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Abstract. The cube attack is a powerful cryptanalytic technique
against stream ciphers. Cube attacks exploit the algebraic properties
of symmetric ciphers by recovering a particular polynomial, the super-
poly, and subsequently, the secret key. Nowadays, the division property-
based approach has become very popular, allowing us to recover the
exact superpoly cleverly. However, the computational cost to recover the
superpoly becomes prohibitive as the number of rounds of the cipher
increases. In this paper, we study NIST lightweight 3rd round candidate
Grain-128AEAD in the light of division property-based cube attacks. We
first introduce some good cubes of dimensions 91, 92, 93, 94, and then
we construct an algorithm to find conditional key bits for the cubes of
Grain-128AEAD mentioned above. Next, we apply three-subset division
property without unknown subset-based cube attacks to recover exact
superpolies for 192, 193, 194, 195-round Grain-128AEAD in the weak-
key setting, which are the longest till now. Moreover, we are able to find
good cubes that are used to build distinguishers of Grain-128AEAD in
the weak-key setting. In particular, we show that Grain-128AEAD can
be distinguished from a random source up to 193-rounds in the weak-key
setting, which is the best zero-sum distinguisher of Grain-128AEAD till
now using division property-based cube attacks.

Keywords: Cube attack · Division property · Three-subset division
property · MILP · Grain-128AEAD

1 Introduction

Cube attack, proposed by Dinur and Shamir [6] at EUROCRYPT 2009, is one
of the most powerful cryptanalytic techniques against symmetric cryptosystems.
The target of cube attack is to recover secret variables from the simplified poly-
nomial called superpoly. To mount a cube attack, one first recovers the superpoly
in an offline phase. Then, the value of the superpoly is obtained by querying the
encryption oracle and computing the summation. From the equation between
the superpoly and its value, information about the secret key can be revealed.
Therefore, the superpoly recovery is a central step in the cube attack.
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Traditional cube attacks [6,8,25,31] regard ciphers as black boxes so the
superpolies are recovered experimentally. Only linear or quadratic superpolies
are applicable. At CRYPTO 2017, [27] Todo et al treated the polynomial as
non-blackbox and applied Conventional Bit-based Division Property (CBDP) to
cube attacks on stream ciphers for the first time. Then, at CRYPTO 2018, Wang
et al [29] improved it by introducing flag and term enumeration techniques. For
CBDP based cube attacks, the superpolies of large cubes can be recovered by
the theoretical method. But the theory of CBDP cannot ensure that the super-
poly of a cube is non-constant. Hence the key recovery attack may be just a
distinguishing attack. To solve this problem, at ASIACRYPT 2019, Wang et al
[30] proposed the cube attack based on Bit-based Division Property using Three
Subsets (BDPT) and proved that BDPT without an unknown subset can recover
the accurate superpoly of cube attack. Then, at EUROCRYPT 2020, Hao et al
[11] proposed a new modeling method for the BDPT without an unknown sub-
set. Their algorithm is more efficient, and it can improve existing key-recovery
attacks on many ciphers. Moreover, in [13,15] the authors embedded the mono-
mial prediction technique into a nested framework, which allows them to recover
superpolies and in [31], the authors also developed a pure algebraic method to
recover the exact superpoly. However, as the number of rounds of the cipher
increases, such useful cubes are hard to find.

One of the most significant security criteria for a keyed cryptographic primi-
tive is its unpredictable behaviour concerning any randomly chosen key from the
whole key space. When a key is used with a given cipher, it is considered to be
weak if it causes the cipher to behave in an undesirable way (like it reduces the
algebraic degree significantly). Many attacks in the weak-key setting for block
cipher [12,16], as well as stream ciphers [23,26] have been presented. However,
finding a weak-key set is a computationally hard problem. For example, the
invariant subspace attack [18,19], is a general weak-key attack, that is known in
the literature. Recently, cube attacks that investigate key conditions which may
lead to weak-key attacks, have been proposed in [21,22].

Table 1. Previous Works of Superpoly Recovery for Grain-128AEAD using Division
Property

Round Number of Cubes Cube Size Time References

190 – 95 – [11]

191 2 95–96 – [15]

192 1 94 45 days [13]

Related Works. NIST has launched a process for soliciting, evaluating, and
standardising lightweight cryptographic algorithms suited for use in limited con-
texts. In August 2018, NIST issued a call for algorithms to be considered for
lightweight cryptography standards. There were initially 57 submissions and
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NIST released ten candidates following the third round of pruning. Grain-
128AEAD is one of these candidates. Grain-128AEAD is designed by modi-
fying the authentication module of Grain-128a. Grain-128a has been adopted
as an ISO standard for radio frequency identification (RFID) devices. Further,
the encryption module of Grain-128AEAD and Grain-128a are the same. The
cryptanalysis of the encryption module of Grain-128a can be applied to the
cryptanalysis of the encryption module of Grain-128AEAD.

As Grain-128AEAD is one of the candidates in the competition by NIST,
the cryptanalysis of Grain-128AEAD is an important research area. In 2012,
Lehmann et al [20] proposed an attack using the conditional cube tester on
Grain-128a of 177 KSA (Key Scheduling Algorithm) round in the single key
setup and 189 KSA round in the weak-key setup. Recently, Ma et al [24] and
Karlsson et al [17] proposed a differential attack and nonrandomness detectors on
Grain-128a up to 195 and 203 KSA rounds, respectively in the weak-key setup.
Readers may refer to [2–5,7,28] for detailed cryptanalytic results on the Grain
family. Moreover, using the concept of division property-based cube attacks,
exact superpolies for 190, 191, 192-round Grain-128AEAD have been recovered
efficiently using which key-recovery attacks are also mounted [11,13,15] (The
results we have listed in Table 1). But, for these cube attacks, the cube dimen-
sions are on the higher side. Now, the following question arises in our mind:

Can we reduce the cube dimension and recover exact superpoly of the cube for
higher round Grain-128AEAD?

1.1 Our Contributions

To address this question, we begin by studying the most popular cipher Grain-
128AEAD in the light of division property-based cube attacks. Our primary
focus is to reduce the cube dimension of Grain-128AEAD and recover exact
superpoly using those cubes for higher round Grain-128AEAD. The details of
our technical contributions are listed as follows:

Finding Cubes and Searching Conditional Key Bits. First, we search
for good cubes with less dimensions than the previous division property-based
cube attacks for which we can recover superpoly efficiently (which is illustrated
in Sect. 3.1). Here, we use the cube dimensions of Grain-128AEAD as 91, 92, 93,
and 94. Therefore, our other important contribution is to search for conditional
key bits for which we can efficiently recover superpolies of above-mentioned cubes
of Grain-128AEAD (which is described in Sect. 3.2). To do this, we provide an
algorithm (Algorithm 1) using which we can set conditions on key bits which
depend on cube variables.

Application on Grain-128AEAD. As for the application of our concept, we
apply three-subset division property without unknown subset in order to recover
exact superpoly of Grain-128AEAD of our cubes in the weak-key setting. As a
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result of this, we find exact superpolies of 192-195 round Grain-128AEAD in the
weak-key setting which are the best results on Grain-128AEAD till now. More-
over, we also present a zero-sum distinguisher of 193-round Grain-128AEAD
which is the longest distinguisher of Grain-128AEAD using division property-
based cube attacks. The detailed results are shown in Table 2.

Table 2. Summarization of our Superpoly Recovery Results for Grain-128AEAD in
the Weak-Key Setup using Division Property

Round Number of Cubes Cube Size Time References

192 2 91, 92 2 min Sect. 4

193 2 92, 94 7 min Sect. 4

194 1 93 1 h Sect. 4

195 1 94 7 days Sect. 4

1.2 Organization of the Paper

This paper is organized as follows: In Sect. 2, we briefly recall some background
knowledge and the relationship between the division property and cube attack. In
Sect. 3, we construct good cubes and propose an algorithm to construct appropri-
ate weak-key conditions to perform cube attack on Grain-128AEAD. Therefore,
we show some results (superpoly recovery, zero-sum distinguisher) on Grain-
128AEAD in Sect. 4. At last we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field {0, 1} and a = (a0, a1, . . . , an−1) ∈ F
n
2 be an

n-bit vector, where ai denotes the i-th bit of a. For n-bit vectors x and u,
define xu =

∏n−1
i=0 xui

i . Then, for any k ∈ F
n
2 and k′ ∈ F

n
2 , define k � k′ if

ki ≥ k′
i holds for all i = 0, 1, . . . , n − 1, and define k � k′ if ki > k′

i holds for all
i = 0, 1, . . . , n−1. For a subset I ⊆ {0, 1, ..., n−1}, uI denotes an n-dimensional
bit vector (u0, u1, . . . , un−1) satisfying ui = 1 if i ∈ I and ui = 0 otherwise. We
simply write K ← k when K = K ∪ {k} and K → k when K = K \ {k}. And
|K| denotes the number of elements in the set K. We denote [n] = {1, 2, . . . , n},
1 = 1n, and 0 = 0n.

2.2 Specification of Grain128AEAD

Grain-128AEAD [14] is a member of the Grain family and also one of the win-
ner of the NIST LWC standardization process. Grain-128AEAD inherits many
specifications from Grain-128a, which was proposed in 2011 [1]. There are four
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differences between Grain-128AEAD and Grain-128a: (i) larger Macs, (ii) no
encryption-only mode, (iii) initialization hardening, and (iv) keystream limita-
tion. These differences do not come only from the requirement for the NIST
LWC standardization process but also from recent cryptanalysis results against
Grain-128a [10].

The internal state is represented by two 128-bit states, (b0, b1, . . . , b127) and
(s0, s1, . . . , s127). The 128-bit key K is loaded to the first register b, and the
96-bit initialization vector is loaded to the second register s. The other state
bits are set to 1 except for the last one bit in the second register. Namely, the
initial states are represented as

{
(b0, b1, . . . , b127) = (K1,K2, . . . ,K128)
(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, 1, . . . , 1, 0)

We denote IV is a set consisting of IV1, IV2, . . . , IV96. The pseudo-code of the
update function in the initialization is given as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13 + b17b18 + b27b59

+ b40b48 + b61b65 + b68b84 + b88b92b93b95 + b22b24b25 + b70b78b82,

f ← s0 + s7 + s38 + s70 + s81 + s96,

h ← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94,

z ← h + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89,

(b0, b1, . . . , b127) ← (b1, . . . , b127, g + s0 + z),
(s0, s1, . . . , s127) ← (s1, . . . , s127, f + z).

In the initialization, the state is updated 256 times without producing an output.
After the initialization, the update function is tweaked such that z is not fed to
the state, and z is used as a pre-output key stream. Hereinafter, we assume that
the first bit of the pre-output key stream can be observed. Note that there is no
difference between Grain128a and Grain-128AEAD under this assumption.

2.3 Cube Attack and Division Property

Cube Attack. The cube attack was proposed by Dinur and Shamir in [6].
A cipher is regarded as a public Boolean function whose input is divided into
two parts: secret variables x and public ones v. Then, the ANF of the Boolean
function is represented as

f(x, v) =
⊕

u∈F
n+m
2

af
u (x ||v)u .

For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}, which is referred as cube
indices, tI denotes a monomial as tI = vi1 · vi2 · · · vi|I| . The Boolean function
f(x, v) can also be decomposed as

f(x, v) = tI · p(x, v) + q(x, v).
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Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where
variables in {vi1 , vi2 , . . . , viI} are taking all possible combinations of values, and
all remaining variables are fixed to any value. The sum of f over all values of
the cube CI is

⊕

CI

f(x, v) =
⊕

CI

tI · p(x,v) +
⊕

CI

q(x, v) = p(x, v)

because tI = 1 for only one case in CI and each term in q(x, v) misses at least
one variable from {vi1 , vi2 , . . . , viI}. Then, p(x, v) is called the superpoly of the
cube CI , and the goal of the cube attack is to recover the superpoly.

Division Property. The division property is formally developed as the gener-
alization of the integral property, and it has been initially used to evaluate the
integral distinguisher. Now, the relationship between the division property and
the ANF of public functions is discussed below:

Definition 1. (Three-Subset Division Property without Unknown
Subset [11]). X be a multi set whose elements take a value of F

n
2 . Let L̃ be

also a multi set whose elements also take a value of Fn
2 . When the multi-set X

has three-subset division property without unknown subset (T 1n

L̃
), it fulfills the

following conditions:

⊕

x∈X

xu =

{
1, if there are odd number of u′s in L̃

0, otherwise

Using this definition, the authors also defined three-subset division trail and
explained the propagation rules of COPY, XOR and AND in [11].

Mixed Integer Linear Programming (MILP). MILP is a kind of optimiza-
tion or feasibility program whose objective function and constraints are linear,
and the variables can be continuous or integers. Generally, an MILP model M
consists of variables M.var, constraints M.con, and the objective function M.obj.
MILP models can be solved by solver like Gurobi [9]. If there is no feasible solu-
tion, the solver will returns infeasible. And if there are feasible solutions, the
solver will returns the optimal value of the objective function. When there is no
objective function in M, the MILP solver will only return whether M is feasible
or not.

Algorithm to Recover ANF Coefficients of Public Function [11]. Let f
be a Boolean function whose input denotes an n-bit string x = (x1, x2, . . . , xn),
and let it consist of the iteration of simple public functions. Then, the algebraic
normal form of f is represented as

f(x) =
⊕

u∈F
n
2

af
ux

u
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Our goal is to recover the value of af
u for some u. To do this, we have to first

construct MILP model that represents the three-subset division property without
unknown subset of the function f . The authors in [11] proposed an algorithm
(Algorithm 1 in [11]) which recovers an ANF coefficient af

u . The initial three-
subset division property without unknown subset is defined by u, and the number
of feasible solutions is enumerated by using the MILP solver. Note that the
efficiency of Algorithm 1 in [11] depends on the number of feasible solutions.

3 Superpoly Recovery for Grain-128AEAD Using Weak
Keys

The most important and challenging part of the cube attack is to recover the
ANF of the superpoly of the cube. As Grain-128AEAD is a finalist in a recent
NIST competition, it will be challenging to recover the superpoly of such cipher.
Before recovering the superpoly, one needs to search for a good cube of the
cipher. If one works on a weak-key setting, another important task is finding
conditional key variables, which leads to the recovery of the superpoly of the
cube.

3.1 Cube Searching Algorithm for Grain-128AEAD

Constructing a cube-searching algorithm nowadays is a crucial task for a cube
attack. Many such algorithms exist for such purposes as maximum last zero, and
maximum last α (0 ≤ α ≤ 1). The last method gives a better cube searching for
Grain-128a. So we have used this algorithm to find a better result. In the paper
[4], the authors have found a cube of {63, 64, 66, 68, 69} of size five to mount a
distinguishing attack for 191 round in a single key scenario. They construct the
cube of size five from a cube of size one.

Following a similar method, we also start to find the cube of size one. The
best cube of size one is {s69} because it attains the maximum last alpha round at
123. By similar process, we get the cube variables s68, s67, s66, s65, s64 simulta-
neously. As those cube variables expose some weakness of the Boolean functions
at particular rounds, so we again work with those cube variables. The variables
mentioned above are crucial in getting a distinguisher for Grain-128a. But our
challenge is tougher and more exciting. We want to recover the superpoly of the
Boolean function at some particular round using the division property. As we
know, a small dimensional cube will not be useful for superpoly recovery in the
division property-based cube attacks. Due to the success of our cube variables
in the previous attack on Grain-128a, we decide to work with the complement of
the set of cube variables. As superpoly searching is lengthy and time-consuming
process, so we start to find the superpoly using the cube of size 96 − 2 = 94. As
previously cube of sizes 96, 95 was used, so we used a cube of less size to reduce
the complexity of superpoly recovery. Then we decrease the cube size one by one,
following less complexity for superpoly recovery. Also, we vary the initialization
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round to reduce the complexity. Finally, we find the best trade off between the
initialization round and cube size to get better complexity.

Algorithm 1: Searching for Conditional Bits Corresponding to Chosen
Cubes
Input: Set of strong variablesa S
Output: Set of Conditional key variables W
begin

Start with a single element from S and store it in C
while |C| ≤ |S| do

Choose the cube variables as IV \ C
Store the conditional key variables from SAGE corresponding to
variables in IV \ C in W.
Also, store conditional key variables from structure observation of
the cipher in W
Run division property-based cube attacks using the cube IV \ C
if Superpoly corresponding to IV \ C is recovered then

Take W as a set of conditional key bits
end
else

Add some additional conditional key variables in W
Run division property-based cube attacks
Repeat Else part until superpoly is recovered

end
Take another subset C of S and repeat the while part.

end
return W

end

a The set of those variables in IV using which we can construct good cubes for
Grain-128AEAD.

3.2 Searching Weak-Key Domain for Grain-128AEAD

Putting conditions on key and IV variables plays an important role in upgrad-
ing the attacks on any cipher. Conditions on the variables help us to find weak-
nesses in the corresponding Boolean function at a particular round. In the pre-
vious paper [4], the authors found the conditions on key bits corresponding
to cube variables using SAGE software. Also, some conditions are found using
the structure observation with theoretical analysis. We have also followed their
approaches. But the conditions retrieved for corresponding cubes do not help
us to recover superpoly using division property-based approaches. So again, we
try to find the additional conditions to recover the superpoly. We try to find
the subset of key bits which contributes to superpoly recovery. As the division
property-based attack takes all IV bits as zero, we do not worry about the
conditions on IV bits. The selection of key bits is made in the following way:

In our case, we have implemented the algorithm on the different rounds of
Grain-128AEAD in the following way.
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– We collect the strong variables of Grain-128AEAD as S = {s42, · · · , s69}.
– The conditions on key variables for each strong variable are given in Table 3.
– Select an element say r from S and take IV \{r} as cube. Therefore, collect all

corresponding conditional key bits from Table 3 in the set W corresponding
to the chosen cube.

– Also, we collect the conditional key variables getting through the structure
observation of Grain-128AEAD in the set W (Given in the last of this section).

– For example, we take IV \{s69, s68} as a cube for 195-round Grain-128AEAD
and run the division property-based cube attacks to recover the superpoly.

– As we can not recover the superpoly, we add some additional conditional key
variables b42, b43, b44, b45, b72, b73, b76, b77, b121, b122, b123, b124, b126, b127 in the
set W.

– Again, we run the program. This time, we recover the superpoly for 195-
round Grain-128AEAD. Similar way, we find W for different cubes and recover
superpolies.

Note 1. As the running of division property-based cube attack is a time-
consuming process, we optimize the W set as much as possible.

Table 3. Conditions on key variables for 1-dimensional cubes

Cube Conditions on key variables Cube Conditions on key variables

{s42} b46 = b50 = b95 = 0 {s56} b60 = b64 = b109 = 0

{s43} b47 = b51 = b96 = 0 {s57} b61 = b65 = b110 = 0

{s44} b48 = b52 = b97 = 0 {s58} b62 = b66 = b111 = 0

{s45} b49 = b53 = b98 = 0 {s59} b63 = b67 = b112 = 0

{s46} b50 = b54 = b99 = 0 {s60} b64 = b68 = b113 = 0

{s47} b51 = b55 = b100 = 0 {s61} b65 = b69 = b114 = 0

{s48} b52 = b56 = b101 = 0 {s62} b66 = b70 = b115 = 0

{s49} b53 = b57 = b102 = 0 {s63} b67 = b71 = b80 = b116 = 0

{s50} b54 = b58 = b103 = 0 {s64} b68 = b72 = b117 = 0

{s51} b55 = b59 = b104 = 0 {s65} b69 = b73 = b118 = 0

{s52} b56 = b60 = b105 = 0 {s66} b70 = b74 = b119 = 0

{s53} b57 = b61 = b106 = 0 {s67} b71 = b75 = b120 = 0

{s54} b58 = b62 = b107 = 0 {s68} b72 = b76 = b121 = 0

{s55} b59 = b63 = b108 = 0 {s69} b73 = b77 = b122 = 0

From the structure observation, the additional conditional key bits for the
above
cubes are b64, b67, b70 − b74, b76 − b87, b91, b94, b95, b102, b104, b105, b108, b110, b112 −
b114, b116, b118, b119, b121, b122, b125.
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3.3 Division Property-Based Cube Attack for Grain-128AEAD

The most important part of a cube attack is to recover the superpoly, and we
simply call it the superpoly recovery in this paper. In [11], the authors explained
how three-subset division property without unknown subset can be used as a
tool to analyze ANF coefficients of the superpoly for a public Boolean function.

Superpoly Recovery. The encryption module of Grain-128AEAD is regarded
as a public boolean function f(x, v) whose input is divided into two parts: secret
variable x and public variable v. Now, we construct MILP model M where the
encryption module of Grain-128AEAD is represented by the context of division
property as described in Algorithm 5 in [11]. Here, we denote x and v as the
MILP variables corresponding to secret and public variables and in our case,
x = (b00, . . . , b

0
127), and v = (s00, . . . , s

0
127). Therefore, to represent the initial

division property, elements of v indexed by I (cube indices) are constrained by
1 and the elements of v indexed by the other IV indices are constrained by 0.
Moreover, we add the constraints corresponding to weak-key conditions in MILP
model M.

After constructing MILP model M with initial division property correspond-
ing to cube and non-cube indices and weak-key conditions, we solve MILP model
M as all monomials that could be involved in the superpoly can be found as
feasible solutions (Algorithm 2 in [11]). Finally, we enumerate feasible solutions
and finally get the superpoly of Grain-128AEAD corresponding to the cube CI
where I be the cube indices. Although using this method, we can accurately find
superpoly of the cube CI , it is practically impossible to enumerate all feasible
solutions when there are too many solutions.

After recovering the superpoly, an attacker can retrieve the information
regarding the Boolean function of the cipher. Also, the attacker can use the
drawbacks in the superpoly to find loopholes in the output function of the cipher,
which leads to a distinguishing attack. Further, one can extend it to a key recov-
ery attack using a sufficient number of superpolies.

4 Experimental Results

We apply the three-subset division property without unknown subset based cube
attacks on the encryption module of Grain-128AEAD in the weak-key setting.
First, we search appropriate cubes and weak-key using Algorithm 1, and there-
fore using division property-based cube attack technique we accurately recover
the superpolies for 192-195 rounds using cube sizes 91, 92, 93, 94 respectively in
the weak-key setting where the size of the corresponding weak-key class is 243.
The details of our results are given in Table 4. These are the best-known attacks
on Grain-128AEAD in the weak-key setting till now. Moreover, we construct
zero-sum distinguishers on 192-193 round Grain-128AEAD in the weak-key set-
ting which are the longest distinguisher in this direction. The detailed parameters
of superpoly recovery of 192-round and 193-round Grain-128AEAD and zero-sum
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distinguishers are in the following subsections. The recovered superpoly for 194-
round Grain-128AEAD is in the Appendix A.

Superpoly Recovery for 192-Round Grain-128AEAD. The cube indices
of size 91 to recover superpoly of 192-Round Grain-128AEAD are

I = {1, 2, . . . , 65, 71, . . . , 96}

and IV66 = IV67 = IV68 = IV69 = IV70 = 0. Therefore, we get the superpoly
corresponding to CI which is represented as the sum of 2 monomials, and the
following

p(x) = x40x42 + x29

is the recovered superpoly, where x = (x1, x2, . . . , x128) denotes the secret key,
i.e., xi = Ki. This superpoly is a balanced Boolean function because there is a
monomial x29 that is independent of other monomials.

Superpoly Recovery for 193-Round Grain-128AEAD. The cube indices
of size 92 to recover superpoly of 193-Round Grain-128AEAD are

I = {1, 2, . . . , 66, 71, . . . , 96}

and IV67 = IV68 = IV69 = IV70 = 0. Therefore, we get the superpoly cor-
responding to CI which is represented as the sum of 38 monomials, and the
following

p(x) = 1 + x43 + x42x43 + x41 + x40x42x43 + x39x41 + x39x40

+ x38 + x36x38 + x35x36 + x33 + x33x35 + x32 + x32x36

+ x31x41x42 + x31x40x41 + x31x35x37 + x30 + x29x38

+ x29x36x37 + x29x34x37 + x29x31 + x28 + x28x42x43

+ x28x36x38 + x28x29 + x28x29x37 + x26 + x26x29 + x25

+ x25x28 + x24 + x24x43 + x24x32 + x24x31 + x22 + x21 + x18

is the recovered superpoly, where x = (x1, x2, . . . , x128) denotes the secret key,
i.e., xi = Ki. This superpoly is a balanced Boolean function because there are
monomials x22, x21, and x18 that are independent of other monomials.

Zero-Sum Distinguishers for 192-193 Round Grain-128AEAD. To con-
struct the cube attack against 192-round Grain-128AEAD, we choose the cube
indices of size 92 as follows:

I = {1, 2, . . . , 66, 71, . . . , 96}

where IV67 = IV68 = IV69 = IV70 = 0. Therefore, in the weak-key setting, we
find that the superpoly does not involve secret key (where x = (x1, x2, . . . , x128)
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denotes the secret key). Hence, the cube attack against 192-round Grain-
128AEAD is a zero-sum distinguisher.

Moreover, the cube attack against 193-round Grain-128AEAD is also a zero-
sum distinguisher where we choose the cube indices of size 94 as follows:

I = {1, 2, . . . , 68, 71, . . . , 96}

where IV69 = IV70 = 0. This is the longest zero-sum distinguisher on Grain-
128AEAD using division property-based cube attack best known to us.

Table 4. Results of Superpoly Recovery for Different Cubes on Grain-128AEAD

Cube size Cube variables Round Additional Conditional Key Variables

91 IV \ {s65, s66, s67, s68, s69} 192

b42, b43, b44, b45, b69, b70, b71, b72, b73

b74, b75, b76, b77, b118, b119, b120

b121, b122, b123, b124, b126, b127

92 IV \ {s66, s67, s68, s69} 193

b42, b43, b44, b45, b70, b71, b72, b73

b74, b75, b76, b77, b119, b120

b121, b122, b123, b124, b126, b127

93 IV \ {s67, s68, s69} 194
b42, b43, b44, b45, b71, b72, b73, b75, b76, b77

b120, b121, b122, b123, b124, b126, b127

94 IV \ {s68, s69} 195
b42, b43, b44, b45, b72, b73, b76, b77

b121, b122, b123, b124, b126, b127

5 Conclusion and Future Work

In this paper, we revisit division property-based cube attacks and study NIST
lightweight 3rd round candidate Grain-128AEAD in the light of cube attacks
based on division property. First, we find some good cubes and propose an algo-
rithm to find conditional key bits for our cubes of Grain-128AEAD. Therefore,
we efficiently apply three-subset division property without unknown subset based
cube attacks on Grain-128AEAD and recover superpolies up to 195 rounds in
the weak-key setting which are best-known results on Grain-128AEAD till now.
Moreover, we find zero-sum distinguishers on 193-round Grain-128AEAD which
is the longest distinguisher in this direction.

As, it is hard to find good cubes with less dimension in order to construct
division property-based cube attacks, how to construct an efficient cube search-
ing algorithm so that we can recover exact superpolies of higher rounds Grain-
128AEAD is an open problem. Moreover, in the single-key setup, how to mount
distinguishing as well as key recovery attacks on stream ciphers efficiently using
division property will be nice future work.
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A Detailed Result for Cube Attacks Against
Grain-128AEAD

The cube indices of size 93 to recover superpoly of 194-Round Grain-128AEAD
are

I = {1, 2, . . . , 67, 71, . . . , 96}
and IV68 = IV69 = IV70 = 0. Therefore, we get the superpoly corresponding to
CI which is represented as the sum of 38 monomials, and the following

p(x) = 1 + x43 + x42x43 + x41 + x41x42 + x40x43 + x40x42 + x40x41

+ x40x41x43 + x40x41x42 + x39 + x39x41 + x39x40 + x39x40x41x42

+ x38x43 + x38x41x43 + x38x41x42 + x38x40 + x38x39 + x38x39x41x42

+ x37x39x40 + x37x38 + x36x40 + x35 + x35x37x41 + x35x37x40

+ x34x36 + x34x35x40 + x34x35x38 + x33 + x33x42 + x33x41x43

+ x32x33 + x31 + x31x42 + x31x40 + x31x39x40 + x31x36

+ x31x33 + x30x43 + x30x41x42 + x30x40x42 + x30x40x41

+ x30x38 + x30x37 + x30x35x37 + x30x33 + x30x33x37 + x30x32

+ x30x32x41 + x30x32x40 + x30x31 + x30x31x41 + x29 + x29x41x42

+ x29x40 + x29x38 + x29x35x37x41 + x29x33 + x29x32x41 + x29x30x39

+ x29x30x33 + x28 + x28x41 + x28x41x43 + x28x40 + x28x35x40

+ x28x35x40x41 + x28x33 + x28x31 + x28x31x40 + x28x30

+ x28x30x40 + x28x30x40 + x28x30x38 + x28x30x35x40 + x28x30x31

+ x28x29x39 + x27 + x27x40 + x26x40 + x26x38 + x25x40 + x25x30x40

+ x24x41x43 + x24x40 + x24x40x41 + x24x38 + x24x30x41 + x24x30x40

+ x24x30x39 + x24x29x41 + x24x26 + x23 + x23x40 + x23x30

+ x23x29 + x22 + x22x40 + x21 + x21x38x40 + x21x33

+ x21x31x40x41 + x21x31x34x36 + x21x27 + x21x26x31x40x42 + x21x26x30

+ x21x26x29x31 + x21x26x28x31 + x21x23x31 + x20x42x43 + x20x40

+ x20x40x42x43 + x20x38 + x20x38x40 + x20x37x39 + x20x36 + x20x36x38

+ x20x35 + x20x35x36 + x20x33 + x20x33x35x36 + x20x32 + x20x32x41x42

+ x20x32 + x20x32x41x42 + x20x32x35x36 + x20x29x37x41x42

+ x20x29x36x38 + x20x29x36x37 + x20x29x35x37 + x20x29x31

+ x20x29x30x37 + x20x29x30x32 + x20x28 + x20x28x39x40 + x20x28x37

+ x20x28x33x35 + x20x28x32 + x20x28x32x35 + x20x28x29 + x20x27

+ x20x26 + x20x25 + x20x25x29 + x20x24x32 + x20x24x29x37

+ x20x24x28 + x20x23 + x20x23x29x32 + x20x22x28 + x20x22x28

+ x20x22x24 + x20x21 + x20x21x40x42 + x20x21x23x29 + x20x21x22

+ x19x20x29 + x18x20 + x17x40 + x17x38 + x13 + x11x20
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is the recovered superpoly, where x = (x1, x2, . . . , x128) denotes the secret key,
i.e., xi = Ki.
As the superpoly for 195-round Grain-128AEAD contains a huge number of
terms, therefore we can not present it here.
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