F (x) ≥ E[f(Q(1))] ≥ (1 −
1/e)f∗(x) ≥ (1 − 1/e)f̂(x) follows.

A Two Stage Approach. If f is a matroid rank function, then f∗ = f̂ (see
Theorem 3). Still, the factor (1− 1/e) in the analysis of [8] cannot be improved:
for an integer x ∈ P, we lose a factor (1−1/e) due to E[f(Q(1))] = (1−1/e)F (x),
even though the extensions coincide: F (x) = f̂(x).

Our analysis in Sect. 4 proceeds in two stages. Let M = (E, I) be a matroid
with rank ρ and girth γ. The basic idea is that up to sets of size γ − 1, our

On the Correlation Gap of Matroids 209

matroid ‘looks like’ a uniform matroid. Since the correlation gap of uniform
matroids is well-understood, we first extract a uniform matroid of rank γ − 1
from our matroid, and then analyze the contribution from the remaining part
separately. More precisely, we decompose the rank function as r = g + h, where
g(S) = min{|S|, �} is the rank function of a uniform matroid of rank � = γ − 1.
Note that the residual function h := f − g is not submodular in general, as
h(S) = 0 for all |S| ≤ �. We will lower bound the multilinear extensions G(x)
and H(x) separately. As g is the rank function of a uniform matroid, similarly
as above we can derive a tight lower bound on G in terms of its rank � = γ − 1.

Bounding H(x) is based on a Poisson clock analysis as in [8], but is signifi-
cantly more involved. Due to the monotonicity of h, directly applying the result
in [8] would yield E[h(Q(1)] ≥ (1− 1/e)h∗(x). However, h∗(x) = 0 whenever M
is loopless (� ≥ 1), as h(∅) = 0 and h({i}) = 0 for all i ∈ E. So, the argument of
[8] directly only leads to the trivial E[h(Q(1))] ≥ 0. Nevertheless, one can still
show that, conditioned on the event |Q(t)| ≥ �, the derivative of E[H(Q(t))] is at
least r∗(x)−�−E[H(Q(t))]. Let T ≥ 0 be the earliest time such that |Q(T)| ≥ �,
which we call the activation time of Q. Then, solving a differential inequality
produces E[h(Q(1))|T = t] ≥ (1 − e−(1−t))(r∗(x) − �) for all t ≤ 1.

To lower bound E[h(Q(1))], it is left to take the expectation over all possible
activation times T ∈ [0, 1]. Let h̄(x) = (r∗(x) − �)

∫ 1
0 Pr[T = t](1 − e−(1−t))dt

be the resulting expression. We prove that h̄(x) is concave in each direction
ei − ej for i, j ∈ E. This allows us to round x to an integer x′ ∈ [0, 1]E such
that x′(E) = x(E) and h̄(x′) ≤ h̄(x); recall that x(E) ∈ Z by Theorem 4.
After substantial simplification of h̄(x′), we arrive at the formula in Theorem 2,
except that ρ is replaced by x(E). So, the rounding procedure effectively shifts
the dependency of the lower bound from the value of x to the value of x(E).
Since x(E) ≤ ρ by Theorem 4, the final step is to prove that the formula in
Theorem 2 is monotone decreasing in ρ.

2 Preliminaries

We denote Z+ and R+ as the set of nonnegative integers and nonnegative reals
respectively. For n, k ∈ Z+,

(
n
k

)
= n!

k!(n−k)! if n ≥ k, and 0 otherwise. For a set S

and i ∈ S, j /∈ S, we use the shorthand S − i = S \ {i} and S + j = S ∪ {j}. For
a function f : 2E → R, a set S ⊆ E and an element i ∈ E, let fS(i) denote the
marginal gain of adding i to S, i.e., fS(i) := f(S + i) − f(S). For x ∈ R

E and
S ⊆ E, we write x(S) =

∑
i∈S xi.

Matroids. Let M = (E, I) be a matroid with rank function r : 2E → Z+. Its
independent set polytope P(r) is the convex hull of incidence vectors of indepen-
dent sets in I. Equivalently, P(r) =

{
x ∈ R

E
+ : x(S) ≤ r(S) ∀S ⊆ E

}
, as shown

by Edmonds [25, Theorem 40.2]. We need another classical result by Edmonds [25,
Theorem 40.3] on intersecting the independent set polytope with a box.

Theorem 3. For a matroid rank function r : 2E → Z+ and x ∈ R
E
+,

max{y(E) : y ∈ P(r), y ≤ x} = min{r(T) + x(E \ T) : T ⊆ E}.

210 E. Husić et al.

Probability Distributions. Let Bin(n, p) denote the binomial distribution with n
trials and success probability p. Let Poi(λ) denote the Poisson distribution with
rate λ. Recall that Pr(Poi(λ) = k) = e−λλk/k! for any k ∈ Z+.

Definition 1. Given random variables X and Y , we say that X is at least
Y in the concave order if for every concave function ϕ : R → R, we have
E[ϕ(X)] ≥ E[ϕ(Y)] whenever the expectations exist. It is denoted as X ≥cv Y .

Lemma 1 ([6]). For any n ∈ N and p ∈ [0, 1], we have Bin(n, p) ≥cv Poi(np).

Properties of the Multilinear Extension. For a set function f : 2E → R, let
F : [0, 1]E → R denote its multilinear extension. We will use the following
well-known properties of F , see e.g. [9].

Proposition 1. If f is monotone, then F (x) ≥ F (y) for all x ≥ y.

Proposition 2. If f is submodular, then for any x ∈ [0, 1]E and i, j ∈ E, the
function φ(t) := F (x + t(ei − ej)) is convex.

3 Locating the Correlation Gap

In this section, given a weighted matroid rank function rw, we locate a point x∗ ∈
[0, 1]E on which the correlation gap CG(rw) is realized, and derive some structural
properties. Using this, we prove Theorem 1, i.e., the smallest correlation gap over
all possible weightings is attained by uniform weights. We start with a more
convenient characterization of the concave extension of rw.

Lemma 2. Let M = (E, I) be a matroid with rank function r and weights
w ∈ R

E
+. For any x ∈ [0, 1]E, we have r̂w(x) = max{w�y : y ∈ P(r), y ≤ x}.

Next, we show that x∗ can be chosen to lie in the independent set polytope
P(r); and that supp(x∗) is a tight set w.r.t. x∗, meaning x∗(E) = r(supp(x∗)).

Theorem 4. Let M = (E, I) be a matroid with rank function r. For any weights
w ∈ R

E
+ \{0}, there exists a point x∗ ∈ P(r) such that CG(rw) = Rw(x∗)/r̂w(x∗)

and x∗(E) = r(supp(x∗)).

Proof (of Theorem 1). For the purpose of contradiction, suppose that there exist
weights w ∈ R

E
+ and a point x∗ ∈ [0, 1]E such that Rw(x∗)/r̂w(x∗) < CG(r).

According to Theorem 4, we may assume that x∗ ∈ P(r). Thus, r̂w(x∗) = w�x∗

by Lemma 2.
Let w1 > w2 > · · · > wk ≥ 0 denote the distinct values of w. For each

i ∈ [k], let Ei ⊆ E denote the set of elements with weight wi. Clearly, k ≥ 2, as
otherwise Rw(x∗)/r̂w(x∗) = w1R(x∗)/(w1x∗(E)) = R(x∗)/x∗(E) ≥ CG(r). Let
us pick a counterexample with k minimal.

First, we claim that wk > 0. Indeed, if the smallest weight is wk = 0, then
Rw(x∗) and r̂w(x∗) remain unchanged after setting we ← w1 and x∗

e ← 0 for all
e ∈ Ek; this contradicts the minimal choice of k.

On the Correlation Gap of Matroids 211

Let X be the random variable for the set obtained by sampling every element
e ∈ E independently with probability x∗

e. Let IX ⊆ X denote a maximum weight
independent subset of X. Recall the well-known property of matroids that a
maximum weight independent set can be selected greedily in decreasing order of
the weights we. We fix an arbitrary tie-breaking rule inside each set Ei.

The correlation gap of rw is given by

Rw(x∗)
r̂w(x∗)

=

∑
S⊆E Pr(X = S)rw(S)

w�x∗ =

∑k
i=1 wi

∑
e∈Ei

Pr(e ∈ IX)
∑k

i=1 wix∗(Ei)
.

Consider the set

J := argmin
i∈[k]

∑
e∈Ei

Pr(e ∈ IX)
x∗(Ei)

.

We claim that J \ {1}
= ∅. Suppose that J = {1} for a contradiction. Define
the point x′ ∈ P(r) as x′

e := x∗
e if e ∈ E1, and x′

e := 0 otherwise. Then, we get a
contradiction from

CG(r) ≤ R(x′)
r̂(x′)

=
w1 ∑

e∈E1
Pr(e ∈ IX)

w1x∗(E1)
<

∑k
i=1 wi ∑

e∈Ei
Pr(e ∈ IX)

∑k
i=1 wix∗(Ei)

=
Rw(x

∗)
r̂w(x∗)

.

The first equality holds because for every e ∈ E1, Pr(e ∈ IX) only depends on
x∗

E1
= x′

E1
. This is by the greedy choice of IX : elements in E1 are selected based

only on X ∩ E1. The strict inequality is due to J = {1}, k ≥ 2 and w2 > 0.
Now, pick any index j ∈ J \ {1}. Since wj > 0, we have

wj
∑

e∈Ej
Pr(e ∈ IX)

wjx∗(Ej)
≤
∑k

i=1 wi
∑

e∈Ei
Pr(e ∈ IX)

∑k
i=1 wix∗(Ei)

.

So, we can increase wj to wj−1 without increasing the correlation gap. That is,
defining w̄ ∈ R

E
+ as w̄e := wj−1 if e ∈ Ej and w̄e := we otherwise, we get

Rw(x∗)
r̂w(x∗)

≥
∑

i�=j wi
∑

e∈Ei
Pr(e ∈ IX) + wj−1∑

e∈Ej
Pr(e ∈ IX)

∑
i�=j wix∗(Ei) + wj−1x∗(Ej)

=

∑
S⊆E Pr(X = S)rw̄(S)

w̄�x∗ ≥ min
x∈[0,1]E

Rw̄(x)
r̂w̄(x)

.

The equality holds because for every S ⊆ E, IS remains a max-weight independent
set with the new weights w̄. This contradicts the minimal choice of k. ��

4 Lower Bounding the Correlation Gap

This section is dedicated to the proof of Theorem 2. Let M = (E, I) be a matroid
with rank function r, rank ρ = r(E) and girth γ > 1. By Theorem 4, there exists
a point x∗ ∈ P(r) such that CG(r) = R(x∗)/r(x∗) and x∗(E) = r(supp(x∗)).
For the sake of brevity, we denote � = γ − 1 and λ = x∗(E) ∈ Z+. Note that if

212 E. Husić et al.

λ < �, then supp(x∗) is independent. As x∗(E) = r(supp(x∗)) = |supp(x∗)|, we
have x∗

i = 1 for all i ∈ supp(x∗). Since x∗ is integral, the correlation gap is 1
because R(x∗) = r̂(x∗). Henceforth, we will assume that λ ≥ �.

From Lemma 2, we already know that r̂(x∗) = 1�x∗ = λ. So, it remains
to analyze R(x∗). Let g be the rank function of a rank-� uniform matroid on
ground set E, and define the function h := r−g ≥ 0. By linearity of expectation,
R(x∗) = G(x∗) + H(x∗). We lower bound G(x∗) and H(x∗) separately.

4.1 Lower Bounding G(x∗)

As g is the rank function of a uniform matroid, the arguments of Yan [28] and
Barman et al. [6] apply. In particular, since G is a symmetric polynomial, and
convex along ei − ej for all i, j ∈ E by Proposition 2, we have

G(x∗) ≥ G

(
λ

n
· 1
)

= E

[

min
{

Bin
(

n,
λ

n

)

, �

}]

≥ E [min {Poi(λ), �}] . (5)

The last inequality follows from Lemma 1. The latter expectation is equal to

�∑

j=1

Pr(Poi(λ) ≥ j) =
�∑

j=1

(

1 −
j−1∑

k=0

λke−λ

k!

)

= � −
�−1∑

k=0

(� − k)
λke−λ

k!
. (6)

4.2 Lower Bounding H(x∗)

Our analysis of H(x∗) uses the Poisson clock setup of Calinescu et al. [8], which
incrementally builds a set Q(1) as follows. Each element i ∈ E is assigned a
Poisson clock of rate x∗

i . We start all the clocks simultaneously at time t = 0,
and begin with the initial set Q(0) = ∅. For t ∈ [0, 1], if the clock on an element
i rings at time t, then we add i to our current set Q(t). We stop at time t = 1.

Clearly, Pr(i ∈ Q(1)) = 1 − e−x∗
i ≤ x∗

i for all i ∈ E. Since h is monotone,
Proposition 1 yields H(x∗) ≥ H(1 − e−x∗

) = E[h(Q(1))], where equality is due
to independence of the Poisson clocks. So, it suffices to lower bound E[h(Q(1))].

Let t ∈ [0, 1) and consider an infinitesimally small interval [t, t+dt]. For each
i ∈ E, the probability of adding i during this interval is Pr(Poi(x∗

i dt) ≥ 1) =
x∗

i dt+O(dt2). Note that the probability of adding two or more elements is also
O(dt2). Since dt is very small, we can effectively neglect all O(dt2) terms.

Definition 2. We say that Q is activated at time T if |Q(t)| < � for all t < T
and |Q(t)| ≥ � for all t ≥ T . We call T the activation time of Q.

Let S ⊆ E where |S| ≥ � and let t ≥ t′ ≥ 0. Conditioning on the events
Q(t) = S and T = t′, the expected increase of h(Q(t)) (up to O(dt2) terms) is

E[h(Q(t+ dt))− h(Q(t))|Q(t) = S ∧ T = t′] =
∑

i∈E

rS(i)x∗
i dt ≥ (λ − � − h(S))dt,

On the Correlation Gap of Matroids 213

where the inequality is due to

h(S) +
∑

i∈E

rS(i)x∗
i = r(S) − � +

∑

i∈E

rS(i)x∗
i ≥ r∗(x∗) − � = r̂(x∗) − � = λ − �.

The inequality follows from the definition of r∗ in (4), the second equality is
by Theorem 3, while the third equality is due to Lemma 2 because x∗ ∈ P(r).
Dividing by dt and taking expectation over S, we obtain for all t ≥ t′ ≥ 0,

1
dt

E[h(Q(t + dt)) − h(Q(t))|T = t′] ≥ λ − � − E[h(Q(t))|T = t′]. (7)

Let φ(t) := E[h(Q(t))|T = t′]. Then, (7) can be written as dφ
dt ≥ λ − � − φ(t).

To solve this differential inequality, let ψ(t) := etφ(t) and consider dψ
dt = et(dφ

dt +
φ(t)) ≥ et(λ − �). Since ψ(t′) = φ(t′) = 0, we get

ψ(t) =
∫ t

t′

dψ

ds
ds ≥

∫ t

t′
es(λ − �)ds = (et − et′

)(λ − �)

for all t ≥ t′. It follows that E[h(Q(t))|T = t′] = φ(t) = e−tψ(t) ≥ (1−et′−t)(λ−
�) for all t ≥ t′. In particular, at time t = 1, we have E[h(Q(1))|T = t′] ≥
(1 − et′−1)(λ − �) for all t′ ≤ 1. By the law of total expectation,

E[h(Q(1))] ≥ (λ − �)
∫ 1

0
Pr(T = t)(1 − et−1)dt. (8)

Now, the cumulative distribution function of T is given by

Pr(T ≤ t) = 1 −
∑

S⊆E:
|S|<�

∏

i∈S

(1 − e−x∗
i t)

∏

i/∈S

e−x∗
i t

	= 1 −
∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)

e−x∗(S)t.

Any marked equality 	= indicates that several derivation steps have been
skipped, whose details can be found in the full version. Differentiating with
respect to t yields the probability density function of T

Pr(T = t) =
d

dt
Pr(T ≤ t) =

∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)

x∗(S)e−x∗(S)t.

Plugging this back into (8) gives us

E[h(Q(1))] ≥ (λ − �)
∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)

x∗(S)
∫ 1

0
e−x∗(S)t(1 − et−1)dt

= (λ − �)
∑

S⊆E

(−1)|S|+�−n−1
(|S| − 1

n − �

)(

1 − 1
e

− e−1 − e−x∗(S)

x∗(S) − 1

)

= (λ − �)

⎡

⎣1 − 1
e
+
∑

S⊆E

(−1)|S|+�−n

(|S| − 1
n − �

)
e−1 − e−x∗(S)

x∗(S) − 1

⎤

⎦ (9)

214 E. Husić et al.

In the full version, we prove that (9) is concave along ei − ej for all i, j ∈ E,
when viewed as a function of x∗. This allows us to round x∗ to an integral vector
x′ ∈ {0, 1}E such that x′(E) = x∗(E) without increasing the value of (9). Note
that x′ has exactly λ ones and n − λ zeroes because λ ∈ Z+ by Theorem 4.
Hence, (9) is lower bounded by

(λ − �)

⎡

⎣1 − 1
e
+

λ∑

i=0

n−λ∑

j=0

(
λ

i

)(
n − λ

j

)

(−1)i+j+�−n

(
i + j − 1

n − �

)
e−1 − e−i

i − 1

⎤

⎦

	= (λ − �)

[

1 − 1
e
+

�−1∑

i=0

(−1)�−i

(
λ

i

)(
λ − i − 1
� − i − 1

)
e−1 − e−(λ−i)

λ − i − 1

]

. (10)

Since (10) evaluates to 0 when λ = �, let us assume that λ > �. Then, using
1

λ−i−1

(
λ−i−1
�−i−1

)
= 1

λ−�

(
λ−i−2
�−i−1

)
, we can simplify (10) as

(λ − �)
(

1 − 1
e

)

+
�−1∑

i=0

(−1)�−i

(
λ

i

)(
λ − i − 2
� − i − 1

)(
e−1 − e−(λ−i)

)

	= λ

(

1 − 1
e

)

− � + e−λ
�−1∑

i=0

(−1)�−i−1
(

λ

i

)(
λ − i − 2
� − i − 1

)

ei . (11)

The sum in (11) can be viewed as a univariate polynomial of degree � − 1 in
α ∈ R for α = e. Taking its Taylor expansion at α = 1, we can rewrite (11) as

λ

(

1 − 1
e

)

− � + e−λ
�−1∑

i=0

(
λ

i

)

(� − i)(e − 1)i . (12)

4.3 Putting Everything Together

We are finally ready to lower bound the correlation gap of the matroid rank
function r. Recall that we assumed λ > � in the previous subsection. Combining
the lower bounds (6) and (12) gives us

CG(r) = G(x∗) + H(x∗)
1�x∗ = 1 − 1

e
+

e−λ

λ

�−1∑

i=0

(� − i)
[(

λ

i

)

(e − 1)i − λi

i!

]

. (13)

On the other hand, if λ = �, then h = 0. By (6), we obtain

CG(r) = G(x∗)
1�x∗ =

G(x∗)
�

≥ 1 −
�−1∑

k=0

(

1 − k

�

)
�ke−�

k!
= 1 − ��−1e−�

(� − 1)!
, (14)

which agrees with (13) when λ = � (proven in full version).
To finish the proof of Theorem 2, it is left to show that (13) is a decreasing

function of λ because λ ≤ ρ. We also need to prove that the final expression is
strictly greater than 1− 1/e whenever � ≥ 2. These are done in the full version.

On the Correlation Gap of Matroids 215

References

1. Ageev, A.A., Sviridenko, M.: Pipage rounding: a new method of constructing algo-
rithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

2. Agrawal, S., Ding, Y., Saberi, A., Ye, Y.: Price of correlations in stochastic opti-
mization. Oper. Res. 60(1), 150–162 (2012)

3. Asadpour, A., Niazadeh, R., Saberi, A., Shameli, A.: Sequential submodular maxi-
mization and applications to ranking an assortment of products. In: EC 2022: The
23rd ACM Conference on Economics and Computation, p. 817 (2022)

4. Ausubel, L.M., Milgrom, P.: The lovely but lonely Vickrey auction. In: Cramton,
P., Shoham, Y., Steinberg, R. (eds.) Combinatorial Auctions, chap. 1. MIT Press
(2006)

5. Barman, S., Fawzi, O., Fermé, P.: Tight approximation guarantees for concave
coverage problems. In: 38th International Symposium on Theoretical Aspects of
Computer Science (STACS). LIPIcs, vol. 187, pp. 1–17 (2021)

6. Barman, S., Fawzi, O., Ghoshal, S., Gürpinar, E.: Tight approximation bounds for
maximum multi-coverage. Math. Program. 192(1), 443–476 (2022)

7. Bhalgat, A., Chakraborty, T., Khanna, S.: Mechanism design for a risk averse seller.
In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 198–211. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-35311-6_15

8. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set
function subject to a matroid constraint (Extended Abstract). In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 182–196. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72792-7_15

9. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766
(2011)

10. Chawla, S., Hartline, J.D., Malec, D.L., Sivan, B.: Multi-parameter mechanism
design and sequential posted pricing. In: Schulman, L.J. (ed.) Proceedings of the
42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Mas-
sachusetts, USA, 5–8 June 2010, pp. 311–320. ACM (2010)

11. Chekuri, C., Livanos, V.: On submodular prophet inequalities and correlation gap.
In: 14th International Symposium on Algorithmic Game Theory, SAGT. Lecture
Notes in Computer Science, vol. 12885, p. 410 (2021)

12. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

13. Clarke, E.H.: Multipart pricing of public goods. Public choice, pp. 17–33 (1971)
14. Dudycz, S., Manurangsi, P., Marcinkowski, J., Sornat, K.: Tight approximation

for proportional approval voting. In: Bessiere, C. (ed.) Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pp.
276–282. ijcai.org (2020)

15. Dughmi, S.: Matroid secretary is equivalent to contention resolution. In: 13th Inno-
vations in Theoretical Computer Science Conference, ITCS. LIPIcs, vol. 215, pp.
1–23 (2022)

16. Feige, U.: A threshold of lnn for approximating set cover. J. ACM (JACM) 45(4),
634–652 (1998)

17. Groves, T.: Incentives in teams. Econometrica: J. Econometric Soc. 41, 617–631
(1973)

18. Hartline, J.D.: Mechanism design and approximation (2013)

https://doi.org/10.1007/978-3-642-35311-6_15
https://doi.org/10.1007/978-3-540-72792-7_15

216 E. Husić et al.

19. Leme, R.P.: Gross substitutability: an algorithmic survey. Games Econom. Behav.
106, 294–316 (2017)

20. Murota, K.: On basic operations related to network induction of discrete convex
functions. Optim. Methods Softw. 36(2–3), 519–559 (2021)

21. Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58–73 (1981)
22. Nikolova, E.: Approximation algorithms for reliable stochastic combinato-

rial optimization. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.)
APPROX/RANDOM -2010. LNCS, vol. 6302, pp. 338–351. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15369-3_26

23. Nisan, N., Ronen, A.: Computationally feasible VCG mechanisms. J. Arti. Intell.
Res. 29, 19–47 (2007)

24. Rubinstein, A., Singla, S.: Combinatorial prophet inequalities. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1671–1687. SIAM (2017)

25. Schrijver, A.: Combinatorial optimization: polyhedra and efficiency, vol. 24.
Springer (2003)

26. Shioura, A.: On the Pipage rounding algorithm for submodular function maximiza-
tion - a view from discrete convex analysis. Discret. Math. Algorithms Appl. 1(1),
1–24 (2009)

27. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Financ. 16(1), 8–37 (1961)

28. Yan, Q.: Mechanism design via correlation gap. In: Proceedings of the twenty-
second annual ACM-SIAM symposium on Discrete Algorithms, pp. 710–719. SIAM
(2011)

https://doi.org/10.1007/978-3-642-15369-3_26

A 4/3-Approximation Algorithm
for Half-Integral Cycle Cut Instances

of the TSP

Billy Jin1(B) , Nathan Klein2 , and David P. Williamson1

1 Cornell University, Ithaca, USA
{bzj3,davidpwilliamson}@cornell.edu
2 University of Washington, Seattle, USA

nwklein@cs.washington.edu

Abstract. A long-standing conjecture for the traveling salesman prob-
lem (TSP) states that the integrality gap of the standard linear pro-
gramming relaxation of the TSP (sometimes called the Subtour LP or
the Held-Karp bound) is at most 4/3 for symmetric instances of the
TSP obeying the triangle inequality. In this paper we consider the half-
integral case, in which a feasible solution to the LP has solution values
in {0, 1/2, 1}. Karlin, Klein, and Oveis Gharan [9], in a breakthrough
result, were able to show that in the half-integral case, the integrality
gap is at most 1.49993; Gupta et al. [6] showed a slight improvement of
this result to 1.4983.

Both of these papers consider a hierarchy of critical tight sets in the
support graph of the LP solution, in which some of the sets correspond
to cycle cuts and the others to degree cuts. Here we show that if all the
sets in the hierarchy correspond to cycle cuts, then we can find a dis-
tribution of tours whose expected cost is at most 4/3 times the value
of the half-integral LP solution; sampling from the distribution gives us
a randomized 4/3-approximation algorithm. We note that known bad
cases for the integrality gap have a gap of 4/3 and have a half-integral
LP solution in which all the critical tight sets in the hierarchy are cycle
cuts; thus our result is tight.

1 Introduction

In the traveling salesman problem (TSP), we are given a set of n cities and the
costs cij of traveling from city i to city j for all i, j, and the goal of the problem
is to find the least expensive tour that visits each city exactly once and returns
to its starting point. An instance of the TSP is called symmetric if cij = cji for
all i, j. Costs obey the triangle inequality (or are metric) if cij ≤ cik + ckj for all
i, j, k. For ease of exposition, we consider the problem input as a complete graph
G = (V,E) for the set of cities V , with ce = cij for edge e = (i, j). All instances
we consider will be symmetric and obey the triangle inequality.

In a breakthrough result, Karlin, Klein, and Oveis Gharan [8] gave the first
approximation algorithm with performance ratio better than 3/2, although the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 217–230, 2023.
https://doi.org/10.1007/978-3-031-32726-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_16&domain=pdf
http://orcid.org/0000-0002-6362-2048
http://orcid.org/0009-0003-4052-5864
http://orcid.org/0000-0002-2884-0058
https://doi.org/10.1007/978-3-031-32726-1_16

218 B. Jin et al.

amount by which the bound was improved is quite small (approximately 10−36).
The algorithm follows the Christofides-Serdyukov template by selecting a ran-
dom spanning tree from the max-entropy distribution, then using a T -join on
the odd degree vertices of the tree to create a connected Eulerian subgraph.

One special case of the TSP is known as the half-integral case. To understand
the half-integral case, we need to introduce a well-known LP relaxation of the
TSP, sometimes called the Subtour LP or the Held-Karp bound [4,7], which is
as follows:

min
∑

e∈E

cexe

s.t. x(δ(v)) = 2, ∀ v ∈ V,

x(δ(S)) ≥ 2, ∀ S ⊂ V, S �= ∅,

0 ≤ xe ≤ 1, ∀e ∈ E,

where δ(S) is the set of all edges with exactly one endpoint in S and we use the
shorthand that x(F) =

∑
e∈F xe. A half-integral solution to the Subtour LP is

one such that xe ∈ {0, 1/2, 1} for all e ∈ E, and a half-integer instance of the
TSP is one whose LP solution is half-integral.

Fig. 1. Illustration of a known worst-case example for the integrality gap for the sym-
metric TSP with triangle inequality. The figure on the left gives an (unweighted) graph,
and costs cij are the shortest path lengths in the graph. The figure in the center gives
the LP solution, in which the dotted edges have value 1/2, and the solid edges have
value 1. The figure on the right gives the optimal tour. The ratio of the cost of the
optimal tour to the value of the LP solution tends to 4/3 as k increases.

The integrality gap of an LP relaxation is the worst-case ratio of an opti-
mal integer solution to the linear program to the optimal linear programming

Half-Integral Cycle Cut Instances of the TSP 219

solution. Wolsey [13] showed that the analysis of the Christofides-Seryukov algo-
rithm could be used to show that the integrality gap of the Subtour LP is at
most 3/2. It is known that the integrality gap of the Subtour LP is at least 4/3,
due to a set of half-integral graph TSP instances shown in Fig. 1, and another set
of half-integral weighted instances due to Boyd and Sebő [2] known as k-donuts.
Schalekamp, Williamson, and van Zuylen [11] have conjectured that half-integral
instances are the worst-case instances for the integrality gap. It has long been
conjectured that the integrality gap is exactly 4/3, but until the work of Karlin
et al. there had been no progress on the conjecture for several decades.

In the case of half-integral instances, some results are known. Mömke and
Svensson [10] have shown a 4/3-approximation algorithm for half-integral graph
TSP (in which cost cij is the number of edges in the shortest i-j path in an input
graph), also yielding an integrality gap of 4/3 for such instances; because of the
worst-case examples of Fig. 1, their result is tight. Boyd and Carr [1] give a 4/3-
approximation algorithm (and an integrality gap of 4/3) for a subclass of half-
integer solutions they call triangle points (in which the half-integer edges form
disjoint triangles); the examples of Fig. 1 show that their result is tight also. Boyd
and Sebő [2] give an upper bound of 10/7 for a subclass of half-integral solutions
they call square points (in which the half-integer edges form disjoint 4-cycles).
In a paper released just prior to their general improvement, Karlin, Klein, and
Oveis Gharan [9] (KKO) gave a 1.49993-approximation algorithm in the half-
integral case; in particular, they show that given a half-integral solution, they
can produce a tour of cost at most 1.49993 times the value of the corresponding
objective function. Gupta, Lee, Li, Mucha, Newman, and Sarkar [6] improve this
factor to 1.4983.

With the improvements on the 3/2 bound remaining very incremental for
weighted instances of the TSP, even in the half-integral case, we turn the question
around and look for a large class of weighted half-integral instances for which
we can prove that the 4/3 conjecture is correct, preferably one containing the
known worst-case instances.

To define our instances, we turn to some terminology of KKO. The KKO
result uses induction on a hierarchy of critical tight sets of the half-integral LP
solution x. A set S ⊂ V is tight if the corresponding LP constraint is met with
equality; that is, x(δ(S)) = 2. A set S is critical if it does not cross any other tight
set; that is, for any other tight set T , either S ∩ T = ∅ or S ⊆ T or T ⊆ S. The
critical tight sets then give rise to a natural tree-like hierarchy based on subset
inclusion. KKO follow a Christofides-Serdyukov style algorithm that performs
induction on the hierarchy. In their analysis, they differentiate between cycle
cuts (in which the child nodes of a parent are linked by pairs of edges in a chain)
and degree cuts (in which the child nodes of a parent form a 4-regular graph;
more detail is given in subsequent sections).

In this paper, we will consider half-integral instances in which there are only
cycle cuts, which we will refer to as half-integral cycle cut instances. Our contri-
bution is to give a randomized 4

3 -approximation algorithm for these instances.
More precisely, we give a distribution over connected Eulerian subgraphs such

220 B. Jin et al.

that each edge e is used with expectation at most 4
3xe, which implies the result

(note that edges are sometimes doubled in the Eulerian graph). Our main theo-
rem is as follows:

Theorem 1. There is a randomized 4/3-approximation algorithm for half-
integral cycle cut instances of the TSP that produces an Eulerian tour with
expected cost at most 4

3

∑
e∈E cexe.

It is not hard to show that both the bad examples in Fig. 1 and the k-donut
instances of Boyd and Sebő [2] are cycle cut instances (Boyd and Carr’s result
for triangle points works for the examples of Fig. 1, but not for k-donuts). Thus
our bound of 4/3 is tight and cannot be improved.

Our approach to the problem is novel and does not use the same Christofides-
Serdyukov framework as employed by KKO and others. Instead, we perform a
top-down induction on the hierarchy of critical tight sets. For each set in the
hierarchy, we define a set of “patterns” of edges incident on it such that the set
has even degree. For each pattern, we give a distribution of edges connecting
the chain of child nodes in the cycle cut, which induces a distribution of pat-
terns on each child. Crucially, we then show that there is a feasible region R
of distributions over patterns, such that if the distribution of patterns on the
parent node belongs to R, then the induced distribution on patterns on each
child node also belongs to R. Our abstract is structured as follows. We give
some needed preliminary definitions in Sect. 2. We then sketch our main result
in Sect. 3, and conclude in Sect. 4. Due to space constraints, some proofs are
omitted or sketched. The full paper can be accessed at https://arxiv.org/abs/
2211.04639.

2 Preliminaries

Given a half-integral LP solution x, we construct a 4-regular 4-edge-connected
multigraph G = (V,E) by including a single copy of every edge e for which
xe = 1

2 and two copies of every edge e for which xe = 1. We state the following
for general k-edge-connected multigraphs. In our setting, k = 4.

Definition 1. For a k-edge-connected multigraph G = (V,E), we say:

– Any set S ⊆ V such that |δ(S)| = k (i.e., its boundary is a minimum cut) is
a tight set.

– A set S ⊆ V is proper if 2 ≤ |S| ≤ n − 2 and a singleton if |S| = 1.
– Two sets S, S′ ⊆ V cross if all of S �S′, S′

�S, S ∩S′, and V � (S ∪S′) �= ∅
are non-empty.

The following are two standard facts about minimum cuts; for proofs see [5].

Lemma 1. If two tight sets S and S′ cross, then each of S � S′, S′
� S, S ∩ S′

and S ∪ S′ are tight. Moreover, there are no edges from S � S′ to S′
� S, and

there are no edges from S ∩ S′ to S ∪ S′.

https://arxiv.org/abs/2211.04639
https://arxiv.org/abs/2211.04639

Half-Integral Cycle Cut Instances of the TSP 221

Lemma 2. Let G = (V,E) be a k-regular k-edge-connected graph. Suppose
either |V | = 3 or G has at least one proper min cut, and every proper min
cut is crossed by some other proper min cut. Then, k is even and G forms a
cycle, with k/2 parallel edges between each adjacent pair of vertices.

We now define our class of instances.

Definition 2 (Cycle cut instance). We say a graph G is a cycle cut
instance if every non-singleton tight set S can be written as the union of two
tight sets A,B �= S.

As mentioned in the introduction this condition captures the two known
integrality gap examples of the subtour LP.

We now show an equivalent definition of cycle cut instances after giving some
definitions. First, fix an arbitrary root vertex r ∈ V , and for all cuts we consider
we will take the side which does not contain r.

Definition 3 (Critical cuts). A critical cut is any tight set S ⊆ V �{r} which
does not cross any other tight set.

Definition 4 (Hierarchy of critical cuts, H). Let H ⊆ 2V �r be the set of
all critical cuts.

The hierarchy naturally gives rise to a parent-child relationship between sets
as follows:

Definition 5 (Child, parent, E→(S)). Let S ∈ H such that |S| ≥ 2. Call the
maximal sets C ∈ H for which C ⊂ S the children of S, and call S their parent.
Finally, define E→(S) to be the set of edges with endpoints in two different
children of S.

Definition 6 (Cycle cut, degree cut). Let S ∈ H with |S| ≥ 2. Then we
call S a cycle cut if when G � S and all of the children of S are contracted,
the resulting graph forms a cycle of length at least three with two parallel edges
between each adjacent node. Otherwise, we call it a degree cut.

While this definition of a cycle cut may sound specialized, due to Lemma 2,
cycle cuts arise very naturally from collections of crossing min cuts.

Lemma 3. If G is a cycle cut instance, then for any choice of r, H is composed
only of cycle cuts (and singletons).

One can also show that if for some choice of r, H is composed only of cycle
cuts, then G is a cycle cut instance. Thus, in the remainder of the paper, we
assume H is a collection of cycle cuts.

Given S ∈ H, let a0 = G � S and let a1, . . . , ak be its children in H (which
are either vertices or cycle cuts). By Lemma 2 a0, . . . , ak can be arranged into a
cycle such that two edges go between each adjacent vertex. WLOG let a1, . . . , ak

be in counterclockwise order starting from a0. We call a1 the leftmost child of S
and ak the rightmost child.

222 B. Jin et al.

S

G � S

Fig. 2. S is an example of a cycle cut with three children. In blue are contracted critical
tight sets. In gray is the rest of the graph with S contracted. As in Lemma 2, we can
see that when G � S is contracted into a single vertex, the resulting graph is a cycle
with 2 edges between each adjacent vertex. In our recursive proof of our main theorem
in Sect. 3, we are given a distribution of Eulerian tours over G/S, so in particular on
the red edges here, and will then extend it to G with the blue critical sets contracted
by picking a distribution over the black edges. (Color figure online)

Definition 7 (External and internal cycles cuts). Let S ∈ H such that
S �= V � {r} be a cut with parent S′. We call S external if in the ordering
a0, . . . , ak of S′ (as given above), S = a1 or S = ak. Otherwise, call S internal.

For example, if the blue nodes in Fig. 2 are contracted cycle cuts, the left and
right nodes are external, while the middle one is internal. Note that for an cycle
cut S with parent S′, if S is external then |δ(S)∩ δ(S′)| = 2, and if S is internal
then |δ(S) ∩ δ(S′)| = 0.

Using the following simple fact, we will now describe our convention for
drawing and describing cycle cuts:

Lemma 4. Let A,B,C ∈ H be three distinct critical cuts such that A � B and
B ∩ C = ∅ or B ⊆ C. Then |δ(A) ∩ δ(C)| ≤ 1.

Definition 8 (δL(S), δR(S)). Let S ∈ H be a cycle cut. We will define a parti-
tion of δ(S) into two sets δL(S), δR(S) each consisting of two edges.

If S �= V � {r}, then it has a parent S′. S′ has children a1, . . . , ak such
that S = ai for i �= 0. Let δL(S) = δ(S) ∩ δ(ai−1) and δR(S) = δ(S) ∩
δ(ai+1 (mod k+1)). In other words, we partition the edges of S into the two edges
going to the left neighbor of S in the cycle defined by S′’s children and the two
edges going to the right neighbor.

Otherwise S = V � {r}. Then if a1, . . . , ak are the children of S, let δL(S)
consist of an arbitrary edge from δ(a1)∩δ(S) and an arbitrary edge from δ(ak)∩
δ(S). Let δR(S) = δ(S) � δL(S).

By Lemma 4 and the definition of δL(S), δR(S) for S = V � {r}, if S′ is
an external child of a cycle cut S, then |δL(S) ∩ δ(S′)| = |δR(S) ∩ δ(S′)| = 1.
This allows us to adopt the following convention for drawing cycle cuts which
we will call the caterpillar drawing of S: for an example, see Fig. 3. Formally,

Half-Integral Cycle Cut Instances of the TSP 223

let S ∈ H be a cycle cut with children a1, . . . , ak ∈ H. Arrange a1, . . . , ak in a
horizontal line. First, expand a1 vertically into its children (if it is not a singleton)
such that the unique edge in δL(S) ∩ δ(a1) is pointing up (if it is a singleton,
simply draw this edge pointing up. Then, expand a2, . . . , ak one by one into their
respective children (if they exist), placing the children vertically in increasing or
decreasing order of their index so that the edges from ai to ai+1 do not cross. If
ak is a singleton, arbitrarily choose which edge to draw pointing up. Otherwise,
let a′ be the topmost child of ak. Draw the unique edge in δ(S) ∩ δ(a′) pointing
up. There are two types of cycle cuts:

Definition 9 (Straight and twisted cycle cuts). Let S ∈ H be a cycle cut.
If δL(S) has both edges pointing up in the caterpillar drawing of S, then call it a
straight cycle cut. Otherwise, call it a twisted cycle cut. See Fig. 3 for examples.

S S

Fig. 3. Caterpillar drawings of two different cycle cuts S. The red edges are in the
δL(S) partition, and the blue edges are in the δR(S) partition. The left drawing is a
straight cycle cut, and the right is a twisted cycle cut as per Definition 9 (Color figure
online).

In the next section, we abbreviate the caterpillar drawing by contracting the
non-singleton children of S (see Fig. 4). We do so partially for cleaner pictures
but also to emphasize that all the relevant information used by our construction
in the following section is contained in the abbreviated pictures.

S S

Fig. 4. On the left is a shorthand caterpillar drawing for the straight cycle cut on the
left in Fig. 3 obtained by contracting its children. Similarly for the right. We will use
this style of picture in future sections.

224 B. Jin et al.

3 Proof of Theorem 1

We now present a summary of the proof of our main result, a 4
3 -approximation for

half-integral cycle-cut instances of the TSP. To prove Theorem 1, we construct a
distribution of Eulerian tours such that every edge is used at most 2

3 of the time.
Since xe = 1

2 for every edge in the graph, this immediately implies that when
we sample a tour from this distribution, its expected cost is at most 4

3 times the
value of the LP. We work on the cycle cut hierarchy from the top down, and
inductively specify the distribution of edges that enter every cut.

Figure 4 depicts our convention for visualizing a cycle cut as described in
Sect. 2. We say that a cycle cut is even if it contains an even number of children,
and odd otherwise. Fig. 6 illustrates the patterns we use, where “pattern” refers to
a multiset of edges that enter a cycle cut. For each pattern entering a parent cycle
cut, we give (randomized) rules which describe how to connect up its children
– this induces a distribution of patterns entering each child. We represent this
process using a Markov chain with 4 states, illustrated in Fig. 6. The figure shows
the mapping from patterns to states; the transitions will come from the rules
for connecting up the children, which we describe later. In the figure, each state
contains two pictures, which represent the parity of the edges in the patterns that
are mapped to the state. Specifically, a present edge is used exactly once, whereas
an edge that is not present may be either unused or doubled. For example, Fig. 7
illustrates all possible patterns that are captured by the top picture of state 1.
Finally, we maintain the invariant that if a cycle cut is in a given state, then each
of the two pictures are equally likely. (When we later give the rules for connecting
up the children, we will ensure this invariant is preserved.) Thus, when we say
a cycle cut is in a given state with probability p, this means the parity of the
pattern entering it follows the top picture in the state with probability p

2 , and
the bottom picture with probability p

2 . We will use the phrase “the distribution
of patterns entering a cycle cut C is (p1, p2, p3, p4)” to mean that for all i ∈
{1, 2, 3, 4}, C is in state i with probability pi.

To prove our main result, we will give a feasible region R of distributions
over the states of the Markov chain, such that: 1) If the distribution of patterns
entering a cycle cut C belongs to R, there is a way to connect up the children
of C such that the distribution on each child also belongs to R, and 2) for each
p ∈ R, the corresponding rule for connecting the children of C uses each edge in
E→(C) at most 2

3 = 4
3xe of the time in expectation. The feasible region is given

in Definition 10. As long as R is nonempty, 1) and 2) are sufficient to give the
result since we can induce any distribution on the cycle cut V � {r}.

Definition 10 (The Feasible Region). Let

R =
{
(p1, p2, p3, p4) ∈ R

4
+ : p1 + p2 + p3 + p4 = 1, p1 + p2 =

2
3
, p2 + p4 ≥ 1

3

}
.

See Fig. 5 for an visualization of R in a 2-dimensional space.

Half-Integral Cycle Cut Instances of the TSP 225

1
6

1
3

1
2

2
3

1
6

1
3

(0, 1
3
) (2

3
, 1
3
)

Z

p

q

Fig. 5. The feasible region of distributions is R = {(p, 2
3 − p, 1

3 − q, q) : (p, q) ∈ Z},
where Z is the polytope above.

S1

S3

S2

S4

Fig. 6. The patterns and how they map to states of a Markov chain. The states are
unchanged regardless of the number of children: they are defined only with respect to
which of the edges are in. Note that we ignore doubled edges.

To describe the transitions of the Markov chain, we give (randomized) rules
that dictate, for a cycle cut C and a pattern entering it, how to connect up its
children. These rules depend on whether C is even or odd. The final form of
the Markov chains is illustrated in Fig. 8.1 The meaning of taking one transition
is as follows. Suppose the distribution of patterns entering C is (p1, p2, p3, p4),

1 In the figure, if there is a variable on an arc, it means that any transition probability
in the range of that variable is possible. For example, in Peven, we can transition
from S2 to S1 with probability z for any z ∈ [0, 1]; the transition from S2 to S3 then
happens with probability 1 − z.

226 B. Jin et al.

Fig. 7. In our illustrations of the patterns entering a given cycle cut, any edge that
is not present may either be unused or doubled. Therefore, all four of the given edge
configurations are represented by the upper left most state, S1.

and suppose (q1, q2, q3, q4) is the resulting distribution after one transition of a
Markov chain. What this means is that for each child of C, the distribution of
patterns entering it will be either (q1, q2, q3, q4) or (q2, q1, q3, q4) depending on
if the child is straight or twisted, respectively (see Definition 9 and Fig. 3). In
particular, it can be shown that if (q1, q2, q3, q4) is the distribution induced on a
child which is a straight cycle cut, then (q2, q1, q3, q4) would be the distribution
induced on a child which is a twisted cycle cut. Thus, it is sufficient to check that:
i) the distributions induced on straight children lie in the feasible region and ii)
if (q1, q2, q3, q4) is a distribution induced on straight children, then (q2, q1, q3, q4)
is also in the feasible region. This corresponds to the set of distributions induced
on the children being symmetric under this transformation.2

S1 S2

S3 S4

1/2

1/2

z

1 − z

1/2

1/2
1 − w

w

S1 S2

S3 S4

x

1 − x

z

1 − z

y

1 − y
1 − w

w

z ∈ [0, 1], w ∈ [0, 1]

Pev en Podd

x ∈ [1
3
, 1], y ∈ [1

3
, 1], z ∈ [0, 2

3
], w ∈ [0, 2

3
]

Fig. 8. The variables on the arcs indicate that one can feasibly transition according to
any probability in the range.

2 Note that the feasible region is not symmetric under this transformation. The dis-
tribution induced on the children is thus a symmetric subset of the feasible region.

Half-Integral Cycle Cut Instances of the TSP 227

Proposition 1. For any cycle cut C ∈ H and any distribution of patterns enter-
ing C, there is a way to connect its children so that the induced distribution on
each child is given by 1) applying the corresponding Markov chain in Fig. 8, and
then 2) swapping the first two coordinates if the child is twisted.

Proof (Sketch). The proof involves going through the 8 cases one by one (depend-
ing on the parity of the cut, and which of the 4 states it is in), and showing that
in each case, there is a (randomized) rule for connecting the children that achieve
the transitions in Fig. 8. To illustrate the main idea, we show the rule in the case
that C is even and in state 4.

In this case, the rule for connecting the children of C is illustrated in Fig. 9.
Let w ∈ [0, 1]. With probability w, we make all children transition to state 2.
To do this, first suppose C has all 4 single edges entering it (the top picture in
the left box). In this case, we consider the pairs of edges in E→(C) from left
to right, and alternate 1) doubling one of the two edges with equal probability
(shown by the dotted black edges), and 2) using both edges (shown by the solid
black edges). Because C is even, the rightmost pair of edges ends up falling in
case 1) of the alternating rule, and so all children transition to state 2. The case
where all the edges entering C are used an even number of times (the bottom
picture in the left box) is quite similar, except we begin the alternating rule by
using both edges.

On the other hand, with probability 1 − w, we transition back to state 4.
This is accomplished by using each pair of edges in the top case of state 4, and
by doubling one edge from each pair uniformly at random in the bottom case of
state 4. The net transition probabilities are then (0, w, 0, 1−w), where w can be
any number from 0 to 1. �

w + (1 − w)

Fig. 9. Transition for state 4 in the even case.

We ensure that in all cases, each edge in E→(C) is used 1
2 , 1

2 , 1, 1 times in
expectation if the pattern entering C belongs to state 1, 2, 3, 4, respectively.
Therefore, if p = (p1, p2, p3, p4) are the probabilities that we are in states 1, 2,
3, 4 respectively, then each edge in E→(C) is used exactly 1

2p1+ 1
2p2+p3+p4 =

1 − 1
2 (p1 + p2) of the time in expectation. Thus to get a 4

3 -approximation, it is
necessary that p1 + p2 ≥ 2

3 . Note that if p ∈ R, then p1 + p2 = 2
3 , so that each

edge is used exactly 2
3 of the time.

228 B. Jin et al.

To complete the proof, we only need show that if the distribution of patterns
entering a cycle cut C belongs to R, then the induced distributions on the
children also belong to R. Thus R is sufficient, in sense that if the distribution
entering a cycle cut belongs to R, then it is possible to get a 4

3 -approximation
all the way down the hierarchy using the Markov chains in Fig. 8. Moreover, we
are able to show that R is necessary ; if the distribution entering a cycle cut does
not belong to R, then it is impossible to obtain a 4

3 -approximation using our
Markov chains. In this sense, R is the largest feasible region using our technique.

Theorem 2. 1. (R is sufficient) If the distribution of patterns entering a cycle
cut belongs to R, then there are feasible Markov chains (among the ones shown
in Fig. 8) such that the induced distribution entering each child also belongs
to R.

2. (R is necessary) Suppose the distribution of patterns entering a cycle cut
does not belong to R. Then it is not possible to obtain a 4

3 -approximation
using the Markov chains in Fig. 8.

Proof (Sketch). For 1), we show that for any p ∈ R and for C even or odd,
there are feasible values for the transition probabilities of the corresponding
Markov chain such that the resulting distribution q ∈ R (and also q with its
first two coordinates swapped is in R.) The values of the transition probabilities
are derived as a function of p. For 2), we consider an arbitrary distribution p
(not necessarily in R), and let q(1) and q(2) be the distributions obtained by
applying Peven once and twice, respectively. We then argue that p must belong
to R in order for q(1) and q(2) to each have their first two coordinates sum to at
least 2

3 . �
Example. To give the reader some more intuition, we give a specific exam-

ple of how to maintain distributions in R on all the cuts in the hierarchy by
choosing appropriate transition probabilities on the Markov chains in Fig. 8. Let
p = (49 , 2

9 , 2
9 , 1

9) and q = (29 , 4
9 , 2

9 , 1
9) (i.e. q is p with the first two coordinates

swapped). It is easy to check that p,q ∈ R. We now show for any half-integral
cycle cut instance, it is possible to make it so that the distribution entering any
cycle cut is either p or q.

To see this, let C be a cycle cut and suppose C is odd. Set the transition
probabilities in Podd to be x = y = z = w = 2

3 . For these probabilities, it
is easy to check that Poddp = Poddq = p.3 On the other hand, if C is even,
setting z = w = 1 in Peven gives Pevenp = p, and setting z = 3

4 , w = 1 gives
Pevenq = p. Thus, as long as the distribution entering C is p or q, we can make
the distribution on each child of C be either p or q.

Together with Proposition 1, this already proves a 4
3 -approximation for half-

integral cycle cut instances. The additional contribution of Theorem 2 is an exact
characterization of the region of distributions that give a 4

3 -approximation using
our techniques.

3 In fact, it can be checked that for these probabilities, Podd maps every distribution
(whose first two coordinates sum to 2

3), to p.

Half-Integral Cycle Cut Instances of the TSP 229

4 Conclusion and Open Questions

Our result leads to several interesting open questions. One such open question is
whether our result extends to the case of cycle cuts for non-half-integral solutions.
We believe this to be possible through a more refined understanding of the
patterns that result from considering non-half-integral solutions.

Clearly a better understanding of what happens in the case of degree cuts is
needed to make substantial progress on the overall half-integral case. We think
it is possible to improve incrementally on the 1.4983-approximation of Gupta et
al. [6] by using a combination of ideas from this paper with a few other small
improvements. Recall that in a degree cut, each vertex has degree four, there
are no parallel edges, and every proper cut has at least six edges crossing it.
Ideally one would be able to show that any distribution on a parent cut lying in
the feasible region of Fig. 5 could be used to induce a distribution on patterns
of the children of the degree cut in a subregion of the feasible region with each
edge used at most 2/3 of the time; such a result would lead immediately to a
4/3 integrality gap for half-integral instances.

Acknowledgment. The first and third authors would like to thank Anke van Zuylen
for early discussions on this problem. The first and third authors were supported in part
by NSF grant CCF-2007009. The first author was also supported by NSERC fellowship
PGSD3-532673-2019. The second author was supported in part by NSF grants DGE-
1762114, CCF-1813135, and CCF-1552097. We would like to thank Martin Drees for
his helpful suggestions that allowed us to simplify the proof of the main result.

References

1. Boyd, S., Carr, R.: Finding low cost TSP and 2-matching solutions using certain
half-integer subtour vertices. Discret. Optim. 8, 525–539 (2011)

2. Boyd, S., Sebő, A.: The salesman’s improved tours for fundamental classes. Math.
Program. 186, 289–307 (2021)

3. Christofides, N.: Worst case analysis of a new heuristic for the traveling salesman
problem. Report 388, Graduate School of Industrial Administration, Carnegie-
Mellon University, Pittsburgh, PA (1976)

4. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman
problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954). ISSN 00963984. URL
https://www.jstor.org/stable/166695

5. Fleiner, T., Frank, A.: A quick proof for the cactus representation of mincuts. Tech-
nical Report QP-2009-03, Egerváry Research Group, Budapest (2009). https://
www.cs.elte.hu/egres

6. Gupta, A., Lee, E., Li, J., Mucha, M., Newman, H., Sarkar, S.: Matroid-based
TSP rounding for half-integral solutions. In: Aardal, K., Sanità, L. (eds.) Inte-
ger Programming and Combinatorial Optimization. LNCS, vol. 13265, pp. 305–
318 (2022). https://doi.org/10.1007/978-3-031-06901-7_23,See also https://arxiv.
org/pdf/2111.09290.pdf

7. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning
trees. Oper. Res. 18, 1138–1162 (1971)

https://www.jstor.org/stable/166695
https://www.cs.elte.hu/egres
https://www.cs.elte.hu/egres
https://doi.org/10.1007/978-3-031-06901-7_23,
https://arxiv.org/pdf/2111.09290.pdf
https://arxiv.org/pdf/2111.09290.pdf

230 B. Jin et al.

8. Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation algo-
rithm for metric tsp. In: STOC. ACM (2021)

9. Karlin, A.R., Klein, N., Gharan, S.O.: An improved approximation algorithm for
TSP in the half integral case. In: Makarychev, K., Makarychev, Y., Tulsiani, M.,
Kamath, G., Chuzhoy, J. (eds.) STOC, pp. 28–39. ACM (2020)

10. Mömke, T., Svensson, O.: Removing and adding edges for the traveling salesman
problem. J. ACM, 63 (2016). Article 2

11. Schalekamp, F., Williamson, D.P., van Zuylen, A.: 2-matchings, the traveling sales-
man problem, and the subtour LP: a proof of the Boyd-Carr conjecture. Math.
Oper. Res. 39(2), 403–417 (2014)

12. Serdyukov, A.: On some extremal walks in graphs. Upravlyaemye Sistemy 17, 76–
79 (1978)

13. Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. Math.
Program. Study 13, 121–134 (1980)

The Polyhedral Geometry of Truthful
Auctions

Michael Joswig1,2, Max Klimm1(B), and Sylvain Spitz1

1 Technische Universität Berlin, 10623 Berlin, Germany
{joswig,spitz}@math.tu-berlin.de, klimm@tu-berlin.de

2 Max-Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

Abstract. The difference set of an outcome in an auction is the set
of types that the auction mechanism maps to the outcome. We give a
complete characterization of the geometry of the difference sets that can
appear for a dominant strategy incentive compatible multi-unit auction
showing that they correspond to regular subdivisions of the unit cube.
This observation is then used to construct mechanisms that are robust
in the sense that the set of items allocated to a player does change only
slightly when the player’s reported type is changed slightly.

1 Introduction

Mechanism design is concerned with the implementation of favorable social out-
comes in environments where information is distributed and only released strate-
gically. Specifically, this article is concerned with multi-dimensional mechanism
design problems where a set of m items is to be allocated to a set of n players.
The attitude of each player for receiving a subset of the items is determined by
the so-called type of the player and is their private information and not available
to the mechanism. In this setting, a mechanism elicits the types from the players,
and—based on the reported types—decides on an allocation of the items to the
players, and on a price vector that specifies the amount of money that the dif-
ferent players have to pay to the mechanism. In order to incentivize the players
to truthfully report their types to the mechanism, one is interested in mecha-
nisms that have the property that no matter what the other players report to
the mechanism, no player can benefit from misreporting their type; mechanisms
that enjoy this property are called dominant strategy incentive compatible, short
DSIC. In this paper, we investigate the geometric properties of DSIC mech-
anisms. Because DSIC mechanisms require truthful reporting of the type no
matter of the types declared by the other players, they can be characterized by
the one-player mechanisms that arise when the declared valuations of the other
players are fixed.

As an example for a mechanism, consider the basic case of a combinatorial
auction (see De Vries and Vohra [41] for a survey) where two items are sold
to two players with additive valuations. In that case, each player i has a two-
parameter type θi = (θi,1, θi,2) where the scalar θi,j is the monetary equivalent
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 231–245, 2023.
https://doi.org/10.1007/978-3-031-32726-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_17&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_17

232 M. Joswig et al.

θ′
1,1

θ′
1,2

1

1

Q{2} Q{1,2}

Q{1}Q∅

(a)

θ′
1,1

θ′
1,2

4/3

4/3

Q{2}
Q{1,2}

Q{1}
Q∅

(b)

θ′
1,1

θ′
1,2

2/3

2/3

Q{2} Q{1,2}

Q{1}Q∅

(c)

Fig. 1. Difference sets of several mechanisms; cf. [39, Fig. 1].

that player i attaches to receiving item j. For illustration, assume that player 2
reported θ′

2 = (1, 1) and consider the corresponding one-player mechanism for
player 1. If each item j is sold independently to the bidder i with the highest
reported type θ′

i,j (breaking ties in favor of player 1), we obtain that player 1
receives item j if and only if θ′

1,j ≥ 1. Geometrically, this one-player mechanism
can be represented by its difference sets QS , S ∈ 2{1,2} where QS is equal to the
closure of the set of types reported by player 1 so that they get allocated the set
of items S. The difference sets were introduced by Vohra [40, p. 41] and reveal
valuable information about the properties of the mechanism; see Fig. 1. Figure 1a
shows the difference sets of the mechanism selling each item to the highest bidder;
Figs. 1b and c show the difference sets of other DSIC mechanisms (not specified
here).

Under reasonable assumptions, the difference sets form a polyhedral decom-
position of the type space. In this paper, we are interested in characterizing their
polyhedral geometry. This is a continuation of work of Vidali [39] who showed
that the two combinatorial types shown in Fig. 1b and c are the only cases that
can appear for a DSIC mechanism for two items (where the combinatorial type
in Fig. 1a is a common degenerate case of both). She then also suggested a sim-
ilar characterization of the combinatorial types that can appear for three items
and asked how these findings can be generalized to more items.

Characterizing the combinatorial types of mechanisms is interesting for a
variety of reasons. First, such geometric arguments are often used in order to
characterize the set of allocation functions that are implementable by a DSIC
mechanism. For instance, the difference sets whose closures have nonempty
intersection correspond exactly to two-cycles in an auxiliary network used by
Rochet [35] in order to characterize the allocation functions that are imple-
mentable by DSIC mechanisms. Second, the combinatorial types can be used to
study the sensitivity of mechanisms to deviations in the reported types. As an
example consider the mechanism in Fig. 1a. For any ε > 0, reporting the type
(1− ε, 1− ε) yields no item for player 1 while the report of the type (1+ ε, 1+ ε)
grants them both items. Put differently, a small change in the reported type may

The Polyhedral Geometry of Truthful Auctions 233

change the outcome from no items being allocated to player 1 to all items being
allocated to the same player. This is in contrast with the mechanism shown in
Fig. 1c where a small change in the reported type may change the cardinality
of the set of allocated items only by 1.1 Third, the combinatorial types of the
mechanism are relevant for the efficiency of the mechanism; see, e.g., [13,39].

Our Results. We give a complete characterization of the combinatorial types of
all DSIC combinatorial auctions with m items for any value of m. This answers
an open question of Vidali [39] about how to generalize her results for m = 2 and
m = 3 to larger values of m. We employ methods from polyhedral geometry [16]
and tropical combinatorics [26]. Our results rest on the observation that a multi-
player mechanism is DSIC if and only if its single-player components are DSIC;
see [36]. We show that for m items, the combinatorial types of those single-player
components are in bijection to equivalence classes of regular subdivisions of the
m-dimensional unit cube. We identify the relevant symmetries for exchangeable
items and conclude that there are exactly 23 nondegenerate combinatorial types
for m = 3 and 3,706,261 such types for m = 4 (Theorem 9). We then use this
characterization to study the optimal sensitivity of mechanisms to slight changes
in the reported types. Specifically, we show that for any number of items m, there
is a one-player combinatorial auction so that the cardinality of the set of items
received by the player changes by at most 1 when the reported type is slightly
perturbed (Proposition 11). We also give bounds on a similar measure involving
the Hamming distance of the set of received items (Proposition 12). In the full
version of this paper, we further show how to apply the same methodology in
order to classify the combinatorial types of affine maximizers with n players.

Further Related Work. Rochet’s Theorem [35] states that an allocation func-
tion is implementable by a DSIC mechanism if and only if the allocation networks
of the corresponding one-player mechanisms have no finite cycles of negative
lengths. There is a substantial stream of literature exhibiting conditions where it
is enough to require conditions on shorter cycles [4,5,8,9,11,18,27]; for instance,
it suffices to require the nonnegativity for cycles of length 2 when the prefer-
ences are single-peaked [30] or when the type-space is convex [36]. Roberts [34]
showed that when the type space of all players is R

Ω , then only affine maxi-
mizers are implementable by a DSIC mechanism. Gui et al. [23] and Vohra [40]
studied the difference sets QA of a mechanism and showed that under reasonable
assumptions their closures are polyhedra. Vidali [39] studied the geometry of the
polyhedra for the case of two and three items.

In recent years, tropical geometric methods proved to be useful for algorith-
mic game theory and lead to new results in mechanism design [7,28,37], mean
payoff games [1,2], linear optimization [3] and beyond. Beyond the scope of
combinatorial auctions, our results are also applicable to the mechanism design
problem of scheduling on unrelated machines [12,14,17,21,31].
1 This higher stability of the mechanism in Fig. 1c comes at the expense of a smaller

social welfare (i.e., sum of player valuations of the received items) which is maximized
for the mechanism in Fig. 1a. Maximizing social welfare, however, is mathematically
well-understood since it is achieved by the class of VCG-mechanisms [15,22,38].

234 M. Joswig et al.

2 Preliminaries

In this section, we give a brief overview of basic concepts from mechanism design
theory, polyhedral geometry and tropical combinatorics used in this paper. For
a more comprehensive treatment we refer to [16,26,29,32].

Mechanism Design. A multi-dimensional mechanism design problem consists
of a finite set [m] := {1, . . . , m} of items and a finite set [n] := {1, . . . , n} of
players. Every player i has a type θi = (θi,1, . . . , θi,m) ∈ R

m, where the value
θi,j , for j ∈ [m], is the monetary value player i attaches to receiving item j. A
vector θ = (θ1, . . . , θn) with θi ∈ R

m for all i ∈ [n] is called a type vector and
R

n×m is the space of all type vectors. The type θi is the private information of
player i and unknown to all other players j �= i and the mechanism designer. Let

Ω =

{
A ∈ {0, 1}n×m

∣∣∣∣∣
∑
i∈[n]

ai,j = 1 for all j ∈ [m]

}

be the set of allocations of the m items to the n players. The i-th row Ai of
an allocation matrix A ∈ Ω corresponds to the allocation for the i-th player.
A (direct revelation) auction mechanism is a tuple M = (f, p) consisting of an
allocation function f : Rn×m → Ω and a payment function p : Rn×m → R

n. The
mechanism first elicits a claimed type vector θ′ = (θ′

1, . . . , θ
′
n) ∈ R

n×m where
θ′

i ∈ R
m is the type reported by player i. It then chooses an alternative f(θ′)

and payments p(θ′) = (p1(θ′), . . . , pn(θ′)) ∈ R
n where pi(θ′) is the payment from

player i to the mechanism. We assume that the players’ utilities are quasi-linear
and the valuations are additive, i.e., the utility of player i with type θi when the
type vector reported to the mechanism is θ′ is ui(θ′ | θi) = fi(θ′)·θi−pi(θ′), where
fi(θ′) is the i-th row of f(θ′) = A. An auction mechanism is called dominant
strategy incentive compatible (DSIC) or truthful if ui(θ | θi) ≥ ui((θ′

i, θ−i) | θi),
for all i ∈ [n], θ ∈ R

n×m, and θ′
i ∈ R

m. Here and throughout, (θ′
i, θ−i) denotes

the type vector where player i reports θ′
i and every other player j reports θj

as in θ. An allocation function is truthfully implementable, or just truthful, (in
weakly dominant strategies) if there is an incentive compatible direct revelation
mechanism M = (f, p). For an allocation A ∈ Ω, let RA = {θ ∈ R

n×m | f(θ) =
A} be the preimage of A under f , and let QA = cl(RA) be the topological closure
of RA. We call QA the difference set of A.

Polyhedral Geometry and Tropical Combinatorics. We consider the max-
tropical semiring (T,⊕,�) with T := R∪{−∞}, a⊕ b := max{a, b} and a� b :=
a + b. Picking coefficients λu ∈ T for u ∈ Z

m such that only finitely many are
distinct from −∞ defines an m-variate tropical (Laurent) polynomial, p, whose
evaluation at x ∈ R

m reads

p(x) =
⊕

u∈Zm

λu � x�u = max {λu + x · u | u ∈ Z
m} . (1)

The Polyhedral Geometry of Truthful Auctions 235

x

y

(0, 0) (1, 0)

(0, 1)

(2, 0)

(0, 2)

(1, 1)

(2, 1)

q

(a)

(0, 0) (1, 0)

(0, 1)

(2, 0)

(0, 2)

(1, 1)
(2, 1)

(b)

Fig. 2. (a) Tropical hypersurface H(p) and (b) dual regular subdivision of supp(p),
where p(x, y) = max{0, x + 1, y + 1, 2x, x + y, 2y − 1, 2x + y − 2}. In (a) regions are
marked by their support vectors; in (b) the same labels mark vertices of the subdivision.
Conversely, e.g., the blue quadrangular cell on the right is dual to the vertex q on the
left. (Color figure online)

The support of p is the set supp(p) = {u ∈ Z
m | λu �= −∞}. The tropical hyper-

surface H(p) is the set of points x ∈ R
m such that the maximum in (1) is attained

at least twice. The tropical hypersurface partitions the set R
m \ H(p) into sets

in which the maximum of (1) is attained exactly once, for some fixed u ∈ Z
m;

see Fig. 2a. Taking the closure of such a part, we get a region of H(p), which is a
(possibly unbounded) polyhedron. The Newton polytope N (p) = conv(supp(p))
of a tropical polynomial p is the convex hull of its support. A finite set C of poly-
hedra in R

m is a polyhedral complex, if it is closed with respect to taking faces and
if for any two P,Q ∈ C the intersection P ∩Q is a face of both P and Q. The poly-
hedra in C are the cells of C. If every polyhedron in C is bounded, it is a polytopal
complex. Further, given a finite set of points U ⊂ R

m, a polytopal complex C in
R

m is a polytopal subdivision of U if the vertices of all polytopes in C are points
in U and if the union of all polytopes in C is the convex hull of the points in U . If
the cells of a polytopal subdivision are all simplices, it is called a triangulation.
A subdivision of U is called regular, if it can be obtained via a lifting function
λ : U → R on U . Formally, let P (U, λ) := conv

{
(u, λ(u)) ∈ R

m+1
∣∣ u ∈ U

}
be the

lifted polytope. Its upper faces have an outer normal vector with positive last
coordinate. Projecting these upper faces by omitting the last coordinate yields
a polytopal subdivision of U that is called the regular subdivision of U induced
by λ. The following proposition explains the duality between a tropical hyper-
surface and the regular subdivision of its support. Here we identify a polytopal
subdivision with its finite set of cells, partially ordered by inclusion. A proof can
be found in [26, Theorem 1.13.]; see Fig. 2 for an example.

236 M. Joswig et al.

Proposition 1. Let p = max {λu + x · u | u ∈ Z
m} be a tropical Laurent poly-

nomial. Then there is an inclusion reversing bijection between the regular subdi-
vision of the support of p with respect to λ(u) = λu and the polyhedral complex
induced by the regions of H(p).

3 Characterization of One-Player Mechanisms

In many applications, the intersections of difference sets QA are special, as the
mechanism is essentially indifferent between the outcomes and uses a tie-breaking
rule or random selection to determine the outcome. Observing which difference
sets intersect and which do not gives rise to a combinatorial pattern which we
attribute to the allocation function. We want to study these patterns in order
to classify which of them can be attributed to truthfulness. We express such a
pattern as an abstract simplicial complex over the allocation space and call it
the indifference complex of the allocation function.

Formally, an abstract simplicial complex over some finite set E is a nonempty
set family S of subsets of E, such that for any set S ∈ S and any subset T ⊆ S, we
also have T ∈ S. The maximal elements (by inclusion) of an abstract simplicial
complex are called facets.

Definition 2 (Indifference Complex). The indifference complex I(f) of an
allocation function f is the abstract simplicial complex defined as

I(f) =
{

O ⊆ Ω

∣∣∣∣ ⋂
A∈O

QA �= ∅
}

.

Note that the indifference complex I(f) is precisely the nerve complex of the
family of difference sets of f ; see [10, §10]. Recall that an allocation function f
is implementable if there is a DSIC mechanism M = (f, p). Likewise, we call an
indifference complex I implementable, if there is an implementable allocation
function f such that I(f) = I.

We define the local allocation function of player i for a given type vector θ−i

to be fi,θ−i
(θi) = Ai, where Ai is the i-th row of A = f(θi, θ−i). Further, let

us fix a payment vector p ∈ R
2m

, which we index by allocations a ∈ {0, 1}m.
Then, for any type θi ∈ R

m, we let up(θi) = max
{
θi · a − pa

∣∣ a ∈ {0, 1}m
}
.

The resulting function up : Rm → R is a max-tropical polynomial of degree m.
We refer to the allocation in {0, 1}m which maximizes up(θi) as arg max up(θi).
We restate [32, Proposition 9.27], which says that in a truthful setting, the local
allocation functions are defined by such tropical polynomials, where the vector
p depends only on the types of the other players.

Proposition 3. The allocation function f is truthful, if and only if for all
players i ∈ [n] and all type vectors θ ∈ R

n×m, there exists a payment vector
pi(θ−i) ∈ R

2m

, such that fi,θ−i
(θi) ∈ arg max upi(θ−i)(θi).

The Polyhedral Geometry of Truthful Auctions 237

As an important consequence of Proposition 3, the allocation function f is
truthful if and only if all of its local functions fi,θ−i

are truthful. Therefore, for
the remainder of this section, we fix a player i and the type vector θ−i of the other
players and consider the corresponding one-player mechanism for player i. Note
that in this setting, not all items need to be allocated, since the non-allocated
items will be distributed among the remaining players. That is, from now on
we abuse the notation slightly by considering single-player allocation functions
f : Rm → Ω = {0, 1}m.

Next, we want to discuss the relationship between the indifference complex
and the allocation network, which is a tool often used to analyze the truthfulness
of allocation functions. The latter is the weighted complete directed graph Gf

with a node for each allocation a ∈ Ω and where the arc lengths are given as
�(a, a′) = infθ∈Ra′ {θ · a′ − θ · a}. The value of �(a, a′) is the minimal loss of the
player’s valuation that would occur if the mechanism always chooses allocation
a instead of a′. Recall that Ra = {θ ∈ R

m | f(θ) = a}.
We can link the indifference complex and the allocation network through the

following proposition. This generalizes [36, Proposition 5] and also occurs in [39,
Lemma 3], without a proof. Here we restate the result in our notation, adding a
short proof for the sake of completeness.

Proposition 4. Let (f, p) be a DSIC mechanism with quasi-linear utilities for
one player. Let C = (a(1), . . . , a(k) = a(1)) be a cycle in the allocation network
Gf , such that for each j ∈ [k − 1], we get Qa(j) ∩ Qa(j+1) �= ∅. Then the length
of the cycle C is 0.

Proof. Let C = (a(1), . . . , a(k)) be a cycle as in the statement of the proposition.
Using [36, Proposition 5], we obtain that for any θ ∈ Qa(j) ∩Qa(j+1) , the equation
θ · a(j) − θ · a(j+1) = �(a(j), a(j+1)) is satisfied. Since the mechanism (f, p) is
truthful and θ ∈ Qa(j) ∩ Qa(j+1) , we obtain θ · a(j) − pa(j) = θ · a(j+1) − pa(j+1) .
Therefore pa(j) − pa(j+1) = �(a(j), a(j+1)). Adding up all the lengths of the arcs
of C we get 0, which finishes the proof. ��

A consequence of Proposition 4 is that all cycles in Gf with the property
that all of its edges connect two common nodes of some facet O ⊆ Ω of the
indifference complex I(f), have length 0. Especially, each oriented cycle in the
one-skeleton of I(f) is also a zero-cycle in Gf .

For the remainder of this section, our goal is to classify truthful allocation
functions for the given type of allocation mechanisms. Recall that Proposition 3
shows that the difference sets of a truthful one-player allocation mechanism are
exactly the regions of the tropical utility function of the player. We use this
observation to give an alternative proof for the following theorem. It states that
there is a bijection between implementable one-player indifference complexes for
m items and the regular subdivisions of the m-dimensional cube. A similar result
has been shown by Frongillo and Kash [19], who employ power diagrams. The
latter are equivalent to regular subdivisions as shown by Aurenhammer [6].2

2 Characterizations of implementability in terms of geometric subdivisions of the type
space have been used before, e.g., in [24, Proposition 2].

238 M. Joswig et al.

Theorem 5. An indifference complex I for m items and one player is imple-
mentable if and only if there is a regular subdivision S of the m-dimensional unit
cube, such that the facets of I are precisely the vertex sets of the maximal cells
of S.

Proof. Let I be an indifference complex. It is implementable if and only if there
exists a truthful allocation function f with I(f) = I. By Proposition 3, this is
equivalent to the fact that there is a payment vector p ∈ R

2m

, such that the
difference sets Qa are exactly the regions of the tropical hypersurface H(up).
As the Newton polytope of up is the unit cube [0, 1]m, Proposition 1 provides a
duality between the difference sets Qa and the regular subdivision of [0, 1]m with
respect to the lifting λ(a) = −pa. Hence, a maximal cell in the regular subdivision
with vertices (a(1), . . . , a(k)) corresponds to a maximal set of allocations such
that

⋂
a∈{a(1),...,a(k)} Qa �= ∅. The latter is a facet of I(f). Conversely, if we start

with a regular subdivision S of the unit cube induced by some lifting λ, setting
the prices pa = −λ(a) and defining f(θ) ∈ arg max up(θ) results in a DSIC
mechanism such that the indifference complex I(f) corresponds to S in the way
described in the statement of the theorem. ��

Note that the proof is constructive. Further, Theorem 5 says that the sim-
plicial complex I(f) is precisely the crosscut complex of the poset of cells of the
regular subdivision S [10, §10]. If S is a triangulation then its crosscut complex
is S itself, seen as an abstract simplicial complex. The main consequence of The-
orem 5 is that for truthful one-player mechanisms with additive and quasi-linear
utilities, the partitioning of the type space into difference sets is characterized
by the duality to the regular subdivision of the cube, which is captured by the
indifference complex.

Example 6. Consider the one-player case with m = 3 items and where the player
has a type θ ∈ R

3. Let f be the local allocation function which we define via
f(θ) ∈ arg max{θ ·a− pa | a ∈ {0, 1}3}, with p000 = 0, p100 = p010 = p001 = 3/7,
p110 = p101 = p011 = 8/7, and p111 = 10/7. Figure 3 shows the subset of the type
space for θ ∈ [0, 1]3. The five facets of I(f) are {0, 1, 2, 4}, {2, 3, 4, 7}, {1, 4, 5, 7},
{1, 2, 3, 7}, {3, 5, 6, 7}; here we use the binary encoding 4a1 + 2a2 + a3 for the
vertex a ∈ {0, 1}3. Those cells form a regular triangulation of [0, 1]3, which is
type F in Fig. 4.

We define two allocation functions f, g : Rm → Ω as combinatorially equiv-
alent if their indifference complexes agree; i.e., I(f) = I(g). As before we are
primarily concerned with the case where Ω = {0, 1}m and the allocation func-
tions are truthful allocations of m items. In this way we can relate the allocation
space with regular subdivisions of the cube [0, 1]m.

Definition 7. A truthful allocation function on m items is nondegenerate if the
associated regular subdivision of the m-cube is a triangulation.

Triangulations of m-cubes are described in [16, §6.3]. The first two columns
of Table 1 summarize the known values of the number of all (regular) triangu-
lations of the m-cube. In particular the second column shows the number of

The Polyhedral Geometry of Truthful Auctions 239

QQQQQQQQQ0000000000

Q11111

Fig. 3. Subdivision of the subset of the type space, where θ ∈ [0, 1]3, induced by the
allocation function described in Example 6. The region Q000 corresponds to the corner
in the lower back of the cube and Q111 corresponds to the upper front corner. This and
other pictures were obtained via polymake [20].

Table 1. Triangulations of m-cubes. Orbit sizes refer to regular triangulations

m All Regular Sym(m)-orbits Γm-orbits

2 2 2 2 1
3 74 74 23 6
4 92,487,256 87,959,448 3,706,261 235,277

combinatorial types of nondegenerate truthful allocations. The number of all,
not necessarily regular, triangulations of the 4-cube was found by Pournin [33].
The corresponding numbers of triangulations for m ≥ 5 are unknown.

Remark 8. Any regular subdivision may be refined to a regular triangulation,
on the same set of vertices; see [16, Lemma 2.3.15].

Our next goal is to explain the third and fourth columns of Table 1. To this
end we need to discuss the symmetries of the cube, which are known. That
will be the key to understanding (truthful) allocations of exchangeable items.
The automorphism group, Γm, of the m-cube [0, 1]m comprises those bijections
on the vertex set which map faces to faces. The group Γm is known to be a
semidirect product of the symmetric group Sym(m) with Z

m
2 ; its order is m! ·

2m. Here the j-th component of Z
m
2 flips the j-th coordinate, and this is a

reflection at the affine hyperplane xj = 1
2 ; that map does not have any fixed

points among the vertices of [0, 1]m. The subgroup Z
m
2 of all coordinate flips

acts transitively on the 2m vertices. The symmetric group Sym(m) naturally
acts on the coordinate directions; this is precisely the stabilizer of the origin in
Γm. Since the cells in each triangulation of [0, 1]m are convex hulls of a subset
of the vertices, the group Γm also acts on the set of all triangulations of [0, 1]m.
Moreover, since Γm acts via affine maps, it sends regular triangulations to regular
triangulations. The stabilizer Sym(m) acts transitively on the

(
m
k

)
vertices of

[0, 1]m with exactly k ones. In this way, a Sym(m)-orbit of regular triangulations
corresponds to a set of nondegenerate truthful allocation functions for which the

240 M. Joswig et al.

Fig. 4. The combinatorial types of truthful allocation functions corresponding to the
six Γ3-orbits of the 3-cube, together with the corresponding triangulations (exploded)
and their tight spans; cf. [16, Fig. 6.35]. The tight span of a regular triangulation S
is the subcomplex of bounded cells of the tropical hypersurface dual to S (seen as an
ordinary polyhedral complex); see [26, §10.7]. The numbers below the types show how
many regular triangulations or Sym(3)-orbits are of the given type, respectively.

indifference complexes agree, up to permuting the items. We call such allocation
functions combinatorially equivalent for exchangeable items. The Sym(m)-orbits
of regular triangulations have been computed with mptopcom [25]; see the third
column of Table 1. By Theorem 5 those triangulations bijectively correspond to
the implementable indifference complexes. So that computation furnishes a proof
of the following result.

Theorem 9. There are 23 combinatorial types of nondegenerate truthful allo-
cation functions for one player and m = 3 exchangeable items. Further, the
corresponding count for m = 4 yields 3,706,261.

It makes sense to focus on the combinatorics of triangulations, without paying
attention to their interpretations for auctions. This amounts to studying the
orbits of the full group Γm acting on the set of (regular) triangulations; see the
fourth column of Table 1. The six Γ3-orbits of triangulations of the 3-cube are
depicted in Fig. 4. This number expands to 23 if we consider the possible choices
of locating the origin. We illustrate the idea for the subdivision of the type space
in Fig. 3. Its Γ3-orbit splits into two Sym(3)-orbits: one from putting the origin
in one of the four cubes or in one of the four noncubical cells.

The Polyhedral Geometry of Truthful Auctions 241

Remark 10. Vidali considered a more restrictive notion of nondegeneracy of allo-
cation functions [39, Definition 8], and in [39, Theorem 1] she arrived at a clas-
sification of five types for three items. In our terminology, the number of types
is equal to six, which is the count of Γ3-orbits of regular triangulations of [0, 1]3

reported in Table. 1. The missing type in the classification of Vidali is type F
(as in Fig. 4), arising from Example 6. Further details will be given in the full
version of this paper.

4 Sensitivity of Mechanisms

In this section, we study by how much the allocations for a fixed player may
change under a slight modification of the reported type. These changes are mea-
sured in the following two ways. For two local allocations a, b ∈ {0, 1}m, let the
cardinality distance be dc(a, b) :=

∣∣|a|1 − |b|1
∣∣, and let the Hamming distance

be dh(a, b) := |a − b|1, where | · |1 is the 1-norm. Note that the cardinality dis-
tance is a pseudometric. Let f be an one-player allocation function, we define
the cardinality sensitivity of f as

μc(f) = max
{
dc(a, b)

∣∣ a, b ∈ F for some F ∈ I(f)
}

.

The Hamming sensitivity μh(f) arises in the same way, with dh instead of dc.
Intuitively, the cardinality sensitivity μc(f) is the maximal amount such that
any slight change in the type of the player does not cause her allocated bundle
to change its cardinality by more than μc(f). Let Φm be the set of truthful allo-
cation functions for one player and m items. We are now interested in computing
the values Mc(m) := minf∈Φm

μc(f) and Mh(m) := minf∈Φm
μh(f).

Our strategy to compute these values is as follows. From Theorem 5 we know
that the indifference complexes of allocation functions f ∈ Φm are in bijection
with the regular subdivisions of [0, 1]m. So we need to identify those subdivisions,
for which the maximal distance between any two vertices of one of its cells is
minimized. In this way, we can compute Mc(m) exactly, and we give bounds for
Mh(m).

Proposition 11. The minimal cardinality sensitivity of DSIC one-player mech-
anisms is Mc(m) = 1.

Proof. We first slice the unit cube into the polytopes

Pk =

{
x ∈ [0, 1]m

∣∣∣∣∣ k − 1 ≤
m∑

i=1

xi ≤ k

}
, k = 1, . . . ,m .

The polytopes P1, . . . , Pm form the maximal cells of a polytopal subdivision S
of [0, 1]m. That subdivision is regular with height function λ(x) = − (

∑m
i=1 xi)

2.
This proves the claim, as for each Pk, the difference in the coordinate sums of
two of its vertices differ by at most one. ��

242 M. Joswig et al.

Note that the height function we used in the proof of the last proposition
leads to the mechanism which is defined by the prices p(a) = (

∑m
i=1 ai)

2 for the
allocations a ∈ {0, 1}m.

Proposition 12. The minimal Hamming sensitivity for DSIC one-player mech-
anisms on m ≥ 3 items is bounded by 2 ≤ Mh(m) ≤ m − 1.

Proof. For the lower bound let us consider a triangle with the vertices a, b, c ∈
{0, 1}m. If we assume dh(a, b) = dh(a, c) = 1 then the vertices a and b (resp. a
and c) differ by a coordinate flip. Therefore, the vertices b and c differ by either
two coordinate flips or none. As b �= c, the former is the case and dh(b, c) = 2.
As the maximal cells of a subdivision of [0, 1]m for m ≥ 2 contain at least three
vertices, this proves the lower bound.

For the upper bound, we show that there is a subdivision, S, of [0, 1]m such
that no cell of S contains two antipodal vertices, i.e., two vertices such that their
sum equals the all ones vector. We first consider the case where m is odd. For
a vertex x ∈ {0, 1}m, let Δ(x) be the cornered simplex with apex x. That is,
its vertices comprise x and all its neighbors in the vertex-edge graph of the unit
cube; cf. [16, Fig. 6.3.1]. Let Sm be the subdivision of [0, 1]m with the following
maximal cells: the big cell is the convex hull of all vertices with an even number
of ones, and the small cells are the cornered simplices Δ(x), where x ∈ {0, 1}m

with
∑

xi odd. The subdivision S3 is the triangulation of type F in Fig. 4; for
m ≥ 5 the big cell is not a simplex, and so Sm is not a triangulation in general.

At any rate, the subdivision Sm is always regular: it is induced by the height
function which sends a vertex x to 0, if it has an even number of ones and to −1,
if that number is odd. For m ≥ 3 odd, no antipodal pair of vertices is contained
in any cell of Sm, which proves the claim for the uneven case.

If the dimension m is even, we consider the m-dimensional unit cube as a
prism over [0, 1]m−1. Then m − 1 is odd, and we can employ the subdivision
Sm−1 of [0, 1]m−1 that we discussed before. We obtain a subdivision, Sm, of
[0, 1]m whose maximal cells are prisms over the maximal cells of Sm−1. The
subdivision Sm is again regular: this can be seen from assigning the vertices
x × {0} and x × {1} the same height as the vertex x in Sm−1. Now let P be a
maximal cell in Sm−1, such that Q = P × [0, 1] is a maximal cell of Sm. If Q
contained an antipodal pair of vertices, then by removing the last coordinate,
we would get an antipodal pair in P , which is absurd. This completes the proof.

��

5 Conclusion

We studied DSIC allocation mechanisms where a set of m items is allocated to
n players. These mechanisms can be described by the corresponding one-player
mechanisms when the types declared by the other players are fixed. For a sin-
gle player, the allocations correspond to vectors {0, 1}m, and the combinatorial
types of the allocation mechanisms correspond to regular subdivisions of the
m-dimensional unit cube. We then used this insight to design mechanisms that

The Polyhedral Geometry of Truthful Auctions 243

are robust in the sense that small changes in the declared type do not lead to a
major change in the set of allocated items. In the full version of this paper, we
will show how this method can be applied in order to describe affine maximizers
with n players.

For multiple copies of items, the deterministic allocations to a single player
correspond to a subset of the lattice N

m, and it seems plausible that DSIC
mechanisms for such scenarios can also be described by regular subdivisions.

Question 13. How does our approach generalize to allocation mechanisms in a
setting with multiple copies of items?

Acknowledgments. We thank Benny Moldovanu for pointing out the work of
Frongillo and Kash [19]. Further, we are indebted to three anonymous reviewers for
their comments and corrections. This work was supported by Deutsche Forschungsge-
meinschaft under Germany’s Excellence Strategy, Berlin Mathematics Research Center
(Grant EXC-2046/1, project-ID 390685689). M. Joswig has further been supported
by “Symbolic Tools in Mathematics and their Application” (TRR 195, project-ID
286237555).

References

1. Akian, M., Gaubert, S., Guterman, A.: Tropical polyhedra are equivalent to mean
payoff games. Internat. J. Algebra Comput. 22(1), 1250001 (2012). https://doi.
org/10.1142/S0218196711006674

2. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Combinatorial simplex
algorithms can solve mean payoff games. SIAM J. Opt. 24(4), 2096–2117 (2014).
https://doi.org/10.1137/140953800

3. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: What tropical geometry
tells us about the complexity of linear programming. SIAM Rev. 63(1), 123–164
(2021). https://doi.org/10.1137/20M1380211

4. Archera, A., Kleinberg, R.: Truthful germs are contagious: a local-to-global char-
acterization of truthfulness. Games Econ. Behav. 86, 340–366 (2014). https://doi.
org/10.1016/j.geb.2014.01.004

5. Ashlagi, I., Braverman, M., Hassidim, A., Monderer, D.: Monotonicity and
implementability. Econometrica 78(5), 1749–1772 (2010). https://doi.org/10.3982/
ECTA8882

6. Aurenhammer, F.: Power diagrams: Properties, algorithms and applications. SIAM
J. Comput. 16(1), 78–96 (1987). https://doi.org/10.1137/0216006

7. Baldwin, E., Klemperer, P.: Understanding preferences: “demand types", and the
existence of equilibrium with indivisibilities. Econometrica 87(3), 867–932 (2019).
https://doi.org/10.3982/ECTA13693

8. Berger, A., Müller, R., Naeemi, S.H.: Characterizing implementable allocation rules
in multi-dimensional environments. Soc. Choice Welfare 48(2), 367–383 (2016).
https://doi.org/10.1007/s00355-016-1008-6

9. Bikhchandani, S., Chatterji, S., Lavi, R., Mu’alem, A., Nisan, N., Sen, A.:
Weak monotonicity characterizes deterministic dominant-strategy implementation.
Econometrica 74(4), 1109–1132 (2006). https://doi.org/10.1111/j.1468-0262.2006.
00695.x

https://doi.org/10.1142/S0218196711006674
https://doi.org/10.1142/S0218196711006674
https://doi.org/10.1137/140953800
https://doi.org/10.1137/20M1380211
https://doi.org/10.1016/j.geb.2014.01.004
https://doi.org/10.1016/j.geb.2014.01.004
https://doi.org/10.3982/ECTA8882
https://doi.org/10.3982/ECTA8882
https://doi.org/10.1137/0216006
https://doi.org/10.3982/ECTA13693
https://doi.org/10.1007/s00355-016-1008-6
https://doi.org/10.1111/j.1468-0262.2006.00695.x
https://doi.org/10.1111/j.1468-0262.2006.00695.x

244 M. Joswig et al.

10. Björner, A.: Topological methods. In: Handbook of Combinatorics, vol. 1, 2, pp.
1819–1872. Elsevier, Amsterdam (1995)

11. Carbajala, J.C., Müller, R.: Implementability under monotonic transformations in
differences. J. Econ. Theory 160, 114–131 (2015). https://doi.org/10.1016/j.jet.
2015.09.001

12. Christodoulou, G., Koutsoupias, E., Kovács, A.: On the Nisan-Ronen conjecture.
In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 839–850 (2022). https://doi.org/10.1109/FOCS52979.2021.00086

13. Christodoulou, G., Koutsoupias, E., Vidali, A.: A characterization of 2-player
mechanisms for scheduling. In: Proceedings of the 16th Annual European Sym-
posium on Algorithms, (ESA), pp. 297–307 (2008). https://doi.org/10.1007/978-
3-540-87744-8_25

14. Christodoulou, G., Koutsoupias, E., Vidali, A.: A lower bound for scheduling mech-
anisms. Algorithmica 55(4), 729–740 (2009). https://doi.org/10.1007/s00453-008-
9165-3

15. Clarke, E.H.: Multipart pricing of public goods. Public Choice 11, 17–33 (1971).
https://doi.org/10.1007/bf01726210

16. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for algorithms
and applications, Algorithms and Computation in Mathematics, vol. 25. Springer,
Berlin (2010). https://doi.org/10.1007/978-3-642-12971-1

17. Dobzinski, S., Shaulker, A.: Improved lower bound for truthful scheduling,
abs/2007.04362 (2020)

18. Edelman, P.H., Weymark, J.A.: Dominant strategy implementability and zero
length cycles. Econ. Theor. 72(4), 1091–1120 (2020). https://doi.org/10.1007/
s00199-020-01324-7

19. Frongillo, R.M., Kash, I.A.: General truthfulness characterizations via convex anal-
ysis. Games Econ. Behav. 130, 636–662 (2021). https://doi.org/10.1016/j.geb.
2021.09.010

20. Gawrilow, E., Joswig, M.: a framework for analyzing convex polytopes. In:
Polytopes–combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol.
29, pp. 43–73. Birkhäuser, Basel (2000). https://doi.org/10.1007/978-3-0348-8438-
9_2

21. Giannakopoulos, Y., Hammerl, A., Poças, D.: A New Lower Bound for Determin-
istic Truthful Scheduling. Algorithmica 83(9), 2895–2913 (2021). https://doi.org/
10.1007/s00453-021-00847-2

22. Groves, T.: Incentives in teams. Econometrica 41, 617–631 (1973). https://doi.
org/10.2307/1914085

23. Gui, H., Müller, R., Vohra, R.V.: Dominant strategy mechanisms with multidi-
mensional types. In: Lehmann, D., Müller, R., Sandholm, T. (eds.) Computing
and Markets. Dagstuhl Seminar Proceedings, vol. 5011, pp. 1–23 (2005). https://
doi.org/10.4230/DagSemProc.05011.8

24. Jehiel, P., Moldovanu, B., Stacchetti, E.: Multidimensional mechanism design for
auctions with externalities. J. Econ. Theory 85(2), 258–293 (1999). https://doi.
org/10.1006/jeth.1998.2501

25. Jordan, C., Joswig, M., Kastner, L.: Parallel enumeration of triangulations. Elec-
tron. J. Combin. 25(3), Paper 3.6, 27 (2018). https://doi.org/10.37236/7318

26. Joswig, M.: Essentials of tropical combinatorics. Graduate Studies in Mathematics,
American Mathematical Society, Providence, RI (2022)

27. Kushnir, A.I., Lokutsievskiy, L.V.: When is a monotone function cyclically mono-
tone? Theor. Econ. 16, 853–879 (2021). https://doi.org/10.3982/TE4305

https://doi.org/10.1016/j.jet.2015.09.001
https://doi.org/10.1016/j.jet.2015.09.001
https://doi.org/10.1109/FOCS52979.2021.00086
https://doi.org/10.1007/978-3-540-87744-8_25
https://doi.org/10.1007/978-3-540-87744-8_25
https://doi.org/10.1007/s00453-008-9165-3
https://doi.org/10.1007/s00453-008-9165-3
https://doi.org/10.1007/bf01726210
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/s00199-020-01324-7
https://doi.org/10.1007/s00199-020-01324-7
https://doi.org/10.1016/j.geb.2021.09.010
https://doi.org/10.1016/j.geb.2021.09.010
https://doi.org/10.1007/978-3-0348-8438-9_2
https://doi.org/10.1007/978-3-0348-8438-9_2
https://doi.org/10.1007/s00453-021-00847-2
https://doi.org/10.1007/s00453-021-00847-2
https://doi.org/10.2307/1914085
https://doi.org/10.2307/1914085
https://doi.org/10.4230/DagSemProc.05011.8
https://doi.org/10.4230/DagSemProc.05011.8
https://doi.org/10.1006/jeth.1998.2501
https://doi.org/10.1006/jeth.1998.2501
https://doi.org/10.37236/7318
https://doi.org/10.3982/TE4305

The Polyhedral Geometry of Truthful Auctions 245

28. Lin, B., Tran, N.M.: Two-player incentive compatible outcome functions are affine
maximizers. Linear Algebra Its Appl. 578, 133–152 (2019). https://doi.org/10.
1016/j.laa.2019.04.027

29. Maclagan, D., Sturmfels, B.: Introduction to tropical geometry, Graduate Studies
in Mathematics, vol. 161. American Mathematical Society, Providence, RI (2015)

30. Mishra, D., Pramanik, A., Roy, S.: Multidimensional mechanism design in single
peaked type spaces. J. Econ. Theory 153, 103–116 (2014). https://doi.org/10.
1016/j.jet.2014.06.002

31. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35(1),
166–196 (2001). https://doi.org/10.1006/game.1999.0790

32. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic game
theory. Cambridge University Press, USA (2007). https://doi.org/10.1017/
CBO9780511800481

33. Pournin, L.: The flip-graph of the 4-dimensional cube is connected. Discrete Com-
put. Geometry 49(3), 511–530 (2013). https://doi.org/10.1007/s00454-013-9488-
y

34. Roberts, K.: The characterization of implementable choice rules. Aggregation and
Revelation of Preferences, pp. 321–349 (1979)

35. Rochet, J.C.: A necessary and sufficient condition for rationalizability in a quasi-
linear context. J. Math. Econ. 16(2), 191–200 (1987). https://doi.org/10.1016/
0304-4068(87)90007-3

36. Saks, M.E., Yu, L.: Weak monotonicity suffices for truthfulness on convex domains.
In: Riedl, J., Kearns, M.J., Reiter, M.K. (eds.) Proceedings of the 6th ACM Confer-
ence on Electronic Commerce (EC), pp. 286–293 (2005). https://doi.org/10.1145/
1064009.1064040

37. Tran, N.M., Yu, J.: Product-mix auctions and tropical geometry. Math. Oper. Res.
44(4), 1396–1411 (2019). https://doi.org/10.1287/moor.2018.0975

38. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Finance 16, 8–37 (1961). https://doi.org/10.1111/j.1540-6261.1961.tb02789.x

39. Vidali, A.: The geometry of truthfulness. In: Leonardi, S. (ed.) Proceedings of
the 5th International Workshop on Internet and Network Economics (WINE), pp.
340–350 (2009). https://doi.org/10.1007/978-3-642-10841-9_31

40. Vohra, R.V.: Mechanism design. A Linear Programming Approach, Economet-
ric Society Monographs, vol. 47. Cambridge University Press, Cambridge (2011).
https://doi.org/10.1017/CBO9780511835216

41. de Vries, S., Vohra, R.V.: Combinatorial auctions: a survey. INFORMS J. Comput.
15, 284–309 (2003). https://doi.org/10.1287/ijoc.15.3.284.16077

https://doi.org/10.1016/j.laa.2019.04.027
https://doi.org/10.1016/j.laa.2019.04.027
https://doi.org/10.1016/j.jet.2014.06.002
https://doi.org/10.1016/j.jet.2014.06.002
https://doi.org/10.1006/game.1999.0790
https://doi.org/10.1017/CBO9780511800481
https://doi.org/10.1017/CBO9780511800481
https://doi.org/10.1007/s00454-013-9488-y
https://doi.org/10.1007/s00454-013-9488-y
https://doi.org/10.1016/0304-4068(87)90007-3
https://doi.org/10.1016/0304-4068(87)90007-3
https://doi.org/10.1145/1064009.1064040
https://doi.org/10.1145/1064009.1064040
https://doi.org/10.1287/moor.2018.0975
https://doi.org/10.1111/j.1540-6261.1961.tb02789.x
https://doi.org/10.1007/978-3-642-10841-9_31
https://doi.org/10.1017/CBO9780511835216
https://doi.org/10.1287/ijoc.15.3.284.16077

Competitive Kill-and-Restart
and Preemptive Strategies

for Non-clairvoyant Scheduling

Sven Jäger1 , Guillaume Sagnol2(B) ,
Daniel Schmidt genannt Waldschmidt2 , and Philipp Warode3

1 RPTU Kaiserslautern-Landau, Paul-Ehrlich-Straße 14, 67663 Kaiserslautern,
Germany

sven.jaeger@rptu.de
2 TU Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

{sagnol,dschmidt}@math.tu-berlin.de
3 HU Berlin, Unter den Linden 6, 10099 Berlin, Germany

philipp.warode@hu-berlin.de

Abstract. We study kill-and-restart and preemptive strategies for the
fundamental scheduling problem of minimizing the sum of weighted com-
pletion times on a single machine in the non-clairvoyant setting. First, we
show a lower bound of 3 for any deterministic non-clairvoyant kill-and-
restart strategy. Then, we give for any b > 1 a tight analysis for the natu-
ral b-scaling kill-and-restart strategy as well as for a randomized variant
of it. In particular, we show a competitive ratio of (1+ 3

√
3) ≈ 6.197 for

the deterministic and of ≈ 3.032 for the randomized strategy by making
use of the largest eigenvalue of a Toeplitz matrix. In addition, we show
that the preemptive Weighted Shortest Elapsed Time First (WSETF)
rule is 2-competitive when jobs are released online, matching the lower
bound for the unit weight case with trivial release dates for any non-
clairvoyant algorithm. Furthermore, we prove performance guarantees
smaller than 10 for adaptions of the b-scaling strategy to online release
dates and unweighted jobs on identical parallel machines.

1 Introduction

Minimizing the total weighted completion time on a single processor is one of
the most fundamental problems in the field of machine scheduling. The input
consists of n jobs with processing times p1, . . . , pn and weights w1, . . . , wn, and
the task is to sequence them in such a way that the sum of weighted comple-
tion times

∑n
j=1 wjCj is minimized. We denote this problem as 1 || ∑

wjCj .

Full version preprint: http://arxiv.org/abs/2211.02044.
The research of the second, third and fourth authors was supported by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy — The Berlin Mathematics Research Center MATH+ (EXC-2046/1,
project ID: 390685689).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 246–260, 2023.
https://doi.org/10.1007/978-3-031-32726-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_18&domain=pdf
http://orcid.org/0000-0002-7003-1430
http://orcid.org/0000-0001-6910-8907
http://orcid.org/0000-0002-9331-445X
http://orcid.org/0000-0002-2878-6872
http://arxiv.org/abs/2211.02044
https://doi.org/10.1007/978-3-031-32726-1_18

Competitive Kill-and-Restart and Preemptive Strategies 247

Smith [29] showed in the 50’s that the optimal schedule is obtained by the
Weighted Shortest Processing Time first (WSPT) rule, i.e., jobs are sequenced
in non-decreasing order of the ratio of their processing time and their weight.

Reality does not always provide all information beforehand. Around 30 years
ago, the non-clairvoyant model, in which the processing time of any job becomes
known only upon its completion, was introduced for several scheduling prob-
lems [10,25,27]. It is easy to see that no non-preemptive non-clairvoyant algo-
rithm can be constant-competitive for 1 || ∑

Cj . In their seminal work, Motwani
et al. [25] proved for this problem that allowing preemption breaks the non-
constant barrier. Specifically, they showed that the round-robin algorithm is
2-competitive, matching a lower bound for all non-clairvoyant algorithms. This
opened up a new research direction, leading to constant-competitive preemp-
tive non-clairvoyant algorithms in more general settings, like weighted jobs [21],
multiple machines [6,15,16], precedence constraints [11], and non-trivial release
dates. When jobs are released over time, they are assumed to be unknown before
their arrivals (online scheduling). No lower bound better than 2 is known for this
case, whereas the best known upper bound before this work was 3, see e.g. [23].

But there is a downside of the preemptive paradigm as it uses an unlim-
ited number of interruptions at no cost and has a huge memory requirement to
maintain the ability to resume all interrupted jobs. Therefore, we continue by
studying the natural class of kill-and-restart strategies that—inspired by com-
puter processes—can abort the execution of a job (kill), but when processed
again later, the job has to be re-executed from the beginning (restart). It can
be considered as an intermediate category of algorithms between preemptive
and non-preemptive ones, as on the one hand jobs may be interrupted, and on
the other hand all completed jobs have been processed as a whole. Hence, by
removing all aborted executions one obtains a non-preemptive schedule. This
class of algorithms has already been investigated since the 90’s [27], but to the
best of our knowledge, the competitive ratio of non-clairvoyant kill-and-restart
strategies for the total completion time objective has never been studied.

Our Contribution. We start by strengthening the preemptive lower bound of
2 for the kill-and-restart model.

Theorem 1. For 1 || ∑
Cj, no deterministic non-clairvoyant kill-and-restart

strategy can achieve a competitive ratio smaller than 3 − 2
n+1 on instances with

n ≥ 3 jobs, even if every job j has processing time pj ≥ 1.

The main part of this work is devoted to the natural b-scaling strategy Db that
repeatedly probes each unfinished job for the time of some integer power of b > 1
multiplied by its weight. While the fact that D2 is 8-competitive can easily be
concluded from the 2-competitiveness of the weighted round-robin algorithm [21],
a tight analysis requires more involved techniques.

Theorem 2. For b > 1, Db is
(
1+ 2b

3/2

b−1

)
-competitive for 1 || ∑

wjCj. Moreover,
for all b > 1 this bound is tight, even for unit weight instances. In particular, for
b = 3 the competitive ratio is 1 + 3

√
3 ≈ 6.196.

248 S. Jäger et al.

Our main technique is to reduce the problem of finding the exact competi-
tive ratio to the computation of the largest eigenvalue of a tridiagonal Toeplitz
matrix. Subsequently, we obtain a significantly better exact competitive ratio
for a randomized version Rb of the b-scaling strategy.

Theorem 3. For every b > 1, Rb is
√

b+2b−1√
b log(b)

-competitive for 1 || ∑
wjCj.

Moreover, for all b > 1 this bound is tight, even for unit weight instances. In
particular, for b ≈ 8.16 the competitive ratio is ≈ 3.032.

The analysis mimics that of the deterministic strategy, but it is necessary to
group jobs with similar Smith ratios. This approach leads to the computation
of the largest eigenvalues of a sequence of banded symmetric Toeplitz matrices,
and the result is obtained by taking its limit.

We then study more general scheduling environments. For the online problem
in which jobs are released over time, denoted by 1 | rj , pmtn | ∑

wjCj , we close
the gap for the best competitive ratio of preemptive algorithms by analyzing the
Weighted Shortest Elapsed Time First rule (WSETF). This algorithm runs at
every point in time the job(s) with minimum ratio of elapsed processing time
over weight.

Theorem 4. WSETF is 2-competitive for 1 | rj , pmtn | ∑
wjCj.

Theorem 4 generalizes the known 2-competitiveness for trivial release dates
shown by Kim and Chwa [21]. It also matches the performance guarantee of
the best known stochastic online scheduling policy, called F-GIPP [24], for the
stochastic variant of the problem, where the probability distributions of the pro-
cessing times are given at the release dates and the expected objective value is
to be minimized. Our improvement upon the analysis of this policy, applied to
a single machine, is threefold: First, our strategy does not require any informa-
tion about the distributions of the processing times, second, we compare to the
clairvoyant optimum, while F-GIPP is compared to the optimal non-anticipatory
policy, and third, WSETF is more intuitive and easier to implement in applica-
tions than the F-GIPP policy.

Using Theorem 4, we then give an upper bound on the competitive ratio of
a generalized version of Db for jobs arriving online over time.

Theorem 5. Db is 2b4

2b2−3b+1 -competitive for 1 | rj | ∑
wjCj. In particular, for

b = 9+
√
17

8 , its performance guarantee is 107+51
√
17

32 ≈ 9.915.

Finally, we also analyze the unweighted problem P || ∑
Cj on multiple iden-

tical parallel machines.

Theorem 6. Db is 3b2−b
b−1 -competitive for P || ∑

Cj. In particular, for b =
3+

√
6

3 , its performance guarantee is 5 + 2
√
6 ≈ 9.899.

The proofs of these results are sketched in Sect. 3 to 6 below; full proofs are
provided in the preprint [17].

Competitive Kill-and-Restart and Preemptive Strategies 249

Related Work. The clairvoyant offline variants of all scheduling problems
considered in this paper are well understood; either there is a polynomial-
time algorithm [8,29], or the problem is strongly NP-hard [22,26] and there
is a polynomial-time approximation scheme [1]. In the clairvoyant online model,
where the processing times become known at the jobs’ release dates, there is a
1.566-competitive deterministic algorithm [28] and a deterministic lower bound
of 1.073 [9], when preemption is allowed. For non-preemptive online scheduling
the best possible deterministic competitive ratio is exactly 2. [2,14].

In the non-clairvoyant setting no (randomized) non-preemptive algorithm is
constant-competitive, so that allowing preemption is crucial. Motwani et al. [25]
showed that the simple (non-clairvoyant) round-robin procedure has a competi-
tive ratio of 2 for minimizing the total completion time on identical machines. A
weighted variant was presented for a single machine by Kim and Chwa [21] and
for identical machines by Beaumont et al. [6]. In the context of non-clairvoyant
online scheduling one distinguishes between total (weighted) completion time
and total (weighted) flow time. For weighted flow time constant competitiveness
is unattainable [25]. Besides work on non-constant competitiveness [7], the prob-
lem has been primarily studied in the resource augmentation model [18]. Kim
and Chwa and Bansal and Dhamdhere [4] independently showed that WSETF
is (1+ ε)-speed (1+ 1/ε)-competitive for weighted flow time on a single machine,
entailing a 4-competitive algorithm without speed augmentation for weighted
completion time [5]. The proof technique used is, however, not suitable for obtain-
ing better bounds for the weighted completion time objective. For unrelated
machines there is a (1 + ε)-speed O(1/ε2)-competitive algorithm [16].

Shmoys et al. [27] introduced the kill-and-restart model in the context of
makespan minimization. We are not aware of any work for the total comple-
tion time objective in the non-clairvoyant model. However, for the clairvoyant
online model, lower bounds on the competitive ratio of kill-and-restart strate-
gies have been obtained [9,31], and van Stee and La Poutré [30] developed a
3/2-competitive strategy for a single machine, beating the aforementioned best
competitive ratio of 2 for non-preemptive algorithms. Motwani et al. also consid-
ered preemptive scheduling with a limited number of allowed preemptions, for
which they devised algorithms similar to the kill-and-restart strategies presented
in this paper.

The kill-and-restart model also shares many similarities with optimal search
problems, in particular the w-lanes cow-path problem. For w = 2, determinis-
tic and randomized strategies achieving the best possible competitive ratio are
studied in [3,20], respectively. This work has been extended by Kao et al. [19]
to the general case w ∈ N.

2 Preliminaries

We consider the machine scheduling problem of minimizing the weighted sum
of completion times on a single machine (1 || ∑

wjCj). Formally, an instance
I = (p,w) consists of a vector of processing times p = (pj)nj=1 and a vector

250 S. Jäger et al.

of weights w = (wj)nj=1. Sequencing jobs in WSPT order, i.e., ordered non-
decreasingly by their Smith ratios pj/wj , yields an optimal schedule, denoted by
OPT(I). We also denote its objective value by OPT(I).

The focus of our work lies on the analysis of non-clairvoyant strategies. We
call a strategy non-clairvoyant if it does not use information on the processing
time pj of a job j before j has been completed. A deterministic strategy D is
said to be c-competitive if, for all instances I = (p,w), D(I) ≤ c ·OPT(I), where
D(I) denotes the cost of the strategy D for instance I. The competitive ratio of
D is defined as the infimum over all c such that D is c-competitive. Similarly, a
randomized strategy R, is said to be c-competitive if, for all instances I = (p,w),
E[R(I)] ≤ c · OPT(I), where E[·] denotes the expected value. The following
proposition suggests to consider strategies beyond non-preemptive ones.
Proposition 1. No randomized non-preemptive non-clairvoyant strategy has a
constant competitive ratio for 1 || ∑

Cj.

Proof sketch. Consider n − 1 unit jobs and one job of length n2, randomize
uniformly over all permutations, and use Yao’s principle [32]. ��

Due to this negative result, we study non-clairvoyant kill-and-restart strate-
gies for 1 || ∑

wjCj that may abort the processing of a job, but when it is
processed again later, it has to be executed from the beginning.

Such a strategy performs probings (t, j, τ), i.e., it processes at time t job j for
a time of min{τ, pj}. More formally, for a given state consisting of the current
time, the set of unfinished jobs and lower bounds on the processing times learned
from past probings, a kill-and-restart strategy decides on a family of probings
(ti, ji, τi)i∈I , such that the intervals (ti, ti + τi), i ∈ I, are disjoint. Whenever a
job is completed, i.e., a job is processed completely within one probing, the strat-
egy decides on new probings. We require that probings be chosen independently
of the actual processing times of unfinished jobs, ensuring that kill-and-restart
strategies are non-clairvoyant. A formal definition is given in the full version.

Observe that such strategies may not be implementable, e.g., on a Turing
machine, as the above definition allows for an infinite number of probings in a
bounded time range. This subtlety is in fact inherent to all scheduling problems
with unknown processing times or search problems with unknown distances. It
is not hard to see that no deterministic kill-and-start strategy can be constant-
competitive without infinitesimal probing, as there is no lower bound on the
processing times at time 0. On the other hand, infinitesimal probing can be
avoided if we know a lower bound on the pj ’s, thus turning the strategies analyzed
in this paper into implementable algorithms.

We denote by Y D
j (I, t) the total time for which the machine has been busy

processing job j until time t in the schedule constructed by the strategy D on
the instance I.

3 Lower Bound

In contrast to the lower bound of 2 for preemptive algorithms by Motwani et al.
[25], we prove a higher lower bound for kill-and-restart strategies.

Competitive Kill-and-Restart and Preemptive Strategies 251

Theorem 1. For 1 || ∑
Cj , no deterministic non-clairvoyant kill-and-restart

strategy can achieve a competitive ratio smaller than 3− 2
n+1 on instances with

n ≥ 3 jobs, even if every job j has processing time pj ≥ 1.

Proof. Let ε ∈ (2
n+1 , 1] and define T := (2−ε)(n2+n)

ε(n+1)−2 . Consider an arbitrary deter-
ministic kill-and-restart strategy D with the initially chosen family of prob-
ings (ti, ji, τi)i∈I . Let Yj(θ) :=

∑
i∈I:ti<θ,ji=j min{τi, θ− ti} be the total probing

time assigned by D to job j up to time θ. We define an instance I := (p,1)
by distinguishing two cases on the first job j0 planned to be probed at or after
time T . Note that such a job exists, as otherwise D does not complete all jobs
if processing times are long enough.

If j0 is probed for a finite amount of time, we denote by t ≥ T the end of its
probing time. Then, define pj := 1+ Yj(t) for all j ∈ [n]. Clearly, no job finishes
before t when D runs the instance I, hence D(I) ≥ nt+OPT(I). On the other
hand, it is well known that OPT(I) ≤ n+1

2 · ∑n
j=1 pj ≤ n+1

2 (t + n). Therefore,
we have D(I)

OPT(I) ≥ 1 + 2nt
(t+n)(n+1) ≥ 1 + 2nT

(T+n)(n+1) = 3 − ε.

If j0 is probed for τ = ∞, i.e., it is processed non-preemptively until its
completion, then for each job j
= j0 we set pj := 1+Yj(T). Denote by OPT′ the
optimal SPT cost for jobs [n] \ {j0}, and set pj0 := 10 · OPT′. As j0 is the first
job to complete in I, we clearly have D(I) ≥ n · pj0 = 10n ·OPT′. On the other
hand, OPT processes j0 last, so OPT(I) = OPT′ +

∑
j �=j0

pj + pj0 ≤ 12 ·OPT′.
This implies D(I)

OPT(I) ≥ 10n
12 ≥ 3 − 2

n+1 , as n ≥ 3. ��

4 The b-scaling Strategy

The idea of the b-scaling strategy Db for b > 1 is simple and quite natural: it
proceeds by rounds q ∈ Z. In round q every non-completed job j is probed (once)
for wjb

q, in the order of job indices. To execute Db, we can store for each job its
rank at time t, i.e., the largest q such that it was probed for wjb

q−1 until t. At any
end of a probing, Db probes the job j with minimum rank q and minimum index
for time wjb

q. We also introduce a randomized variant Rb of the strategy Db.
Randomization occurs in two places: First the jobs are reordered according to a
permutation Σ drawn uniformly at random from Sn at the beginning. Second,
we replace the probing time wjb

q of the qth round by wjb
q+Ξ with a random

uniform offset Ξ ∼ U([0, 1]).
In general, Db starts with infinitesimally small probings at time 0 in rounds

q → −∞. As discussed earlier, this is not implementable. However, if a lower
bound of wjb

qmin on every processing time pj is known, the algorithm can start
with round q = qmin.

4.1 The Deterministic b-scaling Strategy

We compute tight bounds for the competitive ratio of Db for 1 || ∑
wjCj . For an

instance I := (p,w), we denote by sj := pj/wj the Smith ratio of job j ∈ [n] and

252 S. Jäger et al.

by Djk := Y Db
j (I, CDb

k (I)) the amount of time spent probing job j before the
completion of job k. For all j, k ∈ [n] we define the weighted mutual delay Δjk

by Δjk := wkDjk + wjDkj if j
= k and Δjj := wjDjj . Thus, it holds

Db(I) =
n∑

j=1

wjC
Db
j (I) =

n∑

j=1

wj

n∑

k=1

Dkj =
∑

1≤j≤k≤n

Δjk.

We first provide an overestimator of Δjk that is piecewise linear in sj and sk.

Lemma 1. Define the function F : {(s, s′) ∈ R
2
>0 : s ≤ s′} → R by

F (s, s′) :=

{
2b�logb s�+1

b−1 + s′ if logb(s)� = logb(s′)�
b�logb s	+1 · (2

b−1 + 1) + s otherwise.

Then for all j, k ∈ [n] such that sj ≤ sk, it holds Δjk ≤ wjwk F (sj , sk).

Proof sketch. Let qj := �logb(sj)�−1, so that bqj < sj ≤ bqj+1. By distinguishing
between the case where jobs j, k complete in the same round, i.e., �logb(sj)� =
�logb(sk)�, and the case where k completes in a later round, we obtain an upper
bound of the form Δjk ≤ wjwkF̃ (sj , sk), where F̃ is defined as F except that all
occurrences of floor operations logb(s)�, s ∈ {sj , sk} are replaced by �logb(s)�−
1. The result follows by observing that F̃ is non-decreasing with respect to both
its arguments and taking its upper semi-continuous envelope. ��

Summing the bounds of the previous lemma yields

Db(p,w) ≤
∑

1≤j≤k≤n

wjwk F
(
min(sj , sk)),max(sj , sk)

)
=: U(p,w). (1)

We next prove a lemma showing that for bounding the ratio U/OPT we can
restrict to instances in which all Smith ratios are integer powers of b.

Lemma 2. For any instance (p,w), there exists another instance (p′,w) with
p′

j = wjb
qj for some qj ∈ Z, for all j ∈ [n], such that

U(p,w)
OPT(p,w)

≤ U(p′,w)
OPT(p′,w)

.

Proof sketch. Let Q := {logb(sj) : j ∈ [n]} \ Z. We construct the vector p′ by
sequentially rounding the Smith ratios of a subset of jobs Jq = {j ∈ [n] : sj = bq}
with q := minQ to a larger or a smaller value, in such a way that the ratio
U/OPT does not decrease, and we repeat this until Q = ∅. Specifically, for
δ ∈ R we define the modified processing times pj(δ) = pj + wjδ1Jq

(j). Both
δ �→ U(p(δ),w) and δ �→ OPT(p(δ),w) are linear in a neighborhood of 0 in
which the order of the Smith ratios does not change and no job changes the round
where it completes. Thus, δ �→ U(p(δ),w)

OPT(p(δ),w) is a monotone rational function in
this neighborhood, so δ can be increased or decreased to a value such that |Q|
is decremented by 1, without decreasing our bound on the competitive ratio. ��

Competitive Kill-and-Restart and Preemptive Strategies 253

The next lemma gives a handy upper bound for the competitive ratio of Db

relying on the ratio of two quadratic forms.

Lemma 3. For every L ∈ N, let AL :=
(
1
2bmin(i,j)−1 · 1{i�=j}

)
1≤i,j≤L

and
BL :=

(
1
2bmin(i,j)−1

)
1≤i,j≤L

be symmetric matrices. For any instances (p,w)
there exists an integer L and a vector x ∈ R

L
≥0 such that

Db(p,w)
OPT(p,w)

≤ 2b
b − 1

+ 1 + b · x
�ALx

x�BLx
.

Proof sketch. Let i0 ∈ Z and L ∈ N be such that the Smith ratio of each job is of
the form bi0−1+� for some 	 ∈ [L] in the instance (p′,w) from Lemma 2. Let J�

be the subset of jobs with Smith ratio equal to bi0−1+�, for 	 ∈ [L], and define the
vectors x,y ∈ R

L such that x� =
∑

j∈J�
wj and y� =

∑
j∈J�

w2
j , respectively. We

show that OPT(p′,w) ≥ bi0x�BLx and that U(p′,w) = (2b
b−1+1)·OPT(p′,w)+

bi0+1x�ALx. Then, the result follows from (1) and Lemma 2. ��

In order to determine an upper bound for the competitive ratio of Db, we
need to bound the ratio of the two quadratic forms in the bound of Lemma 3. To
this end, we bound the maximum eigenvalue of the matrix ZL := Y −�

L ALY
−1

L ,
where Y �

L YL = BL is the Cholesky decomposition of the matrix BL. An explicit
computation of the matrix ZL reveals that it is tridiagonal. In particular, the
principal submatrix of ZL obtained by deleting the first row and first column is
a tridiagonal Toeplitz matrix, which we refer to as TL−1.

Theorem 2. For b > 1, Db is
(
1+ 2b

3/2

b−1

)
-competitive for 1 || ∑

wjCj . Moreover,
for all b > 1 this bound is tight, even for unit weight instances. In particular, for
b = 3 the competitive ratio is 1 + 3

√
3 ≈ 6.196.

Proof sketch. Due to Lemma 3, it only remains to bound ρL := supx∈RL
x�ALx
x�BLx

.
As described above, we can express ρL as the largest eigenvalue of the matrix ZL,
whose principal submatrix TL−1 is a tridiagonal Toeplitz matrix. This has
−2/(b−1) on the main diagonal and

√
b/(b−1) on both adjacent diagonals. We show

that the largest eigenvalue of ZL converges to the same value as the largest eigen-
value of TL−1, which has the closed form −2

b−1 + 2
√

b
b−1 · cos π

L

L→∞−−−−→ −2
b−1 + 2

√
b

b−1 .

Therefore, we obtain by Lemma 3 that Db is
(
1 + 2b

3/2

b−1

)
-competitive. This ratio

is minimized for b = 3, yielding the desired bound.
For the tightness part, we define the vector xL ∈ R

L
≥0 by

xL,� = 2(Lb�−1(b − 1))−1/2 · max
(

0,
√

b · sin
((− 1)π

L

)
− sin

(π

L

))

, ∀	 ∈ [L],

and show that x�
LALxL

x�
LBLxL

converges to 2(
√

b−1)
b−1 as L → ∞. The above formula

was obtained by transforming the eigenvector belonging to λmax(TL−1). Then,
for t > 0 and ε > 0 we construct an instance with nL,� = t · xL,�� jobs of unit

254 S. Jäger et al.

weight and processing times equal to b�+ε, for 	 = 1, . . . , L, ordered in such a way
that in each round, the jobs that finish are executed after all failed probings.
A careful analysis of the weighted mutual delays Δjk shows that Db/OPT =
2b

b−1 + b · n�
LALnL+a�

LnL

n�
LBL nL+b�

LnL

+ oε→0(1) for some vectors aL, bL ∈ R
L. Finally, the

result follows by letting ε → 0 and t → ∞ and using nL = t(xL + ot→∞(1)). ��

4.2 The Randomized b-scaling Strategy

We now consider the randomized variant Rb of the strategy Db, in which jobs
are ordered according to a random permutation Σ and probed for wjb

q+Ξ in
round q ∈ Z, with Ξ ∼ U([0, 1]). As in the analysis of the deterministic strategy,
we start with a lemma giving an overestimator of Δjk for jobs j and k such
that sj ≤ sk. This time, our overestimator is not piecewise linear in sj and sk

anymore, but depends on a concave function applied to the ratio sk

sj
≥ 1. The

next lemma follows from standard calculations involving integrals of the form
∫ β

α
bξ dξ = bβ−bα

log b and case distinctions on the rounds in which j and k complete.

Lemma 4. Let f(α) := 1+α
2 + 2

log b + α−1
2 log b · (1 − log(α)) for α ∈ [1, b]. For all

j
= k such that sj ≤ sk it holds

E[Δjj] = w2
j sj ·

(
1+

1
log b

)
≤ w2

j sj ·f(1) and E[Δjk] = wjwksj ·f
(

min
(
b,

sk

sj

))

.

The difficulty of proving the main result of this subsection resides in the
fact that we cannot reduce to a worst-case instance in which all Smith ratios
are integer powers of b. Instead, we push the technique used for Theorem 2 to
the limit, by partitioning the set of jobs according to the interval of the form
[bi/K , b(i+1)/K) containing their Smith ratio, and letting K → ∞. This leads to
the analysis of a Toeplitz matrix which is not tridiagonal anymore but has a
bandwitdth of 2K − 1. While the maximum eigenvalue of this matrix does not
have a closed-form expression for K > 1, its limit for L → ∞ can be computed
using the Fourier series associated with this matrix.

Theorem 4. For every b > 1, Rb is
√

b+2b−1√
b log(b)

-competitive for 1 || ∑
wjCj .

Moreover, for all b > 1 this bound is tight, even for unit weight instances. In
particular, for b ≈ 8.16 the competitive ratio is ≈ 3.032.

Proof sketch. For K ∈ N, let β = b1/K . We group the set of all jobs into sets
Jk = {j ∈ [n] : βk ≤ sj < βk+1} for all k ∈ Z. Using Lemma 4 and calculations
similar to those used in the proof of Theorem 2, we show that

Rb(p,w)
OPT(p,w)

≤ β
(
f(β) + λmax(Z)

)
,

where Z :=
∑K−1

i=1 (f(βi+1) − f(βi))Zi and Zi is a sparse symmetric matrix
having non-zero entries only on its ±ith and ±(i − 1)th superdiagonals for all

Competitive Kill-and-Restart and Preemptive Strategies 255

i ∈ [K − 1]. The principal submatrix of Z obtained by removing its first row
and column is a Toeplitz matrix T of size L × L. Then, we show by using a
Schur complement that the above bound is smaller than

√
b+2b−1√
b log(b)

when both L

and K grow to ∞, with L/K → ∞. To construct a matching lower bound on
the competitive ratio, we have to use an approximate eigenvector ẑ ∈ R

L of T
because no closed form is available if K > 1. We set z� := (L+1

2)−1/2 sin
(

�π
L+1

)

for 	 ∈ [L] and show that ẑ�T ẑ/‖ẑ‖2 L→∞−−−−→ λmax(T) by using the Fourier series
associated with T . The rest of the proof mimics the steps used in in Theorem 2,
where b is replaced by β = b1/K and we let K → ∞. ��

5 Weighted Shortest Elapsed Time First

In this we consider the online time model, where each job j arrives at its release
date rj and is not known before that time. Thus, an instance for our problem
is now given by a triple I = (p,w, r) of processing times, weights, and release
dates of all jobs. Intuitively, the classical Weighted Shortest Elapsed Time First
(WSETF) rule is the limit for ε → 0 of the algorithm that divides the time
into time slices of length ε and in each time slice processes a job with minimum
ratio of elapsed processing time over weight. To formalize this limit process we
allow fractional schedules S that, at every point in time t, assign each job j a
rate yS

j (t) ∈ [0, 1] so that
∑n

j=1 yS
j (t) ≤ 1 for all t ∈ R≥0 and yS

j (t) = 0 if t < rj or
t > CS

j (I), where CS
j (I) is the smallest t such that Y S

j (I, t) :=
∫ t

0
yS

j (s) ds ≥ pj .
At any time t let J(t) be the set of all released and unfinished jobs, and let
A(t) be the set of all jobs from J(t) that currently have minimum ratio of
elapsed time over weight. Then WSETF sets the rate for all jobs j ∈ A(t)
to yWSETF

j (t) := wj/
(∑

k∈A(t) wk

)
and to 0 for all other jobs. In other words,

WSETF always distributes the available processor rate among the jobs in J(t)
so as to maximize minj∈J(t) Y WSETF

j (I, t)/wj .
The following gives the tight competitive ratio of WSETF for non-clairvoyant

online scheduling on a single machine.

Theorem 5. WSETF is 2-competitive for 1 | rj , pmtn | ∑
wjCj .

Proof sketch. To bound the optimal objective value from below, we consider the
mean busy times MS

j (I) :=
∫ ∞
0

t ·yS
j (t) dt of all jobs j in the optimal schedule. It

is well known [12,13] that the the sum of weighted mean busy times is minimized
by the Preemptive WSPT (PWSPT) rule, which always processes an available
job with smallest index (i.e. with smallest Smith ratio pj/wj). Therefore, it
suffices to show that

∑n
j=1 wj · CWSETF

j (I) ≤ 2 · ∑n
j=1 wj · MPWSPT

j (I).
For instances I0 with trivial release dates, the weighted delay of each job in

the WSETF schedule compared to the optimal WSPT schedule is exactly its
processing time multiplied with the total weight of jobs with larger indices, or

256 S. Jäger et al.

in other words, its weighted completion time is

wj · CWSETF
j (I0) = wj · CWSPT

j (I0) +
n∑

k=j+1

wk · pj (2)

= wj · MWSPT
j (I0) +

(
wj

2
+

n∑

k=j+1

wk

)

· pj

︸ ︷︷ ︸
(∗)

.

In order to extend this observation to instances I with release dates, we
define for each job j an auxiliary instance I(j) with trivial release dates and
relate the completion times of j in the WSETF and PWSPT schedules for I to
the completion times in the corresponding schedules for I(j). We then bound
the difference wj(CWSETF

j (I) − MPWSPT
j (I)) by an expression generalizing (∗).

To this end, we apply (Eq. 2) to the instance I(j) and use the fact that each
deviation of the PWSPT schedule from the WSPT schedule for the instance
without release dates increases the total weighted mean busy time. Finally, we
show that the sum of the obtained bounds over all jobs is equal to the sum of
weighted mean busy times in the PWSPT schedule. ��

6 Upper Bounds for More General Settings

In this section, we give upper bounds on the competitive ratio of the b-scaling
strategy for 1 | rj | ∑

wjCj and P || ∑
Cj . Let I = (p,w, r,m) denote an

instance on m identical parallel machines in which each job j has processing
time pj , weight wj and release date rj . The overall idea is to compare the sched-
ule of Db to schedules of WSETF and round-robin (RR) for the release date
and the parallel machine case, respectively, since, by Theorem 4 and [25], both
strategies are 2-competitive. To this end, we need to consider modified instances
with increased processing times and release dates. The following straightforward
lemma bounds the increase of the optimal costs under these modifications.

Lemma 5. Let I = (p,w, r,m) and I ′ = (p′,w, r′,m) be two instances with
p′ ≤ αp and r′ ≤ αr. Then, we have OPT(I ′) ≤ α · OPT(I).

For 1 | rj | ∑
wjCj we extend Db as follows: At the end of a probing, probe

the job with minimum rank and index that is released and not completed.

Theorem 5. Db is 2b4

2b2−3b+1 -competitive for 1 | rj | ∑
wjCj . In particular, for

b = 9+
√
17

8 , its performance guarantee is 107+51
√
17

32 ≈ 9.915.
We prove a slightly stronger result by bounding the ratio of Db(I) to the cost

of an optimal preemptive schedule for I.

Proof sketch. Let I = (p,w, r, 1) be an arbitrary instance. As a first step we
construct an auxiliary instance I ′ = (p′,w, r′, 1) as follows: We define processing
times pj ≤ p′

j ≤ bpj such that p′
j/wj = bqj with qj = �logb(pj/wj)�, i.e., all

Competitive Kill-and-Restart and Preemptive Strategies 257

Smith ratios in the instance I ′ are integer powers of b. Further, we define new
release dates r′

j ≥ rj by either setting r′
j to the end of the probing that runs

at rj in the schedule of I ′, whenever such a probing exists, or r′
j = rj otherwise.

By construction, we have r′
j ≤ b3

2b−1rj and p′
j ≤ bpj ≤ b3

2b−1pj for any job j.
Therefore, by Lemma 5, we have OPT(I ′) ≤ b3

2b−1OPT(I). Moreover, we obtain
Db(I) ≤ Db(I ′), as the sequence of probings in both schedules is the same and
the processing times in I ′ are longer.

Next, we consider another instance I ′′ = (p′′,w, r′, 1) with processing times
p′′

j := Y Db
j (I ′, CDb

j (I ′)) =
∑qj

i=−∞ bi = bqj+1

b−1 = b
b−1p′

j . We show inductively that,
by construction, at any completion time of a job j in the schedule of WSETF
for I ′′, all already released, not completed jobs with minimum rank qj were
probed by Db for an amount of wjb

qj . Therefore, by definition of I ′ and I ′′ we
have CDb

j (I ′) ≤ CWSETF
j (I ′′) and hence, Db(I ′) ≤ WSETF(I ′′). Altogether, we

obtain

Db(I) ≤ Db(I ′) ≤ WSETF(I ′′) ≤ 2OPT(I ′′)

≤ 2b
b − 1

OPT(I ′) ≤ 2b4

2b2 − 3b + 1
OPT(I),

applying Lemma 5 a second time. ��
For P || ∑

Cj we extend Db as follows: probe each job for bq in a list schedul-
ing manner. If at most m jobs remain, process each job on a distinct machine
until completion, otherwise increase q by 1 and repeat.

Theorem 6. Db is 3b2−b
b−1 -competitive for P || ∑

Cj . In particular, for b = 3+
√
6

3 ,
its performance guarantee is 5 + 2

√
6 ≈ 9.899.

Proof sketch. Let I = (p,1,0,m) be an instance and define a new instance
I ′ = (p′,1,0,m) with processing times p′

j = bqj where qj = �logb pj�. Note that
p′

j ≤ bpj and Db(I) ≤ Db(I ′). For the schedule of Db on I ′, let T ′
i (q) denote the

point in time, when the last probing of length bq on machine i ends.
Next, we define another instance I ′′ = (p′′,1,0,m), where the processing

times p′′
j are defined to be the exactly the elapsed time of j in the schedule of Db

for I ′ at its completion time. We consider the schedule of RR on I ′′ and denote
by T ′′(q) the point in time where the elapsed time of all non-completed jobs is
exactly bq+1

b−1 . By induction, we show that T ′′(q) = 1
m

∑m
i=1 T ′

i (q). This identity
allows us to relate CDb

j (I ′) and CRR
j (I ′′). In particular, we obtain

∑
j CDb

j (I ′) ≤
∑

j CRR
j (I ′′) + p′

j . The 2-competitiveness of RR and Lemma 5 yield

Db(I) ≤ Db(I ′) ≤ RR(I ′′) +
∑

j

p′
j ≤ 2OPT(I ′′) + OPT(I ′)

≤
(2b

b − 1
+ 1

)
OPT(I ′) ≤

(2b
b − 1

+ 1
)

· b · OPT(I).

��

258 S. Jäger et al.

7 Conclusion

We studied kill-and-restart as well as preemptive strategies for the problem of
minimizing the sum of weighted completion times and gave a tight analysis of
the deterministic and randomized version of the natural b-scaling strategy for
1 || ∑

wjCj as well as of WSETF for 1 | rj , pmtn | ∑
wjCj .

We hope that this work might lay a basis for obtaining tight bounds on
the performance of the b-scaling strategy for more general settings such as non-
trivial release dates and parallel machines. Moreover, we think that the class of
kill-and-restart strategies combines the best of two worlds. On the one hand,
they allow for interruptions leading to small competitive ratios in contrast to
non-preemptive algorithms, on the other hand, they reflect the non-preemptive
property of only completing a job if it has been processed as a whole.

Acknowledgements. We thank Sungjin Im for helpful comments on an earlier version
of this manuscript.

References

1. Afrati, F., et al.: Approximation schemes for minimizing average weighted comple-
tion time with release dates. In: 40th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pp. 32–43. IEEE (1999). https://doi.org/10.1109/
SFFCS.1999.814574

2. Anderson, E.J., Potts, C.N.: Online scheduling of a single machine to minimize
total weighted completion time. Math. Oper. Res. 29(3), 686–697 (2004). https://
doi.org/10.1287/moor.1040.0092

3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf.
Comput. 106(2), 234–252 (1993). https://doi.org/10.1006/inco.1993.1054

4. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Algo-
rithms 3(4), 39:1–39:14 (2007). https://doi.org/10.1145/1290672.1290676

5. Bansal, N., Pruhs, K.: Server scheduling in the weighted �p-norm. In: Farach-
Colton, Martín (ed.) LATIN 2004. LNCS, vol. 2976, pp. 434–443. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24698-5_47

6. Beaumont, O., Bonichon, N., Eyraud-Dubois, L., Marchal, L.: Minimizing weighted
mean completion time for malleable tasks scheduling. In: 26th International Sym-
posium on Parallel and Distributed Processing (IPDPS), pp. 273–284. IEEE (2012).
https://doi.org/10.1109/ipdps.2012.34

7. Becchetti, L., Leonardi, S.: Nonclairvoyant scheduling to minimize the total flow
time on single and parallel machines. J. ACM 51(4), 517–539 (2004). https://doi.
org/10.1145/1008731.1008732

8. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-
Wesley Publishing Company, Boston (1967)

9. Epstein, L., van Stee, R.: Lower bounds for on-line single-machine schedul-
ing. Theor. Comput. Sci. 299(1), 439–450 (2003). https://doi.org/10.1016/S0304-
3975(02)00488-7

10. Feldmann, A., Sgall, J., Teng, S.H.: Dynamic scheduling on parallel machines.
Theor. Comput. Sci. 130(1), 49–72 (1994). https://doi.org/10.1016/0304-
3975(94)90152-X

https://doi.org/10.1109/SFFCS.1999.814574
https://doi.org/10.1109/SFFCS.1999.814574
https://doi.org/10.1287/moor.1040.0092
https://doi.org/10.1287/moor.1040.0092
https://doi.org/10.1006/inco.1993.1054
https://doi.org/10.1145/1290672.1290676
https://doi.org/10.1007/978-3-540-24698-5_47
https://doi.org/10.1109/ipdps.2012.34
https://doi.org/10.1145/1008731.1008732
https://doi.org/10.1145/1008731.1008732
https://doi.org/10.1016/S0304-3975(02)00488-7
https://doi.org/10.1016/S0304-3975(02)00488-7
https://doi.org/10.1016/0304-3975(94)90152-X
https://doi.org/10.1016/0304-3975(94)90152-X

Competitive Kill-and-Restart and Preemptive Strategies 259

11. Garg, N., Gupta, A., Kumar, A., Singla, S.: Non-clairvoyant precedence constrained
scheduling. In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th
International Colloquium on Automata, Languages, and Programming (ICALP).
LIPIcs, vol. 132, pp. 63:1–63:14 (2019). https://doi.org/10.4230/LIPIcs.ICALP.
2019.63

12. Goemans, M.X.: A supermodular relaxation for scheduling with release dates. In:
Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO 1996. LNCS,
vol. 1084, pp. 288–300. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61310-2_22

13. Goemans, M.X.: Improved approximation algorthims for scheduling with release
dates. In: Proceedings of the Eighth Annual ACM-SIAM Symposium Discrete
Algorithms (SODA), pp. 591–598. SIAM (1997)

14. Hoogeveen, J.A., Vestjens, A.P.A.: Optimal on-line algorithms for single-machine
scheduling. In: Cunningham, W.H., McCormick, S.T., Queyranne, M. (eds.) IPCO
1996. LNCS, vol. 1084, pp. 404–414. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61310-2_30

15. Im, S., Kulkarni, J., Munagala, K.: Competitive algorithms from competitive equi-
libria: non-clairvoyant scheduling under polyhedral constraints. J. ACM 65(1),
1–33 (2017). https://doi.org/10.1145/3136754

16. Im, S., Kulkarni, J., Munagala, K., Pruhs, K.: SelfishMigrate: A scalable algorithm
for non-clairvoyantly scheduling heterogeneous processors. In: 55th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 531–540 (2014).
https://doi.org/10.1109/FOCS.2014.63

17. Jäger, S., Sagnol, G., Schmidt genannt Waldschmidt, D., Warode, P.: Competitive
kill-and-restart and preemptive strategies for non-clairvoyant scheduling (2022).
https://doi.org/10.48550/ARXIV.2211.02044

18. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM
47(4), 617–643 (2000). https://doi.org/10.1145/347476.347479

19. Kao, M.Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algorithms.
J. Alg. 29(1), 142–164 (1998). https://doi.org/10.1006/jagm.1998.0959

20. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an opti-
mal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79
(1996). https://doi.org/10.1006/inco.1996.0092

21. Kim, J., Chwa, K.: Non-clairvoyant scheduling for weighted flow time. Inf. Process.
Lett. 87(1), 31–37 (2003). https://doi.org/10.1016/S0020-0190(03)00231-X

22. Labetoulle, J., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Preemptive
scheduling of uniform machines subject to release dates. In: Pulleyblank, W.R.
(ed.) Progress in Combinatorial Optimization, pp. 245–261. Academic Press (1984).
https://doi.org/10.1016/B978-0-12-566780-7.50020-9

23. Lindermayr, A., Megow, N.: Permutation predictions for non-clairvoyant schedul-
ing. In: Proceedings of the 34th Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 357–368 (2022). https://doi.org/10.1145/3490148.
3538579

24. Megow, N., Vredeveld, T.: A tight 2-approximation for preemptive stochastic
scheduling. Math. Oper. Res. 39(4), 1297–1310 (2014). https://doi.org/10.1287/
moor.2014.0653

25. Motwani, R., Phillips, S., Torng, E.: Nonclairvoyant scheduling. Theor. Comput.
Sci. 130(1), 17–47 (1994). https://doi.org/10.1016/0304-3975(94)90151-1

26. Rinnooy Kan, A.H.G.: Machine Scheduling Problems: Classification, Complexity
and Computations. Martinus Nijhoff (1976). https://doi.org/10.1007/978-1-4613-
4383-7

https://doi.org/10.4230/LIPIcs.ICALP.2019.63
https://doi.org/10.4230/LIPIcs.ICALP.2019.63
https://doi.org/10.1007/3-540-61310-2_22
https://doi.org/10.1007/3-540-61310-2_22
https://doi.org/10.1007/3-540-61310-2_30
https://doi.org/10.1007/3-540-61310-2_30
https://doi.org/10.1145/3136754
https://doi.org/10.1109/FOCS.2014.63
https://doi.org/10.48550/ARXIV.2211.02044
https://doi.org/10.1145/347476.347479
https://doi.org/10.1006/jagm.1998.0959
https://doi.org/10.1006/inco.1996.0092
https://doi.org/10.1016/S0020-0190(03)00231-X
https://doi.org/10.1016/B978-0-12-566780-7.50020-9
https://doi.org/10.1145/3490148.3538579
https://doi.org/10.1145/3490148.3538579
https://doi.org/10.1287/moor.2014.0653
https://doi.org/10.1287/moor.2014.0653
https://doi.org/10.1016/0304-3975(94)90151-1
https://doi.org/10.1007/978-1-4613-4383-7
https://doi.org/10.1007/978-1-4613-4383-7

260 S. Jäger et al.

27. Shmoys, D.B., Wein, J., Williamson, D.P.: Scheduling parallel machines on-
line. SIAM J. Comput. 24(6), 1313–1331 (1995). https://doi.org/10.1137/
S0097539793248317

28. Sitters, R.: Competitive analysis of preemptive single-machine scheduling. Oper.
Res. Lett. 38(6), 585–588 (2010). https://doi.org/10.1016/j.orl.2010.08.012

29. Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Logist. Q.
3(1–2), 59–66 (1956). https://doi.org/10.1002/nav.3800030106

30. van Stee, R., La Poutré, H.: Minimizing the total completion time on-line on a
single machine, using restarts. J. Alg. 57(2), 95–129 (2005). https://doi.org/10.
1016/j.jalgor.2004.10.001

31. Vestjens, A.P.A.: On-line machine scheduling. Ph.D. thesis, Technische Univer-
siteit Eindhoven (1997). https://doi.org/10.6100/IR500043, https://pure.tue.nl/
ws/files/1545064/500043.pdf

32. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity.
In: 18th Annual IEEE Symposium on Foundations of Computer Science (SFCS),
pp. 222–227 (1977). https://doi.org/10.1109/SFCS.1977.24

https://doi.org/10.1137/S0097539793248317
https://doi.org/10.1137/S0097539793248317
https://doi.org/10.1016/j.orl.2010.08.012
https://doi.org/10.1002/nav.3800030106
https://doi.org/10.1016/j.jalgor.2004.10.001
https://doi.org/10.1016/j.jalgor.2004.10.001
https://doi.org/10.6100/IR500043
https://pure.tue.nl/ws/files/1545064/500043.pdf
https://pure.tue.nl/ws/files/1545064/500043.pdf
https://doi.org/10.1109/SFCS.1977.24

A Deterministic Better-than-3/2
Approximation Algorithm for Metric TSP

Anna R. Karlin, Nathan Klein(B), and Shayan Oveis Gharan

University of Washington, Seattle, USA
{karlin,nwklein,shayan}@cs.washington.edu

Abstract. We show that the max entropy algorithm can be derandom-
ized (with respect to a particular objective function) to give a determin-
istic 3/2−ε approximation algorithm for metric TSP for some ε > 10−36.

To obtain our result, we apply the method of conditional expectation
to an objective function constructed in prior work which was used to cer-
tify that the expected cost of the algorithm is at most 3/2− ε times the
cost of an optimal solution to the subtour elimination LP. The proof in
this work involves showing that the expected value of this objective func-
tion can be computed in polynomial time (at all stages of the algorithm’s
execution).

1 Introduction

One of the most fundamental problems in combinatorial optimization is the
traveling salesperson problem (TSP), formalized as early as 1832 (c.f. [App+07,
Ch 1]). In an instance of TSP we are given a set of n cities V along with their
pairwise symmetric distances, c : V ×V → R≥0. The goal is to find a Hamiltonian
cycle of minimum cost. In the metric TSP problem, which we study here, the
distances satisfy the triangle inequality. Therefore, the problem is equivalent to
finding a closed Eulerian connected walk of minimum cost.

It is NP-hard to approximate TSP within a factor of 123
122 [KLS15]. An algo-

rithm of Christofides-Serdyukov [Chr76,Ser78] from four decades ago gives a
3
2 -approximation for TSP. Over the years there have been numerous attempts
to improve the Christofides-Serdyukov algorithm and exciting progress has been
made for various special cases of metric TSP, e.g., [OSS11,MS11,Muc12,SV12,
HNR21,KKO20,HN19,Gup+21]. Recently, [KKO21] gave the first improvement
for the general case by demonstrating that the so-called “max entropy” algorithm
of the third author, Saberi, and Singh [OSS11] gives a randomized 3

2 − ε approx-
imation for some ε > 10−36.

The method introduced in [KKO21] exploits the optimum solution to the
following linear programming relaxation of metric TSP studied by [DFJ59,HK70,
GB93], also known as the subtour elimination LP:

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 261–274, 2023.
https://doi.org/10.1007/978-3-031-32726-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_19&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_19

262 A. R. Karlin et al.

min
∑

u,v

x{u,v}c(u, v)

s.t.,
∑

u

x{u,v} = 2 ∀v ∈ V,

∑

u∈S,v/∈S

x{u,v} ≥ 2, ∀S � V, S �= ∅

x{u,v} ≥ 0 ∀u, v ∈ V.

(1)

However, [KKO21] had two shortcomings. First, it did not show that the inte-
grality gap of the subtour elimination polytope is bounded below 3

2 . Second, it
was randomized, and the analysis in that work was by nature “non-constructive”
in the sense that it used the optimal solution; thus it was not clear how to to
derandomize it using the method of conditional expectation. Other methods of
derandomization seem at the moment out of reach and may require algorithmic
breakthroughs. A followup work, [KKO22], remedied the first shortcoming by
showing an improved integrality gap. While it did not address the question of
derandomization, a byproduct of that work is an analysis of the max entropy
algorithm which is in principle polynomially-time computable as it avoids look-
ing at OPT. The purpose of the present work is to show that this analysis can
indeed be done in polynomial-time, from which the following can be deduced
(remedying the second shortcoming of [KKO21]):

Theorem 1. Let x be a solution to LP (1) for a TSP instance. For some abso-
lute constant ε > 10−36, there is a deterministic algorithm (in particular, a
derandomized version of max entropy) which outputs a TSP tour with cost at
most 3

2 − ε times the cost of x.

Thus, this work in some sense completes the exploratory program concerning
whether the max entropy algorithm for TSP beats 3/2 (initiated by [OSS11] in
2011), as now the above two weaknesses of [KKO21] have been addressed. Of
course, much work remains in determining the true approximation factor of the
algorithm; in this regard we are only at the tip of the iceburg.

Using the recent exciting work of Traub, Vygen, and Zenklusen reducing path
TSP to TSP [TVZ20] our theorem also implies that there is a deterministic 3

2 −ε
approximation algorithm for path TSP.

1.1 High Level Proof Overview

The high level strategy for derandomizing the max entropy algorithm is to use
the method of conditional expectation on an objective function given by the
analysis in [KKO22].

The max entropy algorithm, similar to Christofides’ algorithm, first selects a
spanning tree and then adds a minimum cost matching on the odd vertices of the
tree. While Christofides selects a minimum cost spanning tree, here the spanning
tree is sampled from a distribution. In particular, after solving the natural LP

A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP 263

relaxation for the problem to obtain a fractional solution x, a tree is sampled
from the distribution μ which has maximal entropy subject to the constraint
PT∼μ [e ∈ T] = xe for all e ∈ E (with possibly some exponentially small error in
these constraints). [KKO21,KKO22] construct a so-called “slack” vector which
is used to show the expected cost of the matching (over the randomness of the
trees) is at most 1

2 − ε times the cost of an optimal solution to the LP. Given
a solution x to LP (1) these works imply that there is a random vector m as a
function of the tree T ∼ μ such that:

(1) The cost of the minimum cost matching on the odd vertices of tree T is at
most c(m) (with probability 1), and

(2) ET∼μ [c(m)] ≤ (12 − ε)c(x).

Let C = ET∼μ [c(T) + c(m)]. This will be the objective function to which we will
apply the method of conditional expectation. Since the expected cost of the tree
T is c(x), as PT∼μ [e ∈ T] = xe, by (2) C is at most (32 − ε)c(x). Since by (1)
for a given tree T , c(T) + c(m) is an upper bound on the cost of the output
of the algorithm (with probability 1), this shows that the expected cost of the
algorithm is bounded strictly below 3/2.

Ideally, one would like μ to have polynomial sized support. Then one could
simply check the cost of the output of the algorithm on every tree in the sup-
port, and the above would guarantee that some tree gives a better-than-3/2
approximation. However, the max entropy distribution can have exponential
sized support, and it’s not clear how to find a similarly behaved distribution
with polynomial sized support.

Instead, let Tpartial be the family of all partial settings of the edges of the
graph to 0 or 1 where the edges set to 1 are acyclic. For Set = {Xe1 , . . . , Xei

} ∈
Tpartial, and 1 ≤ j ≤ i, we use Xej

to indicate whether ej is set to 1 or 0.
The method of conditional expectations is then used as follows: Process the

edges in an arbitrary order e1, . . . , em and for each edge ei:

(1) Assume we inductively have chosen a valid assignment Set ∈ Tpartial to edges
e1, . . . , ei−1.

(2) Let Set+ = Set ∪ {Xei
= 1}. Compute C+ = ET∼μ [c(T) + c(m) | Set+].

Similarly, let Set− = Set ∪ {Xei
= 0} and compute

C− = ET∼μ [c(T) + c(m) | Set−].
(3) Let Set ← Set+ or Set ← Set− depending on which quantity is smaller.

After a tree is obtained, add the minimum cost matching on the odd vertices
of T . The resulting algorithm is shown in Algorithm 3 (see Algorithm 2 for its
instantiation in a simple case).

As C ≤ (32 − ε)c(x), this algorithm succeeds with probability 1. We only need
to show it can be made to run in polynomial time. Since we can compute the
expected cost of the tree conditioned on Set using linearity of expectation and
the matrix tree theorem (Sect. 2.2), it remains to show that ET∼μ [c(m)|Set] can
be computed deterministically and efficiently for any Set ∈ Tpartial.

Key Contributions. The key contribution of this paper is to show how to do
this computation efficiently, which is based on two observations:

264 A. R. Karlin et al.

(1) The first is that the vector m (whose cost upper bounds the cost of the
minimum cost matching on the odd vertices of the tree) can be written as
the (weighted) sum of indicators of events that depend on the sampled tree
T , and each of these events happens only when a constant number of (not
necessarily disjoint) sets of edges have certain parities or certain sizes.

(2) The second is that the probability of any such event can be deterministically
computed in polynomial time by evaluating the generating polynomial of all
spanning trees at certain points in C

E , see Lemma 10.

Structure of the Paper. After reviewing some preliminaries, in Sect. 3 we
review the matrix tree theorem and show (as a warmup) how to compute the
probability two (not necessarily disjoint) sets of edges both have an even number
of edges in the sampled tree. In Sect. 4, we then give a complete description and
proof of a deterministic algorithm for the special “degree cut” case of TSP. Unlike
the subsequent sections of the paper, Sect. 4 is self-contained and thus directed
towards readers looking for more high-level intuition or those not familiar with
[KKO21,KKO22]. In Sect. 5 we show (2) from above and give the deterministic
algorithm in the general case. The remainder of the paper then involves proving
(1) for the general definition of m from [KKO21,KKO22].

2 Preliminaries

2.1 Notation

For a set of edges A ⊆ E and (a tree) T ⊆ E, we write AT = |A ∩ T |. For a
tree T , we will say a cut S ⊆ V is odd in T if δ(S)T is odd and even in T
otherwise. If the tree is understood we will simply say even or odd. We use
δ(S) = {{u, v} ∈ E : |{u, v} ∩ S| = 1} to denote the set of edges that leave S,
and E(S) = {{u, v} ∈ E : |{u, v} ∩ S| = 2} to denote the set of edges inside of
S.

For a set A ⊆ E and a vector x ∈ R
|E| we write x(A) :=

∑
e∈A xe.

2.2 Randomized Algorithm of [KKO21]

Let x0 be an optimum solution of LP (1). Without loss of generality we assume
x0 has an edge e0 = {u0, v0} with x0

e0
= 1, c(e0) = 0. (To justify this, consider

the following process: given x0, pick an arbitrary node, u, split it into two nodes
u0, v0 and set x{u0,v0} = 1, c(e0) = 0 and assign half of every edge incident to u
to u0 and the other half to v0.)

Let E0 = E ∪ {e0} be the support of x0 and let x be x0 restricted to E and
G = (V,E). By Lemma 1 x0 restricted to E is in the spanning tree polytope
(2) of G. We write G = (V,E, x) to denote the (undirected) graph G together
with special vertices u0, v0 and the weight function x : E → R≥0. Similarly, let
G0 = (V,E0, x

0) and let G/e0 = G0/{e0}, i.e. G/e0 is the graph G0 with the
edge e0 contracted.

A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP 265

Definition 1. For a vector λ : E → R≥0, a λ-uniform distribution μλ over
spanning trees of G = (V,E) is a distribution where for every spanning tree
T ⊆ E, Pμλ

[T] =
∏

e∈T λe∑
T ′

∏
e∈T ′ λe

.

Theorem 2 ([Asa+10]). Let z be a point in the spanning tree polytope (see
(2)) of a graph G = (V,E). For any ε > 0, a vector λ : E → R≥0 can be found
such that the corresponding λ-uniform spanning tree distribution, μλ, satisfies

∑

T∈T :T�e

Pμλ
[T] ≤ (1 + ε)ze, ∀e ∈ E,

i.e., the marginals are approximately preserved. In the above T is the set of all
spanning trees of (V,E). The algorithm is deterministic and running time is
polynomial in n = |V |, − logmine∈E ze and log(1/ε).

[KKO22] showed that the following (randomized) max entropy algorithm has
expected cost of the output is at most (32 − ε)c(x).

Algorithm 1. (Randomized) Max Entropy Algorithm for TSP
Find an optimum solution x0 of Eq. (1), and let e0 = {u0, v0} be an edge with
x0

e0 = 1, c(e0) = 0.
Let E0 = E ∪ {e0} be the support of x0 and x be x0 restricted to E and G = (V, E).
Find a vector λ : E → R≥0 such that for any e ∈ E, PT∼μλ [e ∈ T] = xe(1 ± 2−n).
Sample a tree T ∼ μλ.
Let M be the minimum cost matching on odd degree vertices of T .
Output T ∪ M .

2.3 Polyhedral Background

For any graph G = (V,E), Edmonds [Edm70] gave the following description for
the convex hull of spanning trees of a graph G = (V,E), known as the spanning
tree polytope.

z(E) = |V | − 1, z(E(S)) ≤ |S| − 1 ∀S ⊆ V, ze ≥ 0 ∀e ∈ E. (2)

Edmonds [Edm70] proved that the extreme point solutions of this polytope are
the characteristic vectors of the spanning trees of G.

Lemma 1 ([KKO21, Fact 2.1]). Let x0 be a feasible solution of (1) such that
x0

e0
= 1 with support E0 = E ∪{e0}. Let x be x0 restricted to E; then x is in the

spanning tree polytope of G = (V,E).

Since c(e0) = 0, the following fact is immediate.

Lemma 2. Let G = (V,E, x) where x is in the spanning tree polytope. If μ is
any distribution of spanning trees with marginals x then ET∼μ [c(T ∪ e0)] = c(x).

266 A. R. Karlin et al.

To bound the cost of the min-cost matching on the set O(T) of odd degree
vertices of the tree T , we use the following characterization of the O(T)-join
polyhedron due to Edmonds and Johnson [EJ73].

Proposition 1. For any graph G = (V,E), cost function c : E → R+, and a
set O ⊆ V with an even number of vertices, the minimum weight of an O-join
equals the optimum value of the following integral linear program.

min c(y) s.t.
y(δ(S)) ≥ 1 S ⊆ V, |S ∩ O| odd ye ≥ 0 ∀e ∈ E

(3)

3 Computing Probabilities

The deterministic algorithm depends on the computation of various probabilities
and conditional expectations. In this section (and additionally later in Sect. 5),
we show to do these calculations efficiently.

3.1 Notation

Let BE be the set of all probability measures on the Boolean algebra 2|E|. Let
μ ∈ BE . The generating polynomial gμ : R[{ze}e∈E] of μ is defined as follows:

gμ(z) :=
∑

S

μ(S)
∏

e∈S

ze.

3.2 Matrix Tree Theorem

Let G = (V,E) with |V | = n. For e = (u, v) we let Le = (1u − 1v)(1u − 1v)T be
the Laplacian of e. Recall Kirchhoff’s matrix tree theorem:

Theorem 3 (Matrix tree theorem). For a graph G = (V,E) let gT ∈
R[ze1 , . . . , zem

] =
∑

T∈T zT be the generating polynomial of the spanning trees
of G.

Then, we have

gT ({ze}e∈E) =
1
n
det(

∑

e∈E

zeLe + 11T /n).

Given a vector λ ∈ R
|E| and a set S ⊆ E, let λS :=

∏
i∈S λi. Recall that

the λ-uniform distribution μλ is the probability distribution over spanning trees
where the probability of every tree T is λT . Then the generating polynomial of
μλ is

gμλ
(z) =

∑

T∈T
λT zT = gT ({λeze}e∈E) =

1
n
det

(
∑

e∈E

zeλeLe + 11T /n

)

A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP 267

and can be evaluated at any z ∈ C
E efficiently using a determinant computation.

Thus we can compute PT∼μ [e ∈ T] by computing the sum of the probabilities
of trees in the graph G/{e}, i.e. the graph with e contracted, as follows:

PT∼μ [e ∈ T] = 1 − PT∼μ [e /∈ T] = 1 −
∑

T∈T :e/∈T

λT

where to compute the sum in the RHS we evaluate gμλ
at ze = 0, zf = 1 for all

f �= e. Thus,

Lemma 3. Given a λ-uniform distribution μλ over spanning trees, for every
edge e, we can compute PT∼μλ

[e ∈ T] in polynomial time.

Given some Set ∈ Tpartial, we contract each edge e with Xe = 1 in Set
and delete each edge e with Xe = 0 in Set. Let G′ be the resulting graph with
n′ vertices, with corresponding λ′

e ∝ λe for all e ∈ G′ normalized such that∑
T ′∈G′ λ′T = 1.

Remark 1. A vector λ ∈ R
|E| is normalized by setting λ′

e = λe/
(∑

T λT
)1/n−1

i.e., λ′
e = λe/gT ({λe}e∈E)1/n−1. Thus at the cost of another application of the

matrix-tree theorem, we assume without loss of generality that we are always
dealing with λ values that are normalized.

Putting the previous facts together, we obtain

Lemma 4. Given a λ-uniform distribution μλ and some Set ∈ Tpartial, we can
compute a vector λ′ such that μλ′ = μλ|Set.

3.3 Computing Parities in a Simple Case

Lemma 5. Let A,B ⊆ E and μλ be a λ-uniform distribution over spanning
trees. Then, we can compute PT∼μλ

[AT , BT even] in polynomial time.

Proof. First observe that

I {AT , BT even} =
1
4
(1 + (−1)AT + (−1)BT + (−1)((A�B)∪(B�A))T)

One can easily check that if AT and BT are even, this is 1, and otherwise it is 0.
To compute PT∼μλ

[A and B even in T] it is enough to compute the expected
value of this indicator. By linearity of expectation it is therefore enough to
compute the expectation of (−1)FT for any set F ⊆ E. We can do this using
Theorem 3. Setting zF

e = −1 if e ∈ F and zF
e = +1 otherwise, we exactly have:

gμλ
(zF) =

∑

T∈T
(−1)FT λT = ET∼μλ

[
(−1)FT

]
.

The lemma follows.

268 A. R. Karlin et al.

Remark 2. We can use the same approach to compute PT∼μλ
[AT odd, BT even]

or the probability that both are odd. All we need to do is to multiply (−1)AT

with a −1 if AT needs to be odd (and similarly for BT), and (−1)((A�B)∪(B�A))T

with a −1 if we are looking for different parities in AT , BT .

Given some Set ∈ Tpartial, by Lemma 4 we can compute μλ′ = μλ|Set. Apply-
ing the above lemma to μλ′ , it follows (after appropriately updating the parities
to account for edges set to 1 in Set):

Corollary 1. Let A,B ⊆ E. We can compute PT∼μ [A and B even in T | Set]
in polynomial time.

4 A Deterministic Algorithm in the Degree Cut Case

As a warmup, in this section we show how to implement the deterministic algo-
rithm for the so-called “degree cut case,” i.e., when for every set of vertices S
with 2 ≤ |S| ≤ n − 2 we have x(δ(S)) ≥ 2 + η for some absolute constant η > 0.
See Algorithm 2.

Algorithm 2 . A Deterministic Approximation Algorithm for Metric TSP in
the Degree Cut Case

1: Given a solution x0 of the LP (1), with an edge e0 with xe0 = 1.
2: Let G be the support graph of x.
3: Find a vector λ : E → R≥0 such that for any e ∈ E, PT∼μλ [e ∈ T] = xe(1 ± 2−n)

(see Section 2.2).
4: Initialize Set := ∅
5: while there exists e �= e0 not set in Set do
6: Let Set+ := Set ∪ {Xe = 1} and let Set− := Set ∪ {Xe = 0};
7: if ET∼μλ

[
c(T) + c(m) | Set+

] ≤ ET∼μλ

[
c(T) + c(m) | Set−]

(m from Defini-
tion 2) then

8: Set := Set+;
9: else

10: Set := Set−;
11: end if
12: end while
13: Return T = {e : Xe = 1 in Set} together with min cost matching on odd degree

vertices of T .

Construction of the Matching Vector. We describe a simple construction
for the matching vector m : T → R

|E| for the degree cut case. It will ensure
that for a tree T , m is in the O(T)-Join polyhedron where O(T) is the set of
odd vertices of T (we emphasize that m is a function of T). Therefore, c(m) is
an upper bound on the cost of the minimum cost matching on the odd vertices
of T as desired.

A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP 269

Let p = 2 · 10−10 (note that we have not optimized this constant and in the
degree cut case it can be greatly improved). We say that an edge e = (u, v) is
good if
PT∼μ [u, v both even in T] ≥ p, where we say a vertex v is even in a tree T if
δ(v)T is even. The vector m will consist of the convex combination of two feasible
points in the O(T)-Join polyhedron, g and b (where g is for “good” edges and b
is for “bad” edges).

For a tree T and an edge e = (u, v) we let:

ge =

{
1

2+η xe If u and v are both even in T
1
2xe Otherwise

Lemma 6. g is in the O(T)-Join polyhedron.

Proof. First, consider any cut consisting of a single vertex v (or its complement).
If v is odd, we need to ensure that g(δ(v)) ≥ 1. If v is odd, then ge = xe/2 for
all e ∈ δ(v), so this follows from the fact that x(δ(v)) = 2.

Now consider any cut S with 2 ≤ |S| ≤ n−2. We now argue that g(δ(S)) ≥ 1
with probability 1. This follows from the fact that:

g(δ(S)) ≥ 1
2 + η

x(δ(S)) ≥ 1
2 + η

(2 + η) = 1,

where we use that every cut S with 2 ≤ |S| ≤ n − 2 has x(δ(S)) ≥ 2 + η.

We now design our second vector b. For a tree T and an edge e = (u, v) we
let:

be =

{
1+η
2+η xe If e is good
1

2+η xe If e is bad

We will crucially use the following:

Corollary 2 (Corollary of Theorem 5.14 from[KKO21]). Let v be a vertex.
Then, if Gv is the set of good edges adjacent to v, x(Gv) ≥ 1.

In [KKO21], it is shown that if xe is bounded away from 1/2, then e is a good
edge. Furthermore, for any two edges e and f adjacent to v with xe ≈ xf ≈ 1/2,
at least one is good. So, v can have only one bad edge which has fraction about
1/2, giving the above corollary (therefore it is even true that x(Gv) ≥ 3/2 − γ
for some small γ > 0).

Given this, we can show the following:

Lemma 7. b is in the O(T)-Join polyhedron.

Proof. For any non-vertex cut, similar to above, the O(T)-Join constraint is
easily satisfied. For a vertex cut v, we use that by the above theorem the x
weight of the set of good edges adjacent to v is at least 1. Therefore, b(v) ≥
1+η
2+η + 1

2+η = 1.

270 A. R. Karlin et al.

Definition 2 (Matching vector m in the degree cut case). Let m = αb+
(1 − α)g, for some 0 < α < 1 we choose in the next subsection. Since b and g
are both in the O(T)-Join polyhedron, so is m.

Lemma 8. For any good edge e, E [ge] ≤ (12 − ηp
4+2η)xe.

Proof. Let pe = PT∼μ [u, v even]. We can compute:

E [ge] =
(

pe

2 + η
+

1 − pe

2

)
xe ≤

(
p

2 + η
+

1 − p

2

)
xe =

(
1
2

− ηp

4 + 2η

)
xe,

as desired.

Therefore, for any good edge e,

E [me] ≤
(

α

(
1 + η

2 + η

)
+ (1 − α)

(
1
2

− ηp

4 + 2η

))
xe

For any bad edge e, we have

E [me] ≤
(

α

2 + η
+

1 − α

2

)
xe

To make the two equal, we set α = p
2+p . Therefore,

E [me] ≤
(

p/(2 + p)
2 + η

+
1 − p/(2 + p)

2

)
xe <

(
1
2

− pη

9

)
xe

for all edges e. Since η, p are absolute constants, this is at most (12 −ε)xe for some
absolute constant ε > 0. Therefore the randomized algorithm has expected cost
at most (32 − ε)c(x), which is enough to prove that Algorithm 2 deterministically
finds a tree plus a matching whose cost is at most (32 − ε)c(x). Thus the only
remaining question is the computational complexity of Algorithm 2, which we
address now.

Computing E [c(T) + c(m) | Set]. Now that we have explained the construction
of m, we observe that there is a simple deterministic algorithm to compute
E [c(T) + c(m) | Set] in polynomial time.

First, compute E [c(T) | Set]. By linearity of expectation it is enough to com-
pute P [e ∈ T | Set] for all e ∈ E. To do this, we first apply Lemma 4 to find λ′

such that μλ′ = μλ|Set and then apply Lemma 3.
Now to compute E [c(m) | Set], it suffices to compute E [me | Set] for any

Set ∈ Tpartial, P [e ∈ T | Set] and any e = (u, v). Given the definition of m, the
only event depending on the tree is the event P [u, v even | Set]. This can be
computed with Corollary 1.

A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP 271

Algorithm 3. A Deterministic Approximation Algorithm for Metric TSP

1: Given a solution x0 of the LP (1), with an edge e0 with xe0 = 1.
2: Let G be the support graph of x.
3: Find a vector λ : E → R≥0 such that for any e ∈ E, PT∼μλ [e ∈ T] = xe(1 ± 2−n)
4: Perform Preprocessing Steps 1, 2, 3, 4, 5, and 6
5: Initialize Set := ∅.
6: while there exists e �= e0 not set in Set do
7: Let Set+ := Set ∪ {Xe = 1} and let Set− := Set ∪ {Xe = 0};
8: Compute S+ = EET ∼ μλc(T) | Set+ +

∑
e∈E Ec(s∗)(e, Set+) + Ec(s)(e, Set+).

9: Compute S− = EET ∼ μλc(T) | Set− +
∑

e∈E Ec(s∗)(e, Set−) + Ec(s)(e, Set−).
10: If S+ ≤ S−, let Set := Set+. Otherwise let Set := Set−.
11: end while
12: Return T = {e : Xe = 1 in Set} together with min cost matching on odd degree

vertices of T .

5 General Case

The matching vector m in the general case, [KKO22, Thm 6.1], can be written
as s + s∗ + 1

2x where s, s∗ are functions of the tree T ∼ μλ and some indepen-
dent Bernoullis B. Roughly speaking, the (slack) vector s∗ : E → R≥0 takes
care of matching constraints for near minimum cuts that are crossed and the
(slack) vector s : E → R takes care of the constraints corresponding to cuts
which are not crossed. Most importantly, the guarantee is that for a fixed tree
T the expectation of c(s) + c(s∗) + 1

2c(x) over the Bernoullis is at least c(M)
where M is the minimum cost matching on the odd vertices of T . Furthermore,
E [c(s) + c(s∗)] ≤ −εc(x) which is the necessary bound to begin applying the
method of conditional expectation in Algorithm 3.

Remark 3. The definitions of s and s∗, the proof that E [c(s) + c(s∗)] ≤ −εc(x),
and the proof that x/2 + E [s + s∗ | T] is in the O(T)-join polyhedron come
from [KKO21,KKO22]. Here, we will review how to construct the random slack
vectors s, s∗ for a given spanning tree T and then explain how to efficiently
compute E [c(s) + c(s∗) | Set] deterministically for any Set ∈ Tpartial.

Unfortunately, a reader who has not read [KKO21,KKO22] may not be able
to understand the motivation behind the details of the construction of s, s∗.
However, ?? and ?? are self-contained in the sense that a reader should be able
to verify that E [c(s) + c(s∗) | Set] can be computed efficiently and determinis-
tically.

Our theorem boils down to showing the following two lemmas:

Lemma 9. For any Set ∈ Tpartial, there is a polynomial time deterministic
algorithm that computes:

(1) ET∼μλ
[c(s∗) | Set] (shown in Ec(s∗)(e, Set))

(2) ET∼μλ
[c(s) | Set] (shown in Ec(s)(e, Set))

272 A. R. Karlin et al.

The crux of proving the above lemma is to show that for a given edge e and
any Set, each of E [s∗

e | Set] and E [se | Set] can be written as the (weighted)
sum of indicators of events that depend on the sampled tree T , and each of
these events happens only when a constant number of (not necessarily disjoint)
sets of edges have certain parities or certain sizes. Technically speaking, these
weighted sums are non-trivial for some of the events defined in [KKO21,KKO22].
Given that, the following is enough to prove Lemma 9, as it gives a determin-
istic algorithm to compute the probability that a collection of (not necessarily
disjoint) sets of edges have certain parities or certain sizes.

(1) of Lemma 9 is proved in ??, and (2) in ??. The algorithm for each part
requires a series of preprocessing steps and function definitions that we have
marked with gray boxes. In each section, the final procedure to calculate the
expected cost of the slack vector is given in a yellow box at the end of the
corresponding section.

Lemma 10. Given a probability distribution μ : 2[n] → R≥0 and an oracle
O that can evaluate gμ(z1, . . . , zn) at any z1, . . . , zn ∈ C. Let E1, . . . , Ek be a
collection of (not necessarily disjoint) subsets of [n] and (σ1, . . . , σk) ∈ Fm1 ×
· · · × Fmk

. Then, we can compute,

PT∼μ [(Ei)T = σi(mod mi),∀1 ≤ i ≤ k] .

in N := m1 . . . mk-many calls to the oracle.1

Proof. For each of the sets Ei, define a variable xi, and substitute
∏

j x
I{e∈Ej}
j

for ze into the polynomial gμ and call the resulting polynomial g. Then

g(x1, . . . , xk) =
∑

S∈supp(μ)

P [S]
k∏

i=1

x
(Ei)S

i

Where recall (Ei)S = |Ei ∩ S|. Now, let ωi := e
2π

√−1
mi . We claim that

1
m1 · · · mk

∑

(e1,...,ek)∈Fr1×···×Frk

k∏

i=1

ω−eiσi
i g(ωe1

1 , . . . , ωek

k)

= PS∼μ [(Ei)S ≡ σi mod mi,∀1 ≤ i ≤ k]

So the algorithm only needs to call the oracle N many times to compute the
sum in the LHS.

1 Note that since we are dealing with irrational numbers, we will not be able to com-
pute this probability exactly. However by doing all calculations with poly(n, N) bits
of precision we can ensure our estimate has exponentially small error which will
suffice to get the bounds we need later.

A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP 273

To see this identity, notice that we can write the LHS as

1
m1 · · · mk

∑

(e1,...,ek)∈Fm1×···×Fmk

∑

S∈supp(μ)

P [S]
k∏

i=1

ω
−eiσi+ei(Ei)S

i

=
∑

S∈supp(μ)

P [S]
k∏

i=1

⎛

⎝ 1
mi

∑

ei∈Fmi

ω
((Ei)S−σi)ei

i

⎞

⎠

=
∑

S∈supp(μ)

P [S]
k∏

i=1

I {(Ei)S − σi ≡ 0 mod σi}

where the last equality uses that ωi is the mi’th root of unity. The RHS is exactly
equal to the probability that (Ei)S ≡ σi mod mi for all i.

Remark 4. When we apply this lemma in this paper, we will always let k be a
constant and mi ≤ |V | for all i. Thus, it will always use a polynomial number
of calls to an oracle evaluating the generating polynomial of a spanning tree
distribution μλ. By Theorem 3, for any z ∈ C

|E|:

gμλ
({ze}e∈E) =

1
n
det(

∑

e∈E

λezeLe + 11T /n),

which can be computed in polynomial time.

Corollary 3. Let μλ be a λ-uniform spanning tree distribution and let
Set ∈ Tpartial. Then, let E1, . . . , Ek be a collection of (not necessarily disjoint)
subsets of [n] and (σ1, . . . , σk) ∈ Fm1 × · · · × Fmk

. Then, we can compute,

PT∼μλ
[(Ei)T = σi (mod mi),∀1 ≤ i ≤ k | Set] .

in N := m1 . . . mk-many calls to the oracle.

Proof. Construct a new graph G′ by contracting all edges with Xe = 1 in Set
and deleting all edges with Xe = 0. We then update all σi by subtracting the
number of edges that are set to 1 in Ei by Set. Then we apply Lemma 10 to the
λ-uniform spanning tree distribution over G′ with the updated σ and the same
m.

References

[App+07] Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Sales-
man Problem: A Computational Study (Princeton Series in Applied Math-
ematics). Princeton University Press, Princeton, NJ, USA (2007)

[Asa+10] Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An
o(log n/ log log n) approximation algorithm for the asymmetric traveling
salesman problem. In: SODA, pp. 379–389 (2010)

274 A. R. Karlin et al.

[Chr76] Nicos Christofides. Worst case analysis of a new heuristic for the traveling
salesman problem. Report 388, Graduate School of Industrial Administra-
tion, Carnegie-Mellon University, Pittsburgh, PA, 1976

[DFJ59] Dantzig, G.B., Fulkerson, D.R., Johnson, S.: On a linear programming com-
binatorial approach to the traveling salesman problem. OR 7, 58–66 (1959)

[Edm70] Edmonds, J.: Submodular functions, matroids and certain polyhedra. In:
Combinatorial Structures and Their Applications, pp. 69–87, New York,
NY, USA (1970). Gordon and Breach

[EJ73] Edmonds, J., Johnson, E.L.: Matching, Euler tours and the Chinese post-
man. Math. Program. 5(1), 88–124 (1973)

[GB93] Goemans, M., Bertsimas, D.: Survivable network, linear programming relax-
ations and the parsimonious property. Math. Program. 60, 06 (1993)

[Gup+21] Gupta, A., Lee, E., Li, J., Mucha, M., Newman, H., Sarkar, S.: Matroid-
based TSP rounding for half-integral solutions. CoRR, abs/2111.09290
(2021)

[HK70] Held, M., Karp, R.M.: The traveling salesman problem and minimum span-
ning trees. Oper. Res. 18, 1138–1162 (1970)

[HN19] Haddadan, A., Newman, A.: Towards improving christofides algorithm for
half-integer TSP. In: Bender, M.A., Svensson, O., Herman, G., editors, ESA,
vol. 144 of LIPIcs, pp. 56:1–56:12. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2019)

[HNR21] Haddadan, A., Newman, A., Ravi, R.: Shorter tours and longer detours:
uniform covers and a bit beyond. Math. Program. 185(1–2), 245–273 (2021)

[KKO20] Karlin, A.R., Klein, N., Gharan, S.O.: An improved approximation algo-
rithm for TSP in the half integral case. In: Makarychev, K., Makarychev,
Y., Tulsiani, M., Kamath, G., Chuzhoy, J., editors, STOC, pp. 28–39. ACM
(2020)

[KKO21] Karlin, A.R., Klein, N., Gharan, S.O.: A (slightly) improved approximation
algorithm for metric tsp. In: STOC. ACM (2021)

[KKO22] Karlin, A., Klein, N., Gharan, S.O.: A (slightly) improved bound on the
integrality gap of the subtour LP for tsp. In: FOCS, pp. 844–855. IEEE
Computer Society (2022)

[KLS15] Karpinski, M., Lampis, M., Schmied, R.: New inapproximability bounds for
TSP. J. Comput. Syst. Sci. 81(8), 1665–1677 (2015)

[MS11] Moemke, T., Svensson, O.: Approximating graphic tsp by matchings. In:
FOCS, pp. 560–569 (2011)

[Muc12] Mucha, M.: 13
9

-approximation for graphic TSP. In: STACS, pp. 30–41 (2012)
[OSS11] Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to

the traveling salesman problem. In: FOCS, pp. 550–559. IEEE Computer
Society (2011)

[Ser78] Serdyukov, A.I.: O nekotorykh ekstremal’nykh obkhodakh v grafakh.
Upravlyaemye sistemy 17, 76–79 (1978)

[SV12] Sebö, A., Vygen, J.: Shorter tours by nicer ears: CoRR abs/1201.1870 (2012)
[TVZ20] Traub, V., Vygen, J., Zenklusen, R.: Reducing path TSP to TSP. In:

Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J.,
editors, STOC, pp. 14–27. ACM (2020)

Monoidal Strengthening of Simple
V-Polyhedral Disjunctive Cuts

Aleksandr M. Kazachkov1(B) and Egon Balas2

1 University of Florida, Gainesville, FL, USA
akazachkov@ufl.edu

2 Carnegie Mellon University, Pittsburgh, PA, USA
eb17@andrew.cmu.edu

Abstract. Disjunctive cutting planes can tighten a relaxation of a
mixed-integer linear program. Traditionally, such cuts are obtained by
solving a higher-dimensional linear program, whose additional variables
cause the procedure to be computationally prohibitive. Adopting a V-
polyhedral perspective is a practical alternative that enables the separa-
tion of disjunctive cuts via a linear program with only as many variables
as the original problem. The drawback is that the classical approach of
monoidal strengthening cannot be directly employed without the values
of the extra variables appearing in the extended formulation. We derive
how to compute these values from a solution to the linear program gen-
erating V-polyhedral disjunctive cuts. We then present computational
experiments with monoidal strengthening of cuts from disjunctions with
as many as 64 terms. Some instances are dramatically impacted, with
strengthening increasing the gap closed by the cuts from 0 to 100%. How-
ever, for larger disjunctions, monoidal strengthening appears to be less
effective, for which we identify a potential cause.

1 Introduction

Disjunction-based cutting planes, or disjunctive cuts, are a strong class of valid
inequalities for mixed-integer programming problems, which can be used as a
framework for analyzing or generating general-purpose cuts [8]. Their strength
comes at a high computational cost, due to which only very special cases of
disjunctive cuts have been deployed in optimization solvers. As a step towards
practicality, Balas and Kazachkov [10] introduce a relaxation-based V-polyhedral
paradigm for disjunctive cuts, which trades off some theoretical strength for com-
putational efficiency. The approach selects a small number of points and rays
whose convex hull forms a relaxation of the disjunction; as a result, some poten-
tial cuts are no longer valid, but strong cuts are nevertheless guaranteed to be

E. Balas passed away during the preparation of this manuscript, which started when
both authors were at Carnegie Mellon University. The core ideas and early results are
documented in the PhD dissertation of Kazachkov [37, Chapter 5]. A.M. Kazachkov
completed the computational experiments, analysis, and writing independently.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 275–290, 2023.
https://doi.org/10.1007/978-3-031-32726-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_20&domain=pdf
http://orcid.org/0000-0002-4949-9565
https://doi.org/10.1007/978-3-031-32726-1_20

276 A. M. Kazachkov and E. Balas

obtainable. Further, cuts from this relaxation, called V-polyhedral (disjunctive)
cuts (VPCs), can be generated via a relatively compact linear program, called
the point-ray linear program (PRLP), compared to the usual higher-dimensional
cut-generating linear program (CGLP) for disjunctive cuts [8,14,15]. Hence, with
VPCs, it is more computationally efficient to improve the disjunction by adding
terms and increase the relaxation quality, thereby accessing disjunctive cuts that
differ substantially from the families of cuts typically applied in solvers.

VPCs improve the average (integrality) gap closed substantially relative to
Gomory mixed-integer cuts (GMICs) and other standard cuts in solvers. How-
ever, the computational experiments by Balas and Kazachkov [10] reveal a curios-
ity: there are instances for which GMICs (which can be derived as cuts from a
two-term disjunction) remain stronger than VPCs even when using large vari-
able disjunctions. For example, for the instance 10teams, originally part of the
3rd Mixed Integer Programming Library (MIPLIB) [18], GMICs close 100% of
the integrality gap, while VPCs from a 64-term disjunction close 0% of the gap.

A potential explanation for this phenomenon is that GMICs benefit from a
strengthening procedure that cannot be directly applied to VPCs. Specifically,
the GMIC two-term disjunction can be obtained via monoidal strengthening of
a disjunction on a single variable [9,12,38]. Monoidal strengthening of cuts from
more general disjunctions is also possible, but the procedure ostensibly requires a
simple disjunction, where each term only imposes a single new constraint. This is
not a theoretical barrier, as any cut from a general disjunction can also be derived
from a simple disjunction obtained from the general one by aggregating the con-
straints defining each disjunctive term. The multipliers for this aggregation are
precisely the Farkas certificate for the validity of the cut. The key challenge for
VPCs is that this certificate is not readily available, because the PRLP only has
variables for the cut coefficients, compared to the CGLP that explicitly includes
variables for the Farkas multipliers. Our contributions, summarized next, are
to identify a way to efficiently apply monoidal strengthening for the particular
version of the VPC framework introduced in Balas and Kazachkov [10], as well
as to implement and computationally evaluate this strengthening idea.

Contributions. Given a VPC, one can solve the CGLP with cut coefficients fixed
and retrieve the required values of the aggregation multipliers, in order to apply
monoidal strengthening. Unfortunately, the computational effort associated to
this is likely to be prohibitive. Our first contribution, discussed in Sect. 3, is
observing that solving the CGLP is unnecessary: it suffices to use the inverse
of an easily-identified nonsingular matrix per disjunctive term. Furthermore, for
the type of simple VPCs proposed and tested by Balas and Kazachkov [10], this
inverse is readily available within the cut generation process.

Next, in Sect. 4, we discuss computational experiments with strengthening
simple VPCs on a set of benchmark instances. We compare the strength to
unstrengthened VPCs and to GMICs, for disjunctions ranging in size up to
64 terms. We find that strengthening can significantly improve the gap closed
for some instances. Furthermore, we see that GMICs and unstrengthened VPCs
tend to be complementary in terms of which instances they benefit, but applying

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 277

monoidal strengthening enables the two families to be simultaneously effective
for more instances. The results are most striking for two-term disjunctions, in
which strengthened VPCs close 40% more gap than unstrengthened VPCs, on
average. For example, returning to the instance 10teams, the VPCs from a single
variable disjunction close 0% of the integrality gap, but this value goes to 100%
after strengthening the cuts. However, as the size of the disjunction increases, the
relative improvement by strengthening becomes smaller. Our final contribution,
in Sect. 5, is identifying a theoretical source of this weakness.

Related Work. A focal point in the literature on monoidal strengthening for
disjunctive cuts [9] (see also Balas [8, Section 7]) is the special case of split
disjunctions, which are parallel two-term disjunctions that are used for GMICs
and related cut families. In this context, the use of the CGLP leads to lift-and-
project cuts (L&PCs) [14], to which monoidal strengthening can be applied [15,
Section 2.4]. The family of strengthened L&PCs is equivalent to GMICs, as shown
by Balas and Perregaard [12], and to mixed-integer rounding inequalities [45,46],
as discussed in Cornuéjols and Li [23]. Balas and Perregaard [12] provide an
appealing geometric interpretation of this connection via intersection cuts [7]:
every undominated L&PC can be derived as an intersection cut from a basis
in the original problem space. As a result, L&PCs can be generated without
explicitly building the CGLP and without hindering a posteriori strengthening
of the cuts. Bonami [19] presents a different method for separating L&PCs in
the original space of variables that is also amenable to strengthening. Avoiding
formulating the higher-dimensional CGLP is the key advance that has enabled
the effective inclusion of L&PCs in several solvers.

Sidestepping the CGLP continues to be crucial to move beyond split dis-
junctions. However, the aforementioned approaches [12,19] rely on properties of
the split set; for example, with general disjunctions, there exist cuts that dom-
inate all intersection cuts [5,11,40], so one cannot hope to merely pivot among
bases in the original space. Nonetheless, a stream of work [20,36,40] extends cut
generation in the original space to general two-term disjunctions, and monoidal
strengthening applies to the resulting cuts [28]. No further extension of this
technique to more general disjunctions has been reported in the literature.

This motivates the use of VPCs, due to the PRLP’s advantage of having
the same number of variables as the original problem. The difficulty is that a
description of a polyhedron using points and rays may be exponentially larger
than using inequalities, causing exponentially many constraints in the PRLP.
This naturally leads to row generation in prior work by Perregaard and Balas
[48] and Louveaux et al. [44] when invoking the V-polyhedral perspective. In
the experiments by Perregaard and Balas [48], for disjunctions with 16 terms,
separating cuts via the PRLP with row generation is an order of magnitude
faster than via the CGLP. Nonetheless, row generation is time consuming, as
multiple PRLPs must be solved to find one valid inequality.

The remedy by Balas and Kazachkov [10] is to construct a relaxation of
each disjunctive term, where the resulting PRLP has few rows and immediately
produces valid cuts. This is successful at quickly generating cuts from large

278 A. M. Kazachkov and E. Balas

disjunctions, but the average gap closed by the cuts alone is less than that from
GMICs. It is only when VPCs and GMICs are used together that a marked
improvement in gap closed is observed, which shows that VPCs affect a different
region of the relaxation than GMICs. However, as mentioned with the 10teams
instance in which GMICs close all of the gap, while VPCs close none, the results
also suggest that the absence of strengthening for VPCs is a significant deficiency.

As discussed, the vanilla monoidal strengthening presented by Balas and
Jeroslow [9] does not directly apply to VPCs due to the lack of the values of
the aggregation multipliers. Balas and Qualizza [13, Section 6] show that a cross-
polytope disjunction, arising from using multiple rows of the simplex tableau,
can be strengthened by modularizing the inequalities defining the disjunction,
replacing the coefficients of integer-restricted nonbasic variables, and they prove
the form of the optimal strengthening for the two-row case.

An alternative to monoidal strengthening is the group-theoretic approach [32,
35], equivalent to monoidal strengthening under some conditions. Specifically,
“trivial lifting” has been applied to simple disjunctions [16,24–26,49]. Evaluating
the trivial lifting is expensive in general [30], and it does not directly apply to
arbitrary disjunctive cuts.

While this paper exclusively approaches disjunctive cut generation via the
VPC framework, there exist other methods for producing strong disjunctive cuts
without solving the higher-dimensional CGLP. Any such approach could poten-
tially benefit from the efficient computation of a Farkas certificate. For example,
a common technique in the literature is to use a disjunction to strengthen cuts
via tilting, which has been applied to linear and nonlinear integer optimization
problems [37,39,42,47].

2 Notation and Background

Our target is to find strong valid cuts to tighten the natural linear relaxation of
the mixed-integer linear program below, given rational data:

min
x∈Rn

cTx

Ai·x ≥ bi for i ∈ [q],
xj ≥ 0 for j ∈ [n],
xj ∈ Z for j ∈ I.

(IP)

Here, [n] ..= {1, . . . , n} for any integer n, and I ⊆ [n] is the set of integer-
restricted variables. For a given matrix A, we denote the ith row by “Ai·” and
the jth column by “A·j”. Let PI denote the feasible region of (IP), and let
P ..= {x ∈ Rn

≥0 : Ax ≥ b}.
One way to strengthen the formulation P (with respect to PI) is to use logical

conditions to formulate a disjunction, from which valid inequalities for PI can
then be derived. Suppose ∨t∈T (Dtx ≥ Dt

0) is a valid disjunction, in the sense
that PI ⊆ ∪t∈T {x ∈ Rn : Dtx ≥ Dt

0}. Let Qt ..= {x ∈ P : Dtx ≥ Dt
0}. This is

an H-polyhedral (inequality) description. We assume Qt �= ∅ for all t ∈ T .

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 279

Let P t ..= {x ∈ Rn : Atx ≥ bt} denote a relaxation of Qt, where Atx ≥ bt

is defined by a subset of the constraints defining Qt. For the VPC procedure,
we must ensure that P t has relatively few extreme points and rays, i.e., it has a
compact V-polyhedral description (Pt, Rt), so that P t = conv(Pt) + cone(Rt).
Define the disjunctive hull PD

..= cl conv(∪t∈T P t), which can be described by the
point-ray collection (P, R) ..= (∪t∈T Pt, ∪t∈T Rt). For t ∈ T , let q′

t be the number
of rows of At. We first summarize some important disjunctive programming
concepts and the two cut-generating paradigms that we are relating.

CGLP. One way to generate valid cuts for PD is through the CGLP, which is
an application of disjunctive programming duality [8, Section 4]. Specifically, an
inequality αTx ≥ β is valid for PD if and only if the inequality is valid for each
P t, t ∈ T . Consequently, by Farkas’s lemma [27], αTx ≥ β is valid for PD if
and only if the following system is feasible, in variables (α, β, {vt}t∈T), where
vt ∈ R1×q′

t is a row vector of appropriate length for each t ∈ T :

αT = vtAt

β ≤ vtbt

vt ∈ R
q′
t

≥0

⎫
⎬

⎭
for all t ∈ T . (1)

We refer to {vt}t∈T as the Farkas certificate for the validity of αTx ≥ β for PD.
To generate cuts with (1), one typically maximizes the violation with respect

to a PI -infeasible point, after adding a normalization, which can be a crucial
choice [29]. For example, the constant of the cut can be fixed to β̄ ∈ R:

{
(α, {vt}t∈T) : (α, β̄, {vt}t∈T) is feasible to (1)

}
. (CGLP(β̄))

PRLP. An alternative way to generate disjunctive cuts is through the reverse
polar of PD [8, Section 5], which is defined with respect to a given β̄ ∈ R as

{
α ∈ Rn : αTx ≥ β̄ for all x ∈ PD

}
.

Clearly this captures all of the valid inequalities for PD whose constant is equal
to β̄. Since x ∈ PD if and only if x ∈ conv(P) + cone(R), it holds that αTx ≥ β̄
is valid for PD if and only if it is satisfied by all of the points and rays in (P, R).
This yields the system (PRLP(β̄)), in variables α ∈ Rn, for a fixed β̄:

αTp ≥ β̄ for all p ∈ P
αTr ≥ 0 for all r ∈ R.

(PRLP(β̄))

The feasible solutions to (PRLP(β̄)) are what we refer to as VPCs.
As discussed, the advantage of (PRLP(β̄)) over (CGLP(β̄)) is the absence of

the Farkas multipliers as variables, so VPCs are generated without requiring a
lifted space. As we see next, the disadvantage to (PRLP(β̄)) is that these missing
variables are used in strengthening the cuts after they are generated.

280 A. M. Kazachkov and E. Balas

Monoidal Strengthening. Balas and Jeroslow [9] strengthen cuts with a monoid:

M ..=
{

m ∈ Z|T | :
∑

t∈T
mt ≥ 0

}

. (M)

It is also assumed that, for each t ∈ T , there exists a finite lower bound vector
�t such that Dtx ≥ �t for all x ∈ PI . Let Δt ..= Dt

0 − �t.
To strengthen the cut, we improve the underlying disjunction. Specifically,

given a valid disjunction ∨t∈T (Dtx ≥ Dt
0), for any m ∈ M and k ∈ I, the

disjunction ∨t∈T (D̃tx ≥ D̃t
0) is also valid, where D̃t

·k ..= Dt
·k + Δtmt, and D̃t

·j =
Dt

·j for all j �= k. The strengthened cut is obtained by applying the Farkas
certificate of the unstrengthened cut to the strengthened disjunction.

Let qt denote the number of constraints in Dtx ≥ Dt
0 for term t ∈ T . Given

row vectors (ut, ut
0) ∈ R1×q

≥0 × R1×qt
≥0 , define

αt
k

..= utA·k + ut
0Dt

·k. (αt
k)

Then (using an appropriate CGLP) the cut αTx ≥ β is valid for PD, where

αk
..= max

t∈T
{αt

k} and β ..= min
t∈T

{utb + ut
0Dt

0}.

(The above applies to cuts valid for ∨t∈T Qt; for PD, assume a value of zero for the
multipliers on constraints of Qt that are not present in P t.) Define ût

k
..= αk −αt

k.
We now apply monoidal strengthening to the cut αTx ≥ β.

Theorem 1 ([9, Theorem 3]). Given (ut, ut
0) ∈ R1×q

≥0 × R1×qt
≥0 for t ∈ T , the

inequality α̃Tx ≥ β is valid for PI , where α̃k
..= αk for k /∈ I, and, for k ∈ I,

α̃k
..= inf

m∈M
max
t∈T

{
αt

k + ut
0Δtmt

}
= αk + inf

m∈M
max
t∈T

{
−ût

k + ut
0Δtmt

}
.

Thus, the Farkas certificate {(ut, ut
0)}t∈T is used for monoidal strengthening.

Computing these values without solving the CGLP is our next target.

3 Correspondence Between PRLP and CGLP Solutions

Let ᾱTx ≥ β̄ be a valid inequality for PD, corresponding to a feasible solution
to (PRLP(β̄)). Our goal is to compute Farkas multipliers certifying the cut’s
validity without explicitly solving the CGLP. While one can solve for values
vt that satisfy ᾱT = vtAt, β̄ = vtbt, vt ≥ 0, we provide an improvement via
basic linear programming concepts. We first present a special case in Sects. 3.1
and 3.2, when the disjunctive terms P t are not primal degenerate, a condition
that is satisfied by the VPC procedure implemented for our experiments. Then,
Sect. 3.3 discusses a challenge posed by the general case.

We assume that ᾱTx ≥ β̄ is supporting for all terms in T . This is for ease
of notation, as otherwise we would need to add an index t to the constant side.
Concretely, the assumption is without loss of generality because, for any term

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 281

t ∈ T , we can increase the constant side of the cut until we obtain an inequality
ᾱTx ≥ β̄t that is supporting for term t, though perhaps invalid for other terms.
The value of β̄t can be quickly calculated by taking the dot product of ᾱ with
every point in Pt. We can then find a certificate vt of the validity of ᾱTx ≥ β̄t

for P t, which also serves as a certificate for the weaker inequality ᾱTx ≥ β̄. We
state, without proof, a slightly more general version of this in Lemma 2.

Lemma 2. For t ∈ T , let Ct ⊇ P t and β̄t ≥ β̄ such that ᾱTx ≥ β̄t is valid for
Ct. Then, given any Farkas certificate for the validity of the inequality ᾱTx ≥ β̄t

for Ct, the same multipliers certify that ᾱTx ≥ β̄ is valid for P t. ��

For convenience, we introduce extra notation to refer to the feasible region of
Qt as Âtx ≥ b̂t, and we define the number of these constraints as q̂t

..= q +qt +n.
For N ⊆ [q̂t], define Ât

N x ≥ b̂t
N as the constraints of Qt indexed by N .

3.1 Simple VPCs

Our experimental setup in Sect. 4 follows that of Balas and Kazachkov [10], who
focus on a variant of the VPC framework called simple VPCs. Let pt be a vertex
of Qt, for t ∈ T . There exists a cobasis for pt, a set of n linearly independent
constraints among those defining Qt that are tight at pt. Let N t ⊆ [q̂t] denote
the indices of these n constraints, and define the basis cone Ct ..= {x ∈ Rn :
Ât

Ntx ≥ b̂t
Nt}. The inequality ᾱTx ≥ β̄ is a simple VPC if P t is a basis cone

for each term. The (translated) cone Ct has a particularly easy V-polyhedral
representation: there is a single extreme point pt, and there are n extreme rays
{ri}i∈[n]. The ith extreme ray of Ct corresponds to increasing the “slack” on
the ith constraint defining Ct [21, Chapter 6]. Lemma 3 states that, for simple
VPCs, the values of the variables {vt}t∈T to (CGLP(β̄)) can be computed via
the dot product of the cut coefficients with the rays of Ct.

Lemma 3. Let Ct be a basis cone defined by N t, the indices of n linearly inde-
pendent constraints of Qt. If ᾱTx ≥ β̄ is valid for Ct, then the multiplier on
constraint i ∈ [n] of Ct has value vt

i = ᾱTri, where ri is column i of (Ât
Nt)−1.

Proof. Add nonnegative slack variables st
Nt for each row indexed by N t, so that

Ât
Ntx − st

Nt = bt
Nt . Then observe that, being a cobasis, Ât

Nt is invertible, so
x = (Ât

Nt)−1bt
Nt +(Ât

Nt)−1st
Nt = pt +

∑
i∈Nt rist

i. The last equality follows from
the derivation of the rays of Ct; see, for example, Conforti et al. [21, Chapter 6].

��

Therefore, for simple VPCs, the Farkas certificate can be computed with no
extra effort when given the point-ray representation of PD. Moreover, Balas and
Kazachkov [10] obtain simple VPCs from the leaf nodes of a partial branch-and-
bound tree and use pt as the optimal solution to the linear relaxation at each
leaf; implemented carefully, this can further reduce the computational load for
generating then strengthening VPCs, as the values of the rays can be read from
the optimal tableau, which is typically readily available from a solver.

282 A. M. Kazachkov and E. Balas

3.2 Relaxations Without Primal Degeneracy

Suppose the relaxation P t ⊇ Qt is a simple polyhedron, in which every extreme
point and ray is defined by a unique basis [50]. The basis cone Ct used for simple
VPCs is one example. While the basis cone setting may seem quite narrow, it
turns out to encompass more general situations. Specifically, there always exists
a basis cone Ct ⊇ P t such that ᾱTx ≥ β̄ is valid and supporting for Ct.

Lemma 4. Let P t be a simple polyhedron, and suppose the point-ray collection
(Pt, Rt) satisfies P t = conv(Pt) + cone(Rt). Let ᾱTx ≥ β̄ be a valid inequality
for P t. Then there exists a vertex pt ∈ Pt such that ᾱTx ≥ β̄ is valid for the
basis cone Ct associated to pt, defined with respect to the constraints of P t.

Proof. Let pt be an optimal solution to minx{ᾱTx : x ∈ P t} = minp{ᾱTp : p ∈
Pt}. Define β̄t

..= ᾱTp. Note that the rays in Rt need not be considered, as the
optimization problem must be bounded since ᾱTx ≥ β̄t is valid for all x ∈ P t.
The point pt has a unique basis, so the basis cone Ct is defined by the (precisely)
n constraints of P t that are tight at pt. Optimality of pt implies all reduced costs
are nonnegative. It follows that ᾱTr ≥ 0 every ray r ∈ Ct. Since ᾱTpt = β̄t ≥ β̄,
the inequality ᾱTx ≥ β̄ is valid for Ct. ��

Therefore, we can invoke Lemmas 2 and 3 to find the Farkas certificate for
this case. Note that, when the given point-ray collection only contains extreme
points and rays, the rays of Ct for any basis cone of the simple polyhedron P t

can be computed as the rays Rt, along with the directions p − pt for every point
p ∈ Pt that is adjacent (one pivot away) from pt.

3.3 Relaxations with Primal Degeneracy

Up to now, we have made the convenient assumption that the relaxation P t is a
simple polyhedron. More generally, there always exists a basis cone Ct, such that
a cut valid for P t is valid for Ct. With Example 5, we illustrate the complication
if ᾱTx ≥ β̄ is supporting at a primal degenerate point of P t: a basis for that
point needs to be chosen carefully, as the inequality may not be valid for some
basis cones. It can be computationally involved to find a valid basis in these
situations, which prevents a direct application of our approach relying on simple
polyhedra. The purpose of this example is to highlight a crucial obstacle to a
complete correspondence between PRLP and CGLP solutions, but we do not
further investigate the nondegenerate case in this paper.

Example 5. Figure 1 shows a polyhedron P , defined as the feasible solutions to

−(13/8)x1 − (1/4)x2 − x3 ≥ −15/8 (c1)
(1/2)x1 + x2 ≥ 1/2 (c2)
(1/2)x1 − x3 ≥ −3/4 (c3)
(1/2)x1 − x2 ≥ −1/2 (c4)

x2 ≥ 0. (c5)

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 283

Fig. 1. Example 5: Disjunctive terms with primal degeneracy, despite a nondegenerate
initial polyhedron. The VPC is the red wavy line in the second panel. (Color figure
online)

A valid cut from the disjunction (−x1 ≥ 0) ∨ (x1 ≥ 1) has coefficients ᾱT =
(−5/8, −1/4, −1) and constant β̄ = −7/8. The cut, depicted in the right panel,
is incident to point p1 = (0, 1/2, 3/4) on P 1 ..= {x ∈ P : −x1 ≥ 0}. This point
is tight for four inequalities: three defining P (constraints (c2)-(c4)), and the
disjunction-defining inequality −x1 ≥ 0. Note that P is simple, but P 1 is not.

To construct the cobasis N1, such that the inequality is valid for the associ-
ated basis cone C1, we must select three linearly independent constraints among
those that are tight at p1. One of the inequalities must be −x1 ≥ 0, as otherwise
we have not imposed the disjunction at all (but we also know the cut is not
valid for P). It can be verified that the only valid choice for this example is N1

containing the indices for (c3), (c4), and the disjunctive inequality −x1 ≥ 0. �

4 Computational Experiments

We implement monoidal strengthening for simple VPCs, building on the code
used by Balas and Kazachkov [10] from https://github.com/akazachk/vpc. Our
goal for the computational study is to measure the effect of monoidal strengthen-
ing on the percent integrality gap closed by VPCs, compared to unstrengthened
VPCs and GMICs, and evaluated across different disjunction sizes.

The code is run on HiPerGator, a shared cluster through Research Comput-
ing at the University of Florida. The computational setup is nearly identical to
the one described in Balas and Kazachkov [10, Section 5 and Appendix C]. We
select instances from the union of the MIPLIB [4,17,18,31,41], CORAL [22],
and NEOS sets, restricted to those with at most 5,000 rows and columns and
based on other criteria given in [10, Appendix C]. This yields 332 instances
suitable for gap closed comparisons. However, we only report on 274 of these

https://github.com/akazachk/vpc

284 A. M. Kazachkov and E. Balas

332 instances, due to memory resource constraints on the cluster. Despite this
reduced dataset, we can identify recurring patterns in how monoidal strengthen-
ing affects instances. Instances are presolved with Gurobi [34], but cut generation
is done via the C++ interface to COIN-OR [43], using Clp [3] for solving linear
programs and Cbc [1] for constructing disjunctions based on partial branch-and-
bound trees. We test six different disjunction sizes, stopping branching when
the number of leaf nodes (disjunctive terms) is 2� for � ∈ [6]. Thus, we report
results with monoidal strengthening of disjunctive cuts from up to 64-term dis-
junctions, though only one disjunction is used at a time. One GMIC is generated
per fractional integer variable at an optimal solution to the linear programming
relaxation, and the number of GMICs is also used as the limit for the number of
VPCs we generate for that instance per fixed choice of disjunction. One round
of cuts is used for both procedures. GMICs are generated through CglGMI [2],
while the VPC generation procedure is identical to that of Balas and Kazachkov
[10], with strengthening applied afterwards.

While Lemma 3 enables us to calculate the values of the Farkas multipliers
via the rays of each relaxation P t, and these values are readily available based on
how we built the PRLP, we do not avail of this connection. Instead, we calculate
vt = ᾱT(At)−1. This approach is still more direct than solving a feasibility version
of (CGLP(β̄)) with ᾱ fixed. We opt for numerical safety for this exploratory
investigation, so we use the Eigen library [33] to recompute the inverse of At

rather than reading from the Cbc / Clp internal basis inverse for each term.
We report the average percent integrality gap closed by VPCs and GMICs

in Table 1. The first six data rows contain the results for each fixed disjunction
size. The penultimate data row, labeled “Best”, uses the highest gap closed per
instance across all disjunctions. The last data row, labeled “Wins”, reports the
number of instances for which the “Best” gap closed is at least 10−3 higher than
the gap closed by GMICs. In the columns, we refer to GMICs by “G”, unstrength-
ened VPCs by “V”, strengthened VPCs by “V+”. The columns “G+V” and
“G+V+” refer to GMICs applied together with VPCs. There are two sets of
instances: “All” reports on all 274 instances, while “≥10%” reports on the 97
instances for which unstrengthened VPCs alone close at least 10% of the inte-
grality gap for the “Best” values.

In terms of overall gap closed, despite the monoidal strengthening procedure,
as reported by Balas and Kazachkov [10], VPCs alone do not outperform GMICs
for the “All” set, but using VPCs and GMICs together provides around 40%
improvement in gap closed relative to GMICs alone. While adding VPCs with
GMICs might double the number of cuts, one round of VPCs continues to close
substantial more gap even after multiple rounds of solver-default cuts [10]. Hence,
VPCs tighten the relaxation in different regions relative to GMICs. This is also
highlighted by the “≥10%” set, which are instances for which VPCs have strong
performance; for this set, GMICs are relatively weaker, with the best VPCs
per instance (used alone) providing a 75% improvement in average percent gap
closed over GMICs alone. We also see this in the “Wins” row: for the “≥10%”
set, VPCs alone outperform GMICs for 73 of the 97 instances in the set.

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 285

Table 1. Average percent gap closed by VPCs and GMICs according to the number
of leaf nodes used to construct the partial branch-and-bound tree. “Best” refers to the
maximum gap closed per instance across all partial tree sizes.

All ≥10%
G V V+ G+V G+V+ G V V+ G+V G+V+

2 leaves 17.21 2.28 3.25 17.95 18.18 16.29 5.34 6.47 18.13 18.59
4 leaves 17.21 3.35 3.72 18.37 18.54 16.29 7.81 8.35 19.14 19.48
8 leaves 17.21 4.51 4.76 18.98 19.15 16.29 10.84 11.16 20.66 20.91
16 leaves 17.21 6.41 6.57 20.54 20.67 16.29 15.81 16.05 24.86 25.04
32 leaves 17.21 8.78 8.97 22.31 22.48 16.29 21.82 22.28 29.59 29.97
64 leaves 17.21 10.46 10.57 23.72 23.83 16.29 25.59 25.85 32.90 33.14
Best 17.21 11.93 12.57 24.67 24.89 16.29 29.26 29.53 35.27 35.59
Wins 103 104 185 190 73 73 94 94

Next, we summarize observations about the effect of monoidal strengthening.
We start with the first data row, in which VPCs are derived from one split
disjunction per instance. For the set “All”, monoidal strengthening affects the
gap closed by VPCs for 87 instances and increases the average gap closed by
VPCs by ~1% from 2.28% to 3.25%, a 40% relative improvement. For the set
“≥10%”, the corresponding relative improvement is 20%.

Although the two-term case is encouraging, and a similar relative improve-
ment in gap closed would be substantial for larger disjunctions, this unfortu-
nately does not materialize. From Table 1, we see that as the disjunction size
increases, the contribution of monoidal strengthening tends to further dimin-
ish, with an absolute improvement in gap closed of only 0.1% for VPCs from a
64-term disjunction. We will discuss a potential cause for this in the next section.

We now compare the columns “G+V+” to “G+V”. On the set “All”, even
for split disjunctions, the effect of strengthening is minimal when VPCs are
combined with GMICs, with strengthening only yielding an additional 0.23% in
percent gap closed, preserving around 23% of the improvement between “V+”
and “V”. For larger disjunctions, while the absolute increase in gap closed by
strengthened VPCs is small, over 80% of that improvement is preserved when
adding GMICs together with VPCs.

A closer examination of the results supports the hypothesis that monoidal
strengthening is a key factor enabling GMICs to close more gap than VPCs. We
sort the instances by the increase in gap closed by strengthened VPCs compared
to unstrengthened ones, using the best gap closed across all disjunction sizes, per
column. Table 2 shows the top ten instances, sorted by the last column, which
calculates the difference between “V+” and “V”. The table includes the instance
10teams discussed earlier, as well as six other instances for which unstrengthened
VPCs close at most 5% of the gap. We see that monoidal strengthening of
VPCs bridges a large portion of the difference with GMICs for these instances.
For neos-1281048, the situation is reversed: 121 GMICs close no gap while 29

286 A. M. Kazachkov and E. Balas

Table 2. Percent gap closed for instances where strengthening VPCs works best.

Instance G V V+ G+V G+V+ V+−V
10teams 100.00 0.00 100.00 100.00 100.00 100.00
neos-1281048 0.00 17.09 29.36 17.09 29.36 12.27
neos-1599274 34.65 0.00 11.19 34.65 34.65 11.19
f2gap401600 62.97 2.53 11.34 63.31 71.77 8.80
prod2 2.31 27.60 35.90 27.63 35.91 8.29
neos-942830 6.25 0.00 6.25 6.25 6.25 6.25
p0548 48.62 3.28 9.03 49.03 55.11 5.75
mkc 6.08 2.60 6.56 6.35 9.61 3.96
f2gap201600 60.27 8.58 12.13 60.27 60.27 3.56
neos-4333596-skien 20.84 7.05 9.83 20.84 20.85 2.78

unstrengthened VPCs close 17% of the gap, which is further improved to 29%
after strengthening. From this table, we also observe the phenomenon that the
value in column “G+V” is typically either entirely due to GMICs or to VPCs, but
which cuts are more important varies by instance. The situation remains similar
for the column “G+V+”, though now we find several cases (f2gap401600, p0548,
mkc) in which the two cut families add to each other.

While running time is not our focus, and the shared computing environment
makes wall clock times unreliable, Table 3 provides the average number of seconds
for a single run of each instance, including generating then strengthening VPCs.
On average, cut generation takes, in total, from less than a second for two-term
disjunctions to 50 s for 16-term disjunctions, 150 s for 32-term disjunctions, and
nearly 9 min for 64-term disjunctions. The time per cut, on average, is less than
0.1 s for two-term disjunctions, ranging up to 9 s for 32 terms and over 30 s for
64 terms.

5 Choosing a Relaxation Amenable to Strengthening

In this section, we examine a potential cause of the diminishing effect of monoidal
strengthening with larger disjunctions. From Theorem 1, given an initial cut
αTx ≥ β, we can strengthen coefficient αk, k ∈ I, to

α̃k = αk + inf
m∈M

max
t∈T

{
−ût

k + ut
0Δtmt

}
,

Table 3. Average time (seconds) to generate the cuts in column V+ of Table 1.

Statistic Set 2 leaves 4 leaves 8 leaves 16 leaves 32 leaves 64 leaves
Cut time (s) All 0.76 6.39 15.33 49.90 149.84 525.78

≥10% 0.92 9.31 21.06 130.45 273.51 521.99
Time/cut (s) All 0.08 0.39 0.97 2.65 9.00 30.54

≥10% 0.07 0.35 0.79 2.46 7.75 20.19

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 287

where ût
k = αk − (utA·k + ut

0Dt
·k) is the slack on the CGLP constraint αk ≥

utA·k + ut
0Dt

·k. Equivalently, ût
k is the Farkas multiplier for the nonnegativity

constraint xk ≥ 0. The next lemma restates the (known) reason that a nonbasic
integral variable k is required for monoidal strengthening.

Lemma 6. If ût
k = 0, then α̃k = αk.

Proof. In this case, α̃k = αk + infm∈M maxt∈T {ut
0Δtmt} . Since

∑
t∈T mt ≥ 0

for every m ∈ M, and ut
0Δt ≥ 0, the optimal solution is m = 0. ��

In the correspondence in Sect. 3, we ultimately find a point pt ∈ P t such that
ᾱTpt = β̄t, where β̄t = minp{ᾱTp : p ∈ Pt}. We then compute a basis cone at pt

for which the cut is valid and use this (translated) cone to compute the values
of the Farkas certificate. However, by complementary slackness, if pt

k > 0, then
necessarily ût

k = 0.
Although at first this appears simultaneously unfortunate and unavoidable,

there are two potential remedies. First, there may be dual degeneracy in the
choice of pt: each such point can lead to a different Farkas certificate and there-
fore a different strengthening. Second, as observed by Balas and Qualizza [6],
“sometimes weaking a disjunction helps the strengthening”. Though in that con-
text, the weakening involves adding terms to the disjunction, the sentiment
applies to our setting as well: if β̄t > β̄, then one can seek a different, potentially
infeasible, basis of Qt in which more integer variables are nonbasic and ᾱTx ≥ β̄
is still valid for the associated basis cone.

The computational results support the above intuition. When VPCs are gen-
erated from a split disjunction, on average, around 95% of the generated cuts
per instance have any coefficient strengthened with the monoidal technique. This
decreases to 85% for 64-term disjunctions. Furthermore, on average among VPCs
to which strengthening has been applied, 20% of the cut coefficients are strength-
ened for split disjunctions, while this value steadily decreases as disjunction size
increases, so among the analogous VPCs from 64-term disjunctions, only 10% of
the coefficients are strengthened.

6 Conclusion

We show that strengthening cuts from general disjunctions is possible without
explicitly solving a higher-dimensional CGLP, and that this strengthening can
have a high impact for certain instances. However, several challenges are also
highlighted for future work. First, the strengthening does not work well on aver-
age for larger disjunctions. While we propose a viable explanation and remedy,
it is computationally demanding and requires development. Second, the opti-
mal monoidal strengthening involves solving an integer program per cut; this is
a relatively small and easy problem, but it nonetheless can be slow for larger
disjunctions, as suggested by Table 3, which includes strengthening time. One
can reduce this load by selectively strengthening only the most promising cuts,
identified by theoretical properties or good heuristics, or to forego optimality in

288 A. M. Kazachkov and E. Balas

the strengthened cut coefficients. Our computational results indicate that VPCs
and GMICs seem to have complementary affects; understanding this better is
an opportunity to more widely adopt disjunctive cuts.

References

1. COIN-OR Branch and Cut. https://github.com/coin-or/Cbc
2. COIN-OR Cut Generation Library. https://github.com/coin-or/Cgl
3. COIN-OR Linear Programming. https://github.com/coin-or/Clp
4. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–

372 (2006)
5. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math.

Program., 102(3, Ser. A), 457–493 (2005)
6. Balas, E., Qualizza, A.: Monoidal cut strengthening revisited. Discrete Optim.

9(1), 40–49 (2012)
7. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming.

Oper. Res. 19(1), 19–39 (1971)
8. Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)
9. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J.

Oper. Res. 4(4), 224–234 (1980)
10. Balas, E., Kazachkov, A.M.: V-polyhedral disjunctive cuts (2022). https://arxiv.

org/abs/2207.13619
11. Balas, E., Kis, T.: On the relationship between standard intersection cuts, lift-and-

project cuts and generalized intersection cuts. Math. Program., 1–30 (2016)
12. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts,

simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming.
Math. Program. 94(2–3, Ser. B), 221–245 (2003). The Aussois 2000 Workshop in
Combinatorial Optimization

13. Balas, E., Qualizza, A.: Intersection cuts from multiple rows: a disjunctive pro-
gramming approach. EURO J. Computat. Optim. 1(1), 3–49 (2013)

14. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Math. Program. 58(3, Ser. A), 295–324 (1993)

15. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project in
a branch-and-cut framework. Man. Sci. 42(9), 1229–1246 (1996)

16. Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: Experiments with two-row cuts
from degenerate tableaux. INFORMS J. Comput. 23(4), 578–590 (2011)

17. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: a test set of mixed integer
programming problems. SIAM News 25, 16 (1992)

18. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58, 12–15, 6 (1998)

19. Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput.
4(2), 151–179 (2012)

20. Bonami, P., Conforti, M., Cornuéjols, G., Molinaro, M., Zambelli, G.: Cutting
planes from two-term disjunctions. Oper. Res. Lett. 41(5), 442–444 (2013)

21. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271 of Grad-
uate Texts in Mathematics. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-11008-0

22. CORAL. Computational Optimization Research at Lehigh. MIP instances.
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/ (2020). Accessed
Sept 2020

https://github.com/coin-or/Cbc
https://github.com/coin-or/Cgl
https://github.com/coin-or/Clp
https://arxiv.org/abs/2207.13619
https://arxiv.org/abs/2207.13619
https://doi.org/10.1007/978-3-319-11008-0
https://doi.org/10.1007/978-3-319-11008-0
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts 289

23. Cornuéjols, G., Li, Y.: Elementary closures for integer programs. Oper. Res. Lett.
28(1), 1–8 (2001)

24. Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program.
124(1–2, Ser. B), 143–174 (2010)

25. Dey, S.S., Lodi, A., Tramontani, A., Wolsey, L.A.: On the practical strength of
two-row tableau cuts. INFORMS J. Comput. 26(2), 222–237 (2014)

26. Espinoza, D.G.: Computing with multi-row Gomory cuts. Oper. Res. Lett. 38(2),
115–120 (2010)

27. Farkas, J.: Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27
(1902)

28. Fischer, T., Pfetsch, M.E.: Monoidal cut strengthening and generalized mixed-
integer rounding for disjunctions and complementarity constraints. Oper. Res. Lett.
45(6), 556–560 (2017)

29. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts.
Math. Program. 128(1–2, Ser. A), 205–230 (2011)

30. Fukasawa, R., Poirrier, L., Xavier, Á.S.: The (not so) trivial lifting in two dimen-
sions. Math. Program. Comp. 11(2), 211–235 (2019)

31. Gleixner, A., et al.: MIPLIB 2017: Data-Driven compilation of the 6th mixed-
integer programming library. Math. Prog. Comp., (2021)

32. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner poly-
hedra. Math. Program. 3(1), 23–85 (1972)

33. Guennebaud, G., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
34. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual (2022)
35. Johnson, E.L.: On the group problem for mixed integer programming. Math. Pro-

gram. Stud. 2, 137–179 (1974)
36. Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Faustino, A.M.: A complementarity-based

partitioning and disjunctive cut algorithm for mathematical programming prob-
lems with equilibrium constraints. J. Global Optim. 36(1), 89–114 (2006)

37. Kazachkov, A.M.: Non-Recursive Cut Generation. PhD thesis, Carnegie Mellon
University (2018)

38. Kazachkov, A.M., Serrano, F.: Monoidal cut strengthening. In: Prokopyev, O.,
Pardalos, P.M., editors, Encyclopedia of Optimization. Springer, US, Boston, MA.
Under review

39. Kılınç, M., Linderoth, J., Luedtke, J., Miller, A.: Strong-branching inequalities for
convex mixed integer nonlinear programs. Comput. Optim. Appl. 59(3), 639–665
(2014). https://doi.org/10.1007/s10589-014-9690-8

40. Kis, T.: Lift-and-project for general two-term disjunctions. Discrete Optim. 12,
98–114 (2014)

41. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E.,
et al.: MIPLIB 2010: mixed integer programming library version 5. Math. Program.
Comput. 3(2), 103–163 (2011)

42. Kronqvist, J., Misener, R.: A disjunctive cut strengthening technique for convex
MINLP. Optim. Eng. 22(3), 1315–1345 (2021)

43. Lougee-Heimer, R.: The Common Optimization INterface for Operations Research:
promoting open-source software in the operations research community. IBM J. Res.
Dev. 47 (2003)

44. Louveaux, Q., Poirrier, L., Salvagnin, D.: The strength of multi-row models. Math.
Program. Comput. 7(2), 113–148 (2015)

45. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-
Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons
Inc, New York (1988)

http://eigen.tuxfamily.org
https://doi.org/10.1007/s10589-014-9690-8

290 A. M. Kazachkov and E. Balas

46. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0-1
mixed integer programs. Math. Program. 46(1), 379–390 (1990)

47. Perregaard, M.: Generating Disjunctive Cuts for Mixed Integer Programs. PhD
thesis, Carnegie Mellon University, 9 (2003)

48. Perregaard, M., Balas, E.: Generating cuts from multiple-term disjunctions. In:
Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 348–360. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3_27

49. Xavier, Á.S., Fukasawa, R., Poirrier, L.: Multirow intersection cuts based on the
infinity norm. INFORMS J. Comput. 33(4), 1624–1643 (2021)

50. Ziegler, G.M.: Lectures on Polytopes, vol. 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York (1995). https://doi.org/10.1007/978-1-4613-8431-1

https://doi.org/10.1007/3-540-45535-3_27
https://doi.org/10.1007/978-1-4613-8431-1

Optimal General Factor Problem
and Jump System Intersection

Yusuke Kobayashi(B)

Kyoto University, Kyoto, Japan

yusuke@kurims.kyoto-u.ac.jp

Abstract. In the optimal general factor problem, given a graph G =
(V, E) and a set B(v) ⊆ Z of integers for each v ∈ V , we seek for
an edge subset F of maximum cardinality subject to dF (v) ∈ B(v) for
v ∈ V , where dF (v) denotes the number of edges in F incident to v. A
recent crucial work by Dudycz and Paluch shows that this problem can
be solved in polynomial time if each B(v) has no gap of length more
than one. While their algorithm is very simple, its correctness proof
is quite complicated. In this paper, we formulate the optimal general
factor problem as the jump system intersection, and reveal when the
algorithm by Dudycz and Paluch can be applied to this abstract form
of the problem. By using this abstraction, we give another correctness
proof of the algorithm, which is simpler than the original one. We also
extend our result to the valuated case.

1 Introduction

1.1 General Factor Problem

Matching in graphs is one of the most well-studied topics in combinatorial opti-
mization. Since a maximum matching algorithm was proposed by Edmonds [6] in
1960s, a lot of generalizations of the matching problem have been proposed and
studied in the literature. Among them, we focus on the general factor problem,
which contains several important problems as special cases. In the general factor
problem (or also called B-factor problem), we are given a graph G = (V,E) and
a set B(v) ⊆ Z of integers for each v ∈ V . The objective is to find an edge subset
F ⊆ E such that dF (v) ∈ B(v) for any v ∈ V if it exists, where dF (v) denotes
the number of edges in F incident to v. Such an edge set is called a B-factor.

Since the general factor problem is NP-hard in general (e.g. it contains the
3-edge-coloring problem [13]), polynomially solvable special cases have attracted
attention. A B-factor amounts to a perfect matching if B(v) = {1} for each
v ∈ V , and it is called a b-factor if B(v) = {b(v)} for each v ∈ V , where
b : V → Z. For a, b : V → Z, if B(v) = {a(v), a(v)+1, a(v)+2, . . . , b(v)−1, b(v)}
(resp, B(v) = {a(v), a(v) + 2, a(v) + 4, . . . , b(v) − 2, b(v)}) for v ∈ V , then a
B-factor is called an (a, b)-factor (resp. an (a, b)-parity factor). It is well-known

The full version is available at arXiv [10].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 291–305, 2023.
https://doi.org/10.1007/978-3-031-32726-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_21&domain=pdf
http://orcid.org/0000-0001-9478-7307
https://doi.org/10.1007/978-3-031-32726-1_21

292 Y. Kobayashi

that, in the above cases, we can find a B-factor in polynomial time by using
a maximum matching algorithm; see [13] and [23, Section 35]. Note that the
parity constraint can be dealt with by adding 1

2 (b(v) − a(v)) self-loops to each
v ∈ V and modifying B(v). Another special case is the antifactor problem, in
which B(v) = {0, 1, 2, . . . , dE(v)} \ {αv} for some αv ∈ {0, 1, 2, . . . , dE(v)}, that
is, exactly one value is forbidden for each v ∈ V . Graphs with an antifactor
were characterized by Lovász [14]. The edge-and-triangle partitioning problem
is to cover all the vertices in a graph by edges and triangles that are mutually
disjoint, which can be easily reduced to the general factor problem with B(v) =
{1}, {0, 2}, or {0, 2, 3}. The edge-and-triangle partitioning problem is known to
be solvable in polynomial time [4].

All the above polynomially solvable cases have a property that each B(v) has
no gap of length more than one. Here, B(v) ⊆ Z is said to have a gap of length p if
there exists α ∈ B(v) such that α+1, α+2, . . . , α+p �∈ B(v) and α+p+1 ∈ B(v).
It turns out that this is a key property to design a polynomial-time algorithm.
Indeed, Cornuéjols [3] gave a polynomial-time algorithm for the general factor
problem with this property and Sebő [24] gave a good characterization.

An optimization variant of the general factor problem has also attracted
attention, which we call the optimal general factor problem (or the optimal gen-
eral matching problem). In the problem, given a graph G = (V,E) and a set
B(v) ⊆ Z of integers for each v ∈ V , we seek for a B-factor of maximum cardi-
nality. It is the maximum matching problem if B(v) = {0, 1}, and is the maxi-
mum b-matching problem if B(v) = {0, 1, . . . , b(v)}, both of which can be solved
in polynomial time. In the same way as the search problem described above,
we can find a maximum (a, b)-factor (or (a, b)-parity factor) in polynomial time;
see [23, Section 35]. The optimization variant of the edge-and-triangle partition-
ing problem was studied with the name of the simplex matching problem, and a
polynomial-time algorithm was designed for this problem [1]; see also [22].

Recently, Dudycz and Paluch [5] showed that the optimal general factor
problem can be solved in polynomial time if each B(v) has no gap of length
more than one. This is definitely a crucial result in this area, because it is a
generalization of all the above results. While their algorithm is very simple, its
correctness proof is quite complicated.

1.2 Jump System Intersection

In this paper, we introduce an abstract form of the optimal general factor prob-
lem by using the concept of jump systems introduced by Bouchet and Cunning-
ham [2] (see also [9,17]). Let V be a finite set. For x, y ∈ Z

V , we say that s ∈ Z
V

is an (x, y)-step if ‖s‖1 = 1 and ‖(x + s) − y‖1 = ‖x − y‖1 − 1. A non-empty
subset J ⊆ Z

V is called a jump system if it satisfies the following property:

(JUMP) For any x, y ∈ J and for any (x, y)-step s, either x + s ∈ J or there
exists an (x + s, y)-step t such that x + s + t ∈ J .

Typical examples of jump systems include matroids, delta-matroids, integral
polymatroids (or submodular systems [7]), and degree sequences of subgraphs.

Optimal General Factor Problem and Jump System Intersection 293

When J ⊆ Z is one-dimensional, one can see that J is a jump system if and
only if it has no gap of length more than one. One can also see that the direct
product of one-dimensional jump systems is also a jump system. We consider
the optimization problem over the intersection of two jump systems, where one
is the direct product of one-dimensional jump systems.

Jump System Intersection
Input. A jump system J ⊆ Z

V , a finite one-dimensional jump system B(v) ⊆ Z

for each v ∈ V , and a vector c ∈ Z
V .

Problem. Find a vector x ∈ J ∩B maximizing c�x, where B ⊆ Z
V is the direct

product of B(v)’s.

If J consists of degree sequences of subgraphs, i.e., J = {dF ∈ Z
V | F ⊆ E},

and c(v) = 1 for v ∈ V , then the problem amounts to the optimal general factor
problem, which can be solved in polynomial time [5]. On the other hand, if J is
a 2-polymatroid and B(v) = {0, 2} for each v ∈ V , then the problem amounts
to the matroid matching problem [15] or the matroid parity problem [12]. This
implies that the problem cannot be solved in polynomial time if J is given as a
membership oracle [8,16]; see also [18].

A similar problem is to determine whether the intersection of two jump sys-
tems J1 and J2 is empty or not, which is also hard in general. This problem was
studied in [17] as a membership problem of J1 − J2 := {x − y | x ∈ J1, y ∈ J2},
because J1 ∩ J2 �= ∅ if and only if 0 ∈ J1 − J2.

1.3 Our Contribution: Jump System with SBO Property

A natural question is why the optimal general factor problem can be solved
efficiently, while the general setting of Jump System Intersection is hard.
In this paper, we answer this question by revealing the properties of J that are
essential in the argument in [5].

For a positive integer �, we denote {1, 2, . . . , �} by [�]. For x, y ∈ Z
V , we

say that a multiset {p1, . . . , p�} of vectors is a 2-step decomposition of y − x if
pi ∈ Z

V and ‖pi‖1 = 2 for each i ∈ [�], ‖y − x‖1 = 2�, and y − x =
∑

i∈[�] pi.
A non-empty subset J ⊆ Z

V is called a jump system with SBO property1 if it
satisfies the following property:

(SBO-JUMP) For any x, y ∈ J , there exists a 2-step decomposition {p1, . . . , p�}
of y − x such that x +

∑
i∈I pi ∈ J for any I ⊆ [�].

We can see that (SBO-JUMP) implies (JUMP). To see this, for given x, y ∈ J ,
suppose that there exist vectors p1, . . . , p� ∈ Z

V satisfying the conditions in
(SBO-JUMP). Then, for any (x, y)-step s, there exists an (x + s, y)-step t such
that s + t = pi for some i ∈ [�], and hence x + s + t = x + pi ∈ J . Therefore,
if J is a jump system with SBO property, then it is a jump system such that∑

v∈V x(v) has the same parity for any x ∈ J , which is called a constant parity
jump system. See [21] for a characterization of constant parity jump systems.

We now give a few examples of jump systems with SBO property.
1 SBO stands for strongly base orderable (see Example 1).

294 Y. Kobayashi

Example 1. A matroid M = (S,B) with a ground set S and a base family B is
called strongly base orderable if, for any bases B1, B2 ∈ B, there exists a bijection
f : B1\B2 → B2\B1 such that (B1\X)∪{f(x) | x ∈ X} ∈ B for any X ⊆ B1\B2

(see e.g., [23, Section 42.6c]). By definition, the characteristic vectors of the bases
of a strongly base orderable matroid satisfy (SBO-JUMP).

Note that the characteristic vectors of the bases do not satisfy (SBO-JUMP)
if the matroid is not strongly base orderable, which implies that the class of
jump systems with SBO property is strictly smaller than that of constant parity
jump systems. By merging some elements in Example 1, we obtain the following
example, which was studied for linear matroids in a problem similar to Jump
System Intersection [25].

Example 2. Let M = (S,B) be a strongly base orderable matroid and let (S1,
S2, . . . , Sn) be a partition of S. Then, J = {x ∈ Z

n | B ∈ B, x(i) = |B ∩
Si| for i ∈ [n]} satisfies (SBO-JUMP).

Another example is the set of the degree sequences of subgraphs.

Example 3. Let G = (V,E) be a graph and let J be the set of the degree
sequences of subgraphs, i.e., J = {dF | F ⊆ E}. Then, J satisfies (SBO-JUMP).
To see this, for x, y ∈ J , let M,N ⊆ E be edge sets with dM = x and dN = y.
Then, the symmetric difference of M and N can be decomposed into alternating
paths P1, . . . , P� and alternating cycles such that {dN∩Pi

− dM∩Pi
| i ∈ [�]} is a

2-step decomposition of y − x. Note that each Pi is regarded as an edge subset.
Let pi := dN∩Pi

− dM∩Pi
for i ∈ [�]. For any I ⊆ [�], x +

∑
i∈I pi is the degree

sequence of the symmetric difference of M and
⋃

i∈[I] Pi, and hence it is in J .

Our contribution is to introduce the jump system with SBO property and
show that (SBO-JUMP) is crucial when we apply the algorithm in [5] for Jump
System Intersection. For α, β ∈ Z with α ≤ β that have the same parity,
a set {α, α + 2, . . . , β − 2, β} is called a parity interval. The main result in this
paper is stated as follows.

Theorem 1. There is an algorithm for Jump System Intersection whose
running time is polynomial in

∑
v∈V

∑
α∈B(v) log(|α|+1)+

∑
v∈V log(|c(v)|+1)

if the following properties hold:

(C1) a feasible solution x0 ∈ J ∩ B is given,
(C2) J satisfies (SBO-JUMP), and
(C3) for any direct product B′ ⊆ Z

V of parity intervals, there is an oracle for
finding a vector x ∈ J ∩ B′ maximizing c�x.

Note that no explicit representation of J is required in this theorem. We only
need the oracle in Condition (C3). Note also that Condition (C3) implies the
existence of the membership oracle of J .

When J is the set of the degree sequences of subgraphs, we see that J satisfies
(C1)–(C3) as follows. It was shown by Cornuéjols [3] that a feasible solution
x0 ∈ J∩B in (C1) can be found in polynomial time, and (C2) holds by Example 3.

Optimal General Factor Problem and Jump System Intersection 295

The subproblem in (C3) is to find a maximum (a, b)-parity factor, which can be
solved in polynomial time.

Our proof for Theorem1 is based on the argument of Dudycz and Paluch [5].
While their algorithm is very simple, the correctness proof is quite complicated.
In particular, an involved case analysis is required to prove a key lemma [5,
Lemma 2]. Our technical contribution in this paper is to give a new simpler
proof of this lemma in a slightly different form (Lemma1). In our proof, we use
several properties that are peculiar to our problem formulation (see Sect. 4.1),
which is an advantage of introducing the abstract form of the optimal general
factor problem. We also show that a scaling technique used in [5] is not required
in the algorithm, which is another contribution of this paper.

We also introduce a quantitative extension of (SBO-JUMP), and extend
Theorem 1 to a valuated variant of Jump System Intersection; see
Theorem 2.

1.4 Organization

The rest of this paper is organized as follows. Some preliminaries are given
in Sect. 2. In Sect. 3, we describe our algorithm and prove its correctness by
using a key technical lemma (Lemma 1). A proof of Lemma 1 is given in Sect. 4,
where properties shown in Sect. 4.1 play important roles to simplify the argu-
ment. In Sect. 5, we extend our results to the valuated case and show that a
polynomial-time algorithm for the weighted general factor problem is derived
from our results. Proofs of theorems/lemmas marked with (�) are omitted due
to the page limitation and given in the full version [10].

2 Preliminaries

Let V be a finite set. For v ∈ V , let χv ∈ Z
V denote the characteristic vector of

v, that is, χv(v) = 1 and χv(u) = 0 for u ∈ V \{v}. For each v ∈ V , we are given
a non-empty finite set B(v) ⊆ Z that has no gap of length more than one, i.e.,
B(v) is a one-dimensional jump system. Throughout this paper, let B ⊆ Z

V be
the direct product of B(v)’s, i.e., B := {x ∈ Z

V | x(v) ∈ B(v) for any v ∈ V }.
For x ∈ Z

V , we denote min B ≤ x ≤ max B if min B(v) ≤ x(v) ≤ max B(v)
for every v ∈ V . For x ∈ Z

V , we define q(x) = |{v ∈ V | x(v) �∈ B(v)}|. Note
that, if minB ≤ x ≤ max B, then q(x) := miny∈B ‖x − y‖1, because each B(v)
has no gap of length greater than one. Recall that a parity interval is a subset
of Z that is of the form {α, α + 2, . . . , β − 2, β}. For v ∈ V , we see that B(v)
is uniquely partitioned into inclusionwise maximal parity intervals (see Fig. 1),
which we call maximal parity intervals of B(v). For α, β ∈ Z with min B(v) ≤
α ≤ β ≤ max B(v), we define distB(v)(α, β) as the number of maximal parity
intervals of B(v) intersecting [α, β] minus one. In other words, distB(v)(α, β)
is the number of pairs of consecutive integers in B(v) ∩ [α, β]. We also define

296 Y. Kobayashi

Fig. 1. Blue circles are elements in B(v) and red arrows are maximal parity intervals.
(Color figure online)

distB(v)(β, α) := distB(v)(α, β). For x, y ∈ Z
V with min B ≤ x, y ≤ max B,

we define distB(x, y) :=
∑

v∈V distB(v)(x(v), y(v)); see Fig. 2. Note that distB

satisfies the triangle inequality.

Fig. 2. In this two-dimensional example, distB(v1)(x(v1), y(v1)) = 3,
distB(v2)(x(v2), y(v2)) = 2, distB(x, y) = 5, ‖x − y‖1 = 14, q(x) = 1, and q(y) = 0.

3 Algorithm and Correctness

Our algorithm for Jump System Intersection is basically the same as [5]. We
first initialize the vector x := x0, where x0 is as in Condition (C1) in Theorem1.
In each iteration, we compute a vector x′ ∈ J ∩ B maximizing c�x′ subject to
distB(x, x′) ≤ 2. If c�x′ = c�x, then the algorithm terminates by returning x.
Otherwise, we replace x with x′ and repeat the procedure. See Algorithm 1 for
a pseudocode of the algorithm.

In the correctness proof, we use the following key lemma, whose proof is given
in Sect. 4. Note again that giving a simpler proof for this lemma is a technical
contribution of this paper.

Lemma 1. Let x, y ∈ B be vectors with distB(x, y) = 4, let {p1, . . . , p�} be a
2-step decomposition of y − x, and let wi ∈ R for i ∈ [�]. Then, there exists a
set I ⊆ [�] such that z := x +

∑
i∈I pi is contained in B, distB(x, z) = 2, and∑

i∈I wi ≥ min{0,
∑

i∈[�] wi}.

Optimal General Factor Problem and Jump System Intersection 297

Algorithm 1: Algorithm for Jump System Intersection

Input: J, B, c, and x0.
Output: x ∈ J ∩ B maximizing c�x.

1 x ← x0;
2 while true do

3 Find a vector x′ ∈ J ∩ B maximizing c�x′ subject to distB(x, x′) ≤ 2;

4 if c�x′ = c�x then
5 return x
6 x ← x′;

Remark 1. In Lemma 1, the roles of x and y are symmetric by changing the signs
of pi and wi, because Ī := [�] \ I satisfies the following:

– x +
∑

i∈I pi = y +
∑

i∈Ī(−pi),
– distB(x, z) = 2 ⇐⇒ distB(y, z) = 2, and
–

∑
i∈I wi ≥ min

{
0,

∑
i∈[�] wi

} ⇐⇒ ∑
i∈Ī(−wi) ≥ min

{
0,

∑
i∈[�](−wi)

}
.

Let w ∈ R
� be the vector consisting of wi’s, and denote w(I) :=

∑
i∈I wi for

I ⊆ [�]. We next show the following lemma. Note that almost the same result is
shown for degree sequences in [5, Lemma 1].

Lemma 2. Let k be a positive integer. Let x, y ∈ B be vectors with distB(x, y) =
2k and let {p1, . . . , p�} be a 2-step decomposition of y−x. Then, there exist index
sets ∅ = I0 � I1 � I2 � · · · � Ik = [�] such that zj := x +

∑
i∈Ij

pi is contained
in B and distB(zj−1, zj) = 2 for j ∈ [k].

Proof. It suffices to construct I1 ⊆ [�] satisfying the conditions, because I2,
I3, . . . , Ik−1 can be constructed in this order in the same way.

By changing the direction of axes if necessary, we may assume that x(v) ≤
y(v) for every v ∈ V . Then, each pi is equal to χa + χb for some a, b ∈ V
(possibly a = b). For z ∈ Z

V , we denote φ(z) := (distB(x, z), q(z)) ∈ Z
2
≥0. In

order to construct I1, we start with I := I0 = ∅ and add an element one by one
to I. During the procedure, we keep φ(z) ∈ {(0, 0), (0, 2), (1, 1), (2, 0)}, where
z := x +

∑
i∈I pi. Note that φ(z) = (0, 0) when I is initialized to I0.

If φ(z) = (2, 0), then I1 := I clearly satisfies the conditions. Otherwise, it
holds that φ(z) ∈ {(0, 0), (0, 2), (1, 1)}. In this case, we show that there exists an
index i ∈ [�] \ I such that φ(z + pi) ∈ {(0, 0), (0, 2), (1, 1), (2, 0)} by the following
case analysis.

– Suppose that φ(z) = (0, 0). Let i be an arbitrary index in [�] \ I.
Then, pi = χa + χb for some a, b ∈ V (possibly a = b). We see that
φ(z + χa) ∈ {(0, 1), (1, 0)}, and hence φ(z + pi) = φ(z + χa + χb) ∈
{(0, 0), (0, 2), (1, 1), (2, 0)}.

– Suppose that φ(z) = (0, 2). Then, z + χa + χb ∈ B for some distinct a, b ∈ V
such that z(a) < y(a) and z(b) < y(b). Let i be an index in [�] \ I such that
pi = χa + χc for some c ∈ V (possibly c = a or c = b). Then, we see that
φ(z+χa) = (0, 1), and hence φ(z+pi) = φ(z+χa+χc) ∈ {(0, 0), (0, 2), (1, 1)}.

298 Y. Kobayashi

– Suppose that φ(z) = (1, 1). Then, z+χa ∈ B for some a ∈ V with z(a) < y(a).
Let i be an index in [�] \ I such that pi = χa + χb for some b ∈ V (possibly
b = a). Then, we see that φ(z + χa) = (1, 0), and hence φ(z + pi) = φ(z +
χa + χb) ∈ {(1, 1), (2, 0)}.

If φ(z +pi) = (2, 0), then I1 := I ∪{i} satisfies the conditions. Otherwise, we
replace I with I ∪ {i} and repeat the procedure. Since [�] is finite, this process
terminates by finding a desired index set I1, which completes the proof. ��

By using Lemmas 1 and 2, we can evaluate the improvement of the objective
value in each iteration of Algorithm 1 as follows.

Lemma 3. Let J be a jump system with SBO property, let x∗ ∈ J ∩ B be
an optimal solution of Jump System Intersection, and let x ∈ J ∩ B be
a vector with x �= x∗. Let x′ ∈ J ∩ B be a vector maximizing c�x′ subject to
distB(x, x′) ≤ 2. Then, c�x′ − c�x ≥ 2

‖x∗−x‖1
(c�x∗ − c�x).

Proof. If distB(x, x∗) ≤ 2, then the inequality is obvious. Since distB(x, x∗)
is even, suppose that distB(x, x∗) ≥ 4. Since x, x∗ ∈ J , there exists a 2-step
decomposition {p1, . . . , p�} of x∗−x that satisfies the conditions in (SBO-JUMP).
For i ∈ [�], we define wi = c�pi − c�x∗−c�x

� + ε, where ε is a sufficiently small
positive number (e.g. ε = 1

(�+1)2) that is used to break ties. Observe that, for
I, I ′ ⊆ [�] with |I| �= |I ′|, w(I) �= w(I ′) holds because of ε. By Lemma 2, there
exist index sets ∅ = I0 � I1 � I2 � · · · � Ik = [�] such that zj := x +

∑
i∈Ij

pi is
contained in B and distB(zj−1, zj) = 2 for j ∈ [k]. We choose I1, I2, . . . , Ik−1 so
that (w(I1), w(I2), . . . , w(Ik−1)) is lexicographically maximum. Note that zj ∈ J
for j ∈ [k] by (SBO-JUMP).

Let j ∈ [k] be the minimum index such that w(Ij−1) < w(Ij). Note that
such j must exist, because w(I0) = 0 < ε� = w(Ik). Assume that j �= 1. Then,
the minimality of j shows that w(Ij−2) > w(Ij−1) < w(Ij), where we note
that w(Ij−2) �= w(Ij−1) as |Ij−2| �= |Ij−1|. By applying Lemma 1 to a 2-step
decomposition {pi | i ∈ Ij \Ij−2} of zj −zj−2, we obtain an index set I ⊆ Ij \Ij−2

such that z′
j−1 := zj−2 +

∑
i∈I pi is contained in B, distB(zj−2, z

′
j−1) = 2, and

w(I) ≥ min{0, w(Ij \ Ij−2)}. Let I ′
j−1 := Ij−2 ∪ I. By z′

j−1 = x+
∑

i∈I′
j−1

pi and
(SBO-JUMP), we see that z′

j−1 ∈ J . Furthermore, we obtain

w(I ′
j−1) = w(Ij−2) + w(I) ≥ min {w(Ij−2), w(Ij)} > w(Ij−1),

which contradicts the choice of Ij−1.
Therefore, we obtain j = 1, that is, 0 = w(I0) < w(I1). Since

0 < w(I1) =
∑

i∈I1

(
c�pi − c�x∗ − c�x

�
+ ε

)

= c�z1 − c�x −
(c�x∗ − c�x

�
− ε

)
|I1|

Optimal General Factor Problem and Jump System Intersection 299

and ε is sufficiently small, we obtain

c�z1 − c�x ≥ (c�x∗ − c�x)|I1|
�

.

We also see that c�x′ ≥ c�z1, because z1 ∈ J ∩ B and distB(x, z1) ≤ 2. By
combining these inequalities with |I1| ≥ 1 and � = ‖x∗−x‖1

2 , we obtain c�x′ −
c�x ≥ 2

‖x∗−x‖1
(c�x∗ − c�x). ��

This implies that the global optimality is guaranteed by the local optimality.

Corollary 1. In an instance of Jump System Intersection with (C2), a
feasible solution x ∈ J ∩ B maximizes c�x if and only if c�x ≥ c�x′ for any
x′ ∈ J ∩ B with distB(x, x′) ≤ 2.

We are now ready to prove the correctness of Algorithm1.

Proof (Proof of Theorem 1). We first show that each iteration of Algorithm 1
runs in polynomial time. For x, x′ ∈ B with distB(x, x′) ≤ 2, we see that x(v)
and x′(v) are contained in the same maximal parity interval of B(v) for any
v ∈ V except at most two elements. Thus, for x ∈ B, {x′ ∈ B | distB(x, x′) ≤ 2}
can be partitioned into O(n2) sets, each of which is a direct product of parity
intervals. Therefore, we can find a vector x′ ∈ J ∩ B maximizing c�x′ subject
to distB(x, x′) ≤ 2 by using the oracle in Condition (C3), O(n2) times.

We next evaluate the number of iterations in the algorithm. Let OPT be the
optimal value of the problem and let Bsize :=

∑
v∈V |B(v)|. Since J is a jump

system with SBO property by Condition (C2), we can apply Lemma3. By this
lemma, if x is replaced with x′ in line 6 of Algorithm 1, then

OPT − c�x′ ≤
(

1 − 2
‖x∗ − x‖1

)

(OPT − c�x) ≤
(

1 − 1
Bsize

)

(OPT − c�x),

that is, the gap to the optimal value decreases by a factor of at most 1 − 1
Bsize

.
Therefore, by repeating this procedure O(Bsize log(OPT−c�x0)) times, the algo-
rithm terminates and returns an optimal solution.

This shows that Algorithm 1 solves Jump System Intersection in poly-
nomial time. ��

4 Outline of the Proof of Lemma 1

4.1 Minimal Counterexample

This section gives an outline of the proof of Lemma1. A tuple (x, y, (pi)i∈[�], w)
is called an instance and a set I satisfying the conditions is called a solution.
To derive a contradiction, assume that Lemma 1 does not hold. Suppose that
(x, y, (pi)i∈[�], w) is a counterexample that minimizes ‖y − x‖1. Among such
counterexamples, we choose one that minimizes |{(pi, wi) | i ∈ [�]}|, that is, we

300 Y. Kobayashi

minimize the number of different (pi, wi) pairs. Such (x, y, (pi)i∈[�], w) is called a
minimal counterexample. Define U ⊆ V as U := {v ∈ V | distB(v)(x(v), y(v)) ≥
1}. By changing the direction of axes if necessary, we may assume that x(v) ≤
y(v) for every v ∈ V . Then, each pi is equal to χa+χb for some a, b ∈ V (possibly
a = b). We show some properties of the minimal counterexample. Our argument
becomes simpler with the aid of these properties.

Lemma 4. For any i ∈ [�], pi = χa + χb for some a, b ∈ U (possibly a = b).
Consequently, x(v) = y(v) for all v ∈ V \ U .

Proof. Assume to the contrary that there exists i ∈ [�] such that pi = χa + χc

for some a ∈ V and for some c ∈ V \ U .
Suppose that a = c, i.e., pi = 2χc. We consider a new instance by removing

pi and replacing y with y − 2χc ∈ B. By the minimality of the counterexample,
the obtained instance has a solution I ⊆ [�] \ {i}, which implies that w(I) ≥ 0
or w(I) ≥ w([�] \ {i}). Then, I ′ := I is a solution of the original instance in the
former case and I ′ := I ∪ {i} is a solution of the original instance in the latter
case, which is a contradiction.

Suppose next that a �= c. Since distB(c)(x(c), y(c)) = 0 and x(c), y(c) ∈ B(c),
we see that x(c) and y(c) have the same parity. Thus, there exists i′ ∈ [�] \ {i}
such that pi′ = χb + χc for some b ∈ V \ {c}. We merge pi and pi′ as follows:
replace pi and pi′ with a new vector pi′′ := χa + χb whose weight is wi + wi′ ,
and replace y with y − 2χc ∈ B. By the minimality of the counterexample, the
obtained instance has a solution I ⊆ ([�] \ {i, i′}) ∪ {i′′}. Then, we see that the
set

I ′ :=

{
(I \ {i′′}) ∪ {i, i′} if i′′ ∈ I,
I otherwise

is a solution of the original instance, which is a contradiction. ��
Lemma 5. (�) For any i ∈ [�], pi �= 2χa for a ∈ U with distB(a)(x(a), y(a)) =
1.

Lemma 6. For any i, j ∈ [�] with pi = pj, it holds that wi = wj.

Proof. Let (x, y, (pi)i∈[�], w) be a minimal counterexample of Lemma 1, and
assume that pi = pj does not imply wi = wj . Let I∗ ⊆ [�] be a maxi-
mal index set such that pi = pj for any i, j ∈ I∗ and wi �= wj for some
i, j ∈ I∗. We denote I∗ = {i1, i2, . . . , it}, where wi1 ≥ wi2 ≥ · · · ≥ wit . Let
w∗ := 1

t w(I∗). Define w′
i := w∗ for i ∈ I∗ and w′

i := wi for i ∈ [�] \ I∗.
We note that w′([�]) = w([�]). If there exists a solution I ′ ⊆ [�] for a new
instance (x, y, (pi)i∈[�], w

′), then I := (I ′ \ I∗) ∪ {i1, i2, . . . , i|I′∩I∗|} is a solution
for the original instance (x, y, (pi)i∈[�], w), because wi1 + wi2 + · · · + wi|I′∩I∗| ≥
|I ′ ∩ I∗| · w∗ = w′(I ′ ∩ I∗) implies that w(I) ≥ w(I ′). This shows that instance
(x, y, (pi)i∈[�], w

′) has no solution, and hence it is a counterexample. Since
|{(pi, w

′
i) | i ∈ [�]}| < |{(pi, wi) | i ∈ [�]}|, this contradics the minimality of

(x, y, (pi)i∈[�], w). ��

Optimal General Factor Problem and Jump System Intersection 301

Let I+ := {i ∈ [�] | wi > 0} and z+ := x+
∑

i∈I+ pi. By Lemma 6, we observe
the following.

Observation 1. For any i ∈ I+ and for any j ∈ [�] \ I+, it holds that pi �= pj.

Since x(v) = y(v) = z+(v) for v ∈ V \ U by Lemma 4, it holds that q(z+) ≤
|U | ≤ distB(x, y) = 4. We derive a contradiction for the cases when |U | = 4,
|U | = 3, and |U | ≤ 2, separately. In this extended abstract we only consider the
case when |U | = 3 as a demonstration. The other cases are dealt with in the full
version [10].

In the case analysis, we use the following lemma, which is obtained by the
same argument as Lemma 2. Here, we denote φ(z) := (distB(x, z), q(z)) ∈ Z

2
≥0

for z ∈ Z
V .

Lemma 7. Let I0 ⊆ [�] be an index set such that z0 := x +
∑

i∈I0
pi satisfies

φ(z0) ∈ {(0, 0), (0, 2), (1, 1), (2, 0)}. Then, there exists an index set I ⊆ [�] with
I0 ⊆ I such that z := x +

∑
i∈I pi is contained in B and distB(x, z) = 2, i.e.,

φ(z) = (2, 0).

4.2 Part of Case Analysis: |U | = 3

In this extended abstract, we only consider the case when |U | = 3. Let U =
{v1, v2, v3} such that distB(v1)(x(v1), y(v1)) = distB(v2)(x(v2), y(v2)) = 1 and
distB(v3)(x(v3), y(v3)) = 2. By Lemmas 4 and 5, for any i ∈ [�], either pi = χa+χb

for some distinct a, b ∈ U or pi = 2χv3 .
Since distB(x, z+)+distB(y, z+) = 4, by changing the roles of x and y if neces-

sary (see Remark 1), we may assume that distB(x, z+) ≤ 2.2 Furthermore, since
‖x − z+‖1 is even, we see that distB(x, z+) + q(z+) is even. Therefore, the pair
φ(z+) := (distB(x, z+), q(z+)) is one of the following: (0, 0), (0, 2), (1, 1), (1, 3),
(2, 0), and (2, 2), where we note that q(z+) ≤ |U | = 3. We derive a contradiction
by considering each case separately.

Case 1: φ(z+) = (0, 0), (0, 2), (1, 1), or (2, 0).
By Lemma 7, there exists an index set I ⊆ [�] with I+ ⊆ I such that

z := x +
∑

i∈I pi is contained in B and distB(x, z) = 2. Since wi ≤ 0 for each
i ∈ [�] \ I, we obtain w(I) ≥ w([�]), and hence I is a solution of Lemma 1. This
is a contradiction.

Case 2: φ(z+) = (1, 3).
In this case, z+(v) �∈ B(v) for v ∈ U . Since z+(v1) �= y(v1), there exists

i ∈ [�]\I+ such that pi = χv1+χu for some u ∈ {v2, v3}. Since φ(z++pi) = (1, 1),
by Lemma 7, there exists an index set I ⊆ [�] with I+ ∪ {i} ⊆ I such that
z := x +

∑
j∈I pj is contained in B and distB(x, z) = 2. We see that such I is a

solution of Lemma 1 in the same way as Case 1, which is a contradiction.

2 If we change the roles of x and y, then I− := {i ∈ [�] | wi < 0} and z− := y−∑
i∈I− pi

play the roles of I+ and z+, respectively. We see that if distB(x, z+) ≥ 3, then
distB(y, z−) ≤ distB(y, z+) = 4 − distB(x, z+) ≤ 1.

302 Y. Kobayashi

Case 3: φ(z+) = (2, 2).
Since q(z+) = 2 and |U | = 3, at least one of z+(v1) �∈ B(v1) and z+(v2) �∈

B(v2) holds. By changing the roles of v1 and v2 if necessary, we may assume that
z+(v1) �∈ B(v1). Let v∗ ∈ {v2, v3} be the other element such that z+(v∗) �∈ B(v∗).
Since z+(v1) �= x(v1), there exists i1 ∈ I+ such that pi1 = χv1 + χu for some
u ∈ {v2, v3}. Similarly, since z+(v1) �= y(v1), there exists i2 ∈ [�] \ I+ such that
pi2 = χv1 + χu for some u ∈ {v2, v3}. By Observation 1, either pi1 = χv1 + χv∗

or pi2 = χv1 + χv∗ holds (Fig. 3). If pi1 = χv1 + χv∗ , then I := I+ \ {i1} is
a solution, because w(I) ≥ 0, which is a contradiction; see Fig. 3 (left two). If
pi2 = χv1 + χv∗ , then I := I+ ∪ {i2} is a solution, because w(I) ≥ w([�]), which
is a contradiction; see Fig. 3 (right two).

Fig. 3. Possible situations in Case 3. A blue edge (u, v) corresponds to an element
i ∈ [�] \ I+ with pi = χu + χv, a red dashed edge (u, v) corresponds to an element
i ∈ I+ with pi = χu+χv, and a vertex v ∈ V in a rectangle satisfies that z+(v) 	∈ B(v).
(Color figure online)

5 Extension to Valuated Problem

In this section, we consider a valuated version of Jump System Intersection.

Valuated Jump System Intersection
Input. A function f : J → Z on a jump system J ⊆ Z

V and a finite one-
dimensional jump system B(v) ⊆ Z for each v ∈ V .

Problem. Find a vector x ∈ J ∩B maximizing f(x), where B ⊆ Z
V is the direct

product of B(v)’s.

Note that f and J may be given in an implicit way, e.g., by an oracle. To
simplify the notation, we extend the domain of f to Z

V by setting f(x) = −∞ for
x ∈ Z

V \ J . The following property is a quantitative extension of (SBO-JUMP).

(SBO-M-JUMP) For any x, y ∈ J , there exist real values g1, . . . , g� and a 2-step
decomposition {p1, . . . , p�} of y−x such that f(x+

∑
i∈I pi) ≥ f(x)+

∑
i∈I gi

for any I ⊆ [�] and f(y) = f(x) +
∑

i∈[�] gi.

Note that we use “M” in the name of the exchange axiom, because it defines
a subclass of M-concave functions on constant parity jump systems [21]; see
Remark 2 below. We can see that if f satisfies (SBO-M-JUMP), then its effective
domain J := {x ∈ Z

V | f(x) > −∞} satisfies (SBO-JUMP). By using (SBO-M-
JUMP), we generalize Theorem 1 as follows.

Optimal General Factor Problem and Jump System Intersection 303

Theorem 2. (�) There is an algorithm for Valuated Jump System Inter-
section whose running time is polynomial in

∑
v∈V

∑
α∈B(v) log(|α| + 1) +

maxx∈J log(|f(x)| + 1) if the following properties hold:

(C1’) a vector x0 ∈ J ∩ B is given,
(C2’) f satisfies (SBO-M-JUMP), and
(C3’) for any direct product B′ ⊆ Z

V of parity intervals, there is an oracle for
finding a vector x ∈ J ∩ B′ maximizing f(x).

Remark 2. Functions with (SBO-M-JUMP) form a subclass of M-concave func-
tions on constant parity jump systems studied in the context of discrete con-
vex analysis [11,19–21]. For J ⊆ Z

V , a function f : J → Z is called an M-
concave function on a constant parity jump system [21] if it satisfies the following
exchange axiom.

(M-JUMP) For any x, y ∈ J and for any (x, y)-step s, there exists an (x+s, y)-
step t such that f(x + s + t) + f(y − s − t) ≥ f(x) + f(y).

We can see that (SBO-M-JUMP) implies (M-JUMP) as follows. For x, y ∈ J ,
suppose that there exist a 2-step decomposition {p1, . . . , p�} of y − x and gi ∈ R

for i ∈ [�] satisfying the conditions in (SBO-M-JUMP). For any (x, y)-step s,
there exists an (x + s, y)-step t such that s + t = pi for some i ∈ [�]. Such t
satisfies the conditions in (M-JUMP), because

f(x + s + t) + f(y − s − t) = f(x + pi) + f
(
x +

∑

j∈[�]\{i}
pj

)

≥ (f(x) + gi) +
(
f(x) +

∑

j∈[�]\{i}
gj

)
= f(x) + f(y).

6 Weighted Optimal General Factor Problem

It was shown by Dudycz and Paluch [5] that the edge-weighted variant of the
optimal general factor problem can also be solved in polynomial time if each B(v)
has no gap of length more than one. Formally, in the weighted optimal general
factor problem, given a graph G = (V,E), an edge weight w(e) ∈ Z for e ∈ E,
and a set B(v) ⊆ Z of integers for each v ∈ V , we seek for a B-factor F ⊆ E that
maximizes its total weight

∑
e∈F w(e), where we denote w(F) :=

∑
e∈F w(e).

Their algorithm consists of local improvement steps used in Algorithm 1 and a
scaling technique.

In what follows in this section, we show that the polynomial solvability of
the weighted optimal general factor problem is derived from Theorem 2.

Theorem 3 (Dudycz and Paluch [5]). The weighted optimal general factor
problem can be solved in polynomial time if each B(v) has no gap of length more
than one.

304 Y. Kobayashi

Proof. Let G = (V,E), w, and B be an instance of the weighted optimal general
factor problem such that each B(v) has no gap of length more than one. Let
J := {dF | F ⊆ E}, and define f : J → Z by f(x) := max{w(F) | dF = x, F ⊆
E} for x ∈ J .

We now show (C1’), (C2’), and (C3’) in Theorem2. Since an edge set
F0 ⊆ E with dF0 ∈ B can be found in polynomial time by the algorithm of
Cornuéjols [3] (if it exists), we obtain x0 := dF0 satisfying the condition in
(C1’). The subproblem in (C3’) is to find an (a, b)-factor with parity constraints
that maximizes the total edge weight, which can be solved in polynomial time;
see [23, Section 35]. To see (C2’), for x, y ∈ J , let M,N ⊆ E be edge sets
such that dM = x, dN = y, w(M) = f(x), and w(N) = f(y). As in Exam-
ple 3, the symmetric difference of M and N can be decomposed into alternating
paths P1, . . . , P� and alternating cycles such that {dN∩Pi

− dM∩Pi
| i ∈ [�]}

is a 2-step decomposition of y − x. For i ∈ [�], let pi := dN∩Pi
− dM∩Pi

and
gi := w(N ∩Pi)−w(M ∩Pi). For I ⊆ [�], let FI ⊆ E be the symmetric difference
of M and

⋃
i∈[I] Pi. Then, since dFI

= x +
∑

i∈I pi and w(FI) = f(x) +
∑

i∈I gi,
we obtain f(x +

∑
i∈I pi) ≥ f(x) +

∑
i∈I gi. This shows (C2’).

By Theorem 2, we can find x∗ ∈ J ∩ B maximizing f(x∗) in polynomial
time. Furthermore, an edge set F ∗ ⊆ E satisfying w(F ∗) = f(x∗) and dF ∗ =
x∗ can also be found in polynomial time by a weighted b-factor algorithm. By
definition, such F ∗ is an optimal solution of the weighted optimal general factor
problem. ��

7 Concluding Remarks

In this paper, we have revealed that (SBO-JUMP) is a key property to obtain
a polynomial time-algorithm for Jump System Intersection, which is an
abstract form of the optimal general factor problem. By using this abstraction,
we have obtained a simpler correctness proof for the polynomial solvability of
the optimal general factor problem. We have also extended the results to the
valuated case.

There are some possible directions for future research. It is nice if we obtain
more examples of jump systems satisfying (SBO-JUMP) other than Examples 1–
3. It is open whether Jump System Intersection can be solved in polynomial
time if each B(v) is given as a union of parity intervals. It is also a natural open
problem whether we can obtain a strongly polynomial-time algorithm for the
weighted general factor problem. Finally, it is interesting to find a new property
of J other than (SBO-JUMP) that enables us to design a different polynomial-
time algorithm.

Acknowledgements. The author thanks Kenjiro Takazawa for his helpful comments.
This work is supported by JSPS KAKENHI grant numbers 20K11692 and 20H05795,
Japan.

Optimal General Factor Problem and Jump System Intersection 305

References

1. Anshelevich, E., Karagiozova, A.: Terminal backup, 3D matching, and covering
cubic graphs. SIAM J. Comput. 40, 678–708 (2011)

2. Bouchet, A., Cunningham, W.H.: Delta-matroids, jump systems, and bisubmodu-
lar polyhedra. SIAM J. Discret. Math. 8, 17–32 (1995)

3. Cornuéjols, G.: General factors of graphs. J. Comb. Theory Ser. B 45(2), 185–198
(1988)

4. Cornuéjols, G., Hartvigsen, D., Pulleyblank, W.: Packing subgraphs in a graph.
Oper. Res. Lett. 1(4), 139–143 (1982)

5. Dudycz, S., Paluch, K.E.: Optimal general matchings. In: WG 2018. LNCS, vol.
11159, pp. 176–189. Springer, Cham (2018). arXiv version is available at http://
arxiv.org/abs/1706.07418. https://doi.org/10.1007/978-3-030-00256-5 15

6. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
7. Fujishige, S.: Submodular Functions and Optimization, 2nd edn, vol. 58. Annals

of Discrete Mathematics. Elsevier, Amsterdam (2005)
8. Jensen, P.M., Korte, B.: Complexity of matroid property algorithms. SIAM J.

Comput. 11, 184–190 (1982)
9. Kabadi, S.N., Sridhar, R.: Δ-matroid and jump system. J. Appl. Math. Decis. Sci.

2005(2), 95–106 (2005)
10. Kobayashi, Y.: Optimal general factor problem and jump system intersection.

arXiv:2209.00779 (2022)
11. Kobayashi, Y., Murota, K., Tanaka, K.: Operations on M-convex functions on jump

systems. SIAM J. Discret. Math. 21, 107–129 (2007)
12. Lawler, E.L.: Combinatorial Optimization – Networks and Matroids. Holt, Rine-

halt, and Winston, New York (1976)
13. Lovász, L.: The factorization of graphs. II. Acta Mathematica Academiae Scien-

tiarum Hungarica 23, 223–246 (1972)
14. Lovász, L.: Antifactors of graphs. Period. Math. Hung. 4, 121–123 (1973)
15. Lovász, L.: The matroid matching problem. Algebr. Methods Graph Theory Colloq.

Math. Soc. János Bolyai 25, 495–517 (1978)
16. Lovász, L.: Matroid matching and some applications. J. Comb. Theory Ser. B 28,

208–236 (1980)
17. Lovász, L.: The membership problem in jump systems. J. Comb. Theory Ser. B

70, 45–66 (1997)
18. Lovász, L., Plummer, M.D.: Matching Theory. North-Holland, Amsterdam (1986)
19. Minamikawa, N., Shioura, A.: Time bounds of basic steepest descent algorithms

for M-convex function minimization and related problems. J. Oper. Res. Soc. Jpn.
64(2), 45–60 (2021)

20. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)
21. Murota, K.: M-convex functions on jump systems: a general framework for min-

square graph factor. SIAM J. Discret. Math. 20, 213–226 (2006)
22. Pap, G.: A TDI description of restricted 2-matching polytopes. In: Bienstock,

D., Nemhauser, G. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 139–151. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-25960-2 11

23. Schrijver, A.: Combinatorial Optimization. Polyhedra and Efficiency. Algorithms
and Combinatorics, vol. 24. Springer, Heidelberg (2003)

24. Sebő, A.: General antifactors of graphs. J. Comb. Theory Ser.B 58(2), 174–184
(1993)

25. Szabó, J.: Matroid parity and jump systems: A solution to a conjecture of Recski.
SIAM J. Discret. Math. 22(3), 854–860 (2008)

http://arxiv.org/abs/1706.07418
http://arxiv.org/abs/1706.07418
https://doi.org/10.1007/978-3-030-00256-5_15
http://arxiv.org/abs/2209.00779
https://doi.org/10.1007/978-3-540-25960-2_11

Decomposition of Probability Marginals
for Security Games in Abstract Networks

Jannik Matuschke(B)

KU Leuven, Leuven, Belgium

jannik.matuschke@kuleuven.be

Abstract. Given a set system (E, P), letπ ∈ [0, 1]P be a vector of require-
ment values on the sets and let ρ ∈ [0, 1]E be a vector of probability
marginals with

∑
e∈P ρe ≥ πP for all P ∈ P. We study the question under

which conditions the marginals ρ can be decomposed into a probability dis-
tribution on the subsets of E such that the resulting random set intersects
each P ∈ P with probability at least πP .

Extending a result by Dahan, Amin, and Jaillet [3] motivated by a net-
work security game in directed acyclic graphs, we show that such a dis-
tribution exists if P is an abstract network and the requirements are of
the form πP = 1 − ∑

e∈P μe for some μ ∈ [0, 1]E . Our proof yields an
explicit description of a feasible distribution that can be computed effi-
ciently. As a consequence, equilibria for the security game studied in [3] can
be efficiently computed even when the underlying digraph contains cycles.
As a subroutine of our algorithm, we provide a combinatorial algorithm
for computing shortest paths in abstract networks, partially answering an
open question by McCormick [14]. We further show that a conservation
law proposed in [3] for requirement functions in partially ordered sets can
be reduced to the setting of affine requirements described above.

1 Introduction

Consider a set system (E,P), where E is a finite ground set and P ⊆ 2E is a col-
lection of subsets of E. Given probability marginals ρ ∈ [0, 1]E and requirements
π ∈ [0, 1]P , we are interested in finding a probability distribution on the power
set 2E of E that is consistent with these marginals and that ensures that each
set in P ∈ P is hit with probability at least πP . In other words, we are looking
for a solution x to the system

∑
S⊆E:e∈S xS = ρe ∀ e ∈ E, (1)

∑
S⊆E:S∩P �=∅ xS ≥ πP ∀P ∈ P, (2)

∑
S⊆E xS = 1, (3)

xS ≥ 0 ∀S ⊆ E. (4)

Throughout this paper, we will call a distribution x fulfilling (1) to (4) a
feasible decomposition of ρ for (E,P) and π, and we will say that the marginals
ρ are feasible for (E,P) and π if such a feasible decomposition exists.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 306–318, 2023.
https://doi.org/10.1007/978-3-031-32726-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_22&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_22

Decomposition of Probability Marginals in Abstract Networks 307

A necessary condition for the existence of a feasible decomposition is that
the marginals suffice to cover each set of the system individually, i.e.,

∑
e∈P ρe ≥ πP ∀P ∈ P. (�)

We are particularly interested in identifying classes of systems and requirement
functions for which (�) is not only a necessary but also a sufficient condition.
For such systems, the set of distributions on 2E fulfilling (2) can be described
by the corresponding polytope of feasible marginals defined by (�), which is of
exponentially lower dimension.

1.1 Motivation

A natural application for feasible decompositions in the setting described above
lies in network security games; see, e.g., [1–3,8,16,17] for various examples and
applications of network security games. In fact, such a game was also the motiva-
tion of Dahan, Amin, and Jaillet [3], who originally introduced the decomposition
setting described above. We will discuss their game in detail in Sect. 5. Here, we
describe a simpler yet relevant problem as an illustrative example.

Consider the following game played on a set system (E,P), where each ele-
ment e ∈ E is equipped with a usage cost ce ≥ 0 and an inspection cost de ≥ 0.
A defender D determines a random subset S of elements from E to inspect at
cost

∑
e∈S de (e.g., a set of links of a network at which passing traffic is mon-

itored). She anticipates that an attacker A is planning to carry out an illegal
action, where A chooses a set in P ∈ P (e.g., a route in the network along which
he smuggles contraband), for which he will receive utility U1 −∑

e∈P ce for some
constant U1 > 0. However, if P intersects with the random set S of elements
inspected by D, then A is discovered while carrying out his illegal action, reduc-
ing his utility by a penalty U2 ≥ U1. The attacker also has the option to not
carry out any attack, resulting in utility 0. Thus, A will refrain from using P ∈ P
if the probability that S ∩ P �= ∅ exceeds πP := (U1 − ∑

e∈P ce)/U2.
A natural goal for D is to discourage A from attempting any attack at all,

while keeping the incurred inspection cost as small as possible. Note that the
randomized strategies that achieve this goal correspond exactly to vectors x that
minimize

∑
S⊆E

∑
e∈S dexS subject to constraints (2) to (4). Unfortunately, the

corresponding LP has both an exponential number of variables and an exponen-
tial number of constraints in the size of the ground set E.

However, assume that we can establish the following three properties for
our set system: (i) condition (�) is sufficient for the feasibility of marginals,
(ii) we can efficiently compute the corresponding feasible decompositions, and
(iii) given γ ∈ R

E
+, we can efficiently solve minP∈P

∑
e∈P γe. Then (i) allows us

to formulate D’s problem in terms of the marginals, i.e., minρ∈[0,1]E
∑

e∈E deρe

subject to constraints (�), (iii) allows us to separate the linear constraints (�)
and obtain optimal marginals ρ, and (ii) allows us to turn these marginals into a
distribution corresponding to an optimal inspection strategy for the defender D.
In this paper, we will establish all three conditions for a generic type of set
systems called abstract networks.

308 J. Matuschke

1.2 Abstract Networks

An abstract network consists of a set system (E,P) where each set P ∈ P (also
referred to as an (abstract) path) is equipped with an internal linear order 	P

of its elements, such that for all P,Q ∈ P and all e ∈ P ∩ Q there is a abstract
path R ∈ P with R ⊆ {p ∈ P : p 	P e} ∪ {q ∈ Q : e 	Q q}. Given P,Q ∈ P
and e ∈ P ∩ Q, we use the notation P ×e Q to denote an arbitrary but fixed
feasible choice for such an R ∈ P.

Intuitively, this definition is an abstraction of the property of digraphs that
one can construct a new path by concatenating a prefix and a suffix of two
intersecting paths. Interesting special cases of abstract networks include P being
the set of maximal chains in a partially ordered set (E,) (here, 	P is simply
the restriction of 	 to P) and P being the set of simple s-t-paths in a digraph
D = (V,A) (here, E = V ∪A and each path is identified with the sequence of its
nodes and arcs). We remark that in both cases, the order 	P×eQ is consistent
with 	P and 	Q, which is not a general requirement for abstract networks; see,
e.g., [10] for examples of abstract networks where this is not the case.

Abstract networks were introduced by Hofmann [7] to illustrate the gener-
ality of Ford and Fulkerson’s [6] max-flow/min-cut theorem.1 McCormick [14]
provided a combinatorial algorithm for computing maximum flows in abstract
networks using a membership oracle that, given F ⊆ E, returns P ∈ P with
P ⊆ F together with the corresponding order 	P , or certifies that no such P
exists. Martens and McCormick [12] later extended this result by giving a combi-
natorial algorithm for a weighted version of the problem, using a stronger oracle.
Applications of abstract networks include, e.g., line planning for public transit
systems [11] and route assignment in evacuation planning [9,15].

1.3 Previous Results

Dahan et al. [3] studied the case where P is the set of maximal chains of a
partially ordered set (poset), or, equivalently, the set of s-t-paths in a directed
acyclic graph (DAG). They showed that (�) is sufficient for the existence of a
feasible distribution when the requirements fulfill the following conservation law:

πP + πQ = πP×eQ + πQ×eP ∀P,Q ∈ P, e ∈ P ∩ Q. (C)

Although their result is algorithmic, the corresponding algorithm requires explic-
itly enumerating all maximal chains and hence does not run in polynomial time
in the size of E. However, Dahan et al. [3] provide a polynomial-time algorithm
for the case of affine requirements, in which there exists a vector μ ∈ [0, 1]E such
that the requirements are of the form

πP = 1 − ∑
e∈P μ(e) ∀P ∈ P. (A)

1 Given an abstract network (E, P) with capacities u ∈ R
E
+, a flow is a vector f ∈ R

+

fulfilling capacity constraints
∑

P∈P:e∈P fP ≤ ue for all e ∈ E. The maximum
abstract flow problem asks for a flow of maximum value

∑
P∈P fP . Hoffman [7]

showed that the corresponding dual linear program is totally dual integral (even in
a more general weighted setting), thus generalizing the max-flow/min-cut theorem.

Decomposition of Probability Marginals in Abstract Networks 309

As a consequence of this latter result, the authors were able to characterize
Nash equilibria for their network security game (which is a flow-interdiction
game played on s-t-paths in a digraph) by means of a compact arc-flow LP for-
mulation and compute such equilibria in polynomial time, under the condition
that the underlying digraph is acyclic. Indeed, this positive result is particularly
surprising, as similar—and seemingly simpler—flow-interdiction games had pre-
viously been shown to be NP-hard, even on DAGs [5].

1.4 Our Results

We extend the results of Dahan et al. [3] for posets/DAGs in multiple directions:

1. For the affine requirements case (A), we show that (�) is a sufficient condition
for the feasibility of marginals when (E,P) is an abstract network, by provid-
ing an explicit description of a feasible decomposition for this case, based on
a natural generalization of shortest-path distances to abstract networks (see
Sect. 2). The described solutions have the property that the sets in their sup-
port can be represented by an interval matrix. A special case of this result is
the case where P is the set of s-t-paths in a digraph (which is not necessarily
acyclic). In this case, a feasible decomposition can be computed efficiently by
a single run of a standard shortest-path algorithm.

2. We also provide an algorithm for efficiently computing the corresponding
feasible decompositions for the general case of an arbitrary abstract network
given by a membership oracle (see Sect. 3). This algorithm makes use of the
following result as a subroutine.

3. We provide a combinatorial strongly polynomial algorithm for computing
shortest paths in abstract networks when P is given by a membership oracle
(see Sect. 4). Beyond its relevance for the present work, this result also gives
a partial answer to an open question by McCormick [14], who conjectured
that such an algorithm might enable a strongly polynomial algorithm for
computing maximum flows in abstract networks.

4. As a consequence of our results, Nash equilibria for the network security game
studied by Dahan et al. [3] can be described by a compact polyhedron and
computed efficiently even when the game is played on an abstract network,
including the case of a digraph with cycles (see Sect. 5).

5. We further show that the conservation law (C) proposed in [3] for maxi-
mal chains in posets can be reduced to the affine requirements case (A) (see
Sect. 6). We provide a polynomial-time algorithm for computing the corre-
sponding weights μ when the requirements π are given by a value oracle. As
a consequence, the corresponding feasible decompositions can be computed
efficiently in this case as well.

6. Finally, we discuss other types of set systems (see Sect. 7). We observe that
(�) is not sufficient for the feasibility of the marginals when P consists of
the bases of a matroid, perfect matchings of a bipartite graph, or paths in
a multicommodity network. We further show that deciding whether a given
set of marginals is feasible is NP-hard in general, even when P is given by an
explicit list of small sets and the requirements are all equal to 1.

310 J. Matuschke

1.5 Notation

Before we discuss our results in detail, we introduce some useful notation con-
cerning abstract networks. Let (E,P) be an abstract network. For P ∈ P and
e ∈ P , we use the following notation to denote prefixes of P ending at e and
suffixes of P starting at e, respectively:

[P, e] := {p ∈ P : p 	P e} [e, P] := {p ∈ P : e 	P p}
(P, e) := {p ∈ P : p ≺P e} (e, P) := {p ∈ P : e ≺P p}

For any path P ∈ P, we further denote the minimal and maximal element of
P with respect to 	P by sP and tP , respectively.

Throughout the paper, proofs of results marked with (�) can be found in the
full version [13].

2 Feasible Decompositions in Abstract Networks

In this section we prove the following theorem, providing an explicit descrip-
tion of feasible decompositions of marginals in abstract networks assuming that
requirements are of the form (A) and fulfill the necessary condition (�). The
construction, described in the following theorem, is based on a natural general-
ization of shortest-path distances in abstract networks.

Theorem 1. Let (E,P) be an abstract network and let ρ, μ ∈ [0, 1]E fulfilling
condition (�), i.e.,

∑
e∈P ρe ≥ πP := 1 − ∑

e∈P μe for all P ∈ P. Define

α′
e := min

{ ∑
f∈(Q,e) μf + ρf : Q ∈ P, e ∈ Q

}
and αe := min {α′

e, 1 − ρe}
for e ∈ E. For τ ∼ U [0, 1] drawn uniformly at random from [0, 1], let

Sτ := {e ∈ E : αe ≤ τ < αe + ρe}.

Then x defined by xS := Pr [Sτ = S] for S ⊆ E is a feasible decomposition of ρ
for (E,P) and π.

Intuitively, the values α′
e for e ∈ E in the construction above correspond to

the “shortest-path distance” to element e in the abstract network (E,P), with
the truncation of αe at 1−ρe ensuring that [αe, αe +ρe] ⊆ [0, 1]. Before we prove
Theorem 1, let us first discuss some of its implications.

Interval Structure and Explicit Computation of x. Given the vector α, the non-
zero entries of x can be easily determined in polynomial time. Indeed, note
that the set Λ := {αe, αe + ρe : e ∈ E} induces a partition of [0, 1] into at
most 2|E| + 1 intervals (each with two consecutive values from Λ ∪ {0, 1} as its
endpoints), such that Sτ ′ = Sτ ′′ whenever τ ′ and τ ′′ are in the same interval.
Thus, there are at most 2|E| + 1 non-zero entries in x, whose values can be
determined by sorting Λ, determining all corresponding intervals, computing Sτ

for one τ in each of these intervals, and then, for each occurring set S, setting
xS to the total length of all intervals in which this set is attained.

Decomposition of Probability Marginals in Abstract Networks 311

Special Case: Directed Graphs. Consider the case where P is the set of simple
s-t-paths in a digraph D = (V,A) and E = V ∪A. For v ∈ V , let Psv denote the
set of simple s-v-paths in D. If we are given explicit access to D (rather than
accessing P via a membership oracle), we can compute feasible decompositions
as follows. Without loss of generality, we can assume that for any v ∈ V and
Q ∈ Psv there is Q′ ∈ Pst with Q ⊆ Q′.2 Then α′

v = minQ∈Psv

∑
f∈Q\{v} μf +ρf

for v ∈ V and α′
a = minQ∈Psv

∑
f∈Q μf + ρf for a = (v, w) ∈ A. Hence, the

vector α′ corresponds to shortest-path distances in D with respect to ρ + μ
(with costs on both arcs and nodes). Both α′ and the corresponding feasible
decomposition of ρ can be computed by a single run of Dijkstra’s [4] algorithm.

Computing feasible decompositions in the general case of arbitrary abstract
networks is more involved. We show how this can be achieved in Sect. 3.

Proof of Theorem 1. We show that x as constructed in Theorem 1 is a feasible
decomposition. Note that x fulfills (3) and (4) by construction. Note further that
x fulfills (1) because

∑
S⊆E:e∈S xS = Pr [e ∈ Sτ] = Pr [αe ≤ τ < αe + ρe] = ρe

for all e ∈ E, where the second identity follows from 0 ≤ αe ≤ 1− ρe. It remains
to prove that x fulfills (2). The following lemma will be helpful in this endeavour.

Lemma 2. Given (E,P), ρ, μ, and α as described in Theorem 1, the following
two conditions are fulfilled for every P ∈ P:

1. αtP + μtP + ρtP ≥ 1 and
2. for every e ∈ P \ {tP } there is e′ ∈ (e, P) with αe′ ≤ αe + μe + ρe.

Proof. We first show statement 1. By contradiction assume αtP +μtP +ρtP < 1.
Let Q ∈ P with tP ∈ Q and

∑
f∈(Q,tP) μf + ρf = αtP and let R := Q ×tP P .

Note that R ⊆ [Q, tP] and hence
∑

e∈R μe + ρe ≤ αtP + μtP + ρtP < 1, implying∑
e∈R ρe < 1 − ∑

e∈R μe, a contradiction to (�).
We now turn to statement 2. If αe ≥ 1 − μe − ρe, then the statement follows

with e′ = tP because αtP ≤ 1 ≤ αe + μe + ρe. Thus assume αe < 1 − μe − ρe

and let Q ∈ P with αe =
∑

f∈(Q,e) μf + ρf . Let R := Q×e P . By (�) we observe
that

∑
f∈R μf + ρf ≥ 1 > αe + μe + ρe, which implies R \ [Q, e] �= ∅ because

μ, ρ ≥ 0. Thus, let e′ ∈ R \ [Q, e] be minimal with respect to ≺R. Observe that
R \ [Q, e] ⊆ (e, P) and hence e′ ∈ (e, P). The statement then follows from

αe′ ≤ ∑
f∈(R,e′) μf + ρf ≤ ∑

f∈[Q,e] μf + ρf = αe + μe + ρe,

where the second inequality is due to the fact that (R, e′) ⊆ [Q, e] by choice of
e′ and the fact that μ, ρ ≥ 0. �

With the help of Lemma 2, we can prove that x fulfills (2) as follows. Let
P ∈ P. For e ∈ P define

φ(e) := Pr [Sτ ∩ [P, e] �= ∅ ∧ τ ≤ αe + ρe] +
∑

f∈[P,e]

μf .

2 This can be ensured by introducing arcs (v, t) with μ(v,t) = 1 and ρ(v,t) = 0 for all
v ∈ V \ {t}. Note that this does not change the set of feasible decompositions of ρ.

312 J. Matuschke

Let F := {e ∈ P : φ(e) ≥ αe + μe + ρe}. We will show that tP ∈ F . Note that
this suffices to prove (2), because the definition of F together with statement 1
of Lemma 2 imply φ(tP) ≥ αtP + μtP + ρtP ≥ 1, which in turn yields

∑

S⊆E:S∩P �=∅
xS = Pr [Sτ ∩ P �= ∅] ≥ φ(tP) −

∑

f∈P

μf ≥ 1 −
∑

f∈P

μf = πP .

We proceed to show tP ∈ F . By contradiction assume this is not the case.
Note that F �= ∅ because αsP

= 0 and φ(sP) = Pr [sP ∈ Sτ] + μsP
= ρsP

+ μsP
.

Thus let e ∈ F be maximal with respect to ≺P . Because e �= tP , we can invoke
statement 2 of Lemma 2 and obtain e′ ∈ (e, P) with

αe′ ≤ αe + μe + ρe. (5)

We will show that e′ ∈ F , contradicting our choice of e. Note that the definition
of φ and the fact that e′ �P e imply

φ(e′) ≥ φ(e) + Pr [e′ ∈ Sτ ∧ τ > αe + ρe] + μe′

≥ αe + μe + ρe + Pr [e′ ∈ Sτ ∧ τ > αe + ρe] + μe′ , (6)

where the second inequality follows from e ∈ F . Moreover, observe that e′ ∈ Sτ

if and only if αe′ ≤ τ < αe′ + ρe′ and hence

Pr [e′ ∈ Sτ ∧ τ > αe + ρe] = αe′ + ρe′ − max{αe′ , αe + ρe}
≥ αe′ + ρe′ − (αe + μe + ρe),

where the inequality follows from (5). Combining this bound with (6) yields
φ(e′) ≥ αe′ + μe′ + ρe′ and hence e′ ∈ F , contradicting our choice of e and
completing the proof of Theorem 1. ��

3 Computing Feasible Decompositions

Complementing our existence result from the previous section, we now discuss
how to compute corresponding feasible decompositions. We will assume that the
ground set E is given explicitly, while the set of abstract paths P is given by a
membership oracle that, given F ⊆ E, either returns P ∈ P with P ⊆ F and
the corresponding order 	P , or confirms that no P ∈ P with P ⊆ F exists.

By our arguments in Sect. 2, it suffices to compute the values of αe for all
e ∈ E. Unfortunately, a complication arises in that even finding a path containing
a certain element e ∈ E is NP-hard.3 However, as we show below, it is possible
to identify a subset U ⊆ E for which we can compute the values of α, while the
elements in E \U turn out to be redundant w.r.t. the feasibility of the marginals.
From this, we obtain the following theorem.
3 Note that even for the special case where P corresponds to the set of simple s-t-paths

in a digraph, finding P ∈ P containing a certain arc e is equivalent to the 2-disjoint
path problem (for P to be simple, its prefix up to the tail of e and its suffix starting
from the head of e must be disjoint). Simply side-stepping this issue by introducing
additional elements as done in the second remark after Theorem 1 is not possible
here, because we are restricted to accessing P only via the membership oracle.

Decomposition of Probability Marginals in Abstract Networks 313

Theorem 3. There is an algorithm that, given an abstract network (E,P) via
a membership oracle and ρ, μ ∈ [0, 1]E such that

∑
e∈P ρe ≥ πP := 1 − ∑

e∈P μe

for all P ∈ P, computes a feasible decomposition of ρ for (E,P) and π in time
O(|E|3 ·TP), where TP denotes the time for a call to the membership oracle of P.

The Algorithm. Theorem 3 is established via Algorithm 1, which computes
values ᾱe for elements e in a subset U ⊆ E as follows. Starting from U = ∅, the
algorithm iteratively computes a path P minimizing

∑
f∈P∩U μf + ρf and adds

the first element e of P \ U to U , determining ᾱe based on the length of (P, e).

Algorithm 1: Computing a feasible decomposition
Initialize U := ∅.
while minP∈P

∑
f∈P∩U μf + ρf < 1 do

Let P ∈ argminP∈P
∑

f∈P∩U μf + ρf .
Let e := min�P P \ U .
Set U := U ∪ {e} and ᾱe := min

{ ∑
f∈(P,e) μf + ρf , 1 − ρe

}
.

return ᾱ, U

Analysis. First note that in every iteration of the while loop, the set P \ U
is nonempty because

∑
f∈P μf + ρf ≥ 1 by the assumption on the input in

Theorem 3. Hence the algorithm is well-defined and terminates after at most |E|
iterations. We further remark that finding P ∈ P minimizing

∑
e∈P∩U ρf + μf

can be done in time O(|E|2TP) using the Algorithm 2 described in Sect. 4. The
following lemma then suffices to complete the proof of Theorem 3.

Lemma 4 (�). Let ᾱ, U be the output of Algorithm 1 and define ρ̄e := ρe and
μ̄e := μe for e ∈ U and ρ̄e := 0 and μ̄e := 0 for e ∈ E \ U . Then

1.
∑

e∈P ρ̄e ≥ π̄P := 1 − ∑
e∈P μ̄e for all P ∈ P and

2. ᾱe = min
{∑

f∈(Q,e) μ̄f + ρ̄f : Q ∈ P, e ∈ Q
}

∪ {1 − ρ̄e} for all e ∈ U .

Indeed, observe that Lemma 4 together with Theorem 1 implies that ᾱ
induces a feasible decomposition x̄ of ρ̄ for (E,P) and π̄. Because ρ̄e ≤ ρe

for all e ∈ E and π̄P ≥ πP for all P ∈ P, this decomposition can be extended to
a feasible decomposition of ρ for (E,P) and π by arbitrarily incorporating the
elements from E \ U . This completes the proof of Theorem 3.

4 Computing Shortest Paths in Abstract Networks

In this section, we consider the following natural generalization of the classic
shortest s-t-path problem in digraphs: Given an abstract network (E,P) and
a cost vector γ ∈ R

E
+, find a path P ∈ P minimizing

∑
e∈P γe. We provide

a combinatorial, strongly polynomial algorithm for this problem, accessing P
only via a membership oracle. In fact, the question for such an algorithm was

314 J. Matuschke

already raised by McCormick [14], who conjectured that it can be used to turn
(an adaptation of) his combinatorial, but only weakly polynomial algorithm for
the maximum abstract flow problem into a strongly polynomial one. Our results
show that such a shortest-path algorithm indeed exists, but leave it open how
to use it to improve the running time of the maximum abstract flow algorithm.

Theorem 5. There is an algorithm that, given an abstract network (E,P) via
a membership oracle and γ ∈ R

E
+ computes P ∈ P minimizing

∑
e∈P γe in time

O(|E|2 ·TP), where TP denotes the time for a call to the membership oracle of P.

The Algorithm. For notational convenience, we assume that there is s, t ∈ E
with sP = s and tP = t for all P ∈ P. Note that this assumption is without loss
of generality, as it can be ensured by adding dummy elements s and t to E and
including them at the start and end of each path, respectively.

The algorithm is formally described as Algorithm 2. It can be seen as a nat-
ural extension of Dijkstra’s [4] algorithm in that it maintains for each element
e ∈ E a (possibly infinite) label ψe indicating the length of the shortest segment
[Qe, e] for some Qe ∈ P with e ∈ Qe found so far, and in that its outer loop iter-
atively chooses an element with currently smallest label for processing. However,
updating these labels is more involved, as an abstract network does not provide
local concepts such as “the set of arcs leaving a node”. In its inner loop, the
algorithm therefore carefully tries to extend the segment Qe for the currently
processed element e to find new shortest segments Qe′ for other elements e′.

Algorithm 2: Computing a shortest path in an abstract network
Initialize T := ∅, ψs := γs, and ψe := ∞ for all e ∈ E \ {s}.
Let Qs ∈ P.
while ψt > minf∈E\T ψf do

Let e ∈ argminf∈E\T ψf .
Let F := (E \ T) ∪ [Qe, e].
while there is P ∈ P with P ⊆ F do

Let e′ := min�P P \ [Qe, e].
Set F := F \ {e′}.
if

∑
f∈[P,e′] γf < ψe′ then

Set ψe′ :=
∑

f∈[P,e′] γf and Qe′ := P .

Set T := T ∪ {e}.

return Qt

Analysis. The proof of the correctness of Algorithm 2 crucially relies on the
following lemma, which essentially certifies that the algorithm does not overlook
any shorter path segments when processing an element.

Lemma 6 (�). Algorithm 2 maintains the following invariant: For all P ∈ P,
there is e ∈ P with [e, P] ∩ T = ∅ and ψe ≤ ∑

f∈[P,e] γf .

Decomposition of Probability Marginals in Abstract Networks 315

Proof of Theorem 5. When Algorithm 2 terminates, ψt ≤ ψf for all f ∈ E \ T
by the termination criterion of the outer while loop. Let P ∈ P. By Lemma 6
there is an element e ∈ P \ T with ψe ≤ ∑

f∈[P,e] γf . Note that this implies
∑

f∈Qt
γf = ψt ≤ ψe =

∑
f∈[P,e] γf ≤ ∑

f∈P γf , where the last inequality uses
the fact that γf ≥ 0 for all f ∈ E. We conclude that the path Qt returned by
the algorithm is indeed a shortest path.

To see that the algorithm terminates in polynomial time, observe that the
outer while loop stops after at most |E| − 1 iterations, as in each iteration an
element from E \ {t} is added to T and the termination criterion is fulfilled if
T = E \ {t}. Furthermore, each iteration of the inner while loop removes an
element from F and hence after at most |F | ≤ |E| iterations no path P ⊆ F
exists anymore, implying that the inner while loop terminates. ��

5 Dahan et al.’s Network Security Game

Dahan et al. [3] studied the following network security game. The input is a
set system (E,P) with capacities u ∈ R

E
+, transportation cost c ∈ R

E
+ and

interdiction costs d ∈ R
E
+. There are two players: the routing entity R, whose

strategy space is the set of flows F := {f ∈ R
P
+ :

∑
P∈P:e∈P fP ≤ ue ∀e ∈ E},

and the interdictor I, who selects a subset of elements S ⊆ E to interdict, with
the intuition that all flow on interdicted elements is disrupted. Given strategies
f ∈ F and S ⊆ E, the payoffs for R and I, respectively, are given by

PR(f, S) :=
∑

P∈P:P∩S=∅ fP − ∑
P∈P

∑
e∈P cefP and

PI(f, S) :=
∑

P∈P:P∩S �=∅ fP − ∑
e∈S de,

respectively. That is, R’s payoff is the total amount of non-disrupted flow,
reduced by the cost for sending flow f , while I’s payoff is the total amount
of flow that is disrupted, reduced by the interdiction cost for the set S.

We are interested in finding (mixed) Nash equilibria (NE) for this game, i.e.,
random distributions σR and σI over the strategy spaces of I and R, respectively,
such that no player can improve their expected payoff by unilateral deviation.
However, the efficient computation of such equilibria is hampered by the fact
that the strategy spaces of both players are of exponential size/dimension in the
size of the ground set E. To overcome this issue, Dahan et al. [3] proposed to
consider the following pair of primal and dual linear programs:

[LPR] max
∑

P∈P
πc

P fP [LPI] min
∑

e∈E

ueμe+deρe

s.t.
∑

P∈P:e∈P

fP ≤ ue ∀e ∈ E s.t.
∑

e∈P

μe + ρe ≥ πc
P ∀P ∈ P

∑

P∈P:e∈P

fP ≤ de ∀e ∈ E μ ≥ 0

f ≥ 0 ρ ≥ 0,

where πc
P := 1 − ∑

a∈P ca. Dahan et al. [3] showed the following result.

316 J. Matuschke

Theorem 7 (Dahan et al. [3]). Let f∗ and (μ∗, ρ∗) be optimal solutions
to [LPR] and [LPI], respectively. Let σI be a feasible decomposition of ρ∗ for
(E,P) and πP := πc

P − ∑
e∈P μ∗

e and let σR be a distribution over F with∑
f∈F σR,ffP = f∗

P . Then (σR, σI) is a Nash equilibrium.

In particular, note that any feasible solution to [LPI] defines marginals ρ that
fulfil (�) for πP := πc

P − ∑
e∈P μe. Hence, if condition (�) is sufficient for fea-

sibility of marginals in the set system P under affine requirements, any pair of
optimal solutions to the LPs induces a Nash equilibrium. If we can moreover
efficiently compute optimal solutions to the LPs and the corresponding feasible
decompositions, we can efficiently find a Nash equilibrium.

Dahan et al. [3] showed that this is possible when P is the set of s-t-paths
in a DAG. Hence NE for the game can be found efficiently in that setting. This
positive result is particularly interesting because NE are hard to compute for the
variant of the game in which the interdictor is limited by a budget, even when
interdiction costs are uniform, transportation costs are zero, and the game is
played on a DAG [5]. Our results in Sects. 2 to 4 imply that all three conditions
for the computability of NE are also met when (E,P) is an abstract network
(note that we can use Algorithm 2 to separate the constraints of [LPI]). Hence
we can compute Nash equilibria for the above game when (E,P) is an abstract
network given by a membership oracle, in time polynomial in |E|, including the
case where the game is played on a digraph with cycles.

We remark that Dahan et al. [3] also showed that, if there is at least one dual
solution with a decomposition that assigns positive probability to the empty set,
then all NE of the game are of the form described in Theorem 7. They showed
that this condition is always fulfilled in the DAG case when all transportation
costs are positive. Via a small adjustment to our construction in Sect. 2, the
same result can be proven for the case of abstract networks (�).

6 The Conservation Law for Partially Ordered Sets

As discussed in Sect. 1, Dahan et al. [3] established the sufficiency of (�) in par-
tially ordered sets not only for the case of affine requirements (A) but also for
the case where requirements fulfill the conservation law (C). However, they left
it open whether it is possible to efficiently compute the corresponding decompo-
sitions in the latter case. In this section, we resolve this question by showing that
the conservation law (C) for maximal chains in a poset can be reduced to the
case of affine requirements (A) in the corresponding Hasse diagram,4 for which
a feasible decomposition then can be computed efficiently.

Theorem 8 (�). Let D = (V,A) be a directed acyclic graph, let s, t ∈ V , and
let P ⊆ 2V ∪A be the set of s-t-paths in D. Let π ∈ [0, 1]P such that (C) is fulfilled.
Then there exists μ ∈ [0, 1]V ∪A such that πP = 1 − ∑

e∈P μe. Furthermore, μ
can be computed in strongly polynomial time in |V | and |A| when π is given by
an oracle that, given P ∈ P, returns πP .
4 See [13] for details on why the transformation to the Hasse diagram is necessary.

Decomposition of Probability Marginals in Abstract Networks 317

Proof (sketch). By Farkas’ lemma, the existence of μ is equivalent to showing
that

∑
P∈P(1 − πP)yP ≥ 0 for every y ∈ R

P with
∑

P∈P:e∈P yP ≥ 0 for all
e ∈ V ∪ A. This property can be established by iteratively applying (C) to
transform y into a nonnegative vector without changing

∑
P∈P(1 − πP)yP . ��

7 Other Set Systems

The results in this paper lead to the question whether sufficiency of (�) and com-
putability of feasible decompositions can be established for other set systems,
beyond abstract networks. We give negative answers for several natural candi-
dates of such systems and point out interesting questions for future research.

Sufficiency of (�) (�). There are simple counterexamples for the sufficiency of
(�) in the following cases, even when assuming that π ≡ 1: when P is the set of
bases of a matroid; when P is the set of perfect matchings in a bipartite graph;
when P is the set of si-ti-paths in a digraph with multiple terminal pairs (si, ti).
An interesting question in this context is whether we can describe the systems
for which (�) is sufficient by means of forbidden substructures.

Approximately Feasible Decompositions (�). Given the non-existence
result mentioned above, one may be interested in finding decompositions that
satisfy the requirements at least approximately. We say a decomposition x of
marginals ρ is β-approximately feasible, for β ∈ [0, 1], if it fulfills (1), (3), (4)
and

∑
S⊆E:S∩P �=∅ xS ≥ β · πP for all P ∈ P. Indeed, if marginals ρ fulfill (�) for

requirements π, a (1 − 1/e)-approximately feasible decomposition always exists:
Simply include each element e ∈ E in the random set independently with proba-
bility ρe. An interesting question for future research is whether better guarantees
may be achieved for some classes of systems.

Computing Feasible Decompositions and Optimization (�). For a given
instance, we may also be interested in finding a decomposition of the given
marginals that is β-approximately feasible for the largest possible value of β.
Note that this also includes the case of finding a feasible decomposition if it
exists (resulting in β = 1). Unfortunately, this latter problem is NP-complete,
even in quite restricted cases, as evidenced by the theorem below. However, note
that this hardness result still leaves room for approximating the best possible β.

Theorem 9 (�). The following decision problem is NP-complete: Given a set
system (E,P) with |P | = 3 for all P ∈ P and marginals ρ ∈ [0, 1]E, is there a
feasible decomposition of ρ for (E,P) and requirement vector π ≡ 1?

Acknowledgements. The author thanks three anonymous reviewers for numerous
helpful suggestions that improved the manuscript. This work has been supported by
the special research fund of KU Leuven (project C14/22/026).

318 J. Matuschke

References

1. Bertsimas, D., Nasrabadi, E., Orlin, J.B.: On the power of randomization in net-
work interdiction. Oper. Res. Lett. 44, 114–120 (2016)

2. Correa, J., Harks, T., Kreuzen, V.J., Matuschke, J.: Fare evasion in transit net-
works. Oper. Res. 65, 165–183 (2017)

3. Dahan, M., Amin, S., Jaillet, P.: Probability distributions on partially ordered sets
and network interdiction games. Math. Oper. Res. 47, 458–484 (2022)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
269, 271 (1959)

5. Disser, Y., Matuschke, J.: The complexity of computing a robust flow. Oper. Res.
Lett. 48, 18–23 (2020)

6. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

7. Hoffman, A.J.: A generalization of max flow–min cut. Math. Program. 6, 352–359
(1974)

8. Holzmann, T., Smith, J.C.: The shortest path interdiction problem with ran-
domized interdiction strategies: Complexity and algorithms. Oper. Res. 69, 82–99
(2021)

9. Kappmeier, J.P.W.: Generalizations of flows over time with applications in evacu-
ation optimization, Ph. D. thesis, TU Berlin (2015)

10. Kappmeier, J.P.W., Matuschke, J., Peis, B.: Abstract flows over time: a first step
towards solving dynamic packing problems. Theoret. Comput. Sci. 544, 74–83
(2014)

11. Karbstein, M.: Line planning and connectivity, Ph. D. thesis, TU Berlin (2013)
12. Martens, M., McCormick, S.T.: A polynomial algorithm for weighted abstract flow.

In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp.
97–111. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68891-4 7

13. Matuschke, J.: Decomposition of probability marginals for security games in
abstract networks. Tech. rep., arXiv:2211.04922 (2022)

14. McCormick, S.T.: A polynomial algorithm for abstract maximum flow. In: Pro-
ceedings of the 7th annual ACM-SIAM Symposium on Discrete Algorithms, pp.
490–497 (1996)

15. Pyakurel, U., Khanal, D.P., Dhamala, T.N.: Abstract network flow with interme-
diate storage for evacuation planning. Eur. J. Oper. Res. 305, 1178–1193 (2022)

16. Szeszlér, D.: Security games on matroids. Math. Program. 161, 347–364 (2017)
17. Tambe, M.: Security and game theory: Algorithms, deployed systems, lessons

learned. Cambridge University Press (2011)

https://doi.org/10.1007/978-3-540-68891-4_7
http://arxiv.org/abs/2211.04922

Set Selection Under Explorable Stochastic
Uncertainty via Covering Techniques

Nicole Megow and Jens Schlöter(B)

Faculty of Mathematics and Computer Science, University of Bremen,
Bremen, Germany

{nmegow,jschloet}@uni-bremen.de

Abstract. Given subsets of uncertain values, we study the problem of
identifying the subset of minimum total value (sum of the uncertain val-
ues) by querying as few values as possible. This set selection problem
falls into the field of explorable uncertainty and is of intrinsic importance
therein as it implies strong adversarial lower bounds for a wide range
of interesting combinatorial problems such as knapsack and matchings.
We consider a stochastic problem variant and give algorithms that, in
expectation, improve upon these adversarial lower bounds. The key to
our results is to prove a strong structural connection to a seemingly
unrelated covering problem with uncertainty in the constraints via a lin-
ear programming formulation. We exploit this connection to derive an
algorithmic framework that can be used to solve both problems under
uncertainty, obtaining nearly tight bounds on the competitive ratio. This
is the first non-trivial stochastic result concerning the sum of unknown
values without further structure known for the set. With our novel meth-
ods, we lay the foundations for solving more general problems in the area
of explorable uncertainty.

Keywords: explorable uncertainty · queries · set selection · set cover

1 Introduction

In the setting of explorable uncertainty, we consider optimization problems with
uncertainty in numeric input parameters. Instead of having access to the precise
numeric values, we are given uncertainty intervals that contain the precise val-
ues. Each uncertainty interval can be queried, which reveals the corresponding
precise value. The goal is to adaptively query intervals until we have sufficient
information to optimally (or approximately) solve the underlying optimization
problem, while minimizing the number of queries.

We mainly consider the set selection problem (MinSet) under explorable
uncertainty. In this problem, we are given a set of n uncertain values rep-
resented by uncertainty intervals I = {I1, . . . , In} and a family of m sets
S = {S1, . . . , Sm} with S ⊆ I for all S ∈ S. A value wi lies in its uncertainty
interval Ii, is initially unknown, and can be revealed via a query. The value of an
S ∈ S is w(S) =

∑
Ii∈S wi. The goal is to determine a subset of minimum value

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 319–333, 2023.
https://doi.org/10.1007/978-3-031-32726-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_23&domain=pdf
http://orcid.org/0000-0002-3531-7644
http://orcid.org/0000-0003-0555-4806
https://doi.org/10.1007/978-3-031-32726-1_23

320 N. Megow and J. Schlöter

as well as its value by using a minimal number of queries. It can be seen as an
integer linear program (ILP) with uncertainty in the coefficients of the objective
function:

min
∑m

j=1 xj

∑
Ii∈Sj

wi

s.t.
∑m

j=1 xj = 1
xj ∈ {0, 1} ∀j ∈ {1, . . . , m}.

(1)

Since the wi’s are uncertain, we might have to execute queries to determine an
optimal solution to (1). We refer to this problem as MinSet under uncertainty.

In this paper, we consider the stochastic problem variant, where all val-
ues wi are drawn independently at random from their intervals Ii according
to unknown distributions di. As there are instances that cannot be solved
without querying the entire input, we analyze an algorithm ALG in terms
of its competitive ratio: for the set of problem instances J , it is defined as
maxJ∈J E[ALG(J)]/E[OPT(J)], where ALG(J) is the number of queries needed
by ALG to solve instance J , and OPT(J) is the minimum number of queries nec-
essary to solve the instance.

MinSet is a fundamental problem and of intrinsic importance within the
field of explorable uncertainty. The majority of existing works considers the
adversarial setting, where query outcomes are not stochastic but returned in a
worst-case manner. Selection type problems have been studied in the adversar-
ial setting and constant (matching) upper and lower bounds are known, e.g.,
for selecting the minimum [19], the k-th smallest element [13,19], a minimum
spanning tree [10,12,18,23], sorting [17] and geometric problems [5]. However,
these problems essentially boil down to comparing single uncertainty intervals
and identifying the minimum of two unknown values. Once we have to compare
two (even disjoint) sets and the corresponding sums of unknown values, no deter-
ministic algorithm can have a better adversarial competitive ratio than n, the
number of uncertainty intervals. This has been shown by Erlebach et al. [11] for
MinSet, and it implies strong adversarial lower bounds for classical combinato-
rial problems, such as, knapsack and matchings [25], as well as solving ILPs with
uncertainty in the cost coefficients as in (1) [25]. As a main result, we provide
substantially better algorithms for MinSet under stochastic uncertainty. This is
a key step for breaching adversarial lower bounds for a wide range of problems.

For the stochastic setting, the only related results we are aware of concern
sorting [6] and the problem of finding the minimum in each set of a given collec-
tion of sets [2]. Asking for the sum of unknown values is substantially different.

The Covering Point of View. Our key observation is that we can view Min-
Set as a covering problem with uncertainty in the constraints. To see this, we
focus on the structure of the uncertainty intervals and how a query affects it.
We assume that each interval Ii ∈ I is either open (non-trivial) or trivial, i.e.,
Ii = (Li, Ui) or Ii = {wi}; a standard technical assumption in explorable uncer-
tainty. In the latter case, Li = Ui = wi. We call Li and Ui lower and upper limit.
For a set S ∈ S, we define the initial lower limit LS =

∑
Ii∈S Li and initial

upper limit US =
∑

Ii∈S Ui. Clearly, w(S) ∈ (LS , US).
As the intervals (LS , US) of the sets S ∈ S can overlap, we might have to

execute queries to determine the set of minimum value. A query to an interval

Set Selection Under Explorable Stochastic Uncertainty 321

Ii reveals the precise value wi and, thus, replaces both, Li and Ui, with wi. In
a sense, a query to an Ii ∈ S reduces the range (LS , US) in which w(S) might
lie by increasing LS by wi − Li and decreasing US by Ui − wi. Let LS(Q) and
US(Q) denote the limits of set S after querying a set of intervals Q ⊆ I.

For a MinSet instance (I, S), let w∗ = minS∈S w(S) be the initially uncer-
tain minimum set value. To solve the problem, we have to adaptively query a
set of intervals Q until US∗(Q) = LS∗(Q) = w∗ holds for some S∗ ∈ S and
LS(Q) ≥ w∗ holds for all S ∈ S. Only then, we know for sure that w∗ is indeed
the minimum set value and that S∗ achieves this value. The following ILP with
ai = wi − Li for all Ii ∈ I and bS = w∗ − LS for all S ∈ S formulates this
problem:

min
∑

Ii∈I xi

s.t.
∑

Ii∈S xi · ai ≥ bS ∀S ∈ S
xi ∈ {0, 1} ∀Ii ∈ I

(MinSetIP)

Observe that this ILP is a special case of the multiset multicover problem
(see, e.g., [26]). If ai = wi − Li = 1 for all Ii ∈ I and bS = w∗ − LS = 1 for
all S ∈ S, then the problem is exactly the classical SetCover problem with I
corresponding to the SetCover sets and S corresponding to the SetCover
elements.

The optimal solution to (MinSetIP) is the optimal query set for the
corresponding MinSet instance. Under uncertainty however, the coefficients
ai = wi − Li and right-hand sides bS = w∗ − LS are unknown. We only know
that ai ∈ (Li − Li, Ui − Li) = (0, Ui − Li) as ai = (wi − Li) and wi ∈ (Li, Ui).
In a sense, to solve MinSet under uncertainty, we have to solve (MinSetIP)
with uncertainty in the coefficients and irrevocable decisions. For the rest of the
paper, we interpret MinSet under uncertainty in exactly that way: We have to
solve (MinSetIP) without knowing the coefficients in the constraints. Whenever
we irrevocably add an interval Ii to our solution (i.e., set xi to 1), the information
on the coefficients (in form of wi) is revealed. Our goal is to add elements to our
solution until it becomes feasible for (MinSetIP), and to minimize the number
of added elements. In this interpretation, the terms “querying an element” and
“adding it to the solution” are interchangeable, and we use them as such.

Our main contribution is an algorithmic framework that exploits techniques
for classical covering problems and adapts them to handle uncertainty in the
coefficients ai and the right-hand sides bS . This framework allows us to obtain
improved results for MinSet under uncertainty and other covering problems.

Our Results. We design a polynomial-time algorithm for MinSet under
stochastic uncertainty with competitive ratio O(1τ · log2 m), where m is the num-
ber of sets (number of constraints in (MinSetIP)) and parameter τ characterizes
how “balanced” the distributions of values within the given intervals are. More
precisely, τ = minIi∈I τi and τi is the probability that wi is larger than the cen-
ter of Ii (e.g., for uniform distributions τ = 1

2). This is the first stochastic result
in explorable uncertainty concerning the sum of unknown values and it builds
on new methods that shall be useful for solving more general problems in this

322 N. Megow and J. Schlöter

field. The ratio is independent of the number of elements, n. In particular for a
small number of sets, m, this is a significant improvement upon the adversarial
lower bound of n [11]. Dependencies on parameters such as τ are quite standard
and necessary [3,4,15,22,29]. For example, in [22] the upper bounds depend on
the probability to draw the largest value of the uncertainty interval, which is an
even stricter assumption that does not translate to open intervals. Our results
translate also to the maximization variant of MinSet; see full version [24].

We remark that the hidden constants in the performance bounds depend on
the upper limits of the given intervals. Assuming those to be constant is also a
common assumption; see, e.g., [22]. Even greedy algorithms for covering problems
similar to (MinSetIP) without uncertainty have such dependencies [9,26,28].

As MinSet contains the classical SetCover, an approximation factor better
than O(logm) is unlikely, unless P=NP [8]. We show that this holds also in
the stochastic setting, even for uniform distributions. We also show a lower
bound of 1

τ for MinSet under stochastic explorable uncertainty, even for pairwise
disjoint sets. Thus, the dependency on logm and 1

τ in our results is necessary.
In the special case that all given sets are disjoint, we provide a simpler algo-

rithm with competitive ratio 2
τ . This is a gigantic improvement compared to the

adversarial setting, where the lower bound of n holds even for disjoint sets [11].
Algorithmically, we exploit the covering point of view to introduce a class of

greedy algorithms that use the same basic strategy as the classical SetCover
greedy algorithm [7]. However, we do not have sufficient information to com-
pute and query an exact greedy choice under uncertainty as this choice depends
on uncertain parameters. Instead, we show that it is sufficient to query a small
number of elements that together achieve a similar greedy value to the exact
greedy choice. If we do this repeatedly and the number of queries per iteration
is small in expectation, then we achieve guarantees comparable to the approx-
imation factor of a greedy algorithm with full information. It is worth noting
that this way of comparing an algorithm to the optimal solution is a novelty
in explorable uncertainty as all previous algorithms for adversarial explorable
uncertainty (MinSet and other problems) exploit witness sets. A witness set
is a set of queries Q such that each feasible solution has to query at least one
element of Q, which allows to compare an algorithm with an optimal solution.

Our results translate to other covering problems under uncertainty. In partic-
ular, for (MinSetIP) under uncertainty with deterministic right-hand sides, we
give a simplified algorithm with improved competitive ratio O(1τ · logm). For a
slightly different balancing parameter, this holds even for the more general vari-
ant, where a variable can have different coefficients for different constraints, each
with an individual uncertainty interval and distribution; see full version [24].

All missing proofs are provided in the full version [24].

Further Previous Work. For adversarial MinSet under uncertainty, Erlebach
et al. [11] show a (best possible) competitive ratio of 2d, where d is the cardi-
nality of the largest set. In the lower bound instances, d ∈ Ω(n). The algorithm
repeatedly queries disjoint witness sets of size at most 2d. This result was stated
for the setting, in which it is not necessary to determine the value of the minimal
set; if the value has to be determined, the bounds change to d.

Set Selection Under Explorable Stochastic Uncertainty 323

Further related work on MinSet includes the result by Yamaguchi and Mae-
hara [22], who consider packing ILPs with stochastic uncertainty in the cost
coefficients, which can be queried. They present a framework for solving several
problems and bound the absolute number of iterations that it requires to solve
them, instead of the competitive ratio. However, we show in the full version [24]
that their algorithm has competitive ratio Ω(n) for MinSet, even for uniform
distributions. Thus, it does not improve upon the adversarial lower bound.

Wang et al. [30] also consider selection-type problems in a somewhat related
model. They consider different constraints on the set of queries that, in a way,
imply a budget on the number of queries. They solve optimization problems with
respect to this budget, which has a very different flavor than our setting.

While we are not aware of previous work on covering problems with value-
queries and uncertainty in the constraints, there is related work on queries that
reveal the existence of edges in a graph instead of numeric values [3,4,15,29].
Furthermore, there is related work on covering problems in different stochastic
settings (see, e.g., [1,14,16,27]).

2 Algorithmic Framework

In this section, we present our algorithmic framework. To illustrate the main
ideas, we first consider the offline variant of MinSet and give hardness results.

2.1 Offline Problems and Hardness of Approximation

We refer to the problem of solving (MinSetIP) with full knowledge of the precise
values wi (and w∗) as offline. For MinSet under uncertainty, we say a solution
is optimal, if it is an optimal solution for the corresponding offline problem. We
use OPT to refer to an optimal solution and its objective value.

Offline MinSet contains SetCover and, thus, is as hard to approximate.
This result transfers to the stochastic setting, even with uniform distributions.
Thus, an approximation factor better than O(logm) is unlikely, unless P=NP [8].

On the positive side, we can approximate offline MinSet by adapting cover-
ing results [7,9,20,21,26]. In particular, we want to use greedy algorithms that
iteratively and irrevocably add elements to the solution that are selected by a
certain greedy criterion. Recall that “adding an element to the solution” corre-
sponds to both, setting the variable xi of an interval Ii ∈ I in (MinSetIP) to
one and querying Ii. As the greedy criterion for adding an element depends on
previously added elements, we define a version of the ILP parametrized by the
set Q of elements that have already been added to the solution and adjust the
right-hand sides to the remaining covering requirements after adding Q. To that
end, let bS(Q) = max{bS − ∑

Ii∈Q∩S ai, 0} for ai = wi − Li and bS = w∗ − LS .

min
∑

Ii∈I\Q xi

s.t.
∑

Ii∈S\Q xi · ai ≥ bS(Q) ∀S ∈ S
xi ∈ {0, 1} ∀Ii ∈ I \ Q

(MinSetIP-Q)

324 N. Megow and J. Schlöter

Based on the ILP and the sum of right-hand sides b(Q) =
∑

S∈S bS(Q), we
adjust an algorithm for multiset multicover by Dobson [9] to our setting.

The Offline Algorithm scales the coefficients to a′ and b′ such that all non-
zero left-hand side coefficients are at least 1 (we refer to such instances as scaled).
Then it greedily adds the element to the solution that reduces the right-hand
sides the most, i.e., the interval Ii ∈ I \ Q that maximizes the greedy value
gc(Q, Ii) = b′(Q) − b′(Q ∪ {Ii}). For a subset G ⊆ I, we define gc(Q,G) =
b′(Q) − b′(Q ∪ G).

After b′
S(Q) < 1 for all S ∈ S, we can exploit that all non-zero coefficients a′

i

are at least one. This means that adding an element Ii ∈ I\Q satisfies all remain-
ing constraints of sets S with Ii ∈ S. Thus, the remaining problem reduces to
a SetCover instance, which can be solved by using the classical greedy algo-
rithm by Chvatal [7]. This algorithm greedily adds the element Ii that maximizes
greedy value gs(Q, Ii) = A(Q)−A(Q∪{Ii}) with A(Q) = |{S ∈ S | b′

S(Q) > 0}|,
i.e., the element that satisfies the largest number of constraints that are not
already satisfied by Q. For subsets G ⊆ I, we define gs(Q,G) = A(Q)−A(Q∪G).

Theorem 1 (Follows from [9]). The Offline Algorithm is a polynomial-time
O(logm)-approximation for offline MinSet. The precise approximation factor is
ρ(γ) = �ln(γ ·m·maxS(w∗−LS))�+�ln(m)� with smin = minIi∈I : (wi−Li)>0(wi−
Li), γ = 1/smin and m = |S|.
We will state the competitive ratios of our algorithms in terms of ρ. To that
end, define ρ̄(γ) = �ln(γ · m · maxS,S′(US − LS′)� + �ln(m)�, which is an upper
bound on ρ(γ). Under uncertainty, we compare against ρ̄ to avoid the random
variable w∗. For constant Ui’s, ρ̄ and ρ are asymptotically the same.

2.2 Algorithmic Framework

To solve MinSet under uncertainty, we ideally would like to apply the Offline
Algorithm. However, since the coefficients ai = wi − Li and bS = w∗ − LS are
unknown, we cannot do so as we cannot compute the greedy values gc or gs.

While we cannot precisely compute the greedy choice, our strategy is to
approximate it and to show that approximating it is sufficient to obtain the
desired guarantees. To make this more precise, consider an iterative algorithm
for (MinSetIP) that iteratively adds pairwise disjoint subsets G1, . . . , Gh of I
to the solution. For each j, let Qj =

⋃
1≤j′≤j−1 Gj′ , i.e., Qj contains the elements

that have been added to the solution before Gj . If the combined greedy value
of Gj is within a factor of α to the best greedy value for the problem instance
after adding Qj , then we say that Gj α-approximates the greedy choice. The
following definition makes this more precise while taking into account that there
are two different greedy values gc and gs (cf. the Offline Algorithm).

Definition 1. For a scaled instance of (MinSetIP), some Q ⊆ I, and an α ≥
1, a subset G ⊆ I \Q α-approximates the current greedy choice (as characterized
by Q) if one of the following conditions holds:

Set Selection Under Explorable Stochastic Uncertainty 325

1. b′
S(Q) < 1 for all S ∈ S and gs(Q,G) ≥ 1

α · maxIi∈I\Q gs(Q, Ii).
2. b′(Q) ≥ 1 and gc(Q,G) ≥ 1

α · maxIi∈I\Q gc(Q, Ii).

We bound the number of iterations j in which Gj α-approximates the current
greedy choice via an adjusted SetCover greedy analysis.

Lemma 1. Consider an arbitrary algorithm for (MinSetIP) that scales the
coefficients by factor γ and iteratively adds disjoint subsets G1, . . . , Gh of I to the
solution until the instance is solved. The number of groups Gj that α-approximate
the current greedy choice (after adding Qj) is at most α · ρ(γ) · OPT.

The lemma states that the number of such groups Gj is within a factor of
α of the performance guarantee ρ(γ) of the offline greedy algorithm. If each Gj

α-approximates its greedy choice, the iterative algorithm achieves an approxi-
mation factor of maxj |Gj | · α · ρ(γ). Thus, approximating the greedy choices by
a constant factor using a constant group size is sufficient to only lose a constant
factor compared to the offline greedy algorithm.

This insight gives us a framework to solve MinSet under uncertainty. Recall
that the wi’s (and by extension the ai’s and bS ’s) are uncertain and only revealed
once we irrevocably add an Ii ∈ I to the solution. We refer to a revealed wi as
a query result, and to a fixed set of revealed wi’s for all Ii ∈ I as a realization
of query results. Consider an iterative algorithm. The sets Gj can be computed
and queried adaptively and are allowed to depend on (random) query results
from previous iterations. Hence, Xj = |Gj | is a random variable. Let Yj be an
indicator variable denoting whether the algorithm executes iteration j (Yj = 1)
or terminates beforehand (Yj = 0). We define the following class of iterative
algorithms and show that algorithms from this class achieve certain guarantees.

Definition 2. An iterative algorithm is (α, β, γ)-Greedy if it satisfies:

1. For every realization of query results; each Gj α-approximates the greedy
choice as characterized by Qj on the instance with coefficients scaled by γ.

2. E[Xj | Yj = 1] ≤ β holds for all iterations j.

Theorem 2. Each (α, β, γ)-Greedy algorithm for MinSet under uncertainty
achieves a competitive ratio of α · β · ρ̄(γ) ∈ O(α · β · logm).

Proof. Consider an (α, β, γ)-Greedy algorithm ALG for MinSet. Its expected
cost is E[ALG] =

∑
j E[Xj] =

∑
j P[Yj = 1]E[Xj | Yj = 1] + P[Yj = 0]E[Xj |

Yj = 0]. As E[Xj | Yj = 0] = 0 (if the algorithm terminates before iteration j,
it adds no more elements and, thus, Xj = 0), the equality reduces to E[ALG] =∑

j P[Yj = 1]E[Xj | Yj = 1]. By Definition 2, this implies E[ALG] ≤ β
∑

j P[Yj =
1].

It remains to bound
∑

j P[Yj = 1], which is the expected number of iterations
of ALG. Consider a fixed realization of query results. By the first property of Def-
inition 2, each Gj α-approximates its greedy choice for the (MinSetIP) instance
of the realization scaled by factor γ. Thus, Lemma 1 implies that the number
of iterations is at most αρ(γ)OPT, which is upper bounded by αρ̄(γ)OPT. As

326 N. Megow and J. Schlöter

Algorithm 1: MinSet with deterministic right-hand sides.
Input: Instance of MinSet with deterministic right-hand sides.

1 Q = ∅; Scale a and b by 2
smin

to a′ and b′ for smin = minIi∈I : Ui−Li>0 Ui − Li;
2 while the problem is not solved do
3 if b′(Q) ≥ 1 then g = ḡc else g = ḡs;
4 repeat
5 Ii ← argmaxIj∈I\Q g(Q, Ij); Query Ii; Q ← Q ∪ {Ii};
6 until the problem is solved or wi − Li ≥ 1

2
· (Ui − Li);

this upper bound on the number of iterations holds for every realization and
OPT is the only random variable of that term (as we substituted ρ by ρ̄), we
get

∑
j P[Yj = 1] ≤ αρ̄(γ)E[OPT], which implies E[ALG] ≤ αβρ̄(γ)E[OPT].
�

3 MinSet with Deterministic Right-Hand Sides

We consider a variant of MinSet under uncertainty, where the right-hand
sides bS of the ILP representation (MinSetIP) are deterministic and explicit
part of the input. Thus, only the coefficients ai = (wi − Li) remain uncertain
within the interval (0, Ui −Li). For this variant, the instance might have no fea-
sible solution. In that case, we require every algorithm (incl. OPT) to reduce the
covering requirements as much as possible. Recall that in the stochastic setting
the balancing parameter is τ = minIi∈I τi for τi = P[wi ≥ Ui+Li

2].

Theorem 3. There is a polynomial-time algorithm for MinSet under uncer-
tainty with deterministic right-hand sides and a competitive ratio of 2

τ · ρ(γ) ∈
O(1τ · logm) with γ = 2/smin for smin = minIi∈I : Ui−Li>0 Ui − Li.

The algorithm loses only a factor 2
τ compared to the greedy approximation

factor ρ(γ) on the offline problem. We show the theorem by proving that Algo-
rithm 1 is an (α, β, γ)-Greedy algorithm for α = 2, β = 1

τ and γ = 2
smin

with
smin = minIi∈I : Ui−Li>0 Ui − Li. Using Theorem 2, this implies the theorem.

The algorithm scales the instance by factor γ; a′ and b′ refer to the scaled
coefficients. The idea is to execute the Offline Algorithm under the assumption
that ai = Ui − Li (and a′

i = γai) for all Ii ∈ I that were not yet added to
the solution. As ai = (wi − Li) ∈ (0, Ui − Li), this means that we assume ai

to have the largest possible value. Consequently, smin is the smallest (non-zero)
coefficient ai under this assumption. The algorithm computes the greedy choice
based on the optimistic greedy values

ḡc(Q, Ii) =
∑

S∈S : Ii∈S

b′
S(Q) − max{0, b′

S(Q) − γ(Ui − Li)}

(if b′(Q) ≥ 1) and

ḡs(Q, Ii) = |{S ∈ S : Ii ∈ S | b′
S(Q) > 0 ∧ b′

S(Q) − γ(Ui − Li) ≤ 0}|

Set Selection Under Explorable Stochastic Uncertainty 327

(otherwise). These are the greedy values under the assumption ai = Ui − Li.
We call them optimistic as they might overestimate but never underestimate
the actual greedy values. For subsets G ⊆ I, we define ḡs(Q,G) and ḡc(Q,G)
analogously.

In contrast to gs and gc, Algorithm 1 has sufficient information to compute
ḡs and ḡc, and the best greedy choice based on the optimistic greedy values.
The algorithm is designed to find, in each iteration, an element Ii with wi −
Li ≥ Ui−Li

2 . We show that (i) this ensures that each iteration 2-approximates
the greedy choice and (ii) that finding such an element takes only 1

τ tries in
expectation. This suffices to apply Theorem 2.

To show (ii), we can observe that wi ≥ (Ui+Li)
2 implies wi − Li ≥ 1

2 (Ui − Li)
and that P[wi ≥ (Ui+Li)

2] ≥ τ holds by assumption. Thus, we find an interval Ii

satisfying wi − Li ≥ 1
2 (Ui − Li) with probability at least τ . This implies that,

given an iteration of the while-loop is started, it in expectation takes 1
τ tries to

find such an interval Ii. This is exactly the second property of Definition 2.
To prove (i), we use the next lemma, which shows that the optimistic greedy

value of an Ii with wi − Li ≥ 1
2 (Ui − Li) is close to the actual greedy value.

Lemma 2. Consider an instance of (MinSetIP) scaled by γ = 2
smin

and some
Q ⊆ I. If wi − Li ≥ (Ui − Li)/2 for an Ii ∈ I \ Q, then gc(Q, Ii) ≥ ḡc(Q, Ii)/2.
If additionally b′(Q) < 1, then gs(Q, Ii) = ḡs(Q, Ii)

Proof. The statement regarding gc and ḡc holds directly by definition. To show
the second statement, we use the assumption b′(Q) < 1 and the choice of γ.

From b′(Q) < 1 follows b′
S(Q) < 1 for all S ∈ S. As wi −Li ≥ Ui−Li

2 , we have
ai = wi − Li ≥ Ui−Li

2 ≥ smin
2 and, therefore, a′

i = γai = 2
smin

ai ≥ 1. This means
that adding Ii to the solution satisfies all constraints for sets S with Ii ∈ S that
are not yet satisfied by Q. Thus, the optimistic greedy value ḡs(Q, Ii) and the
real greedy value gs(Q, Ii) are the same, i.e., ḡs(Qj , Ii) = gs(Q, Ii), as adding Ii

cannot satisfy more constraints even if the coefficient ai was Ui − Li.
�
As the algorithm always queries the interval Ii with the best optimistic greedy

value, Lemma 2 shows that the last query of the iteration 2-approximates the
greedy choice after querying the set Q of all previous queries. This implies (i)
and Property 1 of Definition 2. By Theorem 2 this suffices to prove Theorem 3.

4 MinSet Under Uncertainty

We consider MinSet under uncertainty and prove the following main result.

Theorem 4. There is a polynomial-time algorithm for MinSet under uncer-
tainty with a competitive ratio of O(1τ logm · ρ̄(γ)) ⊆ O(1τ · log2 m) with
γ = 2/smin for smin = minIi∈I : Ui−Li>0 Ui − Li.

Exploiting Theorem 2, we prove the statement by providing Algorithm 2
and showing that it is an (α, β, γ)-Greedy algorithm for α = 2, γ = 2/smin and

328 N. Megow and J. Schlöter

β = 1
τ (�log1.5(m · 2(maxIi∈I(Ui − Li))/smin)� + �log2(m)�). Note that α and γ

are defined as in the previous section and will be used analogously. For β on the
other hand, we require a larger value to adjust for the additional uncertainty in
the right-hand sides bS = w∗ − LS as the minimum set value w∗ is unknown.
Notice that we do not have sufficient information to execute Algorithm 1, since
we need the right-hand side values to compute even the optimistic greedy values.

To handle this additional uncertainty, we want to ensure that each itera-
tion of our algorithm α-approximates the greedy choice for each possible value
of w∗. To do so, we compute and query the best optimistic greedy choice
for several carefully selected possible values w∗. To state our algorithm, we
define a parametrized variant of (MinSetIP) that states the problem under
the assumptions that w∗ = w for some w and that the set Q ⊆ I has
already been queried. The coefficients are scaled to a′

i = (2/smin)(wi − Li) and
b′
S(Q,w) = max{(2/smin)(w − LS) − ∑

Ii∈Q∩S a′
i, 0}. As before, let b′(Q,w) =∑

S∈S b′
S(Q,w).

min
∑

Ii∈I\Q xi

s.t.
∑

Ii∈S\Q xi · a′
i ≥ b′

S(Q,w) ∀S ∈ S
xi ∈ {0, 1} ∀Ii ∈ I

(MinSetIP-Qw)

As the right-hand sides are unknown, we define the greedy values for every
possible value w for w∗. To that end, let gc(Q, Ii, w) = b′(Q,w)− b′(Q∪{Ii}, w)
and gs(Q, Ii, w) = A(Q,w) − A(Q ∪ {Ii}, w), where A(Q,w) = |{S ∈ S |
b′
S(Q,w) > 0}|. As before, gc(Q, Ii, w) and gs(Q, Ii, w) describe how much adding

Ii to the solution reduces the sum of right-hand sides and the number of non-
satisfied constraints, respectively; now under the assumption that w∗ = w. The
optimistic greedy values ḡc(Q, Ii, w) and ḡs(Q, Ii, w) for an Ii ∈ I are defined
analogously but again assume that ai = Ui − Li.

Similar to Algorithm 1, we would like to repeatedly compute and query the
best optimistic greedy choice until the queried Ii satisfies wi − Li ≥ Ui−Li

2 (cf.
the repeat-statement). However, we cannot decide which greedy value, ḡc or ḡs,
to use as deciding whether b′

S(Q,w∗) < 1 depends on the unknown w∗. Instead,
we compute and query the best optimistic greedy choice for both greedy values
(cf. the for-loop). Even then, the best greedy choice still depends on the unknown
right-hand sides. Thus, we compute and query the best optimistic greedy choice
for several carefully selected values w (cf. the inner while-loop) to make sure that
the queries of the iteration approximate the greedy choice for every possible w∗.
Additionally, we want to ensure that we use at most β queries in expectation.

Consider an iteration of the outer while-loop with g = ḡc, and let Q′ denote
the set of queries that were executed before the start of the iteration. Since we
only care about the greedy value gc if there exists some S ∈ S with b′

S(Q) > 1
(otherwise we use ḡs and gs instead), we assume that this is the case. If not, we
use a separate analysis for the for-loop iteration with g = ḡs.

Our goal for the iteration is to query a set of intervals Q̄ that 2-approximates
the best greedy choice I∗ after querying Q, i.e., it has a greedy value
gc(Q̄,Q,w∗) ≥ 1

2gc(I∗, Q,w∗). To achieve this for the unknown w∗, the algo-
rithm uses the parameter d, which is initialized with 1 (cf. Line 5), the minimum

Set Selection Under Explorable Stochastic Uncertainty 329

Algorithm 2: Algorithm for MinSet under uncertainty.
Input: Instance of MinSet under uncertainty.

1 Scale all coefficients with γ = 2/smin for smin = minIi∈I : (Ui−Li)>0(Ui − Li);
2 Q ← ∅, wmin ← minimum possible value w∗ (keep up-to-date);
3 while the problem is not solved do
4 foreach g from the ordered list ḡc, ḡs do
5 d ← 1; Q′ ← Q;
6 if g = ḡc then wmax ← max possible value w∗;
7 else wmax ← max w s.t. b′

S(Q, w) < 1 for all S ∈ S;
8 while ∃wmin ≤ w ≤ wmax such that maxIh∈I\Q g(Q, Ih, w) ≥ d do
9 repeat

10 w ← min wmin ≤ w ≤ wmax s.t. maxIh∈I\Q g(Q, w, Ih) ≥ d ;
11 Ii ← argmaxIh∈I\Q g(Q, Ih, w); Query Ii; Q ← Q ∪ {Ii};
12 Q1/2 ← {Ij ∈ Q \ Q′ | wj − Lj ≥ Uj−Lj

2
};

13 if g = ḡc then d ← gc(Q
′, Q1/2, w) else d ← gs(Q

′, Q1/2, w);
14 until wi − Li ≥ Ui−Li

2
or �w ≤ wmax : maxIh∈I\Q g(Q, w, Ih) ≥ d ;

possible value for ḡc(I∗, Q,w∗) under the assumption that there exists some
S ∈ S with b′

S(Q) > 1. In an iteration of the inner while-loop, the algorithm
repeatedly picks the minimal value w such that the best current optimistic greedy
choice has an optimistic greedy value of at least d (cf. Line 10). If no such value
exists, then the loop terminates (cf. Lines 8, 14). Afterwards, it queries the cor-
responding best optimistic greedy choice Ii for the selected value w (cf. Line 11).
Similar to the algorithms of the previous section, this is done repeatedly until
wi − Li ≥ (Ui − Li)/2.

The key idea to achieve the 2-approximation with an expected number of
queries that does not exceed β, is to always reset the value d to gc(Q′, Q1/2, w),
where Q1/2 is the subset of all intervals Ij that have already been queried in
the current iteration of the outer while-loop and satisfy wj − Lj ≥ (Uj − Lj)/2
(cf. Lines 12, 13). This can be seen as an implicit doubling strategy to search for
an unknown value. It leads to an exponential increase of d over the iterations
of the inner while-loop, which will allow us to bound their number. With the
following lemma, we prove that this choice of d also ensures that the queries of
the iteration indeed 2-approximate the best greedy choice for w∗ if there exists
a S ∈ S with b′

S(Q
′, w∗) ≥ 1. If there is no such set, we can use a similar proof.

For an iteration j of the outer while-loop, let Gj be the set of queries during the
iteration and let Qj =

⋃
j′<j Gj′ denote the queries before the iteration (cf. Q′

in the algorithm).

Lemma 3. If there is an S ∈ S with b′
S(Qj , w

∗) ≥ 1, then Gj 2-approximates
the greedy choice for the scaled instance with w = w∗ after querying Qj.

Proof. Consider the subset Ḡj ⊆ Gj of queries that were executed with g = ḡc

before the increasing value w (cf. Line 10) surpasses w∗. That is, Ḡj only contains
intervals that were queried for a current value w ≤ w∗. Let Īi be the element

330 N. Megow and J. Schlöter

of Ḡj that is queried last. Finally, let d̄j denote the value d computed by the
algorithm in Line 13 directly after querying Īi. We continue to show that Gj

2-approximates the greedy choice of (MinSetIP-Qw) for Q = Qj and w = w∗.
Observe that gc(Qj , Ḡj , w

∗) ≥ d̄j . To see this, recall that d̄j was computed
in Line 13 after Īi was queried. Thus, d̄j = gc(Q′, Q1/2, w) for Q′ = Qj , Q1/2 =
{Ij ∈ Ḡj | wj − Lj ≥ Uj−Lj

2 } and some value w with w ≤ w∗ by assumption.
Since w∗ ≥ w and Q1/2 ⊆ Ḡj , the greedy value gc(Qj , Ḡj , w

∗) can never be
smaller than d̄j = gc(Q′, Q1/2, w), which implies gc(Qj , Ḡj , w

∗) ≥ d̄j .
We continue by showing that d∗ ≤ 2 ·gc(Qj , Ḡj , w

∗) holds for the best greedy
value d∗ at the start of the iteration, i.e., d∗ = maxIi∈I\Qj

gc(Qj , Ii, w
∗). As

Ḡj ⊆ Gj , this implies d∗ ≤ 2 · gc(Qj , Gj , w
∗) and Gj satisfies Definition 1.

To upper bound d∗, first observe that the best optimistic greedy value d′

after querying Ḡj ∪ Qj is smaller than d̄j , i.e., d′ = maxIi∈I\(Qj∪Ḡj) ḡc(Qj ∪
Ḡj , Ii, w

∗) < d̄j . This follows directly from Line 10 as Īi is the last query for a
value w ≤ w∗ by assumption. As gc(Qj , Ḡj , w

∗) ≥ d̄j , we get gc(Qj , Ḡj , w
∗) ≥ d′.

By definition of gc, the best greedy value after querying Qj can never be
larger than the sum of the greedy value of Ḡj after querying Qj and the best
greedy value after querying Ḡj ∪ Qj . Thus, we have d∗ ≤ gc(Qj , Ḡj , w

∗) + d′ ≤
2 · gc(Qj , Ḡj , w

∗), which concludes the proof.
�
Using a similar proof, we show an analogous lemma for the case where

b′
S(Q

′, w∗) < 1 for all S ∈ S, which then implies Property 1 of Defini-
tion 2. To prove Theorem 4, it remains to show Property 2 of Definition
2. The proof idea is to show that parameter d increases by a factor of at
least 1.5 in each iteration of the inner while-loop. As ḡc(Q, Ii, w) is upper
bounded by m(2/smin)maxIi∈I(Ui − Li), this means the inner loop executes
at most�log1.5(m(2/smin)maxIi∈I(Ui − Li))� iterations for g = ḡc. For g = ḡs,
we can argue in a similar way that at most �log2(m)� iterations are executed.
Similar to the previous section, we can also show that each iteration of the inner
while-loop executes at most 1

τ queries in expectation. Combining these insights,
we can bound the expected number of queries during an execution of the outer
while-loop by β. Formally proving the increase of d by a factor of 1.5 requires
to take care of several technical challenges. The basic idea is to exploit that the
interval Ii queried in Line 11 has an optimistic greedy value of at least d. If it
satisfies wi − Li ≥ (Ui − Li), Lemma 2 implies that the real greedy value is at
least d/2. When d is recomputed in Line 13, then Ii is a new member of the set
Q1/2 and leads to the increase of d/2.

5 Disjoint MinSet

In disjoint MinSet, all given sets are pairwise disjoint, i.e., S ∩ S′ = ∅ for all
S, S′ ∈ S with S �= S′. Disjoint MinSet is of particular interest as it gives lower
bounds for several problems under adversarial explorable uncertainty, cf. [11,25].

Theorem 5. There is a polynomial-time algorithm for disjoint MinSet under
uncertainty with competitive ratio 2

τ and a nearly matching lower bound of 1
τ .

Set Selection Under Explorable Stochastic Uncertainty 331

In disjoint MinSet, each Ii occurs in exactly one constraint for one set S in
the corresponding (MinSetIP). Thus, each set S defines a disjoint subproblem
and the optimal solution OPT of the instance is the union of optimal solutions
for the subproblems. The optimal solution for a subproblem S is to query the
elements of Ii ∈ S in order of non-decreasing (wi − Li) until the sum of those
coefficients is at least (w∗ − LS). Under uncertainty, we adapt this strategy and
query in order of non-decreasing (Ui − Li). Since we do not know w∗, we do not
know when to stop querying in a subproblem. We handle this by only querying
in the set S of minimum current lower limit as the subproblem for this set is
clearly not yet solved. Combining these insights with the ideas of the previous
sections, one can prove that this algorithm achieves the upper bound.

Final remarks

We provide the first results for MinSet under stochastic explorable uncertainty
and break, in expectation, adversarial lower bound instances for a number of
problems (matching, knapsack, solving ILPs [25]). We handle for the first time
uncertainty in the constraints, develop new techniques beyond witness sets and
lay the foundation for solving more general problems. We leave open whether
the second log factor in our main result, Theorem 4, is necessary. Furthermore,
the best competitive ratio achievable in exponential running time remains open.

References

1. Agarwal, A., Assadi, S., Khanna, S.: Stochastic submodular cover with lim-
ited adaptivity. In: SODA, pp. 323–342. SIAM (2019). https://doi.org/10.1137/
1.9781611975482.21

2. Bampis, E., Dürr, C., Erlebach, T., de Lima, M.S., Megow, N., Schlöter, J.: Orient-
ing (hyper)graphs under explorable stochastic uncertainty. In: ESA. LIPIcs, vol.
204, pp. 1–18 (2021). https://doi.org/10.4230/LIPIcs.ESA.2021.10

3. Behnezhad, S., Blum, A., Derakhshan, M.: Stochastic vertex cover with few queries.
In: SODA, pp. 1808–1846. SIAM (2022)

4. Blum, A., Dickerson, J.P., Haghtalab, N., Procaccia, A.D., Sandholm, T., Sharma,
A.: Ignorance is almost bliss: Near-optimal stochastic matching with few queries.
Oper. Res. 68(1), 16–34 (2020)

5. Bruce, R., Hoffmann, M., Krizanc, D., Raman, R.: Efficient update strategies
for geometric computing with uncertainty. Theory Comput. Syst. 38(4), 411–423
(2005). https://doi.org/10.1007/s00224-004-1180-4

6. Chaplick, S., Halldórsson, M.M., de Lima, M.S., Tonoyan, T.: Query minimization
under stochastic uncertainty. Theor. Comput. Sci. 895, 75–95 (2021)

7. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

8. Dinur, I., Steurer, D.: Analytical approach to parallel repetition. In: STOC, pp.
624–633. ACM (2014)

9. Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Math. Oper. Res. 7(4), 515–531 (1982)

https://doi.org/10.1137/1.9781611975482.21
https://doi.org/10.1137/1.9781611975482.21
https://doi.org/10.4230/LIPIcs.ESA.2021.10
https://doi.org/10.1007/s00224-004-1180-4

332 N. Megow and J. Schlöter

10. Erlebach, T., Hoffmann, M.: Minimum spanning tree verification under uncer-
tainty. In: Kratsch, D., Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 164–175.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12340-0_14

11. Erlebach, T., Hoffmann, M., Kammer, F.: Query-competitive algorithms for cheap-
est set problems under uncertainty. Theoret. Comput. Sci. 613, 51–64 (2016).
https://doi.org/10.1016/j.tcs.2015.11.025

12. Erlebach, T., de Lima, M.S., Megow, N., Schlöter, J.: Learning-augmented query
policies for minimum spanning tree with uncertainty. In: ESA. LIPIcs, vol. 244,
pp. 1–18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

13. Feder, T., Motwani, R., Panigrahy, R., Olston, C., Widom, J.: Computing the
median with uncertainty. SIAM J. Comput. 32(2), 538–547 (2003). https://doi.
org/10.1137/S0097539701395668

14. Ghuge, R., Gupta, A., Nagarajan, V.: The power of adaptivity for stochastic sub-
modular cover. In: ICML. Proceedings of Machine Learning Research, vol. 139, pp.
3702–3712. PMLR (2021)

15. Goemans, M.X., Vondrák, J.: Covering minimum spanning trees of random sub-
graphs. Random Struct. Algorithms 29(3), 257–276 (2006)

16. Goemans, M., Vondrák, J.: Stochastic covering and adaptivity. In: Correa, J.R.,
Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 532–543. Springer,
Heidelberg (2006). https://doi.org/10.1007/11682462_50

17. Halldórsson, M.M., de Lima, M.S.: Query-competitive sorting with uncertainty. In:
MFCS. LIPIcs, vol. 138, pp. 1–15 (2019). https://doi.org/10.4230/LIPIcs.MFCS.
2019.7

18. Hoffmann, M., Erlebach, T., Krizanc, D., Mihalák, M., Raman, R.: Computing
minimum spanning trees with uncertainty. In: STACS. LIPIcs, vol. 1, pp. 277–
288. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2008). https://
arxiv.org/abs/0802.2855

19. Kahan, S.: A model for data in motion. In: STOC, pp. 267–277. ACM (1991).
https://doi.org/10.1145/103418.103449

20. Kolliopoulos, S.G., Young, N.E.: Tight approximation results for general covering
integer programs. In: FOCS, pp. 522–528. IEEE Computer Society (2001). https://
doi.org/10.1109/SFCS.2001.959928

21. Kolliopoulos, S.G., Young, N.E.: Approximation algorithms for covering/packing
integer programs. J. Comput. Syst. Sci. 71(4), 495–505 (2005). https://doi.org/10.
1016/j.jcss.2005.05.002

22. Maehara, T., Yamaguchi, Y.: Stochastic packing integer programs with few
queries. Math. Programm. 182, 141–174 (2019). https://doi.org/10.1007/s10107-
019-01388-x

23. Megow, N., Meißner, J., Skutella, M.: Randomization helps computing a mini-
mum spanning tree under uncertainty. SIAM J. Comput. 46(4), 1217–1240 (2017).
https://doi.org/10.1137/16M1088375

24. Megow, N., Schlöter, J.: Set selection under explorable stochastic uncertainty via
covering techniques (2022). https://doi.org/10.48550/ARXIV.2211.01097

25. Meißner, J.: Uncertainty exploration: algorithms, competitive analysis, and compu-
tational experiments, Ph. D. thesis, Technischen Universität Berlin (2018). https://
doi.org/10.14279/depositonce-7327

26. Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM J. Comput. 28(2), 525–540 (1998)

27. Shmoys, D.B., Swamy, C.: Stochastic optimization is (almost) as easy as deter-
ministic optimization. In: FOCS, pp. 228–237. IEEE Computer Society (2004).
https://doi.org/10.1109/FOCS.2004.62

https://doi.org/10.1007/978-3-319-12340-0_14
https://doi.org/10.1016/j.tcs.2015.11.025
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1137/S0097539701395668
https://doi.org/10.1007/11682462_50
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://doi.org/10.4230/LIPIcs.MFCS.2019.7
https://arxiv.org/abs/0802.2855
https://arxiv.org/abs/0802.2855
https://doi.org/10.1145/103418.103449
https://doi.org/10.1109/SFCS.2001.959928
https://doi.org/10.1109/SFCS.2001.959928
https://doi.org/10.1016/j.jcss.2005.05.002
https://doi.org/10.1016/j.jcss.2005.05.002
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1007/s10107-019-01388-x
https://doi.org/10.1137/16M1088375
https://doi.org/10.48550/ARXIV.2211.01097
https://doi.org/10.14279/depositonce-7327
https://doi.org/10.14279/depositonce-7327
https://doi.org/10.1109/FOCS.2004.62

Set Selection Under Explorable Stochastic Uncertainty 333

28. Vazirani, V.V.: Approximation algorithms, vol. 1. Springer, Heidelberg (2001).
https://doi.org/10.1007/978-3-662-04565-7

29. Vondrák, J.: Shortest-path metric approximation for random subgraphs. Random
Struct. Algorithms 30(1–2), 95–104 (2007)

30. Wang, W., Gupta, A., Williams, J.: Probing to minimize. In: ITCS. LIPIcs, vol.
215, pp. 1–123. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

https://doi.org/10.1007/978-3-662-04565-7

Towards a Characterization of Maximal
Quadratic-Free Sets

Gonzalo Muñoz1, Joseph Paat2(B), and Felipe Serrano3

1 Engineering Sciences Institute, Universidad de O’Higgins, Rancagua, Chile
gonzalo.munoz@uoh.cl

2 Sauder School of Business, University of British Columbia, Vancouver, BC, Canada
joseph.paat@sauder.ubc.ca

3 I2DAMO GmbH, Berlin, Germany
serrano@i2damo.de

Abstract. In 1971, Balas introduced intersection cuts as a method for
generating cutting planes in integer optimization. These cuts are derived
from convex S-free sets, and inclusion-wise maximal S-free sets yield the
strongest intersection cuts. When S is a lattice, maximal S-free sets are
well-studied. In this work, we provide a new characterization of maximal
S-free sets, for arbitrary S, based on sequences that ‘expose’ inequalities
defining the S-free set; these exposing sequences generalize the notion of
blocking points when S is a lattice. We then apply our characterization
to partially characterize maximal S-free polyhedra when S is defined by
a homogeneous quadratic inequality. Our results generate new families
of maximal quadratic-free sets and considerably generalize some of the
constructions by Muñoz and Serrano (IPCO 2020), who first introduced
maximal quadratic-free sets.

1 Introduction

Given a closed set S ⊆ R
d, we say that a closed convex set C ⊆ R

d is S-free if
its interior intr(C) contains no points in S. The family of S-free sets form the
foundation of intersection cuts for mathematical programs of the form

min{c�x : x ∈ S ∩ P}, (1)

where c ∈ R
d and P ⊆ R

d is closed and convex. Intersection cuts were introduced
by Balas [7] when S is a lattice and by Tuy [27] when S is a reverse convex set.
Since then, intersection cuts have been well-studied; see, e.g., [1,2,4,13,14,16,
22]. For a general reference on intersection cuts, we point to [18, Chapter 6].
One important feature of intersection cuts is the following: if one solves an LP
relaxation of (1) and obtains a vertex x �∈ S, the construction of an S-free set
that contains x in its interior ensures the separation of x.

The family of inclusion-wise maximal S-free sets play an important role as
they generate the strongest intersection cuts, and they also serve as optimality
certificates for mixed integer programs; see [6,9,25]. For the case when S is a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 334–347, 2023.
https://doi.org/10.1007/978-3-031-32726-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_24&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_24

Towards a Characterization of Maximal Quadratic-Free Sets 335

lattice, Lovász [21] demonstrates that full-dimensional maximal S-free sets are
polyhedra with integer points in the relative interior of each facet; see also [3].
For extensions of Lovász’s result to lattice points in linear subspaces and rational
polyhedra see [11,12]. Connections between maximal S-free sets and the Helly
number of S have been established in [5,9,19]. There are some characterizations
of maximality beyond the lattice setting, e.g., Bienstock et al. [13,14] characterize
various maximal S-free sets when S is the set of rank 1 real-valued symmetric
matrices.

Muñoz and Serrano [23,24] are the first to study the setting when S is defined
by an arbitrary quadratic inequality. They develop methods for proving maximal-
ity when S is defined by either a single homogeneous or a single non-homogeneous
quadratic inequality. A computational implementation of the resulting intersec-
tion cuts was developed in [15], with favorable results. In this paper, we focus on
the homogeneous setting, i.e., S =

{
s ∈ R

p : s�As ≤ 0
}

for A ∈ R
p×p. Maximal

S-free sets derived in this setting extend to (not necessarily maximal) sets in the
non-homogeneous setting. Indeed, an Ŝ-free set for the non-homogeneous setting
Ŝ :=

{
s ∈ R

p : s�As + g�s + h ≤ 0
}

can be constructed by taking an S′-free set
for the homogeneous set S′ :=

{
(s, z) ∈ R

p × R : s�As + (g�s)z + hz2 ≤ 0
}

and
intersecting the S′-free set with z = 1. To simplify our presentation in the homo-
geneous setting, we follow reductions in [23,24] to assume that the homogeneous
setting has the form

Q := {(x, y) ∈ R
n × R

m : ‖x‖ ≤ ‖y‖} ,

where ‖ · ‖ is the �2-norm. We replace S (resp. S-free) with Q (resp. Q-free) to
highlight that we are looking at quadratic-free sets. We use this definition of Q
for the rest of the paper, and refer to any set C that is Q-free as homogeneous
quadratic-free.

Among their results, Muñoz and Serrano prove that a particular homoge-
neous quadratic-free set is maximal [24, Theorem 2.1]. One of the motivations
in this paper is to provide more general characterizations of maximal Q-free
sets that can be used to generate alternative families of them and, consequently,
new families of cutting planes for quadratically-constrained problems. In order to
derive our characterizations, we also derive a new characterization of maximality
for S-free sets when S is an arbitrary closed set.
Notation. We use conv(X) and cone(X) to denote the closed convex hull and
closed convex conic hull of a set X ⊆ R

d. For background on convexity including
common definitions, we point to [8,26]. For each d ∈ N, we set Dd := {x ∈ R

d :
‖x‖ = 1}.

1.1 Contributions

We characterize Q-free sets by representing them as an intersection of half-spaces
of the form Γ (β)�x − β�y ≥ 0, where Γ : Dm → Dn. Given such a Γ function,
we define

CΓ := {(x, y) ∈ R
n × R

m : Γ (β)�x − β�y ≥ 0 ∀ β ∈ Dm}. (2)

336 G. Muñoz et al.

Note that CΓ is always convex and Q-free: by the Cauchy-Schwarz inequality,
any (x, y) in the interior of CΓ satisfies β�y < ‖x‖ for all β ∈ Dm which implies
that ‖y‖ < ‖x‖.

Our first main result shows that this ‘standard form’ CΓ is necessary for a
Q-free set to be maximal.

Theorem 1 (A necessary condition for maximality). Let C be a full-
dimensional closed convex maximal Q-free set. There exists a function Γ : Dm →
Dn such that C = CΓ .

Our next results provide partial converses of Theorem 1. For each result, we
assume something about the ‘expansivity’ of Γ .

Definition 1 (Non-expansive, isometric, strictly non-expansive). Let
Γ : Dm → Dn. We say that β, β′ ∈ Dm are isometric if ‖Γ (β) − Γ (β′)‖ =
‖β − β′‖. Additionally, we say that Γ is

– non-expansive if ‖Γ (β) − Γ (β′)‖ ≤ ‖β − β′‖ for all β, β′ ∈ Dm.
– isometric if ‖Γ (β) − Γ (β′)‖ = ‖β − β′‖ for all β, β′ ∈ Dm.
– strictly non-expansive if ‖Γ (β) − Γ (β′)‖ < ‖β − β′‖ for all β, β′ ∈ Dm,

β �= β′.

Observe that Γ : Dm → Dn is non-expansive (respectively, isometric or
strictly non-expansive) if and only if β�β′ ≤ Γ (β)�Γ (β′) for all β, β′ ∈ Dm

(respectively, β�β′ = Γ (β)�Γ (β′) or β�β′ < Γ (β)�Γ (β′)) because β, β′ ∈ Dm

and Γ (β), Γ (β′) ∈ Dn.

Theorem 2 (First sufficient condition for maximality). Let Γ : Dm →
Dn and define CΓ as in (2). If Γ is strictly non-expansive, then CΓ is a full-
dimensional maximal Q-free set.

Theorem 2 generalizes [24, Theorem 2.1], where Γ is a constant function.
Example 1 in Section 2 illustrates the construction of a maximal Q-free set
using a non-constant Γ function that is strictly non-expansive.

We conjecture that requiring Γ non-expansive is a sufficient condition for a
full-dimensional CΓ to be maximal in general. We take a step in this direction
with our third result.

Theorem 3 (Second sufficient condition for maximality). Let Γ : Dm →
Dn and define CΓ as in (2). If Γ is non-expansive and CΓ is a full-dimensional
polyhedron, then CΓ is a maximal Q-free set.

We complement Theorem 3 by characterizing when CΓ is a polyhedron.

Theorem 4 (A characterization of polyhedrality). Let Γ : Dm → Dn be
non-expansive and define CΓ as in (2). CΓ is a polyhedron if and only if there
is a finite set I ⊆ Dm such that for every β ∈ Dm there exists a set J ⊆ I
of pairwise isometric points satisfying β ∈ cone(J). Moreover, CΓ = {(x, y) ∈
R

n × R
m : Γ (β)�x − β�y ≥ 0 ∀ β ∈ I}.

Towards a Characterization of Maximal Quadratic-Free Sets 337

Examples 2 and 3 in Section 2 show the construction of polyhedral maximal
Q-free sets using a non-expansive Γ .

Note that the aforementioned conjecture—that Γ non-expansive is a suffi-
cient condition for maximality of CΓ —would subsume Theorems 2 and 3. We
comment more on this conjecture in Remark 2 (Section 7), specifically, we discuss
the main issues of a potential direct generalization of our current proofs.

We point out one difference between maximal Q-free polyhedra and maximal
S-free polyhedra when S is a lattice. In Lovász’s characterization, the number
of facets of a maximal S-free polyhedra is upper bounded by a function of the
dimension; this is not the case for maximal Q-free polyhedra, which can have
an arbitrary number of facets (see Example 3 in Section 2). We also note that
Theorem 4 can be used to construct, starting from a set I ⊆ Dm, a function Γ
that yields a maximal Q-free polyhedron (see Example 3 for an illustration of
this).

Underlying the proofs of Theorem 2 and 3 is our final main result, which
is a general characterization of maximality of S-free sets. We turn once again
to the case when S is a lattice to motivate this result. Lovász proved that if C
is maximal S-free, then C is a polyhedron and every facet F of C contains a
lattice point zF in its relative interior. The point zF is similar to a ‘blocking
point’ used to generate maximal S-free sets when S is a mixed integer set through
lifting [10,17,20]. In order for C to be S-free in the lattice setting, each zF must
be separated from C by a facet defining inequality; the inequality defining F is
the unique facet separating zF from C. Thus, in a way zF ‘exposes’ the facet. The
notion of exposing points is considered by Muñoz and Serrano [24], where they
argue that if every inequality defining a Q-free set C has an exposing point, then
C is maximal. However, there are maximal Q-free sets defined by inequalities
that do not have exposing points; see Example 2 in Section 2. A generalization
of this is the notion of an exposing sequence.

Definition 2 (Exposing sequence). Let C ⊆ R
d be a convex set and

α�x ≤ α0, with α �= 0, a valid inequality for C. A sequence (xt)∞
t=1 in R

d

is an exposing sequence for α�x ≤ α0 if limt→∞(δt, δt
0) = (α, α0) for every

sequence ((δt, δt
0))∞

t=1 in R
d × R such that ‖δt‖ = ‖α‖, δt�x ≤ δt

0 is a valid
inequality for C, and δt�xt ≥ δt

0 for each t.

Remark 1. Muñoz and Serrano [24] define a notion of ‘exposing sequence at
infinity’. This is more restrictive than Definition 2, and moreover, it can be
shown that an exposing sequence at infinity reduces to an exposing point for Q,
because Q is a cone.

Theorem 5. Let S ⊆ R
d be closed, and let C ⊆ R

d be a closed convex full-
dimensional S-free set. C is maximal S-free if and only if there exists a set
I ⊆ R

d × R such that

C = {x ∈ R
d : α�x ≤ α0 ∀ (α, α0) ∈ I}

and each (α, α0) ∈ I has an exposing sequence (xt)∞
t=1 in S.

338 G. Muñoz et al.

Fig. 1. Construction of the maximal Q-free set in Example 1. (Color figure online)

2 Examples of Maximal Homogeneous Quadratic-Free
Sets

Example 1. Our first example illustrates a non-polyhedral Q-free set using The-
orem 2. Consider n = m = 2. We construct a function Γ using polar coordi-
nates: for θ ∈ [0, 2π], we define γ(θ) = −θ(θ − 2π)/(4π) and define Γ such that
β(θ) := (cos(θ), sin(θ)) �→ Γ (β(θ)) := (cos(γ(θ)), sin(γ(θ))). It can be shown
that Γ is strictly non-expansive: in Figure 1a we illustrate this. Therefore, The-
orem 2 implies that CΓ is maximal Q-free. Figure 1b shows a 3-dimensional slice
of this 4-dimensional CΓ . Note how the non-differentiability of γ at 0 translates
into a non-smooth region of the set.

Example 2. Suppose n = m and define Γ (β) = |β|, where the absolute value is
taken component-wise. The reverse triangle inequality ||a| − |b|| ≤ |a − b| implies
Γ is non-expansive. Set I = {e1, . . . , em, −e1, . . . , −em} ⊆ Dm where ei ∈ Z

m is
the ith standard unit vector. Each β ∈ Dm is in cone(J) generated by a linearly
independent set J ⊆ I. By definition of I and because J is linearly independent,
each β, β′ ∈ J are isometric. Theorem 4 ensures that CΓ is polyhedral. Moreover,
from Theorem 4 we see that

CΓ ={(x, y) ∈ R
n × R

m : Γ (β)�x − β�y ≥ 0 ∀ β ∈ I}
={(x, y) ∈ R

n × R
m : xi ≥ |yi| ∀ i ∈ {1, . . . , m}}.

CΓ is full-dimensional, and therefore Theorem 3 ensures maximality of CΓ .
Figure 2 illustrates a 3-dimensional slice of the 4-dimensional sets Q and CΓ

obtained for n = m = 2. The maximality of this example could not have been
proved with the results of [24]: it can be seen that CΓ ∩Q = {(x, y) ∈ R

n ×R
m :

xi = |yi| ∀ i ∈ {1, . . . , m}}, therefore every facet of CΓ intersects Q and, more

Towards a Characterization of Maximal Quadratic-Free Sets 339

Fig. 2. 3-dimensional slices of the 4-dimensional sets Q (boundary in orange) and CΓ

(red) obtained when n = m = 2 in Example 2. (Color figure online)

Fig. 3. Representation of Γ in the 6-dimensional set of Example 3. A point on the left
plot represents a β that gets mapped by Γ to the point on the right plot of the same
color. (Color figure online)

importantly, any (x, y) ∈ CΓ ∩ Q is contained in m different facets of CΓ . This
means that there is no exposing point in CΓ ∩ Q for any of the facets of CΓ .

Example 3. In Figure 3 (left) consider {±e3} (in blue), {±e1, −e2} (in red),
{e2} (in green), and {−1/

√
2 · e1 ± 1/

√
2 · e2} (in black) in D3; let I be the set of

these 8 points. We define Γ to map {±e3} to e3, {±e1, −e2} to −e2, {e2} to
−e1, and {−1/

√
2 · e1 ± 1/

√
2 · e2} to −1/

√
2 · e1 + 1/

√
2 · e2; see Figure 3 (right).

Each β ∈ D3 (left) is a conic combination of at most three points in I that are
pairwise isometric. One can extend Γ from I to a non-expansive function on D3

through a conic interpolation; see Lemma 2. Theorem 3 then implies that

CΓ = {(x, y) ∈ R
3 × R

3 : Γ (β)�x − β�y ≥ 0 ∀ β ∈ I}.

is maximal Q-free. Figure 4 shows a 3-dimensional slice of the 6-dimensional CΓ .
The construction in this example can be generalized to an arbitrarily large

set I as long as their conic combinations generate Dm. This produces a maximal
Q-free polyhedra with arbitrarily many facets.

340 G. Muñoz et al.

Fig. 4. 3-dimensional slices of the 6-dimensional sets Q (boundary in orange) and CΓ

(red) obtained using the Γ function depicted in Figure 3. We note that maximality
may not be evident in this picture since maximality is not preserved when taking
slices. (Color figure online)

3 A Proof of Theorem 5

(⇐) Assume to the contrary that C is not maximal and let K � C be a convex S-
free set. Then there exists (α, α0) ∈ I such that α�x ≤ α0 is not valid for K. Let
(xt)∞

t=0 be a sequence in S as in the hypothesis of the theorem. Since xt ∈ S and
K is S-free, there exists an inequality δt�x ≤ δt

0 such that ‖δt‖ = ‖α‖, is valid
for K, and δt�xt ≥ δt

0. The inequality δt�x ≤ δt
0 is valid for C because C � K.

By the definition of exposing sequence, we have limt→∞(δt, δt
0) = (α, α0), so

α�x ≤ α0 is valid for K. This is a contradiction.

(⇒) Let C◦ ⊆ R
d ×R be the polar of C, i.e., the set of coefficients corresponding

to valid inequalities for C:

C = {x ∈ R
d : α�x ≤ α0 ∀ (α, α0) ∈ C◦}.

The set C◦ is a closed convex cone, and C◦ is pointed because C is full-
dimensional. Since C◦ is a closed pointed cone, there is a set I ⊆ C◦ generating
the extreme rays of C◦; see, e.g., [8, Page 67]. We have C◦ = cone(I), so

C = {x ∈ R
d : α�x ≤ α0 ∀ (α, α0) ∈ I}.

Let (α, α0) ∈ I and define

Kt := {(α, α0) ∈ R
d × R : ‖(α, α0) − (α, α0)‖ < 1/t},

Ct := {x ∈ R
d : α�x ≤ α0 ∀ (α, α0) ∈ I \ Kt}.

We proceed to show that C � Ct. Assume to the contrary that C = Ct. This
implies that I ⊆ cone(I \ Kt). However, since Kt is a ball of positive radius (and
thus full-dimensional), this means that (α, α0) does not generate an extreme ray
of C◦. Hence, C � Ct.

Due to the maximality of C, there is a vector xt ∈ intr(Ct)∩S. If δt�x ≤ δt
0 is

valid for C and δt�xt ≥ δt
0, then (δt, δt

0) ∈ Kt. Thus, limt→∞(δt, δt) = (α, α0).

Towards a Characterization of Maximal Quadratic-Free Sets 341

4 A Proof of Theorem 1

To prove Theorem 1, we write Q =
⋃

β∈Dm Qβ, where

Qβ : ={(x, y) ∈ R
n × R

m : ‖x‖ − β�y ≤ 0}
={(x, y) ∈ R

n × R
m : γ�x − β�y ≤ 0 ∀ γ ∈ Dn}. (3)

Note that each Qβ is convex. The following lemma is used to prove Theorem 1.
The proof follows from Theorem 17.3 [26].

Lemma 1. Let β ∈ Dm. Every tight valid inequality for Qβ has the form (pos-
sibly after scaling by a positive number) γ�x − β�y ≤ 0 for some ‖γ‖ ≤ 1.

We remark that this lemma, while not hard to prove, does not follow immedi-
ately from (3); Lemma 1 refers to every tight valid inequality, which, in principle,
can include inequalities not explicitly considered in the description (3).

Proof (of Theorem 1). For each β ∈ Dm, there is a hyperplane separating C
and Qβ because both sets are convex and C is Q-free. For each β ∈ Dm, by
Lemma 1 we can take the corresponding inequality to be γ�x − β�y ≥ 0 for
‖γ‖ ≤ 1. From this discussion, it follows that we can define a function γ : Dm →
{x ∈ R

n : ‖x‖ ≤ 1} such that for each β, we have that γ(β)�x − β�y ≥ 0 is
valid for C and separates Qβ. Thus,

C ⊆ {(x, y) ∈ R
n × R

m : γ(β)�x − β�y ≥ 0 ∀ β ∈ Dm}. (4)

Each Qβ is separated from the set on the right-hand side of (4), implying that
it is Q-free. By the maximality of C, we have that (4) is an equality.

We now show that, since C is a maximal Q-free set, we can further restrict
γ(β) to have unit norm1. For this, consider the pair of valid inequalities for C:

γ(β)�x − β�y ≥ 0 and γ(−β)�x − (−β)�y ≥ 0

for each β ∈ Dm. Multiplying the first inequality by λ + 1, the second one by λ
with λ ≥ 0, and adding them we obtain the following valid inequality for C:

(λ(γ(β) + γ(−β)) + γ(β))�x − β�y ≥ 0.

Notice that γ(β)+γ(−β) �= 0 for each β as otherwise −(γ(−β)�x−(−β)�y) =
γ(β)�x − β�y ≥ 0 is valid for C implying that C satisfies an equation and is
not full-dimensional; this is a contradiction. So, there exists λ(β) ≥ 0 such that
‖λ(β)(γ(β) + γ(−β)) + γ(β)‖ = 1. Define Γ : Dm → Dn by

Γ (β) := λ(β)(γ(β) + γ(−β)) + γ(β).
1 Note that Lemma 1 does not directly imply that γ(β) can be assumed to have unit
norm. Moreover, one could produce a (not necessarily maximal) Q-free set with γ
that satisfies ‖γ(β)‖ < 1 for some β.

342 G. Muñoz et al.

Therefore,

C ⊆ {(x, y) ∈ R
n × R

m : Γ (β)�x − β�y ≥ 0 ∀ β ∈ Dm} = CΓ . (5)

Again using that the right-hand side in (5) is Q-free and C is maximal, we
conclude that (5) is an equality. ��

5 A Proof of Theorem 2

We know the set CΓ is Q-free. To prove maximality, we use Theorem 3.1 from
Muñoz and Serrano [24], which states that it is enough to show that every
inequality has an exposing point, that is, that for every β0 ∈ Dm there exist a
vector (x0, y0) ∈ Q such that Γ (β0)�x0 − β�

0 y0 = 0 and Γ (β)�x0 − β�y0 > 0
for all β ∈ Dm\{β0}. The point (x0, y0) is called an exposing point of Γ (β0)�x−
β�y ≥ 0. In terms of Theorem 5, an exposing point is equivalent to an exposing
sequence for Γ (β0)�x−β�

0 y ≥ 0 defined by the constant sequence ((x0, y0))∞
t=1.

Let β0 ∈ Dm and set (x0, y0) := (Γ (β0), β0). It is easy to verify that
(x0, y0) ∈ Q and Γ (β0)�x0 − β�

0 y0 = 0. Furthermore, for each β ∈ Dm \ {β0},
we have Γ (β)�x0 − β�y0 > 0 because Γ is strictly non-expansive. Thus, The-
orem 3.1 in [24] implies that CΓ is a maximal Q-free set. The existence of an
exposing point immediately implies that CΓ is full-dimensional. For example,
any strict convex combination of two exposing points is in the interior of CΓ .

6 Preliminary Results on Non-expansive Functions

In this section we collect a variety of lemmata to prove the main theorems.
Throughout this section, assume Γ : Dm → Dn is non-expansive.

Lemma 2. Let I ⊆ Dm be a finite set of pairwise isometric points. The follow-
ing properties hold true:

1. If
∑

β∈I εββ ∈ Dm, where εβ ≥ 0 for each β ∈ I, then
∑

β∈I εβΓ (β) ∈ Dn

and Γ (
∑

β∈I εββ) =
∑

β∈I εβΓ (β).
2. If

∑
β∈I εβΓ (β) ∈ Dn, where εβ ≥ 0 for each β ∈ I, then

∑
β∈I εββ ∈ Dm

and Γ (
∑

β∈I εββ) =
∑

β∈I εβΓ (β).

Proof. Set β̂ :=
∑

β∈I εββ. Using the isometry of points in I, we have

‖ ∑
β∈I εβΓ (β)‖2 =

∑
β,β′∈I εβεβ′Γ (β)�Γ (β′) =

∑
β,β′∈I εβεβ′β�β′ = ‖β̂‖2.

In the case of Property 1, we assume β̂ ∈ Dm, so the previous equation
proves that ‖ ∑

β∈I εβΓ (β)‖ = 1. In the case of Property 2, we assume
‖ ∑

β∈I εβΓ (β)‖2 = 1, so the previous equation proves that β̂ ∈ Dm. There-
fore, it remains to show that Γ (β̂) =

∑
β∈I εβΓ (β) in both cases; we prove

these simultaneously.

Towards a Characterization of Maximal Quadratic-Free Sets 343

Using the non-expansive property of Γ and the nonnegativity of εβ, we have

1 = β̂�β̂ =
∑

β∈I εββ̂�β ≤ ∑
β∈I εβΓ (β̂)�Γ (β) = Γ (β̂)�(∑

β∈I εβΓ (β)
)
.

The Cauchy-Schwarz inequality implies that 1 = Γ (β̂)�(
∑

β∈I εβΓ (β)). Since
both vectors have unit norm, we conclude that Γ (β̂) =

∑
β∈I εβΓ (β). ��

The following lemma is helpful when analyzing full-dimensional Q-free sets.

Lemma 3. Define CΓ as in (2). Assume CΓ is full-dimensional and let I ⊆
Dm be a finite set. If

∑
β∈I λββ = 0, where λβ > 0 for each β ∈ I, then∑

β∈I λβΓ (β) �= 0.

Proof. Assume to the contrary that
∑

β∈I λβΓ (β) = 0. Fix β′ ∈ I. We have
β′ = − ∑

β∈I\{β′}(λβ/λβ′)β and Γ (β′) = − ∑
β∈I\{β′}(λβ/λβ′)Γ (β). The follow-

ing inequalities are both valid for CΓ :

(
∑

β∈I\{β′}
λβ

λβ′ Γ (β))�x − (
∑

β∈I\{β′}
λβ

λβ′ β)�y ≥ 0
Γ (β′)�x − β′�y = −(

∑
β∈I\{β′}

λβ

λβ′ Γ (β))�x + (
∑

β∈I\{β′}
λβ

λβ′ β)�y ≥ 0.

Thus, CΓ satisfies an equation contradicting that it is full-dimensional. ��
The next lemma, which is known from convexity theory, will allow us to

simplify the description of CΓ in the proofs of Theorems 3 and 4. The proof
follows from Theorem 17.3 [26].

Lemma 4. Define CΓ as in (2). If CΓ is full-dimensional and γ�x − β�y ≥ 0
is valid for CΓ , then (γ, β) ∈ cone({(Γ (β), β) : β ∈ Dn}).

Our final lemma states that if an inequality Γ (β)�x−β�y ≥ 0 is implied by
other inequalities of the same form indexed by I ⊆ Dm, then β must be isometric
with β ∈ I. This will be used in the proof of Theorem 4 to help establish that
we have a covering of Dm by isometric points.

Lemma 5. Let β ∈ Dm, I ⊆ Dm be a finite set, and λβ > 0 for each β ∈ I be
such that (Γ (β), β) =

∑
β∈I λβ(Γ (β), β). Then β and β are isometric for each

β ∈ I.

Proof. Notice that

0 = Γ (β)�Γ (β) − β�β =
(∑

β∈I λβΓ (β)
)�Γ (β) − (∑

β∈I λββ
)�β

=
∑

β∈I λβ

(
Γ (β)�Γ (β) − β�β

)
,

where the first equality follow from β ∈ Dm and Γ (β) ∈ Dn. Due to the non-
expansiveness of Γ , every summand is non-negative. Since the sum is 0, every
summand must be 0. As λβ > 0, we conclude that Γ (β)�Γ (β) = β�β. ��

344 G. Muñoz et al.

7 A Proof of Theorem 3

From our discussion in Section 1.1, we know the set CΓ is always Q-free. Since we
assume CΓ is a polyhedron, it admits a finite description using facet inequalities.
By applying Lemma 4 to each facet inequality, we can assume that there is a
finite set I ⊆ Dm such that

CΓ = {(x, y) ∈ R
n × R

m : Γ (β)�x − β�y ≥ 0 ∀ β ∈ I}.

We assume that Γ (β)�x−β�y ≥ 0 defines a facet of CΓ for each β ∈ I. We will
prove that this representation of CΓ suffices to prove maximality in Theorem 3
using Theorem 5. To this end, let β ∈ I. According to Theorem 5, it suffices to
show that Γ (β)�x − β�y ≥ 0 has an exposing sequence. For t ∈ N, define

xt := Γ (β) +
√
2t+1
t Γ and yt := (1 + 1

t) β, (6)

where Γ ∈ Dn will be chosen in Claim 1 so that Γ (β)�Γ = 0. Using this
property, the inclusion β ∈ Dm and Γ , Γ (β) ∈ Dn, we see that (xt, yt) ∈ Q.

Consider a bounded sequence of inequalities γt�x − αt�y ≥ 0, where t ∈ N,
that are satisfied by points in CΓ and such that 0 ≥ γt�xt − αt�yt. By the
Farkas Lemma, there exist numbers λβ,t ≥ 0 for each β ∈ I such that

(γt, αt) =
∑

β∈I λβ,t(Γ (β), β). (7)

After normalizing (γt, αt), we may assume ‖(γt, αt)‖ = ‖(Γ (β), β)‖ for all
t. Furthermore, according to Carathéodory’s theorem we may assume that for
each t the set {(Γ (β), β) : λβ,t > 0} is linearly independent. Consequently, there
exists τ > 0 such that λβ,t ≤ τ for each β ∈ I and t ∈ N.

In order to demonstrate that ((xt, yt))∞
t=1 is an exposing sequence, we prove

limt→∞
∑

β∈I λβ,t(Γ (β), β) = (Γ (β), β).

To this end, it suffices to prove limt→∞ λβ,t = 0 for each β ∈ I \ {β}. We will
choose Γ so that this condition is met. Note that

0 ≥ γt�xt−αt�yt =
∑

β∈I λβ,t

(
(Γ (β)�Γ (β)−β�β)+

√
2t+1
t Γ �Γ (β)− 1

t β�β
)
.

Multiplying through by t, we have

0 ≥ ∑
β∈I λβ,t

(
t(Γ (β)�Γ (β) − β�β) +

√
2t + 1 Γ �Γ (β) − β�β

)
. (8)

Claim 1. Γ can be chosen such that Γ �Γ (β) = 0 and for each β ∈ I \ {β}

limt→∞ t(Γ (β)�Γ (β) − β�β) +
√

2t + 1 Γ �Γ (β) − β�β = ∞.

Proof of Claim. Regardless of Γ , if β is such that Γ (β)�Γ (β) − β�β > 0, then
the limit goes to ∞ because the term t dominates

√
2t + 1.

Towards a Characterization of Maximal Quadratic-Free Sets 345

In what remains, we need to choose Γ so that Γ (β)�Γ > 0 for all β ∈ I \{β}
satisfying Γ (β)�Γ (β) − β�β = 0. If we establish this, then the limit tends to
infinity because of the term

√
2t + 1. Define

J := {β ∈ I \ {β} : Γ (β)�Γ (β) − β�β = 0}.

We consider two cases: whether Γ (β) ∈ cone(Γ (J)) or not.
Case 1. Assume Γ (β) �∈ cone{Γ (β) : β ∈ J}. Define K := cone(Γ (J ∪ {β})).
If K is not pointed, then 0 ∈ R

n is a non-trivial conic combination of the
generators of K. By Lemma 2, 0 ∈ R

m can be obtained using the same conic
multipliers applied to vectors in J ∪ {β}. However, Lemma 3 implies that CΓ is
not full-dimensional, which is a contradiction. Hence, K is pointed.

The fact that J is finite together with Γ (β) �∈ cone{Γ (β) : β ∈ J} implies
that Γ (β) generates an extreme ray of K and there is no β ∈ J that generates
the same extreme ray. Thus, by the separating hyperplane theorem there exists
some Γ ∈ Dn such that Γ �Γ (β) = 0 < Γ �Γ (β) for all β ∈ J , as desired.
Case 2. Assume Γ (β) ∈ cone{Γ (β) : β ∈ J}. There exists a set H ⊆ J
and numbers εβ > 0 for each β ∈ H such that Γ (β) =

∑
β∈H εβΓ (β). Define

β̂ :=
∑

β∈H εββ. Using the non-expansive property of Γ , we have

‖β̂‖2 =
∑

β,β′∈H εβεβ′β�β′ ≤ ∑
β,β′∈H εβεβ′Γ (β)�Γ (β′) = ‖Γ (β)‖2 = 1.

Using the isometry with β and each β ∈ H, we then have

β̂�β =
∑

β∈H εββ�β =
∑

β∈H εβΓ (β)�Γ (β) = Γ (β)�Γ (β) = 1.

Thus, we have equality in the Cauchy-Schwarz inequality |β̂�β| ≤ ‖β̂‖‖β‖ ≤ 1,
so β̂ = β1. Thus, (Γ (β), β) =

∑
β∈H εβ(Γ (β), β) contradicting that Γ (β)�x −

β�y ≥ 0 defines a facet of CΓ .
Choose Γ ∈ Dn according to Claim 1. For each t ∈ N, we have

λβ,t

(
t(Γ (β)�Γ (β) − β�β) +

√
2t + 1 Γ �Γ (β) − β�β

)
= −λβ,t ≥ −τ.

Together with (8), this implies

0 ≥ −τ +
∑

β∈I\{β} λβ,t

(
t(Γ (β)�Γ (β)−β�β)+

√
2t + 1 Γ �Γ (β)−β�β

)
. (9)

For β ∈ I \ {β}, if λβ,t does not go to 0 as t tends to ∞, then Claim 1 implies
that the righthand side of (9) will go to ∞, which is a contradiction. Hence, (7)
tends to (Γ (β), β) as t tends to ∞. ��
Remark 2. As we mentioned in Section 1.1, we conjecture that Theorem 3 is
generalizable to a set CΓ that is not necessarily a polyhedron. With this in mind,
a natural question is how reliant on polyhedrality the proof of this section is.
Various points of the proof can be adapted to handle a non-polyhedral case: for
example, a similar expression to (7) can be obtained for an infinite I. However,
one the key steps that heavily uses finiteness is the construction of Γ using a
strict separating hyperplane in Case 1 of Claim 1. It is not clear if such Γ exists
in a general case, and the proof may need a different approach.

346 G. Muñoz et al.

8 A Proof of Theorem 4

(⇐) We show that if β ∈ Dm \ I, then Γ (β)�x − β�y ≥ 0 is implied by the
inequalities indexed by I. Let β ∈ Dm\I. By assumption, there exists a set J ⊆ I
of pairwise isometric points satisfying β ∈ cone(J). Hence, there exist λβ ≥ 0
for each β ∈ J such that β =

∑
β∈J λββ. We have Γ (β) =

∑
β∈J λβΓ (β)

by Lemma 2. This shows that (Γ (β), β) ∈ cone({(Γ (β), β) : β ∈ J}). Hence,
Γ (β)�x − β�y ≥ 0 is implied by the inequalities indexed by I.
(⇒) CΓ is a polyhedron, so by Lemma 4 there is a finite representation

CΓ =
{

(x, y) ∈ R
n × R

n : Γ (β)�x − β�y ≥ 0 ∀ β ∈ I
}

.

Let β ∈ Dm \ I. The inequality Γ (β)�x − β�y ≥ 0 is valid for CΓ , so there
exists a set J ⊆ I and positive coefficients λβ for each β ∈ J such that

(Γ (β), β) =
∑

β∈J λβ(Γ (β), β).

Lemma 5 states that β�β = Γ (β)�Γ (β) for all β ∈ J . For each β′ ∈ J , we have

Γ (β′)�Γ (β) − β′�β =
∑

β∈J λβ(Γ (β′)�Γ (β) − β′�β).

The left-hand side is 0 because β and β′ are isometric, and every summand on
the right-hand side is nonnegative because λβ > 0 and Γ (β′)�Γ (β) − β′�β ≥ 0
by the non-expansive property of Γ . Hence, Γ (β′)�Γ (β) = β′�β for all β ∈ J .
As β′ was arbitrarily chosen in J , we see that all elements of J are pairwise
isometric and β ∈ cone(J).

Acknowledgements. The second author was supported by a Natural Sciences and
Engineering Research Council of Canada (NSERC) Discovery Grant [RGPIN-2021-
02475]. The authors would like to thank the three anonymous reviewers for their valu-
able feedback.

References

1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic
sets. In: Goemans, M., Correa, J. (eds.) IPCO 2013. LNCS, vol. 7801, pp. 37–48.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36694-9 4

2. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Cutting planes from
two rows of the simplex tableau. In: Proceedings of Integer Programming and
Combinatorial Optimization (IPCO), pp. 1–15 (2007)

3. Averkov, G.: A proof of Lovász’s theorem on maximal lattice-free sets. Contrib.
Algebra Geom. (2013)

4. Averkov, G., Basu, A., Paat, J.: Approximation of corner polyhedra with families
of intersection cuts. SIAM J. Optim. 28(1), 904–929 (2018)

5. Averkov, G.: On maximal s-free sets and the Helly number for the family of s-convex
sets. SIAM J. Discret. Math. 27(3), 1610–1624 (2013)

https://doi.org/10.1007/978-3-642-36694-9_4

Towards a Characterization of Maximal Quadratic-Free Sets 347

6. Baes, M., Oertel, T., Weismantel, R.: Duality for mixed-integer convex minimiza-
tion. Math. Program. 158, 547–564 (2016)

7. Balas, E.: Intersection cuts - a new type of cutting planes for integer programming.
Oper. Res. (1971)

8. Barvinok, A.: A course in convexity. Am. Math. Soc. (2002)
9. Basu, A., Conforti, M., Cornuéjols, G., Weismantel, R., Weltge, S.: Optimality

certificates for convex minimization and Helly numbers. Oper. Res. Lett. 45(6),
671–674 (2017)

10. Basu, A., Dey, S., Paat, J.: Nonunique lifting of integer variables in minimal
inequalities. SIAM J. Discret. Math. (2019)

11. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex
sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010)

12. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an
infinite relaxation of integer programs. SIAM J. Discret. Math. 24(1), 158–168
(2010)

13. Bienstock, D., Chen, C., Muñoz, G.: Intersection cuts for polynomial optimiza-
tion. In: Lodi, A., Nagarajan, V. (eds.) IPCO 2019. LNCS, vol. 11480, pp. 72–87.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17953-3 6

14. Bienstock, D., Chen, C., Muñoz, G.: Outer-product-free sets for polynomial opti-
mization and oracle-based cuts. Math. Program. 183, 105–148 (2020)

15. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of
intersection cuts for QCQPs. Math. Program. 1–38 (2022)

16. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-
generating functions and S-free sets. Math. Oper. Res. (2014)

17. Conforti, M., Cornuéjols, G., Zambelli, G.: A geometric perspective on lifting.
Oper. Res. 59(3), 569–577 (2011)

18. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11008-0

19. Conforti, M., Summa, M.D.: Maximal s-free convex sets and the Helly number.
SIAM J. Discret. Math. 30(4), 2206–2216 (2016)

20. Dey, S., Wolsey, L.: Two row mixed-integer cuts via lifting. Math. Program. 124,
143–174 (2010)

21. Lovász, L.: Geometry of numbers and integer programming. In: Iri, M., Tanabe,
K. (eds.) Mathematical Programming: Recent Developments and Applications, pp.
177–201. Kluwer Academic Publishers, Amsterdam (1989)

22. Modaresi, S., Kılınç, M., Vielma, J.: Intersection cuts for nonlinear integer pro-
gramming convexification techniques for structured sets. Math. Program. (2016)

23. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Proceedings of the Inter-
national Conference on Integer Programming and Combinatorial Optimization, pp.
307–321 (2020)

24. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. Math. Program. 192, 229–
270 (2022)

25. Paat, J., Schlöter, M., Speakman, E.: Constructing lattice-free gradient polyhedra
in dimension two. Math. Program. 192(1), 293–317 (2022)

26. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
27. Tuy, H.: Concave minimization under linear constraints with special structure.

Dokl. Akad. Nauk SSSR 159, 32–35 (1964)

https://doi.org/10.1007/978-3-030-17953-3_6
https://doi.org/10.1007/978-3-319-11008-0

Compressing Branch-and-Bound Trees

Gonzalo Muñoz1, Joseph Paat2(B), and Álinson S. Xavier3

1 Institute of Engineering Sciences, Universidad de O’Higgins, Rancagua, Chile
gonzalo.munoz@uoh.cl

2 Sauder School of Business, University of British Columbia, Vancouver, BC, Canada
joseph.paat@sauder.ubc.ca

3 Energy Systems and Infrastructure Analysis Division, Argonne National
Laboratory, Lemont, IL, USA

axavier@anl.gov

Abstract. A branch-and-bound (BB) tree certifies a dual bound on the
value of an integer program. In this work, we introduce the tree com-
pression problem (TCP): Given a BB tree T that certifies a dual bound,
can we obtain a smaller tree with the same (or stronger) bound by either
(1) applying a different disjunction at some node in T or (2) removing
leaves from T? We believe such post-hoc analysis of BB trees may assist
in identifying helpful general disjunctions in BB algorithms. We initi-
ate our study by considering computational complexity and limitations
of TCP. We then conduct experiments to evaluate the compressibility of
realistic branch-and-bound trees generated by commonly-used branching
strategies, using both an exact and a heuristic compression algorithm.

1 Introduction

Consider an integer linear programming (IP) problem

min{c�x : x ∈ P ∩ Z
n}, (1)

where c ∈ Q
n and P := {x ∈ R

n : Ax ≤ b} for A ∈ Q
m×n and b ∈ Q

m. Primal
bounds on (1) can be certified by integer feasible solutions z ∈ P ∩ Z

n. Dual
bounds on (1), on the other hand, are typically certified using branch-and-
bound (BB) trees. A BB tree is a graph-theoretical tree T where each node v
corresponds to a polyhedron Q(v), with the root corresponding to P. Moreover,
v is either a leaf, or it has exactly two children corresponding to the polyhedra
defined by applying a disjunction (π�x ≤ π0)∨(π�x ≥ π0+1) to Q(v), where we
call π ∈ Z

n the branching direction and π0 ∈ Z. If we solve the corresponding
linear programs over all leaves of T , then the smallest value obtained over all
leaves yields a dual bound for (1). See Sect. 2 for a formal definition of BB trees
and the dual bound.

In order to generate a BB tree, one must identify a strategy for selecting a
leaf of the tree and a strategy for selecting a disjunction to apply. See [22] for a
survey on different strategies. In practical implementations of the BB method,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 348–362, 2023.
https://doi.org/10.1007/978-3-031-32726-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_25&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_25

Compressing Branch-and-Bound Trees 349

the only allowed directions are typically {e1, . . . , en}, in which case we say the
algorithm uses variable disjunctions. However, many results explore the benefit
of additional directions: various subsets of {−1, 0, 1}n are explored in [25,27,30];
directions derived from mixed integer Gomory cuts are explored in [9,19]; direc-
tions derived using basis reduction techniques are explored in [1,26]; Mahajan
and Ralphs [23] solve a subproblem to find a disjunction that closes the duality
gap by a certain amount. The largest set of directions is the set Z

n, in which
case the algorithm uses general disjunctions.

Although a larger set of allowable directions provides more flexibility, it has
been repeatedly verified that searching through this set during the execution of
the algorithm can be computationally expensive [15,23]. The work in this paper
is motivated by a different approach to identify meaningful directions. Given a
tree T produced using some set of allowable directions D ⊆ Z

n, we ask if T can be
“compressed” into a smaller tree with the same (or stronger) dual bound by using
a potentially larger set of directions D′ ⊇ D, and a limited set of transformations.
This post-hoc compression analysis is more restricted and allows one to use a
global view of the tree to identify potentially meaningful branching directions,
as opposed to the dynamic approach. We believe this compression question may
help produce small trees to be used as better certificates [7] or as training data
for learn-to-branch strategies.

Related Work. To the best of our knowledge, this is the first piece of work to
study the tree compression problem. A related question is the minimum size of a
BB tree certifying optimality or infeasibility of (1); we use some of these results in
our own work. Chvátal [8] and Jeroslow [18] gives examples of IPs that require
a BB tree whose size is exponential in the number of variables n when only
variable directions D = {e1, . . . , en} are used to generate disjunctions. There
are examples where an exponential lower bound in n cannot be avoided even
with general disjunctions [10,11]. Basu et al. [3] consider the set Ds of directions
whose support is at most s; they prove that if s ∈ O(1), then a BB tree proving
infeasibility of Jeroslow’s instance has exponential in n many nodes [3]. For an
interesting perspective on provable upper bounds, Dey et al. [12] relate the size
of BB trees generated using full strong branching and variable disjunctions to
the additive integrality gap for certain classes of instances like vertex cover.

For complexity results, Pfetsch et al. [16] show that is it NP-hard to find
the smallest BB tree generated using only variable disjunctions. Mahajan and
Ralphs [24] show that it is NP-complete to decide whether there is a general
disjunction proving infeasibility at the root node. They also provide a MIP that
can be solved at a node in a BB tree to yield a disjunction maximizing the dual
bound improvement.

The tree compression problem is a post-hoc analysis of a BB tree. A similar
kind of analysis is done in backdoor branching, where one explores a tree T
to find small paths from the root to the optimal solution with the ultimate
aim to identify good branching decisions to make next time the algorithm is
run on a similar IP [14,20]. The major difference between backdoor branching
and the compression question is that the former only considers finding a path

350 G. Muñoz et al.

existing in the tree while the latter considers how to modify a tree to create short
paths. Another form of post-hoc analysis is tree balancing, where the goal is to
transform a tree T proving integer infeasibility into a new tree with the same
dual bound whose size is polynomial in |T | and whose depth is polylogarithmic
in |T |; see, e.g., [4] for a discussion on balancing and stabbing planes. A major
difference between the balancing question and the compression question is that
the former is allowed to grow the tree along branches while the latter is not.

Our Contributions. We introduce the tree compression problem in Sect. 2. In
Theorem 1, we show that the problem is NP-Complete when D = Z

n and c = 0.
We then demonstrate in Theorem 2 that tree compression does not always give
the smallest BB tree meeting a certain dual bound. In fact, we give an example
of a BB tree T of size |T | ≥ 2n+1 − 1 that cannot be compressed to a BB tree
with fewer than (2n − 1)/n nodes, but there is a different BB tree with the same
root and dual bound with only 7 nodes. These results appear in Sect. 3.

We next provide extensive computational results on the compression problem.
We look at BB trees from MIPLIB 3.0 [6] instances generated using full strong
branching, the state-of-the-art variable branching strategy with respect to tree
size, and reliability branching with plunging, often considered the state-of-the-art
branching strategy with respect to running time. We first compress these trees
using a computationally-expensive exact algorithm based on a MIP formulation
by Mahajan and Ralphs [23,24]. We then evaluate how much of this compression
is achievable in a short amount of time, by applying a heuristic algorithm based
on the iterative procedure introduced by Owen and Mehrota [27]. Overall, we
see that many MIPLIB 3.0 trees can be significantly compressed. Moreover, we
find that the heuristic procedure achieves good compression. These algorithms
and results are described in Sects. 4 and 5, respectively.

2 The Tree Compression Problem (TCP)

We define a branch-and-bound (BB) tree as a graph-theoretical rooted tree
where each node v corresponds to a polyhedron Q(v), and the root node r
corresponds to Q(r) = P. Furthermore, each node v is either a leaf, or it has
exactly two children corresponding to the polyhedra

Q(v) ∩ {x ∈ R
n : π�x ≤ π0} and Q(v) ∩ {x ∈ R

n : π�x ≥ π0 + 1}, (2)

where π ∈ Z
n is called the branching direction and π0 ∈ Z. The dual bound

relative to c ∈ Q
n provided by a BB tree T is

d(T, c) := minv∈L(T) min{c�x : x ∈ Q(v)},

where L(T) is the set of leaves of T . Define d(T, c) = ∞ if Q(v) = ∅ for each
v ∈ L(T), and d(T, c) = −∞ if x �→ c�x is unbounded from below over Q(v) for
some v ∈ L(T). For simplicity, our definition allows BB trees that have multiple
nodes corresponding to the same polyhedron, although such trees would typically
not be generated by well-designed BB algorithms. We also do not require the tree

Compressing Branch-and-Bound Trees 351

to certify infeasibility or optimality of (1), to allow trees generated by partial
(e.g. time- or node-limited) runs of the BB method.

Let T be a BB tree and v ∈ T be a non-leaf node. Our notion of compression
is based on two operations on T . For (π, π0) ∈ Z

n × Z, let

replace(T, v, π, π0)

denote the BB tree obtained from T by replacing all descendants of v with the two
new children defined by applying the disjunction (π�x ≤ π0) ∨ (π�x ≥ π0 + 1)
to Q(v), i.e., the two new children are the polyhedra in (2). We use

drop(T, v)

to denote the BB tree obtained from T by removing all descendants of v.
We refer to the number of nodes in T as the size of T and denote it by |T |.

We say that a BB tree T ′ is a compression of T if there exists a sequence of
BB trees T1 = T, T2, . . . , Tk = T ′ such that for each i ∈ {2, . . . , k} we have that

1. Either Ti = drop(Ti−1, v) for some v ∈ Ti−1, or Ti = replace(Ti−1, v, π, π0)
for some v ∈ Ti−1 and (π, π0) ∈ Z

n × Z.
2. |Ti| < |Ti−1| and d(Ti, c) ≥ d(Ti−1, c).

Note that the definition of compression depends on the dual bound of T . Also,
observe that the replacement operation only acts on non-leaf nodes and thus
only produces children of non-leaf nodes. Consequently, leaf nodes of a BB tree
will either remain leaf nodes or disappear from the tree during the compres-
sion process. Given that the replacement operation creates two new nodes that
are leaves themselves, the previous discussion implies that any new (potentially
dense) disjunctions introduced in the compression process appear near the bot-
tom of the tree. See [5,15,28] for comments on potential drawbacks of dense
inequalities.

As an example of these definitions, consider P := [0, 1/5]2 and the following
BB tree T (disjunctions are indicated on edges and polyhedra in the nodes):

P

{0} × [0, 1/5] ∅

{0} ∅ ∅ ∅

x1 ≤ 0 x1 ≥ 1

x2 ≤ 0 x2 ≥ 1 x1 ≤ 0 x1 ≥ 1

Let c = (−1, −1); we have d(T, c) = 0. We can compress T with the drop
operation at the right child v2 of the root r; see figure (a). We can compress T
with the replace operation at the root with π = −c and π0 = 0; see figure (b).
It can be checked that d(drop(T, v2), c) = d(replace(T, r, π, 0), c) = 0.

352 G. Muñoz et al.

P

{0} × [0, 1/5] ∅

{0} ∅

x1 ≤ 0 x1 ≥ 1

x2 ≤ 0 x2 ≥ 1

P

{0} ∅
x1 + x2 ≤ 0 x1 + x2 ≥ 1

(a) The BB tree drop(T, v2) (b) The BB tree replace(T, r, π, 0)

The example illustrates that strict dual improvement is not necessary in the
compression process. It is possible for the dual bound to improve during the
compression process; e.g., use the same example except replace P by the trian-
gle with vertices (−1/2, −1/2), (−1/2, 1), (1, −1/2). For an example of an invalid
compression operation, one can replace 1/5 in the original example by 1/2; here
replace(T, r, π, 0) would no longer be a compression because we deteriorate the
lower bound.

The tree compression problem (TCP) with respect to a set of allowable
directions D is defined as follows: Given a BB tree T and an objective vector
c ∈ Q

n, is there a compression of T where the replacement operation only uses
branching directions in D? There is also an optimization version of this question
in which we try to compress T as much as possible. Section 3 considers this
decision problem (showing this is NP-Complete) and the optimization problem
(showing limitations of compression). Our computational results in Sects. 4 and
5 consider the optimization problem. As seen in the previous example, the choice
of D influences the compression question; the BB tree in figure (a) is the best
compression if D only contains unit vectors while the BB tree in figure (b) is the
best compression if D contains the all-ones vector.

3 Complexity Results and Lower Bounds

We show (TCP) is NP-Complete when D = Z
n and c = 0. Our proof uses a

reduction from the NP-Complete problem of disjunctive infeasibility (DI) [24,
Proposition 3.2]: Given A ∈ Q

m×n and b ∈ Q
n defining a polyhedron S =

{x ∈ R
n : Ax ≤ b}, decide if there exists π ∈ Z

n \ {0} and π0 ∈ Z such that
S ⊆ {x ∈ R

n : π0 < π�x < π0 + 1}. Keep in mind that the input to (DI) is
a single polyhedron whereas the input to (TCP) is an entire BB tree. For this
reason, if D is a smaller set in the (TCP) definition, e.g., vectors of bounded
support, then (TCP) can be solved in polynomial time by solving a series of
fixed dimension MIPs, one at each node of T ; see [24, §2.1].

Theorem 1. (TCP) is NP-Complete when D = Z
n and c = 0.

Proof. We briefly argue (TCP) is in NP when D = Z
n and c = 0. Let T be a BB

tree that can be compressed. Either d(T,0) = 0, which happens if Q(v) = ∅ for
some v ∈ L(T), or d(T,0) = ∞, which happens if Q(v) = ∅ for all v ∈ L(T). If
a non-leaf node v of T satisfies Q(v) = ∅, then T ′ = drop(T, v) is a compression
of T whose size is polynomial in the size of T . Suppose d(T,0) = ∞. Since T

Compressing Branch-and-Bound Trees 353

can be compressed, there exists v ∈ T and (π, π0) ∈ Z
n × Z such that applying

the disjunction (π�x ≤ π0) ∨ (π�x ≥ π0 + 1) to Q(v) will yield two empty
polyhedra. Mahajan and Ralphs demonstrate that finding such a disjunction is
in NP [24, §3]. In particular, there is a compression T ′ = replace(T, v, π, π0) of
T whose size is polynomial in the size of T . This shows that (TCP) is in NP.

Consider an instance (A,b) of (DI). Let x∗ ∈ S \ Z
n; this can be found in

polynomial time unless S is empty (in which case the answer to (DI) is ‘yes’)
or a single integer vector (in which case the answer is ‘no’). Without loss of
generality, x∗

1 ∈ Z. We lift S into R
n+1 to create an instance of (TCP). We write

a point in R
n+1 as (x, y) ∈ R

n × R. Define

P := conv ({(x∗, 0), (x∗, 1)} ∪ {(x, 1/2) : x ∈ S})

We build a BB tree T with root node r and Q(r) = P. Branch on the disjunction
(y ≤ 0) ∨ (y ≥ 1) at r to obtain v1 and v2:

Q(v1) := {(x, y) ∈ P : y ≤ 0} = {(x∗, 0)}
Q(v2) := {(x, y) ∈ P : y ≥ 1} = {(x∗, 1)}.

Branch on v1 and v2 using (x1 ≤ �x∗
1�) ∨ (x1 ≥ �x∗

1�) to obtain v3, v4, v5, v6:

Q(v3) := {(x, y) ∈ P : y ≤ 0 and x1 ≤ �x∗
1�} = ∅

Q(v4) := {(x, y) ∈ P : y ≤ 0 and x1 ≥ �x∗
1�} = ∅

Q(v5) := {(x, y) ∈ P : y ≥ 1 and x1 ≤ �x∗
1�} = ∅

Q(v6) := {(x, y) ∈ P : y ≥ 1 and x1 ≥ �x∗
1�} = ∅.

T has 7 nodes, and the four leaves v3, v4, v5, v6 have corresponding polyhedra
that are empty. The encoding size of T is polynomial in the encoding size of S.

If (DI) has a ‘yes’ answer with certificate π ∈ Z
n \ {0} and π0 ∈ Z, then

P ⊆ S × R ⊆ {(x, y) ∈ R
n × R : π0 < π�x < π0 + 1}.

Hence, the answer to (TCP) is ‘yes’ because replace(T, r, (π, 0), π0) is a com-
pression of T . Assume (TCP) has a ‘yes’ answer. The drop operation can only
be applied to r, v1 or v2, and doing so to any of these does not compress the
tree because the dual bound decreases. So, the ‘yes’ answer must come from the
replace operation. In order to decrease the size of the tree, which is required
for compression, the replace operation must be applied at r. Therefore, there is
(π, πn+1) ∈ Z

n × Z and π0 ∈ Z such that π0 < π�x + πn+1y < π0 + 1 for all
(x, y) ∈ P. Note that π = 0 and πn+1 = 0 as otherwise (x∗, 0) or (x∗, 1) violates
one of these inequalities. The tuple (π, π0) provides a ‘yes’ answer to (DI). ��

Note that (TCP) can be answered in polynomial time if the set D of direc-
tions allowed in the replacement operation is polynomial in the size of T , e.g.,
D = {e1, . . . , en}. Indeed, one can try the drop operation at each node and the
replace operation for each node-direction pair (v,d); this requires polynomial
time because the size of D is polynomial in the size of T .

The next theorem shows that tree compression does not always yield the
smallest tree for a given dual bound.

354 G. Muñoz et al.

Theorem 2. For n ≥ 2, there exists a polytope P ⊆ R
n+1 and a BB tree T with

root polyhedron P such that

1. |T | ≥ 2n+1 − 1 and d(T,0) = ∞.
2. T cannot be compressed to a tree with fewer than (2n − 1)/n nodes.
3. There exists a tree T ′ with root P, |T ′| = 7 and d(T,0) = d(T ′,0).

Proof. Let P ⊆ [0, 1]n be a polytope satisfying P ∩ Z
n = ∅ and if a tree T with

root P satisfies d(T ,0) = ∞, then |T | ≥ 2n+1 − 1. One such P comes from [11,
Proposition 3]. Let T be a BB tree of minimal size with root P and d(T ,0) = ∞.
Minimality implies that only the leaves correspond to empty polyhedra. There
exist (|T | − 1)/2 ≥ 2n − 1 non-empty non-leaf nodes in T . For each non-empty
node v ∈ T , we have Q(v) \Zn = Q(v) = ∅. So, there exists i∗ ∈ {1, . . . , n} such
that at least (2n − 1)/n nodes in T whose corresponding polyhedron contains a
point with i∗th component in (0, 1). We denote the set of these nodes as

N := {v ∈ T : ∃ x ∈ Q(v) with xi∗ ∈ (0, 1)}.

For each v ∈ N , arbitrarily choose a point in Q(v) whose i∗th component is in
(0, 1) and call this point x(v). Define

P := conv({(x(v), t) : v ∈ N and t ∈ {0, 1}} ∪ (P × {1/2})).

Note that P ∩ Z
n+1 = ∅. Create a BB tree T ′ with root polyhedron P and

d(T ′,0) = ∞ by first branching on (xn+1 ≤ 0) ∨ (xn+1 ≥ 1); the polyhedra
of the resulting children are conv{(x(v), j) : v ∈ N} for j ∈ {0, 1}. Given that
x(v)i∗ ∈ (0, 1) for each v ∈ N , we can branch on each conv{(x(v), j) : v ∈ N}
using (xi∗ ≤ 0) ∨ (xi∗ ≥ 1) to obtain all empty children nodes. This proves 3.

We define T in the theorem by lifting T . More precisely, extend every disjunc-
tion (π�x ≤ π0) ∨ (π�x ≥ π0 + 1) in T to a disjunction (π�x ≤ π0) ∨ (π�x ≥
π0 +1), where π := (π, 0). Thus, |T | = |T | ≥ 2n+1 −1. Furthermore, P ⊆ P ×R,
so d(T,0) = ∞ because d(T ,0) = ∞. Thus, T satisfies 1.

It remains to prove 2. Every point in P is of the form (x′, α), where x′ in
P and α ∈ [0, 1]. Assume to the contrary that T can be compressed via the
drop operation. The corresponding node in T can also be dropped. However,
this contradicts the minimality of T . We claim that if v ∈ T corresponds to a
node in v ∈ N , then T cannot be compressed at v using the replace operation.
Suppose there exists v ∈ T corresponding to a node v ∈ N and a disjunction
(π�x + πn+1xn+1 ≤ π0) ∨ (π�x + πn+1xn+1 ≥ π0 + 1) that we can use to
compress T at v via the replace operation, i.e., Q(v) ⊆ {(x, α) ∈ R

n × R : π0 <
π�x + πn+1α < π0 + 1}. If πn+1 = 0, then this disjunction can be projected
to T to compress it, contradicting the minimality of T . So, πn+1 = 0. For each
α ∈ [0, 1] the point (x(v), α) satisfies π0 − π�x(v) < πn+1α < π0 − π�x(v) + 1.
But this cannot be satisfied if we plug in α = 0 and α = 1 because πn+1 ∈ Z.
Thus, the replace operation can only be applied to nodes in T that do not
correspond to nodes in N . We have |N | ≥ (2n − 1)/n, so T cannot be compressed
to fewer than (2n − 1)/n nodes, which proves 2. ��

Compressing Branch-and-Bound Trees 355

4 Compression Algorithms
In this section we introduce two compression algorithms and later evaluate their
performance. Let T be a BB tree and c ∈ Q

n. For both algorithms, the general
approach we follow is: (1) Traverse T starting from the root. We may skip leaves,
since these are not compressible; (2) If the minimum of x �→ c�x over Q(v) is
greater than or equal to d(T, c) then we apply drop(T, v); (3) Otherwise, we
search for (π, π0) ∈ Z

n ×Z such that T ′ = replace(T, v, π, π0) satisfies d(T, c) ≥
d(T ′, c). In the following, we provide two methods for Step (3), which is the
bottleneck of the procedure.

4.1 An Exact Method
A BB tree replace(T, v, π, π0) is a compression of T if and only if min{c�x : x ∈
Q(v), π�x ≤ π0} ≥ d(T, c) and min{c�x : x ∈ Q(v), π�x ≥ π0 +1} ≥ d(T, c).
Mahajan and Ralphs [23] proposed MIP formulation that can be used to find such
(π, π0); the only difference is that they used it for finding a general disjunction
that could provide the best possible dual improvement when branching, but we
can easily adapt it to our compression task. The resulting model we use is

max
δ,p,q,π,
π0,sL,sR

⎧
⎨

⎩
δ :

A�p − sLc − π = 0, p�b − d(T, c)sL − π0 ≥ δ

A�q − sRc + π = 0, q�b − d(T, c)sR − π0 ≥ δ − 1
p,q ≥ 0, sL, sR ≥ 0, π ∈ Z

n, π0 ∈ Z

⎫
⎬

⎭
(3)

Any feasible solution with δ > 0 produces a tuple (π, π0) that we can use in
the replace operation. Conversely, if no such δ exists, neither does a suitable
disjunction; see [23]. Model (3) can be costly to solve in practice. However, if
given enough time, one can be certain that it will yield an algorithm capable of
compressing T as much as possible.

4.2 A Heuristic Method
Many heuristic methods for finding good branching directions have been pro-
posed in the literature (e.g. [9,16,19,27]) and can be readily used for tree com-
pression. Here, we adapt a procedure in Owen and Mehrota [27] that iteratively
improves variable directions by changing one coefficient at a time.

To outline the method, assume we have solved the LP relaxation at a node
v. The first step is to find the best variable direction π ∈ {e1, . . . , en}. Suppose
π�x ≤ π0 is the side of the disjunction with the smallest optimal value. We
add this constraint to the node LP and re-solve it to obtain a fractional solution
x. For each fractional component xi, we then evaluate the branching directions
π + ei and π − ei. If one of these directions yields a better dual bound than
π, then we replace π by it and repeat the procedure until π can no longer be
improved. At the end, if the bound provided by π is better than the tree bound,
we apply replace(T, v, π, π0).

Unlike the previous exact method, this iterative method provides no guar-
antees that a suitable disjunction will be found, even if it exists, and therefore
may not achieve the best compression. However, it is typically much faster.

356 G. Muñoz et al.

5 Computational Experiments

In this section, we attempt to compress MIPLIB 3.0 trees using the methods
described in the previous section. Our main goal is to evaluate, without taking
running time into consideration, how compressible are realistic BB trees gener-
ated by two commonly-used branching strategies — full strong branching (FSB)
and reliability branching with plunging (RB). Our secondary goal is to estimate
how much of this compression can be achieved in shorter and more practical
running times.

5.1 Methodology

For each branching strategy and for each MIPLIB 3.0 instance, we started by
generating a BB tree using a custom textbook implementation of the BB method.
We chose MIPLIB 3.0, instead of larger benchmark sets, so that we could com-
pute large FSB trees for all instances and could obtain accurate results for the
exact compression method. We used a custom implementation of the BB method,
instead of exporting the tree generated by a commercial MIP solver, so that
we could easily understand how exactly the tree is generated and control every
aspect of the algorithm. The implementation is written in Julia 1.8 and has been
made publicly available as part of the open-source MIPLearn software package
[29]. It relies on an external LP solver, accessed through JuMP [13] and Math-
OptInterface [21], to solve the LP relaxation of each BB node and to evaluate
strong branching decisions. In our experiments, we used Gurobi 9.5 [17] with
default settings as the LP solver. When generating the trees, we provided the
optimal value to the BB method and imposed a 10,000-node limit. No time limit
was imposed, and no presolve or cutting planes were applied.

After the trees were generated, they were then compressed by the exact and
the heuristic methods described in Sect. 4. Both methods were implemented in
Python 3.10 and gurobipy. The nodes were traversed using depth-first search.
For the exact method, we imposed a 24-h limit on the entire procedure and a 20-
min limit on each individual MIP. For the heuristic method, we imposed a 15-min
limit on the entire procedure and no time limits on individual nodes. All MIPs
and LPs were solved with Gurobi 9.5 with default settings. The experiments
were run on a dedicated desktop computer (AMD Ryzen 9 7950X, 4.5/5.7 GHz,
16 cores, 32 threads, 128 GB DDR5), and 32 trees were compressed in parallel
at a time; each compression was single-threaded.

5.2 Full Strong Branching Results

Full strong branching (FSB) is a strategy which solves, at each node of the BB
tree, two LPs for each fractional variable, then picks as the branching variable the
one that presents the best overall improvement to dual bound [2]. FSB is often
paired, as we do in our experiments, with best-bound node selection rule, which
always picks, as the BB node to process next, an unexplored leaf node that has
minimal optimal value. Although computationally expensive, FSB is typically

Compressing Branch-and-Bound Trees 357

Fig. 1. Compressibility of FSB trees (exact method, 24-h limit).

considered the state-of-the-art branching strategy in terms of node count, so one
would naturally expect such trees to be hard to compress.

Figure 1 shows the exact compressibility of FSB trees under different restric-
tions on the support size of the disjunction. Specifically, supp:inf corresponds
to the exact method based on Model (3), whereas supp:1 and supp:2 use the
same model, but impose the additional constraint that at most 1 or 2 coefficients
of π, respectively, can be non-zero. Method drop is the method in which we are
only allowed to drop nodes, not replace them. In the chart, the compressibility of
different methods is superimposed, with the weaker methods in the foreground
and the stronger methods in the background. The y-axis indicates how small is
the resulting tree, with larger values indicating higher compression. For example,
on instance vmp1, methods drop, supp:2 and supp:inf were able to reduce the
tree by 22.2%, 67.1% and 80.9%, respectively. Method supp:1 does not appear
in the chart because it was not able to improve upon drop. The line shows the
average compression obtained by the strongest method across all instances.

Our first insight from Fig. 1 is that many FSB trees can be significantly
compressed, despite the notorious tree-size efficiency of this branching rule. On
average, supp:inf was able to reduce tree size by 35.2%, with the ratio exceeding
50% for 20 (out of 59) instances. We also note, from the figure, that a large sup-
port size is required for obtaining the best results, although a restricted support
size still provides significant compression. On average, supp:2 compressed the
trees by 24.0%, which is still considerable, although being well below supp:inf.
Method supp:1, on the other hand, never outperformed drop. This was expected,
as it can be easily shown that trees generated by FSB (with best-bound) on a
particular set of candidate branching directions can never be compressed (beyond
dropping nodes) based on the same set of directions. Also as a direct consequence
of using the best-bound node selection rule, we observed that, for the vast major-
ity of instances, few nodes could be dropped. On average, drop was only able

358 G. Muñoz et al.

Fig. 2. Compressibility of FSB trees (heuristic method, 15-min limit).

to compress the trees by 12.1% on average, with the compression being near
zero for 50 instances. Finally, despite the positive average compression results
for supp:inf, we do note that a large number of trees could not be meaningfully
compressed. Specifically, supp:inf presented a compression ratio below 5% for
19 instances, which may indicate that trees for certain classes of problems are
hard to compress. Furthermore, supp:inf took an exceedingly long average time
of 47,153 s, with 25 instances hitting the 24-h limit.

We now focus on more practical tree compression algorithms. Figure 2 shows
the performance of the heuristic method, outlined in Subsect. 4.2, on the same
BB trees, with a 15-min limit. We see that the heuristic method is able to obtain
compression ratios comparable to supp:inf in a reasonable amount of time. On
average, heuristic took 493 s to run (95x faster than the exact method), and
reduced tree size by 27.7% (7.5% points lower). We conclude that FSB trees
are compressible not only in a theoretical sense, but also in practice. We also
note that heuristic outperformed supp:inf for 12 instances, sometimes by
a significant margin. Notable examples include instances bell5, bell3a, vpm2,
p0282 and mas74, where the margin exceeded 15% points. This is possible due
to the time limits imposed on supp:inf.

5.3 Reliability Branching with Plunging

Reliability branching (RB) is a strategy that attempts to accelerate FSB by
skipping strong branching computations for variables that already have reliable
pseudocosts [2]. In our experiments, the pseudocost of a variable is considered
reliable if it is based on 10 or more strong branching evaluations. RB has been
shown to perform well on a variety of real-world instances and it is often con-
sidered the state-of-the-art branching rule in terms of running time. Plunging is
a modification to node selection which attempts to exploit the fact that sequen-
tially solving two LPs that are similar can done much faster than solving two LPs

Compressing Branch-and-Bound Trees 359

Fig. 3. Compressibility of RB trees (exact method, 24-h limit).

that are significantly different. When plunging is enabled, the BB method picks,
as the node to explore next, one of the children of the most-recently explored
node, falling back to best-bound node selection when both children are pruned.
Our motivation for analyzing RB trees with plunging is that we expect such
trees to resemble the ones generated by typical state-of-the-art MIP solvers.

Figure 3 shows the exact compressibility of RB trees, under different sup-
port size restrictions. The first notable fact is that RB trees are, as expected,
much more compressible than FSB trees. On average, drop, supp:1, supp:2
and supp:inf were able to reduce tree size by 51.9%, 57.3%, 61.5% and 66.3%,
respectively. Method supp:inf presented compression ratio above 50% for 42
(out of 59) instances, and above 80% for 34 instances. The strong performance
of drop can be directly attributed to plunging. While the technique may be
helpful when solving MIPs, we observed that it leads to the exploration of areas
in the tree that do not contribute to its overall dual bound, and which can be
dropped in a post-hoc analysis. As with previous experiments, the best com-
pression results were obtained with larger support sizes, although, in this case,
the benefits of unbounded support were not as large as before, in relative terms.
Method supp:1, unlike in previous experiments, provided significant compres-
sion in a number of instances (e.g. gen, l152lav, qnet1 o), and a modest aver-
age improvement over drop. We attribute this to suboptimal variable branching
decisions made by RB, which is also expected. As in the previous case, we do
note that supp:inf failed to meaningfully compress a few instances, and it was
overall prohibitively slow, requiring 45,256 s on average.

Finally, Fig. 4 shows the performance of the heuristic method on RB trees.
Similarly to the results in the previous section, the heuristic method presented
very strong performance, obtaining compression ratios that approached or even
exceed those of the exact method, in much smaller running times. Method
heuristic took an average of 335 s (134x faster) and obtained an average com-

360 G. Muñoz et al.

Fig. 4. Compressibility of RB trees (heuristic method, 15-min limit).

pression ratio of 63.7% (2.5% points lower). We conclude that BB trees generated
by node and variable selection rules that focus on MIP solution time tend to be
highly compressible, in both a theoretical and a practical sense.

6 Future Work

We have formally introduced the tree compression problem, and we demon-
strated through experiments how much trees can be compressed. There are many
open questions that we believe warrant future research. First, is there a family
of problems for which BB trees generated, say using strong branching, can be
provably compressed? Second, for a tree generated using branching directions
in a set D, how compressible is the tree using directions in the Minkowski Sum
D + D? In particular when D is the set of variable disjunctions, a positive result
may indicate sparse disjunctions that are useful in a BB tree. This would comple-
ment our current computational results on disjunctions of support size 2. Third,
given that the compression algorithm is based (partially) on general disjunctions
which can be seen as splits, is there a relationship between the strength of split
cuts at the root and the compressibility of a BB tree? Finally, could the general
disjunctions found by the compression algorithm be useful in solving similar MIP
instances?

Acknowledgements. J. Paat was supported by a Natural Sciences and Engineering
Research Council of Canada Discovery Grant [RGPIN-2021-02475]. Á.S. Xavier was
partially supported by the U.S. Department of Energy Office of Electricity. The authors
want to thank the referees, whose comments improved the overall presentation of the
paper, led to better bounds in Theorem 2, and identified directions of future work.

Compressing Branch-and-Bound Trees 361

References

1. Aardal, K., Lenstra, A.: Hard equality constrained integer knapsacks. Math. Oper.
Res. 29, 724–738 (2004)

2. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett.
33(1), 42–54 (2005)

3. Basu, A., Conforti, M., Di Summa, M., Jiang, H.: Complexity of branch-and-bound
and cutting planes in mixed-integer optimization - II. In: Singh, M., Williamson,
D.P. (eds.) IPCO 2021. LNCS, vol. 12707, pp. 383–398. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-73879-2 27

4. Beame, P., et al.: Stabbing planes. In: Karlin, A.R. (ed.) 9th Innovations in Theo-
retical Computer Science Conference (ITCS 2018). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 94, pp. 10:1–10:20. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl (2018). https://doi.org/10.4230/LIPIcs.ITCS.
2018.10, http://drops.dagstuhl.de/opus/volltexte/2018/8341

5. Bixby, R.: Solving real-world linear programs: a decade and more of progress. Oper.
Res. 50(1), 3–15 (2002)

6. Bixby, R., Boyd, E., Indovina, R.: MIPLIB: a test set of mixed integer programming
problems. SIAM News (1992)

7. Cheung, K.K.H., Gleixner, A., Steffy, D.E.: Verifying integer programming results.
In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 148–
160. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3 13

8. Chvátal, V.: Hard knapsack problems. Oper. Res. 28, 1402–1411 (1980)
9. Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on

general disjunctions. Math. Program. 130, 225–247 (2011)
10. Dadush, D., Tiwari, S.: On the complexity of branching proofs. In: Saraf, S. (ed.)

35th Computational Complexity Conference (CCC 2020). Leibniz International
Proceedings in Informatics (LIPIcs), vol. 169, pp. 34:1–34:35. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, Dagstuhl (2020)

11. Dey, S., Dubey, Y., Molinaro, M.: Lower bounds on the size of general branch-and-
bound trees. Math. Program. (2022)

12. Dey, S., Dubey, Y., Molinaro, M., Shah, P.: A theoretical and computational anal-
ysis of full strong-branching. arXiv:2110.10754 (2021)

13. Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathe-
matical optimization. SIAM Rev. 59(2), 295–320 (2017). https://doi.org/10.1137/
15M1020575

14. Fischetti, M., Monaci, M.: Backdoor branching. INFORMS J. Comput. 25(4),
693–700 (2018)

15. Gamrath, G., Melchiori, A., Berthold, T., Gleixner, A.M., Salvagnin, D.: Branching
on multi-aggregated variables. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075,
pp. 141–156. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-
3 10

16. Gläser, M., Pfetsch, M.: On the complexity of finding shortest variable disjunction
branch-and-bound proofs. In: Aardal, K., Sanità, L. (eds.) IPCO 2022. LNCS, vol.
13265, pp. 291–304. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
06901-7 22

17. Gurobi Optimization: Gurobi Optimizer (Version 9.5). https://www.gurobi.com/
products/gurobi-optimizer/. Accessed 4 Nov 2022

18. Jeroslow, R.: Trivial integer programs unsolvble by branch-and-bound. Math. Pro-
gram. 6, 105–109 (1974)

https://doi.org/10.1007/978-3-030-73879-2_27
https://doi.org/10.4230/LIPIcs.ITCS.2018.10
https://doi.org/10.4230/LIPIcs.ITCS.2018.10
http://drops.dagstuhl.de/opus/volltexte/2018/8341
https://doi.org/10.1007/978-3-319-59250-3_13
http://arxiv.org/abs/2110.10754
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575
https://doi.org/10.1007/978-3-319-18008-3_10
https://doi.org/10.1007/978-3-319-18008-3_10
https://doi.org/10.1007/978-3-031-06901-7_22
https://doi.org/10.1007/978-3-031-06901-7_22
https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/

362 G. Muñoz et al.

19. Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Math. Pro-
gram. 128, 403–436 (2011)

20. Khalil, E., Vaezipoor, P., Dilkina, B.: Finding backdoors to integer programs: a
Monte Carlo tree search framework. In: Proceedings of AAAI (2022)

21. Legat, B., Dowson, O., Dias Garcia, J., Lubin, M.: MathOptInterface: a data struc-
ture for mathematical optimization problems. INFORMS J. Comput. 34(2), 672–
689 (2021). https://doi.org/10.1287/ijoc.2021.1067

22. Linderoth, J., Savelsbergh, M.: A computational study of search strategies for
mixed integer programming. INFORMS J. Comput. 11(2), 173–187 (1999)

23. Mahajan, A., Ralphs, T.: Experiments with branching using general disjunctions.
In: Proceedings of Operations Research and Cyber-Infrastructure, pp. 101–118
(2009)

24. Mahajan, A., Ralphs, T.: On the complexity of selecting disjunctions in integer
programming. SIAM J. Optim. 20(5), 2181–2198 (2010)

25. Mahmoud, H., Chinneck, J.: Achieving MILP feasibility quickly using general dis-
junctions. Comput. Oper. Res. 40, 2094–2102 (2013)

26. Mehrotra, S., Li, Z.: Branching on hyperplane methods for mixed integer linear
and convex programming using adjoint lattices. J. Glob. Optim. (2010)

27. Owen, J., Mehrotra, S.: Experimental results on using general disjunctions in
branch-and-bound for general-integer linear programs. Comput. Optim. Appl. 20,
159–170 (2001)

28. Walter, M.: Sparsity of lift-and-project cutting planes. In: Helber, S., et al. (eds.)
Operations Research Proceedings 2012, pp. 9–14. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-00795-3 2

29. Xavier, A.S., Qiu, F.: MIPLearn: a framework for learning-enhanced mixed-
integer optimization (Julia interface) (2022). https://github.com/ANL-CEEESA/
MIPLearn.jl

30. Yang, Y., Boland, N., Savelsbergh, M.: Multivariable branching: a 0–1 knapsack
problem case study. INFORMS J. Comput. 33(4), 1354–1367 (2021)

https://doi.org/10.1287/ijoc.2021.1067
https://doi.org/10.1007/978-3-319-00795-3_2
https://doi.org/10.1007/978-3-319-00795-3_2
https://github.com/ANL-CEEESA/MIPLearn.jl
https://github.com/ANL-CEEESA/MIPLearn.jl

Exploiting the Polyhedral Geometry
of Stochastic Linear Bilevel Programming

Gonzalo Muñoz(B), David Salas, and Anton Svensson

Instituto de Ciencias de la Ingenieŕıa, Universidad de O’Higgins, Rancagua, Chile
{gonzalo.munoz,david.salas,anton.svensson}@uoh.cl

Abstract. We study linear bilevel programming problems whose lower-
level objective is given by a random cost vector with known distribution.
We consider the case where this distribution is nonatomic, allowing to
pose the problem of the leader using vertex-supported beliefs in the sense
of [29]. We prove that, under suitable assumptions, this formulation turns
out to be piecewise affine over the so-called chamber complex of the
feasible set of the high point relaxation. We propose two algorithmic
approaches to solve general problems enjoying this last property. The
first one is based on enumerating the vertices of the chamber complex.
The second one is a Monte-Carlo approximation scheme based on the
fact that randomly drawn points of the domain lie, with probability 1, in
the interior of full-dimensional chambers, where the problem (restricted
to this chamber) can be reduced to a linear program.

Keywords: Bilevel Programming · Bayesian Approach · Chamber
complex · Enumeration algorithm · Monte-Carlo algorithm

1 Introduction

Stackelberg games, also referred to as bilevel programming problems, were first
introduced by H. von Stackelberg in [31]. In this seminal work, an economic
equilibrium problem between two firms was studied, under the particularity that
one of them, the leader, is able to anticipate the decisions of the other one, the
follower. Bilevel programming is an active field of research, and we refer the
reader to the monographs [10,11] for comprehensive introductions, and to [12]
for recent developments. In the last decade, researchers have started to consider
uncertainty in Stackelberg games. A recent survey by Beck, Ljubić and Schmidt
[3] provides an overview of new questions and recent contributions on this topic.

One model that considers uncertainty in Stackelberg games is the Bayesian
approach [26,29]. The starting point is that for any given leader’s decision x, the
leader only knows that the reaction y of the follower is selected from a set Y (x),

The first author was supported by FONDECYT Iniciación 11190515 (ANID-Chile).
The second author was supported by the Center of Mathematical Modeling (CMM)
FB210005 BASAL funds for centers of excellence (ANID-Chile), and the grant FONDE-
CYT Iniciación 11220586 (ANID-Chile). The third author was supported by the grant
FONDECYT postdoctorado 3210735 (ANID-Chile).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 363–377, 2023.
https://doi.org/10.1007/978-3-031-32726-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_26&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_26

364 G. Muñoz et al.

hence being y a decision-dependent uncertainty parameter. The leader endows
the set Y (x) with a probability distribution βx which models how the leader
believes that the possible responses of the follower are distributed. Note that
the classical optimistic and pessimistic approaches of bilevel programming are
included in this setting, under quite mild assumptions (see [29]).

Uncertainty in the data of the lower-level has been considered by Claus for
linear bilevel programming from a variational perspective considering risk mea-
sures (see the survey [6] by Burtscheidt, and the references therein, and the
recent works [7,8]). In [19], Ivanov considered the cost function of the follower
as a bilinear form 〈Ax + ξ(ω), y〉. Recently, in [5], Buchheim, Henke and Irmai
considered a bilevel version of the continuous knapsack problem with uncertainty
on the follower’s objective.

In this work, we consider a linear bilevel programming problem where the
lower-level objective is uncertain for the leader but follows a prior known dis-
tribution (as the particular case studied in [5]). We study the problem from
a Bayesian approach perspective [29], and by means of the so-called chamber
complex of a polytope (see Sect. 4), which subdivides the space of the leader’s
decisions in a meaningful way. The idea of using the chamber complex to under-
stand geometrical properties of optimization problems under uncertainty is not
new, but it is recent. To the best of our knowledge, the first work that does this is
[14] (see also [13]), on which multistage stochastic linear optimization is studied.
However, the techniques there cannot be extended to Stackelberg games. Due
to space constraints, we do not provide all details in this extended abstract. We
refer the reader to our full-length preprint [27].

1.1 Problem Formulation and Contributions

Our study focuses on the setting of linear bilevel programming, i.e., the objective
functions and constraints of the problem are all linear. More precisely, we aim
to study the problem where the leader decides a vector x ∈ R

nx that solves

(P) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
x

〈d1, x〉 + E[〈d2, y(x, ω)〉]

s.t. x ∈ X

y(x, ω) solves

⎧
⎪⎨

⎪⎩

min
y

〈c(ω), y〉

s.t.
y ∈ R

ny ,
Ax + By ≤ b,

ω ∈ Ω a.s.

(1)

where A ∈ R
m×nx , B ∈ R

m×ny , b ∈ R
m, d1 ∈ R

nx , d2 ∈ R
ny , c : Ω → Sny

is a
random vector over a probability space (Ω,Σ,P) with values in the unit sphere
of Rny , and X ⊂ R

nx is a nonempty polytope.
The notation carries the usual ambiguity of bilevel problems, which appears

whenever the lower-level optimal response y(x, ω) is not uniquely determined for
some x ∈ X. However, we focus our attention here on costs whose distributions
are nonatomic (in a sense we will specify later on) which implies that, with
probability 1, y(x, ω) is unique for all x ∈ X.

Exploiting the Polyhedral Geometry of Stochastic Linear 365

Our main contributions regarding this problem are: (a) To rewrite (1) using
a Bayesian approach formulation and a sample average approximation for it;
(b) to show the structure of the leader’s objective function and its relation to
the chamber complex of the feasible set of the high-point relaxation; and (c) to
exploit these structures in a mixed-integer-programming-based algorithm and in
a Monte-Carlo algorithm that can tackle (1).

2 Preliminaries

For an integer n ∈ N, we write [n] := {1, . . . , n}. Throughout this work, we will
consider Euclidean spaces Rn endowed with their usual norm ‖·‖ and their inner
product 〈·, ·〉. We denote by Sn the unit sphere of R

n. For a set O ⊂ R
n, we

denote the affine dimension of O as dim(O), which corresponds to the dimension
of the affine envelope of O, denoted by aff(O). The relative interior of O is
denoted by ri(O). We write 1O to denote the indicator function of a set O ⊂ R

n,
having value 1 on O and 0 elsewhere.

In general, we follow the standard notation of mathematical programming.
For a polyhedron P , we denote by F (P) the collection of all faces of P , and

by ext(P) the vertices (extreme points) of P . For any k ∈ {0, . . . , n} we will
write

F≤k(P) := {F ∈ F (P) : dim(F) ≤ k}. (2)

If there is no ambiguity, we might simply write F and F≤k. For a convex
set C ⊂ R

n and a point x ∈ C, we write NC(x) to denote the normal cone of C
at x, i.e.,

NC(x) = {d ∈ R
n : 〈d, y − x〉 ≤ 0 ∀y ∈ C}. (3)

Motivated by the structure of problem (1), we define the polyhedron D as the
feasible region of the high-point relaxation of the problem (see, e.g., [21]), i.e.,

D = {(x, y) ∈ R
nx × R

ny : Ax + By ≤ b} . (4)

It will be assumed throughout the paper that D is full dimensional. We do not
lose generality since it is always possible to embed D into R

dim(D). We will also
assume that D is compact, i.e. it is a polytope. Finally, by moving the leader’s
constraints to the follower’s problem, we assume without losing any generality
that

X =
{
x ∈ R

nx : ∃y ∈ R
ny such that Ax + By ≤ b

}
. (5)

In the latter assumption about X we are simply stating that the lower-level
problem is feasible for any feasible choice of x and restricting ‘unilaterally’ the
x coordinate in D which does not change the lower-level problem. We define the
ambient space Y for the follower’s decision vector as

Y =
{
y ∈ R

ny : ∃x ∈ R
nx such that Ax + By ≤ b

}
. (6)

Note that, since D is full-dimensional and compact in R
nx × R

ny , both X and
Y are full-dimensional (in R

nx and R
ny , respectively) and compact as well. We

366 G. Muñoz et al.

write π : Rnx ×R
ny → R

nx to denote the parallel projection given by π(x, y) = x.
In particular, equation (5) can be written as X = π(D).

Given nonempty sets U ⊂ R
nx and V ⊂ R

ny we write M : U ⇒ V to denote
a set-valued map, i.e., a function assigning to each x ∈ U a (possibly empty) set
M(x) in V . In this work, we consider the set-valued map S : X ⇒R

ny defined
as

S(x) = {y ∈ R
ny : (x, y) ∈ D}. (7)

We call S the fiber map of D (through the projection π). Clearly, S has nonempty
convex and compact values, and S(X) = Y , as given by equation (6).

3 Vertex-Supported Beliefs and Bayesian Formulation

In what follows, we write B(Y) to denote the Borel σ-algebra of Y and P(Y)
to denote the family of all (Borel) probability measures on Y . We endow P(Y)
with the topology of weak convergence (see, e.g., [22, Chapter 13]). Accordingly,
we will say that a measure-valued map h : X → P(Y) is weak continuous if it
is so for this topology (which coincides with the weak* topology when looking
the space of measures as the dual space of the space of continuous functions, see
[22, Remark 13.14]).

Recall from [29] that for a set-valued map M : X ⇒Y with closed and
nonempty values, a map β : X → P(Y) is said to be a belief over M if for every
x ∈ X, the measure β(x) = βx concentrates on M(x), i.e., βx(M(x)) = 1. By
identifying P(M(x)) with its natural injection into P(Y), a belief over M can
be understood as a selection of {P(M(x)) : x ∈ X}.

Let (Ω,Σ,P) be a probability space. To model the cost function of the lower-
level problem in (1), we will consider only random vectors c : Ω → Sny

with
nonatomic distributions, in the sense that

∀O ∈ B(Sny
) : Hny−1(O) = 0 =⇒ P[c(ω) ∈ O] = 0, (8)

where B(Sny
) stands for the Borel σ-algebra of Sny

, and Hny−1 denotes the (ny−
1)-Hausdorff measure over (Sny

,B(Sny
)). In other words, the probability measure

P ◦ c−1 is absolutely continuous with respect to Hny−1. Note that with this
definition, any random vector c : Ω → R

ny , which has an absolutely continuous
distribution with respect to the Lebesgue measure Lny , induces an equivalent
random vector c̄ : Ω → Sny

given by c̄(ω) = c(ω)
‖c(ω)‖ . This new random vector is

well-defined almost surely in Ω, except for the negligible set N = c−1(0), and
using c(·) or c̄(·) in problem (1) is equivalent.

Now, to understand the distribution of the optimal response y(x, ω) induced
by the random vector c : Ω → Sny

, we consider a belief β : X → P(Y) over the
fiber map S : X ⇒Y given by

dβx(y) = pc(x, y) := P[−c(ω) ∈ NS(x)(y)]. (9)

Note that P[−c(ω) ∈ NS(x)(y)] = P[−c(ω) ∈ int(NS(x)(y)) ∩ Sny
] for any point

(x, y) ∈ D, and that int(NS(x)(y)) is nonempty only if y is an extreme point

Exploiting the Polyhedral Geometry of Stochastic Linear 367

of S(x). By putting together both observations, one can easily deduce that for
each x ∈ X, p(x, ·) is a discrete density function whose support is contained in
ext(S(x)). Therefore, the belief β is given by

βx(O) =
∑

y∈ext(S(x))

pc(x, y)1O(y), ∀O ∈ B(Y). (10)

We call β the vertex-supported belief induced by c. With this construction, we
can rewrite problem (1) as

(P) := min
x∈X

〈d1, x〉 + Eβx
[〈d2, y〉] (11)

where Eβx
[〈d2, y〉] =

∑
y∈ext(S(x))〈d2, y〉pc(x, y). Our goal in this work is to study

problem (1) by profiting from the Bayesian formulation (11), in the sense of [29].

3.1 Sample Average Formulation

Problem (11) has an intrinsic difficulty which consists in how to evaluate the
objective function θ(x) = 〈d1, x〉+Eβx

[〈d2, y〉]. To make an exact evaluation of θ
at a point x ∈ X one would require to compute the set of all vertices y1, . . . , yk

of S(x) (having a positive probability of being optimal for c(ω)) and to compute
the corresponding probabilities pc(x, y1), . . . , pc(x, yk), defined as the “sizes” of
the respective normal cones at each vertex yi. This is not always possible.

To deal with this issue, we consider the well-known sample average approx-
imation (SAA) method for stochastic optimization (see, e.g., [18,30]). That is,
we take an i.i.d sample {ĉ1, . . . , ĉN0} of the random lower-level cost c(·), where
each sample unit is drawn following the (known) distribution of c(·), and try to
solve the (now deterministic) problem

(P̂) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minx 〈d1, x〉 + 1
N0

∑N0
i=1〈d2, yi(x)〉

s.t. x ∈ X

∀i ∈ [N0], yi(x) solves
{

miny 〈ĉi, y〉
s.t. Ax + By ≤ b.

(12)

Proposition 1 ([27]). Assume that c(·) has a nonatomic distribution over Sny
,

in the sense of (8). Then, with probability 1, we have that for each i ∈ [N0] and
each x ∈ X the set argminy {〈ĉi, y〉 : Ax + By ≤ b} is a singleton.

Based on the above proposition, for the sample {ĉ1, . . . , ĉN0} we can, for
each i ∈ [N0], define the mapping x �→ yi(x) where yi(x) is the unique
element argminy {〈ĉi, y〉 : Ax + By ≤ b}. Thus, almost surely, problem (12) is
well-defined. We close this section by stating that problem (12) is a consistent
approximation of the original problem (11).

368 G. Muñoz et al.

Proposition 2 ([27]). Let x∗
N0

be an optimal solution of (12) for a sample of
size N0, and let ν∗

N0
be the associated optimal value. Let S be the set of solutions

of (1) and let ν̄ be its optimal value. Then, d(x∗
N0

,S) := infx∈S ‖x∗
N0

−x‖ N0→∞−−−−−→
0, and ν∗

N0

N0→∞−−−−−→ ν̄, both with probability 1.

4 Geometrical Structure of Vertex-Supported Beliefs

Here, we recall the definition of a chamber complex, frequently used in some
fields of mathematics, like computational geometry (see, e.g., [9]).

Definition 1 (Chamber complex). Let D ⊂ R
nx × R

ny be a polyhedron as
described in (4). For each x ∈ X = π(D), we define the chamber of x as

σ(x) =
⋂ {

π(F) : F ∈ F (D), x ∈ π(F)
}
. (13)

The chamber complex, is then given by the (finite) collection of chambers, i.e.,
C (D) = {σ(x) : x ∈ X}.

For a more comprehensive exposition of the chamber complex C (D) and their
many interesting properties, we refer the reader to [9,13,14,27] and references
therein. The next proposition shows that to compute a chamber it is enough
to consider faces of D with dimensions up to nx instead of the collection of all
faces.

Proposition 3 ([27]). For any x ∈ X, one has that

σ(x) =
⋂

{π(F) : F ∈ F , x ∈ π(F), dim(F) ≤ nx}.

While the previous result narrows the class of faces that are needed to com-
pute a chamber, we may still need faces of drastically different dimensions. The
next example illustrates this phenomenon.

Example 1. Consider the polytope D := {(x, y) ∈ R
2 × R : |x1| ≤ y ≤ 1 − |x2|},

whose vertices are (0,±1, 0) and (±1, 0, 1). Clearly, (0, 0) and (1, 0) are minimal
chambers, however, (0, 0) is not a projection of a vertex of D, while (1, 0) cannot
be obtained using only projections of facets.

It is well-known (see, e.g., [14]) that the family {ri(K) : K ∈ C(D)} is a
partition of X. With this in mind, we introduce the following definition.

Definition 2. A function f : X → R is said to be piecewise linear over the
chamber complex C (D) if there exists a sequence of pairs {(dK , aK) : K ∈
C (D)} ⊂ R

nx × R such that

f(x) =
∑

K∈C (D)

(〈dK , x〉 + aK)1ri(K)(x), ∀x ∈ X. (14)

Exploiting the Polyhedral Geometry of Stochastic Linear 369

Fig. 1. The polytope D of Example 1 and its chamber complex whose vertex (0, 0) is
not a projection of a vertex of D.

In what follows, it will be useful to distinguish minimal chambers and maxi-
mal chambers, with respect to the inclusion ordering. The former are character-
ized by having nonempty interior, while the latter are the vertices in the chamber
complex.

Definition 3. Let D ⊂ R
nx ×R

ny be a polyhedron as described in (4). We define

K (D) := {K ∈ C (D) : int(K) �= ∅} , (15)
V (D) := {v ∈ X : {v} ∈ C (D)} . (16)

We call K (D) the family of full-dimensional chambers of D, and V (D), the
vertices of the chamber complex C (D) (which correspond to the family of zero-
dimensional chambers of D).

It is worth mentioning that K (D) is a covering of X, i.e., X ⊂ ⋃
K (D).

This follows from the fact that each chamber is contained in a full-dimensional
chamber. A very straightforward proposition (see [27]) is that

V (D) =
⋃

K∈K (D)

ext(K). (17)

A direct implication of this observation is the following corollary, which is one
of the keystones of the enumeration algorithm that we propose.

Corollary 1. If a function f : X → R is continuous and piecewise linear over
the chamber complex C (D), then it has at least one minimizer in V (D).

We finish this section with our main theorem.

Theorem 1 (See [27]). Consider a random cost c with nonatomic distribution
and β : X → P(Y) the vertex-supported belief induced by c over S as defined
in (10). Then,

1. β is weakly continuous, and thus for any lower semicontinuous function f :
X × Y → R, the problem min

x∈X
Eβx

[f(x, ·)] has a solution.

2. The function x ∈ X �→ 〈d1, x〉+Eβx
[〈d2, y〉] is continuous and piecewise linear

over C (D).
3. For almost every sample {ĉ1, . . . , ĉN0}, the function x ∈ X �→ 〈d1, x〉 +

1
N0

∑N0
i=1〈d2, yi(x)〉 is well-defined, continuous and piecewise linear over C (D).

In particular, problem (1) has at least one solution over V (D).

370 G. Muñoz et al.

5 Algorithms

The rest of the work is focused on algorithms to solve problem (11) in the cases
when we can evaluate the objective function x �→ 〈d1, x〉 + Eβx

[〈d2, y〉], or solve
problem (12), otherwise. Theorem 1 shows that both problems have the form

min
x∈X

θ(x), (18)

where θ : X → R is a continuous function and it is piecewise linear over the
chamber complex C (D) (with probability 1, in the case of problem (12)). Thus,
we provide algorithms to solve this generic problem.

5.1 Enumeration Algorithm

Corollary 1 gives us a natural strategy to solve problem (18): It is enough to com-
pute the chamber vertices V (D) and evaluate the corresponding objective func-
tion θ at each one of them. In this section we provide an enumeration algorithm
to compute V (D) by sequentially solving mixed-integer programming problems
which are formulated using F≤nx

:= {F ∈ F : dim(F) ≤ nx}, as shown in
Proposition 3. We remind the reader that, due to the discussion in Example
1, we may need faces of different dimensions to compute V (D). This is why we
rely on the full set F≤nx

.

Remark 1. Computing V (D) is at least as hard as computing all vertices of a
polytope. Indeed, given an arbitrary (full-dimensional) polytope P ⊆ R

n, one
may consider D = P × [0, 1]. The vertices of P correspond exactly to V (D). To
the best of our knowledge, the complexity of finding all vertices of a polytope P is
currently unknown; however, for a polyhedron P (not necessarily bounded), it is
known that it is NP-complete to decide, given a subset of vertices of P , if there
is a new vertex of P to add to the collection [20]. Therefore, we can expect that
computing V (D) will be computationally expensive.

For x ∈ X, let us define the label of x as the set �(x) := {F ∈ F≤nx
:

x ∈ π(F)}. Endowing the set of all (finitely many) labels with the order of the
inclusion, one can show (see [27]) that

x ∈ V (D) ⇐⇒ �(x) is a maximal label. (19)

Intuitively, this states that a vertex of a chamber is obtained by intersecting as
many projections of faces as possible (of dimension ranging from 0 to nx). Using
this result, we can generate an element of V (D) through a MILP formulation
that finds an x such that �(x) is a maximal label. The following formulation
achieves this.

max
z,x,y

∑

F∈F≤nx

zF (20a)

s.t. Ax + ByF ≤ b ∀F ∈ F≤nx
(20b)

AF x + BF yF ≥ bF − M(1 − zF) ∀F ∈ F≤nx
(20c)

zF ∈ {0, 1} ∀F ∈ F≤nx
(20d)

Exploiting the Polyhedral Geometry of Stochastic Linear 371

Here, y and z stand for the vectors (yF : F ∈ F≤nx
) and (zF : F ∈ F≤nx

),
respectively. For each F ∈ F≤nx

, AF , BF and bF are submatrices of A, B and
b such that F = {(x, y) ∈ D : AF x + BF y = b}. Finally, M is a vector of m
positive values such that Aix+Biy−bi ≥ −Mi, for all (x, y) ∈ D. This vector M
is well defined when D is a polytope and can be easily computed using m linear
programs. Formulation (20) is straightforward. It tries to “activate” as many
faces as possible such that the intersection of their projection is non-empty.

Remark 2. We note that, while conceptually simple, (20) depends on the enumer-
ation of all faces F≤nx

which can be a highly challenging task. Other approaches
below also rely on this. We have not yet devised a mechanism around this poten-
tially expensive enumeration; moreover, in many of our computational experi-
ments (Sect. 6), our approaches are actively making use of a significant portion
of F≤nx

. For this reason, we can only handle small-size problems in this work.
We discuss potential future avenues for solving these limitations in Sect. 6. Note
that these difficulties are in line with the discussion of Remark 1.

Let (z∗, x∗, y∗) be an optimal solution of (20). It is not hard to see that x∗

is an element of V (D), thus, we can collect it and focus on generating a new
element of V (D). Noting that �(x∗) = {F ∈ F≤nx

: z∗
F = 1}, we see that such

new element can be obtained by adding the following inequality to (20)
∑

F∈F≤nx : z∗
F =0

zF ≥ 1. (21)

Since �(x∗) is a maximal label, we can easily see that constraint (21) is removing
only the single element x∗ of V (D) from (20). This is a so-called “no-good
cut”. This procedure can be iterated until the optimization problem becomes
infeasible. In our computational experiments, however, we noted that detecting
infeasibility was particularly challenging for the optimization solver, and thus
devised an alternative strategy: we add a new binary variable s that can relax
(21) when needed, and whose value will define the stopping criterion.

Under these considerations, we next present the precise model we use. Sup-
pose we have partially generated a set V ⊆ V (D), we generate an element of
V (D) \ V or determine V = V (D) using the following optimization problem

max
z,s,x,y

∑

F∈F≤nx

zF (22a)

s.t. Ax + ByF ≤ b ∀F ∈ F≤nx
(22b)

AF x + BF yF ≥ bF − M(1 − zF) ∀F ∈ F≤nx
(22c)

∑

F 	∈�(v)

zF + s ≥ 1 ∀v ∈ V (22d)

∑

F∈F≤nx

zF ≤ |F≤nx
|(1 − s) (22e)

zF ∈ {0, 1} ∀F ∈ F≤nx
(22f)

s ∈ {0, 1} (22g)

372 G. Muñoz et al.

Algorithm 1: Chamber vertex enumeration algorithm
1 Input: A, B, b defining a polytope D = {(x, y) ∈ R

nx × R
ny : Ax + By ≤ b};

2 Set V = ∅, s∗ = 0;
3 Compute F≤nx(D);
4 while true do
5 Solve problem (22) and obtain an optimal solution (z∗, s∗, x∗, y∗);
6 if s∗ = 0 then
7 break ;
8 end
9 V ← V ∪ {x∗};

10 Store �(x∗) = {F ∈ F≤nx(D) : z∗
F = 1};

11 end

Result: The set V = V (D)

Lemma 1 (see [27]). Problem (22) is always feasible provided that D �= ∅.
Moreover, in an optimal solution (z∗, s∗, x∗, y∗), then one (and only one) of the
following situations hold (a) s∗ = 0 and x∗ ∈ V (D) \ V , or (b) s∗ = 1 and
V (D) = V .

In Algorithm 1 we formalize our enumeration procedure. To solve problem
(18), it is enough to run Algorithm 1, and evaluate θ over the set V = V (D).

5.2 Monte-Carlo Approximation Scheme

The previous enumeration algorithm of Sect. 5.1 has several drawbacks. First,
it requires (in practice) computing the whole collection of faces of D, which
might depend exponentially on the whole dimension nx +ny. And even with the
collection of faces at hand, computing all chamber vertices in V (D) can be hard.
Moreover, V (D) might be exponentially large.

Another approach, that we explore in this section, is to try to compute
the collection of full-dimensional chambers K (D). Despite the fact that K (D)
might still be exponentially large, in some cases it is considerably smaller than
C (D). Moreover drawing points x uniformly over X yield that σ(x) ∈ K (D)
almost surely. Indeed, this follows from Proposition 2.6 in [27] and the facts that
there are finitely many chambers in K (D), and only those in K (D) are not
negligible.

To simplify the exposition, we will assume that X ⊂ [0, 1]nx and we will write
Xc = [0, 1]nx \X. To be able to consider samples in [0, 1]nx , we identify �(x) = ∅
for all x ∈ Xc. We base our algorithm in the following lemma.

Lemma 2 (see [27]). Let � = �(x̄) for some x̄ ∈ X and assume that K� := σ(x̄)
is a full-dimensional chamber. Then, �(x) ⊂ Fnx

:= {F ∈ F : dim(F) = nx}.
Moreover, for each j ∈ [nx], the following linear problem

{
max

t, (yF)F ∈�

t

s.t. (x̄ + tej , yF) ∈ F, ∀F ∈ �,
(23)

Exploiting the Polyhedral Geometry of Stochastic Linear 373

Algorithm 2: Monte-Carlo algorithm
1 Input: A, B, b defining a polytope D = {(x, y) ∈ R

nx × R
ny : Ax + By ≤ b},

θ : X → R continuous and piecewise linear over C (D);
2 Generate a (uniformly iid) training sample S of size N over [0, 1]nx ;

3 Set List = ∅, x̂ = NaN , θ̂ = ∞;
4 Compute Fnx ;
5 foreach ξ ∈ S do
6 Compute � = {F ∈ Fnx : ξ ∈ π(F)};
7 if � ∈ List or � = ∅ then
8 continue;
9 end

10 List ← List ∪ {�}; Compute d� as in Lemma 2;
11 Solve the linear problem

{
min

x,(yF)F ∈�

〈d�, x〉
s.t. (x, yF) ∈ F, ∀F ∈ �

finding a solution x̂� and set the value θ̂� = θ(x̂�);

12 if θ̂� < θ̂ then

13 x̂ ← x̂�, θ̂ ← θ̂�;
14 end

15 end

Result: The pair solution-value (x̂, θ̂) for problem (18).

has a solution t∗j > 0. Finally, for every function θ : X → R continuous and
piecewise linear over the chamber complex C (D), the vector d� := dK�

∈ R
nx

such that θ
∣
∣
K�

= 〈d�, ·〉 + aK�
(for some aK�

∈ R) can be computed as

d� =
(

θ(x̄ + t∗1e1) − θ(x̄)
t∗1

, · · · ,
θ(x̄ + t∗nx

enx
) − θ(x̄)

t∗nx

)

.

With this result, we can establish a Monte-Carlo algorithm (see Algorithm
2) to approximate the solution of problem (18): we randomly draw points x̄
from [0, 1]nx , compute �(x̄), and use Lemma 2 to optimize θ over σ(x̄) via an
LP formulation. Note that, to compute labels, we only need (with probability
1) access to Fnx

, which might depend exponentially only on the lower-level
dimension ny and not nx + ny (see [27]). The main drawback of Algorithm 2 is
that we cannot ensure in general that the result (x̂, θ̂) is an optimal solution of
problem (18) or not. A measurement in terms of unseen chambers is proposed
in [27] to quantify how good the solution (x̂, θ̂) might be.

6 Numerical Experiments

We implemented both Algorithms 1 and 2 in Julia 1.8.2 [4], using Polymake
[15] to compute the faces of a polytope and Gurobi 9.5.2 [16] to solve (22)

374 G. Muñoz et al.

and any auxiliary LP. Our code is publicly available in https://github.com/g-
munoz/bilevelbayesian. All experiments were run single-threaded on a Linux
machine with an Intel Xeon Silver 4210 2.2G CPU and 128 GB RAM. The main
objectives behind these experiments are (1) to determine how Algorithm 1 scales
and (2) how well the Monte-Carlo algorithm performs in comparison to the exact
method. A global time limit of 15 min was set for Algorithm 1; in case this time
limit is met, only the chamber vertices that were found are used.

We focus our attention in sample average formulations, as in (12), where
the lower-level cost is assumed to have a uniform distribution over the unit
sphere. We use instances from two publicly available libraries: BOLib [32] and
the bilevel instances in [1], which we call CoralLib. Since our approach relies on
computing a (possibly exponentially) large number of faces, we can only consider
low-dimensional instances at the moment: we restrict to nx + ny ≤ 10.

Additionally, we consider randomly generated instances of the stochastic
bilevel continuous knapsack problem [5]. These instances have the form:

max
x

−δx + d
y

s.t. x ∈ [L,U]

y(x, ω) solves

⎧
⎪⎨

⎪⎩

min
y

〈c(ω), y〉

s.t.
a
y ≤ x,
y ∈ [0, 1]ny

ω ∈ Ω a.s.
(24)

In our experiments, we consider a to be a random non-negative vector, δ =
1/4 and d the vector of ones. We call Knapsack i an instance generated for
ny = i. While these instances have a more efficient algorithm for them than the
one presented here (see [5]), they are helpful in showing how well our general-
purpose Monte-Carlo algorithm performs.

In all experiments, we used a sample of size 100 for the follower’s cost vector.
The same sample is used in both algorithms to better compare their performance.
Additionally, in Algorithm 2 we used samples of size 200 for the domain X. In
Table 1, we compare the performance of both methods.

The gap measures how far the value of the Monte-Carlo algorithm is from
the exact method, i.e., if vali is the value obtained by Algorithm i, then the gap
is Gap = |val1|−1(val2 − val1). Since we ran Algorithm 1 with a time limit, it
may be that Gap < 0, which indicates the Monte-Carlo algorithm performing
better than the exact method.

The results in Table 1 clearly shows an advantage of the Monte-Carlo app-
roach over the exact method. The Monte-Carlo approach was able to meet or
surpass the value of the exact method in almost all cases. In the largest exam-
ples, the Monte-Carlo had a much better performance, in some cases providing
much better solutions than the exact method in shorter running times.

The main (and clear) challenge for this work is scalability: while these results
show short running times, these are all instances of small dimensions. The main
bottleneck currently is the enumeration of the faces of a polytope. In the case of
Algorithm 1, there does not seem to be much hope in improving this substan-

https://github.com/g-munoz/bilevelbayesian
https://github.com/g-munoz/bilevelbayesian

Exploiting the Polyhedral Geometry of Stochastic Linear 375

Table 1. Summary of results for Algorithms 1 and 2 for selected BOLib instances
[32], CoralLib instances [1] and Knapsack instances [5]. The “Size” of the instance
is (nx + ny, m). The “Obj gap” column shows the gap between the values found for
both algorithms; a negative gap indicates the stochastic method performed better. The
“Error” column shows the upper estimation of the volume of unseen chambers during
the sampling process (see [27] for the details). The columns labeled “Computation
Times” contain the running times (in seconds) for the computation of all the faces,
the execution of Algorithm 1 and of Algorithm 2. The columns labeled “Used faces”
contain the number of faces that were explicitly used during the execution of each
algorithm.

Computation Times Used Faces

Instance Size |F≤nx | |Fnx | Obj gap Error Faces Alg. 1 Alg. 2 Alg. 1 Alg 2.

BOLib/AnandalinghamWhite1990 (2,7) 12 6 0% 0% 1.4 3.8 7.2 12 5

BOLib/Bard1984a (2,6) 10 5 0% 0% 3.1 6.8 7.9 10 5

BOLib/Bard1984b (2,6) 10 5 0% 0% 1.4 4.1 7.5 10 5

BOLib/Bard1991Ex2 (3,6) 14 9 0% 0% 1.4 4.2 8.2 14 6

BOLib/BardFalk1982Ex2 (4,7) 45 17 0% 45% 1.7 4.3 7.6 45 5

BOLib/BenAyedBlair1990a (3,6) 20 12 0% 0% 1.4 4.2 8.5 20 4

BOLib/BenAyedBlair1990b (2,5) 6 3 0% 0% 1.5 4.3 8.0 6 3

BOLib/BialasKarwan1984a (3,8) 20 12 0% 0% 1.6 4.4 8.4 20 10

BOLib/BialasKarwan1984b (2,7) 12 6 0% 0% 1.5 4.3 8.0 12 5

BOLib/CandlerTownsley1982 (5,8) 111 48 1% 37% 1.8 7.9 18.5 111 16

BOLib/ClarkWesterberg1988 (2,3) 6 3 0% 0% 1.5 4.3 8.0 6 3

BOLib/ClarkWesterberg1990b (3,7) 15 9 0% 0% 1.5 4.4 8.3 15 9

BOLib/GlackinEtal2009 (3,6) 20 5 0% 48% 1.6 4.8 8.0 20 3

BOLib/HaurieSavardWhite1990 (2,4) 8 4 0% 0% 1.6 4.5 8.3 8 4

BOLib/HuHuangZhang2009 (3,6) 20 12 0% 0% 1.6 4.4 8.6 20 7

BOLib/LanWenShihLee2007 (2,8) 14 7 0% 1% 1.6 4.5 8.2 14 6

BOLib/LiuHart1994 (2,5) 10 5 0% 0% 1.6 4.4 8.6 10 4

BOLib/MershaDempe2006Ex1 (2,6) 8 4 0% 0% 1.7 4.8 8.6 8 4

BOLib/MershaDempe2006Ex2 (2,7) 10 5 0% 64% 1.5 4.3 6.4 10 3

BOLib/TuyEtal1993 (4,7) 45 17 0% 54% 1.7 4.5 7.6 45 5

BOLib/TuyEtal1994 (4,8) 72 24 0% 46% 1.6 4.5 7.5 72 6

BOLib/VisweswaranEtal1996 (2,6) 8 4 0% 0% 1.4 4.3 7.9 8 4

BOLib/WangJiaoLi2005 (3,7) 23 14 0% 0% 1.5 4.4 8.6 23 5

CoralLib/linderoth (6,15) 545 51 0% 74% 1.4 148.0 7.4 545 7

CoralLib/moore90 2 (2,7) 12 6 0% 0% 1.4 4.0 7.6 12 5

CoralLib/moore90 (2,8) 8 4 0% 0% 1.6 4.4 8.1 8 4

Knapsack 6 (7,15) 574 447 0% 0% 3.2 117.1 19.2 574 255

Knapsack 7 (8,17) 1278 1023 0% 0% 2.5 626.9 38.5 1278 575

Knapsack 8 (9,19) 2814 2303 -14% 0% 4.9 914.7 82.4 1990 1279

Knapsack 9 (10,21) 6142 5119 -380% 0% 15.4 984.2 181.4 3346 2815

tially: note in Table 1 that in all but the bottom two entries1, Algorithm 1 used
all available faces. This is because the algorithm heavily relies on maximal labels,
which is important in our procedure to not repeat chambers when enumerating.

1 The last two entries of Table 1 correspond to cases where F≤nx was not fully com-
puted due to the time limit.

376 G. Muñoz et al.

Nonetheless, we still believe Algorithm 1 can be useful as a baseline that has
optimality guarantees.

Algorithm 2, however, could potentially be improved significantly. First of
all, recall that this approach only uses the faces of dimension nx (i.e. Fnx

),
which can be considerably smaller than F≤nx

(see columns 3 and 4 of Table 1).
Therefore, a more intricate enumeration that exploits this could be devised.
Additionally, and perhaps more importantly, note that in the instances where
|Fnx

| is not too small (say, more than 40) Algorithm 2 only uses a fraction of
Fnx

in its execution. This indicates that one could heavily restrict the faces to
consider initially and generate more on-the-fly, much like in a column generation
approach. Another potential improvement path is exploiting more structure of a
particular family of instances, which may indicate which are the faces that one
would truly need.

References

1. Coral bilevel optimization problem library. https://coral.ise.lehigh.edu/data-sets/
bilevel-instances/ Accessed 3 Nov 2022

2. Bazaraa, M.S., Sherali, H.D., Shetty, C. M.: Nonlinear programming: theory and
algorithms. John Wiley Sons (2013)

3. Beck, Y., Ljubić, I., Schmidt, M.: A survey on bilevel optimization under uncer-
tainty. European J. Oper. Res., (2023) (In Press)

4. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to
numerical computing. SIAM review 59(1), 65–98 (2017)

5. Buchheim, C., Henke, D., Irmai, J.: The stochastic bilevel continuous knapsack
problem with uncertain follower’s objective. J. Optim. Theory. Appl. 194, 521–
542 (2022)

6. Burtscheidt, J., Claus, M.: Bilevel Linear Optimization Under Uncertainty. In:
Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp. 485–511.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6 17

7. Claus, M.: On continuity in risk-averse bilevel stochastic linear programming with
random lower level objective function. Oper. Res. Lett. 49(3), 412–417 (2021)

8. Claus, M.: Existence of solutions for a class of bilevel stochastic linear programs.
European J. Oper. Res. 299(2), 542–549 (2022)

9. De Loera, J., Rambau, J., Santos, F.: Triangulations: structures for algorithms and
applications, volume 25. Springer Science Business Media (2010) https://doi.org/
10.1007/978-3-642-12971-1

10. Dempe, S.: Foundations of bilevel programming. Springer Science Business Media
(2002) https://doi.org/10.1007/b101970

11. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel pro-
gramming problems. Energy Systems. Springer, Heidelberg, 2015. Theory, algo-
rithms and applications to energy networks https://doi.org/10.1007/978-3-662-
45827-3

12. Dempe, S., Zemkoho, A. (eds.): SOIA, vol. 161. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-52119-6

13. Forcier, M.: Multistage stochastic optimization and polyhedral geometry. PhD.
Thesis, École de Ponts - ParisTech (2022)

https://coral.ise.lehigh.edu/data-sets/bilevel-instances/
https://coral.ise.lehigh.edu/data-sets/bilevel-instances/
https://doi.org/10.1007/978-3-030-52119-6_17
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/b101970
https://doi.org/10.1007/978-3-662-45827-3
https://doi.org/10.1007/978-3-662-45827-3
https://doi.org/10.1007/978-3-030-52119-6
https://doi.org/10.1007/978-3-030-52119-6

Exploiting the Polyhedral Geometry of Stochastic Linear 377

14. Forcier, M., Gaubert, S., Leclère, V.: Exact quantization of multistage stochastic
linear problems (2021) (preprint - arXiv:2107.09566)

15. Gawrilow, E., Joswig, M., polymake: a framework for analyzing convex polytopes.
In Polytopes–combinatorics and computation of DMV Sem (Oberwolfach, 1997),
29, pp. 43–73. Birkhäuser, Basel, (2000)

16. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual (2022)
17. Hiriart-Urruty, J.-B., Lemaréchal, J.-B.: Convex analysis and minimization algo-

rithms I: Fundamentals, volume 305. Springer science business media (2013)
https://doi.org/10.1007/978-3-662-02796-7

18. Homem-de Mello, T., Bayraksan, G.: Monte Carlo sampling-based methods for
stochastic optimization. Surv. Oper. Res. Manag. Sci., 19(1), 56–85 (2014)

19. Ivanov, S.V.: A bilevel programming problem with random parameters in the fol-
lower’s objective function. Diskretn. Anal. Issled. Oper. 25(4), 27–45 (2018)

20. Khachiyan, L., Boros, E., Borys, K., Gurvich, V., Elbassioni, K.:Generating all
vertices of a polyhedron is hard. In 20th Anniversary Volume, 1–17. Springer (2009)
https://doi.org/10.1007/s00454-008-9050-5

21. Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M.: A survey on mixed-integer pro-
gramming techniques in bilevel optimization. EURO J. Comput. Optim. 9, 100007
(2021)

22. Klenke, A: Probability Theory: a Comprehensive Course. Springer (2014) https://
doi.org/10.1007/978-1-4471-5361-0

23. Leobacher, G., Pillichshammer, F.: Introduction to quasi-Monte Carlo integra-
tion and applications. Compact Textbooks in Mathematics. Birkhäuser/Springer,
Cham (2014)

24. Lu, S., Robinson, S.M.: Normal fans of polyhedral convex sets: structures and
connections. Set-Valued Anal. 16(2–3), 281–305 (2008)

25. Mak, W.-K., Morton, D.P., Wood, R.K.: Monte Carlo bounding techniques for
determining solution quality in stochastic programs. Oper. Res. Lett. 24(1–2),
47–56 (1999)

26. Mallozzi, L., Morgan, J.: Hierarchical Systems with Weighted Reaction Set, pp.
271–282. Springer, US, Boston, MA, (1996) https://doi.org/10.1007/978-1-4899-
0289-4 19

27. Muñoz, G., Salas, D., Svensson, A.: Exploiting the polyhedral geometry of stochas-
tic linear bilevel programming (2023). (preprint - arXiv:2211.02268. Former title:
Linear bilevel programming with uncertain lower-level costs)

28. Rambau, J., Ziegler, G.M.: Projections of polytopes and the generalized baues
conjecture. Discrete Comput. Geom. 16(3), 215–237 (1996)

29. Salas, D., Svensson, A.: Existence of solutions for deterministic bilevel games under
a general bayesian approach (2020) (preprint - arXiv:2010.05368)

30. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming–
modeling and theory, volume 28 of MOS-SIAM Series on Optimization. 3rd eds
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Math-
ematical Optimization Society, Philadelphia, PA, (2021)

31. Stackelberg, V.H.: Marktform und Gleichgewitch. Springer (1934) https://doi.org/
10.1007/978-3-642-12586-7

32. Zhou, S., Zemkoho, A.B., Tin, A.: BOLIB: Bilevel Optimization LIBrary of Test
Problems. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161,
pp. 563–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-
6 19

http://arxiv.org/abs/2107.09566
https://doi.org/10.1007/978-3-662-02796-7
https://doi.org/10.1007/s00454-008-9050-5
https://doi.org/10.1007/978-1-4471-5361-0
https://doi.org/10.1007/978-1-4471-5361-0
https://doi.org/10.1007/978-1-4899-0289-4_19
https://doi.org/10.1007/978-1-4899-0289-4_19
http://arxiv.org/abs/2211.02268
http://arxiv.org/abs/2010.05368
https://doi.org/10.1007/978-3-642-12586-7
https://doi.org/10.1007/978-3-642-12586-7
https://doi.org/10.1007/978-3-030-52119-6_19
https://doi.org/10.1007/978-3-030-52119-6_19

Towards an Optimal Contention
Resolution Scheme for Matchings

Pranav Nuti(B) and Jan Vondrák

Stanford University, Stanford, CA 94305, USA
{pranavn,jvondrak}@stanford.edu

Abstract. In this paper, we study contention resolution schemes for
matchings. Given a fractional matching x and a random set R(x) where
each edge e appears independently with probability xe, we want to select
a matching M ⊆ R(x) such that Pr[e ∈ M | e ∈ R(x)] ≥ c, for c as large
as possible. We call such a selection method a c-balanced contention res-
olution scheme.

Our main results are (i) an asymptotically (in the limit as ‖x‖∞ goes
to 0) optimal � 0.544-balanced contention resolution scheme for general
matchings, and (ii) a 0.509-balanced contention resolution scheme for
bipartite matchings. To the best of our knowledge, this result establishes
for the first time, in any natural relaxation of a combinatorial optimiza-
tion problem, a separation between (i) offline and random order online
contention resolution schemes, and (ii) monotone and non-monotone con-
tention resolution schemes.

Keywords: Contention resolution · Matching · Random graphs

1 Introduction

Suppose that there are n employees looking for jobs. Each employee likes a
random set of jobs which, on average, has cardinality one. n jobs are available
in total, and no job is especially popular amongst the employees, though some
employees might have a strong preference for some particular jobs. We would
like to match the employees to jobs.

We are immediately faced with many natural questions: On average, what
fraction of employees can we match to a job they like? Can we match employees
to jobs in a fair way, without partially favoring any particular employee? What if
no employee has a strong preference for any particular job? Is it easier to match
employees if we learn about their preferences all at once, rather than if we learn

The full version of this paper can be found at https://arxiv.org/abs/2211.03599. It con-
tains omitted proofs, discussion of the relationship of this paper with van der Waerden’s
conjecture, and an application of our contention resolution scheme to a combinatorial
allocation problem.
J. Vondrák—Supported by NSF Award 2127781.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 378–392, 2023.
https://doi.org/10.1007/978-3-031-32726-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_27&domain=pdf
https://arxiv.org/abs/2211.03599
https://doi.org/10.1007/978-3-031-32726-1_27

Towards an Optimal Contention Resolution Scheme for Matchings 379

about them in an online fashion? Our paper provides answers to these questions,
through the lens of contention resolution schemes.

Contention resolution schemes aim to solve the following problem: Given a
family of feasible sets F ⊂ 2E and a random set R sampled from a distribution
on 2E , how can we choose a feasible subset I ⊆ R, I ∈ F , so that each element
from R is picked with some guaranteed conditional probability: Pr[e ∈ I | e ∈
R] ≥ c for some fixed c > 0 and all e ∈ E? We call such a scheme c-balanced.
This condition is a kind of fairness constraint, ensuring every element e has a
reasonable chance of making it into I.

In this paper, we think about E as the set of edges in a graph, and F as
the set of matchings of the graph. The constant c is the conditional probability
with which we can ensure an edge ends up in the matching I we pick, given it
appears in R.

A natural assumption on the random set R is that it comes from a product
distribution with marginal probabilities xe such that x is in a polytope corre-
sponding to the family F (either the exact convex hull, or a suitable relaxation,
depending on the application), i.e., roughly speaking, R on average, is in F .
For matchings on graphs, this corresponds to an assumption that each edge e
appears in R independently with probability xe, and the vector (xe)e∈E belongs
to the matching polytope, i.e, is a fractional matching.

The formal notion of contention resolution was first investigated as a tool
for randomized rounding. In this setting, we have an optimization problem sub-
ject to a constraint, and x represents a fractional solution to a relaxation of the
problem. Contention resolution is one of the phases of a randomized rounding
approach to converting this fractional solution into an integral solution: First we
generate a random set R, by sampling each element e independently with proba-
bility xe, and then we select a subset of R which satisfies the desired constraint.
The flexibility of the approach enables its wide applicability in combinatorial
optimization.

This approach was introduced by Feige [2], who developed a contention reso-
lution scheme (CRS) for matchings on the restricted class of star graphs, in the
context of an application to combinatorial auctions. CRSs were then investigated
more systematically in [4] in the context of submodular optimization. In partic-
ular, an optimal (1 − 1/e)-balanced CRS was identified in [4] for the case where
F forms a matroid. The 1 − 1/e factor is optimal even for F = {I : |I| ≤ 1}.

For applications in submodular optimization, it turns out that an additional
property of monotonicity is often useful: A CRS is called monotone, if for every
element e, the probability that e is selected from a set R is non-increasing as
a function on the sets R containing e. This property is generally needed for
the analysis of randomized rounding with a submodular objective function [4].
However, for some applications it is not necessary that a CRS is monotone; in
particular it was not needed in Feige’s original application in [2], and it is also
unnecessary for a related application that we present in the full version of this
paper.

380 P. Nuti and J. Vondrák

Contention resolution has also been studied in online settings (where it has
seen applications to prophet inequalities and sequential pricing problems, for
example) with either adversarial or random ordering of elements [6,8–10,13]. For
example, for matroids there is a 1/2-balanced adversarial order online CRS [9].
We do not investigate online contention resolution here, but we should mention
that in prior results, random order online contention resolution schemes (RCRS)
are able to match the best known offline results: For matroids, there is a (1 −
1/e)-balanced RCRS, due to an elegant LP duality connection with prophet
inequalities [9].

The situation is much more complicated when F encodes constraints such as
matchings and the optimal factors are generally unknown. The cases of bipartite
and general matchings have attracted attention due to their fundamental nature
and their frequent appearance in applications. We can think of matching con-
straints as an intersection of two matroid constraints, and for an intersection of
k matroid constraints, there is a 1

k+1 -balanced RCRS [8]; in particular, this gives
a 1/3-balanced RCRS (and hence also an offline CRS with the same factor) for
bipartite matchings.

Recent work in both offline and online settings has significantly improved
the factor of 1/3. In the offline setting, [7] gives a (1 − e−2)/2 � 0.432-balanced
scheme for general matchings, which can be improved slightly further [11]. Very
interestingly, [11] identifies the optimal monotone scheme for bipartite match-
ings, which achieves a balancedness of � 0.476. Nevertheless, the optimal CRSs
for bipartite and general matchings are still unknown. The primary reason that
it seems to be harder to obtain the optimal non-monotone scheme is that deci-
sions on whether an edge should be included in the matching need not be local
(i.e., a function of the edge’s immediate neighborhood), and it is harder to ana-
lyze the behavior of an algorithm that makes non-local decisions. In terms of
impossibility results, an upper bound of � 0.544 follows from a classical paper
of Karp and Sipser [1], as discussed in [7].

In the online setting, the best known CRSs are due to recent results in [12]: In
the random order case, they provide a 0.474-balanced scheme for general match-
ings and a 0.476-balanced scheme for bipartite matchings, and in the bipartite
case, they also establish an upper bound of 0.5. Notably, the 0.474-balanced
scheme is in fact the best known CRS for general matchings, whether offline or
online. In the adversarial order case, they provide a 0.344-balanced scheme for
general matchings and a 0.349-balanced scheme for bipartite matchings.

1.1 Our Results

To explain our results, we start by formally setting up some notation. Given a
graph G = (V,E), a fractional matching is a point x ∈ [0, 1]E in the matching
polytope, i.e., a point in the convex hull of vectors 1M for all matchings M in
G. For a fractional matching x, let xuv be the component of x corresponding to
the edge (u, v).

Towards an Optimal Contention Resolution Scheme for Matchings 381

The problem we are interested in studying is:

Contention Resolution for Matchings. We are given a fractional matching x,
and a random set R(x) where edges appear independently with probabilities
xuv. Our goal is to choose a matching M ⊆ R(x) such that for every edge (u, v),

Pr[(u, v) ∈ M | (u, v) ∈ R(x)] ≥ c.

Such a scheme is called c-balanced, and we want to find a scheme with c as large
as possible. The main questions we ask are:

(i) Is there a contention resolution scheme for matchings achieving the upper
bound � 0.544 of Karp and Sipser?

(ii) Is there a separation between the optimal c for online and offline contention
resolution schemes?

(iii) Is there a separation between the optimal c for monotone and non-monotone
contention resolution schemes?

In this paper, we prove the following results. The first result, which applies
to both bipartite and non-bipartite matchings, is an attempt to answer (i).

Theorem 1. Assuming that x is a fractional matching such that ‖x‖∞ ≤ ε,
there is (γ −f(ε))-balanced contention resolution scheme, where γ � 0.544 is the
impossibility bound of Karp and Sipser and limε→0 f(ε) = 0.

For fractional matchings without any assumption on their �∞ norm1, we
present an improved CRS in the bipartite case.

Theorem 2. There is 0.509-balanced contention resolution scheme for bipartite
matchings.

This theorem answers questions (ii) and (iii), since the optimal RCRS for
bipartite matchings is at most 0.5-balanced, and the optimal monotone CRS
for bipartite matchings is � 0.476-balanced. Our theorem thus establishes sep-
arations that, to our knowledge, have not been demonstrated in any other nat-
ural relaxations of combinatorial optimization problems before. (Note that for
matroids, the known optimal (1 − 1/e)-balanced schemes are monotone.)

Returning to the context we started this paper with, our results establish
that we can match more than half of all the employees to jobs they like without
partially favoring any particular employee, and in case no employee has a strong
preference for any particular job, we can do better, and match 54% of employees
to jobs. This is a significant improvement over what we can do if we learn the
employees preferences in an online fashion.

We should also mention here the important concept of a correlation gap.
Informally, the correlation gap measures how much we might lose while optimiz-
ing a function, in the worst case, by assuming that the distributions that define
1 It might appear from the work of Bruggmann and Zenklusen (see lemma 7 in [11])

that the assumption of ‖x‖∞ ≤ ε should be easy to drop from Theorem 1. This would
be the case if our theorem applied to graphs with parallel edges, which unfortunately,
it does not.

382 P. Nuti and J. Vondrák

the function are independent rather than correlated. In the context of bipartite
matchings, the correlation gap is defined as the minimum possible ratio between
E[max{∑e∈M we : M ⊆ R(x), M is a matching}] and

∑
e∈E wexe, where x is

a fractional bipartite matching and w is any vector of weights. By LP duality
(see [4]), Theorem 2 also provides (the best known) lower bound of 0.509 on the
correlation gap for bipartite matchings.

In light of Theorem 1, we believe that the correlation gap for bipartite (and
perhaps even non-bipartite) matchings is indeed the Karp-Sipser bound of γ �
0.544, and the optimal CRS is γ-balanced.

1.2 Our Techniques

Our Theorem 1 follows from an improved and simplified analysis of Karp and
Sipser’s algorithm [1] for constructing matchings by adding random edges adja-
cent to leaves. While we utilize many of the ideas from Karp and Sipser’s paper,
our analysis of the algorithm is an improvement in several ways:

– We obtain a contention resolution scheme, while Karp and Sipser only com-
pute the expected size of the maximum matching. This yields the somewhat
surprising conclusion that Karp and Sipser’s algorithm works just as well for
weighted matchings as it does for unweighted matchings.

– We avoid Karp and Sipser’s (technically complicated) use of the so-called
differential equation method. We also avoid the use of generating functions,
another method used recently to calculate the expected size of the maximum
matching in random graphs [5].

– We obtain results for any random graph R(x) constructed from a fractional
matching satisfying ‖x‖∞ ≤ ε, unlike Karp and Sipser who only consider the
Erdos-Renyi random graph Gn,c/n.

Many previous results require that there be some kind of symmetry in the ran-
dom graph to obtain bounds on the size of the matching. We stress that we do
not need to make any such assumption on R(x).

We do need to assume that ‖x‖∞ ≤ ε. This assumption is useful because it
ensures that the neighbourhood of any particular edge looks like a random tree.
A closely related assumption (“local weak convergence”) has been considered
previously in the literature. This assumption, together with recursive distribu-
tional equations, is used to formalize various statistical mechanical heuristics
regarding matchings in random graphs. Most related to our work is the work
of Bordenave, Lelarge, and Salez [3]. Once again, the advantage of our method
is that we obtain a CRS (as opposed to computing the expected size of the
maximum matching) and we avoid the use of technically complicated tools.

These improvements come at a cost–we assume that the average degree of
each vertex is less than or equal to 1. The theoretical and practical significance
of this case, and the importance of contention resolution schemes, make this
trade-off a good choice.

Our Theorem 2 requires several new techniques, although the basic idea can
be traced back to Karp and Sipser as well: When deciding which edge incident

Towards an Optimal Contention Resolution Scheme for Matchings 383

to a vertex we should add to a matching, it is beneficial to pick an edge which
is adjacent to a leaf, since it doesn’t block us from adding other edges into the
matching. It turns out that in general, it is actually better not to follow this
rule absolutely (at least in our analysis) but we still pick degree-1 edges with
significant priority over other edges.

We present two different schemes using these ideas; the first one is simpler and
achieves a factor � 0.480 (already establishing the separation between monotone
and non-monotone schemes). An interesting feature of this scheme is that it can
be implemented as a parallel algorithm with each vertex independently making
decisions about whether to include an edge adjacent to it in the matching by
looking only at its immediate neighborhood. The best schemes known previously
did not have this useful property. Our more complicated scheme achieves a factor
� 0.509 (thus demonstrating a separation between offline CRSs and RCRSs).

Both schemes rely on an extended version of contention resolution for choos-
ing 1 element from a possibly correlated distribution, which we present in Sect. 3,
and the 0.509-balanced scheme uses the FKG inequality to handle correlations
between edges in the final stage.

Throughout this paper, even though we state our theorems for fractional
matchings x, we will actually only need to assume that x satisfies the vertex
constraints

∑
v xuv ≤ 1. Furthermore, we can always assume that x satisfies∑

v xuv = 1 for every u. We can achieve this by adding vertices and edges with
probabilities such that the edge probabilities at each vertex add up to 1; this
only makes the task of designing a CRS more difficult.

2 An Optimal CRS When ‖x‖∞ → 0

2.1 The Karp-Sipser Algorithm

The Karp-Sipser algorithm is a method to select a matching in a graph. Given a
graph G, the algorithm deletes all the degree 0 vertices, selects a random degree
1 vertex (if one exists), and adds the edge adjacent to it to the matching. Then,
it deletes all the edges adjacent to the edge just added to the matching, and
recurses on the newly obtained graph G′. Note that unlike in the paper of Karp
and Sipser, we do not use a two stage process to generate the matching.

An attractive feature of the Karp-Sipser algorithm is that it doesn’t “make
any mistakes”. This is because for any vertex v of degree 1 in a graph G, G has
a maximum matching in which v is matched.

If an edge is deleted by the algorithm at some stage, we will say that it
disappears. We also say that a vertex is added to the matching if an edge adjacent
to it is added to the matching. Before we discuss the analysis of the algorithm,
we take a brief detour.

2.2 Random Trees

Consider the following method to generate a random tree in steps. Fix two special
vertices, u and v, and draw an edge between them. In step i, for each vertex at

384 P. Nuti and J. Vondrák

the depth i − 1, independently sample a Poisson random variable with mean 1,
and add as many children to the vertex as the obtained sample. Stop at step j
if there are no vertices at depth j − 1. Let us call the random tree generated by
this process T .

Since the two subtrees of u and v are independent copies of a Galton-Watson
process with 1 expected child at each node, it is straightforward to prove that
this process terminates with probability 1. So it is almost always true that this
process produces a finite tree.

The following lemma explains why we care about the process T : Up to small
errors, it describes the distribution of the connected component containing a
given edge (u, v) in R(x). We omit the proof which involves a coupling argument
and an application of Le Cam’s theorem.

Lemma 1. Let x be a fractional matching with
∑

w xvw = 1 for every vertex v,
and ‖x‖∞ ≤ ε. Let R(x) be the corresponding random graph. Let us condition
on (u, v) ∈ R(x) and define N((u, v)) to be the connected component in R(x)
containing (u, v). Let T be a random tree produced by the process described above
and T0 be any finite realization of the process. Then

|Pr[N((u, v)) = T0 | (u, v) ∈ R(x)] − Pr[T = T0]| = O(ε|T0|2).
We stress that the lemma is only true for graphs without parallel edges. For

graphs with parallel edges, the lemma fails, even for the simple case of a graph
with only two vertices. The use of this lemma makes it impossible to apply the
work of Bruggmann and Zenklusen (lemma 7 in [11]).

2.3 The Karp-Sipser Algorithm on Trees

It is easy to prove by induction (using the fact that trees always have degree 1
vertices) that in an execution of the Karp-Sipser algorithm on a forest, an edge
must eventually either disappear, or else, is added to the matching. Together with
the fact that the Karp-Sipser algorithm does not make mistakes, this shows that
the Karp-Sipser algorithm finds a maximum matching in a tree.

Given a tree, we would like to be able to analyze which vertices and edges
end up in the matching the algorithm selects, independent of the random choices
the algorithm makes. To that end, consider the following algorithm to label the
vertices of a tree (this is similar to, but not exactly same as the scheme in [1]):

Root the tree at an arbitrary vertex. Starting at the maximum possible depth,
look at all the vertices at a fixed depth. If a vertex has no L children (this can
perhaps be true vacuously), label it L. Else, label it W. Iteratively label vertices
higher in the tree, until the root of the tree receives a label.

The following claims are true (regardless of the chosen root, and regardless
of the random choices the algorithm makes):

1. If an edge between a W parent and an L child disappears, it must be because
the W vertex was added to the matching.

2. Every W vertex is added to the matching.

Towards an Optimal Contention Resolution Scheme for Matchings 385

3. Every edge between two W vertices disappears.

Proof of claim 1. Suppose by way of contradiction that an edge between a W
parent and L child disappears because the L vertex was added to the matching.
Certainly, this does not happen in the first step of the execution of the algorithm.
Consider the very first time it happens.

The L vertex must have been added to the matching through a W labelled
child it has. This W vertex must have degree 1, and so the edge connecting it
to an L child must have disappeared. This contradicts our assumption of the
original edge being the first edge between a W parent and an L child that has
disappeared because the L vertex was added to the matching. 	

Proof of claim 2. Every W vertex has an edge connecting it to an L child;
either that edge disappears, and the claim follows by claim 1, or that edge is
added to the matching and the claim still follows. 	

Proof of claim 3. Suppose by way of contradiction that an edge between
two W vertices is added to the matching. Consider the state of the graph just
before this edge is added. One of the vertices must have degree 1, so an edge
connecting to its L child must have disappeared. But the only way such an edge
can disappear is by the W vertex being added to the matching, contradiction! 	

2.4 Putting It Together

We can now calculate the probability with which the Karp-Sipser algorithm,
when executed on the random tree T , adds the special edge between u and v to
the matching.

To this end, first label the trees rooted at u and v using the procedure
described in the previous section (imagining the special edge connecting u and
v does not exist, and we are just labelling two different rooted trees).

Let us first calculate the probability λ that u is labelled L:

λ = Pr[u is labelled L]
= Pr[u has no children labelled L]

=
∞∑

k=0

Pr[u has k children and none of them are labelled L]

=
∞∑

k=0

e−1

k!
(1 − λ)k = e−1 · e1−λ = e−λ

λ is thus the unique real number which solves the equation x = e−x.
Second, let us calculate the probability that the edge between u and v is

added to the matching, and v is labelled L. Imagine now rooting the random
tree T at u. This does not change the label of any of the vertices except possibly
u which is now labelled W.

This means that u must end up in the matching. None of the edges connecting
u with any of its W children end up in the matching. All the edges connecting u

386 P. Nuti and J. Vondrák

with any of its L children, and the special edge between u and v are completely
symmetric from the standpoint of the execution of the Karp-Sipser algorithm.
Therefore,

Pr[(u, v) is added to the matching, v is labelled L]

=
∞∑

k=0

Pr[(u, v) is added to the matching, v is labelled L, u has k L children]

=
∞∑

k=0

λ

k + 1

∞∑

r=k

(
r

k

)

λk(1 − λ)r−k e−1

r!
=

∞∑

k=0

λk+1e−λ

(k + 1)!
= (eλ − 1)e−λ = 1 − λ

Third, note that if we initially labelled both u and v L, then (u, v) must end up
in the matching. This is because if we imagine rooting the tree at u, u is labelled
W, so ends up in the matching, but the only way this can happen is if (u, v)
ends up in the matching since all of its other children are labelled W.

Fourth, note that if we initially labelled both u and v W, then (u, v) must
disappear. This is because if we imagine rooting the tree at u, the labelling
remains the same, and every edge between W vertices disappears.

Finally, we can compute the probability that the special edge (u, v) ends up
in the matching selected by Karp-Sipser as the sum of the probabilities of the
edge ending up in the matching when u and v are labelled (respectively) L and
L, L and W, W and L, and W and W. This is equal to 2(1 − λ) − λ2.

Theorem 1 now follows from a careful application of Lemma 1. Lemma 1
involves establishing a close correspondence between the neighborhood of an
edge in the Galton-Watson process and the neighborhood of an edge in R(x).
This correspondence can be exploited to obtain a correspondence in the behavior
of the Karp-Sipser algorithm in the two settings.

We omit the details, but we show here how Lemma 1 can be applied to prove
the weaker statement that for fractional matchings x such that ‖x‖∞ → 0, the
neighborhood of any edge (u, v) does not contain a cycle with high probability.
This weaker statement contains the main idea of the proof of Theorem 1.

Lemma 1 implies that for any set of finite trees F = {T1, T2, . . . , Tm} that
are realizations of the random process T ,

|Pr[N((u, v)) ∈ F | (u, v) ∈ R(x)] − Pr[T ∈ F]| = O
(
ε
∑

|Ti|2
)

and hence it follows that

|Pr[N((u, v)) /∈ F | (u, v) ∈ R(x)] − (1 − Pr[T ∈ F])| = O
(
ε
∑

|Ti|2
)

and so, for any F we have

lim
ε→0

Pr[N((u, v)) contains a cycle | (u, v) ∈ R(x)]

≤ lim
ε→0

Pr[N((u, v)) /∈ F | (u, v) ∈ R(x)]

= 1 − Pr[T ∈ F]

Towards an Optimal Contention Resolution Scheme for Matchings 387

Since we know that T produces a finite tree with probability 1, we can take F
larger and larger to prove that

lim
ε→0

Pr[N((u, v)) contains a cycle | (u, v) ∈ R(x)] = 0

3 Improved CRSs for Bipartite Matchings

Now we turn to contention resolution for bipartite matchings, without any
assumption on the �∞ norm of the fractional matching.

A basic building block of our CRSs is the following theorem which establishes
the existence of a scheme for choosing 1 out of n elements (historically the first
CRS [2]).

Theorem 3. Suppose that D is a distribution on 2E such that for every set
S ⊆ E,

Pr
R∼D

[S ∩ R = ∅] ≥
∑

i∈S

βi.

Then there is a monotone contention resolution scheme for choosing one element
e(R) from R ∼ D such that Pr[e(R) = i] ≥ βi for every i ∈ E.

This theorem can be proved using a max-flow/min-cut argument, as briefly
discussed in [2]. We omit the proof.

3.1 A 0.480-Balanced Scheme for Bipartite Matchings

Before going to the proof of Theorem 2, we will show the existence of a simple
2(1 − e−1/e) − e−2-balanced contention resolution scheme for bipartite match-
ings2. We remark that 2(1 − e−1/e) − e−2 ≥ 0.480 and hence this already beats
the optimal monotone scheme for bipartite matchings. By necessity, our scheme
is non-monotone and this result establishes a strict separation between monotone
and non-monotone schemes for bipartite matchings.

The Simple Scheme:

1. For each edge (u, v) (with probability xuv of appearing), independently
declare it active with probability 1−e−xuv

xuv
given it appears.

2. For each vertex u, call an active edge (u, v) “available at vertex u” if v has
no other edges adjacent to it which are active.

3. Using a contention resolution scheme for 1 element, select one of the available
edges at each vertex. Ensure that an edge (u, v) gets selected at vertex u with
probability at least xuv

(
(1 − e−1/e) − 1

2e2

)
+ e2xuv−exuv

2e2 .
4. The set of edges selected at all the vertices form the matching M .

2 Note the similarity in the expression to 2(1−λ)−λ2 = 2(1−e−λ)−λ2, the constant
from our previous analysis. This similarity is not a coincidence, and we can think of
the scheme we describe as first-order approximation to Karp-Sipser.

388 P. Nuti and J. Vondrák

The first step of the scheme is a kind of pre-processing which ensures that
edges with high probabilities of appearing don’t destroy the chances of neigh-
bouring edges getting picked by the scheme. This strategy has also been used
in the literature previously [11]. The second step is a first attempt at using the
idea that it is always useful to add vertices with degree 1 into the matching.
This does not seem to have been explicitly exploited by previous CRSs.

To analyze the algorithm, note firstly that it is easy to see that the selected
edges really do form a matching. Secondly, let us note that the probability that
an edge (u, v) is available at a vertex u is

F (xuv) =
(
1 − e−xuv

) ∏

u′∈δ(v),u′ �=u

e−xu′v =
(
1 − e−xuv

)
e−(1−xuv) =

exuv − 1
e

and similarly, the probability that an edge (u, v) is isolated amongst active edges
is

(
1 − e−xuv

) (
e−(1−xuv)

)2

=
e2xuv − exuv

e2

Hence, if a CRS of the sort used in step 3 exists, the desired result follows
since

Pr[(u, v) ∈ M]
= 2Pr[(u, v) is selected at u] − Pr[(u, v) is selected at both u, v]
= 2Pr[(u, v) is selected at u] − Pr[(u, v) is isolated amongst active edges]

= 2xuv

(

(1 − e−1/e) − 1
2e2

)

+
e2xuv − exuv

e2
− e2xuv − exuv

e2

= 2xuv

(

(1 − e−1/e) − 1
2e2

)

Furthermore whether (u, vi) is available at u is independent of whether (u, vj)
is available at u (this is where we use the fact that the graph is bipartite; note
that we actually only need to assume that the graph is triangle-free; it is unclear
how to drop this assumption). Therefore, it follows from Theorem 3 that if the
probability of (u, vi) appearing is xi (short for xuvi

), the existence of the required
CRS depends only on whether

Pr[at least one of (u, vi) is available] = 1 −
n∏

i=1

(1 − F (xi))

≥
n∑

i=1

xi

(

(1 − e−1/e) − 1
2e2

)

+
e2xi − exi

2e2

Therefore, the desired result follows from the following lemma, whose proof we
omit.

Lemma 2. If
∑

xi ≤ 1, xi ≥ 0, and F (x) = ex−1
e , then

1 −
n∏

i=1

(1 − F (xi)) ≥
n∑

i=1

xi

(

(1 − e−1/e) − 1
2e2

)

+
e2xi − exi

2e2

Towards an Optimal Contention Resolution Scheme for Matchings 389

3.2 A 0.509-Balanced Scheme for Bipartite Matchings

In this section we present our best CRS for bipartite matchings which beats the
best possible RCRS. We call the set of vertices on the left V1, and on the right,
V2. There are two main ideas. One idea is to select edges in two stages, with the
first stage devoted to running contention resolution on the edges at each vertex
in V1, and the second stage is devoted to running contention resolution on the
edges picked in stage 1 at each vertex in V2.

The other main idea involves noticing that edges (u, v) such that v has degree
1 in R have no competition in the second stage and hence should be preferentially
selected in the first stage, since if selected they will certainly survive in our
matching.

The Red/Blue/Gray Scheme:

1. Recall that Pr[(u, v) ∈ R] = xuv. Decide for each edge (u, v) ∈ R inde-
pendently at random whether to mark it gray, so that Pr[(u, v) is gray] =
xuv − (1 − e−xuv). We call the edges (u, v) ∈ R which are not gray active.

2. For each (u, v) such that (u, v) is the only active edge incident to v,
decide independently at random whether to mark (u, v) red, so that
Pr[(u, v) is red] = 1 − e−xuv/e. Mark all other active edges blue. We have
Pr[(u, v) is blue] = e−xuv/e − e−xuv .

3. For each u ∈ V1, if there are any red edges incident to u, perform contention
resolution to include one of them in R1, so that Pr[(u, v) ∈ R1] = (1 −
e−1/e)xuv.

4. For each u ∈ V1, if there are no red edges incident to u, and there are some
blue edges incident to u, perform contention resolution to include one of them
in R2, so that Pr[(u, v) ∈ R2] = (e−1/e − e−1)xuv.

5. For each u ∈ V1, if there are no active (red or blue) edges incident to u,
and there are some gray edges incident to u, perform contention resolution
to include one of them in R3, so that Pr[(u, v) ∈ R3] ≥ 1

2ex2
uv.

6. Finally, for each v ∈ V2, perform contention resolution among all edges in
R1 ∪ R2 ∪ R3 incident to v, to include one of them in M , so that

Pr[(u, v) ∈ M] ≥ 0.509 xuv.

Implicit in step 2 is the claim that the definition of red edges is valid. Implicit
in each of steps 3, 4, 5, and 6 above is a claim that there exists a certain con-
tention resolution scheme for choosing 1 out of n elements. The existence of such
schemes can be proved by applying Theorem 3, if we can calculate the probabil-
ity that at least one of a subset of edges “is available for consideration at that
stage” (i.e., is red, is blue, etc.).

For steps 3, 4, and 5, this quantity is fairly simple to calculate, because all
the choices (to designate edges red or blue or gray) are made independently.
The following lemma, whose proof we omit, summarizes the claimed existences
in these cases.

390 P. Nuti and J. Vondrák

Lemma 3. The definition of red edges is valid. There are CRSs among red,
blue, and gray edges such that Pr[(u, v) ∈ R1] = (1 − e−1/e)xuv,Pr[(u, v) ∈
R2] = (e−1/e − e−1)xuv, and Pr[(u, v) ∈ R3] ≥ 1

2ex2
uv for every edge (u, v).

To finish, we need to analyze Step 6 of the algorithm, which is contention
resolution among all the surviving edges on the right-hand side. Here, there can
be at most one red edge incident to a vertex v ∈ V2, possibly multiple gray edges
which appear independently, and possibly multiple blue edges whose survival
up to this stage of the scheme is correlated. This correlation causes the main
trouble in our analysis of this final step, because it makes it harder to calculate
the probability that at least one of a subset of edges incident at a vertex v is in
R1 ∪ R2 ∪ R3. Ideally, we would like to prove that the appearance of blue edges
satisfies some form of negative correlation. At the moment, we are able to prove
only pairwise negative correlation which is sufficient to achieve the factor of
0.509. A stronger correlation result (for example negative cylinder dependence)
would lead to an improved factor. We include a full proof of the following lemma
due to its conceptual importance in the overall proof.

Lemma 4. For any two incident edges (u, v) and (u′, v),

Pr[(u, v) ∈ R2 & (u′, v) ∈ R2 | (u, v), (u′, v) are blue]

≤ Pr[(u, v) ∈ R2 | (u, v), (u′, v) are blue]·Pr[(u′, v) ∈ R2 | (u, v), (u′, v) are blue].

Proof. Define Γ (u) = {v′ : (u, v′) active} and Γ (u′) = {v′ : (u′, v′) active}. Note
that conditioning on (u, v), (u′, v) being blue edges is the same as conditioning
on v ∈ Γ (u) ∩ Γ (u′), because edges (u, v), (u′, v) being active also means that
they must be blue.

We claim that conditioned on Γ (u), Γ (u′) such that v ∈ Γ (u) ∩ Γ (u′), the
probability that (u, v) ∈ R2 is decreasing in Γ (u) and increasing in Γ (u′), while
conversely the probability that (u′, v) ∈ R2 is increasing in Γ (u) and decreasing
in Γ (u′).

We prove this by considering a fixed choice of the active edges incident to
V1 \ {u, u′}, and at the end averaging over these choices. Consider Γ (u), Γ (u′)
where v ∈ Γ (u) ∩ Γ (u′). For (u, v) to be selected in R2, there cannot be any
red edge incident to u. The only candidates for such red edges are (u, ṽ) where
ṽ ∈ Γ (u) \ Γ (u′), because edges incident to Γ (u) ∩ Γ (u′) are blue by definition.
For each ṽ ∈ Γ (u) \ Γ (u′), (u, ṽ) is red if ṽ does not have any other incident
active edges (and an additional independent coin flip succeeds, as defined in Step
2). Clearly, the event of no red edge incident to u is monotonically decreasing in
Γ (u) \ Γ (u′).

In case there is no red edge incident to u, we perform contention resolution
among the blue edges incident to u, which are all the edges (u, v′), v′ ∈ Γ (u).
Since this scheme is monotone, the probability of survival is monotonically
decreasing in Γ (u). This monotonicity property also remains preserved when
we average over the choices of active edges incident to V1 \ {u, u′}. Overall, the
probability of (u, v) surviving in R2 is monotonically decreasing in Γ (u) and

Towards an Optimal Contention Resolution Scheme for Matchings 391

increasing in Γ (u′). Symmetrically, the probability of (u′, v) surviving in R2 is
monotonically decreasing in Γ (u′) and increasing in Γ (u).

Given this monotonicity property, we use the FKG inequality to prove our
result. The appearances of vertices in Γ (u) and Γ (u′) are independent (since
these are determined by the edges incident to u and u′ respectively). Let us
define γ ∈ {0, 1}2n where γi = 0 if i ∈ Γ (u) and γn+i = 1 if i ∈ Γ (u′). As we
argued, Pr[(u, v) ∈ R2 | γ] is increasing in γ and Pr[(u′, v) ∈ R2 | γ] is decreasing
in γ, for all γ consistent with v ∈ Γ (u)∩Γ (u′). Therefore, by the FKG inequality
applied to this subspace (conditioned on v ∈ Γ (u) ∩ Γ (u′)),

Pr[(u, v) ∈ R2 & (u′, v) ∈ R2 | v ∈ Γ (u) ∩ Γ (u′)]

≤ Pr[(u, v) ∈ R2 | v ∈ Γ (u) ∩ Γ (u′)] · Pr[(u′, v) ∈ R2 | v ∈ Γ (u) ∩ Γ (u′)].

as desired. 	

The main takeaway from this lemma is that if we let β be a lower bound on

the probability that an edge survives in R2 given that it is blue, then, conditioned
on having at least two active (and hence blue) edges at a vertex v in V2 in step
6, the probability that one of them survives in R2 is at least 2β −β2. In the final
analysis of step 6, if there are more than 2 blue edges at a vertex v, we only use
two of them. This allows us to establish our desired conclusion.

Theorem 4. There is a CRS in Step 6 which achieves a factor of 0.509.

To prove the theorem, we consider a vertex v ∈ V2 and all the edges incident
to v which are in R1 ∪ R2 ∪ R3 (i.e. survived contention resolution on the left-
hand side). To show that the required kind of CRS exists, we consider a subset
of edges S incident to v, and compute the probability that at least one of them
survives as follows:

Pr[S ∩ (R1 ∪ R2 ∪ R3) = ∅] = Pr[S ∩ R1 = ∅]
+ Pr[S ∩ R1 = ∅ & S ∩ R2 = ∅]
+ Pr[S ∩ (R1 ∪ R2) = ∅ & S ∩ R3 = ∅].

We finish the proof by establishing lower bounds on each of the three terms
and applying Theorem 3. Lemma 4 is useful in the analysis of the second term.
We omit the proof here. We refer the reader to the full version for details.

Acknowledgements. We would like to thank Chandra Chekuri for stimulating dis-
cussions.

References

1. Karp, R.M., and Sipser, M.: Maximum matchings in sparse random graphs. In:
22nd Annual Symposium on Foundations of Computer Science, Nashville, Ten-
nessee, USA, 28–30 October 1981, pp. 364–375. IEEE Computer Society (1981)

392 P. Nuti and J. Vondrák

2. Feige, U.: On maximizing welfare when utility functions are subadditive. SIAM J.
Comput. 39(1), 122–142 (2009)

3. Bordenave, C., Lelarge, M., Salez, J.: Matchings on innite graphs. Probab.
Theory Relat. Fields 157(1), 183–208 (2013)

4. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

5. Balister, P., and Gerke, S.: Controllability and matchings in random bipartite
graphs. In: Czumaj, A., Georgakopoulos, A., Král, D., Lozin, V., Pikhurko, O.
(eds.) Surveys in Combinatorics 2015. London Mathematical Society Lecture Note
Series. Cambridge University Press, pp. 119–146 (2015)

6. Feldman, M., Svensson, O., Zenklusen, R.: Online contention resolution schemes.
In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, 10–12 Jan-
uary 2016, pp. 1014–1033. SIAM (2016)

7. Guruganesh, G., Lee, E.: Understanding the correlation gap for matchings. In:
Lokam, S.V., and Ramanujam, R. (eds.) 37th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS 2017,
11–15 December 2017, Kanpur, India. LIPIcs, 1–15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2017)

8. Adamczyk, M., Wlodarczyk, M.: Random order contention resolution schemes. In:
Thorup, M. (ed.) 59th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2018, Paris, France, 7–9 October 2018, pp. 790–801. IEEE Computer
Society (2018)

9. Lee, E., Singla, S.: Optimal online contention resolution schemes via ex-ante
prophet inequalities. In: Azar, Y., Bast, H., and Herman, G. (eds.) 26th Annual
European Symposium on Algorithms, ESA 2018, 20–22 August 2018, Helsinki,
Finland. LIPIcs, 1–14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

10. Fu, H., Tang, Z.G., Wu, H., Wu, J., Zhang, Q.: Random order vertex arrival con-
tention resolution schemes for matching, with applications. In: Bansal, N., Merelli,
E., Worrell, J. (eds.) 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, 12–16 July 2021, Glasgow, Scotland (Virtual Confer-
ence). LIPIcs, 1–20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

11. Bruggmann, S., Zenklusen, R.: An optimal monotone contention resolution scheme
for bipartite matchings via a polyhedral viewpoint. Math. Program. 191(2), 795–
845 (2022)

12. MacRury, C., Ma, W., Grammel, N.: On (random-order) online contention resolu-
tion schemes for the matching polytope of (bipartite) graphs (2022). https://arxiv.
org/abs/2209.07520

13. Pollner, T., Roghani, M., Saberi, A., Wajc, D.: Improved online contention reso-
lution for matchings and applications to the gig economy. In: Proceedings of the
23rd ACM Conference on Economics and Computation. EC 2022, pp. 321–322.
Association for Computing Machinery, Boulder, CO, USA (2022)

https://arxiv.org/abs/2209.07520
https://arxiv.org/abs/2209.07520

Advances on Strictly Δ-Modular IPs

Martin Nägele1(B) , Christian Nöbel2 , Richard Santiago2 ,
and Rico Zenklusen2

1 Research Institute for Discrete Mathematics and Hausdorff Center for
Mathematics, University of Bonn, Bonn, Germany

mnaegele@uni-bonn.de
2 Department of Mathematics, ETH Zurich, Zurich, Switzerland

{cnoebel,rtorres,ricoz}@ethz.ch

Abstract. There has been significant work recently on integer programs
(IPs) min{c�x : Ax ≤ b, x ∈ Z

n} with a constraint marix A with bounded
subdeterminants. This is motivated by a well-known conjecture claiming
that, for any constant Δ ∈ Z>0, Δ-modular IPs are efficiently solvable,
which are IPs where the constraint matrix A ∈ Z

m×n has full column
rank and all n×n minors of A are within {−Δ, . . . , Δ}. Previous progress
on this question, in particular for Δ = 2, relies on algorithms that solve
an important special case, namely strictly Δ-modular IPs, which further
restrict the n×n minors of A to be within {−Δ, 0, Δ}. Even for Δ = 2, such
problems includewell-known combinatorial optimization problems like the
minimum odd/even cut problem. The conjecture remains open even for
strictly Δ-modular IPs. Prior advances were restricted to prime Δ, which
allows for employing strong number-theoretic results.

In this work, we make first progress beyond the prime case by present-
ing techniques not relying on such strong number-theoretic prime results.
In particular, our approach implies that there is a randomized algorithm
to check feasibility of strictly Δ-modular IPs in strongly polynomial time
if Δ ≤ 4.

Keywords: Bounded subdeterminants · Congruency constraints

1 Introduction

Integer Programs (IPs) min{c�x : Ax ≤ b, x ∈ Z
n} are a central NP-hard

problem class in Combinatorial Optimization. There is substantial prior work

Funded through the Swiss National Science Foundation grants 200021 184622 and
P500PT 206742, the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 817750), and
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXZ-2047/1 – 390685813.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 393–407, 2023.
https://doi.org/10.1007/978-3-031-32726-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_28&domain=pdf
http://orcid.org/0000-0002-3059-6402
http://orcid.org/0000-0001-6864-1953
http://orcid.org/0000-0002-3515-4953
http://orcid.org/0000-0002-7148-9304
https://doi.org/10.1007/978-3-031-32726-1_28

394 M. Nägele et al.

and interest in identifying special classes of polynomial-time solvable IPs while
remaining as general as possible. One of the best-known such classes are IPs with
a constraint matrix that is totally unimodular (TU), i.e., the determinant of any
of its square submatrices is within {−1, 0, 1}. A long-standing open conjecture in
the field is whether this result can be generalized to Δ-modular constraint matri-
ces for constant Δ. Here, we say that a matrix A ∈ Z

k×n is Δ-modular if it has
full column rank and all n × n submatrices have determinants in {−Δ, . . . , Δ}.1

For brevity, we call an IP with Δ-modular constraint matrix a Δ-modular IP.
We recap the above-mentioned conjecture below. Unfortunately, we do not know
its precise origin; it may be considered folklore in the field.

Conjecture 1. For constant Δ ∈ Z≥0, Δ-modular IPs can be solved in polynomial
time.

First progress on Conjecture 1 was made by Artmann, Weismantel, and Zen-
klusen [3], who showed that it holds for Δ = 2 (the bimodular case). Fiorini,
Joret, Weltge, and Yuditsky [11] show that the conjecture is true for an arbi-
trary constant Δ under the extra condition that the constraint matrix has at
most two non-zero entries per row or column. Through a non-trivial extension
of the techniques in [3], it was shown by Nägele, Santiago, and Zenklusen [24]
that there is a randomized algorithm to check feasibility of an IP with a strictly
3-modular constraint matrix in polynomial time. Here, a matrix A ∈ Z

k×n is
called strictly Δ-modular if it has full column rank and all its n×n submatrices
have determinants in {−Δ, 0,Δ}.

As a key ingredient, all these prior approaches solve certain combinatorial
optimization problems with congruency constraints. This is not surprising, as
even strictly Δ-modular IPs include the following class of MCCTU problems:2

Multi-Congruency-Constrained TU Problem (MCCTU): Let T ∈
Z

k×n be TU, b ∈ Z
k, c ∈ R

k, m ∈ Z
q
>0, γi ∈ Z

n for i ∈ [q], r ∈ Z
q. Solve

min{c�x : Tx ≤ b, γ�
i x ≡ ri (mod ∗)mi ∀i ∈ [q], x ∈ Z

n} .

Unless mentioned otherwise, we assume that in the context of MCCTU problems,
q and mi are constant. Even MCCTU with just a single congruency constraint,
i.e., q = 1, already contains the classical and well-studied odd and even cut prob-
lems, and, more generally, the problem of finding a minimum cut whose number
of vertices is r (mod m). (See [5,14,19,25,26,29] for related work.) It can also

1 A weaker variant of the conjecture claims efficient solvability of IPs with totally Δ-
modular constraint matrices, where all subdeterminants are bounded by Δ in abso-
lute value. The conjecture involving Δ-modular matrices implies the weaker variant.
Indeed, an IP min{c�x : Ax ≤ b, x ∈ Z

n} with a totally Δ-modular constraint matrix
can be reformulated as min{c�(x+ − x−) : A(x+ − x−) ≤ b, x+, x− ∈ Z

n
≥0}. It is not

hard to see that the constraint matrix of the new LP remains totally Δ-modular;
moreover, it has full column rank because of the non-negativity constraints.

2 To capture an MCCTU problem as a strictly Δ-modular IP, replace each congruency
constraint γ�

i x ≡ ri (mod mi) by an equality constraint γ�
i x+miyi = r with yi ∈ Z.

The corresponding constraint matrix is strictly Δ-modular for Δ =
∏q

i=1 mi.

Advances on Strictly Δ-Modular IPs 395

capture the minimum T -join problem, congruency-constrained flow problems,
and many other problems linked to TU matrices.

Combinatorial optimization problems with congruency constraints are highly
non-trivial and many open questions remain. As they are already captured by
strictly Δ-modular IPs, this motivates the following weakening of Conjecture 1.

Conjecture 2. Strictly Δ-modular IPs can be solved in polynomial time for con-
stant Δ ∈ Z≥0.

Even resolving this weaker conjecture would settle several open problems,
including congruency-constrained min cuts (in both directed and undirected
graphs), or the problem of efficiently and deterministically finding a perfect
matching in a red/blue edge-colored bipartite graph such that the number of
red matching edges is r (mod m). (This is a simplified version of the famous
red-blue matching problem, where the task is to find a perfect matching with
a specified number of red edges; for both versions, randomized algorithms are
known.) Interestingly, for the bimodular case (Δ = 2), a result by Veselov and
Chirkov [33] implies that Conjecture 1 and Conjecture 2 are equivalent (see [3]).

Our goal is to shed further light on Conjecture 2 and overcome some impor-
tant hurdles of prior approaches. In a first step, we note that a positive resolution
of Conjecture 2 does not only imply efficient solvability of MCCTU problems,
but also vice versa, and this reduction works in strongly polynomial time.

Lemma 1. Let Δ > 0. Every strictly Δ-modular IP can, in strongly polynomial
time, be reduced to an MCCTU problem with moduli mi such that Δ =

∏q
i=1 mi.

Without the strongly polynomial time condition, this also follows from very
recent work of Gribanov, Shumilov, Malyshev, and Pardalos [15, Lemma 4].

Further, we are interested in making progress regarding the feasibility version
of Conjecture 2, i.e., efficiently deciding whether a strictly Δ-modular IP is feasi-
ble. Prior approaches settle this question for Δ = 2 [3] and—using a randomized
algorithm—for Δ = 3 [24]. A main hurdle to extend these is that they crucially
rely on Δ being prime, for example through the use of the Cauchy-Davenport
Theorem. Our main contribution here is to address this. In particular, we can
check feasibility for Δ = 4 with a randomized algorithm, which is the first result
in this context for non-prime Δ. More importantly, our techniques will hopefully
prove useful for future advances on this challenging question.

Theorem 1. There exists a strongly polynomial-time randomized algorithm to
find a feasible solution of a strictly 4-modular IP, or detect that it is infeasible.

We remark that the randomization appearing in the above theorem comes
from the fact that one building block of our result is a reduction to a problem
class that includes the aforementioned congruency-constrained red/blue-perfect
matching problem, for which only randomized approaches are known.

396 M. Nägele et al.

1.1 Group-Constrained Problems and Proof Strategy for Theorem 1

To show Theorem 1, we exploit its close connection to MCCTU. Capturing
the congruency constraints of an MCCTU problem through an abelian group
constraint, we attain the following group-constrained TU feasibility problem.

Group-Constrained TU Feasibility (GCTUF): Let T ∈ R
k×n be a

TU matrix, let b ∈ Z
k, let (G,+) be a finite abelian group, and let γ ∈ Gn

and r ∈ G. The task is to show infeasibility or find a solution of the system
Tx ≤ b, γ�x = r, x ∈ Z

n .

Here, the scalar product γ�x denotes the linear combination of the group ele-
ments γ1, . . . , γn with multiplicities x1, . . . , xn in G. Group constraints general-
ize congruency constraints, which are obtained in the special case where G is
cyclic. More generally, by the fundamental theorem of finite abelian groups, a
finite abelian group G is, up to isomorphism, a direct product of cyclic groups.
Hence, a group constraint can be interpreted as a set of congruency constraints
and vice versa. Thus, GCTUF and MCCTU feasibility are two views on the
same problem. We stick to GCTUF mostly for convenience of notation. More-
over, the GCTUF setting also allows for an elegant use of group-related results
later on. One may assume that the group is given through its multiplication
table (the Cayley table). In fact, the precise group representation is not of great
importance to us. Concretely, for constant Δ, strictly Δ-modular IP feasibility
problems reduce to GCTUF problems with a constant size group. Many of our
polynomial-time algorithmic results can even be extended to settings where the
group size is not part of the input, and access to group operations is provided
through an oracle.

By Lemma 1 and the aforementioned equivalent viewpoint of multiple con-
gruency constraints and a group constraint, in order to prove Theorem 1, it is
enough for us to show the equivalent statement below.

Theorem 2. There exists a strongly polynomial time randomized algorithm for
GCTUF problems with a group of cardinality at most 4.

On a high level, we follow a well-known strategy for TU-related problems by
employing Seymour’s decomposition [31] to decompose the problem into prob-
lems on simpler, more structured TU matrices. (See, e.g., [1,3,9,24].) Roughly
speaking, a TU matrix is either very structured—in which case we call it a base
block—or can be decomposed into smaller TU matrices through a small set of
well-defined operations. (See the discussion following Theorem 7.) The use of
Seymour’s decomposition typically comes with two main challenges, namely (i)
solving the base block cases, and (ii) propagating solutions of the base block
cases back through the decomposition efficiently to solve the original problem.
First, we show that this propagation can be done efficiently for our problem.

Theorem 3. Let G be an abelian group of size at most 4. Given an oracle for
solving base block GCTUF problems with group G, we can solve GCTUF problems
with group G in strongly polynomial time with strongly polynomially many calls
to the oracle.

Advances on Strictly Δ-Modular IPs 397

In fact, our approach underlying Theorems 2 and 3 operates in a hierarchy of
GCTUF problems with increasingly relaxed group constraints of the form γ�x ∈
R for subsets R ⊆ G of increasing size, and allows for proving the above results
for such relaxed GCTUF problems for arbitrary constant-size groups G as long
as |G|−|R| ≤ 3. (See Sect. 3 for more details.) In principle, this is along the lines
of the approach to congruency-constrained TU problems in [24], but incorporates
the new viewpoint of group constraints, and additionally improves over earlier
results in two ways: First, our approach applies to arbitrary finite abelian groups,
while previous setups heavily relied on the group cardinality being a prime.
Secondly, in the setting with relaxed group constraints, we extend the admissible
range of |G| − |R| by one, thus proceeding further in the hierarchy of GCTUF
problems, and newly covering GCTUF problems with groups of cardinality 4.

Besides being a key part of our approach, Theorem 3 underlines that base
block GCTUF problems are not merely special cases, but play a key role in
progress on general GCTUF problems. There are only two non-trivial types of
such base block GCTUF problems, namely when the constraint matrix is a so-
called network matrix or a transpose thereof. Both cases cover combinatorial
problems that are interesting on their own, and their complexity status remains
open to date. If the constraint matrix is a network matrix, GCTUF can be cast
as a circulation problem with a group constraint. By reducing to and exploit-
ing results of Camerini, Galbiati, and Maffioli [7] on exact perfect matching
problems, a randomized algorithm for the congruency-constrained case has been
presented in [24]. We observe that these results extend to the group-constrained
setting. The other base block case, where the constraint matrix is the transpose
of a network matrix, can be cast as a group-constrained directed minimum cut
problem by leveraging a result in [24]. Prior work combined this reduction with
results on congruency-constrained submodular minimization [25] to solve the
optimization version of the problem for congruency-constraints of prime power
modulus. We show that the feasibility question on this base block can be solved
efficiently on any finite abelian group of constant order, thus circumventing the
prime power restriction that is intrinsic in prior approaches.

Theorem 4. Let G be a finite abelian group. There is a strongly polynomial
time algorithm for solving GCTUF problems with group G where the constraint
matrix is the transpose of a network matrix.

1.2 Further Related Work

The parameter Δ has been studied from various viewpoints. While effi-
cient recognition of (totally) Δ-modular matrices is open for any Δ ≥ 2,
approaches to approximate the largest subdeterminant in absolute value were
studied [8,27]. Also, focusing on more restricted subdeterminant patterns proved
useful [2,12,33]. Aiming at generalizing a bound of Heller [21] for Δ = 1, bounds
on the maximum number of rows of a Δ-modular matrix were obtained [4,13,23].
Also, the influence of the parameter Δ on structure and properties of IPs
and polyhedra is multi-faceted (see, e.g., [6,10,16–18,22,28,32] and references
therein).

398 M. Nägele et al.

1.3 Structure of the Paper

In Sect. 2, we prove Theorem 4. Section 3 illustrates our approach and new con-
tributions towards Theorem 3 on a more technical level, and explains the main
new ingredients of our proof. Due to space constraints, some proofs are deferred
to a long version of this paper, including the proof of Lemma 1.

2 GCTUF with Transposed Network Constraint Matrices

In the setting with a congruency constraint instead of a group constraint, [24]
shows that every base block problem with a constraint matrix that is a trans-
posed network matrix can be reduced to a node-weighted minimization problem
over a lattice with a congruency constraint,3 i.e., a problem of the form

min{w(S) : S ∈ L, γ(S) ≡ r(mod m)} , (1)

where L ⊆ 2N is a lattice on some finite ground set N , γ : N → Z, r ∈ Z, m ∈
Z>0, w : N → R, and we use γ(S) :=

∑
v∈S γ(v) as well as w(S) :=

∑
v∈S w(v).4

Being a special case of congruency-constrained submodular minimization, it is
known that such problems, and thus the corresponding congruency-constrained
TU problems with a transposed network constraint matrix, can be solved in
strongly polynomial time for constant prime power moduli m, while the case of
general constant composite moduli remains open [25]. The progress on GCTUF,
particularly the reduction to base block feasibility problems through Theorem 3
and its generalization (Theorem 8 in Sect. 3), motivates studying these reductions
and results in the feasibility setting and with a group constraint instead of a
congruency constraint, giving rise to the following problem.

Group-Constrained Lattice Feasibility (GCLF): Let N be a finite
set, L ⊆ 2N a lattice, (G,+) a finite abelian group, γ : N → G, r ∈ G.
The task is to find X ∈ L with γ(X) = r, or decide infeasibility.

We observe that the reduction in [24] from congruency-constrained TU problems
with transposed network constraint matrices to problems of the form given in (1)
extends to the group-constrained case. In particular, we obtain the following
result in the feasibility setting.

Proposition 1. Let G be a finite abelian group. Any GCTUF problem with
group G and a constraint matrix that is a transposed network matrix can in
strongly polynomial time be reduced to a GCLF problem with group G.
3 In fact, the proof in [24] claims a reduction to a submodular minimization problem,

but shows the stronger one presented here.
4 We recall that a lattice L ⊆ 2N is a set family such that for any A, B ∈ L, we have

A ∩ B, A ∪ B ∈ L. We assume such a lattice to be given by a compact encoding in a
directed acyclic graph H on the vertex set N such that X ⊆ N is an element of the
lattice if and only if δ−

H(X) = ∅ (cf. [20, Section 10.3]). Here, as usual, in a digraph
G = (V, A) and for X ⊆ V , we denote by δ+(X) and δ−(X) the arcs in A leaving
and entering X, respectively. Moreover, we write δ±(v) := δ±({v}) for v ∈ V .

Advances on Strictly Δ-Modular IPs 399

Thus, it remains to study GCLF problems. Interestingly, for the pure feasibil-
ity question, we can circumvent the barriers present in the optimization setting,
and obtain the following result through a concise argument.

Theorem 5. Let G be a finite abelian group. GCLF problems with group G can
be solved in strongly polynomial time.

Clearly, Proposition 1 and Theorem 5 together imply Theorem 4. The main
observation towards a proof of Theorem 5 is the following elementary lemma.

Lemma 2. Let G be a finite abelian group, and let γ1, . . . , γ� ∈ G. If � ≥ |G|,
then there is a non-empty subset I ⊆ [�] such that

∑
i∈I γi = 0.

Proof. Either si :=
∑

j≤i γj = 0 for some i ∈ [�], or there exist i < j with si = sj ;
hence I = [i] or I = {i + 1, . . . , j}, respectively, has the desired properties.
�

To prove Theorem 5, we work with a representation of the lattice L through
an acyclic digraph H (see Footnote 4). We exploit that every X ∈ L is uniquely
defined by the subset CX := {x ∈ X : δ+(x) ⊆ δ+(X)}.

Proof of Theorem 5. We claim that if the given GCLF problem is feasible, there
is a feasible X with |CX | < |G|. If so, we obtain an efficient procedure for GCLF
with group G through enumerating all such CX and checking if γ(X) = r. To
prove the claim, assume for contradiction that it is wrong, and let X ∈ L be
minimal with γ(X) = r. Then |CX | ≥ |G|, and applying Lemma 2 to CX gives
a non-empty subset Y ⊆ CX with γ(Y) = 0. Thus, X \ Y is a strictly smaller
lattice element with γ(X \ Y) = γ(X) − γ(Y) = γ(X) = r, a contradiction.
�

3 Overview of Our Techniques Leading to Theorem 3

In order to tackle GCTUF problems, following ideas from [24], we introduce a hier-
archy of slightly relaxed GCTUF problems by weakening the group constraint.

R-Group-Constrained TU Feasibility (R-GCTUF): Let T ∈
{−1, 0, 1}k×n be TU, b ∈ Z

k, let (G,+) be a finite abelian group, γ ∈ Gn

and R ⊆ G. The task is to show infeasibility or find a solution of
Tx ≤ b, γ�x ∈ R, x ∈ Z

n .

Here, we typically call R the set of target elements. The above setup allows us to
measure progress between GCTUF (the case of |R| = 1) and an unconstrained
IP with TU constraint matrix (captured by setting R = G). In particular, the
difficulty of an R-GCTUF problem increases as the size of R, i.e., the number of
target elements, decreases. The main parameter capturing this hardness is the
depth d := |G| − |R| of the problem. We show the following generalization of
Theorem 2.

Theorem 6. Let G be a finite abelian group. There is a strongly polynomial ran-
domized algorithm solving R-GCTUF problems with group G and |G| − |R| ≤ 3.

400 M. Nägele et al.

Our argument uses Seymour’s decomposition theorem. To this end, for matri-
ces A ∈ Z

kA×nA and B ∈ Z
kB×nB as well as vectors e, f , g, and h of appropriate

size, we recall that the 3-sum of
(

A e e
h� 0 1

)
and

(
0 1 f�
g g B

)
is

(
A ef�

gh� B

)
.5

Theorem 7 (Seymour’s Decomposition). Let T ∈ Z
k×n be TU. Then

either (i) T is a base block matrix, or (ii) T can, possibly after row and column
permutations and pivoting once, be decomposed into a 3-sum of TU matrices
with nA, nB ≥ 2. Additionally, we can in time poly(n) decide which of the cases
holds and determine the involved matrices.

Item (i) covers three types of matrices: network matrices, transposes thereof,
and matrices obtainable through basic operations from one of two specific 5 × 5
TU matrices. (For more details on Seymour’s decomposition, see, e.g., [30], and for
a version tailored to our setting, see [24, Theorem 2.2].) By combining results for
base blocks from [24] with our results from Sect. 2, it follows that GCTUF prob-
lems can be solved in strongly polynomial time if the constraint matrix is a base
block matrix; hence dealing with Item (i) above. In Item (ii), the potential pivoting
step can be handled by extending a result from [24] to the group setting. Hence, it
remains to discuss how to deal with constraint matrices that are 3-sums. We devote
the rest of this section to discuss the main ingredients needed to cover this case.
Altogether, we proof the following generalization of Theorem 3.

Theorem 8. Let G be a finite abelian group and � ∈ Z≥1 with � ≥ |G| − 3.
Given an oracle for solving base block R-GCTUF problems with group G and
any R ⊆ G with |R| ≥ �, we can solve R-GCTUF problems with group G and
R ⊆ G with |R| ≥ � in strongly polynomial time with strongly polynomially
many calls to the oracle.

3.1 Reducing to a Simpler Problem When the Target Elements
Form a Union of Cosets

If R, the set of target elements, is a union of cosets of the same non-trivial proper
subgroup H of G (i.e., it is of the form R =

⋃k
i=1(gi+H) for some g1, . . . , gk ∈ G,

or equivalently, R = R + H), we can directly reduce to a simpler problem.
Indeed, assume R = R + H for a non-trivial proper subgroup H of G. Then,
we can equivalently rewrite the R-GCTUF problem with a group constraint
in the quotient group G/H and new target set R′ = R/H. The depth of the
new problem in the corresponding hierarchy is d′ = |G/H| − |R/H| = |G|−|R|

|H| <

|G|−|R|, so we end up with an easier problem. Since existence of such a subgroup
H can be checked efficiently (given that G has constant size), we can always
determine upfront whether the R-GCTUF problem at hand is reducible, and if
so, reduce it to a simpler R-GCTUF problem. Thus, for the rest of this section
we assume R is not a union of cosets. This assumption allows us to apply a
special case of the Cauchy-Davenport theorem that holds despite the fact that
the group order is not assumed to be prime. We refer to Lemma 3 for details.
5 For simplicity, we use a notion of a 3-sum that allows one or both of ef� and gh� to

be zero matrices. Typically, those cases would be called 2- and 1-sums, respectively.

Advances on Strictly Δ-Modular IPs 401

3.2 Decomposing the Problem

We now focus on an R-GCTUF problem with a constraint matrix T that can
be decomposed into a 3-sum of the form T =

(
A ef�

gh� B

)
. The decomposition

allows for splitting x, b, and γ into two parts accordingly, giving the equivalent
formulation

(
A ef�

gh� B

)

·
(

xA

xB

)

≤
(

bA

bB

)

, γ�
AxA + γ�

BxB ∈ R ,
xA ∈ Z

nA

xB ∈ Z
nB

. (2)

In the inequality system, the variables xA and xB interact only through the rank-
one blocks ef� and gh�. Fixing values of α := f�xB and β := h�xA allows for
rephrasing (2) through the following two almost independent problems

AxA ≤ bA − αe h�xA = β

xA ∈ Z
nA

, and
BxB ≤ bB − βg f�xB = α

xB ∈ Z
nB

, (3)

where we seek to find solutions xA and xB such that their corresponding group
elements rA := γ�

AxA and rB := γ�
BxB , respectively, satisfy rA + rB ∈ R. Hence,

this desired relation between the target elements rA and rB is the only depen-
dence between the two problems once α and β are fixed. We assume without
loss of generality that A has no fewer columns than B, and refer to the problem
on the left as the A-problem, and the problem on the right as the B-problem.
We denote by Π the set of all (α, β) ∈ Z

2 such that both the A- and B-problem
are feasible. (Note that both problems are described through a TU constraint
matrix; hence, feasibility can be checked efficiently.) Also, for (α, β) ∈ Π, let
πA(α, β) ⊆ G be all group elements rA ∈ G for which there is a solution xA to
the A-problem with γ�xA = rA, and define πB analogously. We refer to πA and
πB as patterns. Hence, (2) is feasible if and only if there is a pair (α, β) ∈ Π
such that, for some rA ∈ πA(α, β) and rB ∈ πB(α, β), we have rA + rB ∈ R.
Thus, patterns contain all information needed to decide feasibility.

Using techniques from [24], we can restrict our search for feasible solutions
to a constant-size subset Π̂ ⊆ Π. More precisely, for i ∈ {0, 1, 2}, we can in
strongly polynomial time find �i, ui ∈ Z with ui − �i ≤ d such that if (2) is
feasible, then there is a pair (α, β) in

Π̂ :=
{
(α, β) ∈ Z

2 : �0 ≤ α + β ≤ u0, �1 ≤ α ≤ u1, �2 ≤ β ≤ u2

}
(4)

for which there is a solution xA to the A-problem and a solution xB to the B-
problem with γ�xA + γ�xB ∈ R. Therefore, the challenges lie less in the size of
Π, but rather in how to obtain information on the sets πA(α, β) and πB(α, β) for
pairs (α, β) ∈ Π. Opposed to previous techniques, which almost solely focused
on πB , we investigate both πA and πB and their interplay—see Sect. 3.3.

As B has at most half the columns of the constraint matrix T of the original
R-GCTUF problem (2), we can afford (runtime-wise) to recursively call our
algorithm multiple times on the B-problem for different targets RB of the same
depth d = |G| − |R| as the original problem, i.e., with |RB | = |R|. (We refrain

402 M. Nägele et al.

from using larger depths, as GCTUF become harder with increasing depth.) This
allows us to compute a set π̄B(α, β) ⊆ πB(α, β) of size |π̄B(α, β))| = min{d +
1, πB(α, β)}. Indeed, we can start with π̄B(α, β) = ∅ and, as long as |π̄B(α, β)| <
min{d+1, πB(α, β)}, we solve an RB-GCTUF B-problem (i.e., we look for a B-
problem solution xB with γ�xB ∈ RB) with RB = G\π̄B(α, β) being a set of size
at least |G| − d. If RB ∩ πB(α, β) �= ∅, then we find an element in RB ∩ πB(α, β)
that can be added to π̄B(α, β) and we repeat; otherwise, RB ∩πB(α, β) = ∅ and
we know that we computed π̄B(α, β) = πB(α, β).

To the contrary, note that the A-problem may be almost as big as the original
GCTUF problem (possibly with just two fewer columns). Hence, here we cannot
afford (runtime-wise) a similar computation as for the B-problem. However,
we can afford to solve multiple RA-GCTUF A-problems of smaller depth, i.e.,
|RA| > |R|, because the runtime decreases significantly with decreasing depth.
By using the same approach as in the B-problem, but with sets RA of size |RA| ≥
|R|+1, we obtain a set π̄A(α, β) ⊆ πA(α, β) of size |π̄A(α, β)| = min{d, πA(α, β)}.

Let us next take a closer look at patterns. Fix some (α, β) ∈ Π and let
πA(α, β) = {r1A, . . . , r�A

A } for some �A ≥ 1 and pairwise different ri
A ∈ G, and

let x1
A, . . . , x�A

A be corresponding solutions of the A-problem with γ�
Axi

A = ri
A.

Define �B , ri
B , and xi

B analogously. Observe that if �A ≤ d and �B ≤ d + 1,
we have π̄X(α, β) = πX(α, β) for both X ∈ {A,B}. Hence, we can compute
all feasible group elements and check explicitly whether ri

A + rj
B ∈ R for some

i ∈ [�A] and j ∈ [�B], i.e., whether a solution exists. If �B ≥ d + 1, we can
(independently of �A) even show that there always exists a feasible solution, and
we can also find one: Indeed, we can compute d + 1 solutions xi := (x1

A, xi
B)

with pairwise different sums r1A + ri
B ∈ G, at least one of which must satisfy

r1A +ri
B ∈ R. If �A ≥ d and �B ≥ 2, we can argue similarly: We show that among

any d elements of π̄A(α, β), and any two elements of π̄B(α, β) (which we can
compute), there is a pair ri

A, rj
B with ri

A + rj
B ∈ R. Note that while for groups

of prime order this can be shown via the Cauchy-Davenport theorem, the above
result does not hold in general. We show, however, that as long as R is not a
union of cosets in G, we can recover the implication (cf. Section 3.1 for why this
assumption is legit).

Lemma 3. Let G be a finite abelian group, and let R ⊆ G be such that R �=
R + H for any non-trivial subgroup H of G. Then, for any subsets X,Y ⊆ G
with |X| = |G| − |R| and |Y | ≥ 2, we have (X + Y) ∩ R �= ∅.
Proof. Let b1, b2 ∈ Y with b1 �= b2, and set h = b1−b2. Assume (X + Y)∩R = ∅.
Then |X| = |G| − |R| implies |X + Y | = |X|. Thus, X + b1 = X + b2 and hence
X = X + h. Iterating gives X = X + 〈h〉, where 〈h〉 denotes the subgroup
generated by h. As R = G \ (X + b1), we get R = R + 〈h〉, a contradiction.
�

The following observation summarizes the above discussion.

Observation 1 Let (α, β) ∈ Π̂. If |π̄A(α, β)| ≤ d − 1 or |π̄B(α, β)| ≥ 2, we can
immediately determine whether a feasible solution to the original R-GCTUF
problem exists for such (α, β), and if so, obtain one by combining solutions com-
puted for the A- and B-subproblem when determining π̄A and π̄B.

Advances on Strictly Δ-Modular IPs 403

Thus, the only case in which we cannot immediately check whether a feasible
solution exists for some (α, β), is when �B = 1 and �A ≥ d + 1 (which imply
|π̄A(α, β)| = d and |π̄B(α, β)| = 1). This is the only case where we may have
(πA(α, β) + πB(α, β)) ∩ R �= ∅ but (π̄A(α, β) + π̄B(α, β)) ∩ R = ∅, in which case
we say that (α, β) contains a hidden solution.

3.3 Handling Patterns

In the rest of this section, we describe how our new techniques allow for over-
coming barriers restricting previous approaches to depth d = 2. Recall that we
focus on a constant size subset Π̂ as defined in (4). We call sets of this form, for
any choice of �i and ui, pattern shapes, and denote by

D :=
{±(1

0),±(0
1),±(

1−1

)}
(5)

the possible edge directions of conv(Π̂). Focusing on Π̂ allows for efficiently
computing π̄X(α, β) for X ∈ {A,B} and all (α, β) ∈ Π̂ to the extent discussed
earlier. In order to proceed, we use a structural result from [24], called averaging,
that allows us to relate solutions—and thus elements of πX—across different
(α, β). Despite being true in more generality, the exposition here requires the
following special case only.

Proposition 2 ([24, special case of Lemma 5.3]). Consider an R-GCTUF
problem as described in (2). Let X ∈ {A,B}, v ∈ D, and (α, β) ∈ Π̂ with
(α, β) + 2v ∈ Π̂. Given a solution x1 of the X-problem for (α, β) and, similarly,
x2 for (α, β) + 2v, there are solutions x3, x4 for the X-problem for (α, β) + v
such that x1 + x2 = x3 + x4.

We remark that the proof of the above result for congruency-constrained
problems given in [24] only exploits that congruency-constraints are linear con-
straints; therefore, the result carries over to group-constraints seamlessly.

In previous approaches for depth d = 2, it was enough to only compute a
single element from πA (e.g., by solving the A-problem after dropping the group
constraint). Concretely, consider patterns of the shape as given in Fig. 1. For
d = 2, Proposition 2 can be used to show that, if there is a hidden feasible
solution for (α, β) = (0, 0) or (α, β) = (2, 0), then there must also be a feasible
solution for (α, β) = (1, 0). The example in Fig. 1 shows that this is no longer
true if the depth d exceeds 2, as only (α, β) = (0, 0) admits a feasible solution.

This problem can be circumvented by analyzing the A-pattern π̄A. As argued
in Sect. 3.2, if a pair (α, β) has a hidden solution, then |πA(α, β)| ≥ d + 1 (and
hence |π̄A(α, β)| = d), hence we assume that there exists at least one such
pair. The following result uses averaging (i.e., Proposition 2) to show that pairs
(α′, β′) adjacent to such a pair (α, β) containing a hidden solution also have
large π̄A(α′, β′).

Lemma 4. Let d ∈ {1, 2, 3}, v ∈ D, and (α, β) ∈ Π̂ such that |πA(α, β)| ≥ d+1
and (α, β) + 2v ∈ Π̂. Then |π̄A((α, β) + v)| = d.

404 M. Nägele et al.

0,1,2 0, 1 0

πA

α

β

0 1 2

0 1 0, 1 0

πB

α

β

0 1 2

0

Fig. 1. Possible patterns πA and πB for a problem with group G = Z/4Z. Every square

corresponds to a pair (α, β) ∈ Π̂, and the numbers in the box indicate elements of
πA(α, β) and πB(α, β), respectively. For R = {3}, there is a feasible solution with
(α, β) = (0, 0), but this cannot be detected without studying πA.

Proof. It is enough to show that |πA((α, β) + v)| ≥ d. To this end, for each of
the at least d + 1 elements r ∈ πA(α, β), let xr

1 be a corresponding solution of
the A-problem, and let x2 denote any fixed solution for the A-problem on the
pair (α, β) + 2v. Proposition 2 applied to xr

1 and x2 gives solutions xr
3 and xr

4

corresponding to elements γ�
Axr

3, γ
�
Axr

4 ∈ πA((α, β)+v) with γ�
Axr

3+γ�
Axr

4 taking
at least d + 1 different values. Assume for the sake of deriving a contradiction
that |πA((α, β) + v)| ≤ d − 1. Then, since the number of different sums of pairs
of elements in πA((α, β) + v) is bounded by

(
d−1
2

)
+ d − 1 = (d − 1)d/2 < d + 1 for

d ∈ {1, 2, 3}, this contradicts the above construction.
�
Remark 1. For depth d = 4, one can find GCTUF problems with G = Z/5Z and
patterns that fail to satisfy Lemma 4; we present one such example in Fig. 2.
Moreover, we remark that Lemma 4 is the only place in our proofs where we use
the assumption that d = |G| − |R| ≤ 3.

0, 1,
2,3,4

0, 1,
2

0

πA

α

β

0 1 2

0 1 0, 1 0

πB

α

β

0 1 2

0

Fig. 2. Possible patterns πA and πB for a problem with group G = Z/5Z. Every square

corresponds to a pair (α, β) ∈ Π̂, and the numbers in the box indicate the elements of
πA(α, β) and πB(α, β), respectively. For d = 4, Lemma 4 fails to hold for (α, β) = (0, 0)
and v = (1, 0).

The main application of Lemma 4 is the following: If, on top of the assumption
in Lemma 4, |πB((α, β) + v)| ≥ 2 holds, then Lemma 3 guarantees (π̄A((α, β) +
v)+π̄B((α, β)+v))∩R �= ∅. From now on, we analyze both the A- and B-patterns
in detail, in particular through averaging, to guarantee the aforementioned non-
empty intersection and thus find a solution, or identify additional properties that
lead to progress. To distinguish cases of different pattern structure, we need the
following definition (see Fig. 3 for an illustration).

Advances on Strictly Δ-Modular IPs 405

Definition 1. Let D be as in (5). We call (α, β) ∈ Π̂ an interior pair if (α, β)+
v ∈ Π̂ for all v ∈ D, a border pair if (α, β) ± v ∈ Π̂ for exactly two v ∈ D, and
a vertex pair if it is not an interior or border pair.

x b x

b i x

x x

α

β

Fig. 3. A pattern shape
with an interior, border,
and vertex pairs (marked i,
b, and w, respectively).

Note that for a border pair (α, β), due to symme-
try, the two directions v ∈ D with (α, β) ± v ∈ Π̂
will always be antiparallel, i.e., v and −v for some
v ∈ D. To continue, the four types of patterns we
distinguish are the following: (I) |πB(α, β)| = 1 for
all (α, β) ∈ Π̂, or this is not the case, and (II) Π has
an interior pair, or (III) Π has no interior but bor-
der pairs, or (IV) Π has only vertex pairs. We sketch
how to proceed for each of the types and present the
detailed discussion in the long version.

Patterns of type I . In a type I pattern, techniques
of [24] enable reducing the problem to a new GCTUF
problem with same G and |R|, and at least one vari-
able less, thus allowing to make progress.

Patterns of type II . If Π̂ contains an interior pair and a hidden solution for some
pair (α, β), we can use techniques from [24] to find v ∈ D such that (α, β)+2v ∈
Π̂ and |πB((α, β) + v)| ≥ 2. Using Lemma 4 gives |πA((α, β) + v)| ≥ d. So by
Lemma 3, (π̄A((α, β) + v) + π̄B(α, β) + v)∩R �= ∅, hence we can find a solution.

Patterns of type III . In this case, we show that if we fail to find a solution in
π̄A + π̄B , then we can reduce to a smaller pattern shape Π ′, allowing to induct.

We first deal with the case where there is no border pair (α, β) satisfying
|πB(α, β)| ≥ 2. One can show that this implies that all pairs with |πB(α, β)| = 1
lie on a single tight constraint of Π̂. Recall that these are the only pairs that
might contain a hidden solution, so we can use as Π ′ all pairs on this tight
constraint.

In the other case, there is a border pair (α, β) with |πB(α, β)| ≥ 2. Assume
additionally that there is a hidden solution for a pair sharing a tight constraint
of Π̂ with (α, β) (note that the latter is unique). Using Lemma 4 and Propo-
sition 2, we get that there must exist a pair (α′, β′) with |πA(α′, β′)| ≥ d and
|πB(α′, β′)| ≥ 2. By Lemma 3, this implies existence of a solution in π̄A + π̄B,
contradicting the assumption. Thus, there cannot be a hidden solution anywhere
on the tight constraint at (α, β), so taking Π and strengthening that constraint
by one unit leads to the desired Π ′.

Patterns of type IV . For type IV pattern structure, we first observe that, by
Observation 1, if there are any solutions for pairs (α, β) ∈ Π̂ with |πB(α, β)| ≥ 2,
we can also find one efficiently by combining solutions computed for the A- and
B-subproblem when determining π̄A and π̄B . In the other case, i.e., when no
solutions exist for such (α, β), it turns out that a type IV pattern is structured
enough to allow a reduction to a type I pattern, analogous to an argument of [24].

406 M. Nägele et al.

References

1. Aprile, M., Fiorini, S.: Regular matroids have polynomial extension complexity.
Math. Oper. Res. 47(1), 540–559 (2021). https://doi.org/10.1287/moor.2021.1137

2. Artmann, S., Eisenbrand, F., Glanzer, C., Oertel, T., Vempala, S., Weismantel, R.:
A note on non-degenerate integer programs with small sub-determinants. Oper.
Res. Lett. 44(5), 635–639 (2016). https://doi.org/10.1016/j.orl.2016.07.004

3. Artmann, S., Weismantel, R., and Zenklusen, R.: A Strongly Polynomial Algorithm
for Bimodular Integer Linear Programming. In: Proceedings of the 49th Annual
ACM Symposium on Theory of Computing (STOC ’17), pp. 1206–1219, Montreal
(2017). https://doi.org/10.1145/3055399.3055473

4. Averkov, G., Schymura, M.: On the Maximal Number of Columns of a Δ - modular
Matrix. In: Proceedings of the 23rd International Conference on Integer Program-
ming and Combinatorial Optimization (IPCO ’22), pp. 29–42, Eidhoven (2022).
https://doi.org/10.1007/978-3-031-06901-7 3

5. Barahona, F., Conforti, M.: A construction for binary matroids. Discret. Math.
66(3), 213–218 (1987). https://doi.org/10.1016/0012-365X(87)90097-5

6. Bonifas, N., Di Summa, M., Eisenbrand, F., Hähnle, N., Niemeier, M.: On Sub-
determinants and the Diameter of Polyhedra. Discrete Comput. Geometry 52(1),
102–115 (2014). https://doi.org/10.1007/s00454-014-9601-x

7. Camerini, P.M., Galbiati, G., Maffioli, F.: Random pseudo-polynomial algorithms
for exact matroid problems. J. Algorithms 13, 258–273 (1992). https://doi.org/10.
1016/0196-6774(92)90018-8

8. Di Summa, M., Eisenbrand, F., Faenza, Y., Moldenhauer, C.: On Largest Volume
Simplices and Sub-determinants. In: Proceedings of the 26th Annual ACMSIAM
Symposium on Discrete Algorithms (SODA ’15), pp. 315–323, San Diego (2015).
https://doi.org/10.1137/1.9781611973730.23

9. Dinitz, M., Kortsarz, G.: Matroid secretary for regular and decomposable matroids.
SIAM J. Comput. 43(5), 1807–1830 (2014). https://doi.org/10.1137/13094030X

10. Eisenbrand, F., Vempala, S.: Geometric random edge. Math. Program. 1, 325–339
(2016). https://doi.org/10.1007/s10107-016-1089-0

11. Fiorini, S., Joret, G., Weltge, S., and Yuditsky, Y.: Integer programs with bounded
subdeterminants and two nonzeros per row. In: Proceedings of the 62nd Annual
Symposium on Foundations of Computer Science (FOCS ’22), pp. 13–24 (2022).
https://doi.org/10.1109/FOCS52979.2021.00011

12. Glanzer, C., Stallknecht, I., and Weismantel, R.: On the recognition of a, b, c-
modular matrices. In: Proceedings of the 22nd International Conference on Integer
Programming and Combinatorial Optimization (IPCO ’21), pp. 238–251, Atlanta
(2021). https://doi.org/10.1007/978-3-030-73879-2 17

13. Glanzer, C., Weismantel, R., Zenklusen, R.: On the number of distinct rows of a
matrix with bounded subdeterminants. SIAM J. Discret. Math. 32(3), 1706–1720
(2018). https://doi.org/10.1137/17M1125728

14. Goemans, M.X., Ramakrishnan, V.S.: Minimizing submodular functions over
families of sets. Combinatorica 15(4), 499–513 (1995). https://doi.org/10.1007/
BF01192523

15. Gribanov, D., Shumilov, I., Malyshev, D., Pardalos, P.: On Δ-modular integer
linear problems in the canonical form and equivalent problems. J. Global Optim.
(2022). https://doi.org/10.1007/s10898-022-01165-9

https://doi.org/10.1287/moor.2021.1137
https://doi.org/10.1016/j.orl.2016.07.004
https://doi.org/10.1145/3055399.3055473
https://doi.org/10.1007/978-3-031-06901-7_3
https://doi.org/10.1016/0012-365X(87)90097-5
https://doi.org/10.1007/s00454-014-9601-x
https://doi.org/10.1016/0196-6774(92)90018-8
https://doi.org/10.1016/0196-6774(92)90018-8
https://doi.org/10.1137/1.9781611973730.23
https://doi.org/10.1137/13094030X
https://doi.org/10.1007/s10107-016-1089-0
https://doi.org/10.1109/FOCS52979.2021.00011
https://doi.org/10.1007/978-3-030-73879-2_17
https://doi.org/10.1137/17M1125728
https://doi.org/10.1007/BF01192523
https://doi.org/10.1007/BF01192523
https://doi.org/10.1007/s10898-022-01165-9

Advances on Strictly Δ-Modular IPs 407

16. Gribanov, D.V.: An FPTAS for the Δ-modular multidimensional knapsack prob-
lem. In: Proceedings of the International Conference on Mathematical Optimiza-
tion Theory and Operations Research (MOTOR), pp. 79–95 (2021). https://doi.
org/10.1007/978-3-030-77876-7 6

17. Gribanov, D.V., Zolotykh, N.Y.: On lattice point counting in Δ-modular poly-
hedra. Optim. Lett. (1), 1–28 (2021). https://doi.org/10.1007/s11590-021-01744-
x

18. Gribanov, D.V., Veselov, S.I.: On integer programming with bounded determi-
nants. Optim. Lett. 10(6), 1169–1177 (2015). https://doi.org/10.1007/s11590-015-
0943-y

19. Grötschel, M., Lovász, L., Schrijver, A.: Corrigendum to our paper ‘The ellipsoid
method and its consequences in combinatorial optimization’. Combinatorica 4(4),
291–295 (1984). https://doi.org/10.1007/BF02579139

20. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Cham (1993). https://doi.org/10.1007/978-3-642-78240-4

21. Heller, I.: On linear systems with integral valued solutions. Pac. J. Math. 7(3),
1351–1364 (1957). https://doi.org/10.2140/pjm.1957.7.1351

22. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity.
In: Bäıou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) ISCO 2020. LNCS,
vol. 12176, pp. 115–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-53262-8 10

23. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number
of differing columns of Δ-modular integer programs. Math. Oper. Res. (2022).
https://doi.org/10.1287/moor.2022.1339

24. Nägele, M., Santiago, R., Zenklusen, R.: Congruency-constrained TU problems
beyond the bimodular case. In: Proceedings of the 33rd Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2022), pp. 2743–2790 (2022). https://doi.
org/10.1137/1.9781611977073.108

25. Nägele, M., Sudakov, B., Zenklusen, R.: Submodular minimization under con-
gruency constraints. Combinatorica 39(6), 1351–1386 (2019). https://doi.org/10.
1007/s00493-019-3900-1

26. Nägele, M., Zenklusen, R.: A new contraction technique with applications to
congruency-constrained cuts. Math. Program. (6), 455–481 (2020). https://doi.
org/10.1007/s10107-020-01498-x

27. Nikolov, A.: Randomized rounding for the largest simplex problem. In: Proceedings
of the 47th Annual ACM Symposium on Theory of Computing (STOC 2015), pp.
861–870, Portland (2015). https://doi.org/10.1145/2746539.2746628

28. Paat, J., Schlöter, M., Weismantel, R.: The integrality number of an integer
program. Math. Program. (6), 1–21 (2021). https://doi.org/10.1007/s10107-021-
01651-0

29. Padberg, M.W., Rao, M.R.: Odd minimum cut-sets and b-matchings. Math. Oper.
Res. 7(1), 67–80 (1982). https://doi.org/10.1287/moor.7.1.67

30. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
31. Seymour, P.D.: Decomposition of regular matroids. J. Comb. Theory, Ser. B 28(3),

305–359 (1980). https://doi.org/10.1016/0095-8956(80)90075-1
32. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear pro-

grams. Oper. Res. 34(2), 250–256 (1986). https://doi.org/10.1287/opre.34.2.25
33. Veselov, S.I., Chirkov, A.J.: Integer program with bimodular matrix. Discret.

Optim. 6(2), 220–222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002

https://doi.org/10.1007/978-3-030-77876-7_6
https://doi.org/10.1007/978-3-030-77876-7_6
https://doi.org/10.1007/s11590-021-01744-x
https://doi.org/10.1007/s11590-021-01744-x
https://doi.org/10.1007/s11590-015-0943-y
https://doi.org/10.1007/s11590-015-0943-y
https://doi.org/10.1007/BF02579139
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.2140/pjm.1957.7.1351
https://doi.org/10.1007/978-3-030-53262-8_10
https://doi.org/10.1007/978-3-030-53262-8_10
https://doi.org/10.1287/moor.2022.1339
https://doi.org/10.1137/1.9781611977073.108
https://doi.org/10.1137/1.9781611977073.108
https://doi.org/10.1007/s00493-019-3900-1
https://doi.org/10.1007/s00493-019-3900-1
https://doi.org/10.1007/s10107-020-01498-x
https://doi.org/10.1007/s10107-020-01498-x
https://doi.org/10.1145/2746539.2746628
https://doi.org/10.1007/s10107-021-01651-0
https://doi.org/10.1007/s10107-021-01651-0
https://doi.org/10.1287/moor.7.1.67
https://doi.org/10.1016/0095-8956(80)90075-1
https://doi.org/10.1287/opre.34.2.25
https://doi.org/10.1016/j.disopt.2008.12.002

Cut-Sufficient Directed 2-Commodity
Multiflow Topologies

Joseph Poremba(B) and F. Bruce Shepherd

Computer Science, University of British Columbia, Vancouver, BC, Canada
{jporemba,fbrucesh}@cs.ubc.ca

Abstract. In multicommodity network flows, a supply-demand graph
pair (G, H) (called a multiflow topology) is cut-sufficient if, for all capac-
ity weights u and demand weights d, the cut condition is enough to
guarantee the existence of a feasible multiflow. We characterize the
cut-sufficient topologies for two classes of directed 2-commodity flows:
roundtrip demands, where H is a 2-cycle, and 2-path demands, where H
is a directed path of length two. To do so, we introduce a theory of rele-
vant minors. Unlike the undirected setting, for directed graphs the cut-
sufficient topologies are not closed under taking minors. They are how-
ever closed under taking relevant minors. Respectively, the cut-sufficient
topologies for roundtrip and two-path demands are characterized by one
and two forbidden relevant minors. As an application of our results, we
show that recognizing cut-sufficiency for directed multiflow topologies is
NP-hard, even for roundtrip demands. This is in contrast to undirected
2-commodity flows, for which topologies are always cut-sufficient.

Keywords: Network Flows · Multiflows · Cuts · Flow-cut Gap

1 Introduction

Network flows are one of the fundamental areas of combinatorial optimization
and we study its feasibility question. Given an edge-capacitated supply network
(directed or undirected) G = (V,E, u) and an edge-weighted demand network
H = (V, F, d), can we route (fractionally) in G the demands from H without
violating G’s edge capacities? Perhaps the most natural requirement for this
flow to exist is the cut condition: for each non-empty S � V , the total demand
on edges in H in the cut induced by S, is at most the total capacity on G’s edges
in this cut. For undirected graphs this is:

d(δH(S)) ≤ u(δG(S)) for all S � V, S �= ∅. (1)

For directed graphs, we replace δ with δ+.
The classical Max-Flow Min-Cut (aka Menger’s) Theorem asserts that this

condition is sufficient in the case where |E(H)| = 1. This is not always the case.

The authors are grateful for an NSERC Discovery Grant which supported this work.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 408–422, 2023.
https://doi.org/10.1007/978-3-031-32726-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_29&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_29

Cut-Sufficient Directed 2-Commodity Multiow Topologies 409

For instance, in Fig. 1 the cut condition holds for unit capacities and demands.
However, the shortest path between s, t for any demand edge st ∈ E(H) is 2.
Hence any flow that satisfies this demand would require 8 units of capacity,
whereas G only has 6. This is a proof that we must scale up some capacity to 4

3
in order to route H. It is easy to check in fact that we may route H as long as
every edge has capacity 4

3 .

Fig. 1. Flow-cut gap 4
3
. The edges of G are

solid and the edges of H are dashed.

This idea of finding the minimum
scaling up of capacities so that H is
routable is the basis for the notion of
flow-cut gap. A multiflow topology con-
sists of a pair of graphs (G,H) on the
same node set V . We say the topology
has flow-cut gap α ≥ 1 if the follow-
ing holds for every multiflow instance
on (G,H), i.e. for every endowment
of capacities u and demands d: if
(G,H, u, d) satisfies the cut condition,
then a multiflow exists if we scale the
capacities up to αu. We emphasize
that the flow-cut gap is a property of

a topology (G,H), while the cut condition and feasibility are properties of a
weighted instance (G,H, u, d). The foundational works of Leighton-Rao [21],
Auman-Rabani [3], and Linial-London-Rabinovich [22] show that for arbitrary
undirected topologies the flow-cut gap is O(log n); moreover this is tight due to
an expander example in [21]. There is also a conjecture which asserts that the so-
called integral flow-cut gap is quantitatively linked to this standard flow-cut gap
[7]. There have also been investigations on establishing constant-factor flow-cut
gaps for restricted families [5–7,10,19,20].

Our focus is on topologies that are cut-sufficient, that is, multiflow topologies
with flow-cut gap 1. Several important classes of undirected topologies have been
shown to have this property. The most renowned results are the Max-Flow Min-
Cut Theorem (|E(H)| = 1), Hu’s 2-commodity Theorem (|E(H)| = 2) [12], and
the Okamura-Seymour Theorem (planar G where all demand edges have their
endpoints on a single face) [26]. There is no over-arching theorem, however, that
captures all cut-sufficient undirected topologies. On a related note, the problem
of recognizing cut-sufficiency has not been studied as far as we know.

The lack of a recognition algorithm for cut-sufficiency is curious since it is
a minor-closed property. Namely, if an undirected pair (G,H) has a flow-cut
gap ≤ α, then so does any pair which arises by contracting or deleting edges
in G. This is verified by noting that deleting an edge corresponds to setting
its capacity to 0 and contracting corresponds to setting its capacity to +∞.
Hence it is tempting to claim that there is an algorithm to detect ≤ α flow-
cut gap topologies, since this minor-closed property should confirm a finite list
of “forbidden multiflow topologies”. This is not the case however, due to the
subtlety that the demand graph is also part of the topology. Specifically, [4]

410 J. Poremba and F. B. Shepherd

gives a characterization of when the flow-cut gap is 1 for pairs (G,H) where G
is series-parallel. They prove there are infinitely many minimal “bad” topologies
called the odd spindles. These generalize the graph of Fig. 1 by replacing the
“demand triangle” by a “demand odd cycle”. We are not aware of an algorithm
for recognizing this property for series-parallel topologies.

Of course, when |E(H)| = 2, Hu’s Theorem gives us a very simple poly-
nomial time recognition algorithm for undirected cut-sufficiency. Given such a
topology (G,H), it always outputs YES! We consider the directed analogue of
this question and prove the following contrasting result.

Theorem 1. It is NP-hard to determine whether a directed multiflow topology
(G,H) is cut-sufficient, even if H is a 2-cycle.

In general, there is much less work for directed cut-sufficiency. One beautiful
result is a theorem of Nagamochi and Ibaraki [24] which shows that any cut-
sufficient directed topology (G,H) is also “integrally cut-sufficient”. In other
words, if all the capacities and demands are integral, then the cut condition is
sufficient to guarantee an integral routing.

Theorem 1 relies on an understanding of the forbidden minors in directed
2-commodity topologies, much along the lines of the undirected series-parallel
characterization of Chakrabarti et al. [4]. There are a number of difficulties
we face with this approach. Most significantly, directed cut-sufficiency does not
enjoy the same minor-closed property as the undirected setting. The key issue is
that contracting an edge e in the directed setting may not correspond to defining
its capacity to +∞. This is because it may create entirely new paths for flows to
use. This requires us to develop a theory of “relevant minors”. Namely, a minor
(G′,H ′) is relevant if the cut condition in the minor is directly connected to the
cut condition in (G,H) with an appropriate setting of edge weights in (G,H).
The technical results we need are developed in Sect. 3.

We partition the class of 2-commodity topologies into one of three types. H
is said to have roundtrip demands if E(H) = {(s, t), (t, s)} for distinct nodes
s, t ∈ V , it has 2-path demands if E(H) = {(s, t), (t, r)} where s, t, r are distinct
nodes, and it has 2-matching demands if E(H) = {(s1, t1), (s2, t2)} for distinct
nodes s1, s2, t1, t2. There is also the case where H has a single common head
or common tail, but these are always cut-sufficient by a simple reduction from
the Max-Flow Min-Cut Theorem. Using the notion of relevant minors, we find
that the two topologies from Fig. 2a-2b, are the only minimal forbidden relevant
minors for roundtrip and 2-path topologies. More precisely we have the following.

Theorem 2. A directed multiflow topology with roundtrip demands is cut-
sufficient if and only if it does not contain the bad dual triangles (Fig. 2a) as
a relevant minor.

Theorem 3. A directed multiflow topology with 2-path demands is cut-sufficient
if and only if it does not contain the bad triangle (Fig. 2b) or the bad dual trian-
gles (Fig. 2a) as a relevant minor.

Cut-Sufficient Directed 2-Commodity Multiow Topologies 411

(a) The bad dual triangles.
(b) The bad triangle.

Fig. 2. The minimal bad roundtrip and 2-path demand topologies. With unit capacities
and demands, each satisfies the cut condition but is not feasible.

These results imply that, in the case of roundtrip and 2-path demands, the
minimal non-cut-sufficient directed topologies are certified as such by multiflow
instances with 0,1 data (i.e., demands and capacities are 0, 1-valued).

2

Fig. 3. An undirected topology where
the cut condition is sufficient for unit
demands, but not in general.

Ultimately, this implies that any
non-cut-sufficient topology in these
classes is certified by 0,1 demand val-
ues and 0,1,+∞ capacity values. This
property need not always hold; Fig. 3
is an undirected example where the
cut condition is sufficient for unit
demand weights but not when one of
the demand edges has weight 2. We
conjecture - see Sect. 6 - that this
0,1 property is true for all directed
2-commodity topologies. If true, this
would give a complete characterization
of 2-commodity cut-sufficiency using a
result in [27], which establishes that

the non-cut-sufficient topologies certified by 0, 1 demands are characterized via
the minors in Fig. 2b and 2a.

We achieve Theorems 2 and 3 by showing that, for roundtrip and 2-path
demands, if G contains two paths for its different commodities that share an
edge, then we find either the bad dual triangles or the bad triangle as a relevant
minor. This argument also yields the following characterization of cut-sufficiency,
which is in a convenient form to prove Theorem1.

Theorem 4. Suppose (G,H) is a directed multiflow topology with roundtrip or
2-path demands, say (s, t) and (t, r) where r may equal s. The topology is cut-
sufficient if and only if every st-path is arc-disjoint from every tr-path in G.

1.1 Other Related Work

There are several other known cut-sufficient undirected classes. Lomonosov and
Seymour ([23,30], cf. Corollary 72.2a [29]) yield a characterization of the demand

412 J. Poremba and F. B. Shepherd

graphs H such that every supply graph G “works” for H, i.e., (G,H) is cut-
sufficient for any graph G with V (H) ⊆ V (G). They prove that any such H is
(a subgraph of) either K4, C5 or the union of two stars. Another question asks
for which (supply) graphs G is it the case that (G,H) is cut-sufficient for every
H which is a subgraph of G; Seymour [31] shows that this is precisely the class
of K5 minor-free graphs. A related result is to characterize which pairs (G,Z)
with Z ⊆ V (G) are cut-sufficient for every demand graph H with V (H) = Z.
In [25] it is shown that this occurs if and only if G is (reducible to) planar and
Z is a subset of one face, i.e., essentially Okamura-Seymour instances [26]. We
refer the reader to [7] for additional discussion.

Similar to our relevant minors, other works have defined restricted types of
directed graph minors to achieve interesting characterizations in other appli-
cations. Some examples include butterfly minors (introduced in [13], used in
[1,14,17]), strongly-connected contractions [16], d-minors [8], and shallow minors
[18]. There is no unified theory of directed minors that is useful in every context.
Our context is different than the aforementioned in that we need to consider both
G and H to achieve the desired properties (though in Corollary 1, connections
to butterfly and strongly-connected contractions can be seen).

A related but different gap result for directed multicommodity flows has been
studied that is defined in terms of the directed non-bipartite sparsest cut problem.
Here, a “cut” is any set F ⊆ E(G), and the sparsity of F is the ratio between
u(F) and the total demand of all commodities separated by F . The gap is the
smallest ratio, over all u and d, of the maximum flow to the smallest sparsity
of a cut. This is the “non-bipartite” flow-cut gap. For undirected graphs, the
two gaps coincide, but not so in the directed setting. For this non-bipartite flow-
cut gap, a general bound of O(

√
n) was proven by Hajiaghayi and Räcke [11],

later improved to Õ(n11/23) by Agarwal et al. [2]. Recently, several results have
given improved bounds for certain classes of supply graphs, such as directed
series-parallel and graphs of bounded pathwidth [28], and planar [15].

2 Preliminaries

By paths we always mean simple paths, and for directed graphs we mean these
to be simple directed paths. We use tail(e) and head(e) to represent the tail
and head of an edge e, respectively. For an edge set F , we define tail(F) =
{tail(e) : e ∈ F} and head(F) = {head(e) : e ∈ F}.

For multicommodity flows, we always assume integer capacities u and
demand weights d. This assumption does not affect the value of the flow-cut gap,
or whether a topology is cut-sufficient. We let Gu be the multigraph obtained
by splitting each e ∈ E(G) into u(e) parallel copies (and define Hd similarly).

2.1 Cut-Deceptive Weights and Minors of Multiflow Topologies

For discussion of contraction, we allow parallel edges and loops. We write deletion
and contraction of an edge set F as G−F and G/F respectively. Edges have their

Cut-Sufficient Directed 2-Commodity Multiow Topologies 413

own identity beyond their incident nodes. Contractions may change the ends
of non-contracted edges, but those edges themselves still exist. For notational
convenience we still write edges in terms of incident nodes, such as e = (w, v).

A minor of an undirected or directed multiflow topology (G,H) is obtained
by a sequence of edge deletions from G and H, and contractions of edges in G.
Contracting e ∈ E(G) identifies its ends in both G and H, and we denote this
topology (G,H)/e.

For a multiflow topology (G,H), we say weights (u, d) are cut-deceptive if
(G,H, u, d) satisfies the cut condition but is not feasible. Hence, a topology is
cut-sufficient if and only if it does not have any cut-deceptive weights.

For undirected multiflow topologies, the family of cut-sufficient topologies is
closed under taking minors. In particular, if a minor (G′,H ′) has cut-deceptive
weights (u, d), then those weights can be extended to cut-deceptive weights
(uext, dext) for (G,H) as follows.

Definition 1 (Extension of Weights). Let (G′,H ′) be a minor of an undi-
rected or directed multiflow topology (G,H). Let (u, d) be weights for (G′,H ′).
We define the extension1 of (u, d) to be the weights (uext, dext) of (G,H) where:

– uext(e) = 0 if e ∈ E(G) was deleted,
– uext(e) = +∞ if e ∈ E(G) was contracted,
– uext(e) = u(e) for all other edges e ∈ E(G′),
– dext(e) = 0 if e ∈ E(H) was deleted,
– dext(e) = d(e) for all other edges e ∈ E(H ′).

3 Relevant Minors and Entry-Exit Connected Edge Sets

Fig. 4. A cut-sufficient topology, with a
non-cut-sufficient minor.

In contrast to the undirected set-
ting, the cut-sufficient directed multi-
flow topologies are not closed under
taking minors. For example, consider
the topology in Fig. 4. It is trivially
cut-sufficient, since it is impossible to
satisfy the cut condition with non-
zero demands. However, contracting
the highlighted edge yields the bad
triangle (Fig. 2b), which is not cut-

sufficient. Without restricting the kinds of minors allowed, it does not make
sense to speak of forbidden minors.
1 Recall that deletions and contractions commute. The extension is invariant to the

specific ordering of these operations. However, there may be operation sequences
that are different beyond simple re-ordering but still produce the same minor. For
example, a single vertex is a minor of a triangle, but any two edges can be contracted
and the third deleted to obtain it. The specific choice affects the extension. It is
tedious to instrument this nuance throughout the text, but we associate a minor
with a set of deletions and contractions that produce it.

414 J. Poremba and F. B. Shepherd

3.1 Relevant Minors

We introduce a theory of relevant minors for directed multiflow topologies that
gives closure for cut-sufficiency. In particular, if (G′,H ′) is a relevant minor of
(G,H), and (G′,H ′) has cut-deceptive weights (u, d), then (uext, dext) are cut-
deceptive weights of (G,H).

There are two potential reasons for (uext, dext) to not be cut-deceptive: either
(G,H, uext, dext) is feasible, or the cut condition is not satisfied. The feasibility
aspect is not a problem: it is easy to observe that if (G,H, uext, dext) is feasible,
then (G′,H ′, u, d) is also feasible using the same flow paths (after contracting).
Thus the following definition gives us the desired properties.

Definition 2 (Relevant Minor). A minor (G′,H ′) of directed multiflow
topology (G,H) is relevant if, for all weights (u, d) of (G′,H ′) that satisfy the
cut condition, (G,H, uext, dext) also satisfies the cut condition.

Proposition 1. Let (G′,H ′) be a relevant minor of directed multiflow topology
(G,H). If (u, d) are cut-deceptive weights for (G′,H ′), then (uext, dext) are cut-
deceptive weights for (G,H). Hence, a directed multiflow topology (G,H) is cut-
sufficient if and only if every relevant minor of (G,H) is cut-sufficient.

As a consequence, we conclude one direction of Theorems 2 and 3: if a directed
multiflow topology contains either the bad triangle or the bad dual triangles as
a relevant minor, then it is not cut-sufficient.

3.2 Contractions of Entry-Exit Connected Sets

The definition of a relevant minor is abstract and does not immediately suggest
how to show that a minor is relevant. We develop some useful tools for this
purpose. First, it is easily shown that deletions always produce relevant minors.

Proposition 2. Let (G,H) be a directed multiflow topology.

– For any e ∈ E(G), (G − e,H) is a relevant minor of (G,H).
– For any e ∈ E(H), (G,H − e) is a relevant minor of (G,H).

Proof. In either case, let (G′,H ′) be the minor in question. Consider weighted
instances (G′,H ′, u, d) and (G,H, uext, dext). Cuts in the two instances that are
induced by the same node subset have the same weights. Hence, the cut condition
is satisfied in both or neither.

So the only potential issues are contractions. We say an edge or edge set
is safe if its contraction produces a relevant minor. What might make an edge
unsafe? Consider Fig. 4. Contracting the highlighted edge produces a minor that
is not relevant. The issue is that new connectivity is created by the contraction,
so it is easier to satisfy the cut condition than in the original topology. This
notion of safety seems to be intricate and does not satisfy simple properties such
as: safe edge sets being closed under unions. While we are progressing towards

Cut-Sufficient Directed 2-Commodity Multiow Topologies 415

a full characterization of safety, in this paper, we rely on a sufficient condition
for a set of edges to be safe. Specifically, we show that if contracting an edge
set does not create new terminal connectivity, then it is safe. We formalize this
notion as follows.

Definition 3 (Entry/Exit Points, Entry-Exit Connected). Let (G,H) be
a directed multiflow topology. Let F ⊆ E(G) be weakly connected.

– We denote by Entry(F) the set of nodes x ∈ V (F) such that there exists an
sx-path in G − F for some s ∈ tails(H). We call these entry points of F .

– We denote by Exit(F) the set of nodes y ∈ V (F) such that there exists a
yt-path in G − F for some t ∈ heads(H). We call these exit points of F .

We say F is entry-exit connected if G[F] contains an xy-path for every x ∈
Entry(F) and y ∈ Exit(F).

To prove such sets are safe, we recast the cut condition from discussing
density of cuts to discussing paths connecting terminals. We call this new form
the path cut condition. In essence, the cut condition in (G,H, u, d) is equivalent to
the existence of, for every F ⊆ E(H), d(F) many arc-disjoint tails(F)−heads(F)
paths (i.e., paths between tails(F) and heads(F)) in Gu.

Definition 4 (Weakly Feasible Routing). Let F ⊆ E(H) be a demand sub-
set of directed multiflow instance (G,H, u, d). A weakly feasible routing of F is
a set PF of d(F) arc-disjoint tails(F)−heads(F) paths in Gu. Furthermore, the
weakly feasible routing is fair or marginal-satisfying if both:

– exactly d
(
δ+F (s)

)
paths in PF start at s for every s ∈ tails(F), and

– exactly d
(
δ−
F (t)

)
paths in PF end at t for every t ∈ heads(F).

On a technical note, this definition is problematic if tails(F)∩heads(F) �= ∅.
Fortunately, in such a case no cut contains the entirety of F . It is a degenerate
case that ultimately can be excluded from the path cut condition2.

Now, we define the path cut condition. In fact, we define two versions. Each
is useful in different circumstances, and both are equivalent to the cut condition.

Definition 5 (Path Cut Condition). Let (G,H, u, d) be a directed multiflow
instance. The (fair) path cut condition is the property that, for every F ⊆ E(H)
where tails(F) ∩ heads(F) = ∅, there exists a (fair) weakly feasible routing of F .

Theorem 5. Let (G,H, u, d) be a directed multiflow instance. The cut condition,
the path cut condition, and the fair path cut condition are equivalent.

The path cut condition gives a convenient way to prove that it is safe to
contract entry-exit connected edge sets.

2 An equally valid alternative would be to allow a weakly feasible routing of F to pack
infinitely many copies of the length-zero path on a node in tails(F) ∩ heads(F).

416 J. Poremba and F. B. Shepherd

Theorem 6. Let (G,H) be a directed multiflow topology. If a weakly connected
edge set F ⊆ E(G) is entry-exit connected, then F is safe.

Proof. Let (G′,H ′) = (G,H)/F . Let vF be the identified node for F in (G′,H ′).
Let (u, d) be weights for (G′,H ′) that satisfy the path cut condition.

We prove that (G,H, uext, dext) satisfies the path cut condition by showing
that for each J ⊆ E(H) with tailsH(J) ∩ headsH(J) = ∅, there is a weakly
feasible routing of J in (G,H, uext, dext). Let k = d(J) = dext(J).

For each x ∈ Entry(F) and y ∈ Exit(F), let Fx,y be an xy path in G[F]
(which exist, since F is entry-exit connected). Note that in Guext , there are
infinitely many copies of each Fx,y, since uext(e) = +∞ for all e ∈ F . For each
x and y, select k of them, say Fx,y,1, . . . , Fx,y,k.

Recall that, per our convention on minors, the edges of J still exist in H ′.
However, the ends of edges may change. We split into two cases.

In the first case, suppose there exists v ∈ tailsH′(J) ∩ headsH′(J). Since
tailsH(J) ∩ headsH(J) = ∅, but the intersection is non-empty after contracting
F into vF , it must be that v = vF . Then there exist s ∈ tailsH(J) and t ∈
headsH(J) such that s, t ∈ V (G[F]). Note that s ∈ Entry(F) and t ∈ Exit(F).
Then taking Fs,t,i for i = 1, . . . , k gives a weakly feasible routing of F .

In the second case, suppose that tailsH′(J) ∩ headsH′(J) = ∅. Then, the
path cut condition of (G′,H ′, u, d) implies that there is a set P ′ of k arc-disjoint
tailsH′(J) − headsH′(J) paths in G′

u.
We map each of the paths P1, . . . , Pk in P ′ to a tailsH(J)−headsH(J) path in

Guext . Each Pi ∈ P ′ is a path from some s ∈ tailsH′(J) to some t ∈ headsH′(J).
If Pi avoids vF , then s ∈ tailsH(J) and t ∈ headsH(J), and we map Pi to itself.
If Pi uses vF , then in Guext its edges form two paths: a path Xi from some
ŝ ∈ tailsH(J) to some x ∈ Entry(F), and a path Yi from some y ∈ Exit(F) to
some t̂ ∈ headsH(J) (either path may have length zero). Joining Xi and Yi with
Fx,y,i yields a tailsH(J)−headsH(J) path. We map Pi to this path. In this way,
each Pi ∈ P ′ maps to a tailsH(J) − headsH(J) path in Guext that uses only the
edges of Pi and edges in some Fx,y,i. Then the image of P ′ under this mapping
is a set of k arc-disjoint tailsH(J) − headsH(J) paths in Guext , as desired.

There are several special cases of entry-exit connected sets that lead to quick
ways to justify safety.

Definition 6. A subdivision of directed multiflow topology (G,H) is obtained
by a sequence of the following operation: select an edge e ∈ E(G), and replace it
with a path of length at least one.

Corollary 1. Let (G,H) be a directed multiflow topology.

1. If F ⊆ E(G) is strongly connected, then F is safe.
2. If e = (a, b) ∈ E(G) with deg+G(a) = 1 and deg−

H(a) = 0, then e is safe.
3. If e = (a, b) ∈ E(G) with deg−

G(b) = 1 and deg+H(b) = 0, then e is safe.
4. If (G,H) is a subdivision of (G′,H ′), then (G′,H ′) is a relevant minor of

(G,H).

Cut-Sufficient Directed 2-Commodity Multiow Topologies 417

Items 1 and 4 are used to prove Theorem 2, and Item 3 is additionally used
to prove Theorem 3, though the proof for the latter is omitted in this paper
since it is very similar to the former. We note that these theorems do not require
the full generality of this entry-exit connected machinery, and Corollary 1 can
be proven in an ad-hoc fashion without appealing to Theorem6. However it
shows that the cases of Corollary 1 are different expressions of the same general
connectivity property. More importantly, the entry-exit machinery is general in
the sense of not being restricted to a two demand setting. Moreover, the general
form of entry-exit connected sets is used in [27] for studying safe contractions
when there are 2-matching demands. We expect it to be useful in investigating
characterizations of cut-sufficiency for more general H.

4 Characterizations of Cut-Sufficiency

We now apply our theory of relevant minors to prove Theorems 2, 3, and 4,
which characterize the cut-sufficient directed multiflow topologies for roundtrip
and 2-path demands. What remains to prove is that if there are cut-deceptive
weights for a topology, then one of the desired relevant minors exists.

4.1 Opposingly Ordered Paths

The cut condition implies the existence of certain paths in Gu. From there,
infeasibility implies particular interactions of these paths, which we use to prove
the existence of the desired relevant minor. To that end, we use the following
terminology to describe interactions between paths.

Definition 7 (Overlap Segments, Bridges). Let P and Q be paths in a
directed graph that share at least one node.

– An overlap segment is a maximal common subpath of P and Q. It is trivial
if it is one node. It is terminal if it contains the start or end of either path.

– A P -bridge of Q is a maximal subpath B of P that has at least one edge and
shares no edges or internal nodes of B with Q.

In the above, note that P can be written as an alternating sequence of P -
bridges of Q and the overlap segments of P and Q. When we say that we are
listing objects, such as overlap segments, nodes, or edges, in P -order, we mean
we list them by their order of occurrence when following the (directed) path P .

Paths can intersect numerous times in varied configurations, so it may not be
obvious how to proceed looking for a particular minor. To manage this complex-
ity, we reduce to the case where the overlap segments follow a special pattern.

Definition 8 (Opposingly Ordered). Let P and Q be paths in a directed
graph that share at least one node. We say that P and Q are opposingly ordered
if the P -order of their overlap segments is the reverse of the Q-order.

418 J. Poremba and F. B. Shepherd

Lemma 1. Let P be an s1t1-path and let Q be an s2t2-path in a directed graph,
where s1 �= s2 and t1 �= t2, such that P and Q share an edge. In P ∪ Q, there
exists an s2t2-path Q∗ such that:

– P and Q∗ are opposingly ordered, and
– P and Q∗ share an edge.

4.2 Characterization for Roundtrip and Two-Path Demands

We now have the tools to prove our characterizations. We begin with roundtrip
demands.

Lemma 2. Let (G,H) be a directed multiflow topology with roundtrip demands
between s and t. Suppose G contains an st-path P and a ts-path Q that are not
arc-disjoint. Then (G,H) contains the bad dual triangles (Fig. 2a) as a relevant
minor.

Proof. Consider a counterexample that minimizes |E(P)|+|E(Q)|. By Lemma 1,
we may assume P and Q are opposingly ordered, otherwise we replace Q with
Q∗. Note that s and t themselves are trivial terminal overlap segments.

Since P and Q share an edge, there is a non-trivial overlap segment J∗. Note
that J∗ is not terminal.

We claim J∗ is the only non-terminal overlap segment. Suppose there are at
least two, for the sake of contradiction. Let JP be the first non-terminal overlap
segment in P -order (last in Q-order), and let JQ be the first in Q-order (last in
P -order). At least one of these two is not J∗. Without loss of generality, suppose
JP �= J∗. Say JP starts at w and ends at v. Let C be the cycle obtained by
starting at s, following the first (in P -order) P -bridge of Q to w, following JP

from w to v, then following the last (in Q-order) Q-bridge of P from v to s.
Consider the topology (G′,H ′) = (G,H)/C, which has roundtrip demands.

Since directed cycles are strongly connected, this contraction is safe by Corol-
lary 1. Additionally, P ′ = P/(P ∩ C) and Q′ = Q/(Q ∩ C) are paths for the
two commodities. Moreover, they have a non-trivial overlap segment, namely
J∗. By minimality, we obtain the desired relevant minor in (G′,H ′), and hence
in (G,H), a contradiction.

So, there is exactly one non-terminal overlap segment J∗, and it is non-
trivial. Let w∗ and v∗ be the first and last nodes of J∗, respectively (in either
P -order or Q-order, both are the same for nodes of an overlap segment). The
only other overlap segments are the terminal ones, s and t themselves. There are
thus exactly two P -bridges of Q, connecting s to w∗ and v∗ to t, respectively.
Similarly there are exactly two Q-bridges of P , connecting t to w∗ and v∗ to
s, respectively. Then, the topology (P ∪ Q,H) is exactly a subdivision of the
bad dual triangles. By Corollary 1, the bad dual triangles is a relevant minor of
(P ∪ Q,H) and hence also of (G,H).

Lemma 2 implies that if (G,H) has roundtrip demands and does not contain
the bad dual triangles as a relevant minor, then every st-path in G is arc-disjoint

Cut-Sufficient Directed 2-Commodity Multiow Topologies 419

from every ts-path. Such topologies are easily verified to be cut-sufficient, since
for any weights, any pair of weakly feasible routings for the two commodities
together form a feasible routing for the whole instance. Hence Theorem2 follows,
as well as the part of Theorem 4 pertaining to roundtrip demands.

For 2-path demands, we proceed along similar lines as for roundtrip demands.
Theorem 3, and the remainder of Theorem4, is straightforwardly implied by the
following lemma whose proof we defer to the full version.

Lemma 3. Let (G,H) be a directed multiflow topology with 2-path demands
(s, t) and (t, r). If G has an st-path and a tr-path that are not arc-disjoint, then
(G,H) contains either the bad dual triangles or the bad triangle as a relevant
minor.

5 NP-Hardness of Recognizing Cut-Sufficiency

The proofs of Theorems 2 and 3 can be adapted to give a polynomial time algo-
rithm. Given (G,H) with roundtrip or 2-path demands, and weights (u, d) that
satisfy the cut condition, the algorithm outputs either a feasible integer routing
for (G,H, u, d) or one of the two forbidden relevant minors.

The algorithm does not however determine whether (G,H) is cut-sufficient,
since particular (u, d) may be feasible despite (G,H) not being cut-sufficient
in general. We show that determining if a directed multiflow topology (G,H)
is cut-sufficient (the CutSufficient decision problem) is NP-hard, even if we
restrict to roundtrip demands (the CutSufficientRT decision problem).

We reduce from an NP-hard decision problem we call UsefulEdge. Given a
directed graph G, distinct nodes s, t ∈ V (G), and an edge e ∈ E(G), it asks
whether there exists a (simple directed) st-path in G that uses the edge e. The
directed 2-node-disjoint path problem, proved by Fortune et al. [9] to be NP-
hard, can be reduced to UsefulEdge. Theorem 1 is implied by the following.

Theorem 7. There is a polynomial time reduction from the UsefulEdge prob-
lem to the CutSufficientRT problem.

Proof. Given an input (G, s, t, e = (w, v)) for UsefulEdge, we construct a multi-
flow topology (G′,H ′) with roundtrip demands. We obtain G′ from G as follows:

1. Subdivide e into e1 = (w,w′), e2 = (w′, v′), e3 = (v′, v), where w′, v′ are new
nodes and w, v maintain their other incident edges.

2. Add two new nodes s′, t′, and edges (s′, s), (t, t′), (t′, w′), and (v′, s′).

Finally, define H ′ = (V (G′), {(s′, t′), (t′, s′)}). We claim that (G′,H ′) is not cut-
sufficient if and only if there is an st-path in G that uses e, which proves the
result. Define Q′ to be the path (t′, w′), (w′, v′), (v′, s′).

For the “only if” direction, suppose that (G′,H ′) is not cut-sufficient. Then
by Theorem 4, G′ has some s′t′-path P ′ that shares an edge with some t′s′-path.
The only t′s′-path is Q′, and the only possible shared edge is e2 = (w′, v′),

420 J. Poremba and F. B. Shepherd

so P ′ uses e1, e2, e3. It also uses (s′, s) and (t, t′). Swapping e1, e2, e3 for e and
removing (s′, s) and (t, t′) from P ′, we find an st-path of G that uses e.

For the “if” direction, suppose there is an st-path P in G that uses e. By
swapping e for e1, e2, e3 and adding (s′, s) and (t, t′), we obtain an s′t′-path P ′

in G′ that uses e2. Now, P ′ shares e2 = (w′, v′) with Q′. By Theorem 4, the
topology is not cut-sufficient.

6 Towards a Complete 2-Commodity Characterization

For two commodities, the only remaining case is 2-matching demands. We con-
jecture that the bad dual triangles and the bad triangle are the only forbidden
relevant minors for this case.

Conjecture 1. A directed multiflow topology with 2-matching demands (and
hence, two demands in general) is cut-sufficient if and only if it does not contain
the bad triangle or the bad dual triangles as a relevant minor.

In [27], the following is proved.

Proposition 3. If directed multiflow topology (G,H) has 2-matching demands
and (integer) cut-deceptive weights (u, d) where d(e) = 1 for all e ∈ E(H), then
it contains either the bad triangle or the bad dual triangles as a relevant minor.

The argument considers more intricate interactions of paths arising from the
fair path cut condition. It also requires general entry-exit connected contractions,
rather than the specialized cases of Corollary 1.

For roundtrip and 2-path demands, there is a clear reduction to the case of
unit weight demands: if there is a cut-deceptive weighting (u, d), then by taking
any paths P and Q for the two commodities that share an edge, Lemmas 2 and
3 show there is a cut-deceptive weighting for (P ∪ Q,H) where the demands are
unit. This observation is encapsulated in Theorem 4. However, we do not have
so strong a result for 2-matching demands. It is not enough to just take paths
for the two commodities that share an edge, as this may not even satisfy the cut
condition.

References

1. Adler, I.: Directed tree-width examples. J. Comb. Theory Ser. B 97(5),
718–725 (2007). https://doi.org/10.1016/j.jctb.2006.12.006, https://linkinghub.
elsevier.com/retrieve/pii/S0095895606001444

2. Agarwal, A., Alon, N., Charikar, M.S.: Improved approximation for directed cut
problems. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on The-
ory of Computing - STOC ’07, p. 671. ACM Press, San Diego, California, USA
(2007). https://doi.org/10.1145/1250790.1250888, http://portal.acm.org/citation.
cfm?doid=1250790.1250888

3. Aumann, Y., Rabani, Y.: An o (log k) approximate min-cut max-flow theorem and
approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)

https://doi.org/10.1016/j.jctb.2006.12.006
https://linkinghub.elsevier.com/retrieve/pii/S0095895606001444
https://linkinghub.elsevier.com/retrieve/pii/S0095895606001444
https://doi.org/10.1145/1250790.1250888
http://portal.acm.org/citation.cfm?doid=1250790.1250888
http://portal.acm.org/citation.cfm?doid=1250790.1250888

Cut-Sufficient Directed 2-Commodity Multiow Topologies 421

4. Chakrabarti, A., Fleischer, L., Weibel, C.: When the cut condition is enough: a
complete characterization for multiflow problems in series-parallel networks. In:
Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Comput-
ing, pp. 19–26. ACM (2012)

5. Chakrabarti, A., Jaffe, A., Lee, J.R., Vincent, J.: Embeddings of topological graphs:
lossy invariants, linearization, and 2-sums. In: 2008 49th Annual IEEE Symposium
on Foundations of Computer Science, pp. 761–770. IEEE, Philadelphia, PA, USA,
October 2008. https://doi.org/10.1109/FOCS.2008.79, http://ieeexplore.ieee.org/
document/4691008/

6. Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Embedding
k-outerplanar graphs into l1. SIAM J. Discret. Math. 20(1), 119–136 (2006).
https://doi.org/10.1137/S0895480102417379, http://epubs.siam.org/doi/10.1137/
S0895480102417379

7. Chekuri, C., Shepherd, F.B., Weibel, C.: Flow-cut gaps for integer and fractional
multiflows. J. Comb. Theory Ser. B 103(2), 248–273 (2013)

8. Deligkas, A., Meir, R.: Directed graph minors and serial-parallel width. In: 43rd
International Symposium on Mathematical Foundations of Computer Science, vol.
21, p. 38 (2018)

9. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10(2), 111–121 (1980). https://doi.org/10.1016/0304-
3975(80)90009-2, http://www.sciencedirect.com/science/article/pii/030439758090
0092

10. Gupta, A., Newman, I., Rabinovich, Y., Sinclair, A.: Cuts, trees and �1-embeddings
of graphs. Combinatorica 24(2), 233–269 (2004)

11. Hajiaghayi, M.T., Räcke, H.: An O(
√

n)-approximation algorithm for directed
sparsest cut. Inf. Process. Lett. 97(4), 156–160 (2006). https://doi.org/10.1016/j.
ipl.2005.10.005, https://linkinghub.elsevier.com/retrieve/pii/S0020019005002929

12. Hu, T.C.: Multi-commodity network flows. Oper. Res. 11(3), 344–360
(1963). https://doi.org/10.1287/opre.11.3.344, http://pubsonline.informs.org/doi/
10.1287/opre.11.3.344

13. Johnson, T., Robertson, N., Seymour, P., Thomas, R.: Directed tree-width. J.
Comb. Theory Ser. B 82(1), 138–154 (2001). https://doi.org/10.1006/jctb.2000.
2031, https://linkinghub.elsevier.com/retrieve/pii/S0095895600920318

14. Kawarabayashi, K.i., Kreutzer, S.: The directed grid theorem. In: Proceedings of
the Forty-Seventh Annual ACM Symposium on Theory of Computing, pp. 655–
664. ACM, Portland Oregon USA, June 2015. https://doi.org/10.1145/2746539.
2746586, https://dl.acm.org/doi/10.1145/2746539.2746586

15. Kawarabayashi, K.I., Sidiropoulos, A.: Embeddings of planar quasimetrics into
directed � 1 and polylogarithmic approximation for directed sparsest-cut. In: 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pp. 480–491. IEEE, Denver, CO, USA, February 2022. https://doi.org/10.1109/
FOCS52979.2021.00055, https://ieeexplore.ieee.org/document/9719783/

16. Kim, I., Seymour, P.: Tournament minors. J. Comb. Theory Ser. B 112,
138–153 (2015). https://doi.org/10.1016/j.jctb.2014.12.005, https://linkinghub.
elsevier.com/retrieve/pii/S0095895614001403

17. Kintali, S., Zhang, Q.: Forbidden directed minors and Kelly-width. Theor. Com-
put. Sci. 662, 40–47 (2017). https://doi.org/10.1016/j.tcs.2016.12.008, https://
linkinghub.elsevier.com/retrieve/pii/S0304397516307149

https://doi.org/10.1109/FOCS.2008.79
http://ieeexplore.ieee.org/document/4691008/
http://ieeexplore.ieee.org/document/4691008/
https://doi.org/10.1137/S0895480102417379
http://epubs.siam.org/doi/10.1137/S0895480102417379
http://epubs.siam.org/doi/10.1137/S0895480102417379
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
http://www.sciencedirect.com/science/article/pii/0304397580900092
http://www.sciencedirect.com/science/article/pii/0304397580900092
https://doi.org/10.1016/j.ipl.2005.10.005
https://doi.org/10.1016/j.ipl.2005.10.005
https://linkinghub.elsevier.com/retrieve/pii/S0020019005002929
https://doi.org/10.1287/opre.11.3.344
http://pubsonline.informs.org/doi/10.1287/opre.11.3.344
http://pubsonline.informs.org/doi/10.1287/opre.11.3.344
https://doi.org/10.1006/jctb.2000.2031
https://doi.org/10.1006/jctb.2000.2031
https://linkinghub.elsevier.com/retrieve/pii/S0095895600920318
https://doi.org/10.1145/2746539.2746586
https://doi.org/10.1145/2746539.2746586
https://dl.acm.org/doi/10.1145/2746539.2746586
https://doi.org/10.1109/FOCS52979.2021.00055
https://doi.org/10.1109/FOCS52979.2021.00055
https://ieeexplore.ieee.org/document/9719783/
https://doi.org/10.1016/j.jctb.2014.12.005
https://linkinghub.elsevier.com/retrieve/pii/S0095895614001403
https://linkinghub.elsevier.com/retrieve/pii/S0095895614001403
https://doi.org/10.1016/j.tcs.2016.12.008
https://linkinghub.elsevier.com/retrieve/pii/S0304397516307149
https://linkinghub.elsevier.com/retrieve/pii/S0304397516307149

422 J. Poremba and F. B. Shepherd

18. Kreutzer, S., Tazari, S.: Directed nowhere dense classes of graphs. In: Proceed-
ings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1552–1562. Society for Industrial and Applied Mathematics, January
2012. https://doi.org/10.1137/1.9781611973099.123, https://epubs.siam.org/doi/
10.1137/1.9781611973099.123

19. Lee, J.R., Raghavendra, P.: Coarse differentiation and multi-flows in planar graphs.
Discret. Comput. Geom. 43(2), 346–362 (2010). https://doi.org/10.1007/s00454-
009-9172-4, http://link.springer.com/10.1007/s00454-009-9172-4

20. Lee, J.R., Sidiropoulos, A.: On the geometry of graphs with a forbidden minor. In:
Proceedings of the 41st Annual ACM Symposium on Theory of Computing - STOC
’09, p. 245. ACM Press, Bethesda, MD, USA (2009). https://doi.org/10.1145/
1536414.1536450, http://portal.acm.org/citation.cfm?doid=1536414.1536450

21. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

22. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its
algorithmic applications. Combinatorica 15(2), 215–245 (1995)

23. Lomonosov, M.V.: Combinatorial approaches to multiflow problems. North-
Holland (1985)

24. Nagamochi, H., Ibaraki, T.: On max-flow min-cut and integral flow properties for
multicommodity flows in directed graphs. Inf. Process. Lett. 31, 279–285 (1989)

25. Naves, G., Shepherd, B.: When do Gomory-Hu subtrees exist? SIAM J. Discret.
Math. 36(3), 1567–1585 (2022)

26. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb.
Theory Ser. B 31(1), 75–81 (1981). http://www.sciencedirect.com/science/article/
B6WHT-4KBW025-8/2/9b4489ece0a97e9d8340d69948600501

27. Poremba, J.C.: Directed multicommodity flows: cut-sufficiency and forbidden rel-
evant minors. Master’s thesis, University of British Columbia (2022)

28. Salmasi, A., Sidiropoulos, A., Sridhar, V.: On constant multi-commodity flow-
cut gaps for families of directed minor-free graphs. In: Proceedings of the Thirti-
eth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 535–553. SIAM
(2019)

29. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, vol. 24.
Springer, Heidelberg (2003)

30. Seymour, P.D.: Four-terminus flows. Networks 10(1), 79–86 (1980)
31. Seymour, P.D.: Matroids and multicommodity flows. Eur. J. Comb. 2(3), 257–290

(1981)

https://doi.org/10.1137/1.9781611973099.123
https://epubs.siam.org/doi/10.1137/1.9781611973099.123
https://epubs.siam.org/doi/10.1137/1.9781611973099.123
https://doi.org/10.1007/s00454-009-9172-4
https://doi.org/10.1007/s00454-009-9172-4
http://springerlink.bibliotecabuap.elogim.com/10.1007/s00454-009-9172-4
https://doi.org/10.1145/1536414.1536450
https://doi.org/10.1145/1536414.1536450
http://portal.acm.org/citation.cfm?doid=1536414.1536450
http://www.sciencedirect.com/science/article/B6WHT-4KBW025-8/2/9b4489ece0a97e9d8340d69948600501
http://www.sciencedirect.com/science/article/B6WHT-4KBW025-8/2/9b4489ece0a97e9d8340d69948600501

Constant-Competitiveness for Random
Assignment Matroid Secretary Without

Knowing the Matroid

Richard Santiago(B), Ivan Sergeev, and Rico Zenklusen

Department of Mathematics, ETH Zurich, Zurich, Switzerland
{rtorres,isergeev,ricoz}@ethz.ch

Abstract. The Matroid Secretary Conjecture is a notorious open prob-
lem in online optimization. It claims the existence of an O(1)-competitive
algorithm for the Matroid Secretary Problem (MSP). Here, the ele-
ments of a weighted matroid appear one-by-one, revealing their weight
at appearance, and the task is to select elements online with the goal to
get an independent set of largest possible weight. O(1)-competitive MSP
algorithms have so far only been obtained for restricted matroid classes
and for MSP variations, including Random-Assignment MSP (RA-MSP),
where an adversary fixes a number of weights equal to the ground set size
of the matroid, which then get assigned randomly to the elements of the
ground set. Unfortunately, these approaches heavily rely on knowing the
full matroid upfront. This is an arguably undesirable requirement, and
there are good reasons to believe that an approach towards resolving the
MSP Conjecture should not rely on it. Thus, both Soto [SIAM Journal
on Computing 2013] and Oveis Gharan & Vondrak [Algorithmica 2013]
raised as an open question whether RA-MSP admits an O(1)-competitive
algorithm even without knowing the matroid upfront.

In this work, we answer this question affirmatively. Our result makes
RA-MSP the first well-known MSP variant with an O(1)-competitive
algorithm that does not need to know the underlying matroid upfront
and without any restriction on the underlying matroid. Our approach
is based on first approximately learning the rank-density curve of the
matroid, which we then exploit algorithmically.

1 Introduction

The Matroid Secretary Problem (MSP), introduced by Babaioff, Immorlica, and
Kleinberg [1], is a natural and well-known generalization of the classical Secre-
tary Problem [6], motivated by strong connections and applications in mecha-
nism design. Formally, MSP is an online selection problem where we are given

This project received funding from Swiss National Science Foundation grant
200021 184622 and the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No 817750).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 423–437, 2023.
https://doi.org/10.1007/978-3-031-32726-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_30

424 R. Santiago et al.

a matroid M = (N, I),1 with elements of unknown weights w : N → R≥0 that
appear one-by-one in uniformly random order. Whenever an element appears,
one has to immediately and irrevocably decide whether to select it, and the goal
is to select a set of elements I ⊆ N that (i) is independent, i.e., I ∈ I, and (ii)
has weight w(I) =

∑
e∈I w(e) as large as possible. The key challenge in the area

is to settle the notorious Matroid Secretary Problem (MSP) Conjecture:

Conjecture 1 ([1]). There is an O(1)-competitive algorithm for MSP.

The best-known procedures for MSP are O(log log(rank(M)))-competitive
[7,13], where rank(M) is the rank of the matroid M, i.e., the cardinality of a
largest independent set.

Whereas the MSP Conjecture remains open, extensive work in the field has
led to constant-competitive algorithms for variants of the problem and restricted
settings. This includes constant-competitive algorithms for specific classes of
matroids [2,4,5,8,9,11,12,14,16]. Moreover, in terms of natural variations of
the problem, Soto [16] showed that constant-competitiveness is achievable in
the so-called Random-Assignment MSP, RA-MSP for short. Here, an adversary
chooses |N | weights, which are then assigned uniformly at random to ground set
elements N of the matroid. (Soto’s result was later extended by Oveis Gharan
and Vondrák [15] to the setting where the arrival order of the elements is adver-
sarial instead of uniformly random.) Constant-competitive algorithms also exist
for the Free Order Model, where the algorithm can choose the order in which
elements appear [9].

Intriguingly, a key aspect of prior advances on constant-competitive algo-
rithms for special cases and variants of MSP is that they heavily rely on knowing
the full matroid M upfront. This is also crucially exploited in Soto’s work on
RA-MSP. In fact, if the matroid is not known upfront in full, there is no natural
variant of MSP for which a constant-competitive algorithm is known.

A high reliance on knowing the matroid M = (N, I) upfront (except for its
size |N |) is undesirable when trying to approach the MSP Conjecture, because
it is easy to obstruct an MSP instance by adding zero-weight elements. Not
surprisingly, all prior advances on the general MSP conjecture, like the above-
mentioned O(log log(rank(M)))-competitive algorithms [7,13] and also earlier
procedures [1,3], only need to know |N | upfront and make calls to an indepen-
dence oracle on elements revealed so far. Thus, for RA-MSP, it was raised as an
open question both in [16] and [15], whether a constant-competitive algorithm
exists without knowing the matroid upfront. The key contribution of this work is
to affirmatively answer this question, making the random assignment setting the
first MSP variant for which a constant-competitive algorithm is known without
knowing the matroid and without any restriction on the underlying matroid.

1 A matroid M is a pair M = (N, I) where N is a finite set and I ⊆ 2N is a non-
empty family satisfying: 1) if A ⊆ B and B ∈ I then A ∈ I, and 2) if A, B ∈ I and
|B| > |A| then ∃e ∈ B \ A such that A ∪ {e} ∈ I.

O(1)-Competitive Random Assignment MSP Without Knowing the Matroid 425

Theorem 1. There is a constant-competitive algorithm for RA-MSP with only
the cardinality of the matroid known upfront.

Moreover, our result holds in the more general adversarial order with a sam-
ple setting, where we are allowed to sample a random constant fraction of the
elements and all remaining (non-sampled) elements arrive in adversarial order.

As mentioned, when the matroid is fully known upfront, an O(1)-competitive
algorithm was known for RA-MSP even when the arrival order of all elements is
adversarial [15]. Interestingly, for this setting it is known that, without knowing
the matroid upfront, no constant-competitive algorithm exists. More precisely,
a lower bound on the competitiveness of Ω(|N |/log log|N |) was shown in [15].

Organization of the Paper. We start in Sect. 2 with a brief discussion on
the role of (matroid) densities in the context of random assignment models, as
our algorithm heavily relies on densities. Decomposing the matroid into parts of
different densities has been central in prior advances on RA-MSP. However, this
crucially relies on knowing the matroid upfront. We work with a rank-density
curve, introduced in Sect. 3.1, which is also unknown upfront; however, we show
that it can be learned approximately (in a well-defined sense) by observing a
random constant fraction of the elements. Section 3 provides an outline of our
approach based on rank-density curves and presents the main ingredients which
allow us to derive Theorem 1. Sect. 4 showcases the main technical tool that
allows us to approximate the rank-density curve from a sample set. Finally,
Sect. 5 discusses our main algorithmic contribution and a sketch of its analysis.

We emphasize that we predominantly focus on providing a simple algorithm
and analysis, refraining from optimizing the competitive ratio of our procedure
at the cost of complicating the presentation. Moreover, due to space constraints,
some proofs are deferred to the long version of this paper.

We assume that all matroids are loopless, i.e., every element is independent
by itself. This is without loss of generality, as loops can simply be ignored in
matroid secretary problems.

2 Random-Assignment MSP and Densities

A main challenge in the design and analysis of MSP algorithms is how to protect
heavier elements (or elements of an offline optimum) from being spanned by
lighter ones that are selected earlier during the execution of the algorithm. In the
random assignment setting, however, weights are assigned to elements uniformly
at random, which allows for shifting the focus from protecting elements based on
their weights to protecting elements based on their role in the matroid structure.
Intuitively speaking, an element arriving in the future is at a higher risk of
being spanned by the algorithm’s prior selection if it belongs to an area of the
matroid with larger cardinality and smaller rank (“denser” area) than an area
with smaller cardinality and larger rank (“sparser” area).

426 R. Santiago et al.

This is formally captured by the notion of density: the density of a set U ⊆ N
in a matroid M = (N, I) is |U |/r(U), where r : 2N → Z≥0 is the rank function of
M.2

Densities play a crucial role in RA-MSP [15,16]. Indeed, prior approaches
decomposed M into its principal sequence, which is the chain ∅ � S1 � . . . �

Sk = N of sets of decreasing densities obtained as follows. S1 ⊆ N is the densest
set of M (in case of ties it is the unique maximal densest set), S2 is the union
of S1 and the densest set in the matroid obtained from M after contracting S1,
and so on until a set Sk is obtained with Sk = N . Figure 1a shows an example
of the principal sequence of a graphic matroid.

Fig. 1. Figure 1a shows a graph representing a graphic matroid together with its
principal sequence ∅ � S1 � · · · � S7 = N , where N are all edges of the graph.
Figure 1b shows its rank-density curve. Each step in the rank-density curve (high-
lighted by a circle) corresponds to one Si and has y-coordinate equal to the density of
Mi = (M/Si−1)|Si\Si−1

and x-coordinate equal to r(Si).

Previous approaches then considered, independently for each i ∈ [k] :=
{1, . . . , k}, the matroid Mi := (M/Si−1)|Si\Si−1

, i.e., the matroid obtained from
M by contracting Si−1 and then restricting to Si \ Si−1. (By convention, we set
S0 := ∅.) These matroids are also known as the principal minors of M. Given an
independent set in each principal minor, their union is guaranteed to be inde-
pendent in the original matroid M. Prior approaches (see, in particular, [16]
for details) then exploited the following two key properties of the principal
minors Mi:

2 The rank function r : 2N → Z≥0 assigns to any set U ⊆ N the cardinality of a
maximum cardinality independent set in U , i.e., r(U) := max{|I| : I ⊆ U, I ∈ I}.

O(1)-Competitive Random Assignment MSP Without Knowing the Matroid 427

(i)
∑k

i=1 E[w(OPT(Mi))] = Ω(E[w(OPT(M))]), where OPT(M) (and anal-
ogously OPT(Mi)) is an (offline) maximum weight independent set in M
and the expectation is over all random weight assignments.

(ii) Each matroid Mi is uniformly dense, which means that the (unique maxi-
mal) densest set in Mi is the whole ground set of Mi.

Property (i) guarantees that, to obtain an O(1)-competitive procedure, it
suffices to compare against the (offline) optima of the matroids Mi. Combining
this with property (ii) implies that it suffices to design a constant-competitive
algorithm for uniformly dense matroids. Since uniformly dense matroids behave
in many ways very similarly to uniform matroids, which are a special case of
uniformly dense matroids, it turns out that the latter admit a simple yet elegant
O(1)-competitive algorithm. (See [16] for details.)

3 Outline of Our Approach

As discussed, prior approaches [15,16] for RA-MSP heavily rely on knowing
the matroid upfront, as they need to construct its principal sequence upfront.
A natural approach would be to observe a sample set S ⊆ N containing a
constant fraction of all elements and then try to mimic the existing approaches
using the principal sequence of M|S , the matroid M restricted to the elements
in S. A main hurdle lies in how to analyze such a procedure as the principal
sequence of M|S can differ significantly from the one of M. In particular, one can
construct matroids where the density of some parts is likely to be underestimated
by a super-constant factor. Moreover, generally M|S may have many different
densities not present in M (e.g., when M is uniformly dense).

We overcome these issues by not dealing with principal sequences directly,
but rather using what we call the rank-density curve of a matroid, which cap-
tures certain key parameters of the principal sequence. As we show, rank-density
curves have three useful properties:

(i) They provide a natural way to derive a quantity that both relates to the
offline optimum and can be easily compared against to bound the compet-
itiveness of our procedure.

(ii) They can be learned approximately by observing an O(1)-fraction of N .
(iii) Approximate rank-density curves can be used algorithmically to protect

denser areas from sparser ones without having to know the matroid upfront.

Section 3.1 introduces rank-density curves and shows how they conveniently
allow for deriving a quantity that compares against the offline optimum.
Section 3.2 then discusses our results on approximately learning rank-density
curves and how this can be exploited algorithmically.

3.1 Rank-Density Curves

Given a matroid M = (N, I), one natural way to define its rank-density curve
ρM : R>0 → R≥0, is through its principal minors M1, . . . ,Mk, which are defined

428 R. Santiago et al.

through the principal sequence ∅ � S1 � · · · � Sk = N as explained in Sect. 2.
For a value t ∈ (0, rank(M)], let it ∈ [k] be the smallest index such that r(Sit) >
t. The value ρM(t) is then given by the density of Mit . (See Fig. 1b for an
example.) In addition, we set ρM(t) = 0 for any t > rank(M).

A formally equivalent way to define ρM, which is more convenient for what
we do later, is as follows. For any S ⊆ N and λ ∈ R≥0, we define

DM(S, λ) ∈ argmax
U⊆S

{|U | − λr(U)} (1)

to be the unique maximal maximizer of maxU⊆S{|U | − λr(U)}. It is well-known
that each set in the principal sequence S1, . . . , Sk is nonempty and of the form
DM(N,λ) for λ ∈ R≥0. This leads to the following way to define the rank-density
curve, which is the one we use in what follows.

Definition 1 (rank-density curve). Let M = (N, I) be a matroid. Its rank-
density curve ρM : R>0 → R≥0 is defined by

ρM(t) :=

{
max {λ ∈ R≥0 : r(DM(N,λ)) ≥ t} ∀t ∈ (0, rank(M)]
0 ∀t > rank(M).

When the matroid M is clear from context, we usually simply write ρ instead
of ρM for its rank-density curve and D(N,λ) instead of DM(N,λ). Note that
ρ is piecewise constant, left-continuous, and non-increasing. (See Fig. 1b for an
example.) If M is a uniformly dense matroid with density λ, we have ρ(t) = λ
for t ∈ (0, rank(M)].

We now expand on how ρM is related to the expected offline optimum
value E[OPT(M)] of an RA-MSP instance. To this end, we use the function
η : [0, |N |] → R≥0 defined by

η(a) := ER∼Unif(N,�a�)

[

max
e∈R

w(e)
]

, (2)

where Unif(N, �a) is a uniformly random set of �a	 many elements out of N ;
and we set η(a) = 0 for a ∈ [0, 1) (i.e., when the set R above is empty) by
convention. In words, η(a) is the expected maximum weight out of �a	 weights
chosen uniformly at random from all the weights {we}e∈N . Based on this notion,
we assign the following value F (ρ) to a rank-density curve ρ:

F (ρ) :=
∫ ∞

0

η(ρ(t))dt. (3)

Note that as the graph of ρ is a staircase, the above integral is just a finite sum.
One can then show that the values of the offline optimum and F (ρ) differ by at
most a constant factor — proof deferred.

Lemma 1. Let (M, w) be a random-assignment MSP instance. Let M′ be any
matroid minor of M and let F be as defined above. Then E[w(OPT(M′))] ≤
3e

e−1 · F (ρM′).

Thus, to be constant-competitive, it suffices to provide an algorithm returning
an independent set of expected weight Ω(F (ρ)).

O(1)-Competitive Random Assignment MSP Without Knowing the Matroid 429

RA-MSP Subinstances. We will often work with minors of the matroid that
is originally given in our RA-MSP instance, and apply certain results to such
minors instead of the original matroid. To avoid confusion, we fix throughout the
paper one RA-MSP instance with matroid Morig = (Norig, Iorig) and unknown
but (adversarially) fixed weights w : Norig → R≥0, and our goal is to design
an O(1)-competitive algorithm for this instance. The weights w of the original
instance are the only weights we consider, even when working with RA-MSP
subinstances on minors of Morig, as their elements also obtain their weights
uniformly at random from w. In particular, the function F as defined in (3) is
always defined with respect to the original weights w. Many of our statements
hold not just for minors of M but any matroid with weights uniformly drawn
from w. For simplicity, we typically also state these results for minors of M.

For a matroid M = (N, I) with |N | ≤ |Norig|, we denote by (M, w) the
RA-MSP instance on the matroid M obtained by assigning a uniformly ran-
dom subset of |N | weights among the weights w uniformly at random to the
elements in N . Our subinstances will be of this type (with M being a minor of
Morig). Even though there may be more weights than elements, such instances
(M, w) can indeed be interpreted as RA-MSP instances, as they correspond to
the adversary first choosing uniformly at random a subset of |N | weights among
the weights in w, which then get assigned uniformly at random to the elements.

3.2 Proof Plan for Theorem1 via Rank-Density Curves

We now expand on how one can learn an approximation ρ̃ of the rank-density
curve ρMorig and how this can be exploited algorithmically to return an inde-
pendent set of expected weight Ω(F (ρMorig)), which by Lemma 1 implies O(1)-
competitiveness of the procedure. To this end, we start by formalizing the notion
of an approximate rank-density curve, which relies on the notion of downshift.

Definition 2. Let ρ : R>0 → R≥0 be a non-increasing function and let α, β ∈
R≥1. The (α, β)-downshift ρ′ : R>0 → R≥0 of ρ is defined via an auxiliary func-
tion φ : R>0 → R≥0 as follows:

φ(t) :=

{
ρ(α)

β ∀t ∈ (0, 1],
ρ(α·t)

β ∀t > 1;
ρ′(t) :=

{
1 if φ(t) ∈ (0, 1),
φ(t) otherwise .

Moreover, a function ρ̃ : R>0 → R≥0 is called an (α, β)-approximation of ρ if it
is non-increasing and ρ′ ≤ ρ̃ ≤ ρ, where ρ′ is the (α, β)-downshift of ρ.

The reason we round up values in (0, 1) in the above definition of downshift,
is that while we define the latter for a more general type of curves, throughout
the paper we mainly use it with rank-density curves, and density values are
always at least one.

One issue when working with an (O(1), O(1))-approximation ρ̃ of ρ is that
F (ρ̃) may be more than a constant factor smaller than F (ρ) and we thus cannot
compare against F (ρ̃) to obtain an O(1)-competitive procedure. However, as the

430 R. Santiago et al.

following lemma shows, also in this case we can obtain a simple lower bound for
the value F (ρ̃) in terms of F (ρ) and the largest weight wmax in w.

Lemma 2. Let M be a matroid minor of Morig, let α, β ∈ R≥1, and let ρ̃ be
an (α, β)-approximation of ρM. Then F (ρM) ≤ 2αβF (ρ̃) + αwmax.

Proof. By the definition of an (α, β)-approximate curve we have

F (ρ̃) =
∫ ∞

0

η(ρ̃(t))dt ≥ 1
2αβ

∫ ∞

α

η(ρ(t))dt =
1

2αβ

[

F (ρ) −
∫ α

0

η(ρ(t))dt

]

≥ 1
2αβ

[
F (ρ) − αwmax

]
,

where the first inequality follows since ρ̃ is an (α, β)-approximation of ρM and
from properties of η (proof deferred), and the last inequality holds by definition
of η. ��

A key implication of Lemma 2 is that it suffices to obtain an algorithm that
returns an independent set of expected weight Ω(F (ρ̃)) for some (O(1), O(1))-
approximation ρ̃ of ρMorig . Indeed, Lemma 2 then implies F (ρ̃) = Ω(F (ρMorig))−
O(wmax). By running this algorithm with some probability (say 0.5) and oth-
erwise Dynkin’s [6] classical secretary algorithm, which picks the heaviest ele-
ment with constant probability, an overall algorithm is obtained that returns
an independent set of expected weight Ω(F (ρMorig)). Hence, Lemma 2 helps to
provide bounds on the competitiveness of algorithms that are competitive with
the F -value of an approximate rank-density curve. This technique is also used
in the following key statement, which shows that an algorithm with strong guar-
antees can be obtained if we are given an (O(1), O(1))-approximation of the
rank-density curve of the matroid on which we work — see Sect. 5.

Theorem 2. Let M be a matroid minor of Morig, and let ρM denote the rank-
density curve of M. Assume we are given an (α, β)-approximation ρ̃ of ρM for
integers α ≥ 24 and β ≥ 3. Then there is an efficient procedure ALG(ρ̃, α, β)
that, when run on the RA-MSP subinstance given by M, returns an independent
set I of M of expected weight at least

(
1

1440eα2β2

) (
F (ρM) − α2wmax

)
.

The last main ingredient of our approach is to show that such an accurate
proxy ρ̃ can be computed with constant probability. More precisely, we show that,
after observing a sample set S containing every element of Norig independently
with probability 1/2, the rank-density curve of (the observed) Morig|S
– is close to the rank-density curve of Morig|Norig\S , allowing us to use ρMorig|S

as desired proxy for the RA-MSP subinstance given by Morig|Norig\S , and
– is close to the rank-density curve of Morig, which allows for relating the offline

optimum of the RA-MSP subinstance given by Morig|Norig\S to the one of
Morig.

We highlight that the next result is purely structural and hence independent of
weights or the MSP setting. See Sect. 4 for details.

O(1)-Competitive Random Assignment MSP Without Knowing the Matroid 431

Theorem 3. Let M = (N, I) be a matroid and S ⊆ N be a random set contain-
ing every element of N independently with probability 1/2. Then, with probability
at least 1/100, ρM|S and ρM|N\S

are both (288, 9)-approximations of ρM.

Combining the above results, we get the desired O(1)-competitive algorithm.

Proof of Theorem 1. For brevity, let M := Morig and N := Norig throughout
this proof. Recall that by Lemma 1, it suffices to provide an algorithm returning
an independent set of expected weight Ω(F (ρM)). Consider the following proce-
dure: First observe (without picking any element) a set S ⊆ N containing every
element of N independently with probability 1/2 and let ρ̃ denote the (288, 9)-
downshift of ρM|S . Then run the algorithm described in Theorem2 on M|N\S

with ρ̃ as the approximate rank-density curve. Let I denote the output of the
above procedure and let A be the event defined in Theorem 3, that is,

A = {S ⊆ N : ρM|S and ρM|N\S
are (288, 9)-approximations of ρM}.

Then, observe that for any fixed S ∈ A, we have

E[w(I) | S] ≥ (
1

1440e·2884·94
) (

F
(
ρM|N\S

)
− 2884wmax

)

≥ (
1

2880e·2885·95
)
F (ρM) − wmax

720e·93 ,

where the first inequality follows from Theorem2 and that, for every S ∈ A,
the curve ρ̃ is a (2882, 92)-approximation of ρM|N\S

,3 while the second inequality
follows from Lemma 2 and the fact that for every S ∈ A the curve ρM|N\S

is a
(288, 9)-approximation of ρM. Moreover, the first inequality uses that condition-
ing on any fixed S ∈ A does not have any impact on the uniform assignment of
the weights w to the elements. This holds because the event A only depends on
the sampled elements S but not the weights of its elements. Hence, the RA-MSP
subinstance given by M|N\S on which we use the algorithm described in Theo-
rem 2, indeed assigns weights of w uniformly at random to elements, as required.
It then follows that the output of the above procedure satisfies

E[w(I)] ≥
∑

S∈A
E[w(I) | S] Pr[S] ≥ 1

100

((
1

2880e·2885·95
)
F (ρM) − wmax

720e·93
)
,

where the last inequality uses that Pr[A] ≥ 1/100 by Theorem 3.
Since running the classical secretary algorithm on Morig returns an inde-

pendent set of expected weight at least wmax/e, the desired result now follows
by running the procedure described above with probability 1/2, and running the
classical secretary algorithm otherwise. ��
3 ρ̃ is a (2882, 92)-approximation of ρM|N\S

because ρ̃ is the (288, 9)-downshift of

ρM|S , and, both ρM|N\S
and ρM|S are (288, 9)-approximations of ρM. First, this

implies that ρM|N\S
lies above ρ̃. Second, the approximation parameter (2882, 92)

can be derived by observing that the (α2, β2)-downshift of the (α1, β1)-downshift of
some rank-density function is an (α1α2, β1β2)-approximation of that rank-density
function — proof deferred.

432 R. Santiago et al.

4 Learning Rank-Density Curves from a Sample

One of the main challenges when designing and analyzing algorithms for MSP is
understanding what kind of (and how much) information can be learned about
the underlying instance after observing a random sample of it.

In this section, we discuss the main ingredient to show that, with constant
probability, after observing a sample set S one can learn a good approximation
of the rank-density curve of both M and M|N\S — see Theorem 3. However,
even if one knew the exact (instead of an approximate) rank-density curve of
M|N\S , given that the matroid is not known upfront (and hence neither which
elements are associated to each of the different density areas of the curve), it
is a priori not clear how to proceed. A second main contribution of this section
is to show that the set of elements in N \ S that are spanned by a subset of
S of a given density is well-structured. In particular, this will allow us to build
a (chain) decomposition

⊕k
i=1 Mi of M|N\S where all the Mi’s satisfy some

desired properties with constant probability — see Sect. 5.1 for details.
The main technical contribution in this section is the following result.

Theorem 4. Let M = (N, I) be a matroid containing 3h disjoint bases for
some h ∈ Z≥1. Let S ∼ B(N, 1/2). Then

Pr
[
|span(D(S, h)) \ S| ≤ |N |

12

]
≤ exp

(
− |N |

144

)
, (4)

Pr
[
r(D(S, h)) ≤ r(N)

8

]
≤ exp

(
− r(N)

48

)
. (5)

Proof. We prove (4) and defer the proof of (5) to the full version. Let Mh =
(N, Ih) denote the h-fold union of M and let rh denote its rank function. Con-
sider the procedure described in Algorithm 1, which is loosely inspired by [10].

Algorithm 1: Algorithm for lower bounding ES [|span(D(S, h)) \ S|]
Set W ← ∅, G ← ∅, and C ← ∅
for every e ∈ N considered in an arbitrary order do

if W ∪ {e} ∈ Ih then
if e ∈ S then Update W ← W ∪ {e}

else
if e ∈ S then Update C ← C ∪ {e} else Update G ← G ∪ {e}

Note that the following three properties hold at all times: W , G, and C are
pairwise disjoint; W ⊆ S and C ⊆ S, while G∩S = ∅; and W ∈ Ih. In addition,
by construction, at the end of the procedure we have:

(i) S = C�W . Moreover, the random sets G and C have identical distributions,
because each element belongs to S with probability 1/2 independently.

O(1)-Competitive Random Assignment MSP Without Knowing the Matroid 433

(ii) G ⊆ span(D(S, h)) \ S. Because G ∩ S = ∅, it is enough to show G ⊆
span(D(S, h)). Given an arbitrary e ∈ G, by construction we have W ∪{e} /∈
Ih, i.e., rh(W ∪ {e}) = rh(W). As W ⊆ S, this yields rh(S ∪ {e}) = rh(S),
which then implies (proof deferred) e ∈ span(D(S, h)).

As G ⊆ span(D(S, h)) \ S, and G and C have the same distribution, we get

Pr
[
|span(D(S, h) \ S)| ≤ |N |

12

]
≤ Pr

[
|G| ≤ |N |

12

]
= Pr

[
|C| ≤ |N |

12

]
. (6)

Moreover,
|C| = |S| − |W | ≥ |S| − hr(N) ≥ |S| − |N |/3, (7)

where the equality follows from S = C � W , the first inequality from W ∈ Ih

(which implies |W | = rh(W) ≤ hr(N)), and the last one from the fact that M
contains 3h many disjoint bases (and hence |N | ≥ 3hr(N)).

Combining (6) and (7) we obtain

Pr
[
|span(D(S, h) \ S)| ≤ |N |

12

]
≤ Pr

[
|S| − |N |

3 ≤ |N |
12

]
≤ Pr

[|S| ≤ 5
6E[|S|]] ,

(8)
where the second inequality follows from E[|S|] = |N |/2. Relation (4) now follows
by applying a Chernoff bound Pr[X < (1−δ)E[X]] < exp[− δ2

E[X]/2] for X = |S|
to the right-hand side expression in (8) and using E[|S|] = |N |/2. ��

The proof of Theorem 3 is based on the concentration result (5). In summary,
rather than directly showing that ρM|S approximates ρM well everywhere, we
consider a discrete set of points on ρM associated to minors of M of geometrically
increasing ranks. We then apply (5) to these minors and employ a union bound
to show that we get a good approximation for these grid points. The union
bound works out because the ranks are geometrically increasing and appear in
the exponent of the right-hand side of (5). (Complete proof is deferred.)

5 The Main Algorithm and Its Analysis

In this section we describe the procedure from Theorem 2 and discuss the two
main ingredients of its analysis. The first one is to show that if the approximate
curve ρ̃ is well-structured (in some well-defined sense), then there is an algorithm
retrieving a constant factor of F (ρ̃) on expectation — see Theorem 5. The second
one is then to show that given any initial approximate curve ρ̃, one can find well-
structured curves whose F function value is close to F (ρ̃) — see Theorem 6.

The next result, whose proof is sketched in Sect. 5.1, formalizes the first step
above.

Theorem 5. Let M = (N, I) be a matroid minor of Morig, and let r and
ρM denote the rank function and rank-density curve of M, respectively. Let
ρ ≤ ρM be a rank-density curve with densities {λi}i∈[m] such that the λi are
powers of some integer β ≥ 3 and λ1 > · · · > λm ≥ 1. Assume r(D(N,λi+1)) ≥
24r(D(N, λi/β)) for i ∈ [m − 1]. Then there is an efficient procedure ALG(ρ̃, β)
that, when run on the RA-MSP subinstance given by M, returns an independent
set I of M of expected weight at least (1/180e)F (ρ).

434 R. Santiago et al.

The second main ingredient in the proof of Theorem2 is the following result.
Due to space constraints, we defer its proof to the long version.

Theorem 6. Let M = (N, I) be a matroid minor of Morig, and let r and
ρM denote the rank function and rank-density curve of M, respectively. Given
an (α, β)-approximate curve ρ̃ of ρM with α ∈ R≥24 and β ∈ Z≥3, there is a
procedure ALG(ρ̃, α, β) returning rank-density curves ρ, ρ1, ρ2, ρ3, ρ4 such that:

(i) ρ is an (α2, β2)-approximation of ρM.
(ii)

∑
i∈[4] F (ρi) ≥ F (ρ).

(iii) For each i ∈ [4], ρi satisfies the following properties: Let {μj}j∈[�] be the
densities of ρi, then all the μj are powers of β ≥ 3, and r(D(N,μj+1)) ≥
αr(D(N, μj/β)) ≥ 24r(D(N, μj/β)) for j ∈ [
 − 1]. Moreover, ρi ≤ ρM.

We now show how Theorem 5 and Theorem 6 combined imply Theorem 2.

Proof of Theorem 2. Given an (α, β)-approximation ρ̃ of ρM, first run the proce-
dure from Theorem 6 to get curves ρ, ρ1, ρ2, ρ3, ρ4. Then choose an index i ∈ [4]
uniformly at random and run the procedure from Theorem5 on ρi to get an
independent set with expected weight at least

1
180e

(
1
4

4∑

i=1

F (ρi)

)

≥ 1
720e

F (ρ) ≥ 1
1440eα2β2

[
F (ρM) − α2wmax

]
,

where the last inequality uses Lemma 2 and the fact that ρ is an (α2, β2)-
approximation of ρM. ��

Thus, to show Theorem 2, it remains to prove Theorem 5.

5.1 Proof (Sketch) of Theorem5

Throughout this section we use the notation and assumptions from Theorem5.
We prove the theorem in two steps. First, we argue that after observing

a sample set S, we can build a chain
⊕k

i=1 Mi of M|N\S satisfying certain
properties with at least constant probability. Then we argue that, given such a
chain, there is a procedure returning an independent set I of M with E[w(I)] =
Ω(F (ρ)), leading to the desired result. We start by discussing the former claim.

Given a sample set S ⊆ N , we build a chain of matroids as follows. For
i ∈ [m] let

Ni := span(D(S, λi/β)) \ (S ∪ span(D(S, λi−1/β))), and
Mi := (M/span(D(S, λi−1/β)))|Ni

, (9)

where D(S, λ0/β) = ∅ by convention.
In addition, for every i ∈ [m] let N i := D(N,λi), and define Λ := {i ∈

[m] : r(N i) ≥ 24, λi ≥ β}. Note that Λ and the N i’s do not depend on the

O(1)-Competitive Random Assignment MSP Without Knowing the Matroid 435

sample set S. Moreover, from the assumptions of Theorem5 it follows that Λ ⊇
[m] \ {1,m}. The next result shows that with constant probability, the sample
set S is such that for each i ∈ Λ, the set Ni contains a subset Ui of large rank
and density; more precisely, r(Ui) ≥ Ω(r(N i)) and |Ui|/r(Ui) ≥ Ω(λi).

Lemma 3. Let S ∼ B(N, 1/2), and let Ni, N i, and Λ be as defined above. Then,
with probability at least 1/3, every Ni with i ∈ Λ contains λi disjoint independent
sets I1, . . . , Iλi

such that
∑

j∈[λi]
|Ij | ≥ (1/24)λir(N i).

The second main ingredient in the proof is to show that the above result can
be exploited algorithmically. More precisely, we prove the following.

Lemma 4. Let M = (N, I) be a matroid minor of Morig containing h disjoint
independent sets I1, . . . , Ih such that s := (1/h)

∑h
j=1|Ij | ≥ 1. Then there is a

procedure that, when run on the RA-MSP subinstance given by M, and with
only h given upfront, returns an independent set of M with expected weight at
least (s/2e)η(h). This is still the case even if the elements of M are revealed in
adversarial (rather than uniformly random) order.

We can now combine Lemmas 3 and 4 to prove Theorem 5 as follows.

Proof of Theorem 5. Let OSP(M, h) denote the online selection procedure
described in Lemma 4. Additionally, for i ∈ [m], let ri denote the coefficient
of η(λi) in F (ρ). Hence, F (ρ) =

∑m
i=1 riη(λi). Consider the following algorithm:

choose and execute one of the three branches presented below with probability
12/15, 2/15, and 1/15, respectively.

(i) Observe S ∼ B(N, 1/2), construct the chain
⊕k

i=1 Mi as defined in (9), and
run OSP(Mi, λi) for every i ∈ [m] (independently in parallel), returning
all the picked elements.

(ii) Run the classical secretary algorithm on M without observing anything
and return the picked element (if any).

(iii) Run OSP(M, 1) without observing anything and return all picked elements.

Suppose we execute branch (i). By Lemma 3, with probability at least 1/3, every
Mi with i ∈ Λ satisfies the conditions of Lemma 4 with parameters h = λi and
s = (1/24)r(N i). Note that s ≥ 1 holds given that r(N i) ≥ 24 for all i ∈ Λ.
As additionally all matroids in the chain form a direct sum, executing the first
branch of the algorithm returns an independent set with expected weight at least

1
3

∑

i∈Λ

1
2e

· r(N i)
24

η(λi) =
1

144e

∑

i∈Λ

r(N i)η(λi) ≥ 1
144e

∑

i∈Λ

riη(λi),

where the inequality follows from ρ ≤ ρM and N i = D(N,λi) for every i ∈ [m].
Therefore, if i ∈ Λ, then the corresponding term riη(λi) in F (ρ) is accounted

for by branch (i). Thus it only remains to consider i ∈ [m] \ Λ ⊆ {1,m}.
Assume first that 1 /∈ Λ. In this case, we must have r(N1) < 24. Since the

expected weight yielded by running the classical secretary algorithm is at least

436 R. Santiago et al.

η(|N |)/e, and η(|N |) ≥ η(λ1), then by running branch (ii) the expected weight of
the output set is at least

η(|N |)
e

≥ 1
e

· r(N1)η(λ1)
r(N1)

≥ 1
23e

r1η(λ1),

where the last inequality follows from r1 ≤ r(N1) ≤ 23.
Finally, assume that m /∈ Λ. Then λm = 1, in which case running branch

(iii) yields

E[w(OSP(M, 1))] ≥ 1
2e

r(N)η(1) ≥ 1
2e

r(Nm)η(λm),

where the first inequality holds by Lemma4 with h = 1 and s = r(N) ≥ 1, as
any basis of M is an independent set of rank r(N), and the second inequality
holds because r(N) ≥ r(Nm) and λm = 1.

The desired lower bound on the expected weight of the set returned by the
algorithm now follows by combining the above results with the respective prob-
abilities that each branch is executed. ��

To sum up, we discuss that our main result (i.e., Theorem 1) still holds in
the more general adversarial order with a sample setting, where we are allowed
to sample a set S ⊆ N containing every element of N independently with proba-
bility 1/2, and the remaining (non-sampled) elements arrive in adversarial order.

In order to see this, first note that the only place in the proof of Theorem5
where we use that the non-sampled elements (i.e., N \ S) arrive in random
order, is to argue that when running the classical secretary algorithm in branch
(ii) we obtain an expected weight of at least wmax/e. Indeed, branches (i) and
(iii) rely on running the procedure from Lemma4, whose guarantees hold in the
case where the elements arrive in adversarial order. However, note that running
the classical secretary procedure in the above adversarial order with a sample
setting outputs an element with expected weight of at least wmax/4. Indeed, the
probability of selecting wmax in the latter setting is at least the probability of
the event that wmax is not sampled and the second largest weight is; which
occurs with probability 1/4. Thus, Theorem 5 holds (up to possibly a slightly
worse constant) in the adversarial order with a sample setting.

Next, observe that this implies that Theorem 2 also holds in the above setting
(again, up to possibly a slightly worse constant). This follows because its proof
relies on combining the procedures from Theorems 5 and 6, and the latter is
completely oblivious to the arrival order of the elements.

Finally, note that the proof of Theorem1 uses the procedure from Theorem 5
and the classical secretary algorithm. Because (as discussed above) both of these
algorithms have very similar guarantees in the adversarial order with a sample
setting to the ones shown in this paper for random order, the claim follows.

O(1)-Competitive Random Assignment MSP Without Knowing the Matroid 437

References

1. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and
online mechanisms. In: Symposium on Discrete Algorithms (SODA 2007), pp. 434–
443 (2007)

2. Babaioff, M., et al.: Matroid secretary problems. J. ACM 65(6), 1–26 (2018)
3. Chakraborty, S., Lachish, O.: Improved competitive ratio for the matroid secretary

problem. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1702–1712 (2012)

4. Dimitrov, N.B., Plaxton, C.G.: Competitive weighted matching in transversal
matroids. Algorithmica 62(1), 333–348 (2012)

5. Dinitz, M., Kortsarz, G.: Matroid secretary for regular and decomposable matroids.
In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 108–117 (2013)

6. Evgenii Borisovich Dynkin: The optimum choice of the instant for stopping a
Markov process. Soviet Math. 4, 627–629 (1963)

7. Feldman, M., Svensson, O., Zenklusen, R.: A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. Math. Oper. Res. 43(2), 638–650
(2018)

8. Im, S., Wang, Y.: Secretary problems: laminar matroid and interval scheduling. In:
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1265–1274 (2011)

9. Jaillet, P., Soto, J.A., Zenklusen, R.: Advances on matroid secretary problems:
free order model and laminar case. In: Goemans, M., Correa, J. (eds.) IPCO 2013.
LNCS, vol. 7801, pp. 254–265. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36694-9 22

10. Karger, D.: Random sampling and greedy sparsification for matroid optimization
problems. Math. Program. 82 (1998). https://doi.org/10.1007/BF01585865

11. Kesselheim, T., et al.: An optimal online algorithm forweighted bipartite match-
ing and extensions to combinatorial auctions. In: Proceedings of the 21st Annual
European Symposium on Algorithms (ESA), pp. 589–600 (2013)

12. Korula, N., Pál, M.: Algorithms for secretary problems on graphs and hypergraphs.
In: Proceedings of the 36th International Colloquium on Automata, Languages and
Programming (ICALP), pp. 508–520 (2009)

13. Lachish, O.: O(log log(rank)) competitive ratio for the matroid secretary problem.
In: IEEE 55th Annual Symposium on Foundations of Computer Science. IEEE
2014, pp. 326–335 (2014)

14. Ma, T., Tang, B., Wang, Y.: The simulated greedy algorithm for several sub-
modular matroid secretary problems. In: Proceedings of the 30th International
Symposium on Theoretical Aspects of Computer Science (STACS), pp. 478–489
(2013)

15. Gharan, S.O., Vondrák, J.: On variants of the matroid secretary problem. Algo-
rithmica 67(4), 472–497 (2013)

16. Soto, J.A.: Matroid secretary problem in the random-assignment model. SIAM J.
Comput. 42(1), 178–211 (2013)

https://doi.org/10.1007/978-3-642-36694-9_22
https://doi.org/10.1007/978-3-642-36694-9_22
https://doi.org/10.1007/BF01585865

A Fast Combinatorial Algorithm
for the Bilevel Knapsack Problem

with Interdiction Constraints

Noah Weninger(B) and Ricardo Fukasawa

University of Waterloo, Waterloo, ON, Canada
{nweninger,rfukasawa}@uwaterloo.ca

Abstract. We consider the bilevel knapsack problem with interdiction
constraints, a fundamental bilevel integer programming problem which
generalizes the 0-1 knapsack problem. In this problem, there are two knap-
sacks and n items. The objective is to select some items to pack into the
first knapsack such that themaximumprofit attainable from packing some
of the remaining items into the second knapsack is minimized. We present
a combinatorial branch-and-bound algorithm which outperforms the cur-
rent state-of-the-art solutionmethod in computational experiments by 4.5
times on average for all instances reported in the literature. On many of
the harder instances, our algorithm is hundreds of times faster, and we
solved 53 of the 72 previously unsolved instances. Our result relies fun-
damentally on a new dynamic programming algorithm which computes
very strong lower bounds. This dynamic program solves a relaxation of
the problem from bilevel to 2n-level where the items are processed in an
online fashion. The relaxation is easier to solve but approximates the orig-
inal problem surprisingly well in practice. We believe that this same tech-
nique may be useful for other interdiction problems.

Keywords: Bilevel programming · Interdiction · Knapsack problem ·
Combinatorial algorithm · Dynamic programming · Branch and bound

1 Introduction

Bilevel integer programming (BIP), a generalization of integer programming
(IP) to two-round two-player games, has been increasingly studied due to its
wide real-world applicability [5,12,17]. In the BIP model, there are two IPs,
called the upper level (or leader) and lower level (or follower), which share some
variables between them. The objective is to optimize the upper level IP but with
the constraint that the shared variables must be optimal for the lower level IP.
The term interdiction is used to describe bilevel problems in which the upper
level IP has the capability to block access to some resources used by the lower
level IP. The upper level is typically interested in blocking resources in a way
that produces the worst possible outcome for the lower level IP. For instance,
the resources may be nodes or edges in a graph, or items to be packed into a
knapsack. These problems often arise in military defense settings (e.g., see [17]).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 438–452, 2023.
https://doi.org/10.1007/978-3-031-32726-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_31&domain=pdf
http://orcid.org/0000-0002-0546-4774
http://orcid.org/0000-0001-8785-5906
https://doi.org/10.1007/978-3-031-32726-1_31

A Fast Combinatorial Algorithm for BKP 439

In this paper we study the bilevel knapsack problem with interdiction con-
straints (BKP), which was introduced by DeNegre in 2011 [6]. This problem is
a natural extension of the 0-1 knapsack problem (KP) to the bilevel setting.
Formally, we are given n items. Each item i ∈ {1, . . . , n} has an associated profit
pi ∈ Z>0, upper-level weight wU

i ∈ Z>0 and lower-level weight wL
i ∈ Z≥0. The

upper-level knapsack has capacity CU ∈ Z≥0 and the lower-level knapsack has
capacity CL ∈ Z≥0. We use the standard notation: for a vector x and set S we
let x(S) :=

∑
i∈S xi. The problem BKP can then be stated as follows:

min
X∈U

max
Y ∈L(X)

p(Y) (objective)

where U =
{
X ⊆ {1, . . . , n} : wU (X) ≤ CU

}
, (upper level)

and L(X) =
{
Y ⊆ {1, . . . , n} \ X : wL(Y) ≤ CL

}
. (lower level)

We call a solution (X,Y) feasible if X ∈ U and Y ∈ argmax{p(Ŷ) : Ŷ ∈
L(X)}. A solution (X,Y) is optimal if it minimizes p(Y) over all feasible solu-
tions. Note that determining whether (X,Y) is feasible is weakly NP-Hard.

Given that “the knapsack problem is believed to be one of the ‘easier’ NP-
hard problems,” [16] one may propose that BKP may also be one of the ‘easier’
Σp

2-hard problems. While this may indeed be the case, unlike KP, which admits
a pseudopolynomial time algorithm, BKP remains NP-complete when the input
is described in unary and thus has no pseudopolynomial time algorithm unless
P = NP [1]. In addition, BKP is a Σp

2-complete problem, which means it cannot
even be modelled as an IP with polynomially many variables and constraints,
unless the polynomial hierarchy collapses. A recent positive theoretical result for
BKP is a polynomial-time approximation scheme [3].

This theoretical hardness seemed to have been confirmed by the struggle of
computational approaches to solve small instances. Until recently, proposed algo-
rithms – either generic BIP algorithms [6,8,19] or more specific algorithms for
BKP (or slight generalizations of it) [2,9,13] – were only able to solve instances
with at most 55 items. A breakthrough result came in a paper by Della Croce and
Scatamacchia [4], that proposed a BKP-specific algorithm (henceforth referred
to as DCS) which was able to solve instances containing up to 500 items.

It is worth noting that all papers prior to DCS only consider instances which
were generated in an uncorrelated fashion, meaning that weights and profits
were chosen uniformly at random with no correlation between the values. The
DCS algorithm is able to solve uncorrelated instances with 500 items in less
than a minute, but its performance drops significantly even for weakly corre-
lated instances, and most strongly correlated instances remain unsolved after an
hour of computing time. These results seem to mimic what is known for KP:
uncorrelated KP instances are some of the easiest types of instances to solve [16]
and early KP algorithms such as expknap [15] could quickly solve uncorrelated
instances but struggled with strongly correlated ones.

A common aspect among all methods in the literature is that they rely fun-
damentally on MIP solvers. In this paper, we present a simple combinatorial
branch-and-bound algorithm for solving BKP. Our algorithm improves on the

440 N. Weninger and R. Fukasawa

performance of the DCS algorithm for 94% of instances, even achieving a speedup
of orders of magnitude in many cases. Furthermore, our algorithm appears to
be largely impervious to correlation: it solves strongly correlated instances with
ease, only significantly slowing down when the lower-level weights equal the prof-
its (i.e., the subset sum case). In Sect. 2, we describe our algorithm. Our algo-
rithm relies fundamentally on a new strong lower bound computed by dynamic
programming which we present in Sect. 3. Section 4 details our computational
experiments. We conclude in Sect. 5 with some directions for future research.
We note that some proofs were omitted for brevity.

2 A Combinatorial Algorithm for BKP

In this section we describe our exact solution method for BKP. At a high level,
the algorithm is essentially just standard depth-first branch-and-bound. Our
strong lower bound, defined later in Sect. 3, is essential for reducing the search
space. To begin formalizing this, we first define the notion of a subproblem.

Definition 1. A subproblem (X, i) consists of some i ∈ {1, . . . , n + 1} and set
of items X ⊆ {1, . . . i − 1} such that X ∈ U .

Note that this definition depends on the ordering of the items, which throughout
the paper we assume to be such that p1

wL
1

≥ p2
wL

2
≥ · · · ≥ pn

wL
n

with ties broken by
placing items with larger pi first. These subproblems will form the nodes of the
branch-and-bound tree; (∅, 1) is the root node, and for every X ∈ U , (X,n+1) is
a leaf. Every non-leaf subproblem (X, i) has the child (X, i+1), which represents
omitting item i from the upper-level solution. Non-leaf subproblems (X, i) with
X ∪ {i} ∈ U have an additional child (X ∪ {i}, i + 1) which represents including
item i in the upper-level solution.

The algorithm simply starts at the root and traverses the subproblems in a
depth-first manner, preferring the child (X ∪ {i}, i + 1) if it exists because it
is more likely to lead to a good solution. Every time the search reaches a leaf
(X,n + 1), we solve the knapsack problem max{p(Y) : Y ∈ L(X)} to get a
feasible solution, and updating the incumbent if appropriate.

2.1 The Bound Test

At each node (X, i) of the branch-and-bound, we find a lower bound on the
optimal value of that subproblem by the use of a bound test algorithm, which
tests lower bounds against a known incumbent solution value z∗.

The lower bound used to prune a subproblem is computed in three steps: (1)
we solve a knapsack problem on items {1, . . . , i−1}\X, (2) we compute a lower
bound for BKP restricted to items {i, . . . , n}, and (3) we combine (1) and (2)
into a lower bound for the descendants of (X, i).

For step (1), we define a function K(X̄, c), which, for a given X̄ ⊆ {1, . . . , n}
and c ≥ 0, returns the optimal value of the knapsack problem with weights wL,
profits p, and capacity c, under the restriction that items in X̄ cannot be used:

A Fast Combinatorial Algorithm for BKP 441

K(X̄, c) = max
{
p(Y) : Y ⊆ {1, . . . , n} \ X̄ and wL(Y) ≤ c

}
.

For step (2), we need a function ω(i, cU , cL) which is a lower bound on BKP but
with upper-level capacity cU , lower-level capacity cL, and restricted to items
{i, . . . , n}. So, formally, ω must satisfy

ω(i, cU , cL) ≤ min{K(X ′ ∪ {1, . . . , i − 1}, cL) : X ′ ⊆ {i, . . . , n}, wU (X ′) ≤ cU}.

We will define precisely what ω is in Sect. 3; for now, we only need to know that
it has this property. We now prove the following lemma, which describes how to
achieve step (3).

Lemma 1. Let (X, i) be a subproblem. For all c ∈ {0, . . . , CL},
K (X ∪ {i, . . . , n}, c) + ω

(
i, CU − wU (X), CL − c

)

≤ min
{
p(Ȳ) : (X̄, Ȳ) is feasible for BKP and X̄ ∩ {1, . . . , i − 1} = X

}
.

Proof. First, note that for any X ′ ⊆ {i, . . . , n},

K(X ∪ {i, . . . , n}, c) + K(X ′ ∪ {1, . . . , i − 1}, CL − c) ≤ K(X ∪ X ′, CL).

Thus, if we let χ′ := {X ′ ⊆ {i, . . . , n} : wU (X ′) ≤ CU − wU (X)} and take the
minimum with respect to χ′ we get

K(X∪{i, . . . , n}, c)+ω(i, CU−wU (X), CL−c) ≤ min{K(X∪X ′, CL) : X ′ ∈ χ′}.

and now just note that this last term is equal to

min
{
p(Ȳ) : (X̄, Ȳ) is feasible for BKP and X̄ ∩ {1, . . . , i − 1} = X

}
. 	

From this, it follows that for any c ∈ {0, . . . , CL}, if we have

K (X ∪ {i, . . . , n}, c) + ω
(
i, CU − wU (X), CL − c

) ≥ z∗

then we can prune subproblem (X, i). We also note that the lower bound still
remains valid if we replace K (X ∪ {i, . . . , n}, c) by a feasible solution to that
problem. This is what is done in the function BoundTest in Algorithm 1 whose
correctness is established by the following lemma.

Lemma 2. If BoundTest(X, i) returns true, then subproblem (X, i) can be
pruned.

We end with an important consideration regarding the efficient implementa-
tion of Algorithm 1. The greedy part of the bound test (Lines 2 to 4) appears
to require time O(n). However, considering how we choose to branch, the val-
ues wg and pg can be computed in time O(1) given their values for the parent
subproblem. To determine K(X ∪ {i, . . . , n}, c), we use the standard dynamic
program (DP) for knapsack. However, for each bound test, it is only necessary
to compute a single row of a DP table (i.e., fill in all CL capacity values for the
row associated with item i) from the row computed in the parent subproblem.
By doing this, the entire BoundTest function will run in time O(CL). Further-
more, when the branch-and-bound reaches a leaf, the knapsack solution needed
to update the upper bound will already have been found by the bound test.

442 N. Weninger and R. Fukasawa

Algorithm 1: Returns true if the subproblem (X, i) can be pruned.
Precondition: z∗ is the value of the best incumbent solution

1 function BoundTest(X, i)
2 wg, pg ← 0;
3 for j = 1, . . . , i − 1 do
4 if j /∈ X and wg + wL

j ≤ CL then wg ← wg + wL
j , pg ← pg + pj ;

5 if pg + ω(i, CU − wU (X), CL − wg) ≥ z∗ then return true;

6 for c = 0, . . . , CL do
7 if K(X ∪ {i, . . . , n}, c) + ω(i, CU − wU (X), CL − c) ≥ z∗ then return

true;

8 return false;

2.2 Computing Initial Bounds

In our algorithm, a strong initial upper bound z∗ can help decrease the size of
the search tree. For this we use a simple heuristic we call GreedyHeuristic.
GreedyHeuristic works in two steps. First, an upper level set X̄ is picked by
solving max {p(X) : X ∈ U}. Then the lower level solution Ȳ is picked by solving
max

{
p(Y) : Y ∈ L(X̄)

}
. We say GreedyHeuristic returns (X̄, Ȳ , z̄), where z̄

is the objective value of the solution (X̄, Ȳ). We now establish a case in which
GreedyHeuristic actually returns an optimal solution.

Lemma 3. GreedyHeuristic() returns an optimal solution if there exists an
optimal solution (X,Y) for BKP where Y = {1, . . . , n} \ X.

The proof is skipped for brevity, but we remark that previous work has noted
that BKP is very easily solved for such instances [2,4]. Following [4], we use an
LP to detect some cases where the GreedyHeuristic is optimal. The below
formulation LB(i) is a simplified version of the LP in [4].

LB(i) = min
∑i−1

j=1 pj(1 − xj)

such that
∑i−1

j=1 wU
j xj ≤ CU

CL − wL
i + 1 ≤ ∑i−1

j=1 wL
j (1 − xj) ≤ CL

0 ≤ x ≤ 1, x ∈ R
i−1

We define LB(i) = ∞ if the LP is infeasible. This LP is used by the following
lemma. We skip the proof for brevity.

Lemma 4. Suppose GreedyHeuristic() returns (X̄, Ȳ , z̄). If z̄ ≤ min{LB(c) :
1 ≤ c ≤ n} then (X̄, Ȳ) is optimal for BKP.

Before starting our branch-and-bound algorithm, we run GreedyHeuristic
and check if it is optimal using Lemma 4. This enables us to quickly solve trivial
instances without needing to run our main algorithm.

A Fast Combinatorial Algorithm for BKP 443

3 Lower Bound

In this section we define the lower bound ω(i, cU , cL) that we use in our algo-
rithm. Recall that ω(i, cU , cL) must lower bound the restriction of BKP where
we can only use items {i, . . . , n}, have upper-level capacity cU , and lower-level
capacity cL. Our lower bound is based on dynamic programming (DP), which
computes ω(i, cU , cL) for all parameter values with time and space complexity
O(nCUCL).

The main idea for the lower bound is to obtain good feasible solutions for
the lower-level problem. Perhaps the most obvious way is to assume that the
lower-level problem finds a greedy solution. It is not hard to see why this is a
lower bound: a greedy lower-level solution will always achieve profit at most that
of an optimal lower-level solution. We can compute this lower bound with the
following recursively-defined DP algorithm:

ωg(i, cU , cL) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if cU < 0,

−∞ if cL < 0,

0 if cU ≥ 0, cL ≥ 0 and i > n,

ωg(i + 1, cU , cL) if cU ≥ 0, wL
i > cL and i ≤ n.

min

{
ωg(i + 1, cU − wU

i , cL),

ωg(i + 1, cU , cL − wL
i) + pi

}

if cU ≥ 0, wL
i ≤ cL and i ≤ n.

The first three expressions are to take care of trivial cases. The fourth case skips
any item which cannot fit in the lower-level knapsack, as it would be pointless
for the upper level to take such an item. The fifth case picks the worse (i.e.,
better for the upper level) out of the two possible greedy solutions from the two
children nodes of subproblem (X, i).

This lower bound already has very good performance in practice. However,
we can do better by making a deceptively simple modification: giving the lower
level the option to ignore an item. This modification produces our strong DP
lower bound, ω, which is equal to ωg in the first three cases, but instead of the
last two cases we get:

ω(i, cU , cL) = min

⎧
⎪⎨

⎪⎩

ω(i + 1, cU − wU
i , cL),

max

{
ω(i + 1, cU , cL − wL

i) + pi,

ω(i + 1, cU , cL)

}

⎫
⎪⎬

⎪⎭

if cU ≥ 0, cL ≥ 0
and i ≤ n.

It is not a hard exercise to show that ωg(i, cU , cL) ≤ ω(i, cU , cL) for all 1 ≤
i ≤ n, 0 ≤ cU ≤ CU and 0 ≤ cL ≤ CL. Extrapolating our intuition about
ωg, formulation ω appears to actually find optimal lower-level solutions, so one
might guess that ω(1, CU , CL) is actually optimal for BKP, if it weren’t that
this is impossible unless P = NP [1]. The subtlety is that by giving the lower
level a choice of whether to take an item, we have also given the upper level the

444 N. Weninger and R. Fukasawa

power to react to that choice. Specifically, the upper level choice of whether to
take item i can depend on how much capacity the lower level has used on items
{1, . . . , i − 1}. Evidently, this is not permitted by the definition of BKP, which
dictates that the upper level solution is completely decided prior to choosing the
lower level solution. However, our experiments show that this actually gives the
upper level an extremely small amount of additional power in practice.

The lower bound ω may also be interpreted as a relaxation from a 2-round
game to a 2n-round game. This may seem to be making the problem more
difficult, but each round is greatly simplified, so the problem becomes easier to
solve. This 2n-round game is as follows. In round 2i − 1, the leader (the upper
level player) decides whether to include the item i. In round 2i, the follower (the
lower level player) responds to the leader’s decision: if item i is still available,
then the follower decides whether to include item i. The score of the game is
simply the total profit of all items chosen by the follower. It is straightforward to
see that the minimax value of this game (i.e., the score given that both players
follow an optimal strategy) is equal to ω(1, CU , CL).

We now show formally that ω(1, CU , CL) lower bounds the optimal objective
value of BKP. To this end we define ωX , a modified version of ω where instead
of the minimization in the case where cU ≥ 0, cL ≥ 0 and i ≤ n, the choice is
made depending on whether i ∈ X for some given set X. ωX(i, cU , cL) is equal
to ωg in the first three cases, but replaces the last two cases with:

ωX(i, cU , cL) =
⎧
⎪⎨

⎪⎩

ωX(i + 1, cU − wU
i , cL) if cU ≥ 0, cL ≥ 0, i ≤ n and i ∈ X,

max

{
ωX(i + 1, cU , cL − wL

i) + pi,

ωX(i + 1, cU , cL)

}

if cU ≥ 0, cL ≥ 0, i ≤ n and i /∈ X.

With this simple modification, we claim that ωX(1, CU , CL) = max{p(Y) : Y ∈
L(X)} (and similarly for other i, cU , and cL). To formalize this, we show that
ωX and K (as defined in Sect. 2.1) are equivalent in the following sense.

Lemma 5. For all 1 ≤ i ≤ n, X ⊆ {i, . . . , n}, cU ≥ wU (X) and cL ≥ 0,

ωX(i, cU , cL) = K(X ∪ {1, . . . , i − 1}, cL).

Proof. Given that cU ≥ wU (X), the case cU < 0 can not occur in the expan-
sion of ωX(i, cU , cL), so ωX(i, cU , cL) = ωX(i,∞, cL). Consider the 0-1 knapsack
problem with profits p′ and weights w′ formed by taking p′ = p and w′ = wL

except with p′
j = w′

j = 0 for items j ∈ X. We can then simplify the definition of
ωX(i,∞, cL) by using p′ and w′ to effectively skip items in X:

ωX(i,∞, cL) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞ if cL < 0,

0 if cL ≥ 0 and i > n,

max

{
ωX(i + 1,∞, cL − w′

i) + p′
i,

ωX(i + 1,∞, cL)

}

if cL ≥ 0 and i ≤ n.

A Fast Combinatorial Algorithm for BKP 445

The recursive definition of ωX(i,∞, cL) above describes the standard DP
algorithm for 0-1 knapsack with capacity cL, profits p′ and weights w′ but
restricted to items {i, . . . , n}; this is the same problem which is solved by
K(X ∪ {1, . . . , i − 1}, cL). 	

We now establish that ω(i, cU , cL) is a lower bound as desired.

Theorem 1. For all 1 ≤ i ≤ n, cU ≥ 0 and cL ≥ 0,

ω(i, cU , cL) ≤ min
X⊆{i,...,n} :wU (X)≤cU

K(X ∪ {1, . . . , i − 1}, cL).

Proof. By definition, ωX(i, cU , cL) = ∞ if wU (X) > cU , so

min
X⊆{i,...,n}

ωX(i, cU , cL) = min
X⊆{i,...,n} :wU (X)≤cU

ωX(i, cU , cL)

= min
X⊆{i,...,n} :wU (X)≤cU

K(X ∪ {1, . . . , i − 1}, cL).

where the last equality follows from Lemma 5. Therefore, it suffices to show that
ω(i, cU , cL) ≤ minX⊆{i,...,n} ωX(i, cU , cL). The proof is by induction on i from
n + 1 to 1. Let cU ≥ 0 and cL ≥ 0 be arbitrary. Our inductive hypothesis is that
ω(i, cU , cL) ≤ minX⊆{i,...,n} ωX(i, cU , cL). For the base case, where i = n + 1, by
definition we have ω(i, cU , cL) = ωX(i, cU , cL) = 0 for any X ⊆ {i, . . . , n} = ∅.
Now we prove the inductive case. Let 1 ≤ i ≤ n be arbitrary and assume that
the inductive hypothesis holds for i + 1, with every cU ≥ 0 and cL ≥ 0. We
present only the case where wU

i ≤ cU and wL
i ≤ cL. The remaining cases (where

wU
i > cU or wL

i > cL) are just simpler versions of this.

ω(i, cU , cL) = min

{
ω(i + 1, cU − wU

i , cL),

max
{

ω(i + 1, cU , cL − wL
i) + pi, ω(i + 1, cU , cL)

}

}

≤ min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
X⊆{i+1,...,n}

ωX(i + 1, cU − wU
i , cL),

max

⎧
⎪⎨

⎪⎩

min
X⊆{i+1,...,n}

ωX(i + 1, cU , cL − wL
i) + pi,

min
X⊆{i+1,...,n}

ωX(i + 1, cU , cL)

⎫
⎪⎬

⎪⎭

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

≤ min

⎧
⎪⎪⎨

⎪⎪⎩

min
X⊆{i+1,...,n}

ωX(i + 1, cU − wU
i , cL),

min
X⊆{i+1,...,n}

max

{
ωX(i + 1, cU , cL − wL

i) + pi,

ωX(i + 1, cU , cL)

}

⎫
⎪⎪⎬

⎪⎪⎭

= min
X⊆{i+1,...,n}

min

⎧
⎪⎨

⎪⎩

ωX(i + 1, cU − wU
i , cL),

max

{
ωX(i + 1, cU , cL − wL

i) + pi,

ωX(i + 1, cU , cL)

}

⎫
⎪⎬

⎪⎭

= min
X⊆{i,...,n}

ωX(i, cU , cL). 	

446 N. Weninger and R. Fukasawa

Note that in particular, this implies that ω(1, CU , CL) ≤ minX∈U K(X,CL) =
minX∈U maxY ∈L(X) p(Y), i.e., ω(1, CU , CL) is a lower bound for BKP.

We end this section with a simple observation. The approach we derived for
our problem was based on obtaining good feasible solutions to the lower problem.
Now, if the lower problem is already NP-hard, one may ask how useful can an
approximate solution to the lower level be. For this, we consider a very generic
problem:

z∗ := min
x∈U

max
y∈L(x)

c(x, y) (1)

For each x ∈ U , assume there exists y ∈ L(x) that maximizes the inner problem.
Let y∗(x) be such a maximizer of c(x, y) for y ∈ L(x). The following lemma then
shows that if we can solve the problem with an approximate lower level, instead
of an exact one, we get an approximate solution to (1).

Lemma 6. Suppose we have a function f(x) such that for all x ∈ U :

– f(x) ∈ L(x), and
– c(x, f(x)) ≤ c(x, y∗(x)) ≤ αc(x, f(x)), for some α ≥ 1.

Let x̃ ∈ arg min
x∈U

c(x, f(x)). Then c(x̃, y∗(x̃)) ≤ αz∗.

Proof. Let (x∗, y∗(x∗)) be the optimal solution to (1). Then

1
α

c(x̃, y∗(x̃)) ≤ c(x̃, f(x̃)) ≤ c(x∗, f(x∗)) ≤ c(x∗, y∗(x∗)) = z∗. 	

While this does not immediately give an approximation algorithm for the

problem, we believe it may be useful to simplify some Σp
2-hard bilevel interdiction

problems and, for that reason, we include this lemma in this work. Note that an
analogous result can be also derived for a max−min problem.

4 Computational Results

In this section, we perform computational experiments to compare our algorithm
(Comb) with the method from [4] (DCS). Given that the superiority of the DCS
algorithm over other approaches has been well demonstrated we do not compare
our algorithm directly to the prior works [2,6,8,9,18,19].

4.1 Implementation

We were unable to obtain either source code or a binary from the authors of
[4], so we reimplemented their algorithm. We use Gurobi 9.5 instead of CPLEX
12.9, and obviously run it on a different machine, so an exact replication of
their results is nearly impossible. Nonetheless, we found our reimplementation
produces results very similar to what is reported in [4], and even solves three
additional instances which were not solved in [4]. Therefore, we believe that any
comparison with our version of the DCS algorithm is reasonably fair.

A Fast Combinatorial Algorithm for BKP 447

Both Comb and DCS were run using 16 threads. However, not all parts of the
algorithms were parallelized. Specifically, in the DCS implementation, the only
part which is parallelized is the MIP solver. In the implementation of Comb,
we only parallelized two parts: the computation of the lower bound ω and the
computation of the initial lower bound min{LB(c) : 1 ≤ c ≤ n}.

Our code is implemented in C++ and relies on OpenMP 4.5 for parallelism,
Gurobi 9.5 for solving MIPs, and the implementation of the combo knapsack
algorithm [14] from [11]. The code was executed on a Linux machine with four
16-core Intel Xeon Gold 6142 CPUs @ 2.60 GHz and 256 GB of RAM. All code
and instances are available at https://github.com/nwoeanhinnogaehr/bkpsolver.

4.2 Instances

Our test set contains all instances described in the literature [2,4,6,10,19] and
1660 new instances which we generated. The first 1500 were generated as follows.
For each n ∈ {10, 25, 50, 102, 103, 104}, INS ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
and R ∈ {10, 25, 50, 100, 1000}, we generated five instances according to five
different methods, which we call classes 1-5. All weights and profits were selected
uniformly at random in the range [1, R], but for some of the five classes, we
equated wL, wU or p with each other:

1. wL, wU and p are independent (uncorrelated)
2. wL = p but wU is independent (lower subset-sum)
3. wU = p but wL is independent (upper subset-sum)
4. wL = wU = p (both subset-sum)
5. wL = wU but p is independent (equal weights)

The capacities are chosen as follows. Let CL =
⌈
INS/11 · ∑

i w
L
i

⌉
and choose

CU uniformly at random in the range [CL − 10, CL + 10]. If there is any item
with wL

i < CL or wU
i < CU , then we increase the appropriate capacity so that

this is not the case. This is the same way that the capacities are selected in
[2,4,10], except that we exclude instances that would almost certainly be solved
by the initial bound test and we include half integral values of INS. Note that
the easiest and hardest instances reported in the literature were uncorrelated
and lower subset-sum, respectively [4]. Hence, we expect these new instances to
capture both best-case and worst-case behavior from the solvers.

The remaining 160 instances were intended to test the case where the capacity
is very large but the number of items is small. These instances were generated
following the same scheme as above except that we only generated uncorrelated
instances, and we chose n ∈ {5, 10, 20, 30} and R ∈ {103, 104, 105, 106}. To the
best of our knowledge, instances with such large capacity have not been evaluated
previously.

4.3 Results

Our results on instances from the literature are summarized in Table 1. To best
match the test environment used for the original DCS implementation, we ran

https://github.com/nwoeanhinnogaehr/bkpsolver

448 N. Weninger and R. Fukasawa

Table 1. Results for instances from the literature, grouped by instance type.

Group Num DCS Comb

Opt Best Avg Max Opt Best Avg Max

uncorrelated 940 940 66 2.32 15.73 940 874 0.31 6.48

weak correlated 50 50 0 13.49 72.64 50 50 0.26 3.54

strong correlated 50 41 0 689.58 3,600 50 50 0.34 3.98

inverse strong corr. 50 38 0 919.91 3,600 50 50 1.07 34.69

almost strong corr. 50 40 0 815.4 3,600 50 50 0.24 3.16

subset-sum 50 35 0 1,087.18 3,600 42 42 586.29 3,600

even-odd subset-sum 50 36 0 1,033.98 3,600 42 42 581.42 3,600

even-odd strong corr. 50 41 0 747.12 3,600 50 50 0.61 17.21

similar weight uncorr. 50 50 0 22.89 79.85 50 50 0.05 0.08

the tests with a time limit of 1 h, and used the same parameters for the DCS algo-
rithm as reported by the authors [4]. For each instance group and each solver, we
reported the number of instances solved to optimality (column Opt), the number
of instances on which the solver took strictly less time than the other solver (col-
umn Best), the average wall-clock running time in seconds (column Avg) and the
maximum wall-clock running time in seconds (column Max). Note that measur-
ing wall-clock time as opposed to CPU time only disadvantages our algorithm,
if anything, because the DCS implementation utilizes all 16 threads for a large
proportion of the time due to parallelization within Gurobi, whereas the same is
not true for our algorithm. Overall, our solver had better performance on 1258 of
the 1340 instances (about 94%), achieving about 4.5 times better performance on
average, and solving 53 of the 69 instances which our DCS implementation did
not (the original DCS implementation did not solve 72 instances). These results
demonstrate the remarkable advantage that Comb has on hard instances. DCS
struggles with all instances involving strong or subset-sum correlation, but Comb
only significantly slows down for subset-sum instances.

In Fig. 1, we plot a performance profile for instances from the literature com-
paring the DCS algorithm to some variants of our algorithm. This type of graph
plots, for each instance, the ratio of each algorithm’s performance to the per-
formance of the best algorithm for that instance. The instances are sorted by
difficulty. Note that instances which timed out are counted as 3600 s seconds. For
a comprehensive introduction to performance profiles, see [7]. The two variants
of Comb included are Comb-weak, which uses the lower bound ωg instead of ω,
and Comb-greedy, which uses a greedy lower bound test, i.e., where Lines 6 to 7
are omitted from Algorithm 1. The graph indicates that while Comb does better
with more threads and the main variant is best, the single-threaded version and
the variants still outperform 16-thread DCS. Although it is not depicted in the
performance profile, we also tested variants with different item orderings, and
found the one described in Sect. 2 to be the best. This is somewhat expected as
this is the same ordering that gives rise to the greedy algorithm for 0-1 knapsack.

A Fast Combinatorial Algorithm for BKP 449

21 23 25 27 29 211 213 215

Number of times worse than best solver

0

20

40

60

80

100
P
er
ce
nt

of
in
st
an

ce
s

Comb (1 thread)
Comb (4 threads)
Comb (16 threads)
Comb-weak (16 threads)
Comb-greedy (16-threads)
DCS (16 threads)

Fig. 1. Performance profile for all instances from the literature.

We now turn our attention to the new instances. Due to the large number
of new instances and high difficulty, we used a reduced time limit of 15 min
(900 s) in order to complete the testing in a timely fashion. For these tests we
use the same DCS parameters used by the DCS authors for testing their own
instances [4].

The results for the new instances are summarized in Tables 2 and 3. Note
that there are 300 instances of each group, but Table 2 only instances for which
our test machine had enough memory to store the DP table used in Comb. The
performance of DCS is reported on the remaining instances in Table 3. We can
see that Comb offers a significant speed improvement for all classes, and although
both solvers are roughly equally capable of solving instances in the uncorrelated,
upper subset-sum, equal weights, and large capacity classes, Comb solved 122
more of the instances in the lower subset-sum and both subset-sum classes than
DCS. Extrapolating from the results in Table 2, we suspect that given sufficient
memory, our solver would be able to solve many more of these instances with
better performance than DCS.

In Tables 5 and 6, we report some statistics collected during the tests of
our algorithm. In these tables, RootTime is the average number of (wall clock)
seconds required to perform the initial bound test and compute the DP table,
OptTime is the average number of seconds that branch-and-bound takes to find
an optimal solution (excluding RootTime), ProofTime is the average number of
seconds needed to prove optimality after an optimal solution is found, Nodes
is the average number of nodes searched by branch-and-bound, and RootGap%
is 100 · (z̄ − ω(1, CU , CL))/z̄ where z̄ is the value of the solution returned by
GreedyHeuristic. These tables only consider instances which fit in memory and
did not time out, as some of the columns are undefined otherwise. Considering all

450 N. Weninger and R. Fukasawa

Table 2. Summary of results for new instances, grouped by class.

DCS Comb

Group Num Opt Best Avg Max Opt Best Avg Max

uncorrelated 243 241 3 12.42 900 243 240 0.96 24.02

lower subset-sum 256 173 0 320.36 900 236 236 73.62 900

upper subset-sum 235 235 5 2.7 89.25 235 230 0.79 21.08

both subset-sum 235 130 0 423.83 900 189 189 184.9 900

equal weights 236 236 9 2.2 120.55 236 227 0.7 18.38

large capacity 92 90 1 38.78 900 92 91 2.31 22.72

Table 3. Summary of results for DCS on
new instances which our solver could not fit
in memory, grouped by class.

Group Num Opt Avg Max

uncorrelated 57 41 487.85 900

lower subset-sum 44 1 886.75 900

upper subset-sum 65 59 283.34 900

both subset-sum 65 0 900 900

equal weights 64 62 175.92 900

large capacity 68 5 864.33 900

Table 4. An instance with n
items, CU = n−1 and CL = n that
has optimal objective value n − 1
but ω(1, CU , CL) = 1.

item no. p wU wL

1 1 1 1

.

..
.
..

.

..
.
..

n-1 1 1 1

n n-1 n-1 n

instances which fit in memory, the average root gap is 3.22%, and the maximum
is 57.89%.

Evidently, the root gap is typically very small and in fact ω(1, CU , CL) ≥
0.5OPT in all tested instances. However, the worst case approximation factor
of ω is actually unbounded. Table 4 describes a family of instances with n items
for which OPT = (n−1)ω(1, CU , CL). Despite this, branch-and-bound is able to
solve these instances using only O(n) nodes. On the other hand, it is interesting
to note that the subset-sum instances typically have very small root gaps, but
solving them to optimality is evidently very hard.

Evidently, the main disadvantage of our algorithm is its high memory usage.
In our solver, we use a few simple tricks to reduce memory usage slightly: when
possible, we store the DP table entries as 16-bit integers, and we avoid computing
table entries for capacity values which cannot be seen in any feasible solution.
Other optimizations to reduce memory usage are certainly possible as well, such
as a DP-with-lists type approach, but we have not implemented this.

A Fast Combinatorial Algorithm for BKP 451

Table 5. Statistics from our solver, for instances from the literature.

Group RootTime OptTime ProofTime NumNodes RootGap%

uncorrelated 0.3 0.03 0.02 12,053.23 5.4

weak correlated 0.25 0.04 0.03 7,130.98 2.04

strong correlated 0.26 0.03 0.11 571,473.6 2.98

inverse strong corr. 0.37 0.04 0.73 4,751,888.08 0.39

almost strong corr. 0.24 0.03 0.03 735.76 2.99

subset-sum 0.08 0.05 12.22 104,067,718.79 0.02

even-odd subset-sum 0.07 0.04 6.42 61,246,957.64 0.02

even-odd strong corr. 0.26 0.03 0.37 2,551,213.42 2.95

similar weight uncorr. 0.05 0.05 0.05 0 0

Table 6. Statistics from our solver, for new instances.

Group RootTime OptTime ProofTime Nodes RootGap%

uncorrelated 0.86 0.27 0.17 73,616.37 9.86

lower subset-sum 0.95 0.8 3.43 11,293,085.12 1.27

upper subset-sum 0.79 0 0 182.99 5.75

both subset-sum 0.16 3.02 7.68 117,664,085.82 3.44

equal weights 0.7 0.02 0.02 14.65 1.64

large capacity 2.31 0 0 29.82 10.15

5 Conclusion

We presented a new combinatorial algorithm for solving BKP that is on average
4.5 times better, and achieves up to 3 orders of magnitude improvement in
runtime over the performance of the previous state-of-the-art algorithm, DCS.
The only disadvantage of our algorithm that we identified in computational
testing is the high memory usage. Because of this, if memory is limited and
time is not a concern, it may be a better idea to use DCS. However, if there
is any correlation between the lower-level weights and profits, DCS is unlikely
to solve the instance in any reasonable amount of time, so it is preferable to
use our algorithm on a machine with a large amount of memory, and/or to use
additional implementation tricks to reduce the memory usage.

For future work, it would be of interest to investigate whether our lower
bound can be strengthened further (say, to an O(1)-approximation). We expect
that it would be straightforward to generalize this work to the multidimensional
variant of BKP (i.e., where there are multiple knapsack constrains at each level),
although the issues with high memory usage would likely become worse in this
setting. It may also be straightforward to apply this technique to covering inter-
diction problems. Beyond this, we suspect that a similar lower bound and search
algorithm can be used to efficiently solve a variety of interdiction problems.

452 N. Weninger and R. Fukasawa

References

1. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: A study on the computa-
tional complexity of the bilevel knapsack problem. SIAM J. Optim. 24(2), 823–838
(2014)

2. Caprara, A., Carvalho, M., Lodi, A., Woeginger, G.J.: Bilevel knapsack with inter-
diction constraints. INFORMS J. Comput. 28(2), 319–333 (2016)

3. Chen, L., Wu, X., Zhang, G.: Approximation algorithms for interdiction problem
with packing constraints. arXiv preprint arXiv:2204.11106 (2022)

4. Della Croce, F., Scatamacchia, R.: An exact approach for the bilevel knapsack
problem with interdiction constraints and extensions. Math. Program. 183(1), 249–
281 (2020)

5. Dempe, S.: Bilevel optimization: theory, algorithms, applications and a bibliogra-
phy. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp.
581–672. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6 20

6. DeNegre, S.: Interdiction and discrete bilevel linear programming, Ph. D. thesis,
Lehigh University (2011)

7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91(2), 201–213 (2002)

8. Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose algorithm
for mixed-integer bilevel linear programs. Oper. Res. 65(6), 1615–1637 (2017)

9. Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M.: Interdiction games and monotonic-
ity, with application to knapsack problems. INFORMS J. Comput. 31, 390–410
(2019)

10. Fischetti, M., Monaci, M., Sinnl, M.: A dynamic reformulation heuristic for gener-
alized interdiction problems. Eur. J. Oper. Res. 267, 40–51 (2018)

11. Fontan, F.: Knapsack solver (Github repository). https://github.com/fontanf/
knapsacksolver (2017)

12. Kleinert, T., Labbé, M., Ljubić, I., Schmidt, M.: A survey on mixed-integer pro-
gramming techniques in bilevel optimization. EURO J. Comput. Optimiz. 9,
100007 (2021)

13. Lozano, L., Bergman, D., Cire, A.A.: Constrained shortest-path reformulations for
discrete bilevel and robust optimization. arXiv preprint arXiv:2206.12962 (2022)

14. Martello, S., Pisinger, D., Toth, P.: Dynamic programming and strong bounds for
the 0–1 knapsack problem. Manage. Sci. 45(3), 414–424 (1999)

15. Pisinger, D.: An expanding-core algorithm for the exact 0–1 knapsack problem.
Eur. J. Oper. Res. 87(1), 175–187 (1995)

16. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32,
2271–2284 (2005)

17. Smith, J.C., Song, Y.: A survey of network interdiction models and algorithms.
Eur. J. Oper. Res. 283(3), 797–811 (2020)

18. Tahernejad, S., Ralphs, T.K., DeNegre, S.T.: A branch-and-cut algorithm for
mixed integer bilevel linear optimization problems and its implementation. Math.
Program. Comput. 12(4), 529–568 (2020)

19. Tang, Y., Richard, J.P.P., Smith, J.C.: A class of algorithms for mixed-integer
bilevel min-max optimization. J. Global Optim. 66, 225–262 (2016)

http://arxiv.org/abs/2204.11106
https://doi.org/10.1007/978-3-030-52119-6_20
https://github.com/fontanf/knapsacksolver
https://github.com/fontanf/knapsacksolver
http://arxiv.org/abs/2206.12962

Multiplicative Auction Algorithm
for Approximate Maximum Weight

Bipartite Matching

Da Wei Zheng1(B) and Monika Henzinger2

1 University of Illinois Urbana-Champaign, Urbana, IL, USA
dwzheng2@illinois.edu

2 IST Austria, Klosterneuburg, Austria

monika.henzinger@ista.ac.at

Abstract. We present an auction algorithm using multiplicative instead
of constant weight updates to compute a (1 − ε)-approximate maxi-
mum weight matching (MWM) in a bipartite graph with n vertices and
m edges in time O(mε−1 log(ε−1)), matching the running time of the
linear-time approximation algorithm of Duan and Pettie [JACM ’14].
Our algorithm is very simple and it can be extended to give a dynamic
data structure that maintains a (1 − ε)-approximate maximum weight
matching under (1) one-sided vertex deletions (with incident edges) and
(2) one-sided vertex insertions (with incident edges sorted by weight) to
the other side. The total time time used is O(mε−1 log(ε−1)), where m
is the sum of the number of initially existing and inserted edges.

1 Introduction

Let G = (U ∪ V,E) be an edge-weighted bipartite graph with n = |U ∪ V |
vertices and m = |E| edges where each edge uv ∈ E with u ∈ U and v ∈ V has
a non-negative weight w(uv).

The maximum weight matching (MWM) problem asks for a matching M ⊆ E
that attains the largest possible weight w(M) =

∑
uv∈M w(uv). This paper will

focus on approximate solutions to the MWM problem. More specifically, if we
let M∗ denote a maximum weight matching of G, our goal is to find a matching
M such that w(M) ≥ (1 − ε)w(M∗) for any small constant ε > 0.

Matchings are a very well studied problem in combinatorial optimization.
Kuhn [13] in 1955 published a paper that started algorithmic work in matchings,
and presented what he called the “Hungarian algorithm” which he attributed the
work to Kőnig and Egerváry. Munkres [15] showed that this algorithm runs in
O(n4) time. The running time for computing the exact MWM has been improved
many times since then. Recently this year, Chen et al. [6] showed that it was
possible to solve the more general problem of max flow in O(m1+o(1)) time.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 453–465, 2023.
https://doi.org/10.1007/978-3-031-32726-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_32&domain=pdf
https://doi.org/10.1007/978-3-031-32726-1_32

454 D. W. Zheng and M. Henzinger

For (1 − ε)-approximation algorithms for MWM in bipartite graphs, Gabow
and Tarjan in 1989 showed an O(m

√
n log(n/ε)) algorithm. Since then there

were a number of results for different running times and different approximation
ratios. The current best approximate algorithm is by Duan and Pettie [8] which
computes a (1−ε)-approximate maximum weight matching in O(mε−1 log(ε−1))
time with a scaling algorithm. We defer to their work for a more thorough survey
of the history on the MWM problem.

We show in our work that the auction algorithm for matchings using mul-
tiplicative weights can give a (1 − ε)-approximate maximum weight matching
with a running time of O(mε−1 log(ε−1)) for bipartite graphs. This matches the
best known running time of Duan and Pettie [8]. However, in comparison to
their rather involved algorithm, our algorithm is simple and only uses elemen-
tary data structures. Furthermore, we are able to use properties of the algorithm
to support two dynamic operations, namely one where vertices on one side are
deleted and vertices on the other side are added with all incident edges given in
sorted order of weight.

1.1 Dynamic Matching Algorithms

Dynamic Weighted Matching. There has been a large body of work on dynamic
matching and many variants of the problem have been studied, e.g., the max-
imum, maximal, as well as α-approximate setting for a variety of values of α,
both in the weighted as well as in the unweighted setting. See [10] for a survey of
the current state of the art for the fully dynamic setting. We just mention here
a few of the most relevant prior works. For any constant δ > 0 there is a condi-
tional lower bound based on the OMv conjecture that shows that any dynamic
algorithm that returns the exact value of a maximum cardinality matching in a
bipartite graph with polynomial preprocessing time cannot take time O(m1−δ)
per query and O(m1/2−δ) per edge update operation [11]. For general weighted
graphs Gupta and Peng [9] gave the first algorithm in the fully dynamic setting
with edge insertions and deletions to maintain a (1 − ε)-approximate matching
in O(ε−1

√
m log wmax) time, where the edges fall into the range [1, wmax].

Vertex Updates. By vertex update we refer to updates that are vertex inser-
tion (resp. deletion) that also inserts (resp. deletes) all edges incident to the
vertex. There is no prior work on maintaining matchings in weighted graphs
under vertex updates. However, vertex updates in the unweighted bipartite set-
ting has been studied. Bosek et al. [4] gave an algorithm that maintains the
(1 − ε)-approximate matching when vertices of one side are deleted in O(ε−1)
amortized time per changed edge. The algorithm can be adjusted to the setting
where vertices of one side are inserted in the same running time, but it cannot
handle both vertex insertions and deletions. Le et al. [14] gave an algorithm for
maintaining a maximal matching under vertex updates in constant amortized
time per changed edge. They also presented an e/(e − 1) ≈ 1.58 approximate
algorithm for maximum matchings in an unweighted graph when vertex updates
are only allowed on one side of a bipartite graph.

Algorithm for Approximate Maximum Weight Bipartite Matching 455

We give the first algorithm to maintain a (1 − ε)-approximate maximum
weight matching where vertices can undergo vertex insertions on one side and
vertex deletions on the other side in O(ε−1 log(ε−1)) amortized time per edge
inserted.

1.2 Linear Program for MWM

The MWM problem can be expressed as the following linear program (LP) where
the variable xuv denotes whether the edge uv is in the matching. It is well known
[17] that the below LP is integral, that is the optimal solution has all variables
xuv ∈ {0, 1}.

max
∑

uv∈E

w(uv)xuv

s.t.
∑

v∈N(u)

xuv ≤ 1 ∀u ∈ U

∑

u∈N(u)

xuv ≤ 1 ∀v ∈ V

xuv ≥ 0 ∀uv ∈ E

We can also consider the dual problem that aims to find dual weights yu and
yv for every vertex u ∈ U and v ∈ V respectively.

min
∑

u∈U

yu +
∑

v∈V

yv

s.t. yu + yv ≥ w(uv) ∀uv ∈ E

yu ≥ 0 ∀u ∈ U

yv ≥ 0 ∀v ∈ V

1.3 Multiplicative Weight Updates for Packing LPs

Packing LPs are LPs of the form max{cT x | Ax ≤ b} for c ∈ R
n
≥0, b ∈ R

m
≥0

and A ∈ R
n×m
≥0 . The LP for MWM is a classical example of a packing LP.

The multiplicative weight update method (MWU) has been investigated exten-
sively to provide faster algorithms for finding approximate solutions1 to packing
LPs [1,5,12,16,18,19]. Typically the running times for solving these LPs have
a dependence on ε of ε−2, e.g. the algorithm of Koufogiannakis and Young [12]
would obtain a running time of O(mε−2 log n) when applied to the matching LP.

The fastest multiplicative weight update algorithm for solving packing LPs
by Allen-Zhu and Orecchia [1] would obtain an O(mε−1 log n) running time for
1 By approximate solution we mean a possibly fractional assignments of variables that

obtains an approximately good LP objective. If we find such an approximate solution
to MWM, fractional solutions need to be rounded to obtain an actual matching.

456 D. W. Zheng and M. Henzinger

MWM. Very recently, work by Battacharya, Kiss, and Saranurak [3] extended
the MWU for packing LPs to the partially dynamic setting. When restricted
to the MWM problem means the weight of edges either only increase or only
decrease. However as packing LPs are more general than MWM, these algorithms
are significantly more complicated and are slower by log n factors (and worse
dependence on ε for [3]) when compared to our static and dynamic algorithms.

We remark that our algorithm, while it uses multiplicative weight updates,
is unlike typical MWU algorithms as it has an additional monotonicity property.
We only increase dual variables on one side of the matching, and only (implicitly)
decrease dual variables on the other side.

1.4 Auction Algorithms

Auction algorithms are a class of primal dual algorithms for solving the MWM
problem that view U as a set of goods to be sold, V as a set of buyers. The
goal of the auction algorithm is to find a welfare-maximizing allocation of goods
to buyers. The algorithm is commonly attributed Bertsekas [2], as well as to
Demange, Gale, and Sotomayor [7].

An auction algorithm initializes the prices of all the goods u ∈ U with a
price yu = 0 (our choice of yu is intentional, as prices correspond directly to
dual variables), and has buyers initially unallocated. For each buyer v ∈ V , the
utility of that buyer upon being allocated u ∈ U is util(uv) = w(uv) − yu. The
auction algorithm proceeds by asking an unallocated buyer v ∈ V for the good
they desire that maximizes their utility, i.e. for uv = arg maxu∈N(v) util(uv). If
util(uvv) < 0, the buyer remains unallocated. Otherwise the algorithm allocates
uv to v, then increases the price yu to yu + ε. The algorithm terminates when
all buyers are either allocated or for every unallocated buyer v, it holds that
util(uvv) < 0. If the maximum weight among all the edges is wmax, then the
auction algorithm terminates after O(nε−1wmax) rounds and outputs a matching
that differs from the optimal by an additive factor of at most nε.

1.5 Our Contribution

We present the following modification of the auction algorithm:

When v is allocated u, increase yu to yu + ε · util(uv) instead of yu + ε.

Note that this decreases util(v) by a factor of (1 − ε) and, thus, we will call
algorithms with this modification multiplicative auction algorithms. Surprisingly,
we were not able to find any literature on this simple modification. Changing
the constant additive weight update to a multiplicative weight update has the
effect of taking much larger steps when the weights are large, and so we are
able to show that the algorithm can have no dependence on the size of the
weights. In fact, we are able to improve the running time to O(mε−1 log(ε−1)),
the same as the fastest known matching algorithm of Duan and Pettie [8]. While
the algorithm of [8] has the advantage that it works for general graphs and ours

Algorithm for Approximate Maximum Weight Bipartite Matching 457

is limited to bipartite graphs, our algorithm is simpler as it avoids the scaling
algorithm framework and is easier to implement.

Theorem 1. Let G = (U ∪ V,E) be a weighted biparitite graph. There is a
multiplicative auction algorithm running in time O(mε−1 log(ε−1)) that finds a
(1 − ε)-approximate maximum weight matching of G.

Furthermore, it is straightforward to extend our algorithm to a setting where
edges are deleted and vertices on one side are added with all incident edges given
in sorted order of weight. When the inserted edges are not sorted by weight, the
running time per inserted edge increases by an additive term of O(log n) to sort
all incident inserted edges.

Theorem 2. Let G = (U ∪ V,E) be a weighted biparitite graph. There exists a
dynamic data structure that maintains a (1 − ε)-approximate maximum weight
matching of G and supports the following operations:

(1) Deleting a vertex in U
(2) Adding a new vertex into V along with all its incident edges sorted by weight

in total time O(mε−1 log(ε−1)), where m is sum of the number of initially exist-
ing, and inserted edges.

2 The Static Algorithm

We assume that the algorithm is given as input some fixed 0 < ε′ < 1.

Notation For sake of notation let N(u) = {v ∈ V | uv ∈ E} be the set of
neighbors of u ∈ U in G, and similarly for N(v) for v ∈ V .

Preprocessing of the Weights. Let wmax > 0 be the maximum weight edge of
E. For our static auction algorithm we may ignore any edge uv ∈ E of weight
less than ε′ · wmax/n as w(M∗) ≥ wmax as taking n of these small weight edges
would not even contribute ε′ · w(M∗) to the matching. Thus, we only consider
edges of weight at least ε′ · wmax/n, which allows us to rescale all edge weights
by dividing them by ε′ · wmax/n. As a result we can assume (by slight abuse of
notation) in the following that the minimum edge weight is 1 and the largest edge
weight wmax equals n/ε′. Furthermore, since we only care about approximations,
we will also round down all edge weights to the nearest power of (1 + ε) for
some ε < ε′/2 and, again by slight abuse of notation, we will use w to denote
these edge weights. Formally to round, we define iLog(x) =
log1+ε(x)� and
Round(x) = (1 + ε)iLog(x).

Let kmax = iLog(wmax) = iLog(n/ε) = O(ε−1 log(n/ε)). Let kmin be the
smallest integer such that (1 + ε)−kmin ≤ ε. Observe that as log(1 + ε) ≤ ε for
0 ≤ ε ≤ 1 it holds that

kmin ≥ log(ε−1)
log(1 + ε)

≥ ε−1 log(ε−1).

Thus we see that kmin = Θ(ε−1 log(ε−1)).

458 D. W. Zheng and M. Henzinger

Algorithm. The algorithm first builds for every v ∈ V a list Qv of pairs (i, uv)
for each edge uv and each value i with −kmin ≤ i ≤ juv = iLog(wuv) and then
sorts Qv by decreasing value of i. After, it calls the function MatchR(v) on
every v ∈ V . The function MatchR(v) matches v to the item that maximizes
its utility and updates price according to our multiplicative update rule. While
matching v, another vertex v′ originally matched to v may become unmatched.
If this happens, MatchR(v′) is called immediately after MatchR(v).

Algorithm 2.1: MultiplicativeAuction(G = (U ∪ V,E))

M ← ∅.
yu ← 0 for all u ∈ U .
jv ← kmax for all v ∈ V # This is only used in the analysis
Qv ← ∅ for all v ∈ V .
For v ∈ V :

1. For u ∈ N(v):
(a) juv ← iLog(w(uv))
(b) jv ← max{jv, juv}
(c) For i from juv to −kmin:

i. Insert the pair (i, uv) into Qv.
2. Sort all (i, uv) ∈ Qv so elements are in non-increasing order of i.

For v ∈ V :

1. MatchR(v).

Return M .

MatchR(v)

While Qv is not empty:

1. (j, uv) ← the first element of Qv, and remove it from Qv.
2. jv ← j # This is only used in the analysis
3. util(uv) ← w(uv) − yu

4. If util(uv) ≥ (1 + ε)j :
(a) yu ← yu + ε · (util(uv)) # util(uv) ← (1 − ε) · util(uv)
(b) If u was matched to v′ in M :

– Remove (u, v′) from M
– Add (u, v) to M
– MatchR(v′)

(c) Else:
– Add (u, v) to M
– Return

Algorithm for Approximate Maximum Weight Bipartite Matching 459

Data Structure. We store for each vertex v ∈ V the list Qv as well as its currently
matched edge if it exists. In the pseudocode below we keep for each vertex v a
value jv corresponding to the highest weight threshold (1 + ε)jv that we will
consider. This value is only needed in the analysis.

Running Time. The creation and sorting of the lists Qv takes time
O(|N(v)|(kmax + kmin)) if we use bucket sort as there are only kmax + kmin

distinct weights. The running time of all calls to MatchR(v) is dominated
by the size of Qv, as each iteration in MatchR(v) removes an element of Qv

and takes O(1) time. Thus, the total time is O
(∑

v∈V |N(v)|(kmax + kmin)
)

=
O(m(kmax + kmin)) = O(mε−1 log(n/ε)).

Invariants Maintained by the Algorithm. Consider the following invariants main-
tained throughout by the algorithm:

Invariant 1. For all v ∈ V , and all u ∈ N(v), util(uv) < (1 + ε)jv+1.

Proof. This clearly is true at the beginning, since jv is initialized to
maxu∈N(v) juv, and

util(uv) = w(uv) < (1 + ε)juv+1.

As the algorithm proceeds, util(uv) which equals w(uv) − yu only decreases as
yu only increases. Thus, we only have to make sure that the condition holds
whenever jv decreases. The value jv only decreases from some value, say j + 1,
to a new value j, in MatchR(v) and when this happens Qv does not contain
any pairs (j′, uv) with j′ > j anymore. Thus, there does not exist a neighbor
u of v with util(uv) ≥ (1 + ε)j+1. It follows that when jv decreases to j for all
u ∈ N(v) it holds that util(uv) < (1 + ε)jv+1.

Invariant 2. If uv ∈ M , then for all other u′ ∈ N(v), util(uv) ≥ (1 − 2ε) ·
util(u′v).

Proof. When v was matched to u, right before we updated yu, we had that
(1 + ε)jv ≤ util(uv) and, by Invariant 1, util(u′v) ≤ (1 + ε)jv+1. Thus, (1 +
ε)util(uv) ≥ util(u′v). The update of yu decreases yu by ε · util(uv), which
decreases util(uv) by a factor of (1 − ε), but does not affect util(u′v). Thus we
have now that:

util(uv) ≥ (1 − ε)(1 + ε)−1 · util(u′v) ≥ (1 − 2ε) · util(u′v).

Invariant 3. If u ∈ U is not matched, then yu = 0. If uv ∈ M , then yu > 0.

Proof. If u is never matched, we never increment yu, so it stays 0. The algorithm
increments yu by ε · util(uv) > 0 when we add uv into the matching M .

Invariant 4. For all v ∈ V for which MatchR(v) was called at least once,
either v is matched, or Qv is empty.

Proof. MatchR(v) terminates (i) after it matches v and recurses or (ii) if Qv

is empty. It is possible that for some other v′ ∈ V with v′ �= v, that v becomes
temporarily unmatched during MatchR(v′), but we would immediately call
MatchR(v) to rematch v.

460 D. W. Zheng and M. Henzinger

Approximation Factor. We will show the approximation factor of the match-
ing M found by the algorithm by primal dual analysis. We remark that it is
possible to show this result purely combinatorially as well which we include in
Appendix A, as it may be of independent interest. We will show that this M
and a vector y satisfy the complementary slackness condition up to a 1 ± ε fac-
tor, which implies the approximation guarantee. This was proved by Duan and
Pettie [8] (the original lemma was for general matchings, we have specialized it
here to bipartite matchings).

Lemma 1 (Lemma 2.3 of [8]). Let M be a matching and let y be an assign-
ment of the dual variables. Suppose y is a valid solution to the LP in the following
approximate sense: For all uv ∈ E, yu + yv ≥ (1 − ε0) · w(uv) and for all e ∈ M ,
yu +yv ≤ (1+ε1) ·w(uv). If the y-values of all unmatched vertices are zero, then
M is a

(
(1 + ε1)−1(1 − ε0)

)
-approximate maximum weight matching.

This lemma is enough for us to prove the approximation factor of our algo-
rithm.

Lemma 2. MultiplicativeAuction(G = (U ∪ V,E)) outputs a (1 − ε′)-
approximate maximum weight matching of the bipartite graph G.

Proof. Let ε > 0 be a parameter depending on ε′ that we will choose later. We
begin by choosing an assignment of the dual variables yu for u ∈ U and yv for
v ∈ V . Let all yu’s be those obtained by the algorithm for u ∈ U . For v ∈ V , let
yv = 0 if v is not matched in M and yv = util(uv) = w(uv) − yu if v is matched
to u in M . By Invariant 3 all unmatched vertices u ∈ U have yu = 0.

Observe that for uv ∈ M we have yu + yv = util(uv). It remains to show
that for uv �∈ M we have that yu + yv ≥ (1 − ε0)w(uv) for some ε0 > 0. First we
consider if v is unmatched, so yv = 0. Since v is unmatched, by Invariant 4 then
for all u ∈ N(v), we must have util(uv) < (1 + ε)−kmin ≤ ε. Since we rescaled
weights so that w(uv) ≥ 1, we know that util(uv) < ε ≤ ε · w(uv). Furthermore,
observe that as yu = w(uv) − util(uv) by definition of utility, it follows that:

yu + yv = yu = w(uv) − util(uv) > (1 − ε)w(uv). (1)

Now we need to consider if v was matched to some vertex u′ �= u. To do so
we use Invariant 2:

yu + yv = yu + util(u′v) By definition of y

≥ yu + (1 − 2ε) · util(uv) By Invariant 2
= yu + (1 − 2ε) · (w(uv) − yu) By definition of util

≥ (1 − 2ε)w(uv) + 2ε · yu

≥ (1 − 2ε)w(uv) Since yu ≥ 0

Thus we have satisfied Lemma 1 with ε0 = 2ε and ε1 = 0. Setting ε = ε′/2 gives
us a (1 − ε′)-approximate maximum weight matching.

Algorithm for Approximate Maximum Weight Bipartite Matching 461

Thus we have shown the following result that is weaker than what we have
set out to prove by a factor of log(nε−1) that we will show how to get rid of in
the next section.

Theorem 3. Let G = (U ∪ V,E) be a weighted biparitite graph. There exists a
multiplicative auction algorithm running in time O(mε−1 log(nε−1)) that finds
a (1 − ε)-approximate maximum weight matching of G.

2.1 Improving the Running Time

To improve the running time to O(mε−1 log(ε−1)), we observe that all we actu-
ally need for Lemma 2 in Equation (1) is that util(uv) ≤ ε · w(uv). Recall
that juv = iLog(w(uv)). Thus it suffices if we change line (b) in Multiplica-
tiveAuction to range from juv to juv − kmin, since:

(1 + ε)juv−kmin = (1 + ε)−kmin · (1 + ε)juv ≤ ε · w(uv).

This change implies that we insert O(kmin|N(v)|) items into Qv for every
v ∈ V . However, sorting Qv for every vertex individually, even with bucket sort,
would be too slow. We will instead perform one bucket sort on all the edges,
then go through the weight classes in decreasing order to insert the pairs into
the corresponding Qv. We explicitly give the pseudocode below as Multiplica-
tiveAuction+.

Algorithm 2.2: MultiplicativeAuction+(G = (U ∪ V,E))

M ← ∅.
yu ← 0 for all u ∈ U .
Qv ← ∅ for all v ∈ V .
Li ← ∅ for all i from −kmin to kmax.
For uv ∈ E:

1. juv ← iLog(w(uv))
2. For i from juv to juv − kmin:

(a) Insert the pair (i, uv) into Li.

For i from kmax to −kmin:

1. For all (i, uv) ∈ Li:
(a) Insert the pair (i, uv) to the back of Qv.

For v ∈ V :

1. MatchR(v).

Return M .

462 D. W. Zheng and M. Henzinger

New Runtime. Bucket sorting all mkmin pairs and initializing the sorted Qv for
all v ∈ V takes total time O(mkmin + (kmax + kmin)) = O(mε−1 log(ε−1)). The
total amount of work done in MatchR(v) for a vertex v ∈ V is O(|N(v)|kmin)
which also sums to O(mε−1 log(ε−1)). Thus we get our desired running time and
have proven our main theorem that we restate here.

Theorem 1. Let G = (U ∪ V,E) be a weighted biparitite graph. There is a multi-
plicative auction algorithm running in time O(mε−1 log(ε−1)) that finds a (1−ε)-
approximate maximum weight matching of G.

3 Dynamic Algorithm

There are many monotonic properties of our static algorithm. For instance, for
all u ∈ U , the yu values strictly increase. As another example, for all v ∈ V ,
the value of jv strictly decreases. These monotonic properties allow us to extend
MultiplicativeAuction+ to a dynamic setting with the following operations.

Theorem 2. Let G = (U ∪ V,E) be a weighted biparitite graph. There exists a
dynamic data structure that maintains a (1 − ε)-approximate maximum weight
matching of G and supports the following operations:

(1) Deleting a vertex in U
(2) Adding a new vertex into V along with all its incident edges sorted by weight

in total time O(mε−1 log(ε−1)), where m is sum of the number of initially exist-
ing, and inserted edges.

Type (1) operations: Deleting a vertex in U. To delete a vertex u ∈ U , we can
mark u as deleted and skip all edges uv in Qv for any v ∈ V in all further
computation. If u were matched to some vertex v ∈ V , that is if there exists an
edge uv ∈ M , we need to unmatch v and remove uv from M . All our invariants
hold except Invariant 4 for the unmatched v. To restore this invariant we simply
call MatchR(v).

Type (2) Operations: Adding a New Vertex to V Along with All Incident Edges.
To add a new vertex v to V with � incident edges to u1v, ..., u�v with w(u1v) >
· · · > w(u�v), we can create the queue Qv by inserting the O(ε−1 log(ε−1)) pairs
such that it is non-increasing in the first element of the pair. Afterwards we call
MatchR(v). All invariants hold after doing so.

If the edges are not given in sorted order, we can sort the � edges in O(� log �)
time, or in O(� + ε−1 log(w(u1v)/w(u�v))) time by bucket sort.

Acknowledgements. The first author thanks to Chandra Chekuri for useful discus-

sions about this paper.
This project has received funding from the European

Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant agreement No.
101019564 “The Design of Modern Fully Dynamic Data Struc-
tures (MoDynStruct)” and from the Austrian Science Fund (FWF) project “Fast Algo-
rithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with additional funding
from the netidee SCIENCE Stiftung, 2020–2024.

Algorithm for Approximate Maximum Weight Bipartite Matching 463

A Combinatorial proof of Lemma 2

We start with a simple lemma.

Lemma 3. Let G = (U ∪ V,E) be a weighted bipartite graph. Let M be the
matching found by MultiplicativeAuction+(G) for ε > 0, and M ′ be any
other matching. Then for any alternating path, i.e. a set of edges of the form
u1v1, u2v1, u2v2, ..., ukvk, uk+1vk with all edges of uivi ∈ M ′ and ui+1vi ∈ M ,
we have that:

(1 − 2ε) ·
k∑

i=1

w(uivi) ≤
k∑

i=1

w(ui+1vi) + (1 − 2ε) · yu1 − yuk+1

Proof. By Invariant 2, for all i from 1 to k, since M matched vi+1 to ui we have
that:

(1 − 2ε)util(uivi) ≤ util(uivi+1)

Adding all such equations together we get

(1 − 2ε) ·
k∑

i=1

util(uivi) ≤
k∑

i=1

util(uivi+1)

(1 − 2ε) ·
k∑

i=1

(w(uivi) − yui
) ≤

k∑

i=1

(
w(ui+1vi) − yui+1

)

(1 − 2ε) ·
(

k∑

i=1

w(uivi) −
k∑

i=1

yui

)

≤
k∑

i=1

w(ui+1vi) −
k∑

i=1

yui+1

(1 − 2ε) ·
k∑

i=1

w(uivi) ≤
k∑

i=1

w(ui+1vi) + (1 − 2ε) · yu1 − yuk+1

Theorem 3. Let G = (U ∪ V,E) be a weighted bipartite graph and
ε′ > 0 be an input parameter. Let M be the matching found by
MultiplicativeAuction+(G) with ε = ε′/2. M is a (1 − ε′)-approximate
maximum weight matching of the bipartite graph G.

Proof. Let M∗ be a maximum weight matching of G. Consider the symmetric
difference of M with M∗. It consists of paths and and even cycles. It suffices to
show that the weight obtained by M on the path or even cycle is at least (1− ε)
the weight of M∗. We consider the following cases:

1. Consider any even cycle u1v1, u2v1, u2v2, ..., ukvk, u1vk with uivi ∈ M∗ for
all i = 1, ..., k and the other edges in M . Applying Lemma 3 with uk+1 = u1,
and by Invariant 3 yu1 > 0 as u1 is matched gives:

(1 − 2ε) ·
k∑

i=1

w(uivi) ≤
k∑

i=1

w(ui+1vi) + (1 − 2ε)yu1 − yu1 <
k∑

i=1

w(ui+1vi).

464 D. W. Zheng and M. Henzinger

2a. Consider any even length path u1v1, u2v1, u2v2, ..., ukvk, uk+1vk with
uivi ∈ M∗ for all i = 1, ..., k and the other edges in M . By Invariant 3 u1 is
unmatched in M so yu1 = 0, and uk+1 is matched so yuk+1 > 0. Applying
Lemma 3 gives:

(1 − 2ε) ·
k∑

i=1

w(uivi) ≤
k∑

i=1

w(ui+1vi) + (1 − 2ε) · 0 − yuk+1 <
k∑

i=1

w(ui+1vi).

2b. Consider any odd length path u1v1, u2v1, u2v2, ..., ukvk, uk+1vk, uk+1, vk+1

with uivi ∈ M∗ for all i = 1, ..., k and the other edges in M . Since vk is
unmatched in M , we have that w(uk+1vk+1) − yuk+1 = util(uk+1vk+1) ≤
εw(uk+1vk+1). Rearranging, we get that yuk+1 ≥ (1 − ε)w(uk+1vk+1) > (1 −
2ε)w(uk+1vk+1). Adding this equation to Lemma 3, and by Invariant 3 we
have yu1 = 0, so:

(1 − 2ε) ·
k+1∑

i=1

w(uivi) <

k∑

i=1

w(ui+1vi) + (1 − 2ε) · yu1 =
k∑

i=1

w(ui+1vi).

2c. Consider any even length path u0v1, u1v1, u2v1, u2v2, ..., ukvk, uk+1vk with
uivi ∈ M∗ for all i = 1, ..., k and the other edges in M . By Invariant 2,
w(u1v0) − yu0 ≥ (1 − 2ε)(w(u1v1) − yu1), Adding this inequality to what we
get when we apply Lemma 3 to the path starting at u1v1, and remarking
that u0 and uk+1 are matched so Invariant 3 applies gives:

(1 − 2ε) ·
k+1∑

i=1

w(uivi) ≤
k∑

i=0

w(ui+1vi) − yu0 − yuk+1 <

k∑

i=1

w(ui+1vi).

In all cases we achieve (1 − 2ε) the weight of M∗. We may choose ε such that
ε = ε′/2, then the theorem holds.

References

1. Allen-Zhu, Z., Orecchia, L.: Nearly linear-time packing and covering LP solvers -
achieving width-independence and -convergence. Math. Program. 175(1–2), 307–
353 (2019)

2. Bertsekas, D.P.: A new algorithm for the assignment problem. Math. Program.
21(1), 152–171 (1981)

3. Bhattacharya, S., Kiss, P., Saranurak, T.: Dynamic algorithms for packing-covering
lPS via multiplicative weight updates. CoRR, abs/2207.07519 (2022)

4. Bosek, B., Leniowski, D., Sankowski, P., Zych, A.: Online bipartite matching in
offline time. In: 55th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2014, Philadelphia, PA, USA, October 18–21, 2014, pp. 384–393. IEEE
Computer Society (2014)

5. Chekuri, C., Quanrud, K.: Randomized MWU for positive lPS. In: Czumaj, A.,
editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2018, New Orleans, LA, USA, January 7–10, 2018, pp.
358–377. SIAM (2018)

Algorithm for Approximate Maximum Weight Bipartite Matching 465

6. Chen, L., Kyng, R., Liu, Y.P., Peng, R., Gutenberg, M.P., Sachdeva, S.: Maximum
flow and minimum-cost flow in almost-linear time. CoRR, abs/2203.00671 (2022)

7. Demange, G., Gale, D., Sotomayor, M.: Multi-item auctions. J. Polit. Econ. 94(4),
863–872 (1986)

8. Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J.
ACM 61(1), 1:1-1:23 (2014)

9. Gupta, M., Peng, R.: Fully dynamic (1+ ε)-approximate matchings. In: 54th Sym-
posium on Foundations of Computer Science, FOCS, pp. 548–557. IEEE Computer
Society (2013)

10. Hanauer, K., Henzinger, M., Schulz, C.: Recent advances in fully dynamic graph
algorithms (invited talk). In: Aspnes, J., Michail, O., editors, 1st Symposium on
Algorithmic Foundations of Dynamic Networks, SAND 2022, March 28–30, 2022,
Virtual Conference, volume 221 of LIPIcs, pp. 1:1–1:47. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

11. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and
strengthening hardness for dynamic problems via the online matrix-vector multi-
plication conjecture. In Proceedings of the Forty-Seventh Annual ACM Symposium
on Theory of Computing, pp. 21–30 (2015)

12. Koufogiannakis, C., Young, N.E.: A nearly linear-time PTAS for explicit fractional
packing and covering linear programs. Algorithmica 70(4), 648–674 (2014)

13. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1–2), 83–97 (1955)

14. Le, H., Milenkovic, L., Solomon, S., Williams, V.V.: Dynamic matching algorithms
under vertex updates. In: Braverman, M., editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berke-
ley, CA, USA, volume 215 of LIPIcs, pp. 96:1–96:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2022)

15. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc.
Ind. Appl. Math. 5(1), 32–38 (1957)

16. Quanrud, K.: Nearly linear time approximations for mixed packing and covering
problems without data structures or randomization. In: Farach-Colton, M., Gørtz,
I.L., editors, 3rd Symposium on Simplicity in Algorithms, SOSA 2020, Salt Lake
City, UT, USA, January 6–7, 2020, pp. 69–80. SIAM (2020)

17. Schrijver, A., et al.: Combinatorial Optimization: Polyhedra and Efficiency, vol.
24. Springer (2003)

18. Wang, D., Rao, S., Mahoney, M.W.: Unified acceleration method for packing
and covering problems via diameter reduction. In: Chatzigiannakis, I., Mitzen-
macher, M., Rabani, Y., Sangiorgi, D., editors, 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11–15, 2016, Rome,
Italy, vol. 55 of LIPIcs, pp. 50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2016)

19. Young, N.E.: Nearly linear-time approximation schemes for mixed packing/cover-
ing and facility-location linear programs. CoRR, abs/1407.3015 (2014)

A Linear Time Algorithm for Linearizing
Quadratic and Higher-Order Shortest

Path Problems

Eranda Çela1(B) , Bettina Klinz1(B) , Stefan Lendl2(B) ,
Gerhard J. Woeginger3 , and Lasse Wulf1(B)

1 Institute of Discrete Mathematics, Graz University of Technology, Graz, Austria
{cela,klinz,wulf}@math.tugraz.at

2 Institute of Operations and Information Systems, University of Graz, Graz, Austria
stefan.lendl@uni-graz.at

3 Department of Computer Science, RWTH Aachen, Aachen, Germany

Abstract. An instance of the NP-hard Quadratic Shortest Path Prob-
lem (QSPP) is called linearizable iff it is equivalent to an instance of the
classic Shortest Path Problem (SPP) on the same input digraph. The
linearization problem for the QSPP (LinQSPP) decides whether a given
QSPP instance is linearizable and determines the corresponding SPP
instance in the positive case. We provide a novel linear time algorithm
for the LinQSPP on acyclic digraphs which runs considerably faster than
the previously best algorithm. The algorithm is based on a new insight
revealing that the linearizability of the QSPP for acyclic digraphs can
be seen as a local property. Our approach extends to the more general
higher-order shortest path problem.

Keywords: quadratic shortest path problem · higher-order shortest
path problem · linearization

1 Introduction

In this paper we consider the linearization problem for nonlinear generalizations
of the Shortest Path Problem (SPP), a classic combinatorial optimization prob-
lem. An instance of the SPP consists of a digraph G = (V,A), a source vertex
s ∈ V , a sink vertex t ∈ V , and a cost function c : A → R, which maps each arc
a ∈ A to its cost c(a). The cost of a simple directed s-t-path P , is given by1

SPP(P, c) :=
∑

a∈P

c(a) . (1)

The goal is to find a simple directed s-t-path in G which minimizes the objective
(1). In general it is assumed that there are no circuits of negative weight in G.

G. J. Woeginger—Deceased in April 2022.
1 We use the same notation for the path P and the set of its arcs.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 466–479, 2023.
https://doi.org/10.1007/978-3-031-32726-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32726-1_33&domain=pdf
http://orcid.org/0000-0002-5099-8804
http://orcid.org/0000-0002-6156-688X
http://orcid.org/0000-0002-5660-5397
http://orcid.org/0000-0001-8816-2693
http://orcid.org/0000-0001-7139-4092
https://doi.org/10.1007/978-3-031-32726-1_33

A linear time algorithm for the linearization of the QSPP and SPPd 467

Consider now a number d ∈ N. The Order-d Shortest Path Problem (SPPd)
takes as input a digraph G = (V,A), a source vertex s ∈ V , a sink vertex t ∈ V ,
and an order-d arc interaction cost function qd : {B ⊆ A : |B| ≤ d} → R. Thus
qd assigns a weight to every subset of arcs of cardinality at most d. The cost of
a simple directed s-t-path P is given by

SPPd(P, qd) :=
∑

S⊆P : |S|≤d

qd(S) . (2)

The goal is to find a simple directed s-t-path in G which minimizes the objective
function (2). For d = 2 we obtain the Quadratic Shortest Path Problem (QSPP)
which has already been studied in the literature [2,10,11,18]. For notational
convenience we write QSPP(P, q) for SPPd(P, qd) if d = 2.

The QSPP arises in network optimization problems where costs are associ-
ated with both single arcs and pairs of arcs. This includes variants of stochastic
and time-dependent route planing problems [15,20,21] and network design prob-
lems [9,14]. For an overview on applications of the QSPP see [11,18]. We are not
aware of any publications for the case d > 2.

While the SPP can be solved in polynomial time, the QSPP is an NP-hard
problem even for the special case of the adjacent QSPP where the costs of all
pairs of non-consecutive arcs are zero [18]. The QSPP is an extremely difficult
problem also from the practical point of view. Hu and Sotirov [11] report that a
state-of-the-art quadratic solver can solve QSPP instances with up to 365 arcs,
while their tailor-made B&B algorithm can solve instances with up to 1300 arcs
to optimality within one hour. Instances of the SPP can however be solved in a
fraction of a second for graphs with millions of vertices and arcs.

Given the hardness of the QSPP, a research line on this problem has focussed
on polynomially solvable special cases which arise if the input graph and/or
the cost coefficients have certain specific properties. Rostami et al. [19] have
presented a polynomial time algorithm for the adjacent QSPP in acyclic digraphs
and in series-parallel graphs. Hu and Sotirov [10] have shown that the QSPP can
be solved in polynomial time if the quadratic costs build a nonnegative symmetric
product matrix, or if the quadratic costs build a sum matrix and all s-t-paths
in G have the same number of arcs.

These two polynomially solvable special cases of the QSPP belong to the
larger class of the linearizable SPPd instances defined as follows.

Definition 1. An instance of the SPPd with an input digraph G = (V,A), a
source node s, a sink node t and a cost function qd is called linearizable if there
exists a cost function c : A → R such that for any simple directed s-t-path P
in G the equality SPP(P, c) = SPPd(P, qd) holds. A linearizable instance of the
QSPP is defined analogously, just replacing SPPd(P, qd) by QSPP(P, q).

The recognition of linearizable QSPP (SPPd) instances, also called the lineariza-
tion problem for the QSPP (SPPd), abbreviated by LinQSPP (LinSPPd) arises
as a natural question. In this problem the task consists of deciding whether a

468 E. Çela et al.

given instance of the QSPP (SPPd) is linearizable and in finding the linear cost
function c in the positive case. The notion of linearizable special cases of hard
combinatorial optimization problems goes back to Bookhold [1] who introduced
it for the quadratic assignment problem (QAP). For symmetric linearizable QAP
instances a full characterization has been obtained while only partial results are
available for the linearizability of the general QAP, see [3,6–8,13,16,23]. The
linearization problem has been studied for several other quadratic combinatorial
optimization problems, see [4,22] for the quadratic minimum spanning tree prob-
lem, [17] for the quadratic TSP, [5] for the quadratic cycle cover problem and
[12] for general binary quadratic programs. Linearizable instances of a quadratic
problem can be used to generate lower bounds needed in B&B algorithms. For
example, Hu and Sotirov introduce the family of the so-called linearization-based
bounds [12] for the binary quadratic problem. Each specific bound of this family
is based on a set of linearizable instances of the problem. The authors show that
well-known bounds from the literature are special cases of the newly introduced
bounds. Clearly, fast algorithm for the linearization problem are important in
this context.

While LinSPPd has not been investigated in the literature so far (to the best
of our knowledge), the LinQSPP has been subject of investigation in some recent
papers. In [2] Çela, Klinz, Lendl, Orlin, Woeginger and Wulf proved that it is
coNP-complete to decide whether a QSPP instance on an input graph containing
a directed cycle is linearizable. Thus, a nice characterization of linearizable QSPP
instances for such graphs seems to be unlikely. In the acyclic case, Hu and Sotirov
first described a polynomial-time algorithm for the LinQSPP on directed two-
dimensional grid graphs [10]. Recently, in [12] they generalized this result to all
acyclic digraphs and proposed an algorithm which solves the problem in O(nm3),
where n and m denote the number of vertices and arcs in G.

Finally, let us mention a related concept, the so-called universal linearizabil-
ity, studied in [2,10]. A digraph G is called universally linearizable with respect
to the QSPP iff every instance of the QSPP on the input graph G is linearizable
for every choice of the cost function q. In [10] it is shown that a particular class
of grid graphs is universally linearizable. In [2] a characterization of universally
linearizable grid graphs in terms of structural properties of the set of s-t-paths
is given. Moreoever, for acyclic digraphs a forbidden subgraphs characterization
of the universal linearizability is given in [2].

Contribution and Organization of the Paper. In this paper we provide
a novel and simple characterization of linearizable QSPP instances on acyclic
digraphs. Our characterization shows that the linearizability can be seen as a
local property. In particular, we show that an instance of the QSPP on an acyclic
digraph G is linearizable if and only if each subinstance obtained by considering
a subdigraph of G consisting of two s-t-paths in G is linearizable. Our simple
characterization also works for the SPPd and even for completely arbitrary cost
functions, which assign some cost f(P) to every s-t-path P without any further

A linear time algorithm for the linearization of the QSPP and SPPd 469

restrictions. The latter problem is referred to as the Generic Shortest Path Prob-
lem (GSPP) and is formally introduced in Sect. 2. Indeed, the characterization
of the linearizable instances of the SPPd follows from the characterization of the
linearizable instances of the GSPP, both on acyclic digraphs.

Further, we propose a linear time algorithm which can check the local con-
dition mentioned above for the QSPP and the SPPd. We note that this is not
straightforward, because the number of the subinstances for which the condition
needs to be checked is in general exponential. As a side result our approach
reveals an interesting connection between the LinQSPP and the problem of
deciding whether all s-t-paths in a digraph have the same length. As a result,
we obtain an algorithm which solves the LinQSPP linearization in O(m2) time,
thus improving the best previously known running time of O(nm3) obtained in
[12]. Our approach yields an O(d2md) time algorithm for the LinSPPd, thus
providing the first (polynomial time) algorithm for this problem. Note that the
running time of the proposed algorithms is linear in the input size for both
problems, LinQSPP and LinSPPd, respectively. (The costs of all Ω(m2) pairs
of arcs, in the case of the QSPP, and the costs of all Ω(md/d!) subsets of arcs
of cardinality d, in the case of the SPPd, need to be encoded in the input.)

Finally, we also obtain a polynomial time algorithm that given an acyclic
digraph G computes a basis of the subspace of all linearizable degree-d cost
functions on G. Such a basis can be used to obtain better linearization-based
bounds usable in B&B algorithms.

The paper is organized as follows. After introducing some notations and
preliminaries in Sect. 2 we present the result on the characterization of the lin-
earizable QSPP and SPPd instances on acyclic input digraphs in Sect. 3. The
algorithms for the linearization problems LinQSPP and LinSPPd are presented
in Sect. 4. Section 5 deals with computing a basis of the subspace of all lineariz-
able d-degree cost functions on an acyclic digraph G.

2 Notations and Preliminaries

Given a digraph G = (V,A), a simple directed s-t-path P in G is specified as
a sequence of arcs P = (a1, a2, . . . , ap) such that a1 starts at s, ap ends at t,
nonconsecutive arcs do not share a vertex and the end vertex of ai coincides with
the start vertex of ai+1 for any i ∈ {1, . . . , p − 1}. The number p of arcs in P is
called the length of the path. We sometimes use the same notation for a path P
and the set of its arcs. We consider a single arc (x, y) as an x-y-path of length
1 and a single vertex x as a trivial x-x-path of length 0. Given an x-y-path P1

and a y-z-path P2, we denote the concatenation of P1 and P2 by P1 · P2. We
also consider concatenations of paths and arcs, that is, terms of the form P · a
for some x-y-path P and some arc a = (y, z).

In the linearization problem, we are concerned with acyclic digraphs G =
(V,A) with a source vertex s and a sink vertex t. We denote by Pst the set of
all simple directed s-t-paths. We often assume that G is Pst-covered, that is,

470 E. Çela et al.

every arc in G is traversed by at least one path in Pst. It is easy to see that this
assumption can be made without loss of generality.

Let d ≥ 2 be a natural number. The Order-d interaction costs are given by a
mapping qd : {B ⊆ A : |B| ≤ d} → R, assigning a (potentially negative) interac-
tion cost to every subset of at most d arcs. The cost SPPd(P, qd) of some path
P under interaction costs qd is defined as in equation (2). If d is unambiguously
clear form the context, we use the more compact notation fq(P) := SPPd(P, qd).
In this paper we explicitly allow the case q(∅) �= 0, because this simplifies the
calculations. The linearization problem for the Order-d Shortest Path Problem
(LinSPPd) is formally defined as follows.

Problem: The linearization problem for the SPPd (LinSPPd)

Instance: A Pst-covered directed graph G = (V,A) with s, t ∈ V , s �= t; an
integer d ≥ 2; an order-d arc interaction cost function qd : {B ⊆ A : |B| ≤
d} → R.

Question: Find a linearizing cost function c : A → R such that
SPPd(P, qd) = SPP(P, c) for all P ∈ Pst or decide that such a lineariz-
ing cost function does not exist.

In the special case d = 2, we obtain the linearization problem for the QSPP
(LinQSPP).

Finally, let us consider the Generic Shortest Path Problem (GSPP) which
takes as input a digraph G = (V,A) with a source vertex s, a sink vertex t,
s �= t, and a generic cost function f : Pst → R assigning a cost f(P) to every
path P ∈ Pst

2 We assume w.l.o.g. that G is Pst-covered. The goal is to find an
s-t-path which minimizes the objective function f(P) over Pst. A linearizable
instance of the GSPP and the linearization problem for the GSPP (LinGSPP)
are defined analogously as in the respective definitions for SPPd.

3 A Characterization of Linearizable Instances
of the GSPP on Acyclic Digraphs

The main result of this section is Theorem 1, our novel characterization of lin-
earizable instances of the GSPP on acyclic digraphs defined as in Sect. 2.

Definition 2. Let G = (V,A) be a Pst-covered acyclic digraph. For some ver-
tex v, let P1, P2 be two s-v-paths, and let Q1, Q2 be two v-t-paths. The 5-tuple
(v, P1, P2, Q1, Q2) is called a two-path system contained in G. The system is
called linearizable with respect to the function f : Pst → R, if there exists a cost
function c : A → R such that for all four paths P ∈ {P1·Q1, P1·Q2, P2·Q1, P2·Q2}
we have f(P) = SPP (P, c). Such a c is called a linearizing cost function for
(v, P1, P2, Q1, Q2) with respect to f .

A linear time algorithm for the linearization of the QSPP and SPPd 471

s tv

P1

P2

Q1

Q2

Fig. 1. A two-path system.

See Fig. 1 for an illustration of a two-path system. Note that P1 and P2 (as
well as Q1 and Q2) can have common inner vertices and that the cases P1 = P2,
Q1 = Q2, v = s and v = t are allowed. However, due to the acyclicity of G, the
paths Pi and Qj have only the vertex v in common for i, j ∈ {1, 2}. Further,
observe that the linearizability of a two-path system is a local property, in the
sense that it only depends on the four paths P1 · Q1, P1 · Q2, P2 · Q1 and P2 · Q2.
Indeed, the following simple characterization holds.

Proposition 1. A two-path system (v, P1, P2, Q1, Q2) is linearizable with
respect to some function f : Pst → R iff

f(P1 · Q1) + f(P2 · Q2) = f(P1 · Q2) + f(P2 · Q1). (3)

Proof. First, assume that (v, P1, P2, Q1, Q2) is linearizable and let c be the cor-
responding linearizing cost function. Let M1 (M2) be the multiset resulting from
the union of the sets of the arcs of the paths P1 · Q1 and P2 · Q2 (P1 · Q2 and
P2 ·Q1). Since M1 and M2 coincide we get c(P1 ·Q1)+c(P2 ·Q2) =

∑
a∈M1

c(a) =∑
a∈M2

c(a) = c(P1 · Q2) + c(P2 · Q1). Then, (3) follows from the definition of
the linearizability of (v, P1, P2, Q1, Q2).

Assume now that Eq. (3) is true. We show the linearizability of the two-path
system with respect to f by constructing a linearizing cost function c. It is easy
to find a suitable c if P1 = P2 or Q1 = Q2. So let us consider the more involved
case where P1 �= P2 and Q1 �= Q2. In this case, for each P ∈ {P1, P2, Q1, Q2}
there exists a (not necessarily unique) representative arc a ∈ P such that a is
not contained in any other path Q ∈ {P1, P2, Q1, Q2}, Q �= P . Let a1, a2, e1, e2
be representative arcs of P1, P2, Q1 and Q2, respectively. Consider now a cost
function c : A → R, such that c(a) = 0 if a �∈ {a1, a2, e1, e2}, and c(a1), c(a2),
c(e1), c(e2) fulfill the following linear equations:

c(a1) + c(e1) = f(P1Q1)
c(a1) + c(e2) = f(P1Q2)

c(a2) + c(e1) = f(P2Q1)
c(a2) + c(e2) = f(P2Q2)

Using basic linear algebra, one can see that this system indeed has a solution
whenever Eq. (3) holds (there is even a solution with c(e2) = 0). Thus, c con-
structed as above is a linearizing cost function for (v, P1, P2, Q1, Q2) with respect
to f . 	

2 We assume that f is given as an oracle.

472 E. Çela et al.

Now, consider an instance of the GSPP with a Pst-covered acyclic digraph G,
with a source vertex s, a sink vertex t and a generic cost function f : Pst → R.
When is this instance (G, s, t, f) linearizable? Obviously, if G contains a two-path
system which is not linearizable with respect to f , then (G, s, t, f) is not lin-
earizable. The following theorem shows that the linearizability of each two-path
system with respect to f is a sufficient condition for (G, s, t, f) being linearizable.

Theorem 1. Let G be a Pst-covered acyclic digraph with a source vertex s and
a sink vertex t and let f : Pst → R be a generic cost function. Then the instance
(G, s, t, f) of the GSPP is linearizable if and only if every two-path system con-
tained in G is linearizable with respect to f .

Before proving the theorem, we need some preparation. Let G = (V,A) be
a Pst-covered acyclic digraph with source vertex s and sink vertex t. First we
introduce a topological arc order as a total order � on A such that for any pair
of arcs a, a′ in A the following holds: if there exists a path P containing both a
and a′ such that a comes before a′ in P , then a � a′. It is easy to see that any
acyclic digraph has a (in general non-unique) topological arc order. Moreover, a
topological arc order can be obtained from a topological vertex order.

Further, we recall the definition of a system of nonbasic arcs introduced by
Sotirov and Hu [12].

Definition 3. Let G be a Pst-covered acyclic digraph with a source vertex s and
a sink vertex t. A set N ⊆ A is called a system of nonbasic arcs, iff for every
vertex v ∈ V \ {s, t} exactly one of the arcs starting at v is contained in N . The
latter arc is called the nonbasic arc of v. An arc a ∈ A \ N is called basic.

Obviously, the system of nonbasic arcs is not unique. Any such system forms
an in-tree rooted at t containing all the vertices in V except for s. For some
system of nonbasic arcs N and some vertex v ∈ V \ {s}, we let Nv denote the
unique v-t-path consisting of nonbasic arcs (where Nt is the trivial path). A cost
function c : A → R is called in reduced form with respect to N , if c(a) = 0 for
all nonbasic arcs a ∈ N . The following lemma is an easy adaption from [12],
where an analogous statement was proven for the less general case of the QSPP
instead of the GSPP (details are provided in the full version of this paper).

Lemma 1 (adapted from [12, Prop. 4]). Let G be a Pst-covered acyclic
digraph with a source vertex s and a sink vertex t. Let f : Pst → R be a generic
cost function and let N ⊆ A be a fixed system of nonbasic arcs. If (G, s, t, f) is
a linearizable instance of the GSPP, then there exists one and only one linear
cost function c : A → R which is both a linearizing cost function and in reduced
form.

Let (G, s, t, f) be a linearizable instance of the GSPP with G = (V,A) and
N ⊆ A be a fixed system of nonbasic arcs. For a linearizing cost function c : A →
R, we denote by reduced(c) the unique linearizing cost function in reduced form
(which exists due to Lemma 1). It follows from the arguments in the proof of
Lemma 1 that for given c one can compute reduced(c) in O(n+m) time. We are
now ready to sketch the proof of our main theorem.

A linear time algorithm for the linearization of the QSPP and SPPd 473

Proof (Sketch of the proof of Theorem 1).
The necessity of the conditions for linearizability is trivial. Now we prove

the sufficiency. Thus we assume that every two-path system is linearizable with
respect to f and show that (G, s, t, f) is linearizable. Let N be a system of
nonbasic arcs. The main idea is to find a linearizing cost function which is in
reduced form, i.e., which has value 0 on all nonbasic arcs. To this end we consider
a topological arc order � on the set A of arcs in G and inductively define a
linearizing cost function c : A → R as follows. For any arc a = (u, v) set

c(a) :=

{
f(P · a · Nv) − ∑

a′∈P c(a′) a �∈ N

0; a ∈ N
(4)

for some s-u-path P .
Consider now the following claim the proof of which is omitted for brevity.

Claim: If all two-path systems in G are linearizable with respect to f , then
function c in Equation (4) is well-defined and independent of the concrete choice
of P . Moreoever, the following equation holds for all s-u-paths P :

f(P · a · Nv) = c(a) +
∑

a′∈P

c(a′) = c(P · a · Nv) (5)

Instead of a proof, we give a short intuition, why the claim is true. Due to
Lemma 1, whenever we look for a linearizing function, we can w.l.o.g. look for one
in reduced form. Consider now a linearizing function c such that c(a) = 0 holds
for all nonbasic arcs. It is not hard to see that Eq. (4) is a necessary condition
that must be true for every s-u-path P . Thus, we obtain a system of equations
to be fulfilled by every linearizing function c as above. It turns out that the
system of equations mentioned above has a solution, if every two-path system is
linearizable.

Finally, observe that the claim immediately implies that (G, s, t, f) is lin-
earizable. Indeed, let c be the cost function defined in Eq. (4) and let Q be some
s-t-path. Choose a = (x, t) to be the last arc on Q. Then Nt is the trivial path
from t to t, so by applying Eq. (5) to the arc a, we have f(Q) = c(Q).

	

Since in general a graph contains exponentially many different two-path sys-

tems, Theorem 1 does not seem to lead to an efficient algorithm for the lineariza-
tion problem LinGSPP at a first glance. However, we show in the next section
that this is indeed the case. The arguments are based on a more technical version
of Theorem 1 and involve the concept of so-called strongly basic arcs and their
property (π) defined below.

Definition 4. Let G = (V,A) be an acyclic Pst-covered digraph with source
vertex s and sink vertex t. Let f : Pst → R be a generic cost function and let

474 E. Çela et al.

N ⊆ A be a system of nonbasic arcs in G. A basic arc (u, v) is called strongly
basic, if it is not incident to the source vertex, that is if u �= s.
A strongly basic arc a = (u, v) has the property (π), if for any s-u-path P the
value val(a, P) := f(P · a · Nv) − f(P · Nu) does not depend on the choice of P .

Thus, if a strongly basic arc a = (u, v) has the property (π), we have
val(a, P) = val(a,Q) for any two s-u-paths P,Q and this implies the existence
of a value val(a) := val(a, P) for each s-u-path P and val(a) is well defined for
each strongly basic arc. Finally, we set val(a) := f(a · Nv) for each basic arc
a = (s, v).

Lemma 2. Let G = (V,A) be an acyclic Pst-covered digraph with source vertex
s and sink vertex t. Let f : Pst → R be a generic cost function and let N ⊆ A
be a system of nonbasic arcs in G. Then (G, s, t, f) is linearizable if and only if
every strongly basic arc has the property (π). In this case, the mapping c : A → R

given by

c(a) =

{
val(a); a is basic
0; a is nonbasic

is a linearizing cost function in reduced form.

Proof. Let a = (u, v) be a strongly basic arc. We claim that a has the property
(π) iff for any two s-u-paths P , Q the two-path system (u, P,Q,Nu, a · Nv) is
linearizable with respect to f . Indeed, note that by Proposition 1, the two-path
system above is linearizable with respect to f iff f(P · a · Nv) + f(Q · Nu) =
f(P ·Nu)+f(Q·a·Nv). The latter equation is equivalent to val(a,Q) = val(a, P).
Recalling that the latter equality holds for every pair of P,Q iff a has the property
(π) completes the proof of the claim.

Now, assume that some strongly basic arc (u, v) does not have the prop-
erty (π). Then, the corresponding two-path system (u, P,Q,Nu, a · Nv) is not
linearizable with respect to f and therefore, (G, s, t, f) is not linearizable.

Finally, assume that every strongly basic arc has the property (π). In the
proof of Theorem 1 we use the linearizability assumption only for specific two-
path systems of the form (u, P,Q,Nu, a · Nv), where a = (u, v) is some strongly
basic arc. Thus, if the property (π) holds for all strongly basic arcs, then each
such specific two-path system is linearizable with respect to f and the lineariz-
ability of (G, s, t, f) follows. Furthermore, the value c(a) of the linearizing cost
function in Eq. (4) equals val(a) for any arc a which is either strongly basic or
incident to s, while c(a) = 0 for any nonbasic arc a. 	

4 A Linear Time Algorithm for the LINSPPd

In this section, we describe an algorithm which solves the linearization problem
for SPPd (LinSPPd) in O(md) time which is linear compared to the input size.
The algorithm uses the relationship between the LinSPPd and the All-Paths-
Equal-Cost Problem (APECP) which we introduce in Sect. 4.1. In Sect. 4.2 we
describe the SPPd algorithm and discuss its running time.

A linear time algorithm for the linearization of the QSPP and SPPd 475

4.1 The All Paths Equal Cost Problem of Order-d (APECPd)

The All Paths Equal Cost Problem of Order-d (APECPd) is defined as follows.

Problem: ALL PATHS EQUAL COST of Order-d (APECPd)

Instance: An acyclic Pst-covered directed graph G = (V,A) with a source
vertex s and a sink vertex t, an integer d ≥ 1; an order-d cost function
qd : {B ⊆ A : |B| ≤ d} → R.

Question: Do all s-t-paths have the same cost, i.e. is there some β ∈ R

such that SPPd(P, qd) = β for every path P in Pst?

In the following we establish a connection between the LinSPPd and the
APECPd−1 for d ≥ 2. More precisely, we show in Lemma 3 that an instance
(G, s, t, qd) of the LinSPPd with an acyclic Pst-covered digraph G = (V,A)
can be reduced to O(m) instances of APECPd−1, each of them corresponding to
exactly one strongly basic arc with respect to some fixed system of nonbasic arcs
(see Definitions 3 and 4). The APECPd−1 instance corresponding to a strongly
basic arc a = (u, v) is defined as follows.

Definition 5. The instance I(a) of the APECPd−1 corresponding to the strongly
basic arc a = (u, v) takes as input the digraph G(a) = (Vu, Eu) with source vertex
s′ = s, sink vertex t′ = u, where Vu is the set of vertices in V lying on at least
one s-u-path and Au is the set of arcs in A lying on at least one s-u-path. The
order-(d − 1) cost function q

(a)
d−1 : {B ⊆ Au : |B| ≤ d − 1} → R is given by

q
(a)
d−1(B) :=

⎛

⎜⎜⎝
∑

C⊆Nu

|C|≤d−|B|

qd(B ∪ C)

⎞

⎟⎟⎠ −

⎛

⎜⎜⎝
∑

C⊆a·Nv

|C|≤d−|B|

qd(B ∪ C)

⎞

⎟⎟⎠ . (6)

Lemma 3. Let d ≥ 2 and let (G, s, t, qd) be an instance of the LinSPPd with
a fixed system of nonbasic arcs N . The APECPd−1 instance I(a) corresponding
to some strongly basic arc a is a YES-instance iff the arc a has the property
(π) with respect to f : Pst → R given by f(P) = SPPd(P, qd) for P ∈ Pst. In
this case, val(a) = β, where β is the common cost of all paths in the APECPd−1

instance.

Proof (Sketch). Let a = (u, v) ∈ A be a strongly basic arc and let P be some
s-u-path in G. Then P is contained in the graph Ga = (Vu, Au). It can be shown
that

val(a, P) = f(P · Nu) − f(P · a · Nv) =
∑

B⊆P
|B|≤d−1

q
(a)
d−1(B) = f (a)(P) ,

476 E. Çela et al.

where f (a)(P) = SPPd−1(P, q
(a)
d−1) for any s-u-path P in G. We conclude that

the value val(a, P) is independent of P , if and only if for every path the quantity
f (a)(P) does not depend on P . The latter condition is equivalent to I(a) being
a YES-instance. Furthermore, if this is the case, then val(a) = f (a)(P) for any
s-u-path P . 	

Lemmas 2 and 3 imply that an instance (G, s, t, qd) of the SPPd with an acyclic
digraph G is linearizable iff each instance I(a) of the APECPd−1 corresponding
to some strongly basic arc a (with respect to some fixed system of nonbasic arcs)
is a YES-instance. Thus, an instance of the LinSPPd can be reduced to O(m)
instances of the APECPd−1. Next, in Lemma 4 we show that each instance of
the APECPd−1 can be reduced to an instance of the LinSPPd−1. First, we define
a specific cost function as follows.

Definition 6. Let G = (V,A) be a Pst-covered acyclic digraph and β ∈ R. The
function sourceβ : A → R assigns cost β to every arc incident to the source s,
and 0 to all other arcs.

Lemma 4. Let G = (V,A) be a Pst-covered acyclic digraph with source vertex
s and sink vertex t and let N ⊆ A a fixed system of nonbasic arcs. Let qd be
an order-d cost function. The instance (G, s, t, qd) of the APECPd problem is a
YES-instance iff the instance (G, s, t, qd) of SPPd is linearizable and sourceβ is
its unique linearizing function in reduced form (with respect to N).

Proof. Clearly, sourceβ is a linearizing function iff all paths have the same cost
β. Furthermore, observe that all arcs incident to the source do not belong to N .
Therefore sourceβ is in reduced form with respect to N . In fact, by Lemma 1
sourceβ is the unique linearizing functions in reduced form, and reduced(c′) =
sourceβ for all other linearizing functions c′. 	

4.2 The Linear Time LINSPPd algorithm

Our LinSPPd algorithm A works as follows. Consider an instance (G, s, t, qd) of
the LinSPPd with an acyclic Pst-covered digraph G, with source vertex s, sink
vertex t and order-d cost function qd. We first fix some system of nonbasic arcs N
and construct the instance I(a) of the APECPd−1 problem given in Definition 5
for each strongly basic arc a. Then, we check each instance I(a) for being a YES-
instance and do this by reducing I(a) to an instance of LinSPPd−1 according to
Lemma 4. By iterating this process we eventually end up with APECP problems
of degree 1 that can be easily solved by dynamic programming. The dynamic
program is based on the fact that in a Pst-covered acyclic digraph with a cost
function f : Pst → R all s-t-paths have the same cost iff for every vertex v all
s-v-paths have the same cost.

It is not hard to implement the algorithm described above in O(d2md+1)
time. With a careful implementation it is possible to achieve a better result.

Theorem 2. The LinSPPd on acyclic digraphs can be solved in O(d2md) time.

A linear time algorithm for the linearization of the QSPP and SPPd 477

For the sake of brevity we refer to the full version of the paper for the proof of
the theorem. Here we just point out the necessity of an efficient computation of
the I(a) instances for all strongly basic arcs as defined in Definition 5.To this
end we efficiently compute the values

γ(B, x) :=
∑

C⊆Nx

|C|≤d−|B|

q(B ∪ C).

for all sets B ⊆ A of arcs with |B| ≤ d − 1 and all vertices x ∈ V \ {s}.
These values are then used to efficiently compute the cost functions q

(a)
d−1 in

Eq. (6). Further, with a careful management of the quantities involved in the
computation of the linearizing functions (see Lemma 4) we obtain a linear time
algorithm. We assume that the input qd is stored in d-dimensional array Then
the input size required to encode the cost function qd equals

∑d
k=0

(
m
k

) ≥ md
/d!.

Thus, O(d2md) is linear in the input size and hence optimal if d is considered a
constant, like for example in the QSPP.

Finally, one could also ask about the case where qd is sparse. In this case,
our algorithm still has running time O(d2md), but this time is no longer linear
in the input size. Hence, it is an interesting open question, whether one can also
find a linear time algorithm for this case.

5 The Subspace of Linearizable Instances

Let d ∈ N, d ≥ 2, and a Pst-covered acyclic digraph G = (V,A) with source
vertex s and sink vertex t be fixed. Let H(d) := {B ⊆ H | |B| ≤ d} be the set
of all subsets of at most d arcs in arc set H ⊆ A. Every order-d cost function
qd : A(d) → R can be uniquely represented by a vector x ∈ R

A(d)
with qd(F) = xF

for all F ∈ A(d), and vice-versa. Thus, each instance (G, s, t, qd) can be identified
with the corresponding vector x ∈ R

A(d)
and we will say that x ∈ R

A(d)
is an

instance of the SPPd. It is straightforward to see that the linearizable instances
of the SPPd on the fixed digraph G form a linear subspace Ld of RA(d)

.
Methods to compute this subspace are useful in B&B algorithms for the SPPd

as they can be applied to compute better lower bounds along the lines of what
Hu and Sotirov [12] did for general quadratic binary programs. Hu and Sotirov
showed that for d = 2 a basis of Ld can be computed in polynomial time [12,
Prop. 5]. We extend their result to the case d > 2.

Theorem 3. Let G = (V,A) be a Pst-covered, acyclic digraph with source vertex
s and sink vertex t and let d ∈ N be a constant. A basis of the subspace Ld of
the linearizable instances of the SPPd can be computed in polynomial time.

Proof (Sketch). The proof idea is to specify a k ∈ N and a matrix M of polyno-
mially bounded dimensions, such that for f : RA(d) → R

k with f(x) = Mx, we
have: f(x) = 0 iff x is a linearizable instance of the SPPd. Thus, the linearizable
instances x of the SPPd form ker(M) which can be efficiently computed.

478 E. Çela et al.

The construction of M is done iteratively and exploits the relationship
between SPPd and APECPd−1 similarly as in the algorithm A from Sect. 4.2.
In particular we use the following two facts:

(i) For each strongly basic arc a = (u, v), the function which maps x ∈ R
A(d)

to
q
(a)
d−1 : A

(d−1)
u → R is linear (see Eq. (6) and recall Definition 5 for Au).

(ii) The function c → reduced(c) (defined after Lemma 1) is linear.

Using (i) and (ii) iteratively as in algorithm A, we show by induction that for
each strongly basic arc a = (u, v) and each d ≥ 2 there exist ka ∈ N and a linear
function ga : RA(d−1)

u → R
ka s.t. ga(x) = 0 iff if x corresponds to a YES-instance

of APECPd−1. Then we construct the linear function g′
a on the same domain as

ga, by setting g′
a(x) = β whenever ga(x) = 0, where β is the common path cost of

the corresponding instance xproject/63605ec6eb4e243dcb2eeb7d of APECPd−1.
Next we show that for each vertex u there exists a ku ∈ N and a linear function
fu : RA(d−1)

u → R
ku such that fu(x) = 0 iff x is a linearizable instance of SPPd−1

corresponding to APECPd−1 (see Lemma 4). Then we construct the linear func-
tion f ′

u on the same domain as fu by setting f ′
u(x) equal to the linearizing cost

function of the instance x of the SPPd−1 whenever x is linearizable (i.e. when
fu(x) = 0). The construction of M is done by repeating these steps iteratively
until d = 1. One can ensure that the size of the matrix representations of all
involved functions stays polynomial. 	

Acknowledgement. This research has been supported by the Austrian Science Fund
(FWF): W1230.

References

1. Bookhold, I.: A contribution to quadratic assignment problems. Optimization
21(6), 933–943 (1990)

2. Çela, E., Klinz, B., Lendl, S., Orlin, J.B., Woeginger, G.J., Wulf, L.: Linearizable
special cases of the quadratic shortest path problem. In: Kowalik, �L., Pilipczuk,
M., Rza̧żewski, P. (eds.) WG 2021. LNCS, vol. 12911, pp. 245–256. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86838-3 19

3. Cela, E., Deineko, V.G., Woeginger, G.J.: Linearizable special cases of the QAP.
J. Comb. Optim. 31(3), 1269–1279 (2016)

4. Ćustić, A., Punnen, A.P.: A characterization of linearizable instances of the
quadratic minimum spanning tree problem. J. Comb. Optim. 35(2), 436–453 (2018)

5. De Meijer, F., Sotirov, R.: The quadratic cycle cover problem: special cases and
efficient bounds. J. Comb. Optim. 39(4), 1096–1128 (2020)

6. Erdoğan, G.: Quadratic assignment problem: linearizations and polynomial time
solvable cases, Ph. D. thesis, Bilkent University (2006)

7. Erdoğan, G., Tansel, B.: A branch-and-cut algorithm for quadratic assignment
problems based on linearizations. Comput. Oper. Res. 34(4), 1085–1106 (2007)

8. Erdoğan, G., Tansel, B.C.: Two classes of quadratic assignment problems that are
solvable as linear assignment problems. Discret. Optim. 8(3), 446–451 (2011)

9. Gamvros, I.: Satellite network design, optimization and management. University
of Maryland, College Park (2006)

https://doi.org/10.1007/978-3-030-86838-3_19

A linear time algorithm for the linearization of the QSPP and SPPd 479

10. Hu, H., Sotirov, R.: Special cases of the quadratic shortest path problem. J. Comb.
Optim. 35(3), 754–777 (2018)

11. Hu, H., Sotirov, R.: On solving the quadratic shortest path problem. INFORMS
J. Comput. 32(2), 219–233 (2020)

12. Hu, H., Sotirov, R.: The linearization problem of a binary quadratic problem and
its applications. Annal. Oper. Res. 307, 229–249 (2021)

13. Kabadi, S.N., Punnen, A.P.: An O(n4) algorithm for the QAP linearization prob-
lem. Math. Oper. Res. 36(4), 754–761 (2011)

14. Murakami, K., Kim, H.S.: Comparative study on restoration schemes of survivable
ATM networks. In: Proceedings of INFOCOM1997, vol. 1, pp. 345–352. IEEE
(1997)

15. Nie, Y.M., Wu, X.: Reliable a priori shortest path problem with limited spatial
and temporal dependencies. In: Lam, W., Wong, S., Lo, H. (eds.) Transportation
and Traffic Theory 2009: Golden Jubilee, pp. 169–195. Springer, Boston (2009).
https://doi.org/10.1007/978-1-4419-0820-9 9

16. Punnen, A.P., Kabadi, S.N.: A linear time algorithm for the Koopmans-Beckmann
QAP linearization and related problems. Discret. Optim. 10(3), 200–209 (2013)

17. Punnen, A.P., Walter, M., Woods, B.D.: A characterization of linearizable instances
of the quadratic traveling salesman problem. arXiv preprint arXiv:1708.07217
(2017)

18. Rostami, B., et al.: The quadratic shortest path problem: complexity, approxima-
bility, and solution methods. Eur. J. Oper. Res. 268(2), 473–485 (2018)

19. Rostami, B., Malucelli, F., Frey, D., Buchheim, C.: On the quadratic shortest path
problem. In: Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 379–390. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-20086-6 29

20. Sen, S., Pillai, R., Joshi, S., Rathi, A.K.: A mean-variance model for route guidance
in advanced traveler information systems. Transp. Sci. 35(1), 37–49 (2001)

21. Sivakumar, R.A., Batta, R.: The variance-constrained shortest path problem.
Transp. Sci. 28(4), 309–316 (1994)

22. Sotirov, R., Verchére, M.: The quadratic minimum spanning tree problem: lower
bounds via extended formulations. arXiv preprint arXiv:2102.10647 (2021)

23. Waddell, L., Adams, W.: Characterizing linearizable QAPs by the level-1
reformulation-linearization technique. (2021). https://optimization-online.org/?
p=17020, preprint

https://doi.org/10.1007/978-1-4419-0820-9_9
http://arxiv.org/abs/1708.07217
https://doi.org/10.1007/978-3-319-20086-6_29
http://arxiv.org/abs/2102.10647
https://optimization-online.org/?p=17020
https://optimization-online.org/?p=17020

Author Index

A
Achterberg, Tobias 14

B
Balas, Egon 275
Basu, Amitabh 1
Bestuzheva, Ksenia 14
Borst, Sander 29
Bruckmeier, Sabrina 44
Büsing, Christina 58

C
Cardinal, Jean 72
Çela, Eranda 466
Chmiela, Antonia 87

D
Dadush, Daniel 29, 100, 115

E
Eberle, Franziska 127
Eisenbrand, Friedrich 100

F
Fujishige, Satoru 142
Fukasawa, Ricardo 438

G
Gersing, Timo 58
Gerstbrein, Matthew 157
Gleixner, Ambros 14
Gupta, Anupam 127

H
Hanguir, Oussama 172
Henzinger, Monika 453
Hertrich, Christoph 187
Huiberts, Sophie 29
Hunkenschröder, Christoph 44
Husić, Edin 203

J
Jäger, Sven 246
Jiang, Hongyi 1
Jin, Billy 217
Joswig, Michael 231

K
Karlin, Anna R. 261
Kashaev, Danish 29
Kazachkov, Aleksandr M. 275
Kerger, Phillip 1
Kitahara, Tomonari 142
Klein, Nathan 217, 261
Klimm, Max 231
Klinz, Bettina 466
Kobayashi, Yusuke 291
Koh, Zhuan Khye 203
Koster, Arie M. C. A. 58

L
Lendl, Stefan 466
Léonard, Arthur 115
Loho, Georg 203

M
Ma, Will 172
Matuschke, Jannik 306
Megow, Nicole 127, 319
Molinaro, Marco 1
Moseley, Benjamin 127
Muñoz, Gonzalo 87, 334, 348, 363

N
Nägele, Martin 393
Nöbel, Christian 393
Nuti, Pranav 378

O
Oveis Gharan, Shayan 261

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
A. Del Pia and V. Kaibel (Eds.): IPCO 2023, LNCS 13904, pp. 481–482, 2023.
https://doi.org/10.1007/978-3-031-32726-1

https://doi.org/10.1007/978-3-031-32726-1

482 Author Index

P
Paat, Joseph 334, 348
Poremba, Joseph 408

R
Rohwedder, Lars 115
Rothvoss, Thomas 100
Ryan, Christopher Thomas 172

S
Sagnol, Guillaume 246
Salas, David 363
Sanità, Laura 157
Santiago, Richard 393, 423
Schlöter, Jens 319
Schmidt genannt Waldschmidt, Daniel 246
Sergeev, Ivan 423
Sering, Leon 187
Serrano, Felipe 87, 334
Shepherd, F. Bruce 408
Spitz, Sylvain 231

Steiner, Raphael 72
Svensson, Anton 363

V
Végh, László A. 142, 203
Verberk, Lucy 157
Verschae, José 115
Vondrák, Jan 378

W
Warode, Philipp 246
Weismantel, Robert 44
Weninger, Noah 438
Williamson, David P. 217
Woeginger, Gerhard J. 466
Wulf, Lasse 466

X
Xavier, Álinson S. 348

Z
Zenklusen, Rico 393, 423
Zheng, Da Wei 453
Zhou, Rudy 127

	 Preface
	 Organization
	 Contents
	Information Complexity of Mixed-Integer Convex Optimization
	1 First-order Information Complexity
	1.1 Our Results
	1.2 Formal Definitions and Statement of Results
	1.3 Discussion and Future Avenues

	2 Proof Sketches
	2.1 Proof Sketch of Theorem 1
	2.2 Proof of Theorem 3
	2.3 Proof Sketch of Theorem 5
	2.4 Proof Sketch of Theorems 2 and 4

	References

	Efficient Separation of RLT Cuts for Implicit and Explicit Bilinear Products
	1 Introduction
	2 RLT for Bilinear Products
	3 Detection of Implicit Products
	4 Separation Algorithm
	4.1 Row Marking
	4.2 Projection Filtering

	5 Computational Results
	5.1 Setup
	5.2 Impact of RLT Cuts
	5.3 Separation
	5.4 Experiments with Gurobi
	5.5 Summary

	References

	A Nearly Optimal Randomized Algorithm for Explorable Heap Selection
	1 Introduction
	2 The Explorable Heap Selection Problem
	3 A New Algorithm
	3.1 The Algorithm
	3.2 Proof of Correctness
	3.3 Running Time Analysis
	3.4 Space Complexity Analysis

	4 Lower Bound
	References

	Sparse Approximation over the Cube
	1 Introduction and Literature Review
	2 Preliminaries
	3 The l1-Relaxation for Random Targets b
	4 Proximity Between Optimal Solutions of ([P0]P0) and ([P1]P1)
	5 A Deterministic Algorithm
	6 Extension
	References

	Recycling Inequalities for Robust Combinatorial Optimization with Budget Uncertainty
	1 Introduction
	2 Recycling Valid Inequalities
	3 Facet-Defining Recycled Inequalities
	4 Computational Study
	4.1 Robust Independent Set
	4.2 Robust Bipartite Matching

	5 Conclusion
	References

	Inapproximability of Shortest Paths on Perfect Matching Polytopes
	1 Introduction
	1.1 Our Result
	1.2 Pivot Rules for Circuit-Augmentation Algorithms
	1.3 Related Works

	2 Proof of Theorem 1
	2.1 Preliminaries
	2.2 Reduction
	2.3 Proof of Lemma 3

	References

	Monoidal Strengthening and Unique Lifting in MIQCPs
	1 Introduction
	2 Monoidal Strengthening in the Homogeneous Case
	3 Monoidal Strengthening in the Non-homogeneous Case
	3.1 A Technical Consideration for Sg
	3.2 Monoid Construction

	4 Solving the Monoidal Strengthening Problem
	5 Unique Lifting
	6 Computational Results
	References

	From Approximate to Exact Integer Programming
	1 Introduction
	1.1 Contributions of This Paper
	1.2 Related Work

	2 Preliminaries
	3 The Cut-Or-Average Algorithm
	3.1 Bounding the Number of Iterations
	3.2 Correctness and Efficiency of Subroutines
	3.3 Conclusion on the Cut-Or-Average Algorithm

	4 An Asymmetric Approximate Carathéodory Theorem
	5 IPs with Polynomial Variable Range
	References

	Optimizing Low Dimensional Functions over the Integers
	1 Introduction
	1.1 Applications
	1.2 Overview of Techniques

	2 Non-negative Variables
	3 Bounded Variables
	4 Overview of Hunkenschröder Et Al. ch9hunkenschroder2022optimizing and Related Improvements
	5 Conclusion and Open Questions
	References

	Configuration Balancing for Stochastic Requests
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Related Work

	2 Configuration Balancing with Stochastic Requests
	2.1 Structural Theorem
	2.2 Offline Setting
	2.3 Online Setting

	3 Load Balancing on Related Machines
	References

	An Update-and-Stabilize Framework for the Minimum-Norm-Point Problem
	1 Introduction
	2 Preliminaries
	2.1 Optimal Solutions and Proximity
	2.2 The Centroid Mapping

	3 The Update-and-Stabilize Framework
	4 Analysis
	5 Computational Experiments
	References

	Stabilization of Capacitated Matching Games
	1 Introduction
	2 Preliminaries and Notation
	3 M-vertex-stabilizer
	4 Vertex-Stabilizer
	5 Capacitated Cooperative Matching Games
	References

	Designing Optimization Problems with Diverse Solutions
	1 Introduction
	2 Statement of Main Results
	2.1 The Cyclic Polytope
	2.2 Results and Techniques

	3 Preliminaries
	4 Upper Bound (Proof of Theorem 1)
	5 General Lower Bound (Proof of Theorem 2)
	5.1 Construction Based on Moment Curve
	5.2 Dual Certificate for Loadouts
	5.3 Counting the Number of k-Loadouts

	6 Conclusion
	References

	ReLU Neural Networks of Polynomial Size for Exact Maximum Flow Computation
	1 Introduction
	1.1 Our Main Results
	1.2 Discussion of the Results
	1.3 Further Related Work

	2 Algorithms and Proof Overview
	References

	On the Correlation Gap of Matroids
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	3 Locating the Correlation Gap
	4 Lower Bounding the Correlation Gap
	4.1 Lower Bounding G(x*)
	4.2 Lower Bounding H(x*)
	4.3 Putting Everything Together

	References

	A 4/3-Approximation Algorithm for Half-Integral Cycle Cut Instances of the TSP
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1
	4 Conclusion and Open Questions
	References

	The Polyhedral Geometry of Truthful Auctions
	1 Introduction
	2 Preliminaries
	3 Characterization of One-Player Mechanisms
	4 Sensitivity of Mechanisms
	5 Conclusion
	References

	Competitive Kill-and-Restart and Preemptive Strategies for Non-clairvoyant Scheduling
	1 Introduction
	2 Preliminaries
	3 Lower Bound
	4 The b-scaling Strategy
	4.1 The Deterministic b-scaling Strategy
	4.2 The Randomized b-scaling Strategy

	5 Weighted Shortest Elapsed Time First
	6 Upper Bounds for More General Settings
	7 Conclusion
	References

	A Deterministic Better-than-3/2 Approximation Algorithm for Metric TSP
	1 Introduction
	1.1 High Level Proof Overview

	2 Preliminaries
	2.1 Notation
	2.2 Randomized Algorithm of ch19KKO21a
	2.3 Polyhedral Background

	3 Computing Probabilities
	3.1 Notation
	3.2 Matrix Tree Theorem
	3.3 Computing Parities in a Simple Case

	4 A Deterministic Algorithm in the Degree Cut Case
	5 General Case
	References

	Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts
	1 Introduction
	2 Notation and Background
	3 Correspondence Between PRLP and CGLP Solutions
	3.1 Simple VPCs
	3.2 Relaxations Without Primal Degeneracy
	3.3 Relaxations with Primal Degeneracy

	4 Computational Experiments
	5 Choosing a Relaxation Amenable to Strengthening
	6 Conclusion
	References

	Optimal General Factor Problem and Jump System Intersection
	1 Introduction
	1.1 General Factor Problem
	1.2 Jump System Intersection
	1.3 Our Contribution: Jump System with SBO Property
	1.4 Organization

	2 Preliminaries
	3 Algorithm and Correctness
	4 Outline of the Proof of Lemma 1
	4.1 Minimal Counterexample
	4.2 Part of Case Analysis: |U|=3

	5 Extension to Valuated Problem
	6 Weighted Optimal General Factor Problem
	7 Concluding Remarks
	References

	Decomposition of Probability Marginals for Security Games in Abstract Networks
	1 Introduction
	1.1 Motivation
	1.2 Abstract Networks
	1.3 Previous Results
	1.4 Our Results
	1.5 Notation

	2 Feasible Decompositions in Abstract Networks
	3 Computing Feasible Decompositions
	4 Computing Shortest Paths in Abstract Networks
	5 Dahan et al.'s Network Security Game
	6 The Conservation Law for Partially Ordered Sets
	7 Other Set Systems
	References

	Set Selection Under Explorable Stochastic Uncertainty via Covering Techniques
	1 Introduction
	2 Algorithmic Framework
	2.1 Offline Problems and Hardness of Approximation
	2.2 Algorithmic Framework

	3 MinSet with Deterministic Right-Hand Sides
	4 MinSet Under Uncertainty
	5 Disjoint MinSet
	References

	Towards a Characterization of Maximal Quadratic-Free Sets
	1 Introduction
	1.1 Contributions

	2 Examples of Maximal Homogeneous Quadratic-Free Sets
	3 A Proof of Theorem 5
	4 A Proof of Theorem 1
	5 A Proof of Theorem 2
	6 Preliminary Results on Non-expansive Functions
	7 A Proof of Theorem 3
	8 A Proof of Theorem 4
	References

	Compressing Branch-and-Bound Trees
	1 Introduction
	2 The Tree Compression Problem (TCP)
	3 Complexity Results and Lower Bounds
	4 Compression Algorithms
	4.1 An Exact Method
	4.2 A Heuristic Method

	5 Computational Experiments
	5.1 Methodology
	5.2 Full Strong Branching Results
	5.3 Reliability Branching with Plunging

	6 Future Work
	References

	Exploiting the Polyhedral Geometry of Stochastic Linear Bilevel Programming
	1 Introduction
	1.1 Problem Formulation and Contributions

	2 Preliminaries
	3 Vertex-Supported Beliefs and Bayesian Formulation
	3.1 Sample Average Formulation

	4 Geometrical Structure of Vertex-Supported Beliefs
	5 Algorithms
	5.1 Enumeration Algorithm
	5.2 Monte-Carlo Approximation Scheme

	6 Numerical Experiments
	References

	Towards an Optimal Contention Resolution Scheme for Matchings
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 An Optimal CRS When "026B30D x"026B30D 0
	2.1 The Karp-Sipser Algorithm
	2.2 Random Trees
	2.3 The Karp-Sipser Algorithm on Trees
	2.4 Putting It Together

	3 Improved CRSs for Bipartite Matchings
	3.1 A 0.480-Balanced Scheme for Bipartite Matchings
	3.2 A 0.509-Balanced Scheme for Bipartite Matchings

	References

	Advances on Strictly -Modular IPs
	1 Introduction
	1.1 Group-Constrained Problems and Proof Strategy for Theorem 1
	1.2 Further Related Work
	1.3 Structure of the Paper

	2 GCTUF with Transposed Network Constraint Matrices
	3 Overview of Our Techniques Leading to Theorem 3
	3.1 Reducing to a Simpler Problem When the Target Elements Form a Union of Cosets
	3.2 Decomposing the Problem
	3.3 Handling Patterns

	References

	Cut-Sufficient Directed 2-Commodity Multiflow Topologies
	1 Introduction
	1.1 Other Related Work

	2 Preliminaries
	2.1 Cut-Deceptive Weights and Minors of Multiflow Topologies

	3 Relevant Minors and Entry-Exit Connected Edge Sets
	3.1 Relevant Minors
	3.2 Contractions of Entry-Exit Connected Sets

	4 Characterizations of Cut-Sufficiency
	4.1 Opposingly Ordered Paths
	4.2 Characterization for Roundtrip and Two-Path Demands

	5 NP-Hardness of Recognizing Cut-Sufficiency
	6 Towards a Complete 2-Commodity Characterization
	References

	Constant-Competitiveness for Random Assignment Matroid Secretary Without Knowing the Matroid
	1 Introduction
	2 Random-Assignment MSP and Densities
	3 Outline of Our Approach
	3.1 Rank-Density Curves
	3.2 Proof Plan for Theorem1 via Rank-Density Curves

	4 Learning Rank-Density Curves from a Sample
	5 The Main Algorithm and Its Analysis
	5.1 Proof (Sketch) of Theorem5

	References

	A Fast Combinatorial Algorithm for the Bilevel Knapsack Problem with Interdiction Constraints
	1 Introduction
	2 A Combinatorial Algorithm for BKP
	2.1 The Bound Test
	2.2 Computing Initial Bounds

	3 Lower Bound
	4 Computational Results
	4.1 Implementation
	4.2 Instances
	4.3 Results

	5 Conclusion
	References

	Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching
	1 Introduction
	1.1 Dynamic Matching Algorithms
	1.2 Linear Program for MWM
	1.3 Multiplicative Weight Updates for Packing LPs
	1.4 Auction Algorithms
	1.5 Our Contribution

	2 The Static Algorithm
	2.1 Improving the Running Time

	3 Dynamic Algorithm
	A Combinatorial proof of Lemma 2
	References

	A Linear Time Algorithm for Linearizing Quadratic and Higher-Order Shortest Path Problems
	1 Introduction
	2 Notations and Preliminaries
	3 A Characterization of Linearizable Instances of the GSPP on Acyclic Digraphs
	4 A Linear Time Algorithm for the LinSPPd
	4.1 The All Paths Equal Cost Problem of Order-d (APECPd)
	4.2 The Linear Time LinSPPd algorithm

	5 The Subspace of Linearizable Instances
	References

	Author Index

