
Lightweight Permutation-Based
Cryptography for the Ultra-Low-Power

Internet of Things

Malik Alsahli, Alex Borgognoni, Luan Cardoso dos Santos, Hao Cheng,
Christian Franck, and Johann Großschädl(B)

DCS and SnT, University of Luxembourg, 6, Avenue de la Fonte,
4364 Esch-sur-Alzette, Luxembourg

{malik.alsahli.001,alex.borgognoni.001}@student.uni.lu,
{luan.cardoso,hao.cheng,christian.franck,johann.groszschaedl}@uni.lu

Abstract. The U.S. National Institute of Standards and Technology is
currently undertaking a process to evaluate and eventually standardize
one or more “lightweight” algorithms for authenticated encryption and
hashing that are suitable for resource-restricted devices. In addition to
security, this process takes into account the efficiency of the candidate
algorithms in various hardware environments (e.g. FPGAs, ASICs) and
software platforms (e.g. 8, 16, 32-bit microcontrollers). However, while
there exist numerous detailed benchmarking results for 8-bit AVR and
32-bit ARM/RISC-V/ESP32 microcontrollers, relatively little is known
about the candidates’ efficiency on 16-bit platforms. In order to fill this
gap, we present a performance evaluation of the final-round candidates
Ascon, Schwaemm, TinyJambu, and Xoodyak on the MSP430 series
of ultra-low-power 16-bit microcontrollers from Texas Instruments. All
four algorithms were explicitly designed to achieve high performance in
software and have further in common that the underlying primitive is
a permutation. We discuss how these permutations can be implemented
efficiently in Assembly language and analyze how basic design decisions
impact their execution time on the MSP430 architecture. Our results
show that, overall, Schwaemm is the fastest algorithm across various
lengths of data and associated data, respectively. Xoodyak has benefits
when a large amount of associated data is to be authenticated, whereas
TinyJambu is very efficient for the authentication of short messages.

1 Introduction

The emergence and rise of cryptographic permutations is widely seen one of the
most exciting developments in the field of symmetric cryptography during the
past 20 years. Formally, a cryptographic permutation is defined as a bijective
mapping within Z

b
2 (the bitstrings of length b), designed to behave as a random

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Bella et al. (Eds.): SecITC 2022, LNCS 13809, pp. 17–36, 2023.
https://doi.org/10.1007/978-3-031-32636-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32636-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-32636-3_2


18 M. Alsahli et al.

permutation, i.e. a permutation drawn uniformly at random from the set of all
possible permutations that operate on b bits [5]. The width b of a permutation
can range from 100 (e.g. Photon [17] and other cryptosystems that target the
embedded domain) to 1600 (e.g. Keccak [6]). Permutations are highly flexible
and universally-applicable primitives, similar to block ciphers, and can be used
to construct e.g. hash functions, message authentication codes, pseudo-random
bit-sequence generators, stream ciphers, and even algorithms for authenticated
encryption [3,5,7]. However, in contrast to a block cipher, a permutation is an
unkeyed primitive, i.e. it does not use any key and, therefore, does not have to
perform a key schedule. Another difference is that a cryptographic permutation
is usually designed to be efficient only in the forward direction since the inverse
permutation is (normally) not needed. In recent years, permutations have also
served as building block for the design of “advanced modes” that cover the full
functionality of the symmetric portion of modern security protocols. Examples
for this relatively new line of research include Blinker [26], the Strobe protocol
framework [18], and Stateful Hash Objects (SHO) [23].

Permutations are especially suitable for lightweight cryptography, which can
be very generally defined as “cryptographic primitives, schemes, and protocols
tailored to (extremely) constrained environments” [16]. Examples of such envi-
ronments include RFID tags, miniature sensors and actuators, and numerous
other kinds of devices that form part of the Internet of Things (IoT) [32]. The
U.S. National Institute of Standards and Technology (NIST) is currently in the
process of standardizing lightweight cryptosystems, in particular cryptographic
hash functions and algorithms for Authenticated Encryption with Associated
Data (AEAD) [20]. Permutation-based designs perform extremely well in this
standardization, which is evidenced by the fact that 16 out of 32 s-round can-
didates, and four out of the ten candidates in the third and final round, use
a permutation as low-level primitive [22]. The four permutation-based designs
in the (currently still ongoing) final round of NIST’s standardization effort are
Ascon [15], Sparkle [2], TinyJambu [31], and Xoodyak [12]. However, the
finalist TinyJambu is a special case since it uses a keyed permutation and can
also be classified as a block-cipher-based design (like in [22]). The width of the
permutations ranges from 128 bits (TinyJambu) over 320 bits (Ascon) up to
384 bits (Sparkle384, Xoodyak). Sparkle is a classical Addition-Rotation-
XOR (ARX) design, while the other three permutations may be categorized as
“AndRX” variants, i.e. they generate non-linearity via logical AND operations
instead of modular additions.

The evaluation of candidates for NIST’s lightweight cryptography standard
takes into account a number of criteria, among which security and performance
on software and hardware platforms are particularly important [22]. Regarding
software performance, the official NIST document on submission requirements
advised the algorithm designers to “consider a wide range of 8-bit, 16-bit, and
32-bit microcontroller architectures” [20, Sect. 3.4]. For most of the final-round
candidates, optimized implementations with highly-tuned Assembly segments
for the performance-critical parts have been developed for 8-bit and 32-bit plat-
forms, most notably the AVR ATmega [19] and ARM Cortex-M3/M4 [1] series



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 19

Sp
ar
kl
e

X
oo
dy
ak

A
sc
on

Sp
oo
k

G
if
t-
C
of
b

P
yj
am
as
k

T
in
yJ
am
bu

K
no
t

G
im
li

A
es
-G
cm

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

163.9

136.7

133.6

121.7

110.8
91.4

90.7

73.6
38.6

36.3

E
nc

ry
pt
io
n
sp

ee
d
(c
yc
le
s/
by

te
) mlen = 16 bytes

mlen = 64 bytes

mlen = 1024 bytes

Fig. 1. Comparison of the ten fastest second-round AEAD candidates for encryption
of a message with a length of 16, 64, and 1024 bytes (without associated data) on an
ARM Cortex-M4F microcontroller. The value above each bar is the encryption speed
(in cycles per byte) for a 1024-byte message. For each candidate, the implementation
with the best encryption time for 1024 bytes was chosen.

of microcontrollers. These Assembly implementations either come directly from
the designers or have been contributed by other developers [30]. Hence, there
exist now a large number of implementation results for these two platforms, in
particular execution time and binary code size. Detailed benchmarking results
have been published by the NIST lightweight cryptography team [21] and some
academic research groups, see e.g. [24]. The four permutation-based algorithms
are highly efficient in software; for example, Sparkle, Xoodyak, and Ascon
take the top three positions on ARM Cortex-M4F according to NIST’s official
second-round benchmarking results1, see Fig. 1. While the efficiency of the ten
finalists on 8-bit and 32-bit architectures is well understood, relatively little is
known about their performance and binary code size on 16-bit platforms. The
only relevant paper we became aware of was published very recently by Blanc
et al. [8], who benchmarked reference and optimized C implementations of the
final-round candidates on a 16-bit MSP430F1611 microcontroller.

The 16-bit MSP430 platform from Texas Instruments is a particularly inter-
esting target for the benchmarking of lightweight cryptosystems, mainly due to
two reasons. First, MSP430 microcontrollers were from the ground up designed

1 At the time of writing this paper, the third (i.e. final) round of evaluation was still
going on and NIST had not yet released the round-3 benchmarking results.



20 M. Alsahli et al.

with the goal of low power dissipation, taking into account not only the active
processing power, but also power in stand-by (resp. sleep) mode, which makes
them ideal for many kinds of battery-operated devices, e.g. miniature wireless
sensor nodes [14]. Recent members of the MSP430 family support up to seven
different low-power modes with fine-grain control over active components and
instant wake-up thanks to a sophisticated clock system. Furthermore, MSP430
microcontrollers were among the first mass-market IoT platforms that became
equipped with Ferro-electric Random Access Memory (FRAM), a non-volatile
form of memory combining properties of SRAM with properties of flash within
a single memory space, which can be flexibly (re)configured to serve as storage
for program or data [25]. More concretely, FRAM features relatively fast write
accesses, low power consumption, and extremely high reliability and endurance
(similar to SRAM), but is non-volatile and, thus, able to hold its content when
being powered off. However, in contrast to flash and EEPROM, FRAM does
not need high supply voltages for write operations, which is a major advantage
for e.g. data-logging applications. Furthermore, FRAM makes it easy to switch
from active to sleep mode and vice versa, thereby enabling energy savings even
for short periods of inactivity. Texas Instruments markets the MSP430 line as
“ultra-low-power” microcontrollers [29] to emphasize their potency for battery-
operated devices. The fact that such devices are widely used in security-critical
applications (e.g. sensors for medical monitoring) makes a strong case to assess
the performance of the NIST finalists under ultra-low-power regimes.

A second reason as to why MSP430 microcontrollers are an interesting plat-
form for the benchmarking of NIST’s candidate algorithms relates to the basic
characteristics of the underlying instruction set architecture. The MSP430 is, in
essence, a CISC-like memory-to-memory architecture [27], whereas virtually all
other benchmarking platforms (especially AVR and ARM) are more RISC-like
and based on the load/store paradigm. All data processing instructions of the
MSP430 architecture do not necessarily need to have the operands in registers
but can also operate directly on data held in memory (without an intermediate
register holding) [28]. This contrasts with RISC architectures, where operands
have to be first loaded from memory to registers before an instruction can be
executed on them. To a certain extent, the ability to directly process data in
memory compensates for the (relatively) limited register space of the MSP430
architecture2. It is exactly these architectural differences that are interesting in
the context of benchmarking. Namely, as argued in [4,9], a lightweight crypto-
graphic algorithm should be fast on a broad range of microcontroller platforms
with highly diverse and even divergent characteristics. Collecting benchmarks
on a (somewhat) CISC-based architecture like the MSP430 makes sense since
the current portfolio of benchmarking platforms is solely RISC-based and does
not represent the high diversity of microcontrollers in the IoT.

2 Out of the total of 16 general-purpose registers, only 12 can actually be used by the
programmer, which means the usable register space of MSP430 microcontrollers is
even smaller than that of the 8-bit AVR architecture (192 vs. 256 bits).



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 21

In this paper, we analyze and compare the performance of the permutation-
based AEAD algorithms Ascon, Schwaemm, TinyJambu, and Xoodyak on
a 16-bit MSP430F1611 microcontroller. However, in contrast to the recent work
of Blanc et al. [8], we use carefully-optimized Assembly implementations of the
underlying permutations for our evaluation. We developed all implementations
from scratch, whereby we aimed for a reasonable trade-off between execution
time and code size. Furthermore, we do not only report benchmarking results
of the four algorithms for different lengths of associated data and data, but we
also aim to analyze and explain why the algorithms perform differently on the
MSP430 platform. More concretely, we study how basic design decisions of the
underlying permutation, such as the rotation distances or the locality (i.e. the
ability to operate on only a part of the state at a time3) affect their execution
time. To this end, we developed a special tool that is able to simulate MSP430
instructions and gather detailed information about the execution profile of the
permutations, e.g. the number of memory accesses. We use this information to
compare the (relative) amount of register-to-register operations for each of the
permutations, the proportions of clock cycles they spent for rotations and non-
linear operations, as well as their throughput in terms of cycles per state-byte
and per rate-byte, respectively. We observed significant differences in execution
time, not only for the permutations but also for the full AEAD schemes. When
taking different lengths of associated data and plaintext (resp. ciphertext) into
account, Schwaemm is the best overall performer, mainly because it combines
a well-optimizable permutation with an efficient mode of operation.

2 MSP430 Architecture

The MSP430 architecture uses the von-Neumann memory model, which means
instructions (i.e. code) and data share a unified address space. There is a single
address bus and a single data bus connecting the microcontroller core with the
RAM, non-volatile memory (flash or FRAM), and peripheral modules. MSP430
microcontrollers have a total of 16 registers, each 16 bits wide, of which 12 are
general working registers, and the remaining four serve a special purpose: r0 is
the program counter, r1 is the stack pointer, r2 is a status register, and r3 is
used to generate common constants like −1, 0, 1, 2, 4, 8. The instruction set is
rather minimalist and consists of only 27 core instructions that can be divided
into three categories: double-operand instructions (which overwrite one of the
operands with the result), single-operand instructions, and jumps. Most of the
instructions can not only operate on 16-bit operands, but also on bytes (more
concretely, the lower bytes of 16-bit operands) when the instruction is suffixed
by .b. The instruction set is orthogonal and supports seven addressing modes

3 As argued in [4], the ability to work locally (i.e. on a part of the state at a time) is
an important design criterion to achieve good efficiency on microcontrollers whose
register space is too small to store the full state (high locality reduces the need to
move state-words between registers and RAM). However, efficiency desiderata like
locality have to be carefully balanced with security desiderata like diffusion.



22 M. Alsahli et al.

altogether, including modes for direct memory-to-memory transfers without an
intermediate register holding [28]. Depending on the addressing mode(s), the
latency of double-operand instructions can vary between one clock cycle (when
both source and destination operand are held in registers) and six clock cycles
(when operands and result are in RAM or non-volatile memory).

As explained in the last section, the MSP430 architecture is more CISC-like
than e.g. AVR or ARM since it allows one to execute instructions on operands
held in RAM or flash without intermediate register holding. For example, the
instruction add.w @r4+, 8(r5) adds two 16-bit words, whereby register r4 and
r5 contain the addresses of the operands (resp. result) instead of their actual
values. More precisely, the first operand is accessed through the indirect auto-
increment addressing mode, which means the value in r4 is a pointer that gets
automatically incremented by 2 after the 16-bit word at the target address has
been fetched. On the other hand, the effective address of the second operand
(and also of the result) is obtained using the indexed addressing mode, i.e. it is
the sum of the base address contained in register r5 and the offset of 8 (note
that in MSP430 assembly language, the destination of an instruction is always
on the right side). Consequently, two loads, an addition, and a store operation
are combined into a single memory-to-memory instruction, which (potentially)
saves not only code space but also execution time. On a RISC architecture like
ARM, such a sequence of operations requires four separate instructions in the
best case, and up to twice as much under register pressure. Namely, when all
registers are occupied, two registers need to be spilled to free up space for the
operands, which costs two push and two pop instructions. To some extent, the
ability to execute memory-to-memory instructions compensates for the limited
register capacity of the MSP430 architecture. However, since memory accesses
generally increase the latency of instructions, finding a good register allocation
is still very important to reach high performance.

Shifts or rotations of either 32-bit words or 64-bit words are essential oper-
ations of the four permutations we consider in this paper. However, contrary to
their ARM counterparts, MSP430 microcontrollers do not feature a fast barrel
shifter that would allow them to shift or rotate a 16-bit operand by several bits
at a time. Therefore, multi-bit shifts/rotates have to be composed of the single-
bit shift and rotate instructions supported by the MSP430 architecture; these
are rla.w and rra.w for arithmetic shifts, and rlc.w and rrc.w for rotations
via carry [27]. The execution time of shifts/rotations of 32-bit or 64-bit words
depends heavily on the shift/rotation distance, whereby the best possible case
is a distance of (a multiple of) 16 bits. Rotating a 32-bit or 64-bit word stored
in registers by 16 bits is usually free since it only requires adapting the order in
which the 16-bit parts are accessed in a subsequent operation. For example, an
operation of the form a = a ⊕ (b ≫ 16), where a and b are 32-bit words in the
register pairs r4,r5 and r6,r7, respectively, takes only two xor.w instructions
since the 16-bit rotation of b can be carried out implicitly : xor.w r7, r4 and
xor.w r6, r5. When a and b are 64-bit words, shifts or rotations by a multiple
of 16 bits, i.e. 16, 32, and 48 bits, can be performed implicitly.



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 23

Listing 1. Macro for 1-bit left-rotation
of a 32-bit word.

1: QROL macro a0, a1

2: rla.w a0

3: rlc.w a1

4: adc.w a0

5: endm

Listing 2. Macro for 1-bit right-
rotation of a 32-bit word.

1: QROR macro a0, a1

2: bit.w #1, a0

3: rrc.w a1

4: rrc.w a0

5: endm

Listing 3. Macro for 8-bit left-rotation
of a 32-bit word (tr is a scratch regis-
ter).

1: QROL8 macro a0, a1

2: swpb a0

3: swpb a1

4: mov.b a0, tr

5: xor.b a1, tr

6: xor.w tr, a0

7: xor.w tr, a1

8: endm

Listing 4. Macro for 8-bit right-
rotation of a 32-bit word (tr is a
scratch register).

1: QROR8 macro a0, a1

2: mov.b a0, tr

3: xor.b a1, tr

4: xor.w tr, a0

5: xor.w tr, a1

6: swpb a0

7: swpb a1

8: endm

The second-fastest shift/rotation distances, after (multiples of) 16 bits, are
the ones that are close to multiples of 16 bits, e.g. 1, 15, 17, and 31 bits for 32-
bit words. Shifting a 32-bit word held in two registers by one of these distances
requires two instructions and takes two cycles, independent of the direction. An
additional instruction is necessary for a rotation, whereby again the direction
does not matter, i.e. a right-rotation needs the same number of cycles as a left-
rotation. Listing 1 and 2 contain Assembly macros (based on directives of the
IAR assembler) to rotate a 32-bit word held in registers one bit to the left and
to the right, respectively. A rotation by a distance of more than one bit can be
composed of these two macros, which confirms the importance of choosing the
rotation distances carefully since e.g. a rotation by three bits already costs 12
cycles. However, thanks to the swap-byte instruction swpb, a “shortcut” exists
for 8-bit left and right rotation as shown in Listing 3 and 4, respectively. These
macros use byte-wise instructions with the .b suffix that only operate on the
lower byte of a 16-bit register and set its upper byte to 0. Since the execution
time of both macros is only six cycles, they can accelerate rotations by certain
distances through a decomposition into 8-bit and 1-bit steps (e.g. a 7-bit right-
rotation can be performed by first rotating eight bits right and then one bit to
the left). Table 1 summarizes the execution time of optimized implementations
of rotations by distances between 1 and 15 bits. As explained earlier, a rotation
by a multiple of 16 bits is normally free (up to register-reordering). A rotation
by distances of n > 16 bits can always be reduced to a (n mod 16)-bit rotation
along with an implicit register-reordering in a subsequent operation.



24 M. Alsahli et al.

Table 1. Execution time (in clock cycles) for a rotation of a 32-bit and a 64-bit word
over a distance from 1 to 15 bits.

Rotation
distance (bits)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time to rotate
a 32-bit word

3 6 9 12 15 12 9 6 9 12 15 12 9 6 3

Time to rotate
a 64-bit word

5 10 15 20 25 26 21 16 21 26 25 20 15 10 5

3 Overview of the AEAD Algorithms

In this section, we overview the main properties of the four AEAD algorithms
we consider in this paper, namely Ascon, Schwaemm, TinyJambu v2, and
Xoodyak. They all reached the final round of NIST’s lightweight cryptography
standardization project [22] and are well suited for small microcontrollers.

ASCON. Ascon is not only one of the 10 finalists of NIST’s standardization
project in lightweight cryptography, but was also selected for the final portfolio
of the CAESAR competition. The main AEAD instance of the Ascon suite is
Ascon-128 and offers 128-bit security according to [15]. It is based on the so-
called Monkey Duplex mode [7] with a stronger keyed initialization and keyed
finalization function, respectively, which means the underlying permutation is
carried out with an increased number of rounds. Said permutation operates on
a 320-bit state (organized in five 64-bit words) by iteratively applying a round
function p. The number of rounds is a = 12 in the initialization and finalization
phase, and b = 6 otherwise; the corresponding permutations are referred to as
pa and pb in the specification. Ascon-128 processes associated data as well as
plaintext/ciphertext with a rate of r = 64 bits, i.e. the capacity is 256 bits. The
hash function of the Ascon suite is a classical sponge construction.

Ascon’s round function p is SPN-based and comprises three parts: (i) the
addition of an 8-bit round constant cr to a 64-bit state-word, (ii) a substitution
layer that operates across the five words of the state and implements an affine
equivalent of the S-box in the χ mapping of Keccak [6], and (iii) a diffusion
layer consisting of linear functions that are similar to the Σ functions in SHA2
and performed on each state-word individually. The S-box maps five input bits
to five output bits and is applied to each column of the state, whereby the five
state-words are arranged upon each other. It is normally implemented in a bit-
sliced fashion using logical ANDs and XORs. The diffusion layer performs an
operation of the form x = x ⊕ (x ≫ n1) ⊕ (x ≫ n2) on each word of the state
with n1 ∈ {1, 7, 10, 19, 61} and n2 ∈ {6, 17, 28, 39, 41} [15].

SPARKLE. The Sparkle suite submitted to NIST consists of four instances
of the AEAD algorithm Schwaemm, targeting security levels of 128, 192, and



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 25

256 bits, as well as two instances of the hash function Esch with digest lengths
of 256 and 384 bits. All instances are built on top of the Sparkle permutation
family, which consists of three members that differ by the width (i.e. the state
size) and the number of steps they execute. Schwaemm is based on the highly-
efficient Beetle mode of use [11], whereas Esch can be classified as a sponge
construction. The main instance of Schwaemm uses the 384-bit variant of the
Sparkle permutation, i.e. Sparkle384, with a rate of 256 bits. This variant is
also used for Esch256, the main instance of the hash function Esch. Besides
Sparkle384, there exists also a smaller and a larger version of the permutation
with a width of 256 and 512 bits, respectively (see [2] for details).

Sparkle384 is a classical ARX design, optimized for high speed on a wide
range of 8, 16, and 32-bit microcontrollers. The permutation is performed with
a big number of steps, namely 11, for initialization, finalization, and separation
between the processing of associated data and the secret message, while a slim
(i.e. 7-step) version is used to update the intermediate state. From a high-level
point of view, the permutation has an SPN structure and comprises three main
parts: (i) a non-linear layer consisting of six parallel ARX-boxes, (ii) a simple
linear diffusion layer, (iii) the addition of a step counter and round constant to
the 384-bit state. The ARX-box is called Alzette and can be seen as a small
64-bit block cipher that operates on two 32-bit words and performs additions
modulo 232, logical XORs, and rotations by 16, 17, 24, and 31 bits [2]. On the
other hand, the linear layer is, in essence, a Feistel round with a linear Feistel
function, followed by a swap of the left and right half of the state.

TinyJAMBU. TinyJambu is, in essence, a permutation-based variant of the
AEAD algorithm Jambu, which was a candidate of the CAESAR competition
but did not make it into the final portfolio. A distinguishing feature of Tiny-
Jambu is that it uses a keyed permutation and not a public (i.e. unkeyed) one
like the other AEAD algorithms. However, according to [22], TinyJambu can
also be viewed as a block-cipher-based design. In any case, the permutation has
a very short width of only 128 bits. There is no key schedule, which means the
key-bytes are directly added to the state. The specification [31] describes three
variants of TinyJambu with key lengths of 128, 192, and 256 bits, whereby the
main instance uses a 128-bit key with a 96-bit nonce. Its mode of operation is
based on the duplex construction [5], but offers better security in nonce-misuse
settings [31, Sect. 6]. Both the associated data and the plaintext/ciphertext are
processed at a relatively low rate of 32 bits, i.e. four bytes.

The 128-bit permutation of TinyJambu is essentially a Nonlinear Feedback
Shift Register (NFSR) whose feedback path consists of four bit-wise XOR and
a bit-wise NAND operation. The latter is the only non-linear component of the
whole permutation. Several rounds can be computed in parallel (e.g. 32 rounds
when the target platform is a 32-bit microcontroller), which benefits software
performance. The most costly part of the permutation are special shifts of the
form c = (a � n) ∨ (b � (32 − n)), where a, b, and c are 32-bit words and the
shift distance n ∈ {6, 15, 21, 27}. These so-called funnel shifts concatenate two



26 M. Alsahli et al.

32-bit words into a 64-bit value, shift this 64-bit value n bits left or right, and
return the 32 most-significant (left shift) or least-significant (right shift) bits as
result. Optimized software implementations combine 128 rounds (i.e. 128 state
updates) into a step and execute several steps in a loop. TinyJambu processes
associated data by iterating the step-loop five times (i.e. 640 rounds), whereas
plaintext/ciphertex is processed with eight iterations (i.e. 1024 rounds).

Xoodoo. Xoodyak is a highly versatile cryptographic scheme that is suitable
for a wide range of symmetric-key functions including hashing, pseudo-random
bit generation, authentication, encryption, and authenticated encryption. At its
heart is Xoodoo, a lightweight 384-bit permutation [13]. The Xoodyak suite
submitted to the NIST lightweight crypto project includes an AEAD algorithm
and a hash function; both are built on the Cyclist mode of operation [12]. To
perform authenticated encryption, Cyclist has to be initialized in keyed mode
with a 128-bit key and nonce, respectively, after which associated data can be
absorbed at a rate of 352 bits (i.e. 44 bytes), whereas plaintext/ciphertext gets
processed at a rate of 192 bits. On the other hand, when Cyclist is operated in
hash mode, the rate is 128 bits (i.e. 256 bits of capacity).

Xoodoo was inspired by Keccak [6] and Gimli [4] in the sense that the
state has the same size and is represented in the same way as in Gimli, though
the round function is similar to Keccak. Consequently, the state has the form
of a 3 × 4 matrix of 32-bit words, which can be visualized via three horizontal
128-bit planes (one above the other), each consisting of four 32-bit lanes. It is
also possible to view the 384-bit state as 128 columns of three bits lying upon
another (i.e. each bit belongs to a different plane). The Xoodoo permutation
executes 12 iterations of a round function of five steps: a column-parity mixing
layer θ, a non-linear layer χ, two plane-shifting layers (ρwest and ρeast) between
them, and a round-constant addition. Both ρ layers move bits horizontally and
perform lane-wise rotations of planes as well as rotations of lanes by 11, 1, and
8 bits to the left. On the other hand, in the parity-computation part of θ and
in the χ layer, state-bits interact only vertically, i.e. within 3-bit columns. The
θ layer mainly executes XORs and left-rotations by 5 and 14 bits. Finally, the
non-linear layer χ applies a 3-bit S-box to each column of the state, which can
be computed using logical ANDs, XORs, and bitwise complements.

4 Implementation Details

We developed optimized implementations of the four AEAD algorithms for the
purpose of benchmarking and performance analysis using a combination of C
and MSP430 Assembly language. More concretely, the underlying permutation
is the Assembly component, while the surrounding mode of operation (or mode
of use) is written in C. Most of the C source code is based on either reference
or optimized implementations provided by the designer teams, but we adapted
them to adhere to the low-level benchmarking API introduced in [10] to ensure
a consistent evaluation. The MSP430 Assembly code of the four permutations



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 27

(which we developed from scratch) is based on a common set of special macros
for load/store operations (using different addressing modes), arithmetic/logical
operations, and shifts/rotations of both 32-bit and 64-bit operands. Our main
optimization goal for the permutations was to achieve a good trade-off between
execution time and (binary) code size, and therefore we refrained from certain
optimization techniques like full loop unrolling, which in the case of MSP430
often only achieve a modest reduction in execution time at the expense of an
enormous increase in code size. We devoted a similar amount of optimization
time and effort to each of the four permutations to guarantee a fair evaluation
and comparison of the performance of the AEAD algorithms.

The rotations performed by the four permutations are composed of macros
for 1-bit and 8-bit rotation. As mentioned in Sect. 2, a rotation by a distance
of n > 16 bits can be split up into a rotation by k = n mod 16 bits (taking into
account that a k-bit rotation in one direction equals a (16 − k)-bit rotation in
the other direction), followed by a rotation by a multiple of 16 bits, which can
usually be performed implicitly (i.e. as part of a subsequent arithmetic/logical
or store operation) and is, therefore, free. Since all four permutations use the
same set of macros for rotations and other operations on 32/64-bit words, the
optimization effort essentially boiled down to finding a good register allocation
strategy in order to minimize the number of memory accesses. This includes
both explicit accesses in the form of loads and stores, but also implicit accesses
that take place when executing instructions where one or both operands reside
in memory. A good register allocation is crucial for Ascon, Sparkle384, and
Xoodyak since the size of their state is too big for the register space of the
MSP430, which means the state has to be kept in RAM and parts of the state
are loaded to registers to reduce the latency of arithmetic/logical instructions
executed on them. However, TinyJambu’s 128-bit state can be entirely kept in
the register file throughout the computation of the permutation, in which case
still four registers remain available for e.g. storing intermediate results.

As mentioned before, the C implementations of the mode of operation/use
of the algorithms are largely based on source codes from the designers, but we
modified them to comply with the low-level API given in [10]. The high-level
API for authenticated encryption and decryption specified in [20, Sect. 3.5] can
be implemented as simple wrappers around the low-level functions. This high-
level API represents the plaintext, ciphertext, associated data, key, and nonce
as arrays of bytes, i.e. arrays of type unsigned char, while the permutations
operate on 32-bit or 64-bit words. It is, therefore, tempting to cast a pointer to
a byte-array to a pointer to an array of unsigned 32/64-bit integers, e.g. when
injecting a block of plaintext (or associated data) into the state. However, the
ISO C standard only permits such upcasting of an unsigned-char pointer to an
unsigned-integer pointer if the former meets the alignment requirements of the
latter (which are more strict), otherwise the result of the cast is undefined. In
the case of the MSP430 architecture, a 32-bit or 64-bit integer in memory has
to be 2-byte aligned, i.e. its address must be even [27]. As a consequence, the
casting of a pointer to a byte-array to a pointer to an unsigned-integer-array is
only allowed when the start address of the byte-array is even. If this condition



28 M. Alsahli et al.

is not satisfied, the plaintext (resp. associated data) blocks have to be copied to
an aligned buffer. Alternatively, it is, of course, always possible to process the
blocks of plaintext and associated data in a byte-wise way. In the following, we
briefly outline how we implemented and optimized the four AEAD algorithms
and their permutations for the MSP430 architecture.

ASCON. Ascon is well suited for platforms with small register space because
each of the two layers of the permutation needs, at any time, only a part of the
state (but never the complete state) in registers. Our MSP430 implementation
processes the substitution layer in 16-bit slices, i.e. a 16-bit part of each state-
word is loaded, processed, and stored, and these steps are repeated four times
in a simple loop. The linear diffusion layer is implemented in a straightforward
fashion, i.e. one state-word at a time. In summary, each of the five state-words
loaded from (and stored to) RAM twice per round, which means Ascon has
relatively high locality. As stated in the last section, the diffusion layer consists
of operations of the form x = x ⊕ (x ≫ n1) ⊕ (x ≫ n2); we tried alternative
implementation options, e.g. x = x ⊕ ((x ⊕ (x ≫ (n2 − n1))) ≫ n1), with the
goal of minimizing the execution time of the rotations.

Ascon’s mode of operation is fairly straightforward to implement on basis
of the low-level API from [10]. A peculiarity of Ascon is the byte-order of the
five state-words, which is big endian, while MSP430 and most other embedded
microcontrollers process and store 32-bit and 64-bit integers using little endian
representation. Therefore, the byte-order of 64-bit words that are injected into
(or extracted from) the state has to be reversed. Our implementation performs
the injection/extraction of words (including endianness conversion) in a byte-
by-byte fashion, which has the advantage that we do not need to pay attention
to the alignment of the byte-arrays in which the inputs/outputs are stored.

SPARKLE. Sparkle384, which is the permutation of the primary instance
of the Schwaemm family, has relatively high locality (though not as high as
Ascon) and can, therefore, be well optimized for MSP430. Our implementation
of the permutation processes the non-linear layer in a loop and evaluates one
ARX-box at a time. An ARX-box computation requires ten registers: four to
store two 32-bit state words, two for a 32-bit round constant, further two for an
intermediate result, and one each for a pointer to the round-constant and state
array, respectively. We integrated the computation of the two temporary values
tx and ty into the ARX-box layer to reduce the number of memory accesses in
the subsequent linear layer. In this way, each 32-bit word of the state is loaded
and stored twice per round (similar to Ascon); once in the ARX-box layer and
then a second time in the linear layer. However, some further memory accesses
are necessary for the round constants and the temporary value ty, which has to
be stored on the stack due to the lack of free registers.

Schwaemm’s mode of operation uses apart from the permutation also two
auxiliary functions: a feedback function ρ and a rate-whitening function W. We
merge both functions into a single loop to reduce their execution time. Our C



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 29

implementation of the mode also optimizes the processing of plaintext, cipher-
text, and associated data, which are stored in byte-arrays. We check at runtime
whether the pointers to these arrays are sufficiently aligned for an upcasting to
uint32 t pointers; when this is the case we directly process the byte-arrays as
integer-arrays, otherwise we copy them first to an aligned buffer via memcpy.

TinyJAMBU. TinyJambu has the highest locality among all four permuta-
tions since the full state can be kept in registers during the computation of the
permutation. Nonetheless, some memory accesses are still required to load the
key-words in each round. Due to the permutation’s high locality, the execution
time is dominated by the funnel shifts, which extract a 32-bit word at a certain
position within two concatenated 32-bit words (i.e. a 64-bit word). The source
code provided by the designers implements these funnel shifts as normal right-
shift operations of two concatenated state-words by distances of 6, 15, 21, and
27 bits. However, in MSP430 Assembly language, the four funnel shifts can be
performed more efficiently by a 1-bit right-shift-through-carry of a 32-bit word
(three instructions), a 1-bit left-shift-through-carry of a 32-bit word (also three
instructions), an ordinary 5-bit left-shift of a 48-bit word (15 instructions), and
an ordinary 5-bit right-shift of a 64-bit word (20 instructions).

TinyJambu processes plaintext/ciphertext and associated data with a rate
of four bytes. The low-level encryption/decryption functions check whether the
pointers to the byte-arrays containing these inputs are properly aligned for an
upcasting to uint32 t pointers; when this is not the case the four bytes to be
processed are copied into an aligned buffer, similar to Schwaemm. But unlike
Schwaemm, the input blocks are copied byte by byte using plain C statements
since calling memcpy would introduce a significant overhead for four bytes.

Xoodyak. Similar to Ascon and Sparkle, the state of the Xoodoo permu-
tation is too big for the register file of a MSP430 microcontroller and, thus, has
to be stored in RAM. A straightforward implementation of the five steps of the
permutation, one step after another, would require a large number of load and
store operations. In order to reduce the number of memory accesses, we tried
to integrate (parts of) the plane-shifting layers ρwest and ρeast into the mixing
layer θ and non-linear layer χ, respectively. Unfortunately, a full integration is
not possible due to the limited register space (at least not when the goal is to
achieve a good trade-off between performance and code size), which means the
lane-wise rotations within a plane that form part of ρwest and ρeast still have to
be implemented as separate steps with their own load and store operations. As
a consequence, four state-words are loaded and stored twice per round, and the
remaining eight words three times per round. This large number of load/store
operations makes Xoodoo the permutation with the lowest locality.

Our low-level functions for Xoodyak’s Cyclist mode of operation deal with
unaligned byte-arrays for associated data and plaintext/ciphertext in the same
way as the Schwaemm implementation: we first check at runtime whether the



30 M. Alsahli et al.

pointers to these arrays can be casted to uint32 t pointers and use memcpy to
copy the bytes block-wise into an aligned buffer if this is not the case.

5 Performance Evaluation and Comparison

We compiled and assembled the source code of the four AEAD algorithms with
version 7.2 of IAR Embedded Workbench for MSP4304 and used its integrated
cycle-accurate instruction set simulator to determine the execution time of the
permutations alone and the high-level encryption functions. Our target device
was a MSP430F1611 microcontroller, which comes with 10 kB SRAM and has
a flash capacity of 48 kB. In order to be able to examine our implementations
of the permutations in more detail, we also developed a tool that emulates the
execution of MSP430 instructions step by step and collects information via the
execution trace. The tool works with snapshots of registers and memory (since
they can be exported from IAR Workbench) and is able to emulate all 27 core
instructions of the MSP430 with the supported addressing modes [28]. While
the instructions are executed, information about the instruction type, the used
addressing mode(s), the number of memory accesses, and so on is recorded.

Table 2. Main characteristics and implementation results of the four permutations.

Characteristic/result Ascon Sparkle TinyJambu Xoodoo

Performance characteristics

Execution time (cycles) 3510 5946 2454 8985

Number of executed instr. 2369 3811 2134 5191

Average cycles/instruction 1.48 1.56 1.15 1.73

Memory characteristics

RAM consumption (bytes) 56 76 54 66

– of which is stack (bytes) 16 28 22 18

Code size (bytes) 708 618 652 570

Instruction-type characteristics

Branching instructions 30 63 8 96

Memory-to-Memory (M2M) 0 21 8 12

Memory-to-Register (M2R) 261 491 146 884

Register-to-Memory (R2M) 254 493 19 789

Register-to-Register (R2R) 1824 2729 1953 3410

Percentage of R2R instr. 77.0% 71.6% 91.5% 65.7%

Table 2 shows various results we obtained for performance, RAM and flash
consumption, and the type of instructions executed by each permutation. The
4 http://www.iar.com/products/architectures/iar-embedded-workbench-for-msp430

(accessed on 2022-12-14).

http://www.iar.com/products/architectures/iar-embedded-workbench-for-msp430


Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 31

execution time (in cycles) covers all instructions contained in the Assembly file
of the permutation, but does not include the generation or passing of function
arguments like a pointer to the state or the number of rounds. We can observe
that TinyJambu has the fastest permutation with just 2454 clock cycles, while
Xoodoo is by far the worst in terms of execution time. TinyJambu’s small
Cycles-per-Instruction (CPI) ratio of 1.15 means that most of its instructions
execute in one cycle, which is only possible when the operands and result are
read from and written to registers instead of a location in memory. Indeed, as
shown in Table 2, the percentage of Register-to-Register (R2R) instructions in
TinyJambu’s permutation is very high, namely above 91%. Both the CPI and
ratio of R2R instructions confirms that TinyJambu has high locality. At the
opposite end of the spectrum is Xoodoo, which has the lowest locality of the
four evaluated permutations (evidenced by a CPI of 1.73 and only 65.7% R2R
instructions). Ascon has the second-best locality, and Sparkle is locality-wise
approximately in the middle between Ascon and Xoodoo.

The RAM footprint (including stack usage) of the four permutations is rela-
tively small and ranges from 54 bytes (TinyJambu) to 76 bytes (Sparkle). In
essence, RAM is occupied for the state and, in the case of TinyJambu, for the
key, while the stack is mainly used for the preservation of callee-saved registers
and to store infrequently-used local variables like loop counters. Also the code
size of the permutations is relatively similar since the smallest one (Xoodoo)
and biggest one (Ascon) differ by only 138 bytes, which is roughly 24% of the
code size of the former.

Table 3. Detailed execution-time and throughput analysis of the permutations.

Characteristic/result Ascon Sparkle TinyJambu Xoodoo

State size (bytes) 40 48 16 48

Encryption rate (bytes) 8 32 4 24

Authentication rate (bytes) 8 32 4 44

Number of rounds or steps 6 7 8 (5) 12

Execution-time analysis of single round/step

Cycles per round/step 577 (100%) 844 (100%) 302 (100%) 746 (100%)

– of which are rotations 160 (27.7%) 150 (17.8%) 172 (57.0%) 153 (20.5%)

– of which are non-lin. ops. 20 (3.5%) 48 (5.7%) 8 (2.6%) 24 (3.2%)

Execution-time analysis of full permutation

Cycles for full permutation 3510 (100%) 5946 (100%) 2454 (100%) 8985 (100%)

– of which are rotations 960 (27.4%) 1050 (17.7%) 1376 (56.1%) 1836 (20.4%)

– of which are non-lin. ops. 120 (3.4%) 336 (5.7%) 64 (2.6%) 288 (3.2%)

Throughput analysis of full permutation

Cycles per state-byte 87.75 123.88 153.38 187.19

Cycles per rate-byte (enc.) 438.75 185.82 613.50 374.38

Cycles per rate-byte (auth.) 438.75 185.82 387.00 204.20

Table 3 provides more-detailed information about the execution time of the
permutations, including an analysis of the cycles spent for shifts/rotations and



32 M. Alsahli et al.

non-linear operations (i.e. addition in the case of Sparkle, logical AND for the
other three permutations). The table also summarizes the main characteristics
of the permutations, e.g. the size of the state, the rate used for authentication
and for encryption, and the number of rounds or steps. We analyzed a single
round or step of each permutation and determined the overall cycle count, the
number of cycles spent for shifts/rotations, and the number of cycles for non-
linear operations. The latter was evaluated with help of the specification of the
permutation and does not include any add.w or and.w instruction that has no
impact on non-linearity, e.g. the adc.w at line 4 of the QROL rotation macro in
Listing 1. According to the per-round/step results in Table 3, the rotations are
more costly than the non-linear operations, and this holds true for each of the
four permutations. However, the relative computational cost of rotations versus
non-linear operations is not only determined by the design of the permutation
but also by the features of the target architecture. For example, Sparkle and
Xoodoo were designed such that, when implemented for a 32-bit ARM micro-
controller, each rotation can be “folded” into an arithmetic/logical instruction
and both together executed within a single cycle, which makes these rotations
basically free. Therefore, when 32-bit ARM is the target architecture, the non-
linear operations contribute more cycles to the overall execution time than the
rotations, while the opposite is the case for MSP430. To be more concrete, the
rotations make up between 17.7% and 56.1% of the overall cycle counts of the
permutations on an MSP430F1611 microcontroller. These results underline the
importance of choosing the rotation (resp. shift) distances carefully, taking into
account both security and efficiency aspects.

As explained in Sect. 2, a shift/rotation of a 32 or 64-bit word by a distance
of d bits is fast on MSP430 if either (i) d is a multiple of 16, (ii) d is close to
a multiple of 16 (e.g. 1, 2, 14, 15, 17, 18, . . . ), or (iii) d is a multiple of 8. The
Sparkle permutation performs seven rotations of 32-bit words in each of its
ARX-boxes; the distances are 31, 24, 17, 17, 31, 24, and 16 bits. Each distance
meets the above requirements, which makes the rotations relatively fast (one is
completely free, one takes six cycles, and the other five rotations require three
cycles). Overall, the rotations contribute roughly 17.8% to the execution time of
Sparkle. The distances of the rotations carried out by Xoodyak include three
that are relatively fast (namely by 1 and 8 bits in ρeast and by 14 bits in θ),
but also two slow ones (by 5 bits in θ and 11 bits in ρwest). In summary, the
rotations account for 20.4% of the execution time of Xoodyak. The diffusion
layer of Ascon includes ten rotations (executed on 64-bit words) by distances
of 19, 28, 61, 39, 1, 6, 10, 17, 7, and 41 bits. Only two out of this total of ten
distances, namely 1 and 17 bits, can be considered fast according to the above
requirements. Though some optimizations are possible (see Sect. 5), our overall
verdict is that the rotation distances of Ascon are not particularly “MSP430-
friendly,” which explains why the rotations consume 27.4% of the permutation
cycles. Finally, TinyJambu is a special case because it performs funnel shifts
instead of actual rotations. As explained in Sect. 5, these funnel shifts can be
implemented by two 1-bit shift-through-carry operations on a 32-bit word and



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 33

two 5-bit shifts (carried out on a 48-bit and a 64-bit word, respectively). The
former two are fast but the latter two extremely slow. In summary, the funnel
shifts make up 56.1% of TinyJambu’s overall permutation cycles.

The impact of the rotations (resp. funnel shifts) on the total execution time
of the four permutations should not be viewed as completely independent from
other efficiency aspects like locality. TinyJambu has very high locality and, as
a consequence, wastes only few cycles for memory accesses (this is one of the
reasons for its relatively fast execution time). Therefore, it is natural that the
funnel shifts constitute a large fraction of the execution time, which makes the
designers’ choice of shift distances appear worse (in relation to the other three
permutations) than they are in reality. The opposite is the case for Xoodyak’s
permutation. Namely, the long execution time of Xoodoo (which is partly due
to poor locality) makes the rotation distances look less costly than they are.

Since the state size of three of the four permutations differs, it makes sense
to analyze the throughput in terms of execution time divided by the state-size
in bytes. The results at the bottom of Table 3 show that Ascon wins in this
category with a throughput of approximately 87.75 cycles per state-byte. Also
contained at the bottom of this table are the throughput figures per rate-byte
for encryption and authentication, respectively. The cycles per rate-byte serve
as a good benchmark for the efficiency of both the permutation and the mode
of operation/use of the corresponding AEAD algorithm. Schwaemm employs
the Beetle mode of operation, which allows it to process associated data and
plaintext/ciphertext at a rate of 32 bytes. The resulting throughput of 185.82
cycles per rate-byte is the best among the four evaluated AEAD schemes. Also
Xoodyak profits from a fairly high rate, namely 24 bytes for encryption, and
achieves a throughput of 374.38 cycles per rate-byte. Even though Ascon and
TinyJambu have fast permutations, their throughput is relatively poor due to
a small rate. Note that the throughput of both TinyJambu and Xoodyak is
much higher for authentication than for encryption; in the former case because
of a smaller number of steps and in the latter case due to a higher rate.

Table 4 shows the execution time of the four AEAD algorithms for authen-
tication only (i.e. no plaintext is processed), encryption only (i.e. no associated
data is processed) and authenticated encryption (both the associated data and
plaintext have the same length). For each scenario, we evaluated the execution
time for inputs of three different lengths: short (i.e. 16 bytes), medium (i.e. 128
bytes), and long (i.e. 1024 bytes). The timings in Table 4 are closely correlated
with the throughput values at the bottom of Table 3, in particular for medium
and long inputs. Therefore, it is not surprising that, overall, Schwaemm is the
best performer across different lengths of associated data and plaintext. When
the inputs are short (i.e. 16 bytes), the execution times of the four algorithms
are relatively similar and depend not only on the throughput, but also on the
efficiency of operations like initialization, finalization, and computation of the
authentication tag. However, for medium-size inputs, Schwaemm outperforms
Xoodyak, which is (overall) the second-best algorithm, by a factor of 1.89 in
the encryption-only case and a factor of approximately 1.45 for authenticated



34 M. Alsahli et al.

Table 4. Execution time (in cycles) of the AEAD algorithms for authentication only
(dlen = 0), encryption only (adlen = 0), and authenticated encryption (adlen = dlen).

adlen dlen Ascon Schwaemm TinyJambu Xoodyak

16 0 25567 20311 18539 28225

128 0 75729 38777 63952 47091

1024 0 477025 214421 427280 243385

0 16 22109 20704 22191 28273

0 128 72957 39618 93168 74865

0 1024 479707 221080 661008 420299

16 16 32834 30748 28680 28377

128 128 133842 68126 145073 93838

1024 1024 941924 425268 1076241 635566

encryption. Finally, in the authentication-only scenario, the speed-up factor is
smaller, namely about 1.21 for associated data of medium length and a bit less
for longer lengths. Ascon and TinyJambu are around two times slower than
Schwaemm for both medium and long inputs.

6 Conclusions

In this paper, presented a performance analysis of the four AEAD algorithms
Ascon, TinyJambu, Schwaemm, and Xoodyak on a 16-bit MSP430 micro-
controller. We developed carefully-optimized Assembler implementations of the
underlying permutations, whereby we aimed for a reasonable trade-off between
execution time and (binary) code size. Our results show that the shift/rotation
distances and the locality have a significant impact on the performance of the
permutations. TinyJambu’s permutation has very high locality since its entire
state can be kept in registers. The permutation of Ascon and Sparkle have
the second and third-bast locality; each word of their state needs to be loaded
from RAM and written back to RAM twice per round or step. Xoodoo shows
the worst locality of the four permutations. On the other hand, when it comes
to rotation distances, Sparkle is the winner since the majority of its rotations
can be executed in only three clock cycles. Xoodoo and TinyJambu perform
a mix of fast and slow rotations (resp. shifts), while almost all of the rotation
distances of Ascon’s permutation are not well-suited for MSP430. The actual
performance of each of the four AEAD algorithms does not only depend on the
permutation, but also the rate for encryption and authentication. Our results
show that Schwaemm is clearly the best overall performer across different use
cases (authentication only, encryption only, and authenticated encryption) and
input lengths. When encrypting a 128-byte plaintext, Schwaemm is 1.89 times
faster than Xoodyak and outperforms Ascon by a factor of 1.84. Xoodyak is
more competitive when a large amount of associated data is processed, whereas



Lightweight Permutation-Based Cryptography for the Ultra-Low-Power IoT 35

TinyJambu is particularly efficient for the authentication of very short blocks
of associated data (up to approximately 16 bytes).

Acknowledgements. The last author was supported by the Fonds National de la
Recherche (FNR) Luxembourg under CORE grant C19/IS/13641232. The source code
is available online at http://github.com/johgrolux/aead430.

References

1. Arm Limited. ARM Cortex-M3 Processor Technical Reference Manual, Revision
r2p1 (2016). http://developer.arm.com/documentation/100165/latest

2. Beierle, C., et al.: Lightweight AEAD and hashing using the Sparkle permutation
family. IACR Trans. Symmetric Cryptol. 2020(S1), 208–261 (2020)

3. Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O.
(eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68351-3 8

4. Bernstein, D.J., et al.: Gimli: a cross-platform permutation. In: Fischer, W.,
Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 299–320. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 15

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions (2011). http://keccak.team/files/CSF-0.1.pdf

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference, ver-
sion 3.0 (2011). http://keccak.team/files/Keccak-reference-3.0.pdf

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Permutation-based encryp-
tion, authentication and authenticated encryption. In: Record of the 1st ECRYPT
II Workshop on New Directions in Authenticated Encryption (DIAC 2012), pp.
159–170 (2012)

8. Blanc, S., Lahmadi, A., Le Gouguec, K., Minier, M., Sleem, L.: Benchmarking
of lightweight cryptographic algorithms for wireless IoT networks. Wireless Netw.
28(8), 3453–3476 (2022)

9. Cardoso dos Santos, L., Großschädl, J.: An evaluation of the multi-platform effi-
ciency of lightweight cryptographic permutations. In: Ryan, P.Y.A., Toma, C.
(eds.) SecITC 2021. LNCS, vol. 13195, pp. 75–90. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-17510-7 6

10. Cardoso dos Santos, L., Großschädl, J., Biryukov, A.: FELICS-AEAD: benchmark-
ing of lightweight authenticated encryption algorithms. In: Beläıd, S., Güneysu,
T. (eds.) CARDIS 2019. LNCS, vol. 11833, pp. 216–233. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-42068-0 13

11. Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(2), 218–241 (2018)

12. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak,
a lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1),
60–87 (2020)

13. Daemen, J., Hoffert, S., Van Assche, G., Van Keer, R.: The design of Xoodoo and
Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

14. Dang, D., Plant, M., Poole, M.: Wireless connectivity for the Internet of Things
(IoT) with MSP430 microcontrollers (MCUs) (2014). Texas Instruments white
paper. http://www.ti.com/lit/wp/slay028/slay028.pdf

http://github.com/johgrolux/aead430
http://developer.arm.com/documentation/100165/latest
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1007/978-3-319-66787-4_15
http://keccak.team/files/CSF-0.1.pdf
http://keccak.team/files/Keccak-reference-3.0.pdf
https://doi.org/10.1007/978-3-031-17510-7_6
https://doi.org/10.1007/978-3-031-17510-7_6
https://doi.org/10.1007/978-3-030-42068-0_13
http://www.ti.com/lit/wp/slay028/slay028.pdf


36 M. Alsahli et al.

15. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: lightweight
authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021)

16. Gligor, V.D.: Light-weight cryptography - how light is light? Keynote pre-
sentation at the Information Security Summer School, Florida State Univer-
sity (2005). Slide deck. http://www.sait.fsu.edu/conferences/2005/is3/resources/
slides/gligorv-cryptolite.ppt

17. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

18. Hamburg, M.: The STROBE protocol framework. Cryptology ePrint Archive,
Report 2017/003 (2017). http://eprint.iacr.org/2017/003

19. Microchip Technology Inc. 8-bit Atmel Microcontroller with 128KBytes In-System
Programmable Flash: ATmega128, ATmega128L (2011). http://ww1.microchip.
com/downloads/en/DeviceDoc/doc2467.pdf

20. National Institute of Standards and Technology (NIST). Submission Require-
ments and Evaluation Criteria for the Lightweight Cryptography Standard-
ization Process (2018). http://csrc.nist.gov/CSRC/media/Projects/Lightweight-
Cryptography/documents/final-lwc-submission-requirements-august2018.pdf

21. National Institute of Standards and Technology (NIST). Benchmarking of
lightweight cryptographic algorithms on microcontrollers (2020). http://github.
com/usnistgov/Lightweight-Cryptography-Benchmarking

22. National Institute of Standards and Technology (NIST). Status Report on the
Second Round of the NIST Lightweight Cryptography Standardization Process.
Internal Report 8369 (2021). http://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.
8369.pdf

23. Perrin, T.: Stateful hash objects: API and constructions (2018). Specification.
http://github.com/noiseprotocol/sho spec

24. Renner, S., Pozzobon, E., Mottok, J.: NIST LWC software performance bench-
marks on microcontrollers (2020). http://lwc.las3.de

25. Rzehak, V.: Low-power FRAM microcontrollers and their applications (2019).
Texas Instruments white paper. http://www.ti.com/lit/wp/slaa502/slaa502.pdf

26. Saarinen, M.-J.O.: Beyond modes: building a secure record protocol from a crypto-
graphic sponge permutation. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366,
pp. 270–285. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-
9 14

27. Texas Instruments Inc. MSP430 Family Architecture Guide and Module Library.
TI literature number SLAUE10B (1996). http://www.ti.com/sc/docs/products/
micro/msp430/userguid/ag 01.pdf

28. Texas Instruments, Inc. MSP430x1xx Family User’s Guide (Rev. F) (2006). Man-
ual. http://www.ti.com/lit/ug/slau049f/slau049f.pdf

29. Texas Instruments Inc. MSP430 Ultra-Low-Power Microcontrollers (2013). Prod-
uct bulletin. http://www.ti.com/lit/sg/slab034w/slab034w.pdf

30. Weatherley, R.: Lightweight cryptography primitives documentation (2021).
http://rweather.github.io/lwc-finalists/index.html

31. Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated encryption
algorithms (Version 2) (2021). Specification. http://csrc.nist.gov/CSRC/media/
Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/
tinyjambu-spec-final.pdf

32. Yan, L., Zhang, Y., Yang, L.T., Ning, H.: The Internet of Things: From RFID to
the Next-Generation Pervasive Networked Systems. Auerbach Publications (2008)

http://www.sait.fsu.edu/conferences/2005/is3/resources/slides/gligorv-cryptolite.ppt
http://www.sait.fsu.edu/conferences/2005/is3/resources/slides/gligorv-cryptolite.ppt
https://doi.org/10.1007/978-3-642-22792-9_13
http://eprint.iacr.org/2017/003
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/doc2467.pdf
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf
http://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
http://github.com/usnistgov/Lightweight-Cryptography-Benchmarking
http://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8369.pdf
http://github.com/noiseprotocol/sho_spec
http://lwc.las3.de
http://www.ti.com/lit/wp/slaa502/slaa502.pdf
https://doi.org/10.1007/978-3-319-04852-9_14
https://doi.org/10.1007/978-3-319-04852-9_14
http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_01.pdf
http://www.ti.com/sc/docs/products/micro/msp430/userguid/ag_01.pdf
http://www.ti.com/lit/ug/slau049f/slau049f.pdf
http://www.ti.com/lit/sg/slab034w/slab034w.pdf
http://rweather.github.io/lwc-finalists/index.html
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
http://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf

	Lightweight Permutation-Based Cryptography for the Ultra-Low-Power Internet of Things
	1 Introduction
	2 MSP430 Architecture
	3 Overview of the AEAD Algorithms
	4 Implementation Details
	5 Performance Evaluation and Comparison
	6 Conclusions
	References




