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Preface

This volume contains the papers presented at SECITC 2022: The 15th International
Conference on Security for Information Technology and Communications held virtually
on December 8–9, 2022 and organized by Bucharest University of Economic Studies,
Military Technical Academy and the Advanced Technology Institute, Romania.

SECITC brings together computer security researchers, cryptographers, industry
representatives and postgraduate students interested in any aspect of information secu-
rity and privacy. One of SECITC’s primary goals is to connect security and privacy
researchers fromdifferent areas and to provide a forum to enable the knowledge exchange
that is necessary for the emergence of new scientific and industrial collaborations.

There were 53 program committee members, widely spread around the world, who
contributed with their invaluable knowledge and expertise to the success of this scientific
event. Each submission was double-blind reviewed by at least 2, with a median of 3,
program committee members. The committee decided to accept 19 of 53 contributions
out of which 1 is an invited paper by one of us.

The conference had two guest speakers to whom it wishes to give thanks for their
major role of triggering security awareness with their thought-provoking presentations.
These are Luca Vigano from King’s College London, UK and Erik Poll from Radboud
University, The Netherlands.

This volume can be used by researchers, specialists, postgraduate students and secu-
rity consultants who wish to keep pace with the latest developments in Security for
Information Technology and Communication.

December 2022 Giampaolo Bella
Mihai Doinea
Helge Janicke
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Interactional Freedom and Cybersecurity

Giampaolo Bella(B)

Dipartimento di Matematica e Informatica, Università degli Studi di Catania,
Catania, Italy

giamp@dmi.unict.it

Abstract. We have become accustomed to the news of more and more
cunning attacks to real-world systems, and equally accustomed to try to
fix them even though further attacks may come. I discuss how to tackle
and ultimately resolve this tedious and infamous attack-fix-loop practice
by distilling out five paradigms to achieve cybersecurity: democratic, dic-
tatorial, beautiful, invisible and explainable security. While each of these
has distinctive features, various combinations, at some rate, of them
may coexist, with the final aim of improving the way security measures
account for the human element. Towards the end of the paper, I conjec-
ture how the paradigms could be used to improve the ultimate security
measure of our times, a Security Operation Centre. May I remark that
many of the observations made below derive from my personal and cur-
rent understanding and would require a number of experiments to be
fully confirmed.

Keywords: Democratic security · Dictatorial security · Beautiful
security · Invisible Security · Explainable Security

1 Introduction

The Technical System. Engineers build computers, including tiny ones to ani-
mate the smallest IoT device. Computer Scientists build the programs that those
computers execute. History as well as breaking news tell us that each computer
and the suite of programs it runs form, together, a technical system that is
often vulnerable. It means that the odds are non-negligible that a criminal finds
a malicious way to abuse the resources of that system or to make it work as
the criminal desires, even if it is contrary to the aims of those who built the
system in the first place. Laymen call that malicious way to operate an attack.
More precisely, it is a sequence of events to make the targeted system miss some
functional properties and related cybersecurity properties that engineers and

My SEICT 2022 co-chairs invited me to deliver a talk, which I entitled “The Right Level
of Human Interaction to Establish Cybersecurity”. This is the accompanying paper.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Bella et al. (Eds.): SecITC 2022, LNCS 13809, pp. 1–16, 2023.
https://doi.org/10.1007/978-3-031-32636-3_1
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2 G. Bella

scientists believed would be ensured instead. Cybersecurity properties mean, for
example, that anyone who accesses their online bank account is reassured that
their login credentials are only going to be shared with the bank, and that police
cars on a chase can exchange information that the criminals cannot overhear.
They also protect functional properties, such as correctness of satellite trajectory
calculations.

With just more examples, this is my gentle introduction to cybersecurity for
outsiders, including my primary school son. But the more complicated part is the
next one, where I recall that the technical systems demand human interaction, a
sort of interplay with their users, itself oriented at pursuing the expected prop-
erties mentioned above. An online bank access requires users to follow what is in
essence a predefined sequence of steps, also providing relevant information when
and where needed. Similarly, policemen must refrain from attempting alternative
radio frequencies during the chase or unconventional means of communication
in general, and anyone who calculates satellite trajectories ought to remember
that the right values must be assigned to the right parameters, with no room for
peculiar diversions. All straightforward so far, but there is a clear accent on the
humans who interact with the technical systems. Someone or something built
humans originally, humans have evolved over the centuries but remain vulner-
able, similarly to the technical systems though in different ways. Humans may
be biased, may make mistakes and errors, may be deceived and may even be
irrational, all at various rates, due to internal forces coming from the self and to
external forces coming from society.

The Socio-technical System. It follows that risk sources for cybersecurity are
at least two, namely the technical system as well as the humans who inter-
act with it. This is the root of the reason why cybersecurity is an inherently
multi-disciplinary problem. Social Scientists and Psychologists, in particular,
play a prominent role in understanding people’s behaviour in front of technical
systems, thereby pursuing the ultimate goal of ensuring cybersecurity over the
socio-technical system comprising the technical system and its users. The chal-
lenges of reaching that goal begin to come to a focus. Specifically, their human
element brings daunting ones, and if I try to summarise them as a research ques-
tion, the outcome would be along the following lines: how do we make sure that
humans will want to comply with the technical system and will manage to do
that? Compliance here means to interact with the technical system precisely as
imagined by those who built it.

It is now time to appeal to some relevant literature, but it is difficult to select
the most pertinent publications, so I just mention a few of my own relevant works,
chronologically. I included some notion of error by the oops rule in my proofs
about a version of Kerberos, inspired by Paulson’s seminal work [7]. I understood
that security properties are not just boolean and, by contrast, are mediated,
by those who run them, by means of some level, which can be interpreted as
“levels of preference, or of certainty, etc.” [3]. It follows that attacks can also be
indeliberate, a first hint at a more mentalistic take at the agents who execute
the security protocols than the previous interpretation in terms of just computer
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processes. Also, I explained service security and privacy as a socio-technical
problem [5].

We must also consider a few white-paper style articles from highly-reputed
sources that virtually every cybersecurity expert will have read. The “IBM Secu-
rity Services 2014 Cyber Security Intelligence Index” states that “over 95% of
all incidents investigated recognize ‘human error’ as a contributing factor”. The
“IBM X-Force Threat Intelligence Index 2018” remarks that “the potentially
detrimental impact of an inadvertent insider on IT security cannot be over-
stated”, while the 2019 edition of the same report confirms that “human error
continues to facilitate breaches” and the 2020 publication observes that “generic
botnet malware” has been “pushed to users from spam or malvertising”. A SANS
blog page compares humans to machines with their own Operating Systems,
the “HumanOS”, observing that “We have to begin investing in securing the
HumanOS also, or bad guys will continue to bypass all of our controls and sim-
ply target the human end-point” [17].

Vulnerabilities Due to the Human Element. These observations somehow explain
the innumerable vulnerabilities stemming from the human element that take
place on a daily basis. Figure 1 depicts two prototypical ones. The left one por-
trays the deliberate choice of a trivial password to ease the burden of keeping it by
heart, a case in which the user’s balanced choice is for immediate comfort rather
than for a somewhat more far-sighted comfort that a stronger password would
have brought in terms of authentication. The right picture has a two-factor,
card-and-PIN authentication system for building access whose card-possession
factor is baffled by storing the cards next to the PIN pad—clearly anyone could
(ab)use any card. The first vulnerability has been addressed by reinforcing the
technical system to rule out users’ silly choices of extremely obvious passwords,
and NIST has published relevant guidelines that are now very widespread [10].
In my experience, however, they are not as pervasively applied as they should
be, and perhaps have not yet been fully embraced in the health sector, for exam-
ple. Of course, I am deliberately leaving aside from this argument the significant
issues of human stress and counter-reactions due to the huge number of pass-
words for each user to remember, as well as those about the security of password
managers implemented as computer programs precisely to remove the need for
the user to remember all their passwords.

The other vulnerability in Fig. 1 is harder to address because we may follow
two approaches that are both demanding and, ultimately, debatable. Fixes at
the level of the technical systems are not obvious and, rather, would have to
be very creative, hence potentially vulnerable themselves. Enhancements at the
human level would, by contrast, have to face and remove pre-established paths
of practice of least effort, hence would have to delve deeply into the institutional
awareness of the cybersecurity issues and into the overall perception that cyber-
security can no longer be considered a subsidiary feature at the present time.
These in Fig. 1 are only meant to serve as extreme examples, of course, but even
more realistic ones could be drawn, for example, from the web security domain
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Fig. 1. Prototypical vulnerabilities due to the human element (pics from the Internet).

where attacks such as (spear) phishing and cross-site scripting leverage human
distraction and general cybersecurity ignorance.

Interactional Freedom. I have already attempted, in the recent years, to increase
our understanding of why those that perhaps count as the most challenging vul-
nerabilities of the socio-technical system are due to its human element. This
betrays the fact that the research question stated above has been giving me
(and my colleagues!) headaches for years. It is now clearer that a complete answer
to the research question would address such vulnerabilities, thereby effectively
reducing the security of the socio-technical system to the security of its compo-
nent technical system, as it was believed a few decades ago.

In this vein, I defined four cybersecurity paradigms, namely the criteria
that inspire the security measures for technical systems, how such measures are
designed and exposed to the users of the technical systems. These were demo-
cratic security, dictatorial security, beautiful security and invisible security [2].
I am sure that more paradigms exist and just wait to be discovered. For exam-
ple, another one could come from explainable security, due to my colleagues
Viganò and Magazzeni. This invited paper will review such paradigms from
the standpoint of interaction design and, in particular, of interactional freedom.
More precisely, “freedom of interaction is based on the exploitation of a range
of perceptual motor skills by offering the user myriad ways to reach the prod-
uct’s functionality” hence, for example, in an “alarm clock prototype, freedom of
interaction is realized by offering myriad ways to set the wake-up time, instead
of a fixed sequential procedure” [19].

2 Democratic Security

Measures of democratic security strongly suffer the human factor. A somewhat
tricky vulnerability was suffered by one of the early functions to share a file
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saved on a cloud storage system [13]. When a user generated a link that would
grant access to the file, that link did not come with a clear policy as it does
today, when we can normally decide who the link will work for and for how long.
Therefore, when the user shared, in some way, the link with their peer, they were
not aware of the full range of consequences. In particular, the file may suffer the
following confidentiality vulnerabilities:

– The peer inadvertently put the link in the search bar of their browser rather
than in the address bar, causing the connected search engine to index the
link, hence enabling various third parties to access the file following some
search.

– Moreover, if the file was a text file containing a clickable link to a third party
address, humans who clicked on that link caused referral data including the
link to be sent to the third party, which was then enabled to access the file.

Technical fixes for this issue were released rather quickly, arguably because
addresing the vulnerability purely at the human level would have been much
more daunting and time consuming, if at all possible. This is contrary to the
unbelievable news that “Some nuclear facilities do not change the default pass-
words on their equipment” [1], which gives us no alternatives to a clear twist in
people’s mentality on cybersecurity and approach to it.

Looking at democratic security from the standpoint of interactional freedom,
it is clear that humans have a lot of that freedom, hence the very name of the
paradigm. This observation recalls the example seen above, when a user was
allowed to choose a silly password, a likely exaggeration of freedom through their
interaction with the technology. As I have pointed out elsewhere, democratic
security seems to be the best established paradigm around us, and this perhaps
simplifies a conclusion that we ought to move forward, somewhere away from it,
by reducing the level of interactional freedom.

This is itself challenging because it is also known that “For successful human-
human communication the expression of emotion is essential” [19], hence we
need to strike a difficult balance to avoid frustration in the users of the security
measures, yet ensuring that the freedom that is left does not undermine the mea-
sures. Whether that balance can be achieved in general remains an outstanding
issue.

3 Dictatorial Security

As it can be gathered by the name, measures of dictatorial security embrace the
human element in quite the opposite way as those of the previous type do. It
follows that interactional freedom is reduced in this case, ideally zeroed entirely.
All of us will have experienced that the mentioned NIST guidelines [10] forcing
us to choose passwords that are long enough and contain lowcase, uppercase
and special symbols feel rather dictatorial and may be received like a limitation
to our creativity. Clearly, those constraints bring the intangible benefit of a
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robust password, thereby minimising the vulnerability of using weak secrets for
authentication measures.

Psychologists tell us that, through our social relations, “we need interac-
tional freedom to control whether and how we interact with strangers”, as well
as “we need to be socially included” [9]. These are rather opposed priorities in
general, and there is debate on which one prevails and when. I tend to believe
that, most likely, our choices are the outcomes of some combination of both
interactional freedom and social inclusion and, further, I hypothesise that this
also applies with relatively no jerks to human-to-technology interactions. All
the more do I emphasise this hypothesis because technology is becoming more
and more an obvious means today, in fact merely a means, and even human-to-
technology interactions may be perceived as human-to-human through technol-
ogy ones eventually. This obviously requires investigation to be confirmed, but
is not just looking at whether the user of an online bank account perceives the
bank as some technological entity rather than as the human bank manager that
used to be the peer in the past. It is also hinting at our century as the definitive
milestone where humans and technology cross fade, also thanks to the progress
in Artificial Intelligence. As a result, the need for social inclusion may easily
stretch over technology in general, as it may already happen for teenagers and
their favourite videogames.

Following such arguments, the generality of dictatorial security is even more
questionable. Consider a user who connects to a remote host via SSH for the
first time. The system will probably display something like this:

The authenticity of host www.dmi.unict.it can’t
be established.
RSA key fingerprint is
2b:05:ff:64:91:60:24:3a:6e:83:c7:7a:c5:85:0a:41.
Are you sure you want to continue connecting
(yes/no)?

For this authentication measure to be made dictatorial, the concluding question
would have to be avoided, and the protocol should abort. It would be similar to
a browser refusing to render a web site because it could not verify the server’s
certificate key chain up to a trusted root certificate authority. On one hand, the
sense of frustration imposed to users would be out of the question, with their
consequent impulse for alternative ideas, including less secure ones, to accomplish
the original goal of reaching the server. On the other hand, the challenge would
be for us to equip the protocols with secure key certification sub-protocols to
deliver the RSA key certificate to the caller before the actual handshake protocol
initiates. This is such an extreme problem on the large scale that big-brother
like heuristics as Certificate Transparency are getting momentum.

An additional potential limitation of dictatorial security is conceptual and is
due to its pervasiveness. In particular, it is not entirely clear how to make all
security measures follow this paradigm, if we define a sort of recursive scenario
such as the very configuration of the security measures. Then, either we defeat
the paradigm and leave the configuration choices to the system administrator’s
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experience and, ultimately freedom, or we must admit the philosophical extreme
that the technical systems can self-configure themselves.

4 Beautiful Security

If democratic security feels like a jungle of libertarianism and dictatorial security
sounds like an impractical route, we may then recall humans’ innate quest for
beauty. Due to some inscrutable reasons, humans are attracted to what they find
beautiful—or, vice versa, there exists some features that humans are attracted
to for inscrutable reasons, and such features are normally addressed as beautiful.
This is the fundamental hypothesis of beautiful security.

Beautiful security [2,8] wants to be the all-encompassing paradigm of a posi-
tive user experience, hence something that humans want to comply with by their
very nature (indicating both the humans’ and the measures’ natures in fact!).
It may be understood as a more general, in terms of scope, and profound, in
terms of human involvement, interpretation of the ploys of incentives, rewards
and gamification. While these aim at tangible baits such as remuneration and
fun, beauty may seem less tangible but may turn out more decisive in several
circumstances, and history is full of countless examples to confirm the claim.

Beautiful security may be understood as more widely-scoped than tradi-
tional usable security, whose original aim was to make technical systems and
their accompanying measures easy to learn by means of mere use, even with-
out manuals. Although it is noticeable that usable security has gained a wider
interpretation, this is certain not to cover the specific element of beauty. It fol-
lows that, in general, beautiful security is logically interpreted as a guarantee
that humans will want to comply with a security measure that is beautified,
while this cannot be concluded in general for a measure that is usable because,
for example, users may still want to experience specific choices driven by sheer
curiosity (similarly to a kid who drops a glass to experience the consequences).

Another closely related notion is positive security [14], a general one that is
not meant to be exclusively applicable to the cyberspace. It aims well beyond
“protecting things we care about from negative consequences” and “enables us to
engage in activities we value, and have experiences we cherish” [15]. It is perhaps
more abstract than beautiful security, avoiding to pinpoint what the key positive
elements could be, which, by contrast, beautiful security identifies to be beauty.

My favourite example of a measure that is beautifully secure is authentication
to the web interface of WhatsApp, which requires scanning by the smartphone
that hosts the chats the QR code that a browser displays. I always argued that
this is extremely more beautiful than, for example, tapping a long alphanumeric
string in the smartphone [2]. However, I did not fully understand why until my
colleagues and I distilled out what seems to be the four essential dimensions
of beautiful security [6]: simplicity, convenience, assurance and modernity. The
subjectivity element of beauty becomes more apparent through all four. In short,
simplicity refers to easy of use, convenience to minimising time and effort, assur-
ance to getting what is expected, including security, and modernity to adopting
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something trendy at present. It seems natural to argue that QR-code scanning
embodies all dimensions, especially with respect to a long tap-in effort.

The question then arises if we can conceive a sort of beautification procedure,
a way to take a security measure and transform it to make it beautiful. A dull
way to do this would be to empty the measure altogether, a strategy that would
be notably detrimental to security. It follows that any such procedure ought to
combine beauty and security, and it still remains to be seen how to accomplish
this in general. Fassl and Krombhoz focus on the particular measure that enables
two people who meet up to authenticate their conversations taking place through
their favourite chat system on their smartphones [12]. It is noted that the way
this currently works, namely by showing their respective key fingerprint to each
other from their phones, may suffer a number of potential barriers. Further to
that, I do not believe that this measure is very popular and argue that it could be
made more beautiful in many ways, notably by enabling each phone to scan the
other one’s fingerprint and ultimately confirming success by some audiovisual
cues.

There is interactional freedom in beautiful security. In other words, it is as
if engineers and scientists did not need to put too much effort in limiting that
freedom and, rather, concentrated on how to make the interaction beautiful. In
consequence, each user would self-limit their freedom of interaction by being
attracted to compliance by the beauty. This is a clear metaphor also for what
happens through traditional social relationships. In this light, it seems well worth
continuing to deepen our understanding of what constitutes beauty through
security measures.

5 Invisible Security

If beautiful security seems to stand at the early kilometres of a long journey,
what if we did not need to worry about how security measures are received
by their users? This is what invisible security postulates, namely that security
measures are invisible and cannot be even perceived by their users although they
are in place and perfectly working. The fundamental hypothesis that is leveraged
here is that there are no such issues as deliberate or indeliberate human non-
compliance with a security measure if that measure is invisible for the users.

I observed that invisible security has been known for a while, at least ever
since Apple hid a fingerprint reader under the screen activation button of its
iPhone 5s. By leveraging the widely established practice that a phone needed to
be activated manually prior to being used, Apple found an effective way to make
the authentication measure invisible in practice. By contrast, previous routine
was to enter a PIN after screen activation.

Christianson, Viganò and I took this paradigm and tried to apply it to airport
security, specifically to flight boarding [4]. By leveraging biometric authentication
through an electronic ID, we conceived boarding-card-less boarding, with the
result that, at the gate, a database would inform the airport flight attendant
that the current passenger were authenticated and authorised to board the flight
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that currently stands at the gate. Fewer checks would remain to be performed by
the attendant for each passenger, ultimately minimising the attendant’s chances
of error or of being targeted by malicious activity letting passengers travel to
wrong (arbitrary?) destinations [16].

Later, I took invisibility to an extreme and conjectured that simply embed-
ding an authenticated, biometric sample such as a fingerprint in the electronic
ID would allow us to entirely dispose with the attendant’s role for a human
being and to transform it into a mere technical system [2]. Precisely, the passen-
ger would scan their eID and fingerprint, then the technical system would match
the live biometric sample to the stored one to authenticate the person and would
finally check if that person were correctly registered for the flight at the gate. In
principle, no human attendant would be needed anymore, hence zero human risk
from that side (but some supervisor would be wise to keep anyway). I was then
pleased to find out that Dubai Airport tested an even more developed version,
which would make the security measures invisible for passengers too [11]. By
storing passengers’ IDs in the airport databases (if this is ever conceivable to
scale up to all worldwide travellers), passengers would no longer be required to
hand out or even carry their IDs. A fish tunnel hiding cameras was built so that
passengers who were going through it to reach the gate would be attracted to
the fish and stare at them. Here, cameras would recognise individual faces and
match them to the database for authentication and authorisation to the flight.
The security measures are made invisible for both participants in this prototype.

It is evident that interactional freedom is not an issue with invisible secu-
rity. Even the potential frustration that dictatorial security may bring is not
applicable here, either. We cannot be frustrated by whatever we cannot perceive
and, moreover, I think that having to walk in a predetermined airport route for
such invisible security measures to work would not be an additional element of
frustration because people are already accustomed to that practice while they
travel through airports.

There is a notable biometric invasion for invisible security to make sense.
Whether this is going to be acceptable in the future on a large scale is hard
to tell, but I perceive signs of welcome at present, perhaps due to the current
regulations, at least at the European level. This is far from implying that every
security measure can be made invisible today! Moreover, invisibility may have
negative influences on people’s general trust in the very technologies that the
measures are meant to secure. For example, it would be very relevant to assess
whether the passengers who boarded their flights through the fish tunnel felt that
the procedures had been secure enough. Trust tends to reach a plateau and then
root after a lapse of time. So, if the fish tunnel ever becomes a standard, then I
argue that only after some time would passengers no longer be concerned about
it by leveraging the general trustworthiness of the overall boarding experience.
This is the same, for example, as with trust on safety—the early patients of
X-ray machines as well as the early drivers of cars may have been concerned
that they could die, but this is no longer a perceived issue today.
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6 Explainable Security

Viganò and Magazzeni warn us that security measures ought to be adequately
explained at all levels [18]. Intelligible explanations should be oriented at the
expected users in particular, so as to favour acceptance of the measures to the
users and, in turn, contribute to user compliance with the measures. Therefore,
as seen with the other paradigms, explainability here works as another essential
hypothesis—to win the users’ compliance by favouring their understanding of
what is going on and what is being accomplished. It makes perfect sense to me
that, if tools such as written terms of use, privacy policies and more developed
ones manage to deliver the relevant explanations to users, then users’ attention
and, ultimately, willingness to comply will be favoured.

Also in this case, I do not question the essential hypothesis but its precon-
dition, namely the applicability of the paradigm. The real challenge is how to
make explanations viable in general, namely whether the paradigm scales up.
While this is the same applicability and scalability challenge noted with all other
security paradigms, it is clear that explainability may not work well with a large
number of users, such as with airport passengers and attendants, unless we find
some technical systems to boost it on a large scale. Such tools can be expected
to be very dependent on the specific application scenario, for example, we are
used to receiving explanations about our trip by audio airport announcements,
but these may not be effective in other scenarios.

7 Case Study

Let us consider a Security Operation Centre, normally addressed as a SOC.
It is the ultimate line of defence against malicious attacks and typically is a
separate institution whose core business is the detection, prevention and response
to attacks to the customer institutions. It leverages cutting-edge technologies,
including the most modern incarnations of Artificial Intelligence. Here, I see a
SOC macroscopically as a socio-technical system whose main functional property
is to provide its services and enhance the security measures of the customers.

Of course, a SOC is an obvious target of malicious activity itself. Also for this
reason, none of its technical systems is fully independent from human scrutiny
and, to confirm this, many job positions as a SOC analyst are available. With this
case study, I conjecture various applications of the paradigms discussed above,
to some degree. A company called CyberSecurityPlanet installs their new CSP
system in the SOC, and the following story summarises the benefits, not only
in terms of improved attack detection, prevention and response capabilities but,
remarkably, in terms of the overall user experience.
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Improved attack detection

Peter was approaching his shift to monitor dozens of monitors in the
ExtremeProtection SOC. He frowned: “And. . . how many logs will I have
to decipher today! And. . . how many of them are going to be false and
such a waste of time!”. His phone rang, it was Dorothy, his shift super-
visor: “Peter, great news today! These folks from CyberSecurityPlanet
finally installed their new CSP system and. . . you’ll be able to interact
with it and. . . guess what, they say you’ll be able to get much more
accurate outputs with dramatically fewer false alarms, can you believe
it?!”. Peter burst into laughter: “Hahaha, not a tiny bit, but I’ll take a
look, goodbye!”. He then opened the new CSP system and was prompted
by a message he had never seen before:

Customer WannaBeSecure.
Event1: 7:58a.m. opening of server cabinet 3
Event2: 8:01a.m. account John runs PowerShell from HR
Event3: 8:02a.m. account Taylor launches GreatDB with user
privileges. Please select any risky correlations. Maybe 1 and 2?

Peter froze. Excited at getting such a straight question after years of
boring frustration but mostly pensive: “Well, I remember John doing
some admin level stuff before. Even early in the morning. Hey but. . . last
week’s headlines had it, yes, bingo!”. He hurried up to confirm Event1
and Event2 were related, then the tool output:

Customer WannaBeSecure.
Attack detected: physical intrusion in HR, likely to be insider’s
as cabinet’s digital lock is responsive; John’s account blasted.
Severity: critical

The previous week’s news had been that WannaBeSecure was experienc-
ing severe strikes due to new work conditions, and Peter was experienced
enough to sense internal threats. Peter clicked to flag the attack to the
response team immediately, then sat back and rang Dorothy to tell her
the amazing story.

It can be appreciated that the new CSP system is less dictatorial than the
previous one, hence more democratic. Still, the level of interactional freedom that
it grants Peter, albeit increased, is limited to choosing from (intelligently defined)
options. As a result, the attack detection capability of the SOC is more engag-
ing hence perhaps less vulnerable to internal user distraction and is ultimately
improved. Elements of beauty that can be identified are simplicity, convenience
and assurance, while modernity can be added by elements of augmented reality,
as we shall see below. The inherent risk that Peter makes a mistake through his
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judgment of external conditions to reinforce the learning by the tool is thwarted
by the fault-tolerance mechanism that sees the detection team and the response
team checking each other’s findings.

Improved attack prevention

Peter was amazed on the phone. Five minutes of excitement, laughs
and glittering eyes. “Peter, they even say this damn new thing even
anticipates relevant issues and predicts over half the attacks that will
happen if you don’t react beforehand with something so that they will
actually not happen!”. Peter’s laugh was half-mouth this time. And the
system prompted:

Customer StrongAsWeAre.
Event: 8:21a.m. account Sally from Cantine runs unprivileged
process JohnTheRipper reaching 98
History: Previous similar events never exceeded 2 consecutive
minutes.
Attack prediction: Sally is brute-forcing relevant hashes.

Peter was appalled. He killed the process and was going to ring Sally, the
customer’s contact, for explanations. But the CSP system let him do this
with a click through a predefined chat message, and Sally confirmed with
a “not me!”. So, Peter flagged it as a suspicious intrusion attempt and
clicked to involve the response team again. His colleague Donna took it
on.

Here, it is clear that CSP embodies the latest Artificial Intelligence tech-
niques. However, beside that, it can be appreciated that Peter’s role remains
essential, and this makes him feel comfortable with his job. Once more, the sys-
tem balances the democratic and the dictatorial approaches quite nicely. The
system also authenticates Sally using some invisible security measures, which
Peter finds convenient while he quickly moves on to the next action. So, ele-
ments of beautiful security and of invisible security intertwine.

Improved attack response

Donna had experienced hundreds of such invites, the only difference
being that they used to arrive via phone. The new system told her
everything she needed to know. Still, she was going to have to connect to
StrongAsWeAre via VPN but first brief Sally on the response activities.
How boring. Then, she would have had to kill off Sally’s main process
and reset Sally’s account to ask for a new password setup at subsequent
login. Donna knew she had to look up the VPN credentials somewhere
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(but where were they?!) then to enter that weird control panel where
it seemed that they had done every effort to hide the password reset
button. How annoying. And Sally! One of the most unpleasant ever. She
was considering calling her sysadmin friend at StrongAsWeAre to ask
the favour of. . . and the system beeped:

Customer StrongAsWeAre.
Suggested action: full account reset. Click here to inform user
and launch reset job.

Donna clicked in amazement — and even got a reply that all processes
were smooth, including escalation to Sally’s supervisor if her password
would not be reset in due time. All super-fast! Following those few clicks
and system responses, Donna thought: “Thank heavens, no phone calls,
no Sally so far!”.

This paragraph shows another instance of the integration of several technolo-
gies. First of all, these include all essential ones to let Donna carry out her tasks.
Of course, such integration has to be secure so it presupposes a number of mea-
sures that are kept invisible. The interaction continues to exhibit a good balance
between democratic and dictatorial security, so that some interactional freedom
is there, as well as the dimensions of beautiful security, except for modernity.
In this particular case, the technology also tries to minimise the possible stress
induced by social relations at the professional level by porting these onto the
technical system, an outcome that may not be achievable in general.

Improved user experience

The day after, Donna went to work at ExtremeProtection thinking that
it was time for her to look for a new job. OK, things had become way
smoother and faster, yet she just disliked the workplace and felt oppressed
by being surrounded left-to-right by that array of monitors: “Yes, I’ll
speak to the line manager. A more managerial position or goodbye!”.
Strangely enough, she was given a pair of smart glasses upon entrance.
Some explanations followed and, there she was, wearing a HoloLens pair
during her shift. It was like entering a parallel world. She finalised a
response activity by staring at a couple of innovative, visual forms and
confirming them by a blink and a mouse-click. The HoloLens coloured
items according to urgency, and a short beep would come up at different
frequencies when she stared at a specific item, depending on its urgency.
Perhaps it required a couple of days to fully adjust to but, all in all, it
turned out to be much less tiring than the traditional hunt for relevant
information through those damn monitors, when she had to prioritise for
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herself what to do first. “My friends will hear my story tonight!”, she
mumbled that afternoon on her way home. What about her new job?

This final part emphasises the improvements to the overall user experience for
Donna thanks to the use of a pair of smart glasses. These bring a clear element
of modernity, thereby effectively contributing to making the security measure of
attack response more beautiful than before. It is also apparent where and how
explainable security plays its role—Donna could not have properly interacted
with the new, enhanced system without an adequate briefing.

8 Conclusions

This paper summarised my understanding of five modern paradigms to app-
roach cybersecurity problems and, correspondingly, build the measures to face
those problems. While democratic and dictatorial security seem the two sides
of the same coin, it is clear that they ought to be combined to some extent. It
means that we should build security measures that ensure an appropriate level of
interactional freedom to the users of the technology that the measures intend to
secure, otherwise the human element may source dramatic risks and determine
consequent vulnerabilities. Beautiful security and invisible security appear to
be more modern. The former is inherently affected by subjectivity, but resolves
the issue of making people want to comply with the way security measures are
designed and implemented. By contrast, invisible security is less subjective but
may hinder people’s trust perceptions in the short term.

All these seem reasonable to be intertwined together to some extent, with
the ultimate aim of strengthening the socio-technical system that combines a
core technical system with its human users. All paradigms may benefit from
a conjugation with explainable security, which means that explaining how the
security measures work may favour the expected form of user engagement, even
by raising awareness through invisible security measures. Interactional freedom
was the lens to discuss the paradigms. Some level of freedom was appreciable in
all cases, except with invisible security, which, however, makes the measures not
apparently there. The arguments developed and the examples provided above
form my own way of addressing the research question. It is clear, however, that
more technological developments as well as more experiments with human sub-
jects would be needed to fully support such arguments. This is a resource effort
that I deem indispensable to resolve the tedious and infamous attack-fix-loop
practice that the world is trying to leave behind. Making that effort will turn
out less expensive, in the long term, than not making it.
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DCS and SnT, University of Luxembourg, 6, Avenue de la Fonte,
4364 Esch-sur-Alzette, Luxembourg

{malik.alsahli.001,alex.borgognoni.001}@student.uni.lu,
{luan.cardoso,hao.cheng,christian.franck,johann.groszschaedl}@uni.lu

Abstract. The U.S. National Institute of Standards and Technology is
currently undertaking a process to evaluate and eventually standardize
one or more “lightweight” algorithms for authenticated encryption and
hashing that are suitable for resource-restricted devices. In addition to
security, this process takes into account the efficiency of the candidate
algorithms in various hardware environments (e.g. FPGAs, ASICs) and
software platforms (e.g. 8, 16, 32-bit microcontrollers). However, while
there exist numerous detailed benchmarking results for 8-bit AVR and
32-bit ARM/RISC-V/ESP32 microcontrollers, relatively little is known
about the candidates’ efficiency on 16-bit platforms. In order to fill this
gap, we present a performance evaluation of the final-round candidates
Ascon, Schwaemm, TinyJambu, and Xoodyak on the MSP430 series
of ultra-low-power 16-bit microcontrollers from Texas Instruments. All
four algorithms were explicitly designed to achieve high performance in
software and have further in common that the underlying primitive is
a permutation. We discuss how these permutations can be implemented
efficiently in Assembly language and analyze how basic design decisions
impact their execution time on the MSP430 architecture. Our results
show that, overall, Schwaemm is the fastest algorithm across various
lengths of data and associated data, respectively. Xoodyak has benefits
when a large amount of associated data is to be authenticated, whereas
TinyJambu is very efficient for the authentication of short messages.

1 Introduction

The emergence and rise of cryptographic permutations is widely seen one of the
most exciting developments in the field of symmetric cryptography during the
past 20 years. Formally, a cryptographic permutation is defined as a bijective
mapping within Z

b
2 (the bitstrings of length b), designed to behave as a random
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permutation, i.e. a permutation drawn uniformly at random from the set of all
possible permutations that operate on b bits [5]. The width b of a permutation
can range from 100 (e.g. Photon [17] and other cryptosystems that target the
embedded domain) to 1600 (e.g. Keccak [6]). Permutations are highly flexible
and universally-applicable primitives, similar to block ciphers, and can be used
to construct e.g. hash functions, message authentication codes, pseudo-random
bit-sequence generators, stream ciphers, and even algorithms for authenticated
encryption [3,5,7]. However, in contrast to a block cipher, a permutation is an
unkeyed primitive, i.e. it does not use any key and, therefore, does not have to
perform a key schedule. Another difference is that a cryptographic permutation
is usually designed to be efficient only in the forward direction since the inverse
permutation is (normally) not needed. In recent years, permutations have also
served as building block for the design of “advanced modes” that cover the full
functionality of the symmetric portion of modern security protocols. Examples
for this relatively new line of research include Blinker [26], the Strobe protocol
framework [18], and Stateful Hash Objects (SHO) [23].

Permutations are especially suitable for lightweight cryptography, which can
be very generally defined as “cryptographic primitives, schemes, and protocols
tailored to (extremely) constrained environments” [16]. Examples of such envi-
ronments include RFID tags, miniature sensors and actuators, and numerous
other kinds of devices that form part of the Internet of Things (IoT) [32]. The
U.S. National Institute of Standards and Technology (NIST) is currently in the
process of standardizing lightweight cryptosystems, in particular cryptographic
hash functions and algorithms for Authenticated Encryption with Associated
Data (AEAD) [20]. Permutation-based designs perform extremely well in this
standardization, which is evidenced by the fact that 16 out of 32 s-round can-
didates, and four out of the ten candidates in the third and final round, use
a permutation as low-level primitive [22]. The four permutation-based designs
in the (currently still ongoing) final round of NIST’s standardization effort are
Ascon [15], Sparkle [2], TinyJambu [31], and Xoodyak [12]. However, the
finalist TinyJambu is a special case since it uses a keyed permutation and can
also be classified as a block-cipher-based design (like in [22]). The width of the
permutations ranges from 128 bits (TinyJambu) over 320 bits (Ascon) up to
384 bits (Sparkle384, Xoodyak). Sparkle is a classical Addition-Rotation-
XOR (ARX) design, while the other three permutations may be categorized as
“AndRX” variants, i.e. they generate non-linearity via logical AND operations
instead of modular additions.

The evaluation of candidates for NIST’s lightweight cryptography standard
takes into account a number of criteria, among which security and performance
on software and hardware platforms are particularly important [22]. Regarding
software performance, the official NIST document on submission requirements
advised the algorithm designers to “consider a wide range of 8-bit, 16-bit, and
32-bit microcontroller architectures” [20, Sect. 3.4]. For most of the final-round
candidates, optimized implementations with highly-tuned Assembly segments
for the performance-critical parts have been developed for 8-bit and 32-bit plat-
forms, most notably the AVR ATmega [19] and ARM Cortex-M3/M4 [1] series
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Fig. 1. Comparison of the ten fastest second-round AEAD candidates for encryption
of a message with a length of 16, 64, and 1024 bytes (without associated data) on an
ARM Cortex-M4F microcontroller. The value above each bar is the encryption speed
(in cycles per byte) for a 1024-byte message. For each candidate, the implementation
with the best encryption time for 1024 bytes was chosen.

of microcontrollers. These Assembly implementations either come directly from
the designers or have been contributed by other developers [30]. Hence, there
exist now a large number of implementation results for these two platforms, in
particular execution time and binary code size. Detailed benchmarking results
have been published by the NIST lightweight cryptography team [21] and some
academic research groups, see e.g. [24]. The four permutation-based algorithms
are highly efficient in software; for example, Sparkle, Xoodyak, and Ascon
take the top three positions on ARM Cortex-M4F according to NIST’s official
second-round benchmarking results1, see Fig. 1. While the efficiency of the ten
finalists on 8-bit and 32-bit architectures is well understood, relatively little is
known about their performance and binary code size on 16-bit platforms. The
only relevant paper we became aware of was published very recently by Blanc
et al. [8], who benchmarked reference and optimized C implementations of the
final-round candidates on a 16-bit MSP430F1611 microcontroller.

The 16-bit MSP430 platform from Texas Instruments is a particularly inter-
esting target for the benchmarking of lightweight cryptosystems, mainly due to
two reasons. First, MSP430 microcontrollers were from the ground up designed

1 At the time of writing this paper, the third (i.e. final) round of evaluation was still
going on and NIST had not yet released the round-3 benchmarking results.
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with the goal of low power dissipation, taking into account not only the active
processing power, but also power in stand-by (resp. sleep) mode, which makes
them ideal for many kinds of battery-operated devices, e.g. miniature wireless
sensor nodes [14]. Recent members of the MSP430 family support up to seven
different low-power modes with fine-grain control over active components and
instant wake-up thanks to a sophisticated clock system. Furthermore, MSP430
microcontrollers were among the first mass-market IoT platforms that became
equipped with Ferro-electric Random Access Memory (FRAM), a non-volatile
form of memory combining properties of SRAM with properties of flash within
a single memory space, which can be flexibly (re)configured to serve as storage
for program or data [25]. More concretely, FRAM features relatively fast write
accesses, low power consumption, and extremely high reliability and endurance
(similar to SRAM), but is non-volatile and, thus, able to hold its content when
being powered off. However, in contrast to flash and EEPROM, FRAM does
not need high supply voltages for write operations, which is a major advantage
for e.g. data-logging applications. Furthermore, FRAM makes it easy to switch
from active to sleep mode and vice versa, thereby enabling energy savings even
for short periods of inactivity. Texas Instruments markets the MSP430 line as
“ultra-low-power” microcontrollers [29] to emphasize their potency for battery-
operated devices. The fact that such devices are widely used in security-critical
applications (e.g. sensors for medical monitoring) makes a strong case to assess
the performance of the NIST finalists under ultra-low-power regimes.

A second reason as to why MSP430 microcontrollers are an interesting plat-
form for the benchmarking of NIST’s candidate algorithms relates to the basic
characteristics of the underlying instruction set architecture. The MSP430 is, in
essence, a CISC-like memory-to-memory architecture [27], whereas virtually all
other benchmarking platforms (especially AVR and ARM) are more RISC-like
and based on the load/store paradigm. All data processing instructions of the
MSP430 architecture do not necessarily need to have the operands in registers
but can also operate directly on data held in memory (without an intermediate
register holding) [28]. This contrasts with RISC architectures, where operands
have to be first loaded from memory to registers before an instruction can be
executed on them. To a certain extent, the ability to directly process data in
memory compensates for the (relatively) limited register space of the MSP430
architecture2. It is exactly these architectural differences that are interesting in
the context of benchmarking. Namely, as argued in [4,9], a lightweight crypto-
graphic algorithm should be fast on a broad range of microcontroller platforms
with highly diverse and even divergent characteristics. Collecting benchmarks
on a (somewhat) CISC-based architecture like the MSP430 makes sense since
the current portfolio of benchmarking platforms is solely RISC-based and does
not represent the high diversity of microcontrollers in the IoT.

2 Out of the total of 16 general-purpose registers, only 12 can actually be used by the
programmer, which means the usable register space of MSP430 microcontrollers is
even smaller than that of the 8-bit AVR architecture (192 vs. 256 bits).
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In this paper, we analyze and compare the performance of the permutation-
based AEAD algorithms Ascon, Schwaemm, TinyJambu, and Xoodyak on
a 16-bit MSP430F1611 microcontroller. However, in contrast to the recent work
of Blanc et al. [8], we use carefully-optimized Assembly implementations of the
underlying permutations for our evaluation. We developed all implementations
from scratch, whereby we aimed for a reasonable trade-off between execution
time and code size. Furthermore, we do not only report benchmarking results
of the four algorithms for different lengths of associated data and data, but we
also aim to analyze and explain why the algorithms perform differently on the
MSP430 platform. More concretely, we study how basic design decisions of the
underlying permutation, such as the rotation distances or the locality (i.e. the
ability to operate on only a part of the state at a time3) affect their execution
time. To this end, we developed a special tool that is able to simulate MSP430
instructions and gather detailed information about the execution profile of the
permutations, e.g. the number of memory accesses. We use this information to
compare the (relative) amount of register-to-register operations for each of the
permutations, the proportions of clock cycles they spent for rotations and non-
linear operations, as well as their throughput in terms of cycles per state-byte
and per rate-byte, respectively. We observed significant differences in execution
time, not only for the permutations but also for the full AEAD schemes. When
taking different lengths of associated data and plaintext (resp. ciphertext) into
account, Schwaemm is the best overall performer, mainly because it combines
a well-optimizable permutation with an efficient mode of operation.

2 MSP430 Architecture

The MSP430 architecture uses the von-Neumann memory model, which means
instructions (i.e. code) and data share a unified address space. There is a single
address bus and a single data bus connecting the microcontroller core with the
RAM, non-volatile memory (flash or FRAM), and peripheral modules. MSP430
microcontrollers have a total of 16 registers, each 16 bits wide, of which 12 are
general working registers, and the remaining four serve a special purpose: r0 is
the program counter, r1 is the stack pointer, r2 is a status register, and r3 is
used to generate common constants like −1, 0, 1, 2, 4, 8. The instruction set is
rather minimalist and consists of only 27 core instructions that can be divided
into three categories: double-operand instructions (which overwrite one of the
operands with the result), single-operand instructions, and jumps. Most of the
instructions can not only operate on 16-bit operands, but also on bytes (more
concretely, the lower bytes of 16-bit operands) when the instruction is suffixed
by .b. The instruction set is orthogonal and supports seven addressing modes

3 As argued in [4], the ability to work locally (i.e. on a part of the state at a time) is
an important design criterion to achieve good efficiency on microcontrollers whose
register space is too small to store the full state (high locality reduces the need to
move state-words between registers and RAM). However, efficiency desiderata like
locality have to be carefully balanced with security desiderata like diffusion.
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altogether, including modes for direct memory-to-memory transfers without an
intermediate register holding [28]. Depending on the addressing mode(s), the
latency of double-operand instructions can vary between one clock cycle (when
both source and destination operand are held in registers) and six clock cycles
(when operands and result are in RAM or non-volatile memory).

As explained in the last section, the MSP430 architecture is more CISC-like
than e.g. AVR or ARM since it allows one to execute instructions on operands
held in RAM or flash without intermediate register holding. For example, the
instruction add.w @r4+, 8(r5) adds two 16-bit words, whereby register r4 and
r5 contain the addresses of the operands (resp. result) instead of their actual
values. More precisely, the first operand is accessed through the indirect auto-
increment addressing mode, which means the value in r4 is a pointer that gets
automatically incremented by 2 after the 16-bit word at the target address has
been fetched. On the other hand, the effective address of the second operand
(and also of the result) is obtained using the indexed addressing mode, i.e. it is
the sum of the base address contained in register r5 and the offset of 8 (note
that in MSP430 assembly language, the destination of an instruction is always
on the right side). Consequently, two loads, an addition, and a store operation
are combined into a single memory-to-memory instruction, which (potentially)
saves not only code space but also execution time. On a RISC architecture like
ARM, such a sequence of operations requires four separate instructions in the
best case, and up to twice as much under register pressure. Namely, when all
registers are occupied, two registers need to be spilled to free up space for the
operands, which costs two push and two pop instructions. To some extent, the
ability to execute memory-to-memory instructions compensates for the limited
register capacity of the MSP430 architecture. However, since memory accesses
generally increase the latency of instructions, finding a good register allocation
is still very important to reach high performance.

Shifts or rotations of either 32-bit words or 64-bit words are essential oper-
ations of the four permutations we consider in this paper. However, contrary to
their ARM counterparts, MSP430 microcontrollers do not feature a fast barrel
shifter that would allow them to shift or rotate a 16-bit operand by several bits
at a time. Therefore, multi-bit shifts/rotates have to be composed of the single-
bit shift and rotate instructions supported by the MSP430 architecture; these
are rla.w and rra.w for arithmetic shifts, and rlc.w and rrc.w for rotations
via carry [27]. The execution time of shifts/rotations of 32-bit or 64-bit words
depends heavily on the shift/rotation distance, whereby the best possible case
is a distance of (a multiple of) 16 bits. Rotating a 32-bit or 64-bit word stored
in registers by 16 bits is usually free since it only requires adapting the order in
which the 16-bit parts are accessed in a subsequent operation. For example, an
operation of the form a = a ⊕ (b ≫ 16), where a and b are 32-bit words in the
register pairs r4,r5 and r6,r7, respectively, takes only two xor.w instructions
since the 16-bit rotation of b can be carried out implicitly : xor.w r7, r4 and
xor.w r6, r5. When a and b are 64-bit words, shifts or rotations by a multiple
of 16 bits, i.e. 16, 32, and 48 bits, can be performed implicitly.
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Listing 1. Macro for 1-bit left-rotation
of a 32-bit word.

1: QROL macro a0, a1

2: rla.w a0

3: rlc.w a1

4: adc.w a0

5: endm

Listing 2. Macro for 1-bit right-
rotation of a 32-bit word.

1: QROR macro a0, a1

2: bit.w #1, a0

3: rrc.w a1

4: rrc.w a0

5: endm

Listing 3. Macro for 8-bit left-rotation
of a 32-bit word (tr is a scratch regis-
ter).

1: QROL8 macro a0, a1

2: swpb a0

3: swpb a1

4: mov.b a0, tr

5: xor.b a1, tr

6: xor.w tr, a0

7: xor.w tr, a1

8: endm

Listing 4. Macro for 8-bit right-
rotation of a 32-bit word (tr is a
scratch register).

1: QROR8 macro a0, a1

2: mov.b a0, tr

3: xor.b a1, tr

4: xor.w tr, a0

5: xor.w tr, a1

6: swpb a0

7: swpb a1

8: endm

The second-fastest shift/rotation distances, after (multiples of) 16 bits, are
the ones that are close to multiples of 16 bits, e.g. 1, 15, 17, and 31 bits for 32-
bit words. Shifting a 32-bit word held in two registers by one of these distances
requires two instructions and takes two cycles, independent of the direction. An
additional instruction is necessary for a rotation, whereby again the direction
does not matter, i.e. a right-rotation needs the same number of cycles as a left-
rotation. Listing 1 and 2 contain Assembly macros (based on directives of the
IAR assembler) to rotate a 32-bit word held in registers one bit to the left and
to the right, respectively. A rotation by a distance of more than one bit can be
composed of these two macros, which confirms the importance of choosing the
rotation distances carefully since e.g. a rotation by three bits already costs 12
cycles. However, thanks to the swap-byte instruction swpb, a “shortcut” exists
for 8-bit left and right rotation as shown in Listing 3 and 4, respectively. These
macros use byte-wise instructions with the .b suffix that only operate on the
lower byte of a 16-bit register and set its upper byte to 0. Since the execution
time of both macros is only six cycles, they can accelerate rotations by certain
distances through a decomposition into 8-bit and 1-bit steps (e.g. a 7-bit right-
rotation can be performed by first rotating eight bits right and then one bit to
the left). Table 1 summarizes the execution time of optimized implementations
of rotations by distances between 1 and 15 bits. As explained earlier, a rotation
by a multiple of 16 bits is normally free (up to register-reordering). A rotation
by distances of n > 16 bits can always be reduced to a (n mod 16)-bit rotation
along with an implicit register-reordering in a subsequent operation.
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Table 1. Execution time (in clock cycles) for a rotation of a 32-bit and a 64-bit word
over a distance from 1 to 15 bits.

Rotation
distance (bits)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Time to rotate
a 32-bit word

3 6 9 12 15 12 9 6 9 12 15 12 9 6 3

Time to rotate
a 64-bit word

5 10 15 20 25 26 21 16 21 26 25 20 15 10 5

3 Overview of the AEAD Algorithms

In this section, we overview the main properties of the four AEAD algorithms
we consider in this paper, namely Ascon, Schwaemm, TinyJambu v2, and
Xoodyak. They all reached the final round of NIST’s lightweight cryptography
standardization project [22] and are well suited for small microcontrollers.

ASCON. Ascon is not only one of the 10 finalists of NIST’s standardization
project in lightweight cryptography, but was also selected for the final portfolio
of the CAESAR competition. The main AEAD instance of the Ascon suite is
Ascon-128 and offers 128-bit security according to [15]. It is based on the so-
called Monkey Duplex mode [7] with a stronger keyed initialization and keyed
finalization function, respectively, which means the underlying permutation is
carried out with an increased number of rounds. Said permutation operates on
a 320-bit state (organized in five 64-bit words) by iteratively applying a round
function p. The number of rounds is a = 12 in the initialization and finalization
phase, and b = 6 otherwise; the corresponding permutations are referred to as
pa and pb in the specification. Ascon-128 processes associated data as well as
plaintext/ciphertext with a rate of r = 64 bits, i.e. the capacity is 256 bits. The
hash function of the Ascon suite is a classical sponge construction.

Ascon’s round function p is SPN-based and comprises three parts: (i) the
addition of an 8-bit round constant cr to a 64-bit state-word, (ii) a substitution
layer that operates across the five words of the state and implements an affine
equivalent of the S-box in the χ mapping of Keccak [6], and (iii) a diffusion
layer consisting of linear functions that are similar to the Σ functions in SHA2
and performed on each state-word individually. The S-box maps five input bits
to five output bits and is applied to each column of the state, whereby the five
state-words are arranged upon each other. It is normally implemented in a bit-
sliced fashion using logical ANDs and XORs. The diffusion layer performs an
operation of the form x = x ⊕ (x ≫ n1) ⊕ (x ≫ n2) on each word of the state
with n1 ∈ {1, 7, 10, 19, 61} and n2 ∈ {6, 17, 28, 39, 41} [15].

SPARKLE. The Sparkle suite submitted to NIST consists of four instances
of the AEAD algorithm Schwaemm, targeting security levels of 128, 192, and
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256 bits, as well as two instances of the hash function Esch with digest lengths
of 256 and 384 bits. All instances are built on top of the Sparkle permutation
family, which consists of three members that differ by the width (i.e. the state
size) and the number of steps they execute. Schwaemm is based on the highly-
efficient Beetle mode of use [11], whereas Esch can be classified as a sponge
construction. The main instance of Schwaemm uses the 384-bit variant of the
Sparkle permutation, i.e. Sparkle384, with a rate of 256 bits. This variant is
also used for Esch256, the main instance of the hash function Esch. Besides
Sparkle384, there exists also a smaller and a larger version of the permutation
with a width of 256 and 512 bits, respectively (see [2] for details).

Sparkle384 is a classical ARX design, optimized for high speed on a wide
range of 8, 16, and 32-bit microcontrollers. The permutation is performed with
a big number of steps, namely 11, for initialization, finalization, and separation
between the processing of associated data and the secret message, while a slim
(i.e. 7-step) version is used to update the intermediate state. From a high-level
point of view, the permutation has an SPN structure and comprises three main
parts: (i) a non-linear layer consisting of six parallel ARX-boxes, (ii) a simple
linear diffusion layer, (iii) the addition of a step counter and round constant to
the 384-bit state. The ARX-box is called Alzette and can be seen as a small
64-bit block cipher that operates on two 32-bit words and performs additions
modulo 232, logical XORs, and rotations by 16, 17, 24, and 31 bits [2]. On the
other hand, the linear layer is, in essence, a Feistel round with a linear Feistel
function, followed by a swap of the left and right half of the state.

TinyJAMBU. TinyJambu is, in essence, a permutation-based variant of the
AEAD algorithm Jambu, which was a candidate of the CAESAR competition
but did not make it into the final portfolio. A distinguishing feature of Tiny-
Jambu is that it uses a keyed permutation and not a public (i.e. unkeyed) one
like the other AEAD algorithms. However, according to [22], TinyJambu can
also be viewed as a block-cipher-based design. In any case, the permutation has
a very short width of only 128 bits. There is no key schedule, which means the
key-bytes are directly added to the state. The specification [31] describes three
variants of TinyJambu with key lengths of 128, 192, and 256 bits, whereby the
main instance uses a 128-bit key with a 96-bit nonce. Its mode of operation is
based on the duplex construction [5], but offers better security in nonce-misuse
settings [31, Sect. 6]. Both the associated data and the plaintext/ciphertext are
processed at a relatively low rate of 32 bits, i.e. four bytes.

The 128-bit permutation of TinyJambu is essentially a Nonlinear Feedback
Shift Register (NFSR) whose feedback path consists of four bit-wise XOR and
a bit-wise NAND operation. The latter is the only non-linear component of the
whole permutation. Several rounds can be computed in parallel (e.g. 32 rounds
when the target platform is a 32-bit microcontroller), which benefits software
performance. The most costly part of the permutation are special shifts of the
form c = (a � n) ∨ (b � (32 − n)), where a, b, and c are 32-bit words and the
shift distance n ∈ {6, 15, 21, 27}. These so-called funnel shifts concatenate two
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32-bit words into a 64-bit value, shift this 64-bit value n bits left or right, and
return the 32 most-significant (left shift) or least-significant (right shift) bits as
result. Optimized software implementations combine 128 rounds (i.e. 128 state
updates) into a step and execute several steps in a loop. TinyJambu processes
associated data by iterating the step-loop five times (i.e. 640 rounds), whereas
plaintext/ciphertex is processed with eight iterations (i.e. 1024 rounds).

Xoodoo. Xoodyak is a highly versatile cryptographic scheme that is suitable
for a wide range of symmetric-key functions including hashing, pseudo-random
bit generation, authentication, encryption, and authenticated encryption. At its
heart is Xoodoo, a lightweight 384-bit permutation [13]. The Xoodyak suite
submitted to the NIST lightweight crypto project includes an AEAD algorithm
and a hash function; both are built on the Cyclist mode of operation [12]. To
perform authenticated encryption, Cyclist has to be initialized in keyed mode
with a 128-bit key and nonce, respectively, after which associated data can be
absorbed at a rate of 352 bits (i.e. 44 bytes), whereas plaintext/ciphertext gets
processed at a rate of 192 bits. On the other hand, when Cyclist is operated in
hash mode, the rate is 128 bits (i.e. 256 bits of capacity).

Xoodoo was inspired by Keccak [6] and Gimli [4] in the sense that the
state has the same size and is represented in the same way as in Gimli, though
the round function is similar to Keccak. Consequently, the state has the form
of a 3 × 4 matrix of 32-bit words, which can be visualized via three horizontal
128-bit planes (one above the other), each consisting of four 32-bit lanes. It is
also possible to view the 384-bit state as 128 columns of three bits lying upon
another (i.e. each bit belongs to a different plane). The Xoodoo permutation
executes 12 iterations of a round function of five steps: a column-parity mixing
layer θ, a non-linear layer χ, two plane-shifting layers (ρwest and ρeast) between
them, and a round-constant addition. Both ρ layers move bits horizontally and
perform lane-wise rotations of planes as well as rotations of lanes by 11, 1, and
8 bits to the left. On the other hand, in the parity-computation part of θ and
in the χ layer, state-bits interact only vertically, i.e. within 3-bit columns. The
θ layer mainly executes XORs and left-rotations by 5 and 14 bits. Finally, the
non-linear layer χ applies a 3-bit S-box to each column of the state, which can
be computed using logical ANDs, XORs, and bitwise complements.

4 Implementation Details

We developed optimized implementations of the four AEAD algorithms for the
purpose of benchmarking and performance analysis using a combination of C
and MSP430 Assembly language. More concretely, the underlying permutation
is the Assembly component, while the surrounding mode of operation (or mode
of use) is written in C. Most of the C source code is based on either reference
or optimized implementations provided by the designer teams, but we adapted
them to adhere to the low-level benchmarking API introduced in [10] to ensure
a consistent evaluation. The MSP430 Assembly code of the four permutations
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(which we developed from scratch) is based on a common set of special macros
for load/store operations (using different addressing modes), arithmetic/logical
operations, and shifts/rotations of both 32-bit and 64-bit operands. Our main
optimization goal for the permutations was to achieve a good trade-off between
execution time and (binary) code size, and therefore we refrained from certain
optimization techniques like full loop unrolling, which in the case of MSP430
often only achieve a modest reduction in execution time at the expense of an
enormous increase in code size. We devoted a similar amount of optimization
time and effort to each of the four permutations to guarantee a fair evaluation
and comparison of the performance of the AEAD algorithms.

The rotations performed by the four permutations are composed of macros
for 1-bit and 8-bit rotation. As mentioned in Sect. 2, a rotation by a distance
of n > 16 bits can be split up into a rotation by k = n mod 16 bits (taking into
account that a k-bit rotation in one direction equals a (16 − k)-bit rotation in
the other direction), followed by a rotation by a multiple of 16 bits, which can
usually be performed implicitly (i.e. as part of a subsequent arithmetic/logical
or store operation) and is, therefore, free. Since all four permutations use the
same set of macros for rotations and other operations on 32/64-bit words, the
optimization effort essentially boiled down to finding a good register allocation
strategy in order to minimize the number of memory accesses. This includes
both explicit accesses in the form of loads and stores, but also implicit accesses
that take place when executing instructions where one or both operands reside
in memory. A good register allocation is crucial for Ascon, Sparkle384, and
Xoodyak since the size of their state is too big for the register space of the
MSP430, which means the state has to be kept in RAM and parts of the state
are loaded to registers to reduce the latency of arithmetic/logical instructions
executed on them. However, TinyJambu’s 128-bit state can be entirely kept in
the register file throughout the computation of the permutation, in which case
still four registers remain available for e.g. storing intermediate results.

As mentioned before, the C implementations of the mode of operation/use
of the algorithms are largely based on source codes from the designers, but we
modified them to comply with the low-level API given in [10]. The high-level
API for authenticated encryption and decryption specified in [20, Sect. 3.5] can
be implemented as simple wrappers around the low-level functions. This high-
level API represents the plaintext, ciphertext, associated data, key, and nonce
as arrays of bytes, i.e. arrays of type unsigned char, while the permutations
operate on 32-bit or 64-bit words. It is, therefore, tempting to cast a pointer to
a byte-array to a pointer to an array of unsigned 32/64-bit integers, e.g. when
injecting a block of plaintext (or associated data) into the state. However, the
ISO C standard only permits such upcasting of an unsigned-char pointer to an
unsigned-integer pointer if the former meets the alignment requirements of the
latter (which are more strict), otherwise the result of the cast is undefined. In
the case of the MSP430 architecture, a 32-bit or 64-bit integer in memory has
to be 2-byte aligned, i.e. its address must be even [27]. As a consequence, the
casting of a pointer to a byte-array to a pointer to an unsigned-integer-array is
only allowed when the start address of the byte-array is even. If this condition
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is not satisfied, the plaintext (resp. associated data) blocks have to be copied to
an aligned buffer. Alternatively, it is, of course, always possible to process the
blocks of plaintext and associated data in a byte-wise way. In the following, we
briefly outline how we implemented and optimized the four AEAD algorithms
and their permutations for the MSP430 architecture.

ASCON. Ascon is well suited for platforms with small register space because
each of the two layers of the permutation needs, at any time, only a part of the
state (but never the complete state) in registers. Our MSP430 implementation
processes the substitution layer in 16-bit slices, i.e. a 16-bit part of each state-
word is loaded, processed, and stored, and these steps are repeated four times
in a simple loop. The linear diffusion layer is implemented in a straightforward
fashion, i.e. one state-word at a time. In summary, each of the five state-words
loaded from (and stored to) RAM twice per round, which means Ascon has
relatively high locality. As stated in the last section, the diffusion layer consists
of operations of the form x = x ⊕ (x ≫ n1) ⊕ (x ≫ n2); we tried alternative
implementation options, e.g. x = x ⊕ ((x ⊕ (x ≫ (n2 − n1))) ≫ n1), with the
goal of minimizing the execution time of the rotations.

Ascon’s mode of operation is fairly straightforward to implement on basis
of the low-level API from [10]. A peculiarity of Ascon is the byte-order of the
five state-words, which is big endian, while MSP430 and most other embedded
microcontrollers process and store 32-bit and 64-bit integers using little endian
representation. Therefore, the byte-order of 64-bit words that are injected into
(or extracted from) the state has to be reversed. Our implementation performs
the injection/extraction of words (including endianness conversion) in a byte-
by-byte fashion, which has the advantage that we do not need to pay attention
to the alignment of the byte-arrays in which the inputs/outputs are stored.

SPARKLE. Sparkle384, which is the permutation of the primary instance
of the Schwaemm family, has relatively high locality (though not as high as
Ascon) and can, therefore, be well optimized for MSP430. Our implementation
of the permutation processes the non-linear layer in a loop and evaluates one
ARX-box at a time. An ARX-box computation requires ten registers: four to
store two 32-bit state words, two for a 32-bit round constant, further two for an
intermediate result, and one each for a pointer to the round-constant and state
array, respectively. We integrated the computation of the two temporary values
tx and ty into the ARX-box layer to reduce the number of memory accesses in
the subsequent linear layer. In this way, each 32-bit word of the state is loaded
and stored twice per round (similar to Ascon); once in the ARX-box layer and
then a second time in the linear layer. However, some further memory accesses
are necessary for the round constants and the temporary value ty, which has to
be stored on the stack due to the lack of free registers.

Schwaemm’s mode of operation uses apart from the permutation also two
auxiliary functions: a feedback function ρ and a rate-whitening function W. We
merge both functions into a single loop to reduce their execution time. Our C
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implementation of the mode also optimizes the processing of plaintext, cipher-
text, and associated data, which are stored in byte-arrays. We check at runtime
whether the pointers to these arrays are sufficiently aligned for an upcasting to
uint32 t pointers; when this is the case we directly process the byte-arrays as
integer-arrays, otherwise we copy them first to an aligned buffer via memcpy.

TinyJAMBU. TinyJambu has the highest locality among all four permuta-
tions since the full state can be kept in registers during the computation of the
permutation. Nonetheless, some memory accesses are still required to load the
key-words in each round. Due to the permutation’s high locality, the execution
time is dominated by the funnel shifts, which extract a 32-bit word at a certain
position within two concatenated 32-bit words (i.e. a 64-bit word). The source
code provided by the designers implements these funnel shifts as normal right-
shift operations of two concatenated state-words by distances of 6, 15, 21, and
27 bits. However, in MSP430 Assembly language, the four funnel shifts can be
performed more efficiently by a 1-bit right-shift-through-carry of a 32-bit word
(three instructions), a 1-bit left-shift-through-carry of a 32-bit word (also three
instructions), an ordinary 5-bit left-shift of a 48-bit word (15 instructions), and
an ordinary 5-bit right-shift of a 64-bit word (20 instructions).

TinyJambu processes plaintext/ciphertext and associated data with a rate
of four bytes. The low-level encryption/decryption functions check whether the
pointers to the byte-arrays containing these inputs are properly aligned for an
upcasting to uint32 t pointers; when this is not the case the four bytes to be
processed are copied into an aligned buffer, similar to Schwaemm. But unlike
Schwaemm, the input blocks are copied byte by byte using plain C statements
since calling memcpy would introduce a significant overhead for four bytes.

Xoodyak. Similar to Ascon and Sparkle, the state of the Xoodoo permu-
tation is too big for the register file of a MSP430 microcontroller and, thus, has
to be stored in RAM. A straightforward implementation of the five steps of the
permutation, one step after another, would require a large number of load and
store operations. In order to reduce the number of memory accesses, we tried
to integrate (parts of) the plane-shifting layers ρwest and ρeast into the mixing
layer θ and non-linear layer χ, respectively. Unfortunately, a full integration is
not possible due to the limited register space (at least not when the goal is to
achieve a good trade-off between performance and code size), which means the
lane-wise rotations within a plane that form part of ρwest and ρeast still have to
be implemented as separate steps with their own load and store operations. As
a consequence, four state-words are loaded and stored twice per round, and the
remaining eight words three times per round. This large number of load/store
operations makes Xoodoo the permutation with the lowest locality.

Our low-level functions for Xoodyak’s Cyclist mode of operation deal with
unaligned byte-arrays for associated data and plaintext/ciphertext in the same
way as the Schwaemm implementation: we first check at runtime whether the
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pointers to these arrays can be casted to uint32 t pointers and use memcpy to
copy the bytes block-wise into an aligned buffer if this is not the case.

5 Performance Evaluation and Comparison

We compiled and assembled the source code of the four AEAD algorithms with
version 7.2 of IAR Embedded Workbench for MSP4304 and used its integrated
cycle-accurate instruction set simulator to determine the execution time of the
permutations alone and the high-level encryption functions. Our target device
was a MSP430F1611 microcontroller, which comes with 10 kB SRAM and has
a flash capacity of 48 kB. In order to be able to examine our implementations
of the permutations in more detail, we also developed a tool that emulates the
execution of MSP430 instructions step by step and collects information via the
execution trace. The tool works with snapshots of registers and memory (since
they can be exported from IAR Workbench) and is able to emulate all 27 core
instructions of the MSP430 with the supported addressing modes [28]. While
the instructions are executed, information about the instruction type, the used
addressing mode(s), the number of memory accesses, and so on is recorded.

Table 2. Main characteristics and implementation results of the four permutations.

Characteristic/result Ascon Sparkle TinyJambu Xoodoo

Performance characteristics

Execution time (cycles) 3510 5946 2454 8985

Number of executed instr. 2369 3811 2134 5191

Average cycles/instruction 1.48 1.56 1.15 1.73

Memory characteristics

RAM consumption (bytes) 56 76 54 66

– of which is stack (bytes) 16 28 22 18

Code size (bytes) 708 618 652 570

Instruction-type characteristics

Branching instructions 30 63 8 96

Memory-to-Memory (M2M) 0 21 8 12

Memory-to-Register (M2R) 261 491 146 884

Register-to-Memory (R2M) 254 493 19 789

Register-to-Register (R2R) 1824 2729 1953 3410

Percentage of R2R instr. 77.0% 71.6% 91.5% 65.7%

Table 2 shows various results we obtained for performance, RAM and flash
consumption, and the type of instructions executed by each permutation. The
4 http://www.iar.com/products/architectures/iar-embedded-workbench-for-msp430

(accessed on 2022-12-14).

http://www.iar.com/products/architectures/iar-embedded-workbench-for-msp430
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execution time (in cycles) covers all instructions contained in the Assembly file
of the permutation, but does not include the generation or passing of function
arguments like a pointer to the state or the number of rounds. We can observe
that TinyJambu has the fastest permutation with just 2454 clock cycles, while
Xoodoo is by far the worst in terms of execution time. TinyJambu’s small
Cycles-per-Instruction (CPI) ratio of 1.15 means that most of its instructions
execute in one cycle, which is only possible when the operands and result are
read from and written to registers instead of a location in memory. Indeed, as
shown in Table 2, the percentage of Register-to-Register (R2R) instructions in
TinyJambu’s permutation is very high, namely above 91%. Both the CPI and
ratio of R2R instructions confirms that TinyJambu has high locality. At the
opposite end of the spectrum is Xoodoo, which has the lowest locality of the
four evaluated permutations (evidenced by a CPI of 1.73 and only 65.7% R2R
instructions). Ascon has the second-best locality, and Sparkle is locality-wise
approximately in the middle between Ascon and Xoodoo.

The RAM footprint (including stack usage) of the four permutations is rela-
tively small and ranges from 54 bytes (TinyJambu) to 76 bytes (Sparkle). In
essence, RAM is occupied for the state and, in the case of TinyJambu, for the
key, while the stack is mainly used for the preservation of callee-saved registers
and to store infrequently-used local variables like loop counters. Also the code
size of the permutations is relatively similar since the smallest one (Xoodoo)
and biggest one (Ascon) differ by only 138 bytes, which is roughly 24% of the
code size of the former.

Table 3. Detailed execution-time and throughput analysis of the permutations.

Characteristic/result Ascon Sparkle TinyJambu Xoodoo

State size (bytes) 40 48 16 48

Encryption rate (bytes) 8 32 4 24

Authentication rate (bytes) 8 32 4 44

Number of rounds or steps 6 7 8 (5) 12

Execution-time analysis of single round/step

Cycles per round/step 577 (100%) 844 (100%) 302 (100%) 746 (100%)

– of which are rotations 160 (27.7%) 150 (17.8%) 172 (57.0%) 153 (20.5%)

– of which are non-lin. ops. 20 (3.5%) 48 (5.7%) 8 (2.6%) 24 (3.2%)

Execution-time analysis of full permutation

Cycles for full permutation 3510 (100%) 5946 (100%) 2454 (100%) 8985 (100%)

– of which are rotations 960 (27.4%) 1050 (17.7%) 1376 (56.1%) 1836 (20.4%)

– of which are non-lin. ops. 120 (3.4%) 336 (5.7%) 64 (2.6%) 288 (3.2%)

Throughput analysis of full permutation

Cycles per state-byte 87.75 123.88 153.38 187.19

Cycles per rate-byte (enc.) 438.75 185.82 613.50 374.38

Cycles per rate-byte (auth.) 438.75 185.82 387.00 204.20

Table 3 provides more-detailed information about the execution time of the
permutations, including an analysis of the cycles spent for shifts/rotations and
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non-linear operations (i.e. addition in the case of Sparkle, logical AND for the
other three permutations). The table also summarizes the main characteristics
of the permutations, e.g. the size of the state, the rate used for authentication
and for encryption, and the number of rounds or steps. We analyzed a single
round or step of each permutation and determined the overall cycle count, the
number of cycles spent for shifts/rotations, and the number of cycles for non-
linear operations. The latter was evaluated with help of the specification of the
permutation and does not include any add.w or and.w instruction that has no
impact on non-linearity, e.g. the adc.w at line 4 of the QROL rotation macro in
Listing 1. According to the per-round/step results in Table 3, the rotations are
more costly than the non-linear operations, and this holds true for each of the
four permutations. However, the relative computational cost of rotations versus
non-linear operations is not only determined by the design of the permutation
but also by the features of the target architecture. For example, Sparkle and
Xoodoo were designed such that, when implemented for a 32-bit ARM micro-
controller, each rotation can be “folded” into an arithmetic/logical instruction
and both together executed within a single cycle, which makes these rotations
basically free. Therefore, when 32-bit ARM is the target architecture, the non-
linear operations contribute more cycles to the overall execution time than the
rotations, while the opposite is the case for MSP430. To be more concrete, the
rotations make up between 17.7% and 56.1% of the overall cycle counts of the
permutations on an MSP430F1611 microcontroller. These results underline the
importance of choosing the rotation (resp. shift) distances carefully, taking into
account both security and efficiency aspects.

As explained in Sect. 2, a shift/rotation of a 32 or 64-bit word by a distance
of d bits is fast on MSP430 if either (i) d is a multiple of 16, (ii) d is close to
a multiple of 16 (e.g. 1, 2, 14, 15, 17, 18, . . . ), or (iii) d is a multiple of 8. The
Sparkle permutation performs seven rotations of 32-bit words in each of its
ARX-boxes; the distances are 31, 24, 17, 17, 31, 24, and 16 bits. Each distance
meets the above requirements, which makes the rotations relatively fast (one is
completely free, one takes six cycles, and the other five rotations require three
cycles). Overall, the rotations contribute roughly 17.8% to the execution time of
Sparkle. The distances of the rotations carried out by Xoodyak include three
that are relatively fast (namely by 1 and 8 bits in ρeast and by 14 bits in θ),
but also two slow ones (by 5 bits in θ and 11 bits in ρwest). In summary, the
rotations account for 20.4% of the execution time of Xoodyak. The diffusion
layer of Ascon includes ten rotations (executed on 64-bit words) by distances
of 19, 28, 61, 39, 1, 6, 10, 17, 7, and 41 bits. Only two out of this total of ten
distances, namely 1 and 17 bits, can be considered fast according to the above
requirements. Though some optimizations are possible (see Sect. 5), our overall
verdict is that the rotation distances of Ascon are not particularly “MSP430-
friendly,” which explains why the rotations consume 27.4% of the permutation
cycles. Finally, TinyJambu is a special case because it performs funnel shifts
instead of actual rotations. As explained in Sect. 5, these funnel shifts can be
implemented by two 1-bit shift-through-carry operations on a 32-bit word and
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two 5-bit shifts (carried out on a 48-bit and a 64-bit word, respectively). The
former two are fast but the latter two extremely slow. In summary, the funnel
shifts make up 56.1% of TinyJambu’s overall permutation cycles.

The impact of the rotations (resp. funnel shifts) on the total execution time
of the four permutations should not be viewed as completely independent from
other efficiency aspects like locality. TinyJambu has very high locality and, as
a consequence, wastes only few cycles for memory accesses (this is one of the
reasons for its relatively fast execution time). Therefore, it is natural that the
funnel shifts constitute a large fraction of the execution time, which makes the
designers’ choice of shift distances appear worse (in relation to the other three
permutations) than they are in reality. The opposite is the case for Xoodyak’s
permutation. Namely, the long execution time of Xoodoo (which is partly due
to poor locality) makes the rotation distances look less costly than they are.

Since the state size of three of the four permutations differs, it makes sense
to analyze the throughput in terms of execution time divided by the state-size
in bytes. The results at the bottom of Table 3 show that Ascon wins in this
category with a throughput of approximately 87.75 cycles per state-byte. Also
contained at the bottom of this table are the throughput figures per rate-byte
for encryption and authentication, respectively. The cycles per rate-byte serve
as a good benchmark for the efficiency of both the permutation and the mode
of operation/use of the corresponding AEAD algorithm. Schwaemm employs
the Beetle mode of operation, which allows it to process associated data and
plaintext/ciphertext at a rate of 32 bytes. The resulting throughput of 185.82
cycles per rate-byte is the best among the four evaluated AEAD schemes. Also
Xoodyak profits from a fairly high rate, namely 24 bytes for encryption, and
achieves a throughput of 374.38 cycles per rate-byte. Even though Ascon and
TinyJambu have fast permutations, their throughput is relatively poor due to
a small rate. Note that the throughput of both TinyJambu and Xoodyak is
much higher for authentication than for encryption; in the former case because
of a smaller number of steps and in the latter case due to a higher rate.

Table 4 shows the execution time of the four AEAD algorithms for authen-
tication only (i.e. no plaintext is processed), encryption only (i.e. no associated
data is processed) and authenticated encryption (both the associated data and
plaintext have the same length). For each scenario, we evaluated the execution
time for inputs of three different lengths: short (i.e. 16 bytes), medium (i.e. 128
bytes), and long (i.e. 1024 bytes). The timings in Table 4 are closely correlated
with the throughput values at the bottom of Table 3, in particular for medium
and long inputs. Therefore, it is not surprising that, overall, Schwaemm is the
best performer across different lengths of associated data and plaintext. When
the inputs are short (i.e. 16 bytes), the execution times of the four algorithms
are relatively similar and depend not only on the throughput, but also on the
efficiency of operations like initialization, finalization, and computation of the
authentication tag. However, for medium-size inputs, Schwaemm outperforms
Xoodyak, which is (overall) the second-best algorithm, by a factor of 1.89 in
the encryption-only case and a factor of approximately 1.45 for authenticated
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Table 4. Execution time (in cycles) of the AEAD algorithms for authentication only
(dlen = 0), encryption only (adlen = 0), and authenticated encryption (adlen = dlen).

adlen dlen Ascon Schwaemm TinyJambu Xoodyak

16 0 25567 20311 18539 28225

128 0 75729 38777 63952 47091

1024 0 477025 214421 427280 243385

0 16 22109 20704 22191 28273

0 128 72957 39618 93168 74865

0 1024 479707 221080 661008 420299

16 16 32834 30748 28680 28377

128 128 133842 68126 145073 93838

1024 1024 941924 425268 1076241 635566

encryption. Finally, in the authentication-only scenario, the speed-up factor is
smaller, namely about 1.21 for associated data of medium length and a bit less
for longer lengths. Ascon and TinyJambu are around two times slower than
Schwaemm for both medium and long inputs.

6 Conclusions

In this paper, presented a performance analysis of the four AEAD algorithms
Ascon, TinyJambu, Schwaemm, and Xoodyak on a 16-bit MSP430 micro-
controller. We developed carefully-optimized Assembler implementations of the
underlying permutations, whereby we aimed for a reasonable trade-off between
execution time and (binary) code size. Our results show that the shift/rotation
distances and the locality have a significant impact on the performance of the
permutations. TinyJambu’s permutation has very high locality since its entire
state can be kept in registers. The permutation of Ascon and Sparkle have
the second and third-bast locality; each word of their state needs to be loaded
from RAM and written back to RAM twice per round or step. Xoodoo shows
the worst locality of the four permutations. On the other hand, when it comes
to rotation distances, Sparkle is the winner since the majority of its rotations
can be executed in only three clock cycles. Xoodoo and TinyJambu perform
a mix of fast and slow rotations (resp. shifts), while almost all of the rotation
distances of Ascon’s permutation are not well-suited for MSP430. The actual
performance of each of the four AEAD algorithms does not only depend on the
permutation, but also the rate for encryption and authentication. Our results
show that Schwaemm is clearly the best overall performer across different use
cases (authentication only, encryption only, and authenticated encryption) and
input lengths. When encrypting a 128-byte plaintext, Schwaemm is 1.89 times
faster than Xoodyak and outperforms Ascon by a factor of 1.84. Xoodyak is
more competitive when a large amount of associated data is processed, whereas
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TinyJambu is particularly efficient for the authentication of very short blocks
of associated data (up to approximately 16 bytes).
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Abstract. The present work investigates a type of morphisms between
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1 Introduction

The idea of switching ciphertexts encrypted using the same scheme from one
secret key to another appears in the literature under the name of Proxy Re-
Encryption (see [14] and the references within). More recently, a general method
of converting ciphertexts from one encryption scheme to another was introduced
in [15] under the name of Universal Proxy Re-Encryption. In practice, Proxy Re-
Encryption between two distinct (arbitrary) schemes is very difficult to realize,
as the general methods proposed in [15] make use of hard to achieve protocols
such as indistinguishability obfuscation. In this work, we focus on unidirectional
such protocols between two distinct encryption schemes and call them bridges
(see Definition 3).

Bridges are important tools in the context of Hybrid Homomorphic Encryp-
tion (see for example [12] and [13]), where the owner encrypts its data using a
symmetric cipher and sends the encryption to a server together with his sym-
metric key encrypted under a homomorphic encryption scheme. The server first
homomorphically performs the decryption circuit of the symmetric cipher to
transform the initial ciphertext into one that allows homomorphic computation
and then proceeds with the desired computations. The result of this computation
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can only be decrypted by the data owner. Apart from other possible applica-
tions, there is another motivation for studying these primitives which comes from
the perspective of viewing encryption schemes in a categorical context, where
bridges play the role of morphisms in an appropriate category.

In his remarkable work on fully homomorphic encryption, C. Gentry [17] used
a Recrypt procedure in order to transform a somewhat homomorphic encryption
scheme into a fully homomorphic encryption scheme. To be precise, Gentry’s
Recrypt algorithm takes as input a ciphertext together with certain encryp-
tions of the secret key under a different key and evaluates homomorphically the
decryption algorithm in order to produce an encryption of the same plaintext
under the new key. Under the definition we propose, the Recrypt algorithm is a
bridge from a somewhat homomorphic encryption scheme to itself. The recipe
can be extended to produce a bridge from any encryption scheme to any some-
what homomorphic encryption scheme that can correctly evaluate the decryption
circuit of the former.

Perhaps connected to the same idea is the work in [11], where maps between
two encryption schemes are used to construct a 2-party computation protocol,
called an Encryption Switching Protocol (ESP). The examples proposed in [11]
and [7] consist of two encryptions schemes over the same plaintext, which has a
structure of a ring, and switching protocols between them. One of the schemes
is homomorphic with respect to addition and the other is homomorphic for the
multiplication. An ESP of this form can be used to construct a secure general
2-party computational protocol.

Switching between one encryption scheme to another, in order to securely
perform a sequence of homomorphic operations, is a recurrent theme in the
literature. In this respect, it is important to formally define and analyze the
security implications of such protocols, which represents the main goal of the
present work. We shall call a map (or a morphism) between encryption schemes
satisfying certain properties a bridge. The terminology is borrowed from [4],
where the expression “bridge between encryption schemes” is briefly used in
reference to a hybrid solution for switching between FHE schemes in order to
optimize performance of certain homomorphic computations on encrypted data.

Our Contribution. In this paper, we first propose a general definition for
a bridge, formalizing the conditions under which an algorithm that publicly
transforms encrypted data from one scheme to another should perform. We
provide a general recipe, inspired by Gentry’s idea, for the construction of bridges
and then apply it to give various examples. This general recipe can be modified
in various ways and we demonstrate this by presenting a variant of it. We also
present an additional example of a bridge that does not fall in the category
of Gentry type bridges. We canonically associate to any bridge an encryption
scheme and then define the security of a bridge as being the security of its
associated encryption scheme. This association is widely used in mathematics
when someone needs to replace a morphism between two objects by an object.
More precisely, it consists in substituting a map by its graph, whenever this is
possible. We prove a general theorem (Theorem 2) asserting that the security of



Bridges Connecting Encryption Schemes 39

a bridge reduces to the security of the first encryption scheme together with a
technical additional assumption. We show that the latter technicality is in fact a
natural condition by proving that bridges obtained using Gentry’s Recrypt idea
satisfy this assumption (Proposition 2). The security analysis provided here is
finer than the corresponding security analysis made on Proxy Re-Encryption
schemes. Our definition of IND-CPA security of the bridge and Cohen’s HRA
security definition (see [10]) are equivalent (all players are honest) and thus
Cohen’s simulatability theorem (see Theorem 5 of [10]) is vacuous in the case
discussed in this paper. Our work is accompanied by three appendices. In the
first two, we present examples of bridges (of different types). Comments on the
performance of the implementations of these examples are to be found in the
last appendix.

Organization. The article is organized as follows. Section 2 consists of some
mathematical background and preliminaries about encryption schemes used in
the rest of the article. It starts by recalling some terminology and theoretical
facts about finite distributions. In the same section, we also give the definition
of a bridge. The contributions in Sect. 3 regard the security of a bridge between
two encryption schemes. The main result of our paper (Theorem 2) is proved
in this section. In Sect. 4, we show that Gentry’s Recrypt algorithm gives a
general recipe for the construction of bridges. Using the main result from the
previous section, we prove that bridges generated using this recipe are secure.
The appendices are organised as follows. By representing the decryption circuit
of a specific encryption scheme in four different ways, we give in appendix A, four
different examples of bridges from the same encryption scheme to various FHE
schemes. A bridge with empty bridge key, not following the recipe presented in
Sect. 4, connecting the GM and SYY encryption schemes is exhibited in appendix
B. Its security follows from results in Sect. 3. The homomorphic evaluation of a
comparison circuit is presented as an application to the latter bridge. In the last
appendix of this article, we report on the results of several experiments involving
the implementation of the bridges introduced in the first two appendices.

2 Preliminaries

In all our definitions, we denote the security parameter by λ. We say that a
function μ : N → [0,+∞) is a negligible function if for any positive integer c

there exists a positive integer Nc, such that μ(n) <
1
nc

for all n ≥ Nc.

2.1 Finite Distributions

A finite probability distribution is a probability distribution with finite support.
If X is a finite distribution, we denote by |X| its support. If X and Y are finite
distributions, then a morphism ϕ : Y → X is a map of sets (still denoted by)
ϕ : |Y | → |X| such that

Pr{X = x} =
∑

y∈ϕ−1(x)

Pr{Y = y}.
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for all x ∈ |X|. Notice that if ϕ−1(x) is empty then Pr{X = x} = 0, which
means that ϕ is surjective onto {x ∈ |X| | Pr{X = x} �= 0}. The composition
of two morphisms is a morphism and the identity map 1|X| : |X| → |X| gives
rise to a morphism of distributions 1X : X → X so that the class of finite dis-
tributions together with all morphisms between them forms a category denoted
F inDist. As usual, two finite distributions are isomorphic if there exist a mor-
phism between them that has an inverse. If X is a finite distribution, then the
slice category (cf. [2]) F inDistX of X-distributions consists of pairs (Y, ϕ) where
Y is a finite distribution and ϕ : Y → X is a morphism of finite distributions.
A morphism of X-distributions f : (Y1, ϕ1) → (Y2, ϕ2), consists of a morphism
of finite distributions f : Y1 → Y2 such that the following diagram

Y1 Y2

X

f

ϕ1 ϕ2

is commutative.
If x ∈ |X| with Pr{X = x} �= 0 and (Y, ϕ) is an X-distribution then the

fiber of Y over x is the finite distribution Y |X=x with support ϕ−1(x) and

Pr{Y |X=x = y} =
Pr{Y = y}
Pr{X = x} , for all y ∈ ϕ−1(x).

If (Y1, ϕ1) and (Y2, ϕ2) are two X-distributions we construct the following
product Y1 ×X Y2. The support of this distribution is

|Y1 ×X Y2| := {(y1, y2)|y1 ∈ |Y1|, y2 ∈ |Y2| such that ϕ1(y1) = ϕ2(y2)}.

If x = ϕ1(y1) = ϕ2(y2) and Pr{X = x} �= 0, then

Pr{Y1 ×X Y2 = (y1, y2)} :=
Pr{Y1 = y1} · Pr{Y2 = y2}

Pr{X = x} .

Moreover, when Pr{X = x} = 0, then

Pr{Y1 ×X Y2 = (y1, y2)} := 0.

Finally, the structural morphism of ψ : |Y1×X Y2| → X is ψ := ϕ1◦pr1 = ϕ2◦pr2,
where pri : |Y1 ×X Y2| → |Yi|, i ∈ {1, 2} are the usual projections.

We remark that |Y1 ×X Y2| is the usual fiber product in the category of sets,
but Y1 ×X Y2 is not a fiber product in the category F inDist. However, the
distribution Y1 ×X Y2 is a product in the following sense. If one constructs the
distribution of triples (x, y1, y2): x is chosen from |X| according to X, y1 and
y2 are chosen independently from ϕ−1

1 (x) and ϕ−1
2 (x) according to Y1 and Y2

respectively, then one obtains a distribution isomorphic to Y1 ×X Y2.
Any finite distribution whose support is a one-point set is a final object in

F inDist. We shall denote by Y1 × Y2 the product Y1 ×X Y2, where X is any of
the final objects of F inDist.
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Notice that if Y is an X-distribution, then the distribution X ×X Y is iso-
morphic to Y as X-distributions (here we view X as an X-distribution via the
identity map). We will sometimes identify the distribution X ×X Y with Y
without mentioning it, if this is clear from the context. Morally, X ×X Y is the
distribution Y whose associated map ϕ is known.

If {Xλ}λ∈N, {Yλ}λ∈N are ensembles of finite distributions then we define a
morphism from the latter to the former as being a set of morphisms of finite
distributions ϕλ : Yλ → Xλ for all λ. One can verify immediately that ensem-
bles of finite distributions together with morphisms form a category. If we fix
an ensemble {Xλ}λ, then we obtain the slice category of {Xλ}λ-ensembles of
finite distributions. In this category we define, as before, the product of the two
ensembles {Yλ}λ, {Zλ}λ as {Yλ ×Xλ

Zλ}λ.
The first part of the following statement is Definition 2 from [20].

Definition 1. An ensemble {Xλ}λ of finite distributions is polynomial-time
constructible if there exists a PPT algorithm A such that A(1λ) = Xλ, for every
λ. An {Xλ}λ-ensemble of finite distributions {(Yλ, ϕλ)}λ is polynomial-time con-
structible on fibers if there exist a PPT algorithm A, such that for any xλ ∈ |Xλ|
we have A(1λ, xλ) = Yλ|Xλ=xλ

.

We will also use the following notion of computational (or polynomial) indis-
tinguishability from [21] and [20].

Definition 2. Two ensembles of finite distributions {Xλ}λ and {Yλ}λ are called
computationally indistinguishable if for any PPT distinguisher D, the quantity

|Pr {D(Xλ) = 1} − Pr {D(Yλ) = 1} |

is negligible as a function of λ.

When referring to ensembles of finite distributions, we will leave out the subscript
λ if this is clear from the context.

2.2 Encryption Schemes and Bridges

A public key (or asymmetric) encryption scheme

S = (KeyGenS ,EncS ,DecS )

is a triple of PPT algorithms as follows:

– Key Generation. The algorithm (sk, pk) ← KeyGenS (1λ) takes a unary
representation of the security parameter λ and outputs a secret decryption
key sk and a public encryption key pk;

– Encryption. The algorithm c ← EncS (pk,m) takes the public key pk and
a message m ∈ P and outputs a ciphertext c ∈ C ;

– Decryption. The algorithm m� ← DecS (sk, c) takes the secret key sk and
a ciphertext c ∈ C and outputs a message m� ∈ P;



42 M. Barcau et al.

where the finite sets P and C represent the plaintext space, respectively the
ciphertext space. The algorithms above must satisfy the correctness property

Pr {DecS (sk,EncS (pk,m)) = m} = 1 − negl(λ),

where the probability is taken over the experiment of running the key generation
and encryption algorithms and choosing uniformly m ← P.

A private key (or symmetric) encryption scheme is a public key encryption
scheme for which the public and secret keys are equal.

We say that an instance pk of the public key, or an instance sk of the secret
key, is of level λ0 if it is outputted by the key generation algorithm whose input
is the unary representation of λ0.

Remark 1. In the language of ensembles of finite distributions, the public keys of
an encryption scheme form an SK-ensemble of finite distributions, where SK is
the ensemble of secret keys. Moreover, an encryption scheme is just a collection
of PK-ensembles of finite distributions indexed by the plaintext space that are
polynomial-time constructible on fibers (here PK is the ensemble of public keys).

A homomorphic (public-key) encryption scheme

H = (KeyGenH ,EncH ,DecH ,EvalH )

is a quadruple of PPT algorithms such that (KeyGenH ,EncH ,DecH ) is a
public-key encryption scheme and the KeyGenH algorithm also outputs an addi-
tional evaluation key evk besides sk and pk, where the Homomorphic Eval-
uation algorithm EvalH takes the evaluation key evk, a circuit f : P� → P
and a set of � ciphertexts c1, ..., c� ∈ C , and outputs a ciphertext cf .

We say that a homomorphic encryption scheme H is C-homomorphic for a
class of functions C = {Cλ}λ∈N, if for any sequence of functions fλ ∈ Cλ and
respective inputs μ1, ..., μ� ∈ P (where � = �(λ)), it holds that

Pr[DecH (sk,EvalH (evk, fλ, c1, ..., c�)) �= fλ(μ1, ..., μ�)] = negl(λ),

where (pk, sk, evk) ← KeyGenH (1λ) and ci ← EncH (pk, μi) for all i.
In addition, a homomorphic encryption scheme H is compact if there exist

a polynomial s = s(λ) such that the output length of EvalH is at most s bits
long, regardless of f or the number of inputs.

An encryption scheme is called fully homomorphic (FHE) if it is homomor-
phic for the class of all boolean functions and it satisfies the compactness con-
dition.

We now give the definition of a bridge:

Definition 3. Let Sj = (Pj ,Cj ,KeyGenj ,Encj ,Decj), j ∈ {1, 2} be two
encryption schemes. A bridge Bι,f from S1 to S2 consists of:

1. An injective function ι : P1 → P2 such that:
(a) ι is computable by a deterministic polynomial time algorithm;
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(b) there exists a deterministic polynomial time algorithm which computes
ι−1 : P2 → P1, i.e. outputs the symbol ⊥ if the input is not in the image
of ι and the preimage of the input otherwise,

2. A PPT bridge key generation algorithm, which has the following three stages.
First, the algorithm gets the security parameter λ and uses it to run the key
generation algorithm of S1 in order to obtain a pair of keys sk1, pk1. In the
second stage the algorithm uses sk1 to find a secret key sk2 of level λ for
S2, and then calls the key generation algorithm of S2 to produce pk2. In the
final stage, the algorithm takes as input the quadruple (sk1, pk1, sk2, pk2) and
outputs a bridge key bk.

3. A PPT algorithm f which takes as input the bridge key bk and a ciphertext
c1 ∈ C1 and outputs a ciphertext c2 ∈ C2,

such that

Pr {Dec2(sk2, f(bk,Enc1(pk1,m))) = ι(m)} = 1 − negl(λ),

where the probability is taken over the experiment of running the key generation
and encryption algorithms and choosing uniformly m ← P1.

Notice that the definition above includes the case in which any of the two
schemes is symmetric. Also, the plaintext spaces are fixed, i.e. they do not depend
on the security parameter λ. One can define a bridge between encryption schemes
for which the plaintext spaces do depend on λ, as in the case of RSA or Pail-
lier cryptosystems. However, in this article we are considering only the former
situation.

Remark 2. The bridge key generation algorithm does not necessarily output all
possible pairs (sk1, sk2). Even though any secret key sk1 of the scheme S1 may
be outputted by the key generation algorithm of the bridge, only few sk2’s may
occur. The bridge key generation algorithm produces the following {SK1,λ}λ-
ensembles of finite distributions {SK2,λ}λ, {PKi,λ}λ, i ∈ {1, 2}, and {BKλ}λ.
The morphisms between these ensembles of finite distributions are illustrated in
Fig. 1.

We mentioned earlier the idea of thinking of a bridge as a (category theoreti-
cal) morphism between encryption schemes. Although we do not claim to have
defined a category, from this point of view, it is natural to address the existence
of identity morphisms. We briefly explain below that the identity map between
one encryption scheme to itself is a bridge.

Example 1. If S is an encryption scheme, then the identity map C → C gives
rise to a bridge. The bridge key generation algorithm generates a unique secret
key sk and two (independently generated) public keys pk1, pk2 corresponding
to this secret key. The algorithm outputs (sk, pk1, sk, pk2,NIL). We emphasize
that the bridge key and the choices of pk1 and pk2 do not play any role in the
evaluation of the bridge map.
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BK

PK 1 ×SK1 PK 2

PK1 PK2

SK1 SK2

Fig. 1. Probability distributions for bridges.

3 The Security of a Bridge

The aim of this section is to define and investigate the IND-CPA security of a
bridge. We start by defining and extending the notion of IND-CPA security of a
scheme and then we move to the discussion concerning the security of a bridge.

Definition 4. (IND-CPA Security). Let S = (KeyGenS ,EncS ,DecS ) be
a public key encryption scheme. We define an experiment Expb[A] parameterized
by a bit b ∈ {0, 1} and an efficient (PPT) adversary A:

Expb[A](1λ) :1. (pk, sk) ←− KeyGenS (1λ)

2. (m0,m1) ←− A(1λ, pk)
3. ct ←− EncS (pk, xb)
4. b′ ←− A(ct)
5. return(b′)

The advantage of adversary A against the IND-CPA security of the scheme is

AdvIND-CPA[A](λ) := |Pr
{
Exp0[A](1λ) = 1

} − Pr
{
Exp1[A](1λ) = 1

} |,
where the probability is over the randomness of A and of the experiment. We say
that the scheme is IND-CPA secure if for any efficient adversary A, the advan-
tage AdvIND-CPA[A] is negligible as a function of λ. In the case of a symmetric
encryption scheme, the adversary A is given access to an encryption oracle.

Remark 3. As in the previous definition, when considering the security of a pri-
vate encryption scheme, it is standard to replace the public key by an encryp-
tion oracle. From this point of view, a symmetric encryption scheme is a public
encryption scheme whose public key consists of the access to an encryption ora-
cle. Although we will give security definitions and proofs for public key encryp-
tion schemes, unless otherwise specified, these can be extended to the symmetric
key setting using the above paradigm.

Let S be an encryption scheme and let K be some data outputted by an
oracle whose input is the triple (1λ, skS , pkS ). We shall denote by S [K] the
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encryption scheme whose public key is the pair (pkS ,K), and the encryption
and decryption algorithms are exactly as in S . The only difference between the
schemes S and S [K] is related to their security. More precisely, an adversary
attacking the scheme S [K] has more information than an adversary attacking
S . We say that an adversary A attacking S [K] is an adversary attacking S
with knowledge K. For example, K can be a set consisting of S -encryptions
of the bit representation of the secret key, as used in [18] for the bootstrapping
procedure. It is commonly assumed that such K’s do not affect the security of the
encryption scheme, assumption called circular security. The following definition
aims to generalize the circular security assumption for some general data K.

Definition 5. We say that some knowledge K is negligible for an encryption
scheme S if for any adversary A attacking S [K] there exists an adversary A′

attacking S such that

|AdvIND-CPA[A](λ) − AdvIND-CPA[A′](λ)|
is negligible as a function of λ.

Notice that any adversary attacking S gives rise, in the obvious way, to an
adversary attacking S [K], so that if K is negligible for S then the IND-CPA
security of S is equivalent to the IND-CPA security of S [K].

In order to define the IND-CPA security of a bridge, we shall associate to
it, in a canonical way, an encryption scheme; the security of the bridge will be,
by definition, the security of the associated encryption scheme. Let Bι,f be a
bridge, then the associated encryption scheme

Gf = (PGf
,CGf

,KeyGenGf
,EncGf

,DecGf
)

is defined as follows. The plaintext space is PGf
= P1, and the ciphertext space

is CGf
= C1×C2. The algorithm KeyGenGf

uses the key generation algorithm of
the bridge to get sk1, pk1, sk2, pk2, bk. The secret key skGf

is the pair (sk1, sk2),
and the public key pkGf

is (pk1, pk2, bk).
For any m ∈ PGf

, its encryption is defined by:

EncGf
(pkGf

,m) := (a, f(bk, b)) ,

where a, b ← Enc1(pk1,m). Finally, the decryption of a ciphertext cGf
=

(c1, c2) ∈ C1 × C2 is obtained using the formula:

DecGf
(skGf

, cGf
) := Dec1(sk1, c1).

We notice that the decryption of Gf satisfies

DecGf

(
skGf

, (a, f(bk, b))
)

= ι−1
(
Dec2(sk2, f(bk, b))

)
,

for any (a, f(bk, b)) ← EncGf
(pkGf

,m) with overwhelming probability, due to
the third condition in the definition of a bridge. One can immediately verify
that the correctness of the encryption scheme Gf follows from the correctness of
S1.
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Remark 4. The notation and construction are inspired by the construction of
the graph of a function.

Now we define the IND-CPA security of a bridge.

Definition 6. The IND-CPA security of the bridge Bι,f is the IND-CPA secu-
rity of its associated encryption scheme Gf .

We have the following immediate result.

Proposition 1. If a bridge Bι,f is IND-CPA secure, then the encryption
scheme S1 is also IND-CPA secure.

Proof. Indeed, we can associate to any adversary A1 which is trying to break
the IND-CPA security of S1, an adversary Af for the encryption scheme Gf ,
as follows. For any pair (a, f(bk, b)) proposed by the challenger to Af , where
a, b ← Enc1(m), the attacker Af sends the triple (λ, pk1, a) to A1 and returns
the output of A1(λ, pk1, a).

It is clear that

AdvIND-CPA[Af ](λ) = AdvIND-CPA[A1](λ),

and the result follows. 
�
In the next theorem, the encryption scheme S1[PKGf

] is the scheme S1 with
knowledge PKGf

. Namely, after running the key generation algorithm of S1 and
receiving the pair (sk1, pk1), the challenger has access to an oracle that runs the
second part of the key generation algorithm of the bridge to get sk2, pk2, bk.
Thus, an IND-CPA attacker on this scheme will receive pk1, pk2, bk.

Theorem 1. The encryption scheme S1[PKGf
] is IND-CPA secure if and only

if Gf is IND-CPA secure.

Proof. We first show that if Gf is IND-CPA secure, then S1[PKGf
] is IND-CPA

secure. Suppose A is an IND-CPA attacker on S1[PKGf
] scheme. We construct

the following adversary B attacking the IND-CPA security of Gf as follows. At
start, B takes as input (1λ, pkGf

) and executes the program A(1λ, pkGf
). The

attacker B receives (m0,m1) ← A(1λ, pkGf
) and sends this pair to its challenger.

The latter samples b ← {0, 1} and returns to B the challenge c = (c1, f(bk, c′
1)),

where c1, c
′
1 ← Enc1(pk1,mb). Finally, B terminates by outputting the bit b′ ←

A(c1). One obtains that

AdvIND−CPA
Gf

[B](λ) = AdvIND−CPA
S1[PKG f

][A](λ),

which proves this implication.
To prove the other implication, we first point out that using a standard hybrid

argument one can show that the IND-CPA security of an encryption scheme is
equivalent to its 2-IND-CPA security (see [26] for a detailed discussion). As
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opposed to the IND-CPA game, in the 2-IND-CPA game the attacker receives
from the challenger two encryptions of mb, instead of one.

Suppose that B is an IND-CPA attacker on Gf . We construct a 2-IND-CPA
attacker A for the scheme S1[PKGf

] as follows. The attacker A receives as
input (1λ, pkGf

) and sends this to B. On this input, the attacker B produces two
messages m0,m1 ∈ P1 which are sent to A and the latter passes them to its
challenger. After receiving m0,m1, the challenger of A chooses b ← {0, 1} and
returns c1, c

′
1 ← Enc1(mb) to the attacker A. The attacker A, knowing bk, is

able to compute f(bk, c′
1) ∈ C2 and finishes by outputting b′ ← B(c1, f(bk, c′

1)).
Now, one can verify that

Adv2−IND−CPA
S1[PKG f

] [A](λ) = AdvIND−CPA
Gf

[B](λ).

By the discussion in the previous paragraph, the scheme S1[PKGf
] is 2-IND-

CPA secure, so that A has negligible advantage. The last equality shows that B
has also negligible advantage, which ends the argument. 
�

Recall that the bridge key generation algorithm produces the following ensem-
bles of {SK1,λ}λ distributions: {PK1,λ}λ, {PK2,λ}λ and {BKλ}λ. Let F be the
ensemble of finite distributions of triples (pk1, pk2, bk). Note that π1 : F → PK1

is a morphism of finite distributions, so F is a PK1-distribution as discussed in
Sect. 2.1.

Theorem 2. Assume that S1 is IND-CPA secure and there exists a polynomial
time constructible on fibers ensemble of PK1−distributions F̃ which is compu-
tational indistinguishable from F . Then the bridge Bι,f is IND-CPA secure.

Proof. Without losing generality we assume that P1 = {0, 1}. By the above
theorem, it is enough to prove that S1[PKGf

] is IND-CPA secure. We do
the proof by contradiction, so we suppose that A is an adversary attacking
the scheme S1[PKGf

] with non-negligible advantage. We think of A as being
a distinguisher between the ensembles of distributions F ×PK1 Enc1(PK1, 0)
and F ×PK1 Enc1(PK1, 1). The first claim is that, if A can distinguish
with non-negligible advantage between these two distributions then A dis-
tinguishes with non-negligible advantage between F̃ ×PK1 Enc1(PK1, 0) and
F̃ ×PK1 Enc1(PK1, 1). To prove the claim we suppose that this is not the case
and we construct a distinguisher D for the distributions F and F̃ . As the ensem-
ble of distributions F̃ is computationally indistinguishable from F , for every λ,
the distribution F̃λ consists of triples of the form (pk1, α, β).

The distinguisher D runs as follows. It first receives a triple (pk1, x, y) from
the challenger, chooses at random a bit b ← {0, 1} and encrypts b using pk1 to
obtain a ciphertext c. The distinguisher D sends the quadruple (pk1, x, y, c) to
A and outputs

D(pk1, x, y) :=

{
1 if A(pk1, x, y, c) = b

0 otherwise
.
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We note that the labels b = 1 and b = 0, as outputted by A, correspond to the
ensembles F and F̃ , respectively. Notice that

Pr {Exp1[D] = 1} =
1
2
Pr {Exp0[A|F ] = 0} +

1
2
Pr {Exp1[A|F ] = 1} ,

where Expb[A|F ] means that in the experiment Expb the challenger chooses the
triple (pk1, x, y) = (pk1, pk2, bk) according to F . Using analogous notation for
F̃ , we have:

Pr {Exp0[D] = 1} =
1
2
Pr

{
Exp0[A|

˜F ] = 1
}

+
1
2
Pr

{
Exp1[A|

˜F ] = 0
}

.

Since the advantage of A|F is non-negligible, there exists a positive integer k
such that ∣∣∣∣Pr {Exp1[D] = 1} − 1

2

∣∣∣∣ >
1
λk

(1)

for infinitely many λ’s. Also, since Adv[A|
˜F ](λ) = negl(λ), we have

∣∣∣∣Pr {Exp0[D] = 1} − 1
2

∣∣∣∣ = negl(λ). (2)

From (1) and (2) we infer that

Adv[D](λ) = |Pr {Exp1[D] = 1} − Pr {Exp0[D] = 1}|

is non-negligible, which contradicts the assumption about the computational
indistinguishability of the two distributions F and F̃ .

Now we use A|
˜F to construct an adversary B on S1. After receiving the pair

(pk1, c) (as before c ← Enc1(pk1, b)) from the challenger, B is using the sampling
algorithm of F̃ to get a triple (pk1, α, β). The adversary B sends (pk1, α, β, c)
to A|

˜F and outputs the bit received from it. It is clear that

Adv[B](λ) = Adv[A|
˜F ](λ)

so that B breaks the IND-CPA security of S1 with non-negligible advantage,
and this contradicts our assumption. 
�

4 A General Recipe for Constructing Bridges

As we shall explain in what follows, the Recrypt algorithm, used in the bootsrap-
ping procedure that transforms a somewhat homomorphic encryption scheme
into a fully homomorphic encryption scheme (see [18]), can be adapted to our
situation in order to give a general recipe for the construction of a bridge. We
will call this method Gentry’s recipe and say that the bridges obtained using it
are of Gentry type.
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Let us consider an encryption scheme

S = (PS ,CS ,KeyGenS ,EncS ,DecS )

and a homomorphic encryption scheme

H = (PH ,CH ,KeyGenH ,EncH ,DecH ,EvalH ),

such that PH has a ring structure and there exists an injective map ι : PS ↪→
PH satisfying the properties 1.(a)-(b) in Definition 3.

In this construction, the key generation algorithm is as follows. First, it runs
KeyGenS (1λ) to sample from the distribution SKS and then, independently,
it runs KeyGenH (1λ) to sample from SKH . We point out that the distribu-
tion SK2 in the definition of the bridge is in fact the product SKS × SKH

and the map SK2 → SK1 (see Fig. 1) is the projection on the first component
SKS ×SKH → SKS . Samples for the public keys pkS and pkH are generated,
independently, using the key generation algorithms of the two schemes. Given
a quadruple (skS , pkS , skH , pkH ) constructed as above, the algorithm creates
bk as the vector of encryptions of all the bits of skS under pkH (see below).
This is how the distribution of bridge keys BK is obtained.

The PPT algorithm f mentioned in the third part of Definition 3 is in this
case the homomorphic evaluation (in H ) of the algorithm DecS . We need to
realise DecS as a map P�

H → PH , and for this we use the ring structure on
PH . Suppose that the ciphertext space CS is a subset of {0, 1}n and that the
set of secret keys is a subset of {0, 1}e, so that DecS : {0, 1}e × {0, 1}n → PS .
We construct the map D̃ecS : Pe

H × Pn
H → PH as follows. Letting PH

be a subset of {0, 1}m, we have that ι ◦ DecS : {0, 1}e × {0, 1}n → PH

is a vector (g1, ..., gm) of boolean circuits expressed using XOR and AND
gates. Let g̃i : Pe

H × Pn
H → PH be the circuit obtained by replacing

each XOR(x, y)- gate by x ⊕ y := 2(x + y) − (x + y)2 and each AND(x, y)
gate by x ⊗ y := x · y, where + and · are the addition and multiplication in
PH . Notice that the subset of PH consisting of its zero element 0H and
its unit 1H together with ⊕ and ⊗ is a realisation of the field with two ele-
ments inside PH . In other words, if c = (c[1], ..., c[n]) ∈ CS and skS =
(sk[1], ..., sk[e]) is the secret key, then g̃i(sk[1]H , ..., sk[e]H , c[1]H , ..., c[n]H ) =
mH if gi(sk[1], ..., sk[e], c[1], ..., c[n]) = m for all i, where m ∈ {0, 1}. For an ele-
ment x ∈ PH , we let [x = 1H ] be the equality test, which returns 1 if x = 1H
and 0 otherwise. Finally, D̃ecS : Pe

H × Pn
H → {0, 1}m is defined by:

([g̃i(y1, ..., ye, x1, ..., xn) = 1H ])i=1,m .

One can verify that

D̃ecS (sk[1]H , ..., sk[e]H , c[1]H , ..., c[n]H ) = ι ◦ DecS (sk, c).

Now we are ready to define the bridge map. Given a ciphertext c ∈ CS , the
algorithm f first encrypts the n bits of c (viewed as elements of PH ) under



50 M. Barcau et al.

pkH and retains these encryptions in a vector c̃. The bridge key bk is obtained
by encrypting the bits of skS under pkH . Then, the algorithm outputs:

f(bk, c) = EvalH (evkH , D̃ecS , bk, c̃)

Assuming that H can evaluate D̃ecS we have:

DecH (f(bk, c)) = DecH
(
EvalH (evkH , D̃ecS , bk, c̃)

)

= ι (DecS (DecH (bk),DecH (c̃)))
= ι (DecS (skS , c))

which shows that third condition in the definition of a bridge is satisfied.

Remark 5. The above construction relies on the fact that the plaintext space of
H , being a ring, can be used to simulate an F2-structure inside it.

An example of the above construction can be found in [19], where the authors
managed to homomorphically evaluate the AES-128 circuit (encryption and
decryption) using an optimized implementation of the BGV scheme [5]. Once the
plaintext spaces and the embedding ι are fixed, the evaluation of this decryption
circuit can be seen as a Gentry type bridge. The bridge key consists of the BGV
encryptions of the eleven AES round keys (see Sect. 4 of [19]). We note that here
the round keys are embedded in the plaintext, so it was not necessary to encrypt
the bits of the round keys, as discussed at the beginning of the section. This
results in a simpler homomorphic evaluation of AES decryption. Nonetheless,
this bridge is essentially obtained using Gentry’s recipe.

4.1 On the Security of Gentry Type Bridges

The aim of this subsection is to show that if S and H are IND-CPA secure,
then any Gentry type bridge Bι,f from S to H is IND-CPA secure. The plan
is to apply Theorem 2 to the above construction.

Recall that F is the ensemble of finite distributions of triples (pkS , pkH , bk),
where bk is a vector of encryptions of the form (bk[1], ..., bk[e]) with bk[i] ←
EncH (pkH , sk[i]S ) for all i. Next, let F̃ be the ensemble of finite distri-
butions of triples (pkS , pkH , b̃k), where pkS , pkH are independently out-
putted by KeyGenS and KeyGenH , respectively and b̃k := (b̃k[1], ..., b̃k[e]) with
b̃k[i] ← Enc(pkH , 0H ) for all i ∈ 1, e. Notice that F̃ is polynomial-time con-
structible on fibers as a PKS -ensemble of finite distributions (see Definition
1). Let us remark that one can choose F̃ in a different way, setting b̃k to be a
vector of encryptions of any fixed e-long bit vector. If the scheme H is IND-
CPA secure, then one can prove by a standard hybrid argument (see the next
proposition) that the two versions are in fact computational indistinguishable.
Therefore, the choice of the particular fixed bit vector that is encrypted to get
b̃k does not matter.
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Proposition 2. If H is IND-CPA secure, then the ensembles F and F̃ are
computationally indistinguishable.

Proof. Let D be a distinguisher between the two ensembles F and F̃ . We denote
by Gi the distribution of triples (pkS , pkH , x) where the pair (pkS , pkH ) is
chosen exactly as in the case of F , or F̃ , and x := (x[1], ..., x[e]) where x[j] ←
Enc(pkH , skS [j]) for all j ∈ 1, i and x[j] ← Enc(pkH , 0) for all j ∈ i + 1, e.
Notice that {Ge(λ)}λ is the same as F , and {G0}λ is F̃ . For each i ∈ 1, e we
construct an attacker Bi on the scheme H as follows. The attacker receives
from the challenger the triple (1λ, pkH , c), where c is either an encryption of 0
or an encryption of 1. The attacker uses KeyGenS to generate a pair (skS , pkS )
and then constructs an e-long vector y as follows: y[j] ← Enc(pkH , skS [j]) for
j < i, y[i] = c, and y[j] ← Enc(pkH , 0) for j > i. Then the attacker Bi runs
D(1λ, pkS , pkH , y) and outputs sk[i] if the answer received from D is F and
0 otherwise. Basically, D can be used as a distinguisher between the ensembles
{Gi−1}λ and {Gi}λ, which gives rise to Bi. Notice that

AdvIND−CPA[D](λ) ≤
e(λ)∑

i=1

AdvIND−CPA[Bi](λ),

where we used the fact that the advantage of Bi is equal to the advantage of D
as a distinguisher between Gi and Gi−1. Since H is IND-CPA secure and e(λ)
is polynomial in λ, we get that D has negligible advantage.

The result of Proposition 2 combined with Theorem 2 yields the following result:

Theorem 3. Assume that S and H are both IND-CPA secure, then any Gen-
try type bridge Bι,f from S to H is IND-CPA secure.

4.2 A Variant of Gentry’s Recipe

The aim of this subsection is to give a new variant of Gentry’s recipe for the
construction of bridges. For this, we need first to introduce the product of two
encryption schemes. Suppose that Si = (Pi,Ci,KeyGeni,Enci,Deci), i ∈ {1, 2}
are two encryption schemes, then the product S1 ×S2 is defined as follows. The
plaintext space is defined as P1 × P2 and the ciphertext space as C1 × C2.
The Key Generation algorithm of the product scheme uses independently the
key generation algorithms of the two schemes to produce two pairs (sk1, pk1)
and (sk2, pk2) of keys and sets the secret key as (sk1, sk2), and sets the public
key as (pk1, pk2). An encryption of a message (m1,m2) ∈ P1 × P2 is just a
pair (c1, c2), where c1 ← Enc1(pk1,m1) and c2 ← Enc2(pk2,m2). Finally, the
decryption of (c1, c2) is (Dec1(sk1, c1),Dec2(sk2, c2)). In the same way, one can
define the product of p ≥ 2 encryption schemes. If H is an encryption scheme,
we shall denote by H p the product of p copies of H .

Now, we describe this new construction. We use the same notations as
in the beginning of this section, and we assume that PH = {0, 1}. Let
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ι : PS ↪→ {0, 1}p be a representation of the plaintext space of S , which can
be viewed as the map ι : PS ↪→ Pp

H , by identifying {0, 1}p with the plaintext
space of H p. We construct a bridge from S to H p as follows. Notice that the
decryption algorithm of S is in fact a p-long vector of boolean algorithms gi :
{0, 1}e × {0, 1}n → {0, 1}, that is DecS (skS , c) = (g1(skS , c), ..., gp(skS , c)),
where {0, 1}n and {0, 1}e correspond to CS and the support of secret keys of
S , respectively. The bridge key bk is obtained by encrypting the bits of skS
under each component of the public key of H p.

The bridge map f is the vector obtained by homomorphically evaluating the
circuits gi in H . More precisely

f(bk, c) = (EvalH (evkH , gi, bk, c̃))i=1,p ,

where c̃ is defined as above. Notice that, if c ← Enc(pkS ,m) then

DecH p(f(bk, c)) = ι(m).

Security. As in the previous subsection, it can be shown that if S and H are
IND-CPA secure, then the bridge is also IND-CPA secure. The proof is very
similar to that of Proposition 2, hence omitted here.

5 Conclusions

Access to secure and efficient bridges between homomorphic encryption schemes
would be helpful for applications of cloud computing on sensitive data. Investi-
gating theoretical results for proving the security of such protocols is therefore
an important topic. Our main theorem is such a tool, and a particular case of it
recovers the already known security of Gentry-type bridges.

Acknowledgements. The authors are indebted to George Gugulea and Mihai Togan
for helpful discussions and comments during the preparation of this work. We are also
grateful to the anonymous reviewers for useful suggestions.

A Examples of Gentry Bridges

The aim of this appendix is to emphasize the fact that, for an encryption scheme
S , different representations for the decryption algorithm DecS give rise to dif-
ferent bridges from S to a FHE scheme H . For practical applications, one
can select the appropriate representation that best suits the implementation of
the desired application. Having this in mind, we chose to exhibit the encryp-
tion scheme CSGN introduced in [3] and implemented in [8], whose decryption
algorithm admits at least four fundamentally different representations. We shall
restrict ourselves in discussing the security of these bridges, because the security
of the CSGN scheme is not entirely understood.
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A.1 Description of the CSGN Scheme

We give a brief description of the CSGN scheme. For more details regarding
the parameter selection, we refer to [3]. The plaintext space is the field F2 and
the ciphertext space of this scheme is F

n
2 with the monoid structure defined by

component-wise multiplication. A simplified version of the scheme is defined as
follows.

– KeyGenCSGN(1λ): Choose dimension parameters n, d and s of size poly(λ), a
uniformly random subset S of {1, 2, . . . , n} of size s, and a finite distribution
X on {1, 2, ..., d} according to [3]. Set the secret key sk to be the characteristic
function of S, viewed as a bit vector.

– EncCSGN: To encrypt 0, choose first k ∈ {1, 2, ..., d} according to X and then
choose uniformly at random d numbers i1, . . . , id from the set {1, 2, . . . , n},
such that exactly k of them are in S. Finally, output the vector in F

n
2 whose

components corresponding to the indices i1, . . . , id are equal to 0 and the
others are equal to 1. To encrypt 1, choose uniformly at random d numbers
i1, . . . , id from the set {1, 2, . . . , n}, such that none of them is in S, and output
the resulting vector in F

n
2 as before.

– DecCSGN: To decrypt a ciphertext c using the secret key sk, output 0 if c has
at least one component equal to 0 corresponding to an index from S and 1,
otherwise.

The output of the decryption algorithm can be written as

DecCSGN(sk, c) =
∏

i∈S

ci.

Notice that, the decryption map is a homomorphism of monoids from (Fn
2 , ·) to

the monoid (F2, ·) with the usual multiplication.
In what follows, we present four variants of bridges from the CSGN scheme,

denoted by S , to various FHE schemes. The latter are going to be denoted by
H . Also, the pairing 〈·, ·〉 : Rn × Rn → R will always be the standard inner
product over the ring R.

A.2 1st Bridge

Let H be any FHE scheme with plaintext space the field with two elements;
hence, the map ι is the identity map. The secret key skS can be represented by
the n-dimensional standard vectors ei, where i ∈ S. The bridge key generation
algorithm encrypts each entry of the vectors ei, i ∈ S using pkH to obtain the
bridge key bk = {ẽ1, ..., ẽs}, a set of vectors consisting of the aforementioned
encryptions.

We remark that the decryption algorithm of S may be written as

DecS (skS , c) =
∏

i∈S

〈c, ei〉,
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so that the bridge algorithm f is as follows:

f(bk, c) =
s∏

i=1

〈c, ẽi〉 =
s∏

i=1

⎛

⎝
∑

c[j]=1

ẽi[j]

⎞

⎠ .

For simplicity, we chose the trivial encryptions as the encryptions of the bits of
c with H .

A.3 2nd Bridge

We are in the same setting as before, where both plaintext spaces are F2. Recall
that the secret key skS is the characteristic function of the set S, represented
as an n-dimensional bit vector. Then, the decryption of S can be alternatively
written as

DecS (skS , c) =
n∏

i=1

(
1 − (1 − c[i])skS [i]

)
=

∏

c[i]=0

(1 − skS [i]).

The bridge key bk is constructed as bk := {s̃kS [1], ..., s̃kS [n]}, where for
every i, s̃kS [i] is an encryption of 1 − skS [i] under pkH . Finally, the bridge is
given by

f(bk, c) =
∏

c[i]=0

s̃kS [i].

Remark 6. The last formula shows that this bridge can be constructed even if the
scheme H is homomorphic only with respect to multiplication. For example, it
can be used when H = S obtaining something that resembles the key-switching
technique in some FHE schemes.

A.4 3rd Bridge

Here, the scheme H can be any FHE scheme with plaintext space the finite field
Fp, where p is a prime (for example the BGV and B/FV schemes, see [5,6] and
[16]).

The bridge key generation algorithm instantiates KeyGenS (1λ) and then
KeyGenH (1λ), assuring that the characteristic of PH is larger than the Ham-
ming weight of skS , that is p > s. It then chooses positive integers x1, ..., xs

such that p = 1 + x1 + · · · + xs, and fixes a bijection ϕ : S → {1, ..., s}. Consider
the vector sk ∈ F

n
p , where sk[i] = 0 if skS [i] = 0 and sk[i] = xϕ(i), otherwise.

For every i ∈ {1, . . . , n}, write s̃k[i] for an encryption of sk[i] under pkH . In this
case, the bridge key bk is the set of H encryptions bk = {s̃k[1], . . . , s̃k[n]}.

We remark that if ι : F2 ↪→ Fp denotes the usual embedding, then the
decryption of S satisfies

DecS (skS , c) = ι−1
(
1 − (

1 + 〈 c, sk〉Fp

)p−1
)
.
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The bridge map is defined as

f(bk, c) = EncH (pkH , 1) −
⎛

⎝EncH (pkH , 1) +
∑

c[i]=1

s̃k[i]

⎞

⎠
p−1

,

where the additions, subtractions and exponentiation on the right hand side are
homomorphic operations on the ciphertexts of H .

Remark 7. As mentioned in the discussion following Definition 3, one can
develop a theory of bridges for which the plaintext spaces of the two encryp-
tion schemes vary with λ along the same lines. The bridge constructed here falls
in this category because the plaintext space of H is chosen after the size of the
secret key is selected, as part of the Setup/KeyGen algorithm.

A.5 4th Bridge

This bridge is based on an idea used in [1] for the bootstrapping procedure of
the GSW scheme. Notice that if c is a ciphertext in S , encrypted using pkS ,
then c decrypts to 1 if and only if the inner product 〈c, skS 〉Z = s, namely

DecS (skS , c) = [〈 c, skS 〉Z = s],

where [x = y] is, as before, the equality test.
We observe that in the computation of the inner product 〈 c, skS 〉Z one uses

only the additive structure of Z (also Zm with m > s would be sufficient for
our purposes). To find a representation of the cyclic group (Zm,+), one needs
first to embed it into the symmetric group Sm. The generator 1 ∈ Zm is sent
by this injective homomorphism to the cyclic permutation π1 ∈ Sm, defined as
π1(i) = i + 1 for 1 ≤ i < m and π1(m) = 1. On the other hand, the group Sm is
isomorphic to the multiplicative group of m-by-m permutation matrices, that is
matrices with 0 or 1 entries, having exactly one nonzero element in each row and
each column. The isomorphism maps the permutation π ∈ Sm to the matrix
Mπ = [eπ(1), ..., eπ(m)], where ei ∈ {0, 1}m is the ith standard basis vector.
The composition of these two homomorphisms gives us an embedding for the
cyclic group (Zm,+). For implementation purposes, it is good to notice that the
permutation matrices in the image of this embedding can be represented more
compactly by just their first column, because the remaining columns are just the
successive cyclic shifts of this column.

Let us explain how the bridge is constructed. Let m = s + 1 and take sk =
(sk[1], ..., sk[n]) to be the aforementioned representation of the secret key skS ,
that is sk[i] = Mπ1 if skS = 1 and sk[i] is the identity matrix otherwise. Set
s̃k[i] to be an encryption of sk[i] under pkH for all i ∈ 1, n, meaning that we
encrypt with H each entry of the matrix sk[i]. The bridge key bk consists of
{s̃k[1], . . . , s̃k[n]}.
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The algorithm f takes as input bk and c and computes the matrix

P c :=
∏

c[i]=1

s̃k[i],

where the right hand side is a product of encrypted matrices, performed homo-
morphically in CH . We remark that the last entry of the first row of P c is an
encryption of the value returned by the equality test [〈 c, skS 〉Z = s]. Conse-
quently, we let the output of the bridge map be

f(bk, c) := P c
1,s+1.

B Entangled Encryption Schemes

Informally, we say that two encryption schemes S and H are entangled if there
is a bridge with empty bridge key from one to another.

In this appendix we give an example of such a bridge. In this example, the
secret key of S and H are identical.

We believe that whenever two encryption schemes S and H are entangled,
there is a relation between the ensembles of distributions of their secret keys.
We regard this as an interesting question for future research.

The presented bridge does not follow Gentry’s recipe. We start by recalling
the Goldwasser-Micali and Sander-Young-Yung encryption schemes. A bridge
from the former to the latter is then presented. The presentation is followed by
an interesting application of this bridge.

B.1 Goldwasser-Micali Cryptosystem

The Goldwasser-Micali encryption scheme is an asymmetric key encryption algo-
rithm developed by Shafi Goldwasser and Silvio Micali in [22]. If p, q are two
primes and N = p · q, then let J1(N) := {x ∈ (Z/NZ)×| ( x

N

)
= 1} be the

multiplicative group of invertible integers modulo N with Jacobi symbol equal
to 1. The GM-encryption scheme (Z/2Z, J1(N),KeyGenGM ,EncGM ,DecGM ) is
given as follows:
– KeyGen(1λ): Choose two primes p = p(λ), q = q(λ) of size λ and let N =

pq. Choose η ∈ (Z/NZ)× such that
(

η
p

)
=

(
η
q

)
= −1, which yields that

η ∈ J1(N). The public key is the pair (N, γ := η · u2), where u is a random
element of (Z/NZ)×. The secret key is the pair (p, q).

– Enc: To encrypt m ∈ Z/2Z, choose a random ξ ∈ Z/NZ and let EncGM (m) =
γmξ2.

– Dec: To decrypt c ∈ J1(N), compute the Jacobi symbol
(

c
p

)
. Set

DecGM (c) = 0 if the answer is 1 and DecGM (c) = 1 if the answer is −1.

The GM-encryption scheme is homomorphic with respect to addition in Z/2Z
and multiplication in J1(N), i.e.

DecGM (c1 · c2) = DecGM (c1) + DecGM (c2)

for all c1, c2 ∈ J1(N).
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B.2 The Sander-Young-Yung Cryptosystem

In this part of the appendix we present a homomorphic encryption scheme over
the multiplicative monoid (Z/2Z, ·) introduced in [25]. To describe the scheme
we shall use the encryption scheme of Goldwasser-Micali, which was recalled
above.

– Keygen(1λ): Choose two primes p = p(λ), q = q(λ) as in the Goldwasser-
Micali scheme. Choose � = �(λ) of size Θ(λ). Compute N = pq. The public
key and secret keys are the same as in the Goldwasser-Micali scheme.

– Enc: If m = 1 set v = (0, ..., 0) ∈ {0, 1}�. If m = 0 set v = (v1, ..., vn) ∈
{0, 1}�, where the components vi are randomly chosen in {0, 1}, not all equal
to 0. Encrypt each component of v with the Goldwasser-Micali scheme to get
a vector in CSY Y := J1(N)�.

– Dec: To recover the plaintext from the ciphertext c ∈ C , first decrypt each
component of c using the decryption algorithm of the Goldwasser-Micali
scheme, and then if the obtained vector is the 0-vector the message decrypts
to 1, else to 0.

Let us describe an operation � on the ciphertext space CSY Y . If x and y are
two ciphertexts then z := x � y is defined as follows:

1. Choose uniformly at random two � × � matrices over Z/2Z until two nonsin-
gular matrices A = (aij) and B = (bij) are found.

2. If x = (x1, ..., x�), y = (y1, ..., y�), then compute

zi =
∏

j,aij=1

xj ·
∏

j,bij=1

yj

for all i.

3. Pick uniformly at random r1, ..., r� ∈ (Z/NZ)× and set z = (z1r21, ..., z�r
2
� ).

Let us denote by vc the bit vector obtained by applying the decryption algorithm
of the Goldwasser-Micali scheme componentwise to the ciphertext c ∈ C . If
z := x � y then Step 2 above is equivalent to:

vz = Avx + Bvy,

where the operations are the usual addition and multiplication in Z/2Z. Notice
that DecSY Y (z) �= DecSY Y (x) · DecSY Y (y) if and only if Avx + Bvy = 0 (here
0 is the zero vector in (Z/2Z)�), and vx �= 0, vy �= 0. Since vx �= 0 and A is
nonsingular, the product Avx can be any nonzero vector in (Z/2Z)�, and in fact
any such vector occurs with the same probability. Of course, the same is true

for Bvy such that the situation described above occurs with probability ≤ 1
2�

.
In other words, except with exponentially small probability, we have that

DecSY Y (x � y) = DecSY Y (x) · DecSY Y (y).
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B.3 A Bridge from GM to SYY

Here, we construct a bridge from the Goldwasser-Micali encryption scheme to
the Sander-Young-Yung encryption scheme. After generating a secret key (p, q)
of GM, the key generation algorithm of the bridge sets the same pair (p, q) as
the secret key for the SYY encryption scheme. Then, the public keys for the
two encryption schemes are generated independently using their respective key
generation algorithms. After that, the bridge key generation algorithm does not
output anything, i.e. the support of the distribution BK is the empty set.

Now, for c ∈ J1(N), choose uniformly at random a non-singular matrix
A ∈ GL�(Z/2Z) and compute

ti =
∏

j,aij=1

cγ′ = (cγ′)|{j|aij=1}|

for all i ∈ 1, �, where γ′ is the second component of the public key of the SYY
scheme. Pick uniformly at random r1, . . . , r� ∈ (Z/NZ)× and set

f(c) = (t1r21, ..., t�r
2
� ).

If DecGM (c) = 1, then DecGM (cγ′) = 0 so that DecGM (ti) = 0, ∀i. Therefore,
vf(c) = 0 and hence DecSY Y (f(c)) = 1. On the other hand, if DecGM (c) = 0,
then DecGM (cγ′) = 1, and since A is nonsingular there exist i ∈ 1, � such that
DecGM (ti) = 1. We get that vf(c) �= 0, equivalently DecSY Y (f(c)) = 0.

Remark 8. The security of this bridge reduces to the security of the GM scheme
(see [22]) using Theorem 2. Indeed, the bridge key distribution is empty, thus
trivially polynomial-time constructible on fibers. On the other hand, the security
of SYY encryption scheme can be easily reduced to the security of GM (see [25]).
Alternatively, one can use Theorem 1 instead of 2. To see this, note that in the
notation of Sect. 3, the public key of the scheme attached to this bridge PKGf

consists of just GM’s public key and the security of GM [PKGf
] is equivalent to

the security of GM.

B.4 An Application

As an application of the above bridge we show that the comparison cir-
cuit can be evaluated homomorphically. For this, let x = (x1, x2, ..., xn) and
y = (y1, y2, ..., yn) be two bit vectors. The two vectors coincide if and only if

(x1 + y1 + 1) · ... · (xn + yn + 1) = 1,

so that the comparison circuit [x = y] is defined by

[x = y] := (x1 + y1 + 1) · ... · (xn + yn + 1).
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Suppose now that c = (c1, ..., cn) and d = (d1, ..., dn) are encryptions of the vec-
tors x, y with the Goldwasser-Micali cryptosystem. To homomorphically evalu-
ate the comparison circuit, we compute:

Eval([x = y], c,d ) :=
(((

f(c1 · d1 · γ) � f(c2 · d2 · γ)
) � ...

)
� f(cn · dn · γ)

)
.

Notice that DecSY Y (Eval([x = y], c,d )) = [x = y], except with negligible prob-
ability in the security parameter.

We end this appendix with the following reflection. When two encryption
schemes admit the construction of a bridge which has an empty bridge key, this
may be interpreted as some sort of entanglement between the schemes. Along the
same line of thought, if one can prove that such a bridge cannot be constructed,
the encryption schemes may be regarded as being independent.

C Experiments

We conducted experiments for the bridges described in Appendices A and B.
For each of the four different bridges in Appendix A, we compare the results
of the homomorphic evaluation of a circuit consisting of only one monomial in
the following two ways. First, we encrypt each factor of the monomial and per-
form the homomorphic multiplications of these factors using the CSGN scheme.
Then, bridges described in Appendix A are applied, in turn, to obtain a cipher-
text in a fully (leveled) homomorphic encryption scheme based on (R)LWE. We
compare this to the alternative option of evaluating the monomial directly on
encryptions in the FHE scheme. If the degree of the monomial is larger than a
certain threshold, the first procedure outperforms the second in terms of speed.
We identified this threshold for each of the FHE schemes in which we performed
experiments.

These computations were carried on a virtual machine having an Intel CPU
(I7-4770, 4 cores, 3.4 GHz, 12 GB RAM), using a single threaded implementation.
Table 1 consists of an overview of the processing times for each bridge using the
implementations of BGV, BFV and TFHE schemes, namely the HElib [23],
SEAL [24] and TFHE [9] software libraries. In the first two columns of the
table, one can find the version of the bridge that was implemented, the FHE
target scheme and the security parameters for the two schemes. The timings are
measured such that all encryptions maintain approximately the same security
level λ and listed in the last two columns. The small variation in λ is due to
parameter tuning in the different software libraries.

The reason we are missing an implementation for our third bridge using the
TFHE library comes from the lack of flexibility in choosing as plaintext space a
ring of characteristic p > 2 in this library. Additionally, we felt that adapting the
TFHE library was beyond the scope of our work. Also, the timing for running
the fourth bridge in BGV and BFV could not be measured because of large
memory usage, which exceeded the virtual machine RAM. Moreover, regarding
the fourth bridge, the implementation is optimized to store only the first column
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Table 1. Bridge evaluation.

Bridge (CSGN-λ) LWE(λ) ENC(Bridgekey) Bridgetime

1st(125) BGV(121) 69 s 2.6 s

1st(125) TFHE(128) 186ms 38.33 s

1st(125) BFV(128) 38.97 s 209.95 ms

2nd(125) BGV(114) 14.6 s 68.28 s

2nd(125) TFHE(128) 2.94 ms 1049 ms

2nd(125) BFV(128) 698ms 2.24 s

3rd(120) BGV(145) 7.65 s 248 ms

3rd(120) BFV(128) 8.2 s 156.46 ms

4th(115) TFHE(128) 162.6 ms 989.4 s

of each associated bit in the secret key, while the matrix multiplications involve
only homomorphic algebraic operations on encryptions from the first column of
the matrices.

There is no doubt that homomorphically evaluating a circuit whose poly-
nomial representation has a large number of monomials of low degree using
the bridge is inefficient and there is little hope for optimizations in terms of
speed. However, if some monomials have large degree, one might choose to do
so, because first performing multiplications in the CSGN scheme, followed by
additions in the (R)LWE setting might result in lower noise growth. Moreover,
by increasing the multiplicative depth of the circuit, we observe that its evalua-
tion is faster using the bridge than evaluating the circuit entirely in the (R)LWE
schemes. This can be observed in the figures below.

Since the multiplication in the CSGN scheme is inexpensive, the evaluation
time in the bridge using BGV, BFV and TFHE is almost constant as it essen-
tially consists only of the evaluation time of the bridge algorithm for one CSGN
ciphertext. Small variations in execution time for the bridge are due to the CPU
scheduling process. The drops in evaluation times occur when the instruction-
specific and data-specific cache at different levels in the CPU is filled with numer-
ous repetitive instructions. The timings for evaluating the circuit entirely in the
BGV or BFV scheme grow linearly with the degree of the monomial. We notice
that in the TFHE case, the running time of the evaluation starts growing expo-

Fig. 2. The first and second bridges.
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nentially in the number of multiplications, at some point. This is explained by
the fact that the TFHE software library goes automatically into bootstrapping,
whereas in the HElib and SEAL software libraries we can choose parameters in
which one can evaluate the circuit without the costly bootstrapping procedure
(Figs. 2 and 3).

Fig. 3. The third bridge - BGV & BFV.

We now report on the implementation of the bridge from the Goldwasser-
Micali encryption scheme to the Sander-Young-Yung encryption scheme con-
structed in the Appendix B. In the table below, one can find the timings required
for running the bridge, as well as the ones needed for the homomorphic evalu-
ation of the comparison circuit. The measurements were performed on an Intel
I7-1068NG7 CPU laptop with 32 GB of RAM. Since the parameter � of the SYY

Table 2. Homomorphic evaluation of comparison circuit using GM-SYY bridge.

n log2(N) GM· SYY� GM → SYY [x = y]

4 1024 0.002 ms 10.02 ms 4.54 ms 58.35 ms

4 2048 0.003 ms 29.96 ms 11.64 ms 164.44 ms

4 4096 0.008 ms 84.01 ms 32.82 ms 467.43 ms

8 1024 0.003 ms 10.70 ms 4.77 ms 123.98 ms

8 2048 0.004 ms 30.12 ms 11.89 ms 336.27 ms

8 4096 0.008 ms 84.65 ms 33.46 ms 945.26 ms

16 1024 0.002 ms 10.8 ms 4.87 ms 251.44 ms

16 2048 0.004 ms 29.69 ms 11.55 ms 660.17 ms

16 4096 0.008 ms 85.49 ms 33.71 ms 1907.78 ms

32 1024 0.003 ms 10.4 ms 4.69 ms 484.10 ms

32 2048 0.004 ms 30.29 ms 11.82 ms 1348.44 ms

32 4096 0.009 ms 82.51 ms 32.34 ms 3576.41 ms
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scheme does not have an impact on the security, but rather on the probability

to correctly decrypt the ciphertext
(

≥ 1 − 1
2�

)
, we fix � to be 50.

The parameters n and N in Table 2 stand for the bit-lengths of x,y and,
respectively, the Goldwaser-Micalli modulus. The timings required for the one
homomorphic operation in each scheme can be found in the third and the fourth
columns. We notice that the timings presented above grow linearly with the
number of bits required to represent the input data. This can be observed in the
following figure (Fig. 4).

Fig. 4. Evaluation times for the comparison circuit using GM-SYY bridge.
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Abstract. The cube attack is a powerful cryptanalytic technique
against stream ciphers. Cube attacks exploit the algebraic properties
of symmetric ciphers by recovering a particular polynomial, the super-
poly, and subsequently, the secret key. Nowadays, the division property-
based approach has become very popular, allowing us to recover the
exact superpoly cleverly. However, the computational cost to recover the
superpoly becomes prohibitive as the number of rounds of the cipher
increases. In this paper, we study NIST lightweight 3rd round candidate
Grain-128AEAD in the light of division property-based cube attacks. We
first introduce some good cubes of dimensions 91, 92, 93, 94, and then
we construct an algorithm to find conditional key bits for the cubes of
Grain-128AEAD mentioned above. Next, we apply three-subset division
property without unknown subset-based cube attacks to recover exact
superpolies for 192, 193, 194, 195-round Grain-128AEAD in the weak-
key setting, which are the longest till now. Moreover, we are able to find
good cubes that are used to build distinguishers of Grain-128AEAD in
the weak-key setting. In particular, we show that Grain-128AEAD can
be distinguished from a random source up to 193-rounds in the weak-key
setting, which is the best zero-sum distinguisher of Grain-128AEAD till
now using division property-based cube attacks.

Keywords: Cube attack · Division property · Three-subset division
property · MILP · Grain-128AEAD

1 Introduction

Cube attack, proposed by Dinur and Shamir [6] at EUROCRYPT 2009, is one
of the most powerful cryptanalytic techniques against symmetric cryptosystems.
The target of cube attack is to recover secret variables from the simplified poly-
nomial called superpoly. To mount a cube attack, one first recovers the superpoly
in an offline phase. Then, the value of the superpoly is obtained by querying the
encryption oracle and computing the summation. From the equation between
the superpoly and its value, information about the secret key can be revealed.
Therefore, the superpoly recovery is a central step in the cube attack.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Bella et al. (Eds.): SecITC 2022, LNCS 13809, pp. 65–80, 2023.
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Traditional cube attacks [6,8,25,31] regard ciphers as black boxes so the
superpolies are recovered experimentally. Only linear or quadratic superpolies
are applicable. At CRYPTO 2017, [27] Todo et al treated the polynomial as
non-blackbox and applied Conventional Bit-based Division Property (CBDP) to
cube attacks on stream ciphers for the first time. Then, at CRYPTO 2018, Wang
et al [29] improved it by introducing flag and term enumeration techniques. For
CBDP based cube attacks, the superpolies of large cubes can be recovered by
the theoretical method. But the theory of CBDP cannot ensure that the super-
poly of a cube is non-constant. Hence the key recovery attack may be just a
distinguishing attack. To solve this problem, at ASIACRYPT 2019, Wang et al
[30] proposed the cube attack based on Bit-based Division Property using Three
Subsets (BDPT) and proved that BDPT without an unknown subset can recover
the accurate superpoly of cube attack. Then, at EUROCRYPT 2020, Hao et al
[11] proposed a new modeling method for the BDPT without an unknown sub-
set. Their algorithm is more efficient, and it can improve existing key-recovery
attacks on many ciphers. Moreover, in [13,15] the authors embedded the mono-
mial prediction technique into a nested framework, which allows them to recover
superpolies and in [31], the authors also developed a pure algebraic method to
recover the exact superpoly. However, as the number of rounds of the cipher
increases, such useful cubes are hard to find.

One of the most significant security criteria for a keyed cryptographic primi-
tive is its unpredictable behaviour concerning any randomly chosen key from the
whole key space. When a key is used with a given cipher, it is considered to be
weak if it causes the cipher to behave in an undesirable way (like it reduces the
algebraic degree significantly). Many attacks in the weak-key setting for block
cipher [12,16], as well as stream ciphers [23,26] have been presented. However,
finding a weak-key set is a computationally hard problem. For example, the
invariant subspace attack [18,19], is a general weak-key attack, that is known in
the literature. Recently, cube attacks that investigate key conditions which may
lead to weak-key attacks, have been proposed in [21,22].

Table 1. Previous Works of Superpoly Recovery for Grain-128AEAD using Division
Property

Round Number of Cubes Cube Size Time References

190 – 95 – [11]

191 2 95–96 – [15]

192 1 94 45 days [13]

Related Works. NIST has launched a process for soliciting, evaluating, and
standardising lightweight cryptographic algorithms suited for use in limited con-
texts. In August 2018, NIST issued a call for algorithms to be considered for
lightweight cryptography standards. There were initially 57 submissions and
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NIST released ten candidates following the third round of pruning. Grain-
128AEAD is one of these candidates. Grain-128AEAD is designed by modi-
fying the authentication module of Grain-128a. Grain-128a has been adopted
as an ISO standard for radio frequency identification (RFID) devices. Further,
the encryption module of Grain-128AEAD and Grain-128a are the same. The
cryptanalysis of the encryption module of Grain-128a can be applied to the
cryptanalysis of the encryption module of Grain-128AEAD.

As Grain-128AEAD is one of the candidates in the competition by NIST,
the cryptanalysis of Grain-128AEAD is an important research area. In 2012,
Lehmann et al [20] proposed an attack using the conditional cube tester on
Grain-128a of 177 KSA (Key Scheduling Algorithm) round in the single key
setup and 189 KSA round in the weak-key setup. Recently, Ma et al [24] and
Karlsson et al [17] proposed a differential attack and nonrandomness detectors on
Grain-128a up to 195 and 203 KSA rounds, respectively in the weak-key setup.
Readers may refer to [2–5,7,28] for detailed cryptanalytic results on the Grain
family. Moreover, using the concept of division property-based cube attacks,
exact superpolies for 190, 191, 192-round Grain-128AEAD have been recovered
efficiently using which key-recovery attacks are also mounted [11,13,15] (The
results we have listed in Table 1). But, for these cube attacks, the cube dimen-
sions are on the higher side. Now, the following question arises in our mind:

Can we reduce the cube dimension and recover exact superpoly of the cube for
higher round Grain-128AEAD?

1.1 Our Contributions

To address this question, we begin by studying the most popular cipher Grain-
128AEAD in the light of division property-based cube attacks. Our primary
focus is to reduce the cube dimension of Grain-128AEAD and recover exact
superpoly using those cubes for higher round Grain-128AEAD. The details of
our technical contributions are listed as follows:

Finding Cubes and Searching Conditional Key Bits. First, we search
for good cubes with less dimensions than the previous division property-based
cube attacks for which we can recover superpoly efficiently (which is illustrated
in Sect. 3.1). Here, we use the cube dimensions of Grain-128AEAD as 91, 92, 93,
and 94. Therefore, our other important contribution is to search for conditional
key bits for which we can efficiently recover superpolies of above-mentioned cubes
of Grain-128AEAD (which is described in Sect. 3.2). To do this, we provide an
algorithm (Algorithm 1) using which we can set conditions on key bits which
depend on cube variables.

Application on Grain-128AEAD. As for the application of our concept, we
apply three-subset division property without unknown subset in order to recover
exact superpoly of Grain-128AEAD of our cubes in the weak-key setting. As a
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result of this, we find exact superpolies of 192-195 round Grain-128AEAD in the
weak-key setting which are the best results on Grain-128AEAD till now. More-
over, we also present a zero-sum distinguisher of 193-round Grain-128AEAD
which is the longest distinguisher of Grain-128AEAD using division property-
based cube attacks. The detailed results are shown in Table 2.

Table 2. Summarization of our Superpoly Recovery Results for Grain-128AEAD in
the Weak-Key Setup using Division Property

Round Number of Cubes Cube Size Time References

192 2 91, 92 2min Sect. 4

193 2 92, 94 7min Sect. 4

194 1 93 1 h Sect. 4

195 1 94 7 days Sect. 4

1.2 Organization of the Paper

This paper is organized as follows: In Sect. 2, we briefly recall some background
knowledge and the relationship between the division property and cube attack. In
Sect. 3, we construct good cubes and propose an algorithm to construct appropri-
ate weak-key conditions to perform cube attack on Grain-128AEAD. Therefore,
we show some results (superpoly recovery, zero-sum distinguisher) on Grain-
128AEAD in Sect. 4. At last we conclude the paper in Sect. 5.

2 Preliminaries

2.1 Notations

Let F2 denote the finite field {0, 1} and a = (a0, a1, . . . , an−1) ∈ F
n
2 be an

n-bit vector, where ai denotes the i-th bit of a. For n-bit vectors x and u,
define xu =

∏n−1
i=0 xui

i . Then, for any k ∈ F
n
2 and k′ ∈ F

n
2 , define k � k′ if

ki ≥ k′
i holds for all i = 0, 1, . . . , n − 1, and define k � k′ if ki > k′

i holds for all
i = 0, 1, . . . , n−1. For a subset I ⊆ {0, 1, ..., n−1}, uI denotes an n-dimensional
bit vector (u0, u1, . . . , un−1) satisfying ui = 1 if i ∈ I and ui = 0 otherwise. We
simply write K ← k when K = K ∪ {k} and K → k when K = K \ {k}. And
|K| denotes the number of elements in the set K. We denote [n] = {1, 2, . . . , n},
1 = 1n, and 0 = 0n.

2.2 Specification of Grain128AEAD

Grain-128AEAD [14] is a member of the Grain family and also one of the win-
ner of the NIST LWC standardization process. Grain-128AEAD inherits many
specifications from Grain-128a, which was proposed in 2011 [1]. There are four
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differences between Grain-128AEAD and Grain-128a: (i) larger Macs, (ii) no
encryption-only mode, (iii) initialization hardening, and (iv) keystream limita-
tion. These differences do not come only from the requirement for the NIST
LWC standardization process but also from recent cryptanalysis results against
Grain-128a [10].

The internal state is represented by two 128-bit states, (b0, b1, . . . , b127) and
(s0, s1, . . . , s127). The 128-bit key K is loaded to the first register b, and the
96-bit initialization vector is loaded to the second register s. The other state
bits are set to 1 except for the last one bit in the second register. Namely, the
initial states are represented as

{
(b0, b1, . . . , b127) = (K1,K2, . . . ,K128)
(s0, s1, . . . , s127) = (IV1, IV2, . . . , IV96, 1, 1, . . . , 1, 0)

We denote IV is a set consisting of IV1, IV2, . . . , IV96. The pseudo-code of the
update function in the initialization is given as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g ← b0 + b26 + b56 + b91 + b96 + b3b67 + b11b13 + b17b18 + b27b59

+ b40b48 + b61b65 + b68b84 + b88b92b93b95 + b22b24b25 + b70b78b82,

f ← s0 + s7 + s38 + s70 + s81 + s96,

h ← b12s8 + s13s20 + b95s42 + s60s79 + b12b95s94,

z ← h + s93 + b2 + b15 + b36 + b45 + b64 + b73 + b89,

(b0, b1, . . . , b127) ← (b1, . . . , b127, g + s0 + z),
(s0, s1, . . . , s127) ← (s1, . . . , s127, f + z).

In the initialization, the state is updated 256 times without producing an output.
After the initialization, the update function is tweaked such that z is not fed to
the state, and z is used as a pre-output key stream. Hereinafter, we assume that
the first bit of the pre-output key stream can be observed. Note that there is no
difference between Grain128a and Grain-128AEAD under this assumption.

2.3 Cube Attack and Division Property

Cube Attack. The cube attack was proposed by Dinur and Shamir in [6].
A cipher is regarded as a public Boolean function whose input is divided into
two parts: secret variables x and public ones v. Then, the ANF of the Boolean
function is represented as

f(x, v) =
⊕

u∈F
n+m
2

af
u (x ||v)u .

For a set of indices I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}, which is referred as cube
indices, tI denotes a monomial as tI = vi1 · vi2 · · · vi|I| . The Boolean function
f(x, v) can also be decomposed as

f(x, v) = tI · p(x, v) + q(x, v).
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Let CI , which is referred as a cube (defined by I), be a set of 2|I| values where
variables in {vi1 , vi2 , . . . , viI} are taking all possible combinations of values, and
all remaining variables are fixed to any value. The sum of f over all values of
the cube CI is

⊕

CI

f(x, v) =
⊕

CI

tI · p(x,v) +
⊕

CI

q(x, v) = p(x, v)

because tI = 1 for only one case in CI and each term in q(x, v) misses at least
one variable from {vi1 , vi2 , . . . , viI}. Then, p(x, v) is called the superpoly of the
cube CI , and the goal of the cube attack is to recover the superpoly.

Division Property. The division property is formally developed as the gener-
alization of the integral property, and it has been initially used to evaluate the
integral distinguisher. Now, the relationship between the division property and
the ANF of public functions is discussed below:

Definition 1. (Three-Subset Division Property without Unknown
Subset [11]). X be a multi set whose elements take a value of F

n
2 . Let L̃ be

also a multi set whose elements also take a value of Fn
2 . When the multi-set X

has three-subset division property without unknown subset (T 1n

L̃
), it fulfills the

following conditions:

⊕

x∈X

xu =

{
1, if there are odd number of u′s in L̃

0, otherwise

Using this definition, the authors also defined three-subset division trail and
explained the propagation rules of COPY, XOR and AND in [11].

Mixed Integer Linear Programming (MILP). MILP is a kind of optimiza-
tion or feasibility program whose objective function and constraints are linear,
and the variables can be continuous or integers. Generally, an MILP model M
consists of variables M.var, constraints M.con, and the objective function M.obj.
MILP models can be solved by solver like Gurobi [9]. If there is no feasible solu-
tion, the solver will returns infeasible. And if there are feasible solutions, the
solver will returns the optimal value of the objective function. When there is no
objective function in M, the MILP solver will only return whether M is feasible
or not.

Algorithm to Recover ANF Coefficients of Public Function [11]. Let f
be a Boolean function whose input denotes an n-bit string x = (x1, x2, . . . , xn),
and let it consist of the iteration of simple public functions. Then, the algebraic
normal form of f is represented as

f(x) =
⊕

u∈Fn
2

af
ux

u
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Our goal is to recover the value of af
u for some u. To do this, we have to first

construct MILP model that represents the three-subset division property without
unknown subset of the function f . The authors in [11] proposed an algorithm
(Algorithm 1 in [11]) which recovers an ANF coefficient af

u . The initial three-
subset division property without unknown subset is defined by u, and the number
of feasible solutions is enumerated by using the MILP solver. Note that the
efficiency of Algorithm 1 in [11] depends on the number of feasible solutions.

3 Superpoly Recovery for Grain-128AEAD Using Weak
Keys

The most important and challenging part of the cube attack is to recover the
ANF of the superpoly of the cube. As Grain-128AEAD is a finalist in a recent
NIST competition, it will be challenging to recover the superpoly of such cipher.
Before recovering the superpoly, one needs to search for a good cube of the
cipher. If one works on a weak-key setting, another important task is finding
conditional key variables, which leads to the recovery of the superpoly of the
cube.

3.1 Cube Searching Algorithm for Grain-128AEAD

Constructing a cube-searching algorithm nowadays is a crucial task for a cube
attack. Many such algorithms exist for such purposes as maximum last zero, and
maximum last α (0 ≤ α ≤ 1). The last method gives a better cube searching for
Grain-128a. So we have used this algorithm to find a better result. In the paper
[4], the authors have found a cube of {63, 64, 66, 68, 69} of size five to mount a
distinguishing attack for 191 round in a single key scenario. They construct the
cube of size five from a cube of size one.

Following a similar method, we also start to find the cube of size one. The
best cube of size one is {s69} because it attains the maximum last alpha round at
123. By similar process, we get the cube variables s68, s67, s66, s65, s64 simulta-
neously. As those cube variables expose some weakness of the Boolean functions
at particular rounds, so we again work with those cube variables. The variables
mentioned above are crucial in getting a distinguisher for Grain-128a. But our
challenge is tougher and more exciting. We want to recover the superpoly of the
Boolean function at some particular round using the division property. As we
know, a small dimensional cube will not be useful for superpoly recovery in the
division property-based cube attacks. Due to the success of our cube variables
in the previous attack on Grain-128a, we decide to work with the complement of
the set of cube variables. As superpoly searching is lengthy and time-consuming
process, so we start to find the superpoly using the cube of size 96 − 2 = 94. As
previously cube of sizes 96, 95 was used, so we used a cube of less size to reduce
the complexity of superpoly recovery. Then we decrease the cube size one by one,
following less complexity for superpoly recovery. Also, we vary the initialization
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round to reduce the complexity. Finally, we find the best trade off between the
initialization round and cube size to get better complexity.

Algorithm 1: Searching for Conditional Bits Corresponding to Chosen
Cubes
Input: Set of strong variablesa S
Output: Set of Conditional key variables W
begin

Start with a single element from S and store it in C
while |C| ≤ |S| do

Choose the cube variables as IV \ C
Store the conditional key variables from SAGE corresponding to
variables in IV \ C in W.
Also, store conditional key variables from structure observation of
the cipher in W
Run division property-based cube attacks using the cube IV \ C
if Superpoly corresponding to IV \ C is recovered then

Take W as a set of conditional key bits
end
else

Add some additional conditional key variables in W
Run division property-based cube attacks
Repeat Else part until superpoly is recovered

end
Take another subset C of S and repeat the while part.

end
return W

end

a The set of those variables in IV using which we can construct good cubes for
Grain-128AEAD.

3.2 Searching Weak-Key Domain for Grain-128AEAD

Putting conditions on key and IV variables plays an important role in upgrad-
ing the attacks on any cipher. Conditions on the variables help us to find weak-
nesses in the corresponding Boolean function at a particular round. In the pre-
vious paper [4], the authors found the conditions on key bits corresponding
to cube variables using SAGE software. Also, some conditions are found using
the structure observation with theoretical analysis. We have also followed their
approaches. But the conditions retrieved for corresponding cubes do not help
us to recover superpoly using division property-based approaches. So again, we
try to find the additional conditions to recover the superpoly. We try to find
the subset of key bits which contributes to superpoly recovery. As the division
property-based attack takes all IV bits as zero, we do not worry about the
conditions on IV bits. The selection of key bits is made in the following way:

In our case, we have implemented the algorithm on the different rounds of
Grain-128AEAD in the following way.
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– We collect the strong variables of Grain-128AEAD as S = {s42, · · · , s69}.
– The conditions on key variables for each strong variable are given in Table 3.
– Select an element say r from S and take IV \{r} as cube. Therefore, collect all

corresponding conditional key bits from Table 3 in the set W corresponding
to the chosen cube.

– Also, we collect the conditional key variables getting through the structure
observation of Grain-128AEAD in the set W (Given in the last of this section).

– For example, we take IV \{s69, s68} as a cube for 195-round Grain-128AEAD
and run the division property-based cube attacks to recover the superpoly.

– As we can not recover the superpoly, we add some additional conditional key
variables b42, b43, b44, b45, b72, b73, b76, b77, b121, b122, b123, b124, b126, b127 in the
set W.

– Again, we run the program. This time, we recover the superpoly for 195-
round Grain-128AEAD. Similar way, we find W for different cubes and recover
superpolies.

Note 1. As the running of division property-based cube attack is a time-
consuming process, we optimize the W set as much as possible.

Table 3. Conditions on key variables for 1-dimensional cubes

Cube Conditions on key variables Cube Conditions on key variables

{s42} b46 = b50 = b95 = 0 {s56} b60 = b64 = b109 = 0

{s43} b47 = b51 = b96 = 0 {s57} b61 = b65 = b110 = 0

{s44} b48 = b52 = b97 = 0 {s58} b62 = b66 = b111 = 0

{s45} b49 = b53 = b98 = 0 {s59} b63 = b67 = b112 = 0

{s46} b50 = b54 = b99 = 0 {s60} b64 = b68 = b113 = 0

{s47} b51 = b55 = b100 = 0 {s61} b65 = b69 = b114 = 0

{s48} b52 = b56 = b101 = 0 {s62} b66 = b70 = b115 = 0

{s49} b53 = b57 = b102 = 0 {s63} b67 = b71 = b80 = b116 = 0

{s50} b54 = b58 = b103 = 0 {s64} b68 = b72 = b117 = 0

{s51} b55 = b59 = b104 = 0 {s65} b69 = b73 = b118 = 0

{s52} b56 = b60 = b105 = 0 {s66} b70 = b74 = b119 = 0

{s53} b57 = b61 = b106 = 0 {s67} b71 = b75 = b120 = 0

{s54} b58 = b62 = b107 = 0 {s68} b72 = b76 = b121 = 0

{s55} b59 = b63 = b108 = 0 {s69} b73 = b77 = b122 = 0

From the structure observation, the additional conditional key bits for the
above
cubes are b64, b67, b70 − b74, b76 − b87, b91, b94, b95, b102, b104, b105, b108, b110, b112 −
b114, b116, b118, b119, b121, b122, b125.
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3.3 Division Property-Based Cube Attack for Grain-128AEAD

The most important part of a cube attack is to recover the superpoly, and we
simply call it the superpoly recovery in this paper. In [11], the authors explained
how three-subset division property without unknown subset can be used as a
tool to analyze ANF coefficients of the superpoly for a public Boolean function.

Superpoly Recovery. The encryption module of Grain-128AEAD is regarded
as a public boolean function f(x, v) whose input is divided into two parts: secret
variable x and public variable v. Now, we construct MILP model M where the
encryption module of Grain-128AEAD is represented by the context of division
property as described in Algorithm 5 in [11]. Here, we denote x and v as the
MILP variables corresponding to secret and public variables and in our case,
x = (b00, . . . , b

0
127), and v = (s00, . . . , s

0
127). Therefore, to represent the initial

division property, elements of v indexed by I (cube indices) are constrained by
1 and the elements of v indexed by the other IV indices are constrained by 0.
Moreover, we add the constraints corresponding to weak-key conditions in MILP
model M.

After constructing MILP model M with initial division property correspond-
ing to cube and non-cube indices and weak-key conditions, we solve MILP model
M as all monomials that could be involved in the superpoly can be found as
feasible solutions (Algorithm 2 in [11]). Finally, we enumerate feasible solutions
and finally get the superpoly of Grain-128AEAD corresponding to the cube CI
where I be the cube indices. Although using this method, we can accurately find
superpoly of the cube CI , it is practically impossible to enumerate all feasible
solutions when there are too many solutions.

After recovering the superpoly, an attacker can retrieve the information
regarding the Boolean function of the cipher. Also, the attacker can use the
drawbacks in the superpoly to find loopholes in the output function of the cipher,
which leads to a distinguishing attack. Further, one can extend it to a key recov-
ery attack using a sufficient number of superpolies.

4 Experimental Results

We apply the three-subset division property without unknown subset based cube
attacks on the encryption module of Grain-128AEAD in the weak-key setting.
First, we search appropriate cubes and weak-key using Algorithm 1, and there-
fore using division property-based cube attack technique we accurately recover
the superpolies for 192-195 rounds using cube sizes 91, 92, 93, 94 respectively in
the weak-key setting where the size of the corresponding weak-key class is 243.
The details of our results are given in Table 4. These are the best-known attacks
on Grain-128AEAD in the weak-key setting till now. Moreover, we construct
zero-sum distinguishers on 192-193 round Grain-128AEAD in the weak-key set-
ting which are the longest distinguisher in this direction. The detailed parameters
of superpoly recovery of 192-round and 193-round Grain-128AEAD and zero-sum
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distinguishers are in the following subsections. The recovered superpoly for 194-
round Grain-128AEAD is in the Appendix A.

Superpoly Recovery for 192-Round Grain-128AEAD. The cube indices
of size 91 to recover superpoly of 192-Round Grain-128AEAD are

I = {1, 2, . . . , 65, 71, . . . , 96}

and IV66 = IV67 = IV68 = IV69 = IV70 = 0. Therefore, we get the superpoly
corresponding to CI which is represented as the sum of 2 monomials, and the
following

p(x) = x40x42 + x29

is the recovered superpoly, where x = (x1, x2, . . . , x128) denotes the secret key,
i.e., xi = Ki. This superpoly is a balanced Boolean function because there is a
monomial x29 that is independent of other monomials.

Superpoly Recovery for 193-Round Grain-128AEAD. The cube indices
of size 92 to recover superpoly of 193-Round Grain-128AEAD are

I = {1, 2, . . . , 66, 71, . . . , 96}

and IV67 = IV68 = IV69 = IV70 = 0. Therefore, we get the superpoly cor-
responding to CI which is represented as the sum of 38 monomials, and the
following

p(x) = 1 + x43 + x42x43 + x41 + x40x42x43 + x39x41 + x39x40

+ x38 + x36x38 + x35x36 + x33 + x33x35 + x32 + x32x36

+ x31x41x42 + x31x40x41 + x31x35x37 + x30 + x29x38

+ x29x36x37 + x29x34x37 + x29x31 + x28 + x28x42x43

+ x28x36x38 + x28x29 + x28x29x37 + x26 + x26x29 + x25

+ x25x28 + x24 + x24x43 + x24x32 + x24x31 + x22 + x21 + x18

is the recovered superpoly, where x = (x1, x2, . . . , x128) denotes the secret key,
i.e., xi = Ki. This superpoly is a balanced Boolean function because there are
monomials x22, x21, and x18 that are independent of other monomials.

Zero-Sum Distinguishers for 192-193 Round Grain-128AEAD. To con-
struct the cube attack against 192-round Grain-128AEAD, we choose the cube
indices of size 92 as follows:

I = {1, 2, . . . , 66, 71, . . . , 96}

where IV67 = IV68 = IV69 = IV70 = 0. Therefore, in the weak-key setting, we
find that the superpoly does not involve secret key (where x = (x1, x2, . . . , x128)
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denotes the secret key). Hence, the cube attack against 192-round Grain-
128AEAD is a zero-sum distinguisher.

Moreover, the cube attack against 193-round Grain-128AEAD is also a zero-
sum distinguisher where we choose the cube indices of size 94 as follows:

I = {1, 2, . . . , 68, 71, . . . , 96}

where IV69 = IV70 = 0. This is the longest zero-sum distinguisher on Grain-
128AEAD using division property-based cube attack best known to us.

Table 4. Results of Superpoly Recovery for Different Cubes on Grain-128AEAD

Cube size Cube variables Round Additional Conditional Key Variables

91 IV \ {s65, s66, s67, s68, s69} 192

b42, b43, b44, b45, b69, b70, b71, b72, b73

b74, b75, b76, b77, b118, b119, b120

b121, b122, b123, b124, b126, b127

92 IV \ {s66, s67, s68, s69} 193

b42, b43, b44, b45, b70, b71, b72, b73

b74, b75, b76, b77, b119, b120

b121, b122, b123, b124, b126, b127

93 IV \ {s67, s68, s69} 194
b42, b43, b44, b45, b71, b72, b73, b75, b76, b77

b120, b121, b122, b123, b124, b126, b127

94 IV \ {s68, s69} 195
b42, b43, b44, b45, b72, b73, b76, b77

b121, b122, b123, b124, b126, b127

5 Conclusion and Future Work

In this paper, we revisit division property-based cube attacks and study NIST
lightweight 3rd round candidate Grain-128AEAD in the light of cube attacks
based on division property. First, we find some good cubes and propose an algo-
rithm to find conditional key bits for our cubes of Grain-128AEAD. Therefore,
we efficiently apply three-subset division property without unknown subset based
cube attacks on Grain-128AEAD and recover superpolies up to 195 rounds in
the weak-key setting which are best-known results on Grain-128AEAD till now.
Moreover, we find zero-sum distinguishers on 193-round Grain-128AEAD which
is the longest distinguisher in this direction.

As, it is hard to find good cubes with less dimension in order to construct
division property-based cube attacks, how to construct an efficient cube search-
ing algorithm so that we can recover exact superpolies of higher rounds Grain-
128AEAD is an open problem. Moreover, in the single-key setup, how to mount
distinguishing as well as key recovery attacks on stream ciphers efficiently using
division property will be nice future work.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions.
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A Detailed Result for Cube Attacks Against
Grain-128AEAD

The cube indices of size 93 to recover superpoly of 194-Round Grain-128AEAD
are

I = {1, 2, . . . , 67, 71, . . . , 96}
and IV68 = IV69 = IV70 = 0. Therefore, we get the superpoly corresponding to
CI which is represented as the sum of 38 monomials, and the following

p(x) = 1 + x43 + x42x43 + x41 + x41x42 + x40x43 + x40x42 + x40x41

+ x40x41x43 + x40x41x42 + x39 + x39x41 + x39x40 + x39x40x41x42

+ x38x43 + x38x41x43 + x38x41x42 + x38x40 + x38x39 + x38x39x41x42

+ x37x39x40 + x37x38 + x36x40 + x35 + x35x37x41 + x35x37x40

+ x34x36 + x34x35x40 + x34x35x38 + x33 + x33x42 + x33x41x43

+ x32x33 + x31 + x31x42 + x31x40 + x31x39x40 + x31x36

+ x31x33 + x30x43 + x30x41x42 + x30x40x42 + x30x40x41

+ x30x38 + x30x37 + x30x35x37 + x30x33 + x30x33x37 + x30x32

+ x30x32x41 + x30x32x40 + x30x31 + x30x31x41 + x29 + x29x41x42

+ x29x40 + x29x38 + x29x35x37x41 + x29x33 + x29x32x41 + x29x30x39

+ x29x30x33 + x28 + x28x41 + x28x41x43 + x28x40 + x28x35x40

+ x28x35x40x41 + x28x33 + x28x31 + x28x31x40 + x28x30

+ x28x30x40 + x28x30x40 + x28x30x38 + x28x30x35x40 + x28x30x31

+ x28x29x39 + x27 + x27x40 + x26x40 + x26x38 + x25x40 + x25x30x40

+ x24x41x43 + x24x40 + x24x40x41 + x24x38 + x24x30x41 + x24x30x40

+ x24x30x39 + x24x29x41 + x24x26 + x23 + x23x40 + x23x30

+ x23x29 + x22 + x22x40 + x21 + x21x38x40 + x21x33

+ x21x31x40x41 + x21x31x34x36 + x21x27 + x21x26x31x40x42 + x21x26x30

+ x21x26x29x31 + x21x26x28x31 + x21x23x31 + x20x42x43 + x20x40

+ x20x40x42x43 + x20x38 + x20x38x40 + x20x37x39 + x20x36 + x20x36x38

+ x20x35 + x20x35x36 + x20x33 + x20x33x35x36 + x20x32 + x20x32x41x42

+ x20x32 + x20x32x41x42 + x20x32x35x36 + x20x29x37x41x42

+ x20x29x36x38 + x20x29x36x37 + x20x29x35x37 + x20x29x31

+ x20x29x30x37 + x20x29x30x32 + x20x28 + x20x28x39x40 + x20x28x37

+ x20x28x33x35 + x20x28x32 + x20x28x32x35 + x20x28x29 + x20x27

+ x20x26 + x20x25 + x20x25x29 + x20x24x32 + x20x24x29x37

+ x20x24x28 + x20x23 + x20x23x29x32 + x20x22x28 + x20x22x28

+ x20x22x24 + x20x21 + x20x21x40x42 + x20x21x23x29 + x20x21x22

+ x19x20x29 + x18x20 + x17x40 + x17x38 + x13 + x11x20
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is the recovered superpoly, where x = (x1, x2, . . . , x128) denotes the secret key,
i.e., xi = Ki.
As the superpoly for 195-round Grain-128AEAD contains a huge number of
terms, therefore we can not present it here.
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Abstract. In delegated computation research, the main problem asks
how a computationally weaker client device can obtain help from one
or more computationally stronger servers to perform some computation.
Desirable solution requirements include correctness of the computation,
privacy of the inputs, high probability detection of any malicious behav-
ior of a server, low client online runtime, low communication complexity,
low client storage complexity, and minimal server trust.

In this paper we investigate the problem of single-server delegated
computation of the encryption and decryption algorithms in the ubiqui-
tously applied RSA public-key cryptosystem. Our contribution includes
state-of-the-art summaries, the first delegated computation protocol for
small-exponent RSA encryption, a delegated computation protocol for
RSA decryption with improved server runtime and client storage, and
an upper bound on the impact of communication on client device energy,
which may be of independent interest.

1 Introduction and Model

The area of server-aided cryptography, or delegation/outsourcing of crypto-
graphic primitives, is mainly concerned with the following problem: “how can a
computationally weaker client delegate cryptographic computations to compu-
tationally superior servers?”

This problem has been first discussed in [1,18,28] and a first formal model
has been produced in [23]. In the past few years, this problem is seeing an
increased interest because of the shift of modern computation paradigms towards
cloud/fog/edge computing, large-scale computations over big data, Internet of
Things, etc. A solution to this problem is an interactive protocol between a client
and one or more servers (Fig. 1), where the client holding an input x wants to
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get help from the server(s) in computing F (x), where F is a publicly known
function, and the main desired properties of this delegated computation of F (x)
are:

1. result correctness: if client and server(s) honestly follow their instructions, at
the end of the protocol the client obtains F (x);

2. input/output εp-privacy: only minimal or no information about x and/or F (x)
is revealed to the server(s); here, [23] formally defines privacy in the sense of
simulatability of the client’s messages (as in the area of secure multiparty
computation), and [4,22] considers input privacy in the sense of input indis-
tinguishability; that is, even malicious servers cannot distinguish which out of
two different inputs was used in a protocol’s execution, except possibly with
very small probability εp;

3. result εs-security: even malicious server(s) should not be able, except possibly
with very small probability (i.e., εs = 2−λ, for some statistical parameter λ)
to convince the client to accept a result different than F (x).

Following, for instance, [35], protocols can be partitioned into (a) an offline phase,
where input x is not yet known, but somewhat expensive computation can be
performed by the client deployer or even the temporarily unconstrained client’s
device, and stored on the client’s device, and (b) an online phase, where we
assume the client’s resources are limited, and thus the client needs the server’s
help to compute F (x). Accordingly, the desired efficiency properties are:

4. resource efficiency: client’s runtime tC in the online phase should be signifi-
cantly smaller than the runtime tF for computing F (x) without delegation;
use of other resources like communication complexity cc, client’s storage com-
plexity sc and offline phase runtime tP , should also be minimized.

To capture distinct input scenarios, we say that an input x to F is

– public-online if x is unknown in the offline phase but known to both parties
in the online phase;

– private-online if x is unknown in the offline phase but known to C in the
online phase;

– private-offline if x is known to C starting from the offline phase but unknown
to S.

The RSA Functions. Let p, q be primes of the same length, let n = p · q, φ(n) =
(p − 1) · (q − 1), and let Z

∗
n denote the set of integers coprime with n. We

consider the group (Z∗
n, ·), where · denotes multiplication modulo n. Let e, d

denote integers such that gcd(e, φ(n)) = 1 and e · d = 1 mod φ(n). In this
group, with parameter values n, e, d, we define the following functions:

1. Multiplication with RSA moduli, defined as Multn : (a, b) ∈ Z
∗
n × Z

∗
n → c ∈

Z
∗
n, such that c = a · b mod n.

2. Large-exponent RSA encryption exponentiation, defined, for e ∈ Zφ(n), as
leExpn,e : m ∈ Z

∗
n → c ∈ Z

∗
n, such that c = me mod n.
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3. Small-exponent RSA encryption exponentiation, defined, for e ∈ {0, 1}a, as
seExpn,e,a : m ∈ Z

∗
n → c ∈ Z

∗
n, such that c = me mod n.

4. RSA decryption exponentiation as dExpn,e,d : c ∈ Z
∗
n → y ∈ Z

∗
n, such that y =

cd mod n.

We consider Multn as a modular multiplication function with 2 public online
inputs, seExpn,e and leExpn,e,a as base-private-online exponent-public-offline
exponentiation functions, and dExpn,e,d as a base-public-online exponent-private-
offline exponentiation function. The textbook algorithm for a non-delegated com-
putation of functions leExpn,e, seExpn,e,a and dExpn,e,d is the square-and-multiply
algorithm, which requires up to 2|e| multiplications modulo n, but see, e.g. [21],
for algorithms with a slightly improved constant.

This Paper. Single-server delegation protocols provably satisfying the defined
properties of result correctness, input/output-privacy, result-security and
resource efficiency, have been proposed for some operations often found in cryp-
tographic protocols (see, e.g., [14]), including: large/small-exponent exponentia-
tion in discrete logarithm groups (see, e.g., [8,15]), large-exponent RSA encryp-
tion exponentiation (see, e.g., [10]), pairings (see, e.g., [3,11,12]), multiplication
modulo large primes (see, e.g., [13]). Earlier work [4–7,16,23,27] showed solu-
tions provably satisfying a subset of these properties. There are also results for
sufficiently large arbitrary circuits (starting with [22]). In this paper, we con-
sider the problem of delegating computations in the widely used RSA public-key
cryptosystem.

We show the first single-server protocol for efficient delegated computation
of small-exponent RSA encryption (i.e., the RSA variant which is implemented
in many popular cryptography software libraries). Single-server delegation of
small-exponent exponentiation in the RSA group is not adequately solved by
a direct use of single-server delegation of large-exponent exponentiation in the
same group (as from, e.g., [4,9,10]). This is because delegated computation would
be less expensive for the client than non-delegated computation only for a small
range of εs values, not ruling out a constant probability that a malicious server
convinces the client of an incorrect result.

We also show a solution for single-server delegation of RSA decryption,
improving server runtime and client storage over the best known protocol [26].
Both our protocol and the protocol from [26] have potentially large communi-
cation complexity. A review of past work, including several failed attempts to
reduce communication complexity, can be found in Appendix A.

Analyzing the impact of both computation and communication to the energy
consumption of resource-constrained devices is an important problem (see, e.g.,
[30]), and is especially of interest in the protocols presented in this paper since
their communication is somewhat larger (for the protocol on RSA encryption) or
can be significantly larger (for the protocol on RSA decryption) than the com-
putation result. Accordingly, we show an upper bound, of independent interest,
to estimate the energy consumption on a resource-constrained device of both
communication and computation in a delegated computation protocol. In our
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example evaluation of this upper bound, we show that relatively to a specific
device (Giant Gecko) and a specific choice of network technology (TCP over Eth-
ernet communication), our delegation protocol for small-exponent RSA encryp-
tion does reduce device energy. This derivation may or may not generalize to
other devices and/or communication technologies, but our upper bound can be
evaluated for those.

Fig. 1. Delegated computation of y = F (x): system architecture.

2 Delegation of Small-Exponent RSA Encryption

In this section we investigate the delegation of function seExpn,e,a where the
input base is private online and the short, a-bit, exponent e is public offline, with
special focus on the case e = 65537 since this is the most used exponent for RSA
encryption in applied cryptography software libraries. Using past solutions [4,
9,10], at best we can achieve client-efficient single-server delegation of large-
exponent RSA encryption where result εs-security only holds up to a constant
εs value. In the rest of this section, we focus on solving the same problem, while
achieving arbitrarily small values of εs.

Our solution consists of combining the following 3 ingredients: (1) a sub-
protocol that performs the delegation of function Multn computing modular
multiplication of two public online inputs in the RSA group; (2) a subprotocol
that performs the delegation of function seExpn,e,a computing modular expo-
nentiation of a public online base to a public online exponent in the RSA group,
using ingredient (1) as a subprotocol for delegating multiplication; (3) a base
randomization technique to efficiently reduce the problem of delegating private-
base exponentiation to delegating public-base exponentiation, where the latter
is performed using ingredient (2).

About ingredient (1), we achieve this protocol as an extension of our previous
protocol in [13] for delegating multiplication of two public online inputs modulo
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a prime. The extension requires only minor description changes and no technical
difficulty, but for completeness we include this protocol in Appendix B. In this
protocol, the client only performs reductions modulo n, multiplications modulo
much smaller primes, and other lower-order operations.

About ingredient (2), we note that our previous protocol in [15] solves the
same problem in a ring modulo a prime. Thus, we combine this latter protocol
with ingredient (1) to obtain a solution in the RSA group. The resulting pro-
tocol, included in Appendix C for completeness, can be seen as an optimized
simulation of the (iterative) square and multiply algorithm for modular expo-
nentiation, while using ingredient (1) to delegate the computation of squares and
multiplications modulo n in this algorithm.

In ingredient (3), the client precomputes v = u−e mod n in the offline phase,
for some random value u ∈ Z

∗
n, and then does the following in the online phase:

it randomizes the input base x by multiplying it by u, and uses ingredient (2)
to delegate the exponentiation of the value m · u mod n (which is uniformly
distributed in Z

∗
n and does not need to be kept private) to the exponent e, and

then multiplies the result of this latter delegation by v to obtain the desired
output of function seExpn,e,a on input x.

The resulting protocol achieves the following theorem.

Theorem 1. Let σ be a computational security parameter, let λ be a statis-
tical security parameter, and let Pe,pub be the single-server protocol for del-
egating computation of small-exponent RSA encryption exponentiation in the
input case where the base is public online and the a-bit exponent is public offline,
satisfying 1-correctness, unbounded 2−λ-security and (t′F , t′S , t′P , t′C , cc′, sc′,mc′)-
efficiency, such as the one described in Appendix C. There exist (constructively)
a single-server protocols Pe,priv for delegating computation of small-exponent
exponentiation in the input case where the base is private online and the a-bit
exponent is public offline, satisfying 1-decryption-correctness, 1-bounded privacy,
2−λ-security and (tF , tS , tP , tC , cc, sc,mc)-efficiency, where

– tF = t′F , tS ≤ t′S + O(σ),
– tP = t′P + 1 group exponentiation with random base + 1 inverse,
– tC ≤ t′C + 2 multiplications mod n,
– cc ≤ cc′ + O(σ), sc = sc′ + 1, and mc = 2.

Description of Pe,priv. By Pe,pub = (Offlinee,pub, Se,pub, Ce,pub) we denote a
protocol for the delegation of small-exponent exponentiation with public online
base and public offline exponent, such as the protocol in Appendix C. We now
formally describe protocol Pe,priv for the delegation of small-exponent exponen-
tiation seExpn,e,a(x) = xe mod n in a group Z

∗
n, where x is private online and e

is public offline.
Offline Input: 1σ, 1λ, 1a, n ∈ {0, 1}σ, e ∈ {0, 1}a

Offline phase of Pe,priv:

1. Run the offline-phase algorithm Offlinee,pub from protocol Pe,pub

2. Store the resulting output out on C’s device
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3. Randomly choose u ∈ Z
∗
n and set v := u−e mod n

4. Store v on C’s device

Online Input to C: 1σ, 1λ, 1a, n ∈ {0, 1}σ, x ∈ Z
∗
n, e ∈ {0, 1}a

Online Input to S: 1σ, 1λ, 1a, n ∈ {0, 1}σ, e ∈ {0, 1}a

Online phase of Pe,priv:

1. C sets z = x · u mod n and sends z to S
2. C delegates the computation ze mod n to S, as follows:

C runs Ce,pub and sends the resulting message to S
S receives C’s message, runs Se,pub and sends the resulting message to C
C receives S’s message, and runs Ce,pub to compute protocol’s output yz

3. C computes y = yz · v mod n and returns: y

Properties of Pe,priv. The efficiency properties of Pe,priv follow by protocol
inspection, and by observing that in Pe,priv there is only one call to subprotocol
Pe,pub. In particular, we note that: (1) in the online phase of Pe,priv, the client
C only performs 2 multiplications modulo n and any operations required to
run the client algorithm of Pe,pub; (2) the offline phase runtime includes one
exponentiation and one inverse mod n, in addition to the runtime of the offline
phase of Pe,pub.

The 1-correctness property of Pe,priv follows by observing that at the end
of the protocol C can compute y = xe mod n with probability 1. First, we
observe that at the end of the execution of subprotocol Pe,pub on input z, C
can compute yz = ze mod n, thanks to the 1-correctness of subprotocol Pe,pub.
Then, we can see that the value y computed by C at the end of the protocol
satisfies y = yz · v = ze · ue = xe · ue · u−e mod n = xe mod n, as desired.

The α-bounded input privacy property, for α = 1, is easily seen to be satisfied
since message z sent by C is uniformly distributed in Z

∗
n as so is u.

The α-bounded 2−λ-security property, where α = 1, of Pe,priv directly follows
by combining its α-bounded input privacy property with the α-bounded 2−λ-
security property of protocol Pe,pub. First, we observe that if S returns a correct
value at the end of subprotocol Pe,pub, then the 1-correctness property implies
that C returns a correct output y = xe mod n with probability 1. Then we
observe that the value z sent by C to S is uniformly distributed in Z

∗
n and

does not leak any information helping S in violating the security of property
of protocol Pe,pub. Thus, the probability that C accepts a value y �= xe mod n
is exactly the probability that C accepts an incorrect result in the execution of
protocol Pe,pub.

Performance. We carried out a software implementation on a macOS Big
Sur Version 11.4 laptop with a 3.2 GHz Apple M1 processor with 8 cores (4
performance cores and 4 efficiency cores at 1/10th of the power) and 16 GB RAM.
We implemented protocol Pe,priv and, for comparison purposes, the restriction
to small exponents of the protocol from [10]. The two protocols were coded in
Python 3.8 using the gmpy2 package.
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In our implementation runtime analysis, as a small exponent, we used e =
65537, for which a = 17, and used specific and practical parameter ranges for
the security parameter λ and the computational parameter σ. Specifically, we
have considered σ ∈ {2048, 3072}, which correspond to security levels 112 and
128, respectively. Moreover, we have considered λ ∈ {10, 20, 30, 40}, as an event
happening with probability between 2−10 and 2−40 has occurrence expectancy
between 1 in about one thousand and less than 1 in about 1 trillion protocol
executions, respectively.

Table 1 reports performance results relative to Pe,priv as well as the protocol
from [10] for the delegation of seExpn,e,a(x) = xe mod n, where |n| = σ.

Average runtime values for non-delegated computation of seExpn,e,a(x),
denoted as tF , as well as for the client’s program in the online phase, denoted
as tC , are showed for the mentioned varying values of statistical parameter λ,
security parameter σ and length a of exponent e. All values were computed by
averaging across 100 random and independent offline and online phases of the
protocol for a fixed size, randomly and independently chosen σ-bit number n,
x ∈ Z

∗
n and e = 65537. Most of our analysis focused on client’s online runtime

tC and its improvements over non-delegated computation runtime tF .
Main takeaways are that, depending on values of λ, the ratio tF /tC , capturing

the runtime improvement due to delegated computation, is in [1.194, 1.251] when
σ = 2048, or in [1.777, 1.800] when σ = 3072.

Another important takeaway is that the previous work protocol from [10],
originally designed for arbitrary e ∈ Zφ(n), and providing significant efficient
client runtime gains for large values of e, did not do so for small values of e. In
particular, when run for the small value e = 65537, it was never competitive,
in that for all considered values of λ and σ, the client’s online runtime tC was
significantly higher than the non-delegated computation tF .

Table 1. Performance of Protocol Pe,priv to delegate y = xe mod n where e = 65537,
a = 17, σ = 2048, 3072. Quantities tF , tP , tC , tS are measured in seconds.

Our protocol Pe,priv

λ 10 20 30 40

σ 2048 3072 2048 3072 2048 3072 2048 3072

tF = 3.73E-05 7.24E-05 3.41E-05 7.17E-05 3.38E-05 7.19E-05 3.37E-05 7.20E-05

tP = 9.16E-05 1.32E-04 8.45E-05 1.40E-04 9.44E-05 1.45E-04 1.01E-04 1.49E-04

tC = 2.98E-05 4.08E-05 2.86E-05 4.01E-05 2.82E-05 4.00E-05 2.82E-05 4.03E-05

tS = 6.38E-05 1.18E-04 6.12E-05 1.15E-04 6.06E-05 1.15E-04 6.07E-05 1.15E-04

tF /tC = 1.251 1.777 1.194 1.789 1.200 1.800 1.195 1.787

Protocol in [10]

tF = 3.44E-05 7.05E-05 3.45E-05 7.08E-05 3.52E-05 7.17E-05 3.42E-05 7.07E-05

tP = 1.25E-04 2.29E-04 1.25E-04 2.29E-04 1.26E-04 2.35E-04 1.25E-04 2.30E-04

tC = 6.60E-05 1.36E-04 1.13E-04 2.27E-04 1.56E-04 3.16E-04 1.97E-04 4.00E-04

tS = 6.82E-05 1.41E-04 6.83E-05 1.41E-04 6.93E-05 1.44E-04 6.83E-05 1.41E-04

tF /tC = 0.521 0.519 0.306 0.312 0.226 0.227 0.174 0.177
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We also estimated the minimum exponent size a (rounded to the nearest
multiple of 10) for the protocol in [10] to be more client-efficient than ours.
Results, obtained with 10 independent runs, are included in Table 2.

Table 2. Exponent size a values for which, as λ, σ vary, R ≤ 1, where R = ratio of C’s
online runtime in the protocol from [10] to C’s online runtime in protocol Pe,priv.

λ 10 20 30 40

σ = 2048 a = 30; R = 0.83 a = 50; R = 0.85 a = 60; R = 0.95 a = 90; R = 0.97

σ = 3072 a = 60; R = 0.89 a = 90; R = 0.98 a = 140; R = 0.98 a = 180; R = 1.00

3 Single-Server Delegation of RSA Decryption

In this section we investigate the delegation of RSA decryption. Past work is
reviewed in Appendix A. Here, we show a new protocol with improved server
runtime and client storage with respect to the best known single-server protocol
(i.e.,, [26]). Formally, we achieve the following theorem.

Theorem 2. Let σ be a computational security parameter, let λ be a sta-
tistical security parameter, let b, k be parameters such that bk ≥ 2σ, and let
Pe,pub be the single-server protocol for delegating computation of RSA encryp-
tion exponentiation in the input case where the base is public online and the
exponent is public offline, satisfying 1-correctness, unbounded 2−λ-security and
(t′F , t′S , t′P , t′C , cc′, sc′,mc′)-efficiency, such as the protocol in Sect. 2 for the small
exponent case, or the protocol in [10] for the large exponent case. There exist
(constructively) a single-server protocol Pd for delegating computation of RSA
decryption exponentiation in the input case where the base is public online and
the exponent is private offline, satisfying 1-decryption-correctness; 1-bounded εp

privacy for some εp negligible in σ; 2−λ-security; and efficiency with parameters
(tF , tS , tP , tC , cc, sc,mc), where

– tF = 1 exponentiation in Z
∗
n; tS ≤ t′S + k exponentiations,

– tP = t′P + 2k exponentiations + 1 inverse, tC ≤ t′C + k + 1 multiplications,
– cc ≤ cc′ + b + k − 2, sc = sc′ + 3, and mc = 3.

We split the proof of the theorem into 2 parts. First, in Sect. 3.1, we show a tech-
nique that transforms a single-server RSA decryption delegation protocol Pd,1

that satisfies result correctness and input privacy (and no result security) into
a protocol P ′

d,1 that satisfies all 3 properties, using our protocols for delegation
of RSA encryption. Next, in Sect. 3.2, we show a single-server RSA decryption
delegation protocol Pd,2 that only satisfies result correctness and input privacy
and slightly improves on the best known solution, although still requiring sig-
nificant communication complexity. The protocol Pd claimed by the theorem
is then obtained as the protocol P ′

d,1 obtained after first setting Pd,1 = Pd,2,
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and then applying the transformation in Sect. 3.1 to Pd,1. We note that proto-
col Pd improves the server runtime and storage complexity of the best known
result (i.e., applying the transformation in Sect. 3.1 to the result in [26]). On the
other hand, it still requires somewhat high communication complexity for typical
parameter values of b, k. The approach of reducing communication with shorter
vector-type representations of d has appeared in many past efforts, starting with
[28], and none of them has been proved secure, as also discussed in Appendix A.

3.1 A Transformation to Achieve the Result’s Security Property

We observe that if there exists a delegation protocol Pd,1 for the RSA decryption
exponentiation function dExpn,e,c : c → cd mod n satisfying result correctness
and input privacy, then we can construct a delegation protocol P ′

d,1 for the same
function, satisfying result correctness, input privacy, and result ε-security.

Let eExpn,e : x → xe mod n denote an RSA encryption exponentiation func-
tion. Note that when e ∈ Zφ(n), we have that eExpn,e = leExpn,e, and when
e ∈ {0, 1}a, for some small value a, we have that eExpn,e = seExpn,e,a.

Let Pe denote a delegation protocol for eExpn,e, satisfying correctness, input
privacy, and ε-security. Pe can be instantiated using the protocol from [10] when
eExpn,e = leExpn,e, or the protocol in Sect. 2, when eExpn,e = seExpn,e. Given
protocols and Pd,1 and Pe, we construct protocol P ′

d,1 as follows:

1. The offline phase of P ′
d,1 runs the offline phase of Pd,1 and Pe

2. In the online phase, C has input c, e, d, n and S has input c, e, n
3. Given these inputs, C and S run the online phase of protocol Pd,1, thus

returning m to C
4. C and S run the online phase of protocol Pe on input m, e, n, thus returning

c′ = me mod n to C
5. C checks that c = c′; if yes, C returns: m

We note that P ′
d,1 preserves the efficiency of Pd,1 in all metrics; in particular,

if C is efficient in Pd,1, then C is also efficient in P ′
d,1, where it only performs

2 additional exponentiations to a λ-bit exponent in the online phase, to achieve
the result εs-security property, for εs = 2−λ. In practice λ can be set much
smaller than |n|; e.g., λ = 50. Finally, note that with respect to Pd,1, protocol
P ′

d,1 requires two additional messages, the computation of two exponentiations
in the offline phase, and C’s computation of two λ-bit-exponent exponentiations
in the online phase, when requiring result εs-security.

3.2 A Protocol with Improved Server Runtime and Client Storage

We show a 1-server protocol Pd,2 = (C,S) for the delegated computation of
dExpn,e,d : c → cd mod n.

Informally, protocol Pd,2 goes as follows. The secret exponent d is considered
in its b-ary representation d =

∑k−1
i=0 di · bi, for some tunable parameter b ≥ 2.

Note that cd mod n can thus be seen as a product of exponentiations with bases
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cdi and powers of b as exponent. In this protocol C sends random masks of these
bases and asks S to compute the product of exponentiation to the known power-
of-b exponents. Upon receiving values from S, C removes the masks by using a
product of exponentiations computed offline, and thus recovers cd mod n.

A formal description of protocol Pd,2 follows. (Its properties are discussed in
Table 3 and Appendix A). Let G be a pseudo-random generator.
Input to C and S: n, e, c and parameter base b; also, let k be the minimum value
such that bk > n.
Private input to C: d ∈ Zφ(n)

Offline phase instructions:

1. Write private exponent d in base b; i.e., d = (dk−1, . . . , d1, d0)b =
∑k−1

i=0 di ·bi,
where di ∈ [0, b − 1] for i ∈ {0, . . . , k − 1}

2. Pseudo-randomly choose u0, . . . , uk−1 ∈ Z
∗
n using G on input a random seed

s, and set v0 := (
∏k−1

i=0 ubi

i )−1 mod n
3. Store ((dk−1, . . . , d1, d0)b, s, v0) on C’s device.

Online phase instructions:

1. S sets B1 := c and computes Bj := Bj−1 · c mod n, for j = 2, . . . , b − 1
S sends B2, . . . , Bb−1 to C

2. C sets B0 := 1, B1 := c, and computes zi := Bdi
·ui mod n for i = 0, . . . k−1

C sends z0, . . . , zk−1 to S

3. S computes w0 :=
∏k−1

i=0 zbi

i mod n and
S sends w0 to C

4. C returns: m := w0 · v0 mod n,

Table 3. Comparing our RSA Decryption delegation protocol Pd,2 with [26], which also
provably satisfies correctness, input privacy and client efficiency, but no result security.
We are not aware of other previous work provably satisfying this set of properties, but
see Appendix A for a discussion of previous work.

Protocol tC # of mult tS # of exp cc sc mc εp # Servers

[26] [§2C] k + 1 2b − 2 b + k + 1 b 3 0 1

Pd,2 k + 1 k b + k − 2 3 3 negligible 1

4 On the Impact of Communication on Client Energy

In this section we show our upper bounds on the estimated energy due to a
resource-constrained device’s computation and communication during an exe-
cution of a delegated computation protocol, from which we derive that for a
particular device and network environment, delegation of RSA encryption does
reduce device energy consumption.
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Let P denote a delegation protocol for function F , let dn denote a device
name, and de denote the network environment. By Edn(F ) we denote the energy
consumed by device dn when running a (non-delegated) computation of function
F . By Ecc

dn,de(F,P,m) we denote the energy consumed during the device dn’s
communication (i.e., data sending and receiving) in an execution of delegation
protocol P for function F in network environment ne, where this communication
totals to m data bytes. Our goal is to estimate (an upper bound of) the ratio
ρcc

dn,de(m) = Ecc
dn,de(F,P,m)/Edn(F ) as a function of the number m of data

bytes communicated in P. Towards this goal, we use the following definitions:

– icdF : average current draw during a non-delegated computation of F
– icdP,F : average current draw during a client’s program in an execution of

delegation protocol P for F
– icdaes: average current draw during both computation and communication of

AES-encrypted data
– tF : runtime of a computation of F
– taes(m): runtime for computation and communication of m AES-encrypted

data blocks, of 256 bits each
– ρaes,F : ratio between runtime of a computation of F and runtime of 1 AES-

encrypted data block (i.e., 256 bits).

We also make the following, arguably reasonable, assumptions:

1. Device energy consumption during a given operation is well approximated
by the product of (instantaneous) average current draw and the time of the
device operation, whether the latter is runtime or communication or both.

2. Device energy consumption due to communication of m data bytes in P is
smaller than or equal to the device energy consumption during both compu-
tation and communication of m AES-encrypted bytes.

For functions F such that icdF ≥ icdaes, we then derive that ρcc
dn,de(m) is

∼ Ecc
dn,de(F,P,m)

icdF · tF
≤ icdaes · taes(m)

icdF · tF
≤ icdaes · taes(m)

icdaes · tF
=

taes(m)
ρaes,F · taes(1)

,

(1)
where the approximation follows from Assumption 1, the first inequality follows
from Assumption 2, the second inequality follows since we consider functions F
such that icdF ≥ icdaes, and the equality follows from the definition of ρaes,F .

We used Giant Gecko [38] as a resource-constrained IoT client device, since
it has a popular low-power consuming processor (i.e., EFM32). On this device,
using TCP communication over Ethernet as network environment, and con-
sidering F = short-exponent exponentiation in RSA encryption, we measured
ρaes,F = 1434, taes(1) = 2.71 ms, and taes(m), as depicted in Fig. 2 (left). (Here,
runtimes are measured on a single execution as Giant Gecko shows no significant
runtime changes across multiple executions of the same program.)

We now use the above bound to derive considerations on the client energy
on our RSA encryption delegation protocol from Sect. 2. In both cases, above
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Assumptions 1 and 2 seem reasonable, and so seems also the condition icdF ≥
icdaes, where F is RSA-encryption exponentiation with exponent e = 65537.

In the case of protocol Pe,priv, we have that cc = 34 group elements, and
thus 8704B, and we derive, using Fig. 2 (left), that taes(m) = 43.5149 ms, and

ρdn,de(m) ≤ taes(m)
ρaes,F · taes(1)

≤ 43.5149
1434 · 2.7565

≤ 0.01101 = 1.101%.

Thus, the communication in Pe,priv increases client energy by ≤ 1.11% of the
energy taken by non-delegated computation.

Fig. 2. (Left): Runtime of AES encryption in CBC mode on Giant Gecko vs data
size. (Right): Percentage non-delegated computation current draw taken by (AES-
encrypted) communication on a Giant Gecko vs communication length (in KB).

To evaluate the impact on energy consumption due to computation, we can
similarly define Ert

dn(F,P) as the energy consumed during the device dn’s com-
putation in an execution of delegation protocol P for function F , and ratio
ρrt

dn = Ert
dn(F,P)/Edn(F ). Similarly as before, we make Assumption 1 and for

all functions F such that icdF ≥ icdP,F , we derive that

ρrt
dn ≤ tC/tF . (2)

The energy consumption ratio due to both computation and communication
can then be expressed as ρrt

dn + ρcc
dn,de(m) which are bounded using the just

discussed upper bounds (1) and (2). In particular, for RSA encryption with
exponent e = 65537, upper bound (1) can be set as the inverse of the tF /tC
values in Table 1, which are all ≤ 0.8375, and upper bound (2) can be set as the
above computed value 0.0111. This totals to ≤ 0.8486, which confirms energy
reduction through delegation.

We caution the reader that these energy derivations may or may not gener-
alize to other devices and/or other network technologies. However, our assump-
tions and upper bounds can be evaluated for such different computation and
communication environments.
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5 Conclusions and Directions for Future Research

Encouraged by recent research that successfully delegates exponentiation, mul-
tiplication and pairing operations in algebraic structures of cryptographic inter-
est, we revisited the problem of delegating the computation of RSA encryption
and decryption, which have attracted a large amount of solution proposals and
attacks for 30+ years. We produced the first single-server protocol for efficient
delegated computation of small-exponent RSA encryption (i.e., the RSA vari-
ant which is implemented in many popular cryptography software libraries). We
also produced a solution for efficient delegated computation of RSA decryp-
tion which slightly improves the previously best protocol from [26]. We showed
an upper bound to estimate the energy consumption on a resource-constrained
device of both communication and computation in a delegated computation pro-
tocol, which can be of independent interest, and we gave example evaluation of
this upper bound for a specific device and network technology and derived con-
clusions on when delegated computation reduces (or does not reduce) device
energy.
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A On Delegation of RSA Decryption

Previous Work. In [28], the first paper proposing delegation of cryptographic
algorithms, the authors presented two protocols for the delegation of RSA
decryption. The basic idea of such a protocols was as follows: the client sends
some randomized masking of exponent d to the server; the server computes
exponentiations to exponents related to the masking, and sends the results to
the client; finally, the client uses the mask computation to turn the received
exponentiation results into the desired xd mod n exponentiation. The specific
masking used in the first of their protocols was

d = f1d1 + · · · + fMdM mod φ(n),

for some random integers d1, . . . , dM send by the client to the server, some ran-
dom bits f1, . . . , fM kept secret by the client, and some small value M . While
this might seem an interesting approach, in that recovering d might seem to
require exhaustive search of all possible vectors (f1, . . . , fM ), about 20 papers
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were published containing faster attacks to their protocols and/or proposing pro-
tocol variants and improvements, as well as faster attacks to these variants. The
reader is referred to Sect. 2 of [24] and Sect. 1.2 of [29] for a detailed discussion of
these papers. All of these results were published before the introduction of a for-
mal delegation model [23], and therefore protocols were described without proofs
for their properties, other than sometimes claiming security against all previous
attacks. For some of these papers, it might be interesting to study if their tech-
niques suffice to provably achieve some of the properties formally defined in the
more recent delegation models. In particular, some of these attacks were based
on an attacker’s knowledge of signatures, which would not necessarily be part of
the adversary model when considering decryption delegation.

More recently, protocols were proposed [17,19,20,32,34,36] where the RSA
exponent was hidden in one or more linear equations depending on a random
value t in the exponent group. According to our analysys of these protocols:
(a) a full-domain value t would perfectly hide the RSA secret key from the
server, but require client work comparable to non-delegated computation of RSA
decryption; (b) a smaller-size value t would reduce the client’s work but also
proportionally reduce the work needed to derive the RSA secret key. Properties
(a) and (b) imply that these protocols do not simultaneously satisfy input privacy
and client resource efficiency. Indeed, the variant of this approach used in [34]
was broken by [7] using lattice-based cryptanalysis techniques.

Other exponent masking attempts were proposed in [31,33], where the expo-
nent was masked by a multiple of the group order. This would seem a potentially
interesting and valid idea, since, on one hand the random value would mask d,
and on the other hand the server’s exponentiation to a multiple of the group
order would cancel out and allow C to recover an exponentiation to the orig-
inal exponent. However, these protocols were broken in [2] using lattice-based
cryptanalysis techniques.

Finally, [7] proves, in the generic group model, lower bounds on the effi-
ciency of delegation protocols for a class of functions, including one that has
some similarity to RSA decryption: public-online-base private-offline-exponent
exponentiation in prime-order groups. These results are summarized in Table 4.
We note that it is yet unknown if these results can be extended to RSA groups.
Even if they were, it would still be possible to design RSA decryption delegation
protocols with non-trivial improvements over non-delegated computation.

Properties of Our Protocol. P2,d. The efficiency properties are verified by
protocol inspection; in particular,

– C’s online runtime complexity consists of k+1 multiplications, which improves
over non-delegated multiplication by a multiplicative factor of ≥ log b;

– S’s runtime complexity consists of only k exponentiations, and b + k − 2
multiplications in Z

∗
n;

– the offline runtime complexity consists of 1 product of k exponentiations with
k random bases, 1 inversion in Z

∗
n, and time linear in |d|;

– with respect to round complexity, Pd,2 requires 3 messages between C and S;
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Table 4. Summary of lower bound results from Theorems in [7] for protocols for
the delegation of public-online-base private-offline-exponent exponentiation in prime
order groups, in the generic group model, where s is an arbitrary integer. Each row
represents a barrier in the sense that a protocol with a better improvement factor than
what written in the 2nd column, in a scenario with protocol parameters as described in
columns 3–5, would imply an efficient attack that successfully violates input privacy.

Lower Bound Improvement Factor

(over non-deleg sq

and mult alg)

Offline Client Expo-

nentiations

Online Server Expo-

nentiations

# of rounds

Thm. 2 4 O(1) 1 1

Thm. 3 (s + 1)/2 O(1) s 1

Thm. 4 � + 2 � = O(1) 1 1

Thm. 5 8 O(1) 2 2

Thm. 6 (4 + (s + 1)2)/2 O(1) s 2

Thm. 7 2s+1 O(1) s s

– with respect to communication complexity, the online phase of Pd,2 requires
the transfer of b + k − 1 values in Z

∗
n.

To show the correctness property, we note that if C and S follow the protocol,
C outputs m = cd mod n since d = (dk−1, . . . , d1, d0)b =

∑k−1
i=0 di · bi and

m = w0 · v0 =
k∏

i=0

zbi

i · (
k∏

i=0

ubi

i )−1

=
k∏

i=0

(Bdi
· ui)bi ·

k∏

i=0

u−bi

i =
k∏

i=0

(Bdi
)bi =

k∏

i=0

(cdi)bi = c
∑k

i=0 di·bi = cd

The privacy property of the protocol against a malicious S follows by observ-
ing that C’s message to S is a sequence of pseudo-random values in Z

∗
n and is

thus pseudo-independent from d. Specifically, the values sent by C to S are
z0, . . . , zk where zi = Bdi

· ui mod n for all i = 0, . . . , k − 1 and zk = m · uk

mod n. Note that as u0 . . . , uk are chosen as pseudo-random values in Z
∗
n using

G’s output on input a random seed s, even z0, . . . , zk are pseudo-random values
in Z

∗
n. Thus, under the assumption that G is pseudo-random, the probability

that any efficient malicious S learns some additional information about private
exponent d, is negligible.

B Delegation of Multiplication in Z
∗
n

We show how a quasilinear-time client can delegate modular multiplication in
the group Z

∗
n, where n is an RSA group, in the input case where both factors are

public online. (Here, by quasilinear-time client we mean a client that only per-
forms modular additions/subtractions, reductions modulo small primes, and/or
multiplications of small integers modulo small primes). The delegation protocol



96 G. Di Crescenzo et al.

is obtained as a direct generalization of the analogue protocol in [13] for mod-
ular multiplication in the group Z

∗
p, where p is a prime. It turns out that after

replacing a prime modulus with a non-prime modulus in the protocol from [13],
all protocol’s poperties still hold, with only syntactic changes to their proofs.

Informal Description of Pm. The protocol in [13] improves Yao’s general-
ization [37] of Pippenger’s idea (see, e.g., example 2 in [25]) to efficiently verify
integer equations modulo small primes, and adapts it from Z to Z

∗
p. In that

protocol, a server would send the product w of the two input integers a and
b, and the integer equation w = a · b is verified modulo a small random prime
chosen by the client. Directly extending the protocol from [13], a server sends
quotient w0 and reminder w1 of the division of w by n, and the integer equation
w0 · n + w1 = a · b is verified modulo a small random prime by the client, which
can then obtain w1 as the desired a · b mod n value.

Formal Description of Pm. Consider algebraic group Z
∗
n. We now formally

describe a 1-server protocol Pm = (C,S) for the delegation of multiplication of
public online group values a and b in Z

∗
n, where |a| = |b| = σ, and with statistical

parameter λ. By π(x) we denote the number of prime integers ≤ x.
Offline Input: 1σ, 1λ, n ∈ {0, 1}σ

Offline phase instructions:

1. Randomly chooses a prime t < 2η, where η = �λ + log2 λ + log2(π(2σ))	
2. Compute n′ = n mod t
3. Return: (t, n′) and store this pair on C’s device

Online Input to C and S: 1σ, 1λ, n ∈ {0, 1}σ, a, b ∈ Z
∗
n

Online Input to C: t, n′

Online phase instructions:

1. S computes w := a ·b (i.e., the product, over Z, of a, b, considered as integers)
S computes w0, w1 such that w = w0 · n + w1 (over Z), where 0 ≤ w1 < n
S sends w0, w1 to C

2. C computes w′
0 := w0 mod t and w′

1 := w1 mod t
C computes a′ := a mod t and b′ := b mod t
If a′ · b′ �= w′

0 · n′ + w′
1 mod t then

C returns: ⊥ and the protocol halts
C returns: y := w1

In [13], protocol Pm is proved to satisfy 1-correctness, unbounded 2−λ-security
and (tF , tS , tP , tC , cc, sc,mc)-efficiency, where cc = 2, sc = 2, mc = 2, tF = 1
multiplication mod p, tC = 4 η-bit-modulus reductions + 2 η-bit-values multi-
plications + 1 η-bit-value addition, tS = 1 multiplication + 1 division mod n,
and tP = 1 η-bit random prime generation + 1 η-bit-modulus reduction. In
particular, C’s online computations only consist of 4 reductions modulo q and 2
multiplications modulo q, where q is a small, η-bit, modulus.
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C Public-Base Small-Exponent Exponentiation in Z
∗
n

We show how to delegate small-exponent exponentiation in the RSA group Z
∗
n,

in the input case where the base is public online and the exponent is public
offline. This is obtained as a direct extension of the analogue result from [15] in
the algebraic group Z

∗
p, where p is a prime. The extension consists of replacing

the subprotocol for delegating multiplication mod p with the subprotocol for
delegating multiplication mod n from Appendix B. We obtain the following

Theorem 3. Let σ be computational security parameter, let λ be a statistical
security parameter, and let Pm be the single-server protocol for delegating com-
putation of the multiplication operation in group Z

∗
n, satisfying 1-correctness,

unbounded 2−λ-security and (t′F , t′S , t′P , t′C , cc′, sc′,mc′)-efficiency, as described
in Appendix B. There exist (constructively) a single-server protocols Pe,pub for
delegating computation of small-exponent exponentiation in the same group for
the input case where base x ∈ Z

∗
n is public online and exponent e ∈ {0, 1}a is

public offline, satisfying unbounded 1-decryption-correctness, unbounded 2−λ-
security, and (tF , tS , tP , tC , cc, sc,mc)-efficiency, where

– tF ≤ 2a · t′F , tS ≤ 2a · t′S , tP = t′P , tC ≤ 2a · t′C ,
– cc ≤ 2a · cc′ + 2, sc = sc′, and mc = 2.

Informal Description of Pe,pub. Analogously as in [15], our protocol Pe,pub

can be seen as an optimized simulation of the (iterative) square and multiply
algorithm for modular exponentiation, while using a multiplication delegation
subprotocol, such as the scheme Pm in Appendix B, to compute squares and
multiplications modulo n in this algorithm. A first optimization consists of run-
ning all executions of protocol Pm in parallel instead of sequentially. Specifically,
sequential black-box runs of protocol Pm at each squaring or multiplication step
would result in up to 2a messages, where a = �log(x + 1)	. Instead, since the
online phase of Pm only consists of a single message from S to C, and at the
end of the protocol, both S and C can compute the computation result, all exe-
cutions of Pm can be run in parallel, and so Pe consists of a single message from
S to C. As a second optimization, we observe that the offline phase of Pm can
be only run once, even if we run the online phase of the same protocol up to
2a times. This follows from the unbounded security property of Pm, which we
use to keep C’s storage complexity independent on a. Finally, we note that in
the executions of protocol Pm, we set statistical parameter λm = λ + �log(2a)	,
where λ is the statistical parameter desired for protocol Pe, to guarantee enough
verification confidence for all (up to) 2a squares or multiplications.

Formal Description of Pe,pub. By Pm = (Offlinem, Sm, Cm) we denote a pro-
tocol for the delegation of a · b mod n with statistical parameter λm, where
a and b are public online, such as the protocol in Appendix B. In particular,
the notation (q, r) ← Sm(out, a, b) refers to an execution of the Pm server’s
algorithm with offline-phase input out and online-phase inputs a, b, returning
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message (q, r) for C, such that a·b = q·n+r, where 0 ≤ r < n. Similarly, the nota-
tion d ← Cm(out, q, r) refers to an execution of the Pm client’s algorithm with
offline-phase input out, online-phase inputs a, b, and server’s message (q, r), and
returning decision bit d where d = 1/0 depending on whether Cm accepts/does
not accept the statement r = a · b mod n. We now formally describe protocol
Pe,pub to delegate small-exponent exponentiation seExpn,e,a(x) = xe mod n in a
group Z

∗
n, where x is public online and e is public offline.

Offline Input: 1σ, 1λ, 1a, n ∈ {0, 1}σ, public exponent e ∈ {0, 1}a

Offline phase of Pe:

1. Run the offline-phase algorithm Offlinem from protocol Pm

2. Store the resulting output out on C’s device

Online Input to C and S: 1σ, 1λ, 1a, n ∈ {0, 1}σ, x ∈ Z
∗
n, e ∈ {0, 1}a

Online phase of Pe:

1. S sets z = x, y = 1 and i = 1
2. While e > 1 do

if e is even then
S computes (q1i, r1i) = Sm(z, z)
S sets z = ri1, q2i = r2i = 0, i = i + 1 and e = e/2

if e is odd then
S computes (q1i, r1i) = Sm(z, y) and (q2i, r2i) = Sm(z, z)
S sets y = ri1, z = ri2, i = i + 1 and e = (e − 1)/2

3. S computes (q, r) = Sm(z, y)
4. S sends ((q11, r11, q21, r21), . . . , (q1a, r1a, q2a, r2a), (q, r)) to C
5. C sets y = 1 and i = 1
6. While e > 1 do

if e is even then
C computes d1i = Cm(out, q1i, r1i)
if d1i = 0 then C halts

else C sets z = ri1, i = i + 1 and e = e/2
if e is odd then

C computes d1i = Cm(out, q1i, r1i) and d2i = Cm(out, q2i, r2i)
if d1i = 0 or d2i = 0 then C halts

else C sets y = ri1, z = ri2, i = i + 1 and e = (e − 1)/2
7. C computes l = Cm(out, q, r)
8. If l = 0 then C halts else C returns: y = r

Properties of Pe,pub. The efficiency properties of Pe,pub follow by protocol
inspection, and by observing that Pe,pub runs Pm up to 2a times, with statistical
parameter λm = λ + �log(2a)	. In particular, we note that: (1) the online phase
of Pe,pub consists of a single round message complexity from C to S and then
followed by S to C since it parallelizes the ≤ 2a executions of protocol Pm; (2)
the offline phase runtime includes the runtime of one execution of the offline
phase of Pm; only one thanks to the unbounded security of Pm.

The 1-correctness property of Pe,pub follows by observing that at the end of
the protocol C can compute y = xe mod n with probability 1. This follows by
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combining these 2 facts: (1) At the end of each execution of subprotocol Pm on
input (a, b), C can compute a·b mod n; (2) If subprotocol Pm allows C to obtain
a (delegated) computation of multiplication mod n, then protocol Pe,pub allows
C to obtain a (delegated) computation of the output of the iterative version of
the square-and-multiply algorithm for exponentiation mod n and obtain r = ze

mod n = xe mod n. Fact (1) follows from the 1-correctness of subprotocol Pm.
Fact (2) follows by induction on variable i in the while loops in protocol Pe,
after observing that protocol Pe,pub realizes the square-and-multiply algorithm,
where computation of multiplications is delegated via Pm.

The unbounded 2−λ-security property of Pe,pub follows from the 1-correctness
property of Pe,pub, the unbounded 2−λ-security property of protocol Pm and the
setting λm = λ+�log(2a)	. First, we observe that if S returns correct values when
running protocol Pm, then the 1-correctness property implies that C returns a
correct output y = xe mod n with probability 1. Thus, the probability εs that
C accepts a value y �= xe mod n is upper bounded by the probability that C
accepts an incorrect result in any one of the ≤ 2a executions of protocol Pm. By
a union bound, we have that

εs ≤
2a∑

i=1

1
2λm

≤
2a∑

i=1

1
2λ+�log(2a)� ≤ 1

2λ

2a∑

i=1

1
2a

= 2−λ.
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Abstract. Inner product functional encryption (IPFE) is a promis-
ing advanced cryptographic primitive for the inner product function
class that facilitates fine-grained access control of sensitive data in an
untrusted cloud environment and has an expanding range of applica-
tions in the context of cloud security, health-record access control, net-
work privacy, data security on mobile devices, Internet of Things (IoT)
and many more. We address the open problem of constructing public key
unbounded IPFE (UIPFE) schemes that do not use bilinear pairings. Our
main results are as follows:

– We design the first post-quantum secure public key UIPFE scheme in
the random oracle model with adaptive security based on the Learn-
ing With Errors (LWE) assumption with leads to low computation
cost.

– Furthermore, we develop a public key unbounded zero inner product
predicate IPFE (UZP-IPFE) scheme that allows a successful decryp-
tion if an inner product policy is satisfied. We support the con-
jectured security of our candidate by analysis and prove that the
scheme achieves security in the selective weak attribute-hiding model
under the LWE assumption. The scheme offers linear-size cipher-
text and constant-size secret keys. We emphasize that our construc-
tion presents the first post-quantum secure UZP-IPFE scheme in an
unbounded scenario preserving attribute-hiding property.

More interestingly, when contrasted with the existing similar schemes,
all our schemes exhibit favourable results in terms of communication
overhead and secret key size.

Keywords: Inner product functional encryption · unbounded ·
attribute-hiding

1 Introduction

Inner product functional encryption (IPFE) refers to a specific class of functional
encryption (FE) [8] initiated by Abdalla et al. [1] where a sophisticated secret
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key sky corresponding to the vector y ∈ Z
� reveals the inner product 〈x,y〉

by decrypting the ciphertext ctx associated with the message vector x ∈ Z
�.

Significant research efforts have been put into these constructs in various ways
during the last few years, like [2,3,6,7,9,10,16]. Due to linear functionality, IPFE
bears an inherent security loss. More explicitly, an adversary can learn the entire
message vector x from ctx using any set S of �-secret keys queries. Abdalla et
al. [2] mitigated the leakage by introducing fine-grained access control in IPFE
or attribute-based IPFE (AB-IPFE) where the decryptor learns the inner prod-
uct depending on an access policy. In such a scheme, a secret key sky ,v and the
ciphertext ctx,w are generated corresponding to the key vector y, predicate v
and the message vector x, attribute w, respectively. The decryption successfully
recovers 〈x,y〉 if a relation R(w, v) holds. Consequently, the adversary can not
extract unwanted information about x from ctx,w with the help of S if some
of the associated secret keys correspond to a policy v such that R(w, v) does
not hold. Here, we focus on a specific subclass of AB-IPFE called inner product
predicate IPFE (IP-IPFE), where a successful decryption happens only when the
relation R (defined as the inner product between the predicate vector v and
the attribute vector w) satisfies. It can be viewed as the composition between
predicate encryption (PE) and IPFE. From the security perspective of IP-IPFE,
payload-hiding is a primary requirement where the ciphertext hides only the mes-
sage x. Attribute-hiding (AH) is a more robust security notion that guarantees
the ciphertext ctw ,x hides both message x and attribute w vectors. One version
of IP-IPFE is zero IP-IPFE (ZP-IPFE) where the decryptor can recover 〈x,y〉 by
decrypting ctw ,x using a secret key skv ,y if the policy 〈w,v〉 = 0 holds.

Most of the IPFEs are ‘bounded’ as they can only compute the inner prod-
uct between bounded length vectors, which are fixed while generating public
parameters. Unbounded IPFE (UIPFE) is gaining interest as it enables public
parameter generation without any prior information about the length of any
vector. The first UIPFE schemes were concurrently and independently proposed
by Dufour-Sans et al. [10] and Tomida et al. [16]. Dufour-Sans et al. [10] designed
public key UIPFE constructions with the succinct public key, master secret key
and the functional secret keys in the random oracle model, whereas Tomida et
al. [16] presented private and public UIPFE schemes in the standard model. One
observation is that all the constructions of UIPFE require the computation on a
bilinear map. This motivates us to ask the following questions:

1. Can we construct a public key UIPFE scheme without using a bilinear map?
2. Is it possible to construct a public unbounded IPFE scheme with an inner prod-

uct policy whereby decryption outputs the inner product between the unbounded
length of the key and message vectors only when the inner product between
unbounded size attribute and predicate vectors vanishes?

Our Contribution and Techniques. We affirmatively answer the above ques-
tions. To be more specific, using the underlying standard assumption, we build
the concrete UIPFE schemes that follow.

1. Firstly, we present a public key UIPFE scheme based on LWE in the random
oracle model with adaptive indistinguishability (Adp-IND) security. Adaptive
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Table 1. Comparison among existing UFE schemes for linear policy/functions.

|ct| |sk| #P Pol, Func. unbounded (att, msg) Assum Security ROM /Std. Model

[13] (15|D| + 5) · |G1| + |GT | 15|D||G1| + 5|G1| |D′| + 1 IP,× √
, × DLIN Adp-FAH Std. Model

[10] (|D|+1)|G1| |G2| |D′| + 1 ×, IP ×,
√

DBDH Sel-IND ROM

[16] 4|D||G1| 4|D′| |G2| |D′| ×, IP ×,
√

SXDH Fully-FH Std. Model

7|D||G1| 7|D′||G2| |D′| ×, IP ×,
√

SXDH Adp-IND Std. Model

Our work O(|D|) |Zq| O(1)|Zq| – ×, IP ×,
√

LWE Adp-IND ROM

O(|D|)|Zq| O(1)|Zq| – IP,IP
√

,
√

LWE Sel-WAH ROM

Adp-FAH, Sel-IND, Fully-FH: adaptive full attribute-hiding, selective indistinguishabil-
ity, fully functional-hiding; DLIN, DBDH, SXDH: decisional linear, decisional bilinear
Diffie Hellman, symmetric external Diffie-Hellman; |ct|, |sk|: size of ciphertext, secret
key; |D|, |D′|: size of message vector and key vector; |G1|, |G2|, |GT |: size of the an ele-
ment of the group G1 and G2 respectively; ROM, Std. Model: random oracle model,
standard model; Pol., Func., att, msg, IP: policy, functionality, attribute, message and
inner product; q: large prime integer; #P: number of pairing computation

in the sense that the adversary can query for secret keys to the key generation
oracle at any instant of security experiment. This scheme bears a constant
size secret key and linear size ciphertext. For more details, we refer to the full
version for the scheme and security analysis.

2. Next, we propose an unbounded ZP-IPFE (UZP-IPFE) which is a composition
of UIPFE with an unbounded zero inner product policy. In other words, the
decryption recovers 〈x,y〉 if the inner product between two unbounded pred-
icate vector v and attribute vector w is zero. Our scheme achieves selective
weak attribute-hiding indistinguishability (Sel-WAH-IND) security under the
LWE assumption in the random oracle model. Note that, in selective security
model, the adversary submits the challenge attribute pair before asking the
secret keys, and weak-attribute hiding refers that the adversary is restricted
to secret key query skv,y for the vector pair (v, y) such that 〈w,v〉 �= 0. For
the details, we refer to Sect. 4 for the scheme and security analysis.

In Table 1, we depict the efficiency, functionality and hardness assumptions of
our UIPFEs and compare the matrices with that of existing UFEs. In this study,
the decryptor computes 〈x,y〉 between the message x = (xi)i∈D and key vector
y = (yi)i∈D′ whenever D = D′.

2 Unbounded Zero Predicate IPFE

Unbounded zero predicate inner product functional encryption UZP-IPFE =
(Setup,KeyGen,Enc,Dec) scheme consists following PPT algorithms:

• Setup(1λ) → (mpk,msk): On input a security parameter λ, this algorithm
outputs a master public key mpk and a master secret key msk.

• KeyGen(mpk,msk,v,y) → skv ,y : Takes mpk, msk, a key vector y = (yi)i∈Dy
∈

Yλ and a predicate vector v = (vi)i∈Dv
∈ Vλ as input, this algorithm outputs

secret key skv ,y where Dy ,Dv ⊆ N are the finite index sets of y and v
respectively.
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• Enc(mpk,w,x) → ctw ,x : On input mpk, a message vector x = (xi)i∈Dx
∈ Xλ

with an attribute vector w = (wi)i∈Dw
∈ Wλ, this algorithm outputs a

ciphertext ctw ,x where Dx ,Dw ⊆ N are the finite index sets of x and w
respectively.

• Dec(mpk, skv ,y , ctw ,x) → d or ⊥: Using skv ,y the algorithm decrypts ctw ,x

and outputs a decrypted value d ∈ Z or a special symbol ⊥ indicating failure.

Correctness: UZP-IPFE scheme is said to be correct if for all λ ∈ N, x ∈ Xλ,
w ∈ Wλ, y ∈ Yλ, v ∈ Vλ s.t Dx = Dy , Dw = Dv and 〈w,v〉 = 0 we have

Pr

⎡
⎢⎣d =

∑
i∈Dx ∩Dy

xiyi

(mpk,msk) ← UZP-IPFE.Setup(1λ
)

skv ,y ← UZP-IPFE.KeyGen(mpk,msk, v , y)

ctw ,x ← UZP-IPFE.Enc(mpk,w ,x)

d ← UZP-IPFEDec(mpk, skv ,y , ctw ,x )

⎤
⎥⎦ ≥ 1 − negl(λ)

Note that the notion of public UIPFE (pubUIPFE) is a particular case of UZP-
IPFE if we simply ignore predicate v, attribute vector w used in above syntax.

Definitiom 1 (Sel-WAH-IND security). The selective weak attribute-hiding
indistinguishability-based (Sel-WAH-IND) security for an UZP-IPFE =
(UZP-IPFE. Setup,UZP-IPFE.KeyGen,UZP-IPFE.Enc,UZP-IPFE.Dec) is formal-
ized by the following experiment ExptSel-WAH-IND

A,UZP-IPFE (λ) between the adversary A and
challenger B.
Setup: A first submits two distinct challenge attribute vectors w(0), w(1) with
the same index set Dw (0) = Dw (1) = Dw (say) to B who in turn generates
(mpk,msk) ← UZP-IPFE.Setup(1λ) and sends mpk to A.
Key query phase: The adversary A is allowed to make adaptively the following
queries polynomially many times.
– Key queries: The adversary A sends y = (yi)i∈Dy

∈ Yλ, v = (vi)i∈Dv
∈ Vλ to

B for the secret key such that 〈v,w(0)〉 �= 0, 〈v,w(1)〉 �= 0. In response, B forms
skv,y ← UZP-IPFE.KeyGen(mpk,msk,v,y) and hands it to A.
Challenge phase: The adversary A submits two distinct message vectors
x(0) = (x(0)

i )i∈D
x (0) ∈ Xλ and x(1) = (x(1)

i )i∈D
x (1) ∈ Xλ with same index set

Dx(0) = Dx(1) = Dx . If 〈v,w(0)〉 = 〈v,w(1)〉 = 0 for any key queried vector
y ∈ Yλ,v ∈ Vλ, then it is required that 〈x(0),y〉 = 〈x(1),y〉. The challenger B
randomly selects a bit β from {0, 1}, notationally, β

$←− {0, 1} and computes the
challenge ciphertext ctw (β),x(β) ← UZP-IPFE.Enc(mpk,w(β),x(β)) and gives it to
A.
A can again make secret key queries corresponding to the vectors y and v with
the same restrictions as mentioned in the key query phase.
Guess: A guesses a bit β′ and the experiment outputs 1 if β = β′.

An UZP-IPFE scheme is said to be Sel-WAH-IND secure if for all PPT adver-
sary A, there exists a negligible function negl such that for all λ ∈ N,

AdvSel-WAH-IND
A (λ) = |Pr[ExptSel-WAH-IND

A,UZP-IPFE (λ) = 1]| ≤ 1
2

+ negl(λ)
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2.1 Lattices Preliminaries [2,5]

We recall here some important Theorems, Lemmas, and due to space constraints,
other preliminaries will be included in the full version.

Lemma 1 [15]. Let q = q(n) be a prime and α = α(n) ∈ (0, 1) satisfies α · q >
2
√

n. If there exists an efficient algorithm that can solve LWEq,α,n, then there
exists an efficient quantum algorithm for approximating the shortest independent
vectors problem (SIVP) and decisional version of the shortest vector problem
(GapSVP) in the �2 norm, in the worst case, to within O(n/α) factors.

Learning with errors (LWE) [15]: Let q be a prime, α be a real number and

s
$←− Z

n
q . The oracles Os or O$ is defined as:

– Os outputs (a, a�s+x) where a
$←− Z

n
q , x

$←− DZq,αq
1 are fresh and indepen-

dently sampled. The oracle O$ outputs uniform elements from Z
n
q × Zq.

Define a oracle O which is either Os or O$ across all calls. The LWEq,α,n problem
is to distinguish between the oracles Os or O$ given access to oracle O.

Lemma 2 [5]. Let q, n,m be positive integers with q ≥ 2 and m ≥ 6n log q.
Then there is a PPT algorithm TrapGen(1n, 1m, q) that outputs a pair (A ∈
Z

n×m
q ,TA ∈ Z

m×m
q ) such that A is statistically close to uniform in Z

n×m
q and

TA is a basis for Λ⊥
q (A) satisfying ||T̃A|| ≤ O(

√
n log q) and ||TA|| ≤ O(n log q)

with overwhelming probability in n.

Lemma 3 (Sampling algorithm [2,4]). We now discuss two sampling algo-
rithms to sample a short vector from a specified lattices.

• SamplePre(A,TA, σ,U) → Z: On input a matrix A ∈ Z
n×m
q , trapdoor TA ∈

Z
m×m
q , any σ ≥ L ·ω(

√
log n) and randomly chosen U ∈ Z

n×�
q , this algorithm

outputs a matrix Z ∈ Z
m×� such that U = A · Z. Additionally, the following

two distributions are statistically close.2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(A, Z, U)

(A, TA) ← TrapGen(1n
, 1

m
, q),

Z ← SamplePre(A, TA, σ, U)

where U
$←− Z

n×�

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

≈s

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(A, Z, A · Z)

A
$←− Z

n×m
q , Z

$←− D
Zm×�,σ

||zi|| ≤ σ
√

m ∀i ∈ [�] where zi

denotes thei-thcolumn of Z.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

• Sampleleft(A,B,TA,u, σ): On input the matrix A ∈ Z
n×m
q , a ‘good basis’

TA ∈ Λ⊥
q (A), a matrix B ∈ Z

n×m1
q , u ∈ Z

n
q and a Gaussian parameter σ,

the algorithm outputs a vector e ∈ Z
(m+m1) distributed statistically close to

Λu
q (F) satisfying F · e = u where F = (A||B).

1 Here DZq,αq is the discrete Gaussian distribution [5] over Zq with center 0 with

standard deviation αq and ˜R stands the Gram-Schmidt orthogonalization.
2 For a vector u and matrix W, ||u|| represents the �2 norm and ||W|| represents �2

norm of the longest column of W.
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• Sampleright(A,B,R,TB,u, σ): On input the matrices A ∈ Z
n×k
q , R ∈

{−1, 1}k×m, a full rank matrix B ∈ Z
n×m
q with its ‘good basis’ TB ∈ Λ⊥

q (B),
a vector u ∈ Z

n
q and a Gaussian parameter σ, the algorithm outputs a vector

e ∈ Z
(m+k) distributed statistically close to Λu

q (F) satisfying F · e = u where
F = (A||AR + B).

Theorem 1. Let q > 2, n < m, σ > ||T̃A|| · ω(
√

log(m + m1)). Then the algo-
rithm Sampleleft outputs a vector e ∈ Z

(m+m1) distributed statistically close to
DΛu

q (F),σ where F = (A||B).

Theorem 2. Let q > 2, n < m, σ > ||T̃A|| · sR · ω(
√

log m). Then the algorithm
Sampleright outputs a vector e ∈ Z

(m+k) distributed statistically close to DΛu
q (F),σ

where F = (A||AR + B). Note that, sR is defined as sR = sup||x||∈Sm−1 ||Rx||
where Sm is the m-sphere defined as {||x|| ∈ R

m+1 : ||x|| = 1}.

Lemma 4. [11] If S $←− {−1, 1}r×k, then Pr[||S|| > 12
√

r + k] ≤ e−(k+r).

Lemma 5. Consider a matrix R be chosen uniformly in Z
m×k
q mod q where

k = k(n) and satisfies m > (n + 1) log q + ω(log n) with q > 2 is square free.
Let A ∈ Z

n×m
q , B ∈ Z

n×k
q be matrices chosen uniformly random. Then for all

vectors v ∈ Z
m
q , then (A,AR,R�v) ≈s (A,B,R�v).

Lemma 6 (Bounding Gaussian Noise). [12] Let Λ be an n-dimensional
lattice with center c ∈ span(Λ) (where span(Λ) = {By : y ∈ R

n},B being the
basis of Λ), ε ∈ (0, 1) ∩ R and σ ≥ ηε(Λ) where ηε(Λ) be smoothing parameter3

of n-dimensional lattice Λ. Then Pr [||x − c|| > σ · √
n] ≤ 1+ε

1−ε · 1
2n for all x $←−

DΛ,σ,c .

3 Our LWE Based pubUIPFE

In this section, we present our pubUIPFE scheme integrating the technique of
ALS-IPFE scheme [6]. Our UIPFE scheme has the message space Xλ over the set
{0, 1, . . . , P (λ)−1} and the secret keys space Yλ over the set {0, 1, . . . , V (λ)−1}.
The length of message and the secret key vectors are < �max for some integer
�max. Consider a hash function H : N → Z

n
q and 〈x,y〉 < K where K = poly(λ).

• Setup(1λ) → (mpk, msk): The algorithm works as follows:

– Defines the parameters n = n(λ),m = m(λ) and q = q(λ).
– Runs TrapGen(1n, 1m, q) → (A,TA) such that A ∈ Z

n×m
q and outputs mpk =

(n,m,A, P, V,K, q, σ, α, ρ,H), and msk = TA ∈ Z
m×m
q .

• KeyGen(mpk,msk,y ∈ Yλ) → sky : This algorithm works as follows:

3 The smoothing parameter ηε(Λ) to be the smallest s such that ρ1/σ(Λ∗ − {0}) ≤ ε
for n-dimensional lattice Λ and positive real ε.
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– Computes the matrix U′ = (ui′
1
||ui′

2
|| · · · ||ui′

�′ ) ∈ Z
n×�′
q where ui′

j
= H(i′j) ∈

Z
n
q for each i′j ∈ D′.

– Runs SamplePre (A,TA, ρ,U′) → Z ∈ Z
m×�′

satisfying U′ = A · Z ∈ Z
n×�′

.
– Sets the secret key sky = (y,y�Z�).

• Enc(mpk,x ∈ Xλ) → ctx : This algorithm executes the following steps:

– Samples a column vector s
$←− Z

n
q , e1

$←− DZm,σ and e2
$←− DZ�,σ.

– Computes U = (ui1 ||ui2 || · · · ||ui�
) ∈ Z

n×�
q where uij

= H(ij) ∈ Z
n
q ∀ij ∈ D.

– Outputs the ciphertext ctx = (c1, c2) associated with the vector x as

c1 = A�s + e1 ∈ Z
m
q , c2 = U�s + e2 +

⌊ q

K

⌋
x ∈ Z

�
q

• Dec(mpk, sky , ctx) → μ/ ⊥: Decryption proceeds as follows:

– Computes μ′ = y�c2 − (y�Z�)c1 if D = D′ otherwise outputs ⊥.
– Outputs μ ∈ {0, 1, . . . ,K − 1} which minimizes

∣∣⌊ q
K

⌋ · μ − μ′∣∣.
Correctness: If D = D′, then we have

μ′ = y�c2−(y�Z�)c1 =
⌊ q

K

⌋
〈x,y〉+y�e2 − (y�Z�)e1 =

⌊ q

K

⌋
〈x,y〉+noise

By the SamplePre algorithm of Lemma 3, every column of Z ∈ Z
m×� is bounded

above by ρ
√

m, i.e., ||Z|| ≤ ρ
√

m� and ||y|| ≤ V
√

� as y ∈ Yλ. Since e2
$←− DZ�,σ,

we have ||e2|| ≤ √
�σ as long as σ ≥ ω(

√
log n). Therefore, ||y� · e2|| ≤ V �σ.

By the choice of parameter, σ ≥ 2C ′αq(
√

m +
√

n +
√

�) and C ′ is a constant,
and ||(y� · Z�) · e1|| ≤ ρσm�V . Therefore, |noise| ≤ ρσm�V + V �σ with high
probability. To ensure the correct decryption, we set |noise| ≤ q

2K which can be
achieved by setting q ≥ 2K(ρσm�maxV + V �maxσ).

Parameter Setting. We first set the parameters n,m, q, ρ, σ as in ALS-IPFE
of [2,14]. To fulfil the correctness of our pubUIPFE scheme, we modify our param-
eters accordingly to satisfy the ALS-IPFE parameters.

– For generating a short basis TA ⊂ Λ⊥
q (A) for a random matrix A ∈ Z

n×m
q ,

run TrapGen(1n, 1m, q) algorithm by setting m ≥ 6n log q (see Lemma 2).
– For the algorithm SamplePre(A,TA, ρ,U), we set ρ ≥ L · ω(

√
log n) where

L = m2.5 (see Lemma 3).
– From the correctness of ALS-IPFE (as in [2,6,14]), we have σ ≥ ω(

√
log n).

– For the hardness of LWEq,α,n with αq > 2
√

n, α ∈ (0, 1) ∩ R (Lemma 1).
– The number α must satisfy α ≤ σ

2C′q(
√

m+
√

n+
√

�max)
where C ′ is a constant.

– Prime q > 2 must satisfy q ≥ 2K(ρσm�maxV + V �maxσ) where K = �maxPV .
This does not mean that such upper bounds are required while generating
system parameters. We sufficiently can chose a large prime q to make sure
the above inequality holds and hence the correctness, security also follow4.

Note that with this parameter setting of [2,6,14], ALS-IPFE is correct and secure..
Due the space constraints, we discuss the security proof in full version.

4 Observe that, the bit-lengths of system parameters such as master keys and cipher-
texts scale with log q, but not q or the upper bounds �max.
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4 Our LWE Based UZP-IPFE

We construct a UZP-IPFE scheme using the framework of predicate encryption of
Agrawal et el. [5]. We consider the following hash functions H1 : Z×([k]∪{0}) →
Z

n×m
q , H2 : Z → Z

n
q which are modelled as random oracles in the security

analysis. In addition, we consider 〈x,y〉 < K where K = poly(λ).
• Setup(1λ) → (mpk,msk): The algorithm works as follows:

– Defines the parameters n = n(λ),m = m(λ), r = r(λ) and q = q(λ).
– Runs TrapGen(1n, 1m, q) → (A,TA) such that A ∈ Z

n×m
q and TA ∈ Z

m×m
q .

– Outputs mpk = (n,m, k = �logr q�,A, q, α, σ, P, V, r,K,H1,H2), msk = TA.

• KeyGen(mpk,msk,v ∈ Z
|Dv |
q ,y ∈ Yλ) → skv ,y : The algorithm works as follows:

– Sets vi ≡ v̂i mod q and expresses v̂i =
∑k

γ=0 vi,γrγ where vi,γ ∈ [0, r −1]∩Z

and computes H1(i, γ) = Ai,γ ∈ Z
n×m
q ∀ i ∈ Dv , γ ∈ {0, 1, . . . , k} = [k]∪{0}.

– Sets Cv =
∑

i∈Dv

∑k
γ=0 vi,γAi,γ ∈ Z

n×m
q with Av = (A ‖ Cv ) ∈ Z

n×2m
q .

– Runs Sampleleft(A,Cv ,TA,uj , σ) → ej ∈ Z
2m so that (A ‖ Cv ) · ej = uj

mod q for all j ∈ Dy where H2(j) = uj ∈ Z
n
q and generates E =

(ej1 ‖ ej2 ‖ · · · ‖ ej|Dy |) ∈ Z
2m×|Dy | if Dy = {j1, j2, . . . , j|Dy |}.

– Outputs the secret key skv ,y = (y,Ey).

• Enc(mpk,w ∈ Z
|Dw |
q ,x ∈ Xλ) → ctw ,x : The algorithm works as follows:

– Chooses B $←− Z
n×m
q and s

$←− Z
n
q ,e

$←− DZm,α.

– Sets H1(i, γ) = Ai,γ ∈ Z
n×m
q and Ri,γ

$←− {−1, 1}m×m∀i ∈ Dw , γ ∈
{0, 1, . . . , k},

– Computes c0 = A�s + e ∈ Z
m
q ; ci,γ = (Ai,γ + rγwiB)�s + R�

i,γe ∈ Z
m
q .

– Generates U =
(
uj1 ‖ uj2 ‖ . . . ‖ uj|Dx |

) ∈ Z
n×|Dx |
q where H2(jι) = ujι

∈
Z

n
q for all jι ∈ Dx = {j1, j2, . . . , j|Dx |}.

– Sets c′ = U�s + x� q
K � + f ∈ Z

|Dx |
q where f

$←− DZ|Dx |,α.
– Outputs the ciphertext ctw ,x = (c0, {ci,γ}i∈Dw ,γ∈([k]∪{0}), c′).

• Dec(mpk, skv ,y , ctw ,x) → d or ⊥: It decrypts ctw ,x using skv ,y as follows:

– If Dv = Dw , Dy = Dx , then decryption proceeds, otherwise outputs ⊥.
– Computes cv =

∑
i∈Dv

∑k
γ=0 vi,γci,γ ∈ Z

m
q .

– Sets c =
[
c0
cv

]
∈ Z

2m
q and computes z = y�c′ − (Ey)�c.

– Outputs d ∈ {0, 1, . . . ,K − 1} which minimizes
∣∣⌊ q

K

⌋
d − z

∣∣.
Correctness: If Dv = Dw ,Dy = Dx with 〈w,v〉 = 0 mod q. We have

cv =
∑
i∈Dv

k∑
γ=0

vi,γci,γ = C�
v s + 〈w,v〉B�s +

∑
i∈Dv

k∑
γ=0

vi,γR�
i,γe mod q

= C�
v s + Rve mod q [Sets, Rv =

∑
i∈Dv

k∑
γ=0

vi,γR�
i,γ with 〈w,v〉 = 0]
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Hence, c =

[
c0
cv

]

=

(
A�s + e

C�
v s + Rv e

)

= A�
v s +

(
e

Rv e

)

mod q. Therefore, (E · y)�c =

y�E�
[

A�
v s +

(
e

Rv e

)

mod q

]

= y�U�s+(E·y)�
(

e
Rv e

)

mod q. Also we have, AvE =
U since Av ejι

= ujι
for all jι ∈ Dy = {j1, j2, . . . , j|Dy |} = Dx where E =

(ej1 ‖ ej2 ‖ · · · ‖ ej|Dy |) and U = (uj1 ‖ uj2 ‖ · · · ‖ uj|Dx |). So in the decryption
phase, the decryptor computes

z = y
�
c

′ − (E · y)�
c = 〈x, y〉

⌊
q

K

⌋

+ y
�
f − (Ey)

�
(

e
Rv e

)

mod q = 〈x, y〉
⌊

q

K

⌋

+ noise

To obtain as the inner product 〈x,y〉 as output, it suffices to set the parameters
so that with overwhelming probability, we have

|noise| = |y�
f − (Ey)

�
(e‖

∑

i∈Dv

k∑

γ=0

vi,γR
�
i,γe)| <

q

2K

We express E =

[
E1
E2

]

where Ei ∈ Z
m×|Dy |
q for i = 1, 2. Then

y
� [

f − E
�
1 e − E

�
2 Rv e

]
= y

�
f −

⎛

⎝E1 · y +

⎛

⎝
∑

i∈Dv

k∑

γ=0

vi,γRi,γ

⎞

⎠E2 · y
⎞

⎠

�

e

From Theorem 1 and Lemma 6, we have, ||E·y|| ≤ σV
√

2m|Dy | with overwhelm-
ing probability. Again by Lemma 4, we have ||Ri,γ · (E2 ·y)|| ≤ 12

√
2m · ||E2 ·y||

with high probability. As vi,γ ∈ [0, r − 1], it can be written as follows:
∥
∥
∥
∥
∥
∥
E1 · y +

⎛

⎝
∑

i∈Dv

k∑

γ=0

vi,γRi,γ

⎞

⎠E2 · y
∥
∥
∥
∥
∥
∥

<
(
1 + 12

√
2m · |Dv | · (1 + k) · r

)
· σV

√

2m|Dy | = a(say)

Therefore, the noise is bounded by |noise| < aα
√

m + V α|Dx |. For the correct
decryption, the absolute value of the noise must be less than q

2K . It is suffices
to choose q and α satisfying q > 2K[aα

√
m + V α�max] where �max is the upper

bound of the length of message-attribute vectors and the key-predicate vectors
corresponding to which the secret keys are issued.

4.1 Security

Theorem 3. Assuming the decisional LWEq,α,n assumption holds, then
UZP-IPFE scheme as described above achieves Sel-WAH-IND in the random ora-
cle model security as per Definition 1.

Proof. Let us consider a PPT adversary A against Sel-WAH-IND security of our
UZP-IPFE scheme. We can construct an algorithm B that breaks the LWEq,α,n

assumption using A as a subroutine. We prove the security via a series of Games.
The security games between adversary A and challenger B as describe below.
Game 0: Similar experiment ExptSel-WAH-IND

A,UZP-IPFE (λ) for β = 0 as described Definition
1.
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Fig. 1. The algorithm sim.Setup run by the challenger B.

Fig. 2. The algorithm sim.KeyGen run by the challenger B.

Fig. 3. The algorithm sim.Enc run by the challenger B.

Game 1: This game is identical to the Game 0 except that the challenger
B uniformly chooses Ai,γ

$←− Z
n×m
q in both challenge ciphertext ctw (0),x(0) =

(c0, {ci,γ}i,γ , c′) and the secret keys skv (j),y (j) = (y(j),Ey(j)).
Game 2: B runs the sim.Setup algorithm, as described in Fig. 1, on input
the selectively chosen attribute vector w∗ = w(0) and B responds the secret
key queries skv (j),y (j) and the challenger ciphertext ctw (0),x(0) by using the
sim.KeyGen and sim.Enc algorithms as presented in Fig. 2 and 3, respectively.
Game 3: Game 3 is similar to Game 2 except that in sim.Enc phase, B uniformly
chooses ui

$←− Z
n
q for all i ∈ Dx instead of generating it using hash function H2.

Game 4: The challenger B chooses uniformly random components from the
ciphertext space and returns it as the challenge ciphertext.
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Game 5: The challenger B runs the algorithm sim.Setup with the challenge
attribute w∗ = w(1) and responds to the adversary’s secret key queries by run-
ning sim.KeyGen algorithm. The challenger B returns the challenge ciphertext
by picking uniformly random elements from the ciphertext space.
Game 6: Game 6 is the same as Game 5 except that the challenge ciphertext
is generated by executing the algorithm sim.Enc where the matrix U ∈ Z

n×|Dx |
q

is constructed from the hash function H2 instead of choosing uniformly, i.e., the
challenge ciphertext is generated using the algorithm sim.Enc over the challenge
vector pair (w(1), x(1)).
Game 7: Same as experiment ExptSel-WAH-IND

A,UZP-IPFE (λ) for β = 1 as described Defini-
tion 1. ��

Using the simulated algorithms of Fig. 1 to 3, we show that the successive
games are indistinguishable under the decisional LWE assumption.

Lemma 7. The adversarial view of Game 0 and Game 1 are computationally
indistinguishable.

Proof. All hash queries corresponding to the indices of Dv produce random
matrices assuming that the hash functions H1 is modelled as a random oracle.
Thus, Game 0 and Game 1 are computationally indistinguishable. ��
Lemma 8. The adversarial view of Game 1 and Game 2 are statistically close.

Proof. We have to show that the distribution of the challenge ciphertext and
the master public keys in both the games are indistinguishable, i.e., the honestly
generated public parameters and ciphertext are statistically close to the public
parameters and the ciphertext generated by sim.Setup and sim.Enc algorithms.
In Game 1, matrix A is generated by using Trap.Gen algorithm where in Game 2,
it is chosen uniformly random over Zn×m

q . By Lemma 2, it can be concluded that
matrix A is statistically close to a uniform matrix over Z

n×m
q for m ≥ 6n log q.

To show that ciphertext components {ci,γ}i,γ are statistically close in Game 1
and Game 2, we first argue that {Ai,γ}i,γ are indistinguishable in both games.
{Ai,γ} indistinguishability. We observe that Ai,γ ∈ Z

n×m
q is uniformly random

in Game 1, and in Game 2, Ai,γ = AR∗
i,γ − rγw

(0)
i B∗, which are statistically

close as the matrices R∗
i,γ

$←− {−1, 1}m×m, B∗ $←− Z
n×m
q for all i ∈ Dw (0) , γ ∈

([k] ∪ {0}).
{ci,γ} indistinguishability. In Game 1, the challenge ciphertext are computed

as ci,γ = (Ai,γ + rγw
(0)
i B∗)�s + R∗�

i,γe for all i ∈ Dw (0) , γ ∈ ([k] ∪ {0}) with

R∗
i,γ

$←− {−1, 1}m×m, B∗ $←− Z
n×m
q . In contrast, the corresponding challenge

ciphertext in Game 2 is set as

ci,γ = (AR
∗
i,γ − r

γ
w

(0)
i B

∗
+ r

γ
w

(0)
i B

∗
)
�
s + R

∗�
i,γe = R

∗�
i,γc0 as c0 = A

�
s + e

where R∗
i,γ ∈ {−1, 1}m×m is the same matrix as used to compute Ai,γ = AR∗

i,γ−
rγw

(0)
i B∗. The main difference between the Game 1 and Game 2 is that the
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matrix R∗
i,γ is used in Game 2 in both sim.Setup and sim.Enc algorithms to

generate the public parameters and the challenge ciphertext but in Game 1,
R∗

i,γ and B∗ are picked randomly during UZP-IPFE.Enc phase. We show below
that the joint distribution of (A, {Ai,γ , ci,γ}i,γ) are statistically close in both
the Game 1 and Game 2. Then for all fixed B∗,w(0) and e ∈ Z

m
q , we have

(
A,AR

∗
i,γ − r

γ
w

(0)
i B

∗
,R

∗�
i,γe

)
≈s

(
A,Ai,γ ,R

∗�
i,γe

)

as Ai,γ ,R∗
i,γ are uniformly chosen from Z

n×m
q and {−1, 1}m×m respectively.

Therefore, if we extend this over all the i ∈ Dw (0) , γ ∈ [k] ∪ {0}, we get
(
A, {AR

∗
i,γ − r

γ
w

(0)
i B

∗
,R

∗�
i,γe}i,γ

)
≈s

(
A, {Ai,γ ,R

∗�
i,γe}i,γ

)

From the indistinguishability of Ai,γ for all i, γ, we conclude that
(
A, {AR

∗
i,γ − r

γ
w

(0)
i B

∗
, (AR

∗
i,γ − r

γ
w

(0)
i B

∗
+ r

γ
w

(0)
i B

∗
)
�
s + R

∗�
i,γe}i,γ

)

≈s

(
A, {Ai,γ , (Ai,γ + r

γ
w

(0)
i B

∗
)
�
s + R

∗�
i,γe}i,γ

)

Note that the left-hand side of the above inclusion is the joint distribution of
Ai,γ , ci,γ in Game 2, whereas the right-hand side is the distribution in Game 1.

Therefore, the output distribution of UZP-IPFE.KeyGen algorithm in Game
1 is statistically close to sim.KeyGen algorithm in Game 2 using the Theorem
1, 2 since the secret keys are generated in Game 1 using Sampleleft algorithm
and in Game 2, we use Sampleright algorithm. Assuming σ is sufficiently large,
this follows from the properties of the algorithms Sampleleft and Sampleright. To
fulfil both the requirements, we explicitly discuss in the parameter setting using
Theorem 1 and 2. This completes the proof of the lemma.

Lemma 9. In adversarial view of A, the Game 2 and Game 3 are computation-
ally indistinguishable.

Proof. Since H2 is modelled as a random oracle, all hash queries of H2 corre-
sponding to the index sets Dx(0) ,Dy (j) will generate random vectors. Therefore,
Game 2 and Game 3 are indistinguishable to each other.

Lemma 10. The adversarial view of A in Game 3 and Game 4 are computa-
tionally indistinguishable if the decisional-LWE assumption holds.

Proof. Suppose we are given (m+|Dx(0) |) many LWE instances (ai, ẑi) ∈ Z
n
q ×Zq,

(uj , zj) ∈ Z
n
q ×Zq for all i ∈ {1, 2, . . . ,m}, j ∈ Dx(0) where either ẑi = 〈ai, s〉+ei

and zj = 〈uj , s〉 + fj for some fixed secret vector s
$←− Z

n
q and the discrete

Gaussian error quantity ei
$←− DZ,α, fj

$←− DZ,α or ẑi, zj are uniform in Zq. Let

A = (a1, a2, . . . , am) ∈ Z
n×m
q ,U = (uj)j∈D

x (0) ∈ Z

|D
x (0) |×n

q

c0 = (〈a1, s〉 + e1, 〈a2, s〉 + e2, . . . , 〈am, s〉 + em) = (ẑ1, ẑ2, . . . , ẑm) ∈ Z
m
q

c
′
= (〈uj , s〉 + fj + xj� q

K
�)j∈D

x (0) = (zj + xj� q

K
�)j∈D

x (0)
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Given the LWE instances as above, the challenger B simulates the public param-
eters, challenge ciphertext and the secret keys as follows:
Public Parameter. B runs sim.Setup algorithm and sets the matrix A from
the given LWE instances.
Secret Key. B executes sim.KeyGen algorithm and uses the matrix U from LWE
instances to generate j-th secret key corresponding to the vector pair (y(j),v(j)).
Challenge Ciphertext. The challenger B outputs (c0, {ci,γ}i,γ , c′) where
ci,γ = R∗�

i,γc0 ∀i ∈ Dw (0) , γ ∈ [k] ∪ {0} and c0, c
′ are set from the given LWE

instances.
In sim.Enc algorithm, the challenge ciphertext components ci,γ , c′ are set as

ci,γ = R∗�
i,γ (A�s+e) and c′ = U�s+x·� q

K �+f . It follows that if ẑi = 〈ai, s〉+ei

and zj = 〈uj , s〉 + fj then the simulated ci,γ and c′ the simulator described
above have identical distribution as in Game 3. Otherwise, if ẑi, zj are randomly

chosen from Zq, the simulated challenge ciphertext is (c0, {R̃
∗�

c0}i,γ , c̃) where
R̃

∗
is concatenation of matrices Ri,γ for all i, γ. Therefore, by the Leftover hash

Lemma 5, the quantities AR̃
∗

and R̃
∗�

c0 are independently and uniformly sam-
pled. Thus, the ciphertext components are uniformly random and the simulation
described above is identical to Game 4 challenger. Thus any adversary that can
distinguish between Game 3 and 4 can solve the decisional LWE problem.

Lemma 11. In adversarial view in Game 4 and Game 5 are identically close.

Proof. Since the challenge attribute vector w(1) does not appear in the public
parameters of sim.Setup algorithm in Game 4 and Game 5. So we can conclude
that Game 4 and Game 5 are identically close.

Lemma 12. The adversarial view of A in Game 5 and Game 6 are computa-
tionally indistinguishable if decisional-LWE holds.

Lemma 13. In adversarial view in Game 6 and Game 7 are indistinguishable.

– Proof of Lemma 12 and 13 follows from Lemma 9, 10 and 8 respectively.
Let E(i) be the output of the experiment between A interacting with the chal-

lenger in Game i. From the hybrid argument we have |Pr[E(i) = 1]−Pr[E(i+1) =
1]| ≤ 1

poly(λ) ∀i ∈ {0, 1, . . . , 6}. Therefore, |Pr[E(0) = 1] − Pr[E(7) = 1]| ≤ 1
poly(λ) .

Parameter Settings. We explicitly discuss the settings of parameters n,m, k, r,
σ,K required for the correctness and the security of the scheme.

• From the correctness of the scheme, we have q > 2K[aα
√

m+V α�max] where
a =

(
1 + 12

√
2m · �max · (1 + k) · r

) ·σV
√

2m�max and �max is the upper bound
of message-attribute vectors corresponding to which ciphertext are generated
and key-predicate vectors corresponding to which the secret keys are issued.

• For TrapGen algorithm of Lemma 2, we get m ≥ 6n log q.
• For the setup algorithm of our UZP-IPFE, by the Lemma 2, we set ||T̃A|| =

O(
√

n log q) and Sampleleft algorithm of UZP-IPFE.KeyGen algorithm as per
Theorem 1 and Lemma 2, we set σ > ||T̃A|| · ω(

√
log m) = O(

√
n log q) ·

ω(
√

log m).
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• For the description of sim.KeyGen and sim.Setup algorithm, we have ||T̃B∗ || =
O(

√
n log q) and the algorithm Sampleright (as the Theorem 2) in sim.KeyGen

phase, we get σ ≥ ||T̃A||·sR ·ω(
√

log m). Note that, sR = sup{x:||x||=1} ||Rx||,
therefore, sR = O (|Dv |(logr q + 1)

√
m) with a high probability. Plugging

this value into above inequality of σ, we see that it suffices to choose σ ≥
||T̃A||·O (|Dv|(logr q + 1)

√
m)·ω(

√
log m). So combining the above two bound

over σ, we get σ ≥ ω(m�max log q
√

log m) using the relation m ≥ 6n log q.

– Form the hardness of LWEq,α,n assumption of Lemma 1, we have αq > 2
√

n.
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Abstract. Paillier cryptosystem is the building block of many crypto-
graphic protocols. The secure keys generation without a trusted dealer
is an essential scheme in a distributed system since the dealer may be
under the threat of a single point of attack.

We present a distributed keys generation scheme of the threshold
Paillier’s encryption system using efficient multiparty computation. Our
scheme consists of two offline and online phases where the offline phase
can be implemented at any time well in advance of the computation
phase. Both the public and the private keys are computed and verified
in the presence of at least n ≥ t + 1 participants in the actual online
phase. This gives an improvement on the previous studies where at least
a number of 2t+ 1 parties are required for the keys generation. Further-
more, the private communication complexity of our scheme is O(n2) field
elements with no broadcast communication overhead which improves on
the total communication complexity of [21]. Our protocol maintains the
security against a static active adversary corrupting up to t participants
with the small probability of error using message authentication codes.
Also, the computed keys are t-private, i.e., any subset of equal or less
than t parties cannot gain any information about the factorization of N .

Keywords: Distributed Keys Generation · Threshold Paillier
Cryptosystem · Multiparty Computation · Statistical Security · Secure
Distributed Cryptography

1 Introduction

In threshold cryptography, all the parties are required to participate and cooper-
ate in the system to perform a secure cryptographic computation. One may think
of using a trusted dealer to generate public and private keys of the encryption
system. It is a trivial task as the dealer publishes the public key and distributes
the private key among the participants such that all the qualified parties col-
laboratively can decrypt the ciphertext. However, this system cannot be reliable
and secure in practice, since all the secret information can be leaked, changed
or even deleted by an adversary carrying out a single point of attack on the
dealer. Thus, the important notion of distributed key generation is the solution
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to generate the keys in a form of the secret shared among the participants such
that it would not be available in a single location.

Generating an RSA modulus N (which is the product of two prime num-
bers) in a distributed fashion has been an important research topic in threshold
cryptography. It is the core of many cryptographic protocols in which the com-
putations are executed without giving any information about the factorization
of N to equal or less than a number of threshold participants in the system.
Numerous number of studies have been undertaken in the field of distributed
RSA key generation, see e.g. [6,10,11,15–18,23]. Boneh and Franklin (1997) [6]
proposed the first RSA key generation for a two-party setting. Their protocol
was secure against a passive adversary and they used a trusted third party for
the security purpose. [23] employed pro-active secret sharing and a computation-
ally bounded verifiable secret sharing in their RSA key generation protocol. A
robust protocol with honest majority was suggested by [16] using the technique
of secret sharing over the integers. [10] proposed a threshold RSA scheme with
an efficient security method of zero-knowledge proofs, based on the hardness of
discrete logarithm, where the modulus N is a product of two safe primes. Never-
theless, their protocol requires an honest third party to generate and distribute
the signature keys. [11] presented an efficient and robust protocol with honest
majority that the cost of going from passive security to active security is a con-
stant factor and any fault or malicious behaviour can be detected. However, the
cost of this efficiency is a simplification assumption in which their protocol is
just limited to the number of three parties.

Paillier cryptosystem [22], due to its additive homomorphic feature, is an
important building block of many cryptographic frameworks, see e.g. [1,5,7,12].
It has the same public key and the ciphertexts’ algebraic structure as the RSA
encryption scheme, however, the private key and the decryption procedure of
the Pillier encryption do not follow from the RSA system. Therefore, a different
type of distributed keys generation technique is required for the threshold Paillier
cryptosystem. Nishide and Sakurai (2010) [21] conducted the first study of the
Paillier’s distributed keys generation and proposed a protocol with the honest
majority. They employed the multiparty computation method of [4] and the
Pedersen’s verifiable secret sharing, which is based on the hardness of discrete
logarithm, such that the protocol holds the security against an active adversary
corrupting the minority of the parties. Their protocol has the private point-
to-point communication complexity O(n2) field elements, determined by the
factor 6n2, and broadcasts O(tn) field elements for the process of the shares
verification where t is the threshold number of the parties, and at least n ≥
2t + 1 participants are required to generate the keys. An important question
remaining here is that whether can the keys generation of the Paillier’s system
be improved? Recently, [18] presented a system for threshold keys generation of
the RSA and Paillier’s cryptosystems in the two-party setting. Their protocol
maintains the security against an active adversary using the commitment scheme
(zero-knowledge proof) of ElGamal encryption.
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1.1 Our Contribution

In this study, we present a scheme for distributed keys generation of the thresh-
old Paillier encryption system without a trusted dealer. Our protocol maintains
the security against a static active adversary corrupting at most t participants
where only one honest party is required to detect any malicious behaviour using
message authentication codes. Furthermore, the keys are t-private, i.e. any set
of equal or less than t parties cannot obtain any information about the factor-
ization of N . Our protocol has two phases, a preprocessing offline phase and
an online computation phase, where the offline phase can be implemented at
any time before running the actual online phase. The offline phase is executed
just for one time in the whole protocol and random shares of a triple, computed
in this phase, can be used for the generation process of both the public and
private keys. This idea allows us to give a faster computation phase than the
protocol of [21] as the computation of the random preprocessed information can
be carried out without needing the inputs required for the keys generation. The
communication complexity of our protocol is bounded to O(n2) field elements
without any broadcast communication, and the required number of participants
in the online phase is just n ≥ t + 1 giving the improvements on the scheme
of [21].

To achieve these goals, we employ the technique of hyper-invertible matri-
ces, presented in [3], to generate the sharings of a random triple in the offline
phase. One may think of using the Beaver’s multiparty computation scheme [2]
to generate the threshold sharings of the keys, however, we propose another mul-
tiparty computation approach with the same communication overhead/rounds
as the Beaver’s scheme meaning that our method can be considered as an alter-
native approach to it. Moreover, we use the distributed biprimarily test for an
RSA modulus, presented in [6], and we give a non-interactive zero-knowledge
proof technique to make the players commit to their shares in this test.

The remaining structure of this paper is designed as follows: Sect. 2 describes
the required materials for our protocol. Section 3 presents the actual scheme with
the security proofs. Finally, Sect. 4 gives the conclusion.

2 Preliminaries

2.1 Secret Sharing

In Shamir’s secret sharing [24], a dealer distributes a secret value s among n
participants using a random polynomial f(x) =

∑t
i=0 aix

i mod q where a0 = s
and q is a prime number. We also use the Shamir’s secret sharing over the
integers, as a variant of [24], which was first introduced by [15] and modified by
[16]. In this scheme, the secret s must be s ∈ [0, I] where I is the interval for s.
The free constant term a0 = Δ · s and the integer coefficients ai, 1 ≤ i ≤ t are
randomly chosen from the interval ai ∈ [0,KΔ2I] where Δ = n! and K = 2σ.
Note that σ is the statistical security parameter and K is chosen such that 1/K
is negligible. Each party Pi (for i = 1, 2, . . . , n) is given the share fi ← f(i), and
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to reconstruct the secret a set of at least t + 1 participants pools their shares
and compute the constant term as:

Δ · f(0) = Δ ·
t+1∑

i=1

fi · l0,i

where l0,i is the Lagrange coefficient of Pi. Finally, since Δ · f(0) = Δ2s, the
parties calculate s = Δ·f(0)

Δ2 .
Clearly, the secret s cannot be leaked to any subset of less than t + 1 parties

with information-theoretic security for the normal Shamir’s secret sharing and
σ bits statistical security for the Shamir’s secret sharing over the integers. Fur-
thermore, this method is linear meaning that a player can compute a share of
any linear function with no interaction.

We denote the normal t-sharings [s]t as a set of the shares generated by the
normal secret sharing from a random polynomial with the degree t and the secret
s, and also [s]Zt is denoted as the same t-sharings setting except that the secret
sharing scheme is over the integers. Without loss of generality, the secret addition
of two values s and r distributed by the normal secret sharing [s]t and the secret
sharing over the integers [r]Zt can be reconstructed by having the parties pool
their shares and compute it over the field as:

s + r =
1

Δ2

n∑

i=1

([Δ2 · s]t + [Δ · r]Zt ) × l0,i

2.2 Threshold Paillier Cryptosystem with a Trusted Dealer

The Paillier cryptosystem [22] is a public key encryption system which holds
semantic security according to the decisional composite residuosity (DCR)
assumption. This assumption implies that given a ciphertext encrypted under
the problem of DCR, a probabilistic polynomial time adversary has a negligible
advantage to guess the corresponding plaintext [8]. More formally:

Definition 1. Let x0 and x1 be encrypted under a k-bits public key encryp-
tion system based on the problem of DCR assumption. Suppose a probabilis-
tic polynomial time adversary A obtains an encryption of xβ for a random
β ∈ {0, 1}. Let A can guess the values x0 and x1 with the probabilities p0(A, k)
and p1(A, k), respectively. The encryption system is semantically secure, if
|p0(A, k) − p1(A, k)| ≤ ε where ε is negligible in k.

We now describe the algorithm of threshold Pailler encryption system where a
trusted party generates and distributes the keys.

Keys Generation: A trusted dealer invokes a probabilistic algorithm Gen(1k)
to generate a pair of the keys (pk, sk) ← Gen(1k). The public key is an RSA
modulus pk ← N where N = pq and gcd(N,φ(N)) = 1 such that p and q are
two safe primes, i.e., p = 2p′ + 1 and q = 2q′ + 1 where p′ and q′ are prime
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numbers as well. That is because to make sure that there is a sufficiently large
number of generators in the cyclic group of N2 [21].

The private key sk is the Euler’s totient sk = p′q′ = φ(N)/4 where φ(N) =
(p − 1)(q − 1). The dealer chooses a random β ∈ Z∗

N , and he masks the private
key as θ = β · φ(N)/4 mod N and distributes the t-sharings over the integers
[θ]Zt . Also, θ is added to the public key, i.e. pk = (N, θ).

Encryption: A probabilistic algorithm Encpk(m, r) is invoked to encrypt a
plaintext m ∈ ZN and compute the ciphertext c ← Encpk(m, r) as follows:

Encpk(m, r) = gm · rN mod N2

where the simplest value for g is g = N +1 an element in Z∗
N2 and r is a random

number in Z∗
N .

Decryption: The parties execute the deterministic algorithm Decsk(c) to
decrypt and obtain the plaintext m ← Decsk(c). To achieve the threshold decryp-
tion, each party Pi computes the decryption share ci = c2Δ·[θ]Zt mod N2 and
publishes it. He also makes a proof of correct commitment to his share using
the zero-knowledge proof technique described in [14]. The parties compute the
plaintext as follows:

m = L(
t+1∏

i=1

c
2l0,i
i mod N2) · (4Δ2 · θ)−1 mod N

where the function L(x) is defined as L(x) = x−1
N .

2.3 Generating Random Triples Based on Hyper-Invertible
Matrices

We employ the technique of hyper-invertible matrices, described in [3], which can
be used to generate random t-sharings of a triple in the offline pre-processing
phase. We recommend to refer to [3] for more detail. In a hyper-invertible matrix,
every square sub-matrix is invertible. Namely:

Definition 2. A m × n matrix is hyper-invertible, if for any sets of rows R ⊆
{1, . . . , m} and columns C ⊆ {1, . . . , n} with |R| = |C| > 0, the matrix MR

C is
invertible such that it consists of the intersections between the rows in R and the
columns in C.

This matrix has a symmetry feature where a linear mapping of n points, for
instance (x1, . . . , xn) to (y1, . . . , yn), can be computed using two sets of fixed
elements. More specifically, each party Pi generates a random value si and dis-
tributes it with two degrees t and t′ denoted by the double sharings [si]t,t′ (note
that it denotes two separate vectors of sharings with the thresholds t and t′)
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among the participants. Each party can now compute two new sets of sharings
of a new random value ri with the same degrees t and t′ using the hyper-invertible
matrix M as follows:

([r1]t,t′ , . . . , [rn]t,t′) = M([s1]t,t′ , . . . , [sn]t,t′)

Note that each vector of sharings [ri]t lies on a random polynomial g(.) of degree
t. Now a number of at least 2t + 1 participants are required to generate the
sharings of a random triple (ab = c) where each player calculates a share of
degree 2t as:

[di]2t = [ai]t[bi]t − [ri]2t

A set of 2t+1 participants reconstruct the value di. Finally, each party calculates
a share of ci with the degree t as follows:

[ci]t = ai · bi − ri + [ri]t

Each party now holds the t-sharings [ai]t, [bi]t and [ci]t of the triple aibi = ci.

2.4 Message Authentication Code

The message authentication code (MAC) is an information-theoretic method to
authenticate an output in a multiparty computation system. The output can be
manipulated by an active adversary in the form of a shared secret in the system.
Since this method offers a more efficient computationally unbounded security
compared to other verifiable secret sharing schemes, it has been used in multi-
party computation systems to detect any inconsistency or malicious behaviour,
see e.g. [1,9,13,19].

A prover party sending a message m calculates the MAC value, denoted by
γα(m), as γα(m) = α · m in the field of the computation where α is the MAC
key generated by the verifier. The verifier party accepts m if the equation of
the MAC value is correct, otherwise outputs fail representing the detection of
dishonest behaviour and the protocol is aborted. Clearly, this method is linear
and parties can use a global MAC key α, as an additive secret of the each player’s
random key αi, to verify the computation output. In this case, the probability
of cheating ε without being detected is equivalent to guessing the global MAC
key α over the field, i.e., ε = 1/F.

Definition 3. A MAC scheme with the key space K is ε-secure to validate an
output m in the field F, where there is a computationally unbounded adversary
A deviating from the system to compute an output m′ such that:

{∀α ∈ K,m ∈ F, ∃ m′,m′ ← A| Pr[γα(m) = α · m′ ∧ m 
= m′] < ε}

2.5 Security

We present the security of our scheme based on the ideal/real models. The ideal
model achieves the highest level of security as there exists no type of adversary
in this model. It is assumed a simulator S takes inputs from the participants and
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executes the functionality F such that the players do not interact directly with
each other. The model is denoted by IDEALF,S . On the other hand, the partic-
ipants with the presence of a computationally bounded adversary A implement
the protocol Π in the real model denoted by REALΠ,A. The protocol Π is said
to be secure, if the ideal model IDEALF,S and the real model REALΠ,A are
computationally indistinguishable [20]. This implies that S simulates the adver-
sary in the ideal model by trying to change the actual output without being
detected.

We assume there exists a static active adversary in our scheme which intends
to deviate from the protocol and change the outcome in the fashion of malicious
behaviour. A static (non-adaptive) adversary corrupts the players before running
the scheme. The correctness and the privacy of our scheme is maintained against
at most t corrupted parties in the presence of at least n ≥ t + 1 participants.

3 Our Distributed Keys Generation Scheme

In this section, we present our scheme to generate the public and private keys of
the threshold Paillier cryptosystem in the distributed form. Our method includes
two offline and online phases, where the public key and the shares of the private
key are computed and verified in the actual online computation phase in the
presence of only n ≥ t + 1 participants.

3.1 Pre-processing Phase

This phase can be executed at any time before running the actual online phase
and it is needed only once for the generation process of the both keys. We use
the technique of hyper-invertible matrices, described in the Sect. 2.3, to generate
the shares of a random triple in the presence of at least 2t + 1 parties where the
majority is honest. Any inconsistency of the computation can be detected by
the MAC scheme. The participants do not reveal the global MAC key as they
locally calculate the checking shares to authenticate the output.

Note that the computations of this phase and the public key generation
must be in the order of a field greater than the public key N . Hence, according
to [21], the participants pick a large prime number P such that at least P >
[n(3 × 2k−1)]2 > 2N where n is the number of participants and k is the security
parameter which is also used to determine the range of two primes p and q for
the generation of the public key. It is recommended to choose a large value for
k such that the bit length of P is at least greater than 1024 bits [25]. Figure 1
shows the protocol ΠTriple to generate and verify t-sharings of a random triple.

Theorem 1. The protocol ΠTriple is unconditionally secure against a static
active adversary A corrupting up to t parties with small probability of error.

Proof. Let H and C represent the honest and corrupted parties in the ideal
model, respectively. Suppose {P1, . . . , Pt} ∈ C and {Pt+1, . . . , Pn} ∈ H. The
simulator S sends the list of the corrupted parties to the functionality. Also, S
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Fig. 1. The protocol ΠTriple for generating t-sharings of a random triple.

picks random values [c′]t, α′ and [γ′(c)]t for the inputs of the corrupted parties.
This is analogous to the condition where A introduces the errors δc, δα and
δγ(c) to the real model which can be denoted as [c′]t = [c]t + δc, α′ = α + δα and
[γ′(c)]t = [γ(c)]t +δγ(c), respectively. S executes the functionality and the honest
parties detect any inconsistency in the system with the probability 1 − 1/FP

because σ′(c) 
= 0. Therefore, the ideal and the real models are computationally
indistinguishable.
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The communication complexity of the protocol ΠTriple is linear O(n). Now,
the participants need to check the multiplication correctness of the triple gen-
erated in this protocol. This can be achieved by sacrificing another random
triple [9]. Figure 2 illustrates the protocol ΠCheckTriple to check the multiplica-
tion correctness of the triple. If the check is passed successfully, each party holds
the t-sharings [a]t, [b]t and [c]t as the outputs of the offline phase.

Fig. 2. The protocol ΠCheckTriple for checking the multiplication correctness of the
triple.

3.2 Online Phase

The public and private keys of the threshold Paillier cryptosystem are computed
and verified in this phase. A number of n ≥ t+1 participants are able to perform
this phase which is an improvement on the scheme of [21] where at least 2t + 1
parties are required to generate the keys. Moreover, we use the MAC scheme to
authenticate the keys output which is less expensive than the protocol of [21]
using the Pedersen’s VSS based on the hardness of discrete logarithm.

Note that one can employ the Beaver’s scheme [2] to compute the shares of
the keys, however, we present our multiparty computation approach which has
the same efficient communication overhead and reconstruction rounds as the
Beaver’s scheme.

Distributed Public Key Generation
Inspired by the study of [6], the participants collaboratively generate two primes
p and q using the notion of Blum integers, since about 1/4 of all RSA modulus
are Blum integers. The proactive secret sharing method allows the parties to
redistribute the shares of the two primes such that no less than t players can
gain their actual values, i.e., the factorization of N remains t-private. Figure 3
shows the protocol Πpk to generate the public key of the Paillier’s encryption
system. The computations are performed in the order of P as it described in the
pre-processing phase.
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Theorem 2. The protocol Πpk maintains statistical security against a static
active adversary A which corrupts at most t participants with low probability of
error.

Proof. Without loss of generality, suppose {P1, . . . , Pt} ∈ C and Pt+1 ∈ H where
C and H represent the sets of corrupted and honest parties in the ideal model,
respectively. The simulator S sends a list of corrupted parties to the functionality.
Also, S sends the random values [p′

i]t, [q′
i]t and α′

t+1 to the functionality which
simulate the errors [p′

i]t = [pi]t + δp, [q′
i]t = [qi]t + δq and α′

t+1 = αt+1 + δαt+1

by A in the real model. Any inconsistency in the initial shares can be detected
with small probability of error. S chooses random sharings [y′]t, [z′]t and the
random MAC key α′ and sends them to the functionality. This is analogous to
the condition where A introduces the errors [y′]t = [y]t + δy, [z′]t = [z]t + δz

and α′ = α + δα to the real model. The functionality is implemented and Pt+1

can detect any malicious behaviour for obtaining y and z with the probability
1−1/FP . Finally, S picks random [N ′]t and γ′([N ]t) which can be considered as
simulating the errors [N ′]t = [N ]t + δN and γ′([N ]t) = γ([N ]t) + δγN

in the real
model. S executes the functionality and Pt+1 detects any malicious behaviour in
the computation with the error probability 1/FP . Hence, the ideal and the real
models are statistically indistinguishable with the security parameter k.

If {P1, . . . , Pt+1} ∈ H, the participants open the random values y = p+a and
z = q − b. Each party computes a share of the public key [N ]t and the parties
pool their shares and obtain the public key which can be written as:

N =
(p + a) · (q + b) + (q − b) · (p − a)

2
− c

=
2(N + c)

2
− c

��
The total communication complexity for generating the Paillier’s public key

in the protocol Πpk is O(n2) field elements with no broadcast communication
which improves on the total communication overhead of [21] which is bounded to
the private communication complexity O(n2) plus the broadcast coomunication
overhead O(tn). The public key N needs to be checked for small prime divisors
up to some upper bound B. According to [25], it is more efficient in practice
to check for the small prime divisors after computing N instead of checking the
individual primes p and q for it. This implies that N must be checked for dividing
to any prime divisor smaller than B.

Distributed Biprimarily Test
The participants need to check the multiplication correctness of N that whether
it is a product of two primes p and q without revealing the primes. [6] gave
a scheme for this test using the Euler’s theorem. We propose a technique of
non-interactive zero-knowledge proof to make the participants commit to the
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Fig. 3. The protocol Πpk for distributed public key generation of the Paillier cryp-
tosystem.
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values they reveal for this test. Figure 4 presents the protocol ΠBiprimarily for
distributed biprimarily test of N . Note that each participant already holds the
random values pi and qi and their shares from the protocol Πpk.

Fig. 4. The protocol ΠBiprimarily for the distributed biprimarily test of N .

The correctness proof of the zero-knowledge technique and the test can be
found in the appendix. In the case that N is not biprime, the test may fail with
the probability 1

2 . Therefore, the test must be repeated for few m iterations to
reduce the error probability which gives the probability 2−m for accepting N ,
if N is not biprime. However, in practice the probability that a non-biprime N
passes even one iteration of this test is actually much less than 1

2 [6].
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Fig. 5. The protocol Πsk for the private key generation of the threshold Paillier system.
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Distributed Private Key Generation
The participants start this stage while they are holding the public key N and the
additive shares of the private key φ(N) from the protocol Πpk. Recall that the
idea is to mask the private key by a random number β ∈ Z∗

N i.e., θ = β ·φ(N)/4
(see Sect. 2.2). Note that the private key can be written as φ(N) = N −p−q+1.
We use the similar multiparty computation approach to the protocol Πpk to
compute the t-sharings of θ. Figure 5 shows the protocol Πsk for the distributed
generation of the threshold Paillier’s private key.

Theorem 3. The protocol Πsk is statistically secure against a static active
adversary A corrupting up to t parties with the negligible probability of error.

Proof. The security proof follows the proof of the protocol Πpk.

Note that the final step of the threshold decryption is to reveal the public
key θ = β · φ(N) mod N (see Sect. 2.2), however, the participants hold the t-
sharings [θ]Zt over the integers. Thus, in order to deal with this issue, the parties
transform the t-sharings [θ]Zt to the normal t-sharings [Δ2 · θ]t in the order of
Z∗

N , by locally reducing the shares modulo N , and then they pool their new
t-sharings to reconstruct θ in Z∗

N [25].

4 Conclusion

Distributed keys generation of encryption systems without a trusted dealer has
been an important topic in the field of threshold cryptography. In this paper, we
give an efficient scheme for distributed keys generation of the threshold Paillier
cryptosystem using multiparty computation. Our protocol has two offline and
online phases. We employ the technique of hyper-invertible matrices to generate
random t-sharings of a triple in the offline phase which can happen at any time
before the actual online computation. Also, these shares are authenticated and
the multiplication correctness of the triple is checked. The public and the private
keys are computed and verified in the presence of at least n ≥ t + 1 participants
which gives an improvement on the scheme of [21] where at least 2t + 1 parties
are required for that purpose. Moreover, a distributed biprimarily test with a
technique of non-interactive zero-knowledge proof, to check the commitment of
the players’ inputs, is implemented to examine the correctness of the public key
factorization.

Our scheme preserves the statistical security against a non-adaptive active
adversary corrupting at most t participants with the low probability of error
using message authentication codes. Furthermore, the computed keys are t-
private. The private communication complexity to generate the keys is O(n2)
field elements with no broadcast communication overhead which also improves
on the protocol of [21] where the private communication complexity is the same
as our scheme but the broadcast overhead is (nt).

Acknowledgement. The authors would like to acknowledge the anonymous reviewers
for their comments.
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A Correctness of the Protocol ΠBiprimarily

For the zero-knowledge proof of each party Pi, the term
∏n

j=1 dj mod N =
g1/4(pi+qi) modN due to the homomorphism of discrete logarithm in the base g.
Since φ1(N) = N +1−p1 −q1, the party P1 proves that he has committed to the
correct value of ν1 by having all the parties compute e1 = g1/4(N+1) modN . For
every other party except P1, the commitment value is ei = g0 mod N because
φi(N) = −(pi + qi).

For the biprimarily test, note that φ(N) = N+1−p−q and
∏n

i=1 νi = gφ(N)/4.
Since the Jacobi ( g

N ) = 1 and due to the Euler’s theorem, the parties check that
gφ(N)/4 = ±1 mod N .
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Abstract. In this work, we show the results of the NIST statistical tests
performed on different datasets generated from the output of all possible
reduced-round versions of the finalists of the NIST Lightweight stan-
dardization process and some of the most popular symmetric ciphers.
The objective of the experiment is to provide a metric that compares
how conservative or aggressive the choice of the number of rounds is
for each candidate. This comparison can add up to the other compari-
son studies being carried out before the closing of the last round of the
NIST Lightweight standardization process, which is supposed to end in
late 2022. Note that a similar analysis was also performed during the
Advanced Encryption Standard selection in 1999 and 2000 and later in
2011 for the SHA-3 candidates.

Keywords: Statistical tests · Lightweight cipher · NIST
standardization process · block cipher · permutation

1 Introduction

In August 2018, NIST initiated a process to solicit, evaluate, and standardize
lightweight cryptographic algorithms suitable for use in constrained environ-
ments where the performance of current NIST cryptographic standards is not
acceptable. The cryptographic algorithms were requested to provide authenti-
cated encryption with associated data (AEAD) functionality, and optionally, the
hashing function.

Since then, the cryptographic community has contributed to the cryptanal-
ysis and benchmarks on different software and hardware platforms of the initial
57 submissions. The ten finalists were selected on March 29, 2021: ASCON, Ele-
phant, GIFT-COFB, Grain128-AEAD, ISAP, Photon-Beetle, Romulus, Sparkle,
TinyJambu, and Xoodyak. Besides performance benchmarks, there are not many
works comparing the security choices of each cipher. Mostly, this is due to the
difficulty of defining an objective and fair metric. In this work, we try to address
this problem, following the well-known approach of using (reduced-round ver-
sions of) cryptographic primitives as random number generators and measuring
the quality of their output through statistical tests.
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1.1 Our Contribution

In what follows, we re-propose a similar analysis as the one performed by NIST
for the AES standardization process [2,11], and by Sulak, in 2011, during the
SHA-3 selection [12]. In particular, we show the results of the NIST statistical
tests performed on different datasets generated from the output of all possible
reduced-round versions of the finalists of the NIST Lightweight standardization
process. In the analysis, we also include some of the most popular ciphers, such
as AES, PRESENT, DES and ChaCha.

Even if the primitives of the NIST Lightweight standardization process are
not meant to be used as random number generators, we still believe this analysis
to be of interest, especially as our results can be considered as a metric to
compare how conservative the choice of the number of rounds in each candidate.

1.2 Organization

The remainder of this paper is structured as follows. In Sect. 2, we overview
relevant related works. In Sect. 3, we describe the statistical tests methodology.
In Sect. 4, we describe our results. In Sect. 5, we draw our conclusions.

2 Related Works

The concept of confusion and diffusion have been introduced by Shannon in his
seminal work on the theory of secrecy systems [10]. Shannon defined confusion as
the capacity of an algorithm to create a very complex and involved relationship
between the key and the ciphertext and diffusion as the property that the redun-
dancy in the statistics of the plaintext is “dissipated” into the statistics of the
ciphertext. One way to incorporate this concept in the analysis of a symmetric
cipher is using statistical tests to measure the bias of certain bits of the cipher
with respect to other bits.

While Knuth’s empirical statistical tests [6] were already defined in the late
sixties, it was only in the late nineties that statistical test suites started to become
more and more popular to systematically test the cryptographic properties of
random number generators and stream ciphers. As an example, see Marsaglia’s
DIEHARD tests [7], Brown’s DIEHARDER tests [4], or NIST Statistical Test
Suite [1]. In this work, rather than testing random number generators, we con-
sider a different number of tests to identify statistical biases in the output bits of
a full or reduced round block cipher or cryptographic permutation, without any
knowledge of the internal structure of the cipher (black box scenario).

One of the first works we are aware of tackling this problem is by Gustafson
et al., in 1997 [5]. In this work, the authors essentially define three ways of gen-
erating a dataset related to the block cipher input and output of every round.
Each dataset measures the deviation from an expected distribution using differ-
ent metrics. The first type of datasets is intended to capture possible relations
between ciphertext and plaintext. The second type of datasets is intended to cap-
ture possible relations between differences of 1-bit differences on plaintext and
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corresponding ciphertext, called avalanche vectors. This second type of datasets
seems to detect non-randomness for a higher number of rounds (5 vs. 3) in the
case study (DES) presented by the authors. It is worth mentioning that this
kind of test is somehow the black box analog of differential cryptanalysis. A
black box test analog to linear cryptanalysis is presented as well. However, no
practical results are reported in the paper for this test. The idea of the avalanche
vector test is derived from the so-called strict avalanche criterion, a property
defined for SBoxes by Webster and Tavares in 1986 [15]. This criterion, applied
to a block cipher, says that each output bit should change with a probabil-
ity of one-half whenever either a single plaintext bit is flipped (strict plaintext
avalanche criterion, SPAC) or a single key bit is flipped (strict key avalanche
criterion, SKAC). The third type of datasets defined in [5] is intended to capture
possible relations between subsets of ciphertext bits and plaintext bits. Due to
the large number of these subsets, this test does not seem very practical unless
only a few subsets are selected. In their use case, this test did not perform better
than the analysis of the avalanche vectors.

Between 1999 and 2000, NIST released the analysis of the Advanced
Encryption Standard candidate algorithms concerning some statistical proper-
ties (including the ones in [5]) that could be measured from different types of
output generated by each candidate [2,11]. The statistical properties were defined
in the so-called NIST Statistical Test Suite. At the time, this test suite was in
preparation. The test suite was finalized in 2001 [9] and then finally superseded
by [1] in 2010. In the context of AES standardization, the purpose of these tests
was to demonstrate the suitability of candidate algorithms as random number
generators. The 1999 analysis included 15 encryption algorithms, and required to
generate more than 135 data sets (9 data sets for each algorithm), for a total of
almost 29 billion bits (about 3.6 Gigabytes), only for testing the 128-bit key ver-
sion of each encryption algorithm. In the 2000 analysis, only the 192 and 256-bit
key versions of the 5 finalists (Mars, RC6, Rijndael, Serpent and Twofish) were
analyzed, with respect to basically the same set of tests1. Note that all statistical
tests were performed both for full and partial rounds (the test required several
months on several SUN Ultra workstations), but, due to resource constraints,
partial round testing was limited to only one of the datasets (the low-density
plaintext dataset).

A similar analysis considering different datasets was performed in [14] (2005)
and extended in [12] (2011), where the tests were applied to both the AES
and SHA-3 candidates. Additionally, in [12], a set of additional tests was per-
formed, namely: the Strict Avalanche Criterion Test (“Whenever one input bit
is changed, every output bit should change with probability a half to achieve
ideal diffusion”), the Linear Span Test (“The distance of a boolean function to
the set of all affine functions should be large. This property is measured in terms

1 The data sets were reduced from 9 to 8 (removing the Random Plaintext/Random
128-Bit Keys dataset). The statistical tests contained one extra test, the Serial Test,
with respect to 1999. Precisely, 16 core statistical tests that, under different param-
eter inputs, could be viewed as 189 statistical tests.
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of nonlinearity, and it is a concept related to confusion. Evaluates an algorithm
by examining the linear dependence of the outputs formed from a highly linearly
dependent set of inputs), the Collision Test (counts the number of collisions in
a portion of the output corresponding to a random subset of the input set), and
the Coverage Test (takes a subset of the input set and examines the size of the
corresponding output set).

In 2019, Perov [8] exploited neural networks to study statistical properties of
reduced round SIMON block cipher [3]. He converted a list of ciphertexts into
an image format, to be fed to a convolutional neural network consisting of 17
layers called Inception v3 [13]. He showed consistent results with the ones found
by applying the NIST Statistical Test Suite, with the advantage that his dataset
only needs 212 samples, rather than the 227 samples required by the NIST suite.
For a smaller number of samples, the NIST suite reports anomalies for some of
the tests, such as approximate entropy test, non-overlapping patterns test, and
a test for arbitrary deviations. In this case, deviations in all rounds, including
the full rounds of the number of AES algorithm, were detected.

3 Statistical Tests

Fig. 1. The two phase of the statistical test: dataset generation and NIST statistical
test analysis.

The statistical test activity can be divided into two phases: the dataset generation
and the statistical tests as shown in Fig. 1. For both phases, we followed the
approach taken by NIST during the analysis of the AES candidates [2,11]. The
target of the analysis is the underlying primitives of the candidates, not the
authenticated encryption nor the hash constructions as a whole. This means we
considered the underlying permutations or block ciphers.

In what follows, we briefly review the methodology used to perform the statis-
tical test analysis during the AES and SHA-3 selection, describe the experimental
parameters, and present the experimental results in the next session.
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3.1 Dataset

As shown in Fig. 1, we first need to generate the dataset to run a statistical test.
In this paper, we call the bitstrings generated by the cipher bit sequences, or just
sequences, and define a dataset as a set of sequences generated for the different
purposes shown in Table 1:

Table 1. The categories of dataset [2,11].

dataset type input variant purpose

avalanche plaintext or key testing the diffusion of 1-bit differ-
ence in plaintext or key

plaintext-ciphertext corre-
lation

plaintext testing the correlation between
plaintext and ciphertext

cipher block chaining mode plaintext testing the encryption with CBC
mode

random plaintext testing the correlation between each
block

low density plaintext or key testing the randomness of the
ciphertext with inputs being mostly
0 s

high density plaintext or key testing the randomness of the
ciphertext with inputs being mostly
1 s

We generated each of the above datasets for every round of the primitive used
in NIST LW cipher candidates. However, the datasets containing the keyword
“key” could only be generated for the block ciphers.

3.2 Statistical Test

A statistical test suite contains several tests for different randomness properties.
An example of the statistical tests is the frequency monobit test, which accu-
mulates the weights of 0s and 1s in one sequence and checks if there is any bias.
Another example of the statistical tests is the frequency test within a block,
which checks the proportion of 1s within arbitrary length blocks.

In [1], the randomness distinguisher problem is formulated as a statistical
test to test a specific null hypothesis H0, which asserts that the sequence being
tested is random. The alternative hypothesis is Ha, which states that the tested
sequence is not random. When applying a sequence for a specific test, a con-
clusion is made that either accepts or rejects the null hypothesis. If the H0 is
accepted, we say the tested sequence is random. If the Ha is accepted, the H0 is
rejected, and the tested sequence is not random. These two hypotheses can be
concluded in Table 2.
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Table 2. Null (H0) and alternative (Ha) hypothesis [1].

True Situation Conclusion

Accept H0 Accept Ha (reject H0)

Data is random (H0 is true) No error Type I error

Data is not random (Ha is true) Type II error No error

The probability of a Type I error shown in Table 2 is often called the level
of significance of the test, denoted as α. The value α is commonly set to 0.01
in cryptographic testing. A P -value, also called the tail probability, is the prob-
ability that the tested sequence is more random than a sequence generated by
a perfect random number generator. If a P -value = 1, then the tested sequence
is perfectly random. On the other hand, if a P -value = 0, the tested sequence
is absolutely non-random. In the statistical tests, if a P -value ≥ α, the tested
sequence appears to be random.

In this paper, we choose the significance level α to be 0.01, which indicates
that among 100 sequences tested, we expect, on average, one truly random
sequence to be rejected. If a P -value ≥ 0.01, the corresponding sequence would
be considered random with a confidence of 99.9%.

3.3 NIST Statistical Test Suits

The NIST Statistical Test Suite (NIST STS) [1] was used to perform the sta-
tistical tests. This suite consists of 15 core statistical tests that, under different
parameter inputs, can be viewed as 188 statistical tests as shown in Table 3.
Lempel-Ziv Compression test, stated in [1], is not implemented here.

Table 3. The 188 statistical tests in the NIST STS

statistical test test ID statistical test test ID statistical test test ID

Monobit 1 Rank 7 Approximate Entropy 159

Block Frequency 2 Spectral DFT 8 Random Excursions 160–167

Cusum 3–4 Aperiodic Templates 9–156 Random Excursions Variant 168–185

Runs 5 Periodic Template 157 Serial 186–187

Long Runs of Ones 6 Universal Statistical 158 Linear Complexity 188

4 Experimental Results

The total data generated for the plaintext/key avalanche dataset is
190,964,711,424 bits (i.e., 191 Giga Bytes). The approximate time to generate
this dataset is 4 h. The total data generated for the plaintext/ciphertext corre-
lation dataset is 62,326,878,208 bits (i.e., 62 Giga Bytes). The approximate time
to generate all this dataset is 2 h. The total data generated for the CBC mode
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dataset is 96,945,713,280 bits (i.e., 97 Giga Bytes). The approximate time to
generate all this dataset is 45 days. The random dataset has the same size as the
plaintext/ciphertext correlation one, and it takes 1.5 h to finish the task. The
total data generated for the plaintext/key low-density dataset is 50,866,290,688
bits (i.e., 51 Giga Bytes). The approximate time to generate all this dataset
is 5 min. The plaintext/key high-density dataset has the same size and similar
time spent. We generated a total of around 514 Giga Bytes datasets for the test.
All the parameters follow the parameters used in [11], and the adapted change
will be stated in the following sub-sections. The dataset generation has been
performed using the NumPy library and an independent non-optimized python
implementation of each cipher.

The NIST STS [1] was used for the statistical test, and the significance level
α was 0.01. The total time to execute all statistical tests was approximately 40
days.

All experiments were executed in one of the following machines:

– Server 1 and 2: 16 Intel(R) Xeon(R) Gold 5222 CPUs, each with 4-cores, 3.80
GHz, 252G RAM

– Server 3: 112 Intel(R) Xeon(R) Platinum 8280 CPUs, each with 28-cores, 2.70
GHz, 1152G RAM

We report a summary of the results of the tests in Table 4. In the table, when
we say that an underlying primitive is random at round r, we mean it passed 186
tests (of 188 tests) at round r and kept stable for further rounds. The datasets
of Grain-128, which is a stream cipher, are not applying the NIST STS here.

4.1 Plaintext and Key Avalanche

Unlike the AES candidates, the underlying primitives differ in their block size.
To make the test results comparable, we fixed the bit length of the sequences

Fig. 2. Illustration of the plaintext avalanche dataset generation.
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Table 5. Parameters for Plaintext/Key Avalanche Dataset.

Nist LW cipher Underlying
Primitives

Block
Size

Key
Size

Sequences Plaintext Key

Sample
Size

Samples
per Seq

Bits per
Seq

Sample
Size

Samples
per Seq

Bits per
Seq

SPN-based Permutation

Ascon Ascon’s Permutation 320 – 384 102400 11 1126400 – – –

Elephant Dumbo: Elephant-
Spongent-π[160]

160 – 384 25600 41 1049600 – – –

Jumbo: Elephant-
Spongent-π[176]

176 – 384 30976 34 1053184 – – –

Delirium: Elephant-
Keccak-f [200]

200 – 384 40000 27 1080000 – – –

ISAP Ascon’s Permutation 320 – 384 102400 11 1126400 – – –

Keccak-p[400, 16],
Keccak-p[400, 20]

400 – 384 160000 7 1120000 – – –

PHOTON-Beetle PHOTON256 256 – 384 65536 16 1048576 – – –

Xoodyak Xoodoo 384 – 384 147456 8 1179648 – – –

Keyed Permutation

TinyJambu TinyJambu-128 P640, P1024 128 128 384 16384 64 1048576 16384 64 1048576

TinyJambu-192 P640, P1152 128 192 384 16384 64 1048576 24576 43 1056768

TinyJambu-256 P640, P1280 128 256 384 16384 64 1048576 32768 32 1048576

SPN-based Block Cipher

GIFT-COFB GIFT-128 128 128 384 16384 64 1048576 16384 64 1048576

Tweakable Block Cipher

Romulus SKINNY-128-384+ 128 384 384 16384 64 1048576 49152 22 1081344

Non NIST LW cipher underlying Primitives

– AES 128 128 384 16384 64 1048576 16384 64 1048576

– SPECK 128 128 384 16384 64 1048576 16384 64 1048576

– DES 64 56 384 4096 256 1048576 3584 293 1050112

ChaCha20 ChaCha Permutation 512 – 384 262144 4 1048576 – – –

– Present 64 80 384 4096 256 1048576 5120 205 1049600

– Present 64 128 384 4096 256 1048576 8192 128 1048576

that are input the NIST STS at 106 bits. For the generation of plaintext/key
avalanche datasets with a block bit size equal to 128 bits, we followed the settings
in [11]. For primitives with larger output block sizes, we use a fair number
of avalanche samples in one sequence, which makes the input sequence length
of each of the underlying primitives about the same size. Here, one avalanche
sample means the total derived blocks with one fixed input. For example, one
avalanche sample of ASCON contains 320 blocks, and the sample size is 320 ·320
bits, that is 102,400 bits. The Table 5 shows the parameters of each cipher for
the plaintext/key avalanche datasets generation. A total of 384 sequences per
primitive have been generated for both plaintext and key avalanche datasets. An
illustration of the plaintext avalanche dataset is shown in Fig. 2. For SPN-based
primitives, the encryption is done without a key. To get a key avalanche dataset,
switch the setting of plaintext and key in Fig. 2.

As shown in Table 4, most schemes produce a dataset that looks indistin-
guishable from random after a few rounds compared to the total round sug-
gested. With abuse of notation, we say that the cipher reaches randomness at
a certain round. In Spongent-π, it reaches randomness at 1/10 of the recom-
mended rounds. On the other hand, TinyJambu P reaches randomness at 1/2
of the suggested rounds.
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Table 6. Parameters for Correlation and Random Dataset.

NIST LW cipher Underlying
Primitives

Block
Size

Key
Size

Sequence Blocks
per Seq

Bits per
Seq

SPN-based Permutation

Ascon Ascon’s Permutation 320 – 128 3252 1040640

Elephant Dumbo: Elephant-
Spongent-π[160]

160 – 128 6503 1040480

Jumbo: Elephant-
Spongent-π[176]

176 – 128 5912 1040512

Delirium: Elephant-
Keccak-f [200]

200 – 128 5202 1040400

ISAP Ascon’s Permutation 320 – 128 3252 1040640

Keccak-p[400, 16], Keccak-p[400, 20] 400 – 128 2601 1040400

PHOTON-Beetle PHOTON256 256 – 128 4064 1040384

Xoodyak Xoodoo 384 – 128 2710 1040640

Keyed Permutation

TinyJambu TinyJambu-128 P640, P1024 128 128 128 8128 1040384

TinyJambu-192 P640, P1152 128 192 128 8128 1040384

TinyJambu-256 P640, P1280 128 256 128 8128 1040384

SPN-based Block Cipher

GIFT-COFB GIFT-128 128 128 128 8128 1040384

Tweakable Block Cipher

Romulus SKINNY-128-384+ 128 384 128 8128 1040384

Non NIST LW cipher underlying Primitives

– AES 128 128 128 8128 1040384

– SPECK 128 128 128 8128 1040384

– DES 64 56 128 16256 1040384

ChaCha20 ChaCha Permutation 512 – 128 2032 1040384

– Present 64 80, 128 128 16256 1040384

In Sect. A, we report the detailed progression of the NIST tests passing as the
round increases for each cipher. We report only the avalanche dataset progression
due to space constraints.

4.2 Plaintext/Ciphertext Correlation

Here as well, for the primitives with 128 block bit size, we have used the param-
eters shown in [11], and reported in Table 6, for the generation of the dataset for
this type of statistical tests. For larger block sizes, we have used fewer blocks in a
sequence. Please refer to Table 6 for detailed parameters. A total of 128 sequences
per primitive have been generated for this type of test. The illustration is shown
in Fig. 3.

As shown in Table 4, most of the underlying primitives with SPN-based struc-
ture show good randomness in this test, reaching randomness already at round
2. However, for other types, especially TinyJambu P and PRESENT, the inputs
and outputs are highly correlated in the first 3 rounds.
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Fig. 3. Illustration of the correlation dataset generation.

4.3 CBC Mode

Fig. 4. Illustration of the CBC dataset generation.

The CBC results, as shown in Table 4, are quite similar to the plain-
text/ciphertext correlation dataset. They reach randomness for these 2 types
of tests in the same round. The dataset parameters are also similar to the
parameters of the plaintext/ciphertext correlation dataset, except that a total
of 300 sequences are tested. The illustration is shown in Fig. 4. Similar to the
plaintext/ciphertext correlation dataset, the primitives with SPN-based struc-
ture are random after the first round. Therefore, we will not show the detail of
the behavior of randomness here either.
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Fig. 5. Illustration of the random dataset generation.

4.4 Random

The random dataset setup shares the same parameters with the plain-
text/ciphertext correlation dataset, described in Table 6. As shown in Table 4, all
the underlying primitives reach randomness after the first round. The illustration
of the dataset is shown in Fig. 5

4.5 Plaintext and Key Low Density

Fig. 6. Illustration of the plaintext low-density dataset generation.

The low-density dataset generation requires a key. Hence, for the underlying
primitives belonging to the SPN-based permutation class, the low/high-density
test is not applicable. For other types of underlying primitives, with 128 bits as
block bit size for the plaintext and the key, we use the parameters given in [11],
which are 8257 blocks with all possible low-density inputs. For larger key sizes,
we discard some weight-2 low-density sequences (two 1 s in the sequence) and
still make 8257 blocks in one sequence to fit the proper sequence size. A total of
128 sequences are generated for the test. The illustration of the plaintext low-
density dataset generation is shown in Fig. 6. To get the key low-density dataset,
switch the setting of plaintext and key.

As shown in Table 4, the SKINNY-128-384+ cipher reaches randomness faster
than other primitives in proportion to the total number of rounds. Moreover,
Table 4 tells us that randomness is reached faster when the key is fixed and the
plaintexts vary, rather than a fixed plaintext with keys that vary.
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4.6 Plaintext and Key High Density

The high-density datasets share the same parameters as the low-density datasets,
which are 8257 blocks in each sequence, for a total of 128 sequences. We also
discard some weight-2 high-density sequences for the larger key size (two 0s in
the sequence). For each primitive, the high and low-density tests present almost
the same results. The high-density dataset generation is the same as shown in
Fig. 6, but switch the ‘0’s and ‘1’s to make the data high-density (Fig. 7).

Fig. 7. The randomness rounds comparison between each ciphers with different dataset.

5 Conclusions

According to Table 4, we can see that most of the underlying primitives reach
randomness after the first three rounds out of the total number of rounds. For
Spongent-π, this proportion is much higher, which seems to indicate a very
conservative choice in the number of rounds of this cipher.

In some schemes, the underlying primitives have a different number of rounds.
Ascon and the Sparkle family choose these parameters more conservatively. On
the other hand, we can see that some cipher like ISAP and TinyJambu seems
more aggressive in having some none random choice when doing a small task
such as initialization or associated data encryption.
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A NIST Statistical Test Results of Underlying Primitives
for the Avalanche Dataset

Due to the page limit, we only report the avalanche dataset results for all the
ciphers that we analyzed (Figs. 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19).

Fig. 8. Test for ASCON permutation with avalanche datasets from round 3 to 6.

Fig. 9. Test for PHOTON256 with avalanche datasets from round 2 to 5.
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Fig. 10. Test for Spongent-π[160] with avalanche datasets from round 7 to 10.

Fig. 11. Test for Spongent-π[176] with avalanche datasets from round 7 to 10.
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Fig. 12. Test for Keccak-f [200] with avalanche datasets from round 2 to 5.

Fig. 13. Test for Keccak-p[400] with avalanche datasets from round 2 to 5.
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Fig. 14. Test for TinyJambu-128 P with plaintext/key avalanche datasets from round
15 to 17 and 17 to 19.

Fig. 15. Test for TinyJambu-192 P with plaintext/key avalanche datasets from round
15 to 17 and 19 to 21.
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Fig. 16. Test for TinyJambu-256 P with plaintext/key avalanche datasets from round
15 to 17 and 21 to 23.

Fig. 17. Test for GIFT-128 with plaintext/key avalanche datasets from round 7 to 9
and 9 to 11.
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Fig. 18. Test for skinny-128-384+ with plaintext/key avalanche datasets from round
6 to 8 and 7 to 9.

Fig. 19. Test for Xoodoo with avalanche datasets from round 3 to 6.
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Abstract. FUTURE is a recently proposed, lightweight block cipher. It
has an AES-like, SP-based, 10-round encryption function, where, unlike
most other lightweight constructions, the diffusion layer is based on an
MDS matrix. Despite its relative complexity, it has a remarkable hard-
ware performance due to careful design decisions.

In this paper, we conducted a MILP-based analysis of the cipher, where
we incorporated exact probabilities rather than just the number of active
S-boxes into the model. Through the MILP analysis, we were able to
find differential and linear distinguishers for up to 5 rounds of FUTURE,
extending the known distinguishers of the cipher by one round.

Keywords: FUTURE · MILP · differential cryptanalysis · linear
cryptanalysis

1 Introduction

FUTURE is a new 64-bit lightweight block cipher, recently proposed by Gupta
et al. [5]. It is a 10-round, AES-like cipher that operates on 4-bit nibbles rather
than bytes. FUTURE is interesting as being one of the few lightweight cipher
designs where the diffusion layer is based on an MDS matrix. It is also remarkable
for the lightweight construction of its MDS matrix and the S-box: Designers of
FUTURE obtained the MDS matrix to have a minimal cost by multiplying
four sparse matrices, and obtained the S-box by the composition of four low-
hardware-cost S-boxes. The authors benchmarked hardware implementations on
FPGA and ASIC and compared FUTURE to several well-known lightweight
ciphers in the literature with respect to size, critical path, and throughput.
FUTURE ended up giving the best results among the compared algorithms in
many respects [5].

Mixed integer linear programming (MILP) is a well-known optimization
method to find the optimal solution of a linear objective function, subject to

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Bella et al. (Eds.): SecITC 2022, LNCS 13809, pp. 153–167, 2023.
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a given set of linear constraints. It has found widespread application in secu-
rity analysis of ciphers and hash functions over the past decade [8,12,14]. By
encoding the internal structure of a cipher as a set of linear constraints, and
the characteristic to be found as the objective function, a search for optimal
characteristics can be carried out using general tools, such as the Gurobi opti-
mizer [6]. MILP analyses have been particularly effective for lightweight ciphers
where the models are more tractable, and the exact optimal characteristics can
be found [8–10,12–14]. For general, non-lightweight ciphers such as AES, MILP
has been used to prove differential and linear lower bounds [8,12].

A preliminary MILP analysis of FUTURE was given in the design paper [5].
The authors solved MILP models to find the minimum number of active S-
boxes in a characteristic. They concluded that 4-round differential and linear
distinguishers were possible, but five or more rounds of FUTURE should be safe
from such distinguishers.

In this paper, we conduct a more detailed MILP analysis of FUTURE, where
we incorporate the exact differential and linear probabilities of the cipher into
the MILP model. We work with exact probabilities rather than the number of
active S-boxes, with an increased complexity of the model. After applying several
techniques to increase the effectiveness of the MILP search, our analysis obtains
5-round differential and linear distinguishers for the cipher.

The organization of the rest of this paper is as follows: Application of MILP
techniques in cryptography is surveyed in Sect. 2. FUTURE is described in
Sect. 3. The construction details of our MILP models are described in Sect. 4.
The MILP models for differential and linear cryptanalysis are given in Sect. 5
and Sect. 6, respectively. The paper is concluded in Sect. 7.

2 Related Work

Mouha et al. [8] proposed using MILP techniques to find lower bounds on the
number of active S-boxes in cryptanalysis of word-oriented ciphers. They inves-
tigated linear and differential cryptanalysis of the AES and Enocoro ciphers by
this technique and obtained the desired lower bounds.

Sun et al. [12] improved Mouha et al.’s technique to find the exact min-
imum number of active S-boxes for bit-oriented block ciphers. They modeled
PRESENT-80 by MILP for single-key and related-key differential analysis.

Sun et al. [14] gave the first MILP-based analysis that used H-representation
and logical condition modeling to obtain an exact representation of an S-box.
They analyzed the ciphers SIMON, Serpent, LBlock, and DESL, and obtained
some significant results of differential cryptanalysis and related key attacks on
these ciphers.

Sun et al. [13] improved this technique further to incorporate the probability
(or, bias) information into the MILP model and to find the optimal characteristic
with the highest probability (or, bias). In this work, the probability information
of possible linear and differential patterns was encoded within an S-box repre-
sentation. They studied SIMON48, LBlock, DESL, and PRESENT-128 ciphers
and improved results for linear, differential, and related-key cryptanalysis.
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Sasaki and Todo [9] further improved the technique of [13] by adding a MILP-
based optimization phase to the algorithm to obtain a minimized representation
of S-boxes with smallest number of constraints.

MILP modeling has more recently been applied to different cryptanalysis
methods, such as the cube attack [4], and impossible differential cryptanalysis [9].

Different types of ciphers, besides bit-oriented, lightweight ciphers, have also
been analyzed by MILP: Sun et al. [10] applied the technique to analyze ARX-
based ciphers. Sun et al. [11] showed how to model differential propagation over
an MDS matrix multiplication by MILP. Abdelkhalek et al. [1] and Boura and
Coggia [2] modeled ciphers with 8 × 8 S-boxes by MILP.

Efficiency improvements on various components of MILP models have also
been studied in the literature. Fu et al. [3] provided a way to reduce the number
of constraints needed to model an XOR operation. Yin et al. [16] and Ilter
and Selcuk [7] proposed more efficient ways to model multiple combined XOR
operations.

3 FUTURE

FUTURE is an AES-like block cipher, where the operations are carried out on
nibbles rather than bytes. It has a 10-round lightweight structure, designed for
low latency and low hardware cost. The S-box and the MDS matrix are designed
especially to be efficient in hardware. The FUTURE block size is 64 bits, and
the key length is 128 bits.

The Round Function. The basic round operations of FUTURE are SubCell,
MixColumn, ShiftRow, and AddRoundKey. The MixColumn operation is omit-
ted in the final round. The state of the cipher is denoted by a 4 × 4 matrix X
where each entry is a nibble; i.e., si ∈ {0, 1}4 for 0 ≤ i ≤ 15:

X =

⎛
⎜⎜⎝

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎞
⎟⎟⎠

The round function is presented in Fig. 1.

Fig. 1. Round function of FUTURE

SubCell. The 4 × 4 S-box of FUTURE which is a composition of 4 different
lightweight S-boxes is given in Table 1.
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Table 1. S-box of FUTURE

Input 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output 1 3 0 2 7 E 4 D 9 A C 6 F 5 8 B

MixColumn. The finite field multiplication of FUTURE is done over GF (24) =
GF (2)/〈x4 +x+1〉. The state matrix entries are considered elements in GF (24)
and multiplied with the MDS matrix M , as X ← MX:

M =

⎛
⎜⎜⎝

8 9 1 8
3 2 9 9
2 3 8 9
9 9 8 1

⎞
⎟⎟⎠

ShiftRow. The ith row of the state matrix (0 ≤ i ≤ 3) is shifted to the right,
depending on the value of i:

⎛
⎜⎜⎝

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⎞
⎟⎟⎠ ←

⎛
⎜⎜⎝

s0 s4 s8 s12
s13 s1 s5 s9
s10 s14 s2 s6
s7 s11 s15 s3

⎞
⎟⎟⎠

AddRoundKey. The 64-bit round key is XORed to the state of the cipher.

4 Construction of MILP Models

The MILP approach has been widely used in cryptanalysis since Mouha et al. [8]
introduced the technique. The main idea is to find the optimal solution of an
objective function (e.g., the minimum number of active S-boxes or the maxi-
mum differential probability) with respect to certain constraints, according to
the MILP model of a given cipher. The technique was first used to find the min-
imum number of active S-boxes in a characteristic [8,12]. It was later refined by
Sun et al. [14] to find the optimal characteristic with the maximum differential
probability or the maximum linear bias. In this paper, our objective function will
be to maximize the differential probability (or linear bias) of a characteristic.

We need to model cipher components as constraints to construct a MILP
model to analyze differential and linear characteristics. Therefore, the S-box,
permutation, and matrix multiplication over a finite field are represented by
linear inequalities with binary variables. This section provides an overview of
the MILP modeling of block cipher components, such as the nibble-oriented
S-box, MDS matrix multiplication, and permutation.

The number of variables and constraints in a MILP model affects its solution
time dramatically. Hence, efficient cipher component modeling is essential to
obtain a shorter solution time. With this aim in mind, we modeled the XOR
operations by generalizing the idea of Fu et al. [3].
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Gurobi optimizer [6] v.9.5.2 is used to solve the MILP models, and Sage-
Math [15] is used to calculate the H-representations. The experiments are carried
out on a 2.3 GHz Quad-Core Intel Core i5 processor with 8 GB RAM.

4.1 S-Box

Lower bounds for the minimum number of active S-boxes can be obtained via
using the branch number of S-boxes, as Mouha et al. [8] showed. Sun et al. [14]
provided a method in which S-box is modeled to find exact solutions.

Let a 4 × 4 bijective S-box have the input (x0, x1, x2, x3) and the output
(y0, y1, y2, y3). The following inequalities of binary variables can be used to rep-
resent the activity of this S-box and A = 1 means that the S-box is active.

x0 − A ≤ 0
x1 − A ≤ 0
x2 − A ≤ 0
x3 − A ≤ 0

x0 + x1 + x2 + x3 − A ≥ 0
4(x0 + x1 + x2 + x3) − (y0 + y1 + y2 + y3) ≥ 0
4(y0 + y1 + y2 + y3) − (x0 + x1 + x2 + x3) ≥ 0

Furthermore, if exact probability bounds are sought, the Difference Distribu-
tion Table (DDT) or the Linear Approximation Table (LAT) should be included
in the model. Sun et al. [14] proposed a greedy approach to model the DDT
(LAT), which was later improved by Sasaki and Todo [9]. Our model is based
on Sasaki and Todo’s approach:

Suppose we want to model a 4× 4 S-box with the probability of a difference,

p = Pr[(x0, x1, x2, x3) → (y0, y1, y2, y3)],

and there are three distinct probabilities in its DDT such as 2−3, 2−2, and 1. The
probability information is encoded in two bits as (π0, π1), denoting the binary
encoding of − log2 p as:

(π0, π1) = (0, 0) =⇒ p = 1

(π0, π1) = (0, 1) =⇒ p = 2−2

(π0, π1) = (1, 1) =⇒ p = 2−3

Then, we encode input, output, and probability information in a binary vec-
tor, defined as:

E := (x0, x1, x2, x3, y0, y1, y2, y3, π0, π1).

H-representation is a method for representing input vectors as a set of lin-
ear inequalities, which is an intersection of halfspaces. We calculate the H-
representation of E , denoted by H(E), and obtain a set of linear inequalities.



158 M. B. İlter and A. A. Selçuk

Via the H-representation, we obtain a list of inequalities such as:

(γ0,0, γ0,1, · · · , γ0,9) · E + γ0,10 ≤ 0
...

(γt−1,0, γt−1,1, · · · , γt−1,9) · E + γt−1,10 ≤ 0

where γi,j are integer coefficients, 0 ≤ j ≤ 10 and 0 ≤ i < t, where t denotes the
total number of inequalities computed in H-representation.

Some of the inequalities calculated in H-representation may possibly be
redundant. In order to eliminate the redundant inequalities, a MILP instance is
built and solved. The solution provides a minimized set of constraints that repre-
sents the S-box with its DDT (or, LAT). Further details of the H-representation
construction can be found in [14] and [9].

4.2 Permutation

Let the input of the permutation Π be ai and the output of the permutation be
bi for 0 ≤ i < n, where n is the block size of the permutation. In order to model
this operation, binary variables bi are defined to represent the output. Then,
equations representing the permutation operation, bi = Π(ai) for 0 ≤ i < n, are
added to the MILP model as constraints.

4.3 MDS Matrix Multiplication

Mouha et al. [8] modeled matrix multiplication with the branch number of the
linear transformation. The solution obtained by this method yields lower bounds
on the number of active S-boxes.

MDS matrix multiplication can be carried out by shift and XOR operations
over the base field. Sun et al. [11] provided a method to model matrix multipli-
cation with binary XOR operation. This representation can be used to model
differential propagation. In order to model linear propagation, we need a different
representation which is discussed in Sect. 6.1.

4.4 XOR Operation

There are several different ways to model a binary XOR operation by MILP in
the literature. Mouha et al. [8] provided a method that requires 4 constraints and
3 variables to model a 1-XOR operation, i.e., c = a⊕ b, where a, b, c, d1 ∈ {0, 1},
as follows:

a + b + c ≥ 2d1

d1 ≥ a

d1 ≥ b

d1 ≥ c
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The operation d = a⊕b⊕c, where a, b, c, d ∈ {0, 1}, is called a 2-XOR operation.
It can be modeled via Mouha’s approach with 8 constraints and 5 variables.
Alternatively, Yin et al. [16] provided a method to model 2-XOR operation,
which requires the following 8 constraints and 4 variables:

a + b − c + d ≥ 0
a + b + c − d ≥ 0

−a + b + c + d ≥ 0
a − b + c + d ≥ 0

−a − b + c − d ≥ −2
a − b − c − d ≥ −2

−a + b − c − d ≥ −2
−a − b − c + d ≥ −2

Dummy variables are not used in this approach.
Fu et al. [3] implemented a method to model a 1-XOR operation with a single

constraint as follows:
a + b + c = 2d1

where a, b, c, d1 ∈ {0, 1}. In this work, we extend this approach to the n-XOR
case. The timing comparison of the proposed n-XOR method and the method
provided in [7] are given in Appendix.

In Table 2, constraints are given to model XOR operations up to 5-XOR.

Table 2. Constraints of n-XOR

n-XOR XOR Constraint

1 a ⊕ b = c a + b + c = 2d1

2 a ⊕ b ⊕ c = d a + b + c + d = 4d1 − 2d2

3 a ⊕ b ⊕ c ⊕ d = e a + b + c + d + e = 4d1 − 2d2

4 a ⊕ b ⊕ c ⊕ d ⊕ e = f a + b + c + d + e + f = 6d1 − 4d2 − 2d3

5 a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f = g a + b + c + d + e + f + g = 6d1 − 4d2 − 2d3

6-XOR (a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g = h) can be modeled via the following
equality:

a + b + c + d + e + f + g + h = 8d1 − 6d2 − 4d3 − 2d4.

Also, 7-XOR (a ⊕ b ⊕ c ⊕ d ⊕ e ⊕ f ⊕ g ⊕ h = i) can be modeled as:

a + b + c + d + e + f + g + h + i = 8d1 − 6d2 − 4d3 − 2d4.
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In general, for an even value of n, the n-XOR operation a0⊕a1⊕· · ·⊕an = b
is modeled as,

a0 + a1 + · · · + an + b = (n + 2)d1 − (
nd2 + (n − 2)d3 · · · + 2d(n/2)+1

)
,

and for an odd value of n:

a0 + a1 + · · · + an + b = (n + 1)d1 − (
(n − 1)d2 + (n − 3)d3 + · · · + 2d(n−1/2)+1

)
.

4.5 Construction of the Objective Function

The objective function of a MILP model can be constructed either to minimize
the number of active S-boxes or to maximize the probability of a characteristic.
Models that involve probabilities are preferred whenever possible because they
yield the exact best characteristic; but they also tend to be larger and much
harder to solve. The MILP analysis in the original FUTURE paper [5] focused
on the number of active S-boxes. We chose to work with the exact probabilities
instead.

The objective function in differential cryptanalysis is to maximize the charac-
teristic’s overall probability

∏
i pi, where pi denotes the individual round proba-

bility. Therefore, the objective function for the differential MILP model becomes
to minimize

∑
i(πi,0 + 2πi,1), for (πi,0, πi,1) denoting − log2 pi in binary.

The objective function in linear cryptanalysis is to maximize the approxima-
tion’s overall bias

∏
i bi, where bi denotes the individual round biases (in absolute

value). For (πi,0, πi,1) denoting − log2 bi in binary, the objective function for the
linear MILP model is to minimize

∑
i(πi,0 + 2πi,1).

5 Differential Cryptanalysis of FUTURE

In this section, we describe the details of the MILP model constructed for dif-
ferential cryptanalysis of FUTURE and how it is implemented in practice.1

5.1 Differential MILP Model Construction

The round function elements of FUTURE, namely the SubCell, MixColumn,
and ShiftRow operations, are modeled for differential cryptanalysis using the
techniques described below:

SubCell. The DDT is calculated for the S-box of FUTURE, which contains
three non-zero values; 2, 4, and 16. As described in Sect. 4.1, we encoded
each input, output, and probability information as a vector, and computed the
H-representation using SAGE. The solution returned 333 inequalities includ-
ing redundant ones. We utilized Sasaki and Todo’s approach and obtained 18
inequalities to represent the S-box’s differential behavior.
1 https://github.com/murat-ilter/future-bc.

https://github.com/murat-ilter/future-bc
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MixColumn. In order to represent the MDS matrix, the primitive matrix rep-
resentation provided by [10] is utilized for differential propagation. FUTURE’s
MDS matrix M contains the field elements 1, 2, 3, 8, 9 from GF (24). Field
multiplication by these scalars in GF (24) is a linear transformation over GF (2),
represented via the following matrices:

1 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ 2 =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

⎞
⎟⎟⎠ 3 =

⎛
⎜⎜⎝

1 1 0 0
0 1 1 0
1 0 1 1
1 0 0 1

⎞
⎟⎟⎠ 8 =

⎛
⎜⎜⎝

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 0

⎞
⎟⎟⎠ 9 =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1

⎞
⎟⎟⎠

Let MPR denote the 16×16 binary matrix which is the primitive representation
of M over GF (2), obtained by replacing the field elements in M by the 4 × 4
binary matrices given above. For the state matrices Y and Z where Z = MY ,
let YB and ZB denote the 16 × 4 binary matrices, where each column vector is
obtained from the corresponding column vector of Y and Z by replacing each
field element from GF (24) by its binary representation over GF (2). Hence, the
MDS matrix multiplication over these binary vectors becomes,

ZB = MPRYB.

The 1’s in each row of MPR indicate the elements to be XORed when a
column vector is multiplied by MPR.

To model the differential propagation over each MDS matrix multiplication,
we need 64 new constraints and 204 new binary di dummy variables.

ShiftRow. The binary variables resulting from the MixColumn operation are
permuted through the ShiftRow operation. Then, 64 new binary variables are
introduced and assigned to these results.

AddRoundKey. Since we model a single-key differential cryptanalysis, there
is no need to model the XOR operation with the round key.

5.2 Search Strategy

The number of variables and constraints used in the MILP model increases as
more rounds are added to the model, and the solution time increases exponen-
tially as a result. Zhou et al. [17], in their MILP analysis of the GIFT cipher,
added extra constraints to the model, to limit the number of active S-boxes in
each round and hence to restrict the solution space. We adopted a similar app-
roach to obtain differential characteristics of FUTURE. For instance, the 4-round
differential characteristic is obtained by adding the following four constraints:
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A0
0 + A0

1 + · · · A0
15 = 4

A1
0 + A1

1 + · · · A1
15 = 1

A2
0 + A2

1 + · · · A2
15 = 4

A3
0 + A3

1 + · · · A3
15 = 16

where Ai
j stands for the jth S-box in the ith round. These extra constraints are

used to determine the number of active S-boxes in each round, such as 4-1-4-16
in this example search strategy.

In Table 3, the best differential probabilities are given with respect to the
search strategies we tried.

5.3 Results

The differential characteristic probabilities up to five rounds are given in Table 3.

Table 3. The search strategies tried and the maximum differential probabilities
obtained for FUTURE up to 5 rounds

# of rounds Extra Constraint Max. Diff. Prob. # of Var. # of Cons.

2 1-4 2−10 620 930

3 4-1-4 2−18 1064 1458

4 4-1-4-16 2−51 1508 1986

1-4-16-4 2−55

16-4-1-4 2−50

4-16-4-1 2−53

5 4-1-4-16-4 2−63 1952 2518

1-4-16-4-1 2−58

2-16-4-1-2 2−61

2-4-16-4-1 2−58

1-4-16-4-2 2−61

A 5-round characteristic with 2−58 probability has been found through our
searches. Remarkably, one of these characteristics involves 27 active S-boxes,
which is not the minimum number of active S-boxes for 5 rounds.

Designers of FUTURE provided a 4-round differential characteristic with a
probability of 2−62. We were able to obtain the probability 2−58 for a 5-round
characteristic. The details of the 5-round characteristic is given in Table 4.

6 Linear Cryptanalysis of FUTURE

In this section, we describe the details of the MILP model constructed for lin-
ear cryptanalysis of FUTURE and how it is implemented in practice. We focus
on how a linear approximation of the S-box can be transformed into a linear
approximation of the round function, propagating through the MDS matrix mul-
tiplication.
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Table 4. Differential characteristic of FUTURE for 5 round

Round Difference Diff. Prob.

Input 0704 0000 0000 0000 1

1 4000 0700 0050 0007 2−4

2 6161 1C16 4482 3262 2−13

3 0000 0000 0000 6122 2−48

4 0000 0000 0002 0000 2−56

5 0090 0001 8000 0900 2−58

6.1 Linear MILP Model Construction

SubCell. We calculated the LAT for FUTURE’s S-box, and, as described in
Sect. 4.1, we encoded each input, output, and bias (in absolute value) information
as a vector. Then we computed the H-representation. The solution returned 505
inequalities including redundant ones. We utilized Sasaki and Todo’s approach
and obtained 18 inequalities to represent the S-box’s linear behavior.

MixColumn. Let MPR be the 16 × 16 binary matrix which is the primitive
representation of M over GF (2), as explained in Sect. 5.1, and let YB and ZB
be the 16 × 4 binary matrices, where each column vector is obtained from the
corresponding column vector of Y and Z by replacing each field element from
GF (24) by its binary representation over GF (2). Hence, ZB = MPRYB. We
can transform a linear mask on each column of YB into a linear mask of the
corresponding column of ZB along the following lines:

Let y and z be column vectors such that z = MPR y, and βT be the 16-bit
row vector (linear mask) indicating the active bits of y in a linear approximation.
Then, the corresponding linear mask γT on z can be calculated as follows:

z = MPR y

M−1
PR z = y

βTM−1
PR z = βT y

Hence, γT z = βT y for,
γT = βTM−1

PR.

We need 64 new constraints and 200 new binary di dummy variables are
needed to model linear propagation over each MDS matrix multiplication,

ShiftRow. The binary variables resulting from the MixColumn operation are
permuted through the ShiftRow operation. 64 new binary variables are defined
and assigned to these results as introduced in Sect. 4.2.
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AddRoundKey. There is no need to model the XOR operation with the round
key since linear cryptanalysis is conducted.

6.2 Search Strategy

As explained in Sect. 5.2, the number of variables and constraints used in the
MILP model increases as more rounds are added to the model, and the solution
time increases exponentially as a result. To tackle this problem and to keep the
MILP search within practical limits, we add extra constraints that indicate the
number of active S-boxes in each round. The search strategies we used in our
search of linear approximations of FUTURE are listed in Table 5.

6.3 Results

The linear approximation biases (in absolute values) up to five rounds are given
in Table 5. A 5-round approximation with a bias of 2−31 has been found through
our searches. The details of the 5-round characteristic is given in Table 6.

Table 5. The search strategies tried and the maximum linear biases obtained for
FUTURE up to 5 rounds

# of rounds Extra Constraint Max. Linear Bias # of Var. # of Cons.

2 1-4 2−6 616 930

3 4-1-4 2−10 1056 1458

4 16-4-1-4 2−26 1496 1986

5 1-4-16-4-1 2−32 1936 2518

1-4-16-4-2 2−31

2-4-16-4-1 2−32

Table 6. Linear characteristic of FUTURE for 5-round

Round Input Mask Linear Bias

Input 0000 0000 0090 0000 1

1 0080 0001 1000 0900 2−2

2 1EF4 79B4 338A FF41 2−6

3 0000 0000 8D73 0000 2−25

4 0000 0000 D000 0F00 2−29

5 0150 00E7 D007 8500 2−31
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7 Conclusion

FUTURE is a new, promising lightweight cipher designed for low latency and
low hardware cost, based on an AES-like structure. In this paper, we conducted
a MILP-based analysis of the cipher to find single-key differential and linear
distinguishers. We incorporated the DDT and LAT probabilities into the model
and obtained some previously unknown characteristics up to five rounds.

As an additional contribution, we showed an efficient way to model an n-XOR
operation with one constraint. The proposed method can be used to improve the
MILP models of various cryptanalysis methods in the literature.

The 5-round distinguishers we discovered improve the known distinguishers
of FUTURE by one round. Nevertheless, they cannot be extended to the full
version of the cipher, and hence do not pose an immediate threat to its security.
FUTURE still enjoys a reasonable security margin.

Appendix

We compare the solution times of differential and linear characteristic of
FUTURE modeled with the n-XOR method and the method proposed by Ilter
and Selcuk [7] in Table 7 and Table 8.

Table 7. Timing comparison of XOR methods for differential characteristics of
FUTURE

Round Ext. Cons. [7] This paper

# of Var. # of Cons. Time (s.) # of Var. # of Cons. Time (s.)

2 – 416 4961 4 620 929 2

3 4-1-4 656 10545 30 1064 1457 2

4 16-4-1-4 896 15621 445 1508 1986 193

4 4-1-4-16 896 15621 478 1508 1986 54

Table 8. Timing comparison of XOR methods for linear characteristics of FUTURE

Round Ext. Cons. [7] This paper

# of Var. # of Cons. Time (s.) # of Var. # of Cons. Time (s.)

2 – 416 5217 61 616 929 11

3 4-1-4 656 10036 10 1056 1460 1

4 16-4-1-4 896 14853 579 1496 1989 13

4 4-1-4-16 896 14853 260 1496 1989 27

As shown in Table 7 and in Table 8, the proposed n-XOR method uses fewer
constraints to model xor operation, leading to shortening solution time.
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Abstract. Attribute-Based Encryption is widely recognized as a leap
forward in the field of public key encryption. It allows to enforce an
access control on encrypted data. Decryption time in ABE schemes can
be long depending on the number of attributes and pairing operations.
This drawback hinders their adoption on a broader scale.

In this paper, we propose a non-monotone CP-ABE scheme that has
no restrictions on the size of attribute sets and policies, allows fast
decryption and is adaptively secure under the CBDH-3 assumption. To
achieve this, we approached the problem from a new angle, namely using
a set membership relation for access structure. We have implemented our
scheme using the Java Pairing-Based Cryptography Library (JPBC) and
the source code is available on GitHub.

Keywords: attribute-based encryption · CBDH-3 assumption ·
non-monotone · random oracle model

1 Introduction

Traditionally, access control was applied to protect unencrypted data stored on
servers. But the problem with this system is that if a server is compromised,
the attacker gains direct access to unencrypted data. A solution to this problem
appeared in 2005 on the proposal of Amit Sahai and Brent Waters [33] called
attribute-based encryption. It allows to enforce fine-grained and flexible access
controls over encrypted data.

Attribute-Based Encryption (ABE) is widely recognized as a leap forward in
the field of public key encryption. It has numerous applications, ranging from
cloud services [25], internet of things [3], video streaming [30], to healthcare
systems [15].

ABE offers the possibility to encrypt for multiple recipients at once. Those
who wanted to access the plaintext from the ciphertext simply had to have the
necessary attributes to satisfy the ciphertext’s built-in access control. ABE comes
in two flavors: Key-Policy Attribute-Based Encryption (KP-ABE) in which the
access policy is embedded in the recipients’ secret keys and Ciphertext-Policy
Attribute-Based Encryption (CP-ABE) in which the access policy is embedded
in the ciphertext. However, the design of such schemes faces many practical
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Bella et al. (Eds.): SecITC 2022, LNCS 13809, pp. 168–183, 2023.
https://doi.org/10.1007/978-3-031-32636-3_10
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difficulties that hinder their wide adoption. A practical ABE scheme must have
the following essential properties: [2,34]:

1. no restriction on the size of policies and attribute sets (unboundedness)
2. arbitrary string as an attribute (large universe);
3. based on the fast Type-3 pairings;
4. small number of pairings for decryption;
5. adaptive security under standard assumptions.

Many proposals have been made but few [2,34] satisfy the properties mentioned
above. We believe that a practical ABE scheme of simple structure and more
efficient can be constructed.

In this paper, we propose a non-monotonic ciphertext-policy attribute-based
encryption denoted Easy-ABE. Our scheme not only offers constant-size secret
keys, but also adds the above five properties. Compared to FAME [2], the
most efficient scheme in the literature (to our knowledge), our scheme performs
much better. We have also implemented our scheme using the Java Pairing-
Based Cryptography Library (JPBC) [13] and the source code is available on
GitHub [22].

1.1 Related Work

Attribute-Based Encryption is a natural extension of Identity Based Encryp-
tion [7,8]. It comes in two flavors: Key-Policy ABE and Ciphertext-Policy ABE.
The first KP-ABE scheme was presented by Goyal et al. [19]. Ciphertext-Policy
ABE was first proposed by Bethencourt et al. [6] who prove its security under
the Decisional Bilinear Diffie-Hellman (DBDH) assumption. It is followed by the
work of Cheung et al. [12] in which access structures are AND gates on positive
and negative attributes. They improve the security of their scheme by applying
the Canetti-Halevi-Katz technique to obtain a chosen ciphertext attack (CCA)
security.

Other ABE schemes have emerged focusing on constant-size ciphertexts
[4,11,14,16,21,35–37]. In [4], the private key size is linear in the number of
attributes of the user. To address the efficiency problem that plagues many
schemes due to high computational cost [35] also provides constant computa-
tional cost useful when computational and bandwidth issues are major concerns.
[20,23,27] have designed constant-size secret key schemes. Besides the constant-
size secret key, [27] provides low computational and storage overhead with an
expressive AND-gate access structure.

Some schemes take scalability into account. They are called unbounded
schemes. Unboundedness is an essential property for an ABE scheme because
it allows adding new attributes without having to redeploy the scheme.
Lewko and Waters [26] were the first to present such a scheme followed by
[2,10,15,28,32,34]. In [15] unboundedness is obtained by limiting the attribute
elements in the ciphertexts to only those associated with the attribute group
keys of the ciphertext attributes.
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Most of the schemes in the literature are monotonous since it is natural to
admit that a user having more attributes than required to access an information
must have access to that information. But this could give rise to conflict of
interest. Non-monotonic ABE schemes have also been proposed [15,28,29,34].
But some of these proposals [28,29] are inefficient when it comes to decryption
and storage.

Many ABE schemes [12,15,16,19,20,27,29,32,35,37] offering various attrac-
tive properties (such as constant-size ciphertexts, constant-size secret key, scala-
bility, unboundedness) have been shown to be secure only in the selective security
model which is weaker than the adaptive security enjoyed by our scheme. The
problem with selective security is that for the deployment of the scheme one
adversary have to declare the access structure he wants to attack. Which is very
unlikely to happen in reality.

Building efficient schemes has been the goal of [2,34]. Their schemes are
based on the fast Type-3 pairings, have simultaneously unboundedness, large
universe, fast decryption and are adaptively secure under standard assumptions.
However, [2] is more efficient than [34] but is less expressive since it does not
support negation and multi-use of attributes like [34].

1.2 Organization

This paper is structured as follows: after the introduction, Sect. 2 presents the
notations, terminologies and tools necessary for the formal description of our
proposal in Sect. 3. The proof of security of our scheme is done in Sect. 4. In
Sect. 5, we compare the performance of Easy-ABE to other schemes available in
the literature. Section 6 concludes this work.

2 Preliminaries

In this section, we present the notations, terminologies and tools necessary for
the presentation of Easy-ABE.

2.1 Access Structures

We denote by U = {A1, A2, · · · , Al} the universe of attributes where Ai,i=1,..,l

are attributes. In our scheme, a set of user attributes S ⊆ U is mapped to an
|U|-bit string ω = bl · · · b1 where l = |U| and

bi =
{

0 if Ai /∈ S
1 otherwise

In the rest of the paper, we call ω a user attribute string. For example, if S =
{A2, A4, A5}, the user attribute string ω will be 0 · · · 011010 ∈ {0, 1}l.

To generate the user’s secret key, ω will be taken as a binary number in Z
∗
p

and then mapped to a group element. Representing ω in reverse order (of the
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indexes) makes our schema scalable since by expanding the universe of attributes
(addition of new attributes) the keys generated before the expansion remain
valid and no re-encryption of data is needed. For example, if U expands to
{A1, A2, · · · , Al, · · · , An}, the user attribute set S = {A2, A4, A5} will be rep-
resented by 0 · · · 011010 ∈ {0, 1}n and will remain unchanged when considered
as a binary number. This representation of the set of user attributes guarantees
unboundedness and large universe (since any arbitrary string can be used as an
attribute) to our scheme.

Definition 1. (Access Structure). We say that an access structure A ⊆ {0, 1}n

is the set of authorized user attribute strings. That is a user attribute string ω
is authorized if and only if ω ∈ A.

From our definition of the access structure, it is clear that our scheme is non-
monotonic since a monotonic access structure is defined as follows:

Definition 2. (Monotonic Access Structure [2]). If U denotes the universe of
attributes, then an access structure A is a collection of non-empty subsets of U ,
i.e., A ∈ 2U\∅. It is called monotone if for every B,C ⊆ U such that B ⊆ C,B ∈
A ⇒ C ∈ A.

Although it is non-monotonic, Easy-ABE becomes monotonic if it is accepted for
a user to query for a secret key associated to a subset of her/his set of attributes.

The access structure can also be defined without the use of a universe of
attributes by considering directly the set of binary strings representing autho-
rized users identities. For example, informations on citizen id card can be hashed
to serve as user attribute string.

2.2 Ciphertext-Policy ABE

A Ciphertext-Policy Attribute-Based Encryption consists of four algorithms
(adapted from [6]):

• Setup(λ): The algorithm takes a security parameter λ and outputs the system
parameters params, a master public key mpk and a master secret key msk.

• Encrypt(mpk,A,m): The algorithm takes the master public key mpk, a set of
authorized user attribute strings A and a message m then outputs a ciphertext
ct.

• KeyGen(mpk,msk, ω): The algorithm takes the master public key mpk, the
master secret key msk and a user attribute string ω then outputs a secret key
sk.

• Decrypt(ct, sk): The algorithm takes a ciphertext ct and a secret key sk then
outputs the plaintext m or ⊥.
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2.3 Security Model

In this paper, we are interested in indistinguishability under chosen plaintext
attack (IND-CPA) modelled by the following IND-CPA game between a chal-
lenger C and an adversary A:

• Setup. C runs the Setup algorithm of a CP-ABE scheme denoted Π with the
security parameter λ as input and gives params and mpk to A.

• Phase 1. A can make repeated (at will) secret key queries for user attribute
strings ω and receives from C their corresponding secret keys.

• Challenge. A submits a set of user attribute strings A and two messages
m0,m1 of the same length. One restriction should be noted: the intersection
of A and the set of user attribute strings used for secret key queries must be
empty. C randomly selects b ∈ {0, 1}, encrypts the message mb and sends the
result to the A.

• Phase 2. Similar to phase 1 with the restriction that the intersection of A
and the set of user attribute strings used for secret key queries must be empty.

• Guess. The adversary outputs a guess b′ of b. We say that A succeeded if
b′ = b.

The advantage of an adversary A in the IND-CPA game is defined as

AdvA
Π (λ) = Pr[b′ = b] − 1

2

Definition 3. A CP-ABE scheme Π is fully or adaptively IND-CPA secure if
for any polynomial time adversary A, AdvA

Π is negligible, that is to say AdvA
Π is

smaller than the inverse of any polynomial, for all large enough values of λ.

2.4 Bilinear Maps and Diffie-Hellman Assumption

Let G1, G2 and GT be three cyclic groups of prime order p. A bilinear pairing
is a map e : G1 × G2 → GT with the following properties [9,17]:

1. Bilinearity: e(g1g′
1, g2g

′
2) = e(g1, g2)e(g1, g′

2)e(g
′
1, g2)e(g

′
1, g

′
2) for all g1, g

′
1 ∈

G1, g2, g
′
2 ∈ G2.

2. Non-degeneracy: for any g1 ∈ G1, if e(g1, g2) = 1 for all g2 ∈ G2, then g1 = 1
(and similarly with G1, G2 reversed).

3. Computability: The map e is efficiently computable.

The pairing is asymmetric when G1 �= G2 and of Type-3 when no efficiently-
computable isomorphism is known from G2 to G1 (or from G1 to G2).

Definition 4. (Bilinear group generator [17]). For the purpose of simplicity we
say that an asymmetric bilinear group generator is an algorithm G that takes
as input a security parameter λ and outputs a description of three groups G1,
G2 and GT of prime order p. We assume that this description permits efficient
(polynomial-time in λ) group operations and random sampling in each group.
The algorithm also outputs an efficiently computable map e : G1 ×G2 → GT and
generators g1 and g2 for G1 and G2, respectively.
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Definition 5. (Computational Bilinear Diffie-Hellman Problem in Type-3
(CBDH-3) [9]). Given gα

1 , gβ
1 , gγ

1 ∈ G1 and gβ
2 , gγ

2 ∈ G2 for α, β, γ ∈R Z
∗
p,

the CBDH-3 problem is to compute the Type-3 pairing value e(g1, g2)αβγ . The
CBDH-3 assumption asserts that CBDH-3 problem is hard. That is to say for
all PPT adversaries A the advantage:

AdvA
CBDH-3(λ) = Pr

[
A

( pair-grp,

gα
1 , gβ

1 , gγ
1 ∈ G1,

gβ
2 , gγ

2 ∈ G2

)
= e(g1, g2)αβγ

∣∣∣∣pair-grp ← G(λ),
α, β, γ ∈R Z

∗
p

]

is negligible in λ, where pair-grp = (p,G1,G2,GT , g1, g2, e).

2.5 Some Cryptographic Primitives

In this section, we briefly present some cryptographic primitives used in our
scheme.

Symmetric Encryption Scheme. A symmetric encryption scheme (SYM) is
a pair of probabilistic polynomial-time algorithms (Enc, Dec) such that:

1. The encryption algorithm Enc takes as input a key k ∈ {0, 1}n (n is related
to a security parameter) and a plaintext message m ∈ {0, 1}∗, and returns a
ciphertext c ∈ {0, 1}∗.

2. The decryption algorithm Dec takes as input a key k and a ciphertext c, and
returns a message m.

It is required that for all k and m, Deck(Enck(m)) = m.
The symmetric encryption scheme is said to be secure in the sense of INDis-

tinguishability under Chosen-Plaintext Attacks (IND-CPA) if from the encryp-
tion of one of its two messages, the adversary cannot tell which one has been
encrypted even if it has knowledge of encryptions of many other messages of its
choice.

Message Authentication Codes. A message authentication code (MAC) is a
pair of probabilistic polynomial-time algorithms (Mac, Vrfy) such that:

1. The tag-generation algorithm Mac takes as input a key k ∈ {0, 1}n (n is
related to a security parameter) and a message m ∈ {0, 1}∗, and returns a
tag t.

2. The verification algorithm Vrfy takes as input a key k, a message m and a tag
t. It returns 1 indicating that t is valid, thus m is authentic and 0 indicating
that t is invalid, thus m is unauthentic.

It is required that for all k and m, Vrfyk(m,Mack(m)) = 1.
The message authentication code is said to satisfy Strong Unforgeability

under Chosen-Message Attacks (SUF-CMA) it is computationally infeasible for
the adversary to provide a new tag t for a message m even if it has knowledge
of many other tags for messages of its choice [5].
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Key Derivation Function. Formally, a key derivation function (KDF) is define
in [24] as an algorithm that takes as input four arguments: a value σ sampled
from a source of keying material, a value l indicating the length of the secret
key to return, and two additional arguments, a salt value r defined over a set
of possible salt values and a context variable c, both of which are optional, i.e.,
can be set to the null string or to a constant.

Informally, the key derivation function is said to be secure if its output distri-
bution is computationally indistinguishable from the uniform distribution over
{0, 1}l.

In our scheme, the source of keying material is an algebraic group.

2.6 Diffie-Hellman Integrated Encryption Scheme

Abdalla et al. [1] suggested a method for encrypting strings using the Diffie-
Hellman assumption. The method is called Diffie-Hellman Integrated Encryption
Scheme (DHIES) and is secure against chosen-ciphertext attack. The version
[18] we describe here uses a symmetric encryption scheme SYM = (Enc,Dec) a
message authentication code MAC = (Mac,Vrfy) and a key derivation function
KDF.

Let G be a finite cyclic group of order p generated by g. Let a ∈R Z
∗
p and

h = ga. The public key is (G, g, h) and the private key is a.

Encrypt(m, h): To encrypt m ∈ {0, 1}∗, do the following:

1. Choose a random k ∈ Z
∗
p and set c1 = gk

2. Set κ = KDF(hk, l1 + l2) and parse κ as κ1||κ2 where κ1 and κ2 are l1 and l2
bit binary strings respectively.

3. Set c2 = Encκ1(m) and c3 = Macκ2(c2).
4. Transmit the ciphertext (c1, c2, c3).

Decrypt(c1, c2, c3, a):

1. Compute κ = KDF(ca
1 , l1 + l2) and parse it as κ1||κ2 where κ1 and κ2 are l1

and l2 bit binary strings respectively.
2. Check whether Vrfyκ2

(c3,Macκ2(c2)) = 1 (if not then return ⊥ and halt).
3. Return m = Decκ1(c2).

3 Easy-ABE: Our CP-ABE Scheme

In this section, we give a formal description of the four algorithms (Setup,
Encrypt, KeyGen and Decrypt) that characterise Easy-ABE:

Setup(λ): To produce the system parameters params, the master public key
mpk and the master secret key msk, the algorithm performs the following steps:

(1) Run G(λ) to obtain (p,G1,G2,GT , g1, g2, e).
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(2) Choose two cryptographic hash functions:

H1 : {0, 1}n → G1 and H2 : GT → Z
∗
p

(3) Choose two random exponents α and β ∈ Z
∗
p.

(4) Since our scheme uses a Diffie-Hellman Integrated Encryption Scheme
(DHIES) [1], choose an IND-CPA secure symmetric encryption scheme
SYM = (Enc,Dec) a SUF-CMA secure message authentication code MAC =
(Mac,Vrfy) and a secure key derivation function KDF.

(5) Return the system parameters, the master public key and the master secret
key:

params = (H1,H2,SYM,MAC,KDF)

mpk = (g1, gα
1 , gβ

1 , g2, g
β
2 )

msk = (α, β)

KeyGen(mpk, msk, ω): To produce the user secret key for the user attribute
string ω, the algorithm performs the following steps:

(1) Compute hω = H1(ω) ∈ G1.
(2) Pick a random r ∈ Z

∗
p and return the secret key

sk = (gαβ
1 hr

ω, gr
2)

Encrypt(mpk, A, m): To encrypt a message m ∈ {0, 1}∗ under the set of autho-
rized user attribute strings A, the algorithm performs the following steps:

(1) Pick a random exponent s ∈ Z
∗
p.

(2) Compute hω = H1(ω) ∈ G1, ∀ω ∈ A.
(3) Compute σ = H2(e(gα

1 , gβ
2 )s)

(4) Perform a DHIES [1].
(a) Pick a random k ∈ Z

∗
p, set c1 = gβ

1 gk
1 .

(b) Compute κ = KDF(cσ
1 , l1 + l2) and split the binary string κ in two sub-

strings κ1 and κ2 of length l1 and l2 respectively (κ = κ1||κ2). l1 and l2
must match the key lengths of the underlying SYM and MAC schemes
respectively.

(c) Compute c2 = Encκ1(m) and c3 = Macκ2(c2).
(5) Return the ciphertext:

ct = (c1, c2, c3, gs
2, {hs

ω}ω∈A)

Decrypt(ct, sk): To decrypt the ciphertext ct with the user secret key sk, the
algorithm performs the following steps:

(1) Find hs
ω in ct with the same index ω as in gαβ

1 hr
ω in sk. If the search fails

then return ⊥ and halt.
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(2) Otherwise, let hs
ω be the returned value from the search then compute:

ρ = e(gαβ
1 hr

ω, gs
2)/e(hs

ω, gr
2)

= e(g1, g2)αβse(hω, g2)rs/e(hω, g2)sr

= e(g1, g2)αβs (1)

(3) Compute σ = H2(ρ).
(4) Recover m with DHIES [1].

(a) Compute κ = KDF(cσ
1 , l1 + l2) and split the binary string κ in two sub-

strings κ1 and κ2 of length l1 and l2 respectively (κ = κ1||κ2). l1 and l2
must match the key lengths of the underlying SYM and MAC schemes
respectively.

(b) Compute b = Vrfyκ2
(c3,Macκ2(c2)), if b = 0 then return ⊥ and halt.

(c) Otherwise, compute m = Decκ1(c2).
(5) Return the plaintext m.

4 Security Analysis

The security of Easy-ABE is based on the hardness of the Computational Bilinear
Diffie-Hellman Problem in Type-3 (CBDH-3). Assuming that the underlying
primitives (SYM, MAC and KDF) are secure, we show that the proposed scheme
has ciphertext indistinguishability against chosen plaintext attack (IND-CPA)
in the random oracle model.

Theorem 1. Let H1 and H2 be two random oracles. Let SYM be a symmet-
ric encryption scheme, let MAC be a message authentication code and let KDF
be a key derivation function. If there exists an IND-CPA adversary A that has
advantage ε(λ) against Easy-ABE by making q secret key queries and a chal-
lenge set of size m of user attribute strings, then there exists a simulator that
solves the CBDH-3 problem with advantage at least mε(λ)/q and a running time
O(time(A)).

Proof. The simulator is given a random instance of the CBDH-3 problem: g1,
ga
1 , gb

1, gc
1 ∈ G1 and g2, gb

2, gc
2 ∈ G2 for a, b and c randomly choosen from

Z
∗
p. The simulator must output the solution of the CBDH-3 problem that is

e(g1, g2)abc ∈ GT . The groups G1, G2 and GT are of prime order p, g1 and g2
are generators of G1 and G2 respectively.

Now we describe how the simulator uses adversary A to solve the CBDH-3
problem in the following IND-CPA security game:

Setup: The simulator runs the Setup algorithm of Easy-ABE and sends to A
the system parameters and the master public key:

params = (H1,H2,SYM,MAC,KDF)

mpk = (g1, ga
1 , gb

1, g2, g
b
2)
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Note that the two hash functions H1 and H2 are random oracles controlled by
the simulator as described below.

H1-queries: The adversary A can send an H1 query at any time. Therefore the
simulator maintains a list initially empty of the form (ω, t, hω) ∈ {0, 1}n ×Z

∗
p ×

G1. This list is denoted H1-list. When a query H1(ω) is received, the simulator
checks if the tuple (ω, t, hω) is in the list. If yes responds with H1(ω) = hω.
Otherwise it picks a random t ∈ Z

∗
p, computes hω = ga

1gt
1 ∈ G1, adds the tuple

(ω, t, hω) to the list and responds with H1(ω) = hω.

H2-queries: The adversary A can send an H2 query at any time. Therefore the
simulator maintains a list initially empty of the form (x, y) ∈ GT ×Z

∗
p. This list

is denoted H2-list. When a query H2(x) is received, the simulator checks if the
tuple (x, y) is in the list. If yes responds with H2(x) = y. Otherwise, it picks a
random y ∈ Z

∗
p, adds the tuple (x, y) to the list and responds with H2(x) = y.

Phase 1: The adversary A can send secret key queries for user attribute strings
{ωi}i=1 .. l of its choice. Therefore, the simulator maintains a list initially empty
of the form (ωi, ski = (μi, νi)). This list is denoted sk-list. When a secret key
query for ωi ∈ {0, 1}n is received, the simulator runs the H1-queries algorithm
to obtain the tuple (ωi, ti, hωi

) corresponding to ωi from the H1-list, picks a
random r ∈ Z

∗
p and responds to A with

ski =
(
(gb

1)
−tihr

ωi
, gr

2/gb
2

)
(2)

The simulator adds the tuple (ωi, ski) to the sk-list. One can see that ski is a
valid secret key because

(gb
1)

−tihr
ωi

= gab
1 g−ab

1 g−bti
1 (ga

1gti
1 )r = gab

1 (ga
1gti

1 )(r−b) = gab
1 h(r−b)

ωi
= gab

1 hr̃
ωi

which shows that (2) satisfies (gab
1 hr̃

ωi
, gr̃

2) matching the definition of a secret key
in the KeyGen algorithm of Easy-ABE.

Challenge: When the adversary feels ready for the challenge, it submits a set of
user attribute strings A and two messages m0,m1 ∈ {0, 1}∗ of the same length.
If there is an ω present at the same time in both A and sk-list then the simulator
terminates its interactions with A and outputs abort. Otherwise the simulator
selects mb,b∈{0,1}, picks two random c2, c3 ∈ {0, 1}∗ (with the appropriate lengths
related to the output-length of Enc and Mac), m random si ∈ Z

∗
p where m = |A|

the number of elements in A. The simulator responds to A with the ciphertext

ct = (gc
1, c2, c3, g

c
2, {(gc

1)
si}i=1 .. m) = (gc

1, c2, c3, g
c
2, {(gsi

1 )c}i=1 .. m)

Note that the tuple (gc
1, c2, c3) is indistinguishable from the encryption of a

random message m as in the real ciphertext since the underlying primitives
(SYM, MAC and KDF) are secure [31]. Also, note that from the H1-queries
algorithm each ω ∈ A is mapped to a random element hω ∈ G1 as the gsi

1 for
i = 1 .. m are random in G1. Therefore, ct is a valid ciphertext.
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One can see that with a secret key of the form ski = (gab
1 gsir

1 , gr
2) for i ∈

[1 .. m] the solution e(g1, g2)abc of the instance of the CBDH-3 problem given to
the simulator appears in the Challenge phase.

Phase 2: A sends more secret key queries for user attribute strings {ωi}i=l+1 .. q

of its choice as in Phase 1 with the restriction that none of the ωi is in the set
of user attribute strings A used in the Challenge phase.

Guess: Adversary A outputs its guess b′ ∈ {0, 1}. The simulator selects a ran-
dom tuple (ωj , skj = (μj , νj)) from the sk-list, computes ρ = e(μj , g

c
2)/e(gsic

1 , νj)
for an i ∈ [1 .. m] and outputs ρ as the solution to the given instance of CBDH-3
problem.

The fact that the secret keys and the ciphertext sent to A from queries are
valid justifies that the view of A when used by the simulator is distributed
identically to A’s view in a real attack against Easy-ABE.

The simulator outputs the correct solution when b′ = b and there is a tuple in
the H1-list of the form (∗, ∗, gsi)i∈[1 .. m] produced when the Phase 1 algorithm
is run. Let H1-sublist be the subset of H1-list containing tuples produced by
executions of the Phase 1 algorithm and let E be the event that the simulator’s
output is correct. Let B be the event that there exist an i ∈ [1 .. m] such that
the tuple (∗, ∗, gsi) appears in H1-sublist. We have:

Pr[b′ = b] = Pr[b′ = b | B] · Pr[B] + Pr[b′ = b | B] · Pr[B]

≤ Pr[b′ = b | B] + Pr[b′ = b | B] · Pr[B] (3)

If event B does not occur, then the view of A in its interactions with the
simulator is independent of e(g1, g2)abc. Therefore Pr[b′ = b | B] = 1/2 and (3)
becomes:

Pr[b′ = b] ≤ Pr[b′ = b | B] +
1
2
Pr[B] ≤ Pr[b′ = b | B] +

1
2

(4)

which leads to

Pr[b′ = b | B] ≥ Pr[b′ = b] − 1
2

= AdvA
Π (λ) = ε (5)

To complete the proof of the theorem, we have:

Pr[E ] = Pr[b′ = b ∧ B]
= Pr[b′ = b | B] · Pr[B]
= Pr[b′ = b | B] · Pr[∃i s.t. (∗, ∗, gsi) ∈ H1-sublist]

≥ ε ·
m∑

i=1

Pr[(∗, ∗, gsi) ∈ H1-sublist] = mε/q

��
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5 Theoretical Comparison

We compare Easy-ABE with FAME by Agrawal and Chase [2]. FAME satisfies
the five essential properties: based on the fast Type-3 pairings, adaptive security,
unboundedness, large universe, fast decryption.

In this comparison, we are interested in two metrics that are the compu-
tational cost and storage cost. For the computational cost, we compare the
number of multiplications, exponentiations, hash function calls and pairings in
key-generation, encryption and decryption algorithms, see Tables 1, 2 and 3. For
the storage cost we compare the number of group elements in secret keys and
ciphertexts, see Table 4.

Table 1. Comparison of the number of operations for Key generation. T denotes the
number of attributes.

Scheme Key generation

G1 G2

Mul Exp Hash Mul Exp Hash

Our 1 2 1 − 1 −
FAME [2] 8T + 9 9T + 9 6(T + 1) − 3 −

Table 2. Comparison of the number of operations for encryption. m is the size of access
structure A and n1, n2 are the dimensions of the monotone span programs (MSP).

Scheme Encryption

G1 G2

Mul Exp Hash Mul Exp Hash

Our 1 m + 2 m − 1 −
FAME [2] 12n1n2 + 6n1 6n1 6(n1 + n2) − 3 −

From these tables, it is clear that our scheme is more efficient than FAME [2]
in terms of computational cost and storage cost. FAME in turn works slightly
better than [34]. However, the latter is more expressive since it can deal with
natural negation and multi-use of attributes. It should be noted that in the
comparison we did not take into account the running time of the symmetric
encryption scheme, the running time of the message authentication code and
the complexity of the search algorithm used in the first step of our decryption
algorithm.
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Table 3. Comparison of the number of operations for decryption. I is the number of
attributes used in decryption.

Scheme Decryption

Multiplication Pairing

G1 G2 GT

Our – – 1 2

FAME [2] 6I + 3 – 6 6

Table 4. Comparison of the storage cost of secret key and ciphertext. m is the size of
access structure A, T denotes the number of attributes; and n1, n2 are the dimensions
of the monotone span programs (MSP).

Scheme Storage cost

Key size Ciphertext size

G1 G2 G1 G2

Our 1 1 m + 1 1

FAME [2] 3(T + 1) 3 3n1 3

6 Conclusion

In this paper, we have proposed a ciphertext-policy attribute-based encryption
scheme denoted Easy-ABE that is efficient in terms of computationnal and stor-
age cost. Our scheme is non-monotonic but can be monotonic when it is accepted
for a user to query for a secret key associated to a subset of her/his set of
attributes. Easy-ABE has the five essential properties required for a practical
ABE scheme: it is based on the fast Type-3 pairings, is adaptively secure under
CBDH-3 assumption, has unboundedness, large universe and fast decryption.

With the use of DHIES, we believe that our scheme has indistinguishable
encryptions under a chosen-ciphertext attack, but this remains to be proven. It
would be interesting to prove it without resorting to the random oracle heuristic.

Acknowledgements. We would like to thank the anonymous reviewers for their
detailed and insightful comments on an early draft of this paper.
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Abstract. Protecting a machine learning model and its inference inputs
with secure computation is important for providing services with a valu-
able model. In this paper, we discuss how a model’s parameter quantiza-
tion works to protect the model and its inference inputs. To this end, we
present an investigational protocol, MOTUS, based on ternary neural
networks whose parameters are ternarized. Through extensive experi-
ments with MOTUS, we found three key insights. First, ternary neural
networks can avoid accuracy deterioration due to modulo operations of
secure computation. Second, the increment of model parameter candi-
dates significantly improves accuracy more than an existing technique
for accuracy improvement, i.e., batch normalization. Third, protecting
both a model and inference inputs reduces inference throughput four to
seven times to provide the same level of accuracy compared with existing
protocols protecting only inference inputs. Our source code is publicly
available via GitHub.

1 Introduction

A machine learning process needs a large number of computational resources.
Consequently, many Machine-Learning-as-a-Service (MLaaS) hosts the compu-
tation process of a machine learning model instead of a model owner, e.g.,
Microsoft Azure or Google Cloud. When a MLaaS hosts a machine learning
model, there are two standpoints of privacy protection, i.e., parameters of the
trained model itself [8,10,12,17,21,29,30,34,35,43,51] and inference inputs from
clients [5,6,13,15,18,27,28,33,37–39,41,52]. (Hereafter, we refer parameters of
the trained model to a model for the sake of convenience.) There are several
important reasons for protection of a model according to Sun et al [47]. A model
is an enormously important asset for the model owner because it often includes
human, data, and computing costs. A leaked model also facilitates malicious
actors to find adversarial inputs to bypass or confuse existing machine learn-
ing services. On the other hand, inference inputs may be privately sensitive for
clients in many services [27], e.g., facial recognition, cancer testing, and genomic
test. Therefore, both model and inference inputs should be protected even on
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MLaaS and then secure computation techniques are used for instantiating these
protections.

To this end, neural networks with quantized parameters, i.e., binarized neu-
ral networks [11] with (+1,−1) or ternary neural networks [26] with (+1, 0,−1),
have attracted attention [1,2,7,8,12,21,37,41,53]. Roughly speaking, these neu-
ral networks can reduce computational complexity by quantizing model parame-
ters. Nevertheless, to the best of the author’s knowledge, it has remained unclear
how neural networks with quantized parameters benefit the protection of a model
and inference inputs.

In this paper, we answer the following questions: (1) How do quantized
parameters benefit inference throughput and accuracy for the protection of a
model and inference inputs? (2) What is essential for quantized parameters to
improve the accuracy?

The above questions are non-trivial. Existing works [23,24,36] have often
focused on improving inference throughput and accuracy by designing machine-
learning-friendly secure computation. However, these works did not discuss quan-
tized parameters. We investigate how inference throughput and accuracy are
affected by quantized parameters when using typical secure computation. It is
not implied from the existing works from the viewpoints of quantized parameters.
Furthermore, the accuracy given by quantized parameters deteriorates compared
to general neural networks because a model with quantized parameters often suf-
fers from poor convergence due to the low expressiveness [41]. While there are
existing techniques [8,21,37] for improving the accuracy by introducing batch
normalization [16] into quantized neural networks, such an extension of neural
networks may be somewhat complicated. In contrast, we investigate whether
adding parameter candidates improves the accuracy compared to the existing
techniques. It is quite a different question from the existing techniques.

In this paper, we present a novel investigational protocol based on
ternary neural networks [26], named Model-Oblvious Ternary neUral networkS
(MOTUS), for the protection of a model and inference inputs based on secret
sharing. Through extensive experiments with MOTUS compared to existing pro-
tocols [1,8,10,21,29,30,37], we demonstrate the following three key insight as
our contributions:

(1) The first insight is that neural networks with quantized parameters can ideally
avoid the accuracy deterioration by modulo operations of secure computation.
In particular, for binarized neural networks and ternary neural networks,
we show that the accuracies of neural networks with the protection of a
model and inference inputs are identical to their original neural networks.
Consequently, they can also provide higher accuracies for small-size neu-
ral networks than several existing protocols [8,10,29,30] with floating-point
operations by virtue of avoiding accuracy deterioration.

(2) The second key insight is that the accuracy is improved significantly by
increasing parameter candidates for neural networks with quantized parame-
ters. Notably, increasing parameter candidates works better than introducing
a typical technique for improving accuracy, i.e., batch normalization [16]. We
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demonstrate the above insight by comparing MOTUS with XONN [37] based
on binarized neural networks and SOTERIA [1] based on ternary neural net-
works.

(3) The third key insight is that protection of a model will reduce the inference
throughput four to seven times than protection of only inference inputs to
provide the same level of accuracies according to comparison with existing
works [9,27] based on the same secure computation library [14]. Our source
code is released on GitHub for subsequent work and reproducibility.

Related Work. This section describes related works regarding the protection
of a model and inference inputs.

Protection of Model: To the best of our knowledge, the protection of a model
was first discussed in E2DM [17]. The protection of a model can also be achieved
by protecting the training phase with secure computation [30] (also known as
private training). Specifically, it can be realized by keeping the model secret
with secure computation during the training phase and not recovering the orig-
inal model. Experiments of SecureML [30] were conducted in the above man-
ner. Hence, existing protocols [4,10,29,32,34,35,40,43,49,51] for protecting the
training phase. The works described above concentrated on improving secure
computation but did not discuss neural networks with quantized parameters.
Several works [12,20] have designed protocols for the protection of a model by
converting model parameters to fixed-point operations. These works can mitigate
the accuracy deterioration. However, the ReLU, sigmoid, and softmax activation
functions, which are potentially unsuitable for secure computation, are utilized.

Closest works to our work are QUOTIENT [2] and SOTERIA [1], which
are based on ternary neural networks. QUOTIENT contains the ReLU func-
tion, which is unsuitable for quantized parameters, as activation function. In
contrast, SOTERIA contains ternary weight parameters and a binary activation
function. SOTERIA is the closest to MOTUS except for the use of batch nor-
malization [16]. Therefore, we compare MOTUS with SOTERIA. Although a
ternary activation function [3] has been proposed, a construction based on it is
an open problem, to the best of our knowledge.

The next important works are MOBIUS [21] and FLASH [8]. These works
have discussed the protection of a model and inference inputs on binarized neural
networks. The motivation of MOBIUS is to extend binarized neural networks for
secure computation, and FLASH further introduces novel secure computation
techniques. We also compare MOTUS with MOBIUS since the same library is
used for implementation.

Protection of Inference Inputs: There are many works for the protection
of inference inputs on neural networks with quantized parameters [1,2,7,37,
41,42,46]. Among them, XONN [37] extended architectures of binarized neural
networks [11] for secure computation. Specifically, it combines batch normaliza-
tion [16] with an activation function, and all the computations are defined as
bit operations to improve the inference throughput. We hence compare MOTUS
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with XONN to show the overhead of the protection of a model. Recently, some
optimization technique [41] of XONN was shown. The performance of MOTUS
can be improved by the same technique in [41].

2 Preliminaries

This section provides background on secure computation. We first describe secret
sharing as a building block and then show secure computation based on the secret
sharing.

A t-out-of-n secret sharing scheme over a finite domain D consists of the
following two algorithms: (�x�1, . . . , �x�n) ← Share(x): Share takes x ∈ D as
input, and outputs �x�1, . . . , �x�n ∈ D; x ← Reconst(�x�1, . . . , �x�t): Reconst
takes �x�1, . . . , �x�t ∈ D as input, and outputs x ∈ D.

In the above algorithms, for i ∈ {1, . . . , n}, �x�i is called the i-th share of
x. We denote �x� = (�x�1, . . . , �x�n) as their shorthand. Any less than t shares
of x over the t-out-of-n secret sharing scheme jointly give no information on
x, whereas any ≥ t shares jointly determine x by using Reconst. Secret shar-
ing schemes are proposed typically on finite domains, e.g., the ring of integers
ZM modulo M , where M is a positive integer greater than 1, and an �-length
binary string [45]. An i-th share of an �-dimensional vector v = (x1, . . . , x�)
over a domain D consists of i-th shares of its components and is denoted by
�v�i := (�x1�i, . . . , �x��i). Analogously, an i-th share of a matrix is defined in
the same way. Therefore, a secret sharing scheme over vectors, matrices, and
tensors, among others, can be defined.

We define secure computation protocols utilized in this work. The following
computations are defined over the ring of integers ZM = {0, . . . , M − 1} modulo
M .

�c� ← ADD(�a�, �b�): ADD takes shares �a� and �b� of a ∈ ZM and b ∈ ZM ,
respectively, as inputs, then outputs a share �c� of a + b = c ∈ ZM .

�c� ← ADDConst(�a�, b): ADDConst takes share �a� of a ∈ ZM and b ∈ ZM

as inputs, then outputs a share �c� of a + b = c ∈ ZM .
�c� ← MUL(�a�, �b�): MUL takes shares �a� and �b� of a ∈ ZM and b ∈ ZM ,

respectively, as inputs, then outputs a share �c� of a × b = c ∈ ZM .
�c� ← MULConst(�a�, b): MULConst takes share �a� of a ∈ ZM and b ∈ ZM

as inputs, then outputs a share �c� of a × b = c ∈ ZM .
�c� ← Half(�a�): Half takes a share �a� of a ∈ ZM as input, then outputs a

share �1� if a ≤ �M/2� over the integers, �0� otherwise.
In this paper, we utilize the ABY library [14], two-party secure computation

over the ring of integers modulo M = 2m (m = 8, 16, 32, or 64). We note that
any secure computation library [19,23,24,29,34,36,49] based on secret sharing
can be used.

3 Problem Description

This section recalls system and threat models for the protection of a model and
inference inputs. Hereafter, we assume image classification as a task of a machine
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learning model. Let C denote the number of channels in an input, H the height,
W the width, C a finite set of labels. A machine learning model is defined as a
function M : ZC×H×W → C.

System Model. We define three kinds of entities, i.e., a client, a model owner,
and two computational resource providers who delegate computations on the
model. First, the model owner trains a model with plaintexts, i.e., without secure
computation, and then generates shares of the trained model for (2, 2)-secret
sharing. Next, the model owner sends the shares of the model to the resource
providers. The resource providers then interact with each other to compute an
inference result of the model when a client requests to execute an inference. Here,
the inference result for each resource provider remains in the form of shares, and
it is recovered only in the client’s local environment.

Threat Model. We focus on the semi-honest adversary, i.e., an adversary fol-
lows a protocol but tries to learn the client’s or model owner’s data. The client
generates shares for the (2, 2)-secret sharing as an input to the inference on the
model and then sends the shares to the resource providers who host the model.
We then assume the use of a secure channel, and the transport layer security
can instantiate it (TLS) in a similar manner as in prior works [27,30]. Then, the
following security notions are discussed:

Protection of Inference Inputs: An adversary cannot learn clients’ input
unless the adversary corrupts the two resource providers.

Protection of a Model: An adversary cannot learn the model unless the adver-
sary corrupts the two resource providers.

We do not aim to hide the size of the clients’ input, the network architecture
provided by the model owner, and which secure computation protocols are used.
Such information can be protected by adding dummy layers [27]. Besides, model
extraction attacks [50] to obtain a substitute model in local via inference results
are out of the scope of this work. We also note that the model extraction attacks
can be prevented by watermarking [48] to check the model ownership.

4 Methodology

This section presents MOTUS, an investigational protocol for the protection of
a model and inference inputs, as our research methodology. We evaluate the
impact of neural networks with quantized parameters for the questions in Sect. 1
through MOTUS. To this end, ternary neural networks [26] are introduced in
MOTUS. Although the original ternary neural networks contain −1, 0,+1 in
only weight matrices and convolutional filters as quantized parameters, we first
extend ternary neural networks by several techniques [21,37]. We then describe
algorithms of MOTUS with the extended ternary neural networks.
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4.1 Extension of Ternary Neural Networks

We extend ternary neural networks. In particular, while an activation function of
the original ternary neural networks [26] is the ReLU function based on floating-
point operations, we introduce the sign function [11] based on fixed-point opera-
tions through the two techniques described below instead of the ReLU function.
We describe intuition due to the page limitation. (See Appendix A for detail.)

The first technique is the MOBIUS transformation [21], where batch nor-
malization layers are converted to fixed-point operations from shift-based oper-
ations [11]. The batch normalization can improve accuracy in general [16] while
that in the original binarized neural networks [11] needed the shift-based oper-
ations approximating inputs. The MOBIUS transformation scales up inputs of
batch normalization layers with the trained parameters to provide fixed-point
operations instead of shift-based operations. It can then provide higher accuracy
than the original binarized neural networks.

The second technique is the BN+BA technique [37] that combines batch
normalization and activation layers. The sign function [11] that approximates
inputs with either +1 for a positive value or −1 for a negative value is utilized in
activation layers of the original binarized neural networks instead of the ReLU
function. When an activation layer with the sign function follows a batch normal-
ization layer, the BN+BA technique combines them into a single layer. Outputs
of the layer are then closed to +1 or −1, keeping the accuracy improvement by
batch normalization.

Furthermore, inspired by XONN [37], we also present ActMaxPooling, which
combines activation and max-pooling layers. Inputs of a max-pooling layer fol-
lowing an activation layer are binarized to +1 or −1 because of the sign function.
An operation to choose a maximum value in the max-pooling layer is then identi-
cal to the OR operation for any element with the window size by converting −1 to
0 [37]. Consequently, ActMaxPooling is compatible with the BN+BA technique,
and we introduce ActMaxPooling by combining it with the BN+BA technique.

Algorithm 1. SecureActMaxPooling
Input: �b� ∈ Z

FN×OH×OW
M : Shares of input vectors

Output: �output� ∈ Z
FN×OH/2×OW/2
M

1: for i = 0 to OH/2 − 1 do
2: for j = 0 to OW/2 − 1 do
3: for k = 0 to FN − 1 do
4: �Xk � ← OR(Half(�b2i ,2j,k �),Half(�b2i ,2j+1,k �))
5: �Yk � ← OR(Half(�b2i+1,2j,k �),Half(�Xk �))
6: �Zk � ← OR(Half(�b2i+1,2j+1,k �),Half(�Yk �))
7: �Sk � ← MULConst(�Zk �, 2)
8: �outputi,j,k � ← ADDConst(�Sk �,−1)
9: end for

10: end for
11: end for
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Hereafter, we refer the above combination, including the BN+BA technique, to
ActMaxPooling.

It is expected that inference throughput and accuracy of any neural network
with quantized parameters are improved for the protection of a model compared
to the original ternary neural networks, although we only discuss ternary neural
networks (and binarized neural networks) in this paper.

4.2 Algorithms of MOTUS

We describe the algorithms of MOTUS below. In particular, secure computation
of ActMaxPooling and convolution layers are described below. Although secure
computation protocols for full connection, batch normalization, and activation
layers are utilized in experiments described later, we follow MOBIUS [21] for
these protocols. We omit the details of them due to the page limitation.

Secure ActMaxPooling Layer: A secure computation protocol of ActMax-
Pooling is constructed by comparing whether each shared value is greater than
or equal to 0.5, i.e., Half because the max-pooling layer returns a value from 0
to +1 as described in the previous section. More specifically, the secure com-
putation protocol of ActMaxPooling, named SecureActMaxPooling Protocol, is
shown in Algorithm 1.

Here, a modulus M is chosen similarly with MOBIUS [21].

Secure Convolution Layer: We describe how to convert the process of con-
volution layers to matrix operations for the use of secure computation. For any
matrix W ,X, the following relation is defined for matrix W ′,X ′:

W =

(
w11 w12

w21 w22

)
, X =

⎛
⎝x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞
⎠ ⇒ (

w11 w12 w21 w22

) ×

⎛
⎜⎜⎝

x11 x12 x21 x22

x12 x13 x22 x23

x21 x22 x31 x32

x22 x23 x32 x33

⎞
⎟⎟⎠ .

That is, a 2-dimensional convolution operation between a (2 × 2)-filter W and
a (3 × 3)-input X are represented by a dot product between a (1 × 4)-matrix
W ′ and a (4 × 4)-matrix X′. Hereafter, let FH be the height of the filter, FW
the width, FN the number, OH the height of the output, OW the width. A 2-
dimensional convolution operation between a (FH×FW)-filter W and a (H×W)-
input X is represented by a dot product between a (1 × FH · FW)-matrix W ′

and a (FH · FW × OH · OW)-matrix X′. Similarly, a 3-dimensional convolution
operation between a (FN × C × FH × FW)-filter W and a (C × H × W)-input is
represented by a dot product between a (FN × C · FH · FW)-matrix W ′ and a
(C · FH · FW × OH · OW)-matrix X′.

The secure computation protocol of convolution layers, i.e., SecureConvolu-
tion, is constructed with a dot product between shares as shown in Algorithm 2.

Here, an output of a convolution layer is a 3-dimension matrix, and thereby
the batch normalization is executed on a 3-dimension input. For the batch nor-
malization with a 3-dimension input, each mini-batch is utilized as the entire
training data. In doing so, for a set of output data on a convolution layer, a
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Algorithm 2. SecureConvolution
Input: �input� ∈ Z

C×H×W
M :

�W � ∈ Z
FN×C×FH×FW
M :

Output: �output� ∈ Z
FN×OH×OW
M

Procedure:
1: �input� ∈ Z

C·FH·FW×OH·OW
M ← Reshape (�input�)

2: �W � ∈ Z
FN×C·FH·FW
M ← Reshape (�W �)

3: for i = 0 to FN do
4: for j = 0 to OH · OW do
5: for k = 0 to C · FH · FW do
6: �Xi � ← MUL(�Wi,k �, �inputk,j �)
7: �outputi,j � ← ADD(�outputi,j �, �Xi �)
8: end for
9: end for

10: end for
11: �output� ∈ Z

FN×OH×OW
M ← Reshape (�output�)

batch normalization parameter u is computed by executing the normalization
for each channel of the 3-dimensions. For the protection of inference inputs, addi-
tions between shares are executed for each channel. We also show the security
analysis of MOTUS in Appendix B.

We also consider a further extension of MOTUS to improve the inference
throughput. In particular, by partially leaking a model as a moderate setting of
the protection of a model, the number of secure computations can be reduced
by sharing the location of 0’s for quantized parameters because entries of 0’s
in a matrix can avoid multiplications [44]. such an extension is insufficient for
existing protocols [8,21,37] based on binarized neural networks because they
contain only +1 and −1. We omit the detail of the above technique due to the
page limitation. (See the full version of this paper [22] for detail.)

5 Experiments

This section describes experimental evaluations of MOTUS on the MNIST and
CIFAR10 datasets. The primary purpose of the experiments is to confirm advan-
tages of quantized parameters for inference throughput and accuracy. To this
end, we first identify that quantized parameters can avoid the accuracy deteri-
oration caused by modulo operations of secure computation by comparing the
original neural networks [11,26]. We then evaluate MOTUS compared with exist-
ing protocols [1,9,21,27,29,30,37].

5.1 Implementation

MOTUS was implemented in C++ with the ABY library [14]. The ABY library
is a secure computation library in the two-party setting and contains three types
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of shares, i.e., Arithmetic, Boolean, and Yao. These shares have different oper-
ations, and the ABY library provides efficient conversions between the shares.
The arithmetic shares are used in arithmetic operations, such as additions and
multiplications. Algorithm 2 was implemented with the arithmetic shares. On
the other hand, Algorithm 1 requires Half and OR operations on secure compu-
tation, which are provided by the boolean or Yao shares. Since the arithmetic
shares cannot be directly converted into boolean shares, we utilized the Yao
shares in Algorithm 1. The Half and OR operations based on the Yao shares are
computed faster than the boolean shares according to the benchmark [14].

In terms of the share size, the ABY library includes four parameters as a
modulus M , i.e., 8, 16, 32, and 64 bits. The MNIST and CIFAR10 datasets can
be evaluated with the 32-bit parameter [21], and hence we adopted the 32-bit
parameters. Our implementation was not optimized yet unlike SecureML [30],
and we did not implement the padding process. Implementations of the remain-
ing algorithms follow MOBIUS [21] as described in Sect. 4.2.

We conduct experiments on two AmazonEC2 c4.8xlarge machines running
Linux with 60 GB of RAM. A model is trained with plaintexts in advance with
the Chainer framework. The two machines are hosted in the same region as
a LAN setting with four gigabytes per second as bandwidth. We then com-
pare MOTUS with protocols for the protection of a model [21,29,30] and those
for the protection of inference inputs [1,9,27,37] as baselines. We note that
MOBIUS, EzPC [9], SecureML [30] and MiniONN [27] were implemented with
the ABY library on almost the same-sized architectures. Architectures are shown
in Table 3 in Appendix.

5.2 Results

Comparison with the Original Networks. Figure 1 shows an accuracy com-
parison of MOTUS and the original ternary neural networks [26] for the num-
ber of neurons on the MNIST dataset. Likewise, Fig. 2 shows a comparison of

Fig. 1. Accuracy comparison between
MOTUS and the original ternary neu-
ral networks (Original TNNs): Although
a single line appears in this figure, two
lines with different colors are identical.

Fig. 2. Accuracy comparison between
MOBIUS and the original binarized neu-
ral networks (Original BNNs): The same
result as Fig. 1 was obtained.
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MOBIUS [21] with the original binarized neural networks [11] to identify the
effect in parameter candidates.

As shown in Fig. 1, the accuracy of MOTUS is rigorously identical to the orig-
inal ternary neural networks. The same result is obtained between MOBIUS and
binarized neural networks as shown in Fig. 2. These results are strong evidence
that neural networks with quantized parameters can avoid accuracy deteriora-
tion by secure computation, even for the protection of a model and inference
inputs. Besides, comparing Fig. 1 with Fig. 2, the accuracy in Fig. 1 is higher
than that in Fig. 2. It indicates that the increase of parameter candidates will
improve accuracy.

Comparison of MOTUS with the Existing Protocols. The results are
shown in Table 1 and Table 2.

Table 1. Performance of MOTUS on MNIST dataset in comparison with existing
works. In the first column, MOTUS (partial) means the extension of MOTUS with the
partial protection of a model described in the full version [22]. In the second column, the
check-mark means the achievement of the protection of a model and “partial” means
the partial protection of a model. In the third column, “NA” means that convolution
neural networks cannot specify the number of neurons. The fifth column refers to the
time dependent of input for secure computation, whereas the seventh column refers
to the time independent of the input. We refer to the values in each paper except
for MOBIUS, and the parenthesized values in the XONN columns are the reproduced
results in [1]. The symbol “-” means that the value has not been described in the
corresponding work.

Protection of Model Neurons Accuracy [%] On-line Time [sec] Off-line Time [sec] Total Time [sec] Networks

Arc1 SecureML [30] � 128 93.1 0.18 4.7 4.88 Fixed-point

ABY3 [29] � 128 94.0 0.003 0.005 0.008 Fixed-point

MiniONN [27] 128 97.6 0.14 0.9 1.04 Fixed-point

EzPC [9] 128 97.6 - - 0.70 Floating-point

MOBIUS [21] � 128 96.1 0.06 0.67 0.73 Binaraized

XONN [37] 128 97.6 (95.9) - - 0.13 Binaraized

SOTERIA [1] 128 96.4 0.04 0.03 0.07 Ternary

MOTUS � 128 96.7 0.06 0.69 0.75

500 97.8 0.31 3.52 3.83 Ternary

1000 98.0 0.83 10.09 10.9

MOTUS (partial) � 128 96.7 0.03 0.37 0.40

500 98.0 0.13 2.02 2.15 Ternary

1000 98.1 0.37 5.59 5.96

Arc2 ABY3 [29] � NA 98.3 0.003 0.005 0.008 Fixed-point

MiniONN [27] NA 99.0 0.4 99.0 1.28 Fixed-point

EzPC [9] NA 99.0 - - 0.600 Floating-point

MOBIUS [21] � NA 97.4 0.20 2.14 2.34 Binaraized

XONN [37] NA 98.6 (97.2) - - 0.16 Binarized

SOTERIA [1] NA 97.3 0.06 0.08 0.15 Ternary

MOTUS � NA 97.6 0.20 2.08 2.28 Ternary

MOTUS (partial) Partial NA 97.6 0.11 1.21 1.32 Ternary

Arc3 MiniONN [27] NA 99.0 5.74 3.58 9.32 Fixed-point

EzPC [9] NA 99.2 - - 5.10 Floating-point

MOBIUS [21] � NA 97.3 0.39 4.00 4.39 BNN

XONN [37] NA 99.0 (96.7) - - 0.15 Binaraized

SOTERIA [1] NA 97.4 0.08 0.07 0.15 Ternary

MOTUS � NA 97.8 0.39 4.00 4.39 Ternary

MOTUS (partial) Partial NA 97.8 0.29 2.12 2.41 Ternary

MOBIUS [21] � NA 98.8 1.76 24.16 25.9 Binaraized

Arc4 MOTUS � NA 98.9 1.76 24.15 25.9 Ternary

MOTUS (partial) Partial NA 98.9 1.36 13.51 14.9
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Table 2. Performance of MOTUS on CIFAR-10 dataset in comparison with existing
works. The setting is common with Table 1 except for the architectures. We note that
the architectures on the columns from MiniONN to SOTERIA slightly differ from Arc6
for kernels. Meanwhile, we implemented an evaluation of MOBIUS in full scratch.

Protection of Model Accuracy [%] On-line Time [sec] Off-line Time [sec] Total Time [sec] Networks

Arc5 MOBIUS [21] � 62.84 14.89 223.88 238.8 Binarized

XONN [37] 80.0 (71.97) - - 15.1 Binarized

SOTERIA [1] 73.14 8.56 6.14 14.7 Ternary

MOTUS � 66.75 14.57 219.56 234.1 Ternary

MOTUS (partial) Partial 66.75 11.93 121.8 133.7 Ternary

Arc6 MiniONN [27] 81.61 72 472 544 Fixed-point

EzPC [9] 81.61 - - 265.6 Floating-point

MOBIUS [21] � 76.98 116.95 1809.24 1926.2 Binarized

XONN [37] 81.8 (72.66) - - 5.8 Binarized

SOTERIA [1] 72.52 3.48 2.95 6.4 Ternary

MOTUS � 78.96 117.89 1806.24 1924.1 Ternary

MOTUS (partial) Partial 78.96 91.45 1022.17 1113.6 Ternary

MNIST: As shown in Table 1, MOTUS achieves a higher accuracy on Arc1 than
the existing protocols for the protection of a model, i.e., SecureML, ABY3 and
MOBIUS. Notably, the accuracy of MOTUS is more than two points higher com-
pared to these works. It is considered that such a high accuracy could be obtained
by avoiding accuracy deterioration. In contrast, the accuracy of MOTUS is pro-
portionally lower than ABY3 on Arc2. It is considered that ABY3 is based on
fixed-point operations, which can provide more suitable expressiveness for con-
volution layers than quantized parameters. Since accuracies of Trident [10] and
FLASH [8] for the protection of a model are the same as ABY3, similar observa-
tions will be obtained between MOTUS and them. Meanwhile, MOTUS always
outperforms MOBIUS because MOTUS contains more parameter candidates by
virtue of ternary neural networks.

Interestingly, MOTUS achieves higher accuracies for all the architectures
than XONN and SOTERIA, despite providing the protection of a model. For
instance, MOTUS achieves 96.7% accuracy on Arc1, which is higher than 95.9%
of XONN1 and 96.4% of SOTERIA, respectively. Likewise, the accuracy of
MOTUS is 1.1 points higher than XONN and 0.4 points higher than SOTERIA
on Arc3, respectively. We believe that these higher accuracies can be obtained
by the techniques described in Sect. 4.1. More precisely, compared to XONN,
the accuracy was improved by the increase of parameter candidates for ternary
neural networks. Furthermore, compared to SOTERIA, MOTUS contains batch
normalization, which is not used in SOTERIA.

1 The accuracy follows the value presented in the SOTERIA paper [1].
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Fig. 3. Computational cost: We mea-
sured the computational cost on MOBIUS,
MOTUS and its partial setting MOTUS
for neurons.

Fig. 4. Communication cost: The setting
is common with Fig. 3.

CIFAR-10: As shown in Table 2, the accuracy of MOTUS achieves 3.91 points
higher on Arc5 and 6.3 points higher on Arc6 than MOBIUS. Similar to the
results on MNIST, these accuracies could be obtained by ternary neural net-
works.

However, the accuracy of MOTUS is lower than XONN and SOTERIA. The
reason is that we did not implement the padding process. MOTUS would achieve
higher accuracy than XONN and SOTERIA if the convolution layers were fully
implemented. Meanwhile, MOTUS outperforms these works on Arc6. Although
the architectures of XONN and SOTERIA are slightly different from Arc6 for
the number of kernels, Arc6 in [31] would provide high accuracies even on the
existing works.

6 Discussion

This section discusses considerations about the experimental results. In partic-
ular, accuracy improvement, comparison between ternary/binarized neural net-
works, and the trade-off between accuracy and computational cost are discussed
below.

Accuracy Improvement. According to Sect. 5.2, neural networks with quan-
tized parameters can provide higher accuracies for the protection of a model in
simple architectures such that convolution layers are not utilized in comparison
with ABY3 [29] based on secret sharing. We believe that quantized parameters
can ideally avoid the accuracy deterioration even for the protection of a model
as shown in Fig. 1 and Fig. 2. In contrast, ABY3 would provide higher accuracy
than quantized parameters in proportion to the complexity of network architec-
tures because they use floating-point operations, whose expressiveness is higher
than quantized parameters.

Next, from the comparison with XONN [37] and SOTERIA [1] in Table 1,
the increase of parameter candidates has a significant effect on the accuracy
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improvement rather than introducing the batch normalization [16]. In particular,
in Table 1, an accuracy difference between MOTUS and XONN is larger than
one difference between MOTUS and SOTERIA. It is evident that the increase
of parameter candidates is more significant than batch normalization to improve
the accuracy in neural networks with quantized parameters.

Ternary/Binarized Neural Networks. We measured the computational and
communication costs of MOTUS and MOBIUS [21] for the number of neurons
on Arc1. The results are shown in Fig. 3 and Fig. 4. According to the figures,
the computational and communication costs are identical between MOTUS and
MOBIUS. It indicates that the number of the dot product between matrices
for secure computation is independent of the setting of quantized parameters.
Besides, the accuracy for MOTUS could be improved by increasing parameter
candidates, as shown in Sect. 5.2. We thus believe that a higher accuracy for
the protection of a model will be achieved without increasing the computational
cost by providing more parameter candidates. Although we leave as an open
question to find such parameters, we believe that truly quantized parameters
from −N to +N for any integer N [7,12] will realize the same-level accuracy for
the protection of a model with fixed-point operations.

Finally, as shown in Fig. 3 and Fig. 4, the computational cost and the com-
munication cost for MOTUS are almost linear for the number of neurons. The
performance for any number of neurons can thus be measured approximately.

Trade-Off Between Accuracy and Computational Cost. We compare
MOTUS with EzPC [9] based on the ABY library [14] to discuss the trade-
off between accuracy and computational cost for inference. MOTUS requires
four to seven times the computational cost compared to EzPC to achieve the
same-level accuracy. For instance, the total time for EzPC was 0.70 s with 97.6%
accuracy on Arc1, while MOTUS was 3.83 s with 97.8% accuracy for 500 neurons.
Even for CIFAR-10, EzPC was 265.6 s with 81.61% accuracy on Arc6 while
MOTUS was 1924 s with 78.96% accuracy. The above differences indicate that
the protection of a model with quantized parameters needs four to seven times
the computational cost compared to only the protection of inference inputs with
floating-point operations because more complicated architectures are necessary
than floating-point operations.

7 Conclusion

In this paper, we presented MOTUS, an investigational protocol based on ternary
neural networks [26] for the protection of a model. The key insight was that neu-
ral networks with quantized parameters could ideally avoid accuracy deteriora-
tion by secure computation. Remarkably, the increase of parameter candidates
for quantized parameters significantly affects the accuracy improvement rather
than batch normalization [16]. As might have been unexpected, achieving the
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protection of a model needs four to seven times longer computational cost com-
pared to a protocol for the protection of inference inputs. We are confident that
our results improve knowledge about achieving the protection of a model. In the
future, we plan to design a protocol based on an architecture whose parameter
is more generalized to −N and − + N for any integer N , i.e., quantized neu-
ral networks [7,12]. The accuracy can be improved strikingly by utilizing such
an architecture. We are also in the process of evaluating neural networks with
quantized parameters in the case of malicious security.

Acknowledgments. This research was supported in part by JST, CREST Grant
Number JPMJCR21M5, Japan.

Code Availability. Our implementation is available from https://github.com/

schrms/MOTUS.

A Transformation of Batch Normalization into Integers

We recall the transformation technique [21] of batch normalization parameters
into fixed-point operations. The transformation technique was initially intro-
duced for binarized neural networks, while we utilize it for ternary neural net-
works.

On the conventional batch normalization [16], Eq. (1) is computed to output
x̂i for an output vector xi on full connection layers and convolution layers, where
let γi and βi be training parameters, μi and σ2

i be the means and the variance
of training data, and ε be a positive constant.

x̂i = γi
xi − μi√

σ2
i + ε

+ βi. (1)

Then, computation on the equation is transformed into integers. To do this, the
equation is converted to the form of x̂i = sixi + ti, where si and ti are defined
as Eq. (2):

si =
γi√

σ2
i + ε

, ti = βi − γiμi√
σ2

i + ε
. (2)

Next, we describe the BN+BA technique [37]. To introduce technique, the
sign function as an activation layer is placed after a batch normalization layer.
In particular, since γi is experimentally positive, the following equation holds
because si is positive:

Sign (x̂i) =
{

+1 (sixi + ti ≥ 0)
−1 (sixi + ti < 0) ⇔

⎧
⎨

⎩

+1
(
xi + � ti

si
� ≥ 0

)

−1
(
xi + � ti

si
� < 0

) (3)

That is, operations of batch normalization layers except for the output layer are
identical to xi + � ti

si
� and therefore can be replaced with fixed-point operations.

https://github.com/schrms/MOTUS
https://github.com/schrms/MOTUS
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Hereafter, for the sake of convenience, let ui be � ti
si

� where ui is a batch normal-
ization parameter. We also denote by IntegerBatchNorm the batch normalization
with the MOBIUS technique described in Sect. 4.1.

On the other hand, for output of batch normalization layers on the output
layer, a scale parameter q is experimentally found, and then si and ti are trans-
formed into integers by multyplying q and rounding off digits after the decimal
point. Next, for an output vector xi of full connection layers and convolution
layers, Eq. (4) is computed for the batch normalization.

x̂′
i = s′

ixi + t′i (s′
i = �qsi�, t′i = �qti�) . (4)

Because the batch normalization is based on integer operations, the magnitude
relationship between output values for our transformation is identical to that
of output values without the transformation as long as a modulus M is large
enough. That is, an inference result is unaffected by our transformation. Here-
after, we denote by s′

i, t
′
i the batch normalization parameters via the above trans-

formation and by BatchNorm a batch normalization in the output layer.

B Security Analysis

We discuss the security of MOTUS against a semi-honest adversary in a similarly
argument with existing works [18,27,37]. In MOTUS, a model owner generates
shares of a trained model with (2, 2)-secret sharing and then sends the shares
to two resource providers. Under this situation, the model by the model owner
is utilized as shares under the resource provider and a client. The client then
generates shares of inputs for inference with the (2, 2)-secret sharing and then
sends one of the shares to one of the resource providers. The resource providers
then execute secure computation with the shares of the inputs and those of
the model, and return shares of an inference result to the client. In doing so,
the resource providers can compute an inference result without recovering the
original data from shares, i.e., without knowing the inputs from the client and
the trained model itself. Consequently, if a secure computation protocol against
a semi-honest adversary is utilized as a building block of MOTUS, the protection
of a model and inference inputs are achieved against the semi-honest adversary
under the composition theorem [25].

C Architectures

We describe the datasets and their architectures below. The MNIST dataset
contains 70,000 images of handwritten digits from 0 to 9, i.e., 60,000 training and
10,000 test samples. Each sample has 784 features based on 28×28 pixels image
with a grayscale value between 0–255. Four network architectures were utilized
as shown in Table 3 in Appendix, i.e., Arc1–Arc4. Arc1–Arc3 are identical to
XONN [37] and MOBIUS [21] and also similar to SOTERIA [1] except for the
batch normalization.
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Table 3. Architectures for experimental evaluations. In this table, “FC” means a full
connection layer, “CONV” means a convolution layer, and “BN” means a batch nor-
malization layer. Likewise, “IBN2D” means an integer batch normalization layer on 2-
dimension, “IBN3D” means an integer batch normalization layer on 3-dimension, “Act”
means an activation layer, and “MAXPOOL” means a max-pooling layer. Finally, we
also denote by “d” the number of neurons.

Type Kernels/Nodes Type Kernels/Nodes

MNIST (Arc1) CIFAR-10 (Arc5)

1 FC + IBN2D + Act d 1 CONV 3 × 3 + IBN3D + Act 64

2 FC + IBN2D + Act d 2 CONV 3 × 3 + IBN3D + Act 64

3 FC + BN 10 3 MAXPOOL 2 × 2 -

4 CONV 3 × 3 + IBN3D + Act 64

MNIST (Arc2) 5 CONV 3 × 3 + IBN3D + Act 64

1 CONV 5 × 5 + IBN3D + Act 5 6 MAXPOOL 2 × 2 -

2 FC + IBN2D 100 7 CONV 3 × 3 + IBN3D + Act 64

3 FC + BN 10 8 CONV 1 × 1 + IBN3D + Act 64

MNIST (Arc3) 9 CONV 1 × 1 + IBN3D + Act 64

1 CONV 5 × 5 + IBN3D + Act 16 10 FC + BN 10

2 MAXPOOL 2 × 2 - CIFAR-10 (Arc6)

3 CONV 5 × 5 + IBN3D + Act 16 1 CONV 3 × 3 + IBN3D + Act 128

4 MAXPOOL 2 × 2 - 2 CONV 3 × 3 + IBN3D + Act 128

5 FC + IBN2D + Act 100 3 CONV 3 × 3 + IBN3D + Act 128

6 FC + BN 10 4 MAXPOOL 2 × 2 -

MNIST (Arc4) 5 CONV 3 × 3 + IBN3D + Act 256

1 CONV 5 × 5 + IBN3D + Act 16 6 CONV 3 × 3 + IBN3D + Act 256

2 MAXPOOL 2 × 2 - 7 CONV 3 × 3 + IBN3D + Act 256

3 CONV 5 × 5 + IBN3D + Act 16 8 MAXPOOL 2 × 2 -

4 MAXPOOL 2 × 2 - 9 CONV 2 × 2 + IBN3D + Act 512

5 FC + IBN2D + Act 512 10 CONV 1 × 1 + IBN3D + Act 512

6 FC + BN 10 11 CONV 1 × 1 + IBN3D + Act 512

12 FC + BN 10
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Abstract. Internet of things (IoT) systems consist of many devices
that send their sensor data to cloud servers. Cryptographic authenti-
cation is essential for maintaining the consistency of these systems, and
lightweight authentication in particular is required because most IoT
devices are resource-constrained. Physically unclonable functions (PUF)
are promising tools for protecting such devices from cyber-attacks. It can
naturally generate a unique but noisy (i.e., erroneous) key for a device
without implementing costly secure key storage in the device. However, a
costly error correction technique is required to remove the noise. In this
paper, we propose a lightweight authentication scheme with a noisy key
(i.e., an uncorrected key) naturally derived from a PUF. The security of
our scheme is based on a combinatorial problem with small noise. We
also discuss its security and feasibility.

Keywords: physically unclonable function · authentication · Internet
of Things

1 Introduction

Internet of things (IoT) is widely expected to make our lives more intelligent,
efficient, and comfortable. In IoT systems, devices are located everywhere and
exchange data such as sensing data and control information. Because most of
these devices are resource-constrained, they can act as weak points in the system.
Securing such devices is an emerging challenge.

Physically unclonable functions (PUFs) are promising primitives for improv-
ing the security of resource-constrained devices. It naturally generates unique but
noisy data for each device from the detailed characteristics of the device, similar
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to biometric objects (such as the iris and fingerprints) for a human. Examples
include SRAM-PUF [7,8] which is based on the initial states of SRAM cells, and
arbiter-PUF [6,12] which is based on logic delays in a dual-rail circuit. Like bio-
metric objects, cloning of a PUF is expected to be difficult. Therefore, PUFs are
regarded as a secure key storage for replacing costly secure non-volatile memory1

(NVM).
From the number of challenge-response pairs (CRPs) which PUF can pro-

duce, PUFs are classified into weak PUF and strong PUF. The CRP space of
weak PUF grows in a polynomial order for the security parameter such as length
of challenge, whereas that of strong PUF grows in an exponential order for the
security parameter. Hence, in general, the weak PUF is suitable for key gener-
ation, whereas the strong PUF is suitable for challenge-response-based device
authentication.

Among the security requirements for IoT systems, authenticity is the most
important because unauthorized devices or incorrect data break the consistency
and reliability of the system. Although there are several cryptographic techniques
for authenticating devices and data, it is difficult for resource-constrained devices
to execute such cryptographic techniques including lots of computation.

1.1 Lightweight Authentication Protocols

Several researchers have reported lightweight authentication protocols. There
are two classes of protocols: protocols that use a pre-stored secret key and those
that use a noisy key dynamically derived from a PUF.

For the former class, a non-PUF-based authentication protocol has been pro-
posed by Kiltz et al. [10] (see Appendix A.2 for detail). This protocol assumes
a device is authenticated by a server with an authentication data which is com-
puted by the device using two steps: multiplying a matrix by the pre-stored
secret key and adding logical noise to the multiplied data. The secret key is
shared between the device and the server in advance and is stored in the device’s
NVM. During verification, the server reproduces the multiplied data using the
shared secret key and accepts the authenticated data if the distance between
the reproduced data and the authentication data is small. The scheme can be
proven to be secure if a learning parity with noise (LPN) problem [2] is hard.

The latter class, PUF-based authentication protocols, is further divided into
two sub-classes: protocols retrieving a stable key using helper data, and those
without retrieving a stable key. The helper data is an error correction code for
retrieving a stable key from noisy PUF output. Because the helper data include
no sensitive data regarding the output of PUF or key, they can be stored in
non-secure NVM.

In the first sub-class, the device retrieves a stable key and then computes cryp-
tographic authentication data using the retrieved key. Examples of key retrieval
instantiations include the fuzzy extractor [4] and the pattern matching key gen-
eration [3,11,20]. In this approach, the material cost of the NVM and the com-
putation cost of the key retrieval are problematic.
1 Storing a key in NVM increases both the material cost and the manufacturing cost

of storing the key using secure equipment.
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An example of the second sub-class is called a helper-data-free PUF-based
authentication protocol. The seminal works on this type of protocol are [5,21].
Later, protocols that were more secure against active attacks were proposed in
[16,23,30]. However, since these protocols use raw PUF outputs as authentica-
tion data and attacks by reusing PUF outputs that have already been used for
authentication have become possible. To prevent these kinds of attack, these pro-
tocols use a (strong) PUF that can generate a large enough number of fresh bits
for all of the authentications executed throughout the life-cycle of the device.
See Appendix A.1 for the protocol of [16] as an example.

1.2 Our Contribution

In this paper, we propose a lightweight authentication protocol using a noisy
key. Our work is inspired by the non-PUF-based authentication protocol of Kiltz
et al. [10].

Unlike previous helper-data-free PUF-based authentication protocols [16,23,
30], our protocol does not use, as authentication data, the raw noisy PUF output
as it is. More precisely, an exclusive-OR (XOR) of l bits randomly selected from
the noisy key is used as the authentication data. If the bits in the noisy key
are uniformly random and mutually independent, the authentication data are
indeterminable if at least one of the l bits is undetermined, and conversely, each
XORed bit from the authentication data is indeterminable unless the other l−1
bits are determined.

To our knowledge, this is the first proposal of a helper-data-free PUF-based
authentication protocol that allows reuse of the PUF output with provable secu-
rity. To discuss the security, we formally give a security model of the protocol.

The security of our protocol relies on the difficulty of a combinatorial problem.
Let us consider information leakage of the noisy key bits from the authentication
data. When a device generates an authentication data, the authentication data
are generated by one equation for the l XORed bits. Another equation is gener-
ated each time the device performs authentications, until eventually we have a
linear system of equations made up of these equations. If the equation system is
unsolvable, our protocol is secure even if the bits in the noisy key are reused for
multiple authentications.

We also test the feasibility of the protocol by simulation and experiments
with some parameters. This test shows the applicability of our protocol to IoT
systems consisting of resource-constrained devices.

1.3 Organization

The remainder of this paper is organized as follows. Section 2 gives definitions of
the PUF and the authentication protocol. Section 3 proposes a concrete protocol
and discusses its security. We then discuss the feasibility of our protocol by
simulations and experiments, in Sect. 4. In Sect. 5, we discuss applications and
security of our protocol. Finally, Sect. 6 concludes this paper.
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2 Definition

Throughout this paper, we use the following notations:

– {0, 1}k: a set of k-bit strings for some integer k
– [a, b]: a set of integers from a to b for integers a < b
– hw: the Hamming weight function {0, 1}∗ → Z, which, for an input with

arbitrary length, returns the number of 1’s in the input
– �L: the cardinal number of a set L
– s↓v: a bit string which is a concatenation of (i-th) bits extracted from s, where

the corresponding (i-th) bit of v is 1, for bit strings s,v with same length

Let us first review the definition of PUFs [24].

Definition 1 (PUF). A family of functions is called a family of PUF if it
satisfies the following conditions.

1. The output of each function can be obtained in polynomial steps.
2. It is physically and mathematically difficult to clone a function even if the

input-output pairs of the function are observed, except all input-output pairs
are observed.

3. It is difficult to predict the output of each function.
4. Although the output may include a small amount of noise, the signal-to-noise

ratio is high enough that the noise can be removed by using an error correcting
technique.

We then formalize the definitions of the authentication protocol using a noisy
key and its security.

Definition 2 (Authentication protocol using a noisy key). Assume that
the device being authenticated by a server includes a mechanism for generating a
noisy key. Also assume that the server authenticating the device securely stores
the initial key generated during enrollment of the device. The authentication
protocol between the device and the server is executed as follows:

1. The server sends a challenge to the device.
2. The device generates a noisy key and computes a response from both the

challenge and the noisy key. The device then sends the response to the server.
3. The server checks the validity of the response based on both the challenge and

the stored key. If it is valid, then the server accepts the device, otherwise it
rejects the device.

We say that an authentication protocol using a noisy key is correct if the server
accepts legitimate devices.

Definition 3 (Secure authentication protocol using a noisy key). Let us
consider an adversary A who is not able to access the noisy key directly. We say
that A breaks the authentication protocol using a noisy key in (ε, qh, qa, τ) if A,
within time bound τ , succeeds in forging a response with probability more than ε
in the following game:
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1. If A is in the random oracle model (see below), it outputs queries to the oracle
OH and receives the corresponding outputs.

2. A outputs challenges to the authentication oracle OA, and receives the corre-
sponding responses.

3. A requests a challenge and receives it.
4. A makes queries to OH as in Step 1. The number of queries made in Steps 1

and 4 is at most qh in total.
5. A makes queries to OA as in Step 2. The number of queries made in Steps 2

and 5 is at most qa in total.
6. A outputs a forged response corresponding to the challenge received in Step

3.

If such an adversary does not exist, we say that the authentication protocol with
a noisy key is secure in (ε, qh, qa, τ).

We review the definition of the random oracle [1].

Definition 4 (Random Oracle). We say that a map H from {0, 1}∗ to L is
a random oracle if it satisfies:

1. for an input x, it uniquely outputs y = H(x), and
2. for a new input x, the probability where H(x) equals y ∈ L is 1/�L.

3 Proposed Protocol

We first explain our idea, then give its construction and discuss its security.

3.1 Idea

Our protocol is inspired by the non-PUF-based authentication protocol proposed
by Kiltz et al. [10]. That protocol (see Appendix A.2 and Fig. 3) sums up the
partial bits of the digital secret key and then adds logical noise to the sum to
generate a response (authentication data).

Unfortunately, if we simply replace the digital secret key s in the protocol
with a noisy key s̃, the resulting protocol does not work correctly. This is because
the matrix multiplication, RT·s̃↓v in Fig. 3, diffuses the noise of the noisy key into
many bits in the response. Our idea is to construct an authentication protocol
using a noisy key as follows:

1. The device computes n single-bit responses where each response is an XOR
of l bits selected from the noisy key. Let us assume that the noise is small
enough, e.g., less than 15% as discussed in [15,26] for the PUF. By setting
l appropriately, we can expect that some of the responses are noise-free and
useful for authentication.

2. The device sends n single-bit responses to the server as authenticated data.
We choose the parameter n appropriately to make attacks using random
responses infeasible.
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3. The server accepts the device if more than k−1 responses pass the verification.
Even with a small amount of noise, some of the single-bit responses flip.
Therefore, we choose appropriate k so that the authentication is tolerable
against noise.

In the protocol of [10], the device adds logical noise to the response in order
to make it difficult to learn (attack) the secret key bits from responses. Although
our protocol does not use logical noise, the physical noise of the PUF output
prevents the attack.

Note that in the protocol of [10], the secret key is digital data that are reused
for multiple authentications. Similarly, our protocol allows us to reuse the noisy
key (raw output of PUF) for multiple authentications which may enable us to
use a weak PUF for device authentication without reproducing a stable key.

As in the previous protocols, the device uses its own randomness aside from
the secret key and challenge received from the server to compute the response
in order to prevent active attacks from a malicious server. This randomness
makes the bit positions used for computing the response unpredictable by the
server, which it makes the analysis difficult even if the server maliciously sends
a challenge for analyzing the noisy key.

3.2 Construction

Let us assume that the device generates an L-bit noisy key ỹ from the PUF and
that the server securely stores the L-bit key y initially loaded during enrollment.

Each time an authentication is executed, the device generates ỹ. It then
computes a response (b, z) (authentication data) using ỹ. The server uses the
stored secret key y to check the validity of (b, z). Figure 1 shows the procedure.

Let L be a set of L-bit strings with a Hamming weight of l, and let H :
{0, 1}∗ → L be a function that outputs, for each input, an element from L
uniformly at random2. Let y↓v ∈ {0, 1}l be an l-bit substring consisting of j-th
bit of y, where j-th bit of v is 1. For example, assuming that l = 4, y = 1101,
and v = 1010, y↓v is a two-bit string 10 extracted from the underlined parts of
y = 1101. Note that, in Fig. 1, zi = hw(x) mod 2 means exclusive-or of bits in
bit string x.

3.3 Security Considerations

To discuss the security, we first introduce an assumption for the PUF. We call
this assumption linearly unpredictable.

2 H (random oracle) is instantiated by a hash function. Because a hash function
can be used for checking message integrity and so on, it is implemented in lots
of security devices to which our protocol can be applied. Hence, we believe that
implementing the hash function is not an additional cost, rather than implementing
an error correction designed with PUF characteristics to remove output noises.
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Fig. 1. Our protocol.

Definition 5 (linearly unpredictable PUF). Let PUF be a function that,
given an input of arbitrary length if necessary, outputs an L-bit string3. Let
l < L and pi,j ∈ [1, L] be integers. We call this PUF linearly unpredictable in
(ε, L, l,m1,m2, τ) if it satisfies the following properties:

1. Its output bits are mutually independent.
2. Each output bit flips with probability α independently.
3. Any adversary A, who interacts with a challenger C within the time bound τ ,

cannot achieve an advantage Adv = |Pr[C ′ = 1|C = 1] − Pr[C ′ = 1|C = 0]|
of more than ε, where C and C ′ are random variables for c and c′ in the
following game, respectively.
(a) From a PUF oracle OP , A receives (l + 1)-tuples {(pi,1, · · · , pi,l,

zi)}i∈[1,m1] for random pi,j, where zi equals yi,1 ⊕ · · · ⊕ yi,l and yi,j is
a pi,j-th bit of the L-bit PUF output.

(b) From a challenger C, A receives (l + 1)-tuples {(p̃i,1, · · · , p̃i,l, z̃i)}i∈[1,m2]

for random p̃i,j, where C sets z̃i as follows: C first chooses c ∈ {0, 1} at
random. If c = 0, C sets z̃i with a random bit in {0, 1}. If c = 1, C sets
z̃i with ỹi,1 ⊕ · · · ⊕ ỹi,l where ỹi,j is a p̃i,j-th bit of the output.

(c) A guesses c as c′ ∈ {0, 1} and outputs it.

We expect that the noise in the PUF output makes it difficult to learn (or
maliciously analyze) the characteristics of the output. The above definition can
be regarded as a variant of the well-known cryptographic assumptions of learning
with errors (LWE, [22]) and learning parity with noise (LPN, [2]).

Our protocol is proven to be secure if the underlying PUF is linearly unpre-
dictable (Definition 5) in the random oracle model (Definition 4). For the secu-
rity, the following theorem holds.

3 For example, if SRAM-PUF is used, the string is the initial states of L SRAM cells
from the top (with no input) or from the address indicated by the input. Or, if
an (n-XOR) arbiter-PUF is used, the string is a concatenation of L outputs for L
inputs.
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Theorem 1. Let k = δn for δ ∈ (0.5, 1), where
∑n

i=k
(ni)
2i is negligible. If a

PUF is linearly unpredictable in (ε′, L, l, nqa, n, τ ′), our authentication protocol
is secure in (ε, qh, qa, τ) in the random oracle model, where τ ′ ≈ τ and

ε′ ≥ 1
qh + nqa

ε − 1
2kb

−
n

∑

i=k

(

n
i

)

2i

hold.

The proof is given in Appendix B.

3.4 Notes

In Fig. 1, the device generates a whole ỹ ∈ {0, 1}L and then extracts an l-bit
substring ỹ↓vi

. Instead of generating the entire substring, the device can generate
the necessary bits of ỹ for which the corresponding bits of v are 1. Furthermore,
instead of extraction of ỹ↓v, the device may compute the inner product of ỹ and
v in modulo 2 and set the result to zi.

As explained in Sect. 3.1, we remove the addition of the logical noise. From a
security perspective, if the PUF output is noise-less, the PUF characteristics can
be easily analyzed from the responses of our authentication protocol. Therefore,
if the noise is too small (before aging, for example), adding a small amount of
logical noise may be a solution for enhancing security.

Our device authentication protocol can be extended to a message authenti-
cation code (MAC, [19]) scheme. Assume that the device wants to authenticate
a message m to the server. To do so, the device replaces a with m and computes
a response by itself, and then sends the m and the response to the server as the
message and the corresponding MAC, respectively.

4 Feasibility

In this section, we discuss the feasibility of our protocol. We first check the
validity of the assumption in Definition 5, and then discuss the parameters of
our protocol by simulation and experiments to show that our protocol works
correctly.

4.1 Validity of Our Assumption

We first discuss the validity of the assumption of Definition 5. We estimate
the hardness of the assumption using a Python library (scikit-learn library for
Python 3.6) for the support vector machine (SVM). The machine learning trains
the model with m1 = 1, 000, 000 instances, and then tries to distinguish the
games m2 = 100, 000 times. The simulations are performed as follows, with
parameters L ∈ {128, 256, · · · , 8192} and α ∈ {0.15, 0.035}, respectively:
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Table 1. Validity of our assumption.

α l L PSucc PFail Diff

0.15 2 512 0.6319 0.5753 5.66 × 10−2

1024 0.5865 0.5897 3.25 × 10−3

2048 0.5416 0.5257 1.59 × 10−2

4096 0.5446 0.5327 1.20 × 10−2

8192 0.5311 0.5359 4.40 × 10−3

0.035 2 512 0.6541 0.4822 0.172

1024 0.5909 0.4966 9.44 × 10−2

2048 0.5676 0.5472 2.04 × 10−2

4096 0.5348 0.5347 1.21 × 10−4

8192 0.5379 0.5323 4.85 × 10−3

0.035 8 512 0.6442 0.6401 4.09 × 10−3

1024 0.5603 0.5562 4.18 × 10−3

2048 0.5345 0.5335 1.98 × 10−3

4096 0.5339 0.5350 1.03 × 10−3

8192 0.5237 0.5226 1.15 × 10−3

1. Generate an L-bit random string y as the PUF output
2. Repeat the following steps 1,000,000 times:

(a) Randomly choose p1, · · · , pl ∈ [1, L] as the indices (that is, the bit position
to be extracted)

(b) Extract bits y1, · · · , yl from y with the indices p1, · · · , pl

(c) Flip each bit yi to y′
i with probability α, independently

(d) Compute z = y′
1 ⊕ · · · ⊕ y′

l

(e) Add (p1, · · · , pl, z) into the dataset for the machine leaning
3. Train the model with SVM library, with the default parameter (C = 1.0)
4. Repeat the following steps 100,000 times:

(a) Randomly choose p̃1, · · · , p̃l ∈ [1, L] as the indices
(b) Extract bits ỹ1, · · · , ỹl from y with the indices p̃1, · · · , p̃l

(c) Flip each bit ỹi to ỹ′
i with probability α independently

(d) Compute z̃ = ỹ′
1 ⊕ · · · ⊕ ỹ′

l

(e) Predict z̃′

5. Estimate the probabilities PSucc = Pr[ ˜Z ′ = 1| ˜Z = 1] and PFail = Pr[ ˜Z ′ =
1| ˜Z = 0] where ˜Z and ˜Z ′ are the random variables for z̃ and z̃′, respectively

We show the results in Table 1. In this table, Diff. is the difference in prob-
abilities |PSucc − PFail |. From the table, we can conclude that for each (α, l),
prediction of z̃ becomes more difficult with larger L. More specifically, we have
two facts. First, for each (α, l), both PSucc and PFail fall to 0.5 if L is enlarged
from 512-bit (64-byte) to 8192-bit (1 KiB). These probabilities are expected to
further decrease if a PUF with larger L, more than 1 KiB for example, is used.



212 Y. Komano et al.

Table 2. Relationship between α and β.

α = 0.15 α = 0.035

l β l β

2 0.2550 2 0.0676

4 0.3800 4 0.1260

8 0.4712 8 0.2202

16 0.4983 16 0.3434

Second, in comparing the cases for (α, l) = (0.15, 2) and (α, l) = (0.035, 2), the
difficulty of the learning increases with the amount of noise. As discussed in
Sect. 3.4, if α is too small, adding logical noise may be a solution for enhancing
the security.

Although the above simulations estimate the hardness of a problem that is
slightly different from Definition 5, we expect that the problem in Definition 5
is also hard with appropriate parameters from this result.

4.2 Feasibility Test with Simulation

Assume that each bit of the noisy key (for simplicity, PUF output hereinafter)
is random in {0, 1} and mutually independent, and that it flips with probability
α independently. The correctness and security of our protocol relates to the
parameters L, l, α, n, k, qa, and qh.

Let us first discuss the relationship between the correctness and the param-
eters α, l, n, and k. Note that if the odd bit(s) in the l-bit substring flip(s), the
response zi also flips. By letting β denote the probability of this, we have

β =
l/2
∑

k=1

(

l

2k − 1

)

α2k−1(1 − α)l−(2k−1).

Table 2 shows the relationship between l and β for α ∈ {0.15, 0.035}. In the
case for α = 0.15 and l = 16, β is almost 0.5. That is, the response zi is random
and independent from the secret ỹ↓vi

. In this case, the correctness cannot be
satisfied. If we use PUF with α = 0.15, the authentication may correctly work if
l = 2 (β = 0.2550) or at most l = 4 (β = 0.3800). Alternately, if we can use an
error-less PUF with α = 0.035, β is about 0.1 or less than 0.25 for l = 2 or l = 8,
respectively, and the authentication may correctly work with these parameters.

We next discuss the relationship between the correctness and (n, k) for these
(α, l). Table 3 shows the results, where PSucc means the success probability with
which the server accepts the legitimate device for parameter (α, l, n, k) and PBad

means the probability with which the server accepts a malicious device that sends
the server n single-bit randomnesses. From the table, for α = 0.15, the server
accepts legitimate and illegitimate devices with probabilities of almost 1 and less
than 4 × 10−5, respectively, with parameters (l, n, k) = (2, 256, 160). PBad can
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Table 3. Relationship between the correctness and (α, l, n, k).

α = 0.15, � = 2

n k PSucc PBad

64 40 0.9882 0.0300

128 80 0.9990 0.0030

256 160 1 3.8 × 10−5

512 320 1 8.4 × 10−9

α = 0.035, � = 2

n k PSucc PBad

64 40 1 0.0300

128 80 1 0.0030

256 160 1 3.8 × 10−5

512 320 1 8.4 × 10−9

α = 0.035, � = 8

n k PSucc PBad

64 40 0.9985 0.0300

128 80 1 0.0030

256 160 1 3.8 × 10−5

512 320 1 8.4 × 10−9

be decreased if large parameters are used. Similarly, in the case of α = 0.035, the
server accepts legitimate and illegitimate devices with probabilities of almost 1
and less than 4 × 10−5, respectively, with parameters (l, n, k) = (2, 256, 160).

In both cases, for each (α, l), if we enlarge (n, k), we can increase PSucc

(and decrease PBad). Hence, there is a trade-off between such probabilities and
computation and communication costs.

4.3 Feasibility Test with Experiments

We finally check the feasibility of the protocol by toy experiments. In these
experiments, we prepare two Nucleo-F401RE boards4 by STMicroelectronics. We
load 4096-bit initial SRAM states on each board and regard them as the output
of 4096-bit SRAM-PUF. These experiments are performed at room temperature
with the power supplied by the USB interface. The average bit error rates for
4096-bit SRAM cells for two boards were 3.30% and 3.57%, respectively.

We set ka = kb = 128. That is, we assume that a and b are 128-bit ran-
domnesses. We implement H as the composition of the enumerative encod-
ing [25,29] and SHA-256 [18]. That is, for an input (a,b, i), we first compute
h = SHA-256(a,b, i) mod

(

L
l

)

, and then encode h with the enumerative encod-
ing to derive vi ∈ L.

Table 4 shows the experimental results, which are similar to the simulations
for α = 0.035 in Table 3. For each parameter, we execute 1,000 authentications
with each of legitimate and illegitimate devices, Our experiments show that, as
in the simulation, we can increase PSucc (and decrease PBad) by increasing (n, k).

If we use the SRAM-PUF in other conditions (high/low power supply and/or
temperature) or if we use other PUF devices, the bit error rate may change as
summarized in Chap. 4 of [14]. The correctness of our protocol depends on the
bit rate. If a PUF with a bit error rate of less than 15% (as discussed in [15,26])
is used, our simulation for α = 0.15 ensures that our protocol works correctly
by selecting adequate (n, k).

5 Discussion

Let us discuss the applicability of our protocol to IoT devices in terms of security
and efficiency.
4 http://www.st.com/en/evaluation-tools/nucleo-f401re.html (accessible on October

18, 2022).

http://www.st.com/en/evaluation-tools/nucleo-f401re.html
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Table 4. Experimental Results.

l n k PSucc PBad

2 64 40 1 0.028

2 128 80 1 0.003

2 256 160 1 0

l n k PSucc PBad

8 64 40 0.968 0.029

8 128 80 0.996 0.004

8 256 160 1 0

5.1 Application to IoT Devices

IoT systems require secure and low-cost authentication protocols. There are
three possible solutions: (i) lightweight authentication protocols based on a dig-
ital secret key such as [10,13], (ii) PUF-based authentication protocols with an
error correction such as the fuzzy extractor, and (iii) helper data free PUF-based
authentication protocols such as [16,30] and ours. As discussed in the introduc-
tion, the third one is suitable for tiny devices.

Whereas the raw bits of the PUF output are transmitted by previous proto-
cols [16,30], our protocol does not transmit the unaltered raw bits. Therefore,
unlike previous protocols, the PUF output can be reused. That is, our protocol
can be securely realized with a weak PUF.

Our experiments in Sect. 4.3 show that our protocol is executable by resource-
constrained and mass-produced, in other words, tiny and cheap devices. The
protocol consists of lightweight computations such as a hash function and some
bit operations suitable for such devices. The communication cost is also adequate;
receiving a 128-bit challenge and transmitting a 128-bit randomness for avoiding
active attacks and a 128-bit response, for example.

5.2 Security and Efficiency

Although the appropriate parameters need to be investigated by further research
according to the security requirements of individual applications, let us discuss
the security and efficiency of our protocol with the parameters already discussed.
Assume a weak PUF with 4 KiB input space, such as 4 KiB SRAM, where the
noise is at most 15%. With the PUF, let us consider our protocol with (l, n, k) =
(2, 128, 80). More than 536 million (≈ (

32768
2

)

) responses can then be used, which
allows us to use our protocol up to more than 4 million (536/n = 536/128 > 4
million) times. In this case, the transmitted data for each authentication are
128-bit a, 128-bit b, and 128-bit z, as discussed in the previous subsection.

Our protocol is proven to be secure if the underlying PUF is linearly unpre-
dictable. Although an ideal PUF in which the output bits are uniformly random
and mutually independent creates a linearly unpredictable PUF, the reverse does
not hold in general. This means that constructing a linearly independent PUF
is easier than constructing an ideal PUF. Our protocol and security proof might
give a new direction for PUF design and development suitable for authentication
in IoT systems.
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Finally, let us discuss the (in)security against side channel attacks. Some
references [9,17,28] have reported the (in)security of the PUF and the error
correction, namely, the fuzzy extractor. In this paper, we regard the PUF as a
black box for generating random but unique data and assume a PUF with less
side channel leakage. Let us consider the leakage from other parts than the PUF.
In general, the side channel information tends to be leaked when complex non-
linear operations are performed. Our protocol does not use the complex fuzzy
extractor but instead uses lightweight linear XOR operations that are thought
to leak less information. Moreover, XOR allows us to easily use masking, which
is one of the basic countermeasures against side channel attacks. Therefore, our
protocol is potentially robust against these attacks.

6 Conclusions

We proposed a helper-data-free PUF-based authentication protocol that allows
devices to reuse the PUF output. Because it does not require helper data stored
in NVM nor a costly strong PUF with a large number of fresh output bits, our
protocol is suitable for low-cost devices. Although the authentication might not
be rigorous for some of the parameters discussed in Sect. 4, it is suitable for
IoT systems, which work correctly if most of the data are correct and reliable.
The estimation of adequate parameters for a specific application, including the
selection of PUF type, is the target of future work.

Moreover, we gave a security proof for our protocol if the underlying PUF
is linearly unpredictable. Although constructing a linearly unpredictable PUF is
an open problem, it is easier than constructing an ideal PUF. Hence, our result
is not only of theoretical interest but bridges the gap between research on PUF
device development and application of PUF to authentication protocols.

Acknowledgements. We thank the anonymous referees, whose comments have
helped us improve the presentation of the paper. This work was supported by Grant-
in-Aid for Scientific Research (JP18H05289, JP18K11293, JP21H03395, JP22H03590).

A Related Works

We give a review of the helper-data-free PUF-based authentication protocol
Slender PUF as a previous work on an authentication protocol using a noisy key.
We then review a non-PUF-based authentication that relates to our protocol.
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Fig. 2. Improved Slender PUF [23].

A.1 Helper-Data-Free PUF-Based Authentication: Slender PUF

We first review Slender PUF, which was proposed by Majzoobi et al. [16]. Ros-
tami et al. [23] then improved it to enhance the security against learning attacks5,
by adding circularity operations such as SubCirc and CircPad. In Slender PUF
and its improvement, the device is assumed to include a PUF. The server is also
assumed to learn the model of the PUF and securely store the model during
enrollment of the device. Yu et al. [30] also proposed a variant of Slender PUF,
which treated selected bits from the PUF output, instead of the circulative data,
as the response.

Figure 2 shows the protocol of Rostami et al. [23]. In this figure, TRNG,
CGEN, and SPUF are a true number generator, a challenge generator, and a
strong PUF with an L-bit output, respectively. SubCirc(y, i1) is a function that
extracts an m-bit substring w from the i1-th bit of the L-bit PUF output y,
for an integer i1 < L and the predetermined m. In SubCirc, the L-bit PUF
output is used in a circular manner. That is, if i1 + m > L, the remainder of
the substring is taken from the beginning of y. CircPad(w, i2) is a function that
pads the m-bit substring w with random bits to create an L′-bit string where
L′ > m. Specifically, CircPad generates an L′-bit string a′ at random, replaces
a substring of a′ from its i2-th bit with w, and returns the resulting substring
as a. In this process, the L′-bit string a′ is used in a circular manner. That is,
if i2 + m > L′, the remainder of the substring is taken from the beginning of a′.
Predict(x) is a function that, for an input x, returns SPUF(x) from the trained
PUF model. ε is a prefixed threshold.

Because this protocol transmits the circulative raw bits of the PUF output,
the PUF output cannot be reused in order to prevent forgery attacks using
previous responses. Hence, it requires a strong PUF as a building block. Although
we omit the details, the original Slender PUF [16] and another variant [30] also
require a strong PUF for similar reasons.

5 Against some PUF instantiations, attacks that learn the model of the PUF from the
known input–output pairs have been reported.
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Fig. 3. 2-round lightweight device authentication based on MAC1 [10].

A.2 Non-PUF-Based Authentication

Kiltz et al. [10] proposed a lightweight authentication protocol with man-in-the-
middle security implied by their secure MAC. Figure 3 shows the protocol that
we refer to while constructing our protocol later. In this figure, s↓v ∈ {0, 1}l

denotes, for s,v ∈ {0, 1}2l such that hw(v) = l, an l-bit string, which is a
concatenation of (i-th) bits extracted from s, where the corresponding (i-th) bit
of v is 1. Berτ denotes the Bernoulli distribution parameterized by τ ∈ (0, 1/2).
RT and rank(R) denote a transpose and a rank of matrix R, respectively.

In this protocol, the device and the server digitally share secret keys: a 2l-bit
secret key s and a pair of secret functions (C, h, π), where C is a public function
from Z

ν
2 to Z

2l
2 whose output satisfies both hw(C(x)) = l and hw(C(x)⊕C(x′)) ≥

0.9l, for arbitrary inputs x �= x′, h is a pairwise independent permutation, and
π is a permutation.

As in the figure, the device computes a response by adding a small amount
of logical noise e, chosen from the Bernoulli distribution, to the product of the
matrix and secret vector. The server reproduces the response in a similar manner
to the device, and accepts the device if the distance of these responses is small
enough. Note that the noise makes it difficult for an adversary to recover the
secret vector from the response. The scheme can be proven to be secure if the
learning parity with noise (LPN, [2]) problem is hard.

B Proof Sketch of Theorem 1

In this subsection, we give a sketch of security proof for our protocol.

Sketch of Proof: We give a proof by contradiction. Namely, we show that if
an adversary A against our protocol exists, then we can construct a reduction
B that, by using A as a subroutine, breaks the linear unpredictability of the
underlying PUF.

A is an adversary who forges a response of the authentication protocol. A
makes queries to a random oracle OH and an authentication oracle OA, and
then, A asks B to send a challenge a∗ to A. After that, A continues to make
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queries to the above two oracles, and then A outputs a forged response (b∗, z∗)
for a∗. Note that A is disallowed to output (b∗, z∗) where OA returns (b∗, z∗)
for query a∗.

B interacts with A to break the linear unpredictability of the PUF. B is
allowed to access the PUF oracle OP to obtain the XOR of PUF outputs with
positions indicating the output bits to be XORed. With the replies of OP , B
simulates OH and OA in order for A to work correctly. If B succeeds, B can
obtain a forgery from A, and, with this forgery, B tries to break the underlying
assumption of the PUF.

The proof uses the game hopping technique [27] with four steps from Game0
(original game for A to break the authentication protocol) to Game4 (where
B breaks the assumption) below. In each game, B interacts with A to receive a
forged response. Here, Si denotes an event where B receives a forgery that passes
the verification from A in Gamei (i ∈ [0, 4]).

Overview of Games:
In the proof, we consider five games.
Game0 is an original/real game where A tries to break the security of our

authentication protocol. Note that in the random oracle model, we assume that
H is a random oracle. That is, A obtains the output of H not from a computation,
but from a query to oracle OH outside of A.

In Game1, we modify the entity who invokes the PUF. In Game0, B (which
interacts with A) invokes PUF by itself. However, because our proof goal is to
construct B, which breaks the security assumption of the PUF that is located
outside of B, we let B ask the PUF output to OP , not to invoke PUF by itself.

In Game2, we modify A to ask OH about H(a∗,b∗, i) as for the forgery
(a∗,b∗, z∗), in advance.

Game3 and Game4 are the main parts of this proof. In this proof, B tries to
distinguish the real world from the random one, by using A as a subroutine.

The basic strategy for constructing B is as follows. From the challenger C,
B receives {(p̃i,1, · · · , p̃i,l, z̃i)} as an instance. Let us consider the case where B
receives a forged response (b∗, z∗) corresponding to {(p̃i,1, · · · , p̃i,l)} from A. If
c = 1, then, for more than or equal to k i’s, z∗

i is expected to be equal to z̃i.
However, if c = 0, because z̃i’s are random and independent from PUF outputs,
z∗
i can be equal to z̃i for about n/2 i’s. Hence, B can distinguish between whether

the number of equations {z∗
i = z̃i} exceeds the threshold k or not.

To make A output forged response corresponding to {(p̃i,1, · · · , p̃i,l)}i, B
needs to embed it in the simulation of the answer of OH . In Game3, B decides
when B embed them on queries to OH . To do so, B looks for the query from A
to OH on (a∗,b∗, ∗). Note that A is a black-box adversary and A may not query
(a∗,b∗, 1), (a∗,b∗, 2), · · · in sequential, but in random order. Therefore, at step
10(b) in Game3, B also checks whether it is the first query on (a∗,b∗).

Finally, in Game4, we let B distinguish the worlds by a threshold k.
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Probability Estimation: From above discussions,

ε′ = |Pr[c′ = 1|c = 1] − Pr[c′ = 1|c = 0]|
≥ Pr[S4|c = 1] − Pr[Bad2]
= Pr[S3] − Pr[Bad2]

≥ 1
qh + nqa

Pr[S2] − Pr[Bad2]

≥ 1
qh + nqa

(Pr[S0] − Pr[Bad1]) − Pr[Bad2]

=
1

qh + nqa
(ε − Pr[Bad1]) − Pr[Bad2]

≥ 1
qh + nqa

ε − 1
2kb

−
n

∑

i=k

(

n
i

)

2i

holds, where Badi denotes an event where A’s views are different between
Gamei−1 and Gamei. 	
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Abstract. Assume that, given a sequence of n integers from 1 to n
arranged in random order, we want to sort them, provided that the only
acceptable operation is a prefix reversal, which means to take any num-
ber of integers (sub-sequence) from the left of the sequence, reverse the
order of the sub-sequence, and return them to the original sequence. This
problem is called “pancake sorting,” and sorting an arbitrary sequence
with the minimum number of operations restricted in this way is known
to be NP-hard. In this paper, we consider applying the concept of zero-
knowledge proofs to the pancake sorting problem. That is, we design
a physical zero-knowledge proof protocol in which a user (the prover)
who knows how to sort a given sequence with � operations can convince
another user (the verifier) that the prover knows this information without
divulging it.

Keywords: Zero-knowledge proof · Card-based cryptography ·
Pancake sorting

1 Introduction

“Pancake sorting” [27] is a problem of sorting a given sequence of n integers
from 1 to n by using only “prefix reversals,” which rearrange a sub-sequence of
any length taken from the left in the reverse order. In this paper, we apply the
concept of zero-knowledge proofs to the pancake sorting problem and propose
a physical zero-knowledge proof protocol for the pancake sorting problem. This
paper begins by explaining the pancake sorting problem in detail.

1.1 Pancake Sorting Problem

We take a sequence of five integers (3, 5, 2, 1, 4) as an example. For this sequence,
let us reverse its prefixes of lengths 2, 5, 4, and 3 in this order one by one, so
that the sequence is rearranged as

(3, 5, 2, 1, 4) → (5, 3, 2, 1, 4) → (4, 1, 2, 3, 5) → (3, 2, 1, 4, 5) → (1, 2, 3, 4, 5).
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Thus, the sorting (in ascending order) is completed in four prefix reversals. The
four prefix reversals above can be represented as a sequence (2, 5, 4, 3) that con-
sists of the lengths in the prefix reversals; such a sequence of prefix reversal
lengths completing the sorting is called a solution to a given sequence (to be
sorted).

This kind of sorting problem is called pancake sorting [27]; the name comes
from the problem of sorting a stack of pancakes of distinct diameters in order of
diameter size by repeatedly flipping over a number of pancakes at the top with
a spatula.

Let us formalize this problem. Let n ≥ 1, and let (x1, x2, . . . , xn) be an input
sequence that consists of n integers randomly arranged from 1 to n. Such a
sequence of n integers can be regarded as a permutation on {1, 2, . . . , n}. That is,
when Sn denotes the symmetric group of degree n, the sequence (x1, x2, . . . , xn)
can be represented by the following permutation x ∈ Sn:

x =
(

1 2 3 · · · n
x1 x2 x3 · · · xn

)
.

Next, let us also express the prefix reversal operations in terms of permutation
as follows. For each i such that 1 ≤ i ≤ n, the operation of a prefix reversal of
length i is represented by the following permutation swi ∈ Sn:

swi =
(

1 2 3 · · · i − 2 i − 1 i
i i − 1 i − 2 · · · 3 2 1

)
.

Thus, (y1, y2, . . . , y�) ∈ {1, 2, . . . , n}� is a solution to a sequence x ∈ Sn if and
only if

swy�
◦ swy�−1 ◦ · · · ◦ swy1 ◦ x = id

holds, where id ∈ Sn denotes the identity. Note that the above permutation swi

is equal to its inverse sw−1
i . That is, swi = sw−1

i holds for every i, 1 ≤ i ≤ n.
Note furthermore that sw1 = id.

Following this formulation, we can check, for example, that the above
sequence (3, 5, 2, 1, 4) and its solution (2, 5, 4, 3) satisfy

sw3 ◦ sw4 ◦ sw5 ◦ sw2 ◦
(

1 2 3 4 5
3 5 2 1 4

)
= id.

1.2 Computational Complexity of Pancake Sorting

Since the pancake sorting problem was introduced in the 1970s, many researchers
have reported algorithms for minimizing the number of prefix reversals and their
lower bounds.

Among all the solutions to a sequence x ∈ Sn, any solution with the minimum
number of prefix reversals is said to be optimal ; we denote the minimum number
of prefix reversals as α(x), that is, the length of any optimal solution to x. For
example, because the length of the solution (2, 5, 4, 3) to the sequence (3, 5, 2, 1, 4)
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is four and there is no solution whose length is smaller than four, it is an optimal
solution and we have α((3, 5, 2, 1, 4)) = 41. We also write h(n) as the longest
length of optimal solutions to sequences of n integers. That is, we define

h(n) := max {α(x) | x ∈ Sn}

for every n ≥ 1.

Table 1. Values of h(n).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

h(n) (OEIS A058986) 0 1 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22

As shown in Table 1, the values of h(n) have been obtained up to n = 19
by numerical calculations or observations (e.g., [2,9,10,19,30]), and they are
registered in the On-Line Encyclopedia of Integer Sequences (OEIS) as OEIS
A0589862. Finding the values of h(n) for n ≥ 20 is an open problem.

As general upper and lower bounds on h(n), Gates and Papadimitriou [12]
showed that 17

16n ≤ h(n) ≤ 5n+5
3 in 1979. Since then, the bounds on h(n) have

been analyzed, and the best lower and upper bounds currently known are 15
14n ≤

h(n) [19] and h(n) ≤ 18
11n [8], respectively.

In contrast, the complexity of finding its optimal solution given an arbitrary
sequence x ∈ Sn (sorting by prefix reversals, or MIN-SBPR) had been unsolved
for many years, until in 2012 Bulteau, Fertin, and Rusu [3,4] proved that this
problem, MIN-SBPR, is NP-hard.

1.3 Contribution

As explained in Sect. 1.2, MIN-SBPR is an NP-hard problem, and hence, there
are possible situations where it is valuable to be the only one who knows a
solution to a particular sequence of a pancake sorting problem. Therefore, we
will attempt to apply the concept of the zero-knowledge proof [13] to the pancake
sorting problem.

Suppose that there are two users, a prover P and a verifier V , and only
the prover P knows a solution (y1, y2, . . . , y�) of length � to a sequence x ∈ Sn.
Assume furthermore that P wants to convince V that P knows the solution with-
out leaking any information about the solution. Our contribution is to propose
a zero-knowledge proof protocol for the pancake sorting problem that achieves
this goal. The proposed protocol is a so-called physical zero-knowledge proof
protocol that can be executed using a physical deck of cards.

1 In this way, we sometimes use the terms “sequence” and “permutation” interchange-
ably.

2 https://oeis.org/A058986.

https://oeis.org/A058986
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The following is an example of a game where the proposed protocol will
be useful. When a sequence (12, 19, 20, 4, 13, 17, 5, 10, 16, 15, 11, 1, 7, 14, 3, 6, 18, 8,
2, 9) of size n = 20 of the pancake sorting problem is given, multiple players
try to find a solution to it, and a player wins the game if he/she finds the
solution with the shortest length. In this case, if a player discloses the solution
to other players, another player who sees the solution may take it as his/her
own achievement or may use it as a hint for finding a solution to the next game,
which makes the game less fun. Therefore, a player who has found a solution
of certain length first convinces other players that he/she knows the solution
without leaking any information using our zero-knowledge proof protocol, and
then the player discloses the solution after gaining sufficient recognition so that
he/she can correctly claim the achievements or be judged as a winner of the
game.

In addition, we expect that our proposed protocol can be used as a good
educational tool for teaching lay-people the concept of zero-knowledge proof
as well as the sorting problem. Furthermore, as will be explained in Sect. 6,
our proposed technique can be applied to more general problems (beyond the
pancake sorting problem).

1.4 Related Work

One problem similar to the pancake sorting problem is Topswops [25,26,45].
In Topswops, for a sequence of integers, a prefix reversal of the first k integers,
where k is the leading integer of the sequence, is repeated until the leading integer
becomes 1. Recently, the authors constructed a physical zero-knowledge proof
protocol that can verify that a Topswops game terminates with a predefined
number of prefix reversals while the input sequence of integers is kept confidential
[29]. Although pancake sorting is similar to Topswops, what is being kept secret
in the zero-knowledge proofs is different. In the former, the solution should be
kept secret, whereas in the latter, the input sequence of integers should be kept
secret.

In addition, numerous physical zero-knowledge proof protocols for pencil puz-
zles have been constructed to date using a physical deck of cards. Examples are
Akari [5], Cryptarithmetic [22], Hashiwokakero (Bridges) [63], Heyawake [53],
Hitori [50,53], Juosan [39], Kakuro [5,40], KenKen [5], Makaro [6,66], Masyu [32],
Nonogram [7,54], Norinori [11], Numberlink [58,60], Nurikabe [50,53], Nurim-
isaki [48], Ripple Effect [61,62], Shikaku [65], Slitherlink [32,33], Sudoku [14,55,
57,67,68], Suguru [49,52], Takuzu [5,39], and Usowan [51].

Card-based cryptography that performs cryptographic tasks using a deck
of physical cards has been growing rapidly in recent years [42,43]. Hot top-
ics include secure and efficient protocols in the private model [1,35,46], multi-
valued-output symmetric function evaluation [64,71], information leakage due
to operative errors [44], graph automorphism shuffles [41], secure sorting [16],
multi-valued protocols with a direction encoding [76], the half-open action [38],
card-minimal protocols [15,28], and single-shuffle protocols [31,73]. Furthermore,
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very recently, Shinagawa and Nuida [74] showed that a certain single-shuffle pro-
tocol implies the existence of a private simultaneous messages protocol; this is
the first successful and amazing result that directly connects ‘physical’ protocols
with ‘digital’ protocols. It should be noted that several studies [34,56,75] on
card-based cryptography were reported in the previous SecITC conferences.

2 Preliminaries

In this section, we first explain the physical properties of cards used in this paper,
then describe how to encode permutations and integers using cards, and finally
introduce the “pile-scramble shuffle” [21], which will be used in our protocol.
Hereinafter, n denotes the size of a pancake sorting problem (i.e., the length of
an input sequence of integers).

2.1 Physical Cards

In this paper, two types of physical cards are used:

Integer cards Each card has an integer from 1 to n written on its face, such
as 1 2 3 · · · n , and the reverse side of every card has the same pattern ? .
Black and red cards Each card has a ♣ or ♥ symbol on its face, and the
back of every card has the same pattern ? .

We use the notation
?
i

to denote a face-down integer card whose face is i for an integer 1 ≤ i ≤ n.

2.2 Permutation Commitment

As explained in Sect. 1.1, a sequence of integers and an operation of prefix rever-
sal in the pancake sorting problem are represented by permutations. Therefore,
we introduce a method to represent permutations with integer cards, as often
used in card-based cryptography [20,67].

To represent a permutation π ∈ Sn, we simply use n integer cards
1 2 3 · · · n and arrange them according to the values of π(1), π(2), . . . , π(n):

π(1) π(2) π(3) · · · π(n)
.

Consider turning over these n cards: we call n face-down cards

?
π(1)

?
π(2)

?
π(3)

· · · ?
π(n)

a permutation commitment to π ∈ Sn. For example, a permutation commitment
to sw3 ∈ Sn (corresponding to a prefix reversal of length 3) is

?
3

?
2

?
1

?
4

?
5

· · · ?
n−1

?
n

.
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In the following, we write a permutation commitment to π ∈ Sn as

π : ? ? · · · ? or ?︸︷︷︸
π

.

2.3 Integer Commitment

As explained in Sect. 2.2, a sequence x ∈ Sn and a prefix reversal swi are repre-
sented with permutation commitments. Another important element of the pan-
cake problem is a ‘solution,’ and hence, we introduce “integer commitments”
here to express the solution with cards.

With n − 1 black cards and one red card, let us encode integers from 1 to n
as

♥ ♣ ♣ ♣ · · · ♣ ♣ = 1

♣ ♥ ♣ ♣ · · · ♣ ♣ = 2

♣ ♣ ♥ ♣ · · · ♣ ♣ = 3
...

♣ ♣ ♣ ♣ · · · ♣ ♥ = n.

That is, the position of the red card ♥ determines the integer. Following this
encoding rule, we will call a sequence of face-down cards an integer commitment.
Such an encoding rule is often used in card-based cryptography [37,59,77].

According to convention, we write an integer commitment to i, 1 ≤ i ≤ n, as
the symbol En(i):

En(i) : ? ? ? · · · ? ,

where only the i-th card is ♥ and the remaining n−1 cards are ♣ as mentioned
above.

2.4 Pile-Scramble Shuffle and Composition of Permutations

A pile-scramble shuffle [21] is a shuffling operation by which several piles of cards
of the same size are shuffled.

As an example, suppose that we have three permutation commitments to a
sequence x ∈ Sn, the identity id ∈ Sn, and a prefix reversal swi ∈ Sn:

x : ? ? ? · · · ?

id : ? ? ? · · · ?

swi : ? ? ? · · · ? .
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Considering each (vertical) column consisting of three cards as a single pile,
we apply a pile-scramble shuffle to the n piles; then, the transition is as follows:

⎡
⎣ ? ? ? · · · ?

? ? ? · · · ?

? ? ? · · · ?

⎤
⎦ →

r ◦ x : ? ? ? · · · ?

r ◦ id : ? ? ? · · · ?

r ◦ swi : ? ? ? · · · ? ,

where r ∈ Sn is a uniformly distributed random permutation generated by the
pile-scramble shuffle.

We then turn over the bottom row, namely the permutation commitment to
r ◦ swi, and sort the vertical columns without collapsing them based on the n
integers appearing in the bottom row. With this sort, (r ◦ swi)−1 acts upon the
top two rows, and the cards are rearranged as follows (note that swi = sw−1

i

holds):

swi ◦ x : ? ? ? · · · ?

swi : ? ? ? · · · ?

1 2 3 · · · n .

Thus, the above series of operations allows us to compose permutations of
the prefix reversal swi and of the sequence x, while the permutation commitment
to swi remains intact. The proposed protocol in this paper uses this technique,
which originally comes from the “permutation division protocol” developed by
Hashimoto et al. [17,18].

3 Proposed Protocol

In this section, we propose a physical zero-knowledge proof protocol for the
pancake sorting problem using permutation and integer commitments.

Let x ∈ Sn be an input sequence and let y = (y1, y2, . . . , y�) be a solution to
x with length �. That is, swy�

◦ swy�−1 ◦ · · · ◦ swy1 ◦ x = id holds. Assume that
the sequence x and the length of the solution � are public information and that
only the prover P knows the solution y (i.e., the verifier V does not know y).

3.1 Concept

As seen in Sect. 2.4, from permutation commitments to x and swi, it is easy to
construct a composition of permutations swi ◦ x. A permutation commitment
to the input sequence x can be created publicly. Thus, if the prover P prepares
permutation commitments to swy1 , swy2 , . . . , swy�

corresponding to the solution
y = (y1, y2, . . . , y�), then by composing them, we have

swy�
◦ swy�−1 ◦ · · · ◦ swy1 ◦ x : ? ? ? · · · ? .
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By turning over this permutation commitment and checking that it is the iden-
tity id, we can guarantee that the prover P knows y. Based on these ideas, we
propose our protocol as described below.

Note that if the prover P directly creates and places permutation commit-
ments to swy1 , . . . , swy�

by himself/herself, then we cannot guarantee that they
surely correspond to some prefix reversals; therefore, we need a more elaborate
way to arrange permutation commitments to swy1 , . . . , swy�

.

3.2 Protocol Description

First of all, as an input to our protocol, a prover P , who knows a solution
y = (y1, y2, . . . , y�), creates integer commitments En(y1), En(y2), . . . , En(y�) cor-
responding to (y1, y2, . . . , y�) in secret and places them on the table as follows:

En(y1) : ? ? · · · ?

En(y2) : ? ? · · · ?

...

En(y�) : ? ? · · · ? .

(1)

In addition, n + 2 sets of integer cards 1 2 3 · · · n as additional cards are
prepared.

Our protocol is executed with the above cards as input. Because our protocol
is non-interactive (cf. [36]), it may be executed individually by either the prover
P or by the verifier V (or even by any third party).

Protocol 1 (Proposed protocol).

1. Using additional n + 2 sets of integer cards, arrange n + 2 permutation com-
mitments to sw1, sw2, . . . , swn, x, and id, as follows:

?︸︷︷︸
sw1

?︸︷︷︸
sw2

· · · ?︸︷︷︸
swn

x : ? ? ? · · · ?

id : ? ? ? · · · ? .

2. Take the permutation commitments to sw1, sw2, . . . , swn, and place them
along with the integer commitments En(y1), En(y2), · · · , En(y�) of Eq. (1)
as follows:

?︸︷︷︸
sw1

?︸︷︷︸
sw2

· · · ?︸︷︷︸
swn

En(y1) : ? ? · · · ?

En(y2) : ? ? · · · ?
...

En(y�) : ? ? · · · ? .
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Note that in the first row, the permutation commitment to swyi
for each i,

1 ≤ i ≤ �, appears in the column where the card ♥ appears in the (i + 1)-th
row3.

3. Apply a pile-scramble shuffle4:
⎡
⎢⎢⎢⎣

? ? · · · ?

? ? · · · ?
...

...
...

? ? · · · ?

⎤
⎥⎥⎥⎦ .

Because the pile-scramble shuffle does not change within each vertical col-
umn, the above statement “in the first row, the permutation commitment to
swyi

appears in the column where the card ♥ appears in the (i + 1)-th row”
remains valid. Therefore, we turn over the integer commitment in the second
row, and identify the permutation commitment ?︸︷︷︸

swy1

above ♥:

? ? · · · ?︸︷︷︸
swy1

· · · ?

♣ ♣ · · · ♥ · · · ♣
? ? · · · ? · · · ?
...

...
...

...
? ? · · · ? · · · ?

.

4. Use the permutation commitment to swy1 just identified and the permutation
commitments to x and id to construct a composition of permutations swy1 ◦x
(still holding a permutation commitment to swy1), as described in Sect. 2.4:

x : ? ? · · · ?

id : ? ? · · · ?

swy1 : ? ? · · · ?

→
⎡
⎣ ? ? · · · ?

? ? · · · ?

? ? · · · ?

⎤
⎦ →

swy1 ◦ x : ? ? · · · ?

swy1 : ? ? · · · ?

1 2 · · · n .

5. Return ?︸︷︷︸
swy1

obtained in the previous step to its original position in Step (3)

and remove the second row:

? ? · · · ?︸︷︷︸
swy1

· · · ?

? ? · · · ? · · · ?
...

...
...

...
? ? · · · ? · · · ?

.

3 Here, En(y1) is the second row, En(y2) is the third row, and so on.
4 Instead of a pile-scramble shuffle, one may use a “pile-shifting shuffle” [47,72].
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6. Repeat Steps (3) through (5) � − 1 times, but do not execute the process
corresponding to Step (5) in the last iteration. That is, we identify the per-
mutation commitments from swy2 to swy�

and compose them sequentially to
the composition of permutations swy1 ◦x. Finally, we obtain the composition
of permutations as follows:

swy�
◦ swy�−1 ◦ · · · ◦ swy1 ◦ x : ? ? ? · · · ? .

7. Turn over the permutation commitment to swy�
◦swy�−1 ◦· · ·◦swy1 ◦x obtained

in the previous step and return “accept” if it is id; otherwise return “reject.”

4 Security and Performance

In this section, we discuss the security and performance of Protocol 1 described
in Sect. 3.

4.1 Security

First, let us check that, for a given sequence x ∈ Sn and a length �, our protocol
performs a zero-knowledge proof for a solution y (of length �); in other words,
we need to show that the protocol satisfies the completeness, soundness, and
zero-knowledge properties.

Completeness. Suppose that the prover P correctly places integer commit-
ments according to the solution y. In this case, as can be seen from the con-
struction of our protocol, it is not rejected at any step and is also accepted at
the final step.

Soundness. Assume that the prover P places illegal commitments as input.
There are two cases to be considered; we will show that our protocol eventually
rejects the invalid solution in both cases.

(i) If there is an illegal integer commitment (placed by P ) which does not consist
of one red card and n − 1 black cards, then it is detected and rejected when
the integer commitment is turned over in Step (3) of our protocol.

(ii) (ii) If the input integer commitments correspond to an incorrect solution
y′ = (y′

1, y
′
2, . . . , y

′
�), then the permutation commitment to x is rearranged

according to y′, as can be seen from the construction of our protocol. How-
ever, the rearranged permutation is not id in Step (7) and our protocol rejects
it.

Zero-Knowledge. Suppose that the integer commitments corresponding to the
solution y = (y1, y2, . . . , y�) are correctly placed. No information about yi is
leaked during the execution of our protocol, because a pile-scramble shuffle is
applied immediately before the cards are turned over to be face-up (except in the
final step). The identity id that is opened in the final step is public information.
Therefore, our protocol is information-theoretically secure.
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4.2 Performance

This subsection discusses the number of cards and the number of shuffles required
in our protocol.

First, for the number of cards, as described at the beginning of Sect. 3.2, we
use � ♥ cards and (n − 1)� ♣ cards for integer commitments. In addition, we
use n + 2 sets of cards from 1 to n as additional cards. Thus, n� black and
red cards and n(n + 2) integer cards are used. Therefore, our protocol requires
n2 + (2 + �)n cards in total.

The only shuffling operation used in the proposed protocol is the pile-
scramble shuffle. The pile-scramble shuffle is performed once in Step (3) and
once in Step (4), and each of these steps is executed � times. Therefore, in total,
the number of shuffles required in our protocol is 2�.

5 Variants

This section presents variants of our protocol.

5.1 Non-interactive Protocol with Fewer Additional Cards

In our protocol, the first integer commitment is

En(y1) : ? ? · · · ? ,

where the y1-th card is ♥ and the other n − 1 cards are ♣. Let us consider a
variant that uses 1 instead of ♥ and 2 , 3 , · · · , n instead of ♣. In this case,
after ?︸︷︷︸

swy1

is identified in Step (3) of our protocol, the opened 1 , 2 , 3 , · · · , n

can be used as additional cards in Step (4), and hence, we can reduce the number
of additional cards by n.

5.2 Interactive Protocol with Fewer Additional Cards

Our protocol uses � ♥ cards and (n − 1)� ♣ cards for integer commitments
En(y1), En(y2), · · · , En(y�). Instead of preparing all En(y1), En(y2), · · · , En(y�)
in advance, if the prover P places En(yi) every time Steps (3) and (6) are exe-
cuted, the protocol could be executed with one ♥ card and n − 1 ♣ cards.

Note that the order of permutation commitments ?︸︷︷︸
swy1

?︸︷︷︸
swy2

· · · ?︸︷︷︸
swyn

is ran-

domized by the pile-scramble shuffle in Step (3). Hence, the prover can not
determine the correct position of the permutation commitment corresponding
to the next prefix reversal, and hence, it is impossible for the prover to place a
new integer commitment correctly. To address this issue, just after returning the
permutation commitment to its original position in Step (5), the prover applies
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a pile-scramble shuffle, turns over the permutation commitments to be face-up,
places a new integer commitment corresponding to the next prefix reversal, and
turns over the permutation commitments again to be face-down. After that, the
piles of cards are shuffled with a pile-scramble shuffle in Step (3), as invoked by
Step (6). Hence, although this variant can reduce the number of required cards,
the number of shuffles increases by � − 1.

Similar to Sect. 5.1, the number of additional cards can be reduced more by
using 1 2 3 · · · n instead of one ♥ card and n − 1 ♣ cards.

5.3 Protocol with Fewer Shuffles

Because swi satisfies swi = sw−1
i (namely, swi ◦ swi = sw−1

i ◦ swi = id), two
consecutive applications of swi to a sequence x ∈ Sn will not change it. If a
player tries to find a solution with a shorter length for the pancake sorting
problem, the same prefix reversal is never performed twice in a row. Instead of
executing Step (3) of our protocol (and the step that is equivalent to Step (3) in
Step (6)) for En(yi) one at a time, executing two steps for En(yi) and En(yi+1)
together can reduce the number of shuffles by 	�/2
. This variant applies to both
the interactive and non-interactive protocols above.

5.4 Protocol with Fewer Cards

The permutation commitment sw1 = id does not change a sequence x ∈ Sn.
Similar to the discussion in Sect. 5.3, if a player tries to find a solution with a
shorter length for the pancake sorting problem, sw1 = id is never performed in
our protocol as well as the above-mentioned variants. Hence, we can omit the
leftmost column in Step (2) of our protocol so that Steps (2), (3), and (5) are
performed with n−1 piles (columns) of cards. In this variant, we can reduce the
number of cards by n + �.

6 Conclusion

In this paper, we proposed a physical zero-knowledge proof protocol for the
pancake sorting problem. The main idea is to combine permutation and integer
commitments so that a prover can efficiently place a solution and efficiently
perform prefix reversals secretly.

Because the pancake sorting problem has many variations (e.g., the intro-
duction of settings where pancakes have two distinct sides [12,69,70]), building
new or generic protocols for them is one of our future works.

Beyond the pancake sorting problem and its variants, our zero-knowledge
proof protocol can be modified for the following general problem5: Assuming
that a sequence x of length n (which is not necessarily a permutation) and an
integer � along with m distinct permutations σ1, σ2, . . . , σm ∈ Sn and a sequence

5 This generalization was pointed out by Koji Nuida.
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z of length n are public, the prover wants to convince the verifier that the prover
knows (y1, y2, . . . , y�) such that

σy�
◦ σy�−1 ◦ · · · ◦ σy1(x) = z,

where π(x) for a permutation π represents the permuted sequence according to
π. This general problem includes solving the Rubik’s Cube, for instance.

The graph obtained by connecting two vertices that can be transitioned by a
prefix reversal with edges, where each sequence is regarded as a vertex, is called
a pancake network [19], and is considered to be the origin of the reconfiguration
problem (e.g., [23,24]), which is currently popular in the study of algorithm
theory. Our protocol can be regarded as a technique to show that a vertex can
be transitioned from one vertex to another in a pancake network without leaking
any information, and we believe that it is an attractive topic to investigate
whether card-based cryptography and zero-knowledge proofs can be applied to
various other reconfiguration problems.
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Abstract. An increasing amount of Internet traffic has its content
encrypted. We address the question of whether it is possible to pre-
dict the activities taking place over an encrypted channel, in particular
Microsoft’s Remote Desktop Protocol. We show that the presence of five
typical activities can be detected with precision greater than 97% and
recall greater than 94% in 30-s traces. We also show that the design of
the protocol exposes fine-grained actions such as keystrokes and mouse
movements which may be leveraged to reveal properties such as lengths
of passwords.

Keywords: Encryption · Traffic Classification · Detection · Network
Security · Cybersecurity · Analytics · Privacy · User Activity · Side
Channel Analysis

1 Introduction

One response to the obvious security weaknesses of networks is to encrypt the
payloads of packet traffic. It was estimated in 2018 that encryption was used in
more than 70% of network communications [21] but the rate of penetration is
quite variable because of the cost and complexity of public key infrastructure,
particularly for small enterprises. We explore the question of how much can be
detected about interactions, even when payloads are encrypted. In particular,
we are concerned with activity detection: what is a user doing?

There are some legitimate reasons to be able to answer this question: deter-
mining usage to insure adequate provisioning, for example. It is also important to
know how much an adversary could infer [34]. We focus on the Microsoft Remote
Desktop Protocol (RDP), a popular protocol that provides an encrypted channel
between a client and a host, allowing remote work on the host [10]. Five major
interactions occur between client and host: file download, browsing on the host
(i.e. a mixture of viewing, typing, and using the mouse), using an editor on the
host, watching a video, and copying content from host to client or vice versa
using the clipboard.

We show that, even though all traffic is encrypted, it is possible to detect
which of these activities is underway from the traffic properties, even if two or
more simultaneous activities are occurring. A heterogeneous ensemble classifier
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Bella et al. (Eds.): SecITC 2022, LNCS 13809, pp. 240–260, 2023.
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achieves precision greater than 97% and recall greater than 94%. We also discover
that there are markers in the protocol that are directly related to fine-grained
user actions.

2 Related Work

Traffic inspection and classification has two main purposes: security (detecting
malicious activity [25]), and quality of service management (insuring resources
are appropriate for traffic [23]). Traffic analysis can be done using: port structure
(services being used) [9], deep packet inspection (signatures in payloads) [9], data
analytics (per-packet or per-flow) [5], or behavioral classification (communication
pattern graphs) [5].

To overcome the weaknesses associated with the port-based and payload-
based approaches, data analytics has been proposed as a solution for network
traffic classification [2,13]. In particular, data-analytic approaches can detect
novel traffic using anomaly detection [33].

Draper-Gil et al. [11] generated a dataset used by several researchers to
predict traffic classes. It contains browsing, email, chat, streaming, file transfer,
VoIP, and P2P traffic; each inside and outside of a VPN tunnel. However, each
window contains only a single kind of traffic. Draper-Gil used k-Nearest Neighbor
and decision tree predictors; Saber et al. [26] used under- and over-sampling,
PCA, SVMs; Lotfollahi et al. [19] used stacked autoencoders and convolutional
neural networks; and Vu et al. [30] used LSTMs. The best models on this dataset
achieve F1 scores up to 0.98 on the single-class prediction problem.

Zhang et al. [32], in the closest work to ours, classify categories of seven
types of activities: Browsing, Chat, Online Gaming, Downloading, Uploading,
Online Video, and BitTorrent, using windows of different sizes. However, each
window contains at most two simultaneous kinds of traffic. They achieve around
80% prediction accuracy for 5-s windows and over 90% accuracy for 1-m traffic
windows for the single class problem. Their accuracy decreases for some classes
when there are two concurrent activities.

A finer-grained, and harder, version of the problem is to detect not only the
kind of traffic but which application is being used. Taylor et al. [28] create an
“Appscanner” tool to recognize smartphone apps in encrypted traffic. Their work
was later improved by Taylor et al. [29] using bursts, packets grouped within a
time window. They analyze one second bursts to deliver near real-time prediction
for 110 out of 200 most popular free Google Play applications. Alan and Kaur
[1] reduce computational complexity by analyzing only the first 64 packets to
identify the application. Saltaformaggio et al. [27] achieve an average of 78%
precision and 76% recall using KMeans and multi-class SVM and properties that
could be captured by eavesdropping. In addition, they also paid attention to how
easy it was to discover user properties from the traffic, and revealed some major
privacy issues. Application identification is also possible in encrypted tunnels.
Lotfollahi et al. [19] and Yamansavascilar et al. [31] run their experiments on
the same VPN dataset by Draper-Gil et al. [11] to detect application instead of
the broad traffic category.
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A related problem is to detect what actions users are doing on their devices,
that is behavioral detection. Conti et al. [7] analyze encrypted traffic from
Android devices to discover user behaviors such as sending a new message with
Gmail or opening the Dropbox app. Their study included seven Android applica-
tions: Facebook, Gmail, Twitter, Tumblr, Dropbox, Google+ and Evernote and
they simulated user actions to obtain signatures of flows generated by use of these
apps. Coull and Dyer analyze user behaviors in Apple iMessage [8] and showed
that users’ actions, as well as language and length of messages exchanged, can be
predicted. Park and Kim [24] predict KakaoTalk’s eleven behaviors in encrypted
traffic. Liu et al. [18] predict whether a user is using Wechat, WhatsApp and
Facebook and behaviors such as voice calling, video calling or picture sharing.
Dubin et al. [12] trained a classifier to predict the most popular YouTube videos
titles, basing on encrypted traffic statistics, notably the bits per peak.

3 Approach

A real-world system was used to collect RDP traffic data about five classes of
traffic. Derived data were computed from the base traffic data using Discrete
Cosine Transform, singular value decomposition, and independent component
analysis. A series of predictive models were then built and their performance
assessed using standard measures as well as a custom measure designed for the
problem. Our models serve as proof of concept demonstrating that activities
inside of encrypted RDP communications can be learnt without the need for
decryption.

3.1 System Setup

The Remote Desktop Protocol is designed to let a user at a client interact with
a host as if sitting at that host. It provides the full interactivity of using the
mouse, viewing the screen, and using the keyboard.

The client workstation, called Workstation01, is a 6-core Intel Xeon pro-
cessor, 36 GB memory, 2 TB storage and Network Interface Card connected
to a Local Area Network with an Internet gateway, running Microsoft Win-
dows 10 Professional. For data analysis, Java Runtime Environment 1.8 was
installed to run CIC FlowMeter v4.0 for attribute extraction, and Wireshark
to capture RDP network traffic into .pcap files. As a Remote Desktop client,
Workstation01 is configured to mount local drives, allow clipboard and runs in
resolution 1366× 768 with full user desktop experience.

Hyper-V service is enabled on Workstation01 for virtualization and there are
two virtual machines running on it: Win01 and Centos-Miner. Win01 VM is a
plain installation of a Windows 10 Professional 1809 virtual machine that acts
as a Remote Desktop host. The VM is configured with 4 virtual cores and 8
GB of RAM. It has a static IP, Network Level Authentication, and a Windows
firewall with an exception allowing incoming RDP traffic. This setup ensures
that Workstation01 can connect freely to Win01 VM over both TCP and UDP
protocols on port 3389.
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CentOS-Miner is a CentOS 7.5 VM running on top of Workstation-01 Hyper-
V. This Linux virtual machine has a Bash environment and Tshark installed and
it is used for data exploration and additional attribute extraction.

A physically remote VM, CAC01, is hosted at Queen’s University’s Centre
for Advanced Computing. The configuration is exactly the same as for Win01
VM except that it runs Windows 10 Education, and resides behind a firewall
with NAT. CAC-01 has 4 virtual cores and 4 GB of RAM.

Traffic to Win01 is on the same IP subnet as the client, and only encounters
the built-in Windows firewall on Win01 itself. Traffic to CAC01 passes through
an Internet connection, the Queen’s University campus network, and a physical
firewall that accepts connections on port 13389 and forwards them to CAC01
on port 3389. RDP uses TCP only for traffic outside a subnet, and a mixture
of TCP and UDP for traffic within a subnet, so two different predictive models
had to be developed.

Figure 1 shows the network setup with all the Virtual Machines used for data
generation. The red path shows the traffic path for the local subnet scenario and
the green path represents the distant scenario, traversing the Internet.

Fig. 1. Network architecture diagram.

3.2 Data Collection

The Remote Desktop traffic attributes were captured for 30 s windows of one or
more of the following activity classes:

– Download – file download from host to client;
– Browsing – using a browser (Firefox and Chrome) on the host, driven from

the client;
– Notepad – editing on the host from the client (typing for more than 80% of

the time window);
– YouTube – playing a video on the host (Youtube or mp4s), viewed on the

client; and
– Clipboard – copying content from remote system to local using the clipboard

mechanism.
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Samples may be pure – a single activity for 30 s – or mixed, with up to four
activities simultaneously in a 30-s window.

Attribute collection is performed by CIC Flow Meter and Tshark. The for-
mer is a tool developed by University of New Brunswick’s Canadian Institute for
Cybersecurity [16]. CIC Flow Meter extracts a predefined number of attributes
for each network traffic conversation from a .pcap file. There will be one conver-
sation for TCP only traffic samples, and two conversations for TCP and UDP
traffic samples. Predictive attributes include properties such as packet lengths,
inter-arrival times and TCP SYN flag counts.

A Bash script extracts additional meaningful predictive attributes from
the packet-level attributes of Tshark. The additional attributes include Packet
Length Statistics from Wireshark, as shown in Fig. 2, and include attributes
discovered during exploratory data analysis. All of the data is preprocessed to
insure that forward always refers to traffic from local to remote, and backward
the converse, based on IP addresses.

Fig. 2. Wireshark – packet length statistics.

Several derived attributes of the measured traffic attributes were also com-
puted. The Discrete Cosine Transform expresses a sequence as a sum of cosine
functions. It has often been observed that a single component of the DCT inte-
grates the variability within a sequence [22]. We compute this value for each row
of the dataset, that is for the collected traffic attributes of each traffic flow.

Singular Value Decomposition is an affine transformation of a vector space
into a form where the greatest variability is captured by the first few axes of the
transformed space. Truncation of the SVD amounts to a projection of a high-
dimensional space into a low-dimensional one in a way that preserves maximal
variation. We apply SVD to the matrix of windows × traffic attributes and keep
the first 20 columns of the left singular vector matrix.

Independent Component Analysis (ICA) [15] is another matrix transforma-
tion that decomposes a matrix into statistically independent components. We
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apply ICA to the windows × traffic attributes and select the 20 columns of the
left decomposition matrix1.

Table 1. Attributes.

Attributes

ACK Flag Cnt Fwd Blk Rate Avg Subflow Bwd Byts svd8

Active Max Fwd Byts/b Avg Subflow Bwd Pkts svd9

Active Mean Fwd Header Len Subflow Fwd Byts svd10

Active Min Fwd IAT Max Subflow Fwd Pkts svd11

Active Std Fwd IAT Mean Tot Bwd Pkts svd12

Bwd Blk Rate Avg Fwd IAT Min Tot Fwd Pkts svd13

Bwd Byts/b Avg Fwd IAT Std TotLen Bwd Pkts svd14

Bwd Header Len Fwd IAT Tot TotLen Fwd Pkts svd15

Bwd IAT Max Fwd PSH Flags URG Flag Cnt svd16

Bwd IAT Mean Fwd Pkt Len Max FwdFrame91-93 svd17

Bwd IAT Min Fwd Pkt Len Mean FwdFrame80-91 svd18

Bwd IAT Std Fwd Pkt Len Min FwdFrame90-94 svd19

Bwd IAT Tot Fwd Pkt Len Std FwdFrame96-98 ica0

Bwd PSH Flags Fwd Pkts/b Avg FwdFrame103-105 ica1

Bwd Pkt Len Max Fwd Pkts/s FwdFrame1280-2559 ica2

Bwd Pkt Len Mean Fwd Seg Size Avg BwdFrame40-79 ica3

Bwd Pkt Len Min Fwd URG Flags BwdFrame80-159 ica4

Bwd Pkt Len Std Idle Max BwdFrame160-319 ica5

Bwd Pkts/b Avg Idle Mean BwdFrame320-639 ica6

Bwd Pkts/s Idle Min BwdFrame640-1279 ica7

Bwd Seg Size Avg Idle Std BwdFrame1280-2559 ica8

Bwd URG Flags Init Bwd Win Byts BwdPUSH ica9

CWE Flag Count Init Fwd Win Byts FwdPUSH ica10

ECE Flag Cnt PSH Flag Cnt dct col ica11

FIN Flag Cnt Pkt Len Max svd0 ica12

Flow Byts/s Pkt Len Mean svd1 ica13

Flow Duration Pkt Len Min svd2 ica14

Flow IAT Max Pkt Len Std svd3 ica15

Flow IAT Mean Pkt Len Var svd4 ica16

Flow IAT Min Pkt Size Avg svd5 ica17

Flow IAT Std RST Flag Cnt svd6 ica18

Flow Pkts/s SYN Flag Cnt svd7 ica19

1 There are a number of sophisticated ways to select the most important columns,
for example those with maximal kurtosis, but we retain the first 20 and leave it to
attribute selection to find the best.
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The final predictive attribute set is shown in Table 1.
Shapley Values calculate the contributions to a final result made by individ-

ual players in a game theory context [17]. They have been successfully applied
to attribute selection in predictors because of the development of fast approxi-
mation algorithms that avoid the implicit exponential number of attribute com-
binations to be evaluated. The two most popular Shapley value explainers are
TreeExplainer [20], for tree-based predictors, and DeepExplainer, for neural net-
works predictors.

We use Shapley values for attribute selection. The selection process is run
independently five times, each time for a different class. Shapley Values were
computed with two different classification techniques as the backend: Neural
Network (Deep Explainer) and Extreme Gradient Boosting (XGBoost).

3.3 Individual Techniques and the Ensemble Predictor

For predictors, we use k-Nearest Neighbors, Support Vector Machines [3], deci-
sion trees, random forests [4], Adaboost [14], XGBoost [6], and multilayer per-
ceptrons.

Each of the prediction techniques was run with 10-fold cross validation, with
binary class labels (traffic class present or not). The final ensemble model consists
of the top three most effective classifiers for each traffic class, chosen to maximize
the precision, so that the ensemble classifier can determine with a high degree
of certainty whenever a specific kind of traffic is present. A specific sample is
predicted to contain a specific class of traffic when at least two of the three
classifiers predict that class.

The output of the ensemble classifier is 5 binary values, predicting the pres-
ence of each of the 5 kinds of traffic in the sample. Three different performance
measures are calculated:

– The precision, recall and F1 score for each class;
– A confusion matrix for each class;
– An ensemble score function designed for the problem domain.

The ensemble score function assigns points to each record as follows:

– For a true negative, no points;
– For a true positive, add one point;
– For a false positive, subtract two points;
– For a false negative, no points.

For instance, if the model predicts download and clipboard, where the traffic
actually contained download and browsing, it will assign +1 point for download,
0 points for browsing as it was a false negative, 0 points for Notepad and YouTube
as they were true negatives, and −2 for false positive on clipboard. The aggregate
of scores calculated on all test set rows is divided by the sum of all positive labels
in the test set and multiplied by 100. The scoring function severely penalizes the
ensemble whenever it predicts a traffic class that is not actually present. This
insures that the model is reliable for predicting behavior.
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Table 2. Total TCP Samples Count.

Num samples Download? Browsing? Notepad? YouTube? Clipboard?

240 1 0 0 0 0

240 0 1 0 0 0

239 0 0 1 0 0

243 0 0 0 1 0

120 0 0 0 0 1

74 0 1 0 0 1

43 1 1 0 0 0

25 1 0 1 0 1

22 1 0 1 0 0

62 0 0 1 1 0

27 1 0 0 1 0

63 0 1 0 1 0

22 0 0 1 0 1

15 1 1 0 0 1

21 1 0 1 1 1

1456 TOTAL

3.4 Dataset

The dataset consists of 2160 30-s data samples. The information relating to
number of samples is summarized in Table 2 for the CAC-01 (Remote VM, TCP
transport) and Table 3 for Win01 (Local subnet VM, TCP and UDP transport)
traffic respectively. For simplicity, we will refer to the first kind of traffic as TCP
and to the latter as UDP.

When TCP is the only protocol used, it is easier to make accurate predictions.
When UDP is added, the problem complexity grows because there are at least
two conversations – one for the TCP stream and one for the UDP stream, in the
same Remote Desktop session. UDP seems to be used for bulk transfers while
TCP is used to send user inputs, such as keystrokes and mouse movements, and
perhaps RDP session management details.

Every keystroke that is sent from local system to the remote system over
Remote Desktop is carried by two 92-byte TCP frames in the forward direction.
As a result, the total number of 92-byte frames in a window reveals how many
keystrokes have been sent (except that actions such as pressing and holding a
Shift key generates 92-byte frames, until the key is released).

The remote system also responds with packets that are revealing. 92-byte
upward packets produce PSH-flagged packets whose payload size correlates with
the visual change to the screen of the character echo – the more pixels changed,
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Table 3. Total UDP Samples Count.

Num samples Download? Browsing? Notepad? YouTube? Clipboard?

103 1 0 0 0 0

92 0 1 0 0 0

100 0 0 1 0 0

105 0 0 0 1 0

100 0 0 0 0 1

42 0 1 0 0 1

44 0 1 0 1 0

42 1 0 1 0 0

37 1 0 1 0 1

39 1 0 0 1 0

704 TOTAL

the larger the payload2. This suggests a potential attack against passwords, since
the echoed character is typically not the character sent but a filler character. As
a result, entering a password may produce an easily detectable signature.

Mouse movements generate packets of either 97 or 104 bytes, with 97-byte
packets associated with mouse clicks. Observing the number of such packets
allows mouse activity to be estimated; and the mixing with 92-byte packets
allows even finer grained estimates – for example, the size of form data might be
estimated by observing how many characters are typed in between mouse clicks
and small mouse movements.

4 Results

Attribute ranking is computed for ten cases: 5 TCP activities and 5 UDP activ-
ities, and for each both the tree-based and neural-net based Shapley value com-
putation. This results in twenty ranked lists of attribute significance. Tree based
Shapley values also provide information about whether an attribute is associated
with one class label or the other, and how strongly.

The most predictive attributes are fairly consistent using both the tree-based
and network-based Shapley values. The 92- and 104-byte attributes rank highly,
as do many of the SVD components, suggesting that the original attributes tend
to capture traffic properties that are strongly correlated.

2 There are hints that what is being returned is the delta of the character being
displayed.
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Table 4. Selected Attribute Sets for TCP Classes.

TCP Download TCP Browsing TCP Notepad TCP YouTube TCP Clipboard

svd0 FwdFrame103-105 svd2 BwdFrame320-639 FwdPUSH

BwdFrame80-159 BwdFrame320-639 FwdFrame91-93 svd1 svd1

BwdFrame320-639 Fwd Pkt Len Mean svd0 svd6 svd0

Init Fwd Win Byts Fwd Seg Size Avg FwdPUSH svd0 Subflow Bwd Byts

Tot Fwd Pkts svd8 BwdFrame80-159 svd9 ica7

BwdFrame640-1279 BwdPUSH FwdPUSH FwdFrame91-93

Fwd IAT Mean FwdFrame96-98 TotLen Fwd Pkts FwdFrame103-105

Pkt Len Std FwdPUSH Flow IAT Std svd6

Bwd IAT Max BwdFrame1280-2559 BwdFrame640-1279 ica11

ica19 ica7 svd11

Bwd Pkt Len Mean FwdFrame91-93 ica5

Flow Byts/s Init Fwd Win Byts Fwd Pkt Len Mean

Bwd Pkt Len Mean BwdFrame320-639

svd8

Pkt Len Std

Table 4 shows the best attributes for the TCP traffic classes and Table 5
shows the best attributes for the UDP traffic classes.

Table 6 shows the performance summary for the predictors run on the TCP
traffic and Table 7 summarizes performance for the UDP traffic. Accuracies are
over 10-fold cross validation.

For each TCP and UDP traffic class we select the top three best performing
cross-validated predictors to build two ensemble predictors – the TCP Ensemble
and the UDP Ensemble, shown in Figs. 3 and 4.

Table 8 provides the True Positives, False Positives, True Negatives, and False
Negatives with five-fold cross-validation for the ensemble predictors. We then
calculate Accuracy, Precision, Recall and F1 score.

Table 9 summarizes the single ensemble scores obtained for each fold of the
TCP and UDP models, along with the average. Voting makes a significant con-
tribution towards reducing false positives.

For both UDP and TCP traffic, there are similarities when it comes to the
most commonly misclassified traffic classes. For both TCP and UDP traffic, the
most common misclassification misses the Clipboard class. This is reflected in
the recall scores for the UDP Clipboard at only 94.97% and the TCP Clipboard
at 95.67%, while other classes all have recall higher than 98%.

The most common error in TCP traffic is a mixture of Browsing and Clip-
board being classified as Browsing only. Both Browsing and Clipboard involve
mouse movements and mouse clicks, both right- and left-clicks, but it seems
slightly surprising that these are difficult to distinguish.

The second most common error occurs when Browsing traffic is classified
as Browsing and Clipboard, generating a false positive prediction for Clip-
board. The third most common is for the combination of Download, Browsing
and Clipboard where the Clipboard traffic is missed. The fourth most com-
mon is when a Download and YouTube mixture is classified as Download only.
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Table 5. Selected Attribute Sets for UDP Classes.

UDP Download UDP Browsing UDP Notepad UDP YouTube UDP Clipboard

svd0 svd1 FwdFrame91-93 svd1 svd2

svd1 Fwd Pkt Len Std BwdFrame40-79 svd0 Bwd IAT Std

svd2 FwdFrame96-98 svd2 svd3 Fwd IAT Mean

Fwd Pkt Len Std svd0 Fwd IAT Min svd5 FwdFrame103-105

Bwd Header Len svd5 svd1 BwdFrame80-159 Flow IAT Mean

FwdFrame90-94 Bwd IAT Mean FwdFrame91-93 Flow IAT Std

BwdFrame320-639 Flow IAT Max BwdFrame40-79

Bwd IAT Max BwdFrame320-639

Fwd Pkt Len Mean Bwd IAT Mean

Fwd Seg Size Avg FwdFrame91-93

BwdFrame320-639 Pkt Len Mean

Bwd IAT Std FwdFrame90-94

Fwd IAT Max Fwd IAT Min

svd4

Bwd Header Len

ica8

Bwd Pkt Len Max

Fwd IAT Tot

Bwd IAT Tot

Table 6. TCP Traffic Individual Techniques – Accuracy and Standard Deviation.

Technique Download Browsing Notepad YouTube Clipboard

NN 99.66% (± 0.46%) 98.62% (± 1.27%) 99.66% (± 0.46%) 99.59% (± 0.46%) 95.88% (± 1.23%)

RF 99.18% (± 0.79%) 99.38% (± 0.57%) 99.86% (± 0.27%) 99.59% (± 0.46%) 98.69% (± 0.84%)

XGB 99.52% (± 0.69%) 99.59% (± 0.62%) 99.72% (± 0.46%) 99.59% (± 0.45%) 98.56% (± 1.12%)

SVM 99.73% (± 0.34%) 99.24% (± 0.72%) 99.86% (± 0.28%) 99.59% (± 0.45%) 95.47% (± 2.60%)

Ada 99.66% (± 0.46%) 99.25% (± 0.57%) 99.86% (± 0.28%) 99.52% (± 0.81%) 98.49% (± 0.67%)

KNN 99.45% (± 0.51%) 99.04% (± 0.70%) 99.79% (± 0.31%) 99.31% (± 0.68%) 94.71% (± 1.81%)

DTC 98.63% (± 0.86%) 98.83% (± 0.75%) 99.93% (± 0.21%) 99.52% (± 0.69%) 96.91% (± 1.20%)

Table 7. UDP Traffic Individual Techniques – Accuracy and Standard Deviation.

Technique Download Browsing Notepad YouTube Clipboard

NN 99.86% (± 0.42%) 97.72% (± 1.93%) 99.71% (± 0.57%) 99.86% (± 0.42%) 96.02% (± 2.09%)

RF 99.86% (± 0.42%) 99.29% (± 0.71%) 99.43% (± 0.69%) 100.00% (± 0.00%) 98.15% (± 1.28%)

XGB 99.57% (± 0.91%) 99.01% (± 0.90%) 98.72% (± 1.34%) 99.15% (± 0.95%) 97.87% (± 1.30%)

SVM 99.71% (± 0.57%) 98.29% (± 1.39%) 99.72% (± 0.57%) 99.43% (± 0.69%) 95.03% (± 2.73%)

Ada 99.57% (± 0.65%) 99.01% (± 0.91%) 99.57% (± 0.65%) 99.71% (± 0.86%) 98.44% (± 1.00%)

KNN 99.86% (± 0.42%) 98.01% (± 1.45%) 99.72% (± 0.56%) 99.01% (± 1.11%) 94.45% (± 2.17%)

DTC 99.86% (± 0.42%) 98.87% (± 1.76%) 99.58% (± 0.65%) 98.86% (± 1.06%) 96.60% (± 1.69%)

Misclassifications are rare the other way – mixtures of the two rarely get classified
as YouTube only. Download has a potential to dominate YouTube, apparently
because it generates significantly more and faster traffic; and it is possible that
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Fig. 3. TCP Ensemble Model.

backward (remote to local) packet lengths could vary, especially when traversing
the Internet. This could be caused by TCP adjusting the window size for trans-
fers. Interestingly, there were no misclassifications relating to the 4-class TCP
traffic.

For UDP traffic, the most common misclassification is again a False negative
for the Clipboard class. Most often, this happens in the mixture of Download,
Notepad and Clipboard, where Clipboard is missed and traffic is classified as
Download and Notepad. Both Download and Notepad have many more visible
traffic attributes than Clipboard does – the total number of backward bytes for
Download and 92-byte frames for Notepad. There were some other misclassifi-
cations such as Browsing and Clipboard being identified as Browsing alone and
Clipboard or Browsing being classified as none of the five classes.

We wondered if Browsing samples from web sites with lots of video and
dynamic content would tend to get misclassified as the YouTube class. Such
misclassifications are rare and the predictive model is apparently resilient to
audio and video contents embedded in websites.
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Fig. 4. UDP Ensemble Model.

Table 8. Summary of Each TCP and UDP Traffic Class Results over 5-fold cross-
validation.

Class FP TP FN TN Accu. Prec. Rec. F1

TCP Download 1 391 2 1062 99.79 99.74 99.49 99.62

TCP Browsing 3 434 1 1018 99.73 99.31 99.77 99.54

TCP Notepad 0 390 1 1065 99.93 100.00 99.74 99.87

TCP YouTube 2 413 3 1038 99.66 99.52 99.28 99.40

TCP Clipboard 5 265 12 1174 98.83 98.15 95.67 96.89

UDP Download 0 221 0 483 100.00 100.00 100.00 100.00

UDP Browsing 2 175 3 524 99.29 98.87 98.31 98.59

UDP Notepad 1 178 1 524 99.72 99.44 99.44 99.44

UDP YouTube 0 188 0 516 100.00 100.00 100.00 100.00

UDP Clipboard 4 170 9 521 98.15 97.70 94.97 96.32
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Table 9. Single Ensemble Score Results.

Fold TCP Ensemble Score UDP Ensemble Score

1 98.18 95.36

2 97.86 97.47

3 97.19 97.85

4 97.95 96.22

5 98.13 98.90

Average 97.86 97.16

5 Conclusions

We have shown that, for an encrypted protocol such as RDP, it is still possible
to infer five common categories of activities with high reliability from traffic
properties that cannot be concealed by encryption. It is conceivable that some
of these predictions could be defeated by obfuscation in the protocol but protocol
designers are caught between the need to conceal activity and the need to provide
responsiveness. As we have shown, this has led to a design in which keystrokes,
mouse activity, and visual rendering all leave traces in the encrypted traffic which
could potentially be used for attacks.

A limitation of this model is that it only used traffic between Windows 10
systems. Different systems, and RDP updates, could conceivably change traffic
structure in a macroscopic way, although the proof of concept here suggests that
only model retraining would be needed. Other kinds of traffic were not examined:
for example, two-way video such as Zoom or Skype might induce quite different
traffic structure .

Appendix Additional Figures - Shapley Values

(See (Figs. 5, 6, 7 and 8))
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Fig. 5. TCP Attribute Ranking – Notepad, Deep Explainer
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Fig. 6. TCP Attribute Ranking – Notepad, XGBoost Explainer
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Fig. 7. UDP Attribute Ranking – Browsing, Deep Explainer
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Fig. 8. UDP Attribute Ranking – Browsing, XGBoost Explainer
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Abstract. Everyday usage of online Internet services and the recent rise
of the Internet of Things (IoT) cause the collection of a massive amount
of data, including personal and sensitive information. Anonymization
enables providers to share their datasets and preserve the privacy of indi-
viduals at the same time. It is a valuable tool for preserving individuals’
privacy in social network datasets and IoT environments. Researchers
recently focused on developing a universal and robust anonymization
method to keep privacy and preserve almost all data utility. Many var-
ious anonymization methods have been developed; however, none meet
the requirements perfectly. The application-oriented anonymization has
been recently discussed only for relational datasets. This paper intro-
duces the framework for application-oriented anonymization for social
network datasets and IoT environments. In our framework, it is not nec-
essary to preserve all data utility but only the data utility specified by the
data recipient. While requesting the anonymized social network data, the
data receiver can specify the metrics that should be kept as close to the
original graph as possible. While requesting anonymized data from the
cloud in an IoT environment, the data receiver can prioritize attributes.
It enables the data recipient to customize the anonymized data and the
data provider to control the computing over their dataset. Moreover, we
discuss the vulnerability of application-oriented anonymization to com-
position attacks.

Keywords: Anonymization · Task Oriented Privacy · Social network ·
Internet of things

1 Introduction

An enormous amount of data is stored on servers and computers worldwide daily.
The total volume of data created, collected, copied and consumed worldwide is
estimated to reach 120 zettabytes1 by 2023 [25]. People share information with
institutions, marketing companies, and various online services. Datasets collected
1 1 zettabyte = 1021 bytes.
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by service providers usually contain individual personal data and sensitive infor-
mation. Furthermore, the datasets are a valuable source of information for aca-
demic, marketing and business research. Hence, the providers are encouraged to
publish their datasets or share them with third parties. However, sharing and
publishing datasets with users’ information raises privacy-preserving issues.

Privacy is a complex concept of protecting sensitive data and information
from unauthorized access [19]. It arises from the users’ desire to keep their infor-
mation confidential and prevent adversaries from misusing them. This paper
focuses on the privacy-preserving issue called identity disclosure. The considered
anonymization methods prevent the adversary from identifying the target user
in the published or shared dataset. In the IoT environment, anonymization pre-
vents linking the particular household with records in the dataset stored in the
cloud. Providers applied an anonymization method to the original dataset to
gain the anonymized dataset that is published or shared.

An anonymization method M is an algorithm that modifies the original
dataset D to the anonymized dataset D∗ such that D∗ satisfies the required
privacy property (ex. k-anonymization for given k). The aim of anonymization
methods is also to minimize the information loss caused by the modification from
D to D∗ and keep as much data utility as possible in D∗.

Anonymization was initially proposed for relational datasets [22]. Afterwards,
anonymization approaches were extended to social network (SN) datasets [16].
In addition to anonymizing users’ records, SN anonymization modifies the graph
structure representing the social relationships [9]. Responding to the growth of
the Internet of Things (IoT), researchers in anonymization give more attention
to stream data. In the IoT environment, data are transferred as the stream from
smart homes to the cloud [20,24]. Hence, the associated privacy-preserving issue
is how to modify the stream data such that the privacy is preserved in the cloud
or other storage where big data are collected.

The objective of most of the anonymization studies has been the devel-
opment of a universal and robust anonymization method. Such a universal
anonymization method should handle perfectly modifying all datasets of the
particular type regardless of further usage. The comprehensive survey and anal-
ysis of the state-of-the-art SN anonymization methods in [9] suggested that it
seemed to be an impossible task, at least for SN anonymization. The application-
oriented anonymization is suggested to be potential promising direction for cur-
rent research in both SN anonymization [9,18] and relational data anonymiza-
tion [7,17,29].

The application-oriented anonymization is even more befitting in IoT envi-
ronments. The data collected in smart homes contain personal information; hence
applying anonymization is appropriate [24]. Furthermore, the collected data from
the group of smart homes are stored in a cloud. Various applications and services
further exploit the collected dataset [11,28]. The services will use the anonymized
data regularly. They will load new anonymized data every day (or every hour)
but exploit the same utilities in the data. Hence, it makes sense to customize the
anonymization according to the service’s requirements and preserve the specific
data utilities.
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This paper proposes a framework for application-oriented anonymization using
existing anonymization methods. It enables application-oriented anonymization
in SN datasets and IoT environments. As far as we know, an application-
oriented framework has been offered only for relational datasets yet. The goal
is to maximize data utility for the recipients. The crucial idea is to identify
metrics that ought to be preserved during the anonymization and select the
proper anonymization method that preserves the metrics well. With application-
oriented anonymization, the provider can produce the anonymized dataset with
a higher level of privacy. The anonymized data are still valuable for further
research since the specific data utility is preserved.

Furthermore, the novel concept of information loss measurement is proposed.
Instead of measuring the total information loss, the information loss is calcu-
lated with respect to the selected metrics. Finally, we discuss the vulnerability
of application-oriented anonymization to composition attacks and methods for
restraining such an attack. In summary, the main contribution of this paper is

1. to show that application-oriented anonymization is the considerable direction
in anonymization research

2. to formalize application-oriented anonymization approach in SN datasets and
IoT environments

3. to propose frameworks for the anonymization of SN datasets and IoT envi-
ronments

4. to introduce a novel method for information loss measurement and a new
information loss metric for SN datasets

2 Related Work

The idea of implementing the anonymization method such that the anonymized
data suits the further application has been studied in [29] by Xiong and Ran-
gachari. They focused on the anonymization of relational datasets and identified
the crucial point of application-oriented anonymization. Each application had
a unique need for the data, and the best way of measuring data utility should
be based on the analysis task. They presented three types of target applications
and two typical scenarios in medical data mining.

A similar approach was proposed in [26], where Sun et al. presented a method
that automatically derived the attribute priorities using the concept of entropy to
measure the independency among attributes. A data recipient must determine
the most useful and least useful attributes. However, specifying the attribute
priorities before the data mining can be difficult for data analysts.

The shortcoming was addressed by Jafer et al. in [7] where task-oriented
privacy preserving data publishing model was proposed. They considered only
the classification task as the potential application of the anonymized relational
dataset. The feature selection procedure identified the subset of features most
relevant to the classification task in the proposed model, and no prior attribute
prioritization was needed.
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A similar approach that was not limited to classification tasks was introduced
in [17] by Maeda and Yamaoka. They proposed a framework for performing
custom-made anonymization by a data analysis program provided by the data
recipient. This framework enabled the data receiver to create a program and send
it to the data holder. The data holder ran the program on their side. However,
the data holder has no guarantee that the program is correct and not malicious.

The task-oriented privacy, custom-made and application-oriented anonymiza-
tion are different terms for the anonymization approach in which the data are
modified with respect to their further usage. In this paper, we considered the
similar communication between the data holder and data receiver as in [7,17].
We extended their methods to SN datasets and IoT environments. Moreover, we
do not limit the data mining application as in [7] and omit the usage of untrusted
programs, unlike [17].

The important part of the framework for SN datasets is evaluation tools that
classify the anonymization methods with respect to structural and application
metrics. Ji et al. proposed an evaluation tool called SecGraph in [8]. It can be
used for anonymizing social network datasets, examining the vulnerability of
anonymized data to state-of-the-art deanonymization attacks, and evaluating
anonymized data.

A different privacy evaluation framework for graph anonymization is pro-
posed in [1]. The DUEF-GA framework includes generic and task-specific infor-
mation loss measures and metrics for the examination of re-identification and
risk assessment.

3 Privacy Models

To provide insight into the principles of anonymization, we briefly described the
concept of SN anonymization and two different approaches to anonymization
in an IoT environment. We refer to [9,18] for more detailed descriptions and
comprehensive surveys of the state-of-the-art anonymization methods.

3.1 Social Network Anonymization

The SN datasets contain information about users from online social networks. It
includes users’ characteristics that can be represented as identifying attributes
(ex. name, username) and quasi-identifying attributes (ex. age, gender). The
identifying attributes uniquely identify the user; thus, they are removed during
the anonymization. The quasi-identifying attributes can be used to re-identify
the individual if combined or joined with any external information. Hence, they
are modified in the anonymization process. Additionally, the SN dataset includes
information about social relations between the SN users. The social relationships
can be represented by a graph structure and are considered to be the quasi-
identifying attribute as well [9]. More precisely, the social network dataset is
represented with the graph GA = (V (GA), E(GA), U(GA)) where V (GA) is the
set of nodes representing the users, E(GA) is the set of edges representing the
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relationships between users and U(GA) is the set of attributes characterizing the
users.

There are two types of SN anonymization methods. Semantic methods focus
on anonymizing the whole SN datasets with U(GA). On the other hand, the
structural methods anonymize only the graph structure. It means that their
goal is to anonymize the graph G = (V (G), E(G)), where V (G) = V (GA) and
E(G) = E(GA). In this scenario, the set U(GA) can be anonymized in the same
way as the relational datasets.

The structural anonymization methods can be categorized according to the
way how they modify the SN datasets as edge-editing methods [2,16,30], cluster-
ing methods [27], noise node addition methods [3] and differential privacy [4].

3.2 Anonymization in IoT Environment

The model of the IoT environment assumed in this paper is shown in Fig. 1. The
data from various devices in a single smart home is collected inside the smart
home and then sent to the cloud. The cloud collects data from the group of
smart homes, and the collected dataset in the cloud can be shared with various
applications and services.

Fig. 1. The scheme of the IoT environment with different anonymization approaches.

Two anonymization approaches have been proposed for IoT environments
[20,21]. Both approaches are illustrated in Fig. 1. It depends on the IoT platform
provider how the anonymization is applied in the environment. One possibility
is to anonymize the data on the level of households. The data collected from
a single household are anonymized before being sent to the cloud, as shown in
Fig. 1a. For instance, the fog layer can be employed to handle preserving the
privacy of users from the house [21]. The anonymization is applied to the data
collected in a single house. Afterwards, the anonymized data collections from
particular smart homes are joined. A disadvantage of the approach is that data
from more households are not combined during the anonymization process. The
other scenario is to anonymize the data before they reach the cloud, as shown



266 J. Medková and J. Hynek

in Fig. 1b. The data from the group of households continuously arrive in the
cloud as the stream data, and the anonymization is applied to the stream data
before they reach the cloud [20]. In both approaches, the cloud gathers already
anonymized data since the anonymization is applied before the data get to the
cloud.

Note that we address anonymizing datasets collected in IoT environments
and shared with third parties. We deal with the protection against privacy leak-
age caused by exploiting information stored in shared datasets. Privacy and
security in the whole IoT environment is a much larger topic, including encrypt-
ing, ensuring secure data transfer, or IP address anonymization. Anonymizing
IP addresses of the subjects in the IoT environment and their communication is
addressed in [5,13].

4 The Proposed Schemes for Application-Oriented
Anonymization

In this section, we separately discuss the application-oriented anonymization for
SN datasets and IoT environments. In both proposed frameworks, the priority is
to keep the required level of privacy according to the privacy model and preserve
the data utility specified by the data recipient (DR). Hence, the data provider
(DP) can produce anonymized data that satisfy a higher level of privacy and are
still valuable for DR. To avoid the inference attack or the execution of malicious
programs on the datasets, the data recipient must determine their priorities
based only on the dataset information or test data. They are not allowed to
submit their program that is run on the original dataset by DP as in [17].

4.1 The Framework for Social Network Datasets

In this section, we focus on anonymizing the graph structure of the SN dataset
and the selection and application of the structural anonymization methods. DP
can use the already published structural methods and approaches in the proposed
framework. As mentioned in Section 3.1, there has been proposed many various
SN anonymization methods. None of them can preserve all data utility; however,
they differ in preserving particular network and application metrics. The aim is
to select the proper method such that the anonymized data is customized for DR.
In other words, DR selects which metrics should be preserved in the anonymized
data. Certainly, the selected metrics will not have the same values as in the
original dataset. Each anonymization method modifies all metrics. However, the
aim of the anonymization method should be to keep the selected metrics as close
to the metrics of the original graph as possible. Moreover, it is not important
how much the other metrics are modified in the anonymization process and how
large the total information loss is.

Not considering the total information loss is the crucial point of the proposed
framework. Furthermore, it is the most significant difference between the “usual”
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anonymization and the proposed application-oriented anonymization. The qual-
ity measure of the application-oriented anonymization method is not the total
information loss but the information loss in the selected metrics. We define the
application-oriented information loss of the anonymization method as follows:

Definition 1. Let G be a graph representing a social network dataset. Let M
be an anonymization method that modifies G to the anonymized graph G∗ (which
is denoted by M(G) = G∗). Let m1, . . . ,mn be the set of metrics that should be
preserved in the anonymization process with priorities w1, . . . , wn,

∑n
i=1 wi = 1.

Let mi(G) be the metric value in G. Then the application-oriented information
loss of M with respect to m1, . . . ,mn is defined as

AppIL(M;m1, . . . ,mn) = 1 −
n∑

i=1

wi · Evali(mi(G),mi(G∗))

where Evali(mi(G),mi(G∗)) is the chosen evaluation method for the metric mi

such that 0 ≤ Evali(mi(G),mi(G∗)) ≤ 1 and Evali(mi(G),mi(G)) = 1.

As mentioned in [8], the possible evaluation method Evali in the previous
definition can be

– the cosine similarity between the distribution of mi(G) and mi(G∗)
– the ratios between the distributions of mi(G) and mi(G∗)
– the Jaccard similarity between mi(G) and mi(G∗)

Different evaluation methodologies can be applied to different metrics. The
evaluation tools like SecGraph [9] or DUEF-GA [1] can be employed. The metrics
in the definition can be any network or application metrics. The frequently used
network metrics are degree distribution, average path length, local clustering
coefficient, closeness centrality, betweenness centrality or the largest eigenvalue
of the adjacency metric. The application utility metrics include role extraction,
community detection, secure routing, or Sybil account detection [9]. The follow-
ing example demonstrates the computation of AppIL.

Example. For instance, let us compute AppIL for the k-degree anonymization
algorithm (kDA) and the union-split clustering algorithm (USC) implemented
in SecGraph [8]. Denote G to be the graph representing Enron dataset [12,14],
G∗
k = kDA(G) with the anonymization parameter k = 50 and G∗

U = USC(G)
with the anonymization parameter k = 50. Assume that betweenness centrality
(BC) and the average path length (PL) metrics should be preserved with weights
wBC = 0.3 and wPL = 0.7. Using SecGraph evaluation and the results published
in [8], we get

SecGraph(BC(G∗
k), BC(G)) = 0.9019, SecGraph(PL(G∗

k), PL(G)) = 0.8934
SecGraph(BC(G∗

U ), BC(G)) = 0.9733, SecGraph(PL(G∗
U ), PL(G)) = 0.9905

After computing AppIL, we find that union-split clustering caused smaller
information loss with respect to BC, PL and given weights:

AppIL(kDA;BC,PL) = 1 − 0.3 · 0.9019 + 0.7 · 0.8934 = 0.1041
AppIL(USC;BC,PL) = 1 − 0.3 · 0.9733 + 0.7 · 0.9905 = 0.0147
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Communication Between DP and DR. Before the actual data sharing, DP has
to set up a portfolio of available anonymization methods. From the collection of
the published methods, DP selects and implements several methods that differ
in preserving network and application metrics. Afterwards, DP evaluates the
potential vulnerabilities of the data and sets the anonymization parameters of
the selected methods. The anonymized dataset should always satisfy the required
level of privacy. It is essential to set the values of anonymization parameters
before evaluating the methods since the values of the anonymization parameters
influence the effect of the methods on the metrics. Then DP selects an indepen-
dent evaluation tool like SecGraph [8] of DUEF-GA [1] for the computation of
AppIL.

After the preparation phase, DP can establish communication with DRs. At
first, DP publishes the dataset information. Then DR selects metrics m1, . . . ,mn

that should be preserved well in anonymized data. Note that DP and DR do
not discuss the anonymization method used. They discuss only the properties
that should be preserved as a priority in the anonymized data. Thus, DR sends
{m1, . . . ,mn} and {w1, . . . , wn} to DP who select the anonymization method
with the minimal AppIL(M;m1, . . . ,mn). If the weights are not specified by
DR, then wi = 1

n , ∀i. The datasets are anonymized with the chosen method, and
the anonymized data is transferred to DR. The whole process is summarized in
Algorithm 1.

Algorithm 1. Application-oriented framework for SN datasets
Require: DP: SN dataset G, anonymization methods M1, . . . ,Ms, evaluation methods

Eval1, . . . , Evals; DR: network metrics m1, . . . ,mn

Ensure: anonymized dataset G with respect to requirements of DR
1: DP: Set the required level of privacy for G∗

2: DP: Set anonymization parameters for M1, . . . ,Ms with respect to Step 1
3: DP: publishes information about G
4: DR: select m1, . . . ,mn and set w1, . . . , wn

5: DR −→ DP: m1, . . . ,mn, w1, . . . , wn

6: DP: Find Mj : AppIL(Mj ;m1, . . . ,mn) = min
i=1,...,s

{AppIL(Mi;m1, . . . ,mn)}
7: DP: generate G∗ = Mj(G)
8: DP −→ DR: G∗

The above scenario describes the situation of sharing data. While DP pub-
lishes the dataset (making it available online), DP anonymizes the dataset with
one selected anonymization method and publishes the anonymized data with the
additional information, which metric is preserved as a priority in the anonymiza-
tion process. However, only one version of the same dataset should be published.
Otherwise, the published anonymized datasets are vulnerable to the composition
attack as discussed in Sect. 5.
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4.2 The Framework for IoT Environments

We assume the IoT environment as shown in Fig. 1 where the data collected
in smart homes are transferred into the cloud. The data collected from smart
homes with their embedded devices and sensors can also be infused with the data
from other smart city components. The data collection is used by commercial
applications and implied in intelligent products and services. Since the smart
case from the personal context is extended to the larger community in the smart
city [11], the data from the smart home are exploited not only by its residents but
the whole community. For instance, each smart home location can have outdoor
sensors monitoring temperature and humidity, and a smart system cloud-based
weather station [10]. The data measured by the outdoor sensors and gathered by
the smart weather station are sent to the cloud. A weather monitoring system
can use the gathered data to analyze weather conditions and weather forecasts
in the location [28].

DP is the cloud service provider in this model, and DR is the application.
Unlike relational or SN datasets, where DRs are expected to be data analysts
or companies that buy the dataset once or a few times a year, DRs in the
IoT environments are expected to use the data repeatedly in short periods. For
instance, the weather monitoring system can request fresh data daily or every
hour. Let us assume that a single DR requests data from the cloud. The DR
asks for the data repeatedly; however, the requested data should always have
the same utility since the use of the data is always the same. In other words,
requirements on data utilities are always the same from the same DR. Thus, the
data submitted to the DR are always anonymized with the same priorities.

Let us assume that there are more DRs requesting data from the same cloud.
Each DR can have different priorities on the data utility, or some DRs can have
similar ones. For instance, a weather monitoring system prioritizes keeping the
temperature and humidity values close to the original data, and other agriculture
applications can also prioritize the temperature and humidity attributes. On the
other hand, an energy management application can prioritize attributes describ-
ing how much energy consumes particular devices. Thus, the data submitted to
the specific DRs can sometimes be anonymized with the same priorities. Other
times, different versions of anonymized data will be submitted to different DRs.

According to the published studies, anonymization is applied when the data
are leaving the smart home environment in the fog layer [21] or before they reach
the cloud [20] (see Fig. 1). In both cases, the cloud contains anonymized data.
If application-oriented anonymization is considered, the same data should be
anonymized several times according to different priorities. The cloud contains
several anonymized versions of the same data in this scenario. DP has not had
the original data available but only several versions of the anonymized data.

Let there be n versions of the anonymized data and let ADi, 1 ≤ i ≤ n, be the
identification of the i-th anonymization method. Let there be m participating
data recipients. Assume DP to assign the DRs the identification DR1, . . . DRm.
Let LDP = {[DRi, ADj ]; 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a map where DRi is the
key and ADj is the value. The tuple [DRi, ADj ] describes that the DR with the
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identification DRi requests data anonymized with the method ADj . Let DR be a
new data recipient requesting the data from DP. In the preprocessing stage, DP
publishes information about the particular versions of the anonymization meth-
ods. It is not necessary to publish the actual anonymization algorithm. The
important information is which attributes are prioritized during the anonymiza-
tion. Afterwards, DR selects the version of the anonymized data. More precisely,
DR chooses i such that ADi is their preferable anonymization method. DP adds
to LDP the tuple [DRm+1;ADi] and send DR their identification DRm+1.

The processing stage repeats when DR requests the data. DR sends the
request including the identification DRm+1 and time interval [t1; t2], where t1
and t2 are timestamps. All DRs are assumed to require always data from a
specific period (an hour, a day, a week). DP looks into LDP to find the proper
anonymization method ADi. DP selects the data that are anonymized with ADi

and have the timestamp t such that t1 ≤ t ≤ t2. DP send the compiled dataset
to DR. The framework is summarized in Algorithm 2.

Algorithm 2. Application-oriented framework for IoT environments
Require: DP: dataset with anonymized data D∗, anonymization methods

AD1, . . . , ADn, LDP

Ensure: anonymized datasets D∗
i ’s with respect to requirements of DR

1: DP: publish information about D∗ and AD1, . . . , ADn

2: DR: select ADi

3: DR −→ DP: i
4: DP: LDP = LDP ∪ [DRm+1;ADi]
5: DP −→ DR: m + 1
6: while DR requests data do
7: DR: select t1, t2
8: DR −→ DP: t1, t2,m + 1
9: DP: find ADi such that [DRm+1;ADi] ∈ LDP

10: DP: compile records from D∗ having timestamps in [t1; t2] and being
anonymized with ADi −→ D∗

i

11: DP −→ DR: D∗
i

12: DP: wait for the next request
13: end while

5 Vulnerability of Application-Oriented Anonymization
to Composition Attacks

The composition attack is the privacy threat for relational datasets [6,15,23]
and social network datasets [19]. The composition attack aims to attack the
pairs of anonymized datasets with overlapping records or user communities. Let
us consider the composition attack on relational datasets. Let us assume that
two datasets D1, D2 contain the same records. Several records from the dataset
D1 are also included in D2. The dataset D1 could have many other records not
included in D2 and vice versa.
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Moreover, let both datasets have the same sensitive attribute, and its value is
constant for all overlapping records in both datasets. The assumption is realistic,
as presented in [15]. If both datasets are anonymized and published indepen-
dently, the adversary can use the anonymized versions of D1 and D2 to perform
the composition attack.

Definition 2 (Composition attack [15]). Assume D1, D2 to be two datasets
with overlapping user communities having the same sensitive attribute. Denote
ri(I) ∈ Di to be a record in Di describing the individual I, i = 1, 2. Let D∗

1 and
D∗

2 be the anonymized versions of D1 and D2 that are published independently of
each other. The attacker with access to D∗

1, D
∗
2 perform the composition attack

if he/she finds the nonempty set {[r1(I), r2(I)]; r1(I) ∈ D∗
1 , r2(I) ∈ D∗

2}.
The result of the composition attack is not the complete re-identification

of the individuals linked with the overlapping records; however, it is a signifi-
cant decrement in the privacy level. The version of the composition attack on
SN datasets is similar, and it aims to attack the pair of anonymized SNs with
overlapping user communities.

If two or more DRs having different priorities require the anonymized dataset
from the same DP, DP can create two or more anonymized versions of the same
dataset. Since all those versions are modifications of the same dataset, they
certainly have overlapping records (or overlapping user communities in the case
of the SN datasets). Thus, they can become targets of composition attacks.

5.1 Methods for Restraining Composition Attacks

Consider publishing SN datasets. The prevention against the composition attack
is to publish only one anonymized version of one dataset. Suppose the provider
wishes to publish two or more anonymized versions of their data. In that case,
he/she should split the dataset into several smaller datasets without overlap-
ping the user community. Then, DP can anonymize each smaller dataset with a
different method or with different priorities and publishes all of them.

In this scenario, DRs are expected to be data analysts or companies that buy
the data from the same DP once or a few times. The recommendation is not to
provide the same DR with different anonymized versions of the same dataset.
If the DR receives two different versions of the same dataset, they can perform
the composition attack. Moreover, DRs should not be allowed to publish the
received dataset themselves or to share it with other parties.

However, preventing the adversary from pretending to be two data recipients
DR1 and DR2 requesting data with different priorities is difficult. Thus, the pre-
vention against this behaviour is to split the dataset into several smaller datasets
without overlapping user communities and anonymize each smaller dataset with
a different method or priorities. The DR does not obtain the whole dataset but
only the smaller part of it. This recommendation is applicable to large or big
data datasets.
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Consider the situation in the IoT environment. As discussed in Sect. 4.2,
DRs are assumed to be applications that require the data with the same pri-
oritize repeatedly. To prevent the composition attack, DP can submit only one
anonymized version of the dataset to each DR. Since there can be many appli-
cations benefiting from the data from the same cloud in the smart city, splitting
the data collection in the cloud into smaller parts may cause significant infor-
mation loss. The smaller part may be too small, and the submitted information
may not be precise enough.

6 Conclusion

Application-oriented anonymization is a promising research direction in privacy-
preserving approaches. This paper introduces the frameworks for employing
application-oriented anonymization in social network datasets and IoT envi-
ronments. The crucial point of the proposed framework is the preference for
preserving selected metrics before minimizing the total information loss. The
new measure has been introduced to evaluate the information loss caused by
SN anonymization with respect to the selected metrics. It can motivate the
development of new application-oriented anonymization methods that focus on
preserving particular metrics regardless of the total information loss.

However, many open problems should be solved before application-oriented
anonymization is employed in practice. In social network anonymization, it
will be helpful to find good combinations of state-of-the-art methods such that
they differ in preserving particular network and application metrics. The data
providers can implement such combinations to have suitable methods for meeting
various requirements of data recipients.

Moreover, it is crucial to find effective ways to prevent composition attacks
using application-oriented anonymization and prevent the adversary from man-
aging two applications that request the data independently and with differ-
ent priorities. The authors will continue in the research of application-oriented
anonymization and address the issue in future research.
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274 J. Medková and J. Hynek

18. Majeed, A., Lee, S.: Anonymization techniques for privacy preserving data pub-
lishing: a comprehensive survey. IEEE Access 9, 8512–8545 (2021). https://doi.
org/10.1109/ACCESS.2020.3045700
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Abstract. Vulnerable source code in software applications is causing
paramount reliability and security issues. Software security principles
should be integrated to reduce these issues at the early stages of the
development lifecycle. Artificial Intelligence (AI) could be applied to
detect vulnerabilities in source code. In this research, a Machine Learn-
ing (ML) based method is proposed to detect source code vulnerabilities
in C/C++ applications. Furthermore, Explainable AI (XAI) was applied
to support developers in identifying vulnerable source code tokens and
understanding their causes. The proposed model can detect whether the
code is vulnerable or not in binary classification with 0.96 F1-Score. In
case of vulnerability type detection, a multi-class classification based on
CWE-ID, the model achieved 0.85 F1-Score. Several ML classifiers were
tested, and the Random Forest (RF) and Extreme Gradient Boosting
(XGB) performed well in binary and multi-class approaches respectively.
Since the model is trained on a dataset containing actual source codes,
the model is highly generalizable.

Keywords: Source code vulnerability · Machine learning · Software
security · Vulnerability scanners

1 Introduction

Security threats evolve rapidly, forcing developers to be up to date with the
latest security vulnerabilities to minimize the risk of software attacks. Educa-
tion of security for developers is an ongoing process. To date, many software
developers have overlooked security issues throughout the software develop-
ment lifecycle [22,24]. One of the main reasons for this could be a possible lack
of understanding about how common errors in software development result in
exploitable vulnerabilities in software systems [15] and possible pressure towards
fast deployment. Also, the communication disconnection between developers and
cyber security experts has led to widespread software vulnerabilities [26].
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Traditional security tools and penetration-testing techniques are consid-
ered very complicated, time-consuming and expensive processes in dynamically
changing cyber attacks [14]. For example, one of the challenges businesses face
today is that the mandate to be agile and release software faster while ensur-
ing that their product is secure against cyber threats. Possible other solutions
include static code analysis tools, which can have low detection capability (high
false negative rate) due to the lack of up-to-date cyber attack data [9,14]. There-
fore, the software development industry is in definite need of automating vul-
nerability detection with the growing impact of cyber attacks on businesses due
to downtime, reputation damage, loss of customers and asset sabotage.

Due to the advancement in computational power, new algorithms and avail-
ability of data, AI and ML can be successfully used to address problems in various
domains. Many applications in the computer security and privacy domain, have
been addressed using AI/ML techniques [28]. Software vulnerabilities are such
area in which AI/ML algorithms can be used to detect vulnerabilities in source
codes [1,2,19]. In the context of vulnerability detection, use of AI/ML algorithms
help to reduce the need of human expertise [29] and automate the process. Pro-
gramming languages can be considered as languages with words, numbers and
different symbols. Hence previous works have used Natural Language Process-
ing (NLP) techniques to detect vulnerabilities in source code, treating code as a
form of texts [5]. Extracted features through NLP techniques are used to train
AI/ML algorithms to model this problem as a classification model.

A requirement of having a high accuracy source code vulnerability detection
method is fulfilled in this work which used AI/ML techniques. In summary, the
following contributions are made:

– Improved data pre-processing approach to identify important features: Pre-
senting a method using a Concrete Syntax Trees (CST) to identify the most
important features of source codes to train a ML model.

– Generalized vulnerability detection models: Source code vulnerability detec-
tion using binary and multi-class classification models. The generalization
capability of the proposed method is high since the models are trained on a
carefully generated dataset that includes real-world source codes and a subset
of a synthetic dataset.

– Model explainability: Visually representing the identified vulnerable source
code segments to help make the necessary changes to convert the code from
vulnerable to benign. Furthermore, this supports for optimising the data pre-
processing approach to improving the model accuracy.

The rest of the paper is organised as follows: Sect. 2 contains background and
related work. Section 3 explains the methodology of this work. Section 4 discusses
the performance evaluation. Finally, the conclusions and future work directions
are discussed in Sect. 5.
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2 Background and Related Work

This section sets the base for the study by providing a sound knowledge of source
code vulnerabilities and weaknesses, various parsers and scanners, and various
vulnerability detection methods while discussing the related studies.

2.1 Source Code Vulnerabilities and Weaknesses

There is a wide scope of human error within the software development pro-
cess, especially if an extensive testing and validation process is not followed
from the initial stage of the software development lifecycle [7]. Due to these
potential human errors, several vulnerabilities in the code can occur. Reducing
vulnerabilities in source code is identified as a good practice in secure software
development [23].

Source code weaknesses are flaws, bugs, faults, or other errors that, if left
unaddressed, could result in the software being vulnerable to attack. Software
source code weaknesses are identified in Common Weakness Enumeration (CWE)
[3] and the known vulnerabilities are identified in Common Vulnerabilities and
Exposures (CVE) [4]. Identifying weaknesses in source code at early stages,
make the software less vulnerable. Some weaknesses have relationships with other
weaknesses (parent-child relationship in CWE category). Therefore, there can be
overlaps of codes related to more than one CWE ID (i.e. CWE-120 and CWE-126
are related to buffer sizes).

2.2 Parsers and Scanners

Software developers require supportive tools which can be integrated with their
coding to minimize developer errors by detecting vulnerabilities at an initial step
to mitigate them after performing the source code analysis [22]. The source code
needs to be initially formatted into a generalized form with CST or Abstract
Syntax Trees (AST) [25]. Static analysis can be used [9] to create these syntax
trees. The rate of false alarms on vulnerabilities depends on the accuracy of
formulating the CST/AST and its generalisation mechanism. Tree-sitter1 is an
open-source parser generator tool which can create a CST for a source file. It
also can efficiently update the tree when there is a change in the source code.

Using the parsed code, scanners can be used to perform analysis. Few scan-
ners are available which can perform analysis in C/C++ source code with rel-
atively good accuracy [17]. Cppcheck2 is one of the open source static analysis
tools to detect bugs, undefined behaviour and dangerous coding constructs in
C/C++ code. It can provide the following data for each alert: filename, line,
severity, alert identifier, and CWE. This also can be integrated with other devel-
opment tools. Flawfinder3 is another open source tool that can examine C/C++

1 https://tree-sitter.github.io/tree-sitter.
2 https://cppcheck.sourceforge.io.
3 https://github.com/david-a-wheeler/flawfinder.

https://tree-sitter.github.io/tree-sitter
https://cppcheck.sourceforge.io
https://github.com/david-a-wheeler/flawfinder
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source code and report possible security weaknesses. It works by using a built-
in database of C/C++ functions with well-known vulnerable problems, such as
format string problems (printf, snprintf, and syslog), buffer overflow risks (str-
cpy, strcat, gets, sprintf, and scanf), potential shell metacharacter dangers (exec,
system, popen), poor random number acquisition (random), and race conditions
(access, chown, chgrp, chmod, tmpfile, tmpnam, tempnam, and mktemp).

2.3 Vulnerability Detection Methods

Metric-based and pattern-based techniques have been used in previous works [6]
for vulnerability detection. Metric-based techniques use supervised or unsuper-
vised machine learning algorithms using features such as complexity metrics,
code churn metrics, token frequency metrics, dependency metrics, developer
activity metrics or execution complexity metrics [6]. Pattern-based techniques
use static analysis to identify vulnerable codes using known vulnerable codes.
However, the technique used in this, limited to function level codes and con-
sidered as a pre-step for vulnerability assessment as the proposed solution did
not identify the vulnerability type or the possible location of the vulnerability.
Additionally, usage of metric based features in compared ML algorithms showed
a low detection capability.

Authors in [10] have used text features in source code to predict software
defects. They have considered everything as texts separated by space or tab
except comments. Naive Bayes (NB) and Logistic Regression (LR) were used as
the classification algorithms in this study. This concept was adapted by [20] and
used for software vulnerability prediction tasks using the same algorithms with
Bag of Words (BoW) as features. Everything except for comment words sepa-
rated by space or tab have been treated as features for this model. Experimental
results showed a lower F1-Score for all selected test cases. This might be due to
the poor feature selection without focusing on the proper data pre-processing
approach. In [8] n-gram (1-gram, 2-gram and 3-gram) and word2vec were used
as the features to predict if a test case contains vulnerability or not. As a solu-
tion to the class imbalance problem, the authors used the random oversampling
technique. However, both of the above-mentioned models [8,16] are limited to
binary classification models to detect the vulnerability states.

Minimum intermediate representation learning was used to source code vul-
nerability detection in [19]. Unsupervised learning was used in the pre-training
stage to solve the lack of vulnerability samples. Convolutions Neural Networks
(CNN) were used to generate high-level features. Finally, these features are used
in classifiers such as LR, NB, Support Vector Machine (SVM), Multi-Layer Per-
ceptron (MLP), Gradient Boosting (GB), Decision Tree (DT) and RF for vul-
nerability detection. Only two CWE-IDs of a synthetic dataset were selected as
the training dataset and therefore, this model has a low generalization capability
for other CWE-IDs and real datasets.

Authors in [27] proposed a method to guide manual source code analysis
using vulnerability extrapolation. To this end, the authors generated AST using
a parser. This work is limited to vulnerabilities present in a few source code
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functions. The vulnerability detection method proposed by [1] is also based on
the AST representation of source code. Pycparser4 library was used to generate
AST for the C language. It was modelled as a binary classification task using
MLP and CNN algorithms. The proposed model used four CWE classes and
achieved between 0.09 to 0.59 F1-Score.

Though the trend toward applying ML for vulnerability detection is high, as
discussed above, many studies do not provide a high accuracy/F1-Score when
detecting source code vulnerabilities. Many of them were not trained on a dataset
that includes a real-world dataset, following enhanced preprocessing techniques.
Furthermore, they were only limited to binary classification or a limited number
of CWE classes. Therefore, our study addresses these problems by using a real-
world dataset to achieve an F1-Score of 0.96 in the binary class model and 0.85
in the multi-class classification model for twenty CWE classes.

3 Methodology

3.1 Dataset

Lack of vulnerability dataset is one of the major challenges for developing vulner-
ability prediction model [11,21]. Authors in [12] showed the importance of using
sufficient and accurately labelled data to achieve good accuracy of the vulnera-
bility prediction task. Previous works used different datasets to train proposed
algorithms. The proposed method in [20] has used data of 182 releases of 20
apps. It used a source code analyser to identify vulnerabilities without using
a vulnerability database. Datasets published by Software Assurance Reference
(SARD) and the National Vulnerability Database (NVD)5 used in [19]. To iden-
tify the ground truth of mined open-source code, the authors used static analy-
sis, dynamic analysis with commit-message and bug-report tagging. SARD is a
dataset produced by the National Institute of Standards and Technology (NIST)
as a result of the Software Assurance Metrics And Tool Evaluation (SAMATE)
project6. SATE IV juilet test suit7 of SAMATE project, debian linux distribution
and data on public git repositories on GitHub were used in [1].

Since this research focuses on predicting both vulnerable and non-vulnerable
codes and detecting the CWE-IDs, both positive and negative classes data is
needed. As the vulnerable dataset, synthetic test cases (C and C++ languages)
of SATE IV juilet test suit was selected. This dataset was developed to encourage
the improvement of static code analysers. The selected dataset includes 52,185
source code samples. Since this dataset is limited to vulnerable codes and CWE-
IDs distribution is highly imbalanced, a web crawler was developed to retrieve
more C and C++ source codes from public GitHub repositories. The entire

4 https://github.com/eliben/pycparser.
5 https://cve.mitre.org/.
6 https://samate.nist.gov/SARD/.
7 https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-expositio

n-sate-iv.

https://github.com/eliben/pycparser
https://cve.mitre.org/
https://samate.nist.gov/SARD/
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-iv
https://www.nist.gov/itl/ssd/software-quality-group/static-analysis-tool-exposition-sate-iv
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source code was considered as a sample. Existing static analysis tools were used
to identify the ground truth of the retrieved source codes. In general, signature-
based detection methods have lower false positives. Since they might suffer from
higher false negatives, they were used in an ensemble way to obtain the ground
truth. The main objective here is to learn the capabilities of these analysers and
obtain a lower false negative and positive rate from the ML-based models. To
this end, the sample was considered as malicious if one of the analysers identifies
the sample as malicious. If all analysers identify the sample as benign, then it
was considered as benign. Based on the combined dataset of SATE IV Juilet
test suit and GitHub data, twenty highest frequent CWE-IDs were selected as
vulnerable code samples, including over 0.3 million source codes. Vulnerability
class distribution is depicted in Fig. 1. Similar size of C and C++ source codes
were selected as the benign dataset, making it approximately 1:1 positive and
negative class distribution.

Fig. 1. CWE-ID distribution.

3.2 Model Architecture

The proposed model includes two machine learning models for binary and multi-
class classifications. The binary classification model is trained to detect the
source code as benign or vulnerable code. Multi-class classification model uses
the identified vulnerable code to detect the CWE-IDs associated with it. The
XAI is used on the multi-class classification results to explain the model predic-
tion and hence to identify vulnerable code segments. This process is depicted in
Fig. 2.

Data Pre-processing. The selected dataset contains C and C++ language
source codes. Previous works [1,13,27] used AST and CST representations of
codes to identify features. In this research, CST is used to identify the tokens
of source code to retain more details in the code using a parser generator tool.
Following pre-processing steps were applied to source codes.
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Fig. 2. Model Architecture.

1. Use a parser generator to generate CSTs (parse tree) of source codes.
2. Clean CST outputs to generate tokens.
3. Create numerical vectors for ML models.

All source codes were passed through the parser generator to generate CSTs.
CSTs contain much information, such as comments, symbols, hexadecimal num-
bers and user-defined function names, which cannot use as generalized fea-
tures for machine learning models. Hence, comments and selected symbols were
removed and user-defined function names were replaced with common names
such as ‘UserDef’. Symbols to remove from the codes were identified with the
support of a set of domain experts to avoid important symbol removal. Pre-
processed CST outputs were used to generate features for ML models. To this
end, Python library CountVectorizer and TfidfVectorizer were used to generate
features of Bag-of-words (BoW), n-gram (n = 2, 3) and term frequency-inverse
document frequency (TF-IDF). Grid search was used to identify optimal hyper-
parameters including maximum (max df) and minimum (min df) document fre-
quencies.

Algorithms: Data pre-processing produced three feature vectors from CST
tokens: BoW, n-gram and TF-IDF. The complete dataset of 0.6 million source
code samples was used to train the binary classification model, whereas 0.3 mil-
lion source code samples which included 20 CWE-IDs were used to train the
multi-class classification model. Due to class imbalance, stratified random sam-
pling was used to split the dataset into 80:20 ratios for the multi-class classifica-
tion model. 80% of the data was used to train binary and multi-class algorithms
and the rest of the 20% was used to evaluate their performance. NB, RF, LR and
XGB algorithms were used with BOW, n-gram (n = 1, 2) and TF-IDF features.
Since a vulnerable code might have more than one vulnerability, the top K (K =
3) predictions were used as possible vulnerable classes to address the multi-label
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cases. Python sklearn library was used to implement these algorithms. Exper-
iments were conducted on a MacBook Pro 2.2 GHz Intel Core i7 with 16 GB
RAM.

Vulnerability Explanation: Identifying the vulnerabilities and relevant CWE
IDs are not sufficient to convert the code into benign code. Identifying the spe-
cific code segments (tokens) is helpful in evaluating the validity of model pre-
dictions and making the necessary changes to the vulnerable code to make it a
benign code. This helps the developer to use the domain knowledge to make an
informed decision. Hence, model interpretability is an important factor in source
code vulnerability detection. To this end, Local Interpretable Model-agnostic
Explanations (LIME) [18] was used. LIME provides an explanation which is a
local linear approximation of the trained model’s behaviour [18]. LIME learns a
sparse linear model by sampling instances around specific instances, approximat-
ing the trained model locally. LIME supports text classifiers and provides visual
and textual artefacts that developers can understand. These explanations were
used to further fine-tune data pre-processing by removing non-related tokens
and keeping the important tokens. In addition, LIME provides the explanation
for top K predictions, which helps to identify multiple vulnerabilities of a code.

4 Performance Evaluation

This section presents the results for different classifiers and features described in
the previous section. All the results discussed in this section were based on the
test set. As mentioned earlier, F1-Score was selected as the evaluation metric
as it is the harmonic mean of precision and recall. Labels 0 and 1 represent
benign and vulnerable classes of the binary classification model, whereas twenty
CWE-IDs represent vulnerability classes of the multi-class classification model.

4.1 Machine Learning Models

As mentioned in the previous section, four machine learning algorithms were used
to predict vulnerabilities using three features. N-gram includes 2-gram and 3-
gram. Table 1 summarize the F1-Score for binary classification models for BoW,
2-gram, 3-gram and TF-IDF features. The best model performance was obtained
with the default parameters. The BoW feature achieved a higher or similar F1-
Score than n-gram for all algorithms except the XGB algorithm. XGB algorithm
showed a very low detection capability for benign class for all features, even with
different hyper-parameters. This might be due to the large number of available
hyperparameters of XGB, and the selected grid search values were out of the
optimum values for the binary classification. The RF algorithm achieved a sig-
nificantly higher F1-Score than other algorithms for TF-IDF. RF algorithm with
the feature BoW outperformed all other algorithms and features and achieved
0.96 F1-Score.
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Table 1. Performance of binary classification ML algorithms with BoW, n-gram, and
TF-IDF features (F1-Score).

NB LR RF XGB

Class BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

0 0.72 0.57 0.63 0.84 0.90 0.88 0.89 0.91 0.95 0.95 0.95 0.95 0 0.02 0.03 0

1 0.81 0.76 0.78 0.85 0.89 0.88 0.89 0.91 0.96 0.95 0.95 0.95 0.68 0.63 0.66 0.68

Overall 0.76 0.66 0.71 0.84 0.89 0.88 0.89 0.91 0.96 0.95 0.95 0.95 0.34 0.33 0.37 0.34

Table 2 presents the performance achieved by multi-class algorithms with
respective features. NB algorithm achieved the lowest F1-Score for all features.
For both NB and LR algorithms, increasing the n-gram caused to achieve the
same F1-Score as BoW or slight detection improvement. In contrast, the opposite
was observed for RF and XGB algorithms. F1-Score was reduced when increasing
the n-gram. RF and XGB algorithms for BoW and TF-IDF showed nearly similar
detection capabilities.

According to the results, the best overall F1-Score was obtained as 0.85
for XGB algorithm with BoW features. Overall, BoW features performed bet-
ter than the n-gram features. Generally, higher n-gram models contain more
information about the word (token) contexts. However, this increases the data
sparsity with the n. This might be one possible reason for the lower F1-Score
for n-gram based models compared to BoW based models. Another possible
reason would be the association of key terms with the vulnerabilities than the
term combinations. Combining these key terms with the nearby terms might
reduce the vulnerability detection capability. CWE-IDs which had over 20,000
source code samples, achieved over 0.80 F1-Scores, whereas other classes showed
comparatively low detection capability. However, CWE-ID 676 detection rate is
higher for all algorithms regardless of the dataset size. Usage of potentially dan-
gerous functions such as strcat(), strcpy() and sprintf() introduce the CWE-ID
676 vulnerability. The frequent appearance of these vulnerable terms could be a
reason for the higher detection rate.

Multi-class classification results indicate the detection rate likely to be asso-
ciated with the dataset size for each class. To verify this, all classes over 20000
samples were considered and the remaining classes were categorized as ‘other’
category. This produced 12 unique classes compared to 20 classes used in the
previous model. The best performing XGB with BoW feature was used to eval-
uate the performance. Table 3 presents the performance achieved for increased
sample size. As expected, this improved the overall F1-Score by 4%.

Detection latency is a critical criterion in a production environment for real-
time predictions. This highly depends on the number of features used and model
complexity. Since BoW provided the best detection rate, BoW was used to eval-
uate the detection latency of four ML algorithms. Table 4 presents the average
detection latency (ms) for one source code. NB provides the prediction in a very
short time with lower detection rates. In contrast, RF takes much time despite
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Table 2. Performance of multi-class classification ML algorithms with BoW, n-gram,
and TF-IDF features (F1-Score).

NB LR RF XGB

CWE
ID

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

BoW 2-
gram

3-
gram

TF-
IDF

20 0.39 0.39 0.34 0.56 0.63 0.63 0.63 0.70 0.82 0.79 0.74 0.82 0.87 0.83 0.76 0.87

78 0.57 0.57 0.56 0.66 0.78 0.75 0.73 0.83 0.91 0.88 0.84 0.9 0.95 0.91 0.85 0.95

120 0.06 0.34 0.35 0.55 0.59 0.60 0.59 0.62 0.80 0.78 0.75 0.79 0.83 0.82 0.78 0.82

126 0.30 0.32 0.32 0.53 0.58 0.60 0.61 0.66 0.83 0.80 0.75 0.83 0.87 0.84 0.80 0.87

134 0.40 0.43 0.45 0.54 0.65 0.68 0.69 0.69 0.85 0.82 0.80 0.85 0.86 0.84 0.79 0.86

190 0.35 0.29 0.28 0.57 0.70 0.71 0.68 0.73 0.88 0.87 0.83 0.88 0.91 0.89 0.83 0.90

327 0.57 0.53 0.51 0.69 0.87 0.80 0.75 0.84 0.94 0.90 0.85 0.94 0.96 0.91 0.83 0.96

362 0.49 0.50 0.49 0.58 0.71 0.69 0.67 0.71 0.84 0.82 0.79 0.83 0.87 0.84 0.81 0.87

377 0.26 0.23 0.24 0.32 0.36 0.41 0.48 0.62 0.74 0.67 0.62 0.73 0.86 0.72 0.65 0.85

398 0.70 0.73 0.74 0.74 0.86 0.87 0.87 0.86 0.93 0.92 0.91 0.93 0.94 0.94 0.92 0.93

401 0.39 0.42 0.43 0.43 0.42 0.54 0.59 0.62 0.78 0.76 0.73 0.77 0.79 0.80 0.77 0.79

457 0.39 0.40 0.44 0.57 0.65 0.67 0.68 0.69 0.84 0.83 0.81 0.84 0.84 0.82 0.78 0.83

476 0.30 0.32 0.33 0.23 0.40 0.47 0.54 0.47 0.77 0.76 0.75 0.78 0.72 0.72 0.69 0.71

562 0.30 0.31 0.29 0.17 0.47 0.50 0.56 0.38 0.77 0.77 0.76 0.76 0.70 0.71 0.70 0.69

664 0.26 0.26 0.27 0.21 0.34 0.38 0.51 0.48 0.77 0.76 0.74 0.77 0.81 0.82 0.79 0.82

676 0.50 0.48 0.45 0.49 0.79 0.73 0.68 0.80 0.92 0.88 0.80 0.92 0.97 0.91 0.83 0.96

732 0.36 0.40 0.40 0.48 0.66 0.61 0.64 0.70 0.85 0.81 0.75 0.85 0.91 0.89 0.80 0.91

758 0.52 0.53 0.52 0.63 0.70 0.73 0.78 0.76 0.92 0.92 0.91 0.92 0.89 0.87 0.83 0.89

775 0.27 0.27 0.30 0.44 0.38 0.44 0.52 0.52 0.68 0.66 0.64 0.66 0.72 0.73 0.71 0.70

788 0.10 0.29 0.33 0.23 0.16 0.21 0.30 0.43 0.66 0.67 0.65 0.65 0.64 0.67 0.64 0.63

Overall 0.37 0.40 0.40 0.48 0.59 0.60 0.62 0.66 0.82 0.80 0.77 0.82 0.85 0.82 0.78 0.84

Table 3. Performance of XGB algorithm with BoW for 12 classes (F1-Score).

CWE ID 120 126 134 190 208 327 362 398 457 758 780 Other Overall

F1-Score 0.8 0.88 0.86 0.9 0.87 0.96 0.87 0.94 0.83 0.88 0.96 0.89 0.89

a higher detection rate. Overall, among the selected algorithms, XGB provides
the best detection latency and detection rate tradeoff.

Table 4. Average detection latency.

ML Algorithm Detection latency (ms)

NB 0.005

LR 8.378

RF 175.968

XGB 14.378

4.2 Explainable AI

Even though ML algorithms with BoW showed a higher detection rate, this is
not much useful unless the reasons behind these predictions are known. Hence,
LIME was used to identify the vulnerable code segments of each source code and
potential other CWE-IDs which were not available as a ground truth. This is
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Fig. 3. Explainability of the predictions.

highly important as multiple CWE-IDs might be there due to parent-child rela-
tionships. The selected example presented in Fig. 3 includes CWE-ID 401 as the
vulnerability. This is relevant to the missing release of memory after an effective
Lifetime. Developers should sufficiently track and release allocated memory after
it has been used [3]. XGB accurately predicts the CWE-ID 401 as the vulner-
ability of this source code. LIME provides the prediction probabilities for the
top 4 predictions and respective features (tokens) that caused the vulnerability.
Further, LIME provides the visualization of highlighted code. Since the original
codes were pre-processed, this shows the pre-processed code. In this example, it
identified that ‘realloc’, ‘malloc’, ‘sizeof’ and ‘unistd’ positively affect towards
CWE-ID 401. These tokens are highlighted with brown colour in the code. Even
though the ground truth was 401, as expected, this identified other possible vul-
nerabilities as well. CWE-ID 190 is another vulnerability that lies in this code
due to inappropriate usage of function ‘atoi’. Additionally, inappropriate usage
of ‘strlen’ leads to CWE-ID 126, also identified by the algorithm as the 3rd
possible vulnerability.

Based on these features, the developer can examine the code regardless of
its number of code lines and convert the vulnerable code into benign code by
changing the respective feature usage. These explanations also can be used to
optimise the feature pre-processing. There might be some features that are not
useful to predict the vulnerability and still, the algorithm identifies them as valid
features due to dataset bias. These features can be identified by analysing the
LIME output, which helps to perform the required pre-processing to remove such
features continuously.

5 Conclusion and Future Works

Vulnerable source code sometime can cause critical security flaws. Therefore,
the weaknesses of the source code must be reduced to a great extent. Though a



286 S. Rajapaksha et al.

few methods are available to detect source code vulnerabilities, their accuracies
and generalization capabilities are low. Existing methods do not provide reasons
for the vulnerabilities, which is very important to the developers. The proposed
method in this work can detect source code vulnerabilities in C/C++ using
an ML-based approach with an F1-Score of 0.96 in binary classification (with
RF classifier) and an F1-Score of 0.85 in CWE-ID-based multi-class classification
(with XGB classifier). Furthermore, XAI was also applied in this work to explain
the causes of particular vulnerabilities. The F1-Score can be further increased
by improving the data pre-processing techniques and extending the dataset with
more source code examples. Currently, the CWE-ID based multi-class classifica-
tion model can detect twenty types of weaknesses, and by increasing the sample
source code, it can detect more classes with higher accuracy and improve the
detection capability for the extremely broad vulnerability categories. An auto-
mated solution to perform that is also integrated with a live web portal. Once
the dataset contains a high volume of data, it can also be explored as a future
improvement since there can be vulnerable source code associated with more
than one CWE-ID. Once the vulnerabilities are detected, mitigation methods
can also be proposed by integrating more features in XAI for future improve-
ment. Finally, the model will be deployed with a live web portal to validate
under real-world settings.

Acknowledgment. This work has been funded by The Scottish Funding Council, we
are thankful to the funder for their support.

Appendix: Common Weaknesses in C/C++ Source Code

CWE-ID CWE-Name Sample Vulnerable C/C++ Code

CWE-20 Improper Input Validation board = (board square t*) malloc(m * n *

sizeof(board square t));

CWE-78 Improper Neutralization of Special Elements

used in an OS Command (‘OS Command

Injection’)

system(NULL)

CWE-120 Buffer Copy without Checking Size of Input

(‘Classic Buffer Overflow’)

strcpy(buf, string);

CWE-126 Buffer Over-read strncpy(Filename, argv[1], sizeof(Filename));

CWE-134 Use of Externally-Controlled Format String snprintf(buf, 128, argv[1]);

CWE-190 Integer Overflow or Wraparound response xmalloc(nresp*sizeof(char*));

CWE-327 Use of a Broken or Risky Cryptographic

Algorithm

EVP des ecb();

CWE-362 Concurrent Execution using Shared

Resource with Improper Synchronization

(‘Race Condition’)

pthread mutex lock(mutex);

CWE-401 Missing Release of Memory after Effective

Lifetime

char buf = (char) malloc(BLOCK SIZE);

read(fd, buf, BLOCK SIZE) != BLOCK SIZE;

CWE-457 Use of Uninitialized Variable char *test string; if (i != err val) test string =

“Hello World!”; printf(“%s”, test string);

CWE-676 Use of Potentially Dangerous Function char buf[24]; strcpy(buf, string);
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Abstract. Card-based cryptography realizes cryptographic tasks, such
as secure computation, with a deck of physical cards. The primary
research subjects for card-based cryptography are theoretical studies
that, for example, propose efficient protocols regarding the number of
required cards and procedures. However, almost all prior studies are
based on the ideal physical assumption that the backs of all cards are
indistinguishable without verification. This study addresses this assump-
tion from a physical perspective to improve the security of card-based
cryptography. In the first attempt, we assume a strong attacker who
uses ink and a high-performance camera to distinguish the backs of the
cards. We experimented with them and confirmed that such an attacker
could identify the inked area of the back by analyzing an image captured
by the camera. Based on our study, one can address another approach,
such as using invisible oil and smartphone cameras to verify the physical
assumption. This study is a seminal work that addresses this physical
assumption. In addition to the verification, we study secret information
that such a strong attacker can obtain during the execution of card-based
protocols.

Keywords: Card-based cryptography · Hyperspectral camera ·
Physical assumption

1 Introduction

Card-based cryptography is a method of realizing cryptographic tasks, such as
a secure computation using a deck of physical cards shown in Fig. 1. In card-
based cryptography, a value is typically represented by a sequence of cards called
a commitment. Each player holding an input value places a commitment that
represents the value. Then, they shuffle and reveal the cards to obtain only the
output value, indicating that no information about the input values is revealed
during the computation process. Because card-based cryptography uses a deck
of “real” cards to perform secure computations, it is of educational value [12,19].
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1.1 Background

Research on card-based cryptography began with a card-based protocol called
the five-card trick, invented by Den Boer in 1989 [3]. Since then, various protocols
have been proposed [2,8,9,11,13,16,18,20,24]. Further, theoretical studies on the
necessary and sufficient number of required cards have been conducted [4,8,9,23].
Most of these theoretical studies are based on the physical assumption [7] that
the backs of all cards are indistinguishable, as is for poker and other card games.
However, this physical assumption is ideal and does not always hold in practice; a
malicious player can tamper with cards to secretly distinguish the backs. Hence,
we must discuss this from an engineering perspective and understand the actual
capabilities of attackers.

Fig. 1. Sequence of cards typically used in card-based cryptography

1.2 Contributions

We investigate the validity of the physical assumption in card-based cryptogra-
phy. This study aims to improve the security of card-based cryptography and
apply it to daily card games, such as poker games. More precisely, we inves-
tigate whether an attacker can identify a card from the back using practical
instruments.

This study focuses on cameras because they are suitable for developing the
physical security of card-based cryptography. In the first attempt, we assume a
strong attacker who uses ink and a high-performance camera, e.g., hyperspectral
camera introduced in Sect. 2. An attacker secretly inks the back of a card with
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Fig. 2. Our aim and experiment

the same color as the design before starting a protocol, making it inconspicuous
to the human eye. When performing the protocol, the attacker takes a picture
using a high-performance camera to read the inked area and identify the card.
Through experiments, we confirmed that such an attacker could identify the
inked card, and the physical assumption used in card-based cryptography does
not always hold. Moreover, based on the experimental results, we discuss the
physical properties of ink depending on its color and propose countermeasures.
Based on this experiment, we can address another approach, such as using invisi-
ble oil and smartphone cameras to verify the physical assumption. This study is a
seminal work addressing this physical assumption. Our aims and the experiment
are summarized in Fig. 2.

We also theoretically examine the information about the input values that
can be obtained by such a strong attacker. Because every player should privately
make an input commitment at hand, an attacker (i.e., a malicious player) can
secretly ink its commitment to identify it later. For instance, an attacker can
ink a card under the table or use an ink-stained finger when making its own
commitment so that nobody notices. This study selects the five-card trick [3],
which computes the logical AND of two inputs, and the six-card AND (a.k.a.
MS-AND [15]) to determine whether such an attacker can obtain information
about the other player’s input value. This attack was found to be effective for
both players in the five-card trick, but only for one player in the MS-AND. This
implies that the attack depends on protocol procedures.

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we introduce a hyper-
spectral camera and related work. Section 3 describes the experimental tools
and the environment. We describe our experimental results and discuss them in
Sects. 4 and 5. Section 6 concludes the study. In Appendix A, we discuss secret
information that a strong attacker can obtain.
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2 Preliminaries

This section describes the general functions of hyperspectral cameras. Further-
more, we introduce related background and work.

2.1 Hyperspectral Camera

Typical cameras are known as RGB cameras. Using these cameras, we obtain a
precise picture of the objects as they appear in the human eye. RGB cameras
measure only three bands of the light spectrum.

Hyperspectral cameras measure multiple bands of the light spectrum and a
regular image. Specifically, hyperspectral cameras can obtain a spectrum with
over one hundred wavelengths per pixel of the captured image. Because the way
light is reflected and absorbed by objects differs depending on their materials and
colors, hyperspectral cameras help identify color differences and materials that
are difficult to distinguish with the naked eye. Because of these characteristics,
hyperspectral cameras were primarily used in military applications and remote
sensing. However, recently, they have been used in various fields because they
are less expensive, and their sizes are minimized.

2.2 Related Matters

In 2011, an incident using infrared contact lenses and invisible ink occurred
during a casino card game [26]. Cheaters paid casino workers to mark decks of
cards with invisible ink and then wore infrared contact lenses to read the ink
and distinguish the marked cards.

Hyperspectral imaging techniques can identify the type of ink used in docu-
ments. Khan et al. [5] studied ink mismatch detection in the visible spectrum.
The basis of this study is that similar colors of different ink products differ in
spectrum depending on their materials.

2.3 Related Work

Mizuki and Shizuya [14] proposed a countermeasure to perform secure computa-
tions even if the backs of cards were scratched. Table 1 summarizes the differences
between our study and their work. The most significant difference is verifying the
physical assumption, that is, considering any situation wherein the assumption
might not hold and inventing helpful countermeasures. Thus, this study includes
their work [14]. Their countermeasures work under the assumption that every-
one knows in advance where the cards are scratched. However, in our study, an
attacker secretly applies the ink; hence, we should adopt a different approach to
invent countermeasures.

Identifying cards by applying markers to their backs is called card marking
and has been addressed for many years in casinos. Initially, one identifies cards
creating small bumps by bending or crimping them, but recently markings have
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been applied to the designs of cards as the design of the backs has changed.
Marking methods using ink are known as block-out. Kneitel [6] presented a
case study on judging illegal card marking that occurred in casinos. However,
detecting card marking using electronic devices such as hyperspectral cameras
has not been studied. We also emphasize that our study is the first attempt to
introduce card marking to the field of card-based cryptography.

Using invisible ink in card-based cryptography was first considered by Shi-
nagawa [21]. These protocols legally use invisible ink to encode an integer on a
card and “partially” reveal the integer by illuminating the covered card with a
black light.

Table 1. Differences between existing work [14] and this study

Difference [14] This study

Objective Secure computations Verifying the physical assumption

Clue Scuff (accidental) Ink (intentional)

How to identify Human eyes Additional tools

3 Our Experiment

We experimented with ink and a hyperspectral camera to verify the physical
assumption in card-based cryptography. We verified the possibility of distin-
guishing between inked and left untouched cards by comparing their spectra.

3.1 Hyperspectral Camera, Card, and Ink

This experiment used Specim IQR© (over $10,000), commercialized by Specim,
Spectral Imaging Ltd. shown in Fig. 3. The camera has a resolution of
512 × 512 pixels1 and can obtain a spectrum in the range of wavelengths from
397 to 1000 nm in steps of 3 nm for each pixel. Figure 4 illustrates the card to
be photographed. The card on the left side was not inked, and only the center
of the right card was inked. We only photograph the right card. Table 2 summa-
rizes the 10 commercial colored inks (five blue and five black inks) used in this
experiment.2

1 This resolution is significantly lower than the latest smartphone cameras (about 10
megapixels).

2 As seen from Fig. 4, one could notice the color difference if one carefully observes the
backs. This is because the blue reflection area is the one the human eye can detect.
In this study, however, we focus on using a high-performance camera to identify the
inked backs. This study does not discuss the card’s wear, material, and texture.
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Table 2. Commercial ink products used in the experiment

Blue Black

SARASA CLIPR© JETSTREAMR©

MackeenockR© SARASA CLIPR©

Playcolor KR© PENTEL Sign PENR©

uni-ball SignoR© Magic InkR©

Super PetitR© MackeeworkR©

Fig. 3. Specim IQR©

3.2 Filming Environment

We captured the photos in a darkened room with a halogen lamp illuminating
the card to be photographed, as shown in Fig. 5. The reason for using a halogen
lamp instead of a fluorescent lamp in a room is that it emits light over a broad
wavelength band (refer to the figures in [25] for their spectra).

As shown in Fig. 5, when photographing, a white panel is lined up on the
card. This is because a calibration process is required to generate the spectral
data. White reflects light of all wavelengths; assuming that light shone on the
white plate is all reflected, spectral data in the other areas are generated on this
assumption.

As discussed previously, we prepared equipment, such as a halogen lamp, to
obtain spectral data; hence, an attacker cannot execute this attack secretly. That
is, our filming environment is ideal for an attacker. This is because we assume a
strong attacker in this study. We believe that an attacker can create this ideal
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Fig. 4. The backs of two cards. Blue ink has adhered to the right one near the center
(Color figure online)

environment and photograph the backs of cards without anyone notice it after
we execute a card-based protocol. This issue is also discussed in Sect. 6.

3.3 Experimental Procedure

Here, we describe our experimental procedure.

1. Mark specific areas of the back of a card near the center with one of the 10
ink products listed in Table 2 and lightly wipe the inked area with a finger.

2. Place the white plate and the inked card side by side and illuminate them
using the halogen lamp.

3. Photograph the inked card and the white plate using Specim IQR© and obtain
the spectra of the inked and left untouched areas of the card.

4. Use a standard function called SAM Mask described in Sect. 3.4 to confirm
that the entire inked area can be revealed.

5. Observe differences in the spectra of inked and left untouched areas.

3.4 Spectral Angle Mapper

The spectral angle mapper (SAM) compares and classifies spectra [10]. The
SAM compares the two spectra by treating them as vectors and calculating their
angles. Here, the vector represents a multidimensional vector of the reflectance
in each band. The following formula3 is used in the analysis software attached
3 The SAM initially calculates the angle (in the radian), but this analysis software

calculates the cosine of the angle.
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Fig. 5. Filming environment

to Specim IQR©:

θ(x, y) =
∑n

i=1 xiyi
√

(
∑n

i=1 x2
i )

√
(
∑n

i=1 y2
i )

,

where x and y denote the spectra and n denotes the number of bands. This
formula implies that the closer the value to one, the more similar the two spec-
tra. This software shows pixels with similar spectra (as shown in Fig. 7) after
calculating the angle between each pixel and setting a threshold value. Our
experiment used this function to verify whether inked and left untouched areas
could be clearly identified.

4 Experimental Result

This section describes the results of the experiments. We examined spectra to
determine the differences observed in each wavelength band.
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4.1 Blue Ink

We describe the results of photographing the back of a card inked with each
blue-ink product. Figure 6 shows the obtained spectra of the back inked with
uni-ball SignoR© and that of the uninked area. (Due to the space and size limits,
let us omit the remaining four spectra.)

The spectra are different in the blue-to-green transition from 397 to 548 nm
and in the near-infrared region from 800 nm onward. They can be readily distin-
guished at approximately 430 nm and 800 nm for certain ink products.

Using the SAM, we could display inked areas for all ink products, where we
set a threshold value of 0.9996. Figure 7 depicts the inked area with uni-ball
SignoR© using the SAM, where the threshold value was 0.9998.

Fig. 6. Obtained spectra of the back inked with uni-ball SignoR© (orange-lined) and
that of the uninked area (blue-lined) (Color figure online)

4.2 Black Ink

We describe the results of photography for each black-ink product. Figure 8
shows the obtained spectra of the back inked with Magic InkR© and the uninked
area.

Because the light in the visible-light range from 397 to 800 nm was absorbed,
no discernible difference could be observed. Some differences were observed in
the near-infrared region after 800 nm, but they could not be discerned from the
graph.

However, for Magic InkR© and MackeeworkR©, we can display the inked area
using the SAM. We identified the inked and left untouched areas for the two
inked products, where we set a threshold value of 0.9960. Figure 9 depicts the
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Fig. 7. Inked area for blue ink uni-ball SignoR© depicted using the SAM where the
threshold value was 0.9998 (Color figure online)

inked area with Magic InkR© using the SAM, where the threshold value was
0.9960.

5 Discussion

This section discusses the observed differences in the spectra depending on the
type of ink in the experimental results described in Sect. 4.

5.1 Spectrum in Blue Ink

For blue ink, differences in the spectra were observed mainly in two wavelength
regions, from 397 to 548 nm and from 800 nm onward. Herein, we discuss the
differences in the two wavelength ranges.

Visible-light from 397 to 548 nm is detected by the human eye. The difference
in this wavelength region may be due to the pigment composition of ink. More
precisely, solvents and colorants composing ink caused the difference in spectra
although their colors were similar blue. Among the five blue inks used in this
study, only the uni-ball SignoR© has a higher reflection rate in the visible-light
range, whereas the remaining four inks have almost the same or a lower reflection
rate.

Wavelengths above 800 nm are in the infrared wavelength region and cannot
be detected by the human eye. Therefore, the difference in this region originates
not from their colors, but their ink-specific components. The main components of
the ink are solvents and colorants. Solvents are classified as oil- and water-based,
whereas colorants are classified as dyes and pigments. Oil-based ink uses volatile
organic solvents and is highly viscous, whereas water-based ink uses water and
has a low viscosity. The difference between dyes and pigments is that dyes are
soluble in solvents, whereas pigments are not.
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Fig. 8. Obtained spectra of the back inked with Magic InkR© and that of the uninked
area (Color figure online)

Fig. 9. Inked area for black-ink Magic InkR© depicted by using the SAM where the
threshold value was 0.9960 (Color figure online)

Comparing the shapes of the spectra in the infrared wavelengths, SARASA
CLIPR©, Playcolor KR©, and Super PetitR© are similar to the spectrum of the card.
Among these three ink products, SARASA CLIPR© and Super PetitR© use water-
based pigments, whereas Playcolor KR© uses water-based dyes. Uni-ball SignoR©

had a slightly lower spectrum than the three ink products. This is possibly
because the uni-ball SignoR© is called gel ink, which is water-based, but has a
higher viscosity than the three ink products. MackeenockR© is oil-based ink; thus,
its reflection rate is below that of the others.
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The feasibility of attacks using the five ink products depends on the charac-
teristics of the ink used in secretly conducting attacks. The ideal ink for attacks
is one such that its spectrum is indistinguishable from that of the card in the
visible-light range, but differs in the near-infrared range because such ink cannot
be detected by the human eye. In the near-infrared region, the reflection ratio
decreases in the order of water-, gel-, and oil-based ink. Although we can iden-
tify oil-based ink simply by observing the spectrum in the near-infrared, we can
quickly notice that oil-based ink used has adhered to the card visually. Water-
based ink has the most similar spectra in the near-infrared region to the card,
making it more difficult to distinguish it from the card. However, it is more dif-
ficult to visually confirm where the ink adhered compared to oil-based ink. Gel
ink is between oil- and water-based, but it is as tricky as water-based to visually
confirm the ink adhesion points. Therefore, among the five ink products used,
either SARASA CLIPR©, which has the most similar spectrum in the visible-
light range, or uni-ball SignoR©, which is slightly less similar in the visible-light
range, but the difference is easily observed in the near-infrared range, is feasible
for attacks. We believe that oil-based ink is the most feasible among the three
types of ink because its spectra are the most similar to those of the card in the
visible-light range; hence, it is interesting to experiment with multiple oil-based
ink products.

Although the spectra of blue ink and the blue design on the back of the
card are similar, they do not match perfectly because of the components and
pigments of the ink. The above discussion holds for any color other than black
and white with a unique reflection ratio.

5.2 Spectrum in Black Ink

When photographed with black ink, wavelengths from 397 to 800 nm, which are
in the visible-light range, are almost entirely absorbed, and wavelengths after
800 nm are only slightly reflected. This is because black is a light-absorbing
color.

For Magic InkR© and MackeeworkR©, the SAM calculation was able to indicate
the inked area. Both of them use oil-based dyes. Regarding the other three ink
products, only JETSTREAMR© is oil-based, and the other two are water-based.
Although JETSTREAM inkR© is oil-based, it is characterized by low viscosity.4

Magic InkR© and MackeeworkR© are the only two products that use dyes as
coloring agents. Dyes are less sensitive to light than pigments, and their colors
fade after prolonged exposure to light. Because black absorbs light, the spec-
trum may have been affected by light absorption from the lighting during the
photoshoot.

In summary, the following two conditions are considered necessary for attacks
using black ink: high ink viscosity and weak lightfastness.

4 Refer to the following URL for ink details. https://www.mpuni.co.jp/en/company/
rd/index.html.

https://www.mpuni.co.jp/en/company/rd/index.html
https://www.mpuni.co.jp/en/company/rd/index.html
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6 Conclusion

In this study, we used ink and a hyperspectral camera in the experiments to
evaluate the validity of the physical assumption in card-based cryptography.
Our experimental results showed that it is possible to identify the backs of
cards. This indicates that the physical assumption is not always valid. We also
conducted theoretical research on the potential leakage of information in certain
card-based protocols if the physical assumption is not upheld in practice. Our
findings showed that it varies depending on the specific protocol procedures.
Overall, this study contributes to both the engineering and theoretical aspects
of card-based cryptography.

In future work, we plan to investigate the feasibility of this attack using other
invisible materials, such as water or oil. Sebum is also a promising candidate; if
a high-performance camera is able to identify a large amount of human-specific
sebum on a card, we are able to quickly obtain information about the input val-
ues. Additionally, we will examine the persistence and durability of ink attached
to a card. While the durability of the ink is not a concern, the persistence of the
ink must be verified to ensure that the same results can be obtained from ink
that has been attached for several days prior to the capture.

Acknowledgements. We thank the anonymous referees, whose comments have
helped us improve the presentation of the paper. This work was supported in part
by JSPS KAKENHI Grant Number JP18H05289.

A Theoretical Considerations for Attacks

In Sect. 4, we confirmed that attacks using ink and the hyperspectral camera
are possible. This appendix selects the five-card trick [3] and MS-AND [15] as
examples and clarifies that such an attack leaks information about input values.

A.1 How to Execute the Protocol

The basic setup is described in Sect. 1. We use two colored cards: ♣ and ♥. A
player uses these two cards to encode Boolean values as follows:

♣ ♥ = 0, ♥ ♣ = 1.

When two face-down cards represent a bit x ∈ {0, 1} based on this encoding, we
call these cards a commitment to x and denote it as follows:

? ?
︸︷︷︸
x

.

In the five-card trick and MS-AND, Alice and Bob place commitments to a, b ∈
{0, 1} on the table, respectively, and use additional cards to obtain only the
value of a ∧ b.
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The five-card trick uses an additional card ♥. First, the commitment to a
and b are lined up5. The additional face-down card is then placed between the
two commitments. Note that the three consecutive cards in the middle are reds
if and only if a = b = 1. Subsequently, a cyclic shuffling operation called random
cut is performed to randomize the order, and all five cards are finally turned
over. Here, we have a ∧ b = 1 if the three reds are consecutive apart from the
cyclic shift; otherwise, a ∧ b = 0 as follows:

? ?
︸︷︷︸
a

♥ ? ?
︸︷︷︸

b

Random Cut Once−−−−−−−−−−−−→

♣ ♥ ♥ ♥ ♣
♣ ♣ ♥ ♥ ♥
♥ ♣ ♣ ♥ ♥
♥ ♥ ♣ ♣ ♥
♥ ♥ ♥ ♣ ♣
a ∧ b = 1,

♥ ♣ ♥ ♣ ♥
♥ ♥ ♣ ♥ ♣
♣ ♥ ♥ ♣ ♥
♥ ♣ ♥ ♥ ♣
♣ ♥ ♣ ♥ ♥
a ∧ b = 0.

In the MS-AND, we place an additional commitment to 0 between the two
commitments as follows:

? ?
︸︷︷︸
a

♣ ♥ ? ?
︸︷︷︸

b

→ ? ?
︸︷︷︸
a

? ?
︸︷︷︸

0

? ?
︸︷︷︸

b

.

First, the second card from the left and the two cards in the middle are
swapped. Second, a shuffling operation called a random bisection cut is applied
to the sequence; that is, the left and right halves are swapped randomly. The
second and third cards are then replaced with the fourth card. Finally, the first
two cards are revealed, and a commitment to a ∧ b can be obtained as follows:

♣ ♥ ? ?
︸︷︷︸
a∧b

? ? or ♥ ♣ ? ? ? ?
︸︷︷︸
a∧b

.

A.2 Information Obtained from This Attack

Recall that the assumed attacker can identify the inked card. Because every
player privately manipulates its commitment before starting a protocol, we con-
sider an attacker who secretly inks their own commitment. Let us consider infor-
mation that the attacker can gain in the two protocols presented previously.

In the five-card trick [3], if both players input commitments to 1, they can
quickly determine that the other’s input is 1 from the output value. Consider
whether information about the other’s input can be obtained if the attacker
inputs a commitment to 0. We focus on the sequence of cards after shuffling,
namely, the following five sequences:

♥ ♣ ♥ ♣ ♥ , ♥ ♥ ♣ ♥ ♣ , ♣ ♥ ♥ ♣ ♥ , ♥ ♣ ♥ ♥ ♣ , ♣ ♥ ♣ ♥ ♥ .

5 The negation of a commitment can be obtained simply by swapping the two cards
comprising the commitment.
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If one knows the position of one’s commitment, the value of the other’s commit-
ment can be derived because all the cards are revealed. In summary, if we know
which card we have placed, we can always obtain the value of the other’s input
in the five-card trick.

In the MS-AND [15], however, we found that information gained by an
attacker depends on their position. First, we consider the case where Alice is
an attacker. Assume that Alice inputs a commitment to 0 and always knows the
location of her ♥. Here, if we denote by ? all the cards other than her ♥ when
obtaining the output commitment, the sequence is as follows:

? ♥ ? ?
︸︷︷︸
a∧b

? ? or ♥ ? ? ? ? ?
︸︷︷︸
a∧b

.

However, to obtain the output commitment, we reveal the two cards on the
left. Thus, even if Alice knows the location of her commitment, she obtains no
information about Bob’s input.

However, Bob can obtain Alice’s input value under the same conditions
because the sequence when obtaining the output commitment is as follows:

? ? ? ♥ ? ? or ? ? ? ? ? ♥ .

To obtain the output commitment, the two cards on the left are revealed, which
represent a or a. Knowing the position of Bob’s ♥, he can determine whether
the two cards represent a or a. If his ♥ is in the fourth and the first two revealed
cards are ♣ ♥, the two cards represent a and Bob has a = 1. Thus, Bob can
obtain Alice’s input, which holds even if the card to be marked is ♣.

It is interesting to discuss why such asymmetry arises, that is, the attack
effectiveness changes depending on the protocols, and to elucidate the condi-
tion for such asymmetry. In the case of the MS-AND [15], the reason is clear
because the two revealed cards before obtaining the output commitment is either
a commitment to a or a because of the shuffle applied previously. Thus, Alice
gains no information even if her commitment is marked by her. However, this
property is specific to the MS-AND, and a card-based protocol often reveals one
of the attacker’s commitment, the other’s commitment, and additional cards
(e.g., [1,17]); hence, the condition for such asymmetry is not trivial. To discover
this, we need to study many card-based protocols, classifying cards possibly
revealed in a protocol and clarifying whether an attacker can gain information
about the other’s input value; we will leave this in our future work.

A.3 Discussion

We discuss whether this attack is realistic. Although our study revealed that
the inked areas could be identified as indicated in Sect. 3, this attack is limited
because it uses a high-cost camera of over $10,000. We plan to investigate the
use of cameras in smartphones because they are widely available. In addition,
conducting this attack during the execution of protocols is impossible without
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another player noticing because a halogen lamp must be prepared in this attack.
This attack will be feasible at the end of the protocol. That is, an attacker
remembers the order of the sequence of cards at the end and then conducts
this attack without the other players watching it. One might think that this
attack is infeasible because all cards are completely shuffled at the end of any
card-based protocol to prevent leakage of information. However, no card-based
protocol shuffles face-up cards at the end because they simply indicate either
the output value, such as the five-card trick [3] or the following action, such
as the MS-AND [15] (cf, [22]). Thus, this attack implies a new insight that all
cards, including face-up cards, should be shuffled after the end of any card-based
protocol.

Based on the experimental results, countermeasures against this attack
include making the backs black and white, which have a unique reflection ratio
and making the mesh of the backs finer. To physically prevent ink from adhering
to the cards, the cards can be covered with sleeves.
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Abstract. The study of symmetric structures based on quasigroups is
relatively new and certain gaps can be found in the literature. In this
paper, we want to fill one of these gaps. More precisely, in this work
we study substitution permutation networks based on quasigroups that
make use of permutation layers that are non-linear relative to the quasi-
group operation. We prove that for quasigroups isotopic with a group
G, the complexity of mounting a differential attack against this type
of substitution permutation network is the same as attacking another
symmetric structure based on G. The resulting structure is interesting
and new, and we hope that it will form the basis for future secure block
ciphers.

1 Introduction

When designing a block cipher, one of the main challenges is to construct a set
of permutations that are easy to implement and at the same time behave as ran-
dom permutations. Keeping this in mind, three main approaches can be found in
the literature [22]. Substitution-permutation networks (SPNs) construct a large
block random looking permutation using a series of substitution1 and permuta-
tion layers iterated over several rounds. A different approach is used to construct
Feistel and Lai-Massey symmetric structures. Instead of using invertible building
blocks, these two structures construct permutations using non-invertible compo-
nents.

One of the most powerful tools used to attack block ciphers is differential
cryptanalysis [14]. Introduced by Biham and Shamir [2], this type of attack
exploits the way certain plaintext changes propagate to the ciphertext. If we used
truly random permutations, we could predict these changes with a probability
of 1/2n, where n is the number of input bits. Therefore, if n was for example
128 bits the probability would be negligible. Nevertheless, as stated before we
should be able to easily describe the permutation and this is not the case for
ideal permutations. Hence, in order to build practical block ciphers, designers
need to use theoretical estimates based on certain assumptions that are not
always valid in practice. In consequence, block ciphers are not ideal and this
1 Comprised of several substitution boxes (s-boxes) with small block length.
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makes them susceptible to differential cryptanalysis. Because of that, security
against differential cryptanalysis is one of the basic design criteria for symmetric
primitives [18].

Latin squares are � × � matrices which contain only � symbols and have
the property that each symbol appears only once in each row and only once
in each column [10]. A set endowed with a multiplication table that is a Latin
square forms a quasigroup. These structures can be thought of as a group that
is not associative and does not have an identity element. Although quasigroups
are not a popular choice when constructing cryptographic primitives, various
designs based can still be found in the literature [1,6,7,11–13,15,16].

A very recent approach [3–5,8] uses commutative regular subgroups of the
symmetric group to design SPN structures that appear secure against classical
differential cryptanalysis, but are weaker with respect to a differential attack that
uses a different group operation. Specifically, such a symmetrical structure has
a level of security, in relation to differential attacks, which is dependent on the
intended operation. This methodology is similar to the one used in this paper,
because we also consider different operations to construct differential attacks
against the proposed SPNs. Nevertheless, the scope of [3–5,8] is to show how
a designer can embed a trapdoor into a symmetric structure2, while ours is to
investigate whether changing the group operation to a quasigroup one could
strengthen an SPN structure against differential cryptanalysis.

In [20,21] the author introduces a straightforward generalization of the three
main symmetric structures: SPNs, Feistel and Lai-Massey. Namely, instead of
using a group operation between keys and (intermediary) plaintexts, the general-
isations use a quasigroup one. When studying their security the author restricts
the study to quasigroup operations that are isotopic with a group operation,
since this is the most popular method for constructing quasigroups. We further
discuss only the results concerning SPNs, since this is the topic of our paper. The
result of the two studies is that in the case of isotopies the resulting symmetric
structures are equivalent3 with another structure that uses a group operation.
Although the result is the same, the views considered in the two papers are
different. In [21], the author implicitly considers that the permutation layer is
linear with respect to the quasigroup operation. Therefore, differential probabil-
ities are induced only by the s-boxes, since the permutation layer and the key
mixing operation make differentials predictable with no uncertainty. Hence, we
can reduce the analysis of the differential probabilities induced by the round
function to those induced by the s-boxes. In the second paper [20], the view
is changed from an element wise one to a global one. More precisely, in the
first paper the key mixing operation between the key k = k1‖ . . . ‖kn and the
plaintext p = p1‖ . . . ‖pn is k1 ⊗ p1‖ . . . ‖kn ⊗ pn, while in the subsequent work
is simply k ⊗ p, where ⊗ is the quasigroup operation. Keep in mind that the
results from [21] still apply since the whole round transformation can be seen as
a permutation.

2 The trapdoor consists in knowing the group operation that weakens the structure.
3 From the point of view of differential attacks.
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In this paper we study the remaining case, namely SPN structures with a
permutation layer that is non-linear with respect to the quasigroup operation.
When this assumption holds, the results from [20,21] do not apply. Therefore, a
new analysis is required. The results obtained using the techniques introduced
in this paper are twofold. First of all we confirm the results4 presented in [20,21]
by using a different approach than the original one. Secondly, we show that when
the permutation layer is non-linear relative to the quasigroup operation, then we
cannot reduce its security to a group based SPN structure. More precisely, we
obtain that the quasigroup based SPN is equivalent to a structure that has an
extra substitution layer before the key mixing operation takes place and which
uses a group based key mixing step. To the authors’ knowledge, this design was
never described in the literature. Therefore, we believe that this novel structure
is worth attention for future research from both a theoretical and a design point
of view.

Structure of the Paper. We introduce notations and definitions in Sect. 2. SPNs
with generic permutation layers are studied in Sect. 3. We conclude in Sect. 4.

2 Preliminaries

Notations. Throughout the paper |G| will denote the cardinality of set G and ⊕
the bitwise xor operation. Also, by x‖y we understand the concatenation of the
strings x and y. When defining a permutation π we further use the shorthand
π = {a0, a1, . . . , a�} which translates into π(i) = ai for all i values. We also
define the identity permutation Id = {0, . . . , �}.

2.1 Quasigroups

In this section we introduce a few basic notions about quasigroups. We base our
exposition on [19].

Definition 1. A quasigroup (G,⊗) is a set G equipped with a binary operation
of multiplication ⊗ : G×G → G, in which specification of any two of the values
x, y, z in the equation x ⊗ y = z determines the third uniquely.

Definition 2. For a quasigroup (G,⊗) we define the left division x �z = y
as the unique solution y to x ⊗ y = z. Similarly, we define the right division
z � y = x as the unique solution x to x ⊗ y = z.

Lemma 1. The following identities hold

y �(y ⊗ x) = x, (x ⊗ y) � y = x,

y ⊗ (y �x) = x, (x � y) ⊗ y = x.

4 Restricted to quasigroups isotopic to commutative groups.
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Lemma 2. If (G,⊗) is a group then x �z = x−1 ⊗ z and z � y = z ⊗ y−1.

Definition 3. Let (G,⊗), (H, �) be two quasigroups. An ordered triple of bijec-
tions π, ρ, ω of a set G onto the set H is called an isotopy of (G,⊗) to (H, �) if
for any x, y ∈ G π(x) � ρ(y) = ω(x ⊗ y). If such an isotopy exists, then (G,⊗),
(H, �) are called isotopic.

A popular method for constructing quasigroups [12,13,15,23] is the fol-
lowing. Choose a group (G, �) (e.g. (Z2n ,⊕) or (Z2n ,+)) and three arbitrary
permutations π, ρ, ω : G → G. Then, define the quasigroup operation as
x ⊗ y = ω−1(π(x) � ρ(y)). To see why this leads to a quasigroup, we note that
x, y and z are mapped uniquely to π(x), ρ(y) and ω(z), and thus any equation
of the form π(x) � ρ(y) = ω(z) is in fact uniquely resolved in the base group G

given any of π(x), ρ(y) and ω(z).

Example 1. Let (G, �) = (Z4,⊕), ω−1 = {2, 1, 0, 3}, π = {2, 1, 3, 0} and ρ =
{2, 0, 3, 1}. The corresponding quasigroup operations for (Z4,⊗) can be found in
Table 1 [21].

Table 1. Quasigroup operations.

⊗ 0 1 2 3

0 2 0 1 3

1 3 1 0 2

2 1 3 2 0

3 0 2 3 1

� 0 1 2 3

0 1 2 0 3

1 2 1 3 0

2 3 0 2 1

3 0 3 1 2

� 0 1 2 3

0 3 0 1 2

1 2 1 0 3

2 0 3 2 1

3 1 2 3 0

Example 2. Let (G, �) = (Zn,−). Then G is isotopic with (Zn,+), where ω, π =
Id and ρ(i) = n − i mod n. [23]

2.2 Quasigroup Differential Cryptanalysis

The notion of differential cryptanalysis was first introduced in [2] for analyz-
ing the Data Encryption Standard block cipher. Since the key mixing layer was
simply bitwise addition modulo 2 between the key and the (intermediary) plain-
text, differential attacks where defined only for (Z2n ,⊕). Later on, the concept
was extended to commutative groups [17], non-commutative groups [21] and
quasigroups [20,21]. We further present the notions of quasigroup differential
probabilities for a permutation. Note that when the quasigroup is replaced with
a (non-)commutative group the notions are in accordance with [17,21]. Also,
in the case of groups the KDP notions coincide with the corresponding DP
probability (i.e. are key independent).

Definition 4. Let G be a set equipped with a binary operation • : G × G → G.
The difference between two elements X,X ′ ∈ (G, •) is defined as Δ•(X,X ′) =
X • X ′.
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Definition 5. Let K be a key, (G,⊗) a quasigroup and • ∈ { �,�}. We define
the quasigroup differential probabilities

DP•(σ, α, β) =
1

|G|
∑

X,X′∈G

Δ•(X,X′)=α

[Δ•(σ(X), σ(X ′)) = β],

KDP �(σ, α, β,K) =
1

|G|
∑

X,X′∈G

Δ �(X,X′)=α

[Δ �(σ(K ⊗ X), σ(K ⊗ X ′)) = β],

KDP�(σ, α, β,K) =
1

|G|
∑

X,X′∈G

Δ�(X,X′)=α

[Δ�(σ(X ⊗ K), σ(X ′ ⊗ K)) = β],

where σ : G → G is a permutation and α, β ∈ G.

2.3 Quasigroup Substitution Permutation Network

Let n be a positive integer and (G,⊗) a quasigroup. An SPN is an iterated
structure that processes a plaintext for r rounds. Each round consist of a key
mixing operation, a substitution layer and a permutation layer. Also, the SPN
has a final round that consists only of a key mixing operation. Note that for each
round i the key schedule algorithm derives the subkey ki from the initial key.
We refer the reader to Fig. 1 for some SPN examples that have three rounds.5

To exemplify the different types of possible generalisations of the SPN struc-
ture we will use Fig. 1 as a reference. Let pi = p̃1i ‖ . . . ‖p̃8i = p̂1i ‖ . . . ‖p̂4i and
ki = k̃1

i ‖ . . . ‖k̃8
i = k̂1

i ‖ . . . ‖k̂8
i be the intermediary plaintext and the subkey for

round i ∈ {1, 2, 3}.
In Fig. 1a we have an example of an element wise key mixing layer p̃1i ⊗

k̃1
i ‖ . . . ‖p̃8i ⊗ k̃8

i (right quasigroup operation6) and a permutation layer that is
linear with respect to ⊗. Therefore, is sufficient to study the differential proper-
ties of the s-box with respect to x⊗̄y = x1 ⊗ y1‖x2 ⊗ y2, where x = x1‖x2 and
y = y1‖y2. This variant was studied in [21].

In Fig. 1b we have an example of an element wise key mixing layer p̂1i ⊗
k̂1

i ‖ . . . ‖p̂4i ⊗ k̂4
i (right quasigroup operation) and a permutation layer that is

non-linear with respect to ⊗. This is the version that we further study in our
paper.

The last version is presented in Fig. 1c and represents an example of a global
key mixing layer pi⊗ki (right quasigroup operation). Here the permutation layer
is inherently non-linear with respect to ⊗. This type of SPN was studied in [20].

5 Figure 1 is based on the TikZ found in [9].
6 Left quasigroup operation: k̃1

i ⊗ p̃1i ‖ . . . ‖k̃8
i ⊗ p̃8i .
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Fig. 1. Variations of the SPN structure

3 Security Analysis

We further assume that the permutation layer P is non-linear with respect to ⊗.
Since P shuffles b-bit blocks of data we further assume, without loss of generality,
that it is linear with respect to addition modulo 2b, further denoted by �. In
the worse case, the permutation shuffles bits, and thus is linear with respect
to ⊕. Note that since P shuffles blocks composed of bits that means that the
quasigroup operation ⊗ must be isotopic to addition modulo some 2b′

, for some
b′ > b.7 We also assume, without loss of generality, that b′ is a multiple of b.8

In the worse case, we take b = 1 and this condition is fulfilled. To simplify
our exposition we use the multiplicative notation for the inverse of an element
modulo 2b.

Since the permutation layer is �-linear, we have to study the following dif-
ferential properties

LKDP�,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G

X�X′−1=α

[σ(K ⊗ X) � σ(K ⊗ X ′)−1 = β],

RKDP�,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G

X�X′−1=α

[σ(X ⊗ K) � σ(X ′ ⊗ K)−1 = β],

where σ : G → G is a permutation and α, β ∈ G.

7 This condition is implied by the fact that the permutation is not linear.
8 This condition implies that the sets G = Z2b

′ and (Z2b)
b′/b are isomorphic.
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Lemma 3. Let σ′ = σ ◦ ω−1. We define x ∗ y = π(x) � ρ(y). Then the following
identities hold

LKDP�,⊗(σ, α, β,K) = LKDP�,∗(σ′, α, β,K),
RKDP�,⊗(σ, α, β,K) = RKDP�,∗(σ′, α, β,K).

Proof. First we rewrite

β = σ(K ⊗ X) � σ(K ⊗ X ′)−1

= σ(ω−1(π(K) � ρ(X))) � σ(ω−1(π(K) � ρ(X ′)))−1

= σ′(π(K) � ρ(X)) � σ′(π(K) � ρ(X ′))−1

= σ′(K ∗ X) � σ′(K ∗ X ′)−1.

Then we obtain

LKDP�,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G

X�X′−1=α

[σ(K ⊗ X) � σ(K ⊗ X ′)−1 = β]

=
1

|G|
∑

X,X′∈G

X�X′−1=α

[σ′(K ∗ X) � σ′(K ∗ X ′)−1 = β]

= LKDP�,∗(σ′, α, β,K).

Similarly, we obtain RKDP�,⊗(σ, α, β,K) = RKDP�,∗(σ′, α, β,K). ��
Lemma 3 tells us that it is irrelevant from a differential point of view if we

define the quasigroup operation with ω = Id or ω = Id. Thus, we further restrict
our study to the quasigroup operation x ⊗ y = π(x) � ρ(y).

A closer analysis of LKDP and RKDP shows some interesting properties.
These are presented in the following lemma.

Lemma 4. The following equalities hold

LKDP�,⊗(σ, α, β,K) = LKDP�,⊗(Id, α, γ,K) · DP�(σ, γ, β),
RKDP�,⊗(σ, α, β,K) = RKDP�,⊗(Id, α, γ,K) · DP�(σ, γ, β).

Proof. We only prove the lemma for LKDP , since the proof for RKPD is
similar. Therefore, we have

LKDP�,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G

X�X′−1=α

[σ(K ⊗ X) � σ(K ⊗ X ′)−1 = β]

=
1

|G|2
∑

X,X′∈G

X�X′−1=α

∑

Y,Y ′−1∈G

Y �Y ′−1=γ

[(K ⊗ X) � (K ⊗ X ′)−1 = γ]
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· [σ(Y ) � σ(Y ′)−1 = β]

=
{

1
|G|

∑

X,X′∈G

X�X′−1=α

[(K ⊗ X) � (K ⊗ X ′)−1 = γ]
}

·
{

1
|G|

∑

Y,Y ′∈G

Y �Y ′−1=γ

[σ(Y ) � σ(Y ′)−1 = β]
}

= LKDP�,⊗(Id, α, γ,K) · DP�(σ, γ, β),

as desired. ��
Looking more closely at Lemma 4 we can observe that DP�(σ, γ, β) is inde-

pendent of ⊗. Hence, the only components that need to be studied further are
LKDP�,⊗(Id, α, γ,K) and RKDP�,⊗(Id, α, γ,K). Using a similar argument as
in Lemma 4 we can further breakdown the two differential probabilities.

Lemma 5. We define x∗1 y = π(x)�y and x∗2 y = x�ρ(y). Then the following
identities hold

LKDP�,⊗(Id, α, γ,K) = DP�(ρ, α, δ) · LKDP�,∗1(Id, δ, γ,K),
RKDP�,⊗(Id, α, γ,K) = DP�(ρ, α, δ) · RKDP�,∗2(Id, δ, γ,K).

Proof. For LKDP the following relations hold

LKDP�,⊗(Id, α, γ,K) =
1

|G|
∑

X,X′∈G

X�X′−1=α

[(K ⊗ X) � (K ⊗ X ′)−1 = γ]

=
1

|G|2
∑

X,X′∈G

X�X′−1=α

∑

Y,Y ′−1∈G

Y �Y ′−1=δ

[ρ(X) � ρ(X ′)−1 = δ]

· [(π(K) � Y ) � (π(K) � Y ′)−1 = γ]

=
{

1
|G|

∑

X,X′∈G

X�X′−1=α

[ρ(X) � ρ(X ′)−1 = δ]
}

·
{

1
|G|

∑

Y,Y ′∈G

Y �Y ′−1=δ

[(K ∗1 Y ) � (K ∗1 Y ′)−1 = γ]
}

= DP�(ρ, α, δ) · LKDP�,∗1(Id, δ, γ,K).

Similarly, we obtain the result for RKDP . ��
Corollary 1. The following properties are true

LKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · LKDP�,∗1(Id, δ, γ,K) · DP�(σ, γ, β),
RKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · RKDP�,∗2(Id, δ, γ,K) · DP�(σ, γ, β).
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The following corollary tell us that if P is linear with respect to � then LKDP
and RKDP are key independent.

Corollary 2. If � = �, then following properties are true

LKDP�,⊗(σ, α, β,K) = RKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · DP�(σ, δ, β).

Proof. Let X � X ′ = δ. Then

γ = (K ∗1 X) � (K ∗1 X ′)−1

= π(K) � X � π(K)−1 � X ′−1

= X � X ′−1

= δ,

and thus LKDP�,∗1(Id, δ, γ,K) = 1 if and only if γ = δ. Similarly, we have
RKDP�,∗2(Id, δ, γ,K) = 1 if and only if γ = δ. Therefore, we obtain the desired
results. ��

According to Corollary 2 the notions of LKDP and RKDP coincide if � = �.
A consequence of this is the following result from [20]. Note that our proof is
different from the one given in the original paper.

Corollary 3. The left and right quasigroup SPNs derived from a commutative
group SPN using an isotopy are equivalent from a differential point of view.

Corollary 4. Let σ′ = σ ◦ ρ. If � = �, then following equalities hold

LKDP�,⊗(σ, α, β,K) = RKDP�,⊗(σ, α, β,K) = DP�(σ, α, β).

Proof. From Corollary 2 we know that

LKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · DP�(σ, δ, β).

Rewriting the right hand side RHS term of the equality we obtain

RHS =
{

1
|G|

∑

X,X′∈G

X�X′−1=α

[ρ(X) � ρ(X ′)−1 = δ]
}

·
{

1
|G|

∑

Y,Y ′∈G

Y �Y ′−1=δ

[σ(Y ) � σ(Y ′)−1 = β]
}

=
1

|G|2
∑

X,X′∈G

X�X′−1=α

∑

ρ(X),ρ(X′)∈G

ρ(X)�ρ(X′)−1=δ

[σ(ρ(X)) � σ(ρ(X ′))−1 = β]

· [ρ(X) � ρ(X ′)−1 = δ]

=
1

|G|
∑

X,X′∈G

X�X′−1=α

[σ′(X) � σ(X ′)−1 = β],
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which leads to

LKDP�,⊗(σ, α, β,K) = DP�(σ′, α, β),

as desired. ��
When ⊗ = �, Corollary 4 tells us that is irrelevant from a differential point

of view if we replace the group operation with a quasigroup one isotopic to a
commutative group operation. Therefore, using different techniques we arrive at
the main result from [21].

Corollary 5. A quasigroup SPN derived from a commutative group SPN using
an isotopy has the same differential security as the same group SPN instantiated
with a different s-box.

Remark that in LKDP�,∗1 and RKDP�,∗2 we apply a permutation to the
key K. Since K and, for example, π are generated as a pair, it suffices from a
differential point of view to simply consider K ′ = π(K) as being the key that we
want to recover. This is possible, since our final scope is to recover the plaintexts
and not the initial key used by the block cipher. As a consequence, it suffices to
study LKDP�,� and RKDP�,�. Therefore, we can rewrite the results presented
in Corollary 1 as follows

LKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · LKDP�,�(Id, δ, γ,K ′) · DP�(σ, γ, β),
RKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · RKDP�,�(Id, δ, γ,K ′) · DP�(σ, γ, β).

Using the results obtained so far the SPN construction shown in Fig. 1b is
equivalent with the symmetric structure presented in Fig. 2. To summarise all
the lemmas and observations we provide the reader with Proposition 1.

Proposition 1. Let (G,⊗) be a quasigroup isotopic with a group (G, �). Then,
in the case of SPNs that use element wise key mixing based on ⊗ and a per-
mutation that is non-linear relative to ⊗, the equivalent structure9 is composed
of

a. r − 1 rounds consisting of a substitution layer, a key mixing operation based
on �, a substitution layer and a permutation layer,

b. a final round consisting only of a substitution layer and a key mixing operation
based on �.

The last thing we will prove is that it does not matter if we use the left
or right differential probability. As a consequence, the left and right versions of
structure presented in Fig. 2 are equivalent from a differential point of view.

Lemma 6. Let i(x) = x−1, where the inverse is with respect to �. Then

LKDP�,�(Id, δ, γ,K) = RKDP�,�(i, δ, γ, i(K)),
RKDP�,�(Id, δ, γ,K) = LKDP�,�(i, δ, γ, i(K)).

9 From a differential point of view.
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Fig. 2. Equivalent symmetric structure

Proof. Let Z = i(Y ), Z ′ = i(Y ′) and K ′ = i(K). Then we have

LKDP�,�(Id, δ, γ,K) =
1

|G|
∑

Y,Y ′∈G

Y �Y ′−1=δ

[(K � Y ) � (K � Y ′)−1 = γ]

=
1

|G|
∑

Y,Y ′∈G

Y �Y ′−1=δ

[i(i(Y ) � i(K)) � (i(i(Y ′) � i(K)))−1 = γ]

=
1

|G|
∑

Z,Z′∈G

Z�Z′−1=δ

[i(Z � K ′) � (i(Z ′ � K ′))−1 = γ]

= RKDP�,�(i, δ, γ,K ′),

as desired. ��
Corollary 6. Let i(x) = x−1, where the inverse is with respect to �. Then

LKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · RKDP�,�(i, δ, γ, i(K)) · DP�(σ, γ, β),
RKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · LKDP�,�(i, δ, γ, i(K)) · DP�(σ, γ, β).

Lemma 7. Let i(x) = x−1, where the inverse is with respect to �. Then

LKDP�,�(i, δ, γ,K) = LKDP�,�(Id, δ, η,K) · DP�(i, η, γ),
RKDP�,�(i, δ, γ,K) = RKDP�,�(Id, δ, η,K) · DP�(i, η, γ).
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Proof. For the left version, we have

LKDP�,�(i, δ, γ,K) =
1

|G|
∑

X,X′∈G

X�X′−1=δ

[i(K � X) � i(K � X ′)−1 = γ]

=
1

|G|2
∑

X,X′∈G

X�X′−1=δ

∑

Y,Y ′−1∈G

Y �Y ′−1=η

[(K � X) � (K � X ′)−1 = η]

· [i(Y ) � i(Y ′)−1 = γ]

=
{

1
|G|

∑

X,X′∈G

X�X′−1=δ

[(K � X) � (K � X ′)−1 = η]
}

·
{

1
|G|

∑

Y,Y ′∈G

Y �Y ′−1=η

[i(Y ) � i(Y ′)−1 = γ]
}

= LKDP�,�(Id, δ, η,K) · DP�(i, η, γ),

as desired. Similarly, we obtain the relation for the right version. ��
Lemma 8. Let i(x) = x−1, where the inverse is with respect to �. Also, let
σ′ = i ◦ σ. Then

DP�(i, η, γ) · DP�(σ, γ, β) = DP�(σ′, η, β),
DP�(i, η, γ) · DP�(σ, γ, β) = DP�(σ′, η, β).

Proof. For the first relation we have

LHS =
{

1
|G|

∑

X,X′∈G

X�X′−1=η

[i(X) � (i(X ′))−1 = γ]
}

·
{

1
|G|

∑

Y,Y ′∈G

Y �Y ′−1=γ

[σ(Y ) � σ(Y ′)−1 = β]
}

=
1

|G|2
∑

X,X′∈G

X�X′−1=η

∑

i(X),i(X′)∈G

i(X)�i(X′)−1=γ

[σ(i(X)) � σ(i(X ′))−1 = β]

· [i(X) � i(X ′)−1 = γ]

=
1

|G|
∑

X,X′∈G

X�X′−1=η

[σ′(X) � σ′(X ′)−1 = β],

as desired. The second relation is proven similarly. ��
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Corollary 7. Let i(x) = x−1, where the inverse is with respect to �. Also, let
σ′ = i ◦ σ. Then

LKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · RKDP�,�(Id, δ, γ, i(K)) · DP�(σ′, γ, β),
RKDP�,⊗(σ, α, β,K) = DP�(ρ, α, δ) · LKDP�,�(Id, δ, γ, i(K)) · DP�(σ′, η, β).

Proof. We only prove the corollary for the first equality. Using Corollary 6 and
Lemmas 7 and 6 we obtain

LHS = DP�(ρ, α, δ) · RKDP�,�(i, δ, γ, i(K)) · DP�(σ, γ, β)
= DP�(ρ, α, δ) · RKDP�,�(Id, δ, η, i(K)) · DP�(i, η, γ) · DP�(σ, γ, β)
= DP�(ρ, α, δ) · RKDP�,�(Id, δ, η, i(K)) · DP�(σ′, η, β).

Hence, we obtain the equality. ��

4 Conclusions

In this paper we filled a gap found in the literature. Namely, the study of SPN
structures that use a quasigroup operation to mix keys and plaintexts, and a per-
mutation layer that is non-linear relative to the quasigroup operation. Therefore,
we studied the effect of quasigroups isotopic to groups in the design of these SPN
structures. We managed to link their security to another symmetric structure
that has an extra substitution layer before key mixing takes place. Also, in the
case of the equivalent structure, the key and the plaintext are combined using
the initial group operation. Note that, to our knowledge, the resulting structure
is novel, and thus can lead to a new designs of secure block ciphers.
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Abstract. Ciphertext-policy attribute-based encryption (CP-ABE) is a
cryptographic technology that enforces an access control mechanism over
encrypted data by specifying an access policy with encrypted data and
introducing an attribute authority (AA) that manages user’s attributes.
A CP-ABE with multiple attribute authorities and no central authority,
a decentralized multi-authority CP-ABE (DMA-CP-ABE), can achieve
more realistic attribute management than CP-ABE with a single author-
ity.

However, DMA-CP-ABE has an attribute revocation problem. As a
different problem, the size of the public parameters of each AA is propor-
tional to the size of the attribute universe managed by each AA. More-
over, since most existing DMA-CP-ABE schemes support only monotonic
access structures, the size of the access policy specified in the ciphertext
becomes large when an encryptor specifies a non-monotonic access pol-
icy in the ciphertext. Therefore, the DMA-CP-ABE that supports the
attribute revocation, constant-size public and secret parameters (a.k.a
unboundedness), and non-monotonic access structure is required. How-
ever, to the best of our knowledge, no one has proposed it yet.

In this paper, we propose a new unbounded revocable DMA-CP-ABE
(UR-DMA-CP-ABE) that supports a non-monotone access structure.
We prove that our scheme achieves adaptively payload-hiding against
chosen-plaintext attacks under the decisional linear (DLIN) assumption.

Keywords: Attribute-based encryption · Revocation ·
Unboundedness · Non-monotone access structure

1 Introduction

1.1 Background

Attribute-based encryption (ABE) is a cryptographic technology that enforces
an access control mechanism over encrypted data by using access policies and
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associated attributes among ciphertexts and the user’s private keys and intro-
ducing an attribute authority (AA) that manages attributes. Loosely speaking,
there are two types of ABE schemes: ciphertext-policy ABE (CP-ABE) and key-
policy ABE (KP-ABE). In CP-ABE systems, the AA specifies the attributes
associated with the user in the user’s private keys and issues it to the user
using the AA’s master secret key. The encryptor specifies an access policy to the
ciphertext when encrypting the message by using public keys for access policies
issued by the AA. Loosely speaking, KP-ABE is almost the same as CP-ABE
except that the AA specifies the access policy in the user’s private keys and the
encryptor specifies several attributes to the ciphertext. In this paper, we focus
on CP-ABE. Suppose that users with private keys for attributes that do not
satisfy the access policy specified in the ciphertext collude. Even if the colluding
users combine their private keys, they cannot decrypt the CP-ABE ciphertext.

In most existing CP-ABE schemes, the AA is a single authority. However, CP-
ABE with a single AA suffers from some drawbacks. For example, the malicious
AA can decrypt all ciphertexts using the AA’s master secret key. A different
issue is that the AA must be online when the user’s private keys are issued.
Thus, if the AA is a single authority, the AA can be a single point of failure. In
addition, managing all attributes in a single AA is not practical when trying to
perform access control using attributes managed by different systems.

The CP-ABE schemes with multiple AAs and the central authority (MA-
CP-ABE) has been proposed to mitigate these drawbacks. After that, the CP-
ABE schemes with multiple AAs and no central authority, decentralized multi-
authority CP-ABE (DMA-CP-ABE), have been proposed as a generalization of
CP-ABE schemes. However, to the best of our knowledge, no DMA-CP-ABE
that supports all of the following useful three features has been proposed:

1. Key revocation: CP-ABE supporting key revocation is required when man-
aging dynamic attributes. For example, suppose that access control in a com-
pany’s human resource system is to be realized by CP-ABE schemes. The
system must revoke the private keys held by departing employees. If the
system cannot revoke these keys, it cannot prevent unauthorized access by
departing employees. It is more difficult for DMA-CP-ABE to support key
revocation than for single-authority CP-ABE or MA-CP-ABE because it is
necessary to revoke the user’s private key for attributes that are managed
independently by each AA.

2. Constant-size parameters independent of the size of the attribute
universe (a.k.a unboundedness): CP-ABE supporting constant-size
parameters independent of the size of the attribute universe is required when
managing attributes with a vast universe. In most existing CP-ABE schemes,
the size of public parameters of the AA is proportional to the size of the
attribute universe managed by the AA. Since an encryptor needs to obtain
the public keys for the attributes managed by each AA from each AA in
DMA-CP-ABE schemes, the public key size should not depend on the size of
the attribute universe so that the burden on the encryptor is small.
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Table 1. Comparison of the existing schemes and ours.

Schemes DMA-CP-ABE Key revocation Unboundedness Non-monotone
access structure

[8] (KP-ABE) � � �
[20,31] (MA-CP-ABE) � (Bounded) (Not supporting)

[12] (MA-CP-ABE) � � (Not supporting)

[9,14,15] � (Not supporting) (Bounded) (Not supporting)

[23] � (Not supporting) (Bounded) �
[26] � (Not supporting) � (Not supporting)

[17] � � � (Not supporting)

[29] � � (Bounded) �
Ours � � � �

3. Non-monotone access structure: Loosely speaking, if any superset of the
attribute set (satisfying the access structure) satisfies the access structure,
then the access structure is called the monotone access structure. On the
other hand, if the attribute set’s superset (satisfying the access structure)
exists that does not satisfy the access structure, then the access structure is
called the non-monotone access structure. CP-ABE supporting non-monotone
access structures is required when the access policy specified in the ciphertext
includes the NOT operator. Let U = {a0, a1, a2, a3} be the attribute universe
containing four attributes, a0, a1, a2 and a3. If an encryptor would like to
generate the ciphertext with the access policy expressed as “NOT a0”, the
encryptor using the CP-ABE scheme that supports only monotone access
structure needs to specify the monotonic access policy expressed as “a1 OR
a2 OR a3” that is equivalent to the original access policy because “NOT a0”
is non-monotonic. When an encryptor uses the CP-ABE scheme supporting
only a monotone access structure to generate the ciphertext specified with the
access policy, including the NOT operator, the size of the access policy and
ciphertexts may increase in proportion to the size of the attribute universe.

1.2 Our Contributions

We propose a DMA-CP-ABE scheme supporting key revocation, unbounded-
ness, and non-monotone access structure. Table 1 shows that no DMA-CP-ABE
scheme supports these features except ours. We prove that our scheme achieves
adaptively payload-hiding against chosen-plaintext attacks under the decisional
linear (DLIN) assumption.

1.3 Related Works

To the best of our knowledge, no DMA-CP-ABE that supports key revocation,
unboundedness, and non-monotone access structure has been proposed, as dis-
cussed below.
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Single-Authority ABE: As the origin of the research on ABE, Sahai and
Waters proposed the fuzzy identity-based encryption (FIBE) [28] that is a spe-
cial case of ABE where an access policy specified in a ciphertext (or key) a
threshold function. After FIBE introduced, there proposed some ABE schemes,
for example, KP-ABE [11], CP-ABE [5] and ABE that supports more complex
access structures [1,4,10,21]. There has also been research on ABE schemes
supporting some of the three features as follows.

– Existing schemes achieving one of the three features: Sahai et al.
proposed the revocable ABE by using update keys and updating ciphertexts
[27]. Lee et al. introduced the new time-evolution revocation scheme for ABE
with modularity [13]. Meanwhile, Attrapadung and Imai proposed the revo-
cable ABE without update keys by specifying revoked users in ciphertexts
[3]. After that, they proposed the ABE scheme supporting the hybrid revo-
cation by using the update keys and specifying revoked users in ciphertexts
[2]. In recent years, Yamada et al. proposed the generic constructions of the
revocable ABE [32].
Ostrovsky et al. proposed the ABE scheme supporting non-monotone access
structure [24]. Okamoto and Takashima proposed the ABE schemes sup-
porting general predicates, i.e., non-monotone access structure using inner-
product relations [21].
Lewko and Waters proposed the unbounded ABE scheme in composite order
bilinear groups [16]. Rouselakis and Waters proposed the unbounded ABE
scheme in prime order bilinear groups [25].

– Existing scheme achieving two of the three features: Okamoto and
Takashima proposed the unbounded ABE scheme supporting non-monotone
access structure [22].

– Existing scheme achieving all of the three features: Datta et al. pro-
posed the KP-ABE supporting key revocation, unboundedness, and non-
monotone access structure [8]. However, their scheme [8] is a single-authority
KP-ABE, not DMA-CP-ABE.

(D)MA-CP-ABE: Chase proposed the first MA-CP-ABE scheme [6]. Then,
some improved MA-CP-ABE schemes [7,18] and revocable MA-CP-ABE
schemes [12,20,31] have been proposed, but those schemes require the central
authority.

Lewko and Waters proposed the first DMA-CP-ABE, i.e., multi-authority
CP-ABE scheme without the central authority in the composite order bilinear
groups [15]. After that, Lewko proposed the DMA-CP-ABE in the prime order
bilinear groups [14]. Okamoto and Takashima proposed the DMA-CP-ABE that
supports the non-monotone access structure using inner-product relations [23].
In recent years, Datta et al. proposed the first DMA-CP-ABE from the learning
with error assumption [9].

Rouselakis and Waters proposed the unbounded DMA-CP-ABE [26]. How-
ever, their scheme [26] does not support key revocation and non-monotone access
structure. Li et al. proposed the revocable and unbounded DMA-CP-ABE [17],
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but it does not support the non-monotone access structure. Tsuchida et al.
proposed the revocable DMA-CP-ABE that supports the non-monotone access
structure using inner-product relations [29] based on [23]. However, their scheme
[29] is not unbounded.

In recent years, Venema and Alpár broke the eleven ABE schemes in [30].
Their attack does not affect the security of [23] (the DMA-CP-ABE scheme used
to construct our scheme) and our scheme.

2 Preliminaries

2.1 Notations

We follow the notations in [13,23,29].
When A is a random variable or distribution, we denote that a is randomly

selected from A according to its distribution as a
R←− A. When A is a set, we

denote that a is uniformly selected from A as a
U←− A. Let Fq and F

×
q be the

finite field of order q and Fq \ {0}, respectively.
We denote the n-dimensional vector with elements on Fq as �x =

(x1, . . . , xn) ∈ F
n
q . We also denote the inner-product of two vectors �x =

(x1, . . . , xn) and �v = (v1, . . . , vn) as �x · �v(=
∑n

i=1 xivi mod q). Let XT be the
transpose of matrix X.

2.2 Security Assumption

We follow the definition of DLIN assumption described in [23].

Definition 1 (DLIN: Decisional Linear Assumption). The DLIN problem
is to guess β ∈ {0, 1}, given (paramG, G, ξG, κG, δξG, σκG, Yβ) R←− GDLIN

β (1λ),
where

GDLIN
β (1λ) :

paramG := (q,G,GT , G, e) R←− Gsbpg(1λ),

κ, δ, ξ, σ
U←− Fq, Y0 := (δ + σ)G,Y1

U←− G,

return (paramG, G, ξG, κG, δξG, σκG, Yβ),

for β
U←− {0, 1}. For a probabilistic machine E, we define the advantage of E

for the DLIN problem as: AdvDLIN
E (λ) := |Pr[E(1λ, 	) → 1‖	

R←− GDLIN
0 (1λ)] −

Pr[E(1λ, 	) → 1‖	
R←− GDLIN

1 (1λ)]|.
The DLIN assumption is: For any probabilistic polynomial-time adversary E,

the advantage AdvDLIN
E (λ) is negligible in λ.



UR-DMA-ABE Supporting Non-monotone Access Structures 325

2.3 Dual Pairing Vector Spaces by Direct Product of Symmetric
Pairing Groups

In this paper, we follow the definitions in [23].

Definition 2 (Symmetric Bilinear Pairing Groups (SBPG) [23]). SBPG
is a tuple, (q, G, GT , G, e). q is a prime. G and GT are cyclic additive group
of order q and multiplicative group of order q, respectively. Note that G �= 0 ∈
G. e is a polynomial time computable non-degenerate bilinear pairing. We also
note that e : G × G → GT , i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let
Gsbpg be an algorithm that takes an input 1λ and outputs a description of SBPG
(q, G, GT , G, e) with security parameter λ.

Definition 3 (Dual Pairing Vector Spaces (DPVS) [23]). DPVS is a tuple,

(q, V, GT , A, e). q is a prime. V(=

N
︷ ︸︸ ︷
G × · · · × G) is a N -dimensional vector

space over Fq. GT is a multiplicative group of order q. A = {a1, . . . ,aN} is a

canonical basis of V where ai = (

i−1
︷ ︸︸ ︷
0, . . . , 0, G,

N−i
︷ ︸︸ ︷
0, . . . , 0). The pairing e is defined

by e(x,y) =
∏N

i=1 e(Gi,Hi) ∈ GT where x = (G1, . . . , GN ) ∈ V and y =
(H1, . . . , HN ) ∈ V. We note that e is non-degenerate bilinear, i.e., e(sx, ty) =
e(x,y)st for s, t ∈ Fq. If e(x,y) = 1 for all y ∈ V, then x = (0, . . . , 0). For all i

and j, e(ai,aj) = e(G,G)δi,j where e(G,G) �= 1 ∈ GT and δi,j =

{
0 (i �= j)
1 (i = j)

.

DPVS generation algorithm, Gdpvs, takes an input 1λ and outputs a description
of paramV = (q, V, GT , A, e) with the security parameter λ ∈ N and the
N(∈ N)-dimensional V. Note that Gdpvs can be constructed by using Gsbpg.

For bases B := (b1, . . . , bN ) and B
∗ := (b∗

1, . . . , b
∗
N ), let (x1, . . . , xN )B and

(y1, . . . , yN )B∗ be
∑N

i=1 xibi and
∑N

i=1 yib∗
i , respectively.

2.4 General Predicates: Non-monotone Access Structures
with Inner-Product Relations

In this paper, we follow the definitions in [23]. See Appendix A and B for details
on span programs and linear secret sharing schemes, respectively.

Definition 4 (Inner-Products of Attribute Vectors and Access Struc-
tures). Ut =

⋃ct

i′=1
Ut,i′ (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a t-th sub-universe.

Ut,i′ is a set of attributes, each of which is expressed by a pair of sub-universe
id, category id and value of attribute, i.e., (t, i′, x), where t ∈ {1, . . . , d},
i′ ∈ {1, . . . , ct} and xt,i′ ∈ Fq \ {0}.
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We now define such an attribute to be a variable p of a span program S :=
(M,ρ), i.e., p := (t, i′, vt,i′ ). An access structure A is a span program S :=
(M,ρ) along with variables p := (t, i′, vt,i′ ), . . . , i.e., A := (M,ρ) such that
ρ : {1, . . . , �} → {(t, i′, vt,i′ ), . . . ,¬(t, i′, vt,i′ ), . . .}. Let Γ be a set of attributes,
i.e., Γ := {(t, i′, xt,i′ ) | xt,i′ ∈ Fq\{0}, 1 ≤ t ≤ d, 1 ≤ i′ ≤ ct}, where t and i′ run
through some subset of {1, . . . , d} and {1, . . . , ct}, respectively, not necessarily the
whole indices.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for
span program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1
if [ρ(i) = (t, i′, vt,i′ )] ∧ [(t, i′, xt,i′ ) ∈ Γ ] ∧ [(vt,i′ ,−1) · (1, xt,i′ ) = 0] or [ρ(i) =
¬(t, i′, vt,i′ )]∧[(t, i′, xt,i′ ) ∈ Γ ]∧[(vt,i′ ,−1)·(1, xt,i′ ) �= 0]. Set γ(i) = 0 otherwise.

Access structure A := (M,ρ) accepts Γ if and only if �1 ∈ span〈(Mi)γ(i)=1〉.

We note that we define Ut as the attribute sub-universe managed by t-th AA
in the same way as [23]. However, unlike [23], we also define Ut =

⋃ct

i′=1
Ut,i′ . We

assume that t-th AA manages the attributes by dividing them into ct categories.
The reason for this split management of attributes is that it is useful when using
the NOT operator in the access policy. See Appendix C.

2.5 Revocation Framework Based on Full Binary Tree

To support key revocation, we use the full binary tree, BT and the complete
subtree (CS) method, CS [19]. For more details, see Appendix D and E.

3 Unbounded Revocable DMA-CP-ABE Supporting
Non-monotone Access Structures

3.1 Syntax of Unbounded Revocable DMA-CP-ABE
(UR-DMA-CP-ABE)

A UR-DMA-CP-ABE scheme consists of the following five algorithms. These are
randomized algorithms except for Dec. We assume that the number of AAs is d.
The t-th AA (1 ≤ t ≤ d) manages attributes split into ct(∈ N) categories.

1. GSetup(1λ): This algorithm takes a security parameter λ as input and outputs
a global parameter gparam.

2. ASetup(gparam, t, ct, {Nmax,t,i′ }ct

i′=1
): This algorithm takes a global parame-

ter gparam, index of AA t, total number of attribute category managed by AAt

ct and set of maximum number of users per attribute category {Nmax,t,i′ }ct

i′=1
as inputs. It outputs master secret keys of AAt, mskt, master public keys
of AAt, mpkt, and user management information {(BT t,i′ , Rt,i′ )}ct

i′=1
where
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BT t,i′ is a full binary tree assigned users in i′-th attribute category and Rt,i′

is the set of revoked users1 in i′-th attribute category2.
3. KeyGen(gparam, gid, xt,i′ , mskt, BT t,i′ ): This algorithm takes a global

parameter gparam, global identifier of user gid, attribute in i′-th category
managed by AAt xt,i′ , master secret keys of AAt mskt and full binary tree of
i′-th category managed by AAt BT t,i′ as inputs. It outputs private keys of
user who has gid associated with the attribute xt,i′ , uskgid,(t,i′ ,x

t,i
′ ).

4. Enc(gparam, {mpkt, {(BT t,i′ , Rt,i′ )}i′ }t, m, A = (M,ρ)): This algorithm
takes a global parameter gparam, master public keys of AAt mpkt, full binary
tree and set of revoked users of i′-th category managed by AAt (BT t,i′ , Rt,i′ ),
message m and access structure A as inputs. It outputs the ciphertext
ctA,{R

t,i
′ }. Note that an encryptor specifies the revocation list to the cipher-

text in this algorithm.
5. Dec(gparam, ctA,{R

t,i
′ }, {uskgid,(t,i′ ,x

t,i
′ )}): This algorithm takes a global

parameter gparam, ciphertext ctA,{R
t,i

′ } and set of private keys of user who
has gid {uskgid,(t,i′ ,x

t,i
′ )} as inputs. It outputs a message m or a special symbol

⊥.

A UR-DMA-CP-ABE scheme should have the following correctness property:
for all security parameter λ, all index of AAt, all nt, all Nmax,t,i′ , all attribute
sets Γ := {(t, i

′
, xt,i′ )}, all gid, all messages m, and all access structures A, it

holds that m = Dec(gparam, ctA,{R
t,i

′ }, {uskgid,(t,i′ ,x
t,i

′ )}) with overwhelming

probability, if A accepts Γ and there exists δ related with Γ , i.e., �1 ∈ span〈Mδ〉
s.t. Mδ := (Mj)γ(j)=1 where gid /∈ Rt,i′ for all j s.t. γ(j) = 1 and ρ(j) =
(t, i

′
, xt,i′ ) or ¬(t, i

′
, xt,i′ ), where

gparam
R←− GSetup(1λ),

(mskt,mpkt, {(BT t,i′ , Rt,i′ )}ct

i′=1
) R←− ASetup(gparam, t, ct, {Nmax,t,i′ }ct

i′=1
),

uskgid,(t,i′ ,x
t,i

′ )
R←− KeyGen(gparam, gid, xt,i′ , mskt, BT t,i′ ),

ctA,{R
t,i

′ }
R←− Enc(gparam, {mpkt, {(BT t,i′ , Rt,i′ )}i′ }t, m, A = (M,ρ)).

1 In ASetup, AAt initializes as Rt,i
′ = φ. After running ASetup, AAt publishes Rt,i

′

and adds the revoked user’s identifier to Rt,i
′ whenever the revocation event happens.

2 We note that the size of master secret and public keys of AAt does not depend on
nt and Nmax,t,i

′ , but the size of user management information {(BT t,i
′ , Rt,i

′ )}ct

i
′
=1

depends on it. We emphasize that we are attempting to achieve the unboundedness
to the parameters of DMA-CP-ABE managed by AAt, i.e., mskt and mpkt, not user
management information. The user management information is just like text. Hence,
the data size of it is sufficiently smaller than that of mskt and mpkt, even if the size
of user management information depends on nt and Nmax,t,i

′

We also note that key revocation with a revocation list and user tree for each
attribute category is inefficient in terms of ciphertext and key size. However,
attribute-level revocation is efficient in the sense that it reduces the cost of key
redistribution for each revocation event.
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3.2 Security of UR-DMA-CP-ABE

For an adversary A, the advantage of A in the following game is defined as
AdvPHA (λ) := |Pr[b′ = b] − 1/2| for any security parameter λ. A UR-DMA-
CP-ABE scheme is adaptively payload-hiding secure against chosen-plaintext
attacks if all polynomial time adversaries have at most a negligible advantage in
the following game:

Setup
Given 1λ, the challenger gives gparam

R←− GSetup(1λ) to A. The challenger
runs (mskt,mpkt, {(BT t,i′ , Rt,i′ )}ct

i′=1
) R←− ASetup(gparam, t, ct,

{Nmax,t,i′ }ct

i′=1
) for t = 1, . . . , d and gives {mpkt, {(BT t,i′ , Rt,i′ )}ct

i′=1
}d

t=1 to
A.

Phase 1
A is allowed to issue a polynomial number of queries, (gid, (t, i

′
, xt,i′ )), to

the challenger or oracle KeyGen(gparam, gid, xt,i′ , mskt, BT t,i′ ) for user’s
private keys.

Challenge
Let Γgidj

:= {(t, i
′
, xt,i′ )}(j = 1, . . . , ν) be the queries set to the KeyGen

oracle with gidi. A submits two challenge messages m∗
0,m

∗
1, challenge access

structure A
∗ := (M,ρ) and the challenge set of revoked users {R∗

t,i′ } to the
challenger. A∗ and {R∗

t,i′ } must satisfy at least one of the following restrictions
for each j:
Restriction I

A
∗ does not accept any Γgidj

for j = 1, . . . , ν.
Restriction II

For j = 1, . . . , ν, if A∗ accepts Γgidj
, there exists R∗

t,i′ containing gidj s.t.

ρ(i) = (t, i
′
, xt,i′ ) or ¬(t, i

′
, xt,i′ ) for i ∈ I where �1 ∈ span〈(Mi)γ(i)=1〉 and

I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1}.
The challenger flips a random coin b

U←− {0, 1} and run ct∗
A∗,{R∗

t,i
′ }

R←−
Enc(gparam, {mpkt, {(BT t,i′ , R∗

t,i′ )}i′ }t, m∗
b , A

∗). Then, the challenger
sends ct∗

A∗,{R∗
t,i

′ } to A.

Phase 2
A is allowed to issue a polynomial number of queries, (gid, (t, i

′
, xt,i′ )), to

the challenger or oracle KeyGen(gparam, gid, xt,i′ , mskt, BT t,i′ ) for user’s
private keys subject to the same restriction as before.

Guess
A outputs a guess b′ of b.

3.3 Our Construction

Key Idea. A straightforward way to construct the UR-DMA-CP-ABE scheme
supporting the non-monotone access structure seems is to extend the existing
revocable DMA-CP-ABE scheme [29] to the variant of it with unboundedness by
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applying the existing technologies for unboundedness (indexing and consistent
randomness amplification) [22]. However, we cannot employ this approach. The
scheme of [29] needs to represent the user for each attribute category as an
O(log Nmax,t,i′ )-dimensional vector on DPVS for key revocation. The consistent
randomness amplification [22] can realize the unboundedness only for the number
of attribute categories or dimension of vector. Hence, if we were to try to realize
the unboundedness for the number of attribute categories while using multiple
attribute categories in the system, the consistent randomness amplification [22]
could not be applied to the scheme of [29].

To overcome this technical difficulty, we introduce the novel encoding that
represents the user for each attribute category as a two-dimensional vector on
DPVS for key revocation and modify the existing revocable DMA-CP-ABE
scheme [29] by using the introduced encoding. In addition, unlike [29], we restrict
the attribute vector to be two-dimensional. In this way, we can apply the tech-
nologies for unboundedness [22] to the modified revocable DMA-CP-ABE scheme
based on [29] and construct the UR-DMA-CP-ABE scheme supporting the non-
monotone access structure. We show the algorithms of our scheme as follows:

1. GSetup(1λ):
Trusted third party (TTP) runs paramG := (q,G,GT , G, e) R←− Gsbpg(1λ). Let
H : {0, 1}∗ → G be the hash function. TTP publishes gparam = (paramG,H).
Note that anyone can compute the following value by using gparam: G0 :=
H(0λ), G1 := H(0λ−1 ‖ 1), gT := e(G0, G1).

2. ASetup(gparam, t, ct, {Nmax,t,i′ }ct

i′=1
):

AAt (1 ≤ t ≤ d) computes paramVA,t
= (q,VA,t,GT ,AA,t,e) and paramVR,t

=
(q,VR,t,GT ,AR,t,e) by running Gdpvs(1λ, 24,Fq) and Gdpvs(1λ, 24,Fq), respec-
tively.
Then, AAt computes XA,t,XR,t

U←− GL(24,Fq), bA,t,j = XA,t((0j−1,
G0, 024−j)) and bR,t,j = XR,t((0j−1, G0, 024−j)) for j = 1, . . . , 24. AAt sets
B̂A,t = (bA,t,1, . . . , bA,t,6, bA,t,21, . . . , bA,t,24) and B̂R,t = (bR,t,1, . . . , bR,t,6,
bR,t,21, . . . , bR,t,24).
Next, AAt runs CS.Setup(Nmax,t,i′ ) and obtain BT t,i′ for i′ = 1, . . . , ct. AAt

initializes the set of revoked users Rt,i′ = φ for i′ = 1, . . . , ct. If an user gid is
revoked, AAt updates as Rt,i′ ∪ {gid} and publishes it.
Finally, AAt sets mskt = (XA,t,XR,t), mpkt = (paramVA,t

, B̂A,t, paramVR,t
,

B̂R,t). AAt publishes mpkt and {(BT t,i′ , Rt,i′ )}ct

i′=1
.

3. KeyGen(gparam, gid, xt,i′ , mskt, BT t,i′ ):

AAt computes Ggid = (δG1) = H(gid) ∈ G and σA,i′ , ϕA,i′ ,1, ϕA,i′ ,2, ξgid
U←−

Fq. Then, AAt computes

k∗
t,i′ ,A = (X−1

A,t)
T ((

2
︷ ︸︸ ︷
σA,i′ (1, i′)G1,

2
︷ ︸︸ ︷
(1, xt,i′ )G1,

2
︷ ︸︸ ︷
(1, xt,i′ )Ggid,

12
︷ ︸︸ ︷
0, . . . , 0,

2
︷ ︸︸ ︷
(ϕA,i′ ,1, ϕA,i′ ,2)G1,

2
︷ ︸︸ ︷
ξgid(1, xt,i′ )G1,

2
︷︸︸︷
0, 0 )).
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AAt runs CS.Assign(BT t,i′ , gid) and obtains PVt,i′ ,gid = {St,i′ ,gid,j0
, . . . ,

St,i′ ,gid,jh
t,i

′
} where ht,i′ is the depth of BT t,i′ .

Next, AAt computes σR,i′ ,j′ , ϕR,i′ ,j′ ,1, ϕR,i′ ,j′ ,2
U←− Fq for j′ = j0, . . . , jh

t,i
′ .

Then, AAt computes

k∗
t,i′ ,R,j′ = (X−1

R,t)
T ((

2
︷ ︸︸ ︷
σR,i′ ,j′ (1, i′)G1,

2
︷ ︸︸ ︷
(1, j′)G1,

2
︷ ︸︸ ︷
(1, j′)Ggid,

12
︷ ︸︸ ︷
0, . . . , 0,

2
︷ ︸︸ ︷
(ϕR,i′ ,j′1, ϕR,i′ ,j′ ,2)G1,

2
︷ ︸︸ ︷
ξgid(1, j′)G1,

2
︷︸︸︷
0, 0 ))

for j′ = j0, . . . , jh
t,i

′ .
Finally, AAt issues the user’s private key uskgid,t,i′ ,x

t,i
′ = (k∗

t,i′ ,A,

{k∗
t,i′ ,R,j′ }

jh
t,i

′

j′=j0
, PVt,i′ ,gid) to the user gid.

4. Enc(gparam, {mpkt, {(BT t,i′ , Rt,i′ )}i′ }t, m, A = (M,ρ)):

An encryptor computes �fm
U←− F

r
q, �sT

m = (sm,1, . . . , sm,�)T = M · �fT
m and

sm,0 = �1 · �fT
m for m = A,R. He/she also computes �f ′

m
U←− F

r
q s.t. �1 · �f ′T

m = 0

and �s′T
m = (s′

m,1, . . . , s
′
m,�)T = M · �f ′T

m for m = A,R.

Next, the encryptor obtains μA,i, θA,i, θ
′
A,i, θ

′′
A,i, ηA,i,1, ηA,i,2

U←− Fq and wi
U←−

F
×
q for i = 1, . . . , �.

If ρ(i) = (t, i
′
, vt,i′ ), the encryptor computes

cA,i = (

2
︷ ︸︸ ︷
μA,i(i′,−1),

2
︷ ︸︸ ︷
sA,i(1, 0) + θA,i(vt,i′ ,−1),

2
︷ ︸︸ ︷

s′
A,i(1, 0) + θ

′
A,i(vt,i′ ,−1),

12
︷ ︸︸ ︷
0, . . . , 0,

2
︷︸︸︷
0, 0 ,

2
︷ ︸︸ ︷

wi(1, 0) + θ
′′
A,i(vt,i′ ,−1),

2
︷ ︸︸ ︷
ηA,i,1, ηA,i,2)BA,t

.

If ρ(i) = ¬(t, i
′
, vt,i′ ), the encryptor computes

cA,i = (

2
︷ ︸︸ ︷
μA,i(i′,−1),

2
︷ ︸︸ ︷
sA,i(vt,i′ ,−1),

2
︷ ︸︸ ︷

s
′
A,i(vt,i′ ,−1),

12
︷ ︸︸ ︷
0, . . . , 0,

2
︷︸︸︷
0, 0 ,

2
︷ ︸︸ ︷
wi(vt,i′ ,−1),

2
︷ ︸︸ ︷
ηA,i,1, ηA,i,2)Bt

.

Then, the encryptor runs CS.Cover(BT t,i′ , Rt,i′ ) and obtains
CVR

t,i
′ = {St,i′ ,i1 , . . . , St,i′ ,i

m
′ }. He/she computes μR,i,i′′ , θR,i,i′′ , θ

′

R,i,i′′ ,

θ
′′

R,i,i′′ , ηR,i,i′′ ,1, ηR,i,i′′ ,2
U←− Fq for i = 1, . . . , �; i′′ = i1, . . . , im′ . After that,

he/she computes
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cR,i,i
′′ = (

2
︷ ︸︸ ︷

μR,i,i
′′ (i′,−1),

2
︷ ︸︸ ︷

sR,i(1, 0) + θR,i,i
′′ (i′′,−1),

2
︷ ︸︸ ︷

s′
R,i(1, 0) + θ

′
R,i,i

′′ (i
′′
,−1),

12
︷ ︸︸ ︷

0, . . . , 0,

2
︷︸︸︷

0, 0 ,

2
︷ ︸︸ ︷

(−wi)(1, 0) + θ
′′
R,i,i

′′ (i
′′
,−1),

2
︷ ︸︸ ︷

ηR,i,i
′′

,1, ηR,i,i
′′

,2)BR,t

for i′′ = i1, . . . , im′ .
Finally, the encryptor computes c0 = m · gsA,0+sR,0

T and outputs ctA,{R
t,i

′ } =

(A, {cA,i, CV Rρ̃(i) , {cR,i,i′′ }i
m

′
i′′=i1

}�
i=1, c0) where ρ̃ is an injective function

such that ρ̃(i) = (t, i
′
) if ρ(i) = (t, i

′
, vt,i′ ) or ¬(t, i

′
, vt,i′ ).

5. Dec(gparam, ctA,{R
t,i

′ }, {uskgid,(t,i′ ,x
t,i

′ )}):

A decryptor who has the set of attributes Γ = {(t, i
′
, xt,i′ ) ∈ uskgid,t,i′ ,x

t,i
′ }

can compute {αi}i∈I if A = (M,ρ) accepts Γ such that �1 ∈
∑

i∈I αiMi and
I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t, i

′
, vt,i′ )∧(t, i

′
, xt,i′ ) ∈ Γ ∧vt,i′ = xt,i′ ]∨[ρ(i) =

¬(t, i
′
, vt,i′ ) ∧ (t, i

′
, xt,i′ ) ∈ Γ ∧ vt,i′ �= xt,i′ ]}.

The decryptor runs CS.Match(CV R
t,i

′ , PVt,i′ ,gid) for ρ̃(i) = (t, i′) and i ∈ I. If
gid /∈ Rt,i′ , he/she can obtain St,i′ ,k such that St,i′ ,k ∈ CV R

t,i
′ and St,i′ ,k ∈

PV t,i′ ,gid. Otherwise, he/she outputs ⊥.
Next, the decryptor computes

K =
∏

i∈I∧ρ(i)=(t,i′ ,v
t,i

′ )

(e(cA,i,k
∗
t,i′ ,A) · e(cR,i,k,k∗

t,i′ ,R,k
))αi

·
∏

i∈I∧ρ(i)=¬(t,i′ ,v
t,i

′ )

(e(cA,i,k
∗
t,i′ ,A)1/(v

t,i
′ −x

t,i
′ ) · e(cR,i,k,k∗

t,i′ ,R,k
))αi

Finally, the decryptor outputs m = c0/K.

[Correctness] If A accepts Γ and gid /∈ Rt,i′ for ρ̃(i) = (t, i′) and i ∈ I,

K =
∏

i∈I∧ρ(i)=(t,i′ ,v
t,i

′ )

(gμA,i·σA,i
′ ·0+sA,i+δs′

A,i+ξgid·wi

· g
μ

R,i,i
′′ ·σ

R,i
′
,j

′ ·0+sR,i+δs′
R,i−ξgid·wi

T )αi

·
∏

i∈I∧ρ(i)=¬(t,i′ ,v
t,i

′ )

(g(μA,i·σA,i
′ ·0+(sA,i+δs′

A,i+ξgid·wi)(vt,i
′ −x

t,i
′ ))/(v

t,i
′ −x

t,i
′ )

· g
μ

R,i,i
′′ ·σ

R,i
′
,j

′ ·0+sR,i+δs′
R,i−ξgid·wi

T )αi

= g
∑

i∈I(αisA,i+δαis
′
A,i+αisR,i+δαis

′
R,i)

T = g
sA,0+sR,0
T ,

since
∑

i∈I αisA,i = sA,0,
∑

i∈I αisR,i = sR,0 and
∑

i∈I αis
′
A,i =

∑
i∈I αis

′
R,i =

0.
To show that our scheme is more practical than [29], we compare the structure

of ciphertexts and secret keys and the performance in Appendix F.
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3.4 Security Proof Sketch

Theorem 1 The proposed UR-DMA-CP-ABE scheme is adaptively payload-
hiding against chosen plaintext attacks under the DLIN assumption in the ran-
dom oracle model. For any adversary, A, there exist probabilistic machines E1,
E2 and E3, whose running times are essentially the same as that of A, s.t. for
any λ,

AdvPHA (λ) ≤ AdvDLIN
E1

(λ) +
ν∑

h=1

(AdvDLIN
E2

(λ) + AdvDLIN
E3

(λ)) + ε,

where ν is the maximum number of queries to the random oracle, and ε is the
constant value dependent on d (the number of AAs), ν, and q.

We use the DLIN assumption and follow the dual system encryption strat-
egy employed in [23] to achieve adaptively payload-hiding security against
chosen-plaintext attacks. However, since our scheme supports key revocation
and unboundedness, we cannot straightforwardly use the dual system encryp-
tion strategy employed in [23].

To achieve the security while supporting key revocation, we use Restrictions
I and II in the security game in Sect. 3.2 as well as the existing revocable ABE [8,
29]. If we try to prove the security by using the dual system encryption strategy
employed in [23] straightforwardly, the adversary can distinguish the games in
Lemma 21 in [23] because the adversary can obtain the whole of the variables
about user’s keys and distinguish between the pre-semi-functional ciphertext
and the semi-functional ciphertext. By splitting the user’s key into the keys for
attributes and revocations and employing Restrictions I and II in the security
game, we can prevent the adversary from being able to distinguish security
games.

To achieve security while supporting unboundedness, we use the consistent
randomness amplification as well as [8,22] in the game sequences. Like [8,22], we
replace the intra-subspace information theoretical transformation in the game
sequences by the unbounded intra-subspace transformation assumption that is
reduced to a swapping assumption.

4 Conclusion

We proposed a novel UR-DMA-CP-ABE that supports a non-monotone access
structure achieving the adaptively payload-hiding against chosen-plaintext
attacks under the DLIN assumption. The parameter sizes of the user’s secret
keys and ciphertexts in ours are smaller than that of the existing revocable
DMA-CP-ABE supporting non-monotone access structures [29] even if nt = 2.
Hence, our scheme is more practical than [29].
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Appendix

A Span Programs

Definition 5 (Span Programs [23]). We define {p1, . . . , pm} as a set of vari-
ables. A span program over Fq is a labeled matrix S := (M,ρ). Note that M is
a � × r matrix over Fq. We also note that ρ is a labeling of the rows of M by
literals from {p1, . . . , pm,¬p1, . . . ,¬pm}. Every row is labeled by one literal, i.e.,
ρ : {1, . . . , �} → {p1, . . . , pm,¬p1, . . . ,¬pm}.

S accepts or rejects an input by the following criterion. For every input
sequence δ ∈ {0, 1}m define the submatrix Mδ of M consisting of those rows
whose labels are set to 1 by the input δ, i.e., either rows labeled by some pi such
that δi = 1 or rows labeled by some ¬pi such that δi = 0. (i.e., γ : {1, . . . , �} →
{0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or [ρ(j) = ¬pi] ∧ [δi = 0],
and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is the j-th row of M.)

S accepts δ if and only if �1 = (

r
︷ ︸︸ ︷
1, . . . , 1) ∈ span〈Mδ〉. That is, the some linear

combination of the rows of Mδ, span〈Mδ〉, gives �1 such that the row vector has
the value 1 in each coordinate. S computes a Boolean function f if it accepts
exactly those inputs δ where f(δ) = 1.

S is called monotone if the labels of the rows are only the positive literals
{p1, . . . , pm}. Monotone span programs compute monotone functions. In other
words, a span program in general is “non”-monotone.

Assume that no row Mi(i = 1, . . . , �) of the matrix M is �0 = (

r
︷ ︸︸ ︷
0, . . . , 0), i.e.,

the row vector has the value 0 in each coordinate. We introduce a non-monotone
access structure with evaluating map γ by using the inner-product of attribute
vectors, which is employed in our scheme in the same way as [23].

B Linear Secret Sharing Schemes

Definition 6 (Linear Secret Sharing Schemes [23]). Let M be an � × r

matrix. Let column vector �fT := (f1, . . . , fr)
T U←− F

r
q. Then, s0 = �1 · �fT =

∑r
k=1 fk is the secret to be shared, and �sT = (s1, . . . , s�)

T = M · �fT is the vector
of � shares of the secret s0. Each share si belongs to ρ(i).

If span program S := (M,ρ) accepts δ, or access structure A := (M,ρ)
accepts Γ , i.e., �1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there
exist constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . �} | γ(i) = 1} and∑

i∈I αisi = s0. Note that {αi} can be computed in time polynomial in the size
of matrix M .
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C Usefulness of Splitting the Attribute Universe When
Using the NOT Operator

For example, we assume that t-th AA is a company and manages attributes
about employees split into two categories, “department”(={Human Resource
Department, Accounting Department, General Affairs Department, Manufactur-
ing Department}) and “length of service”(={1,2,3,4,5}). If an encryptor encrypts
the message so that only employees with five years of service outside of the
Human Resources Department can decrypt it, the encryptor would like to spec-
ify the access policy such as (NOT(department = “Human Resources Depart-
ment”)) AND (length of service = “5”) in the ciphertext. If t-th AA manages all
attributes in one category, the expression of access policy would be complicated,
and the ciphertext size may increase. In the previous example, an encryptor needs
to specify the access policy such as (“Accounting Department” AND “5”) OR
(“General Affairs Department” AND “5”) OR (“Manufacturing Department”
AND “5”) because the encryptor cannot use NOT operator. If t-th AA manages
all attributes in one category, an access policy (NOT “Human Resources Depart-
ment”) equals “Accounting Department” OR “General Affairs Department” OR
“1” OR “2” OR “3” OR “4” OR “5”.

Hence, the AA in the DMA-CP-ABE system supporting non-monotone access
structures (e.g., [23]) is required to manage attributes in multiple categories.
However, we emphasize that the size of the public parameters managed by each
AA would be proportional to the number of categories. Therefore, the non-
monotone ABE scheme supporting unboundedness for the number of attribute
categories (that means the size of the public parameter must be independent of
the number of attribute categories) is desirable.

D Full Binary Tree

A full binary tree BT is a tree data structure such that every node except leaf
nodes has two child nodes. If we let h be the depth3 of BT , the number of leaf
nodes of BT is denoted as Nmax = 2h. Note that the depth of the root node is
0. The total number of nodes is 2Nmax − 1(= 2h+1 − 1).

For any index 0 ≤ i ≤ 2Nmax − 1, we let νi be a i-th node in BT . Note that
we assign the index 0 to the root node and other indices to other nodes using a
breadth-first search. That is, for any νi, the index of its left child node is 2i + 1
and the index of its right child node is 2i + 2, while the index of its parent node
is � i−1

2 �. Siblings are nodes sharing the same parent node.
We define ID as a mapping from the node νi to its index i. That is, it holds

that ID(νi) = i.

3 The depth of a node is the length of the path from the root node to the node.
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E The Subset-Cover Revocation Framework (SC)

Naor et al. introduced SC as a general methodology for the construction of
efficient revocation systems [19]. We let N = {1, . . . , Nmax} be the set of all users.
SC for N consists of the following four probabilistic polynomial-time algorithms.

1. Setup(Nmax): The setup algorithm takes the maximum number of users Nmax

as input and outputs a collection SUB of subsets S1, . . . , Sw where Si ⊆ N .
2. Assign(SUB, u): The assigning algorithm takes the collection SUB and a user

u ∈ N . It outputs a private set PV u = {Sj1 , . . . , Sjn
} that is associated with

the user u.
3. Cover(SUB, R): The covering algorithm takes as the collection SUB and

a revoked set R ⊂ N of users, and it outputs a covering set CV R =
{Si1 , . . . , Sim

} that is a partition of the unrevoked users N \ R into disjoint
subsets Si1 , . . . , Sim

, that is, they are disjoint, and it holds that N \ R =⋃m
k=1 Sik

.
4. Match(CV R, PV u) : The matching algorithm takes as input a covering set

CV R = {Si1 , . . . , Sim
} and a private set PV u = {Sj1 , . . . , Sjn

}. It outputs
(Sik

, Sjk′ ) such that Sik
∈ CV R, u ∈ Sik

and Sjk′ ∈ PV u, or it outputs ⊥.

The correctness of SC is defined as follows: For all SUB generated by
Setup(Nmax), all PV u generated by Assign(SUB, u) for any u, and all CV R

generated by Cover(SUB, R) for any R, it is required that:

– If u /∈ R, then Match(CV R, PV u) outputs (Sik
, Sjk′ ) such that Sik

∈ CV R,
u ∈ Sik

and Sjk′ ∈ PV u.
– If u ∈ R, then Match(CV R, PV u) outputs ⊥.

In particular, we use the complete subtree (CS) method in [19]. For BT and
a subset R of leaf nodes, we let ST (BT , R) be the Steiner Tree induced by
the set R and the root node. That is, ST (BT , R) is the minimal subtree of BT
connecting all the leaf nodes in R and the root node. Hereafter, we simply denote
ST (BT , R) by ST (R). The CS method consists of the following four probabilistic
polynomial-time algorithms.

1. CS.Setup(Nmax): The setup algorithm takes the maximum number of users
Nmax = 2h as input. It first sets BT of depth h. Each user is assigned a
different leaf node in BT 4. The collection SUB of CS is {Si : νi ∈ BT }.
Recall that Si is the set of all the leaf nodes in the subtree Ti. Then, it
outputs BT .

2. CS.Assign(SUB, u): The assign algorithm takes BT and a user u ∈ N
as inputs. We let νu be the leaf node of BT that is assigned to u. Let
(νj0 , νj1 , . . . , νjh

) be the path from the root node νj0 = ν0 to the leaf node
νjh

= νu. It sets PV u = {Sj0 , . . . , Sjh
}, and outputs the private set PV u.

4 In our scheme, if a user with an assigned leaf node ν becomes revoked and unrevoked
again. Then, the user cannot reuse the same leaf node ν, and in this case, a new
different leaf node needs to be assigned to the user. We emphasize that the leaf node
ν cannot be reused for other users.
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3. CS.Cover(SUB, R): The covering algorithm takes BT and a revoked set R of
users as inputs. It first computes ST (R). Let Ti1 , . . . , Tim

be all the subtrees
of BT that hang off ST (R), that is, all subtrees whose roots νi1 , . . . , νim

are
not in ST (R) but adjacent to nodes of outdegree 1 in ST (R). It outputs a
covering set CV R = {Si1 , . . . , Sim

}.
4. CS.Match(CV R, PV u): The matching algorithm takes a covering set CV R =

{Si1 , . . . , Sim
} and a private set PV u = {Sj0 , . . . , Sjh

} as inputs. It finds a
subset Sk such that Sk ∈ CV R and Sk ∈ PV u. If there is such a subset, it
outputs (Sk, Sk). Otherwise, it outputs ⊥.

F Comparison Between Existing DMA-CP-ABE
and Ours

F.1 Structure of Ciphertexts and Secret Keys

We compare our scheme and the existing schemes [23,29]. These schemes and
ours achieve adaptively payload-hiding against chosen-plaintext attacks under
DLIN assumption.

Okamoto and Takashima gave a DMA-CP-ABE scheme achieving adaptively
payload-hiding against chosen-plaintext attacks on the DPVS framework [23].
In [23], ciphertexts (CT) and secret keys (SK) vectors have dimension 5nt +
1 = 2nt + 2nt + nt + 1, where the first 2nt dimension is the real-encoding
part (real part, for short) for CT and SK vectors, the second 2nt is the hidden
part for temporary, pre-semi-functional and semi-functional CT and SK vectors,
the third nt is the SK randomness part and the fourth is the CT randomness
part. However, DMA-CP-ABE [23] is not supporting the revocation of the user’s
attributes.

To realize the revocation, the authors of [29] introduced two types of CT and
SK, CT (and SK) for access control and revocation, respectively. In addition,
they increased double possession resistance part (resist. part, for short), i.e.,
nf,t−dimentional with 6nf,t + 1 = 2nf,t + 2nf,t + nf,t + nf,t + 1 inner−structure.
“Double possession” means having SK, each of which has a different value (dif-
ferent vector �xf,t) for the same category t. However, revocable DMA-CP-ABE
[29] is not supporting unboundedness.

To realize the unboundedness, we employ the indexing and consistent ran-
domness amplification [22] in the same way as [8]. Hence, we increased the index-
ing part in CT and SK. We note that the consistent randomness amplification
can realize the unboundedness for the number of attribute categories or dimen-
sions of a vector. Therefore, in our scheme, the dimension of the attribute vector
in CT and SK is fixed, i.e., 2.

CT & SK vector in [23] : (

2nt
︷︸︸︷
real

2nt
︷ ︸︸ ︷
hidden

nt
︷ ︸︸ ︷
SK ran.

1
︷ ︸︸ ︷
CT ran.),

CT & SK vector in [29] : (

2nf,t
︷︸︸︷
real

2nf,t
︷ ︸︸ ︷
hidden

nf,t
︷ ︸︸ ︷
SK ran.

nf,t
︷ ︸︸ ︷
resist.

1
︷ ︸︸ ︷
CT ran.),

CT & SK vector in ours: (

2
︷ ︸︸ ︷
indexing

4
︷︸︸︷
real

12
︷ ︸︸ ︷
hidden

2
︷ ︸︸ ︷
SK ran.

2
︷ ︸︸ ︷
resist.

2
︷ ︸︸ ︷
CT ran.),
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F.2 Performance

Table 2. Comparison of the parameter size of public parameters (PP) and master
secret keys (MSK) between existing DMA-ABE and ours (|G|: the size of G, |GT |: the
size of GT , |Fq|: the size of Fq, nt: the dimension of the attribute vector, ϕt: the upper
bound for the number of subsets in the cover, ht: the height of the tree of users).

Schemes PP MSK

[26] |GT | + |G| |Fq|
[23] (10n2

t + 7nt + 1)|G| (25n2
t + 10nt + 1)|Fq|

[29] (18n2
t +9nt+18ϕ2

t +99ϕt

+ 36htϕt+48ht+101)|G|
(18n2

t + 9nt + 14h2
t + ϕ2

t + 6htϕt

+16ht + 8ϕt + 2ht + 17)|Fq|
This work 480|G| 576|Fq|

Table 3. Comparison of the parameter size of user’s secret key (SK) and ciphertexts
(CT) between existing DMA-ABE and ours (|Γ |: the size of the attribute set, Rt: the
number of revoked users in AAt).

Schemes SK CT

[26] 2|Γ ||G| (� + 1)|GT | + 3�|G|
[23]

∑|Γ |
i=1(nt|Fq| + (5nt + 1)|G|) |GT | + ∑�

i=1(5nt + 1)|G|
[29]

∑|Γ |
i=1(nt|Fq|

+ (6nt + 12ht + 6ϕt + 26)|G|)
|GT | + ∑�

i=1(6nt + 1+
Rt log2(2

ht/Rt)(24ht + 12ϕt + 50)|G|)
This work

∑|Γ |
i=1(|Fq| + (24 + 24ht)|G|) |GT |+ ∑�

i=1(24 + 24Rt log2(2
ht/Rt)|G|)

We compare the parameter size between existing DMA-CP-ABE and ours in
Tables 2 and 3. For simplicity, we assume that each AA manages one attribute
category.

Table 2 shows the comparison of the parameter size of public parameters and
master secret keys (managed by each AA) between existing schemes and ours.
It shows that our parameter sizes are independent of the number of attributes
and attribute categories.

Table 3 compares the parameter size of the user’s secret keys and cipher-
texts between existing schemes and ours. Our parameter sizes are smaller than
that of the existing revocable DMA-CP-ABE supporting non-monotone access
structures [29] even if nt = 2.
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R
Rachidi, Mohamed 133
Rajapaksha, Sampath 275

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
G. Bella et al. (Eds.): SecITC 2022, LNCS 13809, pp. 341–342, 2023.
https://doi.org/10.1007/978-3-031-32636-3

https://doi.org/10.1007/978-3-031-32636-3


342 Author Index

S
Sakiyama, Kazuo 203, 289
Selçuk, Ali Aydın 153
Senanayake, Janaka 275
Shimano, Masahisa 289
Shpilrain, Vladimir 81
Shur, David 81
Skillicorn, David 240

T
Tatsumi, Masataka 184
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